
 

 

1  

Quick Reference Guide to Optimization  

Intel® C++ and Fortran Compilers v15 
 

For IA-32 processors, Intel® 64 processors and compatible, non-Intel processors 
 

Contents 
Application Performance ..........................................................................................................................................2 

General Optimization Options ..................................................................................................................................3 

Parallel Performance .................................................................................................................................................4 

Parallel Performance Using Intel® Cilk™ Plus ............................................................................................................5 

Compiling for Offload ................................................................................................................................................7 

Compiling for Intel® Graphics Technology §§ .............................................................................................................7 

Environment Variables for Intel® Graphics Technology §§ ........................................................................................7 

Optimizing for the Intel® Xeon Phi™ Coprocessor § ..................................................................................................8 

Environment Variables for the Intel® Xeon Phi™ Coprocessor § ...............................................................................8 

Interprocedural Optimization (IPO) and Profile-Guided Optimization (PGO) Options .............................................9 

Floating-Point Arithmetic Options ......................................................................................................................... 10 

Debug Options........................................................................................................................................................ 12 

 

 

  



 

 

2  

Application Performance 
A Step-by-Step Approach to Application Tuning with Intel Compilers 

 

Before you begin performance tuning, you may want to check correctness of your application by building it 

without optimization using /Od (-O0).  

1. Use the general optimization options (Windows* /O1, /O2 or /O3; Linux* and OS X* -O1, -O2, or -O3) 

and determine which one works best for your application by measuring performance with each. Most 

users should start at /O2 (-O2) (default) before trying more advanced optimizations.   

Next, try /O3 (-O3) for loop-intensive applications.**  

2. Fine-tune performance using processor-specific options. Examples are /QxCORE-AVX2 (-xcore-avx2) 

for the 4th Generation Intel® Core™ processor family and /arch:SSE3 (-msse3) for compatible, non-Intel 

processors that support at least the Intel® SSE3 instruction set.  Alternatively, you can use /QxHOST    

(-xhost) which will use the most advanced instruction set for the processor on which you compiled.** 

For a more extensive list of options that optimize for specific processors or instruction sets, see the 

table “Recommended Processor-Specific Optimization Options”.  

3. Add interprocedural optimization (IPO), /Qipo (-ipo) and/or profile-guided optimization (PGO),  

/Qprof-gen and /Qprof-use (-prof-gen and -prof-use), then measure performance again to determine 

whether your application benefits from one or both of them. 

4. Use Intel® VTune™ Amplifier†† to help you identify serial and parallel performance “hotspots” so that 

you know which specific parts of your application could benefit from further tuning. Use the compiler 

optimization report /Qopt-report (-qopt-report) to help identify individual optimization opportunities. 

5. Further optimize your application for SIMD through explicit vector programming using the 

Intel® Cilk™ Plus language extensions for C/C++ or the SIMD features of OpenMP 4.0 with 

 /Qopenmp-simd (-qopenmp-simd).†  

6. Optimize for parallel execution on multi-threaded, multi-core and multi-processor systems using: the 

auto-parallelization option /Qparallel (-parallel); the Intel Cilk Plus language extensions for C/C++; 

OpenMP pragmas or directives along with the option /Qopenmp (-qopenmp) †; or by using the Intel® 

Performance Libraries included with the product.** Use Intel® Inspector†† to reduce the time to market 

for threaded applications by diagnosing memory and threading errors and speeding up the 

development process.  

For more details, please consult the main product documentation at https://software.intel.com/intel-software-

technical-documentation . The compiler User and Reference Guide  includes dedicated sections on compiling 

applications for Intel® MIC Architecture and for Intel® Graphics Technology. 

** Several of these options are available for both Intel® and non-Intel microprocessors but they may perform 

more optimizations for Intel microprocessors than they perform for non-Intel microprocessors.‡ 
†OpenMP is currently supported by compilers within Intel® Parallel Studio XE, but not within Intel® System 

Studio or Intel® Integrated Native Developer Experience. 
††These products cannot be used on non-Intel microprocessors. 

https://software.intel.com/intel-software-technical-documentation
https://software.intel.com/intel-software-technical-documentation


 

 

3  

General Optimization Options 
These options are available for both Intel® and non-Intel microprocessors but they may result in more 

optimizations for Intel microprocessors than for non-Intel microprocessors. 
 

Windows* Linux* & OS X* Comment 

/Od  -O0 No optimization. Used during the early stages of application 

development and debugging. Use a higher setting when the 

application is working correctly. 

