





Ref: ACR,287,4,14,SATU, A



#### MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

## RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

#### 4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

#### 5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k-2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

## 5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

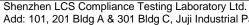
| Frequency band | Expanded Uncertainty on Return Lo |  |  |
|----------------|-----------------------------------|--|--|
| 400-6000MHz    | 0.1 dB                            |  |  |

#### 5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

| Length (mm) | Expanded Uncertainty on Lengt |  |
|-------------|-------------------------------|--|
| 3 - 300     | 0.05 mm                       |  |

#### VALIDATION MEASUREMENT


The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

| Scan Volume | Expanded Uncertainty |
|-------------|----------------------|
| l g         | 20.3 %               |
| 10 g        | 20.1 %               |

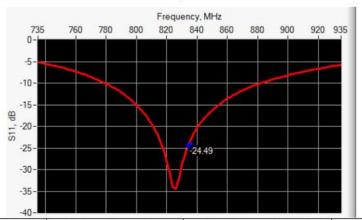
Page: 5/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.










Ref: ACR.287.4.14.SATU.A



#### CALIBRATION MEASUREMENT RESULTS

#### 6.1 RETURN LOSS AND IMPEDANCE



| Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance              |
|-----------------|------------------|------------------|------------------------|
| 835             | -24.49           | -20              | $54.9 \Omega + 2.8 iΩ$ |

#### 6.2 MECHANICAL DIMENSIONS

| Frequency MHz | L mm        |          | L mm h mm   | d mm     |            |          |
|---------------|-------------|----------|-------------|----------|------------|----------|
|               | required    | measured | required    | measured | required   | measured |
| 300           | 420.0 ±1 %. |          | 250.0 ±1 %. |          | 6.35 ±1 %. |          |
| 450           | 290.0 ±1 %. |          | 166.7 ±1 %. |          | 6.35 ±1 %. |          |
| 750           | 176.0 ±1 %. |          | 100.0 ±1 %. |          | 6.35 ±1 %. |          |
| 835           | 161.0 ±1 %. | PASS     | 89.8 ±1 %.  | PASS     | 3.6 ±1 %.  | PASS     |
| 900           | 149.0 ±1 %. |          | 83.3 ±1 %.  | 5-1      | 3.6 ±1 %.  |          |
| 1450          | 89.1 ±1 %.  |          | 51.7 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1500          | 80.5 ±1 %.  |          | 50.0 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1640          | 79.0 ±1 %.  |          | 45.7 ±1 %.  | S-1:     | 3.6 ±1 %.  |          |
| 1750          | 75.2 ±1 %.  |          | 42.9 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1800          | 72.0 ±1 %.  |          | 41.7 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1900          | 68.0 ±1 %.  |          | 39.5 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1950          | 66.3 ±1 %.  |          | 38.5 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2000          | 64.5 ±1 %.  |          | 37.5 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2100          | 61.0 ±1 %.  |          | 35.7 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2300          | 55.5 ±1 %.  |          | 32.6 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2450          | 51.5 ±1 %.  |          | 30.4 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2600          | 48.5 ±1 %.  |          | 28.8 ±1 %.  |          | 3.6 ±1 %.  |          |
| 3000          | 41.5 ±1 %.  |          | 25.0 ±1 %.  |          | 3.6 ±1 %.  |          |
| 3500          | 37.0±1 %.   |          | 26.4 ±1 %.  |          | 3.6 ±1 %.  |          |
| 3700          | 34.7±1 %.   |          | 26.4 ±1 %.  |          | 3.6 ±1 %.  |          |

Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.





Shenzhen LCS Compliance Testing Laboratory Ltd.







Ref: ACR.287.4.14.SATU.A



#### 7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

## HEAD LIQUID MEASUREMENT

| Frequency Relative |           | Relative permittivity is 1 | Conductiv | ity (σ) S/m |
|--------------------|-----------|----------------------------|-----------|-------------|
|                    | required  | measured                   | required  | measured    |
| 300                | 45.3 ±5 % |                            | 0.87 ±5 % |             |
| 450                | 43.5 ±5 % |                            | 0.87 ±5 % |             |
| 750                | 41.9 ±5 % |                            | 0.89 ±5 % |             |
| 835                | 41.5 ±5 % | PASS                       | 0.90 ±5 % | PASS        |
| 900                | 41.5 ±5 % |                            | 0.97 ±5 % |             |
| 1450               | 40.5 ±5 % |                            | 1.20 ±5 % |             |
| 1500               | 40.4 ±5 % |                            | 1.23 ±5 % |             |
| 1640               | 40.2 ±5 % |                            | 1.31 ±5 % |             |
| 1750               | 40.1 ±5 % |                            | 1.37 ±5 % |             |
| 1800               | 40.0 ±5 % |                            | 1.40 ±5 % |             |
| 1900               | 40.0 ±5 % |                            | 1.40 ±5 % |             |
| 1950               | 40.0 ±5 % |                            | 1.40 ±5 % |             |
| 2000               | 40.0 ±5 % |                            | 1.40 ±5 % |             |
| 2100               | 39.8 ±5 % |                            | 1.49 ±5 % |             |
| 2300               | 39.5 ±5 % |                            | 1.67 ±5 % |             |
| 2450               | 39.2 ±5 % |                            | 1.80 ±5 % |             |
| 2600               | 39.0 ±5 % |                            | 1.96 ±5 % |             |
| 3000               | 38.5 ±5 % |                            | 2.40 ±5 % |             |
| 3500               | 37.9 ±5 % |                            | 2.91 ±5 % |             |

