TEST REPORT No. I22Z61716-WMD02 for **TCL Communication Ltd.** **GSM/UMTS/LTE** mobile phone Model Name: T607DL, T403V, T403M FCC ID: 2ACCJH167 with Hardware Version: 04 Software Version: UH3F Issued Date: 2022-12-20 #### Note: The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government. #### **Test Laboratory:** # CTTL, Telecommunication Technology Labs, CAICT No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191. Tel: +86(0)10-62304633-2512, Fax: +86(0)10-62304633-2504 Email: cttl terminals@caict.ac.cn, website: www.caict.ac.cn # **REPORT HISTORY** | Report Number | Revision | Description | Issue Date | |-----------------|----------|-------------------------|------------| | I22Z61716-WMD02 | Rev.0 | 1 st edition | 2022-12-20 | Note: the latest revision of the test report supersedes all previous version. # **CONTENTS** | 1. | TEST LABORATORY | 4 | |------------|---|----| | 1.1 | . INTRODUCTION & ACCREDITATION | 4 | | 1.2 | . TESTING LOCATION | 4 | | 1.3 | . TESTING ENVIRONMENT | 5 | | 1.4 | . PROJECT DATA | 5 | | 1.5 | . SIGNATURE | 5 | | 2. | CLIENT INFORMATION | 6 | | 2.1 | . APPLICANT INFORMATION | 6 | | 2.2 | . MANUFACTURER INFORMATION | 6 | | 3. | EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) | 7 | | 3.1 | | | | 3.2 | | | | 3.3 | | | | 4. | REFERENCE DOCUMENTS | | | 4.1 | | | | | | | | 4.2 | | | | 5. | LABORATORY ENVIRONMENT | 9 | | 6. | SUMMARY OF TEST RESULT | 10 | | 7. | TEST EQUIPMENT UTILIZED | 12 | | AN | NNEX A: MEASUREMENT RESULTS | 13 | | 1 | A.1 Output Power | 13 | | | A.2 Emission Limit | | | 1 | A.3 Frequency Stability | 27 | | | A.4 OCCUPIED BANDWIDTH | | | | A.5 Emission Bandwidth | | | 1 | A.6 BAND EDGE COMPLIANCE | 56 | | 1 | A.7 CONDUCTED SPURIOUS EMISSION | 60 | | 1 | A.8 PEAK-TO-AVERAGE POWER RATIO | 67 | | AN | NEX B: ACCREDITATION CERTIFICATE | 68 | # 1. Test Laboratory #### 1.1. Introduction & Accreditation Telecommunication Technology Labs, CAICT is an ISO/IEC 17025:2017 accredited test laboratory under NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM (NVLAP) with lab code 600118-0 and is also an FCC accredited test laboratory (CN5017), and ISED accredited test laboratory (CN0066). The detail accreditation scope can be found on NVLAP website. #### 1.2. <u>Testing Location</u> Location 1: CTTL (huayuan North Road) Address: No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191 Location 2: CTTL (BDA) Address: No.18A, Kangding Street, Beijing Economic-Technology Development Area, Beijing, P. R. China 100176 # 1.3. <u>Testing Environment</u> Normal Temperature: $15-35^{\circ}$ C Relative Humidity: 20-75% # 1.4. Project Data Testing Start Date: 2022-08-31 Testing End Date: 2022-10-20 # 1.5. Signature Dong Yuan (Prepared this test report) Zhou Yu (Reviewed this test report) 赵慧麟 Zhao Hui Lin Deputy Director of the laboratory (Approved this test report) # 2. Client Information # 2.1. Applicant Information Company Name: TCL Communication Ltd. Address /Post: 5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science Park, Shatin, NT, Hong Kong Contact: Annie Jiang Email: nianxiang.jiang@tcl.com Telephone: +86 755 3661 1621 Fax: +86 755 3661 2000-81722 # 2.2. Manufacturer Information Company Name: TCL Communication Ltd. Address /Post: 5/F, Building 22E, 22 Science Park East Avenue, Hong Kong Science Park, Shatin, NT, Hong Kong Contact: Annie Jiang Email: nianxiang.jiang@tcl.com Telephone: +86 755 3661 1621 Fax: +86 755 3661 2000-81722 # 3. Equipment Under Test (EUT) and Ancillary Equipment (AE) #### 3.1. About EUT Description GSM/UMTS/LTE mobile phone Model Name T607DL, T403V, T403M FCC ID 2ACCJH167 Antenna Embedded Output power 22.79 dBm maximum EIRP measured for WCDMA Band II Extreme vol. Limits 3.5VDC to 4.4VDC (nominal: 3.85VDC) Extreme temp. Tolerance -10°C to +55°C Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of CTTL. # 3.2. Internal Identification of EUT used during the test | EUT ID* | IMEI | HW Version | SW Version | Date of receipt | |---------|-----------------|-------------------|------------|-----------------| | UT13a | 016324000011193 | 04 | UH3F | 2022-09-05 | ^{*}EUT ID: is used to identify the test sample in the lab internally. #### 3.3. Internal Identification of AE used during the test AE ID* Description AE1 Battery AE2 Battery AE1 Model TLi028D7 Manufacturer NINGBO VEKEN BATTERY CO., LTD. Capacitance 3000mAh AE2 Model TLi028C7 Manufacturer NINGBO VEKEN BATTERY CO., LTD. Capacitance 3000mAh ^{*}AE ID: is used to identify the test sample in the lab internally. # 4. Reference Documents # 4.1. <u>Documents supplied by applicant</u> EUT parameters are supplied by the customer, which are the bases of testing. CAICT is not responsible for the accuracy of customer supplied technical information that may affect the test results (for example, antenna gain and loss of customer supplied cable). # 4.2. Reference Documents for testing The following documents listed in this section are referred for testing. | Reference | Title | Version | |----------------|--|---------| | FCC Part 24 | PERSONAL COMMUNICATIONS SERVICES | 10-1-21 | | | | Edition | | FCC Part 22 | PUBLIC MOBILE SERVICES | 10-1-21 | | | | Edition | | FCC Part 27 | MISCELLANEOUS WIRELESS COMMUNICATIONS | 10-1-21 | | | SERVICES | Edition | | ANSI/TIA-603-E | Land Mobile FM or PM Communications Equipment | 2016 | | | Measurement and Performance Standards | | | ANSI C63.26 | American National Standard for Compliance Testing of | 2015 | | | Transmitters Used in Licensed Radio Services | | | KDB 971168 D01 | MEASUREMENT GUIDANCE FOR CERTIFICATION OF | v03r01 | | | LICENSED DIGITAL TRANSMITTERS | | # 5. Laboratory Environment **Semi-anechoic chamber 2 / Fully-anechoic chamber 3** (10 meters × 6.7 meters × 6.15 meters) did not exceed following