/Os 

/O1 

 

-Os  

-O1 

 

Optimize for size. Omits optimizations that tend to increase object 

size. Creates the smallest optimized code in most cases.  

These options may be useful in large server/database applications 

where memory paging due to larger code size is an issue. 

/O2 -O2 Maximize speed. Default setting. Enables many optimizations, inclu-

ding vectorization. Creates faster code than /O1 (-O1) in most cases. 

/O3 -O3 
Enables /O2 (-O2) optimizations plus more aggressive loop and 

memory-access optimizations, such as scalar replacement, loop 

unrolling, code replication to eliminate branches, loop blocking to 

allow more efficient use of cache and additional data prefetching.  

The /O3 (-O3) option is particularly recommended for applications 

that have loops that do many floating-point calculations or process 

large data sets.  These aggressive optimizations may occasionally 

slow down other types of applications compared to /O2 (-O2).  

/Qopt-report 

[:n]  

-qopt-report 

[n] 

Generates an optimization report, by default written to a file with 

extension .optrpt.  n specifies the level of detail, from 0 (no report) to 

5 (maximum detail). Default is 2. 

/Qopt-report-

file:name 

-qopt-report-

file=name  

Writes an optimization report to stderr, stdout  or to the file name.  

/Qopt-report-

phase:name1, 

name2, …  

-qopt-report-

phase=name1, 

name2,… 

Optimization reports are generated for optimization phases name1, 

name2, etc. Some commonly used name arguments are as follows:  

all            – All possible optimization reports for all phases (default)  

loop        – Loop nest and memory optimizations 

vec          – auto-vectorization and explicit vector programming 

par          – auto-parallelization 

openmp  – threading using OpenMP 

ipo           – Interprocedural Optimization, including inlining 

pgo          – Profile Guided Optimization 

offload    –  offload of data and/or execution to Intel® MIC  

                      Architecture or to Intel® Graphics Technology. 

/Qopt-report-

help  

-qopt-report-

help  

Displays all possible values of name for /Qopt-report-phase (-qopt-

report-phase) above. No compilation is performed. 

/Qopt-report-

routine: 

substring  

-qopt-report-

routine= 

substring  

Generates reports only for functions or subroutines whose names 

contain substring. By default, reports are generated for all functions 

and subroutines. 

/Qopt-report-

filter:”string” 

-qopt-report-

filter=”string” 

Restricts reports to the file, function or subroutine and/or ranges of 

line numbers specified by “string”,  e.g. “myfile,myfun,line1-line2”. 



 

 

4  

Parallel Performance 
Options that use OpenMP or auto-parallelization are available for both Intel®and non-Intel microprocessors, 

but these options may result in additional optimizations on Intel microprocessors that do not occur on non-

Intel microprocessors.  

 

Windows*  Linux* & OS X* Comment 

/Qopenmp†  -qopenmp†  Causes multi-threaded code to be generated when OpenMP 

directives are present.  For Fortran only, makes local arrays automatic 

and may require an increased stack size. See http://www.openmp.org 

for the OpenMP API specification. 

/Qparallel  -parallel  The auto-parallelizer detects simply structured loops that may be 

safely executed in parallel, including loops implied by Intel® Cilk™ Plus 

array notation, and automatically generates multi-threaded code for 

these loops. 

/Qpar-

threshold[:n]  

-par-

threshold[n]  

Sets a threshold for the auto-parallelization of loops based on the 

likelihood of a performance benefit.  n=0 to 100, default 100.  

0   – Parallelize loops regardless of computation work volume.  

100 – Parallelize loops only if a performance benefit is highly likely 

Must be used in conjunction with /Qparallel (-parallel). 

/Qpar-affinity: 

name 

-par-affinity= 

name 

Specifies thread-processor affinity for OpenMP or auto-parallelized 

applications. Typical values of name  are none (default), scatter  and 

compact. Has effect only when compiling the main program. See the 

compiler user and reference guide for more settings and details. 

/Qguide[:n] 

 

-guide[=n] 

 

Guided Auto-Parallelization. Causes the compiler to suggest ways to 

help loops to vectorize or auto-parallelize, without producing any 

objects or executables. Auto-parallelization advice is given only if the 

option /Qparallel (-parallel) is also specified. 

n is an optional value from 1 to 4 specifying increasing levels of 

guidance to be provided, level 4 being the most advanced and 

aggressive. If n is omitted, the default is 4. 

