
Bluetooth LE

1/1306

Bluetooth LE

Developing with Bluetooth

Getting Started

Overview

Getting Started with the WSTK

Getting Started with the BGM220

More Demos and Examples

Fundamentals

Overview

Bluetooth Fundamentals �PDF�

Advertising and Scanning

Advertising Data Basics

Accept List

Periodic Advertising

Using Scan Request Reporting

Connections

Multi-Peripheral Topology

Dual Topology

Multi-Central Topology

Understanding the Connection Process

Using 2M and LE Coded PHY �BT5�

Connection Flowcharts

GATT Protocol

Server and Client Roles

Acknowledged vs. Unacknowledged

Polymorphic GATT

GATT Caching

Service Change Indication

Using Characteristics Value Types

GATT Operation Flowcharts

Performance

Throughput

Adaptive Frequency Hopping

Optimizing Current Consumption

TX Power Limitations for Regulatory Compliance

Bluetooth LE Use Case-Based Low Power Optimization �PDF�

Developer's Guide

Overview

https://www.silabs.com/documents/public/user-guides/ug103-14-fundamentals-ble.pdf
https://www.silabs.com/documents/public/application-notes/an1366-bluetooth-use-case-based-low-power-optimization.pdf

Bluetooth LE

2/1306

About the Stack

Getting Started with Application Development

Developing and Debugging

Overview

Silicon Labs Bluetooth C Application Developer's Guide �PDF�

GATT Configurator User's Guide �PDF�

Blue Gecko Bluetooth Profile Toolkit Developer's Guide �PDF�

Using Network Analyzer with Bluetooth Low Energy and Mesh �PDF�

Transitioning from the v2.x to the v3.x Bluetooth SDK �PDF�

Code Examples

Co-Processors �NCP/RCP�

Overview

NCP Local Event Handling

Using the Bluetooth Stack in Network Co-Processor Mode �PDF�

Enabling a Radio Co-Processor using the Bluetooth Controller and HCI Functions �PDF�

Bootloading

Overview

Firmware Upgrade

Using EFR Connect Mobile App for OTA DFU

Adding Gecko Bootloader to Bluetooth Projects

Upgrading Gecko Bootloader

OTA Updates Using Customized Advertising Data

Uploading Firmware Images Using OTA DFU

Secure OTA DFU

Adding Metadata to GBL Files

Bootloader Fundamentals �PDF�

Gecko Bootloader User's Guide �PDF�

Using the Gecko Bootloader with Silicon Labs Bluetooth Applications �PDF�

Series 2 Secure Boot with RTSL �PDF�

Transitioning to the Updated Gecko Bootloader in GSDK 4.0 and Higher �PDF�

Performance

Overview

System Performance

Using the LFRCO as a Low Frequency Clock Source

TX Power Settings

Current Consumption and TX Power

Radio Task Priorities

Production Approach to Setting a Custom BT Address

Auto-PA Mode

EFR32BG SoC Bluetooth Smart Device Power Consumption Measurements �PDF�

Radio Frequency Physical Layer Evaluation �PDF�

Bluetooth Low Energy Interoperability Testing Report �PDF�

Multiprotocol

Overview

https://www.silabs.com/documents/public/user-guides/ug434-bluetooth-c-soc-dev-guide-sdk-v3x.pdf
https://www.silabs.com/documents/public/user-guides/ug438-gatt-configurator-users-guide-sdk-v3x.pdf
https://www.silabs.com/documents/public/user-guides/ug118-bluegecko-bt-profile-toolkit.pdf
https://www.silabs.com/documents/public/application-notes/an1317-network-analyzer-with-bluetooth-mesh-le.pdf
https://www.silabs.com/documents/public/application-notes/an1255-transitioning-from-bluetooth-sdk-v2-to-v3.pdf
https://www.silabs.com/documents/public/application-notes/an1259-bt-ncp-mode-sdk-v3x.pdf
https://www.silabs.com/documents/public/application-notes/an1328-enabling-rcp-using-bt-hci.pdf
https://www.silabs.com/documents/public/user-guides/ug103-06-fundamentals-bootloading.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf
https://www.silabs.com/documents/public/application-notes/an1086-gecko-bootloader-bluetooth.pdf
https://www.silabs.com/documents/public/application-notes/an1218-secure-boot-with-rtsl.pdf
https://www.silabs.com/documents/public/application-notes/an1326-gecko-bootloader-transitioning-guide.pdf
https://www.silabs.com/documents/public/application-notes/an1246-efr32bg-bluetooth-power-consumption.pdf
https://www.silabs.com/documents/public/application-notes/an1267-bt-rf-phy-evaluation-using-dtm-sdk-v3x.pdf
https://www.silabs.com/documents/public/application-notes/an1309-ble-interop-testing-report.pdf

Bluetooth LE

3/1306

Multiprotocol Fundamentals

Dynamic Multiprotocol User's Guide �PDF�

Dynamic Multiprotocol Development with Bluetooth and Proprietary Protocols on RAIL �PDF�

Running Zigbee, OpenThread, and Bluetooth Concurrently on a Linux Host with a Multiprotocol RCP
�PDF�

Non-Volatile Data Storage

Overview

Non-Volatile Data Storage Fundamentals �PDF�

Using NVM3 Data Storage �PDF�

Security

Overview

Security Pairing Processes

IoT Endpoint Security Fundamentals �PDF�

Bluetooth Low Energy Application Security Design Considerations �PDF�

Using Silicon Labs Secure Vault Features with bluetooth �PDF�

Series 2 Secure Debug �PDF�

Production Programming of Series 2 Devices �PDF�

Anti-Tamper Protection Configuration and Use �PDF�

Authenticating Silicon Labs Devices using Device Certificates �PDF�

Secure Key Storage

Programming Series 2 Devices Using the DCI and SWD �PDF�

Integrating Crypto Functionality with PSA Crypto vs. Mbed TLS �PDF�

Series 2 Trustzone �PDF�

Operating Systems

Overview

Integrating v3.x Silicon Labs Bluetooth Applications with Real-Time Operating Systems �PDF�

Amazon FreeRTOS Architecture and Sample Applications �PDF�

Bluetooth and Zephyr OS

Coexistence

Overview

Wi-Fi Coexistence Fundamentals �PDF�

Bluetooth Coexistence with Wi-Fi �PDF�

Location Services (link)

Electronic Shelf Label �PDF�

Implementation Tips

Bluetooth API Reference Guide

BGAPI Types

uint8array

len

data

byte_array

len

data

bd_addr

https://www.silabs.com/documents/public/user-guides/ug103-16-multiprotocol-fundamentals.pdf
https://www.silabs.com/documents/public/user-guides/ug305-dynamic-multiprotocol-users-guide.pdf
https://www.silabs.com/documents/public/application-notes/an1269-bluetooth-rail-dynamic-multiprotocol-gsdk-v3x.pdf
https://www.silabs.com/documents/public/application-notes/an1333-concurrent-protocols-with-802-15-4-rcp.pdf
https://www.silabs.com/documents/public/user-guides/ug103-07-non-volatile-data-storage-fundamentals.pdf
https://www.silabs.com/documents/public/application-notes/an1135-using-third-generation-nonvolatile-memory.pdf
https://www.silabs.com/documents/public/user-guides/ug103-05-fundamentals-security.pdf
https://www.silabs.com/documents/public/application-notes/an1302-bluetooth-application-security-design-considerations.pdf
https://www.silabs.com/documents/public/application-notes/an1329-using-secure-vault-bluetooth.pdf
https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf
https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://www.silabs.com/documents/public/application-notes/an1247-efr32-secure-vault-tamper.pdf
https://www.silabs.com/documents/public/application-notes/an1268-efr32-secure-identity.pdf
https://www.silabs.com/documents/public/application-notes/an1271-efr32-secure-key-storage.pdf
https://www.silabs.com/documents/public/application-notes/an1303-efr32-dci-swd-programming.pdf
https://www.silabs.com/documents/public/application-notes/an1311-mbedtls-psa-crypto-porting-guide.pdf
https://www.silabs.com/documents/public/application-notes/an1374-trustzone.pdf
https://www.silabs.com/documents/public/application-notes/an1260-integrating-v3x-bluetooth-applications-with-rtos.pdf
https://www.silabs.com/documents/public/application-notes/an1362-amazon-freertos-architecture-examples.pdf
https://www.silabs.com/documents/public/user-guides/ug103-17-wi-fi-coexistence-fundamentals.pdf
https://www.silabs.com/documents/public/application-notes/an1128-bluetooth-coexistence-with-wifi.pdf
https://docs.silabs.com/rtl-lib/latest/
https://www.silabs.com/documents/public/application-notes/an1419-ble-electronic-shelf-label.pdf

Bluetooth LE

4/1306

addr

uuid_128

data

aes_key_128

data

sl_bt_uuid_16_t

data

sl_bt_uuid_64_t

data

SL_BT_TYPE_UINT8ARRARY

SL_BT_TYPE_BYTE_ARRARY

SL_BT_TYPE_BDADDR

SL_BT_TYPE_UUID128

SL_BT_TYPE_AES_KEY128

SL_BT_TYPE_UUID16

SL_BT_TYPE_UUID64

SL_BGAPI_MSG_HEADER_LEN

SL_BGAPI_MSG_DEVICE_TYPE

SL_BGAPI_MSG_ID

SL_BGAPI_MSG_LEN

SL_BGAPI_BIT_ENCRYPTED

SL_BGAPI_MSG_ENCRYPTED

BT Common Types

sl_bt_msg

header

data

sl_bt_msg.data

handle

evt_dfu_boot

evt_dfu_boot_failure

evt_system_boot

evt_system_error

evt_system_hardware_error

evt_system_resource_exhausted

evt_system_external_signal

evt_system_soft_timer

evt_resource_status

evt_advertiser_timeout

evt_advertiser_scan_request

evt_periodic_advertiser_status

evt_scanner_legacy_advertisement_report

evt_scanner_extended_advertisement_report

evt_scanner_scan_report

evt_sync_opened

Bluetooth LE

5/1306

evt_sync_transfer_received

evt_sync_data

evt_sync_closed

evt_periodic_sync_opened

evt_periodic_sync_transfer_received

evt_periodic_sync_report

evt_pawr_sync_opened

evt_pawr_sync_transfer_received

evt_pawr_sync_subevent_report

evt_pawr_advertiser_subevent_data_request

evt_pawr_advertiser_subevent_tx_failed

evt_pawr_advertiser_response_report

evt_connection_opened

evt_connection_parameters

evt_connection_phy_status

evt_connection_rssi

evt_connection_get_remote_tx_power_completed

evt_connection_tx_power

evt_connection_remote_tx_power

evt_connection_remote_used_features

evt_connection_data_length

evt_connection_closed

evt_gatt_mtu_exchanged

evt_gatt_service

evt_gatt_characteristic

evt_gatt_descriptor

evt_gatt_characteristic_value

evt_gatt_descriptor_value

evt_gatt_procedure_completed

evt_gatt_server_attribute_value

evt_gatt_server_user_read_request

evt_gatt_server_user_write_request

evt_gatt_server_characteristic_status

evt_gatt_server_execute_write_completed

evt_gatt_server_indication_timeout

evt_gatt_server_notification_tx_completed

evt_test_dtm_completed

evt_sm_passkey_display

evt_sm_passkey_request

evt_sm_confirm_passkey

evt_sm_bonded

evt_sm_bonding_failed

Bluetooth LE

6/1306

evt_sm_confirm_bonding

evt_external_bondingdb_data_request

evt_external_bondingdb_data

evt_external_bondingdb_data_ready

evt_cs_security_enable_complete

evt_cs_config_complete

evt_cs_procedure_enable_complete

evt_cs_result

evt_l2cap_le_channel_open_request

evt_l2cap_le_channel_open_response

evt_l2cap_channel_data

evt_l2cap_channel_credit

evt_l2cap_channel_closed

evt_l2cap_command_rejected

evt_cte_receiver_dtm_iq_report

evt_cte_receiver_connection_iq_report

evt_cte_receiver_connectionless_iq_report

evt_cte_receiver_silabs_iq_report

evt_user_message_to_host

payload

sl_bt_msg_t

SL_BT_INVALID_CONNECTION_HANDLE

SL_BT_INVALID_BONDING_HANDLE

SL_BT_INVALID_ADVERTISING_SET_HANDLE

SL_BT_INVALID_SYNC_HANDLE

Device Firmware Update

sl_bt_evt_dfu_boot

sl_bt_evt_dfu_boot_s

version

sl_bt_evt_dfu_boot_t

sl_bt_evt_dfu_boot_id

sl_bt_evt_dfu_boot_failure

sl_bt_evt_dfu_boot_failure_s

reason

sl_bt_evt_dfu_boot_failure_t

sl_bt_evt_dfu_boot_failure_id

sl_bt_dfu_flash_set_address

sl_bt_dfu_flash_upload

sl_bt_dfu_flash_upload_finish

sl_bt_cmd_dfu_flash_set_address_id

sl_bt_cmd_dfu_flash_upload_id

sl_bt_cmd_dfu_flash_upload_finish_id

sl_bt_rsp_dfu_flash_set_address_id

sl_bt_rsp_dfu_flash_upload_id

Bluetooth LE

7/1306

sl_bt_rsp_dfu_flash_upload_finish_id

System

sl_bt_evt_system_boot

sl_bt_evt_system_boot_s

major

minor

patch

build

bootloader

hw

hash

sl_bt_evt_system_boot_t

sl_bt_evt_system_boot_id

sl_bt_evt_system_error

sl_bt_evt_system_error_s

reason

data

sl_bt_evt_system_error_t

sl_bt_evt_system_error_id

sl_bt_evt_system_hardware_error

sl_bt_evt_system_hardware_error_s

status

sl_bt_evt_system_hardware_error_t

sl_bt_evt_system_hardware_error_id

sl_bt_evt_system_resource_exhausted

sl_bt_evt_system_resource_exhausted_s

num_buffers_discarded

num_buffer_allocation_failures

num_heap_allocation_failures

sl_bt_evt_system_resource_exhausted_t

sl_bt_evt_system_resource_exhausted_id

sl_bt_evt_system_external_signal

sl_bt_evt_system_external_signal_s

extsignals

sl_bt_evt_system_external_signal_t

sl_bt_evt_system_external_signal_id

sl_bt_evt_system_awake

sl_bt_evt_system_awake_id

sl_bt_evt_system_soft_timer

sl_bt_evt_system_soft_timer_s

handle

sl_bt_evt_system_soft_timer_t

sl_bt_evt_system_soft_timer_id

sl_bt_system_boot_mode_t

Bluetooth LE

8/1306

sl_bt_system_linklayer_config_key_t

sl_bt_system_hello

sl_bt_system_start_bluetooth

sl_bt_system_stop_bluetooth

sl_bt_system_get_version

sl_bt_system_reset

sl_bt_system_halt

sl_bt_system_linklayer_configure

sl_bt_system_set_tx_power

sl_bt_system_get_tx_power_setting

sl_bt_system_set_identity_address

sl_bt_system_get_identity_address

sl_bt_system_get_random_data

sl_bt_system_data_buffer_write

sl_bt_system_data_buffer_clear

sl_bt_system_get_counters

sl_bt_system_set_lazy_soft_timer

sl_bt_cmd_system_hello_id

sl_bt_cmd_system_start_bluetooth_id

sl_bt_cmd_system_stop_bluetooth_id

sl_bt_cmd_system_get_version_id

sl_bt_cmd_system_reset_id

sl_bt_cmd_system_halt_id

sl_bt_cmd_system_linklayer_configure_id

sl_bt_cmd_system_set_tx_power_id

sl_bt_cmd_system_get_tx_power_setting_id

sl_bt_cmd_system_set_identity_address_id

sl_bt_cmd_system_get_identity_address_id

sl_bt_cmd_system_get_random_data_id

sl_bt_cmd_system_data_buffer_write_id

sl_bt_cmd_system_data_buffer_clear_id

sl_bt_cmd_system_get_counters_id

sl_bt_cmd_system_set_lazy_soft_timer_id

sl_bt_rsp_system_hello_id

sl_bt_rsp_system_start_bluetooth_id

sl_bt_rsp_system_stop_bluetooth_id

sl_bt_rsp_system_get_version_id

sl_bt_rsp_system_reset_id

sl_bt_rsp_system_halt_id

sl_bt_rsp_system_linklayer_configure_id

sl_bt_rsp_system_set_tx_power_id

sl_bt_rsp_system_get_tx_power_setting_id

Bluetooth LE

9/1306

sl_bt_rsp_system_set_identity_address_id

sl_bt_rsp_system_get_identity_address_id

sl_bt_rsp_system_get_random_data_id

sl_bt_rsp_system_data_buffer_write_id

sl_bt_rsp_system_data_buffer_clear_id

sl_bt_rsp_system_get_counters_id

sl_bt_rsp_system_set_lazy_soft_timer_id

Resource Report

Connection TX status flags

SL_BT_RESOURCE_CONNECTION_TX_FLAGS_ERROR_PACKET_OVERFLOW

SL_BT_RESOURCE_CONNECTION_TX_FLAGS_ERROR_CORRUPT

sl_bt_evt_resource_status

sl_bt_evt_resource_status_s

free_bytes

sl_bt_evt_resource_status_t

sl_bt_evt_resource_status_id

sl_bt_resource_get_status

sl_bt_resource_set_report_threshold

sl_bt_resource_enable_connection_tx_report

sl_bt_resource_get_connection_tx_status

sl_bt_resource_disable_connection_tx_report

sl_bt_cmd_resource_get_status_id

sl_bt_cmd_resource_set_report_threshold_id

sl_bt_cmd_resource_enable_connection_tx_report_id

sl_bt_cmd_resource_get_connection_tx_status_id

sl_bt_cmd_resource_disable_connection_tx_report_id

sl_bt_rsp_resource_get_status_id

sl_bt_rsp_resource_set_report_threshold_id

sl_bt_rsp_resource_enable_connection_tx_report_id

sl_bt_rsp_resource_get_connection_tx_status_id

sl_bt_rsp_resource_disable_connection_tx_report_id

GAP

sl_bt_gap_address_type_t

sl_bt_gap_phy_t

sl_bt_gap_phy_coding_t

sl_bt_gap_set_privacy_mode

sl_bt_gap_set_data_channel_classification

sl_bt_gap_enable_whitelisting

sl_bt_gap_set_identity_address

sl_bt_cmd_gap_set_privacy_mode_id

sl_bt_cmd_gap_set_data_channel_classification_id

sl_bt_cmd_gap_enable_whitelisting_id

sl_bt_cmd_gap_set_identity_address_id

sl_bt_rsp_gap_set_privacy_mode_id

Bluetooth LE

10/1306

sl_bt_rsp_gap_set_data_channel_classification_id

sl_bt_rsp_gap_enable_whitelisting_id

sl_bt_rsp_gap_set_identity_address_id

Advertiser

Generic Advertising Configuration Flags

SL_BT_ADVERTISER_USE_NONRESOLVABLE_ADDRESS

SL_BT_ADVERTISER_USE_DEVICE_IDENTITY_IN_PRIVACY

SL_BT_ADVERTISER_USE_FILTER_FOR_SCAN_REQUESTS

SL_BT_ADVERTISER_USE_FILTER_FOR_CONNECTION_REQUESTS

sl_bt_evt_advertiser_timeout

sl_bt_evt_advertiser_timeout_s

handle

sl_bt_evt_advertiser_timeout_t

sl_bt_evt_advertiser_timeout_id

sl_bt_evt_advertiser_scan_request

sl_bt_evt_advertiser_scan_request_s

handle

address

address_type

bonding

sl_bt_evt_advertiser_scan_request_t

sl_bt_evt_advertiser_scan_request_id

sl_bt_advertiser_connection_mode_t

sl_bt_advertiser_discovery_mode_t

sl_bt_advertiser_adv_address_type_t

sl_bt_advertiser_packet_type_t

sl_bt_advertiser_create_set

sl_bt_advertiser_configure

sl_bt_advertiser_set_timing

sl_bt_advertiser_set_channel_map

sl_bt_advertiser_set_tx_power

sl_bt_advertiser_set_report_scan_request

sl_bt_advertiser_set_random_address

sl_bt_advertiser_clear_random_address

sl_bt_advertiser_stop

sl_bt_advertiser_delete_set

sl_bt_advertiser_set_phy

sl_bt_advertiser_set_configuration

sl_bt_advertiser_clear_configuration

sl_bt_advertiser_set_data

sl_bt_advertiser_set_long_data

sl_bt_advertiser_start

sl_bt_advertiser_start_periodic_advertising

sl_bt_advertiser_stop_periodic_advertising

Bluetooth LE

11/1306

sl_bt_cmd_advertiser_create_set_id

sl_bt_cmd_advertiser_configure_id

sl_bt_cmd_advertiser_set_timing_id

sl_bt_cmd_advertiser_set_channel_map_id

sl_bt_cmd_advertiser_set_tx_power_id

sl_bt_cmd_advertiser_set_report_scan_request_id

sl_bt_cmd_advertiser_set_random_address_id

sl_bt_cmd_advertiser_clear_random_address_id

sl_bt_cmd_advertiser_stop_id

sl_bt_cmd_advertiser_delete_set_id

sl_bt_cmd_advertiser_set_phy_id

sl_bt_cmd_advertiser_set_configuration_id

sl_bt_cmd_advertiser_clear_configuration_id

sl_bt_cmd_advertiser_set_data_id

sl_bt_cmd_advertiser_set_long_data_id

sl_bt_cmd_advertiser_start_id

sl_bt_cmd_advertiser_start_periodic_advertising_id

sl_bt_cmd_advertiser_stop_periodic_advertising_id

sl_bt_rsp_advertiser_create_set_id

sl_bt_rsp_advertiser_configure_id

sl_bt_rsp_advertiser_set_timing_id

sl_bt_rsp_advertiser_set_channel_map_id

sl_bt_rsp_advertiser_set_tx_power_id

sl_bt_rsp_advertiser_set_report_scan_request_id

sl_bt_rsp_advertiser_set_random_address_id

sl_bt_rsp_advertiser_clear_random_address_id

sl_bt_rsp_advertiser_stop_id

sl_bt_rsp_advertiser_delete_set_id

sl_bt_rsp_advertiser_set_phy_id

sl_bt_rsp_advertiser_set_configuration_id

sl_bt_rsp_advertiser_clear_configuration_id

sl_bt_rsp_advertiser_set_data_id

sl_bt_rsp_advertiser_set_long_data_id

sl_bt_rsp_advertiser_start_id

sl_bt_rsp_advertiser_start_periodic_advertising_id

sl_bt_rsp_advertiser_stop_periodic_advertising_id

Legacy Advertiser

sl_bt_legacy_advertiser_connection_mode_t

sl_bt_legacy_advertiser_directed_connection_mode_t

sl_bt_legacy_advertiser_set_data

sl_bt_legacy_advertiser_generate_data

sl_bt_legacy_advertiser_start

sl_bt_legacy_advertiser_start_directed

sl_bt_cmd_legacy_advertiser_set_data_id

Bluetooth LE

12/1306

sl_bt_cmd_legacy_advertiser_generate_data_id

sl_bt_cmd_legacy_advertiser_start_id

sl_bt_cmd_legacy_advertiser_start_directed_id

sl_bt_rsp_legacy_advertiser_set_data_id

sl_bt_rsp_legacy_advertiser_generate_data_id

sl_bt_rsp_legacy_advertiser_start_id

sl_bt_rsp_legacy_advertiser_start_directed_id

Extended Advertiser

Extended Advertising Configuration Flags

SL_BT_EXTENDED_ADVERTISER_ANONYMOUS_ADVERTISING

SL_BT_EXTENDED_ADVERTISER_INCLUDE_TX_POWER

sl_bt_extended_advertiser_connection_mode_t

sl_bt_extended_advertiser_set_phy

sl_bt_extended_advertiser_set_data

sl_bt_extended_advertiser_set_long_data

sl_bt_extended_advertiser_generate_data

sl_bt_extended_advertiser_start

sl_bt_extended_advertiser_start_directed

sl_bt_cmd_extended_advertiser_set_phy_id

sl_bt_cmd_extended_advertiser_set_data_id

sl_bt_cmd_extended_advertiser_set_long_data_id

sl_bt_cmd_extended_advertiser_generate_data_id

sl_bt_cmd_extended_advertiser_start_id

sl_bt_cmd_extended_advertiser_start_directed_id

sl_bt_rsp_extended_advertiser_set_phy_id

sl_bt_rsp_extended_advertiser_set_data_id

sl_bt_rsp_extended_advertiser_set_long_data_id

sl_bt_rsp_extended_advertiser_generate_data_id

sl_bt_rsp_extended_advertiser_start_id

sl_bt_rsp_extended_advertiser_start_directed_id

Periodic Advertiser

Periodic Advertising Configuration Flags

SL_BT_PERIODIC_ADVERTISER_INCLUDE_TX_POWER

SL_BT_PERIODIC_ADVERTISER_AUTO_START_EXTENDED_ADVERTISING

sl_bt_periodic_advertiser_set_data

sl_bt_periodic_advertiser_set_long_data

sl_bt_periodic_advertiser_start

sl_bt_periodic_advertiser_stop

sl_bt_cmd_periodic_advertiser_set_data_id

sl_bt_cmd_periodic_advertiser_set_long_data_id

sl_bt_cmd_periodic_advertiser_start_id

sl_bt_cmd_periodic_advertiser_stop_id

sl_bt_rsp_periodic_advertiser_set_data_id

sl_bt_rsp_periodic_advertiser_set_long_data_id

Bluetooth LE

13/1306

sl_bt_rsp_periodic_advertiser_start_id

sl_bt_rsp_periodic_advertiser_stop_id

Scanner

Event Type Flags of Advertisement Reports

SL_BT_SCANNER_EVENT_FLAG_CONNECTABLE

SL_BT_SCANNER_EVENT_FLAG_SCANNABLE

SL_BT_SCANNER_EVENT_FLAG_DIRECTED

SL_BT_SCANNER_EVENT_FLAG_SCAN_RESPONSE

sl_bt_evt_scanner_legacy_advertisement_report

sl_bt_evt_scanner_legacy_advertisement_report_s

event_flags

address

address_type

bonding

rssi

channel

target_address

target_address_type

data

sl_bt_evt_scanner_legacy_advertisement_report_t

sl_bt_evt_scanner_legacy_advertisement_report_id

sl_bt_evt_scanner_extended_advertisement_report

sl_bt_evt_scanner_extended_advertisement_report_s

event_flags

address

address_type

bonding

rssi

channel

target_address

target_address_type

adv_sid

primary_phy

secondary_phy

tx_power

periodic_interval

data_completeness

counter

data

sl_bt_evt_scanner_extended_advertisement_report_t

sl_bt_evt_scanner_extended_advertisement_report_id

sl_bt_evt_scanner_scan_report

sl_bt_evt_scanner_scan_report_s

packet_type

Bluetooth LE

14/1306

address

address_type

bonding

primary_phy

secondary_phy

adv_sid

tx_power

rssi

channel

periodic_interval

data

sl_bt_evt_scanner_scan_report_t

sl_bt_evt_scanner_scan_report_id

sl_bt_scanner_discover_mode_t

sl_bt_scanner_scan_mode_t

sl_bt_scanner_scan_phy_t

sl_bt_scanner_data_status_t

sl_bt_scanner_filter_policy_t

sl_bt_scanner_set_parameters

sl_bt_scanner_set_parameters_and_filter

sl_bt_scanner_stop

sl_bt_scanner_set_timing

sl_bt_scanner_set_mode

sl_bt_scanner_start

sl_bt_cmd_scanner_set_parameters_id

sl_bt_cmd_scanner_set_parameters_and_filter_id

sl_bt_cmd_scanner_stop_id

sl_bt_cmd_scanner_set_timing_id

sl_bt_cmd_scanner_set_mode_id

sl_bt_cmd_scanner_start_id

sl_bt_rsp_scanner_set_parameters_id

sl_bt_rsp_scanner_set_parameters_and_filter_id

sl_bt_rsp_scanner_stop_id

sl_bt_rsp_scanner_set_timing_id

sl_bt_rsp_scanner_set_mode_id

sl_bt_rsp_scanner_start_id

Synchronization

sl_bt_evt_sync_opened

sl_bt_evt_sync_opened_s

sync

adv_sid

address

address_type

adv_phy

Bluetooth LE

15/1306

adv_interval

clock_accuracy

bonding

sl_bt_evt_sync_opened_t

sl_bt_evt_sync_opened_id

sl_bt_evt_sync_transfer_received

sl_bt_evt_sync_transfer_received_s

status

sync

service_data

connection

adv_sid

address

address_type

adv_phy

adv_interval

clock_accuracy

bonding

sl_bt_evt_sync_transfer_received_t

sl_bt_evt_sync_transfer_received_id

sl_bt_evt_sync_data

sl_bt_evt_sync_data_s

sync

tx_power

rssi

data_status

data

sl_bt_evt_sync_data_t

sl_bt_evt_sync_data_id

sl_bt_evt_sync_closed

sl_bt_evt_sync_closed_s

reason

sync

sl_bt_evt_sync_closed_t

sl_bt_evt_sync_closed_id

sl_bt_sync_reporting_mode_t

sl_bt_sync_advertiser_clock_accuracy_t

sl_bt_sync_set_parameters

sl_bt_sync_open

sl_bt_sync_set_reporting_mode

sl_bt_sync_update_sync_parameters

sl_bt_sync_close

sl_bt_cmd_sync_set_parameters_id

sl_bt_cmd_sync_open_id

Bluetooth LE

16/1306

sl_bt_cmd_sync_set_reporting_mode_id

sl_bt_cmd_sync_update_sync_parameters_id

sl_bt_cmd_sync_close_id

sl_bt_rsp_sync_set_parameters_id

sl_bt_rsp_sync_open_id

sl_bt_rsp_sync_set_reporting_mode_id

sl_bt_rsp_sync_update_sync_parameters_id

sl_bt_rsp_sync_close_id

Periodic Advertising Sync Scanner

sl_bt_sync_scanner_set_sync_parameters

sl_bt_sync_scanner_open

sl_bt_cmd_sync_scanner_set_sync_parameters_id

sl_bt_cmd_sync_scanner_open_id

sl_bt_rsp_sync_scanner_set_sync_parameters_id

sl_bt_rsp_sync_scanner_open_id

PAST Receiver

sl_bt_past_receiver_mode_t

sl_bt_past_receiver_set_default_sync_receive_parameters

sl_bt_past_receiver_set_sync_receive_parameters

sl_bt_cmd_past_receiver_set_default_sync_receive_parameters_id

sl_bt_cmd_past_receiver_set_sync_receive_parameters_id

sl_bt_rsp_past_receiver_set_default_sync_receive_parameters_id

sl_bt_rsp_past_receiver_set_sync_receive_parameters_id

Advertiser PAST

sl_bt_advertiser_past_transfer

sl_bt_cmd_advertiser_past_transfer_id

sl_bt_rsp_advertiser_past_transfer_id

Sync PAST

sl_bt_sync_past_transfer

sl_bt_cmd_sync_past_transfer_id

sl_bt_rsp_sync_past_transfer_id

Periodic Advertising without responses Synchronization

sl_bt_evt_periodic_sync_opened

sl_bt_evt_periodic_sync_opened_s

sync

adv_sid

address

address_type

adv_phy

adv_interval

clock_accuracy

bonding

sl_bt_evt_periodic_sync_opened_t

sl_bt_evt_periodic_sync_opened_id

Bluetooth LE

17/1306

sl_bt_evt_periodic_sync_transfer_received

sl_bt_evt_periodic_sync_transfer_received_s

status

sync

service_data

connection

adv_sid

address

address_type

adv_phy

adv_interval

clock_accuracy

bonding

sl_bt_evt_periodic_sync_transfer_received_t

sl_bt_evt_periodic_sync_transfer_received_id

sl_bt_evt_periodic_sync_report

sl_bt_evt_periodic_sync_report_s

sync

tx_power

rssi

cte_type

data_status

counter

data

sl_bt_evt_periodic_sync_report_t

sl_bt_evt_periodic_sync_report_id

Periodic Advertising with responses Synchronization

sl_bt_evt_pawr_sync_opened

sl_bt_evt_pawr_sync_opened_s

sync

adv_sid

address

address_type

adv_phy

adv_interval

clock_accuracy

num_subevents

subevent_interval

response_slot_delay

response_slot_spacing

bonding

sl_bt_evt_pawr_sync_opened_t

sl_bt_evt_pawr_sync_opened_id

sl_bt_evt_pawr_sync_transfer_received

Bluetooth LE

18/1306

sl_bt_evt_pawr_sync_transfer_received_s

status

sync

service_data

connection

adv_sid

address

address_type

adv_phy

adv_interval

clock_accuracy

num_subevents

subevent_interval

response_slot_delay

response_slot_spacing

bonding

sl_bt_evt_pawr_sync_transfer_received_t

sl_bt_evt_pawr_sync_transfer_received_id

sl_bt_evt_pawr_sync_subevent_report

sl_bt_evt_pawr_sync_subevent_report_s

sync

tx_power

rssi

cte_type

event_counter

subevent

data_status

counter

data

sl_bt_evt_pawr_sync_subevent_report_t

sl_bt_evt_pawr_sync_subevent_report_id

sl_bt_pawr_sync_set_sync_subevents

sl_bt_pawr_sync_set_response_data

sl_bt_cmd_pawr_sync_set_sync_subevents_id

sl_bt_cmd_pawr_sync_set_response_data_id

sl_bt_rsp_pawr_sync_set_sync_subevents_id

sl_bt_rsp_pawr_sync_set_response_data_id

PAwR Advertiser

sl_bt_evt_pawr_advertiser_subevent_data_request

sl_bt_evt_pawr_advertiser_subevent_data_request_s

advertising_set

subevent_start

subevent_data_count

sl_bt_evt_pawr_advertiser_subevent_data_request_t

Bluetooth LE

19/1306

sl_bt_evt_pawr_advertiser_subevent_data_request_id

sl_bt_evt_pawr_advertiser_subevent_tx_failed

sl_bt_evt_pawr_advertiser_subevent_tx_failed_s

advertising_set

subevent

sl_bt_evt_pawr_advertiser_subevent_tx_failed_t

sl_bt_evt_pawr_advertiser_subevent_tx_failed_id

sl_bt_evt_pawr_advertiser_response_report

sl_bt_evt_pawr_advertiser_response_report_s

advertising_set

subevent

tx_power

rssi

cte_type

response_slot

data_status

counter

data

sl_bt_evt_pawr_advertiser_response_report_t

sl_bt_evt_pawr_advertiser_response_report_id

sl_bt_pawr_advertiser_start

sl_bt_pawr_advertiser_set_subevent_data

sl_bt_pawr_advertiser_create_connection

sl_bt_pawr_advertiser_stop

sl_bt_cmd_pawr_advertiser_start_id

sl_bt_cmd_pawr_advertiser_set_subevent_data_id

sl_bt_cmd_pawr_advertiser_create_connection_id

sl_bt_cmd_pawr_advertiser_stop_id

sl_bt_rsp_pawr_advertiser_start_id

sl_bt_rsp_pawr_advertiser_set_subevent_data_id

sl_bt_rsp_pawr_advertiser_create_connection_id

sl_bt_rsp_pawr_advertiser_stop_id

Connection

Transmit Power Reporting Constants

SL_BT_CONNECTION_TX_POWER_UNMANAGED

SL_BT_CONNECTION_TX_POWER_UNAVAILABLE

SL_BT_CONNECTION_TX_POWER_CHANGE_UNAVAILABLE

sl_bt_evt_connection_opened

sl_bt_evt_connection_opened_s

address

address_type

master

connection

bonding

Bluetooth LE

20/1306

advertiser

sync

sl_bt_evt_connection_opened_t

sl_bt_evt_connection_opened_id

sl_bt_evt_connection_parameters

sl_bt_evt_connection_parameters_s

connection

interval

latency

timeout

security_mode

txsize

sl_bt_evt_connection_parameters_t

sl_bt_evt_connection_parameters_id

sl_bt_evt_connection_phy_status

sl_bt_evt_connection_phy_status_s

connection

phy

sl_bt_evt_connection_phy_status_t

sl_bt_evt_connection_phy_status_id

sl_bt_evt_connection_rssi

sl_bt_evt_connection_rssi_s

connection

status

rssi

sl_bt_evt_connection_rssi_t

sl_bt_evt_connection_rssi_id

sl_bt_evt_connection_get_remote_tx_power_completed

sl_bt_evt_connection_get_remote_tx_power_completed_s

status

connection

phy

power_level

flags

delta

sl_bt_evt_connection_get_remote_tx_power_completed_t

sl_bt_evt_connection_get_remote_tx_power_completed_id

sl_bt_evt_connection_tx_power

sl_bt_evt_connection_tx_power_s

connection

phy

power_level

flags

delta

Bluetooth LE

21/1306

sl_bt_evt_connection_tx_power_t

sl_bt_evt_connection_tx_power_id

sl_bt_evt_connection_remote_tx_power

sl_bt_evt_connection_remote_tx_power_s

connection

phy

power_level

flags

delta

sl_bt_evt_connection_remote_tx_power_t

sl_bt_evt_connection_remote_tx_power_id

sl_bt_evt_connection_remote_used_features

sl_bt_evt_connection_remote_used_features_s

connection

features

sl_bt_evt_connection_remote_used_features_t

sl_bt_evt_connection_remote_used_features_id

sl_bt_evt_connection_data_length

sl_bt_evt_connection_data_length_s

connection

tx_data_len

tx_time_us

rx_data_len

rx_time_us

sl_bt_evt_connection_data_length_t

sl_bt_evt_connection_data_length_id

sl_bt_evt_connection_closed

sl_bt_evt_connection_closed_s

reason

connection

sl_bt_evt_connection_closed_t

sl_bt_evt_connection_closed_id

sl_bt_connection_security_t

sl_bt_connection_power_reporting_mode_t

sl_bt_connection_tx_power_flag_t

sl_bt_connection_set_default_parameters

sl_bt_connection_set_default_preferred_phy

sl_bt_connection_set_default_data_length

sl_bt_connection_open

sl_bt_connection_set_parameters

sl_bt_connection_set_preferred_phy

sl_bt_connection_disable_slave_latency

Bluetooth LE

22/1306

sl_bt_connection_get_rssi

sl_bt_connection_read_channel_map

sl_bt_connection_set_power_reporting

sl_bt_connection_set_remote_power_reporting

sl_bt_connection_get_tx_power

sl_bt_connection_get_remote_tx_power

sl_bt_connection_set_tx_power

sl_bt_connection_read_remote_used_features

sl_bt_connection_get_security_status

sl_bt_connection_set_data_length

sl_bt_connection_close

sl_bt_connection_forcefully_close

sl_bt_cmd_connection_set_default_parameters_id

sl_bt_cmd_connection_set_default_preferred_phy_id

sl_bt_cmd_connection_set_default_data_length_id

sl_bt_cmd_connection_open_id

sl_bt_cmd_connection_set_parameters_id

sl_bt_cmd_connection_set_preferred_phy_id

sl_bt_cmd_connection_disable_slave_latency_id

sl_bt_cmd_connection_get_rssi_id

sl_bt_cmd_connection_read_channel_map_id

sl_bt_cmd_connection_set_power_reporting_id

sl_bt_cmd_connection_set_remote_power_reporting_id

sl_bt_cmd_connection_get_tx_power_id

sl_bt_cmd_connection_get_remote_tx_power_id

sl_bt_cmd_connection_set_tx_power_id

sl_bt_cmd_connection_read_remote_used_features_id

sl_bt_cmd_connection_get_security_status_id

sl_bt_cmd_connection_set_data_length_id

sl_bt_cmd_connection_close_id

sl_bt_cmd_connection_forcefully_close_id

sl_bt_rsp_connection_set_default_parameters_id

sl_bt_rsp_connection_set_default_preferred_phy_id

sl_bt_rsp_connection_set_default_data_length_id

sl_bt_rsp_connection_open_id

sl_bt_rsp_connection_set_parameters_id

sl_bt_rsp_connection_set_preferred_phy_id

sl_bt_rsp_connection_disable_slave_latency_id

sl_bt_rsp_connection_get_rssi_id

sl_bt_rsp_connection_read_channel_map_id

sl_bt_rsp_connection_set_power_reporting_id

sl_bt_rsp_connection_set_remote_power_reporting_id

Bluetooth LE

23/1306

sl_bt_rsp_connection_get_tx_power_id

sl_bt_rsp_connection_get_remote_tx_power_id

sl_bt_rsp_connection_set_tx_power_id

sl_bt_rsp_connection_read_remote_used_features_id

sl_bt_rsp_connection_get_security_status_id

sl_bt_rsp_connection_set_data_length_id

sl_bt_rsp_connection_close_id

sl_bt_rsp_connection_forcefully_close_id

GATT Client

sl_bt_evt_gatt_mtu_exchanged

sl_bt_evt_gatt_mtu_exchanged_s

connection

mtu

sl_bt_evt_gatt_mtu_exchanged_t

sl_bt_evt_gatt_mtu_exchanged_id

sl_bt_evt_gatt_service

sl_bt_evt_gatt_service_s

connection

service

uuid

sl_bt_evt_gatt_service_t

sl_bt_evt_gatt_service_id

sl_bt_evt_gatt_characteristic

sl_bt_evt_gatt_characteristic_s

connection

characteristic

properties

uuid

sl_bt_evt_gatt_characteristic_t

sl_bt_evt_gatt_characteristic_id

sl_bt_evt_gatt_descriptor

sl_bt_evt_gatt_descriptor_s

connection

descriptor

uuid

sl_bt_evt_gatt_descriptor_t

sl_bt_evt_gatt_descriptor_id

sl_bt_evt_gatt_characteristic_value

sl_bt_evt_gatt_characteristic_value_s

connection

characteristic

att_opcode

offset

value

Bluetooth LE

24/1306

sl_bt_evt_gatt_characteristic_value_t

sl_bt_evt_gatt_characteristic_value_id

sl_bt_evt_gatt_descriptor_value

sl_bt_evt_gatt_descriptor_value_s

connection

descriptor

offset

value

sl_bt_evt_gatt_descriptor_value_t

sl_bt_evt_gatt_descriptor_value_id

sl_bt_evt_gatt_procedure_completed

sl_bt_evt_gatt_procedure_completed_s

connection

result

sl_bt_evt_gatt_procedure_completed_t

sl_bt_evt_gatt_procedure_completed_id

sl_bt_gatt_att_opcode_t

sl_bt_gatt_client_config_flag_t

sl_bt_gatt_execute_write_flag_t

sl_bt_gatt_set_max_mtu

sl_bt_gatt_discover_primary_services

sl_bt_gatt_discover_primary_services_by_uuid

sl_bt_gatt_find_included_services

sl_bt_gatt_discover_characteristics

sl_bt_gatt_discover_characteristics_by_uuid

sl_bt_gatt_discover_descriptors

sl_bt_gatt_discover_characteristic_descriptors

sl_bt_gatt_set_characteristic_notification

sl_bt_gatt_send_characteristic_confirmation

sl_bt_gatt_read_characteristic_value

sl_bt_gatt_read_characteristic_value_from_offset

sl_bt_gatt_read_multiple_characteristic_values

sl_bt_gatt_read_characteristic_value_by_uuid

sl_bt_gatt_write_characteristic_value

sl_bt_gatt_write_characteristic_value_without_response

sl_bt_gatt_prepare_characteristic_value_write

sl_bt_gatt_prepare_characteristic_value_reliable_write

sl_bt_gatt_execute_characteristic_value_write

sl_bt_gatt_read_descriptor_value

sl_bt_gatt_write_descriptor_value

sl_bt_cmd_gatt_set_max_mtu_id

sl_bt_cmd_gatt_discover_primary_services_id

Bluetooth LE

25/1306

sl_bt_cmd_gatt_discover_primary_services_by_uuid_id

sl_bt_cmd_gatt_find_included_services_id

sl_bt_cmd_gatt_discover_characteristics_id

sl_bt_cmd_gatt_discover_characteristics_by_uuid_id

sl_bt_cmd_gatt_discover_descriptors_id

sl_bt_cmd_gatt_discover_characteristic_descriptors_id

sl_bt_cmd_gatt_set_characteristic_notification_id

sl_bt_cmd_gatt_send_characteristic_confirmation_id

sl_bt_cmd_gatt_read_characteristic_value_id

sl_bt_cmd_gatt_read_characteristic_value_from_offset_id

sl_bt_cmd_gatt_read_multiple_characteristic_values_id

sl_bt_cmd_gatt_read_characteristic_value_by_uuid_id

sl_bt_cmd_gatt_write_characteristic_value_id

sl_bt_cmd_gatt_write_characteristic_value_without_response_id

sl_bt_cmd_gatt_prepare_characteristic_value_write_id

sl_bt_cmd_gatt_prepare_characteristic_value_reliable_write_id

sl_bt_cmd_gatt_execute_characteristic_value_write_id

sl_bt_cmd_gatt_read_descriptor_value_id

sl_bt_cmd_gatt_write_descriptor_value_id

sl_bt_rsp_gatt_set_max_mtu_id

sl_bt_rsp_gatt_discover_primary_services_id

sl_bt_rsp_gatt_discover_primary_services_by_uuid_id

sl_bt_rsp_gatt_find_included_services_id

sl_bt_rsp_gatt_discover_characteristics_id

sl_bt_rsp_gatt_discover_characteristics_by_uuid_id

sl_bt_rsp_gatt_discover_descriptors_id

sl_bt_rsp_gatt_discover_characteristic_descriptors_id

sl_bt_rsp_gatt_set_characteristic_notification_id

sl_bt_rsp_gatt_send_characteristic_confirmation_id

sl_bt_rsp_gatt_read_characteristic_value_id

sl_bt_rsp_gatt_read_characteristic_value_from_offset_id

sl_bt_rsp_gatt_read_multiple_characteristic_values_id

sl_bt_rsp_gatt_read_characteristic_value_by_uuid_id

sl_bt_rsp_gatt_write_characteristic_value_id

sl_bt_rsp_gatt_write_characteristic_value_without_response_id

sl_bt_rsp_gatt_prepare_characteristic_value_write_id

sl_bt_rsp_gatt_prepare_characteristic_value_reliable_write_id

sl_bt_rsp_gatt_execute_characteristic_value_write_id

sl_bt_rsp_gatt_read_descriptor_value_id

sl_bt_rsp_gatt_write_descriptor_value_id

GATT Database

GATT Service Property Flags

SL_BT_GATTDB_ADVERTISED_SERVICE

GATT Attribute Security Requirement Flags

Bluetooth LE

26/1306

SL_BT_GATTDB_ENCRYPTED_READ

SL_BT_GATTDB_BONDED_READ

SL_BT_GATTDB_AUTHENTICATED_READ

SL_BT_GATTDB_ENCRYPTED_WRITE

SL_BT_GATTDB_BONDED_WRITE

SL_BT_GATTDB_AUTHENTICATED_WRITE

SL_BT_GATTDB_ENCRYPTED_NOTIFY

SL_BT_GATTDB_BONDED_NOTIFY

SL_BT_GATTDB_AUTHENTICATED_NOTIFY

GATT Database Flags

SL_BT_GATTDB_NO_AUTO_CCCD

GATT Characteristic Property Flags

SL_BT_GATTDB_CHARACTERISTIC_READ

SL_BT_GATTDB_CHARACTERISTIC_WRITE_NO_RESPONSE

SL_BT_GATTDB_CHARACTERISTIC_WRITE

SL_BT_GATTDB_CHARACTERISTIC_NOTIFY

SL_BT_GATTDB_CHARACTERISTIC_INDICATE

SL_BT_GATTDB_CHARACTERISTIC_EXTENDED_PROPS

SL_BT_GATTDB_CHARACTERISTIC_RELIABLE_WRITE

GATT Descriptor Property Flags

SL_BT_GATTDB_DESCRIPTOR_READ

SL_BT_GATTDB_DESCRIPTOR_WRITE

SL_BT_GATTDB_DESCRIPTOR_LOCAL_ONLY

sl_bt_gattdb_service_type_t

sl_bt_gattdb_value_type_t

sl_bt_gattdb_new_session

sl_bt_gattdb_add_service

sl_bt_gattdb_remove_service

sl_bt_gattdb_add_included_service

sl_bt_gattdb_remove_included_service

sl_bt_gattdb_add_uuid16_characteristic

sl_bt_gattdb_add_uuid128_characteristic

sl_bt_gattdb_remove_characteristic

sl_bt_gattdb_add_uuid16_descriptor

sl_bt_gattdb_add_uuid128_descriptor

sl_bt_gattdb_remove_descriptor

sl_bt_gattdb_start_service

sl_bt_gattdb_stop_service

sl_bt_gattdb_start_characteristic

sl_bt_gattdb_stop_characteristic

sl_bt_gattdb_commit

sl_bt_gattdb_abort

Bluetooth LE

27/1306

sl_bt_cmd_gattdb_new_session_id

sl_bt_cmd_gattdb_add_service_id

sl_bt_cmd_gattdb_remove_service_id

sl_bt_cmd_gattdb_add_included_service_id

sl_bt_cmd_gattdb_remove_included_service_id

sl_bt_cmd_gattdb_add_uuid16_characteristic_id

sl_bt_cmd_gattdb_add_uuid128_characteristic_id

sl_bt_cmd_gattdb_remove_characteristic_id

sl_bt_cmd_gattdb_add_uuid16_descriptor_id

sl_bt_cmd_gattdb_add_uuid128_descriptor_id

sl_bt_cmd_gattdb_remove_descriptor_id

sl_bt_cmd_gattdb_start_service_id

sl_bt_cmd_gattdb_stop_service_id

sl_bt_cmd_gattdb_start_characteristic_id

sl_bt_cmd_gattdb_stop_characteristic_id

sl_bt_cmd_gattdb_commit_id

sl_bt_cmd_gattdb_abort_id

sl_bt_rsp_gattdb_new_session_id

sl_bt_rsp_gattdb_add_service_id

sl_bt_rsp_gattdb_remove_service_id

sl_bt_rsp_gattdb_add_included_service_id

sl_bt_rsp_gattdb_remove_included_service_id

sl_bt_rsp_gattdb_add_uuid16_characteristic_id

sl_bt_rsp_gattdb_add_uuid128_characteristic_id

sl_bt_rsp_gattdb_remove_characteristic_id

sl_bt_rsp_gattdb_add_uuid16_descriptor_id

sl_bt_rsp_gattdb_add_uuid128_descriptor_id

sl_bt_rsp_gattdb_remove_descriptor_id

sl_bt_rsp_gattdb_start_service_id

sl_bt_rsp_gattdb_stop_service_id

sl_bt_rsp_gattdb_start_characteristic_id

sl_bt_rsp_gattdb_stop_characteristic_id

sl_bt_rsp_gattdb_commit_id

sl_bt_rsp_gattdb_abort_id

GATT Server

sl_bt_evt_gatt_server_attribute_value

sl_bt_evt_gatt_server_attribute_value_s

connection

attribute

att_opcode

offset

value

sl_bt_evt_gatt_server_attribute_value_t

sl_bt_evt_gatt_server_attribute_value_id

Bluetooth LE

28/1306

sl_bt_evt_gatt_server_user_read_request

sl_bt_evt_gatt_server_user_read_request_s

connection

characteristic

att_opcode

offset

sl_bt_evt_gatt_server_user_read_request_t

sl_bt_evt_gatt_server_user_read_request_id

sl_bt_evt_gatt_server_user_write_request

sl_bt_evt_gatt_server_user_write_request_s

connection

characteristic

att_opcode

offset

value

sl_bt_evt_gatt_server_user_write_request_t

sl_bt_evt_gatt_server_user_write_request_id

sl_bt_evt_gatt_server_characteristic_status

sl_bt_evt_gatt_server_characteristic_status_s

connection

characteristic

status_flags

client_config_flags

client_config

sl_bt_evt_gatt_server_characteristic_status_t

sl_bt_evt_gatt_server_characteristic_status_id

sl_bt_evt_gatt_server_execute_write_completed

sl_bt_evt_gatt_server_execute_write_completed_s

connection

result

sl_bt_evt_gatt_server_execute_write_completed_t

sl_bt_evt_gatt_server_execute_write_completed_id

sl_bt_evt_gatt_server_indication_timeout

sl_bt_evt_gatt_server_indication_timeout_s

connection

sl_bt_evt_gatt_server_indication_timeout_t

sl_bt_evt_gatt_server_indication_timeout_id

sl_bt_evt_gatt_server_notification_tx_completed

sl_bt_evt_gatt_server_notification_tx_completed_s

connection

count

sl_bt_evt_gatt_server_notification_tx_completed_t

Bluetooth LE

29/1306

sl_bt_evt_gatt_server_notification_tx_completed_id

sl_bt_gatt_server_client_configuration_t

sl_bt_gatt_server_characteristic_status_flag_t

sl_bt_gatt_server_set_max_mtu

sl_bt_gatt_server_get_mtu

sl_bt_gatt_server_find_attribute

sl_bt_gatt_server_read_attribute_value

sl_bt_gatt_server_read_attribute_type

sl_bt_gatt_server_write_attribute_value

sl_bt_gatt_server_send_user_read_response

sl_bt_gatt_server_send_user_write_response

sl_bt_gatt_server_send_notification

sl_bt_gatt_server_send_indication

sl_bt_gatt_server_notify_all

sl_bt_gatt_server_read_client_configuration

sl_bt_gatt_server_send_user_prepare_write_response

sl_bt_gatt_server_set_capabilities

sl_bt_gatt_server_enable_capabilities

sl_bt_gatt_server_disable_capabilities

sl_bt_gatt_server_get_enabled_capabilities

sl_bt_gatt_server_read_client_supported_features

sl_bt_cmd_gatt_server_set_max_mtu_id

sl_bt_cmd_gatt_server_get_mtu_id

sl_bt_cmd_gatt_server_find_attribute_id

sl_bt_cmd_gatt_server_read_attribute_value_id

sl_bt_cmd_gatt_server_read_attribute_type_id

sl_bt_cmd_gatt_server_write_attribute_value_id

sl_bt_cmd_gatt_server_send_user_read_response_id

sl_bt_cmd_gatt_server_send_user_write_response_id

sl_bt_cmd_gatt_server_send_notification_id

sl_bt_cmd_gatt_server_send_indication_id

sl_bt_cmd_gatt_server_notify_all_id

sl_bt_cmd_gatt_server_read_client_configuration_id

sl_bt_cmd_gatt_server_send_user_prepare_write_response_id

sl_bt_cmd_gatt_server_set_capabilities_id

sl_bt_cmd_gatt_server_enable_capabilities_id

sl_bt_cmd_gatt_server_disable_capabilities_id

sl_bt_cmd_gatt_server_get_enabled_capabilities_id

sl_bt_cmd_gatt_server_read_client_supported_features_id

sl_bt_rsp_gatt_server_set_max_mtu_id

sl_bt_rsp_gatt_server_get_mtu_id

sl_bt_rsp_gatt_server_find_attribute_id

Bluetooth LE

30/1306

sl_bt_rsp_gatt_server_read_attribute_value_id

sl_bt_rsp_gatt_server_read_attribute_type_id

sl_bt_rsp_gatt_server_write_attribute_value_id

sl_bt_rsp_gatt_server_send_user_read_response_id

sl_bt_rsp_gatt_server_send_user_write_response_id

sl_bt_rsp_gatt_server_send_notification_id

sl_bt_rsp_gatt_server_send_indication_id

sl_bt_rsp_gatt_server_notify_all_id

sl_bt_rsp_gatt_server_read_client_configuration_id

sl_bt_rsp_gatt_server_send_user_prepare_write_response_id

sl_bt_rsp_gatt_server_set_capabilities_id

sl_bt_rsp_gatt_server_enable_capabilities_id

sl_bt_rsp_gatt_server_disable_capabilities_id

sl_bt_rsp_gatt_server_get_enabled_capabilities_id

sl_bt_rsp_gatt_server_read_client_supported_features_id

NVM

Defined Keys

SL_BT_NVM_KEY_CTUNE

sl_bt_nvm_save

sl_bt_nvm_load

sl_bt_nvm_erase

sl_bt_nvm_erase_all

sl_bt_cmd_nvm_save_id

sl_bt_cmd_nvm_load_id

sl_bt_cmd_nvm_erase_id

sl_bt_cmd_nvm_erase_all_id

sl_bt_rsp_nvm_save_id

sl_bt_rsp_nvm_load_id

sl_bt_rsp_nvm_erase_id

sl_bt_rsp_nvm_erase_all_id

Testing Commands

sl_bt_evt_test_dtm_completed

sl_bt_evt_test_dtm_completed_s

result

number_of_packets

sl_bt_evt_test_dtm_completed_t

sl_bt_evt_test_dtm_completed_id

sl_bt_test_packet_type_t

sl_bt_test_phy_t

sl_bt_test_dtm_tx_v4

sl_bt_test_dtm_tx_cw

sl_bt_test_dtm_rx

sl_bt_test_dtm_end

sl_bt_cmd_test_dtm_tx_v4_id

Bluetooth LE

31/1306

sl_bt_cmd_test_dtm_tx_cw_id

sl_bt_cmd_test_dtm_rx_id

sl_bt_cmd_test_dtm_end_id

sl_bt_rsp_test_dtm_tx_v4_id

sl_bt_rsp_test_dtm_tx_cw_id

sl_bt_rsp_test_dtm_rx_id

sl_bt_rsp_test_dtm_end_id

Security Manager

Security Manager configuration flags

SL_BT_SM_CONFIGURATION_MITM_REQUIRED

SL_BT_SM_CONFIGURATION_BONDING_REQUIRED

SL_BT_SM_CONFIGURATION_SC_ONLY

SL_BT_SM_CONFIGURATION_BONDING_REQUEST_REQUIRED

SL_BT_SM_CONFIGURATION_CONNECTIONS_FROM_BONDED_DEVICES_ONLY

SL_BT_SM_CONFIGURATION_PREFER_MITM

SL_BT_SM_CONFIGURATION_OOB_FROM_BOTH_DEVICES_REQUIRED

SL_BT_SM_CONFIGURATION_REJECT_DEBUG_KEYS

sl_bt_evt_sm_passkey_display

sl_bt_evt_sm_passkey_display_s

connection

passkey

sl_bt_evt_sm_passkey_display_t

sl_bt_evt_sm_passkey_display_id

sl_bt_evt_sm_passkey_request

sl_bt_evt_sm_passkey_request_s

connection

sl_bt_evt_sm_passkey_request_t

sl_bt_evt_sm_passkey_request_id

sl_bt_evt_sm_confirm_passkey

sl_bt_evt_sm_confirm_passkey_s

connection

passkey

sl_bt_evt_sm_confirm_passkey_t

sl_bt_evt_sm_confirm_passkey_id

sl_bt_evt_sm_bonded

sl_bt_evt_sm_bonded_s

connection

bonding

security_mode

sl_bt_evt_sm_bonded_t

sl_bt_evt_sm_bonded_id

sl_bt_evt_sm_bonding_failed

sl_bt_evt_sm_bonding_failed_s

connection

Bluetooth LE

32/1306

reason

sl_bt_evt_sm_bonding_failed_t

sl_bt_evt_sm_bonding_failed_id

sl_bt_evt_sm_confirm_bonding

sl_bt_evt_sm_confirm_bonding_s

connection

bonding_handle

sl_bt_evt_sm_confirm_bonding_t

sl_bt_evt_sm_confirm_bonding_id

sl_bt_sm_io_capability_t

sl_bt_sm_configure

sl_bt_sm_set_minimum_key_size

sl_bt_sm_set_debug_mode

sl_bt_sm_add_to_whitelist

sl_bt_sm_store_bonding_configuration

sl_bt_sm_set_bondable_mode

sl_bt_sm_set_passkey

sl_bt_sm_increase_security

sl_bt_sm_enter_passkey

sl_bt_sm_passkey_confirm

sl_bt_sm_bonding_confirm

sl_bt_sm_delete_bonding

sl_bt_sm_delete_bondings

sl_bt_sm_get_bonding_handles

sl_bt_sm_get_bonding_details

sl_bt_sm_find_bonding_by_address

sl_bt_sm_set_bonding_key

sl_bt_sm_set_legacy_oob

sl_bt_sm_set_oob

sl_bt_sm_set_remote_oob

sl_bt_sm_set_bonding_data

sl_bt_cmd_sm_configure_id

sl_bt_cmd_sm_set_minimum_key_size_id

sl_bt_cmd_sm_set_debug_mode_id

sl_bt_cmd_sm_add_to_whitelist_id

sl_bt_cmd_sm_store_bonding_configuration_id

sl_bt_cmd_sm_set_bondable_mode_id

sl_bt_cmd_sm_set_passkey_id

sl_bt_cmd_sm_increase_security_id

sl_bt_cmd_sm_enter_passkey_id

sl_bt_cmd_sm_passkey_confirm_id

sl_bt_cmd_sm_bonding_confirm_id

Bluetooth LE

33/1306

sl_bt_cmd_sm_delete_bonding_id

sl_bt_cmd_sm_delete_bondings_id

sl_bt_cmd_sm_get_bonding_handles_id

sl_bt_cmd_sm_get_bonding_details_id

sl_bt_cmd_sm_find_bonding_by_address_id

sl_bt_cmd_sm_set_bonding_key_id

sl_bt_cmd_sm_set_legacy_oob_id

sl_bt_cmd_sm_set_oob_id

sl_bt_cmd_sm_set_remote_oob_id

sl_bt_cmd_sm_set_bonding_data_id

sl_bt_rsp_sm_configure_id

sl_bt_rsp_sm_set_minimum_key_size_id

sl_bt_rsp_sm_set_debug_mode_id

sl_bt_rsp_sm_add_to_whitelist_id

sl_bt_rsp_sm_store_bonding_configuration_id

sl_bt_rsp_sm_set_bondable_mode_id

sl_bt_rsp_sm_set_passkey_id

sl_bt_rsp_sm_increase_security_id

sl_bt_rsp_sm_enter_passkey_id

sl_bt_rsp_sm_passkey_confirm_id

sl_bt_rsp_sm_bonding_confirm_id

sl_bt_rsp_sm_delete_bonding_id

sl_bt_rsp_sm_delete_bondings_id

sl_bt_rsp_sm_get_bonding_handles_id

sl_bt_rsp_sm_get_bonding_details_id

sl_bt_rsp_sm_find_bonding_by_address_id

sl_bt_rsp_sm_set_bonding_key_id

sl_bt_rsp_sm_set_legacy_oob_id

sl_bt_rsp_sm_set_oob_id

sl_bt_rsp_sm_set_remote_oob_id

sl_bt_rsp_sm_set_bonding_data_id

External Bonding Database

sl_bt_evt_external_bondingdb_data_request

sl_bt_evt_external_bondingdb_data_request_s

connection

type

sl_bt_evt_external_bondingdb_data_request_t

sl_bt_evt_external_bondingdb_data_request_id

sl_bt_evt_external_bondingdb_data

sl_bt_evt_external_bondingdb_data_s

connection

type

data

sl_bt_evt_external_bondingdb_data_t

Bluetooth LE

34/1306

sl_bt_evt_external_bondingdb_data_id

sl_bt_evt_external_bondingdb_data_ready

sl_bt_evt_external_bondingdb_data_ready_s

connection

sl_bt_evt_external_bondingdb_data_ready_t

sl_bt_evt_external_bondingdb_data_ready_id

sl_bt_external_bondingdb_data_t

sl_bt_external_bondingdb_set_data

sl_bt_cmd_external_bondingdb_set_data_id

sl_bt_rsp_external_bondingdb_set_data_id

Address Resolving List

sl_bt_resolving_list_privacy_mode_t

sl_bt_resolving_list_add_device_by_bonding

sl_bt_resolving_list_add_device_by_address

sl_bt_resolving_list_remove_device_by_bonding

sl_bt_resolving_list_remove_device_by_address

sl_bt_resolving_list_remove_all_devices

sl_bt_cmd_resolving_list_add_device_by_bonding_id

sl_bt_cmd_resolving_list_add_device_by_address_id

sl_bt_cmd_resolving_list_remove_device_by_bonding_id

sl_bt_cmd_resolving_list_remove_device_by_address_id

sl_bt_cmd_resolving_list_remove_all_devices_id

sl_bt_rsp_resolving_list_add_device_by_bonding_id

sl_bt_rsp_resolving_list_add_device_by_address_id

sl_bt_rsp_resolving_list_remove_device_by_bonding_id

sl_bt_rsp_resolving_list_remove_device_by_address_id

sl_bt_rsp_resolving_list_remove_all_devices_id

Filter Accept List

sl_bt_accept_list_add_device_by_bonding

sl_bt_accept_list_add_device_by_address

sl_bt_accept_list_remove_device_by_bonding

sl_bt_accept_list_remove_device_by_address

sl_bt_accept_list_remove_all_devices

sl_bt_cmd_accept_list_add_device_by_bonding_id

sl_bt_cmd_accept_list_add_device_by_address_id

sl_bt_cmd_accept_list_remove_device_by_bonding_id

sl_bt_cmd_accept_list_remove_device_by_address_id

sl_bt_cmd_accept_list_remove_all_devices_id

sl_bt_rsp_accept_list_add_device_by_bonding_id

sl_bt_rsp_accept_list_add_device_by_address_id

sl_bt_rsp_accept_list_remove_device_by_bonding_id

sl_bt_rsp_accept_list_remove_device_by_address_id

Bluetooth LE

35/1306

sl_bt_rsp_accept_list_remove_all_devices_id

OTA

sl_bt_ota_set_device_name

sl_bt_ota_set_advertising_data

sl_bt_ota_set_configuration

sl_bt_ota_set_rf_path

sl_bt_cmd_ota_set_device_name_id

sl_bt_cmd_ota_set_advertising_data_id

sl_bt_cmd_ota_set_configuration_id

sl_bt_cmd_ota_set_rf_path_id

sl_bt_rsp_ota_set_device_name_id

sl_bt_rsp_ota_set_advertising_data_id

sl_bt_rsp_ota_set_configuration_id

sl_bt_rsp_ota_set_rf_path_id

Coexistence

sl_bt_coex_option_t

sl_bt_coex_set_options

sl_bt_coex_set_parameters

sl_bt_coex_set_directional_priority_pulse

sl_bt_coex_get_parameters

sl_bt_coex_get_counters

sl_bt_cmd_coex_set_options_id

sl_bt_cmd_coex_set_parameters_id

sl_bt_cmd_coex_set_directional_priority_pulse_id

sl_bt_cmd_coex_get_parameters_id

sl_bt_cmd_coex_get_counters_id

sl_bt_rsp_coex_set_options_id

sl_bt_rsp_coex_set_parameters_id

sl_bt_rsp_coex_set_directional_priority_pulse_id

sl_bt_rsp_coex_get_parameters_id

sl_bt_rsp_coex_get_counters_id

Accurate Bluetooth Ranging

sl_bt_evt_cs_security_enable_complete

sl_bt_evt_cs_security_enable_complete_s

connection

sl_bt_evt_cs_security_enable_complete_t

sl_bt_evt_cs_security_enable_complete_id

sl_bt_evt_cs_config_complete

sl_bt_evt_cs_config_complete_s

connection

config_id

status

config_state

main_mode_type

Bluetooth LE

36/1306

sub_mode_type

min_main_mode_steps

max_main_mode_steps

main_mode_repetition

mode_calibration_steps

role

rtt_type

cs_sync_phy

channel_map

channel_map_repetition

channel_selection_type

ch3c_shape

ch3c_ jump

companion_signal_enable

sl_bt_evt_cs_config_complete_t

sl_bt_evt_cs_config_complete_id

sl_bt_evt_cs_procedure_enable_complete

sl_bt_evt_cs_procedure_enable_complete_s

connection

config_id

status

state

antenna_config

tx_power

subevent_len

subevents_per_interval

subevent_interval

event_interval

procedure_interval

procedure_count

sl_bt_evt_cs_procedure_enable_complete_t

sl_bt_evt_cs_procedure_enable_complete_id

sl_bt_evt_cs_result

sl_bt_evt_cs_result_s

connection

config_id

start_acl_conn_event

procedure_counter

frequency_compensation

procedure_done_status

subevent_done_status

abort_reason

reference_power_level

num_antenna_paths

Bluetooth LE

37/1306

num_steps

data

sl_bt_evt_cs_result_t

sl_bt_evt_cs_result_id

sl_bt_cs_role_t

sl_bt_cs_role_status_t

sl_bt_cs_companion_signal_status_t

sl_bt_cs_procedure_state_t

sl_bt_cs_mode_t

sl_bt_cs_rtt_type_t

sl_bt_cs_channel_selection_algorithm_t

sl_bt_cs_ch3c_shape_t

sl_bt_cs_done_status_t

sl_bt_cs_abort_reason_t

sl_bt_cs_config_state_t

sl_bt_cs_security_enable

sl_bt_cs_set_default_settings

sl_bt_cs_create_config

sl_bt_cs_remove_config

sl_bt_cs_set_channel_classification

sl_bt_cs_set_procedure_parameters

sl_bt_cs_procedure_enable

sl_bt_cs_set_antenna_configuration

sl_bt_cmd_cs_security_enable_id

sl_bt_cmd_cs_set_default_settings_id

sl_bt_cmd_cs_create_config_id

sl_bt_cmd_cs_remove_config_id

sl_bt_cmd_cs_set_channel_classification_id

sl_bt_cmd_cs_set_procedure_parameters_id

sl_bt_cmd_cs_procedure_enable_id

sl_bt_cmd_cs_set_antenna_configuration_id

sl_bt_rsp_cs_security_enable_id

sl_bt_rsp_cs_set_default_settings_id

sl_bt_rsp_cs_create_config_id

sl_bt_rsp_cs_remove_config_id

sl_bt_rsp_cs_set_channel_classification_id

sl_bt_rsp_cs_set_procedure_parameters_id

sl_bt_rsp_cs_procedure_enable_id

sl_bt_rsp_cs_set_antenna_configuration_id

Accurate Bluetooth Ranging Test

sl_bt_cs_test_tone_extension_t

sl_bt_cs_test_sounding_sequence_marker_t

sl_bt_cs_test_start

sl_bt_cmd_cs_test_start_id

Bluetooth LE

38/1306

sl_bt_rsp_cs_test_start_id

L2CAP Connection Oriented Channels

sl_bt_evt_l2cap_le_channel_open_request

sl_bt_evt_l2cap_le_channel_open_request_s

connection

spsm

cid

max_sdu

max_pdu

credit

remote_cid

sl_bt_evt_l2cap_le_channel_open_request_t

sl_bt_evt_l2cap_le_channel_open_request_id

sl_bt_evt_l2cap_le_channel_open_response

sl_bt_evt_l2cap_le_channel_open_response_s

connection

cid

max_sdu

max_pdu

credit

errorcode

remote_cid

sl_bt_evt_l2cap_le_channel_open_response_t

sl_bt_evt_l2cap_le_channel_open_response_id

sl_bt_evt_l2cap_channel_data

sl_bt_evt_l2cap_channel_data_s

connection

cid

data

sl_bt_evt_l2cap_channel_data_t

sl_bt_evt_l2cap_channel_data_id

sl_bt_evt_l2cap_channel_credit

sl_bt_evt_l2cap_channel_credit_s

connection

cid

credit

sl_bt_evt_l2cap_channel_credit_t

sl_bt_evt_l2cap_channel_credit_id

sl_bt_evt_l2cap_channel_closed

sl_bt_evt_l2cap_channel_closed_s

connection

cid

reason

sl_bt_evt_l2cap_channel_closed_t

Bluetooth LE

39/1306

sl_bt_evt_l2cap_channel_closed_id

sl_bt_evt_l2cap_command_rejected

sl_bt_evt_l2cap_command_rejected_s

connection

code

reason

cid

sl_bt_evt_l2cap_command_rejected_t

sl_bt_evt_l2cap_command_rejected_id

sl_bt_l2cap_connection_result_t

sl_bt_l2cap_command_reject_reason_t

sl_bt_l2cap_command_code_t

sl_bt_l2cap_open_le_channel

sl_bt_l2cap_send_le_channel_open_response

sl_bt_l2cap_channel_send_data

sl_bt_l2cap_channel_send_credit

sl_bt_l2cap_close_channel

sl_bt_cmd_l2cap_open_le_channel_id

sl_bt_cmd_l2cap_send_le_channel_open_response_id

sl_bt_cmd_l2cap_channel_send_data_id

sl_bt_cmd_l2cap_channel_send_credit_id

sl_bt_cmd_l2cap_close_channel_id

sl_bt_rsp_l2cap_open_le_channel_id

sl_bt_rsp_l2cap_send_le_channel_open_response_id

sl_bt_rsp_l2cap_channel_send_data_id

sl_bt_rsp_l2cap_channel_send_credit_id

sl_bt_rsp_l2cap_close_channel_id

CTE Transmitter

sl_bt_cte_transmitter_set_dtm_parameters

sl_bt_cte_transmitter_clear_dtm_parameters

sl_bt_cte_transmitter_enable_connection_cte

sl_bt_cte_transmitter_disable_connection_cte

sl_bt_cte_transmitter_enable_connectionless_cte

sl_bt_cte_transmitter_disable_connectionless_cte

sl_bt_cte_transmitter_enable_silabs_cte

sl_bt_cte_transmitter_disable_silabs_cte

sl_bt_cmd_cte_transmitter_set_dtm_parameters_id

sl_bt_cmd_cte_transmitter_clear_dtm_parameters_id

sl_bt_cmd_cte_transmitter_enable_connection_cte_id

sl_bt_cmd_cte_transmitter_disable_connection_cte_id

sl_bt_cmd_cte_transmitter_enable_connectionless_cte_id

sl_bt_cmd_cte_transmitter_disable_connectionless_cte_id

sl_bt_cmd_cte_transmitter_enable_silabs_cte_id

sl_bt_cmd_cte_transmitter_disable_silabs_cte_id

Bluetooth LE

40/1306

sl_bt_rsp_cte_transmitter_set_dtm_parameters_id

sl_bt_rsp_cte_transmitter_clear_dtm_parameters_id

sl_bt_rsp_cte_transmitter_enable_connection_cte_id

sl_bt_rsp_cte_transmitter_disable_connection_cte_id

sl_bt_rsp_cte_transmitter_enable_connectionless_cte_id

sl_bt_rsp_cte_transmitter_disable_connectionless_cte_id

sl_bt_rsp_cte_transmitter_enable_silabs_cte_id

sl_bt_rsp_cte_transmitter_disable_silabs_cte_id

CTE Receiver

CTE type flags for limiting periodic advertising synchronization

SL_BT_CTE_RECEIVER_DO_NOT_SYNC_TO_AOA

SL_BT_CTE_RECEIVER_DO_NOT_SYNC_TO_AOD_1_US

SL_BT_CTE_RECEIVER_DO_NOT_SYNC_TO_AOD_2_US

SL_BT_CTE_RECEIVER_SYNC_TO_CTE_ONLY

sl_bt_evt_cte_receiver_dtm_iq_report

sl_bt_evt_cte_receiver_dtm_iq_report_s

status

channel

rssi

rssi_antenna_id

cte_type

slot_durations

event_counter

samples

sl_bt_evt_cte_receiver_dtm_iq_report_t

sl_bt_evt_cte_receiver_dtm_iq_report_id

sl_bt_evt_cte_receiver_connection_iq_report

sl_bt_evt_cte_receiver_connection_iq_report_s

status

connection

phy

channel

rssi

rssi_antenna_id

cte_type

slot_durations

event_counter

samples

sl_bt_evt_cte_receiver_connection_iq_report_t

sl_bt_evt_cte_receiver_connection_iq_report_id

sl_bt_evt_cte_receiver_connectionless_iq_report

sl_bt_evt_cte_receiver_connectionless_iq_report_s

status

sync

Bluetooth LE

41/1306

channel

rssi

rssi_antenna_id

cte_type

slot_durations

event_counter

samples

sl_bt_evt_cte_receiver_connectionless_iq_report_t

sl_bt_evt_cte_receiver_connectionless_iq_report_id

sl_bt_evt_cte_receiver_silabs_iq_report

sl_bt_evt_cte_receiver_silabs_iq_report_s

status

address

address_type

phy

channel

rssi

rssi_antenna_id

cte_type

slot_durations

packet_counter

samples

sl_bt_evt_cte_receiver_silabs_iq_report_t

sl_bt_evt_cte_receiver_silabs_iq_report_id

sl_bt_cte_receiver_set_dtm_parameters

sl_bt_cte_receiver_clear_dtm_parameters

sl_bt_cte_receiver_set_sync_cte_type

sl_bt_cte_receiver_set_default_sync_receive_parameters

sl_bt_cte_receiver_set_sync_receive_parameters

sl_bt_cte_receiver_configure

sl_bt_cte_receiver_enable_connection_cte

sl_bt_cte_receiver_disable_connection_cte

sl_bt_cte_receiver_enable_connectionless_cte

sl_bt_cte_receiver_disable_connectionless_cte

sl_bt_cte_receiver_enable_silabs_cte

sl_bt_cte_receiver_disable_silabs_cte

sl_bt_cmd_cte_receiver_set_dtm_parameters_id

sl_bt_cmd_cte_receiver_clear_dtm_parameters_id

sl_bt_cmd_cte_receiver_set_sync_cte_type_id

sl_bt_cmd_cte_receiver_set_default_sync_receive_parameters_id

sl_bt_cmd_cte_receiver_set_sync_receive_parameters_id

sl_bt_cmd_cte_receiver_configure_id

Bluetooth LE

42/1306

sl_bt_cmd_cte_receiver_enable_connection_cte_id

sl_bt_cmd_cte_receiver_disable_connection_cte_id

sl_bt_cmd_cte_receiver_enable_connectionless_cte_id

sl_bt_cmd_cte_receiver_disable_connectionless_cte_id

sl_bt_cmd_cte_receiver_enable_silabs_cte_id

sl_bt_cmd_cte_receiver_disable_silabs_cte_id

sl_bt_rsp_cte_receiver_set_dtm_parameters_id

sl_bt_rsp_cte_receiver_clear_dtm_parameters_id

sl_bt_rsp_cte_receiver_set_sync_cte_type_id

sl_bt_rsp_cte_receiver_set_default_sync_receive_parameters_id

sl_bt_rsp_cte_receiver_set_sync_receive_parameters_id

sl_bt_rsp_cte_receiver_configure_id

sl_bt_rsp_cte_receiver_enable_connection_cte_id

sl_bt_rsp_cte_receiver_disable_connection_cte_id

sl_bt_rsp_cte_receiver_enable_connectionless_cte_id

sl_bt_rsp_cte_receiver_disable_connectionless_cte_id

sl_bt_rsp_cte_receiver_enable_silabs_cte_id

sl_bt_rsp_cte_receiver_disable_silabs_cte_id

User Messaging

sl_bt_evt_user_message_to_host

sl_bt_evt_user_message_to_host_s

message

sl_bt_evt_user_message_to_host_t

sl_bt_evt_user_message_to_host_id

sl_bt_user_message_to_target

sl_bt_user_manage_event_filter

sl_bt_user_reset_to_dfu

sl_bt_cmd_user_message_to_target_id

sl_bt_cmd_user_manage_event_filter_id

sl_bt_cmd_user_reset_to_dfu_id

sl_bt_rsp_user_message_to_target_id

sl_bt_rsp_user_manage_event_filter_id

sl_bt_rsp_user_reset_to_dfu_id

Utility Functions

sl_bt_pop_event

sl_bt_event_pending

sl_bt_event_pending_len

sl_bt_run

sl_bt_handle_command

sli_bt_get_command_response

sl_bt_get_command_response

sl_bt_priority_handle

sl_bt_external_signal

sl_bt_send_system_awake

Bluetooth LE

43/1306

sl_bt_send_system_error

sl_bt_is_sensitive_message

sl_bt_send_rsp_user_message_to_target

sl_bt_send_evt_user_message_to_host

sl_bt_send_rsp_user_manage_event_filter

BGAPI

Overview

SDK API Reference

Firmware Update

Application OTA DFU

sl_bt_app_ota_dfu_state_t

status

prev_status

sl_bt_app_ota_dfu_btl_storage_info_t

bootloader_type

bootloader_ver

storage_start_addr

storage_size_bytes

sl_bt_app_ota_dfu_download_package_t

connection_handle

write_image_position

sl_bt_app_ota_dfu_msg_t

event_id

ota_error_code

btl_api_retval

sts

btl_storage

download_packet

verified_bytes

evt_info

sl_bt_app_ota_dfu_status_t

sl_bt_app_ota_dfu_error_t

sl_bt_app_ota_dfu_event_id_t

sl_bt_app_ota_dfu_status_evt_t

sl_bt_app_ota_dfu_init

sl_bt_app_ota_dfu_is_ok_to_sleep

sl_bt_app_ota_dfu_sleep_on_isr_exit

sl_bt_app_ota_dfu_restart_progress

sl_bt_app_ota_dfu_reboot

sl_bt_app_ota_dfu_on_status_event

SL_BT_APP_OTA_DFU_USED_SLOT

SL_BT_APP_OTA_DFU_READ_STORAGE_CONTEXT_SIZE

SL_BT_APP_OTA_DFU_EMPTY_FLASH_CONTENT

SL_BT_APP_OTA_DFU_VERIFICATION_BLOCK_SIZE

Bluetooth LE

44/1306

In-Place OTA DFU

sl_bt_in_place_ota_dfu_security_sts_t

sl_bt_in_place_ota_dfu_on_event

sl_bt_in_place_ota_dfu_security_status

SL_BT_IN_PLACE_OTA_DFU_BONDING_REQUIRED

Host Controller Interface �HCI�

HCI Coex Vendor Specific Commands

HCI Get Version Vendor Specific Command

sli_bt_hci_version_response

major

minor

patch

build

SL_BT_HCI_GET_VERSION_OPCODE

SL_BT_HCI_VERSION_RESPONSE

Miscellaneous

BLE Post Build

Encrypted Advertising Data core API

sl_bt_ead_key_material_s

key

iv

sl_bt_ead_nonce_s

randomizer

iv

sl_bt_ead_ad_structure_s

length

ad_type

randomizer

ad_data

mic

sl_bt_ead_session_key_t

sl_bt_ead_iv_t

sl_bt_ead_randomizer_t

sl_bt_ead_mic_t

sl_bt_ead_key_material_p

sl_bt_ead_nonce_p

sl_bt_ead_ad_structure_p

sl_bt_ead_randomizer_update

sl_bt_ead_randomizer_set

sl_bt_ead_session_init

sl_bt_ead_encrypt

sl_bt_ead_decrypt

sl_bt_ead_unpack_decrypt

sl_bt_ead_pack_ad_data

Bluetooth LE

45/1306

sl_bt_ead_unpack_ad_data

SL_BT_EAD_RANDOMIZER_SIZE

SL_BT_EAD_KEY_MATERIAL_SIZE

SL_BT_EAD_SESSION_KEY_SIZE

SL_BT_EAD_NONCE_SIZE

SL_BT_EAD_IV_SIZE

SL_BT_EAD_MIC_SIZE

SL_BT_EAD_LENGTH_FIELD_SIZE

SL_BT_EAD_TYPE_FIELD_SIZE

SL_BT_EAD_HEADER_SIZE

SL_BT_EAD_PACKET_OVERHEAD

SL_BT_EAD_PACKET_REDUCED_OVERHEAD

SL_BT_ENCRYPTED_DATA_AD_TYPE

SL_BT_ENCRYPTED_DATA_B1_HEADER

SL_BT_ENCRYPTED_KEY_MATERIAL_UUID

ESL Tag User Defined Display Driver

esl_user_display_init

esl_user_display_write

ESL Tag WSTK LCD driver

esl_wstk_lcd_init

esl_wstk_lcd_write

esl_wstk_lcd_bt_on_event

esl_wstk_lcd_is_logo

esl_tag_wstk_lcd_run_qrcode

iBeacon

sli_bt_ibeacon_on_event

Power supply measurement

sl_power_supply_probe

sl_power_supply_get_characteristics

sl_power_supply_get_type

sl_power_supply_is_low_power

sl_power_supply_measure_voltage

sl_power_supply_get_battery_level

SL_POWER_SUPPLY_TYPE_UNKNOWN

SL_POWER_SUPPLY_TYPE_USB

SL_POWER_SUPPLY_TYPE_AA

SL_POWER_SUPPLY_TYPE_AAA

SL_POWER_SUPPLY_TYPE_CR2032

Air quality sensor

sl_sensor_gas_init

sl_sensor_gas_deinit

sl_sensor_gas_get

Hall effect sensor

sl_sensor_hall_init

Bluetooth LE

46/1306

sl_sensor_hall_deinit

sl_sensor_hall_get

Inertial Measurement Unit sensor

sl_sensor_imu_init

sl_sensor_imu_deinit

sl_sensor_imu_enable

sl_sensor_imu_get

sl_sensor_imu_calibrate

Ambient light and UV index sensor

sl_sensor_light_init

sl_sensor_light_deinit

sl_sensor_light_get

SENSOR_LIGHT_POSITIVE_TOLERANCE

SENSOR_LIGHT_NEGATIVE_TOLERANCE

SENSOR_LIGHT_SAMPLING_FUNCTION

SENSOR_LIGHT_MEASUREMENT_PERIOD

SENSOR_LIGHT_UPDATE_INTERVAL

Ambient light sensor

sl_sensor_lux_init

sl_sensor_lux_deinit

sl_sensor_lux_get

SENSOR_LUX_POSITIVE_TOLERANCE

SENSOR_LUX_NEGATIVE_TOLERANCE

SENSOR_LUX_SAMPLING_FUNCTION

SENSOR_LUX_MEASUREMENT_PERIOD

SENSOR_LUX_UPDATE_INTERVAL

Air pressure sensor

sl_sensor_pressure_init

sl_sensor_pressure_deinit

sl_sensor_pressure_get

Relative Humidity and Temperature sensor

sl_sensor_rht_init

sl_sensor_rht_deinit

sl_sensor_rht_get

SENSOR_THERMOMETER_STATUS_TRIGGER_TYPE_DISCRETE_VALUE

SENSOR_THERMOMETER_STATUS_TRIGGER_TYPE_PERCENTAGE

SENSOR_THERMOMETER_MIN_PERCENTAGE_DELTA_VALUE

SENSOR_THERMOMETER_MAX_PERCENTAGE_DELTA_VALUE

SENSOR_THERMOMETER_MIN_DISCRETE_DELTA_VALUE

SENSOR_THERMOMETER_MAX_DISCRETE_DELTA_VALUE

SENSOR_THERMOMETER_POSITIVE_TOLERANCE

SENSOR_THERMOMETER_NEGATIVE_TOLERANCE

SENSOR_THERMOMETER_SAMPLING_FUNCTION

SENSOR_THERMOMETER_MEASUREMENT_PERIOD

Bluetooth LE

47/1306

SENSOR_THERMOMETER_UPDATE_INTERVAL

SENSOR_THERMOMETER_CADENCE_ENABLE

SENSOR_THERMOMETER_FAST_CADENCE_PERIOD_DIVISOR

SENSOR_THERMOMETER_STATUS_TRIGGER_TYPE

SENSOR_THERMOMETER_STATUS_TRIGGER_DELTA_DOWN

SENSOR_THERMOMETER_STATUS_TRIGGER_DELTA_UP

SENSOR_THERMOMETER_STATUS_MIN_INTERVAL

SENSOR_THERMOMETER_FAST_CADENCE_LOW

SENSOR_THERMOMETER_FAST_CADENCE_HIGH

Relative Humidity and Temperature sensor �Mock)

Sensor select utility

sl_sensor_select

Sound level sensor (microphone)

sl_sensor_sound_init

sl_sensor_sound_deinit

sl_sensor_sound_get

sl_sensor_sound_step

Wake-Lock

sl_wake_lock_init

sl_wake_lock_set_remote_req

sl_wake_lock_clear_remote_req

sl_wake_lock_set_req_rx_cb

sl_wake_lock_clear_req_rx_cb

sl_wake_lock_set_local

sl_wake_lock_clear_local

SL_WAKE_LOCK_ENABLE_LOCAL

SL_WAKE_LOCK_ENABLE_REMOTE

SL_WAKE_LOCK_INPUT_POLARITY_ACTIVE_HIGH

SL_WAKE_LOCK_OUTPUT_POLARITY_ACTIVE_HIGH

SL_WAKE_LOCK_INPUT_PORT

SL_WAKE_LOCK_INPUT_PIN

SL_WAKE_LOCK_OUTPUT_PORT

SL_WAKE_LOCK_OUTPUT_PIN

Test

CLI Test Harness for ESL Tag application

esl_tag_cli_test_harness_init

cli_esl_tag_address_get

cli_esl_tag_ap_key_get

cli_esl_tag_response_key_get

cli_esl_tag_absolute_time_get

cli_esl_tag_led_info_get

cli_esl_tag_display_info_get

cli_esl_tag_image_info_get

cli_esl_tag_sensor_info_get

Bluetooth LE

48/1306

cli_esl_tag_status_get

cli_esl_tag_basic_state_get

cli_esl_tag_service_needed_set

cli_esl_tag_advertising_set

cli_esl_tag_image_set

cli_esl_tag_restart

ESL_CORE_LOG_ENABLE

ESL_LOG_COMPONENT_APP_ENABLE

ESL_LOG_COMPONENT_CORE_ENABLE

ESL_LOG_COMPONENT_DISPLAY_ENABLE

ESL_LOG_COMPONENT_RAM_IMAGE_ENABLE

ESL_LOG_COMPONENT_NVM_IMAGE_ENABLE

ESL_LOG_COMPONENT_LED_ENABLE

ESL_LOG_COMPONENT_OTS_ENABLE

ESL_LOG_COMPONENT_SENSOR_ENABLE

VA

CLI_RESPONSE

CLI_RESPONSE_APPEND

CLI_RESPONSE_HEADLESS

CLI_OK

CLI_ERROR

Throughput Test helper

allowlist_s

address

address_type

next

throughput_t

role

state

mode

test_type

tx_power

tx_power_requested

phy

mtu_size

interval

rssi

pdu_size

data_size

notifications

indications

scan_phy

connection_interval_min

connection_interval_max

Bluetooth LE

49/1306

connection_responder_latency

connection_timeout

discovery_state

client_conf_flag

allowlist

throughput

throughput_peripheral_side

count

packet_error

packet_lost

time

action_t

throughput_role_t

throughput_state_t

throughput_mode_t

throughput_discovery_state_t

throughput_tx_power_t

throughput_rssi_t

throughput_pdu_size_t

throughput_mtu_size_t

throughput_data_size_t

throughput_phy_t

throughput_scan_phy_t

throughput_notification_t

throughput_value_t

throughput_count_t

throughput_time_t

throughput_allowlist_t

CLI_RESPONSE

CLI_OK

CLI_ERROR

Throughput Test Receiver �Central) Role API

throughput_central_characteristic_t

indication

notification

transmission_on

result

throughput_central_characteristic_found_t

characteristic

all

throughput_central_allowlist_add

throughput_central_allowlist_clear

throughput_central_enable

throughput_central_disable

Bluetooth LE

50/1306

throughput_central_set_mode

throughput_central_set_mtu_size

throughput_central_set_tx_power

throughput_central_set_connection_parameters

throughput_central_set_type

throughput_central_start

throughput_central_stop

throughput_central_set_scan_phy

throughput_central_set_connection_phy

throughput_central_change_phy

throughput_central_step

bt_on_event_central

throughput_central_on_role_set

throughput_central_on_state_change

throughput_central_on_mode_change

throughput_central_on_start

throughput_central_on_finish

throughput_central_on_transmit_power_change

throughput_central_on_rssi_change

throughput_central_on_phy_change

throughput_central_on_notification_change

throughput_central_on_indication_change

throughput_central_on_result_indication_change

throughput_central_on_data_size_change

throughput_central_on_connection_settings_change

throughput_central_on_connection_timings_change

throughput_central_on_characteristics_found

throughput_central_on_discovery_state_change

throughput_central_calculate

throughput_central_decode_address

waiting_indication

timer_start

timer_end

timer_refresh_rssi_start

timer_refresh_rssi_stop

timer_on_refresh_rssi

THROUGHPUT_CENTRAL_TEST_TYPE

THROUGHPUT_CENTRAL_MODE_DEFAULT

THROUGHPUT_CENTRAL_FIXED_DATA_SIZE

THROUGHPUT_CENTRAL_FIXED_TIME

THROUGHPUT_CENTRAL_MTU_SIZE

THROUGHPUT_DEFAULT_SCAN_PHY

Bluetooth LE

51/1306

THROUGHPUT_DEFAULT_PHY

THROUGHPUT_CENTRAL_CONNECTION_INTERVAL_MIN

THROUGHPUT_CENTRAL_CONNECTION_INTERVAL_MAX

THROUGHPUT_CENTRAL_CONNECTION_RESPONDER_LATENCY

THROUGHPUT_CENTRAL_CONNECTION_TIMEOUT

THROUGHPUT_CENTRAL_TX_POWER

THROUGHPUT_CENTRAL_POWER_CONTROL_ENABLE

THROUGHPUT_CENTRAL_SLEEP_ENABLE

THROUGHPUT_CENTRAL_ALLOWLIST_ENABLE

THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_1_ENABLE

THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_1

THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_2_ENABLE

THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_2

THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_3_ENABLE

THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_3

THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_4_ENABLE

THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_4

THROUGHPUT_CENTRAL_CHARACTERISTICS_ALL

ADR_LEN

THROUGHPUT_CENTRAL_REFRESH_TIMER_PERIOD

Throughput Test Transmitter �Peripheral) Role API

throughput_peripheral_characteristic_t

indication

notification

transmission_on

throughput_peripheral_characteristic_found_t

characteristic

all

throughput_peripheral_enable

throughput_peripheral_disable

throughput_peripheral_set_mode

throughput_peripheral_set_data_size

throughput_peripheral_set_tx_power

throughput_peripheral_start

throughput_peripheral_stop

throughput_peripheral_on_bt_event

throughput_peripheral_step

throughput_peripheral_sleep_on_isr_exit

throughput_peripheral_is_ok_to_sleep

throughput_peripheral_on_role_set

throughput_peripheral_on_state_change

throughput_peripheral_on_mode_change

throughput_peripheral_on_start

throughput_peripheral_on_finish

Bluetooth LE

52/1306

throughput_peripheral_on_finish_reception

throughput_peripheral_on_power_change

throughput_peripheral_on_rssi_change

throughput_peripheral_on_phy_change

throughput_peripheral_on_connection_settings_change

throughput_peripheral_on_notification_change

throughput_peripheral_on_indication_change

THROUGHPUT_PERIPHERAL_MODE_DEFAULT

THROUGHPUT_PERIPHERAL_FIXED_DATA_SIZE

THROUGHPUT_PERIPHERAL_FIXED_TIME

THROUGHPUT_PERIPHERAL_TX_POWER

THROUGHPUT_PERIPHERAL_TX_POWER_CONTROL_ENABLE

THROUGHPUT_PERIPHERAL_TX_SLEEP_ENABLE

THROUGHPUT_PERIPHERAL_MTU_SIZE

THROUGHPUT_PERIPHERAL_DATA_TRANSFER_SIZE_INDICATIONS

THROUGHPUT_PERIPHERAL_DATA_TRANSFER_SIZE_NOTIFICATIONS

THROUGHPUT_PERIPHERAL_CHARACTERISTICS_ALL

Throughput User Interface API

throughput_ui_init

throughput_ui_update

throughput_ui_set_state

throughput_ui_set_role

throughput_ui_set_tx_power

throughput_ui_set_rssi

throughput_ui_set_connection_interval

throughput_ui_set_pdu_size

throughput_ui_set_mtu_size

throughput_ui_set_data_size

throughput_ui_set_phy

throughput_ui_set_notifications

throughput_ui_set_indications

throughput_ui_set_throughput

throughput_ui_set_count

throughput_ui_set_all

THROUGHPUT_UI_LOG_ENABLE

THROUGHPUT_UI_PRINT_RSSI

THROUGHPUT_UI_LOG_ENABLE

THROUGHPUT_UI_LOG_REFRESH_ALL

THROUGHPUT_UI_LOG_BOX_ENABLE

Throughput User Interface API with logging

GATT Profiles

ESL Tag core

esl_display_type_t

esl_display_info_p

Bluetooth LE

53/1306

esl_error_t

esl_image_object_id_t

esl_led_type_t

esl_led_gamut_control_t

esl_led_repeats_type_t

tlv_t

tlv_tag_t

tlv_length_t

esl_sensor_battery_init

esl_sensor_battery_read

esl_sensor_get_battery_voltage_mv

esl_sensor_core_check_battery_level

esl_core_encrypt_message

esl_core_decrypt_message

esl_display_init

esl_display_refresh

esl_display_update

esl_display_get_count

esl_core_get_last_error

esl_core_set_last_error

esl_image_init

esl_image_characteristic_update

esl_image_get_data

esl_image_get_count

esl_image_reset_storage

esl_display_get_width

esl_display_get_height

esl_display_get_type

esl_image_select_object

esl_image_chunk_received

esl_core_update_complete

esl_core_start_advertising

esl_core_purge_responses

esl_reschedule_delayed_commands

esl_core_get_sync_handle

esl_core_get_request_event

esl_core_get_request_subevent

esl_core_invalidate_config

typedef

typedef

esl_led_init

esl_led_control

Bluetooth LE

54/1306

esl_led_get_count

esl_led_is_srgb

esl_core_respones_init

esl_core_build_response

esl_core_get_responses

esl_sensor_init

esl_sensor_read

esl_sensor_get_count

esl_display_create

esl_display_add

esl_display_bt_on_event

esl_display_set_image

esl_led_add

esl_led_on

esl_led_off

esl_led_create_color

esl_led_bt_on_event

ESL_TAG_ADVERTISING_INTERVAL_MIN

ESL_TAG_ADVERTISING_INTERVAL_MAX

ESL_TAG_MAX_SYNC_LOST_COUNT

ESL_TAG_VENDOR_OPCODES_ENABLED

ESL_TAG_BUILTIN_BATTERY_MEASURE_ENABLE

ESL_TAG_BATTERY_LEVEL_FULL_MILLIVOLTS

ESL_TAG_BATTERY_LEVEL_LOW_MILLIVOLTS

ESL_TAG_BATTERY_MEASUREMENT_INTERVAL_MIN

ESL_TAG_BATTERY_MEASUREMENT_INTERVAL_MS

ESL_TAG_BATTERY_LEVEL_UNKNOWN

ESL_DISPLAY_TYPE_BLACK_WHITE

ESL_DISPLAY_TYPE_3_GRAY_SCALE

ESL_DISPLAY_TYPE_4_GRAY_SCALE

ESL_DISPLAY_TYPE_8_GRAY_SCALE

ESL_DISPLAY_TYPE_16_GRAY_SCALE

ESL_DISPLAY_TYPE_RED_BLACK_WHITE

ESL_DISPLAY_TYPE_YELLOW_BLACK_WHITE

ESL_DISPLAY_TYPE_RED_YELLOW_BLACK_WHITE

ESL_DISPLAY_TYPE_7_COLOR

ESL_DISPLAY_TYPE_16_COLOR

ESL_DISPLAY_TYPE_FULL_RGB

ESL_ERROR_UNSPECIFIED

ESL_ERROR_INVALID_OPCODE

ESL_ERROR_INVALID_STATE

ESL_ERROR_INVALID_IMAGE_INDEX

Bluetooth LE

55/1306

ESL_ERROR_IMAGE_NOT_AVAILABLE

ESL_ERROR_INVALID_PARAMETER

ESL_ERROR_CAPACITY_LIMIT

ESL_ERROR_INSUFFICIENT_BATTERY

ESL_ERROR_INSUFFICIENT_RESOURCES

ESL_ERROR_RETRY

ESL_ERROR_QUEUE_FULL

ESL_ERROR_IMPLAUSIBLE_TIME

ESL_ERROR_VENDOR_NOERROR

ESL_ERROR_VENDOR_NOREPORT

esl_core_clear_last_error

esl_core_has_no_error

ESL_IMAGE_OBJECT_BASE

ESL_LED_TYPE_SHIFT

ESL_LED_BRIGHTNESS_SHIFT

ESL_LED_RED_GAMUT_SHIFT

ESL_LED_GREEN_GAMUT_SHIFT

ESL_LED_BLUE_GAMUT_SHIFT

ESL_LED_REPEATS_TYPE_MASK

ESL_LED_REPEATS_TYPE_COUNT

ESL_LED_REPEATS_TYPE_TIME

ESL_LED_REPEATS_DURATION_SHIFT

ESL_LED_TYPE_SRGB

ESL_LED_TYPE_MONOCHROME

ESL_LED_TYPE_MASK

ESL_LED_GENERIC_2BIT_MASK

ESL_LED_LEVEL_0

ESL_LED_LEVEL_1

ESL_LED_LEVEL_2

ESL_LED_LEVEL_3

ESL_LED_LEVEL_STEP_PERCENTAGE

esl_led_get_brightness

esl_led_get_red_value

esl_led_get_green_value

esl_led_get_blue_value

ESL_TLV_RESPONSE_ERROR

ESL_TLV_RESPONSE_LED_STATE

ESL_TLV_RESPONSE_BASIC_STATE

ESL_TLV_RESPONSE_DISPLAY_STATE

ESL_TLV_RESPONSE_SENSOR_VALUE

ESL_TLV_RESPONSE_VENDOR_VALUE

ESL_TLV_TAG_MASK

Bluetooth LE

56/1306

ESL_TLV_LEN_MASK

esl_core_get_tlv_tag

esl_core_get_tlv_len

esl_core_set_tlv_tag

esl_core_set_tlv_len

ESL_DISPLAY_INIT_FUNC_PARAMETERS_COUNT

ESL_DISPLAY_WRITE_FUNC_PARAMETERS_COUNT

GATT Services

ESL Tag Display

ESL_TAG_MAX_DISPLAYS

ESL Tag LED

ESL_TAG_MAX_LEDS

ESL Tag NVM Image

ESL_TAG_MAX_IMAGES

ESL_TAG_MAX_IMAGES

ESL_TAG_RAM_IMAGE_POOL_SIZE

ESL Tag RAM Image

ESL Tag Sensor

ESL_SENSOR_INFO_POOL_SIZE

ESL_SENSOR_INPUT_VOLTAGE_ENABLE

ESL_SENSOR_OPERATING_TEMPERATURE_ENABLE

ESL_SENSOR_FW_REVISION_ENABLE

ESL_SENSOR_FW_REVISION_MAJOR

ESL_SENSOR_FW_REVISION_MINOR

ESL_SENSOR_FW_REVISION_PATCH

ESL_SENSOR_MANUFACTURING_DATE_ENABLE

ESL_SENSOR_MANUFACTURING_DAY

ESL_SENSOR_MANUFACTURING_MONTH

ESL_SENSOR_MANUFACTURING_YEAR

ESL_SENSOR_DEVICE_TEMPERATURE_RANGE_ENABLE

ESL_SENSOR_DEVICE_TEMPERATURE_RANGE_MIN

ESL_SENSOR_DEVICE_TEMPERATURE_RANGE_MAX

Static GATT Database and Configuration

Automation IO GATT Service

sl_gatt_service_aio_on_event

sl_gatt_service_aio_on_change

sl_gatt_service_aio_step

Battery GATT Service

sl_gatt_service_battery_on_event

sl_gatt_service_battery_get_level

sl_gatt_service_battery_get_type

Constant Tone Extension GATT Service �Connection)

sl_gatt_service_cte_on_event

Constant Tone Extension GATT Service �Connectionless)