limits along the EMC testing: | | 9 | |--|---| | Temperature | Min. = 15 °C, Max. = 30 °C | | Relative humidity | Min. = 35 %, Max. = 60 % | | Shielding effectiveness | > 100 dB | | Electrical insulation | >2 M | | Ground system resistance | < 0.5 | | Normalised site attenuation (NSA) | <±3.5 dB, 3 m distance | | Site voltage standing-wave ratio (Syswr) | Between 0 and 6 dB, from 1GHz to 18GHz | | Uniformity of field strength | Between 0 and 6 dB, from 80 to 3000 MHz | # 6. Summary Of Test Result # **WCDMA Band II** | Items | Test Name | Clause in FCC rules | Verdict | |-------|-----------------------------|---------------------|---------| | 1 | Output Power | 24.232 | Р | | 2 | Emission Limit | 2.1051/24.238 | BR | | 3 | Frequency Stability | 2.1055 | BR | | 4 | Occupied Bandwidth | 2.1049 | BR | | 5 | Emission Bandwidth | 24.238 | BR | | 6 | Band Edge Compliance | 24.238 | BR | | 7 | Conducted Spurious Emission | 24.238 | BR | | 8 | Peak-to-Average Power Ratio | 24.232 | BR | #### **WCDMA Band V** | Items | Test Name | Clause in FCC rules | Verdict | |-------|-----------------------------|---------------------|---------| | 1 | Output Power | 22.913 | Р | | 2 | Emission Limit | 2.1051/22.917 | BR | | 3 | Frequency Stability | 2.1055 | BR | | 4 | Occupied Bandwidth | 2.1049 | BR | | 5 | Emission Bandwidth | 22.917 | BR | | 6 | Band Edge Compliance | 22.917 | BR | | 7 | Conducted Spurious Emission | 22.917 | BR | # **WCDMA Band IV** | Items | Test Name | Clause in FCC rules | Verdict | |-------|-----------------------------|---------------------|---------| | 1 | Output Power | 27.50 | Р | | 2 | Emission Limit | 2.1051/27.53 | BR | | 3 | Frequency Stability | 2.1055 | BR | | 4 | Occupied Bandwidth | 2.1049 | BR | | 5 | Emission Bandwidth | 27.53 | BR | | 6 | Band Edge Compliance | 27.53 | BR | | 7 | Conducted Spurious Emission | 27.53 | BR | | 8 | Peak-to-Average Power Ratio | 27.50 | BR | #### Terms used in Verdict column | Р | Pass. The EUT complies with the essential requirements in the standard. | | |----|---|--| | NP | Not Performed. The test was not performed by CTTL. | | | NA | Not Applicable. The test was not applicable. | | | BR | Re-use test data from basic model report. | | | F | Fail. The EUT does not comply with the essential requirements in the | | | | standard. | | All the test results are based on normal power. #### Explanation of worst-case configuration The worst-case scenario for all measurements is based on the conducted output power measurement investigation results. Output power was measured on QPSK and 16QAM modulations. It was found that QPSK was the worst case. All testing was performed using QPSK modulations to represent the worst case unless otherwise stated. The test results shown in the following sections represent the worst case emission. The Equipment Under Test (EUT) model T607DL, T403V, T403M (FCC ID: 2ACCJH167) is a variant product of T430W (FCC ID: 2ACCJH167), according to the declaration of changes provided by the applicant and FCC KDB publication 178919 D01, spot check measurements were performed on this device, other test results are derived from test report No.I22Z61676-WMD02. Please refer Annex A for detail spot check verification data and reference data. The spot check test results are consistent with basic model. For detail differences between two models please refer the Declaration of Changes document. # 7. Test Equipment Utilized | Description | Туре | Series Number | Manufacture | Cal Due
Date | Calibration
Interval | |--|------------
---------------|--------------|-----------------|-------------------------| | Universal Radio
Communication
Tester | CMU200 | 108646 | R&S | 2023-01-17 | 25 months | | Spectrum
Analyzer | FSU | 200030 | R&S | 2023-05-25 | 1 year | | Climate chamber | SH-242 | 93008556 | ESPEC | 2023-12-23 | 3 years | | Wireless Communication Test Set | E5515E | MY53211012 | Agilent | 2023-08-02 | 1 year | | Test Receiver | E4440A | MY48250642 | Agilent | 2023-03-10 | 1 year | | Universal Radio
Communication
Tester | CMW500 | 143008 | R&S | 2022-12-01 | 1 year | | EMI Antenna | VULB9163 | 9163-482 | Schwarzbeck | 2022-11-16 | 1 year | | Signal Generator | SMF100A | 101295 | R&S | 2022-12-23 | 1 year | | EMI Antenna | LB-7180-NF | J203001300005 | A-INFO | 2023-02-23 | 1 year | | EMI Antenna | 3117 | 00058889 | ETS-Lindgren | 2022-11-07 | 1 year | # **Annex A: Measurement Results** #### **A.1 Output Power** #### A.1.1 Summary During the process of testing, the EUT was controlled via communication tester to ensure max power transmission and proper modulation. In all cases, output power is within the specified limits. #### A.1.2 Conducted #### A.1.2.1 Method of Measurements The EUT was set up for the max output power with pseudo random data modulation. These measurements were done at 3 frequencies (bottom, middle and top of operational frequency range) for each bandwidth. The results below include a correction factor for cable loss that is provided by the customer. #### A.1.2.2 Measurement Result #### **Spot Check Measurement Results:** #### **WCDMA Band II** #### **QPSK** | | СН | Frequency (MHz) | output power (dBm) | |-----------|------|-----------------|--------------------| | WCDMA | 9262 | 1852.4 | 24.11 | | (Band II) | 9400 | 1880.0 | 24.21 | | | 9538 | 1907.6 | 24.17 | #### 16QAM | | CH | Frequency (MHz) | output power (dBm) | |-----------|------|-----------------|--------------------| | WCDMA | 9262 | 1852.4 | 21.96 | | (Band II) | 9400 | 1880.0 | 21.83 | | | 9538 | 1907.6 | 21.98 | #### **WCDMA Band V** #### **QPSK** | | CH | Frequency (MHz) | output power (dBm) | |----------|------|-----------------|--------------------| | WCDMA | 4132 | 826.4 | 24.03 | | (Band V) | 4183 | 836.6 | 23.85 | | | 