#### 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

| Software                                  | OPENSAR V4                                 |
|-------------------------------------------|--------------------------------------------|
| Phantom                                   | SN 20/09 SAM71                             |
| Probe                                     | SN 18/11 EPG122                            |
| Liquid                                    | Head Liquid Values: eps': 42.3 sigma: 0.92 |
| Distance between dipole center and liquid | 15.0 mm                                    |
| Area sean resolution                      | dx=8mm/dy=8mm                              |

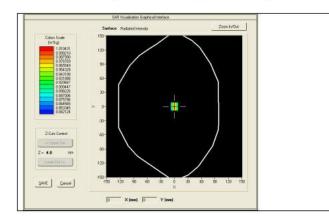
Page: 7/11

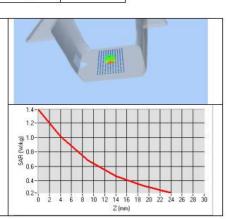
This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.










Ref: ACR.287.4.14.SATU.A

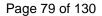
| Zoon Sean Resolution | dx=8mm/dy=8m/dz=5mm |  |
|----------------------|---------------------|--|
| Frequency            | 835 MHz             |  |
| Input power          | 20 dBm              |  |
| Liquid Temperature   | 21 °C               |  |
| Lab Temperature      | 21 °C               |  |
| Lab Humidity         | 45 %                |  |

| Frequency<br>MHz | 1 g SAR ( | W/kg/W)     | 10 g SAR | (W/kg/W)    |
|------------------|-----------|-------------|----------|-------------|
|                  | required  | measured    | required | measured    |
| 300              | 2.85      |             | 1.94     |             |
| 450              | 4.58      |             | 3.06     |             |
| 750              | 8.49      |             | 5.55     |             |
| 835              | 9.56      | 9.60 (0.96) | 6.22     | 6.20 (0.62) |
| 900              | 10.9      |             | 6.99     |             |
| 1450             | 29        |             | 16       |             |
| 1500             | 30.5      |             | 16.8     |             |
| 1640             | 34.2      |             | 18.4     |             |
| 1750             | 36.4      |             | 19.3     |             |
| 1800             | 38.4      |             | 20.1     |             |
| 1900             | 39.7      |             | 20.5     |             |
| 1950             | 40.5      |             | 20.9     |             |
| 2000             | 41.1      |             | 21.1     |             |
| 2100             | 43.6      |             | 21.9     |             |
| 2300             | 48.7      |             | 23.3     |             |
| 2450             | 52.4      |             | 24       |             |
| 2600             | 55.3      |             | 24.6     |             |
| 3000             | 63.8      | 2 3         | 25.7     |             |
| 3500             | 67.1      |             | 25       |             |





Page: 8/11


This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.







Shenzhen LCS Compliance Testing Laboratory Ltd.











Ref: ACR.287.4.14.SATU.A

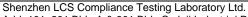


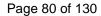
## 7.3 BODY LIQUID MEASUREMENT

| Frequency<br>MHz |            |          | Conductiv  | ity (σ) S/m |
|------------------|------------|----------|------------|-------------|
|                  | required   | measured | required   | measured    |
| 150              | 61.9 ±5 %  |          | 0.80 ±5 %  |             |
| 300              | 58.2 ±5 %  |          | 0.92 ±5 %  |             |
| 450              | 56.7 ±5 %  |          | 0.94 ±5 %  |             |
| 750              | 55.5 ±5 %  |          | 0.96 ±5 %  |             |
| 835              | 55.2 ±5 %  | PASS     | 0.97 ±5 %  | PASS        |
| 900              | 55.0 ±5 %  |          | 1.05 ±5 %  |             |
| 915              | 55.0 ±5 %  |          | 1.06 ±5 %  |             |
| 1450             | 54.0 ±5 %  |          | 1.30 ±5 %  |             |
| 1610             | 53.8 ±5 %  |          | 1.40 ±5 %  |             |
| 1800             | 53.3 ±5 %  |          | 1.52 ±5 %  |             |
| 1900             | 53.3 ±5 %  |          | 1.52 ±5 %  |             |
| 2000             | 53.3 ±5 %  |          | 1.52 ±5 %  |             |
| 2100             | 53.2 ±5 %  |          | 1.62 ±5 %  |             |
| 2450             | 52.7 ±5 %  |          | 1.95 ±5 %  |             |
| 2600             | 52.5 ±5 %  |          | 2.16 ±5 %  |             |
| 3000             | 52.0 ±5 %  |          | 2.73 ±5 %  |             |
| 3500             | 51.3 ±5 %  |          | 3.31 ±5 %  |             |
| 5200             | 49.0 ±10 % |          | 5.30 ±10 % |             |
| 5300             | 48.9 ±10 % |          | 5.42 ±10 % |             |
| 5400             | 48.7 ±10 % |          | 5.53 ±10 % |             |
| 5500             | 48.6 ±10 % |          | 5.65 ±10 % |             |
| 5600             | 48.5 ±10 % |          | 5.77 ±10 % |             |
| 5800             | 48.2 ±10 % |          | 6.00 ±10 % |             |

## 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

| Software                                  | OPENSAR V4                                 |  |
|-------------------------------------------|--------------------------------------------|--|
| Phantom                                   | SN 20/09 SAM71                             |  |
| Probe                                     | SN 18/11 EPG122                            |  |
| Liquid                                    | Body Liquid Values: eps': 54.1 sigma: 0.97 |  |
| Distance between dipole center and liquid | 15.0 mm                                    |  |
| Area sean resolution                      | dx=8mm/dy=8mm                              |  |
| Zoon Scan Resolution                      | dx=8mm/dy=8m/dz=5mm                        |  |
| Frequency                                 | 835 MHz                                    |  |
| Input power                               | 20 dBm                                     |  |
| Liquid Temperature                        | 21 °C                                      |  |
| Lab Temperature                           | 21 °C                                      |  |
| Lab Humidity                              | 45 %                                       |  |


Page: 9/11


This document shall not be reproduced, except in full or in part, without the written approval of SAHMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SAHMO.