Bluetooth LE

57/1306

SL_GATT_SERVICE_CTE_CONNECTIONLESS_ADV_INTERVAL

SL_GATT_SERVICE_CTE_CONNECTIONLESS_MIN_LEN

SL_GATT_SERVICE_CTE_CONNECTIONLESS_MIN_TX_COUNT

SL_GATT_SERVICE_CTE_CONNECTIONLESS_ADV_CTE_PHY

Constant Tone Extension GATT Service �Silabs proprietary)

SL_GATT_SERVICE_CTE_SILABS_ADV_INTERVAL

SL_GATT_SERVICE_CTE_SILABS_MIN_LEN

SL_GATT_SERVICE_CTE_SILABS_MIN_TX_COUNT

SL_GATT_SERVICE_CTE_SILABS_ADV_CTE_PHY

Device Information GATT Service

sl_gatt_service_device_information_on_event

Air Quality GATT Service

sl_gatt_service_gas_on_event

sl_gatt_service_gas_get

SL_GATT_SERVICE_GAS_ECO2_INVALID

SL_GATT_SERVICE_GAS_TVOC_INVALID

Hall Effect GATT Service

sl_gatt_service_hall_on_event

sl_gatt_service_hall_get

SL_GATT_SERVICE_HALL_FIELD_STRENGTH_INVALID

SL_GATT_SERVICE_HALL_ALERT_INVALID

SL_GATT_SERVICE_HALL_TAMPER_INVALID

Inertial Measurement Unit GATT Service

sl_gatt_service_imu_on_event

sl_gatt_service_imu_step

sl_gatt_service_imu_get

sl_gatt_service_imu_calibrate

sl_gatt_service_imu_enable

SL_GATT_SERVICE_IMU_OVEC_INVALID

SL_GATT_SERVICE_IMU_AVEC_INVALID

Environment Sensing - Ambient Light and UV Index GATT Service

sl_gatt_service_light_on_event

sl_gatt_service_light_get

SL_GATT_SERVICE_LIGHT_LUX_INVALID

SL_GATT_SERVICE_LIGHT_UVI_INVALID

Environment Sensing - Ambient Light GATT Service

sl_gatt_service_lux_on_event

sl_gatt_service_lux_get

SL_GATT_SERVICE_LUX_LUX_INVALID

Environment Sensing - Air Pressure GATT Service

sl_gatt_service_pressure_on_event

sl_gatt_service_pressure_get

Bluetooth LE

58/1306

SL_GATT_SERVICE_PRESSURE_INVALID

RGB LED GATT Service

sl_gatt_service_rgb_on_event

sl_gatt_service_rgb_set_led

sl_gatt_service_rgb_get_led_mask

Environment Sensing - Relative Humidity and Temperature GATT Service

sl_gatt_service_rht_on_event

sl_gatt_service_rht_get

SL_GATT_SERVICE_RHT_RH_INVALID

SL_GATT_SERVICE_RHT_T_INVALID

Environment Sensing - Sound Level GATT Service

sl_gatt_service_sound_on_event

sl_gatt_service_sound_get

SL_GATT_SERVICE_SOUND_INVALID

Health Thermometer API

sl_bt_ht_temperature_type

sl_bt_connection_closed_cb

sl_bt_ht_temperature_measurement_indicate

sl_bt_ht_temperature_measurement_indication_changed_cb

sl_bt_ht_temperature_measurement_indication_confirmed_cb

sl_bt_ht_on_event

SL_BT_HT_MEASUREMENT_INTERVAL_SEC

SL_BT_HT_TEMPERATURE_TYPE

NCP Interface

NCP Interface

sl_ncp_init

sl_ncp_step

sl_ncp_local_evt_process

sl_ncp_user_cmd_message_to_target_cb

sl_ncp_user_cmd_message_to_target_rsp

sl_ncp_user_evt_message_to_host

sli_ncp_is_ok_to_sleep

sli_ncp_sleep_on_isr_exit

sl_ncp_os_task_init

sl_ncp_os_task_proceed

SL_NCP_CMD_BUF_SIZE

SL_NCP_EVT_BUF_SIZE

SL_NCP_CMD_TIMEOUT_MS

SL_NCP_TASK_PRIO

SL_NCP_TASK_STACK

NCP_TASK_NAME

SL_NCP_TASK_PRIO

SL_NCP_TASK_STACK

NCP_TASK_NAME

Bluetooth LE

59/1306

NCP_SEMAPHORE_NAME

NCP Event Filter Interface

user_cmd_manage_event_filter

len

id

hdr

evt

evt_filter_t

user_cmd_manage_event_filter_t

sl_ncp_evt_filter_handler

sl_ncp_evt_filter_is_filtered

SL_NCP_EVT_FILTER_ARRAY_LENGTH

SL_NCP_EVT_FILTER_CMD_ADD_ID

SL_NCP_EVT_FILTER_CMD_REMOVE_ID

SL_NCP_EVT_FILTER_CMD_RESET_ID

SL_NCP_EVT_FILTER_CMD_ADD_LEN

SL_NCP_EVT_FILTER_CMD_REMOVE_LEN

SL_NCP_EVT_FILTER_CMD_RESET_LEN

NCP Security Interface

General BGAPI User Commands

USER_CMD_PERIODIC_ASYNC_ID

USER_CMD_PERIODIC_ASYNC_STOP_ID

USER_CMD_GET_BOARD_NAME_ID

USER_CMD_RESPONSE_ID

USER_CMD_PERIODIC_SYNC_ID

USER_RSP_GET_BOARD_NAME_LEN

NCP Host Demo

NCP GATT

sl_ncp_gatt_on_event

NCP Host Communication Interface

sl_ncp_host_com_init

sl_ncp_host_com_write

sl_ncp_host_com_read

sl_ncp_host_com_peek

sl_ncp_host_is_ok_to_sleep

SL_NCP_HOST_COM_BUF_SIZE

Utility

Simple Communication Interface �UART�

sl_simple_com_init

sl_simple_com_step

sl_simple_com_transmit

sl_simple_com_transmit_cb

sl_simple_com_receive

sl_simple_com_receive_cb

Bluetooth LE

60/1306

sl_simple_com_os_task_init

sl_simple_com_os_task_proceed

SL_SIMPLE_COM_RX_BUF_SIZE

SL_SIMPLE_COM_TX_BUF_SIZE

SL_SIMPLE_COM_TASK_PRIO

SL_SIMPLE_COM_TASK_STACK

SL_SIMPLE_COM_TASK_NAME

SL_SIMPLE_COM_TASK_PRIO

SL_SIMPLE_COM_TASK_STACK

SL_SIMPLE_COM_TASK_NAME

SL_SIMPLE_COM_SEMAPHORE_NAME

Hci_coex

SL_BT_HCI_COEX_SET_OPTIONS_OPCODE

SL_BT_HCI_COEX_SET_PARAMETERS_OPCODE

SL_BT_HCI_COEX_GET_PARAMETERS_OPCODE

SL_BT_HCI_COEX_SET_DIRECTIONAL_PRIORITY_PULSE_OPCODE

SL_BT_HCI_COEX_GET_COUNTERS_OPCODE

Ots_client

sl_bt_ots_client_callbacks_t

on_init

on_connect

on_disconnect

on_subscription_change

on_features_read

on_metadata_read_finished

on_metadata_write_finished

on_olcp_response

on_oacp_response

on_data_transmit

on_data_receive

on_data_transfer_finished

on_object_change

on_filter_read

on_filter_write

on_group_metadata_read

sl_bt_ots_client

node

status

error

connection

gattdb_handles

callbacks

current_object

single_object

Bluetooth LE

61/1306

subscription

active_handle_index

active_opcode

read_object

l2cap_transfer

active_transfer_size

active_transfer_offset

active_transfer_sdu

active_transfer_pdu

prior_channel

received_buffer

sl_bt_object_type_variant_t

sig

custom

sl_bt_ots_object_type_t

uuid_is_sig

uuid_data

sl_bt_ots_time_t

year

month

day

hours

minutes

seconds

time

data

sl_bt_ots_object_id_t

data

id

sl_bt_ots_object_metadata_write_parameters_t

object_name

object_first_created

object_last_modified

object_properties

sl_bt_ots_object_metadata_read_parameters_t

object_name

object_type

object_size

object_first_created

object_last_modified

object_id

object_properties

sl_bt_ots_oacp_parameters_t

create

Bluetooth LE

62/1306

calculate_checksum

execute

read

write

sl_bt_ots_oacp_response_data_t

checksum

len

data

execute

sl_bt_ots_olcp_parameters_t

go_to

order

sl_bt_ots_object_t

dls_length

id

name

dls_flags

type

size

first_created

last_modified

properties

sl_bt_ots_subscription_status_t

oacp

olcp

object_changed

subscribed

data

sl_bt_ots_client_handle_t

sl_bt_ots_client_connection_callback_t

sl_bt_ots_client_subscription_callback_t

sl_bt_ots_client_object_changed_callback_t

sl_bt_ots_client_features_callback_t

sl_bt_ots_client_list_filter_write_callback_t

sl_bt_ots_client_list_filter_read_callback_t

sl_bt_ots_client_olcp_callback_t

sl_bt_ots_client_oacp_callback_t

sl_bt_ots_client_object_metadata_write_callback_t

sl_bt_ots_client_object_metadata_read_callback_t

sl_bt_ots_client_data_receive_callback_t

sl_bt_ots_client_data_transmit_callback_t

sl_bt_ots_client_data_transfer_finished_t

Bluetooth LE

63/1306

sl_bt_ots_client_group_metadata_read_t

sl_bt_ots_client_init_callback_t

sl_bt_ots_client_t

sl_bt_ots_oacp_features_t

sl_bt_ots_olcp_features_t

sl_bt_ots_object_first_created_t

sl_bt_ots_object_last_modified_t

sl_bt_ots_object_properties_t

sl_bt_ots_metadata_fields_t

sl_bt_ots_oacp_event_t

sl_bt_ots_oacp_execute_parameters_t

sl_bt_ots_oacp_write_mode_t

sl_bt_ots_l2cap_credit_t

sl_bt_ots_olcp_event_t

sl_bt_ots_object_list_filter_name_parameters_t

sl_bt_ots_object_list_filter_type_parameters_t

sl_bt_ots_object_changed_flags_t

sl_bt_ots_compare_t

sl_bt_ots_characteristic_uuids

SL_ENUM

sl_bt_ots_client_init

sl_bt_ots_client_read_ots_features

sl_bt_ots_client_read_object_name

sl_bt_ots_client_read_object_type

sl_bt_ots_client_read_object_size

sl_bt_ots_client_read_object_first_created

sl_bt_ots_client_read_object_last_modified

sl_bt_ots_client_read_object_id

sl_bt_ots_client_read_object_properties

sl_bt_ots_client_write_name

sl_bt_ots_client_write_object_first_created

sl_bt_ots_client_write_object_last_modified

sl_bt_ots_client_write_object_properties

sl_bt_ots_client_olcp_first

sl_bt_ots_client_olcp_last

sl_bt_ots_client_olcp_previous

sl_bt_ots_client_olcp_next

sl_bt_ots_client_olcp_go_to

sl_bt_ots_client_olcp_order

sl_bt_ots_client_olcp_request_number_of_objects

sl_bt_ots_client_olcp_clear_marking

sl_bt_ots_client_read_object_list_filter

Bluetooth LE

64/1306

sl_bt_ots_client_write_object_list_filter

sl_bt_ots_client_oacp_create_object

sl_bt_ots_client_oacp_delete_object

sl_bt_ots_client_oacp_calculate_checksum

sl_bt_ots_client_oacp_execute

sl_bt_ots_client_oacp_read

sl_bt_ots_client_oacp_write

sl_bt_ots_client_oacp_abort

sl_bt_ots_client_increase_credit

sl_bt_ots_client_abort

sli_bt_ots_client_on_bt_event

sli_bt_ots_client_init

sli_bt_ots_client_step

SL_ENUM

typedef

typedef

typedef

typedef

SL_ENUM

SL_ENUM

SL_ENUM

SL_ENUM

SL_ENUM

SL_ENUM

typedef

typedef

typedef

SL_ENUM

typedef

typedef

SL_ENUM

SL_ENUM

SL_ENUM

typedef

typedef

typedef

typedef

SL_ENUM

typedef

typedef

typedef

typedef

typedef

typedef

Bluetooth LE

65/1306

typedef

SL_BT_OTS_CLIENT_CONFIG_READ_REQUEST_QUEUE_SIZE

SL_BT_OTS_CLIENT_CONFIG_WRITE_REQUEST_QUEUE_SIZE

SL_BT_OTS_CLIENT_CONFIG_WRITE_REQUEST_DATA_SIZE

ATT_STATUS_MASK

ATT_ERR_SUCCESS

ATT_ERR_INVALID_HANDLE

ATT_ERR_READ_NOT_PERMITTED

ATT_ERR_WRITE_NOT_PERMITTED

ATT_ERR_INVALID_PDU

ATT_ERR_AUTHENTICATION

ATT_ERR_NOT_SUPPORTED

ATT_ERR_INVALID_OFFSET

ATT_ERR_AUTHORIZATION

ATT_ERR_PREPARE_QUEUE_FULL

ATT_ERR_ATTRIBUTE_NOT_FOUND

ATT_ERR_ATTRIBUTE_NOT_LONG

ATT_ERR_ENCRYPTION_KEY_SIZE

ATT_ERR_INVALID_ATTRIBUTE_LEN

ATT_ERR_UNLIKELY

ATT_ERR_INSUFFICIENT_ENCRYPTION

ATT_ERR_UNSUPPORTED_GROUP_TYPE

ATT_ERR_INSUFFICIENT_RESOURCES

ATT_ERR_DB_OUT_OF_SYNC

ATT_ERR_VALUE_NOT_ALLOWED

ATT_ERR_IMPORER_CCCD

ATT_ERR_WRITE_REQUEST_REJECTED

ATT_ERR_OBJECT_NOT_SELECTED

ATT_ERR_CONCURRENCY_LIMIT_EXCEEDED

ATT_ERR_OBJECT_NAME_ALREADY_EXISTS

SL_BT_OTS_OACP_FEATURE_CREATE_OP_CODE_SUPPORTED_BIT_POS

SL_BT_OTS_OACP_FEATURE_CREATE_OP_CODE_SUPPORTED_MASK

SL_BT_OTS_OACP_FEATURE_DELETE_OP_CODE_SUPPORTED_BIT_POS

SL_BT_OTS_OACP_FEATURE_DELETE_OP_CODE_SUPPORTED_MASK

SL_BT_OTS_OACP_FEATURE_CALCULATE_CHECKSUM_OP_CODE_SUPPORTED_BIT_POS

SL_BT_OTS_OACP_FEATURE_CALCULATE_CHECKSUM_OP_CODE_SUPPORTED_MASK

SL_BT_OTS_OACP_FEATURE_EXECUTE_OP_CODE_SUPPORTED_BIT_POS

SL_BT_OTS_OACP_FEATURE_EXECUTE_OP_CODE_SUPPORTED_MASK

SL_BT_OTS_OACP_FEATURE_READ_OP_CODE_SUPPORTED_BIT_POS

SL_BT_OTS_OACP_FEATURE_READ_OP_CODE_SUPPORTED_MASK

SL_BT_OTS_OACP_FEATURE_WRITE_OP_CODE_SUPPORTED_BIT_POS

SL_BT_OTS_OACP_FEATURE_WRITE_OP_CODE_SUPPORTED_MASK

Bluetooth LE

66/1306

SL_BT_OTS_OACP_FEATURE_APPEND_ADDITIONAL_DATA_SUPPORTED_BIT_POS

SL_BT_OTS_OACP_FEATURE_APPEND_ADDITIONAL_DATA_SUPPORTED_MASK

SL_BT_OTS_OACP_FEATURE_TRUNCATION_OF_OBJECTS_SUPPORTED_BIT_POS

SL_BT_OTS_OACP_FEATURE_TRUNCATION_OF_OBJECTS_SUPPORTED_MASK

SL_BT_OTS_OACP_FEATURE_PATCHING_OF_OBJECTS_SUPPORTED_BIT_POS

SL_BT_OTS_OACP_FEATURE_PATCHING_OF_OBJECTS_SUPPORTED_MASK

SL_BT_OTS_OACP_FEATURE_ABORT_OP_CODE_SUPPORTED_BIT_POS

SL_BT_OTS_OACP_FEATURE_ABORT_OP_CODE_SUPPORTED_MASK

SL_BT_OTS_OLCP_FEATURE_GO_TO_OP_CODE_SUPPORTED_BIT_POS

SL_BT_OTS_OLCP_FEATURE_GO_TO_OP_CODE_SUPPORTED_MASK

SL_BT_OTS_OLCP_FEATURE_ORDER_OP_CODE_SUPPORTED_BIT_POS

SL_BT_OTS_OLCP_FEATURE_ORDER_OP_CODE_SUPPORTED_MASK

SL_BT_OTS_OLCP_FEATURE_REQUEST_NUMBER_OF_OBJECTS_OP_CODE_SUPPORTED_BIT_POS

SL_BT_OTS_OLCP_FEATURE_REQUEST_NUMBER_OF_OBJECTS_OP_CODE_SUPPORTED_MASK

SL_BT_OTS_OLCP_FEATURE_CLEAR_MARKING_OP_CODE_SUPPORTED_BIT_POS

SL_BT_OTS_OLCP_FEATURE_CLEAR_MARKING_OP_CODE_SUPPORTED_MASK

SL_BT_OTS_OBJECT_PROPERTY_DELETE_BIT_POS

SL_BT_OTS_OBJECT_PROPERTY_DELETE_MASK

SL_BT_OTS_OBJECT_PROPERTY_EXECUTE_BIT_POS

SL_BT_OTS_OBJECT_PROPERTY_EXECUTE_MASK

SL_BT_OTS_OBJECT_PROPERTY_READ_BIT_POS

SL_BT_OTS_OBJECT_PROPERTY_READ_MASK

SL_BT_OTS_OBJECT_PROPERTY_WRITE_BIT_POS

SL_BT_OTS_OBJECT_PROPERTY_WRITE_MASK

SL_BT_OTS_OBJECT_PROPERTY_APPEND_BIT_POS

SL_BT_OTS_OBJECT_PROPERTY_APPEND_MASK

SL_BT_OTS_OBJECT_PROPERTY_TRUNCATE_BIT_POS

SL_BT_OTS_OBJECT_PROPERTY_TRUNCATE_MASK

SL_BT_OTS_OBJECT_PROPERTY_PATCH_BIT_POS

SL_BT_OTS_OBJECT_PROPERTY_PATCH_MASK

SL_BT_OTS_OBJECT_PROPERTY_MARK_BIT_POS

SL_BT_OTS_OBJECT_PROPERTY_MARK_MASK

SL_BT_OTS_OBJECT_PROPERTY_RFU_MASK

SL_BT_OTS_WRITE_MODE_NONE

SL_BT_OTS_WRITE_MODE_TRUNCATE_BIT_POS

SL_BT_OTS_WRITE_MODE_TRUNCATE_MASK

SL_BT_OTS_OBJECT_CHANGE_SOURCE_BIT_POS

SL_BT_OTS_OBJECT_CHANGE_SOURCE_MASK

SL_BT_OTS_OBJECT_CHANGE_CONTENTS_BIT_POS

SL_BT_OTS_OBJECT_CHANGE_CONTENTS_MASK

SL_BT_OTS_OBJECT_CHANGE_METADATA_BIT_POS

SL_BT_OTS_OBJECT_CHANGE_METADATA_MASK

Bluetooth LE

67/1306

SL_BT_OTS_OBJECT_CHANGE_CREATION_BIT_POS

SL_BT_OTS_OBJECT_CHANGE_CREATION_MASK

SL_BT_OTS_OBJECT_CHANGE_DELETION_BIT_POS

SL_BT_OTS_OBJECT_CHANGE_DELETION_MASK

SL_BT_OTS_DLO_OBJECT_UUID_SIZE_BIT_POS

SL_BT_OTS_DLO_OBJECT_UUID_SIZE_MASK

SL_BT_OTS_DLO_OBJECT_FIRST_CREATED_PRESENT_BIT_POS

SL_BT_OTS_DLO_OBJECT_FIRST_CREATED_PRESENT_MASK

SL_BT_OTS_DLO_OBJECT_LAST_MODIFIED_PRESENT_BIT_POS

SL_BT_OTS_DLO_OBJECT_LAST_MODIFIED_PRESENT_MASK

SL_BT_OTS_DLO_OBJECT_PROPERTIES_PRESENT_BIT_POS

SL_BT_OTS_DLO_OBJECT_PROPERTIES_PRESENT_MASK

SL_BT_OTS_DLO_EXTENDED_FLAGS_PRESENT_BIT_POS

SL_BT_OTS_DLO_EXTENDED_FLAGS_PRESENT_MASK

METADATA_FIELD

SL_BT_OTS_METADATA_FIELD_ALL

SL_BT_OTS_METADATA_FIELD_NAME

SL_BT_OTS_METADATA_FIELD_TYPE

SL_BT_OTS_METADATA_FIELD_SIZE

SL_BT_OTS_METADATA_FIELD_FIRST_CREATED

SL_BT_OTS_METADATA_FIELD_LAST_MODIFIED

SL_BT_OTS_METADATA_FIELD_ID

SL_BT_OTS_METADATA_FIELD_PROPERTIES

SL_BT_OTS_METADATA_FIELD_NONE

SL_BT_OTS_OBJECT_ID_SIZE

SL_BT_OTS_OBJECT_ID_USABLE_SIZE

SL_BT_OTS_OBJECT_ID_RFU_MASK

SL_BT_OTS_INVALID_OBJECT_RFU

SL_BT_OTS_DIRECTORY_LIST_OBJECT_ID

SL_BT_OTS_TIME_SIZE

SL_BT_OTS_UUID_SIZE_16

SL_BT_OTS_UUID_SIZE_128

SL_BT_OTS_SUBSCRIPTION_STATUS_NONE

SL_BT_OTS_CHARACTERISTIC_UUID_OTS_FEATURE

SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_NAME

SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_TYPE

SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_SIZE

SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_FIRST_CREATED

SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_LAST_MODIFIED

SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_ID

SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_PROPERTIES

SL_BT_OTS_CHARACTERISTIC_UUID_OACP

Bluetooth LE

68/1306

SL_BT_OTS_CHARACTERISTIC_UUID_OLCP

SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_LIST_FILTER

SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_CHANGED

SL_BT_OTS_CHARACTERISTIC_UUID_COUNT

SL_BT_OTS_INDICATION_OVERHEAD

SL_BT_OTS_INDICATION_HEADER

SL_BT_OTS_INDICATION_SIZE_MAX

Ots_server

sl_bt_ots_server_capabilities_t

capability_multiple_objects

capability_object_list_filter

capability_dlo

capability_time

capability_first_created

capability_last_modified

capability_object_changed

sl_bt_ots_server_callbacks_t

on_client_connect

on_client_disconnect

on_client_subscription_change

on_object_metadata_write

on_object_metadata_read

on_object_list_filter_set

on_object_list_filter_get

on_olcp_event

on_oacp_event

on_data_received

on_data_transfer_finished

on_data_transmit

sl_bt_ots_server_client_db_entry_t

connection_handle

current_object

current_object_properties

current_object_size

subscription_status

l2cap_transfer

l2cap_transfer_sdu

l2cap_transfer_pdu

operation_in_progress

object_in_use

sl_bt_ots_server

gattdb_handles

callbacks

concurrency

Bluetooth LE

69/1306

features

client_db

capabilities

sl_bt_ots_server_handle_t

sl_bt_ots_server_connection_callback_t

sl_bt_ots_subscription_callback_t

sl_bt_ots_server_olcp_callback_t

sl_bt_ots_server_oacp_callback_t

sl_bt_ots_server_data_callback_t

sl_bt_ots_server_data_transfer_finished_t

sl_bt_ots_server_data_transmit_callback_t

sl_bt_ots_server_object_metadata_write_callback_t

sl_bt_ots_server_object_metadata_read_callback_t

sl_bt_ots_server_object_list_filter_wtite_callback_t

sl_bt_ots_server_object_list_filter_read_callback_t

sli_bt_ots_server_capability_init_t

sl_bt_ots_server_t

sl_bt_ots_server_init

sl_bt_ots_server_set_current_object

sl_bt_ots_server_get_current_object

sl_bt_ots_server_abort

sl_bt_ots_server_object_changed

sl_bt_ots_server_increase_credit

sli_bt_ots_server_on_bt_event

sli_bt_ots_server_init

sli_bt_ots_server_step

List of Bluetooth SDK component categories:

Mobile Applications

Finding Smartphone Features

Suitable Parameters for iOS Devices

Seeing BLE Devices on the iOS Settings Page

EFR Connect Reference

Developing with Bluetooth

70/1306

Developing with Bluetooth

Developing with Silicon Labs Bluetooth Low Energy
�LE�
Bluetooth is a wireless technology standard managed by the Bluetooth Special Interest Group (SIG). Designed for data

transfer and exchange over short distances, Bluetooth makes use of the unlicensed ISM band at 2.4 GHz. Traditional

Bluetooth technology is optimized for sending a steady stream of high quality data in a power-efficient way. Bluetooth low

energy technology allows for short bursts of long-range radio connections, making it ideal for applications that depend on

long battery life and don’t need high throughput streaming data.

Silicon Labs has also developed a library specifically for Location Services.

The content on these pages is intended for those who want to experiment with or are already developing a Bluetooth LE

application using Silicon Labs technology.

For details about this release: Links to release notes are available on the silabs.com Gecko SDK page.

For Silicon Labs Bluetooth LE product information: See the product pages on silabs.com.

For background about the Bluetooth protocol: The Fundamentals section is a good place to start.

To get started with development: See the Getting Started section to get started working with example applications.

If you are already in development: See the Developer's Guide for details or go directly to the Stack API Reference or SDK

API reference

If you are using Bluetooth LE SDK version 2.x, see Transitioning from the v2.x to the v3.x Bluetooth SDK.

https://docs.silabs.com/rtl-lib/latest/
https://www.silabs.com/developers/gecko-software-development-kit
https://www.silabs.com/wireless/bluetooth
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-fundamentals-overview
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-getting-started-overview
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-developers-guide-overview
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-stack-api
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-sdk-api
https://www.silabs.com/documents/public/application-notes/an1255-transitioning-from-bluetooth-sdk-v2-to-v3.pdf

Overview

71/1306

Overview

Getting Started with Silicon Labs Bluetooth LE
Development
To get started with Bluetooth LE development, download the Simplicity Studio Development environment as described in

the Simplicity Studio 5 User's Guide. Simplicity Studio 5 includes everything needed for IoT product development with

Silicon Labs devices including a resource and project launcher, software configuration tools, full IDE with GNU toolchain,

and analysis tools.

Once you have downloaded Simplicity Studio, you will be prompted to install the Gecko SDK (GSDK), which contains the

Bluetooth Software Development Kit (SDK). The GSDK combines Silicon Labs wireless SDKs and Gecko Platform into a

single, integrated package. The Bluetooth SDK comes with a number of example application that you can then modify to

create your own applications.

See Prerequisites for additional details.

These pages focus on use and development in the Simplicity Studio 5 environment. Alternatively, Gecko SDK may be

installed manually by downloading or cloning the latest from GitHub. See the GitHub site for more information.

Silicon Labs provides two different starter kits. The links below provide specific instructions for getting started with each kit.

Wireless Starter Kit: The Blue Gecko Bluetooth Wireless Starter Kit (WSTK) helps you evaluate Silicon Labs' Blue Gecko

Bluetooth modules and get started with software development. The kits come in different versions with different module

radio boards. See the Silicon Labs product page for details on current configurations. If you are developing with an EFR32BG

device and have purchased a EFR32BG Wireless Starter Kit (WSTK), you can use precompiled demos and an Android or iOS

smartphone app to demonstrate Bluetooth software features.

BGM220 Explorer Kit (part number: BGM220-EK4314A): The BGM220 is focused on rapid prototyping and IoT concept

creation around the Silicon Labs BGM220P module.

Once you have set up development with your platform of choice and optionally experimented with precompiled demos, you

can begin to customize example applications for your specific needs. See the Getting Started with Application

Development section for details.

Prerequisites

Before beginning application development, you should have:

Acquired a basic understanding of Bluetooth technology and terminology. UG103.14: Bluetooth LE Fundamentals provides a
good starting point if you have not yet learned about Bluetooth.

Purchased an EFR32BG Wireless Starter Kit or BGM220 Explorer Kit.

Created an account at Silicon Labs. You can register at https://siliconlabs.force.com/apex/SL_CommunitiesSelfReg?

form=short.

Downloaded Simplicity Studio 5 and the Silicon Labs Gecko SDK containing the Bluetooth SDK and become generally familiar

with the SSv5 Launcher perspective. SSv5 installation and getting started instructions along with a set of detailed references

can be found in the online Simplicity Studio 5 User’s Guide, available on https://docs.silabs.com/ and through the SSv5 help

menu.

Obtained a compatible compiler (See the Bluetooth SDK’s release notes for the compatible versions):

Simplicity Studio comes with a free GCC C-compiler.

IAR Embedded Workbench for ARM (IAR-EWARM) can also be used as the compiler for Silicon Labs Bluetooth projects.

Once IAR-EWARM is installed, the next time Simplicity Studio starts it will automatically detect and configure the IDE to use

IAR-EWARM.

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-getting-started/
https://github.com/SiliconLabs/gecko_sdk
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-getting-started-wstk
https://www.silabs.com/products/development-tools/wireless/bluetooth/bluegecko-bluetooth-low-energy-module-wireless-starter-kit
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-getting-started-bgm
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-getting-started-app-dev
https://siliconlabs.force.com/apex/SL_CommunitiesSelfReg?form=short
https://docs.silabs.com/

Overview

72/1306

To get a 30-day evaluation license for IAR-EWARM:

Go to the Silicon Labs support portal at https://www.silabs.com/support.

Scroll down to the bottom of the page, and click Contact Support

If you are not already signed in, sign in.

Click the Software Releases tab. In the View list select Development Tools. Click Go. In the results is a link to the IAR-EWARM

version named in the release notes.

Download the IAR package (takes approximately 1 hour).

Install IAR.

In the IAR License Wizard, click Register with IAR Systems to get an evaluation license.

Complete the registration and IAR will provide a 30-day evaluation license.

Once IAR-EWARM is installed, the next time Simplicity Studio starts it will automatically detect and configure the IDE to use

IAR-EWARM.

Gecko Platform

The Gecko Platform is a set of drivers and other lower layer features that interact directly with Silicon Labs chips and

modules. Gecko Platform components include EMLIB, EMDRV, RAIL Library, NVM3, and mbed TLS. For more information

about Gecko Platform, see release notes that can be found in Simplicity Studio’s Documentation tab.

Documentation

Hardware-specific documentation may be accessed through links on the part Overview tab in Simplicity Studio 5.

Support

https://www.silabs.com/support

Overview

73/1306

You can access the Silicon Labs support portal at https://www.silabs.com/support through Simplicity Studio 5’s Welcome

view under Learn and Support. Use the support portal to contact Customer Support for any questions you might have

during the development process.

https://www.silabs.com/support

Getting Started with the WSTK

74/1306

Getting Started with the WSTK

Getting Started with the WSTK
To get started with Bluetooth demo software, you should have downloaded Simplicity Studio 5 (SSv5) and the Bluetooth

SDK v3.x as described in the Simplicity Studio 5 User’s Guide, available online and through the SSv5 help menu. The

Bluetooth SDK comes with some prebuilt demos that can be flashed to your EFR32 device and tested using a Smartphone.

This section describes how to set up the WSTK and how to test three prebuilt demos on both Android and iOS devices:

NCP Empty demo

iBeacon demo

Health Thermometer demo

Prepare the Mainboard

 Connect a Bluetooth Module Radio Board to the mainboard as shown in the following figure.

 Connect the mainboard to a PC using the Mainboard USB connector.

 Turn the Power switch to "AEM" position.

Note: At this stage you might be prompted to install the drivers for the mainboard, but you can skip this for now.

 Check that the blue USB Connection Indicator LED turns on or starts blinking.

 Check that the mainboard LCD display turns on and displays a Silicon Labs logo.

Before starting to test the demo application note the following parts on the mainboard:

Temperature & Humidity Sensor

PB0 button

LED0

Flash the Demo

With your device connected as described above, open Simplicity Studio v5.

Select your device in the Debug Adapters view.

On the Example Projects & Demos tab, click RUN on the demo of choice.

Test the Bluetooth Demos Using an Android or iOS Smartphone

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/

Getting Started with the WSTK

75/1306

Testing the NCP Demo

Load the NCP demo on the target:

 Open Simplicity Studio with a mainboard and radio board connected and select the corresponding debug adapter.

 On the OVERVIEW tab, under “General Information”, select the Gecko SDK Suite if it is not selected. On the Example Projects

& Demos tab, find the Bluetooth - NCP demo and click RUN. This flashes the demo to your device, but it does not start

advertising automatically.

At this point, BGAPI 3.x commands can be sent to the kit. Starting with Bluetooth SDK version 3.1.0, Silicon Labs introduced

a new tool, the Bluetooth NCP Commander, that can be used to send BGAPI 3.x commands to the kit, using UART.

Connections, advertising and other standard Bluetooth Low Energy operation can be controlled via this tool.

Bluetooth NCP Commander

Bluetooth NCP Commander can be opened through the Project Configurator’s Configuration Tools tab, or from the Simplicity

Studio Tools menu.

 Launch Bluetooth NCP Commander and then establish the virtual UART connection to the kit using the JLink adapter:

Getting Started with the WSTK

76/1306

 Click Connect. If everything works correctly you should see the result of the “sl_bt_system_get_identity_address” command

displayed in green:

 Unlike SoC examples, the NCP demo does not have a built-in GATT database and it expects the host to build the GATT

database using the dynamic GATT database BGAPI commands. To create a basic GATT database, select the Local GATT

menu, and click Create Basic GATT. This triggers a series of BGAPI commands that will build a basic database. You can

modify this GATT database as you want. You can also change the device name here by changing the value of the Device

Name characteristic.

Getting Started with the WSTK

77/1306

 To start advertising your device so that other devices can discover it and connect to it, select the ‘Advertise’ menu, click the

‘+’ button (Create Set) to create an advertiser set.

 To populate the advertisement payload with the device name set the Advertising Data Type to Generated data.

Getting Started with the WSTK

78/1306

 Click Start to start advertising.

Testing with the Smartphone App

 On the master side (smartphone), install the EFR Connect app from the Google Play Store or the App Store, and open it. To

find your advertising device, first tap Scan on the bottom menu. Tap the Scanner tab and tap Start/Stop Scanning. This

shows all advertising devices nearby. You can tap Sort () to sort the devices by RSSI. Connect to your device by tapping

Connect next to "Silabs Example”. Its GATT database is automatically discovered and displayed. Tap any service to list its

characteristics and tap any characteristic to read its value. The Android interface is shown first, then iOS.

Getting Started with the WSTK

79/1306

Getting Started with the WSTK

80/1306

Testing the iBeacon Demo

Bluetooth beacons are unconnectable advertisements that help you locate a device, determine your own position, or get

minimal information about an asset the beaconing device is attached to.

After flashing the iBeacon demo to your device, you can find the beacon signal with Scan feature in the EFR Connect app.

Start EFR Connect and tap the Scan in the bottom menu. Tap the Scanner tab and tap Start/Stop Scanning to start

scanning. To filter beacons, tap and select the beacon types you want to be displayed. The app provides you with basic

information about the beacon, like RSSI - which can help determine the distance of the beacon. Tap the beacon to get more

information about the data it provides. Android might provide different details than iOS.The Android interface is shown first,

then iOS.

Getting Started with the WSTK

81/1306

Testing the Health Thermometer Demo

Getting Started with the WSTK

82/1306

While the NCP Empty demo implements a minimal GATT database with basic static information like device name, the Health

Thermometer demo extends this database with live temperature measurements.

After flashing the Health Thermometer demo to your device, start EFR Connect, tap Demo in the bottom menu, and tap

Health Thermometer. Find your device advertising as Thermometer Example in the device list and tap it to connect. The

smartphone app automatically finds the Temperature measurement characteristic of the device, reads its value periodically,

and displays the value on the screen of the phone.

Try touching the temperature sensor located on the mainboard (see Prepare the mainboard). You should be able to see the

temperature changing. Note: Some products might not have a real temperature sensor but a simulated value. Android might

provide different details than iOS. The Android interface is shown first, then iOS.

Getting Started with the WSTK

83/1306

Getting Started with the BGM220

84/1306

Getting Started with the BGM220

Getting Started with the BGM220 Explorer Kit
The BGM220 Explorer Kit (part number: BGM220-EK4314A) is focused on rapid prototyping and IoT concept creation

around Silicon Labs BGM220P module.

Kit Overview

The kit features USB interface, on-board J-Link debugger, one user LED/button and support for hardware add-on boards via

a mikroBus socket, and a qwiic connector.

The hardware add-on support allows developers to create and prototype applications using a virtually endless combination

of off-the-shelf boards from mikroE, sparkfun, AdaFruit, and Seeed Studios. The boards from Seeed Studios feature a

connector, which is pin compatible with the qwiic connector but mechanically incompatible and it requires an adaption cable

or board.

Testing the Bluetooth Demos

The Bluetooth SDK comes with pre-built demos that can be directly flashed into this kit and tested using a smartphone

running the EFR Connect mobile app (Android, iOS):

SoC iBeacon

NCP Empty

https://www.mikroe.com/mikrobus
https://www.sparkfun.com/qwiic
https://www.mikroe.com/click
https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt/sparkfun-qwiic
https://www.seeedstudio.com/category/Grove-c-1003.html
https://www.sparkfun.com/products/15109#:~:text=The%20Qwiic%20to%20Grove%20Adapter,outputs%20into%20your%20Grove%20system.
https://www.smart-prototyping.com/Qwiic-to-Grove-Adapter
https://play.google.com/store/apps/details?id=com.siliconlabs.bledemo&hl=en&gl=US
https://apps.apple.com/us/app/efr-connect/id1030932759

Getting Started with the BGM220

85/1306

The iBeacon can be tested with EFR Connect as documented in Getting Started with the WSTK. NCP Empty can be tested

with NCP Commander, which can be launched via the Tools dialog in Simplicity Studio 5.

GitHub Examples

Silicon Labs applications_examples GitHub repository contains additional examples that can run on the BGM220 Explorer

Kit. Some of them leverage 3rd party add-on boards and they are typically found in the bluetooth_applications repository.

Porting Code from mikroSDK and Arduino

If using a mikroE click board, ready made examples are on your specific mikroE click board Web page that typically reside in

mikroE's libstock and/or GitHub. Those examples are using the mikroSDK, which provides abstraction to the supported

hardware kits provided by mikroE.

If using a board from sparkfun, Adafruit, or Seeed Studios, they typically have examples for the Arduino IDE, which run on

some of their own controller boards that are supported by the Arduino platform.

Those examples will not run out of the box on the BGM220 Explorer Kit, but with a small amount of effort they can be easily

ported by using the guide below, which maps mikroSDK and Arduino APIs for UART/SPI/I2C/GPIO functionality into the

Silicon Labs platform equivalents.

Whether porting from mikroSDK or Arduino, EMLIB and Platform Drivers/Services contain the most useful Silicon Labs APIs.

For corresponding documentation, see below:

EMLIB - a low level peripheral driver library for all Silicon labs EFM32 and EFR32 device families

Platform Drivers - a higher level driver layer built on top of EMLIB. EMDRV abstracts some aspects of peripheral initialization

and use but is more limited in peripheral coverage than EMLIB.

Additionally, Silicon Labs' Peripheral Examples on GitHub are a good resource for simple demonstration of peripheral control

using EMLIB.

mikroSDK Porting Guide

The mikroE ecosystem of click boards from MikroElektronika are typically supported by a collection of driver modules and

example code built upon the mikroSDK. These click boards feature a mikroBUS connector for connection to a host board

and can include connections for power (3.3 V, 5 V, GND), communications (UART, SPI, and/or I2C), and assorted other

functions (GPIO, PWM, INT).

The mikroSDK is a framework that provides abstraction for the communication and GPIO functions of the mikroE click

boards by wrapping vendor-specific functions in a common API framework to accomplish these tasks that is portable across

a wide range of host devices. The microSDK is therefore ported to a new device via the assignment of function pointers and

other device-specific configuration options. At this time, there is no official mikroSDK port for Silicon Labs devices.

https://docs.silabs.com/bluetooth/6.1.0/bluetooth-getting-started-wstk
https://github.com/SiliconLabs/application_examples
https://github.com/SiliconLabs/bluetooth_applications/tree/5b84201f14c57727766ddf72a54246b16d21fa68
https://libstock.mikroe.com/
https://github.com/MikroElektronika
https://www.mikroe.com/mikrosdk
https://docs.silabs.com/gecko-platform/latest/emlib/api
https://docs.silabs.com/gecko-platform/latest/driver/api/modules
https://github.com/SiliconLabs/peripheral_examples
https://www.mikroe.com/mikrobus

Getting Started with the BGM220

86/1306

Note: The goal of this configuration guide is not to instruct the user on how to port the mikroSDK to the

BGM220 or other Silicon Labs devices, but instead to introduce the user to the spectrum of Silicon Labs' native

APIs and how to use these APIs instead of the mikroSDK.

There is currently a wide selection of mikroE click accessory boards to facilitate product development with devices such as

sensors, display/LEDs, storage, interface, and HMI. Some of these boards are shown below.

Using the mikroBUS-compatible socket included on the Explorer Kit BGM220, these boards can be used with the BGM220

as the host controller via the pin functions connecting the mikroBUS socket to the BGM220.

When porting mikroE click examples to the Silicon Labs platform, it is important to understand that interaction between the

host controller and the click board is accomplished using a subset of UART, I2C, SPI, GPIO, analog, PWM, or interrupt. Pins

for each function are allocated between the BGM220 and the mikroBUS connector, as shown below.

MikroE Socket Signal MikroE Socket Pin BGM220 Pin or Board Connection

MIKROE_ANALOG J201.1 PB00

MIKROE_RST J201.2 PC06

MIKROE_SPI_CS J201.3 PC03

MIKROE_SPI_SCK J201.4 PC02

MIKROE_SPI_MISO J201.5 PC01

https://www.mikroe.com/click-boards

Getting Started with the BGM220

87/1306

MikroE Socket Signal MikroE Socket Pin BGM220 Pin or Board Connection

MIKROE_SPI_MOSI J201.6 PC00

3V3 J201.7 VMCU - BGM220P voltage domain

GND J201.8 GND

MIKROE_PWM J202.1 PB04

MIKROE_INT J202.2 PB03

MIKROE_UART_RX J202.3 PB02

MIKROE_UART_TX J202.4 PB01

MIKROE_I2C_SCL J202.5 PD02

MIKROE_I2C_SDA J202.6 PD03

+5 V J202.7 +5 V - Board USB voltage

GND J202.8 GND

Note: Knowledge of the pin mapping shown above combined with use of Silicon Labs' native APIs, as shown

below, enable a user to port existing click examples to the Explorer Kit BGM220 by substituting Silicon Labs API

calls for mikroSDK and click driver API calls.

The following sections cover four main categories of API-enabled interactions between a host device (BGM220P in this

case) and a click board: GPIO, SPI, I2C, and UART. Note that the functions and structures presented here correspond to

elements of the core mikroHAL and mikroBUS APIs of the mikroSDK and their closest Silicon Labs counterparts. Many click

boards have additional libraries and driver files that integrate with these layers to create the mikroE project framework.

However, these core elements should help guide users porting to the Silicon Labs platform.

GPIO

The mikroSDK uses a complex system of function pointers and data structures to initialize a low level GPIO driver layer with

initialization, "get," and "set" function pointers for each GPIO pin on the mikroBUS header. This structure is inherited by

higher-level driver layers, which use "get" and "set" functions in higher-level wrapper functions.

By contrast, the Silicon Labs APIs for GPIO control, or em_gpio, are straightforward and easy to understand. Generally

speaking, firmware should first initialize a pin and set its mode (i.e., input type, output type, and so on) by calling

GPIO_PinModeSet(), then use various API calls to control or read the pin state. The following table represents a comparison

and possible suggested substitution scheme for using em_gpio in place of the mikroSDK GPIO API.

Note: More em_gpio functions are available in EMLIB. For more information,see the GPIO API Documentation.

API

category

mikroBUS/mikroHAL

function/API
Description

Corresponding Silicon Labs GSDK/EMLIB Platform

API

GPIO T_gpio_setFp

T_gpio_obj::gpioGet[12]

Pointers to Get

functions

GPIO_PinOutGet(), GPIO_PinInGet()

T_gpio_setFp

T_gpio_obj::gpioSet[12]

Pointers to Set

functions

GPIO_PinOutSet(), GPIO_PinOutClear(),

GPIO_PinOutToggle()

https://docs.silabs.com/mcu/latest/bgm21/group-GPIO
https://docs.silabs.com/mcu/latest/bgm21/group-GPIO

Getting Started with the BGM220

88/1306

API

category
mikroBUS/mikroHAL function/API Description

Corresponding Silicon

Labs GSDK/EMLIB

Platform API

T_mikrobus_ret mikrobus_gpioInit

(T_mikrobus_soc bus, T_mikrobus_pin

pin, T_gpio_dir dir)

Function sets GPIO direction. This function

also should be used for GPIO availability

check.

GPIO_PinModeSet(),

GPIO_PinModeGet()

void hal_gpioMap(T_HAL_P gpioObj); Initialization of the GPIO HAL (internal

mapping of function pointers and

driver/HAL layer initialization)

N/A

SPI

As with the mikroSDK GPIO API, the mikroSDK SPI framework relies on vendor-specific function pointers assigned in a

configuration layer to provide an interface for SPI communications.

Silicon Labs offers the low-level EMLIB SPI (Synchronous USART) and higher-level EMDRV driver SPIDRV APIs for SPI

communication, provided as source code. The suggested substitutions in the following table assume that the host SoC is

the SPI central, however EMLIB and SPIDRV offer peripheral SPI functions as well.

When using EMLIB, firmware must separately configure all SPI pins to the proper mode using the EMLIB GPIO functions

before using the pins for SPI communications. When using SPIDRV, however, firmware specifies the desired port and pins to

use for the SPI bus in the SPIDRV_Init data structure, and configuration of these pins is handled by the SPIDRV_Init()

function.

Note: More EMLIB and SPIDRV functions are available than shown here. See em_usart and and SPIDRV API

documentation for more information.

API

category

mikroBUS/mikroHAL

function/API
Description

Corresponding Silicon Labs

GSDK/EMLIB Platform API

SPI T_mikrobus_ret

mikrobus_spiInit

(T_mikrobus_soc bus,

const uint32_t *cfg)

Function will initialize SPI peripheral on

provided MIKROBUS depending on

configuration provided as second

argument.

USART_InitSync() or

SPIDRV_Init()/SPIDRV_DeInit()

void hal_spiMap(T_HAL_P

spiObj);

Initialization of the SPI HAL (internal

mapping of function pointers and

driver/HAL layer initialization)

N/A

static void

hal_spiWrite(uint8_t

*pBuf, uint16_t nBytes);

Function should execute write sequence

of n bytes.

USART_SpiTransfer() (ignore return

value), SPIDRV_MTransmit(),

SPIDRV_MTransmitB()

static void

hal_spiRead(uint8_t

*pBuf, uint16_t nBytes);

Function should execute read sequence

of n bytes.

USART_SpiTransfer() (read return

value, pass dummy data parameter),

SPIDRV_MReceive(),

SPIDRV_MReceiveB()

static void

hal_spiTransfer(uint8_t

*pIn, uint8_t *pOut,

uint16_t nBytes);

Function should execute RW sequence of

n bytes

USART_SpiTransfer(),

SPIDRV_MTransfer(),

SPIDRV_MTransferB(),

SPIDRV_MTransferSingleItemB()

I2C

As with other mikroSDK modules, the mikroSDK I2C framework relies on vendor-specific function pointers assigned in a

configuration layer to provide an interface for I2C communications.

https://docs.silabs.com/mcu/latest/bgm21/group-USART
https://docs.silabs.com/gecko-platform/latest/driver/api/group-spidrv
https://docs.silabs.com/mcu/latest/bgm21/group-USART
https://docs.silabs.com/mcu/latest/bgm21/group-SPIDRV

Getting Started with the BGM220

89/1306

Silicon Labs offers the EMLIB I2C driver em_i2c for firmware control of the I2C interface, which differs slightly in approach

from the mikroSDK framework. The em_i2c firmware interface relies on the configuration of the I2C peripheral block and

desired transfer parameters using the I2C_Init() and I2C_TransferInit() functions. Management of the I2C transfer state

machine handled by repeated calls to I2C_Transfer(), which handles the different phases of the I2C transfer and hardware

state machine.

When using EMLIB, firmware must separately configure all I2C pins to the proper mode using the EMLIB GPIO functions

before using the pins for I2C communications.

Note: The em_i2c driver library provides additional functions and features beyond those described here. See the

em_i2c API documentation for more information.

API

category

mikroBUS/mikroHAL

function/API
Description

Corresponding

Silicon Labs

GSDK/EMLIB

Platform API

I2C T_i2c_readFp

T_i2c_obj::i2cRead

Pointer to I2C Read function I2C_Transfer()

T_i2c_restartFp

T_i2c_obj::i2cRestart

Pointer to I2C Restart function I2C_Transfer()

T_i2c_startFp

T_i2c_obj::i2cStart

Pointer to I2C Start function I2C_Transfer()

T_i2c_stopFp

T_i2c_obj::i2cStop

Pointer to I2C Stop function I2C_Transfer()

T_i2c_writeFp

T_i2c_obj::i2cWrite

Pointer to I2C Write function I2C_Transfer()

T_mikrobus_ret

mikrobus_i2cInit

(T_mikrobus_soc bus, const

uint32_t *cfg)

Function will initialize I2C peripheral on provided

MIKROBUS depending on configuration provided as

second argument.

I2C_Init(),

I2C_TransferInit()

void hal_i2cMap(T_HAL_P

i2cObj);

Initialization of the I2C HAL (internal mapping of function

pointers and driver/HAL layer initialization)

N/A

static int hal_i2cStart(); This function in the snippet above should execute start

condition on the I2C BUS.

I2C_TransferInit(),

I2C_Transfer()

static int hal_i2cWrite(uint8_t

peripheralAddr, uint8_t

*pBuff, uint16_t nBytes,

uint8_t endMode);

This function in the snippet above should execute write

sequence, write the data inside the pBuf and execute

“end” or “restart” condition, depending on the endMode

argument.

I2C_Transfer()

static int hal_i2cRead(uint8_t

peripheralAddr, uint8_t

*pBuff, uint16_t nBytes,

uint8_t endMode);

This function in the snippet above should execute read

sequence, and place the data inside the pBuf and execute

“end” or “restart” condition, depending on the endMode

argument.

I2C_Transfer()

UART

In a similar fashion as other mikroSDK API modules, the mikroSDK UART framework relies on vendor-specific function

pointers assigned in a configuration layer to provide an interface for UART communications.

Silicon Labs offers the low-level EMLIB UART (asynchronous USART) and higher-level EMDRV driver UARTDRV APIs for

UART communication, provided as source code.

When using EMLIB, firmware must separately configure all UART pins to the proper mode using the EMLIB GPIO functions

before using the pins for UART communications. When using UARTDRV, however, firmware specifies the desired port and

https://docs.silabs.com/mcu/latest/bgm21/group-I2C
https://docs.silabs.com/mcu/latest/bgm21/group-I2C
https://docs.silabs.com/mcu/latest/bgm21/group-USART
https://docs.silabs.com/gecko-platform/latest/driver/api/group-uartdrv

Getting Started with the BGM220

90/1306

pins to use for the UART bus in the UARTDRV_InitUart_t data structure. Configuration of these pins is handled by the

UARTDRV_InitUart() or UARTDRV_InitLeuart() function.

Note: The EMLIB em_usart and EMDRV UARTDRV APIs provide additional functionality and support a wider

feature set of the USART peripheral than is described in this porting guide. See the em_usart and UARTDRV API

documentation for more information.

API

category

mikroBUS/mikroHAL

function/API
Description

Corresponding Silicon Labs

GSDK/EMLIB Platform API

UART T_mikrobus_ret

mikrobus_uartInit

(T_mikrobus_soc bus, const

uint32_t *cfg)

Function will initialize UART peripheral on

MIKROBUS1 and assign proper pointers

to click driver.

USART_InitAsync(),

UARTDRV_InitUart(),

UARTDRV_InitLeuart() and

UARTDRV_DeInit()

void hal_uartMap(T_HAL_P

uartObj);

Initialization of the UART HAL (internal

mapping of function pointers and

driver/HAL layer initialization)

N/A

static void

hal_uartWrite(uint8_t input);

Write one byte over UART USART_Tx(), UARTDRV_Transmit(),

UARTDRV_TransmitB()

static uint8_t hal_uartRead(); Read one byte over UART USART_Rx(), UARTDRV_Receive(),

UARTDRV_ReceiveB()

static uint8_t hal_uartReady(); USART_StatusGet(),

UARTDRV_GetReceiveStatus() and

UARTDRV_GetTransmitStatus()

Arduino Porting Guide

Many open-source examples, including those designed for use with expansion boards from sparkfun, Adafruit, or Seeed

Studios, use the Arduino API. This section provides a basic mapping of some of the Arduino API functions for serial

communications and GPIO handling onto suggested or possible replacement calls from the Silicon Labs EMLIB and EMDRV

libraries.

Although the Arduino API contains many submodules for different tasks, this guide focuses on Silicon Labs API replacements

for GPIO control (Arduino Digital IO API), SPI communications (Arduino SPI API), I2C communications (Arduino Wire API), and

UART communications (Arduino Serial and SoftwareSerial APIs).

GPIO �Arduino Digital IO API�

The Silicon Labs APIs for GPIO control, or em_gpio, provide straightforward and easy to understand functions for GPIO

initialization and control. Generally speaking, firmware should first initialize a pin and set its mode (i.e., input type, output

type, and so on) by calling GPIO_PinModeSet(), then use various API calls to control or read the pin state. The following

table represents a comparison and possible suggested substitution scheme for using em_gpio in place of the Arduino Digital

I/O API.

Note: More em_gpio functions are available in EMLIB than shown here. See the em_gpio API documentation for

more information.

API

category

Arduino

function/API
Description

Corresponding Silicon Labs

GSDK/EMLIB Platform API

GPIO pinMode() Configures the specified pin to behave either as an

input or an output.

GPIO_PinModeSet(),

GPIO_PinModeGet()

https://docs.silabs.com/mcu/latest/bgm21/group-USART
https://docs.silabs.com/gecko-platform/latest/driver/api/group-uartdrv
https://docs.silabs.com/mcu/latest/bgm21/group-emlib
https://docs.silabs.com/mcu/latest/bgm21/group-emdrv
https://docs.silabs.com/mcu/latest/bgm21/group-GPIO
https://docs.silabs.com/mcu/latest/bgm21/group-GPIO

Getting Started with the BGM220

91/1306

API

category

Arduino

function/API
Description

Corresponding Silicon Labs GSDK/EMLIB

Platform API

digitalRead() Reads the value from a specified digital pin,

either HIGH or LOW.

GPIO_PinOutGet(), GPIO_PinInGet()

digitalWrite() Write a HIGH or a LOW value to a digital pin. GPIO_PinOutSet(), GPIO_PinOutClear(),

GPIO_PinOutToggle()

SPI �Arduino SPI API�

Silicon Labs offers the low-level EMLIB SPI (Synchronous USART) and higher-level EMDRV driver SPIDRV APIs for SPI

communication, provided as source code. The suggested substitutions in the following table assume that the host SoC is

the SPI central. However, EMLIB and SPIDRV offer SPI functions as well.

When using EMLIB, firmware must separately configure all SPI pins to the proper mode using the EMLIB GPIO functions

before using the pins for SPI communications. When using SPIDRV, however, firmware specifies the desired port and pins to

use for the SPI bus in the SPIDRV_Init data structure. Configuration of these pins is handled by the SPIDRV_Init() function.

Note: More EMLIB and SPIDRV functions are available than shown here. See the em_usart and and SPIDRV API

documentation for more information.

API

category

Arduino

function/API
Description

Corresponding Silicon Labs

GSDK/EMLIB/EMDRV Platform API

SPI SPISettings The SPISettings object is used to configure

the SPI port for your SPI device. All 3

parameters are combined to a single

SPISettings object, which is given to

SPI.beginTransaction()

USART_InitSync_TypeDef Struct

begin() Initializes the SPI bus by setting SCK, MOSI,

and SS to outputs, pulling SCK and MOSI

low, and SS high.

USART_InitSync() with GPIO_PinModeSet()

OR SPIDRV_Init()

end() Disables the SPI bus (leaving pin modes

unchanged).

USART_Enable() with parameter enable =

false

beginTransaction() Initializes the SPI bus using the defined

SPISettings.

USART_InitSync() with GPIO_PinModeSet()

OR SPIDRV_Init()

endTransaction() Stop using the SPI bus. Normally, this is

called after de-asserting the chip select, to

allow other libraries to use the SPI bus.

USART_Enable() with parameter enable =

false, USART_Reset(), and

GPIO_PinModeSet() OR SPIDRV_DeInit()

setBitOrder() Sets the order of the bits shifted out of and

into the SPI bus, either LSBFIRST (least-

significant bit first) or MSBFIRST (most-

significant bit first).

set by "msbf" element of

USART_InitSync_TypeDef structure and

passed to USART_InitSync(); OR set by

"bitOrder" element of SPIDRV_Init structure

and passed to SPIDRV_Init()

setClockDivider() Sets the SPI clock divider relative to the

system clock. Depricated for Arduino??

use USART_BaudrateSyncSet(),

USART_InitSync(), SPIDRV_Init()

https://docs.silabs.com/mcu/latest/bgm21/group-USART
https://docs.silabs.com/mcu/latest/bgm21/group-SPIDRV
https://docs.silabs.com/mcu/latest/bgm21/group-USART
https://docs.silabs.com/mcu/latest/bgm21/group-SPIDRV

Getting Started with the BGM220

92/1306

API

category

Arduino

function/API
Description

Corresponding Silicon Labs

GSDK/EMLIB/EMDRV Platform

API

setDataMode() Sets the SPI data mode: that is, clock polarity and phase.

Deprecated for Arduino??

set by "clockMode" element of

USART_InitSync_TypeDef

structure and passed to

USART_InitSync(); OR set by

"clockMode" element of

SPIDRV_Init structure and

passed to SPIDRV_Init()

transfer() SPI transfer is based on a simultaneous send and receive:

the received data is returned in receivedVal (or

receivedVal16). In case of buffer transfers the received

data is stored in the buffer in-place (the old data is

replaced with the data received).

USART_SpiTransfer(),

SPIDRV_MTransfer(),

SPIDRV_MTransferB(),

SPIDRV_MTransferSingleItemB()

usingInterrupt() If your program will perform SPI transactions within an

interrupt, call this function to register the interrupt number

or name with the SPI library. This allows

SPI.beginTransaction() to prevent usage conflicts. Note

that the interrupt specified in the call to usingInterrupt()

will be disabled on a call to beginTransaction() and re-

enabled in endTransaction().

use USART_IntEnable() and

USART_IntDisable()

shiftOut() Bit bang (software) SPI TX. USART_SpiTransfer(),

SPIDRV_MTransfer(),

SPIDRV_MTransferB(),

SPIDRV_MTransferSingleItemB()

shiftIn() Bit bang (software) SPI RX. USART_SpiTransfer() (read

return value, pass dummy data

parameter),

SPIDRV_MReceive(),

SPIDRV_MReceiveB()

I2C �Arduino Wire API�

Silicon Labs offers the EMLIB I2C driver (em_i2c) for firmware control of the I2C interface, which differs slightly in approach

from the Arduino Wire API. The em_i2c firmware interface relies on the configuration of the I2C peripheral block and desired

transfer parameters using the I2C_Init() and I2C_TransferInit() functions. Management of the I2C transfer state machine is

then handled by repeated calls to I2C_Transfer(), which handles the different phases of the I2C transfer and hardware state

machine.

When using EMLIB, firmware must separately configure all I2C pins to the proper mode using the EMLIB GPIO functions

before using the pins for I2C communications.

Note: The em_i2c driver library provides additional functions and features beyond those described here. See the

em_i2c API documentation for more information.

https://docs.silabs.com/mcu/latest/bgm21/group-I2C
https://docs.silabs.com/mcu/latest/bgm21/group-I2C

Getting Started with the BGM220

93/1306

API

category

Arduino

function/API
Description

Corresponding Silicon Labs

GSDK/EMLIB Platform API

I2C begin() Initiate the Wire library and join the I2C bus as a

central or peripheral. This should normally be

called only once.

I2C_Init()

requestFrom() Used by the central to request bytes from a

peripheral device. The bytes may then be retrieved

with the available() and read() functions.

I2C_TransferInit()

beginTransmission() Begin a transmission to the I2C device with the

given address. Subsequently, queue bytes for

transmission with the write() function and transmit

them by calling endTransmission().

I2C_TransferInit()

endTransmission() Ends a transmission to a device that was begun by

beginTransmission() and transmits the bytes that

were queued by write().

I2C_Transfer()

write() Writes data from a peripheral device in response to

a request from a central, or queues bytes for

transmission from a central to peripheral device

(in-between calls to beginTransmission() and

endTransmission()).

I2C_Transfer()

available() Returns the number of bytes available for retrieval

with read(). This should be called on a central

device after a call to requestFrom() or on a inside

the onReceive() handler.

N/A

read() Reads a byte that was transmitted from a

peripheral device to a central after a call to

requestFrom() or was transmitted from a central to

a . read() inherits from the Stream utility class.

I2C_Transfer()

SetClock() This function modifies the clock frequency for I2C

communication. I2C peripheral devices have no

minimum working clock frequency, however

100KHz is usually the baseline.

I2C_BusFreqSet(),

I2C_BusFreqGet()

onReceive() Registers a function to be called when a device

receives a transmission from a central.

use I2C_IntEnable(),

I2C_IntDisable(), I2C_IntGet(),

I2C_IntClear(),

I2C_IntGetEnabled(), I2C_IntSet(),

and I2C ISR to manage I2C

interrupts, if used

onRequest() Register a function to be called when a central

requests data from this peripheral device.

use I2C_IntEnable(),

I2C_IntDisable(), I2C_IntGet(),

I2C_IntClear(),

I2C_IntGetEnabled(), I2C_IntSet(),

and I2C ISR to manage I2C

interrupts, if used

UART �Arduino Serial and SoftwareSerial APIs)

Silicon Labs offers the low-level EMLIB UART (asynchronous USART) and higher-level EMDRV driver UARTDRV APIs for

UART communication, provided as source code. Additionally, Silicon Labs offers a higher-level driver called RetargetIo that

re-targets some standard IO functions such as printf and may be useful for replacement of some Arduino Serial and

SoftwareSerial functions.

When using EMLIB, firmware must separately configure all UART pins to the proper mode using the EMLIB GPIO functions

before using the pins for UART communications. When using UARTDRV, however, firmware specifies the desired port and

pins to use for the UART bus in the UARTDRV_InitUart_t data structure, and configuration of these pins is handled by the

https://docs.silabs.com/mcu/latest/bgm21/group-USART
https://docs.silabs.com/mcu/latest/bgm21/group-UARTDRV
https://docs.silabs.com/mcu/latest/bgm21/group-RetargetIo

Getting Started with the BGM220

94/1306

UARTDRV_InitUart() or UARTDRV_InitLeuart() function. Similarly, when using RetargetIo functions, USART and GPIO

initialization is handled by RETARGET_SerialInit(). Note that the RetargetIo library is Silicon Labs board-specific library,

which relies on board support configuration files to properly configure GPIO and peripherals used in communications.

Note: The EMLIB em_usart, EMDRV UARTDRV, and RetargetIo APIs provide additional functionality and support a

wider feature set of the USART peripheral than described in this porting guide. See the em_usart, UARTDRV,

and RetargetIo API documentation for more information.

Arduino Serial API porting:

API

category

Arduino

function/API
Description

Corresponding Silicon Labs

GSDK/EMLIB/EMDRV/RetargetIo

Platform API

if(Serial) Indicates if the specified Serial port is ready. USART_StatusGet()

available() Get the number of bytes (characters) available for

reading from the serial port. This is data that’s already

arrived and stored in the serial receive buffer (which

holds 64 bytes).

UARTDRV_GetReceiveStatus()

availableForWrite() Get the number of bytes (characters) available for

writing in the serial buffer without blocking the write

operation

UARTDRV_GetTransmitDepth(),

UARTDRV_GetTransmitStatus()

begin() Sets the data rate in bits per second (baud) for serial

data transmission. For communicating with Serial

Monitor, make sure to use one of the baud rates listed

in the menu at the bottom right corner of its screen.

You can, however, specify other rates - for example, to

communicate over pins 0 and 1 with a component that

requires a particular baud rate. An optional second

argument configures the data, parity, and stop bits.

The default is 8 data bits, no parity, one stop bit.

USART_InitAsync(),

UARTDRV_InitUart(),

RETARGET_SerialInit()

end() Disables serial communication, allowing the RX and TX

pins to be used for general input and output. To re-

enable serial communication, call Serial.begin().

USART_Reset(), USART_Enable()

with enable = false, use GPIO

functions to change pin modes;

UARTDRV_DeInit()

find() Serial.find() reads data from the serial buffer until the

target is found. The function returns true if target is

found, false if it times out.

N/A; This must be user-

implemented

findUntil() Serial.findUntil() reads data from the serial buffer until

a target string of given length or terminator string is

found. The function returns true if the target string is

found, false if it times out.

N/A; This must be user-

implemented

flush() Waits for the transmission of outgoing serial data to

complete. (Prior to Arduino 1.0, this instead removed

any buffered incoming serial data.)

RETARGET_SerialFlush()

parseFloat() Serial.parseFloat() returns the first valid floating point

number from the Serial buffer. parseFloat() is

terminated by the first character that is not a floating

point number. The function terminates if it times out

(see Serial.setTimeout()).

N/A; This must be user-

implemented; may be possible

to use stdio functions with

RetargetIo to assist in

implementation

https://docs.silabs.com/mcu/latest/bgm21/group-USART
https://docs.silabs.com/mcu/latest/bgm21/group-UARTDRV
https://docs.silabs.com/mcu/latest/bgm21/group-RetargetIo

Getting Started with the BGM220

95/1306

API

category

Arduino

function/API
Description

Corresponding Silicon Labs

GSDK/EMLIB/EMDRV/RetargetIo

Platform API

parseInt() Looks for the next valid integer in the incoming serial.

The function terminates if it times out (see

Serial.setTimeout()).

N/A; This must be user-

implemented; may be possible

to use stdio functions with

RetargetIo to assist in

implementation

peek() Returns the next byte (character) of incoming serial data

without removing it from the internal serial buffer. That

is, successive calls to peek() will return the same

character, as will the next call to read().

No API support. Firmware

should issue a direct read of the

USART_RXDATAXP or

USART_RXDOUBLEXP peek

registers.

print() Prints data to the serial port as human-readable ASCII

text. This command can take many forms. Numbers are

printed using an ASCII character for each digit. Floats

are similarly printed as ASCII digits, defaulting to two

decimal places. Bytes are sent as a single character.

Characters and strings are sent as is. For example-

RetargetSerial enables this

functionality using stdio

functions (i.e. printf(), etc.)

println() Prints data to the serial port as human-readable ASCII

text followed by a carriage return character (ASCII 13, or

'\r') and a newline character (ASCII 10, or '\n'). This

command takes the same forms as Serial.print().

RetargetSerial enables this

functionality using stdio

functions (i.e. printf(), etc.)

read() Reads incoming serial data. USART_Rx(),

UARTDRV_Receive(),

UARTDRV_ReceiveB(),

RETARGET_ReadChar (void)()

readBytes() Serial.readBytes() reads characters from the serial port

into a buffer. The function terminates if the determined

length has been read, or it times out (see

Serial.setTimeout()). Serial.readBytes() returns the

number of characters placed in the buffer. A 0 means no

valid data was found.

USART_Rx(),

UARTDRV_Receive(),

UARTDRV_ReceiveB(),

RETARGET_ReadChar (void)()

readBytesUntil() Serial.readBytesUntil() reads characters from the serial

buffer into an array. The function terminates (checks

being done in this order) if the determined length has

been read, if it times out (see Serial.setTimeout()), or if

the terminator character is detected (in which case the

function returns the characters up to the last character

before the supplied terminator). The terminator itself is

not returned in the buffer. Serial.readBytesUntil() returns

the number of characters read into the buffer. A 0 means

that the length parameter <= 0, a time out occurred

before any other input, or a termination character was

found before any other input.

USART_Rx(),

UARTDRV_Receive(),

UARTDRV_ReceiveB(),

RETARGET_ReadChar (void)()

readString() Serial.readString() reads characters from the serial

buffer into a String. The function terminates if it times

out (see setTimeout()).

N/A; This must be user-

implemented

readStringUntil() readStringUntil() reads characters from the serial buffer

into a String. The function terminates if it times out (see

setTimeout()).

N/A; This must be user-

implemented

Getting Started with the BGM220

96/1306

API

category

Arduino

function/API
Description

Corresponding Silicon Labs

GSDK/EMLIB/EMDRV/RetargetIo Platform API

setTimeout() Serial.setTimeout() sets the maximum

milliseconds to wait for serial data. It defaults

to 1000 milliseconds.

N/A; This must be user-implemented

write() Writes binary data to the serial port. This data

is sent as a byte or series of bytes; to send

the characters representing the digits of a

number use the print() function instead.

USART_Tx(), UARTDRV_Transmit(),

UARTDRV_TransmitB(), RETARGET_WriteChar(),

RETARGET_WriteString()

serialEvent() Called when data is available. Use

Serial.read() to capture this data.

N/A; use USART_IntEnable(),

USART_IntDisable(), USART_IntGet(),

USART_IntClear(), USART_IntGetEnabled(),

USART_IntSet(), and USART ISR to manage

USART interrupts, if used

Arduino SoftwareSerial API porting:

API

category

Arduino

function/API
Description

Corresponding Silicon Labs

GSDK/EMLIB/EMDRV/RetargetIo

Platform API

SoftwareSerial() SoftwareSerial is used to create an instance of a

SoftwareSerial object, whose name you need to provide

as in the example below. The inverse_logic argument is

optional and defaults to false. See below for more details

about what it does. Multiple SoftwareSerial objects may

be created, however only one can be active at a given

moment.

N/A

available() Get the number of bytes (characters) available for

reading from a software serial port. This is data that's

already arrived and stored in the serial receive buffer.

UARTDRV_GetReceiveStatus()

begin() Sets the speed (baud rate) for the serial communication.

Supported baud rates are 300, 600, 1200, 2400, 4800,

9600, 14400, 19200, 28800, 31250, 38400, 57600, and

115200.

USART_InitAsync(),

UARTDRV_InitUart(),

RETARGET_SerialInit()

isListening() Tests to see if requested software serial port is actively

listening.

N/A, however Silicon Labs'

USART have a loopback feature

that can be enabled

overflow() Tests to see if a software serial buffer overflow has

occurred. Calling this function clears the overflow flag,

meaning that subsequent calls will return false unless

another byte of data has been received and discarded in

the meantime.

N/A

peek() Return a character that was received on the RX pin of the

software serial port. Unlike read(), however, subsequent

calls to this function will return the same character.

No API support. Firmware

should issue a direct read of the

USART_RXDATAXP or

USART_RXDOUBLEXP peek

registers.

read() Return a character that was received on the RX pin of the

software serial port. Note that only one SoftwareSerial

instance can receive incoming data at a time (select

which one with the listen() function).

USART_Rx(),

UARTDRV_Receive(),

UARTDRV_ReceiveB(),

RETARGET_ReadChar (void)()

Getting Started with the BGM220

97/1306

API

category

Arduino

function/API
Description

Corresponding Silicon Labs

GSDK/EMLIB/EMDRV/RetargetIo

Platform API

print() Prints data to the transmit pin of the software serial port.

Works the same as the Serial.print() function.

RetargetSerial enables this

functionality using stdio

functions (i.e. printf(), etc.)

println() Prints data to the transmit pin of the software serial port,

followed by a carriage return and line feed. Works the same

as the Serial.println() function.

RetargetSerial enables this

functionality using stdio

functions (i.e. printf(), etc.)

listen() Enables the selected software serial port to listen. Only one

software serial port can listen at a time; data that arrives for

other ports will be discarded. Any data already received is

discarded during the call to listen() (unless the given

instance is already listening).

N/A

write() Prints data to the transmit pin of the software serial port as

raw bytes. Works the same as the Serial.write() function.

USART_Tx(),

UARTDRV_Transmit(),

UARTDRV_TransmitB(),

RETARGET_WriteChar(),

RETARGET_WriteString()

More Demos and Examples

98/1306

More Demos and Examples

More Demos and Examples
Because starting application development from scratch is difficult, the Bluetooth SDK comes with a number of built-in

demos and examples covering the most frequent use cases, as shown in the following figure. Demos are pre-built

application images that you can run immediately. Software examples (example projects) can be modified before building the

application image. See Getting Started with Application Development for more information about configuring and

customizing examples.

Demos with the same name as examples are built from their respective example. Click View Project Documentation to see

additional information about some examples. This is also displayed on a readme tab when you create a project based on the

example.

Use the Demos and Example Projects switches to filter on only examples or only demos. Demos are also noted by the blue

Demo tag in the upper left of the card. The Solution Examples are primarily for use with multiprotocol applications.

Note: The demos and examples you see are determined by the part selected. If you are using a custom solution with more

than one part, click on the part you are working with to see only the items applicable to that part.

Demo and Example Descriptions

The following examples are provided as part of the Bluetooth SDK. Examples with (*) in their names have a matching pre-

built demo.

https://docs.silabs.com/bluetooth/6.1.0/bluetooth-getting-started-app-dev

More Demos and Examples

99/1306

Silicon Labs Gecko Bootloader Examples

See UG266: Silicon Labs Gecko Bootloader User’s Guide for GSDK 3.2 and Lower or UG489: Silicon Labs Gecko Bootloader
User’s Guide for GSDK 4.0 and Higher, and AN1086: Using the Gecko Bootloader with Silicon Labs Bluetooth Applications.

Bluetooth Examples

Bluetooth – RCP(*): Radio Co-Processor (RCP) target application. Runs the Bluetooth Controller (i.e. the Link Layer only) and

provides access to it using the standard HCI (Host-Controller Interface) over a UART connection.

Bluetooth – RCP CPC(*): Radio Co-Processor (RCP) target application. Runs the Bluetooth Controller (i.e. the Link Layer only)

and provides access to it using the standard HCI (Host-Controller Interface) over CPC (Co-Processor Communication)

protocol through a UART connection.

Bluetooth – NCP(*): Network Co-Processor (NCP) target application. Runs the Bluetooth stack dynamically and provides

access to it via the Bluetooth API (BGAPI) using a UART connection. NCP mode makes it possible to run your application on a

host controller or PC.

Bluetooth – NCP Host: Reference implementation of an NCP (Network Co-Processor) host, which typically runs on a central

MCU without radio. It can connect to an NCP target via UART to access the Bluetooth stack of the target and to control it

using BGAPI.

Bluetooth AoA – NCP Locator(*): Network Co-Processor (NCP) target application extended with CTE Receiver support. It

enables Angle of Arrival (AoA) calculation. Use this application with Direction Finding host examples.

Bluetooth AoA –Asset Tag(*): Demonstrates a CTE (Constant Tone Extension) transmitter that can be used as an asset tag in

a Direction Finding setup estimating Angle of Arrival (AoA).

Bluetooth – SoC Application OTA DFU: A minimal project structure that serves as a starting point for custom Bluetooth

applications providing Over-the-Air device firmware update in the user application runtime.

Bluetooth – SoC Application OTA DFU FreeRTOS: Demonstrates the integration of FreeRTOS into Bluetooth applications.

RTOS is added to the Bluetooth - SoC Application OTA DFU sample application that realizes over-the-air device firmware

updates in user application scope.

Bluetooth – SoC Application OTA DFU MicriumOS: Demonstrates the integration of MicriumOS into Bluetooth applications.

RTOS is added to the Bluetooth - SoC Application OTA DFU sample application that realizes over-the-air device firmware

updates in user application scope.

Bluetooth – SoC Blinky(*): The classic blinky example using Bluetooth communication. Demonstrates a simple two-way data

exchange over GATT. This can be tested with the EFR Connect mobile app.

Bluetooth – SoC Certificate-Based Authentication and Pairing: Demonstrates Certificate-Based Authentication and Pairing

over Bluetooth LE.

Bluetooth – SoC CSR Generator: Certificate-generating firmware example. Software generates the device EC key pair, the

signing request for the device certificate, and other related data. The generated data can be read out by the Central

Authority. See Bluetooth – SoC Certificate Based Authentication and Pairing.
Bluetooth – SoC DTM: This example implements the direct test mode (DTM) application for radio testing. DTM commands

can be called via UART. See AN1267: Radio Frequency Physical Layer Evaluation in Bluetooth® SDK v3.x for more information.

Bluetooth – SoC Empty: A minimal project structure that serves as a starting point for custom Bluetooth applications. The

application starts advertising after boot and restarts advertising after a connection is closed.

Bluetooth – SoC Interoperability Test(*): A test procedure containing several test cases for Bluetooth Low Energy

communication. This sample app (also provided as a demo) is meant to be used with the EFR Connect mobile app, through

the "Interoperability Test" tile on the Develop view of the app.

Bluetooth – SoC Thermometer(*): Implements a GATT Server with the Health Thermometer Profile, which enables a Client

device to connect and get temperature data. Temperature is read from the Si7021 digital relative humidity and temperature

sensor of the WSTK or of the Thunderboard.

Bluetooth – SoC Thermometer Client: Implements a GATT Client that discovers and connects with up to four Bluetooth LE

devices advertising themselves as Thermometer Servers. It displays the discovery process and the temperature values

received via UART.

Note: Some radio boards will exhibit random pixels in the display when this example is running because they have a shared

pin for sensor- and display-enabled signals.

Bluetooth – SoC Thermometer FreeRTOS: Demonstrates the integration of FreeRTOS into Bluetooth applications. RTOS is

added to the Bluetooth - SoC Thermometer sample app.

Bluetooth – SoC Thermometer Micrium OS: Demonstrates the integration of Micrium RTOS into Bluetooth applications. RTOS

is added to the Bluetooth - SoC Thermometer sample app.

https://www.silabs.com/documents/login/application-notes/an1086-gecko-bootloader-bluetooth.pdf
https://www.silabs.com/documents/public/application-notes/an1267-bt-rf-phy-evaluation-using-dtm-sdk-v3x.pdf

More Demos and Examples

100/1306

Bluetooth – SoC Throughput(*): Tests the throughput capabilities of the device and can be used to measure throughput

between two EFR32 devices, as well as between a device and a smartphone using the EFR Connect mobile app, through the

Throughput demo tile.

Bluetooth – SoC Voice(*): Voice over Bluetooth Low Energy sample application. It is supported by Thunderboard Sense 2 and

Thunderboard EFR32BG22 boards and demonstrates how to send voice data over GATT, which is acquired from the on-board

microphones.

Bluetooth – SoC iBeacon(*): Sends non-connectable advertisements in iBeacon format. The iBeacon Service gives Bluetooth

accessories a simple and convenient way to send iBeacons to smartphones. This example can be tested together with the

EFR Connect mobile app.

Bluetooth – SoC Thunderboard Sense 2(*), and Thunderboard EFR32BG22(*): Demonstrate the features of the

Thunderboard Kit. These can be tested with the EFR Connect mobile app.

Dynamic Multiprotocol Examples

See AN1134: Dynamic Multiprotocol Development with Bluetooth and Proprietary Protocols on RAIL for more information.

Bluetooth RAIL DMP – SoC Empty FreeRTOS: A minimal project structure, used as a starting point for custom Bluetooth +

Proprietary DMP (Dynamic Multiprotocol) applications. It runs on top of FreeRTOS and multiprotocol RAIL.

Bluetooth RAIL DMP – SoC Empty Micrium OS: A minimal project structure, used as a starting point for custom Bluetooth +

Proprietary DMP (Dynamic Multiprotocol) applications. It runs on top of Micrium OS and multiprotocol RAIL.

Bluetooth RAIL DMP – SoC Empty Standard FreeRTOS: A minimal project structure, used as a starting point for custom

Bluetooth + Standard DMP (Dynamic Multiprotocol) applications. It runs on top of FreeRTOS and multiprotocol RAIL utilizing

IEE802.15.4 standard protocol.

Bluetooth RAIL DMP – SoC Empty Standard Micrium OS: A minimal project structure, used as a starting point for custom

Bluetooth + Standard DMP (Dynamic Multiprotocol) applications. It runs on top of Micrium OS and multiprotocol RAIL, utilizing

IEE802.15.4 standard protocol.

Bluetooth RAIL DMP – SoC Light RAIL FreeRTOS(*): A Dynamic Multiprotocol reference application demonstrating a light

bulb that can be switched both via Bluetooth and via a Proprietary protocol. Can be tested with the EFR Connect mobile app

and the RAIL – SoC Switch sample app.

Bluetooth RAIL DMP – SoC Light RAIL Micrium OS: A Dynamic Multiprotocol reference application demonstrating a light bulb

that can be switched both via Bluetooth and via a Proprietary protocol. Can be tested with the EFR Connect mobile app and

the RAIL – SoC Switch sample app.

Bluetooth RAIL DMP – SoC Light Standard FreeRTOS(*): A Dynamic Multiprotocol reference application demonstrating a light

bulb that can be switched both via Bluetooth and via a standard protocol. Can be tested with the EFR Connect mobile app

and the RAIL – SoC Switch Standards sample app.

Bluetooth RAIL DMP – SoC Light Standard Micrium OS(*): A Dynamic Multiprotocol reference application demonstrating a

light bulb that can be switched both via Bluetooth and via a standard protocol. Can be tested with the EFR Connect mobile

app and the RAIL – SoC Switch Standards sample app.

NCP Host Examples

NCP host examples are located in <GSDK-install-location>\app\bluetooth\example_host.

bt_host_empty: Minimal host-side project structure, used as a starting point for NCP host applications. Use it with the

Bluetooth – NCP target application flashed to the radio board.

bt_host_ota_dfu: Demonstrates how to perform an OTA DFU on a Silicon Labs Bluetooth Device. It requires a WSTK with a

radio board flashed with NCP firmware to be used as the GATT client that performs the OTA.

bt_host_uart_dfu: Demonstrates how to perform a UART DFU on a Silicon Labs Bluetooth Device running NCP firmware.

bt_host_voice: On a WSTK programmed with NCP firmware, it to connects to the Bluetooth – SoC Voice example, sets the

correct configuration on it, receives audio via Bluetooth, and stores audio data into a file.

bt_aoa_host_locator: A locator host sample app that works together with a Bluetooth AoA – NCP Locator target app. It

receives IQ samples from the target and estimates the Angle of Arrival (AoA). For more information see QSG175: Application
Development with Silicon Labs’ RTL Library.
bt_host_positioning: Connects to multiple bt_aoa_host_locator sample apps (via MQTT) and estimates a position from Angles

of Arrival (AoA). For more information, see QS175: Application Development with Silicon Labs’ RTL Library.
bt_host_positioning_gui: Connects to the bt_host_positioning sample app (via MQTT), reads out the position estimations

and displays the tags and locators on a 3D GUI. This sample app is python based. For more information, see QSG175:
Application Development with Silicon Labs’ RTL Library.

https://www.silabs.com/documents/public/application-notes/an1134-bluetooth-rail-dynamic-multiprotocol.pdf

More Demos and Examples

101/1306

bt_host_throughput: Tests the throughput capabilities of the device in NCP mode and can be used to measure throughput

between two devices as well as between a device and a smartphone.

bt_host_cpc_hci_bridge: A background application to be run when HCI interface is exposed via CPC. This application

retrieves the HCI commands/events from the CPC messages and forwards them toward the Bluetooth host running on the

PC. Similarly, it forwards the HCI commands from the host toward the target over CPC.

Code Examples

Additional examples are provided in repositories on GitHub. See Code Examples for more information.

https://docs.silabs.com/bluetooth/6.1.0/bluetooth-examples-overview

Overview

102/1306

Overview

Bluetooth Fundamentals
This section contains information for those not yet familiar with Bluetooth LE.

Bluetooth LE Fundamentals (PDF): Offers an overview for those new to the Bluetooth low energy technology.

Advertising and Scanning: Discusses advertising data basics, accept list, periodic advertising, and scan request reporting.

Connections: Describes connections in several topologies and provides connection flow diagrams.

GATT Protocol: Includes details on the basics of the Bluetooth GATT protocol.

System Performance: Provides key background information related to improving system performance and reducing power

consumption.

https://www.silabs.com/documents/public/user-guides/ug103-14-fundamentals-ble.pdf
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-fundamentals-advertising-scanning
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-fundamentals-connections
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-gatt
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-fundamentals-system-performance

Advertising and Scanning

103/1306

Advertising and Scanning

Advertising and Scanning Fundamentals
These pages cover the following topics:

Advertising data basics - Explains the basics of BLE advertising packet formatting to allow users to quickly learn how to

“decode” the content of an advertising packet.

Accept List - Describes how to use and test the Connection Accept List (old terminology: whitelisting) feature.

Periodic Advertising - Explains the feature concept, discusses how to implement an advertiser and a scanner, and provides a

link to example code.

Scan Request Reporting - Briefly discusses the sl_bt_evt_advertiser_scan_request event that notifies the application that a

scan request has been received.

Advertising Data Basics

104/1306

Advertising Data Basics

Bluetooth Advertising Data Basics

Introduction

This document explains the basics of BLE advertising packet formatting to allow users to quickly learn how to “decode” the

content of an advertising packet.

Advertising Data Format

When a BLE device is advertising, it periodically transmits packets, which contain information such as the preamble, access

address, CRC, Bluetooth sender address, and so on. Application developers are often interested in the advertising payload

that is 0-31 bytes long on the primary channels because it is controlled by the application. For extended advertising, the

maximum length is 1650 bytes, but advertising parameters may limit the amount of data that can be sent in a single

advertisement. Other fields in the advertising packets are automatically filled by the Bluetooth stack.

In this document, the term advertising data refers to the 0..31 byte long payload that is available for application use. (In

Bluetooth Core specification this field is referred to as AdvData).

Advertising data consists of one or more Advertising Data (AD) elements. Each element is formatted as follows:

1st byte: length of the element (excluding the length byte itself)

2nd byte: AD type – specifies what data is included in the element

AD data – one or more bytes - the meaning is defined by AD type

For the possible AD type values, which are listed in the Bluetooth SIG website, see the following link:

https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile

Some of the most commonly used data types are:

0x01 = Flags

0x03 = Complete List of 16-bit Service Class UUIDs

0x09 = Complete Local Name

0x08 = Shortened Local Name

https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile

Advertising Data Basics

105/1306

The following are real-world examples of the advertising data format.

Example 1:

The first example shows how to decode the advertisement data sent by the Thermometer example. The payload consists of

28 bytes that are seemingly random but are simple to decode into advertising elements, as shown below.

In the example shown above, the raw payload is split into three AD elements. The first byte is always the length indicator,

which makes it easy to find the AD element boundaries.

The first element is flags. The payload is just one byte long, which means that there are up to 8 flags that can be set. In this

example, two flags are set (bit positions 1 and 2) and the meaning is:

Bit 1: “LE General Discoverable Mode”

Bit 2: “BR/EDR Not Supported.”

The second element includes a list of adopted services (16-bit UUID). In this case, only one service (Health Thermometer,

UUID 0x1809) is advertised. Note the reversed byte order (multibyte values in BLE packets are in little-endian order). A

complete list of the adopted service UUID values can be found at: https://www.bluetooth.com/specifications/assigned-

numbers/

The third element contains the device name Thermometer Example. This is the name that is displayed if you, for example,

try to scan the device with your smart phone.

Example 2:

https://www.bluetooth.com/specifications/assigned-numbers/

Advertising Data Basics

106/1306

In the second example, the advertising payload has the maximum length i.e., 31 bytes. It is split up into individual AD

elements the same way as in the first example.

The first element is the flags byte, which has the same value as in the first example.

The second element has AD Type set to 0x07, which means Complete List of 128-bit Service Class UUID. In this case, the

device is advertising the 128-bit UUID that has been allocated for a custom service. Again, note that the byte order is

reversed.

The third element is the device name. The device name defined in the project is "BGM111 SPP server". Because the

advertising payload doesn't have enough space to fit the complete name, the name is truncated. The AD Type 0x08 is used

to indicate that this is a shortened name. Only the first 8 characters of the name can fit in the advertising data to meet the

31-byte size limit.

Setting Advertising Data

There are two possible ways to set the advertising data content using the Silicon Labs Bluetooth SDK.