/Qopt-

matmul[-] 

 

-q[no-]opt-

matmul 

 

This option enables [disables] a compiler-generated Matrix Multiply 

(matmul) library call by identifying matrix multiplication loop nests, if 

any, and replacing them with a matmul library call for improved 

performance. This option is enabled by default if options /O3 (-O3) 

and /Qparallel (-parallel) are specified. This option has no effect 

unless option /O2 (-O2) or higher is set. 

/Qcilk-

serialize 

 

-cilk-serialize 

 

This option includes a header file, cilk_stubs.h, that causes the 

compiler to ignore all Intel® Cilk™ Plus threading keywords, resulting 

in a serial executable. (C/C++ only). See the "Using Intel Cilk Plus” 

section of the user and reference guide for more detail. 

/Qcoarray: 

shared 

-coarray= 

shared 

Enables the coarray feature of Fortran 2008 on shared memory 

systems (Fortran only). See the compiler reference guide for more 

coarray options and detail.  

/Qmkl:name -mkl=name Requests that the Intel® Math Kernel Library (Intel® MKL) be linked. 

Off by default.  Possible values of name  are: 

parallel           Links the threaded part of Intel MKL  (default)    

sequential     Links the non-threaded part of Intel MKL 

cluster            Links the cluster and sequential parts of Intel MKL 

http://www.openmp.org/


 

 

5  

Parallel Performance Using Intel® Cilk™ Plus 
Threading 

Keywords   

Description 

(C/C++ only) 

cilk_spawn Allows (but does not require) a spawned function to be run in parallel with the caller, subject 

to dynamic scheduling by the Intel® Cilk™ Plus runtime. 

cilk_sync Introduces a barrier: function cannot continue until all spawned children are complete. 

cilk_for Introduces a for loop whose iterations are allowed (but not required) to run in parallel. 

 

Reducers  allow reduction operations, such as accumulation of a sum, to be executed safely in parallel. 

      E.g.  cilk::reducer< cilk::op_add<unsigned int> > declares a reducer to sum unsigned ints. 

Holders:   The cilk::holder template class provides a convenient form of task local storage that is thread safe. 

 

Array Notation:  a readable, explicitly data-parallel C/C++ language extension that facilitates generation of 

SIMD parallel code by the vectorizer at optimization level -O2 or higher and asserts absence of dependencies. 

Syntax:        array[<lower bound>:<length>:<stride>].   

Examples:  bb[:][:] = 0  zeros the entire two-dimensional array bb  (size and shape must be known to compiler).     

                     c[j:len] = sqrt(c[k:len:2])  takes the square root of alternate elements of c starting at c[k],  

                                                                     and asserts that this is safe to vectorize (e.g.,  j<k). 

Reduction functions are available, e.g.  __sec_reduce_add(a[:])   sums the elements of array a. 

 

SIMD-enabled Functions:  a  language extension that permits functions to be called in either scalar or SIMD 

mode, allowing loops containing function calls to be vectorized efficiently. The compiler generates an alternate 

function version where one or more scalar arguments may be replaced by vectors.  

C/C++ declaration syntax:    __declspec (vector(clauses)) func_name(arguments)    (or __attribute__) 

Fortran equivalent:                !DIR$ ATTRIBUTES VECTOR: (clauses) :: func_name 

Optional clauses include uniform, linear, mask, processor, vectorlength and vectorlengthfor. 

The vector version of the function may be invoked directly using array notation, or indirectly via a loop, e.g.: 

    a[:] = func_name(b[:],c[:],d,..) ; 

 for (int i=0; i<n; i++)     a[i] = func_name(b[i],c[i],d,…) ; 

              DO J=1,N;     A(J) = FUNC_NAME(B(J),C(J),D,…) ;     ENDDO       

Similar functionality is supported via the  DECLARE SIMD feature of OpenMP 4.0†. In certain cases, a SIMD 

pragma or directive may be needed to ensure vectorization of a loop containing a SIMD-enabled function. 

 

Explicit vector programming using the SIMD pragma (C/C++) and directive (Fortran) 

This tells the compiler to vectorize a loop using SIMD instructions. The programmer is responsible for 

correctness, e.g. by explicitly specifying private variables and reductions. Semantics are similar to those for the 

OpenMP directives  #pragma omp parallel for  (C/C++)  and   !$OMP PARALLEL DO  (Fortran).  

The compiler also supports similar functionality via the SIMD clause of OpenMP 4.0†. 