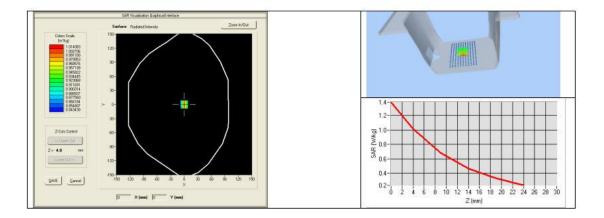















Ref: ACR.287.4.14.SATU.A



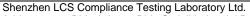
| Frequency<br>MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) |
|------------------|------------------|-------------------|
|                  | measured         | measured          |
| 835              | 9.90 (0.99)      | 6.39 (D.64)       |












This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.



















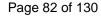
Ref: ACR.287.4.14.SATU.A



## LIST OF EQUIPMENT

| Equipment Summary Sheet            |                         |                    |                                               |                                               |  |  |
|------------------------------------|-------------------------|--------------------|-----------------------------------------------|-----------------------------------------------|--|--|
| Equipment<br>Description           | Manufacturer /<br>Model | Identification No. | Current<br>Calibration Date                   | Next Calibration<br>Date                      |  |  |
| SAM Phantom                        | Satimo                  | SN-20/09-SAM71     | 110 001                                       | Validated. No cal<br>required.                |  |  |
| COMOSAR Test Bench                 | Version 3               | NA                 |                                               | Validated. No cal required.                   |  |  |
| Network Analyzer                   | Rhode & Schwarz<br>ZVA  | SN100132           | 02/2021                                       | 02/2024                                       |  |  |
| Calipers                           | Carrera                 | CALIPER-01         | 12/2018                                       | 12/2021                                       |  |  |
| Reference Probe                    | Satimo                  | EPG122 SN 18/11    | 10/2021                                       | 10/2022                                       |  |  |
| Multimeter                         | Keithley 2000           | 1188656            | 12/2018                                       | 12/2021                                       |  |  |
| Signal Generator                   | Agilent E4438C          | MY49070581         | 12/2018                                       | 12/2021                                       |  |  |
| Amplifier                          | Aethercomm              | SN 046             | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |  |  |
| Power Meter                        | HP E4418A               | US38261498         | 12/2018                                       | 12/2021                                       |  |  |
| Power Sensor                       | HP ECP-E26A             | US37181460         | 12/2018                                       | 12/2021                                       |  |  |
| Directional Coupler                | Narda 4216-20           | 01386              | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |  |  |
| Temperature and<br>Humidity Sensor | Control Company         | 11-661-9           | 8/2021                                        | 8/2024                                        |  |  |




This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.







Shenzhen LCS Compliance Testing Laboratory Ltd.





## Report No.: LCSA042523124EB

## 5.3 SID1800 Dipole Calibration Certificate





# **SAR Reference Dipole Calibration Report**

Ref: ACR.287.6.14.SATU.A

# SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD

BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 1800 MHZ SERIAL NO.: SN 07/14 DIP 1G800-301

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144





09/29/2021

## Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.







Shenzhen LCS Compliance Testing Laboratory Ltd.









Ref: ACR.287.6.14.SATU.A

| 2             | Name          | Function        | Date       | Signature      |
|---------------|---------------|-----------------|------------|----------------|
| Prepared by : | Jérôme LUC    | Product Manager | 10/12/2021 | JES            |
| Checked by:   | Jérôme LUC    | Product Manager | 10/12/2021 | JS             |
| Approved by : | Kim RUTKOWSKI | Quality Manager | 10/12/2021 | them Puthowski |

|                | Customer Name                      |  |  |
|----------------|------------------------------------|--|--|
| Distribution : | Shenzhen LCS<br>Compliance Testing |  |  |
|                |                                    |  |  |

| Issue | Date       | Mod.fications   |  |
|-------|------------|-----------------|--|
| A     | 10/12/2021 | Initial release |  |
|       |            |                 |  |
|       |            |                 |  |
|       |            |                 |  |

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.



Shenzhen LCS Compliance Testing Laboratory Ltd.





Ref: ACR.287.6.14.SATU.A

#### TABLE OF CONTENTS

| 1 | Intro | oduction4                               |   |
|---|-------|-----------------------------------------|---|
| 2 | Dev   | ice Under Test4                         |   |
| 3 | Proc  | fuet Description4                       |   |
|   | 3.1   | General Information                     | 4 |
| 4 | Mea   | surement Method5                        |   |
|   | 4.1   | Return Loss Requirements                | 5 |
|   | 4.2   | Mechanical Requirements                 | 5 |
| 5 | Mea   | surement Uncertainty5                   |   |
|   | 5.1   | Return Loss                             | 5 |
|   | 5.2   | Dimension Measurement                   | 5 |
|   | 5.3   | Validation Measurement                  |   |
| 6 | Cali  | bration Measurement Results6            |   |
|   | 6.1   | Return Loss and Impedance               | 6 |
|   | 6.2   | Mechanical Dimensions                   | 6 |
| 7 | Vali  | dation measurement                      |   |
|   | 7.1   | Head Liquid Measurement                 | 7 |
|   | 7.2   | SAR Measurement Result With Head Liquid |   |
|   | 7.3   | Body Liquid Measurement                 | 9 |
|   | 7.4   | SAR Measurement Result With Body Liquid |   |
| 8 | List  | of Equipment11                          |   |

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.