Let the stack fill the advertising data automatically, based on the GATT content

The application can set the advertising data content directly

The first option is the simplest one. The stack will automatically fill the advertising data content based on the services

defined in the GATT database of the application. It is possible to select which services are included in the advertising

packets by using the advertise parameter in GATT Configurator or raw gatt.xml.

The logic how the advertising data is automatically filled is described in the API Reference Manual under the command

sl_bt_advertiser_start() .

The second option to set advertising data is more flexible because it allows the application to have full control over data

that is included in the advertising payload. This is especially useful if the application needs to advertise manufacturer-

specific data. Note that a dedicated AD Type 0xFF is reserved for proprietary data. Advertisement data can be set with

sl_bt_advertiser_set_data() . Note, that in this case sl_bt_advertiser_start() must be called with sl_bt_advertiser_user_data

parameter.

Note that even when using custom data the AD elements must be formatted according to the Bluetooth specification. Using

custom advertising data is beyond the scope of this document and is discussed separately.

Conclusion

This document is a quick introduction to BLE advertising. Below are resources for more detailed information on the topic:

Advertising Data Basics

107/1306

List of AD Types

List of adopted services

Bluetooth API reference manual

Bluetooth Core Specification - This is the golden reference, but not that easy to digest.

Example

This guide has related code examples here:

Advertising Manufacturer-Specific Data

Advertisement or Scan Response Constructor

https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile
https://www.bluetooth.com/specifications/gatt/services
https://docs.silabs.com/bluetooth/latest/
https://www.bluetooth.com/specifications/adopted-specifications
https://github.com/SiliconLabs/bluetooth_stack_features/tree/master/advertising/advertising_manufacturer_specific_data
https://github.com/SiliconLabs/bluetooth_stack_features/tree/master/advertising/adv_or_scan_response_constructor

Accept List

108/1306

Accept List

Accept List

Introduction

Connection Accept List (old terminology: whitelisting) filters devices based on a list of Bluetooth addresses on both central

and peripheral side. If accept list is on the central side, scan results from non-listed devices are dropped and connecting to

non-listed devices is not enabled. If accept list is on the peripheral side, only listed devices can connect and receive scan

responses (scan requests and connection requests from non-listed devices are dropped).

This feature was introduced in Bluetooth SDK version 2.11 and, as of right now, it only supports the central side accept list.

However, it allows connecting to non-listed devices if their Bluetooth address is known by the application.

The list size matches the maximum number of bonded devices configuration, which can be modified with the command

sl_bt_sm_store_bonding_configuration . If the maximum number of bonded devices is modified when using the feature, reset the

device before using the new setting.

Although bonded devices are automatically added to the accept list, they can also be added manually as described later in

this document.

Accept list currently supports public and static random Bluetooth addresses, which means that devices using resolvable

random addresses will not be visible during scanning if accept list is enabled. Additionally, if a device using static random

decides to change the address after a power cycle this will put the device out of the accept list.

Note: Because most phones running Android platform or iOS use resolvable random addresses, this feature

effectively puts phones on deny list during device discovery.

Using Accept List

To add the accept list feature to your application, follow the instructions below. For details about command parameters, see

the Bluetooth Software API Reference Manual.

Adding the Feature

By default, this feature is not included in the stack and the Whitelisting software component must be installed to get it

work:

Accept List

109/1306

This will also add the initialization function to the stack init.

Enable/Disable Accept List

Enabling or disabling the accept list can be done at run-time, but it will not take effect when an active scan request is on-

going, only after the scanning is stopped and restarted. Enable accept list using the command below.

sl_bt_gap_enable_whitelisting(uint8 enable)

Adding Devices Manually to the Accept List

To add devices to the accept list, use the command below.

sl_bt_sm_add_to_whitelist(bd_addr address, uint8_t address_type)

Removing the Device from the Accept List

Because bonded devices are automatically added to the accept list, deleting the bonds will also automatically remove them

from the list. This is done with the command below.

sl_bt_sm_delete_bonding(uint8_t bonding)

Erasing the Complete Accept List

The command below deletes all bondings and clears the entire accept list, including devices which were added manually.

sl_bt_sm_delete_bondings()

Test Setup

Two devices (WSTK radio boards) are used to demonstrate this feature.

Device 1: A radio board running the SoC - Empty example. This program advertises using the name Empty Example. The

Bluetooth address used in the advertisement is public. In Simplicity Studio IDE, select the board and flash the SoC - Empty

example from the demo section. Alternatively, use any device which is advertising using a public Bluetooth address.

Device 2: A radio board running a modified version of NCP Empty example. In Simplicity Studio IDE, create a project with the

NCP Empty example from the Software Examples section on the Launcher tab. Add the Whitelisting software component to

Accept List

110/1306

the project in the Software Components view, then build, and flash the project to the radio board.

Open the NCP Commander from the Tools Dialog. Connect to the NCP device. Click Start under Discover to start scanning.

A list of advertising devices along with their addresses will populate, as shown in this figure. Make a note of the address of

Device 1 or the device which you want to add to the accept list. Stop scanning.

In the command prompt, execute the following commands, one at a time. Replace the Bluetooth address with the address of

the device you want to add to the accept list.

sl_bt_gap_enable_whitelisting(1)

sl_bt_sm_add_to_whitelist(12:90:78:56:34:12, 0)

Start scanning again. You will only see the device which was added to the accept list, as shown in the figure below. Also,

notice a bonding handle assigned to the listed device. Use the delete bonding command mentioned above to remove

devices from the accept list.

Accept List

111/1306

Periodic Advertising

112/1306

Periodic Advertising

Periodic Advertising

Introduction

Periodic advertising is a Bluetooth 5.0 feature based on extended advertisements. It allows non-connectable

advertisements to be sent at a fixed interval where advertising data can change between those intervals. One or more

scanners can then listen for these advertisements, which is a form of multicast. The fact that, due to the fix interval, the

scanners can go to sleep between two advertisement events instead of being in receive mode all the time is a huge

advantage compared to other advertising modes.

Important points about Periodic Advertising are as follows:

 You do not need to enable the extended advertiser when periodic advertising is enabled. The only way to get the pointer to

the Periodic Advertising train is through the SyncInfo field of the extended advertiser. As a result, starting extended

advertisement is mandatory.

 At least one advertisement packet needs to be sent to enable periodic advertising.

 It will use the same PHY as the auxiliary packet. Each periodic advertiser has the same parameters as connection.

Additionally, the channel is also determined the same way as connection using the Channel Selection Algorithm #2.

 Because it is based on extended advertisements, it uses data channels as opposed to advertisements channels.

Concept

The overall process is shown in the figure below.

Periodic advertising mode is indicated with the ADV_EXT_IND packets (legacy advertisement) sent on primary (advertising)

channels, which point to AUX_ADV_IND packets (extended advertisement), containing the information about the periodic

advertisement, such as interval, hopping sequence, advertiser address, and so on. The advertiser will also send

AUX_SYNC_IND packets (periodic advertisement) at the identified interval containing the actual periodic advertisement

data.

Periodic Advertising

113/1306

If the data of the periodic advertisement does not fit into one packet, the AUX_SYNC_IND packet can be followed by

AUX_CHAIN_IND packets. AUX_SYNC_IND along with AUX_CHAIN_IND make up a sequence of advertisements forming a

periodic advertising train.

The advertiser will periodically send new AUX_ADV_IND packets, so that new scanners can synchronize to the data stream

or existing scanners can resume a lost sync. Silicon Labs' Bluetooth stack sends AUX_ADV_IND packet before every periodic

advertisement so that new scanners can quickly synchronize.

Periodic Advertising Modes

Advertiser - Advertising device is sending periodic advertisements. The device also sends extended advertisements to

enable syncing on the periodic advertising at any time. This is shown in the Concept section.

Scanner - Users will get the address and SID (advertising set ID) values by scanning for extended advertisements. The

device will synchronize on periodic advertising with user-specified address and SID. Synchronization will only happen when

scanning is enabled. When the device has received at least one AUX_SYNC_IND packet, it is in synchronized mode. The

device will then report received AUX_SYNC_IND packets. After the device has synchronized, you can stop scanning. From

this point on, the device switches to receive mode only when a AUX_SYNC_IND packet is expected.

Note: Periodic advertising is a new feature, which is not yet implemented on Phones. Hence, periodic

advertisement packets will not be visible in mobile platforms and in Bluetooth scanning apps.

The following diagram summarizes the procedure involving both the advertiser and scanner.

Periodic Advertising

114/1306

Periodic Advertising

115/1306

Advertiser Implementation

Configuration

The max_advertisers in the Bluetooth configuration structure also configures the maximum number of periodic advertisers.

You can set the number of advertisers by opening the Bluetooth Core configurator tab from the Software Components:

Enabling the Feature

You can add the periodic advertising feature from the Software components for the advertiser:

Periodic Advertising

116/1306

This will also initialize the feature.

Enable/Disable Periodic Advertising

This command can be used to start periodic advertising on the given advertisement set. Note, that the set must be created

beforehand with sl_bt_advertiser_create_set() . The stack will automatically start the extended advertisement containing the

sync info along with the periodic advertisement.

// Enable periodic advertisement

sl_bt_advertiser_start_periodic_advertising (uint8_t handle,

 uint16_t interval_min,

 uint16_t interval_max,

 uint32_t flags)

// Disable

sl_bt_advertiser_stop_periodic_advertising(uint8_t handle)

Set Periodic Advertisement Data

This command sets data that will be sent in periodic advertisement. Execute this command every time you want to change

the periodic advertisement data. If periodic advertising is currently disabled for the specified advertising set, data is kept by

the Controller and used after periodic advertising is enabled for that set. Data is discarded when the advertising set is

removed.

sl_bt_advertiser_set_data (uint8_t handle,

 uint8_t packet_type,

 size_t adv_data_len,

 const uint8_t * adv_data)

The value of packet_type for Periodic advertisements is 8.

The command above can be used to set an advertisement data with a maximum length of 191 bytes. It is also possible to set

long advertisement data for periodic advertisements with sl_bt_advertiser_set_long_data() . For details about the usage of this

function see the following code example: Chained Advertisements.

Note: Periodic advertisement has the highest priority in the current implementation. For collisions, Periodic

advertisements always overrides other advertisements. If you see collisions, try increasing the interval of

advertisements.

Scanner Implementation

Configuration

max_periodic_sync in the Bluetooth config configures the maximum number of synchronizations the Bluetooth stack needs

to support. The value can be set in the Bluetooth Core configuration, as shown below:

https://github.com/SiliconLabs/bluetooth_stack_features/tree/master/advertising/chained_advertisement

Periodic Advertising

117/1306

Enabling the Feature

To enable Periodic Advertisement Synchronization in the Bluetooth stack, add the feature to your project, as shown below:

This will also initialize the feature.

Establish Synchronization

Periodic Advertising

118/1306

This command can be used to establish a synchronization with periodic advertisement from the specified advertiser and

begin receiving periodic advertisement packets.

sl_status_t sl_bt_sync_open (bd_addr address,

 uint8_t address_type,

 uint8_t adv_sid,

 uint16_t * sync)

The adv_sid parameter value must match the Advertising SID subfield in the ADI (Advertise Data Info) field of the received

advertisement for it to be used to synchronize. It can be obtained from the event sl_bt_evt_scanner_scan_report_id.

evt->data.evt_scanner_scan_report.adv_sid

The timing parameters can be set with the command:

sl_status_t sl_bt_sync_set_parameters(uint16_t skip,

 uint16_t timeout,

 uint32_t flags)

The skip parameter specifies the maximum number of consecutive periodic advertisement events that the receiver may skip

after successfully receiving a periodic advertisement packet. The timeout parameter specifies the maximum permitted time

between successful receives. If this time is exceeded, synchronization is lost.

The advertiser address_type and advertiser address parameters specify the periodic advertising device to listen to. It can

be obtained from the event sl_bt_evt_scanner_scan_report_id

evt->data.evt_scanner_scan_report.address,

evt->data.evt_scanner_scan_report.address_type

This event is the result of successful synchronization:

sl_bt_evt_sync_opened_id

Whenever a periodic advertisement packet is received, this event is generated:

sl_bt_evt_sync_data_id

Close Synchronization

This command closes a synchronization with periodic advertisement or cancels an ongoing synchronization establishment

procedure.

sl_bt_sync_close(uint8 sync)

sync is the periodic advertisement synchronization handle.

This event is generated when the synchronization is closed, lost, or when an ongoing sync process is canceled:

sl_bt_evt_sync_closed_id

Example

This guide has a related code example, here: Periodic Advertisement Example.

https://github.com/SiliconLabs/bluetooth_stack_features/tree/master/advertising/periodic_advertisement

Using Scan Request Reporting

119/1306

Using Scan Request Reporting

Using Scan Request Reporting

Introduction

Together with the new BT5 advertising APIs introduced in SDK 2.3.x, a new sl_bt_evt_advertiser_scan_request event was

introduced to notify the application that a scan request has been received. Scan requests (not to be confused with scan

responses) can be received, when the device is in scannable advertising mode. Scan request reporting can be a useful

feature to detect and react to the presence of scanner devices. For example, if a scanner device sends a scan request, the

advertisement interval of the advertising device can be decreased to speed up the connection process.

Usage

sl_bt_advertiser_set_report_scan_request API command enables scan request reporting. When enabled, a

sl_bt_evt_advertiser_scan_request event will be generated every time a scan request is received.

The sl_bt_evt_advertiser_scan_request event informs the application about the Bluetooth address and address type as well as

bonding status of the device that sent the scan request.

Connections

120/1306

Connections

Fundamentals - Connections
Bluetooth Low Energy (BLE) is a powerful and complex technology. It is not like classic Bluetooth with a predefined set of

official profiles to choose from. Although there are predefined (a.k.a. "adopted") profiles specified by the Bluetooth SIG,

these are just the tip of the iceberg, a small subset of the functionality you can achieve with BLE.

In many (or even most) cases, the best option is to create a custom profile(s) for your application because it provides

ultimate flexibility and doesn't cost anything. In fact, it can be even easier than using one of the adopted profiles because

you get to define how everything works rather than conforming your application into something that is already defined. Also,

because there is no official generic "serial port profile" in the BLE world like SPP in classic Bluetooth, sometimes a custom

implementation is the only option to do what you need.

To have an effective custom implementation, it is important to understand how a BLE connection works, what roles are

played by the devices involved, and how data is transferred from one device to the other over the air. Many terms are used,

they are usually not interchangeable, and mean different things: central, peripheral, client, server, advertise, scan, read,

write, notify, and indicate. Understanding the terminology will make it easier to describe and build your BLE application.

Quick Overview

This page covers the following:

Central devices scan for other devices, and initiate connection. Usually, the central is the smartphone/tablet/PC.

Peripheral devices advertise and wait for connections. Usually, the peripheral is the BGMxxx module or EFR32 device.

To learn about server and client roles, which are a bit different, see GATT Server and Client Roles.

Central vs. Peripheral - Connection Roles

An important concept in BLE connectivity is the difference between a central device and a peripheral device. First, the

terms are not interchangeable with client/server. In the BLE world, the central/peripheral difference is very easy to define

and recognize:

Central - the BLE device which initiates an outgoing connection request to an advertising peripheral device

Peripheral - the BLE device which accepts an incoming connection request after advertising

The BLE specification does not limit the number of peripherals a central may connect to, but there is always a practical

limitation, especially on small embedded modules. The Silicon Labs BLE stack can support up to 32 simultaneous

connections device, when properly configured (the default is 4). The stack supports dual-topology and multi-central

connections (which are part of the Bluetooth 4.1 spec), which means that a device can be simultaneously in a central and in

a peripheral role and it can also connect to multiple central devices at the same time. The connection limit applies to the

total number of connections regardless of the role.

The connection role, whether a device is a central or peripheral, is defined the moment the connection is made. The Silicon

Labs stack is capable of acting either as a central or as a peripheral device. If a device is operating as a peripheral, it needs

to advertise (accomplished in Silicon Labs' BLE stack with the sl_bt_advertiser_start command). If it is operating as a

central, it will scan for devices (accomplished with sl_bt_scanner_start) and initiate a connection request to another device

(accomplished with sl_bt_connection_open).

https://www.bluetooth.com/specifications/gatt
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-gatt/gatt-server-client-roles

Multi-Peripheral Topology

121/1306

Multi-Peripheral Topology

Multi-Peripheral Topology

Introduction

Silicon Labs Bluetooth stack supports simultaneous connection to multiple peripherals, with a maximum number of 32

peripherals. This page describes handling multiple connections in your Bluetooth application.

Establishing Multiple Connections

A new connection (toward an advertising Bluetooth device) can be initiated with the sl_bt_connection_open command. This

command starts a high-priority scan to find the next advertisement of the peer device and sends a connection request after

the advertisement. If successful, a sl_bt_evt_connection_opened event is generated by the stack. After this, a second

connection can be initiated with sl_bt_connection_open, while the first one is automatically kept alive.

Note that you cannot issue multiple sl_bt_connection_open commands immediately after each other even if you know all

Bluetooth addresses you want to connect to. You always have to wait for the sl_bt_evt_connection_opened event to arrive

before initiating a new connection. It is even better if you wait until the sl_bt_evt_connection_parameters event because at

that moment the connection can be considered stable. To discover the GATT database of the remote device, do so before

issuing the second sl_bt_connection_open command.

By default, four simultaneous connections are enabled in the stack. To increase the number of supported connections, go to

the configuration of the Bluetooth Core software component and increase the Maximum number of connections:

Multi-Peripheral Topology

122/1306

Saving Connection Handles

When a connection is opened, the stack returns a connection handle. Later, this handle can be used to differentiate

between simultaneous connections. All connection-related commands require a connection handle and all connection-

related events provide a connection handle. It is therefore important that you save the connection handles for future use,

e.g., in a global variable.

Multi-Peripheral Topology

123/1306

struct {

 bd_addr device_address;

 uint8_t address_type;

 uint8_t connection_handle;

} connections[8];

uint8_t live_connections = 0;

//...

 case sl_bt_evt_connection_opened_id:

 connections[live_connections].device_address = evt->data.evt_connection_opened.address;

 connections[live_connections].address_type = evt->data.evt_connection_opened.address_type;

 connections[live_connections].connection_handle = evt->data.evt_connection_opened.connection;

 live_connections++;

break;

Reading/Writing the Database of Multiple Peripherals

Unlike connection initiation, which has to be done sequentially, GATT operations can be initiated in parallel on multiple

peripherals. For example, you can issue a read command on different connections immediately after each other, because

each connection has its own state and buffers:

for (uint8_t i = 0; i < live_connections; i++) {

sl_bt_gatt_read_characteristic_value(connections[i], characteristic);

}

To read multiple values on the same connection, however, you still have to wait for the sl_bt_evt_gatt_procedure_completed
event to arrive on that specific connection.

In general, try to store a state variable for each connection to keep account of their state.

Timing of Parallel Connections

Bluetooth connections use small connection windows to exchange data in every connection interval. At least an empty

packet is sent in every connection interval, first by the central, then by the peripheral, and if there is data to send, the

packets are extended. This ensures that no continuous receiving is needed and, most of the time, the device can go into

sleep mode. The same behavior makes it possible to keep multiple connections alive easily at the same time. The

connection windows of different connections are simply interleaved.

Multi-Peripheral Topology

124/1306

Connection windows are placed randomly in time domain, so some of the connections might be placed on top of each other.

If this happens, the scheduler ensures that each connection gets enough time so that its supervision timeout does not

expire. In this case, latency may increase on some connections, but in general all connections can be accessed at least

once within the connection timeout (supervision timeout) interval.

For example, let's use 12.5 ms connections intervals and 100 ms timeout. In this case writing to 8 peripherals and getting

the ACK responses from each of them takes 24–100 ms, depending on the result of the connection window allocating

algorithm.

Writing in parallel to multiple peripherals means issuing multiple write commands immediately after each other. This puts the

write commands in the task queue of the stack and they are processed in the next available connection window for each

connection. Because connection windows are interleaved, ideally all write commands can be sent before the first ACK is

Dual Topology

125/1306

Dual Topology

Dual-Topology

Introduction

Bluetooth Dual Topology means that a Bluetooth device can act as a central on one connection, while acting as a peripheral

on another connection. Silicon Labs Bluetooth stack allows connection to multiple peripherals and centrals simultaneously,

with a maximum number of 32 connections. This document shows how to handle multiple connections in your Bluetooth

application, if you are expecting to be peripheral on some connections and central on others.

Establishing Multiple Connections

To create a Bluetooth connection, one of the devices has to be advertising and another one has to scan for advertisements

and send a connection request. The advertiser device will become the peripheral on the connection and the scanner device

will become the central.

Dual Topology

126/1306

To enable both central and peripheral functionality, the device has to act both as an advertiser and as a scanner after

initialization. A connectable advertisement can be started with sl_bt_advertiser_start, while scanning can be started with

sl_bt_scanner_start. Silicon Labs' Bluetooth stack can handle scanning and advertising at the same time, however, because

it needs time multiplexing, it is worth decreasing the duty cycle of the scanning from the default 100%. To decrease the duty

cycle, set the scan_window shorter than the scan_interval with sl_bt_scanner_set_timing.

After the scanner finds an advertisement, an sl_bt_evt_scanner_scan_report event is generated and the scanner can decide

(based on advertisement data) if it wants to connect to this device with sl_bt_connection_open.

When a connection is opened, an sl_bt_evt_connection_opened event is generated regardless of whether the connection

was initiated by your device or by a remote device. To differentiate between these two use cases, the

sl_bt_evt_connection_opened event provides a master parameter which is set to 1 if your device was the initiator and hence

became the central, and which is set to 0 if the connection was initiated by a remote device and hence our device became

the peripheral.

Dual Topology

127/1306

 sl_bt_evt_connection_opened_id:

printLog("connection opened (%s)\r\n",

 evt->data.evt_connection_opened.master ? "central" : "peripheral");

break;

To learn more about handling multiple connections, seeMulti-Peripheral Topology and Multi-Central Topology.

By default, four simultaneous connections are enabled in the stack. To increase the number of supported connections, go to

the configuration of the Bluetooth Core software component and increase the Maximum number of connections:

Dual Topology

128/1306

Multi-Central Topology

129/1306

Multi-Central Topology

Multi-Central Topology

Introduction

Since Bluetooth 4.1, a peripheral device can connect to multiple centrals. Silicon Labs Bluetooth stack supports connection

to multiple centrals simultaneously, with a maximum number of 32 centrals. This document shows how to handle multiple

connections in your Bluetooth application.

Establishing Multiple Connections

Connections are initiated by central devices. For example, when a smartphone connects to your device, the smartphone will

be the central and your device will be the peripheral.

To make connections possible, the peripheral device has to advertise itself with a connectable advertisement. A

connectable advertisement can be started with the following command:

sl_bt_advertiser_start(

 advertising_set_handle,

 advertiser_general_discoverable,

 advertiser_connectable_scannable);

Note, that an advertisement set must be created with sl_bt_advertiser_create_set() before an advertisement can be started.

See the detailed description in the API documentation.

After the advertising is started, a central device can discover the peripheral and it can send a connection request to it.

When a connection request is received, the advertising is immediately stopped by the Bluetooth stack to avoid

unintended multiple connections and the connection is opened, which is signaled by an sl_bt_evt_connection_opened event.

Multi-Central Topology

130/1306

To enable connections for multiple centrals, re-start advertising upon receiving this event using the same command as

before.

It is worth keeping count of the live connections and not re-starting advertising after the limit of maximum

number of connections is reached.

By default, four simultaneous connections are enabled in the stack. To increase the number of supported connections, go to

the configuration of the Bluetooth Core software component and increase the Maximum number of connections:

Multi-Central Topology

131/1306

Saving Connection Handles

When a connection is opened, the stack returns a connection handle. Later, this handle can be used to differentiate

between simultaneous connections. All connection-related commands require a connection handle and all connection-

related events provide a connection handle. As a result, save the connection handles for future use, e.g., in a global variable.

struct {

 bd_addr device_address;

 uint8_t address_type;

 uint8_t connection_handle;

} connections[8];

uint8_t live_connections = 0;

//...

 case sl_bt_evt_connection_opened_id:

 connections[live_connections].device_address = evt->data.evt_connection_opened.address;

 connections[live_connections].address_type = evt->data.evt_connection_opened.address_type;

 connections[live_connections].connection_handle = evt->data.evt_connection_opened.connection;

 live_connections++;

break;

Understanding the Connection Process

132/1306

Understanding the Connection Process

Understanding the Bluetooth Connection Process

Introduction

Bluetooth ensures reliable data transfers for connected devices. A connection is required for secure data transfer. This

document describes the various states that a Bluetooth device can be in and how to move between these states.

Bluetooth States

After starting the Bluetooth stack, the device will be in an idle state. In other words, it will be non-discoverable and non-

connectable. Through a call to the API function sl_bt_advertiser_start , the device can be made discoverable and non-

connectable or discoverable and connectable. It is also possible to return the device to the idle, non-discoverable and non-
connectable state by sl_bt_advertiser_stop .

Non-Connectable Beacons

A device which is discoverable but non-connectable is known as a beacon. The advertising data can be seen by any device

within range but it is not possible to establish a connection. This means that the advertising device’s data cannot be written.

iBeacon and Eddystone standard are beacon examples. If a remote device attempts to connect to a non-connectable

advertiser, the request will be dropped. No interaction is required by the user application.

Connectable Advertisers

A device which is discoverable and connectable advertises and accepts connections from any device within range. When a

connection has been established, the stack sends the event sl_bt_evt_connection_opened to the application. This event

contains the address of the remote device, the type of address, a connection handle, the role of the device in the

connection, and a bond handle to indicate whether the device is bonded or not. The event also includes a handle to indicate

which advertising set the connection is associated with.

When a connection request is received, the Bluetooth stack automatically stops advertising to avoid unintended multiple

connections. If multiple connections are required, advertising can be restarted after the sl_bt_evt_connection_opened event

was received.

Closing Connections

If a connection is closed, the event sl_bt_evt_connection_closed will be sent to the application. This event includes the

connection handle and the reason for disconnection. The reasons for disconnections are documented in the Bluetooth

errors section of the API Reference Manual.

Secure and Unsecure Connections

When a connection event is received(sl_bt_evt_connection_opened), the application can determine whether or not a bond was

made with the remote device by examining the bond_handle parameter. A value of 0xFF indicates no bond, while any other

value indicates a valid bond. If the local and remote devices are not bonded, the communication between them will be

unencrypted and visible to any Bluetooth device within range. It is strongly recommended to secure any sensitive data.

After the connection event, at least one connection parameters event (sl_bt_evt_connection_parameters) will occur. This event

is sent when a connection is opened and any time the connection parameters are updated. The connection parameters

event includes information about the connection parameters (connection interval, latency, timeout) as well as the security

mode and maximum PDU size. These are the types of security modes:

Understanding the Connection Process

133/1306

 No security

 No authentication, but encrypted

 Authenticated and encrypted

Either stack of the user application can request secure connection. The stack will request a secure connection if the remote

device attempts to access a protected characteristic. The user application can request a secure connection by calling

sl_bt_sm_increase_security() . In either case, an event will be sent by the stack to the user application to indicate whether the

bonding/pairing was successful (sl_bt_evt_sm_bonded) or unsuccessful (sl_bt_evt_sm_bonding_failed).

Bonding vs Pairing

The security manager contains events and commands for controlling the security features included in the Bluetooth stack.

One of these features is the ability to form new bonds (bondable mode). As shown in the diagram below, when a connection

is secured, it will either be bonded and assigned a long term key (LTK), which can be used in subsequent connections or

paired and assigned a short term key (STK), which will be discarded when the connection is terminated. Upon successful

bonding/pairing the stack sends the event sl_bt_evt_sm_bonded to the application with a bond_handle as a parameter. As

with the bond_handle passed to the sl_bt_evt_connection_opened , any value other than 0xFF indicates that the devices are

bonded while a value 0xFF means that the devices are paired for the current connection.

Maximum Transmission Unit �MTU�

In addition to the connection opened event and the connection parameters event, a GATT MTU event is exchanged for each

connection. This event tells you the size of the maximum transmission unit (MTU), which is the maximum size of any packet

that can be sent between the client and server. The only special handling that may be required for this event is to use the

MTU to determine whether an entire characteristic can be sent in a single read/write or if multiple writes are required. A

single read/write can be MTU – 3 bytes in length.

Bluetooth 5 Connections

Whether a connection is secured or not, Bluetooth 5 allows the choice between 1 Mbps, 2 Mbps or Coded (125 kbps/500

kbps) PHY on a per-connection basis. PHY can be selected by calling sl_bt_connection_set_preferred_phy , which results in

stack sending the event sl_bt_evt_connection_phy_status to indicate which PHY is used for the connection. The diagram below

shows that the flow of the connected state is similar to that of Bluetooth 4.x except that you can now also select 2M PHY.

Understanding the Connection Process

134/1306

Multiple Connections and Dual Mode Topology

Up to 32 simultaneous connections can be allowed. The Maximum number of connections parameter in the configuration of

the Bluetooth Core software component can be used to limit the number of connections to less than 32 to save RAM. By

default four connections are enabled.

One of the additions made in Bluetooth 4.2 is the so-called dual mode topology, which allows a device to be in central and

peripheral roles simultaneously. Previously, you had to disconnect to switch roles between central and peripheral.

Conclusion

Bluetooth connections ensure reliable and, optionally, secure data transfers. Additionally, by using connections, devices can

negotiate PHY that they use to communicate.

Using 2M and LE Coded PHY �BT5�

135/1306

Using 2M and LE Coded PHY �BT5�

Using 2M and LE Coded PHY

Introduction

Bluetooth 5.0 introduces three new PHYs in addition to the default 1M symbol rate:

2M PHY ensures higher data throughput and

A new long range PHY (LE Coded PHY) with 125 kbps and 500 kbps coding which gives range gains of 1.5-2x with improved

sensitivity of 4 to 6dB.

The LE Coded PHY uses 1 Mbit PHY but payload is coded at 125 kbps or 500 kbps. It also adds Forward Error Correction and

Pattern Mapper.

Note: 2M and LE Coded PHY are only supported on specific devices.

Changing PHY

Changing to 2M or LE Coded PHY can be requested from either slave or master device using the command

sl_bt_connection_set_preferred_phy(uint8_t connection, uint8_t preferred_phy, uint8_t accepted_phy), where the

preferred_phy value maps as follows:

0x01: 1M PHY

0x02: 2M PHY

0x04: 125k Coded PHY (S=8)

0x08: 500k Coded PHY (S=2)

The accepted_phy signifies the accepted PHYs in remotely-initiated PHY update requests and its value maps as follows:

0x01: 1M PHY

0x02: 2M PHY

0x04: Coded PHY

0xff: Any PHYs (default)

Multiple PHYs can be selected both as preferred PHY and as accepted PHY. The connected devices will negotiate which

PHY to use based on this information.

For compatibility reasons, the default PHY is always 1Mbit on a connection - unless it was opened from a Coded PHY

advertisement. After the connection is formed, either side (master or slave) can request a new PHY to be used. After the

PHY changes, it is reported in a sl_bt_evt_connection_phy_status event.

To learn more about how to open a (long range) connection from a Coded PHY advertisement, see the following code

example: Advertising and Scanning with LE Coded PHY.

Note: When a new PHY is requested, the device will take a minimum of six connection intervals to switch to the new PHY.

The event sl_bt_evt_connection_phy_status will be raised on both devices in the following situations (if the new PHY request is

accepted by the receiving device):

Switching to/from LE Coded PHY from/to another PHY (1 Mbit/2 Mbit)

Switching from 1 Mbit to 2 Mbit PHY and vice-versa

The event sl_bt_evt_connection_phy_status will only be raised on the requesting device in the following use cases:

https://github.com/SiliconLabs/bluetooth_stack_features_staging/tree/master/advertising/advertising_and_scanning_with_le_coded_phy

Using 2M and LE Coded PHY �BT5�

136/1306

The new PHY request is not accepted (e.g., the receiving device doesn’t support it)

Switching LE Coded PHY coding (from S=2 to S=8 and vice-versa) when LE Coded PHY is already in use

Changing the coding is not negotiated over-the-air, it’s done only locally on the requesting device and the receiving

device continues using the same coding. At the RX stage, the radio detects the coding based on the packet preamble. It

can use a different coding for the TX stage.

Additionally, default coding for LE Coded PHY is S=8 (125 kbit), which means that when an EFR32BG13 accepts a PHY

change request to LE Coded PHY it will default to S=8. The application should change the coding if desired and the new

coding will then be used if the PHY is again changed to 1Mbit/2Mbit and then back to LE Coded PHY.

Demonstration

These are examples that show how to change between the PHYs using 2 EFR32xG13 devices in NCP mode and controlled

with Bluetooth NCP Commander.

Changing to LE Coded PHY �S�8, 125kbit)

Changing the Coding While in LE Coded PHY

As explained earlier, changing the coding is not negotiated over-the-air between the devices and for that reason the event

sl_bt_evt_connection_phy_status is only raised on the requesting side and very shortly after the command is sent. The

receiving device will continue using the same coding.

Using 2M and LE Coded PHY �BT5�

137/1306

Attempted Change to LE Coded PHY

In the example below, a new PHY request is attempted but the other device is an EFR32BG1, which only supports 1Mbit

PHY. As a result, the event sl_bt_evt_connection_phy_status is immediately raised on the requesting device to notify that the

PHY has not been changed and no event is raised on the receiving device.

Impact on Energy Consumption

Using 2M PHY leads to smaller current consumption because of the shorter RX/TX periods. On the other hand, using LE

Coded PHY leads to higher current consumption because of the longer RX/TX periods. The subsequent images show the

current profile of a notification packet with 20 bytes of data payload on all PHYs. The red blocks are highlighting the

duration of the entire wake-up period and the average current consumption for said period.

These measurements were made from the peripheral device (RX precedes TX) with TX Power of 0dBm. The images are

sorted from shortest to longest RX/TX periods: 2 Mbit, 1 Mbit, LE Coded S=2 (500 kpbs) and LE Coded S=8 (125 kpbs).

Using 2M and LE Coded PHY �BT5�

138/1306

Note: When using LE Coded PHY, the packet header is always coded with S=8 but the payload can be S=2 or S=8 coded

and that is indicated by a bit in the header. This means that empty packets will not have a significant difference between

S=8 and S=2 coding in terms of TX duration.

2 Mbit PHY

1 Mbit PHY

Using 2M and LE Coded PHY �BT5�

139/1306

LE Coded PHY �S�2, 500kbps)

LE Coded PHY �S�8, 125kbps)

Connection Flowcharts

140/1306

Connection Flowcharts

Bluetooth Connection Flowcharts

Introduction

Bluetooth Low Energy (BLE) defines a framework for a wide variety of communication types. It allows devices to discover

each other, broadcast data, establish connections, and many other fundamental operations.

These procedures are described comprehensively in a series of sequence diagrams, which focus on the following items:

BGAPI function calls.

Messages exchanged over the air.

Events raised by the BLE stack.

This page does not expose the Bluetooth stack packet management nor does it describe the host controller interface (HCI).

The document assumes that the necessary Bluetooth hardware is used, such as an EFR32 SoC or a BGM module.

Generic Access Profile �GAP�

To establish a BLE connection between the two devices A and B, a device A has to advertise while the device B has to scan
for connectable devices. As a result, only the scanning device B can initiate the connection. The scanning device B is then

the central and the advertising device A is the peripheral.

Advertising and Scanning

BLE implements a time division duplex scheme, which means that on a given frequency channel, duplex communication (i.e.,

sending and receiving data) is taking place on one physical link. This differs, for example, from a wired serial link, where TX

and RX wires are used respectively for transmission and reception.

As a result, a defined set of tunable timing parameters are available, such as the advertising interval, scanning interval, and

scanning window. For more information, see the BLE core specification.

The advertiser periodically sends advertising packets to any listening device. The scanner starts listening and a "scan

report" event is raised each time an advertising packets is received. The advertising packets convey some useful

information, such as the advertiser Bluetooth address for example. This information can eventually be used to establish a

connection.

https://www.bluetooth.com/specifications/bluetooth-core-specification

Connection Flowcharts

141/1306

Passive and active are the two available scanning methods. In passive scanning, the scanner only receives advertising

packets. In active scanning, the scanner sends "scan request" messages to the advertiser, containing the scanner Bluetooth

address and its address type.

Note: This article does not cover extended advertising

(https://github.com/SiliconLabs/bluetooth_stack_features/tree/master/advertising/extended_advertising).

Connection Success

After the scanner collects all necessary information from an advertiser, it can connect to it. The following sequence diagram

illustrates the steps to successfully establish a connection:

https://github.com/SiliconLabs/bluetooth_stack_features/tree/master/advertising/extended_advertising

Connection Flowcharts

142/1306

Note that the scanner is initiating the connection, which makes it the central device upon connection.

Connection Initiation Failure

A connection initiation failure can happen either because the connection initiation is canceled or it times out. A device can

cancel a pending connection immediately after creation. The peripheral must respond to the central within a given time

interval. The BLE standard defines the fixed number of six connection intervals as the limit within whichever host can remain

silent (not sending any packet). If one of the hosts (central or peripheral) remains silent for longer, the connection is

dropped.

Connection Flowcharts

143/1306

In this example, six connection intervals passed without receiving any data channel PDU from the peripheral. As a result, the

connection is dropped. Similarly, If the central had failed to send data channel PDU to the peripheral for that same time

interval, the connection would have dropped.

Note: This is different from the supervision timeout. It applies only for the connection initiation. In other words,

there is at least one successful connection event where packets are exchanged between the central and

peripheral.

Updating Connection Parameters

After a BLE connection has been established, some parameter adjustments might be requested. To do so, the "Connection

parameter request" procedure can be triggered by either host, central or peripheral. The procedure can be triggered at link

layer level (i.e., without the application requesting it) during connection initiation. The BGAPI implements the routine

sl_bt_connection_set_default_parameters to preset the parameter values. When the connection is initiated, it is still possible

at any point in time to update the connection parameters by calling sl_bt_connection_set_parameters in the application

layer:

Connection Flowcharts

144/1306

Additionally, the sequence diagram above shows the "GATT MTU exchange" sub-procedure.

The ATT protocol defines a Maximum Transmission Unit (MTU) of 23 bytes by default. If the two connected devices can

support a bigger ATT_MTU value, the "GATT MTU exchange" procedure is triggered to set the ATT protocol MTU. This

procedure is initiated only once during a connection initiation.

Note that the security mode and the data channel PDU payload length may vary during the connection session. For more

information about general BLE security features, see Bluetooth Low Energy Application Security Design Considerations in

SDK v3.x (PDF).

Note: During the "Connection parameter request" procedure, the central always had the priority over parameter

decision. In other words, the central always has the "last word" for parameter negotiation.

https://www.silabs.com/documents/public/application-notes/an1302-bluetooth-application-security-design-considerations.pdf

GATT Protocol

145/1306

GATT Protocol

Bluetooth GATT Protocol
These pages provide information about the following topics:

Server and Client Roles: Reviews information needed for an effective custom profile implementation, such as how a BLE

connection works, what roles are played by the devices involved, and how data is transferred from one device to the other

over the air.

Acknowledged vs. Unacknowledged GATT Operations: Explains the difference between acknowledged and

unacknowledged GATT operations.

Polymorphic GATT: Describes the Polymorphic GATT feature, which can be used to dynamically show or hide GATT services

and characteristics.

GATT Caching: Explains how to use the GATT Caching feature so that every remote device can make sure it is storing the

latest version of the GATT database structure.

Service Change Indications: Discusses using the service change characteristic to notify the client to rediscover services on

a change in the GATT server.

Different Value Types of Characteristics: Discusses profiles, services, and characteristics, and describes the uses for

different characteristic value types.

GATT Operation Flowcharts: Provides sequence diagrams and discussion of the procedures defined in the "Generic Attribute

Profile" (GATT) of the BLE stack.

Server and Client Roles

146/1306

Server and Client Roles

GATT Server and Client Roles

Introduction

Bluetooth Low Energy is a powerful and complex technology, which is different from the classic Bluetooth with a predefined

set of official profiles to choose from. Although Bluetooth Low Energy does have predefined (a.k.a. "adopted") profiles

specified by the Bluetooth SIG, they are just the tip of the iceberg, a small subset of the functionality possible to achieve

with BLE.

In many (or even most) cases, the best option is to create custom profile(s) for your application because it provides ultimate

flexibility without an associated cost. In fact, it can be even easier than using one of the adopted profiles because you get

to define exactly how everything works rather than conforming your application into something that is already defined. Also,

because there is no official generic "serial port profile" in the BLE world, such as SPP in classic Bluetooth, sometimes a

custom implementation is the only option to do what you need.

To have an effective custom implementation, it is important to understand how a BLE connection works, what roles are

played by the devices involved, and how data is transferred from one device to the other over the air. Many terms are used,

which are usually not interchangeable and mean different things: central, peripheral, client, server, advertise, scan, read,

write, notify, and indicate. Understanding the terminology will make it easier to describe and build your BLE application.

Quick Overview

This document covers the following:

Client devices access remote resources over a BLE link using the GATT protocol. Usually, the central is the client (but not

necessarily).

Server devices have a local database and access control methods and provide resources to the remote client. Usually, the

peripheral is the server (but not necessarily).

You can use read, write, notify, or indicate operations to move data between the client and the server.

Read and write operations are requested by the client and the server responds (or acknowledges).

Notify and indicate operations are enabled by the client but initiated by the server, providing a way to push data to the

client.

Notifications are unacknowledged, while indications are acknowledged. Notifications are therefore faster but less reliable.

To learn about central and peripheral roles, see Central and Peripheral Roles.

GATT Server vs. GATT Client

An important concept in BLE design is the difference between a GATT server and a GATT client (where GATT means Generic

ATTribute profile). These roles are not mutually exclusive, though typically your device will only be a server or a client.

Role(s) that your device takes depend on its intended functionality. This is a basic summary of functionalities:

GATT client - a device which accesses data on the remote GATT server via read, write, notify, or indicate operations

GATT server - a device which stores data locally and provides data access methods to a remote GATT client

Unlike the central/peripheral distinction defined under Connections, it is easy to see that one device might be both at the

same time, based on how your application defines the data structure and flow for each side of the connection. While it is

most common for the peripheral device to be the GATT server and the central device to be the GATT client, this is not

required. The GATT functionality of a device is logically separate from the central/peripheral role. The central/peripheral

https://www.bluetooth.com/specifications/gatt
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-fundamentals-connections
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-fundamentals-connections

Server and Client Roles

147/1306

roles control how the BLE radio connection is managed while the client/server roles are dictated by the storage and flow of

data.

Most of the example projects in the SDK archive and online implement peripheral devices designed to be GATT servers.

These are easy to test with our EFR Connect App (available for Android and iOS). However, there are also a few examples

which implement the central end of the connection, designed to be GATT clients.

Receive vs. Transmit - Moving Data

In BLE projects built using the Bluetooth SDK, the GATT structure can be configured using the built-in tool from Simplicity

Studio, called the Bluetooth GATT Configurator. This can be found under the Configuration tools in the .slcp file. After you

modify the GATT Configuration, the gatt_db.c/.h and the gatt.xml files are generated.

The structure and flow of data is always defined on the GATT server. The client uses whatever is exposed by the server.

If using the IAR Embedded Workbench, see Profile Toolkit Developer Guide.

GATT Structure

A GATT database implements one or more profiles, which are made up of one or more services. Each service is made up of

one or more characteristics. For example, in outline form:

Profile 1

Service A

Characteristic a

Characteristic b

Characteristic c

Service B

Characteristic d

Characteristic e

Profile 2

Service C

Characteristic f

Characteristic g

Characteristic h

Service D

Characteristic i

Characteristic j

Profile 3

Service E

Characteristic k

Characteristic l

Characteristic m

Service F

Characteristic n

Characteristic o

You can implement as many profiles, services, and characteristics as you need. These may be entirely customized, in which

case they would use your own 128-bit UUIDs generated by the GATT Configurator. On the other hand, you can create a

project which implements adopted specifications by referencing the Bluetooth SIG's online definitions of profiles, services,

and characteristics. If you do this, it usually makes the most sense to start at the profile level and drill down from there

because the full list of characteristics includes many things that will undoubtedly be irrelevant to your design. You can

combine these two as well, using some adopted profiles/services and some of your own proprietary ones.

Every BLE device acting as a GATT server must implement the official Generic Access service. This includes two mandatory

characteristics, which are Device Name and Appearance. These are similar to the Friendly Name and Class of Device

values used by classic Bluetooth. This is an example definition of an absolutely minimal GATT definition, as shown in the

GATT Configurator:

https://play.google.com/store/apps/details?id=com.siliconlabs.bledemo&hl=en_US
https://apps.apple.com/us/app/silicon-labs-blue-gecko-wstk/id1030932759
https://www.silabs.com/documents/public/user-guides/ug118-bluegecko-bt-profile-toolkit.pdf
https://www.bluetooth.com/specifications/gatt

Server and Client Roles

148/1306

Attributes and Characteristics

You may occasionally hear or see the terms "attribute" and "characteristic" used interchangeably, and while this isn't

entirely wrong, it isn't totally accurate and can be confusing. Remember that a service is made up of one or more

characteristics. However, one single characteristic, generally the most specific level down to which we define our GATT

structure, may be comprised of many different attributes.

Each attribute is given a unique numerical handle, which the GATT client may use to reference, access, and modify it. Every

characteristic has one main attribute, which allows access to the value stored in the database for that characteristic. When

you read about "writing a value to this characteristic" or "reading that characteristic's value," the read/write operations are

done to the main data attribute.

Other related attributes are read-only, such as a Characteristic User Description attribute, some control the behavior of the

characteristic, such as the Client Characteristic Configuration attribute which is used to enable notify or indicate

operations. The BLE stack and SDK tools generate these as necessary based on the settings configured in the GATT

Configurator.

Every attribute has a UUID, which may be either 16 bits (e.g., "180a") or 128 bits (e.g., "e7add780-b042-4876-aae1-

112855353cc1"). All 16-bit UUIDs are defined by the Bluetooth SIG and are known as adopted UUIDs. All 128-bit UUIDs are

custom and may be used for any purpose without approval from the Bluetooth SIG. Two very common 16-bit UUIDs that you

will see are 2901, the Characteristic User Description attribute (defined in the User description field of the GATT Editor), and

2902, the Client Characteristic Configuration attribute (created by our SDK when either "notify" or "indicate" is enabled on

a characteristic).

Note that some attribute UUIDs do not technically need to be unique. Their handles are always unique, but the UUIDs

occasionally overlap. For example, every Client Characteristic Configuration attribute has a UUID of 0x2902, even though

there may be a dozen of them in a single GATT database. You should always give your own custom characteristics fully

unique UUIDs but don't be alarmed if you are testing out your prototype with Bluetooth NCP Commander, you perform a

Descriptor Discovery operation, and suddenly see multiple instances of the same UUID for certain things. This is normal.

Data Transfer Methods

read, write, notify, and indicate are the four basic operations for moving data in BLE. The BLE protocol specification allows

maximum data payload of 247 bytes for these operations. However, for read operations, the supported size is 249 bytes.

Server and Client Roles

149/1306

BLE is built for low-power consumption and for infrequent short-burst data transmissions. Sending large amounts of data is

possible, but usually ends up being less efficient than classic Bluetooth when trying to achieve maximum throughput. The

following are a few general guidelines about the types of data transfer you will need to use:

If the client needs to send data to the server, use write.

If the client needs to get data from the server on-demand (i.e., polling), use read.

If the server needs to send data to the client without the client requesting it first, use notify or indicate. (The client must

subscribe to these updates before any data will be transferred.)

The server can't pull data from the client directly. If this is necessary, the server must use notify or indicate to send pre-

arranged request data to the client, and then the client may follow up with a write operation to send back whatever data that

the server needs.

The above four BLE data transfer operations are described here. Commands which you must send are shown separately

from the events which the stack generates. Complete API reference can be found for example through Simplicity Studio

Launcher on the Documentation tab.

Read

Read operation is requested by the GATT client on a specific attribute exposed by the GATT server. The server then

responds with the requested value. In the BLE stack, these API methods are typically involved in read operations:

sl_bt_gatt_read_characteristic_value command

Reads a remote attribute's value with the given handle. A single sl_bt_evt_gatt_characteristic_value event is generated if

the characteristic value fits in one ATT PDU. Otherwise, more than one sl_bt_evt_gatt_characteristic_value events are

generated because the firmware will automatically use the "read long" GATT procedure. This is the most common method

used by a GATT client to read individual attribute values.

sl_bt_gatt_read_characteristic_value_by_uuid command

Reads the characteristic value of a service from a remote GATT database by giving the UUID of the characteristic and the

handle of the service containing this characteristic. A sl_bt_evt_gatt_characteristic_value event is generated if the

characteristic value fits in one ATT PDU. Otherwise, more than one sl_bt_evt_gatt_characteristic_value events are

generated because the firmware will automatically use the "read long" GATT procedure.

sl_bt_gatt_read_multiple_characteristic_values command

Can be used to read the values of multiple characteristics from a remote GATT database at once.

sl_bt_evt_gatt_characteristic_value events are generated as the values are returned by the remote GATT server.

sl_bt_evt_gatt_server_user_read_request event

Generated on the GATT server when a client requests reading data from a characteristic whose "type" value is set to

"user". Normally, this operation is handled by the stack automatically and the characteristic value stored in RAM right on

the module is sent back to the client. However, with "user" characteristics, this data storage and retrieval is entirely up to

you. The stack lets you know when it has been requested and you must get it (or generate it), then send it back (or not) in

whatever format is desired. This can be useful for immediate I/O status reads, for example, so that instead of maintaining a

value in memory or polling all the time so it is kept "fresh," you can instead just wait for the request and read the I/O status

on the spot when it comes in. (ONLY applies if Value type="user" is set in the GATT Editor for the given characteristic)

sl_bt_gatt_server_send_user_read_response command

Used to send back the desired data when a sl_bt_evt_gatt_server_user_read_request is generated by a client's request on

a "user" characteristic. This command takes a result code and the actual value, if any, to send back. (ONLY applies if Value

type="user" is set in the GATT editor for the given characteristic)

Write

This operation is requested by the GATT client on a specific attribute exposed by the GATT server, and a new value to write

is provided at the same time. The server then stores the new value and (optionally) acknowledges the write operation back

to the client. In the BLE stack, these API methods are typically involved in write operations:

sl_bt_gatt_write_characteristic_value command

Writes a remote attribute's value on a GATT server. This performs an acknowledged write operation, so the server will

respond when the value has been successfully written. If the given value does not fit in one ATT PDU, "write long" GATT

procedure is used automatically. This is the most common method used by a GATT client to write individual attribute

values.

sl_bt_evt_gatt_procedure_completed event

This event indicates that the current GATT procedure has been completed successfully or that it has failed with an error. All

GATT commands excluding sl_bt_gatt_write_characteristic_value_without_response and

sl_bt_gatt_send_characteristic_confirmation will trigger this event, so the application must wait for this event before issuing

Server and Client Roles

150/1306

another GATT command (excluding the two aforementioned exceptions). This event is useful for controlling program flow

based on whether a critical operation has finished yet or not.

sl_bt_gatt_write_characteristic_value_without_response command

Writes a remote attribute's value on a GATT server. This is exactly the same as the above command except that it is

unacknowledged. There will be no response upon completion. Like the "notify" operation, this means that it is faster

(multiple unacknowledged writes may be performed within a single connection interval), but less reliable than

acknowledged writes.

sl_bt_gatt_prepare_characteristic_value_write command

Can be used to add a characteristic value to the write queue of a remote GATT server. This command can be used in cases

where very long attributes need to be written or a set of values needs to be written atomically. At most 245 (ATT_MTU - 5)

amount of data can be sent once. The sl_bt_evt_gatt_procedure_completed event occurs when the preparation is done. In

all cases where the amount of data to transfer fits into the BGAPI payload the command

sl_bt_gatt_write_characteristic_value is recommended for writing long values since it transparently performs the

"prepare_write" and "execute_write" commands.

The following is an example of the flow of queuing writes:

 sl_bt_gatt_prepare_characteristic_value_write

 Wait for sl_bt_gatt_prepare_characteristic_value_write response

 Wait for sl_bt_evt_gatt_procedure_completed event

 sl_bt_gatt_prepare_characteristic_value_write

 Wait for sl_bt_gatt_prepare_characteristic_value_write response

 Wait for sl_bt_evt_gatt_procedure_completed event

 sl_bt_gatt_execute_characteristic_value_write(conn, 1)

 Wait for sl_bt_gatt_execute_characteristic_value_write response

 Wait for sl_bt_evt_gatt_procedure_completed event

sl_bt_gatt_execute_characteristic_value_write command

Executes (flags = 1) or cancels (flags = 0) any pending write operations queued with

sl_bt_gatt_prepare_characteristic_value_write . The stack handles sending the queued writes in multiple packets automatically

when you run this command and it will take as many connection intervals as necessary. The

sl_bt_evt_gatt_procedure_completed event occurs when the execution is done. On the server side, this looks like a rapid

series of write operations and is handled the same way (acknowledging each one).

sl_bt_evt_gatt_server_attribute_value event

Triggered on the GATT server when the client writes a new value to a particular characteristic. This is the event you can

use to tell when a characteristic has been updated and then respond accordingly (parse the new value for command data,

set I/O pins based on the stored data, close the connection, begin reading ADC measurements, and so on).

sl_bt_evt_gatt_server_user_write_request event

If type="user" is set for a given characteristic, this event will be generated instead of sl_bt_evt_gatt_server_attribute_value .

The new written value from the client will be provided as one of the parameters of this event, but the value itself will not be

stored in RAM automatically by the stack. The user needs to store or otherwise process the value and acknowledge as

necessary. Parameter att_opcode describes which GATT procedure was used to change the value.

sl_bt_gatt_server_send_user_write_response command

Used to send back an appropriate acknowledgment result code when a sl_bt_evt_gatt_server_user_write_request event is

generated by a client's write operation on a "user" characteristic. If this manual acknowledgment is necessary, call this

command in the same code as the event handler for the related sl_bt_evt_gatt_server_user_write_request event. (ONLY applies

if Value type="user" is set in the GATT editor for the given characteristic).

Notify

This operation is initiated by the server when a new value is written to a notify-enabled characteristic. If the client has

subscribed to notifications on that characteristic, the new value is pushed to the client when it is written. Notifications are

not acknowledged, hence you may send more than one notification in a single connection interval, which can be helpful for

maximizing throughput. Notifications can't be enabled by the server; they must be enabled by the client to ensure data

transmission. In our BLE stack, these API methods are typically involved in notify operations:

sl_bt_gatt_server_write_attribute_value command

Writes a local attribute's value on the GATT server. Writing the value of a characteristic of the local GATT database will not

trigger notifications or indications to the remote GATT client in case such characteristic has property of indicate or notify

https://docs.silabs.com/bluetooth/6.1.0/bluetooth-system-performance/throughput

Server and Client Roles

151/1306

and the client has enabled notification or indication. Notifications and indications are sent to the remote GATT client using

sl_bt_gatt_server_send_characteristic_notification command.

sl_bt_evt_gatt_server_characteristic_status event

This event indicates either that a local Client Characteristic Configuration descriptor has been changed by the remote

GATT client or that a confirmation from the remote GATT client was received upon a successful reception of the indication.

Status_flags parameter tells whether Client Characteristic Configuration was changed or if confirmation was received

(0x02). Client_config_flags has the new values for the configuration. If the updated config flag equals 1, notifications are

enabled. If it equals 2, indications are enabled. If it equals 0, neither is enabled.

sl_bt_evt_gatt_characteristic_value event

This event indicates that the value of a characteristic in the remote GATT server was received. The event is triggered as a

result of several commands e.g., sl_bt_gatt_read_characteristic_value and sl_bt_gatt_read_multiple_characteristic_values and when

the remote GATT server sends indications or notifications after enabling notifications with

sl_bt_gatt_set_characteristic_notification . The parameter att_opcode reveals which type of GATT transaction triggered this

event. In particular, if the att_opcode type is sl_bt_gatt_handle_value_indication (0x1d), the application needs to confirm the

indication with sl_bt_gatt_send_characteristic_confirmation . This event enables the client to know it has received an updated

value. The pushed data will be made available as part of the event's parameters.

Indicate

An indicate operation is identical to a notify operation except that indications are acknowledged, while notifications are

not. This increases reliability at the expense of speed. In our BLE stack, these API methods are typically involved in indicate

operations:

sl_bt_gatt_server_write_attribute_value command

Writes a local attribute's value on the GATT server. Writing the value of a characteristic of the local GATT database will not

trigger notifications or indications to the remote GATT client if the characteristic has property of indicate or notify and the

client has enabled notification or indication. Notifications and indications are sent to the remote GATT client using

sl_bt_gatt_server_send_characteristic_notification command. Remember that indications are acknowledged, so you may do this

only once within a given connection interval. It will be followed up by the sl_bt_evt_gatt_server_characteristic_status event with

status_flags = 0x2 when the acknowledgment comes back from the GATT client.

sl_bt_evt_gatt_server_characteristic_status event

This event indicates either that a local Client Characteristic Configuration descriptor has been changed by the remote

GATT client, or that a confirmation from the remote GATT client was received upon a successful reception of the indication.

Status_flags parameter tells whether the Client Characteristic Configuration was changed or if confirmation was received

(0x02). Client_config_flags has the new values for the configuration. If the updated config flag equals 1, notifications are

enabled. If it equals 2, indications are enabled. If it equals 0, neither are enabled.

sl_bt_evt_gatt_characteristic_value event

This event indicates that the value of a characteristic in the remote GATT server was received. This event is triggered as a

result of several commands e.g., sl_bt_gatt_read_characteristic_value ; and when the remote GATT server sends indications or

notifications after enabling notifications with gatt_set_characteristic_notification . The parameter att_opcode reveals which

type of GATT transaction triggered this event. In particular, if the att_opcode type is handle_value_indication (0x1d), the

application needs to confirm the indication with sl_bt_gatt_send_characteristic_confirmation . This event is how the client

knows it has received an updated value. The pushed data will be made available as part of the event's parameters.

sl_bt_gatt_send_characteristic_confirmation command

Sends an indication confirmation from the GATT client back to the remote GATT server, after an indicated value has arrived

at the client. The sl_bt_evt_gatt_characteristic_value carries the att_opcode containing handle_value_indication (0x1d), which

reveals that an indication has been received and this must be confirmed with this command. Confirmation needs to be sent

within 30 seconds, otherwise the GATT transactions between the client and the server are discontinued. Sometimes there

are specific data flow control triggers you need to deal with very carefully. Controlling precisely when the confirmation

occurs and what happens before and after it may be valuable.

sl_bt_evt_gatt_server_characteristic_status event

This event indicates either that a local Client Characteristic Configuration descriptor has been changed by the remote

GATT client or that a confirmation from the remote GATT client was received upon a successful reception of the indication.

Very often, this event is ignored, but as mentioned in the previous item, sometimes it is valuable to know precisely when

this occurs for data flow control purposes.

Typically, the GATT server functionality is provided by one device and the client functionality by a different device, but both

devices can also provide both kinds of functionality. This does not usually pose any advantages for a well-designed and

Server and Client Roles

152/1306

efficient BLE project. On the contrary, it usually complicates the implementation needlessly and is therefore not discussed

here.

Acknowledged vs. Unacknowledged

153/1306

Acknowledged vs. Unacknowledged

Acknowledged vs Unacknowledged GATT
operations
This page explains the difference between acknowledged and unacknowledged GATT operations in Bluetooth Low Energy.

The figures below show data flows between the GATT client and GATT server for a write operation without and with a

response (unacknowledged and acknowledged).

Terms acknowledged and unacknowledged apply to GATT operations because they describe both data transmitted across

the radio link and also data reaching the GATT/Application layer. On both acknowledged and unacknowledged GATT

operations, data is reliably transported across the radio link. The difference between the two transfer types is in knowing if

and when data sent has been received by the application on the other side.

For example, the response to write operations on 'user'-type characteristics must be managed by the application. If the

application can't process the write request, a response will not be sent and a timeout will occur after 30 seconds, indicating

to the client that it wasn't possible to accept the write request. Applications which need synchronous operation and

Acknowledged vs. Unacknowledged

154/1306

availability of other resources, such as UART in a cable replacement application, are required to use acknowledged

operations.

Notifications and indications are another example of unacknowledged and acknowledged operations, respectively. Data flow

is shown below.

To summarize, in both unacknowledged and acknowledged data transfers, data is reliably transported across the radio link

but in the former there is no guarantee of delivery at the GATT/Application layer.

Polymorphic GATT

155/1306

Polymorphic GATT

Polymorphic GATT

Introduction

Silicon Labs' Bluetooth stack implements a static GATT database structure, which means that services and characteristics

are created at compile time, not at run time. As a result, software cannot change the database structure dynamically. To

overcome this issue, Bluetooth SDK v2.4 introduces a new feature called Polymorphic GATT, which can be used to

dynamically show or hide GATT services and characteristics. This new feature allows users to create a ‘superset’ GATT

database with pre-defined hidden/visible services and characteristics and alter their visibility on the fly.

Note: Changing the visibility of services/characteristics should not be done during a connection because that

can cause incorrect behavior if Service Change Indication is not enabled. The safest method is to change the

visibilities when no devices are connected, or to change the visibilities after making sure that Service Change

Indication was enabled on the connection.

How it Works

The visibility of services and characteristics is controlled through the use of GATT capabilities. The usage of capabilities and

their syntax in the GATT XML file is fully described in UG118: Blue Gecko Bluetooth Profile Toolkit Developer's Guide,

specifically in sections 2.3, 2.4.1 and 2.5.1 with a usage example in section 2.6. Read through these sections to get a good

grasp of the visibility and inheritance rules.

To summarize, each service/characteristic can declare a number of capabilities and the state of the capabilities

(enable/disable) determines the visibility of those services/characteristics as a bit-wise OR operation e.g., the

service/characteristic is visible when at least one of its capabilities is enabled and it is not visible when all of its capabilities

are disabled.

Note: If certain services/characteristics are meant to be always visible, one good approach is to have one

capability that is declared by those services/characteristics which is enabled by default and untouched by the

application code.

Setting up Capabilities with GATT Configurator

Bluetooth SDK's GATT Configurator supports the polymorphic GATT database and it allows declaring capabilities for the
whole GATT database as well as subsets for each of the services and characteristics.

Always start by declaring the GATT-level capabilities and define their default value by selecting "Custom BLE GATT" and

adding the capabilities in "Capability declaration". To add a capability, press the '+' on the right-hand side and then change

the capability name and default value.

https://www.silabs.com/documents/public/user-guides/ug118-bluegecko-bt-profile-toolkit.pdf

Polymorphic GATT

156/1306

After those capabilities are added, they become available on each of the services and characteristics. They can be added

through the drop-down list but this time you'll be shown the list of capabilities declared at the GATT-level where to pick

from.

Polymorphic GATT

157/1306

Enabling/Disabling Capabilities

Capabilities can be enabled/disabled with the API command sl_bt_gatt_server_set_capabilities (caps, reserved) where caps
is the bit flags of each capability which should be set to 1 if the capability is to be enabled or 0 if it's to be disabled.

The auto-generated gatt_db.h contains the bit flag value for each of the capabilities you defined in the GATT Configurator,

e.g.,:

typedef enum

{

 ota = 0�0001,

 temp_measure = 0�0002,

 temp_type = 0�0004,

 interm_temp = 0�0008,

 meas_interv = 0�0010,

 bg_gattdb_data_all_caps = 0�001f

} bg_gattdb_data_cap_t;

To enable ota and temp_type and disable all other capabilities, use the command call that looks like this:

sl_bt_gatt_server_set_capabilities (ota | temp_type, 0);

Service Change Indications

The stack monitors the local database change status and manages the service change indications for a GATT client that has

enabled the indication configuration of the Service Changed characteristic. The Service Changed characteristic is part of

the Generic Attribute service, which can be added to the GATT by ticking the Generic Attribute Service check box in the

https://www.bluetooth.com/specifications/gatt/services/

Polymorphic GATT

158/1306

GATT Configurator (it can be found after selecting Custom BLE GATT in the GATT database). For more information, see

Service Change Indication.

GATT Caching

159/1306

GATT Caching

GATT Caching

Introduction

Discovering the GATT database of a remote device every time a connection is made is time and energy intensive. To resolve

this, most Bluetooth devices use attribute caching, i.e., after they discover the GATT database of a remote device, they

store the discovered attribute handles for future use. In other words, they store a local copy of the remote database

structure, or at least parts of it. This works well as long as the remote device keeps its GATT database structure unchanged.

If the database structure changes, for example because of a firmware update that introduces new features, the stored

attribute handles become invalid.

These are the two methods to notify peer devices about the change:

Using Service Change Indication

Using GATT Caching feature

Service Change Indication was introduced in Bluetooth 4.0. This solution is discussed in Service Change Indications. The

main disadvantage of this method is that requires peer devices to be bonded.

GATT caching feature was introduced in Bluetooth 5.1 to overcome the bonding problem. Using GATT caching, every device

can make sure that it is storing the latest version of the GATT database structure. This is achieved by:

Adding two new characteristics to the Generic Attribute service (Database Hash and Client Supported Features)

Adding a new GATT error code (database out-of-sync)

Database Hash Characteristic

The Database Hash characteristic stores a 128 bit value, which is a AES-CMAC hash calculated from the database

structure. Any change in the database structure results in a different hash value. After discovering the database once, the

client should store this value. Next time, when the client connects to the server, it should only check if the Database Hash

has changed. If it has not, it is safe to assume that the database structure is unchanged and the cached attribute handles

are still valid. If it has changed, the client needs to rediscover the GATT database.

Note: The Database Hash must be read using GATT Read Using Characteristic UUID sub-procedure

sl_bt_gatt_read_characteristic_value_by_uuid() .

Database Out-of-Sync Error Code

If the client enables Robust Caching by setting the Robust Caching bit to 1 in the Client Supported Features characteristic,

the server can send a database out-of-sync error code as a response to a GATT operation whenever it assumes that the

client has an out-of-date database.

If the client and the server are bonded, the server checks if the database has changed since the last connection and

notifies the client about the change via Service Change Indication - just like without the usage of GATT caching. The new

feature is that if the client initiates a GATT operation before the indication is received and confirmed, the server can send a

database out-of-sync error code. This helps avoid a race condition if the client wants to initiate a GATT operation too

quickly after establishing a connection.

If the client and the server are not bonded, the server assumes that the client checks the Database Hash and/or discovers

the GATT database upon each connection before initiating any GATT operation. In other words, the server assumes that the

GATT Caching

160/1306

client is aware of database changes after the connection was established. If a change occurs in the database during

connection, the client gets change-unaware. At the next GATT operation, the server sends a database out-of-sync error

code to the client to signal this (except if the client reads the Database Hash meanwhile). From the next GATT operation,

the server assumes that the client is change-aware again.

Implementation

Server

To enable GATT caching functionality on the server side, enable Generic Attribute Service in the GATT database as follows:

 Open the Bluetooth GATT Configurator in your project.

 Click on the Profile (by default it is Custom BLE GATT) in the GATT database structure.

 On the right side, enable the Generic Attribute Service using the slider. You will not see the service appearing in the GATT

database of the editor but it will be added to the generated gatt_db.c, i.e., it will be part of the actual GATT database.

The stack will now automatically populate the Database Hash characteristic with the database hash.

Client

To enable GATT caching on the client side, do the following:

 Read the Database Hash characteristic upon each connection and compare its value with the last stored value:

static uint8_t db_hash_uuid[2] = {0�2a,0�2b};

sl_bt_gatt_read_characteristic_value_by_uuid(conn_handle, 0�0001FFFF, sizeof(db_hash_uuid), &db_hash_uuid[0]);

If the values match, you are safe to use your stored characteristic handles. If they do not match, start a service discovery to

discover characteristic handles.

 Enable Robust Caching by writing to the Client Supported Features characteristic of the server:

static uint8_t enable_bit[1] = {0�01};

sl_bt_gatt_write_characteristic_value(conn_handle, client_supported_features_handle, sizeof(enable_bit), &enable_bit[0]);

 Check for database out-of-sync error after each GATT operation.

GATT Caching

161/1306

if (evt->data.evt_gatt_procedure_completed.result == SL_STATUS_BT_ATT_OUT_OF_SYNC)

printLog("database has changed!\r\n");

Service Change Indication

162/1306

Service Change Indication

Service Change Indications

Background

Attribute Caching is a mechanism of caching attribute handles, which allows clients to avoid the process of rediscovering

services upon consecutive connections with paired and bonded devices. This saves power, time, and reduces the packet

size.

Problem

If the client caches attribute handles and the values change, it can lead to unpredictable values from those handles. This

can happen when you add or remove characteristics in run time or between firmware updates (see the Polymorphic GATT

feature). The issue is how to notify the client to rediscover services upon a change in GATT server.

For more details about how Android platform and iOS behave and implements this, see this article.

Solution

The standard Generic Attribute Service includes a characteristic called Service Changed, which can be used by the client

to subscribe for service change indications and by the server to send out service change indications (BLUETOOTH CORE

SPECIFICATION Version 5.4 | Vol 3, Part G, Section 7.1). The value sent out in the indication contains the range of handles

which have been changed. This can help the client to rediscover that range of handles.

If the database has a Generic Attribute Service and Service Changed characteristic, the stack will monitor local database

changes and will send out Service Changed indications for those clients that have subscribed for it.

Note that, by default, the Service Changed subscription is only valid for the lifetime of a connection. After the connection is

closed, the subscription is removed. Upon the next connection, the client has to subscribe again. This also implies that if the

GATT database changes between two connection, then the client will not be notified about this change. To avoid this, the

two devices (client and server) have to create a bonding. Subscriptions of bonded devices are permanently stored, and

after the client reconnects to the server, it will be notified about changes that happened since the last connection.

Implementation

Unlike other services and characteristics, the Generic Attribute Service is not directly visible in the GATT configurator. For

any Bluetooth project in Simplicity Studio, open the Bluetooth GATT Configurator and click on the profile in the custom GATT

view. You can enable or disable the Generic Attribute Service using the slider, as shown in the image below. It is enabled by

default for examples that come with the SDK.

https://punchthrough.com/pt-blog-post/attribute-caching-in-ble-advantages-and-pitfalls/

Service Change Indication

163/1306

Using Characteristics Value Types

164/1306

Using Characteristics Value Types

Different Value Types of Characteristics

Introduction

Bluetooth LE (BLE) is used for wireless communication, which is achieved by operations on characteristics.

Characteristics

Characteristics are a GATT Profile concept, which defines Client and Server roles. Server holds the state or data and client

can request the state or data. Below is the definition of server and client from the Bluetooth SPEC.

Client is the device that initiates commands and requests towards the server and can receive responses, indications and

notifications sent by the server.

Server is the device that accepts incoming commands and requests from the client and sends responses, indications and

notifications to a client.

The GATT Profile specifies the structure in which profile data is exchanged. This structure defines basic elements, such as

services and characteristics, which are used in a profile.

Profile

A profile is the top level of the hierarchy, which is composed of one or more services necessary to fulfill a use case. A

service is composed of characteristics or references to other services. Each characteristic contains a value and may contain

optional information about the value. The service and characteristic and the components of the characteristic (i.e., value

and descriptors) contain the profile data and are stored in Attributes on the server.

Service

A service is a collection of data and associated behaviors to accomplish a particular function or feature of a device or

portions of a device. A service may include other primary or secondary services and/or a set of characteristics that make up

the service. GATT also specifies the format of data contained on the GATT server. Attributes, as transported by the Attribute

protocol, are formatted as Services and Characteristics. Services may contain a collection of characteristics. Characteristics

contain a single value and any number of descriptors describing the characteristic value.

Characteristic

A characteristic is a value used in a service along with properties and configuration information about how the value is

accessed and information about how the value is displayed or represented. A characteristic definition contains a

characteristic declaration, characteristic properties, and a value. It may also contain descriptors that describe the value or

permit configuration of the server with respect to the characteristic value.

Using Characteristics Value Types

165/1306

Characteristic Value Types

The above section introduces how to achieve communication among BLE devices. This section describes the differences

among the types of a characteristic value. In the UG188: Blue Gecko Bluetooth Profile Toolkit Developer's Guide, three types

of values can be used: hex, utf-8 and user. See chapter 2.5.3 for more information.

Available Types:

hex: The characteristic value is a hexadecimal value. In the next figure, the initialization value has the format of 0xXXXX, the

characteristic value has the length of 2 bytes, and is initialized with the value 0x1122.

utf-8: The characteristic is a string and it takes a string as its initialization value. In this example, the characteristic has 13

bytes length and is initialized with the string value "Empty Example".

https://www.silabs.com/documents/public/user-guides/ug118-bluegecko-bt-profile-toolkit.pdf

Using Characteristics Value Types

166/1306

user: When the characteristic type is marked as type="user", the application has to initialize the characteristic value and

also provide it when a read operation occurs, for example. The Bluetooth stack does not initialize the value nor automatically

provide the value when it's being read. When this is set, the Bluetooth stack generates gatt_server_user_read_request or
gatt_server_user_write_request, which must be handled by the application.

Default: utf-8

Comparison

The type "hex" and "utf-8" are the same in terms of user operations, but are not of the same length. The section below lists

the differences between type "user" and "hex" to help users in choosing the right property of a characteristic value. The

most significant difference between the type “user” and the other two types is where the data is stored.

Type – hex or utf-8

If you use the property other than "user", the stack will allocate and maintain the buffer for the characteristic value

automatically.

When a read request is received, the read response will be filled with the characteristic value and sent back to the peer

device by the stack without user involvement.

When a write request is received, the stack will modify the characteristic value and send the write response to the peer

device, then generate a sl_bt_evt_gatt_server_attribute_value event to inform users about the new value.

When sending notification/indication, the characteristic value has to be read from the stack, then the read value needs to be

placed into the API sl_bt_gatt_server_send_notification or sl_bt_gatt_server_send_indication .

To read or write the characteristic value locally, use the below 2 APIs.

sl_bt_gatt_server_read_attribute_type(uint16_t attribute,

 size_t max_type_size,

 size_t* type_len,

 uint8_t* type)

sl_bt_gatt_server_write_attribute_value(uint16_t attribute,

 uint16_t offset,

 size_t value_len,

 const uint8_t* value)

The following figures show the flow of typical GATT operations when using hex characteristic value type.

Using Characteristics Value Types

167/1306

Type – user

If you use "user" as the value type, the value of the characteristic is stored in the application layer, which means the users

should be responsible for allocating, maintaining, and freeing a suitable buffer for the characteristic value. Additionally,

respond to the GATT write/read requests by sending write/read response back to the peer device via below APIs.

sl_bt_gatt_server_send_user_read_response(uint8_t connection,

 uint16_t characteristic,

 uint8_t att_errorcode,

 size_t value_len,

 const uint8_t* value,

 uint16_t* sent_len);

sl_bt_gatt_server_send_user_write_response(uint8_t connection,

 uint16_t characteristic,

 uint8_t att_errorcode);

For example, if you have a characteristic with length 60, allocate a 60-byte buffer in the application layer to store its value.

When a read request is received, a sl_bt_evt_gatt_server_user_read_request event will be generated from the stack to the

application and you need to respond the characteristic value via sl_bt_gatt_server_send_user_read_response .

When a write request is received, sl_bt_evt_gatt_server_user_write_request event is generated. At this point, users decide how to

handle the value with the local buffer against the data in write request and respond it via

sl_bt_gatt_server_send_user_write_response .

When sending notification/indication, the application buffer can be directly put into the API sl_bt_gatt_server_send_notification /

sl_bt_gatt_server_send_indication

The following figures show the flow of typical GATT operations when using hex characteristic value type.

Using Characteristics Value Types

168/1306

Notes:

 DO NOT use the APIs sl_bt_gatt_server_read_attribute_value(...) and sl_bt_gatt_server_write_attribute_value (...) to read or write a

characteristic value whose type is "user", because the data buffer is in your application code and stack will never know its

value.

 DO NOT forget to respond to the read and write requests if the characteristic value type is “user”. Otherwise, no other GATT

operation can be issued until GATT timeout - typically 30 seconds.

Conclusions and Suggestions

Using "user" and using "hex"

Using Characteristics Value Types

169/1306

Type hex/utf-8

Advantage – Stack will handle the read and write request to the characteristics, which is more effective and faster.

Disadvantage – Users can't access the characteristic buffer directly. Stack APIs are needed to read and write the value

locally.

Type user

Advantage – The buffer storing the characteristic value is in the application layer, which means it’s easier to read and

modify the value.

Disadvantage – Users must respond to the read and write requests by calling stack APIs. If users don’t respond, no other

GATT operation can be issued until GATT timeout. Because every GATT operation requires involving the application, it could

be less effective and consume more power. Additionally, long-write, reliable-write and read-multiple-values requests are

NOT supported if a characteristic is user type.

Code Example

This guide has a related code example, here: Different Characteristic Value Type Example.

https://github.com/SiliconLabs/bluetooth_stack_features/tree/master/gatt_protocol/using_characteristics_value_types

GATT Operation Flowcharts

170/1306

GATT Operation Flowcharts

GATT Operation Flowcharts

Introduction

Bluetooth Low Energy (BLE) defines a framework for a wide variety of communication schemes. It allows devices to discover

each other, broadcast data, establish connections, and many other fundamental operations.

The objective of this page is to focus on the procedures defined for the "Generic Attribute Profile" (GATT) of the BLE stack.

Sequence diagrams are used to describe these procedures comprehensively, focusing on the following items:

BGAPI function calls.

Messages exchanged over the air.

Events raised by the BLE stack.

This content does not expose the Bluetooth stack packet management nor does it describe the host controller interface

(HCI).

This content assumes that the necessary Bluetooth hardware is used, such as an EFR32 SoC or a BGM module.

Generic Attribute Profile �GATT� Operations

GATT provides a framework for all profiles defined either by the Bluetooth SIG or by the user. Bluetooth profiles are

implemented using a hierarchical structure:

Services: A collection of GATT entries, grouping together attributes that are related to each other.

Characteristics: Data containers. A characteristic consists of a declaration (a label) and a value.
Descriptors: Placed under a characteristic, they provide additional information about the characteristic and its values.

GATT database

*--> Services

|

 --> Characteristics (always placed under a service)

|

 --> Descriptors (always placed under a characteristic)

The BLE specification refers to all the attributes within a single service as the service definition.

Primary Service Discovery

A primary service is the standard type of GATT service that includes relevant, standard functionality exposed by the GATT

server. In other words, a service is a collection of characteristics. As a result, when a connection is established, it is

necessary for the GATT client to be able to discover the available services.

GATT Operation Flowcharts

171/1306

The procedure iterates through all available services of the GATT database, an sl_bt_evt_gatt_service event is generated for

each primary service discovered. After the end of the list is reached, an sl_bt_evt_gatt_end_procedure is raised by the stack.

After a client has obtained the handle range for a service, a similar procedure exists to retrieve a full list of the

characteristics under that service.

Characteristics

As mentioned earlier, characteristics are data containers. They consist of a declaration (a label) and a value.

There are multiple types of characteristics:

'hex' or 'utf-8' characteristics, which consist of hex or utf-8 values maintained internally by the BLE stack.

'user' characteristics, which are maintained at the application level. In other words, it is the responsibility of the application to

perform the appropriate actions when a Read/Write command is received.

Moreover, on a given characteristic, different types of read/write operations can be performed. The following procedures are

discussed here:

Read/Write on user characteristic.

Long read/write on user characteristic.

Notifications and Indications

The following sub-procedures are not discussed:

Read multiple characteristics

Write without response

GATT Operation Flowcharts

172/1306

Signed write without response

Reliable writes

For more information on these procedures, see the BLE core specification and Different Characteristic Value Types.

Read/Write Hex and utf-8 Type Characteristics

The BLE stack manages the read and write operations for these characteristics. Upon reception of the "Read request", the

server's stack sends back a "Read response" containing the characteristic value, as shown below:

The following sequence diagram describes the write operation:

The "Write Response" contains only an error code indicating whether the write was successful or not.

Note that if the maximum length of the payload is reached, the read/write long characteristic is automatically used by the

BLE stack.

Read User Characteristics

https://www.bluetooth.com/specifications/bluetooth-core-specification

GATT Operation Flowcharts

173/1306

The "Read Characteristic Value" procedure is implemented via the sl_bt_gatt_read_characteristic_value() BGAPI command. In

this procedure, the characteristic length must be less or equal to the maximum payload, that is (ATT_MTU-1) bytes. In other

words, the length of the characteristic has to fit in one "Read Response".

Data is sent from the server to the client via the "Read Response". Then, the client application can retrieve the data via the

"evt_gatt_characteristic_value" event.

If the characteristic does not fit in one "Read Response", the "Read Long Characteristic Value" procedure implemented via

the sl_bt_gatt_read_characteristic_value() routine can be used. If the payload is bigger than (ATT_MTU-1), the stack will

automatically pack and send the data using sl_bt_gatt_read_characteristic_value_from_value() . It is not the responsibility of the

application to call sl_bt_gatt_read_characteristic_value_from_value() . Instead, the application will still use the

sl_bt_gatt_read_characteristic_value() routine. The following sequence diagram describes the "Read Long Characteristic Value"

mechanism using the offset routine.

GATT Operation Flowcharts

174/1306

The client reads the characteristic by chunks of (ATT_MTU-1) bytes. The client stack keeps and updates the byte offset

used for the read request.

For more extensive description on long characteristic operations, see the example: Working with Long Characteristic Values.

Write User Characteristics

The "Write Characteristic Value" procedure is implemented via the sl_bt_gatt_write_characteristic_value() BGAPI command. In

this procedure, the characteristic length must be less or equal to the maximum payload, that is (ATT_MTU-3) bytes. In a

similar way to the "Read Characteristic", the length of the characteristic has to fit in one "Write Request".

https://github.com/SiliconLabs/bluetooth_stack_features/tree/master/gatt_protocol/working_with_long_characteristic_values

GATT Operation Flowcharts

175/1306

For longer characteristics, the same command can be used to write a characteristic in a remote GATT database. If the

payload does not fit in one request, the "write long" procedure is automatically used when

sl_bt_gatt_write_characteristic_value() is called. The value is buffered on the server side until all data is sent over. Upon

reception by the server of all data, the client can issue a "write request execute" to trigger the effective write in the remote

GATT database.

If the operation is successful, an sl_bt_evt_gatt_procedure_completed is sent by the server.

For more extensive on long characteristic operations, see the example: Working with Long Characteristic Values

Notifications and Indications

Server-initiated updates can be sent from the GATT server to the client without the client having to request it. This has the

advantage to save both power and bandwidth. Notifications and Indications are two types of server-initiated updates. In

both cases, the procedure has to be enabled first on the remote GATT server using the

sl_bt_gatt_set_characteristic_notification() beforehand.

Notifications includes the handle of the characteristic (i.e., its identifier) and the value. The client receives the notifications

but does not send any acknowledgment back to the server.

https://github.com/SiliconLabs/bluetooth_stack_features/tree/master/gatt_protocol/working_with_long_characteristic_values

GATT Operation Flowcharts

176/1306

The indications, on the other hand, have the same behavior but require an explicit acknowledgment from the client in form

of confirmation. If the confirmation is not sent by the client, the server will not send further indications.

The indications uses the same attribute protocol feature as the notifications.

Performance

177/1306

Performance

System Performance Fundamentals
These pages provide key background information related to improving system performance and reducing power

consumption.

Throughput with Bluetooth Low Energy Technology: Describes the maximum achievable bitrates on Blue Gecko devices

(EFR32BGxx) with different Bluetooth SDK versions.

Adaptive Frequency Hopping: Describes Adaptive frequency hopping, whereby the communicating devices are continuously

monitoring their environment for interference and are continuously changing the channel map to address the interference.

Optimizing Current Consumption in Bluetooth Low Energy Devices: Discusses ways to reduce power consumption by fine-

tuning parameters and configurations related to advertising and connection states.

TX Power Limitations for Regulatory Compliance (ETSI, FCC): Discusses the rules applied by two main regulatory bodies

(ETSI and FCC) and presents how Silicon Labs' Bluetooth stack limits TX power to comply with these regulations.

Throughput

178/1306

Throughput

Throughput with Bluetooth Low Energy Technology

Introduction

This page describes the maximum achievable bitrates on Blue Gecko devices (EFR32BGxx) with different Bluetooth SDK

versions. However, the principles can also be applied to legacy devices (BLExxx), taking into account their parameters.

The application-level data, throughput with Bluetooth Low Energy is affected by many factors. In particular, two operations

below have a different throughput calculation:

1. Acknowledged data transfer. In this use case, the reception of all data packets is acknowledged by the receiver. The

receiver sends a response for every read/write request in the next connection interval. The connection is reliable but the

throughput is low.

2. Unacknowledged data transfer. In this use case, packets can be sent sequentially without waiting for acknowledgment

from the other side. This ensures much higher throughput, but a less reliable connection.

Acknowledged and unacknowledged operation can be mixed on the same connection by sending packets of different types.

The following packet types result in acknowledged operation:

Read (read request)

Write (write request)

Indication

Prepare write

Signed write

The following packet types result in unacknowledged operation:

Write without response (write command)

Notification

Throughput Calculation for Acknowledged Data Transfer

For acknowledged data transfer, the throughput depends on the following parameters:

Throughput

179/1306

Connection interval

MTU size

Attribute protocol operation

Connection Interval

The connection interval specifies the frequency of sending data, which varies between 7.5 ms up to 4000 ms. After the

sender sends data (or request), the sender has to wait for the receiver to send an acknowledgment. Therefore, one (GATT)

operation takes two connection intervals.

The lower the connection interval, the higher the potential data rate. For example, using the smallest connection interval of

7.5 ms e.g., with 125-byte useful payload / connection interval, the radio can (assuming no lost packets and no re-

transmissions) achieve a theoretical data rate, as follows:

1000 ms / (2 * 7.5 ms) * 125 bytes = 8,333 bytes/sec = 66,666 bps

On the other hand, when using the largest connection interval of 4000 ms e.g., with 22-byte useful payload, data rate will

be reduced to:

1000 ms / (2 * 4000) ms * 22 bytes = 2.75 bytes/sec = 22 bps

MTU Size

Maximum Transfer Unit (MTU) specifies the number of bytes that can be sent within one GATT operation. In other words, it's

the number of bytes that can be sent within two connection intervals. MTU size can be set for each connection. However, it

has an upper limit, which varies with Bluetooth stack versions. The maximum MTU size for each Bluetooth stack version is

summarized in the following table

Bluetooth Stack Version Maximum MTU Size

For legacy devices (BLExxx)

<= 1.5.0 23

For Blue Gecko devices

1.0.x 23

2.0.x 58

2.1.x 126

2.3.x or later 250

Note that the MTU size depends on both sides. For example, if the remote device supports a smaller MTU size, the smaller

MTU size will be used. The higher the MTU size, the higher the throughput. Twice the MTU size doubles the throughput.

Attribute Protocol �ATT� Operation

MTU size includes the GATT header, which has a variable length and means that the useful payload is a bit smaller than the

MTU. The size of the GATT header depends on the operation type, hence the maximum useful payload is different for

different operations. This is summarized in the following table:

ATT Operation Max Useful Data / ATT Operation

Read MTU - 1 bytes

Write MTU - 3 bytes

Indication MTU - 3 bytes

Prepare write MTU - 3 bytes

Signed write MTU - 15 bytes

Maximum Achievable Throughput with ACK

For acknowledged operations, the maximum throughput can be achieved with the following parameters:

Connection interval: 7.5 ms

Throughput

180/1306

MTU size: 250 bytes

Attribute protocol operation used: Read

This results in a maximum throughput of

1000 ms / (2 * 7.5 ms) * (250 - 1) bytes = 16,600 bytes/sec = 132,800 bps

Throughput Calculation for Unacknowledged Data Transfer

For unacknowledged data transfer, the throughput depends on the following parameters:

Packet size

Attribute protocol operation

PHY (physical layer) bitrate

Connection interval

Packet Size

Data over Bluetooth is sent in packets. Multiple packets can be sent within one connection interval sequentially (with 150 µs

inter-frame spacing). Packets have variable length, but their length has an upper limit. The maximum PDU (protocol data

unit) size of a packet depends on the Bluetooth stack version, as summarized in the following table:

Bluetooth Stack Version Bluetooth Standard Maximum PDU Size

For legacy devices (BLExxx)

<=1.5.0 4.0 27 byte

For Blue Gecko devices

1.0.x 4.0 27 byte

2.0.x 4.2 38 byte

2.1.x 4.2 38 byte

2.3.x 5.0 128 byte

2.4.x 5.0 160 byte

2.6.x or later 5.0 251 byte

Twice the packet size does not mean double throughput because the larger packets take more time to send. As a result,

less packets can be sent during the same time interval. However, the larger the packet size, the smaller the overhead, which

increases the application level data throughput.

For example, for a 27-byte PDU it takes the following time to send out a packet:

328 µs + 150 µs + 80 µs + 150 µs = 708 µs

328 µs is the effective transmitting time, 150 µs is IFS (interframe space), 80 µs is receiving, 150 µs is IFS. This results in a

theoretical data rate calculation, as follows:

27 byte / 708 µs = 38,135 bytes/sec = 305,080 bps

For a 251-byte PDU, it takes the following time to send out a packet:

2120 µs + 150 µs + 80 µs + 150 µs = 2500 µs

This results in a theoretical data rate calculation, as follows:

251 byte / 2500 µs = 100,400 bytes/sec = 803,200 bps

Note that the packet size depends on both sides. If the remote device supports a smaller packet size, the smaller packet

size will be used.

For more details about packet timing, see the blog Exploring Bluetooth 5 - How Fast Can It Be.

Attribute Protocol Operation

https://blog.bluetooth.com/exploring-bluetooth-5-how-fast-can-it-be

Throughput

181/1306

The PDU size includes the L2CAP header, which is 4 bytes long and the GATT header which has a variable length. This

means that the useful payload of a packet is a bit smaller than the PDU size. The size of the GATT header depends on the

operation type, hence the maximum useful payload is different for different operations. This is summarized in the following

table:

ATT Operation Max Useful Data Payload of a Packet

Write without response PDU - 4 - 3 bytes

Notification PDU - 4 - 3 bytes

The theoretical effective data rate when sending out notifications with 251-byte PDU is as follows:

(251 – 4 – 3) byte / 2500 µs = 97,600 bytes/sec = 780,800 bps

If the MTU is larger than the PDU, multiple packets can be sent within one GATT operation. In this use case, only the first

packet contains the L2CAP header and the GATT header, and the following packets contain only data within the PDU.

Physical Layer �PHY� Bitrate

Bluetooth 4.2 specifies the PHY bitrate to be exactly 1 Mbps.

Bluetooth 5 (introduced in Bluetooth SDK v2.3) specifies PHY bitrates as follows:

2 Mbps

1 Mbps.

500 kbps (1 Mbps with 1:2 convolution coding)

125 kbps (1 Mbps with 1:8 convolution coding)

These bitrates only define the symbol time and not the effective throughput. However, the higher the PHY bitrate, the

higher the throughput. Double bitrate means nearly double throughput. It is not exactly double because of the constant IFS

(IFS = 150 µs for both 1 Mbps and 2 Mbps).

The following table summarizes the time it takes to send out a packet with different PDU sizes and PHY bitrates. The times

include transmitting + IFS + receiving + IFS.

1 Mbps 2 Mbps

27 byte 708 µs ---

38 byte 796 µs 548 µs

128 byte 1516 µs 908 µs

160 byte 1772 µs 1036 µs

251 byte 2500 µs 1400 µs

For example, if you use 2 Mbps PHY with 251-byte PDU, the theoretical throughput is:

(251 – 4 – 3) byte / (1060 + 150 + 40 + 150) µs = 174,285 bytes/sec = 1,394,280 bps

For more details see the blog Exploring Bluetooth 5 - How Fast Can It Be.

Connection Interval

If acknowledgment is not required, any number of packets can be sent within one connection interval. As a result, the

connection should not directly influence the throughput. Data packets, however, must be aligned so that the first packet

starts at the start of the connection interval. For example, for a 7.5 ms connection interval, 251-byte PDU, 2 Mbps PHY, you

can send 4 packets in one connection interval. The 5th packet does not fit and has to wait for the next connection interval

to start.

https://blog.bluetooth.com/exploring-bluetooth-5-how-fast-can-it-be

Throughput

182/1306

This means that the effective throughput with these parameters is as follows:

4 * (251 – 4 – 3) byte / 7500 µs = 130,133 bytes/sec = 1,041,066 bps

To avoid the overhead introduced by skipped packages, adjust the connection interval so that the remaining time at the end

of the connection interval is minimal. Longer connection intervals usually mean smaller overhead because of less frequent

re-adjustment.

However, if the connection interval is too long the following applies:

 Too many packets may be queued while waiting for next connection interval and you can run out of memory.

 You may have to wait much more to resynchronize if the connection breaks because of consecutive CRC errors. Long

connection interval is hence not recommended in noisy environments where CRC errors are expected.

Maximum Achievable Throughput without ACK

For unacknowledged operation, the maximum throughput can be achieved with the following parameters:

Connection interval: 12.5 ms

PDU size: 251 bytes

Attribute protocol operation used: Write without response / Notification

PHY bitrate: 2 Mbps

In this use case, 8 packets fit into one connection interval (8*1400 us = 11200 µs) and the theoretical throughput is:

Throughput

183/1306

8 * (251 – 4 – 3) byte / 12,500 µs = 156,160 bytes/sec = 1,249,280 bps

Considerations for Smart Phones

The connection parameters and the MTU size depend on both devices participating in the connection. When connecting to

a smart phone, the devices start to negotiate the connection interval and the MTU size. Depending on the smart phone and

OS version, the minimum connection interval can be much greater than 7.5 ms and the maximum MTU size can be less than

the MTU size supported by the Blue Gecko. This has a critical effect on throughput. The negotiated parameters are signaled

by the stack events sl_bt_evt_connection_parameters and sl_bt_evt_gatt_mtu_exchanged, so you can check what

parameters are supported by your phone.

Reference: Exploring Bluetooth 5 - How Fast Can It Be

https://blog.bluetooth.com/exploring-bluetooth-5-how-fast-can-it-be

Adaptive Frequency Hopping

184/1306

Adaptive Frequency Hopping

Adaptive Frequency Hopping

Introduction

Bluetooth functions in the 2.4 GHz frequency range. Because this is an ISM band, it's highly likely to have interference with

other devices working in the same frequency band. The Bluetooth standard makes it possible for the communicating

devices to agree on which channels to use from the 37 available data channels during communication. If the central device

detects high interference on a channel, it can initiate a channel map update. Adaptive frequency hopping (AFH) means that

the communicating devices are continuously monitoring their environment for interference and are continuously changing

the channel map to address the interference.

Note: AFH is a requirement for using TX power over +10 dBm. See Bluetooth TX power settings.

Non-Adaptive Channel Blocking

Channel map update procedure is part of the Bluetooth 4.0 specification. This procedure makes it possible for the peer

devices to agree on which channels they will use from the available 37 data channels during communication. Channel map

update procedure can be initiated by the central device only.

This procedure is supported in all SDK versions because it's part of the Bluetooth 4.0 standard. For example, if a

smartphone connects to an EFR device, the smartphone, which is a central, can disable some channels and the EFR will

accept it. This feature is very often used to disable the Bluetooth channels that overlap with the Wi-Fi channels used by the

smartphone.

However, when the EFR is the central, the EFR will enable all channels by default, without any restriction, and they can be

disabled only manually. See section Manual Channel Blocking. Adaptive Frequency Hopping was introduced to overcome

this issue and to block low-quality channels dynamically.

Interference Detection

Starting with Bluetooth SDK v3.x, Adaptive Frequency Hopping feature can be enabled by installing the AFH (Adaptive

Frequency Hopping) software component to your project. When this component is installed, the sl_bt_init_afh() function is

automatically called inside sl_bt_init() by the code generator. This process initializes and and enables adaptive frequency

hopping without needing to call sl_bt_init_afh() in the application directly.

If AFH is enabled and at least one advertiser is running with extended advertisements or at least one connection is active,

the Bluetooth stack runs a periodic background task that sweeps all channels once every afh_scan_interval and measures

received power on each channel. If the measured power is beyond limit (-71 dBm) on a channel, the channel is blocked for

at least 8 afh_scan_interval s. (If interference is still found on the channel, the blocking is prolonged, i.e., unblocking of a

channel needs 8 consecutive measurements with no interference detected.)

