
Desktop Fortran 77

for Acorn
RISC OS-based Computer

Systems

User Guide

Intelligent Interfaces Ltd

October 1999

The !Fortran77 Application
© Copyright D.J & K.M. Crennell 1993

This software must not be copied or altered in any way without the written approval of the authors.

In no circumstances shall the authors be liable for any damage, loss of profits, or any indirect or
consequential loss arising out of the use of this software or inability to use this software, even if they have
been advised of the possibility of such a loss.

User Guide
© Copyright Intelligent Interfaces Ltd 1999

Neither the whole or any part of the information contained in this User Guide may be adapted or
reproduced in any material form except with the written approval of Intelligent Interfaces Ltd.

All information is given by Intelligent Interfaces in good faith. However, it is acknowledged that there may
be errors or omissions in this User Guide. Intelligent Interfaces welcomes comments and suggestions
relating to this User Guide.

All correspondence should be addressed to:-

Technical Queries
Intelligent Interfaces Ltd
P O Box 80
Eastleigh
Hampshire
SO53 2YX

Tel: 023 8026 1514
Fax: 087 0052 1281

E-mail: support@intint.demon.co.uk
URL: http://www.intint.demon.co.uk

This User Guide is intended only to assist the reader in the use of the software and, therefore, Intelligent
Interfaces shall not be liable for any loss or damage whatsoever arising from the use of any information or
particulars in, or an error or omission in, this User Guide.

CONTENTS

Introduction 1
Conventions Used 1

Installation 2
Checking the Installation 2
Directories 2
Configuring the !Fortran77 Application 3

Using the !Fortran77 Application 4

Extensions to the Standard 6
Hexadecimal Constants 6
Naming 6
Loops 6
Random Number Generators 7
INCLUDE Statement 7
TYPE Names 7
COMPLEX *16 8
Bit Manipulation Functions 8
Relaxed Rules for List-Directed Input 9
RISC OS Interface Routines 9

Input/Output 11
Unit Numbers and Files 11
Sequential Files 12
Direct Access Files 14
OPEN and CLOSE 14
INQUIRE 14
BACKSPACE 15
ENDFILE 15
REWIND 15
Format Decoding 15
Graphics 16

Errors and Debugging 18
Front End Error Messages 18
Warning Messages 18
Code Generator Error Messages 18
Code Generator Limits 19
Run-time Errors 19
Array and Substring Errors 20
Input/Output Errors 20
Tracing 20

Appendix A 22
Code Generator Error Messages 22

Appendix B 24
Run-time Error Messages 24
Input/Output Errors 25

Appendix C 27
The Front End - The f77fe Command 27

Appendix D 29
The Code Generator - The f77cg Command 29

Appendix E 31
The Linkers 31

Appendix F 33
The Older Linker - The oldlink Command 33

Appendix G 34
The Newer Linker - The newlink Command 34

Appendix H 36
The f77, f77lk and linkf77 Commands 36
The df77, df77lk and dlinkf77 Commands 36

Appendix I 37
The IFExt Utility Library 37

Appendix J 39
The IFLib Utility Library 39

Appendix K 45
Calling Functions and Subroutines Written in Assembler from FORTRAN 45

Appendix L 49
Notes on Using a Debugger 49

Introduction
For the seriously scientific user the Desktop Fortran 77 package enables an Acorn RISC OS-
based computer to be used as a cost effective workstation for developing large Fortran
programs.

The !Fortran77 application enables Fortran programs to be compiled, linked and run in the
RISC OS Desktop environment. When used with the editor supplied (!SrcEdit) it can
'throwback' errors by highlighting the line containing the error in the source text.

The compiler fully conforms to the ANSI FORTRAN X3.9-1978 standard and. in addition,
provides a number of optional extensions.

The package contains the !Fortran77 application, the compiler front end (f77fe), the compiler
code generator (f77cg), a choice of linkers (oldlink and newlink), the source editor (!SrcEdit),
the symbolic debugger (asd), the IFExt and IFLib utility libraries, which include routines to
return the addresses of variables, make SWI calls and read and write memory, and the DrawF,
Graphics, SpriteOp, Utils and Wimp public domain libraries. A text file (helpF77) is supplied to
enable !SrcEdit to provide on-line help.

The User Guide describes the installation and use of the compiler on Acorn RISC OS-based
computers but is not a tutorial on Fortran programming.

The package requires a computer fitted with 4 Mbyte of RAM, a hard disc, RISC OS version 3.1
to 3.71 or RISC OS version 4.02 or greater and is StrongARM compatible.

Conventions Used

Text entered by the user and as it appears on the screen is shown as follows

This is text as it appears on the screen

Arguments to commands and options are shown as follows

-debug arguments

The chosen value must be entered for arguments.

Optional arguments are shown in square brackets

[-map file]

1

Installation
1 Open a directory viewer on a suitable directory for the FORTRAN directory on the

destination filing system. If this is anything other than the root directory !Fortran77 must
be reconfigured as described in the next section.

2 Open a directory viewer on Distribution Disc 1.
3 Drag the FORTRAN directory from Distribution Disc 1 to the suitable directory on

the destination filing system.
4 Remove Distribution Disc 1 and keep it in a safe place.
5 Open a directory viewer on Distribution Disc 2.
6 Drag the FORTRAN directory from Distribution Disc 2 to the suitable directory on

the destination filing system.
7 Remove Distribution Disc 2 and keep it in a safe place.
8 Open a directory viewer a suitable directory for the Library Directory on the destination

filing system. If this is anything other than the root directory !Fortran77 must be
reconfigured as described in the next section.

9 Open a directory viewer on Distribution Disc 3.
10 Drag the Library directory from Distribution Disc 3 to the root directory of the
 destination filing system.
11 On computers running RISC OS 3.60 or earlier, update the !System application

by dragging the !System application from Distribution Disc 3 to the !System
application of the computer.

12 Remove Distribution Disc 3 and keep it in a safe place.
13 Re-set the computer.

Checking the Installation

1 Open a directory viewer on the FORTRAN.Examples.General directory.
2 Double click on the Test obey file.
3 The following should be displayed

Topexpress FORTRAN 77 front end version 1.19
Program WORLD Compiled

Total workspace used 6016
ARM FORTRAN 77 code generator version 1.62
Main program (WORLD): code 104; data 20
Total code size: 104; data size: 20
ARM Linker: (Warning) Attribute conflict within AREA F77$$Data
 (conflict first found with rts(F77$$Data)).
ARM Linker: (attribute difference = {0 INIT}).
ARM Linker: (Warning) Symbol Image$$DataLimit referenced,
Image$$RW$$Limit used.
ARM Linker: finished, 1 informational, 2 warning and 0 error
messages.
 Hello Fortran world

STOP

Press SPACE or click mouse to continue

Directories

A directory for FORTRAN programs must, in turn, contain the following directories

f77 contains FORTRAN source text files
aof contains Acorn Object Format files for subsequent linking
aif contains executable Acorn Image Format files

2

o contains Acorn Object Format files for subsequent linking when the newer
version of the linker is used (see Appendix G).

Configuring the !Fortran77 Application

The !Fortran77.!Run obey file sets the following operating system variables to configure
!Fortran77:

F77cl$Dir points to the directory containing the compiler front end (f77fe), code generator
(f77cg) and linker (link), as supplied <Fortran77$Dir>.^.^.Library

F77libs$Dir points to the directory containing the Fortran libraries, as supplied
!Fortran77.lib

MaxF77$Libs sets the maximum number of libraries, as supplied 20

MaxF77$Files sets the maximum number of source or object files, as supplied default 20

The !Fortran77.!Run obey file also sets the following operating system variables to
configure command line operation options:

F77$Tmp points to the directory used for temporary scratch files created during compilation, as
supplied !Fortran77.tmp

F77$Lib points to the directory containing the Fortran libraries, as supplied !Fortran77.lib

Run$Path points to the directory containing the f77, f77lk, linkf77, d77, df77lk and dlinkf77
commands, as supplied !Fortran77.Execlib.NewLink.

3

Using the !Fortran77 Application
Before carrying out the selected operations, the !Fortran77 application sets the current
directory to the directory containing the f77 directory and creates any aof and aif
directories which it needs and which do not already exist. If any INCLUDE files are to be used,
they should be stored in this directory so that they do not need a directory prefix.

1 Install !SrcEdit and !Fortran77 on the icon bar. Click 'menu' over the !Fortran77 icon to
enable the options to be saved

2 To open the main window either
a) drag a source text file from an f77 directory onto the !Fortran77 icon
or
b) click the 'select' button over the !Fortran77 icon and drag the source text file(s)
from an f77 directory to the Fortran77 window.

3 Drag any previously compiled object files to the Fortran77 window. The f77 and aof
directories must both be sub-directories of the same directory.

4 Click 'select' over the Compile, Link, Squeeze or Run icons to select the operations
required.

4

5 Click 'menu' over the Compile icon to display the compiler options. Click 'select' to select
an option. Click 'adjust' to de-select an option. Click 'select' over Throwback to select
throwback of errors and provide on-line help. Do not select any of the debug options, see
Appendix L.

6 Click 'menu' over the Link icon to display the linker options. Click 'select' to select an
option. Click 'adjust' to de-select an option. Choose the libraries to be included by
clicking 'select' over the appropriate library name.

7 Click 'menu' over the Run icon to enter command line arguments.

8 Click 'select' over the Start icon to carry out the selected operations.

9 Click 'select' over an item in a list of files to move it to the top (this is the way to change
the scanning order of library files). Click 'adjust' over an item in a list of files to remove it.

If there are any compilation or link errors, they are written to the file err .prog (where prog is
the name of the source text file). The details are displayed by !Edit or !SrcEdit (if RISC OS has
'seen' them); similarly, asm.prog, lis .prog, map.prog are created if the corresponding option
has been selected.

Temporary files used during compiling and linking are stored on a RAM disc if possible,
otherwise they are in a directory $.tmp . These are deleted when they are no longer required.

5

Extensions to the Standard
The FORTRAN 77 compiler offers several extensions to the standard. Further extensions
concerning input/output are described in the next chapter.