Ref: ACR.287.6.14.SATU.A

#### 1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

#### 2 DEVICE UNDER TEST

| Device Under Test              |                                   |  |  |  |
|--------------------------------|-----------------------------------|--|--|--|
| Device Type                    | COMOSAR 1800 MHz REFERENCE DIPOLE |  |  |  |
| Manufacturer                   | Satimo                            |  |  |  |
| Model                          | SID1800                           |  |  |  |
| Scrial Number                  | SN 07/14 DIP 1G800-301            |  |  |  |
| Product Condition (new / used) | New                               |  |  |  |

A yearly calibration interval is recommended.

#### 3 PRODUCT DESCRIPTION

#### 3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.



Figure 1 - Satimo COMOSAR Validation Dipole

Page: 4/11

Ihis document shall not be reproduced, except in full or in part, without the written approval cf SAIIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval cf SAIIMO.



Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C. Juji Industrial P





Ref: ACR,287.6.14.SATU.A

#### MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

#### RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

#### 4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

#### 5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k-2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

#### RETURN LOSS

The following uncertainties apply to the return loss measurement:

| Frequency band | Expanded Uncertainty on Return Loss |
|----------------|-------------------------------------|
| 400-6000MHz    | 0.1 dB                              |

#### DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

| Length (mm) | Expanded Uncertainty on Length |  |  |
|-------------|--------------------------------|--|--|
| 3 - 300     | 0.05 mm                        |  |  |

## 5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements

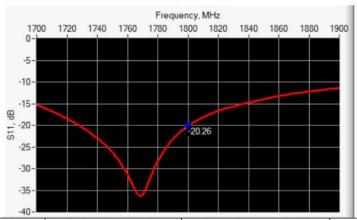
| Scan Volume | Expanded Uncertainty |
|-------------|----------------------|
| l g         | 20.3 %               |
| 10 g        | 20.1 %               |

Page: 5/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.



Shenzhen LCS Compliance Testing Laboratory Ltd.






Ref: ACR.287.6.14.SATU.A

#### CALIBRATION MEASUREMENT RESULTS

#### RETURN LOSS AND IMPEDANCE



| Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance                   |
|-----------------|------------------|------------------|-----------------------------|
| 1800            | -20.26           | -20              | $43.1 \Omega + 6.9 j\Omega$ |

#### 6.2 MECHANICAL DIMENSIONS

| Frequency MHz | Ln          | nm       | h m         | m        | <b>d</b> r | nm       |
|---------------|-------------|----------|-------------|----------|------------|----------|
|               | required    | measured | required    | measured | required   | measured |
| 300           | 420.0 ±1 %. |          | 250.0 ±1 %. |          | 6.35 ±1 %. |          |
| 450           | 290.0 ±1 %. |          | 166.7 ±1 %. |          | 6.35 ±1 %. |          |
| 750           | 176.0 ±1 %. |          | 100.0 ±1 %. |          | 6.35 ±1 %. |          |
| 835           | 161.0 ±1 %. |          | 89.8 ±1 %.  |          | 3.6 ±1 %.  |          |
| 900           | 149.0 ±1 %. |          | 83.3 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1450          | 89.1 ±1 %.  |          | 51.7 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1500          | 80.5 ±1 %.  |          | 50.0 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1640          | 79.0 ±1 %.  |          | 45.7 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1750          | 75.2 ±1 %.  |          | 42.9 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1800          | 72.0 ±1 %.  | PASS     | 41.7 ±1 %.  | PASS     | 3.6 ±1 %.  | PASS     |
| 1900          | 68.0 ±1 %.  |          | 39.5 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1950          | 66.3 ±1 %.  |          | 38.5 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2000          | 64.5 ±1 %.  |          | 37.5 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2100          | 61.0 ±1 %.  |          | 35.7 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2300          | 55.5 ±1 %.  |          | 32.6 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2450          | 51.5 ±1 %.  |          | 30.4 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2600          | 48.5 ±1 %.  |          | 28.8 ±1 %.  |          | 3.6 ±1 %.  |          |
| 3000          | 41.5 ±1 %.  |          | 25.0 ±1 %.  |          | 3.6 ±1 %.  |          |
| 3500          | 37.0±1 %.   |          | 26.4 ±1 %.  |          | 3.6 ±1 %.  |          |
| 3700          | 34.7±1 %.   |          | 26.4 ±1 %.  |          | 3.6 ±1 %.  |          |

Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.



518000, China





Ref: ACR,287.6.14.SATU.A

#### 7 VALIDATION MEASUREMENT

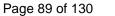
The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