C/C++ syntax:  #pragma simd [clauses]          Fortran syntax:  !DIR$ SIMD [clauses] 

 

Clause Description 

private(var1,var2,…) Specifies which variables need to be private to each iteration of the loop, to 

avoid conflicts. 

reduction(oper:var1,var2,…) Instructs the compiler to accumulate a vector reduction into var1, var2, … under 

operator oper. 

linear(var1:step1,…) var1 is incremented by step1 for each iteration of the scalar loop. 

Other supported clauses:  firstprivate, lastprivate,  [no]assert, vectorlength, vectrolengthfor, vecremainder 

The _Simd and _Reduction keywords provide an alternative to #pragma simd reduction(...) For more 

information, see www.cilk.com and the Intel C++ Compiler User and Reference Guide.

http://www.cilk.com/


 

 

6  

Recommended Processor-Specific Optimization Options‡ 

Windows* Linux*  

OS X* 

Comment 

/Qxtarget  

 

-xtarget  

 

Generates specialized code for any Intel® processor that supports the 

instruction set specified by target. The executable will not run on non-Intel 

processors or on Intel processors that support only lower instruction sets. 

Possible values of target, from highest to lowest instruction set: 

CORE-AVX512, MIC-AVX512, CORE-AVX2, AVX, SSE4.2, ATOM_SSE4.2, 

SSE4.1, ATOM_SSSE3, SSSE3, SSE3, SSE2 

Note: This option enables additional optimizations that are not enabled  by the 

/arch or -m options. On 64 bit OS X, options SSE3 and SSE2 are not supported. 

/arch: 

target 

-mtarget Generates specialized code for any Intel processor or compatible, non-Intel 

processor that supports the instruction set specified by target. Running the 

executable on an Intel processor or compatible, non-Intel processor that does 

not support the specified instruction set may result in a run-time error. 

Possible values of target :  AVX, SSE4.2, SSE4.1, SSSE3, SSE3, SSE2, IA32 

Note: Option IA32 generates non-specialized, generic x86/x87 code. It is 

supported on IA-32 architecture only. It is not supported on OS X. 

/QxHOST -xhost Generates instruction sets up to the highest that is supported by the 

compilation host. On Intel processors, this corresponds to the most suitable /Qx 

(-x) option; on compatible, non-Intel processors, this corresponds to the most 

suitable of the /arch (-m) options IA32, SSE2 or SSE3. This option may result in 

additional optimizations for Intel® microprocessors that are not performed for 

non-Intel microprocessors.‡ 

/Qaxtarget 

 

-axtarget May generate specialized code for any Intel processor that supports the 

instruction set specified by target, while also generating a default code path.  

Possible values of target : CORE-AVX512, MIC-AVX512, CORE-AVX2, AVX, 

SSE4.2, SSE4.1, SSSE3, SSE3, SSE2 

Multiple values, separated by commas, may be used to tune for additional Intel 

processors in the same executable, e.g. /QaxAVX,SSE4.2. The default code path 

will run on any Intel or compatible, non-Intel processor that supports at least 

SSE2, but may be modified by using in addition a /Qx (-x) or /arch (-m) switch.  

For example, to generate a specialized code path optimized for the 4th 

generation Intel® Core™ processor family and a default code path optimized for 

Intel processors or compatible,  non-Intel processors that support at least  

SSE3, use /QaxCORE-AVX2 /arch:SSE3 (-axcore-avx2 -msse3 on Linux).   

At runtime, the application automatically detects whether it is running on an 

Intel processor, and if so, selects the most appropriate code path. If an Intel 

processor is not detected, the default code path is selected.  

Note:  On 64 bit OS X, options sse3 and sse2 are not supported. 

This option may result in additional optimizations for Intel microprocessors that 

are not performed for non-Intel microprocessors.‡ 

 

Please see the online article “Intel® compiler options for Intel® SSE and Intel® AVX generation and processor-

specific optimizations” to view the latest recommendations for processor-specific optimization options.         

These options are described in greater detail in the Intel Compiler User and Reference Guides. 

 

 

http://www.intel.com/support/performancetools/sb/CS-009787.htm
http://www.intel.com/support/performancetools/sb/CS-009787.htm


 

 

7  

Compiling for Offload 
Windows* Linux*  Comment 

/Qoffload[-] 

/Qoffload[:kywd] 

-q[no-]offload 

-qoffload=kywd 

Controls whether the compiler honors language constructs for 

offloading to Intel® MIC architecture or Intel® Graphics Technology. 

kywd can take values:  

none: offload constructs are ignored and all code is compiled for 

execution on the host only. Equivalent to /Qoffload- (-qno-offload) 

mandatory: if target is not available, program fails unless status 

clause is present, in which case offload code is skipped. 

optional: if target is not available, all code is executed on host cpu. 