4233 | 846.6 | 24.06 | | | СН | Frequency (MHz) | output power (dBm) | |----------|------|-----------------|--------------------| | WCDMA | 4132 | 826.4 | 21.62 | | (Band V) | 4183 | 836.6 | 21.65 | | | 4233 | 846.6 | 21.91 | # WCDMA Band IV QPSK | | СН | Frequency (MHz) | output power (dBm) | |-----------|------|-----------------|--------------------| | WCDMA | 1312 | 1712.4 | 23.52 | | (Band IV) | 1412 | 1732.4 | 24.29 | | | 1513 | 1752.6 | 24.33 | | | СН | Frequency (MHz) | output power (dBm) | |-----------|------|-----------------|--------------------| | WCDMA | 1312 | 1712.4 | 21.54 | | (Band IV) | 1412 | 1732.4 | 21.80 | | | 1513 | 1752.6 | 22.08 | # Reference Measurement Results from basic model: WCDMA Band II #### QPSK | | СН | Frequency (MHz) | output power (dBm) | |-----------|------|-----------------|--------------------| | WCDMA | 9262 | 1852.4 | 24.18 | | (Band II) | 9400 | 1880.0 | 24.33 | | | 9538 | 1907.6 | 24.26 | #### **16QAM** | | СН | Frequency (MHz) | output power (dBm) | |-----------|------|-----------------|--------------------| | WCDMA | 9262 | 1852.4 | 22.98 | | (Band II) | 9400 | 1880.0 | 23.01 | | | 9538 | 1907.6 | 23.10 | #### **WCDMA Band V** #### QPSK | | СН | Frequency (MHz) | output power (dBm) | |----------|------|-----------------|--------------------| | WCDMA | 4132 | 826.4 | 23.81 | | (Band V) | 4183 | 836.6 | 23.75 | | | 4233 | 846.6 | 23.77 | #### 16QAM | | СН | Frequency (MHz) | output power (dBm) | |----------|------|-----------------|--------------------| | WCDMA | 4132 | 826.4 | 22.78 | | (Band V) | 4183 | 836.6 | 22.67 | | | 4233 | 846.6 | 22.65 | # **WCDMA Band IV** #### QPSK | | СН | Frequency (MHz) | output power (dBm) | |-----------|------|-----------------|--------------------| | WCDMA | 1312 | 1712.4 | 24.15 | | (Band IV) | 1412 | 1732.4 | 24.11 | | | 1513 | 1752.6 | 24.10 | | | СН | Frequency (MHz) | output power (dBm) | |-----------|------|-----------------|--------------------| | WCDMA | 1312 | 1712.4 | 23.10 | | (Band IV) | 1412 | 1732.4 | 22.99 | | | 1513 | 1752.6 | 23.08 | #### A.1.3 Radiated #### A.1.3.1 Description This is the test for the maximum radiated power from the EUT. Part 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts". Part 24.232(c) specifies "Mobile and portable stations are limited to 2 watts EIRP". Part 27.50(d) specifies "Fixed, mobile, and portable (handheld) stations operating in the 1710–1755 MHz band and mobile and portable stations operating in the 1695–1710 MHz and 1755–1780 MHz bands are limited to 1 watt EIRP". #### A.1.3.2 Method of Measurement According to KDB 412172 D01 and ANSI C63.26 the relevant equation for determining the maximum ERP or EIRP from the measured RF output power is given in Equation as follows: ERP or EIRP = P_T + G_T – L_C , ERP = EIRP -2.15, where ERP or EIRP effective radiated power or equivalent isotropically radiated power, respectively (expressed in the same units as P_{Mea} , e.g., dBm or dBW) P_T = transmitter output power in dBm; G_T = gain of the transimitting antenna, in dBd(ERP) or dBi(EIRP); 1. L_C = signal attenuation in the connecting cable between the transmitter and antenna, in dB. The antenna gain provided by the client may affect the validity of the measurement results in this report, and the client shall bear the impact and consequences arising therefrom. # **Spot Check Measurement Results:** #### **WCDMA Band II-EIRP** #### Limits | | Burst Peak EIRP (dBm) | |---------------|-----------------------| | WCDMA Band II | ≤33dBm | #### Measurement result- #### QPSK | | СН | Frequency
(MHz) | Output power Conducted | Output power Radiated(dBm) | |---------|------|--------------------|------------------------|--| | WCDMA | 9262 | 1852.4 | (dBm)
24.11 | (G _T – L _C = -1.54)
22.57 | | Band II | 9400 | 1880.0 | 24.11 | 22.57 | | | 9538 | 1907.6 | 24.17 | 22.63 | #### 16QAM | | СН | Frequency | Output power Conducted | Output power Radiated(dBm) | |---------|------|-----------|------------------------|----------------------------| | WCDMA | СП | (MHz) | (dBm) | $(G_T - L_C = -1.54)$ | | | 9262 | 1852.4 | 21.96 | 20.42 | | Band II | 9400 | 1880.0 | 21.83 | 20.29 | | | 9538 | 1907.6 | 21.98 | 20.44 | #### **WCDMA Band V-ERP** #### Limits | | Burst Peak ERP (dBm) | |--------------|----------------------| | WCDMA Band V | ≤38.45dBm | #### Measurement result- #### QPSK | | СН | Frequency | Output power Conducted | Output power Radiated(dBm) | |-----------------|------|-----------|------------------------|----------------------------| | MCDMA | СП | (MHz) | (dBm) | $(G_T - L_C = -3.49)$ | | WCDMA
Band V | 4132 | 826.4 | 24.03 | 18.39 | | Dallu V | 4183 | 836.6 | 23.85 | 18.21 | | | 4233 | 846.6 | 24.06 | 18.42 | | | СН | Frequency | Output power Conducted | Output power Radiated(dBm) | |------------------|------|-----------|------------------------|----------------------------| | MCDMA | СП | (MHz) | (dBm) | $(G_T - L_C = -3.49)$ | | WCDMA