Hexadecimal Constants

The compiler allows hexadecimal constants to be used and has the following form

?<type> <digits>

type is a letter, specifying the type of the constant. It must be one of I , R, D, C, L, H, or Q (for
INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, CHARACTER and COMPLEX*16,
respectively).

The type letter is followed by hexadecimal digits (0-9, A-F). There must always be an even
number of digits (that is, an exact number of bytes).

The bytes in a CHARACTER hexadecimal constant are given in the order in which they are to
appear in memory. With other constants, the most significant byte is given first. If the type of
the constant is REAL, DOUBLE PRECISION, COMPLEX or COMPLEX*16, the number of bytes
must match the size of the item in memory (4, 8 or 16); for INTEGER and LOGICAL constants,
there may be fewer bytes.

Example

CHARACTER WINDOW * (*)
PARAMETER (WINDOW = ?H1CO5141EOC)
J = ?I1234

WINDOW consists of the bytes 1C 05 14 1E OC , and J is set to the decimal value 4660 .

Naming

The compiler converts all lower case letters (apart from FORMATs and CHARACTER constants)
to upper-case when it reads the source text, so all statements, identifiers, etc may be in lower
case. Names may be up to 255 characters long. However, there is no limit on the length of
CHARACTER values.

Loops

WHILE ... ENDWHILE

This loop construct has the syntax

 WHILE (logical expr) DO
 ...
 ...
 ENDWHILE

WHILE and ENDWHILE must be nested correctly, and neither statement may be used as the
terminal statement of a DO-loop, or in a logical IF .

The loop is equivalent to

l1 IF (.NOT. logical expr) GOTO l2
 ...
 ...
 GOTO l1

6

l2

DO WHILE

This loop construct has the syntax

 DO n[,] WHILE (logical expr)
 ...
 ...
n ...

The rules regarding nesting and the terminal statement are exactly as for normal DO loops.

Block DO

The syntax of DO and DO WHILE loops has been extended so that the terminal statement
number may be omitted. The loop is then terminated by an END DO statement:

 DO v = v1,v2,v3 or DO WHILE (logical expr)

 END DO END DO

END DO may not be used as the terminal statement in a labelled DO loop.

Random Number Generators

The compiler has two routines for random number generation:

 REAL FUNCTION RNDO1 ()

returns a pseudo-random number in the range 0.0 <= r< 1.0

 SUBROUTINE SETRND (I)

selects a new random sequence. If I is zero, the sequence is non-repeatable. The generator is
initialised with a call to SETRND(0) so that successive runs will produce different sequences.

INCLUDE Statement

An INCLUDE statement allows a file containing source text to be read in by the compiler at the
point where the INCLUDE statement occurs. The syntax of the statement is

 INCLUDE `filename'

Line numbers in the INCLUDE file are not recorded in the object file and will, therefore, not
appear in a backtrace. The correct line numbers are shown in the program listing and in the
error messages.

Type Names

REAL*8 may be used as an alternative to DOUBLE PRECISION. The type names LOGICAL*4,
INTEGER*4, REAL*4 and COMPLEX*8 are alternatives to LOGICAL, INTEGER, REAL , and
COMPLEX, respectively.

COMPLEX*16

A COMPLEX*16 value consists of a pair of DOUBLE PRECISION numbers, representing the
real and imaginary parts of a complex number. The rules for the use of COMPLEX*16 are the

7

same for COMPLEX, with a few exceptions

Combining a COMPLEX*16 with a REAL or COMPLEX gives a COMPLEX*16 result.

Combining a COMPLEX with a DOUBLE PRECISION gives a COMPLEX*16 result.

A complex constant containing a double precision value is a COMPLEX*16.

The intrinsic function DIMAG is used to extract the imaginary part of a COMPLEX*16. DCMPLX
is used to convert to COMPLEX*16; it may have one or two arguments.

The rules for memory layout and EQUIVALENCE of COMPLEX*16 are the same as for
COMPLEX, except that the individual parts are DOUBLE PRECISION, rather than REAL.

There are new specific names for intrinsic functions with COMPLEX*16 arguments.
These are

Generic Specific
ABS CDABS
CONJG DCONJG
SQRT CDSQRT
EXP CDEXP
LOG CDLOG
SIN CDSIN
COS CDCOS

Bit Manipulation Functions

There are eight intrinsic functions concerned with bit manipulation on INTEGER arguments.
These are

IAND(I,J) logical and of I and J.
IOR(I,J) logical or of I and J.
IEOR(I,J) logical exclusive or of I and J.
NOT(I) logical complement of I.
ISHFT(I,J) return I shifted left J places if J is positive

or shifted right J places if J is negative.
The result is undefined if J is not in the range - 32 to +32.

Bits shifted out at the end are lost;
zeros are introduced at the other end.

IBSET(I,J) return I with bit J set to one. Bit zero is the least
significant bit.
The result is undefined if J is not in the range 0-31.

IBCLR(I,J) return I with bit J set to zero.
BTEST(I,J) test bit J of I and return a LOGICAL result - .TRUE.

if the bit is set and .FALSE. if it is clear.

Note that BTEST returns a LOGICAL result whilst the other functions return an INTEGER
result.

Example
IF (BTEST(IX, 0)) ...

tests to see if IX is odd.

I=IAND(I, ?IFF)

clears all but the least significant byte of I.

I=ISHFT(J,-24)

8

extracts the most significant byte of J.

Relaxed Rules for List-Directed Input

When reading a complex value using list-directed (free format) input, an integer or real constant
can be given - the imaginary part of the value is set to zero.

When reading a character value, if the constant

does not start with a quote
is contained on a single record
does not contain an embedded space, comma or / character
does not start with digits followed by a *,

then the delimiting quotes may be omitted and embedded quotes are not doubled.

RISC OS Interface Routines

The small utility library IFExt, see Appendix I, contains alternative routines to those listed in this
section.

The small utility library IFLib, see Appendix J, includes routines to return the addresses of
variables, make SWI calls and read and write memory.

The FORTRAN run-time library contains the following routines to interface to the operating
system. Examples illustrating the use of these routines are included in the
FORTRAN.Examples.Genera l directory.

OSBYTE
Purpose
To make OS_Byte calls which do not return any values.

Example
CALL OSBYTE (IFUNC, IARG1, IARG2)

Parameters
IFUNC (integer) - R0 = IFUNC
IARG1 (integer) - R1 = IARG1
IARG2 (integer) - R2 = IARG2

OSBYTE1
Purpose
To make OS_Byte calls that return one value.

Example
CALL OSBYTE1 (IFUNC, IARG1, IARG2, IRES1)

Parameters
IFUNC (integer) - R0 = IFUNC
IARG1 (integer) - R1 = IARG1
IARG2 (integer) - R2 = IARG2

Results
IRES1 (integer) - IRES1 = R1

OSBYTE2
Purpose
To make OS_Byte calls that return two values.

Example
CALL OSBYTE2 (IFUNC, IARG1, IARG2, IRES1, IRES2)

9

Parameters
IFUNC (integer) - R0 = IFUNC
IARG1 (integer) - R1 = IARG1
IARG2 (integer) - R2 = IARG2

Results
IRES1 (integer) - IRES1 = R1
IRES2 (integer) - IRES2 = R2

OSWORD
Purpose
To make OS_Word calls.

Example
CALL OSWORD (ICODE, IARRAY)

Parameters
ICODE (integer) - R0 = ICODE
IARRAY (integer array) - R1 = pointer to IARRAY (one dimensional integer array - the
OS_Word parameter block)

Results
Placed in IARRAY.

OSCLI
Purpose
To make OS_CLI calls.

Example
LOGICAL FUNCTION OSCLI (STRING)
LOGICAL STATUS
STATUS = OSCLI (STRING)

Parameters
STRING (character) - command line terminated by a carriage return.

Results
STATUS (logical) - if the command is executed without error STATUS = .TRUE. or if an error
occurs STATUS = .FALSE .

OSGETERROR
Purpose
To return the error number and error message immediately after OSCLI has returned with
STATUS = .FALSE.

Example
CALL OSGETERROR (IERRNO, ERRSTR)

Parameters
None

Results
IERRNO (integer) - the error number
ERRSTR (character) - the error message

10

Input/Output

Unit Numbers and Files

A FORTRAN unit number is used to refer to a file. Unit numbers in the range 1 to 60 may be
used, as well as the two * units for the keyboard and screen. Zero is equivalent to the asterisk
and may only be used in sequential READs and WRITEs. Note that the filing system limits the
number of files that can be open simultaneously.

A unit may be associated with an external file either by means of an OPEN statement or by
assignments on the command line when the program is run. If an OPEN statement with the
FILE= specifier is used then the unit is associated with the given filename. Otherwise, the
command line arguments are scanned.

The format of the command line is

command [filename1 filename2 ...][unitno1=filename1 unitno2=filename2]

An optional list of filenames is followed by an optional list of assignments of unit numbers to file
names. The initial list of unassigned filenames are associated with units numbers 1, 2, 3, etc.
Each assigned filename is associated with the given unit number. All unassigned filenames
must precede any assigned filenames.

Example
PROG ABC DEF

This associates the file ABC with unit number 1 and DEF with unit number 2.

PROG 1O=RESULTS

This associates the file RESULTS with unit number 10.

PROG RESULTS1 32=RESULTS2 3=X

This associates RESULTS1 with unit number 1, RESULTS 2 with unit number 32, and X with
unit number 3.

The two * units always refer to the screen and keyboard. Any units which are not associated
with a file in an OPEN statement or through command line arguments also refer to the screen
and keyboard.

The output stream to the screen can be redirected to output to a file using the standard RISC
OS syntax {> filename} and the input stream from the keyboard can be redirected to input
from a file using the standard RISC OS syntax {< filename} .

Any OPEN files are closed when a program terminates.

When writing to a sequential formatted file, a distinction is made between files which are to be
printed and those which are not. When writing to files which are to be printed, the first
character of each record is a carriage control code and does not form part of the data in the
record. All units in the range 50-60 assume printer output format by default. On other units,
specifying FORM=`PRINTER' in the first OPEN statement for the unit causes printer output
format to be assumed for that unit. This is an extension to the standard.