#### HEAD LIQUID MEASUREMENT

| Frequency<br>MHz | Relative permittivity ( $\epsilon_{r}$ ') |          | Conductivity ( $\sigma$ ) S/r |          |
|------------------|-------------------------------------------|----------|-------------------------------|----------|
|                  | required                                  | measured | required                      | measured |
| 300              | 45.3 ±5 %                                 |          | 0.87 ±5 %                     |          |
| 450              | 43.5 ±5 %                                 |          | 0.87 ±5 %                     |          |
| 750              | 41.9 ±5 %                                 |          | 0.89 ±5 %                     |          |
| 835              | 41.5 ±5 %                                 |          | 0.90 ±5 %                     |          |
| 900              | 41.5 ±5 %                                 |          | 0.97 ±5 %                     |          |
| 1450             | 40.5 ±5 %                                 |          | 1.20 ±5 %                     |          |
| 1500             | 40.4 ±5 %                                 |          | 1.23 ±5 %                     |          |
| 1640             | 40.2 ±5 %                                 |          | 1.31 ±5 %                     |          |
| 1750             | 40.1 ±5 %                                 |          | 1.37 ±5 %                     |          |
| 1800             | 40.0 ±5 %                                 | PASS     | 1.40 ±5 %                     | PASS     |
| 1900             | 40.0 ±5 %                                 |          | 1.40 ±5 %                     |          |
| 1950             | 40.0 ±5 %                                 |          | 1.40 ±5 %                     |          |
| 2000             | 40.0 ±5 %                                 |          | 1.40 ±5 %                     |          |
| 2100             | 39.8 ±5 %                                 |          | 1.49 ±5 %                     |          |
| 2300             | 39.5 ±5 %                                 |          | 1.67 ±5 %                     |          |
| 2450             | 39.2 ±5 %                                 |          | 1.80 ±5 %                     |          |
| 2600             | 39.0 ±5 %                                 |          | 1.96 ±5 %                     |          |
| 3000             | 38.5 ±5 %                                 |          | 2.40 ±5 %                     |          |
| 3500             | 37.9 ±5 %                                 |          | 2.91 ±5 %                     |          |

#### 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.


| Software                                  | OPENSAR V4                                 |
|-------------------------------------------|--------------------------------------------|
| Phantom                                   | SN 20/09 SAM71                             |
| Probe                                     | SN 18/11 EPG122                            |
| Liquid                                    | Head Liquid Values: eps': 41.3 sigma: 1.38 |
| Distance between dipole center and liquid | 10.0 mm                                    |
| Area sean resolution                      | dx=8mm/dy=8mm                              |

Page: 7/11

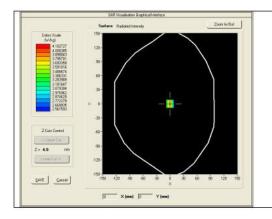
This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

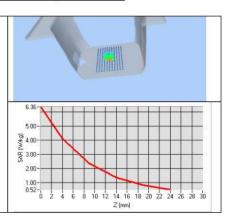


Shenzhen LCS Compliance Testing Laboratory Ltd.







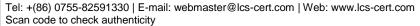




Ref: ACR.287.6.14.SATU.A

| Zoon Sean Resolution | dx=8mm/dy=8m/dz=5mm |  |
|----------------------|---------------------|--|
| Frequency            | 1800 MHz            |  |
| Input power          | 20 dBm              |  |
| Liquid Temperature   | 21 °C               |  |
| Lab Temperature      | 21 °C               |  |
| Lab Humidity         | 45 %                |  |

| Frequency<br>MHz | 1 g SAR  | (W/kg/W)     | 10 g SAR | (W/kg/W)    |
|------------------|----------|--------------|----------|-------------|
|                  | required | measured     | required | measured    |
| 300              | 2.85     |              | 1.94     | 5           |
| 450              | 4.58     |              | 3.06     |             |
| 750              | 8.49     |              | 5.55     |             |
| 835              | 9.56     |              | 6.22     |             |
| 900              | 10.9     |              | 6.99     |             |
| 1450             | 29       |              | 16       |             |
| 1500             | 30.5     |              | 16.8     |             |
| 1640             | 34.2     |              | 18.4     |             |
| 1750             | 36.4     |              | 19.3     | 3           |
| 1800             | 38.4     | 38.13 (3.81) | 20.1     | 20.20 (2.02 |
| 1900             | 39.7     |              | 20.5     | 73          |
| 1950             | 40.5     |              | 20.9     | 3           |
| 2000             | 41.1     |              | 21.1     |             |
| 2100             | 43.6     |              | 21.9     | 22          |
| 2300             | 48.7     |              | 23.3     | 3           |
| 2450             | 52.4     |              | 24       |             |
| 2600             | 55.3     |              | 24.6     | 73          |
| 3000             | 63.8     |              | 25.7     | 3           |
| 3500             | 67.1     |              | 25       |             |

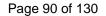





Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.




Shenzhen LCS Compliance Testing Laboratory Ltd.

















Ref: ACR.287.6.14.SATU.A

## 7.3 BODY LIQUID MEASUREMENT

| Frequency Relative peri |            | Polativo normittivity (e.) | Conductivi | ty (σ) S/m |
|-------------------------|------------|----------------------------|------------|------------|
|                         | required   | measured                   | required   | measured   |
| 150                     | 61.9 ±5 %  |                            | 0.80 ±5 %  |            |
| 300                     | 58.2 ±5 %  |                            | 0.92 ±5 %  |            |
| 450                     | 56.7 ±5 %  |                            | 0.94 ±5 %  |            |
| 750                     | 55.5 ±5 %  |                            | 0.96 ±5 %  |            |
| 835                     | 55.2 ±5 %  |                            | 0.97 ±5 %  |            |
| 900                     | 55.0 ±5 %  |                            | 1.05 ±5 %  |            |
| 915                     | 55.0 ±5 %  |                            | 1.06 ±5 %  |            |
| 1450                    | 54.0 ±5 %  |                            | 1.30 ±5 %  |            |
| 1610                    | 53.8 ±5 %  |                            | 1.40 ±5 %  |            |
| 1800                    | 53.3 ±5 %  | PASS                       | 1.52 ±5 %  | PASS       |
| 1900                    | 53.3 ±5 %  |                            | 1.52 ±5 %  |            |
| 2000                    | 53.3 ±5 %  |                            | 1.52 ±5 %  |            |
| 2100                    | 53.2 ±5 %  |                            | 1.62 ±5 %  |            |
| 2450                    | 52.7 ±5 %  |                            | 1.95 ±5 %  |            |
| 2600                    | 52.5 ±5 %  |                            | 2.16 ±5 %  |            |
| 3000                    | 52.0 ±5 %  |                            | 2.73 ±5 %  |            |
| 3500                    | 51.3 ±5 %  |                            | 3.31 ±5 %  |            |
| 5200                    | 49.0 ±10 % |                            | 5.30 ±10 % |            |
| 5300                    | 48.9 ±10 % |                            | 5.42 ±10 % |            |
| 5400                    | 48.7 ±10 % |                            | 5.53 ±10 % |            |
| 5500                    | 48.6 ±10 % |                            | 5.65 ±10 % |            |
| 5600                    | 48.5 ±10 % |                            | 5.77 ±10 % |            |
| 5800                    | 48.2 ±10 % |                            | 6.00 ±10 % |            |