Band II | 4132 | 826.4 | 21.62 | 15.98 | | Danu II | 4183 | 836.6 | 21.65 | 16.01 | | | 4233 | 846.6 | 21.91 | 16.27 | # **WCDMA Band IV-EIRP** #### Limits | | Burst Peak EIRP (dBm) | |---------------|-----------------------| | WCDMA Band IV | ≤30dBm | # **WCDMA Band IV** # QPSK | | СН | Fraguency (MHz) | output power (dBm) | EIRP(dBm) | |-----------|------|-----------------|----------------------|-----------------------| | MACONAA | СП | Frequency (MHz) | output power (dbiii) | $(G_T - L_C = -2.26)$ | | WCDMA | 1312 | 1712.4 | 23.52 | 21.26 | | (Band IV) | 1412 | 1732.4 | 24.29 | 22.03 | | | 1513 | 1752.6 | 24.33 | 22.07 | # **QPSK** | | СП | Fraguency (MHz) | output nower (dPm) | EIRP(dBm) | |-----------|------|-----------------|--------------------|-----------------------| | VAVODAAA | CH | Frequency (MHz) | output power (dBm) | $(G_T - L_C = -2.26)$ | | WCDMA | 1312 | 1712.4 | 21.54 | 19.28 | | (Band IV) | 1412 | 1732.4 | 21.80 | 19.54 | | | 1513 | 1752.6 | 22.08 | 19.82 | # Reference Measurement Results from basic model: WCDMA Band II-EIRP #### Limits | | Burst Peak EIRP (dBm) | |---------------|-----------------------| | WCDMA Band II | ≤33dBm | #### Measurement result- #### **QPSK** | WCDMA Band II | СН | Frequency | Output power Conducted | Output power Radiated(dBm) | |---------------|------|-----------|------------------------|----------------------------| | | | (MHz) | (dBm) | $(G_T - L_C = -1.54)$ | | | 9262 | 1852.4 | 24.18 | 22.64 | | | 9400 | 1880.0 | 24.33 | 22.79 | | | 9538 | 1907.6 | 24.26 | 22.72 | #### 16QAM | | СН | Frequency | Output power Conducted | Output power Radiated(dBm) | |---------|------|-----------|------------------------|----------------------------| | WCDMA | СП | (MHz) | (dBm) | $(G_T - L_C = -1.54)$ | | | 9262 | 1852.4 | 22.98 | 21.44 | | Band II | 9400 | 1880.0 | 23.01 | 21.47 | | | 9538 | 1907.6 | 23.10 | 21.56 | #### **WCDMA Band V-ERP** #### Limits | | Burst Peak ERP (dBm) | |--------------|----------------------| | WCDMA Band V | ≤38.45dBm | #### Measurement result- #### QPSK | | СН | Frequency | Output power Conducted | Output power Radiated(dBm) | |-----------------|------|-----------|------------------------|----------------------------| | MCDMA | СП | (MHz) | (dBm) | $(G_T - L_C = -3.49)$ | | WCDMA
Band V | 4132 | 826.4 | 23.81 | 18.17 | | Dallu V | 4183 | 836.6 | 23.75 | 18.11 | | | 4233 | 846.6 | 23.77 | 18.13 | | | СН | Frequency | Output power Conducted | Output power Radiated(dBm) | |------------------|------|-----------|------------------------|----------------------------| | MCDMA | СП | (MHz) | (dBm) | $(G_T - L_C = -3.49)$ | | WCDMA
Band II | 4132 | 826.4 | 22.78 | 17.14 |
 Dallu II | 4183 | 836.6 | 22.67 | 17.03 | | | 4233 | 846.6 | 22.65 | 17.01 | #### **WCDMA Band IV-EIRP** #### Limits | | Burst Peak EIRP (dBm) | |---------------|-----------------------| | WCDMA Band IV | ≤30dBm | #### **WCDMA Band IV** # **QPSK** | | СН | Fraguency (MHz) | output nower (dPm) | EIRP(dBm) | |-----------|----------|-----------------|--------------------|-----------------------| | MCDMA | Cii iieq | Frequency (MHz) | output power (dBm) | $(G_T - L_C = -2.26)$ | | WCDMA | 1312 | 1712.4 | 24.15 | 21.89 | | (Band IV) | 1412 | 1732.4 | 24.11 | 21.85 | | | 1513 | 1752.6 | 24.10 | 21.84 | #### **QPSK** | | СН | Fragueray (MIII-) | autout navyar (dDm) | EIRP(dBm) | |-----------|----------|-------------------|---------------------|-----------------------| | \A/CD\AA | OII ITEC | Frequency (MHz) | output power (dBm) | $(G_T - L_C = -2.26)$ | | WCDMA | 1312 | 1712.4 | 23.10 | 20.84 | | (Band IV) | 1412 | 1732.4 | 22.99 | 20.73 | | | 1513 | 1752.6 | 23.08 | 20.82 | Note: Expanded measurement uncertainty is U = 0.578 dB, k = 2. #### **A.2 Emission Limit** #### A.2.1 Measurement Method The measurements procedures in TIA-603E-2016 are used. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set as outlined in Part 24.238, Part 22.917, Part 27.53. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of WCDMA Band II, WCDMA Band V and WCDMA Band IV. #### The procedure of radiated spurious emissions is as follows: 1. EUT was placed on a 1.5-meter-high non-conductive stand at a 3-meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector. - 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr). - 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below. In the chamber, a substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. 4. The Path loss (P_{pl}) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain (G_a) should be recorded after test. A amplifier should be connected in for the test. The Path loss (Ppl) is the summation of the cable loss and the gain of the amplifier. The measurement results are obtained as described below: Power (EIRP) = $P_{Mea} - P_{pl} - G_a$ - 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power. - 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP 2.15dBi. #### A.2.2 Measurement Limit Part 22.917, Part 24.238 and Part 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB. #### A.2.3 Measurement Results Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of WCDMA Band II (1852.4 MHz, 1880.0MHz and 1907.6MHz), WCDMA Band V (826.4MHz, 836.6MHz and 846.6MHz) and WCDMA Band IV (1712.4MHz, 1732.4MHz and 1752.6MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the WCDMA Band II, WCDMA Band V and WCDMA Band IV into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this. #### A.2.4 Measurement Results Table | Frequency | Channel | Frequency Range | Result | |---------------|---------|-----------------|--------| | | Low | 30MHz-10GHz | Pass | | WCDMA Band V | Middle | 30MHz-10GHz | Pass | | | High | 30MHz-10GHz | Pass | | | Low | 30MHz-20GHz | Pass | | WCDMA Band II | Middle | 30MHz-20GHz | Pass | | | High | 30MHz-20GHz | Pass | | | Low | 30MHz-20GHz | Pass | | WCDMA Band IV | Middle | 30MHz-20GHz | Pass | | | High | 30MHz-20GHz | Pass | # A.2.5 Sweep Table | A.Z.3 Sweep Table | | | | | |----------------------|----------------|--------|--------|----------------| | Working
Frequency | Subrange (GHz) | RBW | VBW | Sweep time (s) | | | 0.03~1 | 100kHz | 300kHz | 10 | | | 1-2 | 1 MHz | 3 MHz | 2 | | WCDMA Band V | 2~5 | 1 MHz | 3 MHz | 3 | | | 5~8 | 1 MHz | 3 MHz | 3 | | | 8~10 | 1 MHz | 3 MHz | 3 | | | 0.03~1 | 100kHz | 300kHz | 10 | | | 1-2 | 1 MHz | 3 MHz | 2 | | | 2~5 | 1 MHz | 3 MHz | 3 | | MCDMA Bond II | 5~8 | 1 MHz | 3 MHz | 3 | | WCDMA Band II | 8~11 | 1 MHz | 3 MHz | 3 | | | 11~14 | 1 MHz | 3 MHz | 3 | | | 14~18 | 1 MHz | 3 MHz | 3 | | | 18~20 | 1 MHz | 3 MHz | 2 | | | 0.03~1 | 100kHz | 300kHz | 10 | | | 1-2 | 1 MHz | 3 MHz | 2 | | | 2~5 | 1 MHz | 3 MHz | 3 | | MCDMA Bond W | 5~8 | 1 MHz | 3 MHz | 3 | | WCDMA Band IV | 8~11 | 1 MHz | 3 MHz | 3 | | | 11~14 | 1 MHz | 3 MHz | 3 | | | 14~18 | 1 MHz | 3 MHz | 3 | | | 18~20 | 1 MHz | 3 MHz | 2 | #### WCDMA BAND II Mode Channel 9262/1852.4MHz | Frequency