After each sweep, a new channel map is created based on the interference measurements. If the channel map has

changed, the central device sends the new channel map to all slaves, using the channel map update process. Slaves cannot

initiate channel map update.

ah_scan_interval is set to 1 second by default and the sweep of the 40 channels takes around 10 ms, which means an

additive energy consumption of ca. 240 uW.

Adaptive Frequency Hopping

185/1306

Note: The AFH sweep has the highest priority among all Bluetooth operations. Therefore, if there are multiple

operations within 10 ms, sweeping cannot be fitted between them and they may be blocked.

Changing Scan Interval

afh_scan_interval is set to one second by default, that is, one channel sweep is made every second. The afh_scan_interval

can be changed by calling the following function:

#define AFH_SCAN_INTERVAL_CONFIG_KEY 7

uint8_t afh_scan_interval = 10; // set afh scan interval to 100ms

sl_bt_system_linklayer_configure(AFH_SCAN_INTERVAL_CONFIG_KEY,sizeof(uint8_t),&afh_scan_interval);

The unit of afh_scan_interval is 10 ms.

Channel sweep is always done after a radio operation, e.g., after an advertisement is sent. Setting the scan interval e.g., to

100 ms does not mean that the sweep will be done every 100 ms but that after every radio operation the Bluetooth stack

checks if at least 100 ms has passed since the last sweep. Let's say that afh_scan_interval is set to 100 ms and advertising is

done with 80 ms advertisement interval. In this case, the scan is done after every second advertisement, i.e., once every

160 ms.

Manual Channel Blocking

Channels can also be blocked manually using the following command: sl_bt_gap_set_data_channel_classification() . For details,

see the stack API documentation. If a channel is blocked manually, that channel will be never used until it is unblocked

manually. In other words, the channels blocked by interference detection and channels blocked manually will be merged into

a common channel map.

Transmit Power

You are allowed to use TX power above +10 dBm when AFH is enabled and at least 15 channels are available. See Bluetooth

TX power settings. However, note that high transmit power is only allowed once for each channel after a measurement on

https://docs.silabs.com/bluetooth/6.1.0/bluetooth-system-performance/tx-power

Adaptive Frequency Hopping

186/1306

that channel occurs. In other words, if you use the same channel multiple times for transmitting within afh_scan_interval , the

second and consecutive transmission will use +10 dBm. If you have a short connection interval and long afh_scan_interval,

this can easily happen. See the following figure:

Peripheral Adaptivity

To be ETSI compliant, peripheral devices need to be adaptive as well. The central device might be non-adaptive, so the

peripheral cannot blindly follow the transmissions of the central. ETSI allows using control transfer on blocked channels with

+10 dBm or lower, but not data transfer. For ETSI compliance reasons, if the peripheral detects that a blocked channel is

used, it will only send a single empty/control packet on that channel to prevent supervision timeout.

Frequency Hopping Algorithm

Bluetooth Low Energy has two channel selection algorithms. Algorithm #1 is the original and mandatory. Algorithm #2 was

introduced with Bluetooth 5.0. The hopping algorithm used is chosen by the central at connection time. Algorithm #2 has

more randomness so it is always used unless connecting to a legacy device.

Algorithm #1: Channels are selected sequentially using fixed hop interval passed while establishing connection.

Algorithm #2: The channel to be used is calculated from the current event counter and access address. The selected channel

appears to be semi-random.

If a channel to be used is blocked on the channel map, the channel is remapped to an available channel using a remapping

algorithm.

Other Limitations

When AFH is applied, the length of the connection events (not to be confused with the connection interval) is limited to 40

ms. In other words, in every connection interval you can send packets only for 40 ms. This is usually not a problem because

it takes around 2.5 ms to transmit a packet with 251B payload. However, to achieve maximum throughput with

unacknowledged data transmission (see Throughput with Bluetooth Low Energy, you have to take into account this

limitation. For example, if you have 100 ms connection interval, you can send packets only 40% of the time. To achieve

maximum throughput, decrease your connection interval to 40 ms or lower.

Optimizing Current Consumption

187/1306

Optimizing Current Consumption

Optimizing Current Consumption in Bluetooth Low
Energy Devices

Introduction

Current consumption or, more generally, energy usage is a major concern in battery-powered products. Optimizing current

consumption extends battery life and, as a result, makes better products. This document discusses how to optimize the

current consumption.

Description

The two main factors affecting current consumption in a Bluetooth Low Energy (BLE) device are the amount of power

transmitted and the total amount of time that the radio is active (TX and RX).

The amount of transmit power required depends on the range required between central and peripheral. Range is greatly

affected by the environment such as obstacles and the amount of 2.4 GHz traffic present. The first tip is not to transmit

more power than required.

The amount of time that a radio is active is determined by how often the radio must transmit or receive and the length of

time required to transmit or receive. The first, and probably most obvious, tip is to keep characteristics small. Do not use a

32 bit integer if 8 bits will do.

In general, the power consumption of a BLE device can be adjusted by fine-tuning parameters and configurations related to

advertising and connection states.

Advertising

Advertising Interval

Advertising interval is adjustable, from 20 ms to 10.24 s (non-connectable: minimum is 100 ms). Increasing advertising

interval can significantly decrease the average current consumption of a BLE device. For instance, increasing advertising

interval from 100 ms to 1 s drops the average current consumption by 93%.

Optimizing Current Consumption

188/1306

Advertising TX Power Level

The transmit power is adjustable, from -26 dBm to +8 dBm (default is 8 dBm). 0 dBm is enough to cover about 10 to 15 m

range, based on tests made with iBeacon example and Android phone. The transmission power can easily be changed in

applications using the API call to sl_bt_system_set_tx_power() .

Changing the TX power from 8 dBm to 0 dBm can reduce the current consumption by more than 120% using 100 ms

advertising interval, and 105% using 1 s advertising interval.

Furthermore, if the LE Power Control feature is enabled (both on the central and the peripheral), the Bluetooth stack can

automatically lower the TX power on connections, when the two devices are close to each other.

Advertising Mode �Connectable / Non-Connectable)

Non-connectable mode supports only the TX operation, whereas connectable mode of advertising supports both TX and RX

operations.

Optimizing Current Consumption

189/1306

Deep Sleep Modes

If deep sleep is enabled (as in most of the examples), the device can enter EM2 mode automatically between advertising

events. Deep sleep is only disabled if a peripheral of software component (e.g., UART) disables it. For example, consider

switching off debug logs via UART in your final code because UART may disable deep sleep.

Optimizing Current Consumption

190/1306

In some cases, going to EM3 and EM4 between advertising may be possible to save energy. This, however, only applies to

non-connectable advertisements, and should be solved by the application.

Connection

Connection Interval

As with advertising, the connection interval has a direct impact on the current consumption. The connection interval can be

adjusted between 7.5 ms and 4 s and is an easy way to trade-off between latency/throughput and average current

consumption.

The following graph shows the average current required to keep the connection up, with different connection intervals (at 0

dBm TX power). The RF duty cycle is calculated based on the 1.5 ms activity in each interval.

Optimizing Current Consumption

191/1306

Peripheral Latency

Peripheral latency ensures that the peripheral device can skip N connection intervals if it does not have anything to

transmit. Note, however, that the central device still needs to poll the peripheral at every connection interval. Peripheral

latency can be set using sl_bt_connection_set_parameters() API.

With a connection interval of 75 ms, in the above graphs, changing the peripheral latency value to 5 can drop down the

average current consumption from 230 µA to 140 µA (40% saving).

Optimizing Current Consumption

192/1306

Connection TX Power Level

The same TX power level setting (sl_bt_system_set_tx_power()) applies to advertisements and connections.

PHY �1M / 2M Coded PHY�

Bluetooth 5 introduced 2M PHY for faster throughput and higher energy efficiency. This can lower the average current by

reducing the air time of the radio and allowing the MCU to sleep more. The following graph compares the current

consumption for a short packet transmission over 1M (left) and 2M (right) PHYs connections with a connection interval of 25

ms, in both cases. Going from 1M to 2M PHY, the energy consumption is reduced by 15%. For larger data transmissions the

gain can be even higher.

Setting up

This simple example demonstrates the impact of advertising and connection parameters on the power consumption of a BLE

device. Follow the instructions below and verify the result by using the Energy Profile perspective in SimplicityStudio.

Optimizing Current Consumption

193/1306

 Create a new SOC - Empty project in SimplicityStudio.

 Open app.c file and replace the system_boot event handler with the following code.

case sl_bt_evt_system_boot_id:

// Set TX power

 sc = sl_bt_system_set_tx_power(0, 80, &pwr_min, &pwr_max);

app_assert_status(sc);

// Extract unique ID from BT Address.

 sc = sl_bt_system_get_identity_address(&address, &address_type);

app_assert_status(sc);

// Create an advertising set.

 sc = sl_bt_advertiser_create_set(&advertising_set_handle);

app_assert_status(sc);

// Set advertising interval to 100ms.

 sc = sl_bt_advertiser_set_timing(

 advertising_set_handle,

160, // min. adv. interval (milliseconds * 1.6�

160, // max. adv. interval (milliseconds * 1.6�

0, // adv. duration

0); // max. num. adv. events

app_assert_status(sc);

// Start general advertising and enable connections.

 sc = sl_bt_advertiser_start(

 advertising_set_handle,

 advertiser_general_discoverable,

 advertiser_connectable_scannable);

app_assert_status(sc);

break;

 Similarly, replace the le_connection_opened event handler with code below.

case sl_bt_evt_connection_opened_id:

app_log_info("connection opened\r\n");

/* go for a longer connection interval

 * latency = 0, timeout = 32000 ms

 *

 * timeout > �1+latency)*2*max_interval ms

 * therefore, max latency <= [timeout/�2*max_interval)] - 1

 *

 * should be possible to use latency = 15

 *

 * */

//sl_bt_connection_set_parameters(evt→data.evt_connection_opened.connection, 700,760,1,600,0,0xffff);

break;

 Create le_connection_parameters event handler by adding following code under the comment /* Add additional event handlers as

your application requires */

case sl_bt_evt_connection_parameters_id : {

 uint16_t interval = evt->data.evt_connection_parameters.interval, latency = evt->data.evt_connection_parameters.latency, timeout = evt-

>data.evt_connection_parameters.timeout;

app_log_info("connection interval %d, latency %d, timeout %d ms\n", interval, latency, timeout * 10);

}

break;

 The Bluetooth specification allows the advertising interval to be anywhere between 20 ms and 10.24 s. In this configuration,

the application uses default settings for the advertising interval (100 ms), and +8 dBm on a BGM121. This configuration

results in an average current of 419 µA.

Optimizing Current Consumption

194/1306

 Set the transmit power to 0 dBm by changing sl_bt_system_set_tx_power(0, 80, &pwr_min, &pwr_max); to

sl_bt_system_set_tx_power(0, 0, &pwr_min, &pwr_max);; in app.c . Rebuild and download again to see the current consumption.

By reducing the transmit power to 0 dBm while keeping the same 100 ms advertising interval, the average current is reduced

to 190 µA.

 Increase the advertising interval to 1000 ms by changing sl_bt_advertiser_set_timing(advertising_set_handle, 160, 160, 0, 0); ; to

sl_bt_advertiser_set_timing(advertising_set_handle, 1600, 1600, 0, 0); in app.c . Then, rebuild and download once more to see

Optimizing Current Consumption

195/1306

By increasing the advertising interval to 1000 ms, the average current is reduced to 21.5 µA.

 Connect to the device using the Silicon Labs EFR Connect app and check the power consumption. The console will display a

message indicating the actual connection parameters being used.

The above figure shows the power consumption of the device when connected with an iOS phone. Using an Android device

will produce slightly lower results since Android’s default connection interval is longer than that used by the iOS.

 Another factor affecting average current consumption is the connection interval. A short connection interval results in higher

throughput but also incurs an energy cost while a longer connection interval limits data throughput but also provides energy

Optimizing Current Consumption

196/1306

savings. The default connection intervals used by iOS and Android are currently 30 ms and 50 ms respectively. As shown

below, the average current at 0 dBm and a 30 ms connection interval is approximately 228 µA.

Change the connection interval to between 875 - 950 ms by uncommenting the line //sl_bt_connection_set_parameters(evt-

>data.evt_connection_opened.connection, 700,760,1,600,0,0xffff); . Rebuild and download and connect again with the mobile app.

The console should show the new connection parameters in use.

By using a longer connection interval, 950 ms, the average current is to approximately 25 µA.

 Change the peripheral latency to 5 by changing the code, as follows:

sl_bt_connection_set_parameters(evt->data.evt_le_connection_opened.connection, 700,760,1,600,0,0xffff);

to

sl_bt_connection_set_parameters(evt->data.evt_le_connection_opened.connection, 700,760,5,3200,0,0xffff);;

Optimizing Current Consumption

197/1306

Rebuild and download the application again and connect with the mobile app.

By increasing the peripheral latency, i.e., the number of intervals the peripheral can skip when it has no data to send, to 5

the average current drops below 10 µA.

Select the connection parameters carefully so that several retries are possible to ensure stable connections. The

supervision timeout must be greater than (1+latency)*2*max_connection_interval . As a result, if the maximum connection

interval is chosen to be 950 ms and the timeout is set to the maximum, 32 seconds then the maximum latency allowed is 15.

However, this will result in an unstable connection, so the latency in this example is set to 5 to allow for 2 retries.

Conclusion

There is always a trade off between current consumption and data throughput / latency. The application needs for battery

life and throughput must be considered when choosing a connection interval. A longer connection interval will help improve

battery life but will reduce throughput and may result in an unreliable or unstable connection unless the connection

parameters are chosen carefully.

TX Power Limitations for Regulatory Compliance

198/1306

TX Power Limitations for Regulatory Compliance

TX Power Limitations for Regulatory Compliance
�ETSI, FCC�

Introduction

Local regulatory bodies put limitations on how much power a radio equipment is allowed to radiate. This document

discusses the rules applied by two main regulatory bodies (ETSI and FCC) and presents how Silicon Labs' Bluetooth stack

limits TX power to comply with these regulations.

Note that TX power is also limited by the radio chip. Different power limits apply for different parts. Check the

data sheet of your device for more information. The power limits discussed here are the absolute maximums.

Without Adaptive Frequency-Hopping �AFH�

ETSI EN 300 328

It is generally true that ETSI EN 300 328 allows 20 dBm RF output power when equipment is using wide band modulations

other than FHSS (Frequency Hopping Spread Spectrum). In these cases, PSD (Power Spectral Density) also must be tested,

which allows 10 dBm / 1 MHz. These restrictions apply to those BLE devices where adaptive frequency hopping is not

enabled. For 125 kbps, 500 kbps and 1 Mbps PHY (~1 MHz bandwidth), which means that the maximum radiated power

allowed is 10 dBm. For 2 Mbps PHY, it is a few tenths dB more.

FCC 15.247

Based on FCC part 15.247 for wideband digital modulation, the output power can go up to 30 dBm and the power spectral

density must be below 8 dBm / 3 KHz. For 500 kbps (coded), 1 Mbps and 2 Mbps PHY, 30 dBm limitation is applied. For 125

Kbps coded PHY, the device doesn’t pass the 8 dBm/ 3 KHz PSD limit with full power. As a result, the maximum output

power allowed is 14 dBm.

Summary

Because Bluetooth stack follows strict regulations, the maximum output power is 10 dBm in those cases when AFH is not

enabled (or AFH is enabled but no more than 15 channels are available). This stack limitation (10 dBm EIRP) is valid for all

PHYs and devices.

Power Limits Without AFH EIRP [dBm] EIRP [dBm]

125 kbps coded PHY 500 kbps, 1 Mbps and 2 Mbps

FCC 14 30

ETSI 10 10

Supported by stack 10 10

With Adaptive Frequency-Hopping �AFH�

ETSI EN 300 328

When adaptive frequency hopping is allowed (and at least 15 channels is available), the only limitation is maximum 20 dBm

EIRP. There are no restrictions for PSD.

TX Power Limitations for Regulatory Compliance

199/1306

FCC 15.247

If AFH is used, the maximum output power, which is allowed by FCC, can be 30 dBm and there are no PSD limitations. FCC

contains, however, a restricted band from 2483.5 MHz to 2500 MHz. As a result, in several cases power limitation is needed

on the edge channels.

Summary

Considering regulations of FCC and ETSI, when AFH is applied and at least 15 channels are available, the maximum

conducted output power, which is allowed by BLE stack, is 20 dBm on all channels except of on channel 37 and 38 (physical

channels not logical channels). The output power is limited to 18 dBm on channel 37 and 15.3 dBm on channel 38 in the

case of all PHYs. There isn’t any limitation on channel 39 because the upper channel is only used for advertisements, so

with the low duty cycle correction advertisements can be sent at full power.

Power Limits With AFH EIRP [dBm] EIRP [dBm] EIRP [dBm]

channel 37 channel 38 all other channels

FCC 18 15.3 30

ETSI 20 20 20

Supported by stack 18 15.3 20

Additional Restrictions

On Series 1 devices (EFR32xG1x), the TX power is always limited to 14 dBm when Coded PHY is used.

Overview

200/1306

Overview

Bluetooth LE Developers Guide
The Developer's Guide content is organized in the following groups:

About the Stack: Describes the structure and features of the Silicon Labs Bluetooth stack.

Getting Started with Application Development: Provides step-by-step instructions for configuring, building, and flashing a

Bluetooth application, describes example applications that are provided as starting points, and lists applicable development

tools.

Developing and Debugging: Describes development resources as well as detailed information on a variety of topics.

Code Examples: Provides links to libraries of code examples.Co-Processors (NCP/RCP): Discusses the two co-processor

models and how they are used.

Bootloading: Includes information on using the Gecko Bootloader with bluetooth applications.

Performance: Provides performance testing and measurement tools and techniques as well as results.

Multiprotocol: Offers background on implementing multiprotocol applications and information on different multiprotocol

models.

Non-Volatile Data Storage: Provides background on managing device memory.

Security: Describes Silicon Labs security resources and how to manage bluetooth security.

Operating Systems: Discusses using Bluetooth LE with different operating systems.

Coexistence: Contains background on coexistence issues and strategies for improving performance in the presence of other

protocol traffic.

Location Services: Links to a set of pages describing the Bluetooth Location Services functionality and its API reference.

Bluetooth LE Electronic Shelf Label: Introduces the Bluetooth Electronic Shelf Label (ESL) example that incorporates the

essential BLE ESL features, describes how to configure an ESL network, and explains how to extend the example with a

second display, additional images, and so on.

Implementation Tips: Provides advice in a number of areas to help with implementing a Bluetooth LE application.

https://docs.silabs.com/bluetooth/6.1.0/bluetooth-stack-overview
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-getting-started-app-dev
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-developing-debugging-overview
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-examples-overview
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-coprocessors-overview
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-bootloading-overview
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-performance-overview
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-multiprotocol-overview
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-memory-use-overview
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-security-overview
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-operating-systems-overview
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-coexistence-overview
https://docs.silabs.com/rtl-lib/latest/
https://www.silabs.com/documents/public/application-notes/an1419-ble-electronic-shelf-label.pdf
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-implementation-tips

About the Stack

201/1306

About the Stack

Bluetooth Stack and SDK
This page provides an introduction to the Silicon Labs Bluetooth Low Energy (LE) stack and SDK.

About the Bluetooth Stack

The v3.x Silicon Labs Bluetooth stack is an advanced Bluetooth 5-compliant protocol stack implementing the Bluetooth low

energy standard. It supports multiple connections, concurrent central, peripheral, broadcaster, and observer roles. The v3.x

Silicon Labs Bluetooth stack is meant for Silicon Labs EFR32 SoCs and modules.

The Silicon Labs Bluetooth stack provides multiple APIs for the developer to access the Bluetooth functionality. Three

modes are supported:

 Standalone mode, where both the Bluetooth stack and the application run in an EFR32SoC or module. The application can be

developed with C programming language.

 Network Co-Processor (NCP) mode, where the Bluetooth stack runs in an EFR32 and the application runs on a separate host

MCU. For this use case, the Bluetooth stack can be configured into NCP mode where the API is exposed over a serial inter-

face such as UART.

About the Stack

202/1306

 Radio Co-Processor (RCP) mode, where only the Link Layer of the Bluetooth stack runs on the EFR32, and the Host Layer of

the stack, as well as the application, runs on a separate host MCU or PC. In this use case, the Host Layer is developed by a

third party, since Silicon Labs’ Bluetooth stack is only built for EFR32 SoCs / modules. The Link Layer and the host layer

communicate via HCI (Host-Controller Interface), which is a standard interface between the two layers. The HCI can be

accessed via UART following the Bluetooth SIG's UART (H4) transport protocol or the Silicon Labs’ proprietary CPC (Co-

Processor Communication) protocol.

Bluetooth Stack Features

The features of the Silicon Labs Bluetooth stack are listed in the following tables.

Series 1

About the Stack

203/1306

Feature EFR32[B|M]G1 EFR32[B|M]G12 EFR32[B|M]G13

Bluetooth version Bluetooth 5.3

Concurrent central, peripheral,

broadcaster and observer modes

✓ ✓ ✓

Simultaneous connections ✓ (up to 8) ✓ (up to 32) ✓ (up to 8)

LE secure connections ✓ ✓ ✓

LE Privacy 1.2 ✓ ✓ ✓

LE packet length extensions ✓ ✓ ✓

LE dual topology ✓ ✓ ✓

Link Layer Device Filtering ✓ ✓ ✓

LE Power Control ✓ ✓ ✓

Bluetooth 5 GATT caching ✓ ✓ ✓

Bluetooth 5 2M PHY x ✓ ✓

Bluetooth 5 LE Long Range x x ✓

Bluetooth 5 advertisement sets and

scan event reporting

✓ ✓ ✓

Bluetooth 5 extended advertisements. x ✓ (up to 1650B) ✓ (up to 1650B)

Bluetooth 5 periodic advertisements x ✓ (up to 1650B) ✓ (up to 1650B)

Bluetooth 5 periodic advertising

synchronization

x ✓ ✓

Directed advertising ✓ ✓ ✓

Adaptive Frequency Hopping ✓ ✓ ✓

L2CAP Connection Oriented Channels ✓ ✓ ✓

CTE transmitter x x x

CTE receiver x x x

Maximum throughput 700 kbps over

1M PHY

700 kbps over 1M PHY, 1300

kbps over 2M PHY

700 kbps over 1M PHY, 1300

kbps over 2M PHY

Encryption AES-128

Pairing modes Just works, numeric comparison, passkey entry, Out-Of-Band

Number of simultaneous bondings Up to 13 with PS Store, up to 32 with NVM3

Link Layer packet size Up to 251 B

ATT protocol packet size Up to 250 B

Supported Bluetooth profiles and

services

All GATT based profiles and services are supported

Apple HomeKit x Before BLE SDK 6.0.0

Host (NCP/RCP) interfaces 4-wire UART with RTS/CTS control or 2-wire UART without RTS/CTS, GPIOs

for sleep and wake-up management

Wi-Fi Coexistence Using Packet Trace Arbitration (PTA)

Non-volatile memory NVM3 or Persistent Store (PS)**

** Example applications in the SDK that are generated for these platforms will use PS by default.

Series 2

About the Stack

204/1306

Feature EFR32[B|M]G21* EFR32[B|M]G22 EFR32[B|M]G24 EFR32[B|M]G27

Bluetooth version Bluetooth 5.3 Bluetooth 5.4

Concurrent central, peripheral,

broadcaster and observer modes

✓ ✓ ✓ ✓

Simultaneous connections ✓ (up to 32) ✓ (up to 8) ✓ (up to 32) ✓ (up to 32)

LE secure connections ✓ ✓ ✓ ✓

LE Privacy 1.2 ✓ ✓ ✓ ✓

LE packet length extensions ✓ ✓ ✓ ✓

LE dual topology ✓ ✓ ✓ ✓

Link Layer Device Filtering ✓ ✓ ✓ ✓

LE Power Control ✓ ✓ ✓ ✓

Bluetooth 5 GATT caching ✓ ✓ ✓ ✓

Bluetooth 5 2M PHY ✓ ✓ ✓ ✓

Bluetooth 5 LE Long Range ✓ ✓ ✓ ✓

Bluetooth 5 advertisement sets and scan

event reporting

✓ ✓ ✓ ✓

Bluetooth 5 extended advertisements. ✓ (up to 1650B)

Bluetooth 5 periodic advertisements ✓ (up to 1650B)

Bluetooth 5 periodic advertising

synchronization

✓ ✓ ✓ ✓

Directed advertising ✓ ✓ ✓ ✓

Adaptive Frequency Hopping ✓ ✓ ✓ ✓

L2CAP Connection Oriented Channels ✓ ✓ ✓ ✓

CTE transmitter x ✓ ✓ ✓

CTE receiver x selected part

numbers

selected part

numbers

x

Maximum throughput 700 kbps over 1M PHY, 1300 kbps over 2M PHY

Encryption AES-128

Pairing modes Just works, numeric comparison, passkey entry, Out-Of-Band

Number of simultaneous bondings Up to 32

Link Layer packet size Up to 251 B

ATT protocol packet size Up to 250 B

Supported Bluetooth profiles and

services

All GATT based profiles and services are supported

Apple HomeKit Before BLE SDK 6.0.0 x

Host (NCP/RCP) interfaces 4-wire UART with RTS/CTS control or 2-wire UART without RTS/CTS, GPIOs

for sleep and wake-up management

Wi-Fi Coexistence Using Packet Trace Arbitration (PTA)

Non-volatile memory NVM3

* EFR32MR21 has the same feature set as xG21, but works only in the RCP mode. The SoC and NCP modes are not

supported.

Bluetooth Qualification

All products using Bluetooth technology must go through the Bluetooth SIG's Qualification Process, even if the product does

not have the Bluetooth logo or Bluetooth is not mentioned in the packaging and the documentation. In practice this means

that, before you can sell a Bluetooth-enabled product to the market, the product must be qualified as an End Product

About the Stack

205/1306

through the Bluetooth SIG. The qualification listing has a Declaration Fee . There are online resources to learn more about

the Bluetooth Qualification Process as well as tutorials on the Launch Studio, which is the online tool used to complete the

Bluetooth Qualification Process. If you need assistance to qualify your device consider reaching out to your nearest

Bluetooth Qualification Consultant .

When qualifying your end-product based on the Silicon Labs Bluetooth stack, you will integrate the pre-qualified

components listed in the table below, depending on which SDK version was used to build your application.

Bluetooth SDK version Component QDID

V3.2.x and above Link Layer (Bluetooth 5.3) Launch Studio Listing Details: 178212

“ Host stack (Bluetooth 5.3) Launch Studio Listing Details: 175341

Note: According to Bluetooth SIG Qualification Program Reference Document (PRD), the Assessment Date of the tested

Component must be less than three years old at the time it is being imported into a Launch Studio project for a new End

Product Listing (EPLs). After the expiration of a Component QDID (Qualified Design ID), a newer SDK version than the one

used for the outdated QDID should be used in order to qualify your product. There can be also newer QDIDs than the ones

listed in the table above if there are newer Component versions. You can browse our valid Qualified Components and their

Assessment Date by inserting Silicon Laboratories in the search bar of Launch Studio. Contact the technical support in case

there is a need to use an older SDK version.

The above software-based pre-qualified components are two out of the three components to integrate when proceeding

with the "Qualification Process with Required Testing". Despite the “Required Testing", customers do not need to do any

additional testing, given that the test reports are embedded in the pre-qualified components for the SIG to review.

In addition to these two software components, you must also have integrated a qualified RF-PHY component in your end-

product listing. If you are designing with one of the Silicon Labs Bluetooth modules, then refer to the module datasheet for

the appropriate component QDID to use. If you are designing with an SoC then you may need to obtain your own RF-PHY

qualification with the Bluetooth SIG, depending on your hardware design. In the latter case, consult your nearest Bluetooth

Qualification Consultant , or Silicon Labs through the support portal, to understand if an existing Silicon Labs RF-PHY pre-

qualification could be used.

Silicon Labs does not provide prequalified profiles. Customers must provide these with their end applications that implement

the functionality as per the SIG profile specification.

The Bluetooth Stack APIs

This section briefly describes the different software APIs available for the developer when developing a Bluetooth

application either in SoC or NCP mode. In RCP mode the standard HCI is used, which is defined in the Bluetooth Core

Specification and therefore is not discussed here.

The BGAPI Bluetooth API

The BGAPI is the Bluetooth API provided by the Silicon Labs Bluetooth stack. It provides access to all the Bluetooth

functionality implemented by the Bluetooth stack, such as: the Generic Access Profile (GAP), connection manager, the

security manager (SM), and GATT client and server.

In addition to the Bluetooth APIs, the BGAPI also provides access to a few other functions like the Direct Test Mode (DTM)

API for RF testing purposes, the NVM (Non-Volatile Memory) API for reading and writing settings to and from the devices

flash memory, the DFU (Device Firmware Update) API for field firmware updates, and the System API for various system

level functions.

CMSIS and emlib

The Cortex Microcontroller Software Interface Standard (CMSIS) is a common coding standard for all ARM Cortex devices.

The CMSIS library provided by Silicon Labs contains header files, defines (for peripherals, registers and bitfields), and

startup files for all devices. In addition, CMSIS includes functions that are common to all Cortex devices, like interrupt

handling, intrinsic functions, etc. Although it is possible to write to registers using hard-coded address and data values, it is

recommended to use the defines to ensure portability and readability of the code.

To simplify programming Wireless Geckos, Silicon Labs developed and maintains a complete C function library called emlib

that provides efficient, clear, and robust access to and control of all peripherals and core functions in the device. This library

https://www.bluetooth.com/develop-with-bluetooth/qualification-listing/qualification-listing-fees/
https://www.bluetooth.com/develop-with-bluetooth/qualification-listing/
https://www.bluetooth.com/develop-with-bluetooth/build/test-tools/launch-studio/
https://www.bluetooth.com/develop-with-bluetooth/qualification-listing/qualification-consultants/
https://launchstudio.bluetooth.com/ListingDetails/141145
https://launchstudio.bluetooth.com/ListingDetails/137791
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=40972
https://launchstudio.bluetooth.com/Listings/Search
https://www.bluetooth.com/develop-with-bluetooth/qualification-listing/qualification-process-with-required-testing/
https://www.bluetooth.com/develop-with-bluetooth/qualification-listing/qualification-consultants/

About the Stack

206/1306

resides within the em_xxx.c (for example, em_dac.c) and em_xxx.h files in the SDK.

The emlib documentation is available on https://docs.silabs.com.

The BGAPI Serial Protocol and BGLIB Host API

When configured in NCP (network co-processor) mode, the Bluetooth stack also implements the BGAPI serial protocol. This

allows the Bluetooth stack to be controlled over a serial interface such as UART from a separate host like an EFM32

microcontroller. The BGAPI serial protocol provides exactly the same Bluetooth APIs over UART as the BGAPI API when used

in a standalone mode. Additionally, an extra command and an event are reserved for user messaging in case the interface

should be extended with custom commands.

The BGAPI serial protocol is a lightweight, binary protocol that carries the BGAPI commands from the host to the Bluetooth

stack and responses and events from the Bluetooth stack back to the host.

The Bluetooth SDK delivers a ready-made BGAPI serial protocol parser implementation, called BGLIB. It implements the

serial protocol parser and C language function and events for all the APIs provided by the Bluetooth stack. The host code

developed on top of BGLIB can be written to be identical to the code for the Wireless Gecko, which allows easy porting of

the application code from the Wireless Gecko to a separate host or vice versa.

A Python based BGAPI serial protocol parser is also available here: https://pypi.org/project/pybgapi/

The BGAPI serial protocol packet structure is described in the following table.

Byte Byte 0 Byte 1 Byte 2 Byte 3 Byte 4-255

Explanation Message type Minimum payload

length

Message

class

Message

ID

Payload

Values 0x20:

command

0x00 - 0xFF 0x00 - 0xFF 0x00 -

0xFF

Specific to command, response, or

event

“ 0x20:

response

0x00 - 0xFF 0x00 - 0xFF 0x00 -

0xFF

Specific to command, response, or

event

“ 0xA0: event 0x00 - 0xFF 0x00 - 0xFF 0x00 -

0xFF

Specific to command, response, or

event

GATT Configuration

Bluetooth applications usually need a GATT database. The structure of the GATT database can be defined in the Bluetooth

application. The Silicon Labs’ Bluetooth SDK provides two ways to define the GATT database:

https://docs.silabs.com/
https://pypi.org/project/pybgapi/

About the Stack

207/1306

A static GATT database can be defined in compile time with the appropriate tools provided by the Bluetooth SDK. In this case

the database structure is stored in the ROM, which means faster start-up time and lower memory usage.

A dynamic GATT database can be defined in runtime with the appropriate BGAPI commands. In this case the database

structure is stored in the RAM, which makes it more flexible. This is recommended in the NCP use case to avoid re-building

the target code that runs on the Wireless Gecko.

The Bluetooth Profile Toolkit GATT Builder: The Bluetooth Profile Toolkit is a simple XML-based API and description

language used to describe (static) GATT-based services and characteristics easily without the need to write them in code.

The XML files can be easily written by hand based on the information contained in UG118: Blue Gecko Bluetooth® Profile
Toolkit Developer Guide. Use the Profile Toolkit GATT Builder if you are developing outside of Simplicity Studio, and follow

the instructions of UG118: Blue Gecko Bluetooth® Profile Toolkit Developer Guide to convert your GATT database into C

code.

The GATT Configurator: Simplicity Studio includes the GATT Configurator, a tool that allows building the (static) GATT

database in a visual way, without hand editing the XML file. It also automatically converts the database structure into C

code upon saving. See the Simplicity Studio User's Guide section on the GATT Configurator for summary information, and

UG438: GATT Configurator User’s Guide for Bluetooth SDK v3.x for details. Open the GATT Configurator in Simplicity Studio

through the Project Configurator, Configuration Tools tab. Click Open and the GATT Configurator tool opens the file

gatt_configuration.btconf in a new tab.

gatt_configuration.btconf gives the trunk of the GATT database. It is located inside the config > btconf directory of your
project. This file can be edited using the GATT Configurator.

The contents of the additional xml files in the config > btconf folder will appear as Contributed Items in the GATT

Configurator UI. See for example the in_place_ota_dfu.xml file provided by the OTA DFU software component. If these files

are edited through GATT Configurator, they become a part of Custom BLE GATT and will be removed from the Contributed

Items. Also, the contributed items (services and its characteristics) will move from the xml file to gatt_configuration.btconf

file.

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-developing-with-project-configurator/bluetooth-gatt-configurator

About the Stack

208/1306

Upon saving gatt_configuration.btconf, the GATT database developed with the GATT Configurator is converted to a .c file

and an .h file and included in the application project as a pre-build step when the firmware is compiled. Then the GATT can

be accessed with the Bluetooth stack GATT APIs or by a remote Bluetooth device.

Building a Dynamic GATT database: The GATT database can also be built dynamically from the application using the GATT

database API class of the Bluetooth API if the Dynamic GATT Database software component is installed in your project, or if

this API class is explicitly initialized. For more information see the Bluetooth API reference manual at

https://docs.silabs.com/bluetooth/latest/ and the corresponding section of UG438: GATT Configurator User’s Guide for
Bluetooth SDK v3.x. In NCP mode it is also possible to take a static GATT database code on the host side and turn it into

dynamic API calls to transmit the database structure over UART. For more information see AN1259: Using the v3.x Silicon
Labs Bluetooth® Stack in Network Co-Processor Mode.

About the Bluetooth SDK

The Bluetooth SDK is a full software development kit that enables you to develop applications on top of the Bluetooth stack

using C programming language. The SDK also supports making standalone applications, where the Bluetooth stack and the

application both run in the Wireless Gecko, or the network co-processor (NCP) architecture, where the application runs on

an external host and the Bluetooth stack runs in the Wireless Gecko. SDK contents and folder structure are described in the

following sections.

Libraries

The following libraries are delivered with the Bluetooth SDK and must be included in C application projects.

https://docs.silabs.com/bluetooth/latest/

About the Stack

209/1306

Library Explanation Mandatory

libbluetooth.a Bluetooth stack library Yes

librail_efr32xg1_gcc_release.a RAIL library for GCC Yes for GCC projects on EFR32xG1 platform

librail_efr32xg12_gcc_release.a RAIL library for GCC Yes for GCC projects on EFR32xG12

platform

librail_efr32xg13_gcc_release.a RAIL library for GCC Yes for GCC projects on EFR32xG13

platform

librail_efr32xg14_gcc_release.a RAIL library for GCC Yes for GCC projects on EFR32xG14

platform

librail_efr32xg21_gcc_release.a RAIL library for GCC Yes for GCC projects on EFR32xG21

platform

librail_efr32xg22_gcc_release.a RAIL library for GCC Yes for GCC projects on EFR32xG22

platform

librail_efr32xg24_gcc_release.a RAIL library for GCC Yes for GCC projects on EFR32xG24

platform

librail_efr32xg27_gcc_release.a RAIL library for GCC Yes for GCC projects on EFR32xG27

platform

librail_efr32xg1_iar_release.a RAIL library for IAR Yes for IAR projects on EFR32xG1 platform

librail_efr32xg12_iar_release.a RAIL library for IAR Yes for IAR projects on EFR32xG12 platform

librail_efr32xg13_iar_release.a RAIL library for IAR Yes for IAR projects on EFR32xG13 platform

librail_efr32xg14_iar_release.a RAIL library for IAR Yes for IAR projects on EFR32xG14 platform

librail_efr32xg21_iar_release.a RAIL library for IAR Yes for IAR projects on EFR32xG21 platform

librail_efr32xg22_iar_release.a RAIL library for IAR Yes for IAR projects on EFR32xG22 platform

librail_efr32xg24_iar_release.a RAIL library for IAR Yes for IAR projects on EFR32xG24 platform

librail_efr32xg27_iar_release.a RAIL library for IAR Yes for IAR projects on EFR32xG27 platform

libpsstore.a PSStore library Yes, on series 1

binapploader.o Apploader for OTA updates No

libcoex.a Wi-Fi and Bluetooth

coexistence

No

libnvm3_CM33_gcc.a /

libnvm3_CM33_iar.a

- Yes, on series 2

Include Files

The following files are delivered with the Bluetooth SDK and must be included in C application projects.

Library Explanation When needed

bg_gattdb_def.h Bluetooth GATT database structure definition. Included automatically.

sl_bt_version.h Bluetooth stack version in plain text. The boot

event reports the same version values as this

file has.

For convenient access to Bluetooth SDK version

Information. Not mandatory for application

development.

sl_bt_ll_config.h Bluetooth Link Layer configuration data type

definitions. Included by sl_bt_stack_config.h.

Included automatically.

sl_bt_stack_config.h Bluetooth stack configuration data type

definitions. Included by sl_bluetooth_config.h.

Included automatically.

sl_bluetooth_config.h Bluetooth configuration. Included automatically if application is generated

with the Project Configurator.

About the Stack

210/1306

Library Explanation When needed

sl_bt_types.h Bluetooth API data type definitions. Included automatically.

sl_bt_stack_init.h Bluetooth feature and API initialization functions on SoC. Included automatically if application

is generated with the Project

Configurator.

sl_bt_api.h Bluetooth API declarations with comprehensive

documentation. This is the single file for Bluetooth API in

SoC or NCP mode.

Included automatically if application

is generated with the Project

Configurator.

sli_bt_api.h Bluetooth API library in plain source code for NCP host

applications.

Included automatically if application

is generated with the Project

Configurator.

sl_bt_ncp_host_api.c Bluetooth API library in plain source code for NCP host

applications.

Included automatically if application

is generated with the Project

Configurator.

sl_bt_ncp_host.h An adaptation layer between host application and

Bluetooth API serial protocol.

Included automatically if application

is generated with the Project

Configurator.

sl_bt_ncp_host.c An adaptation layer between host application and

Bluetooth API serial protocol.

Included automatically if application

is generated with the Project

Configurator.

sl_bt_rtos_adaptation.h An adaptation layer for running Bluetooth in Micrium OS

on SoC.

Included automatically if application

is generated with the Project

Configurator.

sl_bt_rtos_adaptation.c An adaptation layer for running Bluetooth in Micrium OS

on SoC.

Included automatically if application

is generated with the Project

Configurator.

Platform Components

The following components are delivered with the Bluetooth SDK. The platform components are under the platform folder.

Folder Explanation

bootloader Gecko Bootloader source code and project files.

CMSIS Silicon Laboratories CMSIS-CORE device headers.

common Silicon Labs status codes

Device EFR32BG and EFR32MG device files.

emdrv A set of function-specific high-performance drivers for EFR32 on-chip peripherals. Drivers are typically

DMA based and are using all available low-energy features. For most drivers, the API offers both

synchronous and asynchronous functions.

emlib A low-level peripheral support library that provides a unified API for all EFM32, EZR32 and EFR32 MCUs

and SoCs from Silicon Laboratories.

Halconfig Peripheral configuration

Hwconf_data Gather chip-specific hardware configuration

micrium_os Micrium OS

middleware Display driver for WSTK development kits

radio Silicon Labs RAIL (Radio Abstraction Interface Layer) library

service Sleeptimer driver and configuration file. Used by the Bluetooth LE stack.

Getting Started with Application Development

211/1306

Getting Started with Application Development

Application Development in Simplicity Studio

Starting Application Development

Developing a Bluetooth application consists of two main steps: defining the GATT database structure and defining the event

handlers for events such as connection_opened, connection_closed, and so on.

More Demos and Examples lists the various examples available in the SDK. The most common starting point for application

development is the SoC Empty example. This project contains a simple GATT database (including the Generic Access

service, Device Information service, and OTA service) and a while loop that handles some events raised by the stack. You

can extend both the GATT database and the event handlers of this example according to your needs.

Note: Beginning with Bluetooth SDK version 2.7.0.0, all devices must be loaded with the Gecko Bootloader as well as the

application. While you are getting started, the easiest way to do this is to load any of the precompiled demo images that

come with the bootloader configured as part of the image. When you flash your application it overwrites the demo

application, but the bootloader remains. Subsequently you may wish to build your own bootloader, as described in UG266:
Silicon Labs Gecko Bootloader User’s Guide for GSDK 3.2 and Lower or UG489: Silicon Labs Gecko Bootloader User’s Guide
for GSDK 4.0 and Higher.

New Project creation is done through three dialogs:

Target, SDK, and Toolchain

https://docs.silabs.com/bluetooth/6.1.0/bluetooth-getting-started-demos-examples

Getting Started with Application Development

212/1306

Examples

Getting Started with Application Development

213/1306

Configuration

Getting Started with Application Development

214/1306

An indicator at the top of the dialog shows you where you are.

You can start a project from different locations in the Launcher Perspective, as described in the Simplicity Studio 5 User's

Guide. While you are getting started, we suggest starting from the File menu, as that takes you through all three of the

above dialogs.

 Select New >> Silicon Labs Project Wizard.

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/

Getting Started with Application Development

215/1306

 Review your SDK and toolchain. If you wish to use IAR instead of GCC, be sure to change it here. Once you have created a

project it is difficult to change toolchains. Click NEXT.

 On the Example Project Selection dialog, filter on Bluetooth and select Bluetooth - SoC Empty. Click NEXT.

On the Project Configuration dialog, rename your project if you wish. Note that if you change any linked resource, it is

changed for any other project that references it. While you are getting started the default choice to include project files but

link to the SDK is best. Click FINISH. If the example has documentation, the project opens on a readme tab. Note that a

Simplicity IDE perspective control is now included in the upper right of the screen.

GATT Database

A visual GATT Configurator is available on the gatt_configuration.btconf tab when you create the project, to help you create

your own GATT database with a few clicks.

You can create your own database at this point, or return to it later either by double-clicking the gatt_configuration.btconf

file under your project in Project Explorer, or through the Project Configurator’s Advanced > GATT Configurator component.

For more information, see section The GATT Configurator.

A reference for each characteristic is generated and defined in gatt_db.h. You can use this reference in your code to read /

write the values of the characteristics in the local GATT database with sl_bt_gatt_server_read_attribute_value() /

sl_bt_gatt_server_write_attribute_value() commands.

You can also build the GATT database from the application using the GATT database API. In this case you need to install the

Dynamic GATT Database software component on the Project Configurator Software Components tab.

You will find the event handlers in the main loop in app.c. You can extend this list with further event handlers. The full list of

events – and stack commands – can be found in the Bluetooth Stack API Reference.

Component Configuration

http://docs.silabs.com/bluetooth/latest/bluetooth-stack-api/

Getting Started with Application Development

216/1306

Bluetooth SDK v3.x projects are based on a Gecko Platform component-based architecture. Software features and functions

can be installed and configured through Simplicity Studio’s Component Editor. When you install a component, the installation

process will:

 Copy the corresponding SDK files from the SDK folder into the project folder.

 Copy all the dependencies of the given component into the project folder.

 Add new include directories to the project settings.

 Copy the configurations files into the /config folder.

 Modify the corresponding auto-generated files to integrate the component into the application.

Additionally, “init” type software components will implement the initialization code for a given component, utilizing their

corresponding configuration file as input.

Some software components (like OTA DFU) will fully integrate into the application to perform a specific task without the

need of any additional code, while other components provide an API to be used in the application.

Note: All EFR32 parts have a unique RSSI offset. In addition, board, antenna and enclosure design can also impact RSSI.

When creating a new project, install the RAIL Utility, RSSI component. This feature includes the default RSSI Offset Silicon

Labs has measured for each part. This offset can be modified if necessary, after RF testing of your complete product.

To see the component library, click the <project-name>.slcp tab of your project, and click Software Components. A number

of filters as well as a keyword search are available to help you explore the various component categories. Note that

components for all SDKs are presented.

Components installed in the project are checked (1) and can be uninstalled. Configurable components are indicated by a

gear symbol (2).

Getting Started with Application Development

217/1306

Click Configure to open the Component Editor and see a configurable component’s parameters.

As you change component configurations, your changes are automatically saved and project files are automatically

generated. You can see generation progress in the lower right corner of the Simplicity IDE. Wait until generation is complete

before building the application image.

Getting Started with Application Development

218/1306

Building and Flashing

To build and debug your project click Debug (bug icon) on the Simplicity IDE It will build and download your project and

open up the Debug perspective. Click Play (next to Debug) to start running you project on the device.

Enabling Field Updates

Deploying new firmware for devices in the field can be done by UART DFU (Device Firmware Update) or, for SoC

applications, OTA DFU. For more information on each of these methods refer to AN1086: Using the Gecko Bootloader with

the Silicon Labs Bluetooth Applications.

Development Tools

The GATT Configurator

Every Bluetooth connection has a GATT client and a GATT server. The server holds a GATT database: a collection of

Characteristics that can be read and written by the client. The Characteristics are grouped into Services, and the group of

Services determines a Bluetooth Profile.

If you are implementing a GATT server (typically on the peripheral device), you have to define a GATT database structure.

Clients (typically the central device) can also have a GATT database, even if no device will query it, so you can keep the

default database structure in your code. This structure can either be designed in runtime using the dynamic GATT API or in

compile-time using the GATT Configurator. For an SoC application, implementing a static GATT database with the GATT

Configurator is recommended, because it ensures faster startup and lower memory consumption than you can achieve with

dynamic GATT configuration.

The GATT Configurator is a simple-to-use tool to help you build your own GATT database. A list of project

Profiles/Services/Characteristics/Descriptors is shown on the left and details about the selected item is shown on the right.

An options menu is provided above the Profiles list.

https://www.silabs.com/documents/login/application-notes/an1086-gecko-bootloader-bluetooth.pdf

Getting Started with Application Development

219/1306

The GATT Configurator menu is:

 Add an item.

 Duplicate the selected item.

 Move the selected item up.

 Move the selected item down.

 Import a GATT database.

 Add Predefined.

 Delete the selected item.

To add a custom service, click the Profile (Custom BLE GATT), and then click Add (1). To add a custom characteristic,

select a service and then click Add (1). To add a predefined service/characteristic click Add Predefined (6). To learn more

about the configurator see UG438: GATT Configurator User’s Guide for Bluetooth SDK v3.x.

You can find a detailed description of any Profile/Service/Characteristic/Descriptor on

https://www.bluetooth.com/specifications/gatt.

Characteristics are generally complex structures of fields. If you want to know what fields a characteristic has, visit

https://www.bluetooth.com/specifications/gatt/characteristics.

The Pin Tool

Simplicity Studio 5 offers a Pin Tool that allows you to easily configure new peripherals or change the properties of existing

ones. In the Project Configurator SOFTWARE COMPONENTS tab, expand the Advanced Configurators group and open the

https://www.silabs.com/documents/public/user-guides/ug438-gatt-configurator-users-guide-sdk-v3x.pdf
https://www.bluetooth.com/specifications/gatt
https://www.bluetooth.com/specifications/gatt/characteristics

Getting Started with Application Development

220/1306

Pin Tool. The graphical view differs based on the chip.

The pin, function, and peripheral tabs in the configuration pane provide different modes of access. A search function also

provided.

Use the Pin Tool to modify the pin configuration of the device. Software components control behavior in the project but

must be associated with a peripheral, and generally need pin or function assignments. These pin or function assignments

are most easily edited in the Component Editor for that component. The Pin Tool allows you to assign functions to pins. On

all three dialogs, click EDIT next to a software component to go directly to the Component Editor for that component. Click

NEW to go to the Project Configurator's SOFTWARE COMPONENTS tab, where you can install a component in the project so

that it can be selected in the dialog.

For more information see the Simplicity Studio 5 User's Guide Pin Tool section.

Multi-Node Energy Profiler

Multi-Node Energy profiler is an add-on tool, with which you can easily measure the energy consumption of your device in

runtime. You can easily find peak and average consumption, and check for sleep mode current.

Note: The SDK sample apps for EFR32BG22 enable EM2 debug (see init_mcu.c), which adds current consumption overhead

compared to the datasheet values.

To profile the current project, click Tools in the menu bar and select Energy Profiler or right-click on the <project>.slcp file in

the Project Explorer view and select Profile as / Simplicity Energy Profiler target. This automatically builds your project,

uploads it to the device, and starts Energy Profiler. A new Energy Profiler perspective appears, shown in the following figure.

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-developing-with-project-configurator/pin-tool

Getting Started with Application Development

221/1306

See UG343: Multi-Node Energy Profiler User’s Guide for details on how to use this tool. You can switch easily between

Simplicity IDE and Energy Profiler perspectives using the Perspective buttons in the upper right corner of your current

perspective.

You can see peaks in the energy consumption diagram. Pause profiling by clicking Play, click one of the peaks, and zoom in

with time axis (y-axis) zoom until you see three distinguishable peaks. These represent the three advertisement packets

sent on the three advertisement channels. You can also see the three corresponding Tx events in the Rx/Tx bar below,

provided that you enabled Rx/Tx view in the upper right corner. Note that the maximum consumption may now be greater

than it appeared on the diagram before you zoomed in. This is because in zoomed-out mode, the displayed values are

averaged. If you need exact values, always zoom in.

To measure average consumption, simply click and drag your mouse over a time interval. A new window appears in the

upper right corner showing consumption information for the given interval. Bluetooth communication typically has a

periodicity: the advertisement or the connection interval. It is recommended to measure average over an advertisement or

connection interval to obtain a proper average consumption. Overall average is measured as well, but this is influenced by

transient events.

Getting Started with Application Development

222/1306

Multi-node Energy Profiler is also able to simultaneously measure the consumption of multiple devices. To start measuring a

new device click the Quick Access menu (upper left corner) and select Start Energy Capture. To stop measuring, click the

Quick Access menu, and select End/Save session.

To learn more about how to use this tool, see the Simplicity Studio 5 User's Guide.

Network Analyzer

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/

Getting Started with Application Development

223/1306

Silicon Labs Network Analyzer is a free-of-charge packet capture and debugging tool that can be used to debug Bluetooth

connectivity between Wireless Geckos and other Bluetooth devices. It significantly accelerates the network and application

development process with graphical views of network traffic, activity, and duration.

The Packet Trace application captures the packets directly from the Packet Trace Interface (PTI) available on the Wireless

Gecko SoCs and modules. It therefore provides a more accurate capture of the packets compared to air-based capture.

See AN1317: Using Network Analyzer with Bluetooth® Mesh and Low Energy for more information.

Simplicity Commander

Simplicity Commander is a simple flashing tool, which can be used to flash firmware images, erase flash, lock and unlock

debug access, and write-protect flash pages via the J-Link interface. Both GUI and CLI (Command Line Interface) are

available. See UG162: Simplicity Commander Reference Guide for more information.

Getting Started with Application Development

224/1306

Bluetooth NCP Commander

The Bluetooth NCP Commander application can be used to test and evaluate Bluetooth SoCs and modules, and it can be

used to control the Bluetooth hardware using the BGAPI Serial Protocol (NCP) over a Serial/UART interface. It also supports

building a GATT database dynamically on the target device. See AN1259: Using the Silicon Labs v3.x Bluetooth® Stack in
Network Co-Processor Mode for more information.

Getting Started with Application Development

225/1306

Bluetooth NCP Commander is also available as a standalone application, located in:

C:\SiliconLabs\SimplicityStudio\v5\developer\adapter_packs\ncp_commander

To find the standalone version on MAC, find Simplicity Studio, right-click and select Show Package Content. The NCP

commander can be found under:

developer\adapter_packs\ncp_commander

IAR Embedded Workbench

IAR’s Embedded Workbench can also be used as an IDE for developing and debugging Bluetooth applications. You must use

the version of IAR that is compatible with the SDK version. See the SDK's release notes for compatible version information.

Overview

226/1306

Overview

Developing and Debugging Silicon Labs Bluetooth
LE Applications
These pages provide details on developing and debugging Bluetooth LE applications. Content includes:

Silicon Labs Bluetooth C Application Developer's Guide for SDK v3.x (PDF): Covers the Bluetooth stack v3.x architecture,

application development flow, using the MCU core and peripherals, stack configuration options, and stack resource usage.

GATT Configurator User's Guide (PDF): Describes how to use the Simplicity Studio 5 GATT Configurator, an intuitive

interface providing access to all the Profiles, Services, Characteristics, and Descriptors as defined in the Bluetooth

specification.

Blue Gecko Bluetooth Profile Toolkit Developer's Guide (PDF) - Reviews using this XML-based mark-up language to describe

the Bluetooth GATT database,configure access and security properties, and include the GATT database as part of the

firmware.

Using Network Analyzer with Bluetooth Low Energy and Mesh (PDF): Describes using Simplicity Studio 5's Network

Analyzer to debug Bluetooth Mesh and Low Energy applications. It can be read jointly with AN958: Debugging and

Programming Interfaces for Customer Designs (PDF) for more information on using Packet Trace Interface with custom

hardware.

Transitioning from the v2.x to the v3.x Bluetooth SDK (PDF): Provides information for those already developing with

Bluetooth SDK version 2.x and who are interested in upgrading to the current version.

Development Tools

Simplicity Studio and the Simplicity IDE: Simplicity Studio is the unified development environment for all Silicon Labs

technologies, SoCs, and modules. It provides you with access to the target device-specific web and SDK resources,

software and hardware configuration tools, and an integrated development environment (IDE) featuring industry-standard

code editors, compilers, and debuggers. See the silabs.com Simplicity Studio page to download the tools and for more

information.

Bluetooth GATT Configurator: Bluetooth GATT Configurator, installed with Simplicity Studio, is a simple-to-use tool to help

build a customized Bluetooth GATT database for Bluetooth projects. See the Simplicity Studio User's Guide GATT

Configurator section of the Simplicity Studio 5 User's Guide for more information.

Network Analyzer: Simplicity Studio® 5 (SSv5)'s Network Analyzer enables debugging of complex wireless systems. This

tool captures a trace of wireless network activity that can be examined in detail live or at a later time. See the Simplicity

Studio User's Guide Network Analyzer section of the Simplicity Studio 5 User's Guide for more information.

Wireshark: Wireshark is the recommended network protocol analyzer for the use with Wi-SUN networks. Download

instructions are provided for Windows/Mac users or Linux users. Simplicity Studio® 5 supports live interaction between the

application running on a Silicon Labs device and Wireshark.

Energy Profiler: Simplicity Studio® 5 (SSv5)'s Energy Profiler enables you to visualize the energy consumption of individual

devices, multiple devices on one target system, or a network of interacting wireless devices to analyze and improve the

power performance of these systems. Real-time information on current consumption is correlated with the program counter

providing advanced energy software monitoring capabilities. It also provides a basic level of integration with the Network

Analyzer network analysis tool. See the Simplicity Studio User's Guide Energy Profiler section of the Simplicity Studio 5

User's Guide for more information.

Simplicity Commander: Simplicity Commander is a single, all-purpose tool to be used in a production environment. It is

invoked using a simple Command Line Interface (CLI) that is also scriptable. Simplicity Commander enables customers to

complete essential tasks such as configuring and building applications and bootloaders and flashing images to their

https://www.silabs.com/documents/public/user-guides/ug434-bluetooth-c-soc-dev-guide-sdk-v3x.pdf
https://www.silabs.com/documents/public/user-guides/ug438-gatt-configurator-users-guide-sdk-v3x.pdf
https://www.silabs.com/documents/public/user-guides/ug118-bluegecko-bt-profile-toolkit.pdf
https://www.silabs.com/documents/public/application-notes/an1317-network-analyzer-with-bluetooth-mesh-le.pdf
https://www.silabs.com/documents/public/application-notes/an958-mcu-stk-wstk-guide.pdf
https://www.silabs.com/documents/public/application-notes/an1255-transitioning-from-bluetooth-sdk-v2-to-v3.pdf
https://www.silabs.com/developers/simplicity-studio
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-developing-with-project-configurator/bluetooth-gatt-configurator
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-tools-network-analyzer/
https://www.wireshark.org/download.html
https://www.wireshark.org/docs/wsug_html_chunked/ChBuildInstallUnixInstallBins.html
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-testing-and-debugging/using-wireshark
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-tools-energy-profiler/

Overview

227/1306

devices. Simplicity Commander is available through Simplicity Studio or can be downloaded through system-specific

installers. The Simplicity Commander User's Guide (PDF) provides more information.

Silicon Labs Configurator (SLC): SLC offers command-line access to application configuration and generation functions.

Software Project Generation and Configuration with SLC-CLI (PDF) provides instructions on downloading and using the

SLC-CLI tool.

https://www.silabs.com/developers/mcu-programming-options#programming
https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug520-software-project-generation-configuration-with-slc-cli.pdf

Code Examples

228/1306

Code Examples

Code Examples

SDK Examples

SDK examples are not only available through Simplicity Studio but also in the GSDK GitHub repo. Both embedded

application examples and host examples are available. Select the version of interest and open 'app/bluetooth/example' or

'app/bluetooth/example_host'. SDK examples are described in Getting Started - More Demos and Examples

GitHub Examples

The Bluetooth SDK provides examples that demonstrate basic Bluetooth features (such as a simple Bluetooth server,

Bluetooth client, OTA DFU) and serve as a starting point for your (RCP, NCP, SoC, RTOS or DMP based) development. Often,

however, developers need guidance on how to use additional Bluetooth features (such as extended advertisements, and so

on). Also, it may be very useful to see full solution examples that cover a common use case and demonstrate how to

integrate peripheral programming with Bluetooth.

To satisfy these needs, additional examples are provided in repositories on GitHub. The repositories have detailed readme

files that instruct the developer on how to set up the project. To make the setup even easier, some repositories also provide

.slcp files that make it possible to automatically generate the project with Simplicity Studio. The examples in these repos are

not maintained to the same degree as are the examples provided with the SDK. If you find an issue, report it on

https://community.silabs.com/.

Application Examples

This repository provides full application examples, which demonstrate how to add Bluetooth communication to an

application that provides solution for a real problem. It is worth checking this repository both to learn how a full Bluetooth

application should look like, and also because you might find an example that is already very similar to the one you want to

implement. The repository is available here: https://github.com/SiliconLabs/bluetooth_applications.

Stack Feature Examples

This repository demonstrates the different features of the Bluetooth stack. Each example focuses on one feature, and only a

minimal application logic is added to demonstrate it. This repository provides .slcp files. The repository is available here:

https://github.com/SiliconLabs/bluetooth_stack_features.

Python-Based Host Examples

Python-based NCP host examples can be accessed at https://github.com/SiliconLabs/pybgapi-examples. These examples

are meant to be used with PyBGAPI (https://pypi.org/project/pybgapi/), which enables implementing NCP host codes using

Python.

Generating GitHub Example Projects with Simplicity Studio

To generate GitHub example projects with Simplicity Studio (only applicable to repositories with slcp files):

 Open Simplicity Studio and navigate to Window > Preferences > Simplicity Studio > External Repos.

 Click Add.

 In the URI field enter the repository’s HTTPS clone address, for example

https://github.com/SiliconLabs/bluetooth_stack_features.git

Alternatively, clone the repository onto your hard drive, and provide the path to the .git folder in your local repository, for

example C:\MyRepositories\bluetooth_stack_features.git.

 Enter an arbitrary name (such as ‘Bluetooth Stack Features’) and description for the repository, which will be displayed later.

https://github.com/SiliconLabs/gecko_sdk
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-getting-started-demos-examples
https://community.silabs.com/
https://github.com/SiliconLabs/bluetooth_applications
https://github.com/SiliconLabs/bluetooth_stack_features
https://github.com/SiliconLabs/pybgapi-examples
https://pypi.org/project/pybgapi/
https://github.com/SiliconLabs/bluetooth_stack_features.git

Code Examples

229/1306

 Click Next. If you have entered the repository’s clone address, Simplicity Studio will clone the repository for you.

 Click Finish, then click Apply and Close.

 If you are not on the Launcher perspective, open it from the Perspectives toolbar in the upper-right corner.

 Select your board in the Debug Adapters view or in the My Products view.

 On the General card, verify the Gecko SDK version and change if necessary.

Note: Bluetooth stack feature examples are currently compatible with Gecko SDK v4.1 only!

 Go to the Example Projects & Demos tab.

 Now you should see your repository listed under the Provider filtering class. Select this filter.

Note: The repository only shows up if it contains at least one example that is compatible with your device.

 All the examples contained in the repository that are compatible with your device are displayed. Click Create on any of them

to create a new example project. The example project installs all the software components necessary to demonstrate the

given feature, and all the needed code is automatically copied into your project. Additional configuration might be needed, so

read the readme file of the example carefully.

Overview

230/1306

Overview

Co-Processors �NCP and RCP�
The Silicon Labs Bluetooth stack provides multiple APIs for the developer to access the Bluetooth functionality. Three

modes are supported:

Standalone mode, where both the Bluetooth stack and the application run in an EFR32SoC or module. The application can be

developed with C programming language.

Network Co-Processor (NCP) mode, where the Bluetooth stack runs in an EFR32 and the application runs on a separate host

MCU. For this use case, the Bluetooth stack can be configured into NCP mode where the API is exposed over a serial

interface such as UART.

Radio Co-Processor (RCP) mode, where only the Link Layer of the Bluetooth stack runs on the EFR32, and the Host Layer of

the stack, as well as the application, runs on a separate host MCU or PC. In this use case, the Host Layer is developed by a

third party, since Silicon Labs’ Bluetooth stack is only built for EFR32 SoCs / modules. The Link Layer and the host layer

communicate via HCI (Host-Controller Interface), which is a standard interface between the two layers. The HCI can be

accessed via UART following the Bluetooth SIG's UART (H4) transport protocol.

This section provides additional detail on the last two.

Using the v3.x Silicon Labs Bluetooth Stack in Network Co-Processor Mode (PDF): Describes how to configure the NCP

target and how to program the NCP host when using the Bluetooth Stack in Network Co-Processor mode

Enabling a Radio Co-Processor using the Bluetooth Controller and HCI Functions (PDF): Gives a short overview of the

standard Host Controller Interface (HCI) and how to use it with a Silicon Labs Bluetooth LE controller.

https://www.silabs.com/documents/public/application-notes/an1259-bt-ncp-mode-sdk-v3x.pdf
https://www.silabs.com/documents/public/application-notes/an1328-enabling-rcp-using-bt-hci.pdf

NCP Local Event Handling

231/1306

NCP Local Event Handling

Local Event Handling on Bluetooth NCP

Introduction

A network co-processor (NCP) firmware can handle stack events locally instead of sending every event to the host

processor, which allows event pre-processing, useful for some use cases, to prevent overflowing the host with events.

Background

Ordinarily, an NCP device sends and receives Bluetooth packets on behalf of a host processor but does not have any

application layer intelligence. It receives commands from and sends events to the host and the host must tell the NCP what

to do.

However, in some cases, it may be useful for the NCP to pre-process some of the events itself rather than to send every

event to the host. For example, when the NCP acts as a scanner in a high-traffic environment, it reports every single

advertisement to the host, which can easily be overwhelming for the host to process.

Implementation

This section explains how to modify the standard NCP firmware and assumes that the user is already familiar with the NCP

by reading NCP-related documentation, for example AN1259: Using the v3.x Silicon LabsBluetooth® Stack in Network Co-

Processor Mode.

By default, the NCP firmware passes all events to the host processor. However, this can be controlled by an implementation

of sl_ncp_local_evt_process() . This function can be implemented in any source file of the firmware, e.g., app.c. This function

implementation will override the default implementation that performs no handling of events and returns true to indicate that

the event passed to it has not been handled and should be sent to the host. If the function returns false, the event will not

be sent to the host device.

To handle a particular event locally, this function can be customized. In this case, let’s assume that the desired behavior is

to filter out any advertisements or scan responses that do not come from a device with OUI 00:0B:57 (which is an OUI of

Silicon Labs) and not to send them to the host. This can be accomplished by implementing a switch case statement in the

sl_ncp_local_evt_process() function that captures the scanner_scan_report event and checks the OUI.

https://www.silabs.com/documents/public/application-notes/an1259-bt-ncp-mode-sdk-v3x.pdf

NCP Local Event Handling

232/1306

/**//**

 * Local event processor.

 *

 * Use this function to process Bluetooth stack events locally on NCP.

 *

 * @param[in] evt Event coming from the Bluetooth stack.

 *

 * @return true, if the event should be forwarded to the NCP-host.

 * false, if the event has been handled locally.

 *

 * @note This overrides the default weak implementation.

 ***/

bool sl_ncp_local_evt_process(sl_bt_msg_t *evt)

{

 bool evt_to_host = true;

 bd_addr address;

 switch (SL_BT_MSG_ID(evt->header)) {

 case sl_bt_evt_scanner_scan_report_id:

 address = evt->data.evt_scanner_scan_report.address;

if(address.addr[5] == 0�00 && address.addr[4] == 0�0B && address.addr[3] == 0�57) {

// Scanned device has OUI 00�0B�57 so the event shall be sent to the host

 evt_to_host = true;

}

else {

// Scanned device does *not* have OUI 00�0B�57 so the event shall *not* be sent to the host

 evt_to_host = false;

}

break;

 default:

break;

}

return evt_to_host;

}

This section of code checks whether the first three bytes of the Bluetooth address, which come in reverse order, match the

desired OUI. If that's the case, evt_to_host is set true and the event will be sent to the host. Otherwise, evt_to_host is set to
false indicating that the event will not be sent to the host. This is a small change but it could dramatically reduce the

amount of traffic between NCP and host as well as reducing the burden on the host itself.

In this way the sl_ncp_local_evt_process() function can be implemented to perform any local event handling.

Overview

233/1306

Overview

Bootloading Embedded Applications
Bootloading allows you to update application firmware images on your devices. This section provides background

information about bootloading using the Silicon Labs Gecko Bootloader.

Bootloader Fundamentals (PDF): Bootloader Fundamentals - Introduces bootloading for Silicon Labs networking devices.

Discusses the Gecko Bootloader as well as legacy Ember and Bluetooth bootloaders, and describes the file formats used by

each.

Silicon Labs Gecko Bootloader User's Guide for GSDK 4.0 and Higher (PDF): Describes the high-level implementation of the

Silicon Labs Gecko Bootloader for EFR32 SoCs and NCPs, and provides information on how to get started using the Gecko

Bootloader with Silicon Labs wireless protocol stacks in GSDK 4.0 and higher.

Using the Gecko Bootloader with Silicon Labs Bluetooth Applications (PDF): Includes detailed information on using the

Gecko Bootloader with Silicon Labs Bluetooth applications. It supplements the general Gecko Bootloader implementation

information provided in Silicon Labs Gecko Bootloader User's Guide for GSDK 4.0 and Higher.

Series 2 Secure Boot with RTSL (PDF): Contains detailed information on configuring and using the Secure Boot with

hardware Root of Trust and Secure Loader on Series 2 devices, including how to provision the signing key. This is a

companion document to UG266: Silicon Labs Gecko Bootloader User's Guide.

Transitioning to the Updated Gecko Bootloader in GSDK 4.0 and Higher (PDF): Gecko Bootloader v2.x, introduced in GSDK

4.0, contains a number of changes compared to Gecko Bootloader v1.x. This document describes the differences between

the versions, including how to configure the new Gecko Bootloader in Simplicity Studio 5.

https://www.silabs.com/documents/public/user-guides/ug103-06-fundamentals-bootloading.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf
https://www.silabs.com/documents/public/application-notes/an1086-gecko-bootloader-bluetooth.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf
https://www.silabs.com/documents/public/application-notes/an1218-secure-boot-with-rtsl.pdf
https://www.silabs.com/documents/public/application-notes/an1326-gecko-bootloader-transitioning-guide.pdf

Firmware Upgrade

234/1306

Firmware Upgrade

Bluetooth Firmware Update
These pages cover a number of topics related to over-the-air (OTA) firmware update.

Using EFR Connect Mobile App for OTA DFU: Explains how to perform a Device Firmware Upgrade (DFU) with Bluetooth OTA

update using the EFR Connect mobile application.

Adding Gecko Bootloader to Bluetooth Projects: Provides several methods for adding the Gecko Bootloader to Bluetooth

projects.

Upgrading Gecko Bootloader: Provides instructions for upgrade using UART and upgrade using OTA.

OTA Updates Using Customized Advertising Data: Describes how to implement a robust OTA update procedure using a

customized advertising data format.

Uploading Firmware Images Using OTA DFU: Compares uploading a firmware image with Apploader and with a user

application.

Secure OTA DFU: Shows how to securely upgrade Bluetooth application OTA (over-the-air) using signed+encrypted upgrade

files.

Adding Metadata to GBL Files: Discusses how to configure other settings on a device using metadata in the GBL file.

Using EFR Connect Mobile App for OTA DFU

235/1306

Using EFR Connect Mobile App for OTA DFU

Using EFR Connect Mobile App for OTA DFU

Introduction

This tutorial explains how to perform a Device Firmware Upgrade (DFU) with Bluetooth Over-The-Air (OTA) update. Any

device that has OTA updates enabled in their GATT profile can have an OTA upgrade. Most of the example applications

provided in the Bluetooth SDK already have OTA support built into the code. In these examples, the DFU mode is triggered

through the Silicon Labs OTA service that is included as part of the application’s GATT database. OTA functionality can be

added by installing the OTA DFU software component in your project.

For tutorial purposes, the Bluetooth - SoC Empty SDK example application will be upgraded to the Bluetooth - SoC

Thermometer example application. Because the Bluetooth - SoC Thermometer has the Health Thermometer service for visual

feedback, users can easily check that the functionality of the user application has changed.

Requirements

Wireless Starter Kit and Bluetooth-capable radio board

Simplicity Studio 5

ndroid or iOS mobile device

First Steps

 Download EFR Connect mobile app (Android / iOS).

 Connect the kit to your computer and select it in Simplicity Studio.

 Create the Bluetooth - SoC Empty example project from Simplicity Studio Launcher.

 Build the Bluetooth - SoC Empty project and flash the firmware image to the device.

 Create the Bluetooth - SoC Thermometre example project.

 Build the Bluetooth - SoC Thermometer project and double click on the create_bl_files.bat/sh script in the project tree. You may

need to define two environment variables PATH_SCMD and PATH_GCCARM before running the script. The script creates a

folder named output_gbl under your project and six .gbl upgrade image files in this folder:

application.gbl : user application (including full Bluetooth stack)

application-crc.gbl : user application with a CRC32 checksum

apploader.gbl : AppLoader (including minimal Bluetooth stack)

apploader-crc.gbl : AppLoader with a CRC32 checksum

full.gbl : user application and AppLoader (full update) for UART DFU, not needed in this example.

full-crc.gbl : user application and AppLoader (full update) with a CRC32 checksum for UART DFU, not needed in this

example.

A full update is needed only if the AppLoader needs to be updated. See AN1086 for more details.

https://play.google.com/store/apps/details?id=com.siliconlabs.bledemo
https://itunes.apple.com/us/app/silicon-labs-blue-gecko-wstk/id1030932759?mt=8
https://www.silabs.com/documents/login/application-notes/an1086-gecko-bootloader-bluetooth.pdf

Using EFR Connect Mobile App for OTA DFU

236/1306

 Transfer the .gbl files to your smartphone so the mobile app can find them. You can either transfer them via USB to any

folder on your phone or place it to a cloud storage, which is available from your phone (e.g., Google Drive, Dropbox, iCloud,

and so on).

 Launch the EFR Connect mobile app.

In the EFR Connect Mobile App

After you are in the app, do the following:

 Go to the Bluetooth Browser and find and connect to your kit (default name "Empty Example").

 Open the pop-up menu in the upper right corner and select OTA .

 Select Partial OTA and look for the gbl file in your smartphone.

 Finally, press OTA and your upgrade should start.

Using EFR Connect Mobile App for OTA DFU

237/1306

Using EFR Connect Mobile App for OTA DFU

238/1306

After the OTA process has finished, verify that the kit is now running the Bluetooth - SoC Thermometer example application.

You can find the kit in the Bluetooth Browser with a new name "Thermometer Example".

Note

To enable the Bluetooth OTA upgrade, the target device must be programmed with the Gecko Bootloader. This is an

application bootloader, which requires that the new firmware image acquisition is managed by the application.

Running the "Demos" in Simplicity Studio will flash the bootloader and user application to the device. However, flashing an

"Example Project" flashes the application only. If your OTA upload stops at 0% and you get a message on an Android phone

saying "GATT CMD STARTED", that might indicate a missing or incorrect bootloader. In this case, do the following:

 Click on Create New Project from the Launcher Perspective to create a Gecko Bootloader project for your kit. Select the

"Internal Storage Bootloader" example project with a suitable configuration for your storage size.

 In the <projectname>.isc file of the bootloader project, you can configure some options. For this example, press Generate

with the default settings.

 Build the project and find the bootloader image in the build directory named “GNU ARM <compiler version number> - Default” . For

Series 1 devices, you need the <projectname>- combined .s37 file that is the combined image of the first stage bootloader

and the main bootloader with a CRC32 checksum. For Series 2 devices, you need the <projectname>- crc .s37 file that is the

main bootloader with a CRC32 checksum.

 Flash the bootloader image to the device.

Additional Resources

Using EFR Connect Mobile App for OTA DFU

239/1306

AN1086: Using the Gecko Bootloader with the Silicon Labs Bluetooth® Applications

UG489: Silicon Labs Gecko Bootloader User's Guide for GSDK 4.0 and Higher

https://www.silabs.com/documents/login/application-notes/an1086-gecko-bootloader-bluetooth.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf

Adding Gecko Bootloader to Bluetooth Projects

240/1306

Adding Gecko Bootloader to Bluetooth Projects

Adding Gecko Bootloader to Bluetooth Projects
Bluetooth projects are configured so that, by default, they need a bootloader. However, the example projects do not

include Gecko Bootloader by default, so you have to add it separately.

If you are sure that you won't need a bootloader, you may uninstall the "OTA DFU" and "Bootloader Application

Interface" software components from your project. This makes it possible to start the application without a

bootloader. However, it is strongly recommended to keep these components and add a bootloader to your

project to make firmware upgrades possible.

Although some devices are shipped with preprogrammed bootloaders, it is always recommended to flash the latest Gecko

Bootloader to your device.

EFR32BG1 devices are preprogrammed with the legacy bootloader. The legacy bootloader is a one-stage simple bootloader

with limited capabilities compared to the Gecko Bootloader. UART DFU and OTA DFU are the two types of the legacy

bootloader. UART DFU upgrades the firmware using UART while OTA DFU upgrades the firmware using the Bluetooth

connection. Devices are preprogrammed with UART DFU bootloader, but the support for the legacy bootloader was

discontinued in SDK v3.0. As a result, you have to add Gecko Bootloader to your project to overwrite the legacy bootloader.

Gecko Bootloader also has UART and OTA configuration, which is compatible with the legacy bootloaders.

EFR32BG12 and EFR32BG13 devices are preprogrammed with a dummy bootloader, which can start the application but can't

upgrade it. As a result, it is essential to overwrite it with the Gecko Bootloader.

EFR32BG21 and EFR32BG22 devices are not preprogrammed with any bootloader.

BGM modules are usually preprogrammed with a UART bootloader, see 'What is the Factory-Programmed Firmware in the

BGMx Modules?' in Implementation Tips or the data sheet of your module.

Instructions for Adding a Gecko Bootloader to a Bluetooth Project

First Method

 Build your Bluetooth application.

 Flash your Bluetooth application (.s37 or .hex or .bin) to the device.

 Create a new Gecko Bootloader project, e.g., Bluetooth in-place OTA DFU Bootloader or BGAPI UART DFU Bootloader. You

can find these example projects after selecting your device under the Example Projects & Demos tab of the Launcher view of

Simplicity Studio 5.

 Generate and build it.

 For series 1 devices flash the .s37 file that ends with –combined.s37 (e.g., bootloader-uart-bgapi-combined.s37). For series 2

devices flash the .s37 files that ends with -crc.s37 .

 To flash a new version of the application, ensure that you use .hex or .s37 (or .gbl) format because the .bin format will

overwrite the bootloader on some devices.

Second Method

 Build your Bluetooth application.

 Create a new Gecko Bootloader project, e.g., Bluetooth in-place OTA DFU Bootloader or BGAPI UART DFU Bootloader. You

can find these example projects after selecting your device under the Example Projects & Demos tab of the Launcher view of

Simplicity Studio 5.

 Generate and build it.

https://docs.silabs.com/bluetooth/6.1.0/bluetooth-implementation-tips/index#what-is-the-factory-programmed-firmware-in-the-bgmx-modules

Adding Gecko Bootloader to Bluetooth Projects

241/1306

 Copy the bootloader image (the one that ends with -combined.s37 or -crc.s37) and the application image into the same

folder.

 Merge the bootloader and the application image:

commander convert bootloader-uart-bgapi-crc.s37 your_application.s37 -o app+bootloader.s37

 Flash the merged image to the device.

Third Method

 Flash a demo to your device.

Flash the Bluetooth - SoC Thermometer demo to your device. This will flash the SoC Thermometer application with

Bluetooth in-place OTA DFU type Gecko Bootloader.

OR: Flash the Bluetooth - NCP Empty demo to your device. This will flash the NCP Empty application with BGAPI UART

DFU type Gecko Bootloader.

 Build your Bluetooth application.

 Flash the .hex or the .s37 file to your device.

Note: commander.exe can be found here: C:\SiliconLabs\SimplicityStudio\vX\developer\adapter_packs\commander.

Upgrading Gecko Bootloader

242/1306

Upgrading Gecko Bootloader

Adding Gecko Bootloader to Bluetooth Projects
Bluetooth projects are configured so that, by default, they need a bootloader. However, the example projects do not

include Gecko Bootloader by default, so you have to add it separately.

If you are sure that you won't need a bootloader, you may uninstall the "OTA DFU" and "Bootloader Application

Interface" software components from your project. This makes it possible to start the application without a

bootloader. However, it is strongly recommended to keep these components and add a bootloader to your

project to make firmware upgrades possible.

Although some devices are shipped with preprogrammed bootloaders, it is always recommended to flash the latest Gecko

Bootloader to your device.

EFR32BG1 devices are preprogrammed with the legacy bootloader. The legacy bootloader is a one-stage simple bootloader

with limited capabilities compared to the Gecko Bootloader. UART DFU and OTA DFU are the two types of the legacy

bootloader. UART DFU upgrades the firmware using UART while OTA DFU upgrades the firmware using the Bluetooth

connection. Devices are preprogrammed with UART DFU bootloader, but the support for the legacy bootloader was

discontinued in SDK v3.0. As a result, you have to add Gecko Bootloader to your project to overwrite the legacy bootloader.

Gecko Bootloader also has UART and OTA configuration, which is compatible with the legacy bootloaders.

EFR32BG12 and EFR32BG13 devices are preprogrammed with a dummy bootloader, which can start the application but can't

upgrade it. As a result, it is essential to overwrite it with the Gecko Bootloader.

EFR32BG21 and EFR32BG22 devices are not preprogrammed with any bootloader.

BGM modules are usually preprogrammed with a UART bootloader, see 'What is the Factory-Programmed Firmware in the

BGMx Modules?' in Implementation Tips or the data sheet of your module.

Instructions for Adding a Gecko Bootloader to a Bluetooth Project

First Method

 Build your Bluetooth application.

 Flash your Bluetooth application (.s37 or .hex or .bin) to the device.

 Create a new Gecko Bootloader project, e.g., Bluetooth in-place OTA DFU Bootloader or BGAPI UART DFU Bootloader. You

can find these example projects after selecting your device under the Example Projects & Demos tab of the Launcher view of

Simplicity Studio 5.

 Generate and build it.

 For series 1 devices flash the .s37 file that ends with –combined.s37 (e.g., bootloader-uart-bgapi-combined.s37). For series 2

devices flash the .s37 files that ends with -crc.s37 .

 To flash a new version of the application, ensure that you use .hex or .s37 (or .gbl) format because the .bin format will

overwrite the bootloader on some devices.

Second Method

 Build your Bluetooth application.

 Create a new Gecko Bootloader project, e.g., Bluetooth in-place OTA DFU Bootloader or BGAPI UART DFU Bootloader. You

can find these example projects after selecting your device under the Example Projects & Demos tab of the Launcher view of

Simplicity Studio 5.

 Generate and build it.

https://docs.silabs.com/bluetooth/6.1.0/bluetooth-implementation-tips/index#what-is-the-factory-programmed-firmware-in-the-bgmx-modules

Upgrading Gecko Bootloader

243/1306

 Copy the bootloader image (the one that ends with -combined.s37 or -crc.s37) and the application image into the same

folder.

 Merge the bootloader and the application image:

commander convert bootloader-uart-bgapi-crc.s37 your_application.s37 -o app+bootloader.s37

 Flash the merged image to the device.

Third Method

 Flash a demo to your device.

Flash the Bluetooth - SoC Thermometer demo to your device. This will flash the SoC Thermometer application with

Bluetooth in-place OTA DFU type Gecko Bootloader.

OR: Flash the Bluetooth - NCP Empty demo to your device. This will flash the NCP Empty application with BGAPI UART

DFU type Gecko Bootloader.

 Build your Bluetooth application.

 Flash the .hex or the .s37 file to your device.

Note: commander.exe can be found here: C:\SiliconLabs\SimplicityStudio\vX\developer\adapter_packs\commander.

OTA Updates Using Customized Advertising Data

244/1306

OTA Updates Using Customized Advertising Data

Bluetooth OTA Updates Using Customized
Advertising Data

Introduction

When a device is booted into OTA DFU mode, the default advertising data used by the BLE stack is very minimal. Below is

an example that was created by booting the Bluetooth - SoC Empty example (from SDK 3.1.1) into OTA mode:

// raw advertising data

0�02010604094F5441081B00428928E20A68020A00

The advertising packet includes four elements:

Flags (value 0x06)

Complete local name ("OTA")

BLE device address (00 (public) 428928E20A68)

TX Power (0 dBm)

For details about decoding the advertising packet content, see the following page:

Bluetooth advertising data basics

To implement a robust OTA update procedure, use a customized advertising data format, for example:

Include a unique device name in the OTA advertising packets.

Indicate the current SDK/stack version in the advertising packets.

These customizations are left for the application designer to decide. Silicon labs Bluetooth stack includes a few simple yet

powerful options to customize the advertising packets used in OTA mode.

Since SDK v3.x, OTA related configurations are included in Bluetooth > OTA > OTA software component. By installing this

component, you can achieve different kinds of custom OTA configuration options using the APIs explained below.

Setting the Device Name in OTA Advertising

The device name to be used during OTA can be set using the run-time command sl_bt_ota_set_device_name(name_len, name) ,

where name is the chosen name to be used during OTA mode and name_len is the exact number of characters in the name

string. The name is stored in the persistent store. The maximum name length is 17 bytes.

The device name used during OTA does not have to be static. The string can be dynamically generated while the Bluetooth

stack is running, for example, based on the serial number of the device or some other value that uniquely identifies the

device. The OTA name can be, for example, negotiated between the OTA client and the OTA target device over a Bluetooth

connection.

Setting OTA Flags

You can use the run-time command sl_bt_ota_set_configuration(flags) to set OTA flags. The setting is stored in the persistent

store. flags is a 32-bit unsigned integer variable. Flags are defined as follows.

Bit 0: Advertising address 0: use public address. 1: use static random address.

https://docs.silabs.com/bluetooth/6.1.0/bluetooth-fundamentals-advertising-scanning/advertising-data-basics

OTA Updates Using Customized Advertising Data

245/1306

Bit 1: Application update version check 0: disable application version check. 1: enable application version check.

Bits 2-31: reserved.

flags value is given as a bitmask. Flags values are defined as follows.

0: use public device address and disable application version check.

1: use static random address and disable application version check.

2: use public device address and enable application update version check.

3: use static random address and enable application update version check.

Default value 0 is used if the user application does not set the flags, in which case the public device address is used and

AppLoader does not perform any application version checking during OTA mode.

Setting the OTA Advertising Packet Content Manually

It is also possible to define the whole content of the OTA advertising packets from the application using the

sl_bt_ota_set_advertising_data(packet_type, adv_data_len, adv_data) API.

This method can be used to include the OTA service UUID in the advertising packets that are sent during OTA mode. There

are basically no limitations on what advertising data can be used, as long as it conforms to the Bluetooth specification (for

instance, a maximum of 31 bytes of advertising data can be set).

Setting the packet_type to value 2 indicates the data is intended for advertising packets. Whereas, a packet_type value 4

indicates the data is intended for a scan response packets.

The following code snippet shows how to set custom advertising packet used during OTA mode. In this example, a simple

packet format is used that includes three advertising elements: a flag , complete local name , and one manufacturer-specific

advertising element. The custom advertising element is used to expose the SDK version and Bluetooth address of the

device. The SDK version can be retrieved from the boot event as shown in the code snippet.

OTA Updates Using Customized Advertising Data

246/1306

// struct type to store SDK version in the boot event.

typedef struct {

 uint16_t major;

 uint16_t minor;

 uint16_t patch;

 uint16_t build;

}vSDK_t;

typedef struct

{

/* First AD element: Flags*/

 uint8_t len_flags;

 uint8_t type_flags;

 uint8_t val_flags;

/* Second Advt element: name*/

 uint8_t len_name;

 uint8_t type_name;

 uint8_t name[5];

/* Third Advt elemnt: custom data. Include SDK version*/

 uint8_t len_manuf;

 uint8_t type_manuf;

 uint8_t vSDK_Major_LO;

 uint8_t vSDK_Major_HI;

 uint8_t vSDK_Minor_LO;

 uint8_t vSDK_Minor_HI;

 uint8_t vSDK_Patch_LO;

 uint8_t vSDK_Patch_HI;

 uint8_t bt_address[6];

} tsCustomAdv;

....

case sl_bt_evt_system_boot_id:

 vSDK_t vSDK;

 vSDK.major = evt->data.evt_system_boot.major;

 vSDK.minor = evt->data.evt_system_boot.minor;

 vSDK.patch = evt->data.evt_system_boot.patch;

 vSDK.build = evt->data.evt_system_boot.build;

// Build the advt packet and configures OTA Advt data.

configure_OTA_adv(vSDK);

...

break;

...

// fill advt data and configure OTA advertisement data

void configure_OTA_adv(vSDK_t sdk)

{

 tsCustomAdv sData;

 sl_status_t sc;

 char* ota_name = "Silab";

/* fill the first Advt element (flags) */

 sData.len_flags = 0�02;

 sData.type_flags = 0�01;

 sData.val_flags = 0�06;

/* fill the second Advt element (complete local-name)*/

 sData.len_name = 0�06;

 sData.type_name = 0�09;

memcpy(sData.name, ota_name, 5);

/* fill the third Advt element (manufacture-specific) */

 sData.len_manuf = 1+6+6; // type + (major, minor,patch) + addr

 sData.type_manuf = 0xFF;

OTA Updates Using Customized Advertising Data

247/1306

 sData.len_flags =0�02;

 sData.type_flags =0�01;

 sData.val_flags =0�06;/* fill the second Advt element (complete local-name)*/

 sData.len_name =0�06;

 sData.type_name =0�09;memcpy(sData.name, ota_name,5);/* fill the third Advt element (manufacture-specific) */

 sData.len_manuf =1+6+6;// type + (major, minor,patch) + addr

 sData.type_manuf =0xFF;

 sData.vSDK_Major_LO = sdk.major &0xFF;

 sData.vSDK_Major_HI =(sdk.major >>8)&0xFF;

 sData.vSDK_Minor_LO = sdk.minor &0xFF;

 sData.vSDK_Minor_HI =(sdk.minor >>8)&0xFF;

 sData.vSDK_Patch_LO = sdk.patch &0xFF;

 sData.vSDK_Patch_HI =(sdk.patch >>8)&0xFF;/* Check our own BT address and add it to the advertising data */

 sc =sl_bt_system_get_identity_address(&pAddr,&addrType);sl_app_assert(sc == SL_STATUS_OK,"�E� 0x%04x] Failed to get Bluetooth address i OTA

config\n",(int)sc);memcpy(sData.bt_address, pAddr.addr,6);

 sc =sl_bt_ota_set_advertising_data(2,sizeof(tsCustomAdv),(const uint8_t*)&sData);sl_app_assert(sc == SL_STATUS_OK,"�E� 0x%04x] Failed to set

OTA advertising data\n",(int)sc);return;}

The structure tsCustomAdv defines custom advertising data packet content. It is formatted according to the Bluetooth

specification. Each advertising element begins with a length indicator byte followed by the data type indicator and the

actual data value bytes.

Function configure_OTA_adv() fills the advertising data content and then tells the stack to use this data during OTA mode

by calling sl_bt_ota_set_advertising_data API. Most of the advertising data content in this example is static, except for the

Bluetooth device address that is queried from the stack and the SDK version. The SDK version can also be defined statically

by copying the content in the sl_bt_version.h file.

Below is raw OTA advertising data from the above OTA configuration:

//raw custom OTA advertising data

0�020106060953696c61620dff030001000100d02d61CCCCCC

Length Type Value

2 0x01 (flags) 0x06 (LE General discoverable mode, BR/EDR not supported)

6 0x09 (complete local-name) 0x53696C6162 (Silab)

13 0xFF (Manufacture specific data) 0x030001000100 (sdk 3.1.1) Addr:D02D61CCCCCC

Note the byte order in the manufacturing-specific data (that is the data containing SDK version and BT address) is the least

significant byte first.

OTA advertising data set, as shown above, is stored permanently in Persistent Storage. Therefore, data will remain even if

you remove or disable the call to configure_OTA_adv() in the application code. To remove the custom advertising data, it

must be wiped from the persistent storage. One way to do this is to set a custom OTA advertising data with length of zero

bytes as follows:

// Remove previously configured OTA advertising content:

// This will reset the OTA advt data to default

uint8_t dummy;

sl_bt_ota_set_advertising_data(2, 0, &dummy);

Uploading Firmware Images Using OTA DFU

248/1306

Uploading Firmware Images Using OTA DFU

Uploading Firmware Images Using OTA DFU

Introduction

Gecko Bootloader can load application images into the application area from the following sources:

Host controller via UART/SPI

Internal flash (if the internal flash is big enough to accommodate both the application code and an upgrade image)

External flash

OTA DFU (Over-The-Air Device Firmware Upgrade) is not implemented in the Gecko Bootloader. To upload images OTA, you

will need a dedicated Bluetooth application. You can either use Apploader or user application, as follows:

Apploader. The Apploader is a simple application, which is separated from the main application and has a minimal Bluetooth

stack that handles the upload process.

User application extended with the ability to upload firmware images to the flash.

The Apploader overwrites the application area directly (with help of the Bootloader). It can do so because it runs

independently of the user application.

The user application cannot overwrite itself, hence it has to place the upgrade image into a dedicated flash area (Bootloader

Slot) first, and then ask the bootloader to load the image into the application area.

Uploading Firmware Images Using OTA DFU

249/1306

OTA DFU Sequence Implemented in Apploader

Apploader uses the the following procedure to upload images:

 App is running.

 Device is reset into DFU mode.

 In this mode the bootloader starts the Apploader instead of the Application.

 The Apploader advertises and waits for a Bluetooth connection.

 The Apploader waits for the OTA start command (using OTA control characteristic).

 The Apploader starts receiving the GBL file (using OTA data characteristic).

 The headers of the GBL file are stored in RAM. Note: if you have an Apploader and Bootloader from before Bluetooth SDK

v3.0, the headers are stored in the flash, in Storage Slot 0.

 The Apploader uses the API of the Gecko Bootloader to parse the GBL file.

 After parsing the headers, the rest of the GBL file is decoded on-the-fly and the application is copied to the application area,

overwriting the old application. Again, the Apploader uses the API of the bootloader for decoding and copying.

Uploading Firmware Images Using OTA DFU

250/1306

 The Apploader receives the OTA end command and restarts the device in normal mode.

OTA DFU Sequence Implemented in User Application

Developers should decide how to upload a firmware image into the Bootloader Slot. It is however strongly recommended to

use the same OTA service and procedure that is used by the Apploader, making the two processes compatible. Therefore,

when implementing OTA DFU in the User Application, it is recommended to follow this procedure:

 App is running (device is not reset because the uploader is implemented in the user application).

 If there are multiple slots, the remote device chooses which slot to upload to, using a custom characteristic (e.g., slot0. Slot0

can be either in the internal or in the external flash. The application does not have to know this because flash is handled by

the bootloader).

 The application waits for the OTA start command (using OTA control characteristic).

 The application starts receiving the GBL file (using OTA data characteristic).

 The GBL file is saved into slot0/slot1 as it is, using the bootloader API (the application does not have to know where

Slot0/Slot1 is located because the bootloader API handles the writing).

 The uploader receives the OTA end command.

 If there are multiple slots, the remote device may upload a new image to the other slot(s).
 The remote device chooses which slot to bootload from using a custom characteristic.

 The device is reset in bootloader mode, using the bootloader API.

 The bootloader parses the given slot, retrieves the Application code from the GBL file, and copies the code to the application

area from the internal/external flash.

 The bootloader starts the new Application.

Differences

From external viewpoint, the OTA process is almost the same whether the target application uses Apploader or handles the

update in the user application code. The main steps (simplified) are:

 Connect to the target device.

 Reboot the target device into DFU mode if needed.

 Upload the new firmware, packaged into a GBL file.

 When the upload is finished, Gecko bootloader installs new firmware on top of the old version.

The main difference when compared to Apploader-based OTA is that there is no separate DFU mode and step 2 in the

above list is not needed at all. The GBL file is uploaded to the target device under the control of the user application.

Uploading Firmware Images Using OTA DFU

251/1306

Some of the benefits of this approach are:

The user application remains fully functional while the OTA image is being uploaded.

It is possible to implement customer specific OTA service/protocol (with application level security if needed).

EM2 deep sleep is supported during OTA upload.

BLE security features (link encryption, bonding, and so on) can be used.

Sleep and BLE encryption/bonding are not supported by Apploader to reduce the flash footprint.

An obvious disadvantage of this solution is the requirement to have a dedicated flash space available as a download area.

Interaction between Gecko Bootloader and User Application

Gecko Bootloader has a key part in the OTA update. After GBL file is uploaded, Gecko Bootloader takes care of parsing the

GBL file and installing the new firmware. The bootloader is also needed during the OTA file upload to write the image to the

proper flash area.

Gecko Bootloader has an application interface exposed through a function table in the bootloader. This means that the user

application can call functions implemented in the bootloader, even though the application is running in normal mode. In

other words, the bootloader API functions are called from the user application context, but the implementation is in the

Gecko bootloader project. For example, the user application can call the function bootloader_writeStorage to write data into

the download area without knowing where the download area is actually located.