#### 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

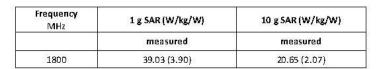
| Software                                  | OPENSAR V4                                 |
|-------------------------------------------|--------------------------------------------|
| Phantom                                   | SN 20/09 SAM71                             |
| Probe                                     | SN 18/11 EPG122                            |
| Liquid                                    | Body Liquid Values: eps': 53.3 sigma: 1.51 |
| Distance between dipole center and liquid | 10.0 mm                                    |
| Area sean resolution                      | dx=8mm/dy=8mm                              |
| Zoon Sean Resolution                      | dx=8mm/dy=8m/dz=5mm                        |
| Frequency                                 | 1800 MHz                                   |
| Input power                               | 20 dBm                                     |
| Liquid Temperature                        | 21 °C                                      |
| Lab Temperature                           | 21 °C                                      |
| Lab Humidity                              | 45 %                                       |

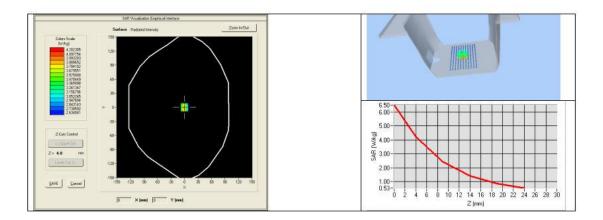
Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.



Shenzhen LCS Compliance Testing Laboratory Ltd.








Ref: ACR.287.6.14.SATU.A







Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval cf SATIMO.



Shenzhen LCS Compliance Testing Laboratory Ltd.











Ref: ACR.287.6.14.SATU.A



|                                    | Equipment Summary Sheet |                    |                                               |                                               |  |  |
|------------------------------------|-------------------------|--------------------|-----------------------------------------------|-----------------------------------------------|--|--|
| Equipment<br>Description           | Manufacturer /<br>Model | Identification No. | Current<br>Calibration Date                   | Next Calibration<br>Date                      |  |  |
| SAM Phantom                        | Satimo                  | SN-20/09-SAM71     | Validated. No cal<br>required.                | Validated. No ca<br>required.                 |  |  |
| COMOSAR Test Bench                 | Version 3               | NA                 | Validated. No cal required.                   | Validated. No ca<br>required.                 |  |  |
| Network Analyzer                   | Rhode & Schwarz<br>ZVA  | SN100132           | 02/2021                                       | 02/2024                                       |  |  |
| Calipers                           | Carrera                 | CALIPER-01         | 12/2018                                       | 12/2021                                       |  |  |
| Reference Probe                    | Satimo                  | EPG122 SN 18/11    | 10/2021                                       | 10/2022                                       |  |  |
| Multimeter                         | Keithley 2000           | 1188656            | 12/2018                                       | 12/2021                                       |  |  |
| Signal Generator                   | Agilent E4438C          | MY49070581         | 12/2018                                       | 12/2021                                       |  |  |
| Amplifier                          | Aethercomm              | SN 046             | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |  |  |
| Power Meter                        | HP E4418A               | US38261498         | 12/2018                                       | 12/2021                                       |  |  |
| Power Sensor                       | HP ECP-E26A             | US37181460         | 12/2018                                       | 12/2021                                       |  |  |
| Directional Coupler                | Narda 4216-20           | 01386              | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |  |  |
| Temperature and<br>Humidity Sensor | Control Company         | 11-661-9           | 8/2021                                        | 8/2024                                        |  |  |

Page: 11/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval cf SATIMO.



Shenzhen LCS Compliance Testing Laboratory Ltd.





#### FCC ID: 2BAOL-P2000L

#### Report No.: LCSA042523124EB

## 5.4 SID1900 Dipole Calibration Certificate



# **SAR Reference Dipole Calibration Report**

Ref: ACR.273.2.18.SATU.A

# SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, **BAO'AN BLVD** 

BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 1900 MHZ

SERIAL NO.: SN 38/18 DIP 1G900-466

## Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144





Calibration Date: 09/22/2021

#### Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.



Shenzhen LCS Compliance Testing Laboratory Ltd.