Default is /Qoffload:mandatory  (-qoffload=mandatory) 

/Qoffload-option, 

target, tool, 

“option-list” 

-qoffload-option, 

target, tool, 

“option-list” 

Specifies options to be used for the target compilation but not for 

the host.  target  may be mic (for Intel® MIC architecture) or gfx  (for 

Intel® Graphics Technology). tool  may be compiler,  ld, link or as. 

/Qoffload-

attribute-target: 

target-name 

-qoffload-

attribute-target 

=target-name 

Flags every file-scope function or data object with the offload 

attribute  target(target-name), where target-name is mic  (for Intel 

MIC architecture) or gfx (for Intel Graphics Technology).  

/Qopt-report-

phase:offload 

-qopt-report-

phase offload 

Generates a compile time report of variables that will be copied to 

or from the host and the coprocessor or processor graphics. 

__INTEL_OFFLOAD __INTEL_OFFLOAD Predefined macro for use in offload programming on the host 

Compiling for Intel® Graphics Technology §§  
Windows* 

(32 and 64 bits) 

Linux*  

(64 bits only) 

Comment 

/Qgpu-

arch:arch 

-mgpu-

arch=arch 

The compiler generates native instructions for the graphics processor that 

is on the Intel® microarchitecture codenamed ivybridge  or haswell, as 

specified by arch. Default is virtual instructions translated by the jit engine. 

__GFX__ __GFX__ Predefined macro for use when programming for Intel Graphics Technology 

Environment Variables for Intel® Graphics Technology §§ 

Variable Comment 

GFX_CPU_BACKUP=1 Offload code is executed on host when target is not available (default).  If =0, 

application fails if target is not available. 

GFX_MAX_THREAD_COUNT Maximum number of target threads  when parallelizing loop nests. 

 Default=-1 (system default). 

GFX_OFFLOAD_TIMEOUT=n Offload tasks time out after n seconds (default=60).  The system recovery 

timeout may need to be disabled or increased for this option to be effective. 

GFX_SHOW_TIME=1 Prints offload timing information at end of execution. Default=0 (no printing) 

GFX_LOG_OFFLOAD=n Generates an offload log.  n specifies the level of detail, from 0 (no log) to 3 

(maximum detail). Default is 0. 

§§ Compiler support for Intel® Graphics Technology depends on operating system support.  

For more information, see the Getting Started guide at https://software.intel.com/articles/getting-started-with-

compute-offload-to-intelr-graphics-technology  and the Intel® Compiler User and Reference Guides. 

 

https://software.intel.com/articles/getting-started-with-compute-offload-to-intelr-graphics-technology
https://software.intel.com/articles/getting-started-with-compute-offload-to-intelr-graphics-technology


 

 

8  

Optimizing for the Intel® Xeon Phi™ Coprocessor§ 
Windows* Linux*  Comment 

/Qmic -mmic Builds an application that runs natively on Intel® Xeon Phi™ 

coprocessors. (Off by default). 

/Qopt-

streaming-

cache-evict:n 

-qopt-

streaming-

cache-evict=n 

Controls whether compiler generates a cache line evict instruction 

after a streaming store.    n=0  no clevict;    n=1  L1 clevict only;     n=2   

L2 clevict only (default);   n=3  L1 and L2 clevict generated. 

/Qopt-assume-

safe-padding  

-qopt-assume-

safe-padding  

Asserts that compiler may safely access up to 64 bytes beyond the end 

of array or dynamically allocated objects as accessed by the user 

program. User is responsible for padding.   Off by default. 

/Qopt-threads-

per-core:n 

-qopt-threads-

per-core=n 

Hint to the compiler to optimize for n  threads per physical core,  

where n=1, 2, 3 or 4. 

/Qopt-prefetch:n -qopt-

prefetch=n 

Enables increasing levels of software prefetching for n=0 to 4. Default 

is n=3  at optimization levels of -O2 or higher. 

/Qimf-domain-

exclusion:n 

-fimf-domain-

exclusion=n 

Specifies special case arguments for which math functions need not 

conform to IEEE standard. The bits of n correspond to the domains: 

0 – extreme values (e.g. very large; very small;  close to singularities);    

1 – NaNs; 2 – infinities;  3 – denormals; 4 – zeros. 