A list of the key bootloader API calls needed to implement OTA update is in AN1086, Chapter 4.

To access the Bootloader API, install the Bootloader Application Interface software component. This component is by

default installed in the Bluetooth sample apps.

Code Examples

You can find multiple code examples related to application level OTA DFU under

https://github.com/SiliconLabs/bluetooth_stack_features/tree/master/firmware_upgrade.

https://www.silabs.com/documents/public/application-notes/an1086-gecko-bootloader-bluetooth.pdf
https://github.com/SiliconLabs/bluetooth_stack_features/tree/master/firmware_upgrade

Secure OTA DFU

252/1306

Secure OTA DFU

Secure OTA DFU

Introduction

This page shows how to securely upgrade Bluetooth application OTA (over-the-air) using signed+encrypted upgrade files.

The process is tested with Bluetooth SDK v3.2.2.

Gecko Bootloader

The Gecko Bootloader is a common bootloader for all Silicon Labs protocol stacks. It can load applications from different

sources (internal flash, external flash, UART, SPI, over-the-air) using different protocols (XMODEM, BGAPI, EZSP SPI,

Bluetooth, and so on.). It can be configured in a number of ways and its capabilities depend on the current configuration.

This document shows how you can use it for loading a new application into the device sent over a Bluetooth connection.

Security Features

The Gecko Bootloader has three security features:

Authenticated (signed) upgrade file

Encrypted upgrade file

Secure Boot

Upgrade files are in a custom GBL (Gecko Bootloader) format. An authenticated upgrade file means that an electronic

signature is attached to the GBL file. The signature is produced with a public-private key pair. The public key is stored in the

device, while the private key is kept secret by the manufacturer. The signature ensures that the upgrade file is from a

trusted source.

An encrypted upgrade file means that the content of the GBL file is encrypted to protect against eavesdroppers.

Secure Boot means that a signature is attached to the firmware image (.s37) before it is packed into upgrade file formal

(.gbl). Note that this differs from an authenticated upgrade file, as authenticated upgrade file means that a signature is

attached to the upgrade file after the image was packed into GBL format. A signed image file (secure boot) ensures that the

image was not modified since last boot and that it is from a trusted source. This is checked at every boot. Upgrade file

authentication is only checked while upgrading.

The following content shows how to use these security features.

OTA DFU

Over-The-Air Device Firmware Upgrade (OTA DFU) means that the device firmware can be updated via a Bluetooth

connection.

To enable Bluetooth OTA update, the target device must be programmed with an appropriate Gecko Bootloader

configuration and additionally with any Bluetooth application that supports OTA.

A Bluetooth application developed with Silicon Labs Bluetooth SDK comprises two parts.

Since Bluetooth SDK v2.7 the two parts are as follows:

The Apploader (provided as precompiled binary code), referred to as Apploader from now on.

The Bluetooth stack (provided as precompiled library) + user application, referred to as Application from now on.

Secure OTA DFU

253/1306

The OTA functionality is built into the Apploader code. If the device is restarted in DFU mode, the Apploader is started

instead of the user application. This makes it possible to perform OTA update without any involvement from the user

application.

The only requirement for the user application is for a way to trigger a reboot into DFU mode. Reboot into DFU mode can be

triggered in a variety of ways. It is up to the application developer to decide which is most applicable. Most of the example

applications provided in the Bluetooth SDK already have OTA support built into the code (using the OTA DFU software

component). In these examples, the DFU mode is triggered through the Silicon Labs OTA service that is included as part of

the application’s GATT database (contributed by the OTA DFU software component). To restart the device in OTA mode, the

following API is used: sl_bt_system_reset(2) is used.

The following processes are OTA DFU:

Partial OTA: In this case, only the user application is upgraded. This process is done in two steps as follows:

 The device is restarted in OTA mode, and the Apploader is started.

 The Apploader overwrites the old Application code with the new one.

Full OTA: In this case, the Apploader code and application are upgraded. Because the running code cannot overwrite itself,

this process is done in four steps as follows:

 The device is restarted in OTA mode and the Apploader is started.

 The new Apploader code is uploaded into Slot0. This process is handled by the Apploader. Note that on 256 kB

devices, Slot0 is in the user application area, which means that the Application is overwritten.

 On reset, the bootloader copies the new Apploader code over the old one (extracting the binary from the stored GBL

files).

 The new Apploader overwrites the old Application code with the new one.

Secure OTA DFU

254/1306

For more details regarding OTA DFU using the Apploader, see AN1086: Using the Gecko Bootloader with the Silicon Labs
Bluetooth® Applications.

Create and Build the Bootloader

Create the Bootloader Project

Gecko Bootloader is included in the Gecko SDK Suite. A number of predefined configurations are available to help

customers easily create new Bootloader projects for different purposes. Different bootloader configurations are

recommended for different devices:

For 256 kB devices, use Bluetooth in-place OTA DFU Bootloader configuration.

For 512 kB devices, use Internal Storage Bootloader (single image on 512kB device).

For 1024 kB devices, use Internal Storage Bootloader (single image on 1MB device).

You can also use an SPI Flash Storage Bootloader (single image) if you have an SPI flash connected to the device. However,

in this case it is better to implement an application level OTA DFU, see Uploading Firmware Images Using OTA DFU.

To create a new bootloader project:

 Open Simplicity Studio and select your device in the Devices or Debug Adapters tab.

 Check the Preferred SDK under General Information in the OVERVIEW tab.

 Click EXAMPLE PROJECTS & DEMOS tab, and select Bootloader under Technology Type section.

 Select the appropriate Gecko Bootloader application type for your device (e.g., Internal Storage Bootloader), click FINISH.

Add Security Features

After the bootloader project is created, the Application Builder automatically opens up. To add security features, do the

following:

 Open the Plugins tab.

 Click on Bootloader Core.

 On the right side tick the checkboxes:

Require signed firmware upgrade files.

Require encrypted firmware upgrade files.

Enable secure boot.

 Click Generate in the upper right corner.

https://www.silabs.com/documents/public/application-notes/an1086-gecko-bootloader-bluetooth.pdf

Secure OTA DFU

255/1306

Build the Bootloader

After the bootloader code was generated by the AppBuilder, build your project:

 Click the build icon.

Generate Security Keys

To use the security features of the Gecko Bootloader, generate the encryption and signing keys. These keys must be then

written to the EFR32 device. The encryption key is used with the GBL file for secure firmware update. The signing keys are

used both with the GBL file for secure firmware update and to sign the application image for Secure Boot.

You can create security keys with Simplicity Commander:

 For ease of use, add the Commander path (C:\SiliconLabs\SimplicityStudio\v5\developer\adapter_packs\commander) to the

Path environment variable in your OS.

 Generate the signing keys with the following command in the command line:

$ commander util genkey --type ecc-p256 --privkey app-sign-key.pem --pubkey app-sign-key.pem.pub

This creates two files: app-sign-key.pem and app-sign-key.pem.pub. The first contains the private key (keep it secret), the

second contains the public key.

 Generate a token text file from the public key with the following command:

$ commander util keytotoken app-sign-key.pem.pub --outfile app-sign-key.pem-token.txt

This creates the file "app-sign-key.pem-token.txt" which contains the public key in a token format suitable for flashing to the

device.

 Generate the encryption key with the following command:

$ commander util genkey --type aes-ccm --outfile app-encrypt-key.txt

This creates one file named app-encrypt-key.txt containing the decryption key in token format.

Flash Security Keys

Secure OTA DFU

256/1306

Write the two token files containing the encryption key and public key to the flash of the device using the following

command:

$ commander flash --tokengroup znet --tokenfile app-encrypt-key.txt --tokenfile app-sign-key.pem-token.txt

For Series 1 devices (EFR32xG1x), the keys are stored in the lock bits page and for Series 2 devices (EFR32xG2x) they are

stored in the last page of main flash.

Note: Series 2 devices include a Hardware Secure Element (HSE) or Virtual Secure Element (VSE) that allows to
store the keys in a one-time-programmable (OTP) memory. In this case, the keys needs to be provisioned with a

different command and special configurations are required in the bootloader. For more information see the

following:

Key provisioning - AN1222: Production Programming of Series 2 Device

Bootloader configuration - UG489: Silicon Labs Gecko Bootloader User's Guide for GSDK 4.0 and Higher

Create and Build the Basic Application

Because OTA DFU is not fully implemented in the Bootloader, a minimal Bluetooth application has to be created and flashed

to the device along with the Bootloader to support the upgrade.

Create the Basic Application Project

To create a basic application that supports OTA DFU, do the following:

 Open Simplicity Studio and select your device in the Devices or Debug Adapters tab.

 Check the Preferred SDK under General Information in the OVERVIEW tab.

 Click EXAMPLE PROJECTS & DEMOS tab, and select Bluetooth under Technology Type section.

 Select Bluetooth - SoC Empty sample application, and click FINISH.

Build the Basic Application

The application code is automatically generated after the project is created. The Bluetooth - SoC Empty sample application

contains everything needed for OTA support (OTA service and characteristics + code to support to restart the device in DFU

mode + Apploader image. These are all added by the OTA DFU software component). To build the application, do the

following:

https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf

Secure OTA DFU

257/1306

 Click the build icon.

Sign the Application Image

Because Secure Boot was enabled in the bootloader, only signed application images can be booted.

To use OTA DFU, you must sign the Apploader and the Application parts of the image separately because they will be

updated separately.

To add a signature to the Apploader and to the Application image, do the following:

 Copy app-sign-key.pem (from the folder in which you ran the commander util genkey) into your project.

 Run the create_bl_files.bat batch file found in your project, which will create the signed GBL files into the output_gbl folder.

Note: To get batch file to work properly, you may have to set some environment variables. For more details,

see AN1086: Using the Gecko Bootloader with the Silicon Labs Bluetooth® Applications.

Upload the Bootloader and the Basic Application

After both the Bootloader image and the Application image are ready, upload them to the device:

 Copy the .s37 file from the bootloader project to the output_gbl folder of the Bluetooth application project.

Note: On series 1 devices, the ...-combined.s37 file contains the full bootloader – while other output files in

the bootloader project contain only the second stage of the bootloader. If you haven't flashed a bootloader

to your device yet, it is recommended to use the combined image file.

 Merge the Bootloader image with the Apploader and the Application images. Open a command line to the output_gbl folder,

and use the following command:

$ commander convert bootloader-storage-internal-single.s37 apploader-signed.gbl application-signed.gbl --outfile

bootloader+stack+app.s37

 Upload the merged image to your device (e.g. right click on the merged .s37 file in Simplicity Studio and select Flash to

Device. You can also use Simplicity Commander for flashing).

Create and Build the Upgrade Application

Create the Upgrade Application Project

Create the application to upgrade the device to, for example the Thermometer sample application. Similarly to the creation

of the Basic Application, do the following:

 Open Simplicity Studio and select your device in the Devices or Debug Adapters tab.

 Check the Preferred SDK under General Information in the OVERVIEW tab.

 Click EXAMPLE PROJECTS & DEMOS tab, and select Bluetooth under Technology Type section.

 Select the Bluetooth - SoC Thermometer (Mock) sample application, and click FINISH.

Build the Upgrade Application

The application code is automatically generated after the project is created. To build the application, do the following:

 Click the build icon.

Create Signed and Encrypted Upgrade Files from the Image

https://www.silabs.com/documents/public/application-notes/an1086-gecko-bootloader-bluetooth.pdf

Secure OTA DFU

258/1306

The bootloader accepts upgrade images in .gbl format. To create a signed and encrypted .gbl file from the image, do the

following:

 Copy app-sign-key.pem and app-encrypt-key.txt into your project.

 Run the create_bl_files.bat batch file found in your project, which will create the signed and encypted GBL files into the

output_gbl folder.

Upgrade your Device

At this point, your device can be upgraded OTA from the basic application to the upgrade application. For this, you need

another device, which will send the new firmware to the target device via Bluetooth. In this example, a smartphone is used

for this purpose.

 Download and install the EFR Connect app to your smartphone.

 Open the output_gbl folder in your project.

 Copy the upgrade files from your computer to your smartphone.

Copy apploader-signed-encrypted.gbl and application-signed-encrypted.gbl.
 Open the EFR Connect app in your mobile.

 Select the Browser option.

 Find your device. The basic app advertises itself as "Empty Example". Because there might be other devices advertising

around you with the same name, place your smartphone close to your device and find the one with the highest RSSI.

 Click on the "Connect" button to connect to the device.

 Open the context menu in the upper right corner and select "OTA DFU".

 Choose "FULL OTA".

 Select apploader-signed-encrypted.gbl as your apploader image and application-signed-encrypted.gbl as your application
image.

 Click OTA.

 After the upload is finished, you should see your device advertising itself as Thermometer Example in the Bluetooth Browser.

https://play.google.com/store/apps/details?id=com.siliconlabs.bledemo&hl=en

Secure OTA DFU

259/1306

Adding Metadata to GBL Files

260/1306

Adding Metadata to GBL Files

Adding Metadata to GBL Files

Introduction

Metadata

Metadata can be anything that can be put into a byte array. You can add text, structures, or binary data to your GBL files.

Hence, when you update your device with a new firmware, you can also update other settings, e.g., a parameter set, that is

stored in the persistent storage. You can also send extended version information along with the firmware or you can send

new security keys in a signed and encrypted GBL file. You can even send an extra firmware image as metadata intended to

be sent to another device.

Adding Metadata to the GBL File

Metadata can be added when you create the GBL file with the commander gbl create command. Add the --metadata switch

and the name of the file, that contains the metadata. For example:

commander gbl create application.gbl --app application.s37 --metadata metadata.bin

If you use the create_bl_files.bat file to create GBL files, edit the file and extend the commands with the --metadata switch.

Reading Metadata from the Uploaded Files

You can read the content of the metadata that was put into the GBL file as follows:

You can read data on-the-fly while uploading the image.

You can read data from the fully uploaded GBL file after upload has finished.

Note: Neither version is supported by the Bluetooth stack AppLoader because AppLoader decodes the GBL file on-the-fly,

does not store the full GBL file anywhere, and does not allow accessing the metadata. To access metadata, implement an

application level OTA DFU, as described in this code example.

Note that the application level OTA DFU can be used only in a device with an internal flash larger than 256 k or

with a device that has an external flash.

Reading Metadata On-the-Fly

When you upload a new firmware image, you will receive the image in chunks. These chunks are received by the application

and they can be written into any storage slot using the API of Gecko Bootloader. At the same time, when you get a chunk of

the uploaded image, you can run the GBL parser on it, using the API of Gecko Bootloader. When the parser finds metadata

in the GBL file, it calls a callback function and passes metadata to this function. Note the following:

Metadata is sent in chunks to the callback function, so it may be called several times with small portions of the whole

metadata.

If the GBL file is encrypted, the parser will decrypt it and the callback function gets the decrypted metadata.

To initialize the GBL parser, use the following code:

https://github.com/SiliconLabs/gecko_sdk/blob/gsdk_4.2/app/bluetooth/example/bt_soc_app_ota_dfu/readme.md

Adding Metadata to GBL Files

261/1306

#define BTL_PARSER_CTX_SZ 0�200

static uint8_t parserContext[BTL_PARSER_CTX_SZ];

static BootloaderParserCallbacks_t parserCallbacks;

parserCallbacks.applicationCallback = NULL;

parserCallbacks.bootloaderCallback = NULL;

parserCallbacks.metadataCallback = metadataCallback;

bootloader_init();

bootloader_initParser((BootloaderParserContext_t *)parserContext,BTL_PARSER_CTX_SZ);

Note that the parser context size must be at least 384 bytes.

To run the parser on a received chunk of data (data,len), use the following command:

bootloader_parseBuffer((BootloaderParserContext_t *)parserContext,&parserCallbacks,data,len);

Finally, define the callback function, as follows:

void metadataCallback(uint32_t address, uint8_t *data, size_t length, void *context)

{

//process the received chunk of metadata (data,length)

}

Reading Metadata from a Stored GBL File

A much easier solution, compared to on-the-fly parsing, is to retrieve the metadata from an already stored GBL file. To do

so, first upload the GBL file without decoding it into a storage slot, defined by the bootloader. To retrieve the metadata from

a GBL file stored in a storage slot, call the following function:

bootloader_verifyImage(slotID,metadataCallback);

and define the callback function, as follows:

void metadataCallback(uint32_t address, uint8_t *data, size_t length, void *context)

{

//process the received chunk of metadata (data,length)

}

Note that, although the whole GBL file is available in the storage slot, you will still get metadata in chunks because the

parser has a limited buffer. The maximum size of a chunk is 64 bytes.

Implementing the Callback Function

The metadata callback function is called several times and provides metadata in chunks. The callback function receives four

parameters, as follows:

Address: this is the offset address of the given chunk within the whole metadata

Data: the pointer to the chunk of data

Length: the length of the chunk. This varies between 1 and 64.

Context: the parser context. Usually this can be ignored.

To assemble metadata from the chunks, use the following code snippet:

Adding Metadata to GBL Files

262/1306

#define MAX_METADATA_LENGTH 512

uint8_t metadata[MAX_METADATA_LENGTH];

void metadataCallback(uint32_t address, uint8_t *data, size_t length, void *context)

{

 uint8_t i;

for (i = 0; i < MIN(length , MAX_METADATA_LENGTH - address); i++)

{

 metadata[address + i] = data[i];

}

}

Overview

263/1306

Overview

Performance
This section describes tools to use to help improve performance as well as some performance results.

System Performance: Addresses a variety of different topics related to improving system performance and reducing power

consumption.

EFR32BG SoC Bluetooth Smart Device Power Consumption Measurements (PDF): Describes how to measure the power

consumption of EFR32BG devices running the Bluetooth i-Beacon example. For general instructions, see Measuring Power

Consumption in Wireless Gecko Devices.

Radio Frequency Physical Layer Evaluation in Bluetooth SDK v3.x (PDF): Reviews performing radio frequency physical layer

evaluation with EFR32BG SoCs and BGM modules using the Direct Test Mode protocol in Bluetooth SDK v3.x.

Bluetooth Low Energy Interoperability Testing Report (PDF): Includes the results of the interoperability testing of Silicon

Labs' ICs and Bluetooth Low Energy stack with Android and iOS smart phones.

Bluetooth LE Use Case-Based Low Power Optimization (PDF): Describes how to exploit the different features of Bluetooth

technology to achieve the minimum possible energy consumption for a given use case.

https://docs.silabs.com/bluetooth/6.1.0/bluetooth-system-performance
https://www.silabs.com/documents/public/application-notes/an1246-efr32bg-bluetooth-power-consumption.pdf
https://www.silabs.com/documents/public/application-notes/an969-measuring-power-consumption.pdf
https://www.silabs.com/documents/public/application-notes/an1267-bt-rf-phy-evaluation-using-dtm-sdk-v3x.pdf
https://www.silabs.com/documents/public/application-notes/an1309-ble-interop-testing-report.pdf
https://www.silabs.com/documents/public/application-notes/an1366-bluetooth-use-case-based-low-power-optimization.pdf

System Performance

264/1306

System Performance

System Performance
These pages address a variety of different topics related to improving system performance and reducing power

consumption.

Using the LFRCO as a Low-Frequency Clock Source: Describes using the LFRCO as the low-frequency clock source (instead

of the LFXO) to wake up the device on each connection interval when sleep is enabled in the stack.

Bluetooth TX Power Settings: Discusses how to configure TX power and how the actual TX power will change.

Current Consumption Variation with TX Power: Discusses the current consumption for different TX power settings,

measured on an EFR32BG13 during advertisement. The test result can be used as a generic guideline to set the TX power

level in an energy-constrained system.

Bluetooth Radio Task Priorities: Reviews using the radio scheduler to simulate running multiple tasks that use the radio at

the same time.

Setting a Custom BT Address - Production Approach: Explains two methods to modify the non-volatile region to set a

custom BT address in production.

Bluetooth LE Auto-PA Mode: Describes how to implement automatic switching between the PAs, when high accuracy output

is needed both above and below 0 dBm.

Using the LFRCO as a Low Frequency Clock Source

265/1306

Using the LFRCO as a Low Frequency Clock Source

Using the LFRCO as Low-Frequency Clock Source

Introduction

The Bluetooth specification sets the Sleep Clock Accuracy (SCA) to be +/- 500 ppm for the sleep clock used by a BLE

device to keep BLE connection. The EFR32xG22 devices include an internal LFRC oscillator that provides accuracy to

within +/-500 ppm, which is suitable for BLE sleep applications and eliminates the need for a 32.768 kHz crystal. The

LFRCO can be used by the Bluetooth stack as the low-frequency clock source (instead of the LFXO) to wake up the device

on each connection interval when sleep is enabled in the stack.

Using the LFRCO is best suited for some BLE use cases, such as for applications with very constrained cost targets or

board layout space, devices that maintain short connection intervals or have infrequent BLE connections, and devices that

advertise most of the time (such as iBeacon or Google Eddystone devices).

The LFRCO can be set either with precision or non-precision mode. When precision mode is enabled, the LFRCO performs

self recalibration periodically against the 38.4 MHz HFXO crystal. Hardware detects temperature changes and initiates a re-

calibration of the LFRCO as needed when operating in EM0, EM1, or EM2. If a re-calibration is necessary and the HFXO is

not active, the precision mode hardware will automatically enable HFXO for a short time to perform the calibration. EM4

operation is not allowed when precision mode is enabled.

Note that, starting with SDK3.1.2, if LFRCO is used by the Bluetooth stack as the low-frequency clock source, the following

applies:

Using non-precision mode, EM2 is not supported if Bluetooth connection or periodic advertising feature is included by the

app; Otherwise EM2 is allowed.

Using precision mode, EM2 is supported in all Bluetooth cases.

Enabling Precision Mode

You can enable precision mode in Simplicity Studio project configurator by going to Services > Runtime > Device

Initialization > Device Init:LFRCO and change the setting from Default precision to High precision or by manually editing the

sl_device_init_lfrco_config.h file.

Change

#define SL_DEVICE_INIT_LFRCO_PRECISION cmuPrecisionDefault

to

#define SL_DEVICE_INIT_LFRCO_PRECISION cmuPrecisionHigh

Selecting the LFRCO

Using the LFRCO requires a few changes in sl_device_init_clocks.c. In sl_device_init_clocks , select LFRCO as a clock source

for the low-frequency clocks.

Using the LFRCO as a Low Frequency Clock Source

266/1306

sl_status_t sl_device_init_clocks(void)

{

CMU_ClockSelectSet(cmuClock_SYSCLK, cmuSelect_HFXO);

#if defined(CMU_EM01GRPACLKCTRL_MASK)

CMU_ClockSelectSet(cmuClock_EM01GRPACLK, cmuSelect_HFXO);

#endif

#if defined(CMU_EM01GRPBCLKCTRL_MASK)

CMU_ClockSelectSet(cmuClock_EM01GRPBCLK, cmuSelect_HFXO);

#endif

CMU_ClockSelectSet(cmuClock_EM23GRPACLK, cmuSelect_LFRCO);

CMU_ClockSelectSet(cmuClock_EM4GRPACLK, cmuSelect_LFRCO);

#if defined(RTCC_PRESENT)

CMU_ClockSelectSet(cmuClock_RTCC, cmuSelect_LFRCO);

#endif

CMU_ClockSelectSet(cmuClock_WDOG0, cmuSelect_LFRCO);

#if WDOG_COUNT > 1

CMU_ClockSelectSet(cmuClock_WDOG1, cmuSelect_LFRCO);

#endif

return SL_STATUS_OK;

}

Tradeoffs

The most obvious benefit of using the LFRCO instead of the LFXO is the cost savings because you're not using the low-

frequency crystal. The drawback is that the LFRCO increases the sleep current consumption and extends the RX receive

window on the peripheral device side at the beginning of each connection interval.

Sleep Current

Below are sleep current measurements on the same device with LFXO and precision mode LFRCO (PLFRCO) where the

sleep current difference is about ~280 nA.

Using the LFRCO as a Low Frequency Clock Source

267/1306

RX Period Extension

At the beginning of each connection interval the central device is the first to send out a packet. As a result, the peripheral

device must be listening (in RX) to avoid losing the initial packet from the central device. The combined clock accuracy from

client and peripheral device (sum of both accuracy values in ppm) is used to calculate when the peripheral device should

wake-up to listen for the incoming packet.

When the accuracy is lower, the peripheral device must wake-up earlier. As a result, the RX receive window is longer when

using a PLFRCO compared to the LFXO. The images below show an empty packet taken from the peripheral device side with

1 second connection interval and 0 dBm output power. When using PLFRCO, the RX receive window is extended by ~250 µs.

The longer the connection intervals, the more pronounced the RX window extension compared to the LFXO usage.

Using the LFRCO as a Low Frequency Clock Source

268/1306

Note that when the peripheral device misses connection intervals (for example, if the device was temporarily out of range or

because of interference), the RX receive window is widened by the combined accuracy until the peripheral device is able to

catch the initial packet from the client. Consider a combined accuracy of +/-600 ppm. If the connection interval is 1 s and

the peripheral device misses a connection interval, the next interval's RX receive window will be widened by 600 µs = 600

parts of 1 million micro-seconds.

TX Power Settings

269/1306

TX Power Settings

Bluetooth TX Power Settings

Introduction

The default TX power used by the Bluetooth stack is +8 dBm, meaning that all of the advertisement packets and data

packets are transmitted with this power level (except if your device has a lower TX power capability). However, this can be

changed both in positive and negative direction. The actual TX power is determined by both the user configuration and the

actual circumstances. This document discusses how you can configure TX power and how the actual TX power will change.

Global Maximum and Minimum TX Power

The global maximum TX power can be set with the sl_bt_system_set_tx_power(int16_t min_power, int16_t max_power, int16_t *

set_min, int16_t * set_max) API command. The unit of the TX power is 0.1 dBm. To ensure safe functioning, suspend radio

operations for a short time while changing the TX power. For example, to set 2.3 dBm maximum TX power and 0 dBm

minimum TX power, use the following commands:

sl_bt_system_halt(1);

gecko_cmd_system_set_tx_power(0, 23, &set_min, &set_max);

sl_bt_system_halt(0);

Note that, although you can set the TX power with 0.1 dBm granularity, the low power PA cannot be set to arbitrary TX levels

– there are discrete power levels you can use. The set values are provided by the variables pointed to, by their arguments

set_min and set_max . Always check these values because it can be much higher/lower than the TX power you want to set.

The minimum TX power setting has no effect in Bluetooth stack if the LE Power Control (LEPC) is not enabled. LEPC is a new

feature introduced in BLE 5.2, which can be used to adjust a connected peer device’s transmit power level based on the

received signal strength. The feature is used only in connections and does not affect advertisements. To enable LECP ,

install the Power Control software component in your project.

However, the application may still use the set_min setting for other purposes than LEPC , e.g., setting the minimum TX

power for DTM transmitter test.”

On the other hand, by default, all radio operations use the global maximum TX power provided there are no other

constraints. The possible constraints are discussed in the following sections.

TX Power for Data Packets

Although the Bluetooth standard does not limit TX power, local regulatory bodies (CE, FCC, and so on) can define the

maximum TX power that can be used (see: TX Power Limitations for Regulatory Compliance). Different rules apply for

different regions. ETSI (European Telecommunications Standards Institute) has the strictest rules regarding the TX power.

Therefore, to comply with regulations in all regions, ETSI regulations have to be taken into account.

According to ETSI, the maximum allowed TX power on a Bluetooth connection is +20 dBm if Adaptive Frequency Hopping

(AFH) is enabled, and +10 dBm if AFH is not enabled or if AFH is enabled but less than 15 channels are available for use.

AFH can be enabled by installing the AFH software component in your project. For more information, see Adaptive

Frequency Hopping. If AFH is enabled, the Bluetooth stack automatically controls the TX power. If 15 or more channels are

available, TX power of data packets is set to the global maximum, which cannot be more than +20 dBm. If less than 15

channels are available, TX power is set to the minimum of the global maximum TX power and +10 dBm. If AFH is disabled, TX

power is set to the minimum of the global maximum TX power and +10 dBm.

TX Power Settings

270/1306

RF Path Compensation

The TX power set in the stack is the output power of the Power Amplifier (PA). However, your signal may suffer some loss

along the RF path, meaning that the actually radiated power is less than the power you set.

Beginning with Bluetooth SDK v2.9, the stack automatically controls the TX power according to the AFH settings.

Consequently, it needs to know how much loss your RF path introduces. The RF path loss can be set in the configuration of

the Bluetooth Core software component with 0.1 dBm granularity. For example, if you have a 3 dB loss, set the following in

the configuration.

The negative number means loss and positive number means gain. If you set +5 dBm with sl_bt_system_set_tx_power , it is +8

dBm on the output of the PA and +5 dBm radiated power.

RF path compensation can be set for the receive path as well (see RF RX path gain). In this case, the reported RSSI value

will be compensated with this value.

TX Power for Advertisement Packets

Bluetooth advertisements use three advertisement channels. As a result, even if AFH is enabled, the maximum TX power for

advertisements is +10 dBm. If you set the global maximum higher than this, advertisements will be transmitted with +10

dBm.

Extended advertisements use data channels, hence the extended advertisement packets can be transmitted with +20 dBm

if AFH is enabled and 15 or more data channels are available.

Since Bluetooth SDK v2.9, you can set different TX power levels for different advertisers. Use the following API command to

set the TX power for a specific advertiser (identified by an advertiser handle) in SDK v3.x:

sl_bt_advertiser_set_tx_power(uint8_t handle, uint16_t tx_power, uint16_t* set_power)

Note however, that you still cannot go beyond the global maximum TX power, i.e., if you set a TX power higher than the

global maximum, the global maximum will be applied (or +10 dBm if global TX power is higher than that). If you don't define

TX power for an advertiser, it will automatically use the global maximum (or +10 dBm if global TX power is higher than that).

If the advertiser is currently active, the TX power for the advertiser will change only after re-enabling it.

Supplying EFR32 PAVDD from 3.3 V

On EFR32 SoC based designs, you can supply the Power Amplifier voltage regulator VDD input (PAVDD) from the output of

the DC/DC or straight from a 3.3 V power supply. It is important for the Bluetooth stack to know which voltage is applied on

PAVDD to set the appropriate TX level.

Sample apps are configured to work well on Silicon Labs radio boards (PAVDD input is always selected based on the board

type). On custom config, however, you have to define if PAVDD is driven from 3.3 V (VBAT) or 1.8 V (DCDC).

If PAVDD is being supplied from DC/DC via VREGSW as shown in the first figure, enable Enable DC/DC Converter using

Services > Runtime > Device Initialization > Device Init: DC-DC software component. Otherwise, if PAVDD is supplied directly

without VREGSW as shown in the second figure, disable the Enable DC/DC Converter.

TX Power Settings

271/1306

Example

This guide has a related code example, here: Testing TX Power Levels

https://github.com/SiliconLabs/bluetooth_stack_features/tree/master/system_and_performance/testing_tx_power_levels

Current Consumption and TX Power

272/1306

Current Consumption and TX Power

Current Consumption Variation with TX Power

Introduction

This page discusses the current consumption for different TX power settings. The current consumption of the Blue Gecko

device EFR32BG13 is measured during advertisement. The test result can be used as a generic guideline to set the TX

power level in an energy-constrained system.

The SoC-iBeacon example running on EFR32BG13 radio board (BRD4104A) was used because it sets the device to

broadcast in non-connectable mode, which means that only TX and sleep events are observed in the Energy Profiler.

Current Consumption Breakdown

The total current consumption of a Bluetooth Low Energy (BLE) device may come from multiple sources such as the CPU,

crystal oscillator, peripherals (for example USART, RTCC, PTI, and so on) and the current consumption of radio which

typically has the largest energy footprint.

According to the EFR32BG13 data sheet, the current consumption of the CPU in EM0 mode with all peripherals disabled and

DCDC in low noise CCM mode (default setting of DCDC in the test application) is 97 uA/MHz. Therefore, the active CPU

core driven by 38.4 MHz HFXO will consume a total amount around 97*38.4 = 3.72 mA.

Also, typically the applications use multiple peripherals, such as RTCC, LDMA, PRS, USART, MSC, CRYPTO, and GPIO.

EFR32BG13 data sheet does not provide detailed typical current consumption of each peripheral, however, the

characteristics of EFM32LG can be used as a rough reference. Below are the electrical characteristics of digital peripherals

from EFM32LG data sheet. Depending on their usage, they may contribute up to hundreds of microamps (uA) in total current

consumption.

https://www.silabs.com/documents/public/data-sheets/efm32lg-datasheet.pdf

Current Consumption and TX Power

273/1306

The power consumption of the radio depends on the TX power level and the amount of time that radio is active for

transmitting and the active radio time affected by the PHY selection and the payload size.

The TX power level setting is always a trade-off between the required transfer range and current consumption. The distance

that the radio signal can travel increases as a result of increasing the TX power level, but, as a consequence, the current

consumption also increases. Note that, to improve the range performance of a bidirectional communication, both devices in

the communication should increase the TX power level. Otherwise, the range is limited to the smallest of the link budgets in

either direction.

Taking the EFR32BG13 for example, the current consumption of the device (MCU in EM1) with 3 dBm TX output power is

around 16.5 mA. The value rises to around 26.0 mA while setting the TX power to 8 dBm.

Practical Results

The Energy Profiler in Simplicity Studio is a software tool that works together with the Advanced Energy Monitoring (AEM)

circuitry built into the WSTK main board. It allows measuring the current consumption of the test device in real-time.

If the test device is programmed with the SoC-iBeacon example, it will broadcast a beacon every 100 ms with 0 dBm TX

power level by default and the device will enter sleep mode (EM2) between each two broadcasting events.

The image of the Energy Profiler below shows the active portion of the test device EFR32BG13 while sending out the

beacon. The measured average current consumption for the active portion is around 6.69 mA and the total average current

consumption of the device is 181.30 uA, which includes both active and sleep periods.

Current Consumption and TX Power

274/1306

The table below shows a summary of the current consumption measurements for different TX power levels.

The first column shows the maximum TX output power level.

The second columns shows the total average current consumption of the device

The third column shows the average during the beacon

The fourth column shows the RSSI detected by the smartphone near the test device

The two charts below illustrate the current consumption (Y-axis) from the table above, across the different TX power levels

(X-axis). It is easy to identify that there is no notable difference when decreasing the TX power from 0 dBm down to -26

dBm.

Current Consumption and TX Power

275/1306

Conclusion

Based on the measured results, lowering the TX power is beneficial but not across the entire TX Power scale. At a given

point, the TX current consumption will be much smaller in comparison with the other parts of the SoC (CPU, crystal) that

any further reduction will not have a significant impact on the overall figure.

In the case of EFR32BG13 which was used in this practical test, it may enough to set the TX power level to around 0 dBm for

saving power, but going below that will no longer affect the system current consumption significantly.

Example

This guide has a related code example, here: Testing TX Power Levels

https://github.com/SiliconLabs/bluetooth_stack_features/tree/master/system_and_performance/testing_tx_power_levels

Radio Task Priorities

276/1306

Radio Task Priorities

Bluetooth Radio Task Priorities
The Bluetooth stack often needs to run multiple tasks that use the radio at the same time. For example, you can

simultaneously send out advertisements and scan for new devices, keep alive multiple connections at the same time, or

initiate a new connection while still scanning for new devices. You can even initiate a new connection while you are

scanning for new devices, you are advertising, and you keep alive an already established connection.

In reality, the stack can only perform one task at a time (even though the tasks appear to run simultaneously). At any given

time, the radio can be only configured to do one of the following:

Send a packet

Receive a packet

Listen on a channel

As a result, simultaneous radio tasks need to be prioritized using the radio scheduler, which decides the order that tasks are

run in based on the priorities.

Default Priorities

The Bluetooth stack distinguishes four radio tasks:

Scanning

Advertising

Connection initiation

Connection maintenance

Scanning: Scanning involves listening for advertisement packets on the three advertisement channels and periodically

switching the channel. Scanning is a low-priority task, since missing a single advertisement is not a serious problem. Other

task may need to interrupt scanning at any time, for example to keep the connection alive.

Advertising: Advertising involves repeatedly sending out advertisement packets. Advertisement is also a low-priority task.

Because the exact timing of advertisements is not critical, advertisement packets can be delayed to free the radio for

higher-priority tasks.

Connection initiation: Connection initiation consists of scanning to find the advertisement of the device to connect to and

sending the connection request in the connection request window right after the advertisement. Connection initiation is a

high-priority task for the following reasons:

 Finding the very first advertisement to connect to quickly.

 The connection request needs to be sent accurately in the connection request window.

Connection maintenance: Connection maintenance requires the device sending out at least one packet to the peer device

and receive at least one packet from the peer device in every connection interval (Except when slave latency is defined, in

which case the slave can skip some connection intervals.) These packets need very strict timing, they cannot be delayed,

and missing lots of them may lead to connection loss, hence sending/receiving packets on a connection has a high priority.

The default priorities for the different tasks are listed here. Note that every task gets the minimum priority first which can be

increased up to the maximum priority during time. This is explained in the next section.

The lowest possible priority is 255 and the highest priority is 0.

Task Type Min. Priority Max. Priority

Scanning 191 143

Radio Task Priorities

277/1306

Task Type Min. Priority Max. Priority

Advertising 175 127

Connection init 55 15

Connection 135 0

Dynamic Priorities

The Bluetooth stack uses dynamic priorities, which means that every radio task starts with a lower priority, and every time

the task fails to be scheduled, its priority increases. This ensures that simultaneous tasks are served fairly. As shown in the

table of the previous section, all four radio task types have a minimum and a maximum priority. By default, the task-specific

minimum priority is assigned to the tasks, which can be increased up to the task-specific maximum priority. For example,

connections have a higher priority than advertisements. However, if many advertisement packets were not sent due to

connection maintenance, their priority can raise over the minimum connection priority, and for a short time advertisement

can have a higher priority.

Another example is when multiple connections are open and their transmit/receive windows overlap. In this case, the

connection with the highest priority is served. The priority of the served connection drops back to the minimum priority and

the priority of other colliding connections is increased. Hence, all connections are served within a reasonable time. The

priority is always increased such that it reaches 0 (highest) priority before the supervision timeout. For example, if you have

two connections with 100 ms and 10 s supervision timeouts respectively, the priority of the first one increases quickly while

the priority of the second one increases slowly. This ensures that all connections are served before their supervision

timeout.

For more information about Bluetooth priority handling, see UG305: Dynamic Multiprotocol User’s Guide.

Changing Priorities

The default priorities are chosen so that they can be used well in most use cases. However, default priorities may not always

provide an optimal solution. For example, if in your application it is not important to connect quickly but it is very important

to send data in every connection interval via an already established connection, you can lower the priority of the connection

initiation process.

The minimum and maximum priorities of each task type can be defined in a sl_bt_bluetooth_ll_priorities structure (find the

definition of the structure in sl_bt_ll_config.h). To overwrite the default priorities, add a new line to SL_BT_CONFIG_DEFAULT in

sl_bluetooth_config.h, as you see below:

sl_bt_bluetooth_ll_priorities ll_priorities = { 191, 143, //scan_min, scan_max

175, 127, //adv_min, adv_max

135, 0, //conn_min, conn_max

55, 15, //init_min, init_max

16, //rail_mapping_offset

16, //rail_mapping_range

0, //afh_scan_interval

4,4 //adv_step, scan_step

};

// Bluetooth configuration parameters (see sl_bt_stack_config.h)

#define SL_BT_CONFIG_DEFAULT

{

//...

.bluetooth.linklayer_priorities = &ll_priorities,

//...

};

*afh_scan_interval and adv_step/scan_step are not discussed here. rail_mapping_offset and rail_mapping_range are

discussed in the next section.

Alternatively the priority table can also be set with sl_bt_system_linklayer_configure() , using the config key

sl_bt_system_linklayer_config_key_set_priority_table.

https://www.silabs.com/documents/public/user-guides/ug305-dynamic-multiprotocol-users-guide.pdf

Radio Task Priorities

278/1306

Priorities in Bluetooth + RAIL DMP Application

In a Bluetooth + RAIL DMP application your proprietary protocol also needs to use radio priorities. In this case, the Bluetooth

priorities are mapped to a small range of the RAIL priorities, so that you can define radio tasks with a priority higher than the

highest Bluetooth priority and with a priority lower than the lowest Bluetooth priority. By default, Bluetooth priorities are

mapped to the 16..32 RAIL priority range meaning that the 0 Bluetooth priority corresponds to RAIL priority 16, and the 255

Bluetooth priority corresponds to RAIL priority 32. This can also be changed in the Bluetooth configuration structure with

the last two parameters of the linklayer_priorities. The offset defines the highest RAIL priority (that corresponds to 0

Bluetooth priority) and the range defines the difference between the lowest and highest priority (by default 32 - 16 = 16).

Production Approach to Setting a Custom BT Address

279/1306

Production Approach to Setting a Custom BT Address

Setting a Custom BT Address - Production
Approach

Introduction

The Bluetooth LE stack usually derives the BT address (sometimes referred to as MAC address) of a device from its Unique

Identifier, a 64-bit value located in the Device Information Page. This value is factory-programmed and not modifiable. Since

the BT address is only 48-bit long, part of the Unique Identifier is removed while deriving the address. See your device's

reference manual for more details on the Device Information page.

To extract the Unique Identifier from a radio board (e.g., BRD4182A - EFR32MG22), you can issue the following command

using Simplicity Commander in a Windows command prompt.

$ commander device info

You should get an output similar to this, notice the Unique ID value:

Part Number : EFR32MG22C224F512IM40

Die Revision : A2

Production Ver : 2

Flash Size : 512 kB

SRAM Size : 32 kB

Unique ID : 680ae2fffe2886c5

DONE

You can see the derived BT address after flashing the Bluetooth - SoC Empty example to the same device and scanning

nearby advertisers using the EFR connect mobile application. The following figure shows the expected output:

Notice how the address is the same as the Unique ID except for the middle 16 bits (0xFFFE), hence why the BT address is a

derived value. As mentioned before, this is the usual way for the BLE stack to acquire the BT address. Nonetheless, if a

valid BT address entry is in the non-volatile region of the device (NVM3 for series 2 devices and PS Store or NVM3 for

series 1), this value is used instead. For more details regarding non-volatile regions in the BLE stack, see the following

documentation:

Chapter 7.1 in UG434: Bluetooth C Application Developer's Guide

https://www.silabs.com/documents/public/user-guides/ug434-bluetooth-c-soc-dev-guide-sdk-v3x.pdf

Production Approach to Setting a Custom BT Address

280/1306

Consult UG136 instead if you are using SSv4.

Chapter 6 in AN1135: Using Third Generation Non-Volatile Memory. This document explains two methods to modify the non-

volatile region to set a custom BT address. Both could be suitable options in a production context:

 Custom Application method: The running application reads a token located in the User Data page, derives the BT address

from it, and stores it in the non-volatile region. This token is easily programmable through Simplicity Commander.

 Simplicity Commander method: Create a custom non-volatile region (NVM3) with the desired BT address with Simplicity

Commander. Flash the output binary to the device. This option is viable only if you're using NVM3 as the persistent storage

solution.

Note: The solutions underneath were tested on a BRD4182A (EFR32MG22) using the Bluetooth - SoC Empty example as a

baseline.

Methods

Custom Application

This approach uses a custom function that leverages the sl_bt_system_set_identity_address() and

sl_bt_system_get_identity_address() APIs. The steps are as follows:

First, create a new Bluetooth - SoC Empty example for your board. Open the app.c file of the project and copy the following

code snippet. This is the custom function responsible for updating the BT address.

#define MFG_CUSTOM_EUI_64_OFFSET 0�0002

static void sli_set_custom_bt_address(void)

{

 uint8_t *mfg_token = (uint8_t*)USERDATA_BASE + MFG_CUSTOM_EUI_64_OFFSET;

 bd_addr myaddr, cur_addr;

 uint8_t address_type;

 sl_status_t status;

//Adjust token byte Endianness

for(uint8_t i = 0; i < 6; i++) {

 myaddr.addr[i] = mfg_token[7-i];

}

//Get current BT address:

// Current address is derived from EUI64 in DEVINFO unless there's an NVM3

// valid entry

 status = sl_bt_system_get_identity_address(&cur_addr, &address_type);

if (status !� SL_STATUS_OK) {

while(1); //Issue retrieving the status

}

//Compare current and desired BT address, IF NOT EQUAL update and reset

// reset needed to apply BT address changes in stack

if((memcmp(&cur_addr, &myaddr, 6)) !� 0) {

 status = sl_bt_system_set_identity_address(myaddr,0); // set new BT address

if (status !� SL_STATUS_OK) {

while(1); //Issue setting the address

}

sl_bt_system_reset(0); // reset

}

}

Then, still in the app.c file, call the function inside the system boot event sl_bt_evt_system_boot_id as follows:

https://www.silabs.com/documents/public/user-guides/ug136-ble-c-soc-dev-guide.pdf
https://www.silabs.com/documents/public/application-notes/an1135-using-third-generation-nonvolatile-memory.pdf

Production Approach to Setting a Custom BT Address

281/1306

 switch (SL_BT_MSG_ID(evt->header)) {

// -------------------------------

// This event indicates the device has started and the radio is ready.

// Do not call any stack command before receiving this boot event!

 case sl_bt_evt_system_boot_id:

//Set custom bt address address

sli_set_custom_bt_address();

The following is a brief explanation of the function's operation:

Retrieve the MFG_CUSTOM_EUI_64 token from the user data page.

Adjust the byte endianness of the token to form the new BT address.
Retrieve the current BT address.
Update the BT address if the new BT address is different from the current one.

Reset the system.

This step is needed because the BT address is determined during the BLE stack initialization.

The BT address is ultimately derived from the MFG_CUSTOM_EUI_64 token in the User Data page in this example. Therefore,

you should flash the token before executing the application. To do this, use the following Simplicity Commander command:

$ commander flash --tokengroup znet --token "TOKEN_MFG_CUSTOM_EUI_64:0000AABBCCDDEE11"

Note that the two initial bytes are 0x0000. The reason is that the token is 8 bytes long but only 6 are needed. You should

get an output similar to this:

Writing 1024 bytes starting at address 0�0fe00000

Comparing range 0�0FE00000 - 0�0FE003FF (1024 Bytes)

DONE

You can verify that the token was properly flashed using the following command:

$ commander tokendump --tokengroup znet --token TOKEN_MFG_CUSTOM_EUI_64

You should get an output similar to this:

#

The token data can be in one of three main forms: byte-array, integer, or string.

Byte-arrays are a series of hexadecimal numbers of the required length.

Integers are BIF endian hexadecimal numbers.

String data is a quoted set of ASCII characters.

#

MFG_CUSTOM_EUI_64: 0000AABBCCDDEE11

Finally, compile the modified Bluetooth - SoC Empty project and flash the application to your device. You'll also need a

bootloader. Open the EFR connect application on your mobile phone and click on the Browser option to see a list of nearby

advertisers. Figure 2 below shows the output of the application. It displays the new BT address after flashing the token and

the custom Bluetooth - SoC Empty application.

Production Approach to Setting a Custom BT Address

282/1306

Notice that the Device Name is Custom MAC. By default it should be Empty Example. You can modify this through the GATT

configurator.

Simplicity Commander �Custom NVM3�

This method is a more advanced approach as it requires an understanding of the NVM3 and the available keys. In this case,

the application is not customized; instead, Simplicity Commander is used to create a blank NVM3 region in an image file.

This image is modified to add the desired BT address and flashed to the device. Note that this method will overwrite your

whole non-volatile memory area, only use it at production or if you are sure that your NVM is empty. The steps are as

follows:

First, generate a blank NVM3 image file using the following command:

$ commander nvm3 initfile --address 0x00074000 --size 0xA000 --device EFR32MG22 --outfile nvm3_custom_mac.s37

To determine the size of the NVM3, use the configuration of the "NVM3 Default Instance" software component as a

reference. The Silicon Labs example projects set 5 flash pages by default, seen in figure 3 below. The page size depends on

the device. For the EFR32MG22 each flash page is 8-kB. See your device's reference manual for details.

To determine the starting address, subtract six flash pages from the end address of the main flash (5 pages for the NVM3

and 1 page for manufacturing tokens). See chapter 7.1 in UG434 for flash distribution details in the BLE stack.

The output of the command is a blank NVM3 .s37 binary that can be customized and flashed to the device, useful to create

a default set of NVM3 data that can be written during production.

Next, add the desired BT address to the blank NVM3 image through a valid "key/value" pair. The "key" is specific to the BT

address and defined in the BLE stack as 0x4002C. The "value" is the desired 48-bit address. You can add the entry to the

blank NVM3 using two methods, the difference is the way the "key/value" pair is provided.

 As an argument:

$ commander nvm3 set nvm3_custom_mac.s37 --object 0x4002c:1122334455AA --outfile nvm3_custom_mac.s37

 Using a .txt file:

$ commander nvm3 set nvm3_custom_mac.s37 --nvm3file custom_eui48.txt --outfile nvm3_custom_mac.s37

https://www.silabs.com/documents/public/user-guides/ug434-bluetooth-c-soc-dev-guide-sdk-v3x.pdf

Production Approach to Setting a Custom BT Address

283/1306

The .txt file has a specific format. The block below shows the contents of the .txt file used for this example. For more

information, see the section "Write NVM3 Data Using a Text File" in UG162: Simplicity Commander Reference Guide.

0x4002c : OBJ : 1122334455AA

Optionally, you can verify that the entry was created in the custom NVM3 file through the following command:

$ commander nvm3 parse nvm3_custom_mac.s37

You should get an output similar to this:

Parsing file nvm3_custom_mac.s37...

Found NVM3 range: 0�00074000 - 0�0007E000

Using 4096 B as maximum object size, based on given size of NVM3 area.

All NVM3 objects:

 KEY - TYPE - SIZE - DATA

0�4002c - Data - 6 B - 11 22 33 44 55 AA

Finally, flash the custom NVM3 image to the device along with the desired application, in this case, the Bluetooth - SoC
Empty example and a bootloader. Figure 4 below shows the output of the EFR connect application with the new BT address.

Example

This guide has a related code example here: Setting a custom BT address.

https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf
https://github.com/SiliconLabs/bluetooth_stack_features/tree/master/system_and_performance/setting_custom_bt_address

Auto-PA Mode

284/1306

Auto-PA Mode

Bluetooth LE Auto PA mode

Introduction

The EFR32 families of chips each come equipped with two or three Power Amplifiers (PAs):

EFR32xG1x

A high-power 2.4 GHz PA (for power 20 dBm and lower)

A low-power 2.4 GHz PA (for power 0 dBm and lower)

EFR32xG21

A high-power 2.4 GHz PA (for power 20 dBm and lower)

A medium-power 2.4 GHz PA (for power 10 dBm and lower)

A low-power 2.4 GHz PA (for power 0 dBm and lower)

EFR32xG22

A high-power 2.4 GHz PA (for power 6 dBm and lower)

A low-power 2.4 GHz PA (for power 0 dBm and lower)

Each PA maps to different TX output power curves. While using high-power or medium-power PA, TX power under 0 dBm

may get a very inaccuracy output. While using low-power PA, TX power cannot set above 0 dBm. In most use cases, the

antenna matching network works well in one range only (either above 0 dBm or below 0 dBm), and hence this is not a big

problem. In some use cases, however, high accuracy output is needed both above and below 0 dBm. In this case, an

automatic switching between the PAs is needed. This article discusses how to achieve this.

Enabling Auto PA Mode

By default, the used PA can be configured under the configuration of RAIL Utility, PA software components, as shown here:

Auto-PA Mode

285/1306

However, this lets you select a fixed PA only, and does not enable auto PA mode. Currently, auto PA mode can be enabled in

source code by directly editing the config\sl_bluetooth_config.h in your project. Find the following configuration and change

the .pa.pa_mode to SL_BT_BLUETOOTH_PA_AUTOMODE:

#define SL_BT_CONFIG_DEFAULT \

{ \

.config_flags = SL_BT_CONFIG_FLAGS, \

.bluetooth.max_connections = SL_BT_CONFIG_MAX_CONNECTIONS_SUM, \

.bluetooth.max_advertisers = SL_BT_CONFIG_MAX_ADVERTISERS, \

.bluetooth.max_periodic_sync = SL_BT_CONFIG_MAX_PERIODIC_ADVERTISING_SYNC, \

.bluetooth.max_buffer_memory = SL_BT_CONFIG_BUFFER_SIZE, \

.scheduler_callback = SL_BT_CONFIG_LL_CALLBACK, \

.stack_schedule_callback = SL_BT_CONFIG_STACK_CALLBACK, \

.gattdb = &gattdb, \

.max_timers = SL_BT_CONFIG_MAX_SOFTWARE_TIMERS, \

.rf.tx_gain = SL_BT_CONFIG_RF_PATH_GAIN_TX, \

.rf.rx_gain = SL_BT_CONFIG_RF_PATH_GAIN_RX, \

.rf.tx_min_power = SL_BT_CONFIG_MIN_TX_POWER, \

.rf.tx_max_power = SL_BT_CONFIG_MAX_TX_POWER, \

.pa.config_enable = BT_PA_CONFIG_STATE, \

.pa.input = BT_PA_POWER_SUPPLY, \

.pa.pa_mode = SL_BT_BLUETOOTH_PA_AUTOMODE, \

}

Note that this, in itself, is not enough to switch between PAs automatically. You also have to define the rules of switching,

i.e., between what circumstances you want to switch PAs. To define this, RAIL provides the RAILCb_PaAutoModeDecision()

callback function, which can be overwritten in your application. For example, if you want to use high power PA above 10

dBm, mid power PA between 0 and 10 dBm and low power PA below 0 dBm, apply the following function:

Auto-PA Mode

286/1306

#include "rail.h"

RAIL_Status_t RAILCb_PaAutoModeDecision(RAIL_Handle_t railHandle,

 RAIL_TxPower_t *power,

 RAIL_TxPowerMode_t *mode,

 const RAIL_ChannelConfigEntry_t *chCfgEntry)

{

if(*power < 0) {

// Use the LP PA when is below 0dBm

*mode = RAIL_TX_POWER_MODE_2P4GIG_LP;

} else if((*power >= 0) && (*power <= 100)) {

// Use the MP PA when TX power is from 0dBm to 10dBm

*mode = RAIL_TX_POWER_MODE_2P4GIG_MP;

} else {

// Use the HP PA when TX power is over 10dBm

*mode = RAIL_TX_POWER_MODE_2P4GIG_HP;

}

return RAIL_STATUS_NO_ERROR;

}

Verification

To verify whether the Auto PA mode is working properly, first check the set_max value returned by the

sl_bt_system_set_tx_power() API command. This value tells you the actual (maximum) power level set by the stack, which may

differ from the originally requested value because of the limitation of different PAs. The table below shows the requested

and the actual set values for different TX power levels and different PA settings, tested on a EFR32xG21 chip. The following

code example may help to test the same on your board: Testing TX Power Levels.

Note, that the unit used here is 0.1 dBm.

Requested Set with HP PA Set with MP PA Set with LP PA Set with Auto PA

-260 -260 -260 -260 -260

-250 -260 -260 -246 -246

-240 -260 -260 -246 -246

-230 -260 -260 -231 -231

-220 -260 -260 -215 -215

-210 -260 -260 -215 -215

-200 -260 -260 -200 -200

-190 -260 -260 -184 -184

-180 -260 -260 -184 -184

-170 -155 -260 -169 -169

-160 -155 -144 -154 -154

-150 -155 -144 -154 -154

-140 -155 -144 -138 -138

-130 -113 -144 -123 -123

-120 -113 -96 -123 -123

-110 -113 -96 -108 -108

-100 -113 -96 -92 -92

-90 -72 -96 -92 -92

-80 -72 -96 -77 -77

-70 -63 -74 -68 -68

https://github.com/SiliconLabs/bluetooth_stack_features/tree/master/system_and_performance/testing_tx_power_levels

Auto-PA Mode

287/1306

Requested Set with HP PA Set with MP PA Set with LP PA Set with Auto PA

-60 -63 -57 -60 -60

-50 -46 -57 -48 -48

-40 -46 -40 -39 -39

-30 -24 -29 -29 -29

-20 -24 -19 -19 -19

-10 -13 -9 -9 -9

0 -3 1 -6 1

10 9 11 -6 11

20 21 17 -6 17

30 27 29 -6 29

40 39 41 -6 41

50 51 51 -6 51

60 59 61 -6 61

70 70 70 -6 70

80 74 80 -6 80

90 89 90 -6 90

100 101 100 -6 100

110 111 100 -6 111

120 118 100 -6 118

130 130 100 -6 130

140 140 100 -6 140

150 150 100 -6 150

160 160 100 -6 160

170 170 100 -6 170

180 180 100 -6 180

190 190 100 -6 190

200 200 100 -6 200

For a full verification, also check the TX power levels with a spectrum analyzer. In this case, the sl_bt_test_dtm_tx_v4() API is

recommended. This API lets you transmit packets continuously on a single channel with a given TX power. While

unmodulated carrier is the ideal signal to measure, the API does not allow setting unmodulated carrier with TX Power > 12.7

dBm. As a result, the packet type sl_bt_test_pkt_11111111 should be used.

Note that when you measure the output TX power, the matching network also plays a big role. For guidance about the

matching network design, see AN930.2.

Below you can see test results for two boards. Tester: Agilent E4405B spectrum analyzer Config: Frequency = 2440 MHz,

Span = 2 MHz, Amplitude ref = 20 dBm, Amplitude offset = 1.6 dB

 BRD4180A with original matching network, tested between 0 dBm and 20 dBm.

https://www.silabs.com/documents/public/application-notes/an930.2-efr32-series-2.pdf

Auto-PA Mode

288/1306

 BRD4179B with modified matching network to support low power PA (see AN930.2), tested between -26 dBm and 10 dBm:

https://www.silabs.com/documents/public/application-notes/an930.2-efr32-series-2.pdf

Auto-PA Mode

289/1306

Overview

290/1306

Overview

Bluetooth LE in Multiprotocol Applications
This section provides background information on multiprotocol applications, and details on using Bluetooth in multiprotocol

applications, including dynamic multiprotocol and concurrent multiprotocol models.

Multiprotocol Fundamentals (PDF): Describes the four multiprotocol modes, discusses considerations when selecting

protocols for multiprotocol implementations, and reviews the Radio Scheduler, a required component of a dynamic

multiprotocol solution.

Dynamic Multiprotocol User's Guide (PDF): Describes how to implement a dynamic multiprotocol solution.

Dynamic Multiprotocol Development with Bluetooth and Proprietary Protocols on RAIL in GSDK v3.x (PDF): Provides details

on how to develop a dynamic multiprotocol application running Bluetooth and aproprietary protocol on RAIL in GSDK v3.x.

Running Zigbee, OpenThread, and Bluetooth Concurrently on a Linux Host with a Multiprotocol RCP (PDF): Describes how

to run any combination of Zigbee EmberZNet, OpenThread, and Bluetooth networking stacks on a Linux host processor,

interfacing with a single EFR32 Radio Coprocessor (RCP) with multiprotocol and multi-PAN support.

https://www.silabs.com/documents/public/user-guides/ug103-16-multiprotocol-fundamentals.pdf
https://www.silabs.com/documents/public/user-guides/ug305-dynamic-multiprotocol-users-guide.pdf
https://www.silabs.com/documents/public/application-notes/an1269-bluetooth-rail-dynamic-multiprotocol-gsdk-v3x.pdf
https://www.silabs.com/documents/public/application-notes/an1333-concurrent-protocols-with-802-15-4-rcp.pdf

Overview

291/1306

Overview

Non-Volatile Data Storage
This section offers an introduction to non-volatile data storage and describes how to use NVM3 data storage.

Non-Volatile Data Storage Fundamentals (PDF): Introduces non-volatile data storage using flash and the three different

storage implementations offered for Silicon Labs microcontrollers and SoCs: Simulated EEPROM, PS Store, and NVM3.

Using NVM3 Data Storage (PDF): Explains how NVM3 can be used as non-volatile data storage in various protocol

implementations.

https://www.silabs.com/documents/public/user-guides/ug103-07-non-volatile-data-storage-fundamentals.pdf
https://www.silabs.com/documents/public/application-notes/an1135-using-third-generation-nonvolatile-memory.pdf

Overview

292/1306

Overview

Security
Silicon Labs offers a range of security features depending on the part you are using and your application and production

needs. As well as the security features available, this section describes security issues specific to Bluetooth.

Bluetooth Security Pairing Processes: Discusses the five different pairing processes that can be used to set up a secure

connection between two devices.

IoT Security Fundamentals (PDF): Introduces the security concepts that must be considered when implementing an Internet

of Things (IoT) system. Using the ioXt Alliance's eight security principles as a structure, it clearly delineates the solutions

Silicon Labs provides to support endpoint security and what you must do outside of the Silicon Labs framework.

Bluetooth Low Energy Application Security Design Considerations in SDK v3.x (PDF): Provides details on designing

Bluetooth Low Energy applications with security and privacy in mind.

Series 2 Secure Debug (PDF): Describes how to lock and unlock the debug access of EFR32 Gecko Series 2 devices. Many

aspects of the debug access, including the secure debug unlock are described. The Debug Challenge Interface (DCI) and

Secure Engine (SE) Mailbox Interface for locking and unlocking debug access are also included.

Production Programming of Series 2 Devices (PDF): Provides details on programming, provisioning, and configuring Series 2

devices in production environments. Covers Secure Engine Subsystem of Series 2 devices, which runs easily upgradeable

Secure Engine (SE) or Virtual Secure Engine (VSE) firmware.

Anti-Tamper Protection Configuration and Use (PDF): Anti-Tamper Protection Configuration and Use - Shows how to

program, provision, and configure the anti-tamper module on EFR32 Series 2 devices with Secure Vault.

Authenticating Silicon Labs Devices using Device Certificates (PDF): How to authenticate an EFR32 Series 2 device with

Secure Vault, using secure device certificates and signatures.

Secure Key Storage (PDF): Explains how to securely "wrap" keys in EFR32 Series 2 devices with Secure Vault, so they can be

stored in non-volatile storage.

Programming Series 2 Devices Using the DCI and SWD (PDF): Describes how to provision and configure Series 2 devices

through the DCI and SWD.

Integrating Crypto Functionality with PSA Crypto vs. Mbed TLS (PDF): Describes how to integrate crypto functionality into

applications using PSA Crypto compared to Mbed TLS.

Series 2 TrustZone (PDF): Provides background and information on implementing TrustZone on series 2 devices.

https://docs.silabs.com/bluetooth/6.1.0/bluetooth-security-pairing-processes
https://www.silabs.com/documents/public/user-guides/ug103-05-fundamentals-security.pdf
https://www.silabs.com/documents/public/application-notes/an1302-bluetooth-application-security-design-considerations.pdf
https://www.silabs.com/documents/public/application-notes/an1190-efr32-secure-debug.pdf
https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://www.silabs.com/documents/public/application-notes/an1247-efr32-secure-vault-tamper.pdf
https://www.silabs.com/documents/public/application-notes/an1268-efr32-secure-identity.pdf
https://www.silabs.com/documents/public/application-notes/an1271-efr32-secure-key-storage.pdf
https://www.silabs.com/documents/public/application-notes/an1303-efr32-dci-swd-programming.pdf
https://www.silabs.com/documents/public/application-notes/an1311-mbedtls-psa-crypto-porting-guide.pdf
https://www.silabs.com/documents/public/application-notes/an1374-trustzone.pdf

Security Pairing Processes

293/1306

Security Pairing Processes

Pairing Processes

Introduction

Silicon Labs Bluetooth stack implements Bluetooth security features, as described in Bluetooth Low Energy Application

Security Design Considerations in SDK v3.x (PDF).

This involves pairing processes to set up a secure connection between two devices. There are five different pairing

processes depending on the I/O capabilities of each devices, as follows:

Just works [this results in an unauthenticated but encrypted connection!]

Numeric Comparison [authenticated]

Passkey Entry (Initiator displays, Responder inputs) [authenticated]

Passkey Entry (Responder displays, Initiator inputs) [authenticated]

Passkey Entry (Responder and Initiator inputs) [authenticated]

The process is selected based on the I/O capabilities as summarized in the following table:

Each use case has a different sequence of events and commands which has to be followed. When implementing an

application, the developer has to consider all scenarios that may happen with the I/O capabilities of the device. For example,

if you have a device with DisplayOnly capability (you can display the 6 digit passkey but you have not inputs such as keys or

buttons) and you are supposed to be a Responder (e.g., you use a mobile application that will always initiate the bonding),

https://www.silabs.com/documents/public/application-notes/an1302-bluetooth-application-security-design-considerations.pdf

Security Pairing Processes

294/1306

you have to implement the Just Works and the Passkey Entry (R displays, I inputs) processes in your application, as these

are the possible scenarios according to the table above.

The pairing process is an interactive process because the user has to confirm the identity of the connecting devices, for

example by typing in the passkey. This interaction is realized with events raised by the stack and with commands sent to

the stack.

Note: You can enable automatic bonding confirmation by setting bit 3 in sm configuration flags to 0 (see

sl_bt_sm_configure(flags,io_capabilities)). In this case, “event sm_confirm_bonding” and “call sm_bonding_confirm” steps are

skipped in each processes. Do not confuse this with sl_bt_sm_set_bondable_mode(1), which has to always be set to 1 to

enable bonding processes. To learn more about sm configuration, see Bluetooth Low Energy Application Security Design

Considerations in SDK v3.x (PDF).

Just Works

In this use case you can't confirm the identity of the connecting devices, so no interaction is needed. Devices will pair with

encryption but without authentication.

Numeric Comparison

Both devices will display a 6-digit passkey. The user has to confirm that the two devices display the same passkey by

pressing a button. If the passkeys match, then there is no Man in the Middle (MITM) and the devices can exchange keys

securely. Note: to get the two passkeys on the two devices at the same time, disable automatic bonding confirmation (bit 3

in sm configuration flags).

https://www.silabs.com/documents/public/application-notes/an1302-bluetooth-application-security-design-considerations.pdf

Security Pairing Processes

295/1306

Passkey Entry: Responder Displays, Initiator Inputs

A passkey is displayed on the responder device, which has to be typed in with the use of the numeric keyboard on the

initiator device.

Passkey Entry: Initiator Displays, Responder Inputs

A passkey is displayed on the initiator, which has to be input on the responder device to confirm authentication.

Security Pairing Processes

296/1306

Passkey Entry: Initiator and Responder Input

In this scenario, both devices have to input a passkey. By contrast to other scenarios, where the passkey was generated

with either one of the devices, in this case, the user has to find out a key and enter the same key in both devices.

Example

Security Pairing Processes

297/1306

This guide has a related code example, here: Pairing Processes Example.

https://github.com/SiliconLabs/bluetooth_stack_features/tree/master/security/pairing_processes_example

Overview

298/1306

Overview

Operating Systems
The contents in this section discuss integrating and using Bluetooth applications with different operating systems.

Integrating v3.x Silicon Labs Bluetooth Applications with Real-Time Operating Systems (PDF): Describes how to integrate a

v3.x Silicon Labs Bluetooth application with an RTOS, and demonstrate how a time- and event-driven application can be run

in parallel with the Bluetooth stack.

Amazon FreeRTOS Architecture and Sample Applications (PDF): Summarizes Amazon FreeRTOS components and sample

applications, and explains how to use the examples to communicate with the Amazon Web Services (AWS) cloud with a smart

phone app.

Bluetooth and Zephyr: Contains links to information that will get you started developing on Zephyr.

https://www.silabs.com/documents/public/application-notes/an1260-integrating-v3x-bluetooth-applications-with-rtos.pdf
https://www.silabs.com/documents/public/application-notes/an1362-amazon-freertos-architecture-examples.pdf
https://docs.silabs.com/bluetooth/6.1.0/bluetooth-zephyr

Bluetooth and Zephyr OS

299/1306

Bluetooth and Zephyr OS

Bluetooth and Zephyr OS
The Zephyr operating system (OS) is based on a small-footprint kernel designed for use on resource-constrained and

embedded systems.

The Getting Started Guide describes how to:

Set up a command-line Zephyr development environment on Ubuntu, macOS, or Windows (instructions for other Linux

distributions are discussed in Install Linux Host Dependencies)

Get the source code

Build, flash, and run a sample application

A number of Silicon Labs parts support Zephyr development. The Thunderboard EFR32BG22 is a low-cost entry point. This

page provides information about the part and getting started with Bluetooth development.

https://docs.zephyrproject.org/latest/develop/getting_started/index.html
https://docs.zephyrproject.org/latest/boards/arm/efr32_thunderboard/doc/brd4184.html

Overview

300/1306

Overview

Coexistence
This section describes implementing managed coexistence to improve coexistence of Bluetooth with other protocol traffic.

Wi-Fi Coexistence Fundamentals (PDF): Introduces methods to improve the coexistence of 2.4 GHz IEEE 802.11b/g/n Wi-Fi

and other 2.4 GHz radios such as Bluetooth, Bluetooth Mesh, and Bluetooth Low Energy with IEEE 802.15.4-based radios

such as Zigbee and OpenThread.

Bluetooth Coexistence with Wi-Fi (PDF): Describes the Wi-Fi impact on Bluetooth and methods to improve Bluetooth

coexistence with Wi-Fi.Explains design considerations to improve coexistence without direct interaction between Bluetooth

and Wi-Fi radios.These techniques are applicable to the EFR32MGx and EFR32BGx series. Discusses the Silicon Labs Packet

Traffic Arbitration (PTA) support to coordinate 2.4GHz RF traffic for co-located Bluetooth and Wi-Fi radios.

https://www.silabs.com/documents/public/user-guides/ug103-17-wi-fi-coexistence-fundamentals.pdf
https://www.silabs.com/documents/public/application-notes/an1128-bluetooth-coexistence-with-wifi.pdf

Implementation Tips

301/1306

Implementation Tips

Implementation Tips

Why doesn't my Sample Application Run?

Starting in Bluetooth SDK version 2.7.x, the legacy bootloader was deprecated, which means that if you build and flash one

of our sample applications, you must now also build and flash the Gecko bootloader. The most reliable method is to build a

bootloader for your device depending on your requirements (e.g., OTA or UART DFU capability) and flash the bootloader

image using Simplicity Commander, as described on this page: Adding Gecko Bootloader to Bluetooth Projects. This ensures

that your device has both stages of the bootloader and will allow your application to run.

If your device does not have a bootloader, you might experience the application failing to start and the debugger showing

the message "failed to read memory" in the disassembly window.

Notes

On series 1 devices (EFR32xG1x) both first and second stage bootloader must be flashed to the device. After

building the bootloader, search for the image file that ends with -combined.s37.
On some devices the bootloader does not have a dedicated flash area (i.e., it is placed in the main flash to start

address 0x00000000), and therefore flashing the application in .bin format may overwrite the flashed bootloader.

Make sure to always use the .hex, .s37 or .gbl format when flashing the application to avoid erasing the

bootloader.

If you flash one of the precompiled demos from Simplicity Studio, it will also automatically flash a bootloader.

This is a fast way of flashing the bootloader if you are using the WSTK. If you are using custom hardware, build a

custom bootloader.

For more information about the Gecko bootloader, see UG489: Silicon Labs Gecko Bootloader User's Guide for GSDK 4.0

and Higher.

What is the Factory-Programmed Firmware in the BGMx Modules?

Bluetooth-capable SoCs (EFR32BG and EFR32MG devices) normally come without a preprogrammed firmware from the

factory. However, some Bluetooth modules (such as BGM111, BGM121, and so on) are preprogrammed with a default

firmware. The table below discusses the firmware that the different modules have when they are shipped from the factory.

Note that the default firmware is in most cases not suitable for production use because of the limitations mentioned later

in this document.

Factory Firmware

https://docs.silabs.com/bluetooth/6.1.0/bluetooth-bootloading-firmware-upgrade/adding-gecko-bootloader
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf

Implementation Tips

302/1306

Modules Factory Firmware

BGM111A256V2 BGM111A256V2R

BGM111E256V2 BGM111E256V2R

BGM113A256V2 BGM113A256V2R

These modules come with a default NCP firmware including Bluetooth stack

v1.0.0 (build 615) + a 4k UART bootloader.

BGM111A256V21 BGM111A256V21R

BGM111E256V21 BGM111E256V21R

BGM113A256V21 BGM113A256V21R

BGM121A256V2 BGM121A256V2R

BGM121N256V2 BGM121N256V2R

BGM123A256V2 BGM123A256V2R

BGM123N256V2 BGM123N256V2R

BGM11S12F256GA-V2 BGM11S12F256GA-

V2R BGM11S22F256GA-V2

BGM11S22F256GA-V2R

These modules come with a default NCP firmware including Bluetooth stack

v2.0.2 + a 16k UART bootloader.

Newer modules (such as BGM13P,

BGM220P, etc.)

The default (factory programmed) firmware is listed in the data sheet of the

module under Ordering Information. Pin configuration is also added to the

data sheet.

The pin configuration can be found in each device data sheets, in the typical connection diagrams chapter, Host UART

figure.

GATT Database of Factory Firmware

The factory firmware includes a default GATT database with default services, such as the Generic Access service. In most

applications, users will need custom characteristics added to the GATT database. The GATT database of the device can be

updated only by upgrading the device firmware. You can do this either by using the bootloader of the device or by flashing

the new firmware to the device.

Factory Firmware Bootloaders

The modules listed in the first two rows of the table are preprogrammed with a legacy UART bootloader (not Gecko UART

Bootloader). These bootloaders have limited capabilities:

With the 4k bootloader, you can't upgrade to the stack version v2.0 or newer

With the 16k bootloader, you can't upgrade to the stack version v2.7 or newer, since the new versions need Gecko

Bootloader

See Bluetooth version 2.9.1 release notes](https://www.silabs.com/documents/login/release-notes/bt-

software-release-notes-2.9.1.pdf)

With the 16k bootloader, you can upgrade to stack versions v2.0, v2.1, v2.3, v2.4, v2.6. However, you may need to modify the

linker script

The legacy bootloader doesn't have upgrade capability

Because of these limitations, expose the programming pins on your custom board and flash the devices with the latest

Gecko Bootloader and the latest Bluetooth stack. On new devices preprogrammed with the Gecko bootloader, use the

Gecko Bootloader to upgrade both the firmware and the bootloader.

Why is Pairing with iOS not Working?

Since iOS 9.1, pairing without bonding is no longer supported by iOS. Trying to pair when not in bondable mode will cause

the connection to fail for devices running iOS 9.1 or newer.

https://www.silabs.com/documents/login/release-notes/bt-software-release-notes-2.9.1.pdf

Overview

303/1306

Overview

Overview
This document contains the full API reference for the Silicon Labs Bluetooth Software.

The Blue Gecko family of the Silicon Labs' Bluetooth chipsets deliver a high performance, low energy and easy-to-use

Bluetooth solution integrated into a small form factor package.

The ultra-low power operating modes and fast wake-up times of the Silicon Labs' energy friendly 32-bit MCUs, combined

with the low transmit and receive power consumption of the Bluetooth radio, result in a solution optimized for battery

powered applications.

API Payload

The parameters of a Bluetooth API command, response, or event are passed between the application and firmware in a

payload. For example, a parameter of uint32_t type uses 4 bytes of the payload space. A byte array parameter uses one

byte to describe the length of the array. Data in the array is copied into the remaining free payload space.

API Payload Size

The maximum API payload size is 256 bytes for both NCP and SoC modes. When an application calls a command, the API

library checks the payload length and returns error code SL_STATUS_COMMAND_TOO_LONG (0x49) if the payload of input

parameters will cause an overflow. Error code SL_STATUS_WOULD_OVERFLOW (0x1d) is returned if the given size of an

output parameter is too small for response data.

Decode API Binary Data

For decoding a message in binary format, see Decode a BGAPI Message.

Deprecations

Deprecated commands, enumerations, and events are documented in this API reference manual. It is highly recommended

to migrate to the replacements as early as possible. A deprecated command may not support new features although it

remains functional on current Bluetooth stack. Deprecated items will be removed in some future release.

BGAPI Types

304/1306

BGAPI Types

Modules

uint8array

byte_array

bd_addr

uuid_128

aes_key_128

sl_bt_uuid_16_t

sl_bt_uuid_64_t

BGAPI Types
Common types in BGAPI protocol.

Macros

#define SL_BT_TYPE_UINT8ARRARY undefined

#define SL_BT_TYPE_BYTE_ARRARY undefined

#define SL_BT_TYPE_BDADDR undefined

#define SL_BT_TYPE_UUID128 undefined

#define SL_BT_TYPE_AES_KEY128 undefined

#define SL_BT_TYPE_UUID16 undefined

#define SL_BT_TYPE_UUID64 undefined

#define SL_BGAPI_MSG_HEADER_LEN �4�
The length of a BGAPI message header which is 4 bytes.

#define SL_BGAPI_MSG_DEVICE_TYPE �HDR�
Get the device type of a BGAPI message.

#define SL_BGAPI_MSG_ID �HDR�
Get the identifier of a BGAPI message including device type, class ID, message type and message ID.

#define SL_BGAPI_MSG_LEN �HDR�
Get the data payload length in a BGAPI message.

#define SL_BGAPI_BIT_ENCRYPTED �1 << 6�
The bit indicating whether data of a BGAPI message is encrypted.

#define SL_BGAPI_MSG_ENCRYPTED �HDR�
Check whether data of a BGAPI message is encrypted.

BGAPI Types

305/1306

Macro Definition Documentation

SL_BT_TYPE_UINT8ARRARY

#define SL_BT_TYPE_UINT8ARRARY

Definition at line 73 of file include/sl_bgapi.h

SL_BT_TYPE_BYTE_ARRARY

#define SL_BT_TYPE_BYTE_ARRARY

Definition at line 82 of file include/sl_bgapi.h

SL_BT_TYPE_BDADDR

#define SL_BT_TYPE_BDADDR

Definition at line 91 of file include/sl_bgapi.h

SL_BT_TYPE_UUID128

#define SL_BT_TYPE_UUID128

Definition at line 99 of file include/sl_bgapi.h

SL_BT_TYPE_AES_KEY128

#define SL_BT_TYPE_AES_KEY128

Definition at line 107 of file include/sl_bgapi.h

SL_BT_TYPE_UUID16

#define SL_BT_TYPE_UUID16

Definition at line 115 of file include/sl_bgapi.h

SL_BT_TYPE_UUID64

#define SL_BT_TYPE_UUID64

Definition at line 123 of file include/sl_bgapi.h

SL_BGAPI_MSG_HEADER_LEN

BGAPI Types

306/1306

#define SL_BGAPI_MSG_HEADER_LEN

Value:

�4�

The length of a BGAPI message header which is 4 bytes.

Definition at line 156 of file include/sl_bgapi.h

SL_BGAPI_MSG_DEVICE_TYPE

#define SL_BGAPI_MSG_DEVICE_TYPE

Value:

�HDR�

Get the device type of a BGAPI message.

Definition at line 163 of file include/sl_bgapi.h

SL_BGAPI_MSG_ID

#define SL_BGAPI_MSG_ID

Value:

�HDR�

Get the identifier of a BGAPI message including device type, class ID, message type and message ID.

Definition at line 171 of file include/sl_bgapi.h

SL_BGAPI_MSG_LEN

#define SL_BGAPI_MSG_LEN

Value:

�HDR�

Get the data payload length in a BGAPI message.

Definition at line 178 of file include/sl_bgapi.h

SL_BGAPI_BIT_ENCRYPTED

#define SL_BGAPI_BIT_ENCRYPTED

Value:

�1 << 6�

BGAPI Types

307/1306

The bit indicating whether data of a BGAPI message is encrypted.

Definition at line 183 of file include/sl_bgapi.h

SL_BGAPI_MSG_ENCRYPTED

#define SL_BGAPI_MSG_ENCRYPTED

Value:

�HDR�

Check whether data of a BGAPI message is encrypted.

Definition at line 190 of file include/sl_bgapi.h

uint8array

308/1306

uint8array

Variable-length uint8_t array. Maximum length: 255.

Public Attributes

uint8_t len

uint8_t data

Public Attribute Documentation

len

uint8_t uint8array::len

Number of bytes stored in data

Definition at line 76 of file include/sl_bgapi.h

data

uint8_t uint8array::data[]

Data bytes

Definition at line 77 of file include/sl_bgapi.h

byte_array

309/1306

byte_array

Variable-length int8_t array. Maximum length: 65535.

Public Attributes

uint16_t len

int8_t data

Public Attribute Documentation

len

uint16_t byte_array::len

Number of bytes stored in data

Definition at line 85 of file include/sl_bgapi.h

data

int8_t byte_array::data[]

Data bytes

Definition at line 86 of file include/sl_bgapi.h

bd_addr

310/1306

bd_addr

Bluetooth address.

Public Attributes

uint8_t addr
Bluetooth address in reverse byte order.

Public Attribute Documentation

addr

uint8_t bd_addr::addr[6]

Bluetooth address in reverse byte order.

Definition at line 94 of file include/sl_bgapi.h

uuid_128

311/1306

uuid_128

128-bit UUID

Public Attributes

uint8_t data

Public Attribute Documentation

data

uint8_t uuid_128::data[16]

128-bit UUID

Definition at line 102 of file include/sl_bgapi.h

aes_key_128

312/1306

aes_key_128

128-bit AES key

Public Attributes

uint8_t data

Public Attribute Documentation

data

uint8_t aes_key_128::data[16]

128-bit AES key

Definition at line 110 of file include/sl_bgapi.h

sl_bt_uuid_16_t

313/1306

sl_bt_uuid_16_t

16-bit UUID

Public Attributes

uint8_t data

Public Attribute Documentation

data

uint8_t sl_bt_uuid_16_t::data[2]

16-bit UUID

Definition at line 118 of file include/sl_bgapi.h

sl_bt_uuid_64_t

314/1306

sl_bt_uuid_64_t

64-bit UUID

Public Attributes

uint8_t data

Public Attribute Documentation

data

uint8_t sl_bt_uuid_64_t::data[8]

64-bit UUID

Definition at line 126 of file include/sl_bgapi.h

BT Common Types

315/1306

BT Common Types

Modules

sl_bt_msg

sl_bt_msg.data

BT Common Types
BT common types.

Typedefs

typedef struct
sl_bt_msg

sl_bt_msg_t
Type definition for the data structure of BT API messages.

Macros

#define SL_BT_INVALID_CONNECTION_HANDLE ((uint8_t) 0xFF�
Value used to indicate an invalid connection handle.

#define SL_BT_INVALID_BONDING_HANDLE ((uint8_t) 0xFF�
Value used to indicate an invalid bonding handle.

#define SL_BT_INVALID_ADVERTISING_SET_HANDLE ((uint8_t) 0xFF�
Value used to indicate an invalid advertising set handle.

#define SL_BT_INVALID_SYNC_HANDLE ((uint16_t) 0xFFFF�
Value used to indicate an invalid sync handle.

Typedef Documentation

sl_bt_msg_t

typedef struct sl_bt_msg sl_bt_msg_t

Type definition for the data structure of BT API messages.

Definition at line 14744 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

SL_BT_INVALID_CONNECTION_HANDLE

#define SL_BT_INVALID_CONNECTION_HANDLE

Value:

BT Common Types

316/1306

((uint8_t) 0xFF�

Value used to indicate an invalid connection handle.

Definition at line 51 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_INVALID_BONDING_HANDLE

#define SL_BT_INVALID_BONDING_HANDLE

Value:

((uint8_t) 0xFF�

Value used to indicate an invalid bonding handle.

Definition at line 56 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_INVALID_ADVERTISING_SET_HANDLE

#define SL_BT_INVALID_ADVERTISING_SET_HANDLE

Value:

((uint8_t) 0xFF�

Value used to indicate an invalid advertising set handle.

Definition at line 61 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_INVALID_SYNC_HANDLE

#define SL_BT_INVALID_SYNC_HANDLE

Value:

((uint16_t) 0xFFFF�

Value used to indicate an invalid sync handle.

Definition at line 66 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_msg

317/1306

sl_bt_msg

Data structure of BT API messages.

Public Attributes

uint32_t header

union
sl_bt_msg::@0

data

Public Attribute Documentation

header

uint32_t sl_bt_msg::header

API protocol header consisting of event identifier and data length

Definition at line 14655 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

data

union sl_bt_msg::@0 sl_bt_msg::data

Union of API event types

Definition at line 14738 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_msg.data

318/1306

sl_bt_msg.data

Union of API event types

Public Attributes

uint8_t handle

sl_bt_evt_dfu_boo
t_t

evt_dfu_boot

sl_bt_evt_dfu_boo
t_failure_t

evt_dfu_boot_failure

sl_bt_evt_system_
boot_t

evt_system_boot

sl_bt_evt_system_
error_t

evt_system_error

sl_bt_evt_system_
hardware_error_t

evt_system_hardware_error

sl_bt_evt_system_
resource_exhaust

ed_t

evt_system_resource_exhausted

sl_bt_evt_system_
external_signal_t

evt_system_external_signal

sl_bt_evt_system_
soft_timer_t

evt_system_soft_timer

sl_bt_evt_resourc
e_status_t

evt_resource_status

sl_bt_evt_advertis
er_timeout_t

evt_advertiser_timeout

sl_bt_evt_advertis
er_scan_request_t

evt_advertiser_scan_request

sl_bt_evt_periodic
_advertiser_status

_t

evt_periodic_advertiser_status

sl_bt_evt_scanner
_legacy_advertise
ment_report_t

evt_scanner_legacy_advertisement_report

sl_bt_evt_scanner
_extended_advert
isement_report_t

evt_scanner_extended_advertisement_report

sl_bt_evt_scanner
_scan_report_t

evt_scanner_scan_report

sl_bt_evt_sync_op
ened_t

evt_sync_opened

sl_bt_msg.data

319/1306

sl_bt_evt_sync_tra
nsfer_received_t

evt_sync_transfer_received

sl_bt_evt_sync_da
ta_t

evt_sync_data

sl_bt_evt_sync_cl
osed_t

evt_sync_closed

sl_bt_evt_periodic
_sync_opened_t

evt_periodic_sync_opened

sl_bt_evt_periodic
_sync_transfer_re

ceived_t

evt_periodic_sync_transfer_received

sl_bt_evt_periodic
_sync_report_t

evt_periodic_sync_report

sl_bt_evt_pawr_sy
nc_opened_t

evt_pawr_sync_opened

sl_bt_evt_pawr_sy
nc_transfer_recei

ved_t

evt_pawr_sync_transfer_received

sl_bt_evt_pawr_sy
nc_subevent_repo

rt_t

evt_pawr_sync_subevent_report

sl_bt_evt_pawr_a
dvertiser_subeve
nt_data_request_t

evt_pawr_advertiser_subevent_data_request

sl_bt_evt_pawr_a
dvertiser_subeve
nt_tx_failed_t

evt_pawr_advertiser_subevent_tx_failed

sl_bt_evt_pawr_a
dvertiser_respons

e_report_t

evt_pawr_advertiser_response_report

sl_bt_evt_connect
ion_opened_t

evt_connection_opened

sl_bt_evt_connect
ion_parameters_t

evt_connection_parameters

sl_bt_evt_connect
ion_phy_status_t

evt_connection_phy_status

sl_bt_evt_connect
ion_rssi_t

evt_connection_rssi

sl_bt_evt_connect
ion_get_remote_t
x_power_complet

ed_t

evt_connection_get_remote_tx_power_completed

sl_bt_evt_connect
ion_tx_power_t

evt_connection_tx_power

sl_bt_evt_connect
ion_remote_tx_po

wer_t

evt_connection_remote_tx_power

sl_bt_msg.data

320/1306

sl_bt_evt_connect
ion_remote_used_

features_t

evt_connection_remote_used_features

sl_bt_evt_connect
ion_data_length_t

evt_connection_data_length

sl_bt_evt_connect
ion_closed_t

evt_connection_closed

sl_bt_evt_gatt_mt
u_exchanged_t

evt_gatt_mtu_exchanged

sl_bt_evt_gatt_ser
vice_t

evt_gatt_service

sl_bt_evt_gatt_ch
aracteristic_t

evt_gatt_characteristic

sl_bt_evt_gatt_de
scriptor_t

evt_gatt_descriptor

sl_bt_evt_gatt_ch
aracteristic_value_

t

evt_gatt_characteristic_value

sl_bt_evt_gatt_de
scriptor_value_t

evt_gatt_descriptor_value

sl_bt_evt_gatt_pro
cedure_complete

d_t

evt_gatt_procedure_completed

sl_bt_evt_gatt_ser
ver_attribute_valu

e_t

evt_gatt_server_attribute_value

sl_bt_evt_gatt_ser
ver_user_read_re

quest_t

evt_gatt_server_user_read_request

sl_bt_evt_gatt_ser
ver_user_write_re

quest_t

evt_gatt_server_user_write_request

sl_bt_evt_gatt_ser
ver_characteristic

_status_t

evt_gatt_server_characteristic_status

sl_bt_evt_gatt_ser
ver_execute_write

_completed_t

evt_gatt_server_execute_write_completed

sl_bt_evt_gatt_ser
ver_indication_tim

eout_t

evt_gatt_server_indication_timeout

sl_bt_evt_gatt_ser
ver_notification_tx

_completed_t

evt_gatt_server_notification_tx_completed

sl_bt_evt_test_dt
m_completed_t

evt_test_dtm_completed

sl_bt_evt_sm_pas
skey_display_t

evt_sm_passkey_display

sl_bt_msg.data

321/1306

sl_bt_evt_sm_pas
skey_request_t

evt_sm_passkey_request

sl_bt_evt_sm_conf
irm_passkey_t

evt_sm_confirm_passkey

sl_bt_evt_sm_bon
ded_t

evt_sm_bonded

sl_bt_evt_sm_bon
ding_failed_t

evt_sm_bonding_failed

sl_bt_evt_sm_conf
irm_bonding_t

evt_sm_confirm_bonding

sl_bt_evt_external
_bondingdb_data_

request_t

evt_external_bondingdb_data_request

sl_bt_evt_external
_bondingdb_data_

t

evt_external_bondingdb_data

sl_bt_evt_external
_bondingdb_data_

ready_t

evt_external_bondingdb_data_ready

sl_bt_evt_cs_secu
rity_enable_compl

ete_t

evt_cs_security_enable_complete

sl_bt_evt_cs_confi
g_complete_t

evt_cs_config_complete

sl_bt_evt_cs_proc
edure_enable_co

mplete_t

evt_cs_procedure_enable_complete

sl_bt_evt_cs_resul
t_t

evt_cs_result

sl_bt_evt_l2cap_le
_channel_open_re

quest_t

evt_l2cap_le_channel_open_request

sl_bt_evt_l2cap_le
_channel_open_re

sponse_t

evt_l2cap_le_channel_open_response

sl_bt_evt_l2cap_c
hannel_data_t

evt_l2cap_channel_data

sl_bt_evt_l2cap_c
hannel_credit_t

evt_l2cap_channel_credit

sl_bt_evt_l2cap_c
hannel_closed_t

evt_l2cap_channel_closed

sl_bt_evt_l2cap_c
ommand_rejected

_t

evt_l2cap_command_rejected

sl_bt_evt_cte_rec
eiver_dtm_iq_repo

rt_t

evt_cte_receiver_dtm_iq_report

sl_bt_msg.data

322/1306

sl_bt_evt_cte_rec
eiver_connection_

iq_report_t

evt_cte_receiver_connection_iq_report

sl_bt_evt_cte_rec
eiver_connectionl
ess_iq_report_t

evt_cte_receiver_connectionless_iq_report

sl_bt_evt_cte_rec
eiver_silabs_iq_re

port_t

evt_cte_receiver_silabs_iq_report

sl_bt_evt_user_me
ssage_to_host_t

evt_user_message_to_host

uint8_t payload

Public Attribute Documentation

handle

Definition at line 14659 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_dfu_boot

Data field for dfu boot event

Definition at line 14660 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_dfu_boot_failure

Data field for dfu boot_failure event

Definition at line 14661 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_system_boot

Data field for system boot event

Definition at line 14662 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_system_error

Data field for system error event

sl_bt_msg.data

323/1306

Definition at line 14663 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_system_hardware_error

Data field for system hardware_error event

Definition at line 14664 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_system_resource_exhausted

Data field for system resource_exhausted event

Definition at line 14665 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_system_external_signal

Data field for system external_signal event

Definition at line 14666 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_system_soft_timer

Data field for system soft_timer event

Definition at line 14667 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_resource_status

Data field for resource status event

Definition at line 14668 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_advertiser_timeout

Data field for advertiser timeout event

Definition at line 14669 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_advertiser_scan_request

sl_bt_msg.data

324/1306

Data field for advertiser scan_request event

Definition at line 14670 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_periodic_advertiser_status

Data field for periodic_advertiser status event

Definition at line 14671 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_scanner_legacy_advertisement_report

Data field for scanner legacy_advertisement_report event

Definition at line 14672 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_scanner_extended_advertisement_report

Data field for scanner extended_advertisement_report event

Definition at line 14673 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_scanner_scan_report

Data field for scanner scan_report event

Definition at line 14674 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_sync_opened

Data field for sync opened event

Definition at line 14675 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_sync_transfer_received

Data field for sync transfer_received event

Definition at line 14676 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_msg.data

325/1306

evt_sync_data

Data field for sync data event

Definition at line 14677 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_sync_closed

Data field for sync closed event

Definition at line 14678 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_periodic_sync_opened

Data field for periodic_sync opened event

Definition at line 14679 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_periodic_sync_transfer_received

Data field for periodic_sync transfer_received event

Definition at line 14680 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_periodic_sync_report

Data field for periodic_sync report event

Definition at line 14681 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_pawr_sync_opened

Data field for pawr_sync opened event

Definition at line 14682 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_pawr_sync_transfer_received

Data field for pawr_sync transfer_received event

sl_bt_msg.data

326/1306

Definition at line 14683 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_pawr_sync_subevent_report

Data field for pawr_sync subevent_report event

Definition at line 14684 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_pawr_advertiser_subevent_data_request

Data field for pawr_advertiser subevent_data_request event

Definition at line 14685 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_pawr_advertiser_subevent_tx_failed

Data field for pawr_advertiser subevent_tx_failed event

Definition at line 14686 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_pawr_advertiser_response_report

Data field for pawr_advertiser response_report event

Definition at line 14687 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_connection_opened

Data field for connection opened event

Definition at line 14688 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_connection_parameters

Data field for connection parameters event

Definition at line 14689 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_connection_phy_status

sl_bt_msg.data

327/1306

Data field for connection phy_status event

Definition at line 14690 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_connection_rssi

Data field for connection rssi event

Definition at line 14691 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_connection_get_remote_tx_power_completed

Data field for connection get_remote_tx_power_completed event

Definition at line 14692 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_connection_tx_power

Data field for connection tx_power event

Definition at line 14693 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_connection_remote_tx_power

Data field for connection remote_tx_power event

Definition at line 14694 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_connection_remote_used_features

Data field for connection remote_used_features event

Definition at line 14695 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_connection_data_length

Data field for connection data_length event

Definition at line 14696 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_msg.data

328/1306

evt_connection_closed

Data field for connection closed event

Definition at line 14697 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_gatt_mtu_exchanged

Data field for gatt mtu_exchanged event

Definition at line 14698 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_gatt_service

Data field for gatt service event

Definition at line 14699 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_gatt_characteristic

Data field for gatt characteristic event

Definition at line 14700 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_gatt_descriptor

Data field for gatt descriptor event

Definition at line 14701 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_gatt_characteristic_value

Data field for gatt characteristic_value event

Definition at line 14702 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_gatt_descriptor_value

Data field for gatt descriptor_value event

sl_bt_msg.data

329/1306

Definition at line 14703 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_gatt_procedure_completed

Data field for gatt procedure_completed event

Definition at line 14704 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_gatt_server_attribute_value

Data field for gatt_server attribute_value event

Definition at line 14705 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_gatt_server_user_read_request

Data field for gatt_server user_read_request event

Definition at line 14706 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_gatt_server_user_write_request

Data field for gatt_server user_write_request event

Definition at line 14707 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_gatt_server_characteristic_status

Data field for gatt_server characteristic_status event

Definition at line 14708 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_gatt_server_execute_write_completed

Data field for gatt_server execute_write_completed event

Definition at line 14709 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_gatt_server_indication_timeout

sl_bt_msg.data

330/1306

Data field for gatt_server indication_timeout event

Definition at line 14710 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_gatt_server_notification_tx_completed

Data field for gatt_server notification_tx_completed event

Definition at line 14711 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_test_dtm_completed

Data field for test dtm_completed event

Definition at line 14712 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_sm_passkey_display

Data field for sm passkey_display event

Definition at line 14713 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_sm_passkey_request

Data field for sm passkey_request event

Definition at line 14714 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_sm_confirm_passkey

Data field for sm confirm_passkey event

Definition at line 14715 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_sm_bonded

Data field for sm bonded event

Definition at line 14716 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_msg.data

331/1306

evt_sm_bonding_failed

Data field for sm bonding_failed event

Definition at line 14717 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_sm_confirm_bonding

Data field for sm confirm_bonding event

Definition at line 14718 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_external_bondingdb_data_request

Data field for external_bondingdb data_request event

Definition at line 14719 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_external_bondingdb_data

Data field for external_bondingdb data event

Definition at line 14720 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_external_bondingdb_data_ready

Data field for external_bondingdb data_ready event

Definition at line 14721 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_cs_security_enable_complete

Data field for cs security_enable_complete event

Definition at line 14722 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_cs_config_complete

Data field for cs config_complete event

sl_bt_msg.data

332/1306

Definition at line 14723 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_cs_procedure_enable_complete

Data field for cs procedure_enable_complete event

Definition at line 14724 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_cs_result

Data field for cs result event

Definition at line 14725 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_l2cap_le_channel_open_request

Data field for l2cap le_channel_open_request event

Definition at line 14726 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_l2cap_le_channel_open_response

Data field for l2cap le_channel_open_response event

Definition at line 14727 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_l2cap_channel_data

Data field for l2cap channel_data event

Definition at line 14728 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_l2cap_channel_credit

Data field for l2cap channel_credit event

Definition at line 14729 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_l2cap_channel_closed

sl_bt_msg.data

333/1306

Data field for l2cap channel_closed event

Definition at line 14730 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_l2cap_command_rejected

Data field for l2cap command_rejected event

Definition at line 14731 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_cte_receiver_dtm_iq_report

Data field for cte_receiver dtm_iq_report event

Definition at line 14732 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_cte_receiver_connection_iq_report

Data field for cte_receiver connection_iq_report event

Definition at line 14733 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_cte_receiver_connectionless_iq_report

Data field for cte_receiver connectionless_iq_report event

Definition at line 14734 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_cte_receiver_silabs_iq_report

Data field for cte_receiver silabs_iq_report event

Definition at line 14735 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

evt_user_message_to_host

Data field for user message_to_host event

Definition at line 14736 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_msg.data

334/1306

payload

Definition at line 14737 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Device Firmware Update

335/1306

Device Firmware Update

Modules

sl_bt_evt_dfu_boot

sl_bt_evt_dfu_boot_failure

Device Firmware Update
Device Firmware Update.