(MHz) | P _{Mea}
(dBm) | Path
Loss
(dB) | Antenna
Gain(dBi) | Peak
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|----------------------|----------------------|-----------------------|----------------|----------------|--------------| | 3706.02 | -59.84 | 6.41 | 8.49 | -57.76 | -13.00 | 44.76 | Н | | 5567.02 | -59.03 | 7.20 | 10.59 | -55.64 | -13.00 | 42.64 | V | | 7393.01 | -53.83 | 8.12 | 12.07 | -49.88 | -13.00 | 36.88 | V | | 9269.01 | -45.07 | 9.08 | 13.26 | -40.89 | -13.00 | 27.89 | Н | | 11107.01 | -50.34 | 9.81 | 13.18 | -46.97 | -13.00 | 33.97 | V | | 12966.01 | -46.72 | 10.48 | 13.48 | -43.72 | -13.00 | 30.72 | Н | #### WCDMA BAND II Mode Channel 9400/1880MHz | Frequency
(MHz) | P _{Mea}
(dBm) | Path
Loss
(dB) | Antenna
Gain(dBi) | Peak
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|----------------------|----------------------|-----------------------|----------------|----------------|--------------| | 3758.02 | -58.55 | 6.27 | 8.56 | -56.26 | -13.00 | 43.26 | V | | 5617.02 | -58.10 | 7.25 | 10.58 | -54.77 | -13.00 | 41.77 | Н | | 7536.01 | -53.10 | 8.24 | 12.23 | -49.11 | -13.00 | 36.11 | V | | 9405.01 | -46.40 | 9.06 | 13.34 | -42.12 | -13.00 | 29.12 | Н | | 11258.01 | -49.82 | 9.75 | 13.15 | -46.42 | -13.00 | 33.42 | V | | 13149.01 | -43.66 | 10.72 | 13.71 | -40.67 | -13.00 | 27.67 | V | # WCDMA BAND II Mode Channel 9538/1907.6MHz | Frequency
(MHz) | P _{Mea}
(dBm) | Path
Loss
(dB) | Antenna
Gain(dBi) | Peak
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|----------------------|----------------------|-----------------------|----------------|----------------|--------------| | 3843.02 | -61.06 | 6.07 | 8.68 | -58.45 | -13.00 | 45.45 | Н | | 5736.02 | -58.60 | 7.28 | 10.55 | -55.33 | -13.00 | 42.33 | V | | 7617.01 | -54.72 | 8.05 | 12.29 | -50.48 | -13.00 | 37.48 | V | | 9536.01 | -52.01 | 9.41 | 13.36 | -48.06 | -13.00 | 35.06 | Н | | 11478.01 | -48.65 | 9.87 | 13.10 | -45.42 | -13.00 | 32.42 | V | | 13377.01 | -44.35 | 10.57 | 14.03 | -40.89 | -13.00 | 27.89 | Н | #### WCDMA BAND V Mode Channel 4132/826.4MHz | Frequency
(MHz) | P _{Mea} (dBm) | Path
Loss(dB) | Antenna
Gain(dBi) | Correction (dB) | Peak
ERP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|------------------------|------------------|----------------------|-----------------|----------------------|----------------|----------------|--------------| | 1635.01 | -54.75 | 3.55 | 5.26 | 2.15 | -55.19 | -13.00 | 42.19 | Н | | 2480.00 | -47.12 | 4.60 | 6.04 | 2.15 | -47.83 | -13.00 | 34.83 | Н | | 3281.02 | -60.87 | 5.28 | 7.67 | 2.15 | -60.63 | -13.00 | 47.63 | Н | | 4136.02 | -56.00 | 6.06 | 9.04 | 2.15 | -55.17 | -13.00 | 42.17 | V | | 4940.01 | -57.27 | 6.71 | 9.84 | 2.15 | -56.29 | -13.00 | 43.29 | V | | 5759.01 | -56.35 | 7.25 | 10.55 | 2.15 | -55.20 | -13.00 | 42.20 | Н | #### WCDMA BAND V Mode Channel 4183/836.6MHz | Frequency
(MHz) | P _{Mea}
(dBm) | Path
Loss(dB) | Antenna
Gain(dBi) | Correction (dB) | Peak
ERP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|------------------|----------------------|-----------------|----------------------|----------------|----------------|--------------| | 1679.01 | -54.58 | 3.59 | 5.18 | 2.15 | -55.14 | -13.00 | 42.14 | Н | | 2501.00 | -46.37 | 4.63 | 6.10 | 2.15 | -47.05 | -13.00 | 34.05 | Н | | 3355.02 | -60.05 | 5.32 | 7.85 | 2.15 |
-59.67 | -13.00 | 46.67 | V | | 4181.02 | -57.44 | 6.16 | 9.08 | 2.15 | -56.67 | -13.00 | 43.67 | V | | 5031.01 | -57.69 | 6.58 | 9.94 | 2.15 | -56.48 | -13.00 | 43.48 | Н | | 5845.01 | -56.82 | 7.22 | 10.53 | 2.15 | -55.66 | -13.00 | 42.66 | V | #### WCDMA BAND V Mode Channel 4233/846.6MHz | Frequency
(MHz) | P _{Mea}
(dBm) | Path
Loss(dB) | Antenna
Gain(dBi) | Correction (dB) | Peak
ERP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|------------------|----------------------|-----------------|----------------------|----------------|----------------|--------------| | 1680.01 | -54.82 | 3.59 | 5.18 | 2.15 | -55.38 | -13.00 | 42.38 | V | | 2564.00 | -46.28 | 4.68 | 6.22 | 2.15 | -46.89 | -13.00 | 33.89 | Н | | 3381.02 | -61.09 | 5.35 | 7.91 | 2.15 | -60.68 | -13.00 | 47.68 | V | | 4239.02 | -57.12 | 6.25 | 9.14 | 2.15 | -56.38 | -13.00 | 43.38 | Н | | 5100.01 | -56.66 | 6.77 | 10.04 | 2.15 | -55.54 | -13.00 | 42.54 | Н | | 5924.01 | -56.46 | 7.47 | 10.52 | 2.15 | -55.56 | -13.00 | 42.56 | V | #### WCDMA BAND IV Mode Channel 1312/1712.4MHz | Frequency
(MHz) | P _{Mea}
(dBm) | Path
Loss(dB) | Antenna
Gain(dBi) | Peak
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|------------------|----------------------|-----------------------|----------------|----------------|--------------| | 3423.02 | -70.81 | 5.38 | 8.02 | -68.17 | -13.00 | 55.17 | V | | 5137.02 | -69.26 | 6.86 | 10.09 | -66.03 | -13.00 | 53.03 | Н | | 6846.01 | -64.67 | 7.83 | 11.42 | -61.08 | -13.00 | 48.08 | V | | 8571.01 | -64.00 | 8.54 | 13.01 | -59.53 | -13.00 | 46.53 | V | | 10291.01 | -61.77 | 9.61 | 13.02 | -58.36 | -13.00 | 45.36 | V | | 11997.01 | -58.63 | 10.07 | 13.00 | -55.70 | -13.00 | 42.70 | V | #### WCDMA BAND IV Mode Channel 1412/1732.4MHz | Frequency
(MHz) | P _{Mea}
(dBm) | Path
Loss(dB) | Antenna
Gain(dBi) | Peak