Note that the printer output format does not imply output to any physical printer.

The carriage control codes which are recognised and their representation in files are described
in the section Formatted I/O.

11

Sequential Files

OPEN and CLOSE

The OPEN statement for a sequential file does not specify whether the file is to be read from or
written to. Therefore, the operating system is called to open the file when the first READ or
WRITE statement is executed. An OPEN statement which refers to a non-existent file will not
fail. The error will occur when a READ or WRITE is attempted and can be trapped by using
ERR= in the READ or WRITE statement.

The following subroutine shows the use of OPEN and ERR=. The routine copies a named file to
the terminal using unit 10.

 SUBROUTINE COPY (TEXTFILE)
 CHARACTER TEXTFILE* (*), LINE*72
 OPEN (10, FILE=TEXTFILE, ERR=100)
 1 READ (10, `(A)', END=100, ERR=100) LINE
 PRINT `(A)', LINE
 GOTO 1
 100 CLOSE (10)
 END

A sequential file may be used without an explicit OPEN statement. The file is opened when the
first READ or WRITE statement which refers to its associated unit number is executed.

Formatted I/O

Formatted and list-directed READs and WRITEs are permitted on all files.

A formatted READ statement causes one or more records to be read from a file or terminal. All
input records are assumed to be extended indefinitely with spaces. Therefore, an input format
may refer to more characters than are actually present in the record. Input from a terminal
uses normal line editing conventions including cursor copying. <CTRL D> (04) is treated as the
end of file code which may be trapped by specifying END= in the READ statement.

For file input, the carriage return (0D) or line feed (0A) codes are recognised as record
terminators. Form feed (0C) codes are ignored. If the record contains more than 512 data
characters then the rest are ignored. The combination carriage return-line feed or line feed-
carriage return is treated as a single record terminator.

When writing a record to a file or terminal, the carriage control code or codes are output first,
followed by the data in the record. Trailing spaces in a record are not output.

The following carriage control codes are recognised:

space performs a line feed (LF)
0 performs LF/LF (extra blank line)
1 performs CR/FF (newpage)
+ performs CR (overprint)
* no action taken

The initial LF (space or 0) or CR (1 or +) is not output before the first record in a file. When a
file is closed, a line feed code is output if the final record contained any data characters. This is
done for all OPEN files when a program terminates normally.

When writing to a non-printer unit, each record is terminated by a new line. If a prompt line is
required, a $ (or \) character may be included in the format. This suppresses the final new line
and trailing spaces are not removed from the final line output. This may be used to generate
interactive prompts.

WRITE (6, `(A$)') `Type an integer: '
12

The $ (or \) acts as a normal item (like /) and can occur anywhere in the format (except after
any unused editing codes, since these will be skipped).

The following program illustrates interaction with a terminal

 1 PRINT '($a)', '?'
 READ (*,*, END=3) I
 WRITE (*, 2) I, I*I
 2 FORMAT (2I10)
 GOTO 1
 3 END

The CHAR function may be used to construct bytes for output as VDU control codes. The
following will switch the screen to mode 3.

 WRITE (*, 3) CHAR(22), CHAR(3)
 3 FORMAT ($,2A)

Note that the $ format descriptor has been used to suppress the final new line.

During formatted input of numeric values, blanks are either ignored or treated as zeros,
depending on the use of the BZ and BN format specifiers, and the BLANK status of the unit. All
pre-assigned units (those opened without explicit use of OPEN) have BLANK=ZERO as the
default status; any unit connected by an OPEN statement has BLANK=NULL as the default. The
difference in the defaults was introduced for compatibility with FORTRAN 66 and the
FORTRAN 77 subset language (in FORTRAN 66, blanks are always treated as zeros).

Unformatted I/O

Unformatted READs and WRITEs are permitted on disc files only. Unformatted and formatted
operations may not be mixed on any unit, unless the unit is CLOSEd and reOPENed.

Each unformatted WRITE statement writes a single record to the file. The record may be read
back later by any READ which quotes the same number of, or fewer, variables as illustrated
below

 WRITE (1) 1, 2, 3, 4, 5
 WRITE (1) 6, 7, 8
 REWIND 1
 READ (1) I
 READ (1) J

I is read as 1 and J is read as 6. The first record contains 5x4 = 20 bytes of data, and the
second 3x4 = 12 bytes of data.

Records of the same length could be achieved by padding all unformatted records, but this
would lead to wasted file space in many cases. The system includes a record length before
every unformatted record when it is output, and always reads the right amount when the record
is read again.

The internal file format of the record is the characters UF, a four byte count giving the number
of data bytes, followed by the data bytes. The UF characters are used as a check that the file
contains valid unformatted records. The two records written in the example above would
contain the following bytes:

55 46 14 00 00 00 U F no of data bytes = 20

01 00 00 00 02 00 00 00 03 00 00 00 04 00 00 00 05 00 00 00 data

55 46 0C 00 00 00 U F no of data bytes = 12

13

06 00 00 00 07 00 00 00 08 00 00 00 data

Direct Access Files

A direct access file consists of a number of records, all of the same length, which may be read
and written in any order. The records are either all formatted or all unformatted.

An OPEN statement specifying the record length RECL= must be used for a direct access file.
The record length is measured in bytes, and formatted records are padded with spaces to this
length.

The internal file format of a direct access file is the characters DA followed by a four byte count
giving the record length. It is permissible to OPEN a direct access file specifying a smaller
record length than was given when the file was created. The maximum permitted record length
for a formatted direct access OPEN is 512 bytes; there is no limit for unformatted files. If the file
has been OPENed for updating or input, the first six bytes of the file are read and checked. The
OPEN will fail if these bytes are invalid, or the specified record length is greater than the value
used when the file was created.

As it is possible both to read from and write to a direct access file, the operating system is
called to open the file when the OPEN statement is executed, rather than being delayed until the
first READ or WRITE, which occurs with an OPEN statement for a sequential file. Therefore, any
errors which occur may be trapped by specifying ERR= in the OPEN statement.

The following program uses direct access to write to and read from a file.

 OPEN (42, ACCESS='DIRECT', FILE='EGDATA', RECL=16,
 +ERR=100, IOSTAT=IERR)
 DO 1 J = 20,1,-1
 1 WRITE (42, REC=J) J, J+1, J*J, J-1
 DO 2 J=1,10
 READ (42, REC=J), K, L, M
 2 WRITE (*, 3) K, L, M
 3 FORMAT (1X, 3I5)
 STOP
 100 PRINT *, 'OPEN FAIL:', IERR
 END

Note that unformatted records are the default for direct access files. The file 'EGDATA' used
in the above example need not exist, but if it does, it must be a valid direct access file with a
record length greater than or equal to 16.

OPEN and CLOSE

The OPEN and CLOSE statements have been discussed above. Specifying STATUS = NEW or
STATUS = OLD in the OPEN statement has no effect.

INQUIRE

INQUIRE by unit

EXIST= returns .TRUE. if the unit is in the valid range. It is not possible to return accurate
responses for SEQUENTIAL=, DIRECT=, FORMATTED= and UNFORMATTED=. `YES' is
returned if the unit is currently being used for the relevant access type, otherwise `UNKNOWN'
is returned. Note that NAMED= can only be used if FILE= was specified in the OPEN statement
for the unit. Command line file assignments are not available to INQUIRE.

INQUIRE by file

14

If FILE= was specified in an OPEN statement for a unit (and not CLOSEd), information deduced
from that association is returned (for example, DIRECT= is returned as `YES' if the file is open
for direct access), and the file is assumed to exist. Otherwise, if the file exists, EXIST= returns
.TRUE. and SEQUENTIAL=, DIRECT=, FORMATTED= and UNFORMATTED= return
`UNKNOWN'.

BACKSPACE

BACKSPACE is not implemented.

ENDFILE

ENDFILE sets the end of file status and prevents further file access.

REWIND

REWIND is implemented as a CLOSE followed by an OPEN. After executing a REWIND, the file is
in a similar state to that arising after an OPEN statement - the operating system is called to
open the file when the first READ or WRITE statement is executed.

Format Decoding

Format specifications are decoded in a more liberal manner than as defined by the FORTRAN
77 standard.

Lower case

Lower case can be used instead of upper case everywhere; cases are distinguished only in
quoted strings and nH descriptors, and in the D, E and G edit descriptors (see below).

Extraneous repeat counts

Unexpected repeat counts are ignored , ie before ' , T , / , : , S and B edit descriptors, before
the sign of a P edit descriptor, or before a comma or closing parenthesis.

Edit descriptor separators

A comma may be omitted except where the omission would cause ambiguity or a change in
meaning. It cannot be omitted between a repeatable edit descriptor (such as I5) and an nH
edit descriptor (such as 11Habcdefghijk).

Numeric edit descriptors

As well as the standard forms Iw , Iw.m , Fw.d , Ew.d , Ew.dEe , Dw.d , Gw.d and Gw.dEe,
additional forms are Fw, Dw.dDe, Gw.dDe, Dw.dEe , Ew.dDe, Zw, and Z.

When the exponent field width is specified, the letter used to introduce it is used in the same
case in the output form. If no exponent field width is specified then, except for G edit
descriptors, the initial character of the descriptor is used in the same case in the output form.

If an exponent field width is given as zero, a field width of 2 is assumed. If, on output, the given
exponent field width is just too small for the exponent, the character introducing the exponent
field is suppressed.

The Z edit descriptor provides input and output of numeric data in hexadecimal form. A field
width of zero implies the correct width for the data type being transferred; Z by itself is an
abbreviation for Z0.

A editing

15

The A edit descriptor can also handle numeric list items; the effects are as recommended in
Appendix C (Hollerith) of the FORTRAN 77 standard. If the field width is zero, the system will
automatically use the right value for the data type being transferred (4 or 8).

It must be emphasised that this use of A editing was introduced solely to aid in the transfer of
FORTRAN 66 programs. It should not be used otherwise.