These commands and events are related to controlling firmware updates over the configured host interface and are

available only when the device is booted in DFU mode. DFU process:

 Boot device to DFU mode with the Bootloader interface

 Wait for sl_bt_evt_dfu_boot event

 Send command sl_bt_dfu_flash_set_address command to start the firmware update

 Upload the firmware with sl_bt_dfu_flash_upload commands until all data is uploaded

 Send sl_bt_dfu_flash_upload_finish command when all data is uploaded

 Finalize DFU firmware update with sl_bt_system_reset command

DFU mode is using the UART baudrate set in bootloader.

Functions

sl_status_t sl_bt_dfu_flash_set_address(uint32_t address)

sl_status_t sl_bt_dfu_flash_upload(size_t data_len, const uint8_t *data)

sl_status_t sl_bt_dfu_flash_upload_finish()

Macros

#define sl_bt_cmd_dfu_flash_set_address_id 0�01000020

#define sl_bt_cmd_dfu_flash_upload_id 0�02000020

#define sl_bt_cmd_dfu_flash_upload_finish_id 0�03000020

#define sl_bt_rsp_dfu_flash_set_address_id 0�01000020

#define sl_bt_rsp_dfu_flash_upload_id 0�02000020

#define sl_bt_rsp_dfu_flash_upload_finish_id 0�03000020

Function Documentation

sl_bt_dfu_flash_set_address

Device Firmware Update

336/1306

sl_status_t sl_bt_dfu_flash_set_address (uint32_t address)

Parameters

[in] address The offset in the flash where the new firmware is uploaded to. Always use the value 0x00000000.

After re-booting the local device in DFU mode, this command defines the starting address on the flash where the new

firmware will be written.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 179 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_dfu_flash_upload

sl_status_t sl_bt_dfu_flash_upload (size_t data_len, const uint8_t *data)

Parameters

[in] data_len Length of data in data

[in] data An array of data which will be written onto the flash.

Upload the whole firmware image file into the Bluetooth device. The passed data length must be a multiple of 4 bytes.

Because the BGAPI command payload size is limited, multiple commands need to be issued one after the other until the

whole firmware image file is uploaded to the device. After each command, the next address of the flash sector in memory to

write to is automatically updated by the bootloader.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 196 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_dfu_flash_upload_finish

sl_status_t sl_bt_dfu_flash_upload_finish ()

Inform the device that the DFU file is fully uploaded. To return the device back to normal mode, issue the command

sl_bt_system_reset.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 207 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_dfu_flash_set_address_id

#define sl_bt_cmd_dfu_flash_set_address_id

Value:

Device Firmware Update

337/1306

0x01000020

Definition at line 117 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_dfu_flash_upload_id

#define sl_bt_cmd_dfu_flash_upload_id

Value:

0�02000020

Definition at line 118 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_dfu_flash_upload_finish_id

#define sl_bt_cmd_dfu_flash_upload_finish_id

Value:

0�03000020

Definition at line 119 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_dfu_flash_set_address_id

#define sl_bt_rsp_dfu_flash_set_address_id

Value:

0�01000020

Definition at line 120 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_dfu_flash_upload_id

#define sl_bt_rsp_dfu_flash_upload_id

Value:

0�02000020

Definition at line 121 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_dfu_flash_upload_finish_id

#define sl_bt_rsp_dfu_flash_upload_finish_id

Value:

0�03000020

Definition at line 122 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_dfu_boot

338/1306

sl_bt_evt_dfu_boot

Modules

sl_bt_evt_dfu_boot_s

sl_bt_evt_dfu_boot
This event indicates that the device booted in DFU mode and is now ready to receive commands related to device firmware

upgrade (DFU).

Typedefs

typedef struct
sl_bt_evt_dfu_boo

t_s

sl_bt_evt_dfu_boot_t

Macros

#define sl_bt_evt_dfu_boot_id 0�000000a0
Identifier of the boot event.

Typedef Documentation

sl_bt_evt_dfu_boot_t

typedef struct sl_bt_evt_dfu_boot_s sl_bt_evt_dfu_boot_t

Definition at line 142 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_dfu_boot_id

#define sl_bt_evt_dfu_boot_id

Value:

0�000000a0

Identifier of the boot event.

Definition at line 132 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_dfu_boot_s

339/1306

sl_bt_evt_dfu_boot_s

Data structure of the boot event.

Public Attributes

uint32_t version

Public Attribute Documentation

version

uint32_t sl_bt_evt_dfu_boot_s::version

The version of the bootloader

Definition at line 139 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_dfu_boot_failure

340/1306

sl_bt_evt_dfu_boot_failure

Modules

sl_bt_evt_dfu_boot_failure_s

sl_bt_evt_dfu_boot_failure
This event indicates that an error, which prevents the device from booting, has occurred in bootloader.

Typedefs

typedef struct
sl_bt_evt_dfu_boo

t_failure_s

sl_bt_evt_dfu_boot_failure_t

Macros

#define sl_bt_evt_dfu_boot_failure_id 0�010000a0
Identifier of the boot_failure event.

Typedef Documentation

sl_bt_evt_dfu_boot_failure_t

typedef struct sl_bt_evt_dfu_boot_failure_s sl_bt_evt_dfu_boot_failure_t

Definition at line 164 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_dfu_boot_failure_id

#define sl_bt_evt_dfu_boot_failure_id

Value:

0�010000a0

Identifier of the boot_failure event.

Definition at line 154 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_dfu_boot_failure_s

341/1306

sl_bt_evt_dfu_boot_failure_s

Data structure of the boot_failure event.

Public Attributes

uint16_t reason

Public Attribute Documentation

reason

uint16_t sl_bt_evt_dfu_boot_failure_s::reason

The reason for boot failure.

Definition at line 161 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

System

342/1306

System

Modules

sl_bt_evt_system_boot

sl_bt_evt_system_error

sl_bt_evt_system_hardware_error

sl_bt_evt_system_resource_exhausted

sl_bt_evt_system_external_signal

sl_bt_evt_system_awake

sl_bt_evt_system_soft_timer

System
System.

Commands and events in this class can be used to access and query the local device.

Enumerations

enum sl_bt_system_boot_mode_t {

sl_bt_system_boot_mode_normal = 0�0
sl_bt_system_boot_mode_uart_dfu = 0�1
sl_bt_system_boot_mode_ota_dfu = 0�2

}
Specifies the mode that the system will boot into.

enum sl_bt_system_linklayer_config_key_t {

sl_bt_system_linklayer_config_key_halt = 0�1
sl_bt_system_linklayer_config_key_priority_range = 0�2
sl_bt_system_linklayer_config_key_scan_channels = 0�3
sl_bt_system_linklayer_config_key_set_flags = 0�4
sl_bt_system_linklayer_config_key_clr_flags = 0�5
sl_bt_system_linklayer_config_key_set_afh_interval = 0�7
sl_bt_system_linklayer_config_key_set_priority_table = 0�9
sl_bt_system_linklayer_config_key_set_rx_packet_filtering = 0xa
sl_bt_system_linklayer_config_key_set_simultaneous_scanning = 0xb
sl_bt_system_linklayer_config_key_set_channelmap_flags = 0xc
sl_bt_system_linklayer_config_key_power_control_golden_range = 0�10
sl_bt_system_linklayer_config_key_active_scanner_backoff_upper_limit = 0�11
sl_bt_system_linklayer_config_key_afh_rssi_threshold = 0�12
sl_bt_system_linklayer_config_key_afh_channel_cooldown = 0�13
sl_bt_system_linklayer_config_key_set_report_all_scan_rsps = 0�14

}
These Keys are used to configure Link Layer Operation.

Functions

System

343/1306

sl_status_t sl_bt_system_hello()

sl_status_t sl_bt_system_start_bluetooth()

sl_status_t sl_bt_system_stop_bluetooth()

sl_status_t sl_bt_system_get_version(uint16_t *major, uint16_t *minor, uint16_t *patch, uint16_t *build, uint32_t
*bootloader, uint32_t *hash)

void sl_bt_system_reset(uint8_t dfu)

sl_status_t sl_bt_system_halt(uint8_t halt)

sl_status_t sl_bt_system_linklayer_configure(uint8_t key, size_t data_len, const uint8_t *data)

sl_status_t sl_bt_system_set_tx_power(int16_t min_power, int16_t max_power, int16_t *set_min, int16_t *set_max)

sl_status_t sl_bt_system_get_tx_power_setting(int16_t *support_min, int16_t *support_max, int16_t *set_min, int16_t
*set_max, int16_t *rf_path_gain)

sl_status_t sl_bt_system_set_identity_address(bd_addr address, uint8_t type)

sl_status_t sl_bt_system_get_identity_address(bd_addr *address, uint8_t *type)

sl_status_t sl_bt_system_get_random_data(uint8_t length, size_t max_data_size, size_t *data_len, uint8_t *data)

sl_status_t sl_bt_system_data_buffer_write(size_t data_len, const uint8_t *data)

sl_status_t sl_bt_system_data_buffer_clear()

sl_status_t sl_bt_system_get_counters(uint8_t reset, uint16_t *tx_packets, uint16_t *rx_packets, uint16_t *crc_errors,
uint16_t *failures)

sl_status_t sl_bt_system_set_lazy_soft_timer(uint32_t time, uint32_t slack, uint8_t handle, uint8_t single_shot)

Macros

#define sl_bt_cmd_system_hello_id 0�00010020

#define sl_bt_cmd_system_start_bluetooth_id 0�1c010020

#define sl_bt_cmd_system_stop_bluetooth_id 0�1d010020

#define sl_bt_cmd_system_get_version_id 0�1b010020

#define sl_bt_cmd_system_reset_id 0�01010020

#define sl_bt_cmd_system_halt_id 0�0c010020

#define sl_bt_cmd_system_linklayer_configure_id 0�0e010020

#define sl_bt_cmd_system_set_tx_power_id 0�17010020

#define sl_bt_cmd_system_get_tx_power_setting_id 0�18010020

#define sl_bt_cmd_system_set_identity_address_id 0�13010020

#define sl_bt_cmd_system_get_identity_address_id 0�15010020

#define sl_bt_cmd_system_get_random_data_id 0�0b010020

System

344/1306

#define sl_bt_cmd_system_data_buffer_write_id 0�12010020

#define sl_bt_cmd_system_data_buffer_clear_id 0�14010020

#define sl_bt_cmd_system_get_counters_id 0�0f010020

#define sl_bt_cmd_system_set_lazy_soft_timer_id 0�1a010020

#define sl_bt_rsp_system_hello_id 0�00010020

#define sl_bt_rsp_system_start_bluetooth_id 0�1c010020

#define sl_bt_rsp_system_stop_bluetooth_id 0�1d010020

#define sl_bt_rsp_system_get_version_id 0�1b010020

#define sl_bt_rsp_system_reset_id 0�01010020

#define sl_bt_rsp_system_halt_id 0�0c010020

#define sl_bt_rsp_system_linklayer_configure_id 0�0e010020

#define sl_bt_rsp_system_set_tx_power_id 0�17010020

#define sl_bt_rsp_system_get_tx_power_setting_id 0�18010020

#define sl_bt_rsp_system_set_identity_address_id 0�13010020

#define sl_bt_rsp_system_get_identity_address_id 0�15010020

#define sl_bt_rsp_system_get_random_data_id 0�0b010020

#define sl_bt_rsp_system_data_buffer_write_id 0�12010020

#define sl_bt_rsp_system_data_buffer_clear_id 0�14010020

#define sl_bt_rsp_system_get_counters_id 0�0f010020

#define sl_bt_rsp_system_set_lazy_soft_timer_id 0�1a010020

Enumeration Documentation

sl_bt_system_boot_mode_t

sl_bt_system_boot_mode_t

Specifies the mode that the system will boot into.

Enumerator

sl_bt_system_boot_mode_normal

sl_bt_system_boot_mode_uart_dfu

sl_bt_system_boot_mode_ota_dfu

Definition at line 258 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_system_linklayer_config_key_t

sl_bt_system_linklayer_config_key_t

System

345/1306

Enumerator

sl_bt_system_linklayer_config_key_halt

sl_bt_system_linklayer_config_key_priority_range

sl_bt_system_linklayer_config_key_scan_channels

sl_bt_system_linklayer_config_key_set_flags

sl_bt_system_linklayer_config_key_clr_flags

sl_bt_system_linklayer_config_key_set_afh_interval

sl_bt_system_linklayer_config_key_set_priority_table

sl_bt_system_linklayer_config_key_set_rx_packet_filtering

sl_bt_system_linklayer_config_key_set_simultaneous_scanning

sl_bt_system_linklayer_config_key_set_channelmap_flags

sl_bt_system_linklayer_config_key_power_control_golden_range

sl_bt_system_linklayer_config_key_active_scanner_backoff_upper_limit

sl_bt_system_linklayer_config_key_afh_rssi_threshold

sl_bt_system_linklayer_config_key_afh_channel_cooldown

sl_bt_system_linklayer_config_key_set_report_all_scan_rsps

Definition at line 268 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Function Documentation

sl_bt_system_hello

sl_status_t sl_bt_system_hello ()

Verify whether the communication between the host and the device is functional.

NOTE: This command is available even if the Bluetooth stack has not been started. See sl_bt_system_start_bluetooth for

description of how the Bluetooth stack is started.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 964 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_system_start_bluetooth

sl_status_t sl_bt_system_start_bluetooth ()

If the Bluetooth on-demand start component is not included in the application build, the Bluetooth stack is automatically

started at UC initialization time. In this configuration, the on-demand start command is not available and the command

returns the error SL_STATUS_NOT_AVAILABLE.

When the Bluetooth on-demand start component is included in the application build, this command is used by the

application to request starting the Bluetooth stack when the application needs it. If the command returns a success result,

the stack starts to asynchronously allocate the resources and configure the Bluetooth stack based on the configuration

passed at UC initialization time.

Successful start of the stack is indicated by the sl_bt_evt_system_boot event. The configured classes and Bluetooth stack

features are available after the application has received the sl_bt_evt_system_boot event. If starting the Bluetooth stack

fails, the error is indicated to the application with the sl_bt_evt_system_error event.

Returns

System

346/1306

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 990 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_system_stop_bluetooth

sl_status_t sl_bt_system_stop_bluetooth ()

If the Bluetooth on-demand start component is not included in the application build, the Bluetooth stack is automatically

started at UC initialization time and never stopped. In this configuration, the stop command is not available and the

command returns the error SL_STATUS_NOT_AVAILABLE.

When the Bluetooth on-demand start component is included in the application build, this command is used by the

application to stop the Bluetooth stack when the application no longer needs it. This command gracefully restores Bluetooth

to an idle state by disconnecting any active connections and stopping any on-going advertising and scanning. Any

resources that were allocated when the stack was started are freed when the stack is stopped. After this command, the

BGAPI classes other than System become unavailable. The application can use the command sl_bt_system_start_bluetooth

to continue using Bluetooth later.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 1013 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_system_get_version

sl_status_t sl_bt_system_get_version (uint16_t *major, uint16_t *minor, uint16_t *patch, uint16_t *build, uint32_t *bootloader,
uint32_t *hash)

Parameters

[out] major Major release version

[out] minor Minor release version

[out] patch Patch release number

[out] build Build number

[out] bootloader Unused. Ignore this field.

[out] hash Version hash

Get the firmware version information.

NOTE: This command is available even if the Bluetooth stack has not been started. See sl_bt_system_start_bluetooth for

description of how the Bluetooth stack is started.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 1033 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_system_reset

void sl_bt_system_reset (uint8_t dfu)

Parameters

System

347/1306

[in] dfu Enum sl_bt_system_boot_mode_t. Boot mode. Values:

sl_bt_system_boot_mode_normal (0x0): Boot to normal mode

sl_bt_system_boot_mode_uart_dfu (0x1): Boot to UART DFU mode

sl_bt_system_boot_mode_ota_dfu (0x2): Boot to OTA DFU mode

This parameter is ignored on EFR series 2 devices.

Reset the system. This command does not have a response.

On EFR series 1 devices, this command boots into the given mode and triggers one of the boot events (normal reset or boot

to DFU mode) depending on the given boot mode.

On EFR series 2 devices, the dfu parameter is ignored and this command always boots the user application. To boot into a

DFU mode on series 2, use the Bootloader API bootloader_rebootAndInstall .

NOTE: This command is available even if the Bluetooth stack has not been started. See sl_bt_system_start_bluetooth for

description of how the Bluetooth stack is started.

Events

sl_bt_evt_system_boot - Sent after the device has booted in normal mode.

sl_bt_evt_dfu_boot - Sent after the device has booted in UART DFU mode.

Definition at line 1072 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_system_halt

sl_status_t sl_bt_system_halt (uint8_t halt)

Parameters

[in] halt Values:

1: halt

0: resume

Force radio to idle state and allow device to sleep. Advertising, scanning, connections, and software timers are halted by

this command. Halted operations resume after calling this command with parameter 0. Connections stay alive if the system

is resumed before connection supervision timeout.

Use this command only for a short time period (maximum few seconds). Although it halts Bluetooth activity, all tasks and

operations still exist inside the stack with their own concepts of time. Halting the system for a long time period may have

negative consequences on stack's internal states.

NOTE: The software timer is also halted. Hardware interrupts are the only way to wake up from energy mode 2 when the

system is halted.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 1096 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_system_linklayer_configure

sl_status_t sl_bt_system_linklayer_configure (uint8_t key, size_t data_len, const uint8_t *data)

Parameters

System

348/1306

[in] key Enum sl_bt_system_linklayer_config_key_t. Key to configure. Values:

sl_bt_system_linklayer_config_key_halt (0x1): Same as system_halt command, value-0 Stop Radio 1-

Start Radio

sl_bt_system_linklayer_config_key_priority_range (0x2): Sets the RAIL priority_mapping offset field

of the link layer priority configuration structure to the first byte of the value field.

sl_bt_system_linklayer_config_key_scan_channels (0x3): Sets channels to scan on. The first byte of

the value is the channel map. 0x1 = Channel 37, 0x2 = Channel 38, 0x4 = Channel 39

sl_bt_system_linklayer_config_key_set_flags (0x4): Sets the link layer configuration flags. The value

is a little endian 32-bit integer. Flag Values:

0x00000001 - Disable Feature Exchange in peripheral role of the connection

0x00000002 - Disable Feature Exchange in central role of the connection

sl_bt_system_linklayer_config_key_clr_flags (0x5): The value is flags to clear. Flags are the same as

in SET_FLAGS command.

sl_bt_system_linklayer_config_key_set_afh_interval (0x7): Set the afh_scan_interval. Value is in units

of 10 ms. Setting the interval to 0 will result in using the default value of 1 second.

sl_bt_system_linklayer_config_key_set_priority_table (0x9): The value contains a priority table to be

copied over the existing table. If the value is smaller than the full table, only those values are

updated. See sl_bt_bluetooth_ll_priorities struct for the definition of a priority table.

sl_bt_system_linklayer_config_key_set_rx_packet_filtering (0xa): Configure and enable or disable

RX packet filtering feature. Value: >= 5 bytes.

Byte 1 - The filter count

Byte 2 - The filter offset

Byte 3 - The length of the filter list

Byte 4 - The bitmask flags

Rest of the data - The filter list

sl_bt_system_linklayer_config_key_set_simultaneous_scanning (0xb): Enable or disable

simultaneous scanning on the 1M and Coded PHYs. Value: 1 byte.

0 - Disable simultaneous scanning.

1 - Enable simultaneous scanning.

sl_bt_system_linklayer_config_key_set_channelmap_flags (0xc): Configure channelmap adaptivity

flags. Value: 4 bytes.

sl_bt_system_linklayer_config_key_power_control_golden_range (0x10): Set Power Control golden

range parameters. The value is a 8-bytes long array that consists of 4 pairs of golden range

configurations. In each pair, the first byte is the lower RSSI boundary and the second byte is the

upper RSSI boundary. RSSI values are in dBm. This configuration is not allowed if there are active

Bluetooth connections.

Byte 1 - Minimal RSSI on 1M PHY

Byte 2 - Maximal RSSI on 1M PHY

Byte 3 - Minimal RSSI on 2M PHY

Byte 4 - Maximal RSSI on 2M PHY

Byte 5 - Minimal RSSI on Coded PHY S=8

Byte 6 - Maximal RSSI on Coded PHY S=8

Byte 7 - Minimal RSSI on Coded PHY S=2

Byte 8 - Maximal RSSI on Coded PHY S=2

sl_bt_system_linklayer_config_key_active_scanner_backoff_upper_limit (0x11): Value: uint16_t

Adjust upper limit for backoff counter. If 0 restores default value of 256 Value must be between 16 -

256

sl_bt_system_linklayer_config_key_afh_rssi_threshold (0x12): Value: int8_t Configures RSSI limit for

AFH channel blocking

sl_bt_system_linklayer_config_key_afh_channel_cooldown (0x13): Value: int16_t Configures how

long channel is blocked after activity is detected Default: 8000

sl_bt_system_linklayer_config_key_set_report_all_scan_rsps (0x14): Value: uint8_t 0 - default, only

reports scan responses that is received after sending scan_req nonzero - Will report all scan

responses that are received on primary advertising channels

[in] data_len Length of data in data

[in] data Configuration data. Length and contents of the data field depend on the key value used.

System

349/1306

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 1184 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_system_set_tx_power

sl_status_t sl_bt_system_set_tx_power (int16_t min_power, int16_t max_power, int16_t *set_min, int16_t *set_max)

Parameters

[in] min_power Minimum radiated TX power. Unit: 0.1 dBm. For example, the value 10 means 1 dBm.

[in] max_power Maximum radiated TX power. Unit: 0.1 dBm. For example, the value 10 means 1 dBm.

[out] set_min The selected minimum radiated TX power. Unit: 0.1 dBm

[out] set_max The selected maximum radiated TX power. Unit: 0.1 dBm

Set the global minimum and maximum radiated TX power levels for Bluetooth. This returns selected power levels that are

radiated from the antenna at TX. The transmitter power at antenna pin will apply the RF TX path gain to match this setting.

RF TX path gain can be set in the Bluetooth configuration. If the GATT server contains a TX power service, the TX Power

Level attribute will be updated with the selected maximum power level.

A selected power level may be different than the requested value because of Bluetooth feature restrictions or the device's

radio characteristics. For Bluetooth connections, the maximum radiated TX power is limited to 10 dBm if Adaptive Frequency

Hopping (AFH) is not enabled.

The minimum TX power setting is used by LE power control. It has no effect in Bluetooth stack if the LE power control

feature is not enabled. However, the application may still use this setting for other purposes, e.g., setting the minimum TX

power for DTM transmitter test.

The minimum and maximum radiated TX power levels can also be configured in the Bluetooth configuration and passed into

the Bluetooth stack initialization. By default, the minimum radiated TX power level is configured to -3 dBm and the maximum

radiated TX power level to 8 dBm.

NOTE: Do not use this command while advertising or scanning. Furthermore, the stack does not allow setting TX powers

during connections.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 1225 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_system_get_tx_power_setting

sl_status_t sl_bt_system_get_tx_power_setting (int16_t *support_min, int16_t *support_max, int16_t *set_min, int16_t
*set_max, int16_t *rf_path_gain)

Parameters

[out] support_min The minimum radiated TX power the device supports. Unit: 0.1 dBm

[out] support_max The maximum radiated TX power the device supports. Unit: 0.1 dBm

[out] set_min The minimum radiated TX power currently set in stack. Unit: 0.1 dBm

[out] set_max The maximum radiated TX power currently set in stack. Unit: 0.1 dBm

[out] rf_path_gain TX RF path gain. Unit: 0.1 dBm

System

350/1306

Get TX power settings including the minimum and maximum radiated TX power levels the device supports, the minimum and

maximum radiated TX power levels currently set in the stack, and the TX RF path gain configuration.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 1249 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_system_set_identity_address

sl_status_t sl_bt_system_set_identity_address (bd_addr address, uint8_t type)

Parameters

[in] address Bluetooth identity address in little endian format

[in] type Enum sl_bt_gap_address_type_t. Identity address type. Values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

Store the device's Bluetooth identity address in persistent storage using NVM keys. The address can be a public device

address or a static device address. The stack returns an error if the static device address does not conform to the Bluetooth

specification.

The new address will be effective in the next system reboot. The stack will use the address in the NVM keys when present.

Otherwise, it uses the default Bluetooth public device address which is programmed at production.

The stack treats 00:00:00:00:00:00 and ff:ff:ff:ff:ff:ff as invalid addresses. Therefore, passing one of them into this

command will cause the stack to delete the NVM keys and use the default address in the next system reboot.

Note: Because the NVM keys are located in flash and flash wearing can occur, avoid calling this command regularly.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 1283 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_system_get_identity_address

sl_status_t sl_bt_system_get_identity_address (bd_addr *address, uint8_t *type)

Parameters

[out] address Bluetooth identity address in little endian format

[out] type Enum sl_bt_gap_address_type_t. Identity address type. Values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

Read the Bluetooth identity address used by the device, which can be a public or random static device address.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 1299 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

System

351/1306

sl_bt_system_get_random_data

sl_status_t sl_bt_system_get_random_data (uint8_t length, size_t max_data_size, size_t *data_len, uint8_t *data)

Parameters

[in] length Length of random data.

[in] max_data_size Size of output buffer passed in data

[out] data_len On return, set to the length of output data written to data

[out] data Random data

Get random data.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 1314 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_system_data_buffer_write

sl_status_t sl_bt_system_data_buffer_write (size_t data_len, const uint8_t *data)

Parameters

[in] data_len Length of data in data

[in] data Data to write

Write data into the system data buffer. Data will be appended to the end of existing data.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 1330 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_system_data_buffer_clear

sl_status_t sl_bt_system_data_buffer_clear ()

Remove all data from the system data buffer.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 1341 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_system_get_counters

sl_status_t sl_bt_system_get_counters (uint8_t reset, uint16_t *tx_packets, uint16_t *rx_packets, uint16_t *crc_errors,
uint16_t *failures)

Parameters

System

352/1306

[in] reset Reset counters if the parameter value is not zero.

[out] tx_packets The number of successfully transmitted packets

[out] rx_packets The number of successfully received packets

[out] crc_errors The number of received packets with CRC errors

[out] failures The number of radio failures, such as aborted TX/RX packets, scheduling failures, and so on.

Get packet and error counters. Passing a non-zero value also resets counters.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 1357 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_system_set_lazy_soft_timer

sl_status_t sl_bt_system_set_lazy_soft_timer (uint32_t time, uint32_t slack, uint8_t handle, uint8_t single_shot)

Parameters

[in] time An interval between how often to send events in hardware clock ticks (1 second is equal to 32768

ticks).

The smallest interval value supported is 328, which is around 10 milliseconds. Any parameters between

0 and 328 will be rounded up to 328. The maximum value is 2147483647, which corresponds to about

18.2 hours.

If time is 0, removes the scheduled timer with the same handle.

[in] slack Slack time in hardware clock ticks

[in] handle Timer handle to use, which is returned in timeout event

[in] single_shot Timer mode. Values:

0: false (timer is repeating)

1: true (timer runs only once)

Deprecated . Use the sleeptimer component (in platform services category) for timers. Because the sleeptimer does not

support a timer with slack yet, the Bluetooth stack will continue to support this command until another component provides

the functionality.

Start a software timer with slack. The slack parameter allows the stack to optimize wakeups and save power. The timer

event is triggered between time and time + slack .

Multiple concurrent timers can be running simultaneously. 256 unique timer handles (IDs) are available. The maximum

number of concurrent timers is configurable at device initialization. Up to 16 concurrent timers can be configured. The

default configuration is 4. As the RAM for storing timer data is pre-allocated at initialization, an application should not

configure the amount more than it needs for minimizing RAM usage.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_system_soft_timer - Sent after this timer has lapsed.

Definition at line 1403 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

System

353/1306

Macro Definition Documentation

sl_bt_cmd_system_hello_id

#define sl_bt_cmd_system_hello_id

Value:

0�00010020

Definition at line 222 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_system_start_bluetooth_id

#define sl_bt_cmd_system_start_bluetooth_id

Value:

0�1c010020

Definition at line 223 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_system_stop_bluetooth_id

#define sl_bt_cmd_system_stop_bluetooth_id

Value:

0�1d010020

Definition at line 224 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_system_get_version_id

#define sl_bt_cmd_system_get_version_id

Value:

0�1b010020

Definition at line 225 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_system_reset_id

#define sl_bt_cmd_system_reset_id

Value:

0�01010020

Definition at line 226 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_system_halt_id

System

354/1306

#define sl_bt_cmd_system_halt_id

Value:

0x0c010020

Definition at line 227 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_system_linklayer_configure_id

#define sl_bt_cmd_system_linklayer_configure_id

Value:

0�0e010020

Definition at line 228 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_system_set_tx_power_id

#define sl_bt_cmd_system_set_tx_power_id

Value:

0�17010020

Definition at line 229 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_system_get_tx_power_setting_id

#define sl_bt_cmd_system_get_tx_power_setting_id

Value:

0�18010020

Definition at line 230 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_system_set_identity_address_id

#define sl_bt_cmd_system_set_identity_address_id

Value:

0�13010020

Definition at line 231 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_system_get_identity_address_id

#define sl_bt_cmd_system_get_identity_address_id

Value:

System

355/1306

0x15010020

Definition at line 232 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_system_get_random_data_id

#define sl_bt_cmd_system_get_random_data_id

Value:

0�0b010020

Definition at line 233 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_system_data_buffer_write_id

#define sl_bt_cmd_system_data_buffer_write_id

Value:

0�12010020

Definition at line 234 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_system_data_buffer_clear_id

#define sl_bt_cmd_system_data_buffer_clear_id

Value:

0�14010020

Definition at line 235 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_system_get_counters_id

#define sl_bt_cmd_system_get_counters_id

Value:

0�0f010020

Definition at line 236 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_system_set_lazy_soft_timer_id

#define sl_bt_cmd_system_set_lazy_soft_timer_id

Value:

0�1a010020

Definition at line 237 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

System

356/1306

sl_bt_rsp_system_hello_id

#define sl_bt_rsp_system_hello_id

Value:

0�00010020

Definition at line 238 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_system_start_bluetooth_id

#define sl_bt_rsp_system_start_bluetooth_id

Value:

0�1c010020

Definition at line 239 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_system_stop_bluetooth_id

#define sl_bt_rsp_system_stop_bluetooth_id

Value:

0�1d010020

Definition at line 240 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_system_get_version_id

#define sl_bt_rsp_system_get_version_id

Value:

0�1b010020

Definition at line 241 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_system_reset_id

#define sl_bt_rsp_system_reset_id

Value:

0�01010020

Definition at line 242 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_system_halt_id

#define sl_bt_rsp_system_halt_id

System

357/1306

Value:

0x0c010020

Definition at line 243 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_system_linklayer_configure_id

#define sl_bt_rsp_system_linklayer_configure_id

Value:

0�0e010020

Definition at line 244 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_system_set_tx_power_id

#define sl_bt_rsp_system_set_tx_power_id

Value:

0�17010020

Definition at line 245 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_system_get_tx_power_setting_id

#define sl_bt_rsp_system_get_tx_power_setting_id

Value:

0�18010020

Definition at line 246 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_system_set_identity_address_id

#define sl_bt_rsp_system_set_identity_address_id

Value:

0�13010020

Definition at line 247 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_system_get_identity_address_id

#define sl_bt_rsp_system_get_identity_address_id

Value:

0�15010020

Definition at line 248 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

System

358/1306

sl_bt_rsp_system_get_random_data_id

#define sl_bt_rsp_system_get_random_data_id

Value:

0�0b010020

Definition at line 249 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_system_data_buffer_write_id

#define sl_bt_rsp_system_data_buffer_write_id

Value:

0�12010020

Definition at line 250 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_system_data_buffer_clear_id

#define sl_bt_rsp_system_data_buffer_clear_id

Value:

0�14010020

Definition at line 251 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_system_get_counters_id

#define sl_bt_rsp_system_get_counters_id

Value:

0�0f010020

Definition at line 252 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_system_set_lazy_soft_timer_id

#define sl_bt_rsp_system_set_lazy_soft_timer_id

Value:

0�1a010020

Definition at line 253 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_system_boot

359/1306

sl_bt_evt_system_boot

Modules

sl_bt_evt_system_boot_s

sl_bt_evt_system_boot
Indicates that the device has started and the radio is ready.

This event carries the firmware build number and other software and hardware identification codes.

Typedefs

typedef struct
sl_bt_evt_system_

boot_s

sl_bt_evt_system_boot_t

Macros

#define sl_bt_evt_system_boot_id 0�000100a0
Identifier of the boot event.

Typedef Documentation

sl_bt_evt_system_boot_t

typedef struct sl_bt_evt_system_boot_s sl_bt_evt_system_boot_t

Definition at line 781 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_system_boot_id

#define sl_bt_evt_system_boot_id

Value:

0�000100a0

Identifier of the boot event.

Definition at line 763 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_system_boot_s

360/1306

sl_bt_evt_system_boot_s

Data structure of the boot event.

Public Attributes

uint16_t major

uint16_t minor

uint16_t patch

uint16_t build

uint32_t bootloader

uint16_t hw

uint32_t hash

Public Attribute Documentation

major

uint16_t sl_bt_evt_system_boot_s::major

Major release version

Definition at line 770 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

minor

uint16_t sl_bt_evt_system_boot_s::minor

Minor release version

Definition at line 771 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

patch

uint16_t sl_bt_evt_system_boot_s::patch

Patch release number

Definition at line 772 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

build

sl_bt_evt_system_boot_s

361/1306

uint16_t sl_bt_evt_system_boot_s::build

Build number

Definition at line 773 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

bootloader

uint32_t sl_bt_evt_system_boot_s::bootloader

Unused. Ignore this field.

Definition at line 774 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

hw

uint16_t sl_bt_evt_system_boot_s::hw

Hardware type: the major chip revision number in the most significant byte and the minor revision in the least significant

byte

Definition at line 775 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

hash

uint32_t sl_bt_evt_system_boot_s::hash

Version hash

Definition at line 778 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_system_error

362/1306

sl_bt_evt_system_error

Modules

sl_bt_evt_system_error_s

sl_bt_evt_system_error
Indicates that an error has occurred.

See error codes table for more information.

Typedefs

typedef struct
sl_bt_evt_system_

error_s

sl_bt_evt_system_error_t

Macros

#define sl_bt_evt_system_error_id 0�060100a0
Identifier of the error event.

Typedef Documentation

sl_bt_evt_system_error_t

typedef struct sl_bt_evt_system_error_s sl_bt_evt_system_error_t

Definition at line 805 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_system_error_id

#define sl_bt_evt_system_error_id

Value:

0�060100a0

Identifier of the error event.

Definition at line 794 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_system_error_s

363/1306

sl_bt_evt_system_error_s

Data structure of the error event.

Public Attributes

uint16_t reason

uint8array data

Public Attribute Documentation

reason

uint16_t sl_bt_evt_system_error_s::reason

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 801 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

data

uint8array sl_bt_evt_system_error_s::data

Data related to the error; this field can be empty.

Definition at line 802 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_system_hardware_error

364/1306

sl_bt_evt_system_hardware_error

Modules

sl_bt_evt_system_hardware_error_s

sl_bt_evt_system_hardware_error
Indicates that a hardware-related error has occurred.

Typedefs

typedef struct
sl_bt_evt_system_
hardware_error_s

sl_bt_evt_system_hardware_error_t

Macros

#define sl_bt_evt_system_hardware_error_id 0�050100a0
Identifier of the hardware_error event.

Typedef Documentation

sl_bt_evt_system_hardware_error_t

typedef struct sl_bt_evt_system_hardware_error_s sl_bt_evt_system_hardware_error_t

Definition at line 826 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_system_hardware_error_id

#define sl_bt_evt_system_hardware_error_id

Value:

0�050100a0

Identifier of the hardware_error event.

Definition at line 816 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_system_hardware_error_s

365/1306

sl_bt_evt_system_hardware_error_s

Data structure of the hardware_error event.

Public Attributes

uint16_t status

Public Attribute Documentation

status

uint16_t sl_bt_evt_system_hardware_error_s::status

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 823 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_system_resource_exhausted

366/1306

sl_bt_evt_system_resource_exhausted

Modules

sl_bt_evt_system_resource_exhausted_s

sl_bt_evt_system_resource_exhausted
Indicates that a system resource has been exhausted during the operation of the Bluetooth stack.

If resource errors occur already when the Bluetooth stack is starting, the error is reported directly as a return value from

sl_bt_stack_init (when the Bluetooth on-demand start component is not included in the application build), or from

sl_bt_system_start_bluetooth (when the on-demand start component is included). The fields of this event indicate how

many failures have occurred for a specific resource. If further resource failures occur while this event is already queued in

the BGAPI event queue but not yet delivered to the application, the new failures are included in the already queued event.

When the application receives this event, the fields represent the number of failures that have occurred since the previous

sl_bt_evt_system_resource_exhausted event.

Typedefs

typedef struct
sl_bt_evt_system_
resource_exhaust

ed_s

sl_bt_evt_system_resource_exhausted_t

Macros

#define sl_bt_evt_system_resource_exhausted_id 0�080100a0
Identifier of the resource_exhausted event.

Typedef Documentation

sl_bt_evt_system_resource_exhausted_t

typedef struct sl_bt_evt_system_resource_exhausted_s sl_bt_evt_system_resource_exhausted_t

Definition at line 887 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_system_resource_exhausted_id

#define sl_bt_evt_system_resource_exhausted_id

Value:

0�080100a0

sl_bt_evt_system_resource_exhausted

367/1306

Identifier of the resource_exhausted event.

Definition at line 850 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_system_resource_exhausted_s

368/1306

sl_bt_evt_system_resource_exhausted_s

Data structure of the resource_exhausted event.

Public Attributes

uint8_t num_buffers_discarded

uint8_t num_buffer_allocation_failures

uint8_t num_heap_allocation_failures

Public Attribute Documentation

num_buffers_discarded

uint8_t sl_bt_evt_system_resource_exhausted_s::num_buffers_discarded

The system has temporarily run out of the pre-allocated data buffers that are allocated based on

SL_BT_CONFIG_BUFFER_SIZE configuration and some expendable data or event had to be discarded to satisfy a non-

expendble buffer allocation. A typical case is discarding scan reports when a large inflow of scan reports exceeds the speed

at which the application drains the BGAPI event queue.

Definition at line 857 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

num_buffer_allocation_failures

uint8_t sl_bt_evt_system_resource_exhausted_s::num_buffer_allocation_failures

The system has run out of the pre-allocated data buffers that are allocated based on SL_BT_CONFIG_BUFFER_SIZE

configuration and a buffer allocation has failed.

Definition at line 870 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

num_heap_allocation_failures

uint8_t sl_bt_evt_system_resource_exhausted_s::num_heap_allocation_failures

The Bluetooth stack has failed to make an allocation from the heap. Note that only allocations made by the Bluetooth stack

are detected and reported by this field. Allocation failures in other components that use sl_malloc() or malloc() are not

included in this count.

Definition at line 876 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_system_external_signal

369/1306

sl_bt_evt_system_external_signal

Modules

sl_bt_evt_system_external_signal_s

sl_bt_evt_system_external_signal
Indicates that the external signals have been received.

External signals are generated from the native application.

Typedefs

typedef struct
sl_bt_evt_system_
external_signal_s

sl_bt_evt_system_external_signal_t

Macros

#define sl_bt_evt_system_external_signal_id 0�030100a0
Identifier of the external_signal event.

Typedef Documentation

sl_bt_evt_system_external_signal_t

typedef struct sl_bt_evt_system_external_signal_s sl_bt_evt_system_external_signal_t

Definition at line 911 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_system_external_signal_id

#define sl_bt_evt_system_external_signal_id

Value:

0�030100a0

Identifier of the external_signal event.

Definition at line 900 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_system_external_signal_s

370/1306

sl_bt_evt_system_external_signal_s

Data structure of the external_signal event.

Public Attributes

uint32_t extsignals

Public Attribute Documentation

extsignals

uint32_t sl_bt_evt_system_external_signal_s::extsignals

Bitmask of external signals received since last event.

Definition at line 907 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_system_awake

371/1306

sl_bt_evt_system_awake

sl_bt_evt_system_awake
Indicates that the device is awake and no longer in sleep mode.

NOTE: Stack does not generate this event by itself because sleep and wakeup are managed by applications. If this event is

needed, call function sl_bt_send_system_awake, which signals the stack to send the event.

Macros

#define sl_bt_evt_system_awake_id 0�040100a0
Identifier of the awake event.

Macro Definition Documentation

sl_bt_evt_system_awake_id

#define sl_bt_evt_system_awake_id

Value:

0�040100a0

Identifier of the awake event.

Definition at line 926 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_system_soft_timer

372/1306

sl_bt_evt_system_soft_timer

Modules

sl_bt_evt_system_soft_timer_s

sl_bt_evt_system_soft_timer
Indicates that a soft timer has lapsed.

Typedefs

typedef struct
sl_bt_evt_system_

soft_timer_s

sl_bt_evt_system_soft_timer_t

Macros

#define sl_bt_evt_system_soft_timer_id 0�070100a0
Identifier of the soft_timer event.

Typedef Documentation

sl_bt_evt_system_soft_timer_t

typedef struct sl_bt_evt_system_soft_timer_s sl_bt_evt_system_soft_timer_t

Definition at line 947 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_system_soft_timer_id

#define sl_bt_evt_system_soft_timer_id

Value:

0�070100a0

Identifier of the soft_timer event.

Definition at line 937 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_system_soft_timer_s

373/1306

sl_bt_evt_system_soft_timer_s

Data structure of the soft_timer event.

Public Attributes

uint8_t handle

Public Attribute Documentation

handle

uint8_t sl_bt_evt_system_soft_timer_s::handle

Timer Handle

Definition at line 944 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Resource Report

374/1306

Resource Report

Modules

Connection TX status flags

sl_bt_evt_resource_status

Resource Report
Resource Report.

Commands and events in this class can be used to query and receive the memory buffer usage status. The memory buffer

is used by the Bluetooth stack for storing application data (e.g., API commands and events), user data over Bluetooth

connections, advertising, scanning, etc. Total buffer size is defined by the application using the

SL_BT_CONFIG_BUFFER_SIZE configuration. The Bluetooth stack does not partition the buffer, instead, the buffer is a

shared resource for all features. Therefore, the available memory for one feature could be affected by another feature in

simultaneous use cases. This API class provides a utility for application to get some insight of the buffer usage. As

allocations in the memory buffer have overhead, the actual amount of memory that can be used for user data is less than a

reported free memory amount.

Functions

sl_status_t sl_bt_resource_get_status(uint32_t *total_bytes, uint32_t *free_bytes)

sl_status_t sl_bt_resource_set_report_threshold(uint32_t low, uint32_t high)

sl_status_t sl_bt_resource_enable_connection_tx_report(uint16_t packet_count)

sl_status_t sl_bt_resource_get_connection_tx_status(uint8_t connection, uint16_t *flags, uint16_t *packet_count, uint32_t
*data_len)

sl_status_t sl_bt_resource_disable_connection_tx_report()

Macros

#define sl_bt_cmd_resource_get_status_id 0�005f0020

#define sl_bt_cmd_resource_set_report_threshold_id 0�015f0020

#define sl_bt_cmd_resource_enable_connection_tx_report_id 0�025f0020

#define sl_bt_cmd_resource_get_connection_tx_status_id 0�035f0020

#define sl_bt_cmd_resource_disable_connection_tx_report_id 0�045f0020

#define sl_bt_rsp_resource_get_status_id 0�005f0020

#define sl_bt_rsp_resource_set_report_threshold_id 0�015f0020

#define sl_bt_rsp_resource_enable_connection_tx_report_id 0�025f0020

Resource Report

375/1306

#define sl_bt_rsp_resource_get_connection_tx_status_id 0�035f0020

#define sl_bt_rsp_resource_disable_connection_tx_report_id 0�045f0020

Function Documentation

sl_bt_resource_get_status

sl_status_t sl_bt_resource_get_status (uint32_t *total_bytes, uint32_t *free_bytes)

Parameters

[out] total_bytes The number of total bytes in the memory buffer

[out] free_bytes The number of free bytes in the memory buffer

Get the present memory buffer usage status.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 1508 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_resource_set_report_threshold

sl_status_t sl_bt_resource_set_report_threshold (uint32_t low, uint32_t high)

Parameters

[in] low The low threshold of free bytes in the memory buffer, or 0 to disable the reporting

[in] high A non-zero value as the high threshold that must be greater than parameter low , or 0 for not reporting the

status for high threshold

Set low and high thresholds of memory buffer usage reports. Value 0 in parameter low for the low threshold disables the

reporting, and a non-zero value in low enables the reporting.

When the reporting is enabled, event sl_bt_evt_resource_status will be generated to report the status when the free buffer

amount decreases and crosses the low threshold, and later another event will be generated if the free buffer amount

increases and crosses the high threshold. If only the high threshold is crossed but the low threshold isn't, no event will be

generated.

By default, low and high threshold values are 0, i.e., no report event is generated.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 1534 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_resource_enable_connection_tx_report

sl_status_t sl_bt_resource_enable_connection_tx_report (uint16_t packet_count)

Parameters

[in] packet_count The maximum number of data packets to track on a connection

Resource Report

376/1306

Enable tracking and reporting data packet TX status of future new connections. Existing connections are not affected by

this command.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_gatt_server_notification_tx_completed - Sent when GATT notifications from the GATT server were transmitted.

Definition at line 1551 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_resource_get_connection_tx_status

sl_status_t sl_bt_resource_get_connection_tx_status (uint8_t connection, uint16_t *flags, uint16_t *packet_count, uint32_t
*data_len)

Parameters

[in] connection Connection handle

[out] flags Flags that indicate the status of connection TX packet reporting. This value is a bitmask of

Connection TX status flags.

[out] packet_count Number of data packets in the TX queue waiting to be transmitted

[out] data_len Total number of bytes of data packets in the TX queue

Get the data packet TX status of a connection.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 1568 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_resource_disable_connection_tx_report

sl_status_t sl_bt_resource_disable_connection_tx_report ()

Disable tracking and reporting data packet TX status of future new connections.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 1582 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_resource_get_status_id

#define sl_bt_cmd_resource_get_status_id

Value:

0�005f0020

Resource Report

377/1306

Definition at line 1431 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_resource_set_report_threshold_id

#define sl_bt_cmd_resource_set_report_threshold_id

Value:

0�015f0020

Definition at line 1432 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_resource_enable_connection_tx_report_id

#define sl_bt_cmd_resource_enable_connection_tx_report_id

Value:

0�025f0020

Definition at line 1433 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_resource_get_connection_tx_status_id

#define sl_bt_cmd_resource_get_connection_tx_status_id

Value:

0�035f0020

Definition at line 1434 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_resource_disable_connection_tx_report_id

#define sl_bt_cmd_resource_disable_connection_tx_report_id

Value:

0�045f0020

Definition at line 1435 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_resource_get_status_id

#define sl_bt_rsp_resource_get_status_id

Value:

0�005f0020

Definition at line 1436 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_resource_set_report_threshold_id

Resource Report

378/1306

#define sl_bt_rsp_resource_set_report_threshold_id

Value:

0x015f0020

Definition at line 1437 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_resource_enable_connection_tx_report_id

#define sl_bt_rsp_resource_enable_connection_tx_report_id

Value:

0�025f0020

Definition at line 1438 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_resource_get_connection_tx_status_id

#define sl_bt_rsp_resource_get_connection_tx_status_id

Value:

0�035f0020

Definition at line 1439 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_resource_disable_connection_tx_report_id

#define sl_bt_rsp_resource_disable_connection_tx_report_id

Value:

0�045f0020

Definition at line 1440 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Connection TX status flags

379/1306

Connection TX status flags

Connection TX status flags
Defines the connection TX status flags reported by sl_bt_resource_get_connection_tx_status.

Macros

#define SL_BT_RESOURCE_CONNECTION_TX_FLAGS_ERROR_PACKET_OVERFLOW 0�1

#define SL_BT_RESOURCE_CONNECTION_TX_FLAGS_ERROR_CORRUPT 0�2

Macro Definition Documentation

SL_BT_RESOURCE_CONNECTION_TX_FLAGS_ERROR_PACKET_OVERFLOW

#define SL_BT_RESOURCE_CONNECTION_TX_FLAGS_ERROR_PACKET_OVERFLOW

Value:

0�1

The number of TX packets queued on a connection has overflowed the packet_count that was effective at the time the

connection opened. The packet count is configured with command sl_bt_resource_enable_connection_tx_report and is valid

for subsequent connections.

When this bit is set, the packet_count returned by sl_bt_resource_get_connection_tx_status is correct, but data_len excludes

the data bytes in the packets that overflowed the configured packet count.

Definition at line 1463 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_RESOURCE_CONNECTION_TX_FLAGS_ERROR_CORRUPT

#define SL_BT_RESOURCE_CONNECTION_TX_FLAGS_ERROR_CORRUPT

Value:

0�2

Internal inconsistency has been detected in the connection TX bookkeeping. When this bit is set, the application should

consider both packet_count and data_len returned by sl_bt_resource_get_connection_tx_status to be unreliable.

Definition at line 1473 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_resource_status

380/1306

sl_bt_evt_resource_status

Modules

sl_bt_evt_resource_status_s

sl_bt_evt_resource_status
Indicates that the memory buffer usage has crossed a threshold.

Typedefs

typedef struct
sl_bt_evt_resourc

e_status_s

sl_bt_evt_resource_status_t

Macros

#define sl_bt_evt_resource_status_id 0�005f00a0
Identifier of the status event.

Typedef Documentation

sl_bt_evt_resource_status_t

typedef struct sl_bt_evt_resource_status_s sl_bt_evt_resource_status_t

Definition at line 1494 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_resource_status_id

#define sl_bt_evt_resource_status_id

Value:

0�005f00a0

Identifier of the status event.

Definition at line 1484 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_resource_status_s

381/1306

sl_bt_evt_resource_status_s

Data structure of the status event.

Public Attributes

uint32_t free_bytes

Public Attribute Documentation

free_bytes

uint32_t sl_bt_evt_resource_status_s::free_bytes

The number of free bytes in the memory buffer

Definition at line 1491 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

GAP

382/1306

GAP

GAP
GAP.

The commands and events in this class are related to the Generic Access Profile (GAP) in Bluetooth.

Enumerations

enum sl_bt_gap_address_type_t {

sl_bt_gap_public_address = 0�0
sl_bt_gap_static_address = 0�1
sl_bt_gap_random_resolvable_address = 0�2
sl_bt_gap_random_nonresolvable_address = 0�3
sl_bt_gap_public_address_resolved_from_rpa = 0�4
sl_bt_gap_static_address_resolved_from_rpa = 0�5
sl_bt_gap_anonymous_address = 0xff

}
These values define Bluetooth device address types. Commands and events that have Bluetooth device address

parameters will specify which values are valid for that particular command or event.

enum sl_bt_gap_phy_t {

sl_bt_gap_phy_1m = 0�1
sl_bt_gap_phy_2m = 0�2
sl_bt_gap_phy_coded = 0�4
sl_bt_gap_phy_any = 0xff

}
Types of PHYs.

enum sl_bt_gap_phy_coding_t {

sl_bt_gap_phy_coding_1m_uncoded = 0�1
sl_bt_gap_phy_coding_2m_uncoded = 0�2
sl_bt_gap_phy_coding_125k_coded = 0�4
sl_bt_gap_phy_coding_500k_coded = 0�8

}
PHY types with coding schemes.

Functions

sl_status_t sl_bt_gap_set_privacy_mode(uint8_t privacy, uint8_t interval)

sl_status_t sl_bt_gap_set_data_channel_classification(size_t channel_map_len, const uint8_t *channel_map)

SL_BGAPI_DEPRE
CATED sl_status_t

sl_bt_gap_enable_whitelisting(uint8_t enable)

sl_status_t sl_bt_gap_set_identity_address(bd_addr address, uint8_t addr_type)

Macros

GAP

383/1306

#define sl_bt_cmd_gap_set_privacy_mode_id 0�01020020

#define sl_bt_cmd_gap_set_data_channel_classification_id 0�02020020

#define sl_bt_cmd_gap_enable_whitelisting_id 0�03020020

#define sl_bt_cmd_gap_set_identity_address_id 0�04020020

#define sl_bt_rsp_gap_set_privacy_mode_id 0�01020020

#define sl_bt_rsp_gap_set_data_channel_classification_id 0�02020020

#define sl_bt_rsp_gap_enable_whitelisting_id 0�03020020

#define sl_bt_rsp_gap_set_identity_address_id 0�04020020

Enumeration Documentation

sl_bt_gap_address_type_t

sl_bt_gap_address_type_t

These values define Bluetooth device address types. Commands and events that have Bluetooth device address parameters

will specify which values are valid for that particular command or event.

If the application does not include the bluetooth_feature_use_accurate_api_address_types component, most Bluetooth

commands and events use a coarse address type that only differentiates between a public address and any random

address. When the application includes the bluetooth_feature_use_accurate_api_address_types component, Bluetooth

commands and events that include an address type will systematically use values of this sl_bt_gap_address_type_t

enumeration to indicate the accurate address type.

The values sl_bt_gap_public_address_resolved_from_rpa and sl_bt_gap_static_address_resolved_from_rpa are reported by

the Bluetooth stack only when the application includes the bluetooth_feature_resolving_list component and the address was

resolved in the Bluetooth controller. If the application uses these two types in input parameters, they are treated as

synonyms of sl_bt_gap_public_address and sl_bt_gap_static_address, respectively.

Enumerator

sl_bt_gap_public_address

sl_bt_gap_static_address

sl_bt_gap_random_resolvable_address

sl_bt_gap_random_nonresolvable_address

sl_bt_gap_public_address_resolved_from_rpa

sl_bt_gap_static_address_resolved_from_rpa

sl_bt_gap_anonymous_address

Definition at line 1628 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gap_phy_t

sl_bt_gap_phy_t

Types of PHYs.

Enumerator

sl_bt_gap_phy_1m

sl_bt_gap_phy_2m

GAP

384/1306

sl_bt_gap_phy_coded

sl_bt_gap_phy_any

Definition at line 1654 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gap_phy_coding_t

sl_bt_gap_phy_coding_t

PHY types with coding schemes.

Enumerator

sl_bt_gap_phy_coding_1m_uncoded

sl_bt_gap_phy_coding_2m_uncoded

sl_bt_gap_phy_coding_125k_coded

sl_bt_gap_phy_coding_500k_coded

Definition at line 1665 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Function Documentation

sl_bt_gap_set_privacy_mode

sl_status_t sl_bt_gap_set_privacy_mode (uint8_t privacy, uint8_t interval)

Parameters

[in] privacy Values:

0: Disable privacy

1: Enable privacy

[in] interval The minimum time interval between a private address change. This parameter is ignored if this command is

issued to disable privacy mode. Values:

0: Use default interval, 15 minutes

others: The time interval in minutes

Enable or disable the privacy feature on all GAP roles. New privacy mode will take effect for advertising next time

advertising is enabled, for scanning next time scanning is enabled, and for initiating on the next open connection command.

When privacy is enabled and the device is advertising or scanning, the stack will maintain a periodic timer with the specified

time interval as a timeout value. At each timeout, the stack generates a new resolvable private address and uses it in

scanning requests. For advertisers, the stack generates a new resolvable or non-resolvable private address and uses it in

advertising data packets for each advertising set if its address is not application-managed, i.e., the address was not set by

the application (with the sl_bt_advertiser_set_random_address command). The application is fully responsible for

application-managed advertiser addresses. For an application-managed resolvable private address, the application should

schedule periodic address updates for enhancing the privacy. It is recommended to use different schedules for different

advertising sets.

Disabling the privacy during active advertising or scanning is not allowed.

By default, privacy feature is disabled.

Returns

SL_STATUS_OK if successful. Error code otherwise.

GAP

385/1306

Definition at line 1709 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gap_set_data_channel_classification

sl_status_t sl_bt_gap_set_data_channel_classification (size_t channel_map_len, const uint8_t *channel_map)

Parameters

[in] channel_map_len Length of data in channel_map

[in] channel_map 5 byte bit field in little endian format. Only the first 37 bits are used. Bit 0 of the first byte is

channel 0, bit 0 of the second byte is channel 8, etc. Bits 37-39 are reserved for future use and

must be set to 0.

A channel is bad when its bit is 0. A channel is unknown when its bit is 1. At least two channels

shall be marked as unknown.

Specify a channel classification for data channels. This classification persists until overwritten with a subsequent command

or until the system is reset. The value length of channel_map must be 5 bytes.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 1730 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gap_enable_whitelisting

SL_BGAPI_DEPRECATED sl_status_t sl_bt_gap_enable_whitelisting (uint8_t enable)

Parameters

[in] enable 1 enable, 0 disable accept list filtering.

Deprecated and replaced by functionality-specific settings provided by the bluetooth_feature_accept_list component. For

advertising, use the command sl_bt_advertiser_configure and flags bits

SL_BT_ADVERTISER_USE_FILTER_FOR_SCAN_REQUESTS and

SL_BT_ADVERTISER_USE_FILTER_FOR_CONNECTION_REQUESTS to configure the advertising filter policy. For scanning, use

the command sl_bt_scanner_set_parameters_and_filter to control the scanning filter policy.

Enable or disable accept list filtering. The setting will be effective the next time that scanning is enabled. Use command

sl_bt_sm_add_to_whitelist to add devices to the accept list.

When the built-in bonding database (bluetooth_feature_builtin_bonding_database) is used, bonded devices are added into

the accept list automatically by the stack. Note that the Bluetooth stack uses the built-in bonding database by default.

When the application specifically uses the external bonding database (bluetooth_feature_external_bonding_database), the

application is fully responsible for managing the accept list using sl_bt_sm_add_to_whitelist and sl_bt_sm_delete_bondings

commands.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 1763 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gap_set_identity_address

sl_status_t sl_bt_gap_set_identity_address (bd_addr address, uint8_t addr_type)

GAP

386/1306

Parameters

[in] address The address in little endian format

[in] addr_type Enum sl_bt_gap_address_type_t. The address type. Values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

Set the device's Bluetooth identity address to be used in advertising, scanning, connection initiation, and identity address

exchange in bonding. The address is stored in RAM only and does not change the identity address in persistent storage.

The address can be a public device address or static device address. It will be effective immediately in the next advertising,

scanning, connection initiation, and bonding. Error SL_STATUS_INVALID_PARAMETER is returned if the address does not

conform to the Bluetooth specification.

Note that advertising sets that have own addresses set by sl_bt_advertiser_set_random_address are not affected by this

command, i.e., they will continue to use their own user defined addresses.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 1789 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_gap_set_privacy_mode_id

#define sl_bt_cmd_gap_set_privacy_mode_id

Value:

0�01020020

Definition at line 1597 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gap_set_data_channel_classification_id

#define sl_bt_cmd_gap_set_data_channel_classification_id

Value:

0�02020020

Definition at line 1598 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gap_enable_whitelisting_id

#define sl_bt_cmd_gap_enable_whitelisting_id

Value:

0�03020020

Definition at line 1599 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gap_set_identity_address_id

GAP

387/1306

#define sl_bt_cmd_gap_set_identity_address_id

Value:

0x04020020

Definition at line 1600 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gap_set_privacy_mode_id

#define sl_bt_rsp_gap_set_privacy_mode_id

Value:

0�01020020

Definition at line 1601 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gap_set_data_channel_classification_id

#define sl_bt_rsp_gap_set_data_channel_classification_id

Value:

0�02020020

Definition at line 1602 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gap_enable_whitelisting_id

#define sl_bt_rsp_gap_enable_whitelisting_id

Value:

0�03020020

Definition at line 1603 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gap_set_identity_address_id

#define sl_bt_rsp_gap_set_identity_address_id

Value:

0�04020020

Definition at line 1604 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Advertiser

388/1306

Advertiser

Modules

Generic Advertising Configuration Flags

sl_bt_evt_advertiser_timeout

sl_bt_evt_advertiser_scan_request

Advertiser
Advertiser.

This is the base class of legacy, extended, and periodic advertisings for common functionalities including advertising set

management, TX power setting, advertising address, and so on.

On an advertising set, either the legacy or extended advertising can be enabled at a time but they cannot be enabled

simultaneously on the same advertising set. For example, the following sequence shows how to start the legacy advertising

on an advertising set. Starting the extended advertising is similar. The only difference is to use the extended_advertiser API

class.

 Create an advertise set with the sl_bt_advertiser_create_set command.

 Configure and set advertising parameters for the advertising set as needed.

 Set the advertising data with the sl_bt_legacy_advertiser_set_data or sl_bt_legacy_advertiser_generate_data command.

 Start the legacy advertising with the sl_bt_legacy_advertiser_start command.

Periodic advertising can be enabled independently on the advertising set regardless of the state of the legacy or extended

advertising. However, to ensure that scanners can find the periodic advertising information and establish a synchronization,

the extended advertising must be enabled simultaneously with the periodic advertising.

When the bluetooth_feature_legacy_advertiser, bluetooth_feature_extended_advertiser or

bluetooth_feature_periodic_advertiser component is included by the application, commands that have been superseded by

the new classes are no longer available for use in the advertiser class. Calling them will receive

SL_STATUS_NOT_SUPPORTED error code. These commands are as follows: sl_bt_advertiser_set_phy,

sl_bt_advertiser_set_configuration, sl_bt_advertiser_clear_configuration, sl_bt_advertiser_set_data,

sl_bt_advertiser_set_long_data, sl_bt_advertiser_start, sl_bt_advertiser_start_periodic_advertising, and

sl_bt_advertiser_stop_periodic_advertising. See the command descriptions for the replacements.

Enumerations

enum sl_bt_advertiser_connection_mode_t {

sl_bt_advertiser_non_connectable = 0�0
sl_bt_advertiser_connectable_scannable = 0�2
sl_bt_advertiser_scannable_non_connectable = 0�3
sl_bt_advertiser_connectable_non_scannable = 0�4

}
These values define the available connection modes, which indicate whether the device accepts connection requests or

scan requests.

Advertiser

389/1306

enum sl_bt_advertiser_discovery_mode_t {

sl_bt_advertiser_non_discoverable = 0�0
sl_bt_advertiser_limited_discoverable = 0�1
sl_bt_advertiser_general_discoverable = 0�2
sl_bt_advertiser_broadcast = 0�3
sl_bt_advertiser_user_data = 0�4

}
These values define the available discovery modes, which dictate how the device is visible to other devices in the legacy

and extended advertising.

enum sl_bt_advertiser_adv_address_type_t {

sl_bt_advertiser_identity_address = 0�0
sl_bt_advertiser_non_resolvable = 0�1

}
Address type to use for the legacy and extended advertising.

enum sl_bt_advertiser_packet_type_t {

sl_bt_advertiser_advertising_data_packet = 0�0
sl_bt_advertiser_scan_response_packet = 0�1

}
These values define the packet types in legacy and extended advertising.

Functions

sl_status_t sl_bt_advertiser_create_set(uint8_t *handle)

sl_status_t sl_bt_advertiser_configure(uint8_t advertising_set, uint32_t flags)

sl_status_t sl_bt_advertiser_set_timing(uint8_t advertising_set, uint32_t interval_min, uint32_t interval_max, uint16_t
duration, uint8_t maxevents)

sl_status_t sl_bt_advertiser_set_channel_map(uint8_t advertising_set, uint8_t channel_map)

sl_status_t sl_bt_advertiser_set_tx_power(uint8_t advertising_set, int16_t power, int16_t *set_power)

sl_status_t sl_bt_advertiser_set_report_scan_request(uint8_t advertising_set, uint8_t report_scan_req)

sl_status_t sl_bt_advertiser_set_random_address(uint8_t advertising_set, uint8_t addr_type, bd_addr address, bd_addr
*address_out)

sl_status_t sl_bt_advertiser_clear_random_address(uint8_t advertising_set)

sl_status_t sl_bt_advertiser_stop(uint8_t advertising_set)

sl_status_t sl_bt_advertiser_delete_set(uint8_t advertising_set)

SL_BGAPI_DEPRE
CATED sl_status_t

sl_bt_advertiser_set_phy(uint8_t advertising_set, uint8_t primary_phy, uint8_t secondary_phy)

SL_BGAPI_DEPRE
CATED sl_status_t

sl_bt_advertiser_set_configuration(uint8_t advertising_set, uint32_t configurations)

SL_BGAPI_DEPRE
CATED sl_status_t

sl_bt_advertiser_clear_configuration(uint8_t advertising_set, uint32_t configurations)

SL_BGAPI_DEPRE
CATED sl_status_t

sl_bt_advertiser_set_data(uint8_t advertising_set, uint8_t packet_type, size_t adv_data_len, const uint8_t
*adv_data)

SL_BGAPI_DEPRE
CATED sl_status_t

sl_bt_advertiser_set_long_data(uint8_t advertising_set, uint8_t packet_type)

Advertiser

390/1306

SL_BGAPI_DEPRE
CATED sl_status_t

sl_bt_advertiser_start(uint8_t advertising_set, uint8_t discover, uint8_t connect)

SL_BGAPI_DEPRE
CATED sl_status_t

sl_bt_advertiser_start_periodic_advertising(uint8_t advertising_set, uint16_t interval_min, uint16_t
interval_max, uint32_t flags)

SL_BGAPI_DEPRE
CATED sl_status_t

sl_bt_advertiser_stop_periodic_advertising(uint8_t advertising_set)

Macros

#define sl_bt_cmd_advertiser_create_set_id 0�01040020

#define sl_bt_cmd_advertiser_configure_id 0�12040020

#define sl_bt_cmd_advertiser_set_timing_id 0�03040020

#define sl_bt_cmd_advertiser_set_channel_map_id 0�04040020

#define sl_bt_cmd_advertiser_set_tx_power_id 0�0b040020

#define sl_bt_cmd_advertiser_set_report_scan_request_id 0�05040020

#define sl_bt_cmd_advertiser_set_random_address_id 0�10040020

#define sl_bt_cmd_advertiser_clear_random_address_id 0�11040020

#define sl_bt_cmd_advertiser_stop_id 0�0a040020

#define sl_bt_cmd_advertiser_delete_set_id 0�02040020

#define sl_bt_cmd_advertiser_set_phy_id 0�06040020

#define sl_bt_cmd_advertiser_set_configuration_id 0�07040020

#define sl_bt_cmd_advertiser_clear_configuration_id 0�08040020

#define sl_bt_cmd_advertiser_set_data_id 0�0f040020

#define sl_bt_cmd_advertiser_set_long_data_id 0�0e040020

#define sl_bt_cmd_advertiser_start_id 0�09040020

#define sl_bt_cmd_advertiser_start_periodic_advertising_id 0�0c040020

#define sl_bt_cmd_advertiser_stop_periodic_advertising_id 0�0d040020

#define sl_bt_rsp_advertiser_create_set_id 0�01040020

#define sl_bt_rsp_advertiser_configure_id 0�12040020

#define sl_bt_rsp_advertiser_set_timing_id 0�03040020

#define sl_bt_rsp_advertiser_set_channel_map_id 0�04040020

#define sl_bt_rsp_advertiser_set_tx_power_id 0�0b040020

#define sl_bt_rsp_advertiser_set_report_scan_request_id 0�05040020

#define sl_bt_rsp_advertiser_set_random_address_id 0�10040020

Advertiser

391/1306

#define sl_bt_rsp_advertiser_clear_random_address_id 0�11040020

#define sl_bt_rsp_advertiser_stop_id 0�0a040020

#define sl_bt_rsp_advertiser_delete_set_id 0�02040020

#define sl_bt_rsp_advertiser_set_phy_id 0�06040020

#define sl_bt_rsp_advertiser_set_configuration_id 0�07040020

#define sl_bt_rsp_advertiser_clear_configuration_id 0�08040020

#define sl_bt_rsp_advertiser_set_data_id 0�0f040020

#define sl_bt_rsp_advertiser_set_long_data_id 0�0e040020

#define sl_bt_rsp_advertiser_start_id 0�09040020

#define sl_bt_rsp_advertiser_start_periodic_advertising_id 0�0c040020

#define sl_bt_rsp_advertiser_stop_periodic_advertising_id 0�0d040020

Enumeration Documentation

sl_bt_advertiser_connection_mode_t

sl_bt_advertiser_connection_mode_t

These values define the available connection modes, which indicate whether the device accepts connection requests or

scan requests.

Enumerator

sl_bt_advertiser_non_connectable

sl_bt_advertiser_connectable_scannable

sl_bt_advertiser_scannable_non_connectable

sl_bt_advertiser_connectable_non_scannable

Definition at line 1879 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_advertiser_discovery_mode_t

sl_bt_advertiser_discovery_mode_t

These values define the available discovery modes, which dictate how the device is visible to other devices in the legacy

and extended advertising.

Enumerator

sl_bt_advertiser_non_discoverable

sl_bt_advertiser_limited_discoverable

sl_bt_advertiser_general_discoverable

sl_bt_advertiser_broadcast

sl_bt_advertiser_user_data

Definition at line 1906 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_advertiser_adv_address_type_t

Advertiser

392/1306

sl_bt_advertiser_adv_address_type_t

Address type to use for the legacy and extended advertising.

Enumerator

sl_bt_advertiser_identity_address

sl_bt_advertiser_non_resolvable

Definition at line 1930 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_advertiser_packet_type_t

sl_bt_advertiser_packet_type_t

These values define the packet types in legacy and extended advertising.

Enumerator

sl_bt_advertiser_advertising_data_packet

sl_bt_advertiser_scan_response_packet

Definition at line 1945 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Function Documentation

sl_bt_advertiser_create_set

sl_status_t sl_bt_advertiser_create_set (uint8_t *handle)

Parameters

[out] handle Advertising set handle

Create an advertising set that can be used for legacy, extended, or periodic advertising. The handle of the created

advertising set is returned in response if the operation succeeds.

The maximum number of advertising sets for user advertisers is limited by the SL_BT_CONFIG_USER_ADVERTISERS

configuration.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 2110 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_advertiser_configure

sl_status_t sl_bt_advertiser_configure (uint8_t advertising_set, uint32_t flags)

Parameters

[in] advertising_set Advertising set handle

[in] flags Configuration flags. Value: 0 or bitmask of Generic Advertising Configuration Flags

Default value: 0

Advertiser

393/1306

Configure the legacy and extended advertising on an advertising set. The configuration will take effect next time the legacy

or extended advertising is enabled.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 2128 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_advertiser_set_timing

sl_status_t sl_bt_advertiser_set_timing (uint8_t advertising_set, uint32_t interval_min, uint32_t interval_max, uint16_t
duration, uint8_t maxevents)

Parameters

[in] advertising_set Advertising set handle

[in] interval_min Minimum advertising interval. Value in units of 0.625 ms

Range: 0x20 to 0xFFFFFF

Time range: 20 ms to 10485.759375 s

Default value: 100 ms

[in] interval_max Maximum advertising interval. Value in units of 0.625 ms

Range: 0x20 to 0xFFFFFF

Time range: 20 ms to 10485.759375 s

Note: interval_max should be bigger than interval_min

Default value: 200 ms

[in] duration Advertising duration for this advertising set. Value 0 indicates no advertising duration limit and

advertising continues until it is disabled. A non-zero value sets the duration in units of 10 ms. The

duration begins at the start of the first advertising event of this advertising set.

Range: 0x0001 to 0xFFFF

Time range: 10 ms to 655.35 s

Default value: 0

[in] maxevents If non-zero, indicates the maximum number of advertising events to send before the advertiser is

stopped. Value 0 indicates no maximum number limit.

Default value: 0

Set the timing parameters for legacy or extended advertising on an advertising set. This setting will take effect next time

the legacy or extended advertising is enabled.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 2173 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_advertiser_set_channel_map

sl_status_t sl_bt_advertiser_set_channel_map (uint8_t advertising_set, uint8_t channel_map)

Parameters

Advertiser

394/1306

[in] channel_map Advertising channel map which determines, which of the three channels will be used for advertising.

This value is given as a bitmask. Values:

1: Advertise on CH37

2: Advertise on CH38

3: Advertise on CH37 and CH38

4: Advertise on CH39

5: Advertise on CH37 and CH39

6: Advertise on CH38 and CH39

7: Advertise on all channels

Recommended value: 7

Default value: 7

Set the primary advertising channel map on an advertising set. This setting will take effect next time when the legacy or

extended advertising is enabled.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 2205 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_advertiser_set_tx_power

sl_status_t sl_bt_advertiser_set_tx_power (uint8_t advertising_set, int16_t power, int16_t *set_power)

Parameters

[in] advertising_set Advertising set handle

[in] power TX power in 0.1 dBm steps. For example, the value of 10 is 1 dBm and 55 is 5.5 dBm.

[out] set_power The selected maximum advertising TX power

Limit the maximum advertising TX power on an advertising set. If the value goes over the global value that was set using the

sl_bt_system_set_tx_power command, the global value will be the maximum limit. The maximum TX power of legacy

advertising is further constrained to be less than +10 dBm. Extended advertising TX power can be +10 dBm and over if

Adaptive Frequency Hopping is enabled. This setting has no effect on periodic advertising.

This setting will take effect next time the legacy or extended advertising is enabled.

By default, maximum advertising TX power is limited by the global value.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 2231 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_advertiser_set_report_scan_request

sl_status_t sl_bt_advertiser_set_report_scan_request (uint8_t advertising_set, uint8_t report_scan_req)

Parameters

[in] advertising_set Advertising set handle

[in] report_scan_req If non-zero, enables scan request notification and scan requests will be reported as events.

Default value: 0

Advertiser

395/1306

Enable or disable the scan request notification on an advertising set. This setting will take effect next time the legacy or

extended advertising is enabled.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_advertiser_scan_request - Triggered when a scan request is received during advertising if the scan request

notification is enabled by this command.

Definition at line 2257 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_advertiser_set_random_address

sl_status_t sl_bt_advertiser_set_random_address (uint8_t advertising_set, uint8_t addr_type, bd_addr address, bd_addr
*address_out)

Parameters

[in] advertising_set Advertising set handle

[in] addr_type Enum sl_bt_gap_address_type_t. Address type. Values:

sl_bt_gap_static_address (0x1): Static device address

sl_bt_gap_random_resolvable_address (0x2): Resolvable private random address

sl_bt_gap_random_nonresolvable_address (0x3): Non-resolvable private random address.

This type can only be used for non-connectable advertising.

[in] address The random address to set. Ignore this field when setting a resolvable random address.

[out] address_out The resolvable random address set for the advertiser. Ignore this field when setting other types of

random addresses.

Set the advertiser on an advertising set to use a random address. This overrides the default advertiser address, which is

either the public device address programmed at production or the address written into persistent storage using

sl_bt_system_set_identity_address command. This setting is stored in RAM only and does not change the identity address in

persistent storage. In privacy mode, the stack does not change an advertiser address set by this command. To ensure that

the stack can manage the address update periodically in privacy mode, the address setting should be removed with the

sl_bt_advertiser_clear_random_address command.

When setting a resolvable random address, the address parameter is ignored. The stack generates one and set it as the

advertiser address. The generated address is returned in the response. To enhance the privacy, the application should

schedule periodic address updates by calling this command periodically. Use different schedules for different advertising

sets.

To use the default advertiser address, remove this setting using sl_bt_advertiser_clear_random_address command.

Wrong state error is returned if advertising has been enabled on the advertising set. Invalid parameter error is returned if the

advertising set handle is invalid or the address does not conform to the Bluetooth specification.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 2303 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_advertiser_clear_random_address

sl_status_t sl_bt_advertiser_clear_random_address (uint8_t advertising_set)

Advertiser

396/1306

Parameters

[in] advertising_set Advertising set handle

Clear the random address previously set for the advertiser address on an advertising set. To set a random address, use

sl_bt_advertiser_set_random_address command. The default advertiser address will be used after this operation.

The error SL_STATUS_INVALID_STATE is returned if advertising has been enabled on the advertising set. An invalid

parameter error is returned if the advertising set handle is invalid.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 2324 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_advertiser_stop

sl_status_t sl_bt_advertiser_stop (uint8_t advertising_set)

Parameters

[in] advertising_set Advertising set handle

Stop the legacy or extended advertising on an advertising set. Counterpart with sl_bt_legacy_advertiser_start or

sl_bt_extended_advertiser_start.

This command does not affect the enable state of the periodic advertising on the advertising set, i.e., periodic advertising is

not stopped.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 2340 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_advertiser_delete_set

sl_status_t sl_bt_advertiser_delete_set (uint8_t advertising_set)

Parameters

[in] advertising_set Advertising set handle

Delete an advertising set. Any enabled legacy, extended, or periodic advertising is stopped before the deletion.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 2352 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_advertiser_set_phy

SL_BGAPI_DEPRECATED sl_status_t sl_bt_advertiser_set_phy (uint8_t advertising_set, uint8_t primary_phy, uint8_t
secondary_phy)

Parameters

Advertiser

397/1306

[in] advertising_set Advertising set handle

[in] primary_phy Enum sl_bt_gap_phy_t. The PHY on which the advertising packets are transmitted on the primary

advertising channel. If legacy advertising PDUs are used, 1M PHY must be used. Values:

sl_bt_gap_phy_1m (0x1): 1M PHY

sl_bt_gap_phy_coded (0x4): Coded PHY, 125k (S=8)

Default value: sl_bt_gap_phy_1m

[in] secondary_phy Enum sl_bt_gap_phy_t. The PHY on which the advertising packets are transmitted on the secondary

advertising channel. Values:

sl_bt_gap_phy_1m (0x1): 1M PHY

sl_bt_gap_phy_2m (0x2): 2M PHY

sl_bt_gap_phy_coded (0x4): Coded PHY, 125k (S=8)

Default value: sl_bt_gap_phy_1m

Deprecated and replaced by sl_bt_extended_advertiser_set_phy.

Set the primary and secondary advertising PHYs used for extended and periodic advertising on an advertising set. This

setting will take effect next time extended or periodic advertising is enabled. When advertising on the LE Coded PHY,

coding scheme S=8 is used. The SL_STATUS_INVALID_PARAMETER error is returned if a PHY value is invalid or the device

does not support a given PHY.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 2388 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_advertiser_set_configuration

SL_BGAPI_DEPRECATED sl_status_t sl_bt_advertiser_set_configuration (uint8_t advertising_set, uint32_t configurations)

Parameters

[in] advertising_set Advertising set handle

[in] configurations Advertising configuration flags to enable. This value can be a bitmask of multiple flags. Flags:

1 (Bit 0): Use legacy advertising PDUs.

2 (Bit 1): Omit advertiser's address from all PDUs (anonymous advertising). This flag is

effective only in extended advertising.

4 (Bit 2): Use a non-resolvable private address. When this configuration is enabled, the

advertising must use non-connectable mode. The stack generates a non-resolvable private

address for the advertising set and the stack will update the address periodically when the

privacy mode is enabled. This configuration is ignored if the advertiser address has been set

with the sl_bt_advertiser_set_random_address command.

8 (Bit 3): Include TX power in advertising packets. This flag is effective only in extended

advertising.

16 (Bit 4): Use the device identity address when the privacy mode is enabled in the stack.

This configuration is ignored if the configuration of using non-resolvable private address is

enabled or the advertising address has been set with the

sl_bt_advertiser_set_random_address command.

Default value: 1

Deprecated and replaced by sl_bt_advertiser_configure command.

Enable advertising configuration flags on an advertising set. The configuration change will take effect next time the legacy

or extended advertising is enabled.

Advertiser

398/1306

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 2428 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_advertiser_clear_configuration

SL_BGAPI_DEPRECATED sl_status_t sl_bt_advertiser_clear_configuration (uint8_t advertising_set, uint32_t configurations)

Parameters

[in] advertising_set Advertising set handle

[in] configurations Advertising configuration flags to disable. This value can be a bitmask of multiple flags. See

sl_bt_advertiser_set_configuration for possible flags.

Deprecated and replaced by sl_bt_advertiser_configure command.

Disable advertising configuration flags on an advertising set. The configuration change will take effect next time the legacy

or extended advertising is enabled.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 2447 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_advertiser_set_data

SL_BGAPI_DEPRECATED sl_status_t sl_bt_advertiser_set_data (uint8_t advertising_set, uint8_t packet_type, size_t
adv_data_len, const uint8_t *adv_data)

Parameters

[in] advertising_set Advertising set handle

[in] packet_type This value selects whether data is intended for advertising packets, scan response packets, or

periodic advertising packets.

0: Advertising packets

1: Scan response packets

8: Periodic advertising packets

[in] adv_data_len Length of data in adv_data

[in] adv_data Data to be set

Deprecated and replaced by sl_bt_legacy_advertiser_set_data for legacy advertising PDUs,

sl_bt_extended_advertiser_set_data for extended advertising PDUs, and sl_bt_periodic_advertiser_set_data for periodic

advertising PDUs.

Set user-defined data in advertising packets, scan response packets, or periodic advertising packets. Maximum 31 bytes of

data can be set for legacy advertising. Maximum 191 bytes of data can be set for connectable extended advertising.

Maximum 253 bytes of data can be set for periodic and non-connectable extended advertising. For setting longer

advertising data, use command sl_bt_advertiser_set_long_data.

If advertising mode is currently enabled, the new advertising data will be used immediately. Advertising mode can be

enabled using command sl_bt_advertiser_start. Periodic advertising mode can be enabled using command

sl_bt_advertiser_start_periodic_advertising.

Advertiser

399/1306

The invalid parameter error will be returned in the following situations:

Data length is more than 31 bytes but the advertiser can only advertise using legacy advertising PDUs.

Data is too long to fit into a single advertisement.

Set data of the advertising data packet when the scannable advertising is enabled using extended advertising PDUs.

Set data of the scan response data packet when the connectable advertising is enabled using extended advertising PDUs.

Note that the user-defined data may be overwritten by the system when the advertising is later enabled in a discovery

mode other than user_data.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 2494 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_advertiser_set_long_data

SL_BGAPI_DEPRECATED sl_status_t sl_bt_advertiser_set_long_data (uint8_t advertising_set, uint8_t packet_type)

Parameters

[in] advertising_set Advertising set handle

[in] packet_type This value selects whether data is intended for advertising packets, scan response packets, or

periodic advertising packets. Values:

0: Advertising packets

1: Scan response packets

8: Periodic advertising packets

Deprecated and replaced by sl_bt_extended_advertiser_set_long_data for extended advertising PDUs and

sl_bt_periodic_advertiser_set_long_data for periodic advertising PDUs.

Set advertising data for a specified packet type and advertising set. Data currently in the system data buffer will be

extracted as the advertising data. The buffer will be emptied after this command regardless of the completion status.

Prior to calling this command, add data to the buffer with one or multiple calls to sl_bt_system_data_buffer_write.

Maximum 31 bytes of data can be set for legacy advertising. Maximum 191 bytes of data can be set for connectable

extended advertising. Maximum 1650 bytes of data can be set for periodic and non-connectable extended advertising, but

advertising parameters may limit the amount of data that can be sent in a single advertisement.

See sl_bt_advertiser_set_data for more details on advertising data.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 2532 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_advertiser_start

SL_BGAPI_DEPRECATED sl_status_t sl_bt_advertiser_start (uint8_t advertising_set, uint8_t discover, uint8_t connect)

Parameters

[in] advertising_set Advertising set handle

Advertiser

400/1306

[in] discover Enum sl_bt_advertiser_discovery_mode_t. Discovery mode. Values:

sl_bt_advertiser_non_discoverable (0x0): Not discoverable

sl_bt_advertiser_limited_discoverable (0x1): Discoverable by both limited and general discovery

procedures

sl_bt_advertiser_general_discoverable (0x2): Discoverable by the general discovery procedure

sl_bt_advertiser_broadcast (0x3): Device is not discoverable in either limited or generic discovery

procedure but may be discovered using the Observation procedure.

sl_bt_advertiser_user_data (0x4): Send advertising and/or scan response data defined by the user.

The discovery mode is defined by the user.

[in] connect Enum sl_bt_advertiser_connection_mode_t. Connection mode. Values:

sl_bt_advertiser_non_connectable (0x0): Non-connectable non-scannable

sl_bt_advertiser_connectable_scannable (0x2): Undirected connectable scannable. This mode can

only be used in legacy advertising PDUs.

sl_bt_advertiser_scannable_non_connectable (0x3): Undirected scannable (Non-connectable but

responds to scan requests)

sl_bt_advertiser_connectable_non_scannable (0x4): Undirected connectable non-scannable. This

mode can only be used in extended advertising PDUs.

Deprecated and replaced by sl_bt_legacy_advertiser_start and sl_bt_extended_advertiser_start commands.

Start the legacy or extended advertising on an advertising set with specified discovery and connection modes.

The number of concurrent connectable advertisings is limited by the number of connections reserved by the user

application (the SL_BT_CONFIG_MAX_CONNECTIONS configuration) and the number reserved by other software

components (the SL_BT_COMPONENT_CONNECTIONS configuration). This command fails with the connection limit

exceeded error if it may cause the number of connections exceeding the configured value in future. For example, only one

connectable advertising can be enabled if the device has (SL_BT_CONFIG_MAX_CONNECTIONS +

SL_BT_COMPONENT_CONNECTIONS - 1) connections. This limitation does not apply to non-connectable advertising.

The default advertising configuration in the stack is set to using legacy advertising PDUs on 1M PHY. The stack will

automatically select extended advertising PDUs if either of the following has occurred with the default configuration:

 The connection mode is set to sl_bt_advertiser_connectable_non_scannable.

 The primary advertising PHY is set to Coded PHY by sl_bt_extended_advertiser_set_phy.

 The user advertising data length is more than 31 bytes.

 Periodic advertising is enabled.

This command fails with the invalid parameter error if one of the following cases occurs:

 Non-resolvable random address is used but the connection mode is advertiser_connectable_scannable or

advertiser_connectable_non_scannable.

 advertiser_connectable_non_scannable is the connection mode but using legacy advertising PDUs has been explicitly

enabled with command sl_bt_advertiser_set_configuration.

 Coded PHY is the primary advertising PHY but using legacy advertising PDUs has been explicitly enabled with command

sl_bt_advertiser_set_configuration.

 advertiser_connectable_scannable is the connection mode but using extended advertising PDUs has been explicitly enabled

or the primary advertising PHY is set to Coded PHY.

If advertising is enabled in user_data mode, use sl_bt_advertiser_set_data to set advertising and scan response data before

issuing this command. When advertising is enabled in modes other than user_data, advertising and scan response data is

generated by the stack using the following procedure:

 Add a flags field to advertising data.

 Add a TX power level field to advertising data if the TX power service exists in the local GATT database.

 Add a peripheral connection interval range field to advertising data if the GAP peripheral preferred connection parameters

characteristic exists in the local GATT database.

 Add a list of 16-bit service UUIDs to advertising data if there are one or more 16-bit service UUIDs to advertise. The list is

complete if all advertised 16-bit UUIDs are in advertising data. Otherwise, the list is incomplete.

Advertiser

401/1306

Add a list of 128-bit service UUIDs to advertising data if there are one or more 128-bit service UUIDs to advertise and there

is still free space for this field. The list is complete if all advertised 128-bit UUIDs are in advertising data. Otherwise, the list is

incomplete. Note that an advertising data packet can contain at most one 128-bit service UUID.

 Try to add the full local name to advertising data if the device is not in privacy mode. If the full local name does not fit into

the remaining free space, the advertised name is a shortened version by cutting off the end if the free space has at least 6

bytes. Otherwise, the local name is added to scan response data.

Event sl_bt_evt_connection_opened will be received when a remote device opens a connection to the advertiser on this

advertising set. As a result, the advertising stops.

Event sl_bt_evt_advertiser_timeout will be received when the number of advertising events set by

sl_bt_advertiser_set_timing command is done and the advertising has stopped.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_advertiser_timeout - Triggered when the number of advertising events set by sl_bt_advertiser_set_timing command

is done and advertising has stopped on an advertising set.

sl_bt_evt_connection_opened - Triggered when a remote device opens a connection to the advertiser and the advertising

has stopped.

Definition at line 2650 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_advertiser_start_periodic_advertising

SL_BGAPI_DEPRECATED sl_status_t sl_bt_advertiser_start_periodic_advertising (uint8_t advertising_set, uint16_t
interval_min, uint16_t interval_max, uint32_t flags)

Parameters

[in] advertising_set Advertising set handle

[in] interval_min Minimum periodic advertising interval. Value in units of 1.25 ms

Range: 0x06 to 0xFFFF

Time range: 7.5 ms to 81.92 s

Default value: 100 ms

[in] interval_max Maximum periodic advertising interval. Value in units of 1.25 ms

Range: 0x06 to 0xFFFF

Time range: 7.5 ms to 81.92 s

Note: interval_max should be bigger than interval_min

Default value: 200 ms

[in] flags Periodic advertising configurations. Bitmask of the following:

Bit 0: Include TX power in advertising PDU

Deprecated and replaced by sl_bt_periodic_advertiser_start command.

Start periodic advertising on an advertising set. The stack enables the advertising set automatically if the set was not

enabled and the set can advertise using extended advertising PDUs beside the syncInfo, which is needed for the periodic

advertising.

The invalid parameter error is returned if the application has configured legacy advertising PDUs or anonymous advertising,

or the advertising set is enabled using legacy advertising PDUs.

Advertiser

402/1306

To stop periodic advertising, use sl_bt_advertiser_stop_periodic_advertising command with the handle received in response

from this command.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 2695 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_advertiser_stop_periodic_advertising

SL_BGAPI_DEPRECATED sl_status_t sl_bt_advertiser_stop_periodic_advertising (uint8_t advertising_set)

Parameters

[in] advertising_set Advertising set handle

Deprecated and replaced by sl_bt_periodic_advertiser_stop command.

Stop periodic advertising on an advertising set. Counterpart with sl_bt_advertiser_start_periodic_advertising.

This command does not affect the enable state of the advertising set, i.e., legacy or extended advertising is not stopped.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 2716 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_advertiser_create_set_id

#define sl_bt_cmd_advertiser_create_set_id

Value:

0�01040020

Definition at line 1838 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_advertiser_configure_id

#define sl_bt_cmd_advertiser_configure_id

Value:

0�12040020

Definition at line 1839 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_advertiser_set_timing_id

#define sl_bt_cmd_advertiser_set_timing_id

Value:

Advertiser

403/1306

0x03040020

Definition at line 1840 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_advertiser_set_channel_map_id

#define sl_bt_cmd_advertiser_set_channel_map_id

Value:

0�04040020

Definition at line 1841 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_advertiser_set_tx_power_id

#define sl_bt_cmd_advertiser_set_tx_power_id

Value:

0�0b040020

Definition at line 1842 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_advertiser_set_report_scan_request_id

#define sl_bt_cmd_advertiser_set_report_scan_request_id

Value:

0�05040020

Definition at line 1843 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_advertiser_set_random_address_id

#define sl_bt_cmd_advertiser_set_random_address_id

Value:

0�10040020

Definition at line 1844 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_advertiser_clear_random_address_id

#define sl_bt_cmd_advertiser_clear_random_address_id

Value:

0�11040020

Definition at line 1845 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Advertiser

404/1306

sl_bt_cmd_advertiser_stop_id

#define sl_bt_cmd_advertiser_stop_id

Value:

0�0a040020

Definition at line 1846 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_advertiser_delete_set_id

#define sl_bt_cmd_advertiser_delete_set_id

Value:

0�02040020

Definition at line 1847 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_advertiser_set_phy_id

#define sl_bt_cmd_advertiser_set_phy_id

Value:

0�06040020

Definition at line 1848 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_advertiser_set_configuration_id

#define sl_bt_cmd_advertiser_set_configuration_id

Value:

0�07040020

Definition at line 1849 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_advertiser_clear_configuration_id

#define sl_bt_cmd_advertiser_clear_configuration_id

Value:

0�08040020

Definition at line 1850 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_advertiser_set_data_id

#define sl_bt_cmd_advertiser_set_data_id

Advertiser

405/1306

Value:

0x0f040020

Definition at line 1851 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_advertiser_set_long_data_id

#define sl_bt_cmd_advertiser_set_long_data_id

Value:

0�0e040020

Definition at line 1852 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_advertiser_start_id

#define sl_bt_cmd_advertiser_start_id

Value:

0�09040020

Definition at line 1853 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_advertiser_start_periodic_advertising_id

#define sl_bt_cmd_advertiser_start_periodic_advertising_id

Value:

0�0c040020

Definition at line 1854 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_advertiser_stop_periodic_advertising_id

#define sl_bt_cmd_advertiser_stop_periodic_advertising_id

Value:

0�0d040020

Definition at line 1855 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_advertiser_create_set_id

#define sl_bt_rsp_advertiser_create_set_id

Value:

0�01040020

Definition at line 1856 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Advertiser

406/1306

sl_bt_rsp_advertiser_configure_id

#define sl_bt_rsp_advertiser_configure_id

Value:

0�12040020

Definition at line 1857 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_advertiser_set_timing_id

#define sl_bt_rsp_advertiser_set_timing_id

Value:

0�03040020

Definition at line 1858 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_advertiser_set_channel_map_id

#define sl_bt_rsp_advertiser_set_channel_map_id

Value:

0�04040020

Definition at line 1859 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_advertiser_set_tx_power_id

#define sl_bt_rsp_advertiser_set_tx_power_id

Value:

0�0b040020

Definition at line 1860 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_advertiser_set_report_scan_request_id

#define sl_bt_rsp_advertiser_set_report_scan_request_id

Value:

0�05040020

Definition at line 1861 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_advertiser_set_random_address_id

#define sl_bt_rsp_advertiser_set_random_address_id

Advertiser

407/1306

Value:

0x10040020

Definition at line 1862 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_advertiser_clear_random_address_id

#define sl_bt_rsp_advertiser_clear_random_address_id

Value:

0�11040020

Definition at line 1863 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_advertiser_stop_id

#define sl_bt_rsp_advertiser_stop_id

Value:

0�0a040020

Definition at line 1864 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_advertiser_delete_set_id

#define sl_bt_rsp_advertiser_delete_set_id

Value:

0�02040020

Definition at line 1865 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_advertiser_set_phy_id

#define sl_bt_rsp_advertiser_set_phy_id

Value:

0�06040020

Definition at line 1866 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_advertiser_set_configuration_id

#define sl_bt_rsp_advertiser_set_configuration_id

Value:

0�07040020

Definition at line 1867 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Advertiser

408/1306

sl_bt_rsp_advertiser_clear_configuration_id

#define sl_bt_rsp_advertiser_clear_configuration_id

Value:

0�08040020

Definition at line 1868 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_advertiser_set_data_id

#define sl_bt_rsp_advertiser_set_data_id

Value:

0�0f040020

Definition at line 1869 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_advertiser_set_long_data_id

#define sl_bt_rsp_advertiser_set_long_data_id

Value:

0�0e040020

Definition at line 1870 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_advertiser_start_id

#define sl_bt_rsp_advertiser_start_id

Value:

0�09040020

Definition at line 1871 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_advertiser_start_periodic_advertising_id

#define sl_bt_rsp_advertiser_start_periodic_advertising_id

Value:

0�0c040020

Definition at line 1872 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_advertiser_stop_periodic_advertising_id

#define sl_bt_rsp_advertiser_stop_periodic_advertising_id

Advertiser

409/1306

Value:

0x0d040020

Definition at line 1873 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Generic Advertising Configuration Flags

410/1306

Generic Advertising Configuration Flags

Generic Advertising Configuration Flags
This enum defines configuration flags common for legacy and extended advertisings.