Ref: ACR.273.2.18.SATU.A

|               | Name          | Function        | Date       | Signature       |
|---------------|---------------|-----------------|------------|-----------------|
| Prepared by : | Jérôme LUC    | Product Manager | 09/28/2021 | JES             |
| Checked by:   | Jérôme LUC    | Product Manager | 09/28/2021 | Jes             |
| Approved by : | Kim RUTKOWSKI | Quality Manager | 09/28/2021 | them Putthoushi |

|                | Customer Name      |
|----------------|--------------------|
| Distribution : | Shenzhen LCS       |
|                | Compliance Testing |
|                | Laboratory Ltd.    |

| Date       | Mod.fications   |                                                    |
|------------|-----------------|----------------------------------------------------|
| 09/28/2021 | Initial release |                                                    |
|            |                 |                                                    |
|            |                 |                                                    |
|            |                 |                                                    |
|            |                 | # MAN 10 CO TO |

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.









Ref: ACR.273.2.18.SATU.A



#### TABLE OF CONTENTS

|   | Intro | duction4                                 |    |
|---|-------|------------------------------------------|----|
| 2 | Dev   | ce Under Test4                           |    |
| 3 | Prod  | uet Description4                         |    |
|   | 3.1   | General Information                      | 4  |
| 4 | Mea   | surement Method5                         |    |
|   | 4.1   | Return Loss Requirements                 | 5  |
|   | 4.2   | Mechanical Requirements                  |    |
| 5 | Mea   | surement Uncertainty5                    |    |
|   | 5.1   | Return Loss                              | 5  |
|   | 5.2   | Dimension Measurement                    | 5  |
|   | 5.3   | Validation Measurement                   | 5  |
| 6 | Cali  | pration Measurement Results6             |    |
|   | 6.1   | Return Loss and Impedance In Head Liquid | e  |
|   | 6.2   | Return Loss and Impedance In Body Liquid | e  |
|   | 6.3   | Mechanical Dimensions                    | 6  |
| 7 | Vali  | dation measurement                       |    |
|   | 7.1   | Head Liquid Measurement                  | 7  |
|   | 7.2   | SAR Measurement Result With Head Liquid  | 8  |
|   | 7.3   | Body Liquid Measurement                  | 9  |
|   | 7.4   | SAR Measurement Result With Body Liquid  | 10 |
| 8 | List  | of Equipment11                           |    |

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.











Ref: ACR.273.2.18.SATU.A



#### 1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

#### 2 DEVICE UNDER TEST

| Device Under Test            |                                   |  |
|------------------------------|-----------------------------------|--|
| Device Type                  | COMOSAR 1900 MHz REFERENCE DIPOLE |  |
| Manufacturer                 | MVG                               |  |
| Model                        | SID1900                           |  |
| Scrial Number                | SN 38/18 DIP 1G900-466            |  |
| Product Condition (new/used) | Used                              |  |

A yearly calibration interval is recommended.

#### 3 PRODUCT DESCRIPTION

#### 3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.



Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.











Ref: ACR 273 2 18 SATU A

Report No.: LCSA042523124EB

#### MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

#### RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and cheeks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards.

#### 4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

#### 5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k-2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

#### 5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

| Frequency band | Expanded Uncertainty on Return Loss |
|----------------|-------------------------------------|
| 400-6000MHz    | 0.1 dB                              |

## DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

| Length (mm) | Expanded Uncertainty on Length |  |
|-------------|--------------------------------|--|
| 3 - 300     | 0.05 mm                        |  |

#### VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

| Scan Volume | Expanded Uncertainty |
|-------------|----------------------|
| l g         | 20.3 %               |

Page: 5/11

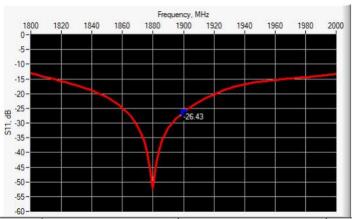
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval cf MVG.





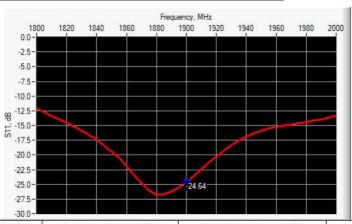







Ref: ACR.273.2.18.SATU.A

| 10 g | 20.1 % |
|------|--------|
|      |        |


#### CALIBRATION MEASUREMENT RESULTS

#### RETURN LOSS AND IMPEDANCE IN HEAD LIQUID



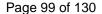
| Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance                   |
|-----------------|------------------|------------------|-----------------------------|
| 1900            | -26.43           | -20              | $50.5 \Omega + 4.7 i\Omega$ |

#### 6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID



| Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance                   |
|-----------------|------------------|------------------|-----------------------------|
| 1900            | -24.64           | -20              | $46.2 \Omega + 4.4 j\Omega$ |

## MECHANICAL DIMENSIONS


| Frequency MHz | L mm        |          | L mm h mm   |          | <b>d</b> n | nm       |
|---------------|-------------|----------|-------------|----------|------------|----------|
|               | required    | measured | required    | measured | required   | measured |
| 300           | 420.0 ±1 %. |          | 250.0 ±1 %. |          | 6.35 ±1 %. |          |

Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval cf MVG.



Shenzhen LCS Compliance Testing Laboratory Ltd.