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|------------------|----------------------|-----------------------|----------------|----------------|--------------| | 3467.02 | -71.44 | 5.46 | 8.12 | -68.78 | -13.00 | 55.78 | Н | | 5200.02 | -70.25 | 6.96 | 10.18 | -67.03 | -13.00 | 54.03 | Н | | 6979.01 | -64.94 | 8.14 | 11.57 | -61.51 | -13.00 | 48.51 | V | | 8718.01 | -64.39 | 8.41 | 13.04 | -59.76 | -13.00 | 46.76 | V | | 10459.01 | -60.79 | 9.71 | 13.08 | -57.42 | -13.00 | 44.42 | V | | 12173.01 | -59.09 | 10.14 | 13.07 | -56.16 | -13.00 | 43.16 | V | #### WCDMA BAND IV Mode Channel 1513/1752.6MHz | Frequency
(MHz) | P _{Mea}
(dBm) | Path
Loss(dB) | Antenna
Gain(dBi) | Peak
EIRP
(dBm) | Limit
(dBm) | Margin
(dB) | Polarization | |--------------------|---------------------------|------------------|----------------------|-----------------------|----------------|----------------|--------------| | 3507.02 | -70.46 | 5.53 | 8.21 | -67.78 | -13.00 | 54.78 | Н | | 5265.02 | -70.54 | 6.99 | 10.27 | -67.26 | -13.00 | 54.26 | V | | 6999.01 | -64.53 | 8.29 | 11.60 | -61.22 | -13.00 | 48.22 | V | | 8745.01 | -63.65 | 8.49 | 13.05 | -59.09 | -13.00 | 46.09 | V | | 10502.01 | -61.44 | 9.64 | 13.10 | -57.98 | -13.00 | 44.98 | V | | 12249.01 | -58.85 | 10.03 | 13.10 | -55.78 | -13.00 | 42.78 | V | Note1: Expanded measurement uncertainty is U = 5.16 dB, k = 2. Note2: The measurement results showed here are worst cases. # **A.3 Frequency Stability** #### A.3.1 Method of Measurement Frequency stability is a measure of the frequency drift due to temperature and supply voltage variations, with reference to the frequency measured at +20 °C and rated supply voltage. Two reference points are established at the applicable unwanted emissions limit using a RBW equal to the RBW required by the unwanted emissions specification of the applicable regulatory standard. These reference points measured using the lowest and highest channel of operation shall be identified as F_L and F_H respectively. In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of CMU200. - 1. Measure the carrier frequency at room temperature. - 2. Subject the EUT to overnight soak at -30 ℃. - 3. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on mid channel of each band, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming. - 4. Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements. - 5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before continuing. - 6. Subject the EUT to overnight soak at +50°C. - 7. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming. - 8. Repeat the above measurements at 10° C decrements from +50 $^{\circ}$ C to -30 $^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements. - 9. At all temperature levels hold the temperature to +/- 0.5 °C during the measurement procedure. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of the lower, higher and nominal voltage. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. # A.3.2 Measurement results WCDMA Band II QPSK # **Frequency Error vs Temperature** | Temperature(°ℂ) | Voltage(V) | F _L (MHz) | F _H (MHz) | Offset(Hz) | Frequency error(ppm) | |-----------------|------------|----------------------|----------------------|-------------|-------------------------| | 20 | | | | Olisel(112) | r requericy error(ppin) | | 50 | | | | 4.85 | 0.0026 | | 40 | | | | 4.43 | 0.0024 | | 30 | | | | 8.01 | 0.0043 | | 10 | 3.85 | 1850.120 | 1909.880 | 0.95 | 0.0005 | | 0 | | | | 7.92 | 0.0042 | | -10 | | | | 1.57 | 0.0008 | | -20 | | | | 6.20 | 0.0033 | | -30 | | | | 7.23 | 0.0038 | # Frequency Error vs Voltage | Voltage(V) | Temperature(℃) | F _L (MHz) | F _H (MHz) | Offset(Hz) | Frequency error(ppm) | |------------|----------------|----------------------|----------------------|------------|----------------------| | 3.5 | 20 | 1050 100 | 1000 000 | 0.81 | 0.0004 | | 4.4 | 20 | 1850.120 | 1909.880 | 7.52 | 0.0040 | #### **WCDMA Band V QPSK** # **Frequency Error vs Temperature** | <u>'</u> | • | | | | | |-----------------|------------|----------------------|----------------------|------------|----------------------| | Temperature(°ℂ) | Voltage(V) | F _L (MHz) | F _H (MHz) | Offset(Hz) | Fraguency error(npm) | | 20 | | | | Olisel(HZ) | Frequency error(ppm) | | 50 | | | | 0.84 | 0.0010 | | 40 | | | | 5.10 | 0.0061 | | 30 | 3.85 | 824.120 | 848.872 | 5.46 | 0.0065 | | 10 | | | | -1.86 | 0.0022 | | 0 | | | | 0.61 | 0.0007 | | -10 | | | | 10.88 | 0.0130 | | -20 | | | | 1.89 | 0.0023 | | -30 | | | | 7.40 | 0.0088 | #### **Frequency Error vs Voltage** | Voltage(V) | Temperature(℃) | F _L (MHz) | F _H (MHz) | Offset(Hz) | Frequency error(ppm) | |------------|----------------|----------------------|----------------------|------------|----------------------| | 3.5 | 20 | 924 120 | 040 070 | 3.89 | 0.0046 | | 4.4 | 20 | 824.120 | 848.872 | -2.40 | 0.0029 | #### **WCDMA Band IV QPSK** # **Frequency Error vs Temperature** | Temperature(°ℂ) | Voltage(V) | F _L (MHz) | F _H (MHz) | Offoot/Uz) | Fraguanov arrar/nam) | |-----------------|------------|----------------------|----------------------|------------|----------------------| | 20 | | | | Offset(Hz) | Frequency error(ppm) | | 50 | | | | 7.58 | 0.0044 | | 40 | | | | 5.94 | 0.0034 | | 30 | | | | 9.05 | 0.0052 | | 10 | 3.85 | 1710.120 | 1754.896 | 0.15 | 0.0001 | | 0 | | | | 1.36 | 0.0008 | | -10 | | | | 3.01 | 0.0017 | | -20 | | | | 4.64 | 0.0027 | | -30 | | | | 2.85 | 0.0016 | # Frequency Error vs Voltage | Voltage(V) | Temperature(°ℂ) | F _L (MHz) | F _H (MHz) | Offset(Hz) | Frequency error(ppm) | |------------|-----------------|----------------------|----------------------|------------|----------------------| | 3.5 | 20 | 1710 120 | 1754 006 | 5.60 | 0.0032 | | 4.4 | 20 | 1710.120 | 1754.896 | 5.86 | 0.0034 | Note: Expanded measurement uncertainty is U = 0.01 PPM, k = 2. # A.4 Occupied Bandwidth Occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequency. The table below lists the measured 99% BW. Spectrum analyzer plots are included on the following pages. The measurement method is from ANSI C63.26: - a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts. - b) The nominal IF filter 3 dB bandwidth (RBW) shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be set \geq 3 × RBW. - c) Set the reference level of the instrument