Abbreviations

symbol abbreviation
OP P
1X X
T1 T
TL1 TL
TR1 TR
AO A

Transfer of numeric items

The I edit descriptor can be used to transfer real and double precision values. F, E, D and G
can be used to output an integer value. Note that the external form of a value that is to be
transferred to an integer variable must not have a fractional part or a negative exponent.

$ and \ descriptors

A $ or \ descriptor in a format specification suppresses the final newline when writing to a
non-printer file.

Graphics

FORTRAN programs can write control codes to the RISC OS VDU drivers to produce graphics.
The CHAR function is used to convert an integer code to a character for output.

The basic form of WRITE statement to generate graphics is:

 WRITE(*, `($,10A)') CHAR(code1), CHAR(code 2), ...

or
 PRINT `($,10A)', CHAR(code1), CHAR(code2), ...

The WRITE statement uses the standard asterisk output unit. Any non-printer unit (1- 49) could
be used instead. The repeat count in the format specification (10 in these examples) must not
be less than the number of VDU codes in the list. The $ format descriptor must be used to
suppress the final newline.

The format can be given as a character constant, as in the examples above, or in a separate
statement.

 PRINT 100, CHAR(code1), CHAR(code2), ...

 100 FORMAT($,10A)

For example, to change to mode 12

 PRINT `($,2A)', CHAR(22), CHAR(12)

or to change the palette so that colour 1 refers to colour 6

 PRINT `($,6A)', CHAR(19), CHAR(1), CHAR(6),
 + CHAR(0), CHAR(0), CHAR(0)

Most move and draw operations require a pair of 16-bit coordinates. These should be output
16

as a pair of bytes. For example, the following subroutine provides a general PLOT command
(VDU code 25)

 SUBROUTINE PLOT(TYPE, X, Y)
 INTEGER TYPE, X, Y
 PRINT ` ($,6A)', CHAR(25), CHAR(TYPE),
 + CHAR(IAND(X,255)), CHAR(ISHFT(X,-8)),
 + CHAR(IAND(Y,255)), CHAR(ISHFT(Y,-8))
 END

Move is a TYPE=4 and draw is a TYPE=5 call to the subroutine PLOT.

17

Errors and Debugging
Errors can be detected both by the compiler and by the run-time library. In addition to
generating error messages the compiler may also generate warning messages which indicate
that the program may not behave as anticipated. An example of this is using a variable that
has not been declared. An example of a fault which is not detected by the compiler, but by the
run-time library, is attempting to divide by zero.

Front End Error Messages

Errors detected by the compiler front end are of a different type from those detected by the
code generator. Front end error messages are short, obvious statements indicating that the
compiler has detected unacceptable syntax. These messages are self-explanatory. There are
two classes of error.

Class 1 errors cause the front end to abandon compilation of the current statement. The
statement is printed as part of the error message, together with the number of the line on which
the fault appeared, an error number, and a description of the error itself. Thus, if line 211
contained the incorrect FORTRAN statement

100 ERRONEOUS

then the message produced would be

211 100 ERRONEOUS
L 211-------?
Error (code 2311): Statement not recognised

Class 2 errors may be less obvious in their report of a fault and do not always refer to the line
which contains the code which instigated the error. For example, information about missing
labels is given at the end of the program unit, rather than where the non-existent label was
referenced.

The distinction between these two types of error message has been made in order to show that
errors do not necessarily occur at the line where the message is given.

Warning Messages

The W compilation option enables the compiler to generate warnings. These warnings are
graded in severity from 1 (the most serious) to 4, and are useful if the program behaves in an
unexpected way.

Level 1 warns, for example, of statements that will not be executed because they follow a GOTO
statement and are unlabelled.

Level 2 warns of the use of extensions to standard FORTRAN 77. These extensions may give
problems if the program it be re-compiled on another make of computer (eg an IBM PC).

Levels 3 and 4 warn of source text that conforms to the standard syntax but is of unusual style
and, therefore, could possibly be a mistake.

The strict FORTRAN 77 option 7 is used to control warnings about language extensions. If
unset, warnings are not generated. Otherwise, messages are generated if the warning level
(Wn) is 2 (the default) or greater. Option 7 is unset by default so that the extensions may be
used without generating messages, whatever the warning level.

Code Generator Error Messages

These are not always as explicit as front end error messages and are listed in Appendix A with
a brief explanation of the most likely cause. As was the case with front end error messages,

18

errors do necessarily occur at the line where the message is given.

Code Generator Limits

The code generator has certain internal limits on the complexity of each program unit. These
are

code size 2 Mbytes
number of labels 4096
number of local variables 8192
number of constants 8192
number of COMMON blocks 2048
number of external symbols 2048

These limits should never be exceeded. Normally the code generator will run out of memory
before this happens.

Run-time Errors

A program may compile and link but when it is run error messages are generated. These error
messages are generated by the run-time library and have the following form

++++ ERROR N: text

followed by a backtrace.

N is an error number and text is a sentence describing the error. A backtrace is a re-tracing
of the steps which the run-time library has taken in attempting to run the program. Each line of
the backtrace output gives the name of a program unit, the address of the corresponding static
data area and the line number. The data area address may be used in conjunction with the
storage map produced by the code generator to examine the values of local variables. The
address of the data area is given in hexadecimal. Note that a name in a backtrace refers to the
main entry point of the program unit, and so may not be the actual name used in a call.

++++ ERROR 1025: LD input data not INTEGER

Routine data area line

F77_INIT &000100D8
F77_I067 &00010000
ERR2 &0000FF04 16
ERR1 &0000F9B4 10
F77_MAIN &0000F9B0 6

In this example, the main program (with default name F77_MAIN) has called ERR1, which in
turn has called ERR2, which has attempted to read an integer using list-directed input
(F77_I067 and F77_INIT are internal routines in the run-time library).

The call to ERR1 in the main program was on line 6, the call to ERR2 in ERR1 was on line 10,
etc. The appearance of line numbers in the backtrace is controlled by the compiler L option
(level 1 is the default).

If a hardware trap occurs in a program compiled with a line number option level 1, it may not be
possible to determine the exact line number.

 ++++ ERROR 3000: hardware trap

Routine data area line

ABC &00005514 5/16
F77_MAIN &000054EC 3

19

Here, the main program called ABC failed with a hardware trap between the lines 5 and 16
inclusive. If the program is recompiled with line number option level 2, the exact line number
will be displayed.

Code 1000 errors

There are a number of simple run-time errors producing error messages which all have the
same error number of 1000. These are listed in Appendix B.

Array and Substring Errors

There are two errors which may be generated by a program unit which has been compiled with
the bound checking option

 ++++ ERROR 1050: array bound error

An illegal array subscript has been used.

 ++++ ERROR 1051: substring bound error

An illegal substring has been used.

Input/Output Errors

I/O errors are those which may be trapped by the use of END= and ERR= specifiers in
FORTRAN 77 statements. If these specifiers are not used, an error message and code are
generated as described below. Otherwise, execution continues, with the error code available
through the use of the IOSTAT= specifier.

All the messages have the general form

 ++++ ERROR N: PREFIX UNIT - reason

N is the error code; PREFIX describes the I/O operation being attempted (which may be OPEN,
CLOSE, ENDFILE, REWIND, or READ/WRITE) and UNIT is the unit number, with * given for one
of the asterisk units and `internal' for an internal file. The rest of the message gives more
information about the error.

End of file on input may be trapped with the END= specifier. The IOSTAT= value in this case is -
1. If END= is not used, then the message end of file is generated, with code 1000. Other
errors may be trapped with the ERR= specifier. The IOSTAT= value is the corresponding error
code, as listed in Appendix B.

Tracing

To specify that calls to special trace routines are to be included in the code, select the T option
when compiling. These routines will cause trace information to be output when

entering the program unit

leaving the program unit

a labelled statement is about to be executed

the THEN clause of an IF...THEN or ELSEIF...THEN construct is about to be executed

the ELSE clause of an IF...THEN or ELSEIF...THEN construct is about to be executed

a DO statement is about to be executed

20

another subprogram unit is about to be executed.

The trace routines will output a message which starts with ***T and indicates the type of trace
point encountered. For some of these it will also indicate a count (modulo 32768) of the
number of times this trace point has been met. A special routine called TRACE can be called
with a single LOGICAL argument to turn this tracing information on and off. Note that even if
the trace output is off, the counting will still be done so the values produced will be correct if
tracing is turned on again.

If the main program is compiled with tracing on, the user will be asked if trace output is to be
produced or suppressed. If the main program is compiled without tracing, then trace output is
initially enabled.

In addition to the TRACE routine, two further subroutines are available.

The first of these, HISTOR (short for History), causes information to be output about the last few
traced subprogram calls. Each line of history information consists of a name, which may be
preceded by > or by <. A right arrow indicates a traced call of a subprogram, a left arrow
indicates a traced exit from a program unit, and a line with neither type of arrow indicates a
traced entry to a program unit. Note that the name given when tracing entry and exit from a
program unit is the name of the program unit itself rather than the name of the entry called by
the user.

The second routine provided is BACKTR (short for Backtrace) which outputs information on the
current nesting of program unit calls. The routine should be given a single logical argument. If
this is TRUE then the HISTOR subroutine is called after the backtrace information has been
generated. Under RISC OS, all tracing output is sent to the screen or may be sent to a file
using the SPOOL command.

21

Appendix A

Code Generator Error Messages

argument out of range for CHAR

The intrinsic function CHAR has been used with a constant argument outside the range 0-255.

local data area too large

The size of the local storage area for the program unit exceeds memory size.

array <name> has invalid size

The size of the given array is negative or exceeds memory size.

attempt to extend common block name backwards

An attempt has been made to extend a COMMON block backwards by means of EQUIVALENCE
statements.

bad length for CHARACTER value

A value which is not positive has been used for a CHARACTER length.

class storage block containing <name> is too large

class is local or COMMON. The storage block containing the named variable exceeds memory
size.

concatenation too long

The result of a CHARACTER concatenation may exceed memory size.

conversion to integer failed

A REAL or DOUBLE PRECISION value is too large for conversion to an @xr

D to R real conversion failed

A DOUBLE PRECISION value is too large for conversion to a REAL.