Macros

#define SL_BT_ADVERTISER_USE_NONRESOLVABLE_ADDRESS 0�4

#define SL_BT_ADVERTISER_USE_DEVICE_IDENTITY_IN_PRIVACY 0�10

#define SL_BT_ADVERTISER_USE_FILTER_FOR_SCAN_REQUESTS 0�20

#define SL_BT_ADVERTISER_USE_FILTER_FOR_CONNECTION_REQUESTS 0�40

Macro Definition Documentation

SL_BT_ADVERTISER_USE_NONRESOLVABLE_ADDRESS

#define SL_BT_ADVERTISER_USE_NONRESOLVABLE_ADDRESS

Value:

0�4

Use a non-resolvable private address managed by the stack. The advertising must be non-connectable when using this

configuration. The stack generates a non-resolvable private address for the advertising set and the stack will update the

address periodically in privacy mode. By default this flag is not set, i.e., the advertising address uses the device identity

address. This configuration has no effect if the advertising address has been set with the

sl_bt_advertiser_set_random_address command.

Definition at line 1968 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_ADVERTISER_USE_DEVICE_IDENTITY_IN_PRIVACY

#define SL_BT_ADVERTISER_USE_DEVICE_IDENTITY_IN_PRIVACY

Value:

0�10

Use the device identity address when privacy mode is enabled. By default, this flag is not set, i.e., the advertising address

uses a resolvable private address managed by the stack in privacy mode. This configuration has no effect if the

SL_BT_ADVERTISER_USE_NONRESOLVABLE_ADDRESS flag is set or the advertising address has been set with the

sl_bt_advertiser_set_random_address command.

Definition at line 1976 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Generic Advertising Configuration Flags

411/1306

SL_BT_ADVERTISER_USE_FILTER_FOR_SCAN_REQUESTS

#define SL_BT_ADVERTISER_USE_FILTER_FOR_SCAN_REQUESTS

Value:

0�20

Use the Filter Accept List to filter scan requests received while performing scannable advertising with this advertising set.

By default, this flag is not set and scan requests from all devices are processed. If the application sets this flag, scan

requests are processed only from those devices that the application has added to the Filter Accept List.

This configuration is supported only when the application has included the Bluetooth component

bluetooth_feature_accept_list.

Definition at line 1990 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_ADVERTISER_USE_FILTER_FOR_CONNECTION_REQUESTS

#define SL_BT_ADVERTISER_USE_FILTER_FOR_CONNECTION_REQUESTS

Value:

0�40

Use the Filter Accept List to filter connection requests received while performing connectable advertising with this

advertising set. By default, this flag is not set and connection requests from all devices are processed. If the application

sets this flag, connection requests are processed only from those devices that the application has added to the Filter

Accept List.

This configuration is supported only when the application has included the Bluetooth component

bluetooth_feature_accept_list.

Definition at line 2004 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_advertiser_timeout

412/1306

sl_bt_evt_advertiser_timeout

Modules

sl_bt_evt_advertiser_timeout_s

sl_bt_evt_advertiser_timeout
Indicates the legacy or extended advertising on an advertising set has stopped because the advertiser has completed the

configured number of advertising events or the advertising has reached the configured duration.

The maximum number of advertising events or advertising duration can be configured by the maxevents or duration

parameter in the command sl_bt_advertiser_set_timing.

Typedefs

typedef struct
sl_bt_evt_advertis

er_timeout_s

sl_bt_evt_advertiser_timeout_t

Macros

#define sl_bt_evt_advertiser_timeout_id 0�010400a0
Identifier of the timeout event.

Typedef Documentation

sl_bt_evt_advertiser_timeout_t

typedef struct sl_bt_evt_advertiser_timeout_s sl_bt_evt_advertiser_timeout_t

Definition at line 2031 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_advertiser_timeout_id

#define sl_bt_evt_advertiser_timeout_id

Value:

0�010400a0

Identifier of the timeout event.

Definition at line 2021 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_advertiser_timeout_s

413/1306

sl_bt_evt_advertiser_timeout_s

Data structure of the timeout event.

Public Attributes

uint8_t handle

Public Attribute Documentation

handle

uint8_t sl_bt_evt_advertiser_timeout_s::handle

The advertising set handle

Definition at line 2028 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_advertiser_scan_request

414/1306

sl_bt_evt_advertiser_scan_request

Modules

sl_bt_evt_advertiser_scan_request_s

sl_bt_evt_advertiser_scan_request
Reports a scan request received during the legacy or extended advertising advertising if the scan request notification is

enabled.

Do not confuse this event with the sl_bt_evt_scanner_scan_report event.

Typedefs

typedef struct
sl_bt_evt_advertis
er_scan_request_

s

sl_bt_evt_advertiser_scan_request_t

Macros

#define sl_bt_evt_advertiser_scan_request_id 0�020400a0
Identifier of the scan_request event.

Typedef Documentation

sl_bt_evt_advertiser_scan_request_t

typedef struct sl_bt_evt_advertiser_scan_request_s sl_bt_evt_advertiser_scan_request_t

Definition at line 2092 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_advertiser_scan_request_id

#define sl_bt_evt_advertiser_scan_request_id

Value:

0�020400a0

Identifier of the scan_request event.

Definition at line 2045 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_advertiser_scan_request_s

415/1306

sl_bt_evt_advertiser_scan_request_s

Data structure of the scan_request event.

Public Attributes

uint8_t handle

bd_addr address

uint8_t address_type

uint8_t bonding

Public Attribute Documentation

handle

uint8_t sl_bt_evt_advertiser_scan_request_s::handle

Advertising set handle where the scan request was received

Definition at line 2052 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

address

bd_addr sl_bt_evt_advertiser_scan_request_s::address

Bluetooth address of the scanner

Definition at line 2054 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

address_type

uint8_t sl_bt_evt_advertiser_scan_request_s::address_type

Enum sl_bt_gap_address_type_t.

Scanner address type.

If the application does not include the bluetooth_feature_use_accurate_api_address_types component, address_type uses

the following values:

0: Public address

1: Random address

If the application includes the bluetooth_feature_use_accurate_api_address_types component, address_type uses enum

sl_bt_gap_address_type_t values:

sl_bt_evt_advertiser_scan_request_s

416/1306

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

sl_bt_gap_random_resolvable_address (0x2): Resolvable private random address

sl_bt_gap_random_nonresolvable_address (0x3): Non-resolvable private random address

sl_bt_gap_public_address_resolved_from_rpa (0x4): Public identity address resolved from a resolvable private address

(RPA)

sl_bt_gap_static_address_resolved_from_rpa (0x5): Static identity address resolved from a resolvable private address (RPA)

Definition at line 2055 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

bonding

uint8_t sl_bt_evt_advertiser_scan_request_s::bonding

Bonding handle if the remote scanning device has previously bonded with the local device. Values:

SL_BT_INVALID_BONDING_HANDLE (0xff): No bonding

Other: Bonding handle

Definition at line 2085 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Legacy Advertiser

417/1306

Legacy Advertiser

Legacy Advertiser
Legacy Advertiser.

The commands and events in this class are related to legacy advertising functionalities.

Enumerations

enum sl_bt_legacy_advertiser_connection_mode_t {

sl_bt_legacy_advertiser_non_connectable = 0�0
sl_bt_legacy_advertiser_connectable = 0�2
sl_bt_legacy_advertiser_scannable = 0�3

}
These values define the available connection modes of undirected legacy advertising.

enum sl_bt_legacy_advertiser_directed_connection_mode_t {

sl_bt_legacy_advertiser_high_duty_directed_connectable = 0�1
sl_bt_legacy_advertiser_low_duty_directed_connectable = 0�5

}
These values define the available connection modes of directed legacy advertising.

Functions

sl_status_t sl_bt_legacy_advertiser_set_data(uint8_t advertising_set, uint8_t type, size_t data_len, const uint8_t *data)

sl_status_t sl_bt_legacy_advertiser_generate_data(uint8_t advertising_set, uint8_t discover)

sl_status_t sl_bt_legacy_advertiser_start(uint8_t advertising_set, uint8_t connect)

sl_status_t sl_bt_legacy_advertiser_start_directed(uint8_t advertising_set, uint8_t connect, bd_addr peer_addr, uint8_t
peer_addr_type)

Macros

#define sl_bt_cmd_legacy_advertiser_set_data_id 0�00560020

#define sl_bt_cmd_legacy_advertiser_generate_data_id 0�01560020

#define sl_bt_cmd_legacy_advertiser_start_id 0�02560020

#define sl_bt_cmd_legacy_advertiser_start_directed_id 0�03560020

#define sl_bt_rsp_legacy_advertiser_set_data_id 0�00560020

#define sl_bt_rsp_legacy_advertiser_generate_data_id 0�01560020

#define sl_bt_rsp_legacy_advertiser_start_id 0�02560020

#define sl_bt_rsp_legacy_advertiser_start_directed_id 0�03560020

Legacy Advertiser

418/1306

Enumeration Documentation

sl_bt_legacy_advertiser_connection_mode_t

sl_bt_legacy_advertiser_connection_mode_t

These values define the available connection modes of undirected legacy advertising.

Enumerator

sl_bt_legacy_advertiser_non_connectable

sl_bt_legacy_advertiser_connectable

sl_bt_legacy_advertiser_scannable

Definition at line 2744 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_legacy_advertiser_directed_connection_mode_t

sl_bt_legacy_advertiser_directed_connection_mode_t

These values define the available connection modes of directed legacy advertising.

Enumerator

sl_bt_legacy_advertiser_high_duty_directed_connectable

sl_bt_legacy_advertiser_low_duty_directed_connectable

Definition at line 2762 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Function Documentation

sl_bt_legacy_advertiser_set_data

sl_status_t sl_bt_legacy_advertiser_set_data (uint8_t advertising_set, uint8_t type, size_t data_len, const uint8_t *data)

Parameters

[in] advertising_set Advertising set handle

[in] type Enum sl_bt_advertiser_packet_type_t. The advertising packet type

[in] data_len Length of data in data

[in] data Data to set

Set user-defined advertising data packet or scan response packet on an advertising set. This overwrites the existing

advertising data packet and scan response packet on this advertising set regardless of whether the data was set for the

legacy or extended advertising. Maximum 31 bytes of data can be set with this command.

If advertising mode is currently enabled, the new advertising data will be used immediately. Advertising mode can be

enabled using command sl_bt_legacy_advertiser_start.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 2799 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Legacy Advertiser

419/1306

sl_status_t sl_bt_legacy_advertiser_generate_data (uint8_t advertising_set, uint8_t discover)

Parameters

[in] advertising_set Advertising set handle

[in] discover Enum sl_bt_advertiser_discovery_mode_t. The discovery mode for the Flags data field in the packet.

Values:

sl_bt_advertiser_non_discoverable (0x0): Not discoverable

sl_bt_advertiser_limited_discoverable (0x1): Discoverable by both limited and general

discovery procedures

sl_bt_advertiser_general_discoverable (0x2): Discoverable by the general discovery

procedure

Ask the stack to generate the advertising data packet and scan response packet on an advertising set. Alternatively, the

user-defined advertising data can be set using the sl_bt_legacy_advertiser_set_data command.

This overwrites the existing advertising data packet and scan response packet on this advertising set regardless of whether

the data was set for the legacy or extended advertising.

If advertising mode is currently enabled, the new advertising data will be used immediately. To enable advertising mode,

use command sl_bt_legacy_advertiser_start.

The stack generates the advertising data and scan response packet using the following logic.

 Add a flags field to advertising data.

 Add a TX power level field to advertising data if the TX power service exists in the local GATT database.

 Add a peripheral connection interval range field to advertising data if the GAP peripheral preferred connection parameters

characteristic exists in the local GATT database.

 Add a list of 16-bit service UUIDs to advertising data if there are one or more 16-bit service UUIDs to advertise. The list is

complete if all advertised 16-bit UUIDs are in advertising data. Otherwise, the list is incomplete.

 Add a list of 128-bit service UUIDs to advertising data if there are one or more 128-bit service UUIDs to advertise and there

is still free space for this field. The list is complete if all advertised 128-bit UUIDs are in advertising data. Otherwise, the list is

incomplete. Note that an advertising data packet can contain at most one 128-bit service UUID.

 Try to add the full local name to advertising data if the device is not in privacy mode. If the full local name does not fit into

the remaining free space, the advertised name is a shortened version by cutting off the end if the free space has at least 6

bytes. Otherwise, the local name is added to scan response data.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 2853 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_legacy_advertiser_start

sl_status_t sl_bt_legacy_advertiser_start (uint8_t advertising_set, uint8_t connect)

Parameters

[in] advertising_set Advertising set handle

Legacy Advertiser

420/1306

[in] connect Enum sl_bt_legacy_advertiser_connection_mode_t. Connection mode. Values:

sl_bt_legacy_advertiser_non_connectable (0x0): Undirected non-connectable and non-scannable

legacy advertising

sl_bt_legacy_advertiser_connectable (0x2): Undirected connectable and scannable legacy

advertising

sl_bt_legacy_advertiser_scannable (0x3): Undirected scannable and non-connectable legacy

advertising

Start undirected legacy advertising on an advertising set with the specified connection mode. Use sl_bt_advertiser_stop to

stop the advertising.

Use the sl_bt_legacy_advertiser_set_data or sl_bt_legacy_advertiser_generate_data command to set the advertising data

before calling this command. The advertising data is added into the advertising data packet and scan response packet if the

connection mode is connectable and/or scannable. The data is only added into the advertising data packet when the

connection mode is non-connectable and non-scannable.

The number of concurrent connectable advertisings is limited by the number of connections reserved by the user

application (the SL_BT_CONFIG_MAX_CONNECTIONS configuration) and the number reserved by other software

components (the SL_BT_COMPONENT_CONNECTIONS configuration). This command fails with the connection limit

exceeded error if it may cause the number of connections exceeding the configured value in future. For example, only one

connectable advertising can be enabled if the device has (SL_BT_CONFIG_MAX_CONNECTIONS +

SL_BT_COMPONENT_CONNECTIONS - 1) connections. This limitation does not apply to non-connectable advertising.

This command fails with the invalid parameter error if non-resolvable random address is used but the connection mode is

sl_bt_legacy_advertiser_connectable.

Event sl_bt_evt_connection_opened will be received when a remote device opens a connection to the advertiser on this

advertising set. As a result, the advertising stops.

Event sl_bt_evt_advertiser_timeout will be received when the number of advertising events set by

sl_bt_advertiser_set_timing command is done and the advertising has stopped.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_advertiser_timeout - Triggered when the number of advertising events set by sl_bt_advertiser_set_timing command

is done and the advertising has stopped.

sl_bt_evt_connection_opened - Triggered when a remote device opens a connection to the advertiser and the advertising

has stopped.

Definition at line 2910 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_legacy_advertiser_start_directed

sl_status_t sl_bt_legacy_advertiser_start_directed (uint8_t advertising_set, uint8_t connect, bd_addr peer_addr, uint8_t
peer_addr_type)

Parameters

[in] advertising_set Advertising set handle

[in] connect Enum sl_bt_legacy_advertiser_directed_connection_mode_t. Connection mode. Values:

sl_bt_legacy_advertiser_high_duty_directed_connectable (0x1): High duty cycle directed

connectable legacy advertising

sl_bt_legacy_advertiser_low_duty_directed_connectable (0x5): Low duty cycle directed

connectable legacy advertising

Legacy Advertiser

421/1306

[in] peer_addr Address of the peer target device the advertising is directed to

[in] peer_addr_type Enum sl_bt_gap_address_type_t.

Peer target device address type.

If the application does not include the bluetooth_feature_use_accurate_api_address_types

component, peer_addr_type uses the following values:

0: Public address

1: Random address

If the application includes the bluetooth_feature_use_accurate_api_address_types component,

peer_addr_type uses enum sl_bt_gap_address_type_t values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

sl_bt_gap_random_resolvable_address (0x2): Resolvable private random address

sl_bt_gap_random_nonresolvable_address (0x3): Non-resolvable private random address

sl_bt_gap_public_address_resolved_from_rpa (0x4): Public identity address resolved from a

resolvable private address (RPA)

sl_bt_gap_static_address_resolved_from_rpa (0x5): Static identity address resolved from a

resolvable private address (RPA)

Start directed legacy advertising on an advertising set with the specified peer target device and connection mode. Use

sl_bt_advertiser_stop to stop the advertising.

Directed legacy advertising does not allow any advertising data. When the connection mode is

sl_bt_legacy_advertiser_high_duty_directed_connectable, the stack defaults the advertising duration to 0.64 s if the

application has not set the parameter. The duration is reduced to 1.28 s if the application has set a larger duration value.

The number of concurrent connectable advertisings is limited by the connection number configuration. See

sl_bt_legacy_advertiser_start for more details.

This command fails with the invalid parameter error if non-resolvable random address is set as the advertising address.

Event sl_bt_evt_connection_opened will be received when the target device opens a connection to the advertiser on this

advertising set. As a result, the advertising stops.

Event sl_bt_evt_advertiser_timeout will be received when the advertising stops and no Bluetooth connection is opened to it.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_advertiser_timeout - Triggered when the number of advertising events set by sl_bt_advertiser_set_timing command

is done and the advertising has stopped.

sl_bt_evt_connection_opened - Triggered when a remote device opens a connection to the advertiser and the advertising

has stopped.

Definition at line 2986 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_legacy_advertiser_set_data_id

#define sl_bt_cmd_legacy_advertiser_set_data_id

Value:

Legacy Advertiser

422/1306

0x00560020

Definition at line 2731 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_legacy_advertiser_generate_data_id

#define sl_bt_cmd_legacy_advertiser_generate_data_id

Value:

0�01560020

Definition at line 2732 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_legacy_advertiser_start_id

#define sl_bt_cmd_legacy_advertiser_start_id

Value:

0�02560020

Definition at line 2733 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_legacy_advertiser_start_directed_id

#define sl_bt_cmd_legacy_advertiser_start_directed_id

Value:

0�03560020

Definition at line 2734 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_legacy_advertiser_set_data_id

#define sl_bt_rsp_legacy_advertiser_set_data_id

Value:

0�00560020

Definition at line 2735 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_legacy_advertiser_generate_data_id

#define sl_bt_rsp_legacy_advertiser_generate_data_id

Value:

0�01560020

Definition at line 2736 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Legacy Advertiser

423/1306

sl_bt_rsp_legacy_advertiser_start_id

#define sl_bt_rsp_legacy_advertiser_start_id

Value:

0�02560020

Definition at line 2737 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_legacy_advertiser_start_directed_id

#define sl_bt_rsp_legacy_advertiser_start_directed_id

Value:

0�03560020

Definition at line 2738 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Extended Advertiser

424/1306

Extended Advertiser

Modules

Extended Advertising Configuration Flags

Extended Advertiser
Extended Advertiser.

The commands and events in this class are related to extended advertising functionalities in GAP peripheral and

broadcaster roles.

Enumerations

enum sl_bt_extended_advertiser_connection_mode_t {

sl_bt_extended_advertiser_non_connectable = 0�0
sl_bt_extended_advertiser_scannable = 0�3
sl_bt_extended_advertiser_connectable = 0�4

}
These values define the available connection modes in extended advertising.

Functions

sl_status_t sl_bt_extended_advertiser_set_phy(uint8_t advertising_set, uint8_t primary_phy, uint8_t secondary_phy)

sl_status_t sl_bt_extended_advertiser_set_data(uint8_t advertising_set, size_t data_len, const uint8_t *data)

sl_status_t sl_bt_extended_advertiser_set_long_data(uint8_t advertising_set)

sl_status_t sl_bt_extended_advertiser_generate_data(uint8_t advertising_set, uint8_t discover)

sl_status_t sl_bt_extended_advertiser_start(uint8_t advertising_set, uint8_t connect, uint32_t flags)

sl_status_t sl_bt_extended_advertiser_start_directed(uint8_t advertising_set, uint8_t connect, uint32_t flags, bd_addr
peer_addr, uint8_t peer_addr_type)

Macros

#define sl_bt_cmd_extended_advertiser_set_phy_id 0�00570020

#define sl_bt_cmd_extended_advertiser_set_data_id 0�01570020

#define sl_bt_cmd_extended_advertiser_set_long_data_id 0�02570020

#define sl_bt_cmd_extended_advertiser_generate_data_id 0�03570020

#define sl_bt_cmd_extended_advertiser_start_id 0�04570020

#define sl_bt_cmd_extended_advertiser_start_directed_id 0�05570020

Extended Advertiser

425/1306

#define sl_bt_rsp_extended_advertiser_set_phy_id 0�00570020

#define sl_bt_rsp_extended_advertiser_set_data_id 0�01570020

#define sl_bt_rsp_extended_advertiser_set_long_data_id 0�02570020

#define sl_bt_rsp_extended_advertiser_generate_data_id 0�03570020

#define sl_bt_rsp_extended_advertiser_start_id 0�04570020

#define sl_bt_rsp_extended_advertiser_start_directed_id 0�05570020

Enumeration Documentation

sl_bt_extended_advertiser_connection_mode_t

sl_bt_extended_advertiser_connection_mode_t

These values define the available connection modes in extended advertising.

Enumerator

sl_bt_extended_advertiser_non_connectable

sl_bt_extended_advertiser_scannable

sl_bt_extended_advertiser_connectable

Definition at line 3021 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Function Documentation

sl_bt_extended_advertiser_set_phy

sl_status_t sl_bt_extended_advertiser_set_phy (uint8_t advertising_set, uint8_t primary_phy, uint8_t secondary_phy)

Parameters

[in] advertising_set Advertising set handle

[in] primary_phy Enum sl_bt_gap_phy_t. The PHY on which the advertising packets are transmitted on the primary

advertising channel. Values:

sl_bt_gap_phy_1m (0x1): 1M PHY

sl_bt_gap_phy_coded (0x4): Coded PHY, 125k (S=8)

Default value: sl_bt_gap_phy_1m

[in] secondary_phy Enum sl_bt_gap_phy_t. The PHY on which the advertising packets are transmitted on the secondary

advertising channel. Values:

sl_bt_gap_phy_1m (0x1): 1M PHY

sl_bt_gap_phy_2m (0x2): 2M PHY

sl_bt_gap_phy_coded (0x4): Coded PHY, 125k (S=8)

Default value: sl_bt_gap_phy_1m

Set the primary and secondary advertising PHYs used for extended and periodic advertising on an advertising set. This

setting will take effect next time extended or periodic advertising is enabled. When advertising on the LE Coded PHY,

coding scheme S=8 is used. The SL_STATUS_INVALID_PARAMETER error is returned if a PHY value is invalid or the device

does not support a given PHY.

Returns

Extended Advertiser

426/1306

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 3079 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_extended_advertiser_set_data

sl_status_t sl_bt_extended_advertiser_set_data (uint8_t advertising_set, size_t data_len, const uint8_t *data)

Parameters

[in] advertising_set Advertising set handle

[in] data_len Length of data in data

[in] data Data to be set

Set user-defined data for extended advertising. This overwrites the existing advertising data packet and scan response

packet on this advertising set regardless of whether the data was set for the legacy or extended advertising. Maximum 191

bytes of data can be set for connectable extended advertising. Maximum 253 bytes of data can be set for non-connectable

extended advertising. For setting longer advertising data, use command sl_bt_extended_advertiser_set_long_data.

If advertising mode is currently enabled, the new advertising data will be used immediately. Advertising mode can be

enabled using command sl_bt_extended_advertiser_start.

The invalid parameter error is returned if the data is too long to fit into a single advertisement.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 3107 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_extended_advertiser_set_long_data

sl_status_t sl_bt_extended_advertiser_set_long_data (uint8_t advertising_set)

Parameters

[in] advertising_set Advertising set handle

Set long user-defined data for extended advertising. This overwrites the existing advertising data packet and scan response

packet on this advertising set regardless of whether the data was set for the legacy or extended advertising.

Prior to calling this command, add data to the buffer with one or multiple calls to sl_bt_system_data_buffer_write. When this

command is called, the data in the system data buffer is extracted as the advertising data. The buffer will be emptied after

this command regardless of the completion status.

Maximum 191 bytes of data can be set for connectable extended advertising. Maximum 1650 bytes of data can be set for

non-connectable extended advertising. Advertising parameters may limit the amount of data that can be sent in a single

advertisement. See sl_bt_extended_advertiser_set_data for more details.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 3135 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_extended_advertiser_generate_data

Extended Advertiser

427/1306

sl_status_t sl_bt_extended_advertiser_generate_data (uint8_t advertising_set, uint8_t discover)

Parameters

[in] advertising_set Advertising set handle

[in] discover Enum sl_bt_advertiser_discovery_mode_t. The discovery mode for the Flags data field in the packet.

Values:

sl_bt_advertiser_non_discoverable (0x0): Not discoverable

sl_bt_advertiser_limited_discoverable (0x1): Discoverable by both limited and general

discovery procedures

sl_bt_advertiser_general_discoverable (0x2): Discoverable by the general discovery

procedure

Ask the stack to generate the extended advertising data on an advertising set. Alternatively, user-defined advertising data

can be set using the sl_bt_extended_advertiser_set_data command.

This overwrites the existing advertising data packet and scan response packet on this advertising set regardless of whether

the data was set for the legacy or extended advertising.

If advertising mode is currently enabled, the new advertising data will be used immediately. To enable advertising mode,

use command sl_bt_extended_advertiser_start.

See sl_bt_legacy_advertiser_generate_data for the advertising data generation logic.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 3166 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_extended_advertiser_start

sl_status_t sl_bt_extended_advertiser_start (uint8_t advertising_set, uint8_t connect, uint32_t flags)

Parameters

[in] advertising_set Advertising set handle

[in] connect Enum sl_bt_extended_advertiser_connection_mode_t. Connection mode. Values:

sl_bt_extended_advertiser_non_connectable (0x0): Non-connectable and non-scannable

extended advertising

sl_bt_extended_advertiser_scannable (0x3): Scannable extended advertising

sl_bt_extended_advertiser_connectable (0x4): Connectable extended advertising

[in] flags Additional extended advertising options. Value: 0 or bitmask of Extended Advertising Configuration

Flags

Start undirected extended advertising on an advertising set with the specified connection mode. Use sl_bt_advertiser_stop

to stop the advertising.

Use the sl_bt_extended_advertiser_set_data or sl_bt_extended_advertiser_generate_data command to set the advertising

data before calling this command. Advertising data is added into the scan response packet if the connection mode is

scannable. Otherwise, data is in the advertising data packet.

The number of concurrent connectable advertisings is limited by the connection number configuration. See

sl_bt_legacy_advertiser_start for more details.

Extended Advertiser

428/1306

This command fails with the invalid parameter error if the advertising uses a non-resolvable random address but the

connection mode is sl_bt_extended_advertiser_connectable.

Event sl_bt_evt_connection_opened will be received when a remote device opens a connection to the advertiser on this

advertising set. As a result, the advertising stops.

Event sl_bt_evt_advertiser_timeout will be received when the number of advertising events set by

sl_bt_advertiser_set_timing command is done and the advertising has stopped.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_advertiser_timeout - Triggered when the number of advertising events set by sl_bt_advertiser_set_timing command

is done and advertising has stopped on an advertising set.

sl_bt_evt_connection_opened - Triggered when a remote device opens a connection to the advertiser and the advertising

has stopped.

Definition at line 3219 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_extended_advertiser_start_directed

sl_status_t sl_bt_extended_advertiser_start_directed (uint8_t advertising_set, uint8_t connect, uint32_t flags, bd_addr
peer_addr, uint8_t peer_addr_type)

Parameters

[in] advertising_set Advertising set handle

[in] connect Enum sl_bt_extended_advertiser_connection_mode_t. Connection mode. Values:

sl_bt_extended_advertiser_non_connectable (0x0): Non-connectable and non-scannable

extended advertising

sl_bt_extended_advertiser_scannable (0x3): Scannable extended advertising

sl_bt_extended_advertiser_connectable (0x4): Connectable extended advertising

[in] flags Additional extended advertising options. Value: 0 or bitmask of Extended Advertising Configuration

Flags

[in] peer_addr Address of the peer target device the advertising is directed to

Extended Advertiser

429/1306

[in] peer_addr_type Enum sl_bt_gap_address_type_t.

Peer target device address type.

If the application does not include the bluetooth_feature_use_accurate_api_address_types

component, peer_addr_type uses the following values:

0: Public address

1: Random address

If the application includes the bluetooth_feature_use_accurate_api_address_types component,

peer_addr_type uses enum sl_bt_gap_address_type_t values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

sl_bt_gap_random_resolvable_address (0x2): Resolvable private random address

sl_bt_gap_random_nonresolvable_address (0x3): Non-resolvable private random address

sl_bt_gap_public_address_resolved_from_rpa (0x4): Public identity address resolved from a

resolvable private address (RPA)

sl_bt_gap_static_address_resolved_from_rpa (0x5): Static identity address resolved from a

resolvable private address (RPA)

Start directed extended advertising on an advertising set with the specified peer target device and connection mode. Use

sl_bt_advertiser_stop to stop the advertising.

The number of concurrent connectable advertisings is limited by the connection number configuration. See

sl_bt_legacy_advertiser_start for more details.

This command fails with the invalid parameter error if the advertising uses a non-resolvable random address but the

connection mode is sl_bt_extended_advertiser_connectable.

Event sl_bt_evt_connection_opened will be received when the target device opens a connection to the advertiser on this

advertising set. As a result, the advertising stops.

Event sl_bt_evt_advertiser_timeout will be received when the advertising stops and no Bluetooth connection is opened to it.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_advertiser_timeout - Triggered when the number of advertising events set by sl_bt_advertiser_set_timing command

is done and the advertising has stopped.

sl_bt_evt_connection_opened - Triggered when a remote device opens a connection to the advertiser and the advertising

has stopped.

Definition at line 3293 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_extended_advertiser_set_phy_id

#define sl_bt_cmd_extended_advertiser_set_phy_id

Value:

0�00570020

Definition at line 3004 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Extended Advertiser

430/1306

sl_bt_cmd_extended_advertiser_set_data_id

#define sl_bt_cmd_extended_advertiser_set_data_id

Value:

0�01570020

Definition at line 3005 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_extended_advertiser_set_long_data_id

#define sl_bt_cmd_extended_advertiser_set_long_data_id

Value:

0�02570020

Definition at line 3006 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_extended_advertiser_generate_data_id

#define sl_bt_cmd_extended_advertiser_generate_data_id

Value:

0�03570020

Definition at line 3007 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_extended_advertiser_start_id

#define sl_bt_cmd_extended_advertiser_start_id

Value:

0�04570020

Definition at line 3008 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_extended_advertiser_start_directed_id

#define sl_bt_cmd_extended_advertiser_start_directed_id

Value:

0�05570020

Definition at line 3009 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_extended_advertiser_set_phy_id

#define sl_bt_rsp_extended_advertiser_set_phy_id

Extended Advertiser

431/1306

Value:

0x00570020

Definition at line 3010 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_extended_advertiser_set_data_id

#define sl_bt_rsp_extended_advertiser_set_data_id

Value:

0�01570020

Definition at line 3011 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_extended_advertiser_set_long_data_id

#define sl_bt_rsp_extended_advertiser_set_long_data_id

Value:

0�02570020

Definition at line 3012 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_extended_advertiser_generate_data_id

#define sl_bt_rsp_extended_advertiser_generate_data_id

Value:

0�03570020

Definition at line 3013 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_extended_advertiser_start_id

#define sl_bt_rsp_extended_advertiser_start_id

Value:

0�04570020

Definition at line 3014 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_extended_advertiser_start_directed_id

#define sl_bt_rsp_extended_advertiser_start_directed_id

Value:

0�05570020

Definition at line 3015 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Extended Advertising Configuration Flags

432/1306

Extended Advertising Configuration Flags

Extended Advertising Configuration Flags
This enum defines configuration flags for the extended advertising.

Macros

#define SL_BT_EXTENDED_ADVERTISER_ANONYMOUS_ADVERTISING 0�1

#define SL_BT_EXTENDED_ADVERTISER_INCLUDE_TX_POWER 0�2

Macro Definition Documentation

SL_BT_EXTENDED_ADVERTISER_ANONYMOUS_ADVERTISING

#define SL_BT_EXTENDED_ADVERTISER_ANONYMOUS_ADVERTISING

Value:

0�1

Omit advertiser's address from all PDUs (anonymous advertising). The advertising cannot be connectable or scannable if

this flag is set.

Definition at line 3041 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_EXTENDED_ADVERTISER_INCLUDE_TX_POWER

#define SL_BT_EXTENDED_ADVERTISER_INCLUDE_TX_POWER

Value:

0�2

Include the TX power in advertising packets.

Definition at line 3044 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Periodic Advertiser

433/1306

Periodic Advertiser

Modules

Periodic Advertising Configuration Flags

Periodic Advertiser
Periodic Advertiser.

Provides support for advertising with periodic advertising trains that do not have subevents or response slots.

Functions

sl_status_t sl_bt_periodic_advertiser_set_data(uint8_t advertising_set, size_t data_len, const uint8_t *data)

sl_status_t sl_bt_periodic_advertiser_set_long_data(uint8_t advertising_set)

sl_status_t sl_bt_periodic_advertiser_start(uint8_t advertising_set, uint16_t interval_min, uint16_t interval_max, uint32_t
flags)

sl_status_t sl_bt_periodic_advertiser_stop(uint8_t advertising_set)

Macros

#define sl_bt_cmd_periodic_advertiser_set_data_id 0�00580020

#define sl_bt_cmd_periodic_advertiser_set_long_data_id 0�01580020

#define sl_bt_cmd_periodic_advertiser_start_id 0�02580020

#define sl_bt_cmd_periodic_advertiser_stop_id 0�03580020

#define sl_bt_rsp_periodic_advertiser_set_data_id 0�00580020

#define sl_bt_rsp_periodic_advertiser_set_long_data_id 0�01580020

#define sl_bt_rsp_periodic_advertiser_start_id 0�02580020

#define sl_bt_rsp_periodic_advertiser_stop_id 0�03580020

Function Documentation

sl_bt_periodic_advertiser_set_data

sl_status_t sl_bt_periodic_advertiser_set_data (uint8_t advertising_set, size_t data_len, const uint8_t *data)

Parameters

[in] advertising_set Advertising set handle

[in] data_len Length of data in data

[in] data Data to be set

Periodic Advertiser

434/1306

Set the data for periodic advertising on an advertising set. Maximum 254 bytes of data can be set with this command. For

setting longer advertising data, use command sl_bt_periodic_advertiser_set_long_data.

If the periodic advertising is currently enabled, the new advertising data will be used immediately. Periodic advertising can

be enabled using the command sl_bt_periodic_advertiser_start.

The invalid parameter error will be returned if the data is too long to fit into the advertisement.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 3386 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_periodic_advertiser_set_long_data

sl_status_t sl_bt_periodic_advertiser_set_long_data (uint8_t advertising_set)

Parameters

[in] advertising_set Advertising set handle

Set data for periodic advertising on an advertising set. Data currently in the system data buffer will be extracted as the

advertising data. The buffer will be emptied after this command regardless of the completion status.

Prior to calling this command, add data to the buffer with one or multiple calls to sl_bt_system_data_buffer_write.

Maximum 1650 bytes of data can be set for periodic advertising. Advertising parameters may limit the amount of data that

can be sent.

See sl_bt_periodic_advertiser_set_data for more details.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 3409 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_periodic_advertiser_start

sl_status_t sl_bt_periodic_advertiser_start (uint8_t advertising_set, uint16_t interval_min, uint16_t interval_max, uint32_t
flags)

Parameters

[in] advertising_set Advertising set handle

[in] interval_min Minimum periodic advertising interval. Value in units of 1.25 ms

Range: 0x06 to 0xFFFF

Time range: 7.5 ms to 81.92 s

Default value: 100 ms

[in] interval_max Maximum periodic advertising interval. Value in units of 1.25 ms

Range: 0x06 to 0xFFFF

Time range: 7.5 ms to 81.92 s

Note: interval_max should be bigger than interval_min

Default value: 200 ms

Periodic Advertiser

435/1306

[in] flags Additional periodic advertising options. Value: 0 or bitmask of Periodic Advertising Configuration Flags

Start periodic advertising on an advertising set.

According to the Bluetooth Core specification, periodic advertising PDUs cannot be transmitted until at least one extended

advertising event has been completed. If the application needs exact control over the extended advertising data and

parameters, use the Advertiser class to configure the parameters of the advertising set and the Extended Advertiser class

to set or generate the desired extended advertising data payload. If the application does not configure the parameters or

set the data, the default parameters and empty advertising data are used for the extended advertising.

If the application has not already started extended advertising and the flag

SL_BT_PERIODIC_ADVERTISER_AUTO_START_EXTENDED_ADVERTISING is set in flags , the stack will automatically start

extended advertising with the parameters and extended advertising data currently configured to the advertising set. The

application may stop the automatically started extended advertising using the sl_bt_advertiser_stop command.

If the application has not already started extended advertising and the flag

SL_BT_PERIODIC_ADVERTISER_AUTO_START_EXTENDED_ADVERTISING is not set in flags , the stack will momentarily start

extended advertising with the parameters and extended advertising data currently configured to the advertising set. Unless

the application starts extended advertising before the first extended advertising event has completed, the stack will

automatically stop the momentary extended advertising after the first extended advertising event.

Periodic advertising PDUs are transmitted on the secondary PHY configured for the advertising set with the

sl_bt_extended_advertiser_set_phy command.

Use sl_bt_periodic_advertiser_stop command to stop the periodic advertising.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 3469 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_periodic_advertiser_stop

sl_status_t sl_bt_periodic_advertiser_stop (uint8_t advertising_set)

Parameters

[in] advertising_set Advertising set handle

Stop the periodic advertising on an advertising set. Counterpart to sl_bt_periodic_advertiser_start.

This command does not affect the enable state of the legacy or extended advertising on the advertising set, i.e., the legacy

or extended advertising is not stopped..

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 3488 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_periodic_advertiser_set_data_id

#define sl_bt_cmd_periodic_advertiser_set_data_id

Value:

0�00580020

Periodic Advertiser

436/1306

Definition at line 3312 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_periodic_advertiser_set_long_data_id

#define sl_bt_cmd_periodic_advertiser_set_long_data_id

Value:

0�01580020

Definition at line 3313 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_periodic_advertiser_start_id

#define sl_bt_cmd_periodic_advertiser_start_id

Value:

0�02580020

Definition at line 3314 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_periodic_advertiser_stop_id

#define sl_bt_cmd_periodic_advertiser_stop_id

Value:

0�03580020

Definition at line 3315 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_periodic_advertiser_set_data_id

#define sl_bt_rsp_periodic_advertiser_set_data_id

Value:

0�00580020

Definition at line 3316 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_periodic_advertiser_set_long_data_id

#define sl_bt_rsp_periodic_advertiser_set_long_data_id

Value:

0�01580020

Definition at line 3317 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_periodic_advertiser_start_id

Periodic Advertiser

437/1306

#define sl_bt_rsp_periodic_advertiser_start_id

Value:

0x02580020

Definition at line 3318 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_periodic_advertiser_stop_id

#define sl_bt_rsp_periodic_advertiser_stop_id

Value:

0�03580020

Definition at line 3319 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Periodic Advertising Configuration Flags

438/1306

Periodic Advertising Configuration Flags

Periodic Advertising Configuration Flags
Defines configuration flags for periodic advertising.

Macros

#define SL_BT_PERIODIC_ADVERTISER_INCLUDE_TX_POWER 0�1

#define SL_BT_PERIODIC_ADVERTISER_AUTO_START_EXTENDED_ADVERTISING 0�2

Macro Definition Documentation

SL_BT_PERIODIC_ADVERTISER_INCLUDE_TX_POWER

#define SL_BT_PERIODIC_ADVERTISER_INCLUDE_TX_POWER

Value:

0�1

Include the TX power in advertising packets.

Definition at line 3329 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_PERIODIC_ADVERTISER_AUTO_START_EXTENDED_ADVERTISING

#define SL_BT_PERIODIC_ADVERTISER_AUTO_START_EXTENDED_ADVERTISING

Value:

0�2

Automatically start the extended advertising on the advertising set. The advertising will be started in non-connectable and

non-scannable mode.

Definition at line 3333 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Scanner

439/1306

Scanner

Modules

Event Type Flags of Advertisement Reports

sl_bt_evt_scanner_legacy_advertisement_report

sl_bt_evt_scanner_extended_advertisement_report

sl_bt_evt_scanner_scan_report

Scanner
Scanner.

This is the scanning feature that is brought in when the application includes a software component for the scanning

functionality. The functionality differences are listed below for various component inclusion scenario:

The bluetooth_feature_scanner component is included but neither bluetooth_feature_legacy_scanner nor

bluetooth_feature_extended_scanner is included:

The scanner can scan advertising devices that use legacy or extended advertising PDUs.

The sl_bt_evt_scanner_scan_report event is used to report the received advertisements.

The bluetooth_feature_legacy_scanner component is included but the bluetooth_feature_extended_scanner is not:

The scanner can only scan advertising devices that use legacy advertising PDUs.

The sl_bt_evt_scanner_legacy_advertisement_report event is used to report the received advertisements.

The bluetooth_feature_extended_scanner component is included:

The scanner can scan advertising devices that use legacy or extended advertising PDUs.

The sl_bt_evt_scanner_legacy_advertisement_report event is used to report the received advertisements that use legacy

advertising PDUs, and the sl_bt_evt_scanner_extended_advertisement_report event is used to report the received

advertisements that use extended advertising PDUs.

Either the bluetooth_feature_legacy_scanner or bluetooth_feature_extended_scanner component is included:

The sl_bt_scanner_set_timing and sl_bt_scanner_set_mode commands are not available to use. They are superseded by the

sl_bt_scanner_set_parameters command.

Calling a superseded command receives SL_STATUS_NOT_SUPPORTED error code.

Enumerations

enum sl_bt_scanner_discover_mode_t {

sl_bt_scanner_discover_limited = 0�0
sl_bt_scanner_discover_generic = 0�1
sl_bt_scanner_discover_observation = 0�2

}
These values indicate which Bluetooth discovery mode to use when scanning for advertising devices.

enum sl_bt_scanner_scan_mode_t {

sl_bt_scanner_scan_mode_passive = 0�0
sl_bt_scanner_scan_mode_active = 0�1

}
The scanning modes.

Scanner

440/1306

enum sl_bt_scanner_scan_phy_t {

sl_bt_scanner_scan_phy_1m = 0�1
sl_bt_scanner_scan_phy_coded = 0�4
sl_bt_scanner_scan_phy_1m_and_coded = 0�5

}
The enum defines the scanning PHYs.

enum sl_bt_scanner_data_status_t {

sl_bt_scanner_data_status_complete = 0�0
sl_bt_scanner_data_status_incomplete_more = 0�1
sl_bt_scanner_data_status_incomplete_nomore = 0�2

}
Defines the data completeness status types of an advertisement reported by the scanner.

enum sl_bt_scanner_filter_policy_t {

sl_bt_scanner_filter_policy_basic_unfiltered = 0�0
sl_bt_scanner_filter_policy_basic_filtered = 0�1
sl_bt_scanner_filter_policy_extended_unfiltered = 0�2
sl_bt_scanner_filter_policy_extended_filtered = 0�3

}
The scanning filter policy setting determines which advertisements and scan responses are delivered to the application

when scanning. See the Bluetooth Core specification Volume 6, Part B, Section 4.3.3 "Scanning filter policy" for a detailed

description of this setting.

Functions

sl_status_t sl_bt_scanner_set_parameters(uint8_t mode, uint16_t interval, uint16_t window)

sl_status_t sl_bt_scanner_set_parameters_and_filter(uint8_t mode, uint16_t interval, uint16_t window, uint32_t flags,
uint8_t filter_policy)

sl_status_t sl_bt_scanner_stop()

SL_BGAPI_DEPRE
CATED sl_status_t

sl_bt_scanner_set_timing(uint8_t phys, uint16_t scan_interval, uint16_t scan_window)

SL_BGAPI_DEPRE
CATED sl_status_t

sl_bt_scanner_set_mode(uint8_t phys, uint8_t scan_mode)

sl_status_t sl_bt_scanner_start(uint8_t scanning_phy, uint8_t discover_mode)

Macros

#define sl_bt_cmd_scanner_set_parameters_id 0�06050020

#define sl_bt_cmd_scanner_set_parameters_and_filter_id 0�07050020

#define sl_bt_cmd_scanner_stop_id 0�05050020

#define sl_bt_cmd_scanner_set_timing_id 0�01050020

#define sl_bt_cmd_scanner_set_mode_id 0�02050020

#define sl_bt_cmd_scanner_start_id 0�03050020

#define sl_bt_rsp_scanner_set_parameters_id 0�06050020

#define sl_bt_rsp_scanner_set_parameters_and_filter_id 0�07050020

Scanner

441/1306

#define sl_bt_rsp_scanner_stop_id 0�05050020

#define sl_bt_rsp_scanner_set_timing_id 0�01050020

#define sl_bt_rsp_scanner_set_mode_id 0�02050020

#define sl_bt_rsp_scanner_start_id 0�03050020

Enumeration Documentation

sl_bt_scanner_discover_mode_t

sl_bt_scanner_discover_mode_t

These values indicate which Bluetooth discovery mode to use when scanning for advertising devices.

Enumerator

sl_bt_scanner_discover_limited

sl_bt_scanner_discover_generic

sl_bt_scanner_discover_observation

Definition at line 3552 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_scanner_scan_mode_t

sl_bt_scanner_scan_mode_t

The scanning modes.

Enumerator

sl_bt_scanner_scan_mode_passive

sl_bt_scanner_scan_mode_active

Definition at line 3566 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_scanner_scan_phy_t

sl_bt_scanner_scan_phy_t

The enum defines the scanning PHYs.

Enumerator

sl_bt_scanner_scan_phy_1m

sl_bt_scanner_scan_phy_coded

sl_bt_scanner_scan_phy_1m_and_coded

Definition at line 3584 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_scanner_data_status_t

sl_bt_scanner_data_status_t

Defines the data completeness status types of an advertisement reported by the scanner.

Scanner

442/1306

Enumerator

sl_bt_scanner_data_status_complete

sl_bt_scanner_data_status_incomplete_more

sl_bt_scanner_data_status_incomplete_nomore

Definition at line 3599 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_scanner_filter_policy_t

sl_bt_scanner_filter_policy_t

The scanning filter policy setting determines which advertisements and scan responses are delivered to the application

when scanning. See the Bluetooth Core specification Volume 6, Part B, Section 4.3.3 "Scanning filter policy" for a detailed

description of this setting.

Note that some filter policies require the application to include additional Bluetooth feature components. Filter policies that

use the Filter Accept List require that the application has included the bluetooth_feature_accept_list component. Filter

policies that require the Bluetooth controller to resolve a Resolvable Private Address require that the application has

included the bluetooth_feature_resolving_list component.

Enumerator

sl_bt_scanner_filter_policy_basic_unfiltered

sl_bt_scanner_filter_policy_basic_filtered

sl_bt_scanner_filter_policy_extended_unfiltered

sl_bt_scanner_filter_policy_extended_filtered

Definition at line 3633 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Function Documentation

sl_bt_scanner_set_parameters

sl_status_t sl_bt_scanner_set_parameters (uint8_t mode, uint16_t interval, uint16_t window)

Parameters

[in] mode Enum sl_bt_scanner_scan_mode_t.

Passive or active scan. Values:

sl_bt_scanner_scan_mode_passive (0x0): Passive scanning mode where the device only listens to

advertising packets and does not transmit packets

sl_bt_scanner_scan_mode_active (0x1): Active scanning mode where the device sends out a scan

request packet upon receiving a scannable advertising packet from a remote device and listens to the

scan response packet from the remote device

Default value: sl_bt_scanner_scan_mode_passive.

Scanner

443/1306

[in] interval The time interval when the device starts its last scan until it begins the subsequent scan. In other words,

how often to scan

Time = Value x 0.625 ms

Range: 0x0004 to 0xFFFF

Time Range: 2.5 ms to 40.96 s

Default value: 10 ms

A variable delay occurs when switching channels at the end of each scanning interval, which is included in

the scanning interval time. During the switch time, advertising packets are not received by the device. The

switch time variation is use case dependent. For example, if scanning while keeping active connections,

the channel switch time might be longer than when scanning without any active connections. Increasing

the scanning interval reduces the amount of time in which the device can't receive advertising packets

because it switches channels less often.

After every scan interval, the scanner changes the frequency at which it operates. It cycles through all

three advertising channels in a round robin fashion. According to the specification, all three channels must

be used by a scanner.

[in] window The scan window, i.e., the duration of the scan, which must be less than or equal to the interval

Time = Value x 0.625 ms

Range: 0x0004 to 0xFFFF

Time Range: 2.5 ms to 40.96 s

Default value: 10 ms

Note that the packet reception is aborted if it's started just before the scan window ends.

Set scan parameters for subsequent scanning operations. If the device is currently scanning, new parameters will take

effect when scanning is restarted.

This command sets the scanning filter policy to the default value sl_bt_scanner_filter_policy_basic_unfiltered. Use the

command sl_bt_scanner_set_parameters_and_filter to set a specific scanning filter policy.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 4217 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_scanner_set_parameters_and_filter

sl_status_t sl_bt_scanner_set_parameters_and_filter (uint8_t mode, uint16_t interval, uint16_t window, uint32_t flags, uint8_t
filter_policy)

Parameters

[in] mode Enum sl_bt_scanner_scan_mode_t.

Passive or active scan. Values:

sl_bt_scanner_scan_mode_passive (0x0): Passive scanning mode where the device only listens to

advertising packets and does not transmit packets

sl_bt_scanner_scan_mode_active (0x1): Active scanning mode where the device sends out a scan

request packet upon receiving a scannable advertising packet from a remote device and listens to the

scan response packet from the remote device

Default value: sl_bt_scanner_scan_mode_passive.

Scanner

444/1306

[in] interval The time interval when the device starts its last scan until it begins the subsequent scan. In other

words, how often to scan

Time = Value x 0.625 ms

Range: 0x0004 to 0xFFFF

Time Range: 2.5 ms to 40.96 s

Default value: 10 ms

A variable delay occurs when switching channels at the end of each scanning interval, which is

included in the scanning interval time. During the switch time, advertising packets are not received by

the device. The switch time variation is use case dependent. For example, if scanning while keeping

active connections, the channel switch time might be longer than when scanning without any active

connections. Increasing the scanning interval reduces the amount of time in which the device can't

receive advertising packets because it switches channels less often.

After every scan interval, the scanner changes the frequency at which it operates. It cycles through all

three advertising channels in a round robin fashion. According to the specification, all three channels

must be used by a scanner.

[in] window The scan window, i.e., the duration of the scan, which must be less than or equal to the interval

Time = Value x 0.625 ms

Range: 0x0004 to 0xFFFF

Time Range: 2.5 ms to 40.96 s

Default value: 10 ms

Note that the packet reception is aborted if it's started just before the scan window ends.

[in] flags No flags are currently defined. Set this parameter to 0.

[in] filter_policy Enum sl_bt_scanner_filter_policy_t.

The scanning filter policy to use when scanning is started. The filter policy determines which

advertisements and scan responses are delivered to the application. Values:

sl_bt_scanner_filter_policy_basic_unfiltered (0x0): Advertising and scan response PDUs are

processed from all devices. For directed advertising, the target address must additionally match

the identity address of the local device or be a Resolvable Private Address that is resolved to the

local device by the Bluetooth controller.

sl_bt_scanner_filter_policy_basic_filtered (0x1): Advertising and scan response PDUs are

processed only from devices that the application has added to the Filter Accept List. For directed

advertising, the target address must additionally match the identity address of the local device or

be a Resolvable Private Address that is resolved to the local device by the Bluetooth controller.

sl_bt_scanner_filter_policy_extended_unfiltered (0x2): Advertising and scan response PDUs are

processed from all devices. For directed advertising, the target address must additionally match

the identity address of the local device or be any Resolvable Private Address.

sl_bt_scanner_filter_policy_extended_filtered (0x3): Advertising and scan response PDUs are

processed only from devices that the application has added to the Filter Accept List. For directed

advertising, the target address must additionally match the identity address of the local device or

be any Resolvable Private Address.

Default value: sl_bt_scanner_filter_policy_basic_unfiltered

Set scan parameters and the scanning filter policy for subsequent scanning operations. If the device is currently scanning,

new parameters will take effect when scanning is restarted.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 4311 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Scanner

445/1306

sl_bt_scanner_stop

sl_status_t sl_bt_scanner_stop ()

Stop scanning for advertising devices. For more information about the discovery, see the sl_bt_scanner_start command.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 4326 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_scanner_set_timing

SL_BGAPI_DEPRECATED sl_status_t sl_bt_scanner_set_timing (uint8_t phys, uint16_t scan_interval, uint16_t scan_window)

Parameters

[in] phys Enum sl_bt_scanner_scan_phy_t. The scanning PHY(s) the setting is set for. Values:

sl_bt_scanner_scan_phy_1m (0x1): 1M PHY

sl_bt_scanner_scan_phy_coded (0x4): Coded PHY

sl_bt_scanner_scan_phy_1m_and_coded (0x5): 1M and Coded PHYs

[in] scan_interval Scan interval is defined as the time interval when the device starts its last scan until it begins the

subsequent scan. In other words, how often to scan

Time = Value x 0.625 ms

Range: 0x0004 to 0xFFFF

Time Range: 2.5 ms to 40.96 s

Default value: 10 ms

A variable delay occurs when switching channels at the end of each scanning interval, which is

included in the scanning interval time. During the switch time, advertising packets are not received

by the device. The switch time variation is use case-dependent. For example, if scanning while

keeping active connections, the channel switch time might be longer than when scanning without

any active connections. Increasing the scanning interval reduces the amount of time in which the

device can't receive advertising packets because it switches channels less often.

After every scan interval, the scanner changes the frequency at which it operates. It cycles through

all three advertising channels in a round robin fashion. According to the specification, all three

channels must be used by a scanner.

[in] scan_window Scan window defines the duration of the scan which must be less than or equal to the scan_interval

Time = Value x 0.625 ms

Range: 0x0004 to 0xFFFF

Time Range: 2.5 ms to 40.96 s

Default value: 10 ms Note that the packet reception is aborted if it's started just before the scan

window ends.

Deprecated and replaced by the sl_bt_scanner_set_parameters command.

Set the scanning timing parameters on the specified PHY(s). If the device is currently scanning, new parameters will take

effect when scanning is restarted.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Scanner

446/1306

Definition at line 4380 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_scanner_set_mode

SL_BGAPI_DEPRECATED sl_status_t sl_bt_scanner_set_mode (uint8_t phys, uint8_t scan_mode)

Parameters

[in] phys Enum sl_bt_scanner_scan_phy_t. The scanning PHY(s) the setting is set for. Values:

sl_bt_scanner_scan_phy_1m (0x1): 1M PHY

sl_bt_scanner_scan_phy_coded (0x4): Coded PHY

sl_bt_scanner_scan_phy_1m_and_coded (0x5): 1M and Coded PHYs

[in] scan_mode Enum sl_bt_scanner_scan_mode_t.

The scan mode. Values:

sl_bt_scanner_scan_mode_passive (0x0): Passive scanning mode where the device only listens

to advertising packets and does not transmit packets

sl_bt_scanner_scan_mode_active (0x1): Active scanning mode where the device sends out a

scan request packet upon receiving a scannable advertising packet from a remote device and

listens to the scan response packet from the remote device

Default value: sl_bt_scanner_scan_mode_passive.

Deprecated and replaced by the sl_bt_scanner_set_parameters command.

Set the scan mode on the specified PHY(s). If the device is currently scanning, new parameters will take effect when

scanning is restarted.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 4415 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_scanner_start

sl_status_t sl_bt_scanner_start (uint8_t scanning_phy, uint8_t discover_mode)

Parameters

[in] scanning_phy Enum sl_bt_scanner_scan_phy_t.

The scanning PHY(s).

In simultaneous scanning, the stack alternates the scanning on two PHYs by switching the PHY at

every scan interval. When a timing parameter is set differently on 1M and Coded PHY, the stack

chooses the most relaxed value for both PHYs during simultaneous scanning, i.e., the largest scan

interval or the smallest scan window. If one PHY is set to passive scanning and the other to active

scanning, passive scanning is chosen for simultaneous scanning. Values:

sl_bt_scanner_scan_phy_1m (0x1): Initiate the scanning on the 1M PHY

sl_bt_scanner_scan_phy_coded (0x4): Initiate the scanning on the Coded PHY

sl_bt_scanner_scan_phy_1m_and_coded (0x5): Simultaneous scanning by initiating the

scanning on the 1M and Coded PHY alternatively

Scanner

447/1306

[in] discover_mode Enum sl_bt_scanner_discover_mode_t. Bluetooth discovery Mode. Values:

sl_bt_scanner_discover_limited (0x0): Discover only limited discoverable devices.

sl_bt_scanner_discover_generic (0x1): Discover limited and general discoverable devices.

sl_bt_scanner_discover_observation (0x2): Discover non-discoverable, limited and general

discoverable devices.

Start the GAP discovery procedure to scan for advertising devices that use legacy or extended advertising PDUs. To cancel

an ongoing discovery procedure, use the sl_bt_scanner_stop command.

The invalid parameter error will be returned if the value of scanning PHYs is invalid or the device does not support a PHY.

Received advertising packets are not filtered in any way, so multiple events will be received for every advertising device in

range.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_scanner_scan_report - This event is triggered for reporting a received advertisement if the application includes the

bluetooth_feature_scanner component but does not include any other scanner component.

sl_bt_evt_scanner_legacy_advertisement_report - This event is triggered for reporting a received advertisement that uses

legacy advertising PDUs if the application includes the bluetooth_feature_legacy_scanner or

bluetooth_feature_extended_scanner component.

sl_bt_evt_scanner_extended_advertisement_report - This event is triggered for reporting a received advertisement that uses

extended advertising PDUs if the application includes the bluetooth_feature_extended_scanner component.

Definition at line 4475 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_scanner_set_parameters_id

#define sl_bt_cmd_scanner_set_parameters_id

Value:

0�06050020

Definition at line 3535 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_scanner_set_parameters_and_filter_id

#define sl_bt_cmd_scanner_set_parameters_and_filter_id

Value:

0�07050020

Definition at line 3536 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_scanner_stop_id

#define sl_bt_cmd_scanner_stop_id

Value:

Scanner

448/1306

0x05050020

Definition at line 3537 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_scanner_set_timing_id

#define sl_bt_cmd_scanner_set_timing_id

Value:

0�01050020

Definition at line 3538 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_scanner_set_mode_id

#define sl_bt_cmd_scanner_set_mode_id

Value:

0�02050020

Definition at line 3539 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_scanner_start_id

#define sl_bt_cmd_scanner_start_id

Value:

0�03050020

Definition at line 3540 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_scanner_set_parameters_id

#define sl_bt_rsp_scanner_set_parameters_id

Value:

0�06050020

Definition at line 3541 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_scanner_set_parameters_and_filter_id

#define sl_bt_rsp_scanner_set_parameters_and_filter_id

Value:

0�07050020

Definition at line 3542 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Scanner

449/1306

sl_bt_rsp_scanner_stop_id

#define sl_bt_rsp_scanner_stop_id

Value:

0�05050020

Definition at line 3543 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_scanner_set_timing_id

#define sl_bt_rsp_scanner_set_timing_id

Value:

0�01050020

Definition at line 3544 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_scanner_set_mode_id

#define sl_bt_rsp_scanner_set_mode_id

Value:

0�02050020

Definition at line 3545 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_scanner_start_id

#define sl_bt_rsp_scanner_start_id

Value:

0�03050020

Definition at line 3546 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Event Type Flags of Advertisement Reports

450/1306

Event Type Flags of Advertisement Reports

Event Type Flags of Advertisement Reports
Defines the event type flags of the advertisement packets the scanner reports. An advertisement packet could have

multiple applicable flags.

Macros

#define SL_BT_SCANNER_EVENT_FLAG_CONNECTABLE 0�1

#define SL_BT_SCANNER_EVENT_FLAG_SCANNABLE 0�2

#define SL_BT_SCANNER_EVENT_FLAG_DIRECTED 0�4

#define SL_BT_SCANNER_EVENT_FLAG_SCAN_RESPONSE 0�8

Macro Definition Documentation

SL_BT_SCANNER_EVENT_FLAG_CONNECTABLE

#define SL_BT_SCANNER_EVENT_FLAG_CONNECTABLE

Value:

0�1

A connectable advertising data packet

Definition at line 3716 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_SCANNER_EVENT_FLAG_SCANNABLE

#define SL_BT_SCANNER_EVENT_FLAG_SCANNABLE

Value:

0�2

A scannable advertising data packet

Definition at line 3719 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_SCANNER_EVENT_FLAG_DIRECTED

#define SL_BT_SCANNER_EVENT_FLAG_DIRECTED

Value:

Event Type Flags of Advertisement Reports

451/1306

0x4

Directed advertising

Definition at line 3722 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_SCANNER_EVENT_FLAG_SCAN_RESPONSE

#define SL_BT_SCANNER_EVENT_FLAG_SCAN_RESPONSE

Value:

0�8

A scan response packet that can be received in active scan mode only

Definition at line 3725 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_scanner_legacy_advertisement_report

452/1306

sl_bt_evt_scanner_legacy_advertisement_report

Modules

sl_bt_evt_scanner_legacy_advertisement_report_s

sl_bt_evt_scanner_legacy_advertisement_report
Reports an advertising data or scan response packet from an advertising device that uses legacy advertising PDUs.

This event is used to report advertisements only if the application includes the bluetooth_feature_legacy_scanner or

bluetooth_feature_extended_scanner component

Otherwise, the sl_bt_evt_scanner_scan_report event is used for maintaining the backwards compatibility.

Typedefs

typedef struct
sl_bt_evt_scanner
_legacy_advertise
ment_report_s

sl_bt_evt_scanner_legacy_advertisement_report_t

Macros

#define sl_bt_evt_scanner_legacy_advertisement_report_id 0�000500a0
Identifier of the legacy_advertisement_report event.

Typedef Documentation

sl_bt_evt_scanner_legacy_advertisement_report_t

typedef struct sl_bt_evt_scanner_legacy_advertisement_report_s sl_bt_evt_scanner_legacy_advertisement_report_t

Definition at line 3843 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_scanner_legacy_advertisement_report_id

#define sl_bt_evt_scanner_legacy_advertisement_report_id

Value:

0�000500a0

Identifier of the legacy_advertisement_report event.

Definition at line 3744 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_scanner_legacy_advertisement_report_s

453/1306

sl_bt_evt_scanner_legacy_advertisement_report_s

Data structure of the legacy_advertisement_report event.

Public Attributes

uint8_t event_flags

bd_addr address

uint8_t address_type

uint8_t bonding

int8_t rssi

uint8_t channel

bd_addr target_address

uint8_t target_address_type

uint8array data

Public Attribute Documentation

event_flags

uint8_t sl_bt_evt_scanner_legacy_advertisement_report_s::event_flags

The event type flag(s) in the advertisement packet. Value: One or more flags defined in Event Type Flags of Advertisement

Reports

Definition at line 3751 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

address

bd_addr sl_bt_evt_scanner_legacy_advertisement_report_s::address

Advertiser address

Definition at line 3755 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

address_type

uint8_t sl_bt_evt_scanner_legacy_advertisement_report_s::address_type

Enum sl_bt_gap_address_type_t.

sl_bt_evt_scanner_legacy_advertisement_report_s

454/1306

Advertiser address type.

If the application does not include the bluetooth_feature_use_accurate_api_address_types component, address_type uses

the following values:

0: Public address

1: Random address

If the application includes the bluetooth_feature_use_accurate_api_address_types component, address_type uses enum

sl_bt_gap_address_type_t values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

sl_bt_gap_random_resolvable_address (0x2): Resolvable private random address

sl_bt_gap_random_nonresolvable_address (0x3): Non-resolvable private random address

sl_bt_gap_public_address_resolved_from_rpa (0x4): Public identity address resolved from a resolvable private address

(RPA)

sl_bt_gap_static_address_resolved_from_rpa (0x5): Static identity address resolved from a resolvable private address (RPA)

Definition at line 3756 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

bonding

uint8_t sl_bt_evt_scanner_legacy_advertisement_report_s::bonding

Bonding handle if the remote advertising device has previously bonded with the local device. Values:

SL_BT_INVALID_BONDING_HANDLE (0xff): No bonding

Other: Bonding handle

Definition at line 3789 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

rssi

int8_t sl_bt_evt_scanner_legacy_advertisement_report_s::rssi

Signal strength indicator (RSSI) in the last received packet. Units: dBm

Range: -127 to +20

Definition at line 3795 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

channel

uint8_t sl_bt_evt_scanner_legacy_advertisement_report_s::channel

The channel number on which the last packet was received

Definition at line 3798 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

target_address

sl_bt_evt_scanner_legacy_advertisement_report_s

455/1306

bd_addr sl_bt_evt_scanner_legacy_advertisement_report_s::target_address

The target address if the advertisement is from directed advertising, otherwise ignored

Definition at line 3800 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

target_address_type

uint8_t sl_bt_evt_scanner_legacy_advertisement_report_s::target_address_type

Enum sl_bt_gap_address_type_t.

The target address type if the advertisement is from directed advertising, otherwise ignored.

If the application does not include the bluetooth_feature_use_accurate_api_address_types component, target_address_type

uses the following values:

0: Public address

1: Random address

If the application includes the bluetooth_feature_use_accurate_api_address_types component, target_address_type uses

enum sl_bt_gap_address_type_t values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

sl_bt_gap_random_resolvable_address (0x2): Resolvable private random address

sl_bt_gap_random_nonresolvable_address (0x3): Non-resolvable private random address

sl_bt_gap_public_address_resolved_from_rpa (0x4): Public identity address resolved from a resolvable private address

(RPA)

sl_bt_gap_static_address_resolved_from_rpa (0x5): Static identity address resolved from a resolvable private address (RPA)

Definition at line 3803 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

data

uint8array sl_bt_evt_scanner_legacy_advertisement_report_s::data

Advertising or scan response data. Ignore if this is directed advertising.

Definition at line 3839 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_scanner_extended_advertisement_report

456/1306

sl_bt_evt_scanner_extended_advertisement_report

Modules

sl_bt_evt_scanner_extended_advertisement_report_s

sl_bt_evt_scanner_extended_advertisement_report
Reports an advertising or scan response packet from an advertising device that uses extended advertising PDUs.

Multiple events may be reported for single advertisement train.

This event is used to report advertisements only if the application includes the bluetooth_feature_extended_scanner

component. Otherwise, the sl_bt_evt_scanner_scan_report event is used for maintaining the backwards compatibility.

Typedefs

typedef struct
sl_bt_evt_scanner
_extended_advert
isement_report_s

sl_bt_evt_scanner_extended_advertisement_report_t

Macros

#define sl_bt_evt_scanner_extended_advertisement_report_id 0�020500a0
Identifier of the extended_advertisement_report event.

Typedef Documentation

sl_bt_evt_scanner_extended_advertisement_report_t

typedef struct sl_bt_evt_scanner_extended_advertisement_report_s sl_bt_evt_scanner_extended_advertisement_report_t

Definition at line 4014 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_scanner_extended_advertisement_report_id

#define sl_bt_evt_scanner_extended_advertisement_report_id

Value:

0�020500a0

Identifier of the extended_advertisement_report event.

Definition at line 3862 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_scanner_extended_advertisement_report_s

457/1306

sl_bt_evt_scanner_extended_advertisement_report_s

Data structure of the extended_advertisement_report event.

Public Attributes

uint8_t event_flags

bd_addr address

uint8_t address_type

uint8_t bonding

int8_t rssi

uint8_t channel

bd_addr target_address

uint8_t target_address_type

uint8_t adv_sid

uint8_t primary_phy

uint8_t secondary_phy

int8_t tx_power

uint16_t periodic_interval

uint8_t data_completeness

uint8_t counter

uint8array data

Public Attribute Documentation

event_flags

uint8_t sl_bt_evt_scanner_extended_advertisement_report_s::event_flags

The event type flag(s) in the advertisement packet. Value: One or more flags defined in Event Type Flags of Advertisement

Reports

Definition at line 3869 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

address

sl_bt_evt_scanner_extended_advertisement_report_s

458/1306

bd_addr sl_bt_evt_scanner_extended_advertisement_report_s::address

Advertiser address

Definition at line 3873 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

address_type

uint8_t sl_bt_evt_scanner_extended_advertisement_report_s::address_type

Enum sl_bt_gap_address_type_t.

Advertiser address type.

If the application does not include the bluetooth_feature_use_accurate_api_address_types component, address_type uses

the following values:

0: Public address

1: Random address

255: No address provided (anonymous advertising)

If the application includes the bluetooth_feature_use_accurate_api_address_types component, address_type uses enum

sl_bt_gap_address_type_t values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

sl_bt_gap_random_resolvable_address (0x2): Resolvable private random address

sl_bt_gap_random_nonresolvable_address (0x3): Non-resolvable private random address

sl_bt_gap_anonymous_address (0xff): No address provided (anonymous advertising)

sl_bt_gap_public_address_resolved_from_rpa (0x4): Public identity address resolved from a resolvable private address

(RPA)

sl_bt_gap_static_address_resolved_from_rpa (0x5): Static identity address resolved from a resolvable private address (RPA)

Definition at line 3874 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

bonding

uint8_t sl_bt_evt_scanner_extended_advertisement_report_s::bonding

Bonding handle if the remote advertising device has previously bonded with the local device. Values:

SL_BT_INVALID_BONDING_HANDLE (0xff): No bonding

Other: Bonding handle

Definition at line 3912 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

rssi

int8_t sl_bt_evt_scanner_extended_advertisement_report_s::rssi

Signal strength indicator (RSSI) in the last received packet. Units: dBm

Range: -127 to +20

sl_bt_evt_scanner_extended_advertisement_report_s

459/1306

Definition at line 3918 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

channel

uint8_t sl_bt_evt_scanner_extended_advertisement_report_s::channel

The channel number on which the last packet was received

Definition at line 3921 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

target_address

bd_addr sl_bt_evt_scanner_extended_advertisement_report_s::target_address

The target address if this is directed advertising, otherwise ignored

Definition at line 3923 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

target_address_type

uint8_t sl_bt_evt_scanner_extended_advertisement_report_s::target_address_type

Enum sl_bt_gap_address_type_t.

The target address type if the advertisement is from directed advertising, otherwise ignored.

If the application does not include the bluetooth_feature_use_accurate_api_address_types component, target_address_type

uses the following values:

0: Public address

1: Random address

If the application includes the bluetooth_feature_use_accurate_api_address_types component, target_address_type uses

enum sl_bt_gap_address_type_t values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

sl_bt_gap_random_resolvable_address (0x2): Resolvable private random address

sl_bt_gap_random_nonresolvable_address (0x3): Non-resolvable private random address

sl_bt_gap_public_address_resolved_from_rpa (0x4): Public identity address resolved from a resolvable private address

(RPA)

sl_bt_gap_static_address_resolved_from_rpa (0x5): Static identity address resolved from a resolvable private address (RPA)

Definition at line 3925 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

adv_sid

uint8_t sl_bt_evt_scanner_extended_advertisement_report_s::adv_sid

Advertising set identifier

Definition at line 3961 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_scanner_extended_advertisement_report_s

460/1306

primary_phy

uint8_t sl_bt_evt_scanner_extended_advertisement_report_s::primary_phy

Enum sl_bt_gap_phy_t. The PHY on which advertising packets are transmitted on the primary advertising channel Values:

sl_bt_gap_phy_1m (0x1): 1M PHY

sl_bt_gap_phy_coded (0x4): Coded PHY, 125k (S=8) or 500k (S=2)

Definition at line 3962 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

secondary_phy

uint8_t sl_bt_evt_scanner_extended_advertisement_report_s::secondary_phy

Enum sl_bt_gap_phy_t. The PHY on which advertising packets are transmitted on the secondary advertising channel Values:

sl_bt_gap_phy_1m (0x1): 1M PHY

sl_bt_gap_phy_2m (0x2): 2M PHY

sl_bt_gap_phy_coded (0x4): Coded PHY, 125k (S=8) or 500k (S=2)

Definition at line 3969 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

tx_power

int8_t sl_bt_evt_scanner_extended_advertisement_report_s::tx_power

TX power value in the received packet header. Units: dBm

Valid value range: -127 to 126

Value 127: information unavailable

Definition at line 3977 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

periodic_interval

uint16_t sl_bt_evt_scanner_extended_advertisement_report_s::periodic_interval

The periodic advertising interval. Value 0 indicates no periodic advertising. Otherwise,

Range: 0x06 to 0xFFFF

Unit: 1.25 ms

Time range: 7.5 ms to 81.92 s

Definition at line 3981 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

data_completeness

uint8_t sl_bt_evt_scanner_extended_advertisement_report_s::data_completeness

Enum sl_bt_scanner_data_status_t. The data completeness status. Values:

sl_bt_evt_scanner_extended_advertisement_report_s

461/1306

sl_bt_scanner_data_status_complete (0x0): All data of the advertisement has been reported.

sl_bt_scanner_data_status_incomplete_more (0x1): Data of the advertisement is incomplete in this event, and more data will

come in new events.

sl_bt_scanner_data_status_incomplete_nomore (0x2): Data of the advertisement is incomplete in this event, but no more

data will come, i.e., the data of the advertisement is truncated.

Definition at line 3987 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

counter

uint8_t sl_bt_evt_scanner_extended_advertisement_report_s::counter

The monotonically increasing counter as the sequence number of the event. This counter is specific to

sl_bt_evt_scanner_extended_advertisement_report_id. It can be used to detect if one more

sl_bt_evt_scanner_extended_advertisement_report events were dropped due to temporarily out of resources or other

reasons. Ignore this field if event loss is not a concern.

Definition at line 4001 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

data

uint8array sl_bt_evt_scanner_extended_advertisement_report_s::data

Advertising or scan response data

Definition at line 4011 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_scanner_scan_report

462/1306

sl_bt_evt_scanner_scan_report

Modules

sl_bt_evt_scanner_scan_report_s

sl_bt_evt_scanner_scan_report
Deprecated and replaced by new sl_bt_evt_scanner_legacy_advertisement_report and

sl_bt_evt_scanner_extended_advertisement_report events

To use these new events, the application needs to include the bluetooth_feature_legacy_scanner or

bluetooth_feature_extended_scanner component.

Reports an advertising or scan response packet from an advertising device that uses legacy or extended advertising PDUs.

Typedefs

typedef struct
sl_bt_evt_scanner
_scan_report_s

sl_bt_evt_scanner_scan_report_t

Macros

#define sl_bt_evt_scanner_scan_report_id 0�010500a0
Identifier of the scan_report event.

Typedef Documentation

sl_bt_evt_scanner_scan_report_t

typedef struct sl_bt_evt_scanner_scan_report_s sl_bt_evt_scanner_scan_report_t

Definition at line 4149 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_scanner_scan_report_id

#define sl_bt_evt_scanner_scan_report_id

Value:

0�010500a0

Identifier of the scan_report event.

Definition at line 4034 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_scanner_scan_report_s

463/1306

sl_bt_evt_scanner_scan_report_s

Data structure of the scan_report event.

Public Attributes

uint8_t packet_type

bd_addr address

uint8_t address_type

uint8_t bonding

uint8_t primary_phy

uint8_t secondary_phy

uint8_t adv_sid

int8_t tx_power

int8_t rssi

uint8_t channel

uint16_t periodic_interval

uint8array data

Public Attribute Documentation

packet_type

uint8_t sl_bt_evt_scanner_scan_report_s::packet_type

Bits 0..2 : advertising packet type

000 : Connectable scannable undirected advertising

001 : Connectable undirected advertising

010 : Scannable undirected advertising

011 : Non-connectable non-scannable undirected advertising

100 : Scan Response. Note that this is received only if the device is in active scan mode.

Bits 3..4 : Reserved for future

Bits 5..6 : data completeness

00: Complete

01: Incomplete, more data to come in new events

10: Incomplete, data truncated, no more to come

Bit 7 : legacy or extended advertising

sl_bt_evt_scanner_scan_report_s

464/1306

0: Legacy advertising PDUs used

1: Extended advertising PDUs used

Definition at line 4041 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

address

bd_addr sl_bt_evt_scanner_scan_report_s::address

Bluetooth address of the remote device

Definition at line 4068 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

address_type

uint8_t sl_bt_evt_scanner_scan_report_s::address_type

Enum sl_bt_gap_address_type_t.

Advertiser address type.

If the application does not include the bluetooth_feature_use_accurate_api_address_types component, address_type uses

the following values:

0: Public address

1: Random address

255: No address provided (anonymous advertising)

If the application includes the bluetooth_feature_use_accurate_api_address_types component, address_type uses enum

sl_bt_gap_address_type_t values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

sl_bt_gap_random_resolvable_address (0x2): Resolvable private random address

sl_bt_gap_random_nonresolvable_address (0x3): Non-resolvable private random address

sl_bt_gap_anonymous_address (0xff): No address provided (anonymous advertising)

sl_bt_gap_public_address_resolved_from_rpa (0x4): Public identity address resolved from a resolvable private address

(RPA)

sl_bt_gap_static_address_resolved_from_rpa (0x5): Static identity address resolved from a resolvable private address (RPA)

Definition at line 4069 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

bonding

uint8_t sl_bt_evt_scanner_scan_report_s::bonding

Bonding handle if the remote advertising device has previously bonded with the local device. Values:

SL_BT_INVALID_BONDING_HANDLE (0xff): No bonding

Other: Bonding handle

Definition at line 4107 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

primary_phy

sl_bt_evt_scanner_scan_report_s

465/1306

uint8_t sl_bt_evt_scanner_scan_report_s::primary_phy

Enum sl_bt_gap_phy_t. The PHY on which advertising packets are transmitted on the primary advertising channel. Ignore

this field if the report is for a legacy advertising PDU. Values:

sl_bt_gap_phy_1m (0x1): 1M PHY

sl_bt_gap_phy_coded (0x4): Coded PHY, 125k (S=8) or 500k (S=2)

Definition at line 4113 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

secondary_phy

uint8_t sl_bt_evt_scanner_scan_report_s::secondary_phy

Enum sl_bt_gap_phy_t. The PHY on which advertising packets are transmitted on the secondary advertising channel. Ignore

this field if the report is for a legacy advertising PDU. Values:

sl_bt_gap_phy_1m (0x1): 1M PHY

sl_bt_gap_phy_2m (0x2): 2M PHY

sl_bt_gap_phy_coded (0x4): Coded PHY, 125k (S=8) or 500k (S=2)

Definition at line 4121 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

adv_sid

uint8_t sl_bt_evt_scanner_scan_report_s::adv_sid

Advertising set identifier

Definition at line 4130 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

tx_power

int8_t sl_bt_evt_scanner_scan_report_s::tx_power

TX power value in the received packet header. Units: dBm

Valid value range: -127 to 126

Value 127: information unavailable

Definition at line 4131 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

rssi

int8_t sl_bt_evt_scanner_scan_report_s::rssi

Signal strength indicator (RSSI) in the last received packet. Units: dBm

Range: -127 to +20

Definition at line 4135 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_scanner_scan_report_s

466/1306

channel

uint8_t sl_bt_evt_scanner_scan_report_s::channel

The channel number on which the last packet was received

Definition at line 4138 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

periodic_interval

uint16_t sl_bt_evt_scanner_scan_report_s::periodic_interval

The periodic advertising interval. Value 0 indicates no periodic advertising. Otherwise,

Range: 0x06 to 0xFFFF

Unit: 1.25 ms

Time range: 7.5 ms to 81.92 s

Definition at line 4140 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

data

uint8array sl_bt_evt_scanner_scan_report_s::data

Advertising or scan response data

Definition at line 4146 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Synchronization

467/1306

Synchronization

Modules

sl_bt_evt_sync_opened

sl_bt_evt_sync_transfer_received

sl_bt_evt_sync_data

sl_bt_evt_sync_closed

Synchronization
Synchronization.

Provides the base functionality of periodic advertising synchronization. Use bluetooth_feature_sync_scanner and/or

bluetooth_feature_past_receiver components to include the synchronization mechanisms that the application requires. Use

bluetooth_feature_periodic_sync to include support for trains that do not have subevents or response slots, and/or

bluetooth_feature_pawr_sync to include support for Periodic Advertising with Responses (PAwR) trains.

Some functionality in this class is considered deprecated and has been superseded by new classes. When one or more of

bluetooth_feature_sync_scanner, bluetooth_feature_periodic_sync, or bluetooth_feature_pawr_sync components is included

by the application, commands that have been superseded by the new classes are no longer available for use in the

Synchronization class. Calling them will receive SL_STATUS_NOT_SUPPORTED error code. These commands are as follows:

sl_bt_sync_set_parameters

sl_bt_sync_open

See the command descriptions for the replacements.

Events that are deprecated and superseded by the new classes are no longer triggered by the Synchronization class if any

of the new classes are included in the application. See event descriptions for the replacements.

Enumerations

enum sl_bt_sync_reporting_mode_t {

sl_bt_sync_report_none = 0�0
sl_bt_sync_report_all = 0�1

}
Specifies the mode for periodic advertising reports.

enum sl_bt_sync_advertiser_clock_accuracy_t {

sl_bt_sync_clock_accuracy_500 = 0�1f4
sl_bt_sync_clock_accuracy_250 = 0xfa
sl_bt_sync_clock_accuracy_150 = 0�96
sl_bt_sync_clock_accuracy_100 = 0�64
sl_bt_sync_clock_accuracy_75 = 0�4b
sl_bt_sync_clock_accuracy_50 = 0�32
sl_bt_sync_clock_accuracy_30 = 0�1e
sl_bt_sync_clock_accuracy_20 = 0�14

}
These values indicate the advertiser clock accuracy in a periodic advertising synchronization.

Synchronization

468/1306

Functions

SL_BGAPI_DEPRE
CATED sl_status_t

sl_bt_sync_set_parameters(uint16_t skip, uint16_t timeout, uint32_t flags)

SL_BGAPI_DEPRE
CATED sl_status_t

sl_bt_sync_open(bd_addr address, uint8_t address_type, uint8_t adv_sid, uint16_t *sync)

sl_status_t sl_bt_sync_set_reporting_mode(uint16_t sync, uint8_t reporting_mode)

sl_status_t sl_bt_sync_update_sync_parameters(uint16_t sync, uint16_t skip, uint16_t timeout)

sl_status_t sl_bt_sync_close(uint16_t sync)

Macros

#define sl_bt_cmd_sync_set_parameters_id 0�02420020

#define sl_bt_cmd_sync_open_id 0�00420020

#define sl_bt_cmd_sync_set_reporting_mode_id 0�03420020

#define sl_bt_cmd_sync_update_sync_parameters_id 0�04420020

#define sl_bt_cmd_sync_close_id 0�01420020

#define sl_bt_rsp_sync_set_parameters_id 0�02420020

#define sl_bt_rsp_sync_open_id 0�00420020

#define sl_bt_rsp_sync_set_reporting_mode_id 0�03420020

#define sl_bt_rsp_sync_update_sync_parameters_id 0�04420020

#define sl_bt_rsp_sync_close_id 0�01420020

Enumeration Documentation

sl_bt_sync_reporting_mode_t

sl_bt_sync_reporting_mode_t

Specifies the mode for periodic advertising reports.

Enumerator

sl_bt_sync_report_none

sl_bt_sync_report_all

Definition at line 4525 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sync_advertiser_clock_accuracy_t

sl_bt_sync_advertiser_clock_accuracy_t

These values indicate the advertiser clock accuracy in a periodic advertising synchronization.

Synchronization

469/1306

Enumerator

sl_bt_sync_clock_accuracy_500

sl_bt_sync_clock_accuracy_250

sl_bt_sync_clock_accuracy_150

sl_bt_sync_clock_accuracy_100

sl_bt_sync_clock_accuracy_75

sl_bt_sync_clock_accuracy_50

sl_bt_sync_clock_accuracy_30

sl_bt_sync_clock_accuracy_20

Definition at line 4537 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Function Documentation

sl_bt_sync_set_parameters

SL_BGAPI_DEPRECATED sl_status_t sl_bt_sync_set_parameters (uint16_t skip, uint16_t timeout, uint32_t flags)

Parameters

[in] skip The maximum number of periodic advertising packets that can be skipped after a successful receive.

Range: 0x0000 to 0x01F3

Default value: 0

[in] timeout The maximum permitted time between successful receives. If this time is exceeded, synchronization is

lost. Unit: 10 ms.

Range: 0x0A to 0x4000

Unit: 10 ms

Time range: 100 ms to 163.84 s

Default value: 1000 ms

[in] flags No flags defined currently

Deprecated and replaced by sl_bt_sync_scanner_set_sync_parameters.

Configure periodic advertiser synchronization parameters. The specified parameters take effect immediately for all

advertisers that have not already established synchronization.

The application should determine skip and timeout values based on the periodic advertising interval provided by the

advertiser. Ensure that you use a long enough timeout to allow multiple receives. If skip and timeout are used, select

appropriate values so that they allow a few receiving attempts. Periodic advertising intervals are reported in event

sl_bt_evt_scanner_scan_report.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 4805 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sync_open

SL_BGAPI_DEPRECATED sl_status_t sl_bt_sync_open (bd_addr address, uint8_t address_type, uint8_t adv_sid, uint16_t
*sync)

Parameters

Synchronization

470/1306

[in] address Address of the advertiser

[in] address_type Enum sl_bt_gap_address_type_t.

Advertiser address type.

If the application does not include the bluetooth_feature_use_accurate_api_address_types

component, address_type uses the following values:

0: Public address

1: Random address

If the application includes the bluetooth_feature_use_accurate_api_address_types component,

address_type uses enum sl_bt_gap_address_type_t values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

sl_bt_gap_random_resolvable_address (0x2): Resolvable private random address

sl_bt_gap_random_nonresolvable_address (0x3): Non-resolvable private random address

sl_bt_gap_public_address_resolved_from_rpa (0x4): Public identity address resolved from a

resolvable private address (RPA)

sl_bt_gap_static_address_resolved_from_rpa (0x5): Static identity address resolved from a

resolvable private address (RPA)

[in] adv_sid Advertising set identifier

[out] sync A handle that will be assigned to the periodic advertising synchronization after the synchronization

is established. This handle is valid only if the result code of this response is SL_STATUS_OK.

Deprecated and replaced by sl_bt_sync_scanner_open.

Start establishing synchronization with the specified periodic advertiser in parallel with other advertisers given in previous

invocations of this command. The stack will internally enable scanning when needed so that synchronizations can occur.

The scanning responses from the internal scanning are not passed to the application unless the application has also

enabled scanning.

Advertisers that have not already synced before the invocation of this command will be synced using the skip and timeout

values configured in the most recent invocation of command sl_bt_evt_scanner_scan_report.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_sync_opened - Triggered after the synchronization is established.

sl_bt_evt_sync_data - Indicates that a periodic advertisement packet is received.

sl_bt_evt_sync_closed - Triggered after periodic advertising synchronization was lost or explicitly closed, or a

synchronization establishment procedure was canceled.

Definition at line 4867 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sync_set_reporting_mode

sl_status_t sl_bt_sync_set_reporting_mode (uint16_t sync, uint8_t reporting_mode)

Parameters

[in] sync Periodic advertising synchronization handle

Synchronization

471/1306

[in] reporting_mode Enum sl_bt_sync_reporting_mode_t. Specifies the mode for reporting data received in the periodic

advertising train. Values:

sl_bt_sync_report_none (0x0): Data received in periodic advertising trains is not reported to

the application.

sl_bt_sync_report_all (0x1): Data received in periodic advertising trains is reported to the

application.

Set data reporting mode of the periodic advertising synchronization.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 4888 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sync_update_sync_parameters

sl_status_t sl_bt_sync_update_sync_parameters (uint16_t sync, uint16_t skip, uint16_t timeout)

Parameters

[in] sync Periodic advertising synchronization handle

[in] skip The maximum number of periodic advertising packets that can be skipped after a successful receive.

Range: 0x0000 to 0x01F3

Default value: 0

[in] timeout The maximum permitted time between successful receives. If this time is exceeded, synchronization is

lost. Unit: 10 ms.

Range: 0x0A to 0x4000

Unit: 10 ms

Time range: 100 ms to 163.84 s

Default value: 1000 ms

Update synchronization parameters for a periodic sync that was already established.

When a sync is established by scanning (see Periodic Advertising Sync Scanner) or by receiving Periodic Advertising

Synchronization Transfer (see PAST Receiver), the sync gets the skip and timeout parameters that were configured in the

corresponding class. The application can use this command sl_bt_sync_update_sync_parameters to update the values of a

sync that has been established. The application can for example update the values to better match the actual interval of the

periodic advertising train, or to increase the skip value to minimize wakeups when power saving is prioritized over receiving

every periodic advertisement.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 4921 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sync_close

sl_status_t sl_bt_sync_close (uint16_t sync)

Parameters

[in] sync Periodic advertising synchronization handle

Synchronization

472/1306

Close a periodic advertising synchronization or cancel an ongoing attempt of establishing a synchronization.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_sync_closed - Triggered after a periodic advertising synchronization has been closed or canceled.

Definition at line 4939 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_sync_set_parameters_id

#define sl_bt_cmd_sync_set_parameters_id

Value:

0�02420020

Definition at line 4511 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_sync_open_id

#define sl_bt_cmd_sync_open_id

Value:

0�00420020

Definition at line 4512 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_sync_set_reporting_mode_id

#define sl_bt_cmd_sync_set_reporting_mode_id

Value:

0�03420020

Definition at line 4513 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_sync_update_sync_parameters_id

#define sl_bt_cmd_sync_update_sync_parameters_id

Value:

0�04420020

Definition at line 4514 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_sync_close_id

Synchronization

473/1306

#define sl_bt_cmd_sync_close_id

Value:

0x01420020

Definition at line 4515 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sync_set_parameters_id

#define sl_bt_rsp_sync_set_parameters_id

Value:

0�02420020

Definition at line 4516 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sync_open_id

#define sl_bt_rsp_sync_open_id

Value:

0�00420020

Definition at line 4517 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sync_set_reporting_mode_id

#define sl_bt_rsp_sync_set_reporting_mode_id

Value:

0�03420020

Definition at line 4518 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sync_update_sync_parameters_id

#define sl_bt_rsp_sync_update_sync_parameters_id

Value:

0�04420020

Definition at line 4519 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sync_close_id

#define sl_bt_rsp_sync_close_id

Value:

Synchronization

474/1306

0x01420020

Definition at line 4520 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_sync_opened

475/1306

sl_bt_evt_sync_opened

Modules

sl_bt_evt_sync_opened_s

sl_bt_evt_sync_opened
Deprecated and replaced by sl_bt_evt_periodic_sync_opened for periodic advertising trains that do not have subevents or

response slots, and with sl_bt_evt_pawr_sync_opened for Periodic Advertising with Responses (PAwR) trains.

Indicates that a periodic advertising synchronization has been opened.

Typedefs

typedef struct
sl_bt_evt_sync_op

ened_s

sl_bt_evt_sync_opened_t

Macros

#define sl_bt_evt_sync_opened_id 0�004200a0
Identifier of the opened event.

Typedef Documentation

sl_bt_evt_sync_opened_t

typedef struct sl_bt_evt_sync_opened_s sl_bt_evt_sync_opened_t

Definition at line 4620 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_sync_opened_id

#define sl_bt_evt_sync_opened_id

Value:

0�004200a0

Identifier of the opened event.

Definition at line 4561 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_sync_opened_s

476/1306

sl_bt_evt_sync_opened_s

Data structure of the opened event.

Public Attributes

uint16_t sync

uint8_t adv_sid

bd_addr address

uint8_t address_type

uint8_t adv_phy

uint16_t adv_interval

uint16_t clock_accuracy

uint8_t bonding

Public Attribute Documentation

sync

uint16_t sl_bt_evt_sync_opened_s::sync

Periodic advertising synchronization handle

Definition at line 4568 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

adv_sid

uint8_t sl_bt_evt_sync_opened_s::adv_sid

Advertising set identifier

Definition at line 4569 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

address

bd_addr sl_bt_evt_sync_opened_s::address

Address of the advertiser

Definition at line 4570 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_sync_opened_s

477/1306

address_type

uint8_t sl_bt_evt_sync_opened_s::address_type

Enum sl_bt_gap_address_type_t.

Advertiser address type.

If the application does not include the bluetooth_feature_use_accurate_api_address_types component, address_type uses

the following values:

0: Public address

1: Random address

If the application includes the bluetooth_feature_use_accurate_api_address_types component, address_type uses enum

sl_bt_gap_address_type_t values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

sl_bt_gap_random_resolvable_address (0x2): Resolvable private random address

sl_bt_gap_random_nonresolvable_address (0x3): Non-resolvable private random address

sl_bt_gap_public_address_resolved_from_rpa (0x4): Public identity address resolved from a resolvable private address

(RPA)

sl_bt_gap_static_address_resolved_from_rpa (0x5): Static identity address resolved from a resolvable private address (RPA)

Definition at line 4571 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

adv_phy

uint8_t sl_bt_evt_sync_opened_s::adv_phy

Enum sl_bt_gap_phy_t. The advertiser PHY. Values:

sl_bt_gap_phy_1m (0x1): 1M PHY

sl_bt_gap_phy_2m (0x2): 2M PHY

sl_bt_gap_phy_coded (0x4): Coded PHY, 125k (S=8) or 500k (S=2)

Definition at line 4601 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

adv_interval

uint16_t sl_bt_evt_sync_opened_s::adv_interval

The periodic advertising interval. Value in units of 1.25 ms

Range: 0x06 to 0xFFFF

Time range: 7.5 ms to 81.92 s

Definition at line 4607 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

clock_accuracy

uint16_t sl_bt_evt_sync_opened_s::clock_accuracy

sl_bt_evt_sync_opened_s

478/1306

Enum sl_bt_sync_advertiser_clock_accuracy_t. The advertiser clock accuracy.

Definition at line 4611 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

bonding

uint8_t sl_bt_evt_sync_opened_s::bonding

Bonding handle. Values:

SL_BT_INVALID_BONDING_HANDLE (0xff): No bonding

Other: Bonding handle

Definition at line 4614 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_sync_transfer_received

479/1306

sl_bt_evt_sync_transfer_received

Modules

sl_bt_evt_sync_transfer_received_s

sl_bt_evt_sync_transfer_received
Deprecated and replaced by sl_bt_evt_periodic_sync_transfer_received for periodic advertising trains that do not have

subevents or response slots responses, and with sl_bt_evt_pawr_sync_transfer_received for Periodic Advertising with

Responses (PAwR) trains.