as required to prevent the signal amplitude from exceeding the maximum spectrum analyzer input mixer level for linear operation. - d) Set the detection mode to peak, and the trace mode to max-hold. # WCDMA Band II (99%)-QPSK | Frequency (MHz) | Occupied Bandwidth (99%)(kHz) | |-----------------|-------------------------------| | 1852.4 | 4198.72 | | 1880.0 | 4182.69 | | 1907.6 | 4198.72 | # WCDMA Band II (99%) # Channel 9262-Occupied Bandwidth (99% BW) Date: 2.SEP.2022 12:18:40 # Channel 9400-Occupied Bandwidth (99% BW) Date: 2.SEP.2022 12:19:08 # Channel 9538-Occupied Bandwidth (99% BW) Date: 2.SEP.2022 12:19:35 # WCDMA Band II (99%)-16QAM | Frequency (MHz) | Occupied Bandwidth (99%)(kHz) | | | |-----------------|-------------------------------|--|--| | 1852.4 | 4166.67 | | | | 1880.0 | 4182.69 | | | | 1907.6 | 4182.69 | | | # WCDMA Band II (99%) # Channel 9262-Occupied Bandwidth (99% BW) Date: 2.SEP.2022 12:40:13 # Channel 9400-Occupied Bandwidth (99% BW) Date: 2.SEP.2022 12:40:41 # Channel 9538-Occupied Bandwidth (99% BW) Date: 2.SEP.2022 12:41:08 # WCDMA Band V (99%)-QPSK | Frequency (MHz) | Occupied Bandwidth (99%)(kHz) | | | |-----------------|-------------------------------|--|--| | 826.4 | 4182.69 | | | | 836.6 | 4182.69 | | | | 846.6 | 4182.69 | | | # WCDMA Band V (99%) # Channel 4132-Occupied Bandwidth (99% BW) Date: 2.SEP.2022 14:43:00 # Channel 4183-Occupied Bandwidth (99% BW) Date: 2.SEP.2022 14:43:28 # Channel 4233-Occupied Bandwidth (99% BW) Date: 2.SEP.2022 14:43:55 ### WCDMA Band V (99%)-16QAM | Frequency (MHz) | Occupied Bandwidth (99%)(kHz) | |-----------------|-------------------------------| | 826.4 | 4182.69 | | 836.6 | 4150.64 | | 846.6 | 4166.67 | ### WCDMA Band V (99%) ### Channel 4132-Occupied Bandwidth (99% BW) Date: 2.SEP.2022 14:54:22 ### Channel 4183-Occupied Bandwidth (99% BW) Date: 2.SEP.2022 14:54:50 ### Channel 4233-Occupied Bandwidth (99% BW) Date: 2.SEP.2022 14:55:17 ### WCDMA Band IV (99%)-QPSK | Frequency (MHz) | Occupied Bandwidth (99%)(kHz) | |-----------------|-------------------------------| | 1712.4 | 4198.72 | | 1732.4 | 4198.72 | | 1752.6 | 4198.72 | ### WCDMA Band IV (99%) ### Channel 1312-Occupied Bandwidth (99% BW) Date: 2.SEP.2022 12:20:40 ### Channel 1412-Occupied Bandwidth (99% BW) Date: 2.SEP.2022 12:21:08 ### Channel 1513-Occupied Bandwidth (99% BW) Date: 2.SEP.2022 12:21:35 ### WCDMA Band IV (99%)-16QAM | Frequency (MHz) | Occupied Bandwidth (99%)(kHz) | |-----------------|-------------------------------| | 1712.4 | 4166.67 | | 1732.4 | 4182.69 | | 1752.6 | 4166.67 | ### WCDMA Band IV (99%) ### Channel 1312-Occupied Bandwidth (99% BW) Date: 2.SEP.2022 12:42:30 ### Channel 1412-Occupied Bandwidth (99% BW) Date: 2.SEP.2022 12:42:58 ### Channel 1513-Occupied Bandwidth (99% BW) Date: 2.SEP.2022 12:43:25 Note: Expanded measurement uncertainty is U = 3428 Hz, k = 2. ### **A.5 Emission Bandwidth** The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. The measurement method is from ANSI C63.26: - a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be wide enough to see sufficient roll off of the signal to make the measurement. - b) The nominal RBW shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be set \geq 3 × RBW. - c) Set the reference level of the instrument as required to prevent the signal amplitude from exceeding the maximum spectrum analyzer input mixer level for linear operation. - d) The dynamic range of the spectrum analyzer at the selected RBW shall be more than 10 dB below the target "−X dB" requirement, i.e., if the requirement calls for measuring the −26 dB OBW, the spectrum analyzer noise floor at the selected RBW shall be at least 36 dB below the reference level. - e) Set spectrum analyzer detection mode to peak, and the trace mode to max hold. ### WCDMA Band II-QPSK (-26dBc) | Frequency (MHz) | Emission Bandwidth (-26dBc)(kHz) | |-----------------|----------------------------------| | 1852.4 | 4711.54 | | 1880.0 | 4711.54 | | 1907.6 | 4679.49 | ### WCDMA Band II (-26dBc) ### Channel 9262-Emission Bandwidth (-26dBc BW) Date: 2.SEP.2022 12:22:52 ### Channel 9400-Emission Bandwidth (-26dBc BW) Date: 2.SEP.2022 12:23:20 ### Channel 9538-Emission Bandwidth (-26dBc BW) Date: 2.SEP.2022 12:23:48 ### WCDMA Band II -16QAM (-26dBc) | Frequency (MHz) | Emission Bandwidth (-26dBc)(kHz) | |-----------------|----------------------------------| | 1852.4 | 4663.46 | | 1880.0 | 4679.49 | | 1907.6 | 4679.49 | ### WCDMA Band II (-26dBc) ### Channel 9262-Emission Bandwidth (-26dBc BW) Date: 2.SEP.2022 12:44:53 ### Channel 9400-Emission Bandwidth (-26dBc BW) Date: 2.SEP.2022 12:45:21 ### Channel 9538-Emission Bandwidth (-26dBc BW) Date: 2.SEP.2022 12:45:49 ### WCDMA Band V-QPSK (-26dBc) | Frequency (MHz) | Emission Bandwidth (-26dBc)(kHz) | |-----------------|----------------------------------| | 826.40 | 4711.54 | | 836.60 | 4743.59 | | 846.60 | 4695.51 | ### WCDMA Band V (-26dBc) ### Channel 4132-Emission Bandwidth (-26dBc BW) Date: 2.SEP.2022 14:45:12 ### Channel 4183-Emission Bandwidth (-26dBc BW) Date: 2.SEP.2022 14:45:40 ### Channel 4233-Emission Bandwidth (-26dBc BW) Date: 2.SEP.2022 14:46:08 ### WCDMA Band V-16QAM (-26dBc) | Frequency (MHz) | Emission Bandwidth (-26dBc)(kHz) | |-----------------|----------------------------------| | 826.40 | 4679.49 | | 836.60 | 4679.49 | | 846.60 | 4647.44 | ### WCDMA Band V (-26dBc) ### Channel 4132-Emission Bandwidth (-26dBc BW) Date: 2.SEP.2022 14:56:45 ### Channel 4183-Emission Bandwidth (-26dBc BW) Date: 