DATA statement too complicated

The variable list in a DATA statement is too complicated, and must be simplified.

division by zero attempted in constant expression

The divisor might be REAL, INTEGER, DOUBLE PRECISION or COMPLEX.

real constant too large

A REAL constant exceeds the permitted range.

double constant too large

A DOUBLE PRECISION constant exceeds the permitted range.

inconsistent equivalencing involving name

The given variable is involved in inconsistent EQUIVALENCE statements.

increment in DATA implied DO-loop is zero

A DATA statement implied DO loop has a zero increment.

insufficient store for code generation

The code generator has run out of memory.

insufficient values in DATA constant list

There are more variables than constants in a DATA statement.

integer invalid for length or size

A value which is not positive has been used for a CHARACTER length or array size.
22

lower bound exceeds upper bound in substring

In a substring, a constant lower bound exceeds the constant upper bound.

lower bound of substring is less than one

A constant substring lower bound is less than one.

upper bound exceeds length in substring

A constant substring upper bound exceeds the length of the character variable.

stack overflow - program must be simplified

The internal expression stack has overflowed. The offending statement must be simplified.

subscript below lower bound in dimension N

A constant array subscript is less than the lower bound in the given dimension.

subscript exceeds upper bound in the dimension N

A constant array subscript exceeds the upper bound in the given dimension.

too many constants in DATA statement

There are more constants than variables in the DATA statement.

too many program units in compilation

type mismatch in DATA statement

The type of the constant is illegal for the corresponding variable.

variable initialised more than once in DATA

A variable has been initialised more than once by DATA statements in this program unit.

wrong number of hex bytes for constant of TYPE type

A hex constant has been given with the wrong number of digits.

zero increment in DO-loop

A DO loop with a constant zero increment value has been used.

inconsistent use of NAME

The external subroutine or function NAME has been used with inconsistent argument types. This
error message would occur with the following program:

 CALL ABC(1.0)
 CALL ABC(2)
 END

23

Appendix B

Run-time Error Messages

Code 1000 errors

<ch > edit descriptor cannot handle logical list item

Format descriptor used with a LOGICAL list item is not L; <ch > is the actual descriptor used.

<ch > edit descriptor cannot handle character list item

Format descriptor used with a CHARACTER list item is not A; <ch > is the actual descriptor used.

<ch> edit descriptor cannot handle numeric list item

Invalid descriptor for numeric value; <ch >is the actual descriptor used.

Z field width unsuitable

Wrong number of digits in hex (Z) input field for given type.

FORMAT - unexpected character <ch>

Invalid character <ch > in FORMAT.

FORMAT - bad numeric descriptor

Bad syntax for numeric FORMAT descriptor.

FORMAT - cannot use when reading

Quoted string used in input FORMAT.

FORMAT - unexpected format end

End of FORMAT inside quoted string.

FORMAT - cannot use H when reading

nH used in input FORMAT.

FORMAT - bad scale factor

Bad +nP or -nP construct.

FORMAT - too many opening parentheses

More than 20 nested opening parentheses (including the first).

FORMAT - trouble with reversion

No value has been or written by the repeated part of the format (this would cause an infinite
loop if not trapped). The following program fragment illustrates the trouble with reversion format
error

 WRITE (1, 10) i, j
 10 FORMAT (i5, (1x))

FORMAT - width missing or zero

Bad width in numeric edit descriptor.

Unformatted output too long

Unformatted record length exceeds maximum permitted. This can occur with direct access
output only.

Unformatted input record too short

Input record does not contain sufficient data.

mismatched use of ACCESS, RECL in OPEN

ACCESS=`DIRECT' has been quoted in an OPEN which does not contain a RECL specifier, or

24

vice versa.

Input/Output Errors

1001 invalid unit number

Unit number not in range 1-60.

1002 invalid attribute

Invalid attribute used in OPEN statement

1003 duplicate use of filename

The same filename has been used more than once in an OPEN statement.

1004 invalid unit for operation

BACKSPACE/REWIND/ENDFILE attempted on unit connected for direct access.

1005 error detected previously

An I/O error has been detected previously on this unit, and trapped with ERR=.

1006 direct access without OPEN

A direct access READ or WRITE has been used without an OPEN statement for the unit.

1007 invalid use of unit

Inconsistent use of unit (formatted mixed with unformatted, sequential mixed with direct access
or ENDFILE done previously).

1008 input and output mixed

Input and output mixed on a sequential unit (without intervening REWIND or OPEN).

1009 direct access not open for input

The direct access file could not be opened for input (for example, file is write only).

1010 direct access not open for output

The direct access file could not be opened for output (for example, file is read only).

1011 end of file on output

An attempt has been made to write beyond the end of a sequential file.
(In practice, this will only occur with internal files).

1020 invalid logical in input

Formatted input file contains bad logical value.

1021 invalid number in input

Bad number (range or syntax) in formatted I, D, E, F, or G input.

1022 Bad complex data

Bad COMPLEX constant in list directed input.

1023 LD repeat not integer

Repeat count in list directed input is not valid.

1024 LD input data not REAL

Syntax or range error in REAL list directed input value.

1025 LD input data not INTEGER

Syntax or range error in INTEGER list directed input value.

1026 LD input data not DP

Syntax or range error in DOUBLE PRECISION list directed input value.

25

1027 LD input data not LOGICAL

Syntax error in LOGICAL list directed input value.

1028 LD input data not COMPLEX

Syntax or range error in COMPLEX list directed input value.

1029 LD input data not CHARACTER

Syntax error in CHARACTER list directed input value.

1030 LD repeat split CHARACTER

Attempt to split a repeated character constant across a record boundary.
This is strictly legal, but almost impossible to implement correctly.

2000 not available

BACKSPACE operation is not available.

2001 bad unformatted record (message)

A record in an unformatted file does not have the required structure.

2002 invalid access to terminal file (message)

Attempt to use terminal (or other output device) as an unformatted or direct access file. More
detail is given.

2003 sequential open failed (message)

The actual reason for the failure (for example, Bad name) is given in the brackets.

2004 direct access open failed (message)

The actual reason for the failure (for example, Bad name) is given in the brackets.

2005 direct access IO failed (message)

For example, attempt to read beyond the end of the file.

2006 record length too large

The record length specified in a formatted direct access OPEN exceeds the permitted maximum
(512 bytes).

2007 bad direct access file (message)

A file used for direct access has invalid initial data or an insufficient record length.

2009 bad command line syntax

2010 sequential write failed (message)

I/O error on sequential output (for example, cannot extend)

26

Appendix C

The Front End - The f77fe Command

This reads FORTRAN 77 source text and converts it to a special intermediate form known as
fcode. The front end has the options: X, W, T, 6 and 7. The default settings are X0W2-T67.

The front end has the following command format

f77fe [-from] filename [-to filename] [-list filename] [-opt options]
[-ver filename]

-from filename

The -from keyword specifies the filename of the FORTRAN 77 source text input file.

-to filename

The -to keyword specifies the filename of the fcode format output file. If this keyword is not
used then no output is produced.

-list filename

The -list keyword specifies the filename of the list output file for a line numbered listing of
the source text together with any error messages generated. If this keyword is not used no
listing is produced and error messages are output to the screen.

-opt options

The -opt keyword specifies the options. The options T, 6 and 7 are enabled or disabled by
preceeding them with + or -. The options W and X must be followed by a number. The options
have the following meanings:

6 This option allows FORTRAN 66 source text to be compiled. Constructs which have a
different meaning in FORTRAN 77 are interpreted according to the FORTRAN 66 definition. In
particular:

DO loops will always execute at least once.

Hollerith (nH) constants are allowed in DATA and CALL statements, and quoted
constants in calls are not of CHARACTER type.

Non-CHARACTER array names are allowed as format specifiers.

When the FORTRAN 66 option is used, Hollerith and quoted constants are treated in the
same way when used as arguments in CALLs - they are not of CHARACTER type.The
option is provided for use with FORTRAN 66 programs which store character information
in numeric data types.

For example, the following calls will have identical effects at run time if the FORTRAN 66
option is used:

CALL jim('abcd')
CALL jim(4habcd)

If the FORTRAN 66 option is used, run-time FORMATs specifiers may also be non-
CHARACTER array names.

For example:

DOUBLE PRECISION d(3),num
 DATA d(1), d(3) /8h (1X,D20., 5h,I5/)/

DATA num /2h10/

27

 ...
 d(2) = num
 ...
 WRITE (6, d) 2.3d0, 10

...

This option was introduced to allow FORTRAN 66 programs to be compiled. It isstrongly
recommended that new programs conform to the FORTRAN 77 standard.

T This option causes special trace routines to be include in the code (See the
chapter Errors and Debugging).

Wn This option specifies the warning message level. n=0 suppresses all warnings ton=4 print
all warnings (See the chapter Errors and Debugging).

Xn This option specifies the cross-reference listing width (18 or more for legibility). n=0
suppresses cross-referencing. The maximum value of n depends on where the listing is
being sent (for example, the printer). Cross-reference information is given immediately
after the END statement of a program unit. For each name, the type is given, together
with the lines on which it is referenced. For each statement label, the type (executable or
non-executable) and the line number of the statement is given, as well as the lines on
which the label is referenced.

7 This option is used to control warnings about the use of FORTRAN 77 language
extensions. If it is not enabled, warnings are not generated. If it is enabled warnings are
generated when the warning level (Wn) is 2 (the default) or greater. Warnings are not
enabled by default so the extensions may be used without warnings being generated
whatever the warning level.

-ver filename

The -ver keyword specifies the filename of the output file for compiler and error messages
generated. If the keyword is not used the messages are output to the screen.

-help

The -help keyword gives a summary of the keywords and arguments available.