/Qopt-gather-

scatter-unroll  

-qopt-gather-

scatter-unroll  

Specifies an alternative loop unroll sequence for gather and scatter 

loops 

/align: 

array64byte 

-align 

array64byte 

Seek to align the start of arrays at a memory address that is divisible by 

64, to enable aligned loads and help vectorization. (Fortran only) 

__MIC__ __MIC__ Predefined macro for use when programming for Intel MIC architecture 

Environment Variables for the Intel® Xeon Phi™ Coprocessor§ 
Variable Comment 

OFFLOAD_REPORT=<n> Provides a run-time report for offload applications 

n=1   reports execution times on host and on coprocessor 

n=2  also reports on data transfers between host and coprocessor 

n=3  detail on device initialization and individual variable transfers 

OFFLOAD_DEVICES=  

<n1,n2,…> 

Restricts the process on the host to use only the physical coproccessors n1, n2, 

etc., numbered from 0. 

MIC_STACKSIZE=<n>M Sets the maximum stack size on the coprocessor for offload applications. In 

this example, n  is in Megabytes. 

MIC_ENV_PREFIX=<name> Specify prefix to distinguish environment variables on the coprocessor from 

ones on the host, for offload applications. 

 E.g. if name=MIC,  then MIC_OMP_NUM_THREADS  controls the number of 

OpenMP threads on the coprocessor. 

MIC_USE_2MB_ 

BUFFERS=<n>M         

Offloaded pointer variables whose runtime data length exceeds n MB will be 

allocated in large, 2MB pages. 

For more optimization detail,  see  https://software.intel.com/articles/advanced-optimizations-for-intel-mic-

architecture ; for building for Intel® MIC architecture in general, see http://software.intel.com/mic-developer,  

https://software.intel.com/articles/programming-and-compiling-for-intel-many-integrated-core-architecture       

and the Intel® Compiler User and Reference Guides at https://software.intel.com/ compiler_15.0_ug_c and 

https://software.intel.com /compiler_15.0_ug_f. 

§ Intel® MIC architecture and Intel Xeon Phi coprocessors are supported by compilers within Intel® Parallel 

Studio XE, but not within Intel® System Studio or Intel® Integrated Native Developer Experience. 

https://software.intel.com/articles/advanced-optimizations-for-intel-mic-architecture
https://software.intel.com/articles/advanced-optimizations-for-intel-mic-architecture
http://software.intel.com/mic-developer
https://software.intel.com/articles/programming-and-compiling-for-intel-many-integrated-core-architecture
https://software.intel.com/%20compiler_15.0_ug_c


 

 

9  

Interprocedural Optimization (IPO) and  

Profile-Guided Optimization (PGO) Options 
 

Windows*  Linux*  

OS X* 

Comment 

/Qip  -ip  Single file interprocedural optimizations, including selective 

inlining, within the current source file.  

/Qipo[n]  -ipo[n]  Permits inlining and other interprocedural optimizations 

among multiple source files. The optional argument n 

controls the maximum number of link-time compilations (or 

number of object files) spawned. Default for n is 0 (the 

compiler chooses). 

Caution: This option can in some cases significantly increase 

compile time and code size. 

/Qipo-jobs[n]  -ipo-jobs[n]  Specifies the number of commands (jobs) to be executed 

simultaneously during the link phase of Interprocedural 

Optimization (IPO).  The default is 1 job. 

/Ob2 -finline-

functions 

-finline-level=2 

This option enables function inlining within the current 

source file at the compiler’s discretion.  This option is enabled 

by default at /O2 and /O3 (-O2 and -O3). 

Caution: For large files, this option may sometimes 

significantly increase compile time and code size.  It can be 

disabled by /Ob0   (-fno-inline-functions on Linux and OS X). 

/Qinline-

factor:n 

-finline-factor=n This option scales the total and maximum sizes of functions 

that can be inlined.   The default value of n is 100, i.e., 100% 

or a scale factor of one. 

/Qprof-gen 

[:kywd] 

-prof-gen 

[=kywd] 

Instruments a program for profile generation.  

kywd= threadsafe allows profile generation for threaded 

applications. kywd=srcpos and globdata collect additional 

data useful for function and data ordering. 

/Qprof-use  -prof-use  Enables the use of profiling information during optimization. 