2.SEP.2022 14:57:13 ### Channel 4233-Emission Bandwidth (-26dBc BW) Date: 2.SEP.2022 14:57:40 ### WCDMA Band IV-QPSK (-26dBc) | Frequency (MHz) | Emission Bandwidth (-26dBc)(kHz) | |-----------------|----------------------------------| | 1712.4 | 4695.51 | | 1732.4 | 4727.56 | | 1752.6 | 4727.56 | ### WCDMA Band IV (-26dBc) ### Channel 1312-Emission Bandwidth (-26dBc BW) Date: 2.SEP.2022 12:24:53 ### Channel 1412-Emission Bandwidth (-26dBc BW) Date: 2.SEP.2022 12:25:20 ### Channel 1513-Emission Bandwidth (-26dBc BW) Date: 2.SEP.2022 12:25:48 ### WCDMA Band IV-16QAM (-26dBc) | Frequency (MHz) | Emission Bandwidth (-26dBc)(kHz) | |-----------------|----------------------------------| | 1712.4 | 4679.49 | | 1732.4 | 4679.49 | | 1752.6 | 4663.46 | ### WCDMA Band IV (-26dBc) ### Channel 1312-Emission Bandwidth (-26dBc BW) Date: 2.SEP.2022 12:47:11 ### Channel 1412-Emission Bandwidth (-26dBc BW) Date: 2.SEP.2022 12:47:39 ### Channel 1513-Emission Bandwidth (-26dBc BW) Date: 2.SEP.2022 12:48:06 Note: Expanded measurement uncertainty is U = 3428 Hz, k = 2. ### A.6 Band Edge Compliance #### A.6.1 Measurement limit Part 22.917, Part 24.238 and Part 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. According to KDB 971168, a relaxation of the reference bandwidth is often provided for measurements within a specified frequency range at the edge of the authorized frequency block/band. This is often implemented by permitting the use of a narrower RBW (typically limited to a minimum RBW of 1% of the OBW) for measuring the out-of-band emissions without a requirement to integrate the result over the full reference bandwidth. # A.6.2 Measurement result WCDMA Band II-QPSK Channel 9262 Date: 2.SEP.2022 12:26:56 ### Channel 9538 Date: 2.SEP.2022 12:28:12 # WCDMA Band V-QPSK Channel 4132 Date: 2.SEP.2022 14:47:16 #### Channel 4233 Date: 2.SEP.2022 14:48:32 # WCDMA Band IV-QPSK Channel 1312 Date: 2.SEP.2022 12:30:05 #### Channel 1513 Date: 2.SEP.2022 12:31:21 Note: Expanded measurement uncertainty is U = 0.622 dB, k = 2. ### **A.7 Conducted Spurious Emission** #### A.7.1 Measurement Method The following steps outline the procedure used to measure the conducted emissions from the EUT. - 1. In measuring unwanted emissions, the spectrum shall be investigated from 30 MHz or the lowest radio frequency signal generated in the equipment, whichever is lower, without going below 9 kHz, up to at least the frequency given below: - (a) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower. - (b) If the equipment operates at or above 10 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower. - 2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing. - 3. The number of sweep points of spectrum analyzer is greater than 2×span/RBW. #### A. 7.2 Measurement Limit Part 22.917, Part 24.238 and Part 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. #### A.7.3 Measurement result **WCDMA Band II** Channel 9262: 30MHz - 19.10GHz NOTE: peak above the limit line is the carrier frequency. Date: 2.SEP.2022 12:33:38 Channel 9400: 30MHz - 19.10GHz NOTE: peak above the limit line is the carrier frequency. Date: 2.SEP.2022 12:34:09 ### Channel 9538: 30MHz -19.10GHz NOTE: peak above the limit line is the carrier frequency. Date: 2.SEP.2022 12:34:40 #### **WCDMA Band V** Channel 4132: 30MHz -8.49GHz NOTE: peak above the limit line is the carrier frequency. Date: 2.SEP.2022 14:50:50 ### Channel 4183: 30MHz -8.49GHz NOTE: peak above the limit line is the carrier frequency. Date: 2.SEP.2022 14:51:21 ### Channel 4233: 30MHz -8.49GHz NOTE: peak above the limit line is the carrier frequency. Date: 2.SEP.2022 14:51:51 ### **WCDMA Band IV** #### Channel 1312: 30MHz -17.55GHz NOTE: peak above the limit
line is the carrier frequency. Date: 2.SEP.2022 12:35:48 #### **WCDMA Band IV** ### Channel 1412: 30MHz -17.55GHz NOTE: peak above the limit line is the carrier frequency. Date: 2.SEP.2022 12:36:19 #### **WCDMA Band IV** ### Channel 1513: 30MHz -17.55GHz NOTE: peak above the limit line is the carrier frequency. Date: 2.SEP.2022 12:36:50 Note: Expanded measurement uncertainty is U = 0.622 dB, k = 2. ### A.8 Peak-to-Average Power Ratio The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB - a) Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function; - b) Set resolution/measurement bandwidth ≥ signal's occupied bandwidth; - c) Set the number of counts to a value that stabilizes the measured CCDF curve; - d) Record the maximum PAPR level associated with a probability of 0.1%. #### **WCDMA Band II-QPSK** #### Measurement result | CH | Frequency (MHz) | PAPR (dB) | |------|-----------------|-----------| | 9400 | 1880.0 | 3.49 | #### WCDMA Band II-16QAM #### **Measurement result** | CH | Frequency (MHz) | PAPR (dB) | |------|-----------------|-----------| | 9400 | 1880.0 | 4.87 | #### **WCDMA Band IV-QPSK** #### **Measurement result** | CH | Frequency (MHz) | PAPR (dB) | |------|-----------------|-----------| | 1412 | 1732.4 | 2.85 | #### **WCDMA Band IV-16QAM** #### Measurement result | СН | Frequency (MHz) | PAPR (dB) | |------|-----------------|-----------| | 1412 | 1732.4 | 4.33 | Note: Expanded measurement uncertainty is U = 0.578 dB, k = 2. ### **Annex B: Accreditation Certificate** United States Department of Commerce National Institute of Standards and Technology ### Certificate of Accreditation to ISO/IEC 17025:2017 NVLAP LAB CODE: 600118-0 #### Telecommunication Technology Labs, CAICT Beijing China is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for: #### **Electromagnetic Compatibility & Telecommunications** This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009). 2022-10-01 through 2023-09-30 Effective Dates For the National Voluntary Laboratory Accreditation Program ***END OF REPORT***