Examples

f77fe f77.prog -to tmp.fcode

Compiles the source text in the file f77.prog to fcode format in the file tmp.fcode .

f77fe f77.prog -ver x

Compiles the source text in the file f77.prog , producing no fcode output, but with messages
output to the file x.

f77fe f77.prog -to tmp.fcode -list list.prog

Compiles the source text in the file f77.prog to fcode format in the file tmp.fcode and also
outputs a source listing to the file list.prog .

f77fe f77.prog -to tmp.fcode -opt T

Compiles the source text in the file f77.prog to fcode format in the file tmp.fcode with
tracing calls included.

28

Appendix D

The Code Generator - The f77cg Command

This reads fcode format and generates aof format and/or assembler source text format. The
code generator has the options: L, B and H. The option 6 may be used instead of H. The
default settings are L1-BH .

The front end options T, 7, W and X are ignored by the code generator, whilst the front end
ignores B and L, so that the same option string may be given to both programs, if required.

The code generator has the following command format

f77cg [-fcode] filename [-to filename] [-asm filename] [-ver filename]
[-map filename] [-opt options] [-debug level] -source name]

-fcode filename

The -fcode keyword specifies the filename of the fcode format input file.

-to filename

The -to keyword specifies the filename of the aof format output file generated. If the
keyword is not used then no aof format output file is generated.

-asm filename
The -asm keyword specifies the filename of the assembler source text format output file
equivalent to the aof format generated. If the keyword is not used then no assembler source
text file is produced.

-ver filename
The -ver keyword specifies the filename of the output file for compiler and error messages
generated. If the keyword is not used the messages are output to the screen.

-opt options
The -opt keyword specifies the options. The options B and H are enabled or disabled by
preceeding them with + or -. The option L must be followed by a number. The options have
the following meanings:

B When enabled, bound checking code is included. Array or substring subscripts out of
range will cause run-time errors.

H When enabled, Hollerith constants can be used in DATA statements to initialisenon-
character variables (for example, INTEGER).

Ln The number following this option indicates the level of line numbering included in the
code for backtrace purposes (see the chapter Errors and Debugging). The
levels available are:

0 no line numbering

1 numbers lines containing subprogram calls

2 numbers statements which can cause a run-time exception

>2 numbers every line

Higher levels cause more code to be generated. If a hardware exception occurs in a
program unit compiled with level 1, the backtrace system will not be able to determine the
exact line number. A range of numbers will be given (for example, 100/106) and the error
will be between them.

29

-map filename
The -map keyword specifies the filename of map output file. The map gives the name, type
and location of local and COMMON variables in each program unit. The location is relative to the
start of the static area for a local variable and is the offset in the block for a COMMON variable.
The offset of each statement number from the start of the code is also given.

-debug level
The -debug keyword specifies the level of symbolic debugging information to be included in
the aof format output file. The level must be one of the following

none No information. This is the default.
min Subroutine and function names only.
vars Subroutine and function names, and variable name information.
lines Subroutine and function names, and line number information.
all Subroutine, function, variable and line information. max is an

alternative synonym for all .

Normally, none is used for a working program and all for programs under development. The
use of all increases the size of the program considerably and so should be avoided when not
debugging. The intermediate levels can be used to provide some debugging information
without increasing the size of the program to the same extent.

-source filename
The -source keyword specifies the filename of the original FORTRAN 77 source text file for
inclusion in debugging information when the -debug keyword is used with a debugging level
other than the default of none.

-help

The -help keyword gives a summary of the keywords and arguments available.

Examples

f77cg tmp.fcode -to aof.prog

Generates the aof format file aof.prog from the fcode format file tmp.fcode .

f77cg tmp.fcode -asm vdu:

Generates assembler source text format and outputs it to the screen (vdu:) from the fcode
format file tmp.fcode .

f77cg tmp.fcode -to aof.prog -map map.prog

Generates the aof format file aof.prog from the fcode format file tmp.fcode and sends map
output to map.prog .

f77cg tmp.fcode -to aof.prog -opt B

Generates the aof format file aof.prog from the fcode format file tmp.fcode with bound
checking code included.

f77cg tmp.fcode -to aof.prog -debug all -source f77.prog

Generates the aof format file aof.prog from the fcode format file tmp.fcode with full
debugging information and with the name of the FORTRAN source text file specified as
f77.prog .

30

Appendix E

The Linkers

Two linkers are supplied: the older linker oldlink, see Appendix F, and the newer linker newlink,
see Appendix G.

The linkers combine a number of object files with library files to produce a single executable
program.

Each of the object files must be in Acorn Object Format (aof) or Acorn Library Format (alf). A
file may contain references to external symbols (procedure and variable names) which the
linker attempts to resolve by searching for definitions in the other files.

Usually, at least one library file will be specified. A library is a collection of Acorn Object Format
files stored in a single Acorn Library Format file.

Libraries differ from object files in the way that the linker searches them. Object files are
searched only once when the linker attempts to resolve external references. Libraries are
searched as many times as necessary. If a required symbol is found in one of the component
files of the library then the whole component file is incorporated in the output file.

Two common errors which occur during linking are caused by unresolved and multiple
references.

In the first case, a symbol has been referenced in a file (whose name is given in the error), but
there is no corresponding definition of the symbol. This is usually caused by the omission of a
required object or library file, or the mis-spelling of a name in the original source program.

In the second case a clash of names occurs. For example, a procedure might have been
defined with the same name as a library procedure, or as a procedure in another object file.
The version of the procedure used in any situation is the one local to the reference to it.

Wildcards can be used in the filenames. These will be expanded into the list of files matching
the specification. For example, the name aof.bas* might be expanded into aof.basmain
aof.basexpr and aof.bascmd.

Predefined Linker Symbols

There are several symbols which the linker knows about independently of any of its input files.
These start with the string Image$$ and, along with all other external names containing $$, are
reserved by Acorn.

The symbols are:

Image$$RO$$Base Address of the start of the read-only program area

Image$$RO$$Limit Address of the byte beyond the end of program area

Image$$ZI$$Base Address of the start of run-time zero-initialised area

Image$$ZI$$Limit Address of the byte beyond the zero-initialised area

Image$$RW$$Base Address of the start of the read/write (data) area

Image$$RW$$Limit Address of the byte beyond the end of the data area

Although it will often be the case, it cannot be guaranteed that the end of the read- only area
corresponds to the start of the read/write area.

These symbols can be imported as relocatable addresses by assembly language routines that
31

might need them.

Note that programs can reside in read/write areas, as they sometimes contain local writable
data (eg self modifying code), and it is possible to have read-only data (eg floating-point
constants and string literals).

The linker joins all areas (from all input files) with the same name and attributes together to
form a single area. It then creates the two symbols name$$Base and name$$Limit to mark
the start and end of the area. It is an error for two areas to have the same name but different
attributes.

32

Appendix F

The Older Linker - The oldlink Command

Acorn Object Format Linker ARM/Arthur(AIF) 595/M

To ensure that the older version of the linker, oldlink , is used the lines in the
FORTRAN.!Fortran77.!Run obey file should read as follows:-

Location of Command Line Commands
Include the following line to ensure that the older version of the linker
is used by the f77, f77lk, linkf77, d77, df77lk and dlinkf77 commands.

If "<F77$Running>" = "" Then Set Run$Path <Run$Path>,<Fortran77$Dir>.Execlib.OldLink.

| Include the following line to ensure that the newer version of the linker
| is used by the f77, f77lk, linkf77, d77, df77lk and dlinkf77 commands.

|If "<F77$Running>" = "" Then Set Run$Path <Run$Path>,<Fortran77$Dir>.Execlib.NewLink.

Command format:
oldlink -output filename [options] objectfile1, objectfile2 ...
oldlink -output filename [options] -via viafile

General options:
Capitals are used to denote the abbreviated form of the keyword.

-Output filename
Specifies the name of the output file as filename. The f77link command can be used to
check for unresolved references in object files by specifying the file name as the device null: .
The linked output will be discarded.

-Dbug
An output file is produced which can be used with the Acorn Symbolic Debugger asd .

-Verbose
Gives information as files are linked.

-VIA filename
The object and library files listed in the text file filename are linked. Note that this option
cannot be used on computers fitted with a StrongARM processor.

Special options:
-Case Ignore case when symbol matching
-Base n Specify base of image (prefix 'n' with & for hex; postfix

with k for *2 10, m for *2 20)
-Relocatable Relocatable AIF

Note that -Dbug and -Relocatable are mutually exclusive options.

33

Appendix G

The Newer Linker link Command

ARM Linker Version 5.06 (Acorn Computers Ltd) [Jan 11 1995]

To ensure that the newer version of the linker, newlink , is used the lines in the
FORTRAN.!Fortran77.!Run obey file should read as follows:-

Location of Command Line Commands
Include the following line to ensure that the older version of the linker
is used by the f77, f77lk, linkf77, d77, df77lk and linkf77 commands.

|If "<F77$Running>" = "" Then Set Run$Path <Run$Path>,<Fortran77$Dir>.Execlib.OldLink.

| Include the following line to ensure that the newer version of the linker
| is used by the f77, f77lk, linkf77, d77, df77lk and linkf77 commands.

If "<F77$Running>" = "" Then Set Run$Path <Run$Path>,<Fortran77$Dir>.Execlib.NewLink.

Command format:
newlink -output filename [options] objectfile1, objectfile2 ...
newlink -output filename [options] -via viafile

General options
Capitals are used to denote the abbreviated form of the keyword.

-Output filename
Specifies the name of the output file as filename. The newlink command can be used to
check for unresolved references in object files by specifying the file name as the device null :.
The linked output will be discarded.

 -Debug
An output file is produced which can be used with the Desktop Debugger !DDT (see Appendix
L).

-ERRORS filename
Diagnostic information is output to the file filename.

-LIST filename
Map and Xref information is output to the file filename, not stdout

-MAP
Prints an area map to the standard output

-Symbols filename
Symbol definitions are output to the file filename

-Verbose
Gives information as files are linked..

-VIA filename
The object and library files listed in the text file filename are linked.

-Xref
Prints an area cross-reference list to the standard output.