Ref: ACR.273.2.18.SATU.A

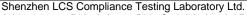
| 450  | 290.0 ±1 %. |      | 166.7 ±1 %. |      | 6.35 ±1 %. |     |
|------|-------------|------|-------------|------|------------|-----|
| 750  | 176.0 ±1 %. |      | 100.0 ±1 %. |      | 6.35 ±1 %. |     |
| 835  | 161.0 ±1 %. |      | 89.8 ±1 %.  |      | 3.6 ±1 %.  |     |
| 900  | 149.0 ±1 %. |      | 83.3 ±1 %.  |      | 3.6 ±1 %.  |     |
| 1450 | 89.1 ±1 %.  |      | 51.7 ±1 %.  |      | 3.6 ±1 %.  |     |
| 1500 | 80.5 ±1 %.  |      | 50.0 ±1 %.  |      | 3.6 ±1 %.  |     |
| 1640 | 79.0 ±1 %.  |      | 45.7 ±1 %.  |      | 3.6 ±1 %.  |     |
| 1750 | 75.2 ±1 %.  |      | 42.9 ±1 %.  |      | 3.6 ±1 %.  |     |
| 1800 | 72.0 ±1 %.  |      | 41.7 ±1 %.  |      | 3.6 ±1 %.  |     |
| 1900 | 68.0 ±1 %.  | PASS | 39.5 ±1 %.  | PASS | 3.6 ±1 %.  | PAS |
| 1950 | 66.3 ±1 %.  |      | 38.5 ±1 %.  |      | 3.6 ±1 %.  |     |
| 2000 | 64.5 ±1 %.  |      | 37.5 ±1 %.  | 3    | 3.6 ±1 %.  |     |
| 2100 | 61.0 ±1 %.  |      | 35.7 ±1 %.  |      | 3.6 ±1 %.  |     |
| 2300 | 55.5 ±1 %.  |      | 32.6 ±1 %.  |      | 3.6 ±1 %.  |     |
| 2450 | 51.5 ±1 %.  |      | 30.4 ±1 %.  |      | 3.6 ±1 %.  |     |
| 2600 | 48.5 ±1 %.  |      | 28.8 ±1 %.  |      | 3.6 ±1 %.  |     |
| 3000 | 41.5 ±1 %.  |      | 25.0 ±1 %.  |      | 3.6 ±1 %.  |     |
| 3500 | 37.0±1 %.   |      | 26.4 ±1 %.  | 2    | 3.6 ±1 %.  |     |
| 3700 | 34.7±1 %.   |      | 26.4 ±1 %.  |      | 3.6 ±1 %.  |     |

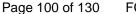
#### VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

## 7.1 HEAD LIQUID MEASUREMENT

| Frequency<br>MHz | Relative permittivity (ε <sub>r</sub> ') |          | Conductiv | ity (σ) S/m |
|------------------|------------------------------------------|----------|-----------|-------------|
|                  | required                                 | measured | required  | measured    |
| 300              | 45.3 ±5 %                                |          | 0.87 ±5 % |             |
| 450              | 43.5 ±5 %                                |          | 0.87 ±5 % |             |
| 750              | 41.9 ±5 %                                |          | 0.89 ±5 % |             |
| 835              | 41.5 ±5 %                                |          | 0.90 ±5 % |             |
| 900              | 41.5 ±5 %                                |          | 0.97 ±5 % |             |
| 1450             | 40.5 ±5 %                                |          | 1.20 ±5 % |             |
| 1500             | 40.4 ±5 %                                |          | 1.23 ±5 % |             |
| 1640             | 40.2 ±5 %                                |          | 1.31 ±5 % |             |
| 1750             | 40.1 ±5 %                                |          | 1.37 ±5 % |             |


Page: 7/11


This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

















Ref: ACR.273.2.18.SATU.A



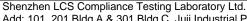
| 1800 | 40.0 ±5 % |           | 1.40 ±5 % |      |
|------|-----------|-----------|-----------|------|
| 1900 | 40.0 ±5 % | PASS      | 1.40 ±5 % | PASS |
| 1950 | 40.0 ±5 % |           | 1.40 ±5 % |      |
| 2000 | 40.0 ±5 % |           | 1.40 ±5 % |      |
| 2100 | 39.8 ±5 % |           | 1.49 ±5 % |      |
| 2300 | 39.5 ±5 % | 1.67 ±5 % |           |      |
| 2450 | 39.2 ±5 % | 1.80 ±5 % |           |      |
| 2600 | 39.0 ±5 % |           | 1.96 ±5 % |      |
| 3000 | 38.5 ±5 % |           | 2.40 ±5 % |      |
| 3500 | 37.9 ±5 % |           | 2.91 ±5 % |      |

#### 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

| Software                                  | OPENSAR V4                                 |
|-------------------------------------------|--------------------------------------------|
| Phantom                                   | SN 20/09 SAM71                             |
| Probe                                     | SN 18/11 EPG122                            |
| Liquid                                    | Head Liquid Values: eps': 38.5 sigma: 1.45 |
| Distance between dipole center and liquid | 10.0 mm                                    |
| Area sean resolution                      | dx=8mm/dy=8mm                              |
| Zoon Sean Resolution                      | dx=8mm/dy=8mm/dz=5mm                       |
| Frequency                                 | 1900 MHz                                   |
| Input power                               | 20 dBm                                     |
| Liquid Temperature                        | 21 °C                                      |
| Lab Temperature                           | 21 °C                                      |
| Lab Humidity                              | 45 %                                       |

| Frequency<br>MHz | 1 g SAR (W/kg/W) |          | 10 g SAR (W/kg/W) |          |
|------------------|------------------|----------|-------------------|----------|
|                  | required         | measured | required          | measured |
| 300              | 2.85             |          | 1.94              |          |
| 450              | 4.58             |          | 3.06              |          |
| 750              | 8.49             |          | 5,55              |          |
| 835              | 9.56             |          | 6.22              |          |
| 900              | 10.9             |          | 6.99              |          |
| 1450             | 29               |          | 16                |          |
| 1500             | 30.5             |          | 16.8              |          |
| 1640             | 34.2             |          | 18.4              |          |
| 1750             | 36.4             |          | 19.3              |          |
| 1800             | 38.4             |          | 20.1              |          |


Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG.

The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.