/Qprof-dir dir  -prof-dir dir  Specifies a directory for profiling output files, *.dyn and *.dpi. 

PROF_DIR PROF_DIR Environment variable to specify a director for profiling output 

files  (alternative to /Qprof-use or -prof-use). 

/Qprofile-

functions 

-profile-

functions 

Instruments functions so that a profile of execution time 

spent in each function may be generated. 

/Qprofile-loops -profile-loops Instruments functions to generate a profile of each loop or 

loop nest in serial code. See “Profile Function or Loop 

Execution Time” in the main compiler documentation for 

additional detail and how to view profiles.  

 

 

  



 

 

10  

Floating-Point Arithmetic Options 
Windows*  Linux*  

OS X* 

Comment 

/fp:name  -fp-model 

name  

May enhance the consistency of floating point results by restricting 

certain optimizations. Possible values of name:  

fast=[1|2] – Allows more aggressive optimizations at a slight cost in 

accuracy or consistency. (fast=1 is the default) . This may include 

some additional optimizations that are performed on Intel® 

microprocessors but not on non-Intel microprocessors. 

precise – Allows only value-safe optimizations on floating point code.  

double/extended/source –  Intermediate results are computed in 

double, extended or source precision. Implies precise unless 

overridden. The double and extended options are not available for 

the Intel® Fortran compiler.  

except – Enforces floating point exception semantics.  

strict – enables both the precise and except options and does not 

assume the default floating-point environment. Suppresses 

generation of fused multiply-add (FMA) instructions by the compiler. 

Recommendation:  /fp:precise /fp:source (-fp-model precise -fp-

model source) is the recommended form for the majority of 

situations where enhanced floating point consistency and 

reproducibility are needed. 

/Qopt-

dynamic-

align[-] 

-q[no-]opt-

dynamic-

align 

Enables [disables] certain optimizations that depend on data 

alignment at run-time, and that could cause small variations in 

floating-point results when the same, serial application is run 

repeatedly on the same input data. Enabled by default unless 

/fp:precise (-fp-model precise) is set. 

/Qftz[-]  -ftz[-]  When the main program or dll main is compiled with this option, 

denormals (resulting from Intel® SSE or Intel® AVX  instructions) at 

run time are flushed to zero for the whole program (dll). The default 

is on except at /Od (-O0).  

/Qimf-

precision: 

name       

-fimf-

precision: 

name 

Setsthe accuracy for math library functions. Default is OFF (compiler 

uses default heuristics). Possible values of name are high, medium 

and low. Reduced precision may lead to increased performance and 

vice versa, particularly for vectorized code.  Many routines in the 

math library are more highly optimized for Intel microprocessors 

than for non-Intel microprocessors. 

/Qimf-arch-

consistency: 

true 

 

-fimf-arch-

consistency= 

true 

 

Ensures that math library functions produce consistent results across 

different Intel or compatible, non-Intel processors of the same 

architecture. May decrease run-time performance. The default 

is ”false” (off). 

/Qprec-div[-] -[no-]prec-

div 

Improves [reduces] precision of floating point divides. This may 

slightly degrade [improve] performance.  

/Qprec-sqrt[-] -[no-]prec-

sqrt 

Improves [reduces] precision of square root computations. This may 

slightly degrade [improve] performance.   

 

See also http://software.intel.com /articles/consistency-of-floating-point-results-using-the-intel-compiler 



 

 

11  

Fine-Tuning (All Processors) 
Windows*  Linux*  

OS X* 

Comment 

/Qunroll[n]  -unroll[n]  Sets the maximum number of times to unroll loops. /Qunroll0 

 (-unroll0) disables loop unrolling. The default is /Qunroll (-unroll), 

which uses default heuristics. 

/Qopt-

prefetch:n  

-qopt-

prefetch=n  

Controls the level of software prefetching. n is an optional value 

between 0 (no prefetching) and 4 (aggressive prefetching). The default 

value is 2 when /O3 (-O3) is enabled. Warning: excessive pre-fetching 

may result in resource conflicts that degrade performance. 

/Qopt-block-

factor:n 

-qopt-block-

factor=n 

Specifies a preferred loop blocking factor n, the number of loop iter-

ations in a block, overriding default heuristics. Loop blocking, enabled 

at /O3  (-O3), is designed to increase the reuse of data in cache.  