Output options
-AIF Absolute AIF (the default)

34

-AIF - Relocatable Relocatable AIF
-AIF - R -Workspace nnn Self-moving AIF
-AOF Partially linked AOF
-BIN Plain binary
-BIN -AIF Plain binary described by a prepended AIF header
-IHF Intellec Hex Formay (readable text)
-SPLIT Output RO and RW sections to separate files

(-BIN, -IHF)
-SHL filename Shared-library + stub, as described in filename
-SHL filename -REENTrant Shared-library + reentrant stub
-RMF RISC OS Module
-OVerlay filename Overlaid image as described in filename

Special options
-R0-base n

-Base n Specify base of image
-RW-base n

-DATA n Specify separate base for image's data
-Entry n Specify entry address
-Entry n+obj (area) Specify entry as offset within area (prefix n with & or 0x

for hex: postfix with K for *2 10, M for *2 20)
-Case Ignore case when symbol matching
-MATCH n Set last-gasp symbol matching option
-FIRST obj (area) Place area from object obj first in the output image
-LAST obj (area) PLace area from object obj last...
-NOUNUSEDareas Do not eliminate AREAs unreachable from the AREA

containing the entry point (AIF images only)
-Unresolved sym Make all unresolved references refer to sym
-C++ Support C++ external naming conventions

35

Appendix H

The f77, f77lk and linkf77 Commands

In order ot use the f77, f77lk and linkf77 commands the currently selected directory must be set
to the directory which contains the following directories

f77 contains FORTRAN source text files
aof contains Acorn Object Format files for subsequent linking
aif contains executable Acorn Image Format files
o contains Acorn Object Format files for subsequent linking when a newer version of the
linker is used (see Appendix G).

The version of the linker used, either the older (pldlink) or newer (newlink), can be
selected by editing the FORTRAN.!Fortran77.!Boot obey file as shown in Appendices F
and G.

The f77 Command
f77 filename

The f77 command combines the f77fe and f77cg commands to compile the file
f77. filename using the default options.

The f77lk Command
f77lk filename

The f77lk command combines the f77fe and f77cg commands to compile the file
f77. filename using the default options. It then links the resulting object file with the IFExt ,
IFLib and f77 libraries to produce the program aif. filename.

The linkf77 Command
linkf77 filename

The linkf77 command links the object file filename with the IFExt , IFLib and f77
libraries to produce the program aif. filename.

The df77, df77lk and dlinkf77 Commands

The df77, df77lk and dlinkf77 commands are similar to the f77, f77lk and linkf77 commands but
include the -debug all rather than the default options.

36

Appendix I

The IFExt Utility Library

This is a small library which includes routines to make OS_Byte, OS_Word and OS_CLI calls.
Examples illustrating the use of the routines are included in the FORTRAN.Examples.IFExt
directory.

IFOSBYTE
Purpose
To make OS_Byte calls which do not return any values.

Example
CALL IFOSBYTE(IFUNC, IARG1, IARG2)

Parameters
IFUNC (integer) - R0 = IFUNC
IARG1 (integer) - R1 = IARG1
IARG2 (integer) - R2 = IARG2

IFOSBYTE1
Purpose
To make OS_Byte calls that return one value.

Example
CALL IFOSBYTE1(IFUNC, IARG1, IARG2, IRES1)

Parameters
IFUNC (integer) - R0 = IFUNC
IARG1 (integer) - R1 = IARG1
IARG2 (integer) - R2 = IARG2

Results
IRES1 (integer) - IRES1 = R1

IFOSBYTE2
Purpose
To make OS_Byte calls that return two values.

Example
CALL IFOSBYTE2(IFUNC, IARG1, IARG2, IRES1, IRES2)

Parameters
IFUNC (integer) - R0 = IFUNC
IARG1 (integer) - R1 = IARG1
IARG2 (integer) - R2 = IARG2

Results
IRES1 (integer) - IRES1 = R1
IRES2 (integer) - IRES2 = R2

IFOSWORD
Purpose
To make OS_Word calls.

Example
CALL IFOSWORD(ICODE, IARRAY)

37

Parameters
ICODE (integer) - R0 = ICODE
IARRAY (integer array) - R1 = pointer to IARRAY (one dimensional integer array - the
OS_Word parameter block)

Results
Placed in IARRAY.

IFOSCLI
Purpose
To make OS_CLI calls.

Example
LOGICAL FUNCTION IFOSCLI (STRING)
LOGICAL STATUS
STATUS = IFOSCLI(STRING)

Parameters
STRING (character) - command line terminated by a carriage return.

Results
STATUS (logical) - if the command is executed without error STATUS = .TRUE. or if an error
occurs STATUS = .FALSE.

IFOSGETERROR
Purpose
To return the error number and error message immediately after OSCLI has returned
with STATUS = .FALSE .

Example
CALL IFOSGETERROR(IERRNO, ERRSTR)

Parameters
None

Results
IERRNO (integer) - the error number
ERRSTR (character) - the error

IFFILEEXISTS
Purpose
To check that a file exists

Example
LOGICAL FUNCTION IFFILEEXISTS (STRING)
LOGICAL EXISTS
EXISTS=IFFILEEXISTS(FILENAME)

Parameters
FILENAME (character)

Results
EXISTS (logical) - if the file exists EXISTS = .TRUE.
or if the file does not exist EXISTS = .FALSE .

38

Appendix J

The IFLib Utility Library

This is a small library which includes routines to return the addresses of variables, make SWI
calls and read and write memory. Examples illustrating the use of the routines are included in
the FORTRAN.Examples.IFLib directory.

IFADR
Purpose
To return the address of an integer variable

Example
iadr=IFADR(inum)

Parameters
inum (integer)

Results
iadr (integer) - address of variable inum

IFADRF
Purpose
To return the address of a real (single precision floating point) variable

Example
REAL fnum
iadrf=IFADRF(fnum)

Parameters
fnum (real)

Results
iadrf (integer) - address of variable fnum

IFADRD
Purpose
To return the address of a real (double precision floating point) variable

Example
DOUBLE PRECISION dnum
iadrd=IFADRD(dnum)

Parameters
dnum (double)

Results
iadrd (integer) - address of variable dnum

IFADRC
Purpose
To return the address of the character descriptor which contains the address of the character
string in the first word and its length in the second

Example
CHARACTER string*3
iadrc=IFADRC(string)

Parameters
39

string (character)

Results
iadrc (integer) - address of character descriptor

IFADRL
Purpose
To return the address of an logical variable

Example
LOGICAL status
iadr=IFADRL(status)

Parameters
status (logical)

Results
iadr (integer) - address of variable status

IFADRCMPLX
Purpose
To return the address of a complex variable

Example
COMPLEX voltage
iadr=IFADRCMPLX(voltage)

Parameters
voltage (complex)

Results
iadr (integer) - address of variable voltage

IFADRCMPLX16
Purpose
To return the address of a double precision complex variable

Example
COMPLEX*16 current
iadr=IFADRCMPLX16(current)

Parameters
current (double precision complex)

Results
iadr (integer) - address of variable current

IFADRS
Purpose
To return the address of the character string

Example
iadrs=IFADRS(string)

Parameters
string (character)

Results
iadrs (integer) - address of character string

40

IFQSWI
Purpose
To enable SWI's to be called from FORTRAN 77

Example
ierror=IFQSWI(numswi,iregs)

Parameters
numswi (integer) - SWI number.

Clear bit 17 (&00020000) to abort on error
Set bit 17 (&00020000) to return on error

iregs (integer array) - one dimensional array with subscripts in the range 0 to 9
iregs(0)=R0 , iregs(1)=R1 , etc

Results
ierror (integer) - if no error occurs ierror = 0

If bit 17 of numswi (&00020000) is clear and an error occurs
the function does not return.
If bit 17 of numswi (&00020000) is set and an error occurs
the function returns and ierror = address of a standard error block.

iregs (integer array) - one dimensional array with subscripts
in the range 0 to 9. iregs(0)=R0, iregs(1) =R1, etc

IFQSWIX
Purpose
To enable SWI's to be called from FORTRAN 77

Example
ierror=IFQSWIX(numswi,iregs)

Parameters
numswi (integer) - SWI number (the function sets bit 17 (&00020000) to return on error)

iregs (integer array) - one dimensional array with subscripts in the range 0 to 9
iregs(0)=R0 , iregs(1)=R1 , etc

Results
ierror (integer) - if no error occurs ierror = 0

If an error occurs the function returns and ierror = address of a
standard error block.

iregs (integer array) - one dimensional array with subscripts in the range 0 to 9.
iregs(0) =R0, iregs(1) =R1, etc

IFRDB
Purpose
To return the byte stored at the given address and return it as an integer

Example
inum = IFRDB(iaddress)

Parameters
iaddress (integer)

Results
inum (integer) - byte stored at iaddress

41

IFWRB
Purpose
To store a byte at the given address

Example
CALL IFWRB(inum,iaddress)

Parameters
inum (integer) - byte to be stored at iaddress
iaddress (integer)

IFRDI/IFRDW
Purpose
To return the integer/word stored at the given address. Note that the address must be on a
word boundary and is in the valid address range.

Example
inum = IFRDI(iaddress)

or
inum = IFRDW(iaddress)

Parameters
iaddress (integer) - must be on a word boundary ie be a multiple of 4

Results
inum (integer) - integer/word stored at iaddress

IFWRI/IFWRW
Purpose
To store an integer/word at the given address. Note that the address must be on a word
boundary and is in the valid address range.

Example
CALL IFWRI(inum,iaddress)

or
CALL IFWRW(inum,iaddress)

Parameters
inum (integer) - integer/word to be stored at iaddress
iaddress (integer) - must be on a word boundary ie be a multiple of 4

IFHWRDB
Purpose
To return the byte stored at the given hardware address and return it as an integer. Note that
the function does not check that the address is in the valid hardware address range.

Example
inum = IFHWRDB(iaddress)

Parameters
iaddress (integer)

Results
inum (integer) - byte stored at iaddress

IFHWWRB
Purpose
To store a byte at the given address. Note that the function does not check that the address is
in the valid hardware address range.

42

Example
CALL IFHWWRB(inum,iaddress)

Parameters
inum (integer) - byte to be stored at iaddress
iaddress (integer)

IFHWRD16
Purpose
To return the 16 bits stored at the given hardware address and return them as an integer. Note
that the address must be on a word boundary and be in the valid address range.

Example
inum = IFHWRD16(iaddress)

Parameters
iaddress (integer) - must be on a word boundary ie be a multiple of 4

Results
inum (integer) - 16 bits stored at iaddress

IFHWWR16
Purpose
To store 16 bits at the given address. Note that the address must be on a word boundary and
be in the valid address range.

Example
CALL IFHWWR16(inum,iaddress)

Parameters
inum (integer) - 16 bits to be stored at iaddress
iaddress (integer) - must be on a word boundary ie be a multiple of 4

IFHWRDW
Purpose
To return the word (32 bits) stored at the given hardware address and return it as an integer.
Note that the address must be on a word boundary and be in the valid address range.

Example
inum = IFHWRDW(iaddress)

Parameters
iaddress (integer) - must be on a word boundary ie be a multiple of 4

Results
inum (integer) - word stored at iaddress

IFHWWRW
Purpose
To store a word (32 bits) at the given address. Note that the address must be on a word
boundary and be in the valid address range.

Example
CALL IFHWWRW(inum,iaddress)

Parameters
inum (integer) - word to be stored at iaddress
iaddress (integer) - must be on a word boundary ie be a multiple of 4

43

IFSWI
Purpose
To enable SWI's to be called from FORTRAN 77

Example
ierror=IFSWI(numswi,iregsin,iregsout,iflags)

Parameters
numswi (integer) - SWI number.

Clear bit 17 (&00020000) to abort on error
Set bit 17 (&00020000) to return on error

iregsin (integer array) - one dimensional array with subscripts in the range 0 to 9
iregsin(0) =R0, iregsin(1) =R1, etc

Results
ierror (integer) - if no error occurs ierror = 0

If bit 17 of numswi (&00020000) is clear and an error occurs the
function does not return.
If bit 17 of numswi (&00020000) is set and an error occurs the
function returns and ierror = address of a standard error block.

iregsout (integer array) - one dimensional array with subscripts in the range 0 to 9.
iregsout(0) =R0, iregsout(1) =R1, etc

iflags (integer) - processor flag bits
bit0 = V flag bit1 = C flag bit2 = Z flag bit3 = N flag

IFSWIX
Purpose
To enable SWI's to be called from FORTRAN 77

Example
ierror=IFSWIX(numswi,iregsin,iregsout,iflags)

Parameters
numswi (integer) - SWI number (the function sets bit 17 (&00020000) to return on error)
iregsin (integer array) - one dimensional array with subscripts in the range 0 to 9

iregsin(0) =R0, iregsin(1) =R1, etc

Results
ierror (integer) - if no error occurs ierror = 0

If an error occurs the function returns and ierror = address of a
standard error block.

iregsout (integer array) - one dimensional array with subscripts in the range 0 to 9.
iregsout(0) =R0, iregsout(1) =R1, etc

iflags (integer) - processor flag bits
bit0 = V flag bit1 = C flag bit2 = Z flag bit3 = N flag

44

Appendix K

Calling Functions and Subroutines Written in Assembler from
FORTRAN

The FORTRAN compiler does not conform to the ARM Procedure Call Standard (APCS-R).
Only one argument is passed on calling, register variables v1-v6 and f4-f7 are not
preserved and the register binding of the APCS-R is not used.

Register Conventions

The register binding used is

r0 Pointer to a list of the addresses of the arguments given on calling.
r1-r9 Scratch registers.
fp (r10) Frame pointer (used as a pointer to a list of the addresses of the

arguments given on calling within the assembler routine).
sp (r12) Stack pointer.
sb (r13) Static base (used to refer to local data within the assembler routine).

Argument Lists

Every call in FORTRAN passes one argument in r0 . This is a pointer to a list of the addresses
of the arguments given in the call (every argument in FORTRAN is passed by reference). Thus
the address of the first argument is at [r0,#0] , the second at [r0,#4] , etc. Normally, the
address of the list is copied to fp (r10) , which is preserved by calls. If an assembler routine
does not call any other routines, the address of the list can be left in r0 .

For a CHARACTER argument, the address in the argument list does not point directly to the
data. It points at a character descriptor, which is a two-word block containing the address of the
character string in its first word and its length in the second. For example, if the third argument
in a call is a CHARACTER value, the following loads its address into r1 and its length into r2

 LDR r1,[r0,#8] ; Descriptor address
 LDMIA r1,{r1,r2} ; Address and length

Function Results

For non-CHARACTER functions, the address of the result is returned in r0 . A CHARACTER
function is implemented as a subroutine with the address of the result (a character descriptor)
passed as an additional argument inserted before the other arguments (thus the first argument
in the call appears as the second argument, etc).

A subroutine with alternate returns (*'s in the argument list) is implemented as an INTEGER
function. The result should be zero for the main return, one for the first alternate return, two for
the second, etc. The alternate return specifiers do not appear in the argument list.

Static Data

Static data for an assembler routine should be in a writable area and addressed using sb
(r13) as this is preserved by calls.

Section Format

The code area of a FORTRAN-callable assembler routine should start with the routine name as
a twelve-character string, padded with spaces. The address of the first byte following this
name must be pushed on to the stack at the beginning of the routine. The code area should be
named F77$$Code and have the attributes CODE and READONLY. The data area (if any)
should be named F77$$Data and have the DATA attribute.

45

FORTRAN COMMON blocks should be defined as named AREAs with the COMMON and NOINIT
attributes. An initialised COMMON block (equivalent to a BLOCK DATA subprogram) should be
defined with the COMDEF (common definition) attribute. FORTRAN blank COMMON is given the
name F77_BLANK.

The basic layout of a FORTRAN-callable assembler routine is

 TTL "name"
;Registers
r0 RN 0
r1 RN 1

 ...
 ...

r9 RN 9
fp RN 10
sp RN 12
sb RN 13
lr RN 14
pc RN 15

f0 FN 0
 ...
 ...

77 FN 7

;Data
 AREA |F77$$Data|,DATA
 ... data declarations ...

;Code
 AREA |F77$$Code|,CODE,READONLY

NAME DCB "ASMROUTINE " ; Name padded with spaces
 ; to 12 characters

DATAPTR DCD |F77$$Data| ; Address of data

 EXPORT ASMROUTINE

ASMROUTINE

 ADR r1,NAME+12 ; Standard entry sequence
 STMFD sp!,{r1,fp,sb,lr}
 LDR sb,DATAPTR ; Address of data area
 MOV fp,r0 ; Copy address of argument

list

 ... code ...

 LDMFD sp!,{r1,fp,sb,pc} ; Standard exit sequence

 END

An Example FORTRAN-Callable Assembler Routine

; s.IFADR
; contains IFADR
; 07 June 1993 Version 0.00

; Purpose
46

; To return the address of an integer variable

; Example
; iadr=IFADR(inum)

; Parameters

; inum (integer)

; Results

; iadr (integer) - address of variable inum

; REGISTERS

; Use the RN directive to define ARM register names

r0 RN 0
r1 RN 1
r2 RN 2
r3 RN 3
r4 RN 4
r5 RN 5
r6 RN 6
r7 RN 7
r8 RN 8
r9 RN 9
r10 RN 10
fp RN 10
r11 RN 11
r12 RN 12
sp RN 12
r13 RN 13
sb RN 13
r14 RN 14
lr RN r14
r15 RN 15
pc RN r15

; Use the FN directive to define floating point register names

f0 FN 0
f1 FN 1
f2 FN 2
f3 FN 3
f4 FN 4
f5 FN 5
f6 FN 6
f7 FN 7

; DATA
 AREA |F77$$Data|,DATA

RESULT % 4 ; result location

; CODE
 AREA |F77$$Code|,CODE,READONLY
NAME DCB "IFADR "

47

DATAPTR DCD |F77$$Data|

 EXPORT IFADR

IFADR
 ADR r1,NAME+12 ; standard entry sequence
 STMFD sp!,{r1,fp,sb,lr}
 LDR sb,DATAPTR
 MOV fp,r0
 ; fp points to param block
 LDR r1,[fp] ; load address of integer
 ; sb points to data area
 STR r1,[sb] ; store address of integer

 LDMFD sp!,{r1,fp,sb,pc} ; standard exit sequence

 END

An Example FORTRAN Program Which Calls the Assembler Routine

 PROGRAM Example
C Demonstrates the use of IFADR

 int1 = 1

 iadrint1 = IFADR(int1)

 PRINT *,'Integer 1 is ',int1,' and its address is ',iadrint1

 STOP
 END

Assuming that the source text of the assembler routine is in the file s.IFADR and the source
text of the FORTRAN program is in the file f77.Example , they should.be compiled and linked
as follows

*f77 Example
*objasm s.IFADR o.IFADR -APCS NONE
*link -output aif.Example o.Example o.IFADR <F77$Lib>f77

Run the program by typing

*aif.Example

The following should be displayed

Integer 1 is 1 and its address is 106204

STOP

48

Appendix L

Notes on Using a Debugger

The version of the linker used by the df77, df77lk and dlinkf77 commands can be selected by
editing the FORTRAN.!Fortran77.!Run obey file as shown in Appendices F and G.

The Acorn Symbolic Debugger

Run from the command line by typing

*asd aif. filename

This can only be used with programs linked by the older linker (oldlink). Edit the
FORTRAN.!Fortran77.!Run obey file as shown in Appendix F and then use the df77, df77lk and
dlinkf77 commands. Before using the Acorn Symbolic Debugger on a computer fitted with a
StrongARM processor it is essential to turn the cache off. From the command line type

*cache off

To turn the cache on from the command line type

*cache on

The Desktop Debugger !DDT

Run from the command line by typing

*debugaif aif. filename

This can only be used with programs linked by the newer linker (newlink). Edit the
FORTRAN.!Fortran77.!Run obey file as shown in Appendix G and then use the df77, df77lk
and dlinkf77 commands.

49