/Qopt-

streaming-

stores:mode 

-qopt-

streaming-

stores mode 

Enables/disables generation of streaming stores. Values for mode: 

always     Encourages generation of streaming stores that bypass 

cache, assuming application is memory bound with little data reuse 

never       Disables generation of streaming stores 

auto         Default compiler heuristics for streaming store generation 

/Qrestrict[-]  -[no]restrict  Enables [disables] pointer disambiguation with the restrict keyword. 

Off by default.  (C/C++ only) 

/Oa -fno-alias  Assumes no aliasing in the program.   Off by default. 

/Ow -fno-fnalias  Assumes no aliasing within functions.   Off by default. 

/Qalias-args[-]  -fargument-

[no]alias  

Implies function arguments may be aliased [are not aliased]. On by 

default.     (C/C++ only).  –fargument-noalias often helps the compiler 

to vectorize loops involving function array arguments. 

/Qansi-alias[-] -[no-]ansi-

alias 

Enables [disables] ANSI and ISO C Standard aliasability rules.  

Defaults: disabled on Windows;  enabled on Linux and OS X. 

/Qopt-class-

analysis[-] 

-q[no-]opt-

class-analysis 

C++ class hierarchy information is used to analyze and resolve C++ 

virtual function calls at compile time.  If a C++ application contains 

non-standard C++ constructs, such as pointer down-casting, it may 

result in different behavior.  Default is off, but it is turned on by default 

with the /Qipo (Windows) or -ipo (Linux and OS X) compiler option, 

enabling improved C++ optimization.   (C++ only) 

 -f[no-] 

exceptions 

-f-exceptions, default for C++, enables exception handling table 

generation 

-fno-exceptions, default for C or Fortran, may result in smaller code. 

For C++, it causes exception specifications to be parsed but ignored. 

Any use of exception handling constructs (such as try blocks and 

throw statements) will produce an error if any function in the call 

chain has been compiled with -fno-exceptions. 

/Qvec-

threshold:n 

-vec-

threshold=n 

Sets a threshold n for the auto-vectorization of loops based on the 

probability of performance gain.   0 ≤ n ≤ 100,  default  n=100.  

0   – Vectorize loops regardless of amount of computational work.  

100 – Vectorize loops only if a performance benefit is almost certain 

/Qvec[-] -[no-]vec Enables or disables auto-vectorization. On by default at /O2 (-O2) 

 



 

 

12  

Debug Options 
Windows*  Linux*  

OS X* 

Comment 

/Zi 

/debug  

/debug:full 

/debug:all 

-g 

-debug  

-debug full 

-debug all 

Produces debug information for use with any of the common platform 

debuggers, for full symbolic debugging of unoptimized code. Turns off  

/O2 (-O2) and makes /Od (-O0) the default unless /O2 (-O2)   (or 

another O option) is specified. Debug symbols will generally increase 

the size of object modules and may slightly degrade performance of 

optimized code. 

/debug:none -debug none No debugging information is generated.  (default)  

/debug: 

minimal 

-debug 

minimal 

Generates line number information for debugging, but not local 

symbols. 

/debug:inline

-debug-info 

-debug 

inline-debug-

info 

This option causes symbols for inlined functions to be associated with 

the source of the called function, instead of with the caller. 

Not enabled by /debug:full (-debug full) unless -O2 is specified. 

 -debug 

extended 

produces additional information for improved symbolic debugging of 

optimized code.  Not enabled by /debug:full (-debug full). 

 -debug 

parallel 

generates additional symbols and instrumentation for debugging 

threaded code. (Linux only; not enabled by -debug full). 

/Qsox[-] -[no-]sox 

(Linux only) 

Embeds the compiler version and options used as strings in the object 

file (Windows and Linux) and in the executable (Linux). Off by default. 

/Qtraceback -traceback Compiler includes slight extra information in the object file to provide 

source file traceback information when a severe error occurs at run 

time. May be used with optimized code. (Fortran applications only) 

 

 

 

 

‡ Optimization Notice 

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations 

that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction 

sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any 

optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this 

product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel 

microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and 

Reference Guides for more information regarding the specific instruction sets covered by this notice. 

Notice revision #20110804 

 

 

For product and purchase information, visit the  Intel® Software 

Development Tools site at:    http://intel.ly/sw-dev-tools. 
 

Intel, the Intel logo, Intel VTune, Intel Core, Intel Cilk and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and other countries. 

* Other names and brands may be claimed as the property of others. 

 

© 2014, Intel Corporation. All rights reserved.  Rev 081114 

 

http://intel.ly/sw-dev-tools