Indicates that synchronization information for a periodic advertising train has been received

See PAST Receiver.

Typedefs

typedef struct
sl_bt_evt_sync_tra
nsfer_received_s

sl_bt_evt_sync_transfer_received_t

Macros

#define sl_bt_evt_sync_transfer_received_id 0�034200a0
Identifier of the transfer_received event.

Typedef Documentation

sl_bt_evt_sync_transfer_received_t

typedef struct sl_bt_evt_sync_transfer_received_s sl_bt_evt_sync_transfer_received_t

Definition at line 4705 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_sync_transfer_received_id

#define sl_bt_evt_sync_transfer_received_id

Value:

0�034200a0

Identifier of the transfer_received event.

Definition at line 4640 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_sync_transfer_received_s

480/1306

sl_bt_evt_sync_transfer_received_s

Data structure of the transfer_received event.

Public Attributes

uint16_t status

uint16_t sync

uint16_t service_data

uint8_t connection

uint8_t adv_sid

bd_addr address

uint8_t address_type

uint8_t adv_phy

uint16_t adv_interval

uint16_t clock_accuracy

uint8_t bonding

Public Attribute Documentation

status

uint16_t sl_bt_evt_sync_transfer_received_s::status

SL_STATUS_OK if synchronization was established. Other values indicate that the sync failed to get established.

Definition at line 4647 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sync

uint16_t sl_bt_evt_sync_transfer_received_s::sync

Periodic advertising synchronization handle

Definition at line 4650 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

service_data

uint16_t sl_bt_evt_sync_transfer_received_s::service_data

sl_bt_evt_sync_transfer_received_s

481/1306

A value provided by the peer device

Definition at line 4651 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

connection

uint8_t sl_bt_evt_sync_transfer_received_s::connection

Connection handle of the connection that transferred the sync info

Definition at line 4652 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

adv_sid

uint8_t sl_bt_evt_sync_transfer_received_s::adv_sid

Advertising set identifier

Definition at line 4654 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

address

bd_addr sl_bt_evt_sync_transfer_received_s::address

Address of the advertiser

Definition at line 4655 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

address_type

uint8_t sl_bt_evt_sync_transfer_received_s::address_type

Enum sl_bt_gap_address_type_t.

Advertiser address type.

If the application does not include the bluetooth_feature_use_accurate_api_address_types component, address_type uses

the following values:

0: Public address

1: Random address

If the application includes the bluetooth_feature_use_accurate_api_address_types component, address_type uses enum

sl_bt_gap_address_type_t values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

sl_bt_gap_random_resolvable_address (0x2): Resolvable private random address

sl_bt_gap_random_nonresolvable_address (0x3): Non-resolvable private random address

sl_bt_gap_public_address_resolved_from_rpa (0x4): Public identity address resolved from a resolvable private address

(RPA)

sl_bt_gap_static_address_resolved_from_rpa (0x5): Static identity address resolved from a resolvable private address (RPA)

sl_bt_evt_sync_transfer_received_s

482/1306

Definition at line 4656 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

adv_phy

uint8_t sl_bt_evt_sync_transfer_received_s::adv_phy

Enum sl_bt_gap_phy_t. The advertiser PHY. Values:

sl_bt_gap_phy_1m (0x1): 1M PHY

sl_bt_gap_phy_2m (0x2): 2M PHY

sl_bt_gap_phy_coded (0x4): Coded PHY, 125k (S=8) or 500k (S=2)

Definition at line 4686 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

adv_interval

uint16_t sl_bt_evt_sync_transfer_received_s::adv_interval

The periodic advertising interval. Value in units of 1.25 ms

Range: 0x06 to 0xFFFF

Time range: 7.5 ms to 81.92 s

Definition at line 4692 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

clock_accuracy

uint16_t sl_bt_evt_sync_transfer_received_s::clock_accuracy

Enum sl_bt_sync_advertiser_clock_accuracy_t. The advertiser clock accuracy.

Definition at line 4696 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

bonding

uint8_t sl_bt_evt_sync_transfer_received_s::bonding

Bonding handle. Values:

SL_BT_INVALID_BONDING_HANDLE (0xff): No bonding

Other: Bonding handle

Definition at line 4699 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_sync_data

483/1306

sl_bt_evt_sync_data

Modules

sl_bt_evt_sync_data_s

sl_bt_evt_sync_data
Deprecated and replaced by sl_bt_evt_periodic_sync_report.

Reports a received periodic advertisement packet.

Typedefs

typedef struct
sl_bt_evt_sync_da

ta_s

sl_bt_evt_sync_data_t

Macros

#define sl_bt_evt_sync_data_id 0�024200a0
Identifier of the data event.

Typedef Documentation

sl_bt_evt_sync_data_t

typedef struct sl_bt_evt_sync_data_s sl_bt_evt_sync_data_t

Definition at line 4742 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_sync_data_id

#define sl_bt_evt_sync_data_id

Value:

0�024200a0

Identifier of the data event.

Definition at line 4718 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_sync_data_s

484/1306

sl_bt_evt_sync_data_s

Data structure of the data event.

Public Attributes

uint16_t sync

int8_t tx_power

int8_t rssi

uint8_t data_status

uint8array data

Public Attribute Documentation

sync

uint16_t sl_bt_evt_sync_data_s::sync

Periodic advertising synchronization handle

Definition at line 4725 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

tx_power

int8_t sl_bt_evt_sync_data_s::tx_power

TX power value in the received packet header. Units: dBm

Valid value range: -127 to 126

Value 127: information unavailable

Definition at line 4726 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

rssi

int8_t sl_bt_evt_sync_data_s::rssi

Signal strength indicator (RSSI) in the latest received packet. Units: dBm

Range: -127 to +20

Definition at line 4730 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

data_status

sl_bt_evt_sync_data_s

485/1306

uint8_t sl_bt_evt_sync_data_s::data_status

Data completeness:

0: Complete

1: Incomplete, more data to come in new events

2: Incomplete, data truncated, no more to come

Definition at line 4733 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

data

uint8array sl_bt_evt_sync_data_s::data

Periodic advertising data

Definition at line 4739 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_sync_closed

486/1306

sl_bt_evt_sync_closed

Modules

sl_bt_evt_sync_closed_s

sl_bt_evt_sync_closed
Indicates that periodic advertising synchronization was lost or a synchronization establishment procedure was canceled.

The synchronization establishment procedure can be canceled explicitly by the application by issuing command

sl_bt_sync_close, or internally due to synchronization failing. Synchronization can fail for example due to incompatible sync

CTE type.

Typedefs

typedef struct
sl_bt_evt_sync_cl

osed_s

sl_bt_evt_sync_closed_t

Macros

#define sl_bt_evt_sync_closed_id 0�014200a0
Identifier of the closed event.

Typedef Documentation

sl_bt_evt_sync_closed_t

typedef struct sl_bt_evt_sync_closed_s sl_bt_evt_sync_closed_t

Definition at line 4770 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_sync_closed_id

#define sl_bt_evt_sync_closed_id

Value:

0�014200a0

Identifier of the closed event.

Definition at line 4759 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_sync_closed_s

487/1306

sl_bt_evt_sync_closed_s

Data structure of the closed event.

Public Attributes

uint16_t reason

uint16_t sync

Public Attribute Documentation

reason

uint16_t sl_bt_evt_sync_closed_s::reason

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 4766 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sync

uint16_t sl_bt_evt_sync_closed_s::sync

Periodic advertising synchronization handle

Definition at line 4767 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Periodic Advertising Sync Scanner

488/1306

Periodic Advertising Sync Scanner

Periodic Advertising Sync Scanner
Periodic Advertising Sync Scanner.

Synchronize to periodic advertising trains by scanning for extended advertisements that provide the synchronization

information.

Functions

sl_status_t sl_bt_sync_scanner_set_sync_parameters(uint16_t skip, uint16_t timeout, uint8_t reporting_mode)

sl_status_t sl_bt_sync_scanner_open(bd_addr address, uint8_t address_type, uint8_t adv_sid, uint16_t *sync)

Macros

#define sl_bt_cmd_sync_scanner_set_sync_parameters_id 0�00500020

#define sl_bt_cmd_sync_scanner_open_id 0�01500020

#define sl_bt_rsp_sync_scanner_set_sync_parameters_id 0�00500020

#define sl_bt_rsp_sync_scanner_open_id 0�01500020

Function Documentation

sl_bt_sync_scanner_set_sync_parameters

sl_status_t sl_bt_sync_scanner_set_sync_parameters (uint16_t skip, uint16_t timeout, uint8_t reporting_mode)

Parameters

[in] skip The maximum number of periodic advertising packets that can be skipped after a successful receive.

Range: 0x0000 to 0x01F3

Default value: 0

[in] timeout The maximum permitted time between successful receives. If this time is exceeded, synchronization is

lost. Unit: 10 ms.

Range: 0x0A to 0x4000

Unit: 10 ms

Time range: 100 ms to 163.84 s

Default value: 1000 ms

Periodic Advertising Sync Scanner

489/1306

[in] reporting_mode Enum sl_bt_sync_reporting_mode_t. Specifies the initial mode for reporting data received in the

periodic advertising train after it has achieved synchronization. Values:

sl_bt_sync_report_none (0x0): Data received in periodic advertising trains is not reported to

the application.

sl_bt_sync_report_all (0x1): Data received in periodic advertising trains is reported to the

application.

Default: sl_bt_sync_report_all (Data received in periodic advertising trains is reported to the

application)

Configure synchronization parameters for synchronizing to periodic advertising trains. The specified parameters take effect

immediately for all periodic advertising trains that have not already established synchronization.

The application should determine skip and timeout values based on the periodic advertising interval provided by the

advertiser. Ensure that you use a long enough timeout to allow multiple receives. If skip and timeout are used, select

appropriate values so that they allow a few receiving attempts. Periodic advertising intervals are reported in

sl_bt_evt_scanner_scan_report or sl_bt_evt_scanner_extended_advertisement_report event.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 5000 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sync_scanner_open

sl_status_t sl_bt_sync_scanner_open (bd_addr address, uint8_t address_type, uint8_t adv_sid, uint16_t *sync)

Parameters

[in] address Address of the advertiser

[in] address_type Enum sl_bt_gap_address_type_t.

Advertiser address type.

If the application does not include the bluetooth_feature_use_accurate_api_address_types

component, address_type uses the following values:

0: Public address

1: Random address

If the application includes the bluetooth_feature_use_accurate_api_address_types component,

address_type uses enum sl_bt_gap_address_type_t values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

sl_bt_gap_random_resolvable_address (0x2): Resolvable private random address

sl_bt_gap_random_nonresolvable_address (0x3): Non-resolvable private random address

sl_bt_gap_public_address_resolved_from_rpa (0x4): Public identity address resolved from a

resolvable private address (RPA)

sl_bt_gap_static_address_resolved_from_rpa (0x5): Static identity address resolved from a

resolvable private address (RPA)

[in] adv_sid Advertising set identifier

[out] sync A handle that will be assigned to the periodic advertising synchronization after the synchronization

is established. This handle is valid only if the result code of this response is SL_STATUS_OK.

Start establishing synchronization with the specified periodic advertiser in parallel with other advertisers given in previous

invocations of this command.

Periodic Advertising Sync Scanner

490/1306

If the application has not already started scanning with the sl_bt_scanner_start command, the stack will internally enable

scanning so that synchronizations can occur. The internal scanning uses the PHY that was most recently used with

sl_bt_scanner_start and the parameters that have been configured with sl_bt_scanner_set_timing. The internal scanning is

automatically stopped when all requested synchronizations have occurred.

The scanning responses from the internal scanning are not passed to the application unless the application starts scanning

with the sl_bt_scanner_start command. If the application starts scanning while synchronizations are being established, the

scanning PHY and settings set by the application take effect immediately and scanning for synchronizations continues with

the new settings. When the application has started scanning with the sl_bt_scanner_start command, scanning continues

until the application stops scanning with the sl_bt_scanner_stop command.

Advertisers that have not already synced before the invocation of this command will be synced using the skip and timeout

values configured in the most recent invocation of command sl_bt_evt_scanner_scan_report.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_periodic_sync_opened - Triggered after synchronization is established to a periodic advertising train that does not

have subevents or response slots.

sl_bt_evt_pawr_sync_opened - Triggered after synchronization is established to a Periodic Advertising with Responses

(PAwR) train.

sl_bt_evt_periodic_sync_report - Triggered when data for periodic advertising train that does not have subevents or response

slots is received and accepted by the reporting mode currently set to the train.

sl_bt_evt_pawr_sync_subevent_report - Triggered when subevent data for Periodic Advertising with Responses (PAwR) train

is received and accepted by the reporting mode currently set to the train.

sl_bt_evt_sync_closed - Triggered after periodic advertising synchronization was lost or explicitly closed, or a

synchronization establishment procedure was canceled.

Definition at line 5080 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_sync_scanner_set_sync_parameters_id

#define sl_bt_cmd_sync_scanner_set_sync_parameters_id

Value:

0�00500020

Definition at line 4954 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_sync_scanner_open_id

#define sl_bt_cmd_sync_scanner_open_id

Value:

0�01500020

Definition at line 4955 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sync_scanner_set_sync_parameters_id

Periodic Advertising Sync Scanner

491/1306

#define sl_bt_rsp_sync_scanner_set_sync_parameters_id

Value:

0x00500020

Definition at line 4956 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sync_scanner_open_id

#define sl_bt_rsp_sync_scanner_open_id

Value:

0�01500020

Definition at line 4957 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

PAST Receiver

492/1306

PAST Receiver

PAST Receiver
PAST Receiver.

Synchronize to periodic advertising trains by receiving Periodic Advertising Synchronization Transfer over a connection.

Enumerations

enum sl_bt_past_receiver_mode_t {

sl_bt_past_receiver_mode_ignore = 0�0
sl_bt_past_receiver_mode_synchronize = 0�1

}
Specifies the mode for receiving synchronization transfers.

Functions

sl_status_t sl_bt_past_receiver_set_default_sync_receive_parameters(uint8_t mode, uint16_t skip, uint16_t timeout, uint8_t
reporting_mode)

sl_status_t sl_bt_past_receiver_set_sync_receive_parameters(uint8_t connection, uint8_t mode, uint16_t skip, uint16_t
timeout, uint8_t reporting_mode)

Macros

#define sl_bt_cmd_past_receiver_set_default_sync_receive_parameters_id 0�00510020

#define sl_bt_cmd_past_receiver_set_sync_receive_parameters_id 0�01510020

#define sl_bt_rsp_past_receiver_set_default_sync_receive_parameters_id 0�00510020

#define sl_bt_rsp_past_receiver_set_sync_receive_parameters_id 0�01510020

Enumeration Documentation

sl_bt_past_receiver_mode_t

sl_bt_past_receiver_mode_t

Specifies the mode for receiving synchronization transfers.

Enumerator

sl_bt_past_receiver_mode_ignore

sl_bt_past_receiver_mode_synchronize

Definition at line 5106 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Function Documentation

PAST Receiver

493/1306

sl_bt_past_receiver_set_default_sync_receive_parameters

sl_status_t sl_bt_past_receiver_set_default_sync_receive_parameters (uint8_t mode, uint16_t skip, uint16_t timeout, uint8_t
reporting_mode)

Parameters

[in] mode Enum sl_bt_past_receiver_mode_t. The mode to specify how the Bluetooth stack reacts when

synchronization information is received. Values:

sl_bt_past_receiver_mode_ignore (0x0): No attempt is made to synchronize to a periodic

advertising train for which the synchronization information was received. No event will be

triggered towards the application.

sl_bt_past_receiver_mode_synchronize (0x1): Attempt to synchronize to a periodic

advertising train for which the synchronization information was received. When the

information is received, an event will be triggered to indicate success or failure and to provide

the application with the periodic advertising synchronization handle.

Default: sl_bt_past_receiver_mode_ignore (No attempt is made to synchronize)

[in] skip The maximum number of periodic advertising packets that can be skipped after a successful

receive.

Range: 0x0000 to 0x01F3

Default value: 0

[in] timeout The maximum permitted time between successful receives. If this time is exceeded,

synchronization is lost. Unit: 10 ms.

Range: 0x0A to 0x4000

Unit: 10 ms

Time range: 100 ms to 163.84 s

Default value: 1000 ms

[in] reporting_mode Enum sl_bt_sync_reporting_mode_t. Specifies the initial mode for reporting data received in the

periodic advertising train after it has achieved synchronization. Values:

sl_bt_sync_report_none (0x0): Data received in periodic advertising trains is not reported to

the application.

sl_bt_sync_report_all (0x1): Data received in periodic advertising trains is reported to the

application.

Default: sl_bt_sync_report_all (Data received in periodic advertising trains is reported to the

application)

Set the default parameters for receiving Periodic Advertising Synchronization Transfers (PAST) over connections. The

default parameters will be in effect for all subsequent connections, unless overridden by command

sl_bt_past_receiver_set_sync_receive_parameters after the connection is opened.

This command sets parameters that do not limit the synchronization based on the CTE type. If the application includes

bluetooth_feature_aoa_receiver or bluetooth_feature_aod_receiver component and wants to specify a particular CTE

limitation, the application should use the command sl_bt_cte_receiver_set_default_sync_receive_parameters to set the

default parameters.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_sync_transfer_received - Triggered after synchronization transfer is received for a periodic advertising train that

does not have subevents or response slots. This event is used only when the application does not include

bluetooth_feature_periodic_sync or bluetooth_feature_pawr_sync components.

PAST Receiver

494/1306

sl_bt_evt_periodic_sync_transfer_received - If the application includes the bluetooth_feature_periodic_sync or

bluetooth_feature_pawr_sync component, triggered after synchronization transfer is received for a periodic advertising train

that does not have subevents or response slots.

sl_bt_evt_pawr_sync_transfer_received - If the application includes the bluetooth_feature_pawr_sync component, triggered

after synchronization transfer is received for a Periodic Advertising with Responses (PAwR) train.

Definition at line 5203 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_past_receiver_set_sync_receive_parameters

sl_status_t sl_bt_past_receiver_set_sync_receive_parameters (uint8_t connection, uint8_t mode, uint16_t skip, uint16_t
timeout, uint8_t reporting_mode)

Parameters

[in] connection Connection handle of the connection used to receive the sync transfer

[in] mode Enum sl_bt_past_receiver_mode_t. The mode to specify how the Bluetooth stack reacts when

synchronization information is received. Values:

sl_bt_past_receiver_mode_ignore (0x0): No attempt is made to synchronize to a periodic

advertising train for which the synchronization information was received. No event will be

triggered towards the application.

sl_bt_past_receiver_mode_synchronize (0x1): Attempt to synchronize to a periodic

advertising train for which the synchronization information was received. When the

information is received, an event will be triggered to indicate success or failure and to provide

the application with the periodic advertising synchronization handle.

Default: sl_bt_past_receiver_mode_ignore (Do not attempt to synchronize)

[in] skip The maximum number of periodic advertising packets that can be skipped after a successful

receive.

Range: 0x0000 to 0x01F3

Default value: 0

[in] timeout The maximum permitted time between successful receives. If this time is exceeded,

synchronization is lost. Unit: 10 ms.

Range: 0x0A to 0x4000

Unit: 10 ms

Time range: 100 ms to 163.84 s

Default value: 1000 ms

[in] reporting_mode Enum sl_bt_sync_reporting_mode_t. Specifies the initial mode for reporting data received in the

periodic advertising train after it has achieved synchronization. Values:

sl_bt_sync_report_none (0x0): Data received in periodic advertising trains is not reported to

the application.

sl_bt_sync_report_all (0x1): Data received in periodic advertising trains is reported to the

application.

Default: sl_bt_sync_report_all (Data received in periodic advertising trains is reported to the

application)

Set the parameters for receiving Periodic Advertising Synchronization Transfers (PAST) over the specified connection. The

parameters do not affect periodic advertising trains that the device has already synchronized to.

This command sets parameters that do not limit the synchronization based on the CTE type. If the application includes

bluetooth_feature_aoa_receiver or bluetooth_feature_aod_receiver component and wants to specify a particular CTE

limitation, the application should use the command sl_bt_cte_receiver_set_sync_receive_parameters to set the parameters.

PAST Receiver

495/1306

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_sync_transfer_received - Triggered after synchronization transfer is received for a periodic advertising train that

does not have subevents or response slots. This event is used only when the application does not include

bluetooth_feature_periodic_sync or bluetooth_feature_pawr_sync components.

sl_bt_evt_periodic_sync_transfer_received - If the application includes the bluetooth_feature_periodic_sync or

bluetooth_feature_pawr_sync component, triggered after synchronization transfer is received for a periodic advertising train

that does not have subevents or response slots.

sl_bt_evt_pawr_sync_transfer_received - If the application includes the bluetooth_feature_pawr_sync component, triggered

after synchronization transfer is received for a Periodic Advertising with Responses (PAwR) train.

Definition at line 5281 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_past_receiver_set_default_sync_receive_parameters_id

#define sl_bt_cmd_past_receiver_set_default_sync_receive_parameters_id

Value:

0�00510020

Definition at line 5098 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_past_receiver_set_sync_receive_parameters_id

#define sl_bt_cmd_past_receiver_set_sync_receive_parameters_id

Value:

0�01510020

Definition at line 5099 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_past_receiver_set_default_sync_receive_parameters_id

#define sl_bt_rsp_past_receiver_set_default_sync_receive_parameters_id

Value:

0�00510020

Definition at line 5100 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_past_receiver_set_sync_receive_parameters_id

#define sl_bt_rsp_past_receiver_set_sync_receive_parameters_id

Value:

PAST Receiver

496/1306

0x01510020

Definition at line 5101 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Advertiser PAST

497/1306

Advertiser PAST

Advertiser PAST
Advertiser PAST.

Transfer the synchronization information of a local active periodic advertising set to a remote device using Periodic

Advertising Synchronization Transfer (PAST) over a connection.

Functions

sl_status_t sl_bt_advertiser_past_transfer(uint8_t connection, uint16_t service_data, uint8_t advertising_set)

Macros

#define sl_bt_cmd_advertiser_past_transfer_id 0�00520020

#define sl_bt_rsp_advertiser_past_transfer_id 0�00520020

Function Documentation

sl_bt_advertiser_past_transfer

sl_status_t sl_bt_advertiser_past_transfer (uint8_t connection, uint16_t service_data, uint8_t advertising_set)

Parameters

[in] connection Connection handle of the connection used to transmit the sync transfer

[in] service_data A value provided by the application for use by the peer device.

[in] advertising_set Handle of the periodic advertising set to transfer

Transfer the synchronization information of an advertising set that is actively performing periodic advertising.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 5318 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_advertiser_past_transfer_id

#define sl_bt_cmd_advertiser_past_transfer_id

Value:

0�00520020

Definition at line 5301 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Advertiser PAST

498/1306

sl_bt_rsp_advertiser_past_transfer_id

#define sl_bt_rsp_advertiser_past_transfer_id

Value:

0�00520020

Definition at line 5302 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Sync PAST

499/1306

Sync PAST

Sync PAST
Sync PAST.

Transfer the synchronization information of a synchronized periodic advertising train to a remote device using Periodic

Advertising Synchronization Transfer (PAST) over a connection.

Functions

sl_status_t sl_bt_sync_past_transfer(uint8_t connection, uint16_t service_data, uint16_t sync)

Macros

#define sl_bt_cmd_sync_past_transfer_id 0�005b0020

#define sl_bt_rsp_sync_past_transfer_id 0�005b0020

Function Documentation

sl_bt_sync_past_transfer

sl_status_t sl_bt_sync_past_transfer (uint8_t connection, uint16_t service_data, uint16_t sync)

Parameters

[in] connection Connection handle of the connection used to transmit the sync transfer

[in] service_data A value provided by the application for use by the peer device.

[in] sync Handle of the periodic advertising synchronization to transfer

Transfer the synchronization information of a periodic advertising train for which a sync has been established.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 5354 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_sync_past_transfer_id

#define sl_bt_cmd_sync_past_transfer_id

Value:

0�005b0020

Definition at line 5336 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Sync PAST

500/1306

sl_bt_rsp_sync_past_transfer_id

#define sl_bt_rsp_sync_past_transfer_id

Value:

0�005b0020

Definition at line 5337 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Periodic Advertising without responses Synchronization

501/1306

Periodic Advertising without responses Synchronization

Modules

sl_bt_evt_periodic_sync_opened

sl_bt_evt_periodic_sync_transfer_received

sl_bt_evt_periodic_sync_report

Periodic Advertising without responses
Synchronization
Periodic Advertising without responses Synchronization.

Provides events and control for synchronized periodic advertising trains that do not have subevents or response slots.

Synchronization is achieved by scanning (see Periodic Advertising Sync Scanner) or by receiving Periodic Advertising

Synchronization Transfer (see PAST Receiver).

sl_bt_evt_periodic_sync_opened

502/1306

sl_bt_evt_periodic_sync_opened

Modules

sl_bt_evt_periodic_sync_opened_s

sl_bt_evt_periodic_sync_opened
Indicates that synchronization to a periodic advertising train that does not have subevents or response slots has been

opened by scanning.

See command sl_bt_sync_scanner_open.

Typedefs

typedef struct
sl_bt_evt_periodic
_sync_opened_s

sl_bt_evt_periodic_sync_opened_t

Macros

#define sl_bt_evt_periodic_sync_opened_id 0�005300a0
Identifier of the opened event.

Typedef Documentation

sl_bt_evt_periodic_sync_opened_t

typedef struct sl_bt_evt_periodic_sync_opened_s sl_bt_evt_periodic_sync_opened_t

Definition at line 5443 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_periodic_sync_opened_id

#define sl_bt_evt_periodic_sync_opened_id

Value:

0�005300a0

Identifier of the opened event.

Definition at line 5384 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_periodic_sync_opened_s

503/1306

sl_bt_evt_periodic_sync_opened_s

Data structure of the opened event.

Public Attributes

uint16_t sync

uint8_t adv_sid

bd_addr address

uint8_t address_type

uint8_t adv_phy

uint16_t adv_interval

uint16_t clock_accuracy

uint8_t bonding

Public Attribute Documentation

sync

uint16_t sl_bt_evt_periodic_sync_opened_s::sync

Periodic Advertising synchronization handle

Definition at line 5391 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

adv_sid

uint8_t sl_bt_evt_periodic_sync_opened_s::adv_sid

Advertising set identifier

Definition at line 5392 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

address

bd_addr sl_bt_evt_periodic_sync_opened_s::address

Address of the advertiser

Definition at line 5393 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_periodic_sync_opened_s

504/1306

address_type

uint8_t sl_bt_evt_periodic_sync_opened_s::address_type

Enum sl_bt_gap_address_type_t.

Advertiser address type.

If the application does not include the bluetooth_feature_use_accurate_api_address_types component, address_type uses

the following values:

0: Public address

1: Random address

If the application includes the bluetooth_feature_use_accurate_api_address_types component, address_type uses enum

sl_bt_gap_address_type_t values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

sl_bt_gap_random_resolvable_address (0x2): Resolvable private random address

sl_bt_gap_random_nonresolvable_address (0x3): Non-resolvable private random address

sl_bt_gap_public_address_resolved_from_rpa (0x4): Public identity address resolved from a resolvable private address

(RPA)

sl_bt_gap_static_address_resolved_from_rpa (0x5): Static identity address resolved from a resolvable private address (RPA)

Definition at line 5394 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

adv_phy

uint8_t sl_bt_evt_periodic_sync_opened_s::adv_phy

Enum sl_bt_gap_phy_t. The advertiser PHY. Values:

sl_bt_gap_phy_1m (0x1): 1M PHY

sl_bt_gap_phy_2m (0x2): 2M PHY

sl_bt_gap_phy_coded (0x4): Coded PHY, 125k (S=8) or 500k (S=2)

Definition at line 5424 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

adv_interval

uint16_t sl_bt_evt_periodic_sync_opened_s::adv_interval

The Periodic Advertising interval. Value in units of 1.25 ms

Range: 0x06 to 0xFFFF

Time range: 7.5 ms to 81.92 s

Definition at line 5430 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

clock_accuracy

uint16_t sl_bt_evt_periodic_sync_opened_s::clock_accuracy

sl_bt_evt_periodic_sync_opened_s

505/1306

Enum sl_bt_sync_advertiser_clock_accuracy_t. The advertiser clock accuracy.

Definition at line 5434 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

bonding

uint8_t sl_bt_evt_periodic_sync_opened_s::bonding

Bonding handle. Values:

SL_BT_INVALID_BONDING_HANDLE (0xff): No bonding

Other: Bonding handle

Definition at line 5437 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_periodic_sync_transfer_received

506/1306

sl_bt_evt_periodic_sync_transfer_received

Modules

sl_bt_evt_periodic_sync_transfer_received_s

sl_bt_evt_periodic_sync_transfer_received
Indicates that synchronization information for a periodic advertising train that does not have subevents or response slots

has been received.

See PAST Receiver.

Typedefs

typedef struct
sl_bt_evt_periodic
_sync_transfer_re

ceived_s

sl_bt_evt_periodic_sync_transfer_received_t

Macros

#define sl_bt_evt_periodic_sync_transfer_received_id 0�015300a0
Identifier of the transfer_received event.

Typedef Documentation

sl_bt_evt_periodic_sync_transfer_received_t

typedef struct sl_bt_evt_periodic_sync_transfer_received_s sl_bt_evt_periodic_sync_transfer_received_t

Definition at line 5522 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_periodic_sync_transfer_received_id

#define sl_bt_evt_periodic_sync_transfer_received_id

Value:

0�015300a0

Identifier of the transfer_received event.

Definition at line 5457 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_periodic_sync_transfer_received_s

507/1306

sl_bt_evt_periodic_sync_transfer_received_s

Data structure of the transfer_received event.

Public Attributes

uint16_t status

uint16_t sync

uint16_t service_data

uint8_t connection

uint8_t adv_sid

bd_addr address

uint8_t address_type

uint8_t adv_phy

uint16_t adv_interval

uint16_t clock_accuracy

uint8_t bonding

Public Attribute Documentation

status

uint16_t sl_bt_evt_periodic_sync_transfer_received_s::status

SL_STATUS_OK if synchronization was established. Other values indicate that the sync failed to get established.

Definition at line 5464 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sync

uint16_t sl_bt_evt_periodic_sync_transfer_received_s::sync

Periodic advertising synchronization handle

Definition at line 5467 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

service_data

uint16_t sl_bt_evt_periodic_sync_transfer_received_s::service_data

sl_bt_evt_periodic_sync_transfer_received_s

508/1306

A value provided by the peer device

Definition at line 5468 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

connection

uint8_t sl_bt_evt_periodic_sync_transfer_received_s::connection

Connection handle of the connection that transferred the sync info

Definition at line 5469 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

adv_sid

uint8_t sl_bt_evt_periodic_sync_transfer_received_s::adv_sid

Advertising set identifier

Definition at line 5471 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

address

bd_addr sl_bt_evt_periodic_sync_transfer_received_s::address

Address of the advertiser

Definition at line 5472 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

address_type

uint8_t sl_bt_evt_periodic_sync_transfer_received_s::address_type

Enum sl_bt_gap_address_type_t.

Advertiser address type.

If the application does not include the bluetooth_feature_use_accurate_api_address_types component, address_type uses

the following values:

0: Public address

1: Random address

If the application includes the bluetooth_feature_use_accurate_api_address_types component, address_type uses enum

sl_bt_gap_address_type_t values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

sl_bt_gap_random_resolvable_address (0x2): Resolvable private random address

sl_bt_gap_random_nonresolvable_address (0x3): Non-resolvable private random address

sl_bt_gap_public_address_resolved_from_rpa (0x4): Public identity address resolved from a resolvable private address

(RPA)

sl_bt_gap_static_address_resolved_from_rpa (0x5): Static identity address resolved from a resolvable private address (RPA)

sl_bt_evt_periodic_sync_transfer_received_s

509/1306

Definition at line 5473 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

adv_phy

uint8_t sl_bt_evt_periodic_sync_transfer_received_s::adv_phy

Enum sl_bt_gap_phy_t. The advertiser PHY. Values:

sl_bt_gap_phy_1m (0x1): 1M PHY

sl_bt_gap_phy_2m (0x2): 2M PHY

sl_bt_gap_phy_coded (0x4): Coded PHY, 125k (S=8) or 500k (S=2)

Definition at line 5503 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

adv_interval

uint16_t sl_bt_evt_periodic_sync_transfer_received_s::adv_interval

The periodic advertising interval. Value in units of 1.25 ms

Range: 0x06 to 0xFFFF

Time range: 7.5 ms to 81.92 s

Definition at line 5509 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

clock_accuracy

uint16_t sl_bt_evt_periodic_sync_transfer_received_s::clock_accuracy

Enum sl_bt_sync_advertiser_clock_accuracy_t. The advertiser clock accuracy.

Definition at line 5513 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

bonding

uint8_t sl_bt_evt_periodic_sync_transfer_received_s::bonding

Bonding handle. Values:

SL_BT_INVALID_BONDING_HANDLE (0xff): No bonding

Other: Bonding handle

Definition at line 5516 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_periodic_sync_report

510/1306

sl_bt_evt_periodic_sync_report

Modules

sl_bt_evt_periodic_sync_report_s

sl_bt_evt_periodic_sync_report
Reports a periodic advertising packet for periodic advertising train that does not have subevents or response slots.

Typedefs

typedef struct
sl_bt_evt_periodic
_sync_report_s

sl_bt_evt_periodic_sync_report_t

Macros

#define sl_bt_evt_periodic_sync_report_id 0�025300a0
Identifier of the report event.

Typedef Documentation

sl_bt_evt_periodic_sync_report_t

typedef struct sl_bt_evt_periodic_sync_report_s sl_bt_evt_periodic_sync_report_t

Definition at line 5575 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_periodic_sync_report_id

#define sl_bt_evt_periodic_sync_report_id

Value:

0�025300a0

Identifier of the report event.

Definition at line 5534 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_periodic_sync_report_s

511/1306

sl_bt_evt_periodic_sync_report_s

Data structure of the report event.

Public Attributes

uint16_t sync

int8_t tx_power

int8_t rssi

uint8_t cte_type

uint8_t data_status

uint8_t counter

uint8array data

Public Attribute Documentation

sync

uint16_t sl_bt_evt_periodic_sync_report_s::sync

Periodic advertising synchronization handle

Definition at line 5541 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

tx_power

int8_t sl_bt_evt_periodic_sync_report_s::tx_power

TX power value in the received packet header. Units: dBm

Valid value range: -127 to 126

Value 127: information unavailable

Definition at line 5542 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

rssi

int8_t sl_bt_evt_periodic_sync_report_s::rssi

Signal strength indicator (RSSI) in the latest received packet. Units: dBm

Range: -127 to +20

sl_bt_evt_periodic_sync_report_s

512/1306

Definition at line 5546 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

cte_type

uint8_t sl_bt_evt_periodic_sync_report_s::cte_type

The CTE type

0x00: AoA CTE

0x01: AoD CTE with 1us slots

0x02: AoD CTE with 2us slots

0xFF: No CTE

Definition at line 5549 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

data_status

uint8_t sl_bt_evt_periodic_sync_report_s::data_status

Data completeness:

0: Complete

1: Incomplete, more data to come in new events

2: Incomplete, data truncated, no more to come

Definition at line 5554 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

counter

uint8_t sl_bt_evt_periodic_sync_report_s::counter

The sequence number of this sl_bt_evt_periodic_sync_report event as a monotonically increasing counter that wraps from

255 to 0. There is a single counter for this event type that starts from value 0 when the Bluetooth stack is started and is

never reset while the stack is running. This counter can be used to detect if one or more sl_bt_evt_periodic_sync_report

events have been created by the stack but dropped due to problems such as temporarily running out of resources before

the event reached the application.

Definition at line 5560 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

data

uint8array sl_bt_evt_periodic_sync_report_s::data

Periodic advertising data

Definition at line 5572 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Periodic Advertising with responses Synchronization

513/1306

Periodic Advertising with responses Synchronization

Modules

sl_bt_evt_pawr_sync_opened

sl_bt_evt_pawr_sync_transfer_received

sl_bt_evt_pawr_sync_subevent_report

Periodic Advertising with responses
Synchronization
Periodic Advertising with responses Synchronization.

Provides events and control for synchronized Periodic Advertising with Responses (PAwR) trains. Synchronization is

achieved by scanning (see Periodic Advertising Sync Scanner) or by receiving Periodic Advertising Synchronization Transfer

(see PAST Receiver).

Functions

sl_status_t sl_bt_pawr_sync_set_sync_subevents(uint16_t sync, size_t subevents_len, const uint8_t *subevents)

sl_status_t sl_bt_pawr_sync_set_response_data(uint16_t sync, uint16_t request_event, uint8_t request_subevent, uint8_t
response_subevent, uint8_t response_slot, size_t response_data_len, const uint8_t *response_data)

Macros

#define sl_bt_cmd_pawr_sync_set_sync_subevents_id 0�02540020

#define sl_bt_cmd_pawr_sync_set_response_data_id 0�03540020

#define sl_bt_rsp_pawr_sync_set_sync_subevents_id 0�02540020

#define sl_bt_rsp_pawr_sync_set_response_data_id 0�03540020

Function Documentation

sl_bt_pawr_sync_set_sync_subevents

sl_status_t sl_bt_pawr_sync_set_sync_subevents (uint16_t sync, size_t subevents_len, const uint8_t *subevents)

Parameters

[in] sync PAwR synchronization handle

[in] subevents_len Length of data in subevents

[in] subevents Array of subevent indexes to synchronize to

Specify the subevents that this device will synchronize to on the specified PAwR train.

Returns

Periodic Advertising with responses Synchronization

514/1306

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 5871 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_pawr_sync_set_response_data

sl_status_t sl_bt_pawr_sync_set_response_data (uint16_t sync, uint16_t request_event, uint8_t request_subevent, uint8_t
response_subevent, uint8_t response_slot, size_t response_data_len, const uint8_t *response_data)

Parameters

[in] sync PAwR synchronization handle

[in] request_event The periodic advertising event counter (paEventCounter) of the request. Set this parameter to

the value of the event_counter field of the sl_bt_evt_pawr_sync_subevent_report_id event that

the application is responding to.

[in] request_subevent The subevent of the request. Set this parameter to the value of the subevent field of the

sl_bt_evt_pawr_sync_subevent_report_id event that the application is responding to.

[in] response_subevent The subevent in which the response is to be sent

[in] response_slot The response slot in which the response is to be sent

[in] response_data_len Length of data in response_data

[in] response_data Data to be sent in the specified response slot. Maximum of 248 bytes of data can be set with

this command.

Set the data to be sent in the specified response slot of a subevent of an active PAwR train.

Use this command when the application receives the sl_bt_evt_pawr_sync_subevent_report event and the application needs

to send a response. The application needs to set the response data within the timing requirements implied by the

parameters of the PAwR train that the device is synchronized to. If the response data is set too late, this command will fail

with result SL_STATUS_BT_CTRL_ADVERTISING_TIMEOUT.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 5906 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_pawr_sync_set_sync_subevents_id

#define sl_bt_cmd_pawr_sync_set_sync_subevents_id

Value:

0�02540020

Definition at line 5594 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_pawr_sync_set_response_data_id

#define sl_bt_cmd_pawr_sync_set_response_data_id

Value:

Periodic Advertising with responses Synchronization

515/1306

0x03540020

Definition at line 5595 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_pawr_sync_set_sync_subevents_id

#define sl_bt_rsp_pawr_sync_set_sync_subevents_id

Value:

0�02540020

Definition at line 5596 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_pawr_sync_set_response_data_id

#define sl_bt_rsp_pawr_sync_set_response_data_id

Value:

0�03540020

Definition at line 5597 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_pawr_sync_opened

516/1306

sl_bt_evt_pawr_sync_opened

Modules

sl_bt_evt_pawr_sync_opened_s

sl_bt_evt_pawr_sync_opened
Indicates that synchronization to a Periodic Advertising with Responses (PAwR) train has been opened by scanning.

See command sl_bt_sync_scanner_open.

Typedefs

typedef struct
sl_bt_evt_pawr_sy

nc_opened_s

sl_bt_evt_pawr_sync_opened_t

Macros

#define sl_bt_evt_pawr_sync_opened_id 0�005400a0
Identifier of the opened event.

Typedef Documentation

sl_bt_evt_pawr_sync_opened_t

typedef struct sl_bt_evt_pawr_sync_opened_s sl_bt_evt_pawr_sync_opened_t

Definition at line 5686 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_pawr_sync_opened_id

#define sl_bt_evt_pawr_sync_opened_id

Value:

0�005400a0

Identifier of the opened event.

Definition at line 5609 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_pawr_sync_opened_s

517/1306

sl_bt_evt_pawr_sync_opened_s

Data structure of the opened event.

Public Attributes

uint16_t sync

uint8_t adv_sid

bd_addr address

uint8_t address_type

uint8_t adv_phy

uint16_t adv_interval

uint16_t clock_accuracy

uint8_t num_subevents

uint8_t subevent_interval

uint8_t response_slot_delay

uint8_t response_slot_spacing

uint8_t bonding

Public Attribute Documentation

sync

uint16_t sl_bt_evt_pawr_sync_opened_s::sync

PAwR synchronization handle

Definition at line 5616 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

adv_sid

uint8_t sl_bt_evt_pawr_sync_opened_s::adv_sid

Advertising set identifier

Definition at line 5617 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

address

bd_addr sl_bt_evt_pawr_sync_opened_s::address

sl_bt_evt_pawr_sync_opened_s

518/1306

Address of the advertiser

Definition at line 5618 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

address_type

uint8_t sl_bt_evt_pawr_sync_opened_s::address_type

Enum sl_bt_gap_address_type_t.

Advertiser address type.

If the application does not include the bluetooth_feature_use_accurate_api_address_types component, address_type uses

the following values:

0: Public address

1: Random address

If the application includes the bluetooth_feature_use_accurate_api_address_types component, address_type uses enum

sl_bt_gap_address_type_t values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

sl_bt_gap_random_resolvable_address (0x2): Resolvable private random address

sl_bt_gap_random_nonresolvable_address (0x3): Non-resolvable private random address

sl_bt_gap_public_address_resolved_from_rpa (0x4): Public identity address resolved from a resolvable private address

(RPA)

sl_bt_gap_static_address_resolved_from_rpa (0x5): Static identity address resolved from a resolvable private address (RPA)

Definition at line 5619 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

adv_phy

uint8_t sl_bt_evt_pawr_sync_opened_s::adv_phy

Enum sl_bt_gap_phy_t. The advertiser PHY. Values:

sl_bt_gap_phy_1m (0x1): 1M PHY

sl_bt_gap_phy_2m (0x2): 2M PHY

sl_bt_gap_phy_coded (0x4): Coded PHY, 125k (S=8) or 500k (S=2)

Definition at line 5652 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

adv_interval

uint16_t sl_bt_evt_pawr_sync_opened_s::adv_interval

The periodic advertising interval. Value in units of 1.25 ms

Range: 0x06 to 0xFFFF

Time range: 7.5 ms to 81.92 s

Definition at line 5658 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_pawr_sync_opened_s

519/1306

clock_accuracy

uint16_t sl_bt_evt_pawr_sync_opened_s::clock_accuracy

Enum sl_bt_sync_advertiser_clock_accuracy_t. The advertiser clock accuracy.

Definition at line 5662 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

num_subevents

uint8_t sl_bt_evt_pawr_sync_opened_s::num_subevents

The number of subevents.

Range: 0x01 to 0x80

Definition at line 5665 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

subevent_interval

uint8_t sl_bt_evt_pawr_sync_opened_s::subevent_interval

Subevent interval. Value in units of 1.25 ms.

Range: 0x06 to 0xFF

Time range: 7.5 ms to 318.75 ms

Definition at line 5667 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

response_slot_delay

uint8_t sl_bt_evt_pawr_sync_opened_s::response_slot_delay

Time between the advertising packet in a subevent and the first response slot. Value in units of 1.25 ms.

Range: 0x01 to 0xFE

Time range: 1.25 ms to 317.5 ms

Definition at line 5671 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

response_slot_spacing

uint8_t sl_bt_evt_pawr_sync_opened_s::response_slot_spacing

Time between response slots. Value in units of 0.125 ms.

Range: 0x02 to 0xFF

Time range: 0.25 ms to 31.875 ms

Definition at line 5676 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_pawr_sync_opened_s

520/1306

bonding

uint8_t sl_bt_evt_pawr_sync_opened_s::bonding

Bonding handle. Values:

SL_BT_INVALID_BONDING_HANDLE (0xff): No bonding

Other: Bonding handle

Definition at line 5680 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_pawr_sync_transfer_received

521/1306

sl_bt_evt_pawr_sync_transfer_received

Modules

sl_bt_evt_pawr_sync_transfer_received_s

sl_bt_evt_pawr_sync_transfer_received
Indicates that synchronization information for Periodic Advertising with Responses (PAwR) train has been received.

See PAST Receiver.

Typedefs

typedef struct
sl_bt_evt_pawr_sy
nc_transfer_recei

ved_s

sl_bt_evt_pawr_sync_transfer_received_t

Macros

#define sl_bt_evt_pawr_sync_transfer_received_id 0�015400a0
Identifier of the transfer_received event.

Typedef Documentation

sl_bt_evt_pawr_sync_transfer_received_t

typedef struct sl_bt_evt_pawr_sync_transfer_received_s sl_bt_evt_pawr_sync_transfer_received_t

Definition at line 5783 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_pawr_sync_transfer_received_id

#define sl_bt_evt_pawr_sync_transfer_received_id

Value:

0�015400a0

Identifier of the transfer_received event.

Definition at line 5700 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_pawr_sync_transfer_received_s

522/1306

sl_bt_evt_pawr_sync_transfer_received_s

Data structure of the transfer_received event.

Public Attributes

uint16_t status

uint16_t sync

uint16_t service_data

uint8_t connection

uint8_t adv_sid

bd_addr address

uint8_t address_type

uint8_t adv_phy

uint16_t adv_interval

uint16_t clock_accuracy

uint8_t num_subevents

uint8_t subevent_interval

uint8_t response_slot_delay

uint8_t response_slot_spacing

uint8_t bonding

Public Attribute Documentation

status

uint16_t sl_bt_evt_pawr_sync_transfer_received_s::status

SL_STATUS_OK if synchronization was established. Other values indicate that the sync failed to get established.

Definition at line 5707 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sync

uint16_t sl_bt_evt_pawr_sync_transfer_received_s::sync

PAwR synchronization handle

sl_bt_evt_pawr_sync_transfer_received_s

523/1306

Definition at line 5710 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

service_data

uint16_t sl_bt_evt_pawr_sync_transfer_received_s::service_data

A value provided by the peer device.

Definition at line 5711 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

connection

uint8_t sl_bt_evt_pawr_sync_transfer_received_s::connection

Connection handle of the connection that transferred the sync info

Definition at line 5712 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

adv_sid

uint8_t sl_bt_evt_pawr_sync_transfer_received_s::adv_sid

Advertising set identifier

Definition at line 5714 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

address

bd_addr sl_bt_evt_pawr_sync_transfer_received_s::address

Address of the advertiser

Definition at line 5715 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

address_type

uint8_t sl_bt_evt_pawr_sync_transfer_received_s::address_type

Enum sl_bt_gap_address_type_t.

Advertiser address type.

If the application does not include the bluetooth_feature_use_accurate_api_address_types component, address_type uses

the following values:

0: Public address

1: Random address

If the application includes the bluetooth_feature_use_accurate_api_address_types component, address_type uses enum

sl_bt_gap_address_type_t values:

sl_bt_evt_pawr_sync_transfer_received_s

524/1306

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

sl_bt_gap_random_resolvable_address (0x2): Resolvable private random address

sl_bt_gap_random_nonresolvable_address (0x3): Non-resolvable private random address

sl_bt_gap_public_address_resolved_from_rpa (0x4): Public identity address resolved from a resolvable private address

(RPA)

sl_bt_gap_static_address_resolved_from_rpa (0x5): Static identity address resolved from a resolvable private address (RPA)

Definition at line 5716 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

adv_phy

uint8_t sl_bt_evt_pawr_sync_transfer_received_s::adv_phy

Enum sl_bt_gap_phy_t. The advertiser PHY. Values:

sl_bt_gap_phy_1m (0x1): 1M PHY

sl_bt_gap_phy_2m (0x2): 2M PHY

sl_bt_gap_phy_coded (0x4): Coded PHY, 125k (S=8) or 500k (S=2)

Definition at line 5749 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

adv_interval

uint16_t sl_bt_evt_pawr_sync_transfer_received_s::adv_interval

The periodic advertising interval. Value in units of 1.25 ms

Range: 0x06 to 0xFFFF

Time range: 7.5 ms to 81.92 s

Definition at line 5755 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

clock_accuracy

uint16_t sl_bt_evt_pawr_sync_transfer_received_s::clock_accuracy

Enum sl_bt_sync_advertiser_clock_accuracy_t. The advertiser clock accuracy.

Definition at line 5759 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

num_subevents

uint8_t sl_bt_evt_pawr_sync_transfer_received_s::num_subevents

The number of subevents.

Range: 0x01 to 0x80

Definition at line 5762 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_pawr_sync_transfer_received_s

525/1306

subevent_interval

uint8_t sl_bt_evt_pawr_sync_transfer_received_s::subevent_interval

Subevent interval. Value in units of 1.25 ms.

Range: 0x06 to 0xFF

Time range: 7.5 ms to 318.75 ms

Definition at line 5764 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

response_slot_delay

uint8_t sl_bt_evt_pawr_sync_transfer_received_s::response_slot_delay

Time between the advertising packet in a subevent and the first response slot. Value in units of 1.25 ms.

Range: 0x01 to 0xFE

Time range: 1.25 ms to 317.5 ms

Definition at line 5768 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

response_slot_spacing

uint8_t sl_bt_evt_pawr_sync_transfer_received_s::response_slot_spacing

Time between response slots. Value in units of 0.125 ms.

Range: 0x02 to 0xFF

Time range: 0.25 ms to 31.875 ms

Definition at line 5773 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

bonding

uint8_t sl_bt_evt_pawr_sync_transfer_received_s::bonding

Bonding handle. Values:

SL_BT_INVALID_BONDING_HANDLE (0xff): No bonding

Other: Bonding handle

Definition at line 5777 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_pawr_sync_subevent_report

526/1306

sl_bt_evt_pawr_sync_subevent_report

Modules

sl_bt_evt_pawr_sync_subevent_report_s

sl_bt_evt_pawr_sync_subevent_report
Reports that the device's radio has received a periodic advertisement in a subevent of an active PAwR train.

This event reports also empty advertisements, i.e., advertisements that contained no payload data. In this case the data

parameter has zero length.

Typedefs

typedef struct
sl_bt_evt_pawr_sy
nc_subevent_repo

rt_s

sl_bt_evt_pawr_sync_subevent_report_t

Macros

#define sl_bt_evt_pawr_sync_subevent_report_id 0�025400a0
Identifier of the subevent_report event.

Typedef Documentation

sl_bt_evt_pawr_sync_subevent_report_t

typedef struct sl_bt_evt_pawr_sync_subevent_report_s sl_bt_evt_pawr_sync_subevent_report_t

Definition at line 5855 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_pawr_sync_subevent_report_id

#define sl_bt_evt_pawr_sync_subevent_report_id

Value:

0�025400a0

Identifier of the subevent_report event.

Definition at line 5799 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_pawr_sync_subevent_report_s

527/1306

sl_bt_evt_pawr_sync_subevent_report_s

Data structure of the subevent_report event.

Public Attributes

uint16_t sync

int8_t tx_power

int8_t rssi

uint8_t cte_type

uint16_t event_counter

uint8_t subevent

uint8_t data_status

uint8_t counter

uint8array data

Public Attribute Documentation

sync

uint16_t sl_bt_evt_pawr_sync_subevent_report_s::sync

PAwR synchronization handle

Definition at line 5806 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

tx_power

int8_t sl_bt_evt_pawr_sync_subevent_report_s::tx_power

TX power value in the received packet header. Units: dBm

Valid value range: -127 to 126

Value 127: information unavailable

Definition at line 5807 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

rssi

int8_t sl_bt_evt_pawr_sync_subevent_report_s::rssi

sl_bt_evt_pawr_sync_subevent_report_s

528/1306

Signal strength indicator (RSSI) of the received packet. Units: dBm

Range: -127 to +20

Definition at line 5811 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

cte_type

uint8_t sl_bt_evt_pawr_sync_subevent_report_s::cte_type

The CTE type

0x00: AoA CTE

0x01: AoD CTE with 1us slots

0x02: AoD CTE with 2us slots

0xFF: No CTE

Definition at line 5814 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

event_counter

uint16_t sl_bt_evt_pawr_sync_subevent_report_s::event_counter

The value of the periodic advertising event counter (paEventCounter) of the event in which the advertisement was received.

If the application responds to this advertisement, use this field as the value of request_event parameter for the

sl_bt_pawr_sync_set_response_data command.

Definition at line 5819 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

subevent

uint8_t sl_bt_evt_pawr_sync_subevent_report_s::subevent

The subevent in which the advertisement was received. If the application responds to this advertisement, use this field as

the value of request_subevent parameter for the sl_bt_pawr_sync_set_response_data command.

Definition at line 5826 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

data_status

uint8_t sl_bt_evt_pawr_sync_subevent_report_s::data_status

Data completeness:

0: Complete

1: Incomplete, more data to come in new events

2: Incomplete, data truncated, no more to come

255: Failed to receive subevent data in this subevent

Definition at line 5831 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_pawr_sync_subevent_report_s

529/1306

counter

uint8_t sl_bt_evt_pawr_sync_subevent_report_s::counter

The sequence number of this sl_bt_evt_pawr_sync_subevent_report event as a monotonically increasing counter that wraps

from 255 to 0. There is a single counter for this event type that starts from value 0 when the Bluetooth stack is started and

is never reset while the stack is running. This counter can be used to detect if one or more

sl_bt_evt_pawr_sync_subevent_report events have been created by the stack but dropped due to problems such as

temporarily running out of resources before the event reached the application.

Definition at line 5839 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

data

uint8array sl_bt_evt_pawr_sync_subevent_report_s::data

The advertisement data that was received

Definition at line 5852 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

PAwR Advertiser

530/1306

PAwR Advertiser

Modules

sl_bt_evt_pawr_advertiser_subevent_data_request

sl_bt_evt_pawr_advertiser_subevent_tx_failed

sl_bt_evt_pawr_advertiser_response_report

PAwR Advertiser
PAwR Advertiser.

Provides support for advertising with Periodic Advertising with Responses (PAwR) trains.

Functions

sl_status_t sl_bt_pawr_advertiser_start(uint8_t advertising_set, uint16_t interval_min, uint16_t interval_max, uint32_t flags,
uint8_t num_subevents, uint8_t subevent_interval, uint8_t response_slot_delay, uint8_t response_slot_spacing,
uint8_t response_slots)

sl_status_t sl_bt_pawr_advertiser_set_subevent_data(uint8_t advertising_set, uint8_t subevent, uint8_t
response_slot_start, uint8_t response_slot_count, size_t adv_data_len, const uint8_t *adv_data)

sl_status_t sl_bt_pawr_advertiser_create_connection(uint8_t advertising_set, uint8_t subevent, bd_addr address, uint8_t
address_type, uint8_t *connection)

sl_status_t sl_bt_pawr_advertiser_stop(uint8_t advertising_set)

Macros

#define sl_bt_cmd_pawr_advertiser_start_id 0�00550020

#define sl_bt_cmd_pawr_advertiser_set_subevent_data_id 0�01550020

#define sl_bt_cmd_pawr_advertiser_create_connection_id 0�02550020

#define sl_bt_cmd_pawr_advertiser_stop_id 0�03550020

#define sl_bt_rsp_pawr_advertiser_start_id 0�00550020

#define sl_bt_rsp_pawr_advertiser_set_subevent_data_id 0�01550020

#define sl_bt_rsp_pawr_advertiser_create_connection_id 0�02550020

#define sl_bt_rsp_pawr_advertiser_stop_id 0�03550020

Function Documentation

sl_bt_pawr_advertiser_start

sl_status_t sl_bt_pawr_advertiser_start (uint8_t advertising_set, uint16_t interval_min, uint16_t interval_max, uint32_t flags,
uint8_t num_subevents, uint8_t subevent_interval, uint8_t response_slot_delay, uint8_t response_slot_spacing, uint8_t

PAwR Advertiser

531/1306

response_slots)

Parameters

[in] advertising_set The PAwR advertising set handle

[in] interval_min Minimum periodic advertising interval. Value in units of 1.25 ms.

Range: 0x06 to 0xFFFF

Time range: 7.5 ms to 81.92 s

Default value: 100 ms

[in] interval_max Maximum periodic advertising interval. Value in units of 1.25 ms.

Range: 0x06 to 0xFFFF

Time range: 7.5 ms to 81.92 s

Note: interval_max should be bigger than interval_min

Default value: 200 ms

[in] flags Additional periodic advertising options. Value: 0 or bitmask of Periodic Advertising

Configuration Flags

[in] num_subevents The number of subevents.

Range: 0x01 to 0x80

[in] subevent_interval Subevent interval. Value in units of 1.25 ms.

Range: 0x06 to 0xFF

Time range: 7.5 ms to 318.75 ms

[in] response_slot_delay Time between the advertising packet in a subevent and the first response slot. Value in units

of 1.25 ms.

Range: 0x01 to 0xFE

Time range: 1.25 ms to 317.5 ms

[in] response_slot_spacing Time between response slots. Value in units of 0.125 ms.

Range: 0x02 to 0xFF

Time range: 0.25 ms to 31.875 ms

[in] response_slots Number of subevent response slots.

Range: 0x01 to 0xFF

Start PAwR advertising on the specified advertising set.

According to the Bluetooth Core specification, PAwR advertising PDUs cannot be transmitted until at least one extended

advertising event has been completed. If the application needs exact control over the extended advertising data and

parameters, use the Advertiser class to configure the parameters of the advertising set and the Extended Advertiser class

to set or generate the desired extended advertising data payload. If the application does not configure the parameters or

set the data, the default parameters and empty advertising data are used for the extended advertising.

If the application has not already started extended advertising and the flag

SL_BT_PERIODIC_ADVERTISER_AUTO_START_EXTENDED_ADVERTISING is set in flags , the stack will automatically start

extended advertising with the parameters and extended advertising data currently configured to the advertising set. The

application may stop the automatically started extended advertising using the sl_bt_advertiser_stop command.

If the application has not already started extended advertising and the flag

SL_BT_PERIODIC_ADVERTISER_AUTO_START_EXTENDED_ADVERTISING is not set in flags , the stack will momentarily start

extended advertising with the parameters and extended advertising data currently configured to the advertising set. Unless

PAwR Advertiser

532/1306

the application starts extended advertising before the first extended advertising event has completed, the stack will

automatically stop the momentary extended advertising after the first extended advertising event.

PAwR advertising PDUs are transmitted on the secondary PHY configured for the advertising set with the

sl_bt_extended_advertiser_set_phy command.

To stop PAwR advertising, use sl_bt_pawr_advertiser_stop command.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 6139 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_pawr_advertiser_set_subevent_data

sl_status_t sl_bt_pawr_advertiser_set_subevent_data (uint8_t advertising_set, uint8_t subevent, uint8_t response_slot_start,
uint8_t response_slot_count, size_t adv_data_len, const uint8_t *adv_data)

Parameters

[in] advertising_set The PAwR advertising set handle

[in] subevent The subevent in which the data is to be sent

[in] response_slot_start The first response slot to be used in this subevent

[in] response_slot_count The number of response slots to be used

[in] adv_data_len Length of data in adv_data

[in] adv_data Data to be sent in the specified subevent

Set data to be sent in the specified subevent of an active PAwR train. Data is transmitted only once and is discarded after it

has been transmitted.

Data given to this command is passed to the Bluetooth controller, which will queue data and transmit it at the correct time.

The application may always opportunistically try to queue more data with this command, but the controller may reject data

and return an error if the queuing capacity is exceeded. In this case, the Bluetooth stack will trigger the

sl_bt_evt_pawr_advertiser_subevent_data_request event later when the controller is ready to accept more data.

To ensure effective use of the available memory, applications are encouraged to observe the

sl_bt_evt_pawr_advertiser_subevent_data_request events and set data for the subevents that are being requested and for

which the application has data to send. Applications should also note that PAwR is an unreliable transport and cannot

guarantee delivery. If reliability is required, the application must implement an acknowledgment mechanism using response

slots of the PAwR train and set subevent data again for a re-transmission if it was not successfully delivered.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_pawr_advertiser_subevent_data_request - This event is triggered when the Bluetooth stack is ready to accept more

subevent data.

sl_bt_evt_pawr_advertiser_subevent_tx_failed - This event is triggered if transmitting the subevent data has failed.

sl_bt_evt_pawr_advertiser_response_report - If the subevent data was successfully transmitted, this event is triggered for

each response slot that was marked as used in this subevent.

Definition at line 6191 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_pawr_advertiser_create_connection

PAwR Advertiser

533/1306

sl_status_t sl_bt_pawr_advertiser_create_connection (uint8_t advertising_set, uint8_t subevent, bd_addr address, uint8_t
address_type, uint8_t *connection)

Parameters

[in] advertising_set The PAwR advertising set handle

[in] subevent The subevent in which the connection request is to be sent

[in] address Address of the device to connect to

[in] address_type Enum sl_bt_gap_address_type_t. Address type of the device to connect to. Values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

sl_bt_gap_random_resolvable_address (0x2): Resolvable private random address

sl_bt_gap_random_nonresolvable_address (0x3): Non-resolvable private random address

sl_bt_gap_public_address_resolved_from_rpa (0x4): Public identity address resolved from a

resolvable private address (RPA)

sl_bt_gap_static_address_resolved_from_rpa (0x5): Static identity address resolved from a

resolvable private address (RPA)

[out] connection Handle that will be assigned to the connection after the connection is established. This handle is

valid only if the result code of this command is SL_STATUS_OK.

Initiate a connection request to a device that is synchronized to the specified active PAwR train. The connection is

established on the secondary PHY configured for the advertising set with the sl_bt_extended_advertiser_set_phy command.

The connection uses the parameters configured with command sl_bt_connection_set_default_parameters.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_connection_closed - This event is triggered if the connection failed to be created.

sl_bt_evt_connection_opened - This event is triggered after the connection is opened and indicates whether the devices are

already bonded and the role of the device in this connection.

sl_bt_evt_connection_parameters - This event indicates the connection parameters and security mode of the connection.

Definition at line 6238 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_pawr_advertiser_stop

sl_status_t sl_bt_pawr_advertiser_stop (uint8_t advertising_set)

Parameters

[in] advertising_set The PAwR advertising set handle

Stop PAwR advertising on an advertising set. Counterpart to sl_bt_pawr_advertiser_start.

This command does not affect the enable state of the advertising set, i.e., legacy or extended advertising is not stopped.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 6257 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

PAwR Advertiser

534/1306

Macro Definition Documentation

sl_bt_cmd_pawr_advertiser_start_id

#define sl_bt_cmd_pawr_advertiser_start_id

Value:

0�00550020

Definition at line 5927 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_pawr_advertiser_set_subevent_data_id

#define sl_bt_cmd_pawr_advertiser_set_subevent_data_id

Value:

0�01550020

Definition at line 5928 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_pawr_advertiser_create_connection_id

#define sl_bt_cmd_pawr_advertiser_create_connection_id

Value:

0�02550020

Definition at line 5929 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_pawr_advertiser_stop_id

#define sl_bt_cmd_pawr_advertiser_stop_id

Value:

0�03550020

Definition at line 5930 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_pawr_advertiser_start_id

#define sl_bt_rsp_pawr_advertiser_start_id

Value:

0�00550020

Definition at line 5931 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_pawr_advertiser_set_subevent_data_id

PAwR Advertiser

535/1306

#define sl_bt_rsp_pawr_advertiser_set_subevent_data_id

Value:

0x01550020

Definition at line 5932 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_pawr_advertiser_create_connection_id

#define sl_bt_rsp_pawr_advertiser_create_connection_id

Value:

0�02550020

Definition at line 5933 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_pawr_advertiser_stop_id

#define sl_bt_rsp_pawr_advertiser_stop_id

Value:

0�03550020

Definition at line 5934 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_pawr_advertiser_subevent_data_request

536/1306

sl_bt_evt_pawr_advertiser_subevent_data_request

Modules

sl_bt_evt_pawr_advertiser_subevent_data_request_s

sl_bt_evt_pawr_advertiser_subevent_data_request
This event is triggered to indicate that the Bluetooth stack is ready to accept data for the specified subevents of the PAwR

train.

To ensure effective use of the available memory, applications are encouraged to observe these events and set data using

sl_bt_pawr_advertiser_set_subevent_data for the subevents that are being requested and for which the application has data

to send

If the application has no data to send, it does not need to call sl_bt_pawr_advertiser_set_subevent_data for that subevent.

The application can attempt to set data for that subevent later when the application has new data to send.

Typedefs

typedef struct
sl_bt_evt_pawr_a
dvertiser_subeve
nt_data_request_s

sl_bt_evt_pawr_advertiser_subevent_data_request_t

Macros

#define sl_bt_evt_pawr_advertiser_subevent_data_request_id 0�005500a0
Identifier of the subevent_data_request event.

Typedef Documentation

sl_bt_evt_pawr_advertiser_subevent_data_request_t

typedef struct sl_bt_evt_pawr_advertiser_subevent_data_request_s sl_bt_evt_pawr_advertiser_subevent_data_request_t

Definition at line 5968 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_pawr_advertiser_subevent_data_request_id

#define sl_bt_evt_pawr_advertiser_subevent_data_request_id

Value:

0�005500a0

sl_bt_evt_pawr_advertiser_subevent_data_request

537/1306

Identifier of the subevent_data_request event.

Definition at line 5954 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_pawr_advertiser_subevent_data_request_s

538/1306

sl_bt_evt_pawr_advertiser_subevent_data_request_s

Data structure of the subevent_data_request event.

Public Attributes

uint8_t advertising_set

uint8_t subevent_start

uint8_t subevent_data_count

Public Attribute Documentation

advertising_set

uint8_t sl_bt_evt_pawr_advertiser_subevent_data_request_s::advertising_set

The PAwR advertising set handle

Definition at line 5961 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

subevent_start

uint8_t sl_bt_evt_pawr_advertiser_subevent_data_request_s::subevent_start

The first subevent that data is requested for

Definition at line 5962 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

subevent_data_count

uint8_t sl_bt_evt_pawr_advertiser_subevent_data_request_s::subevent_data_count

The number of subevents that data is requested for

Definition at line 5964 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_pawr_advertiser_subevent_tx_failed

539/1306

sl_bt_evt_pawr_advertiser_subevent_tx_failed

Modules

sl_bt_evt_pawr_advertiser_subevent_tx_failed_s

sl_bt_evt_pawr_advertiser_subevent_tx_failed
This event is triggered if subevent data was successfully set using sl_bt_pawr_advertiser_set_subevent_data command but

the attempt to transmit the subevent data has failed.

This error is not fatal. The event is provided to the application so that it knows not to expect response reports for this

subevent and can set subevent data again for retransmission without needing to timeout waiting for response reports that

will not be received because the transmission failed.

Typedefs

typedef struct
sl_bt_evt_pawr_a
dvertiser_subeve
nt_tx_failed_s

sl_bt_evt_pawr_advertiser_subevent_tx_failed_t

Macros

#define sl_bt_evt_pawr_advertiser_subevent_tx_failed_id 0�025500a0
Identifier of the subevent_tx_failed event.

Typedef Documentation

sl_bt_evt_pawr_advertiser_subevent_tx_failed_t

typedef struct sl_bt_evt_pawr_advertiser_subevent_tx_failed_s sl_bt_evt_pawr_advertiser_subevent_tx_failed_t

Definition at line 5999 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_pawr_advertiser_subevent_tx_failed_id

#define sl_bt_evt_pawr_advertiser_subevent_tx_failed_id

Value:

0�025500a0

Identifier of the subevent_tx_failed event.

sl_bt_evt_pawr_advertiser_subevent_tx_failed

540/1306

Definition at line 5986 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_pawr_advertiser_subevent_tx_failed_s

541/1306

sl_bt_evt_pawr_advertiser_subevent_tx_failed_s

Data structure of the subevent_tx_failed event.

Public Attributes

uint8_t advertising_set

uint8_t subevent

Public Attribute Documentation

advertising_set

uint8_t sl_bt_evt_pawr_advertiser_subevent_tx_failed_s::advertising_set

The PAwR advertising set handle for the PAwR train that failed to transmit subevent data

Definition at line 5993 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

subevent

uint8_t sl_bt_evt_pawr_advertiser_subevent_tx_failed_s::subevent

The subevent that failed to transmit subevent data

Definition at line 5995 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_pawr_advertiser_response_report

542/1306

sl_bt_evt_pawr_advertiser_response_report

Modules

sl_bt_evt_pawr_advertiser_response_report_s

sl_bt_evt_pawr_advertiser_response_report
Reports the status and data of a used response slot of an active PAwR train.

The report is given for every response slot that was marked as used in the sl_bt_pawr_advertiser_set_subevent_data

command.

Typedefs

typedef struct
sl_bt_evt_pawr_a
dvertiser_respons

e_report_s

sl_bt_evt_pawr_advertiser_response_report_t

Macros

#define sl_bt_evt_pawr_advertiser_response_report_id 0�015500a0
Identifier of the response_report event.

Typedef Documentation

sl_bt_evt_pawr_advertiser_response_report_t

typedef struct sl_bt_evt_pawr_advertiser_response_report_s sl_bt_evt_pawr_advertiser_response_report_t

Definition at line 6063 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_pawr_advertiser_response_report_id

#define sl_bt_evt_pawr_advertiser_response_report_id

Value:

0�015500a0

Identifier of the response_report event.

Definition at line 6014 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_pawr_advertiser_response_report_s

543/1306

sl_bt_evt_pawr_advertiser_response_report_s

Data structure of the response_report event.

Public Attributes

uint8_t advertising_set

uint8_t subevent

int8_t tx_power

int8_t rssi

uint8_t cte_type

uint8_t response_slot

uint8_t data_status

uint8_t counter

uint8array data

Public Attribute Documentation

advertising_set

uint8_t sl_bt_evt_pawr_advertiser_response_report_s::advertising_set

The PAwR advertising set handle

Definition at line 6021 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

subevent

uint8_t sl_bt_evt_pawr_advertiser_response_report_s::subevent

The subevent that this report corresponds to

Definition at line 6022 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

tx_power

int8_t sl_bt_evt_pawr_advertiser_response_report_s::tx_power

TX power value in the received packet header. Units: dBm

Valid value range: -127 to 126

sl_bt_evt_pawr_advertiser_response_report_s

544/1306

Value 127: information unavailable

Definition at line 6023 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

rssi

int8_t sl_bt_evt_pawr_advertiser_response_report_s::rssi

Signal strength indicator (RSSI) of the received packet. Units: dBm

Valid value range: -127 to +20

Value 127: information unavailable

Definition at line 6027 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

cte_type

uint8_t sl_bt_evt_pawr_advertiser_response_report_s::cte_type

The CTE type

0x00: AoA CTE

0x01: AoD CTE with 1us slots

0x02: AoD CTE with 2us slots

0xFF: No CTE

Definition at line 6031 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

response_slot

uint8_t sl_bt_evt_pawr_advertiser_response_report_s::response_slot

The response slot that this report corresponds to

Definition at line 6036 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

data_status

uint8_t sl_bt_evt_pawr_advertiser_response_report_s::data_status

Data completeness:

0: Complete

1: Incomplete, more data to come in new events

2: Incomplete, data truncated, no more to come

255: Failed to receive subevent response in this response slot

Definition at line 6038 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

counter

sl_bt_evt_pawr_advertiser_response_report_s

545/1306

uint8_t sl_bt_evt_pawr_advertiser_response_report_s::counter

The sequence number of this sl_bt_evt_pawr_advertiser_response_report event as a monotonically increasing counter that

wraps from 255 to 0. There is a single counter for this event type that starts from value 0 when the Bluetooth stack is

started and is never reset while the stack is running. This counter can be used to detect if one or more

sl_bt_evt_pawr_advertiser_response_report events have been created by the stack but dropped due to problems such as

temporarily running out of resources before the event reached the application.

Definition at line 6046 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

data

uint8array sl_bt_evt_pawr_advertiser_response_report_s::data

The response data that was received, if any

Definition at line 6060 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Connection

546/1306

Connection

Modules

Transmit Power Reporting Constants

sl_bt_evt_connection_opened

sl_bt_evt_connection_parameters

sl_bt_evt_connection_phy_status

sl_bt_evt_connection_rssi

sl_bt_evt_connection_get_remote_tx_power_completed

sl_bt_evt_connection_tx_power

sl_bt_evt_connection_remote_tx_power

sl_bt_evt_connection_remote_used_features

sl_bt_evt_connection_data_length

sl_bt_evt_connection_closed

Connection
Connection.

The commands and events in this class are related to managing connection establishment, parameter setting, and

disconnection procedures.

Enumerations

enum sl_bt_connection_security_t {

sl_bt_connection_mode1_level1 = 0�0
sl_bt_connection_mode1_level2 = 0�1
sl_bt_connection_mode1_level3 = 0�2
sl_bt_connection_mode1_level4 = 0�3

}
Indicate the Bluetooth Security Mode.

enum sl_bt_connection_power_reporting_mode_t {

sl_bt_connection_power_reporting_disable = 0�0
sl_bt_connection_power_reporting_enable = 0�1

}
These values define transmit power reporting modes in LE power control.

Connection

547/1306

enum sl_bt_connection_tx_power_flag_t {

sl_bt_connection_tx_power_flag_none = 0�0
sl_bt_connection_tx_power_at_minimum = 0�1
sl_bt_connection_tx_power_at_maximum = 0�2

}
This enum defines the flag values for a reported transmit power level.

Functions

sl_status_t sl_bt_connection_set_default_parameters(uint16_t min_interval, uint16_t max_interval, uint16_t latency, uint16_t
timeout, uint16_t min_ce_length, uint16_t max_ce_length)

sl_status_t sl_bt_connection_set_default_preferred_phy(uint8_t preferred_phy, uint8_t accepted_phy)

sl_status_t sl_bt_connection_set_default_data_length(uint16_t tx_data_len)

sl_status_t sl_bt_connection_open(bd_addr address, uint8_t address_type, uint8_t initiating_phy, uint8_t *connection)

sl_status_t sl_bt_connection_set_parameters(uint8_t connection, uint16_t min_interval, uint16_t max_interval, uint16_t
latency, uint16_t timeout, uint16_t min_ce_length, uint16_t max_ce_length)

sl_status_t sl_bt_connection_set_preferred_phy(uint8_t connection, uint8_t preferred_phy, uint8_t accepted_phy)

sl_status_t sl_bt_connection_disable_slave_latency(uint8_t connection, uint8_t disable)

sl_status_t sl_bt_connection_get_rssi(uint8_t connection)

sl_status_t sl_bt_connection_read_channel_map(uint8_t connection, size_t max_channel_map_size, size_t
*channel_map_len, uint8_t *channel_map)

sl_status_t sl_bt_connection_set_power_reporting(uint8_t connection, uint8_t mode)

sl_status_t sl_bt_connection_set_remote_power_reporting(uint8_t connection, uint8_t mode)

sl_status_t sl_bt_connection_get_tx_power(uint8_t connection, uint8_t phy, int8_t *current_level, int8_t *max_level)

sl_status_t sl_bt_connection_get_remote_tx_power(uint8_t connection, uint8_t phy)

sl_status_t sl_bt_connection_set_tx_power(uint8_t connection, int16_t tx_power, int16_t *tx_power_out)

sl_status_t sl_bt_connection_read_remote_used_features(uint8_t connection)

sl_status_t sl_bt_connection_get_security_status(uint8_t connection, uint8_t *security_mode, uint8_t *key_size, uint8_t
*bonding_handle)

sl_status_t sl_bt_connection_set_data_length(uint8_t connection, uint16_t tx_data_len, uint16_t tx_time_us)

sl_status_t sl_bt_connection_close(uint8_t connection)

sl_status_t sl_bt_connection_forcefully_close(uint8_t connection)

Macros

#define sl_bt_cmd_connection_set_default_parameters_id 0�00060020

#define sl_bt_cmd_connection_set_default_preferred_phy_id 0�01060020

#define sl_bt_cmd_connection_set_default_data_length_id 0�10060020

Connection

548/1306

#define sl_bt_cmd_connection_open_id 0�04060020

#define sl_bt_cmd_connection_set_parameters_id 0�06060020

#define sl_bt_cmd_connection_set_preferred_phy_id 0�08060020

#define sl_bt_cmd_connection_disable_slave_latency_id 0�03060020

#define sl_bt_cmd_connection_get_rssi_id 0�02060020

#define sl_bt_cmd_connection_read_channel_map_id 0�07060020

#define sl_bt_cmd_connection_set_power_reporting_id 0�09060020

#define sl_bt_cmd_connection_set_remote_power_reporting_id 0�0a060020

#define sl_bt_cmd_connection_get_tx_power_id 0�0b060020

#define sl_bt_cmd_connection_get_remote_tx_power_id 0�0c060020

#define sl_bt_cmd_connection_set_tx_power_id 0�12060020

#define sl_bt_cmd_connection_read_remote_used_features_id 0�0d060020

#define sl_bt_cmd_connection_get_security_status_id 0�0e060020

#define sl_bt_cmd_connection_set_data_length_id 0�11060020

#define sl_bt_cmd_connection_close_id 0�05060020

#define sl_bt_cmd_connection_forcefully_close_id 0�0f060020

#define sl_bt_rsp_connection_set_default_parameters_id 0�00060020

#define sl_bt_rsp_connection_set_default_preferred_phy_id 0�01060020

#define sl_bt_rsp_connection_set_default_data_length_id 0�10060020

#define sl_bt_rsp_connection_open_id 0�04060020

#define sl_bt_rsp_connection_set_parameters_id 0�06060020

#define sl_bt_rsp_connection_set_preferred_phy_id 0�08060020

#define sl_bt_rsp_connection_disable_slave_latency_id 0�03060020

#define sl_bt_rsp_connection_get_rssi_id 0�02060020

#define sl_bt_rsp_connection_read_channel_map_id 0�07060020

#define sl_bt_rsp_connection_set_power_reporting_id 0�09060020

#define sl_bt_rsp_connection_set_remote_power_reporting_id 0�0a060020

#define sl_bt_rsp_connection_get_tx_power_id 0�0b060020

#define sl_bt_rsp_connection_get_remote_tx_power_id 0�0c060020

#define sl_bt_rsp_connection_set_tx_power_id 0�12060020

#define sl_bt_rsp_connection_read_remote_used_features_id 0�0d060020

#define sl_bt_rsp_connection_get_security_status_id 0�0e060020

Connection

549/1306

#define sl_bt_rsp_connection_set_data_length_id 0�11060020

#define sl_bt_rsp_connection_close_id 0�05060020

#define sl_bt_rsp_connection_forcefully_close_id 0�0f060020

Enumeration Documentation

sl_bt_connection_security_t

sl_bt_connection_security_t

Indicate the Bluetooth Security Mode.

Enumerator

sl_bt_connection_mode1_level1

sl_bt_connection_mode1_level2

sl_bt_connection_mode1_level3

sl_bt_connection_mode1_level4

Definition at line 6314 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_connection_power_reporting_mode_t

sl_bt_connection_power_reporting_mode_t

These values define transmit power reporting modes in LE power control.

Enumerator

sl_bt_connection_power_reporting_disable

sl_bt_connection_power_reporting_enable

Definition at line 6331 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_connection_tx_power_flag_t

sl_bt_connection_tx_power_flag_t

This enum defines the flag values for a reported transmit power level.

Enumerator

sl_bt_connection_tx_power_flag_none

sl_bt_connection_tx_power_at_minimum

sl_bt_connection_tx_power_at_maximum

Definition at line 6342 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Function Documentation

sl_bt_connection_set_default_parameters

sl_status_t sl_bt_connection_set_default_parameters (uint16_t min_interval, uint16_t max_interval, uint16_t latency, uint16_t
timeout, uint16_t min_ce_length, uint16_t max_ce_length)

Connection

550/1306

Parameters

[in] min_interval Minimum value for the connection event interval. This must be set less than or equal to max_interval .

Time = Value x 1.25 ms

Range: 0x0006 to 0x0c80

Time Range: 7.5 ms to 4 s

Default value: 20 ms

[in] max_interval Maximum value for the connection event interval. This must be set greater than or equal to

min_interval .

Time = Value x 1.25 ms

Range: 0x0006 to 0x0c80

Time Range: 7.5 ms to 4 s

Default value: 50 ms

[in] latency Peripheral latency, which defines how many connection intervals the peripheral can skip if it has no

data to send

Range: 0x0000 to 0x01f3

Default value: 0

[in] timeout Supervision timeout, which defines the time that the connection is maintained although the devices

can't communicate at the currently configured connection intervals.

Range: 0x000a to 0x0c80

Time = Value x 10 ms

Time Range: 100 ms to 32 s

The value in milliseconds must be larger than (1 + latency) * max_interval * 2, where

max_interval is given in milliseconds

Set the supervision timeout at a value which allows communication attempts over at least a few

connection intervals.

Default value: 1000 ms

[in] min_ce_length Minimum length of the connection event. It must be less than or equal to max_ce_length .

This value defines the minimum time that should be given to the connection event in a situation

where other tasks need to run immediately after the connection event. When the value is very small,

the connection event still has at least one TX/RX operation. If this value is increased, more time is

reserved for the connection event so it can transmit and receive more packets in a connection

interval.

Use the default value if the application doesn't care about the connection event length or doesn't

want to do fine tuning.

Time = Value x 0.625 ms

Range: 0x0000 to 0xffff

Default value: 0x0000

Connection

551/1306

[in] max_ce_length Maximum length of the connection event. It must be greater than or equal to min_ce_length .

This value is used for limiting the connection event length so that a connection that has large

amounts of data to transmit or receive doesn't block other tasks. Limiting the connection event is a

hard stop. If there is no enough time to send or receive a packet, the connection event will be

closed.

If the value is set to 0, the connection event still has at least one TX/RX operation. This is useful to

limit power consumption or leave more time to other tasks.

Use the default value if the application doesn't care about the connection event length or doesn't

want to do fine tuning.

Time = Value x 0.625 ms

Range: 0x0000 to 0xffff

Default value: 0xffff

Set default Bluetooth connection parameters. The values are valid for all subsequent connections initiated by this device.

min_ce_length and max_ce_length specify the preference of the connection event length so that the Link Layer can prioritize

tasks accordingly in simultaneous connections, or scanning and so on. A connection event starts at an anchor point of a

connection interval and lasts until the lesser of max_ce_length and the actual connection interval. Packets that do not fit into

the connection event will be sent in the next connection interval.

To change parameters of an already established connection, use the command sl_bt_connection_set_parameters.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 6922 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_connection_set_default_preferred_phy

sl_status_t sl_bt_connection_set_default_preferred_phy (uint8_t preferred_phy, uint8_t accepted_phy)

Parameters

[in] preferred_phy Preferred PHYs. This parameter is a bitfield and multiple PHYs can be set.

0x01: 1M PHY

0x02: 2M PHY

0x04: Coded PHY

0xff: Any PHYs

Default: 0xff (no preference)

[in] accepted_phy Accepted PHYs in remotely-initiated PHY update request. This parameter is a bitfield and multiple

PHYs can be set.

0x01: 1M PHY

0x02: 2M PHY

0x04: Coded PHY

0xff: Any PHYs

Default: 0xff (all PHYs accepted)

Set default preferred and accepted PHYs. PHY settings will be used for all subsequent connections. Non-preferred PHY can

also be set if the remote device does not accept any of the preferred PHYs.

The parameter accepted_phy is used to specify PHYs that the stack can accept in a remotely-initiated PHY update request.

A PHY update will not happen if none of the accepted PHYs are present in the request.

Connection

552/1306

NOTE: 2M and Coded PHYs are not supported by all devices.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 6964 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_connection_set_default_data_length

sl_status_t sl_bt_connection_set_default_data_length (uint16_t tx_data_len)

Parameters

[in] tx_data_len Preferred maximum payload octets of a packet that the local Controller will send

Range: Range: 27 (0x1B) to 251 (0xFB)

Default: 251

Set the default preferred maximum TX payload length to be used for new connections.

When a connection is open, the maximum TX payload length is 27. Either device could initiate a data length update

procedure and event sl_bt_evt_connection_data_length is generated when the data length has been changed on the

connection.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 6989 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_connection_open

sl_status_t sl_bt_connection_open (bd_addr address, uint8_t address_type, uint8_t initiating_phy, uint8_t *connection)

Parameters

[in] address Address of the device to connect to

[in] address_type Enum sl_bt_gap_address_type_t. Address type of the device to connect to. Values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

sl_bt_gap_random_resolvable_address (0x2): Resolvable private random address

sl_bt_gap_random_nonresolvable_address (0x3): Non-resolvable private random address

sl_bt_gap_public_address_resolved_from_rpa (0x4): Public identity address resolved from a

resolvable private address (RPA)

sl_bt_gap_static_address_resolved_from_rpa (0x5): Static identity address resolved from a

resolvable private address (RPA)

[in] initiating_phy Enum sl_bt_gap_phy_t. The initiating PHY. Values:

sl_bt_gap_phy_1m (0x1): 1M PHY

sl_bt_gap_phy_coded (0x4): Coded PHY, 125k (S=8) or 500k (S=2)

[out] connection Handle that will be assigned to the connection after the connection is established. This handle is

valid only if the result code of this response is 0 (zero).

Connection

553/1306

Connect to an advertising device with the specified initiating PHY on which connectable advertisements on primary

advertising channels are received. The Bluetooth stack will enter a state where it continuously scans for the connectable

advertising packets from the remote device, which matches the Bluetooth address given as a parameter. Scan parameters

set in sl_bt_scanner_set_timing are used in this operation. Upon receiving the advertising packet, the module will send a

connection request packet to the target device to initiate a Bluetooth connection. To cancel an ongoing connection process,

use sl_bt_connection_close command with the handle received in response from this command.

A connection is opened in no-security mode. If the GATT client needs to read or write the attributes on GATT server

requiring encryption or authentication, it must first encrypt the connection using an appropriate authentication method.

If a connection can't be established, for example, the remote device has gone out of range, has entered into deep sleep, or

is not advertising, the stack will try to connect forever. In this case, the application will not get an event related to the

connection request. To recover from this situation, the application can implement a timeout and call sl_bt_connection_close

to cancel the connection request.

This command fails with the connection limit exceeded error if the number of connections attempted exceeds the

configured MAX_CONNECTIONS value.

This command fails with the invalid parameter error if the initiating PHY value is invalid or the device does not support PHY.

Subsequent calls of this command have to wait for the ongoing command to complete. A received event

sl_bt_evt_connection_opened indicates that the connection opened successfully and a received event

sl_bt_evt_connection_closed indicates that connection failures have occurred.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_connection_opened - This event is triggered after the connection is opened and indicates whether the devices are

already bonded and the role of the device in this connection.

sl_bt_evt_connection_parameters - This event indicates the connection parameters and security mode of the connection.

Definition at line 7058 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_connection_set_parameters

sl_status_t sl_bt_connection_set_parameters (uint8_t connection, uint16_t min_interval, uint16_t max_interval, uint16_t
latency, uint16_t timeout, uint16_t min_ce_length, uint16_t max_ce_length)

Parameters

[in] connection Connection Handle

[in] min_interval Minimum value for the connection event interval. This must be set less than or equal to max_interval .

Time = Value x 1.25 ms

Range: 0x0006 to 0x0c80

Time Range: 7.5 ms to 4 s

[in] max_interval Maximum value for the connection event interval. This must be set greater than or equal to

min_interval .

Time = Value x 1.25 ms

Range: 0x0006 to 0x0c80

Time Range: 7.5 ms to 4 s

Connection

554/1306

[in] latency Peripheral latency, which defines how many connection intervals the peripheral can skip if it has no

data to send

Range: 0x0000 to 0x01f3

[in] timeout Supervision timeout, which defines the time that the connection is maintained although the devices

can't communicate at the currently configured connection intervals.

Range: 0x000a to 0x0c80

Time = Value x 10 ms

Time Range: 100 ms to 32 s

The value in milliseconds must be larger than (1 + latency) * max_interval * 2, where

max_interval is given in milliseconds

Set the supervision timeout at a value which allows communication attempts over at least a few

connection intervals.

[in] min_ce_length Minimum length of the connection event. It must be less than or equal to max_ce_length .

This value defines the minimum time that should be given to the connection event in a situation

where other tasks need to run immediately after the connection event. When the value is very small,

the connection event still has at least one TX/RX operation. If this value is increased, more time is

reserved for the connection event so it can transmit and receive more packets in a connection

interval.

Use the default value if the application doesn't care about the connection event length or doesn't

want to do fine tuning.

Time = Value x 0.625 ms

Range: 0x0000 to 0xffff

Default value: 0x0000

[in] max_ce_length Maximum length of the connection event. It must be greater than or equal to min_ce_length .

This value is used for limiting the connection event length so that a connection that has large

amounts of data to transmit or receive doesn't block other tasks. Limiting the connection event is a

hard stop. If there is no enough time to send or receive a packet, the connection event will be

closed.

If the value is set to 0, the connection event still has at least one TX/RX operation. This is useful to

limit power consumption or leave more time to other tasks.

Use the default value if the application doesn't care about the connection event length or doesn't

want to do fine tuning.

Time = Value x 0.625 ms

Range: 0x0000 to 0xffff

Default value: 0xffff

Request a change in the connection parameters of a Bluetooth connection.

min_ce_length and max_ce_length specify the preference of the connection event length so that the Link Layer can prioritize

tasks accordingly in simultaneous connections, or scanning and so on. A connection event starts at an anchor point of a

connection interval and lasts until the lesser of max_ce_length and the actual connection interval. Packets that do not fit into

the connection event will be sent in the next connection interval.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_connection_parameters - Triggered after new connection parameters are applied on the connection.

Connection

555/1306

Definition at line 7150 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_connection_set_preferred_phy

sl_status_t sl_bt_connection_set_preferred_phy (uint8_t connection, uint8_t preferred_phy, uint8_t accepted_phy)

Parameters

[in] connection Connection handle

[in] preferred_phy Preferred PHYs. This parameter is a bitfield and multiple PHYs can be set.

0x01: 1M PHY

0x02: 2M PHY

0x04: 125k Coded PHY (S=8)

0x08: 500k Coded PHY (S=2)

Default: 0xff (no preference)

[in] accepted_phy Accepted PHYs in remotely-initiated PHY update requests. This parameter is a bitfield and multiple

PHYs can be set.

0x01: 1M PHY

0x02: 2M PHY

0x04: Coded PHY

0xff: Any PHYs

Default: 0xff (all PHYs accepted)

Set preferred and accepted PHYs for a given connection. Event sl_bt_evt_connection_phy_status is received when PHY

update procedure is completed. Non-preferred PHY can also be set if remote device does not accept any of the preferred

PHYs.

The parameter accepted_phy is used for specifying the PHYs that the stack can accept in a remote initiated PHY update

request. A PHY update will not occur if none of the accepted PHYs presents in the request.

NOTE: 2M and Coded PHYs are not supported by all devices.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_connection_phy_status

Definition at line 7198 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_connection_disable_slave_latency

sl_status_t sl_bt_connection_disable_slave_latency (uint8_t connection, uint8_t disable)

Parameters

[in] connection Connection Handle

[in] disable 0 enable, 1 disable peripheral latency. Default: 0

Temporarily enable or disable peripheral latency. Used only when Bluetooth device is acting as a peripheral. When

peripheral latency is disabled, the peripheral latency connection parameter is not set to 0 but the device will wake up on

every connection interval to receive and send packets.

Returns

Connection

556/1306

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 7215 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_connection_get_rssi

sl_status_t sl_bt_connection_get_rssi (uint8_t connection)

Parameters

[in] connection Connection handle

Get the latest RSSI value of a Bluetooth connection. The RSSI value will be reported in a sl_bt_evt_connection_rssi event.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_connection_rssi - Triggered when this command has completed.

Definition at line 7232 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_connection_read_channel_map

sl_status_t sl_bt_connection_read_channel_map (uint8_t connection, size_t max_channel_map_size, size_t
*channel_map_len, uint8_t *channel_map)

Parameters

[in] connection Connection Handle

[in] max_channel_map_size Size of output buffer passed in channel_map

[out] channel_map_len On return, set to the length of output data written to channel_map

[out] channel_map This parameter is 5 bytes and contains 37 1-bit fields.

The nth field (in the range 0 to 36) contains the value for the link layer channel index n.

0: Channel n is unused.

1: Channel n is used.

The most significant bits are reserved for future use.

Read channel map for a specified connection.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 7258 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_connection_set_power_reporting

sl_status_t sl_bt_connection_set_power_reporting (uint8_t connection, uint8_t mode)

Parameters

Connection

557/1306

[in] connection Handle of the connection

[in] mode Enum sl_bt_connection_power_reporting_mode_t. Transmit power reporting mode. Values:

sl_bt_connection_power_reporting_disable (0x0): Disable transmit power reporting

sl_bt_connection_power_reporting_enable (0x1): Enable transmit power reporting

Enable or disable the transmit power reporting for the local device on a connection. When transmit power reporting is

enabled, event sl_bt_evt_connection_tx_power is generated when transmit power on the local device changes.

The command is a built-in feature in the stack and is supported regardless of whether the LE Power Control feature is used.

By default, power reporting for local device is enabled.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_connection_tx_power

Definition at line 7288 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_connection_set_remote_power_reporting

sl_status_t sl_bt_connection_set_remote_power_reporting (uint8_t connection, uint8_t mode)

Parameters

[in] connection Handle of the connection

[in] mode Enum sl_bt_connection_power_reporting_mode_t. Transmit power reporting mode. Values:

sl_bt_connection_power_reporting_disable (0x0): Disable transmit power reporting

sl_bt_connection_power_reporting_enable (0x1): Enable transmit power reporting

Enable or disable reporting the transmit power change on the remote device. The application must include the LE Power

Control feature (bluetooth_feature_power_control) in order to use this command.

When the remote transmit power reporting is enabled, event sl_bt_evt_connection_remote_tx_power is generated when

transmit power on the remote device changes.

By default, power reporting for the remote device is disabled.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_connection_remote_tx_power

Definition at line 7317 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_connection_get_tx_power

sl_status_t sl_bt_connection_get_tx_power (uint8_t connection, uint8_t phy, int8_t *current_level, int8_t *max_level)

Parameters

[in] connection Handle of the connection

Connection

558/1306

[in] phy Enum sl_bt_gap_phy_coding_t. The PHY. Values:

sl_bt_gap_phy_coding_1m_uncoded (0x1): 1M PHY

sl_bt_gap_phy_coding_2m_uncoded (0x2): 2M PHY

sl_bt_gap_phy_coding_125k_coded (0x4): 125k Coded PHY (S=8)

sl_bt_gap_phy_coding_500k_coded (0x8): 500k Coded PHY (S=2)

[out] current_level The current transmit power level of the PHY on the connection. Values:

Range -127 to 20: The transmit power level in dBm

SL_BT_CONNECTION_TX_POWER_UNAVAILABLE (0x7F): Transmit power level is not available.

[out] max_level The maximum transmit power level of the PHY on the connection. Values: Range -127 to +20 in dBm.

Get the transmit power of the local device on the given connection and PHY. The application must include the LE Power

Control feature (bluetooth_feature_power_control) in order to use this command.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 7343 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_connection_get_remote_tx_power

sl_status_t sl_bt_connection_get_remote_tx_power (uint8_t connection, uint8_t phy)

Parameters

[in] connection Handle of the connection

[in] phy Enum sl_bt_gap_phy_coding_t. The PHY. Values:

sl_bt_gap_phy_coding_1m_uncoded (0x1): 1M PHY

sl_bt_gap_phy_coding_2m_uncoded (0x2): 2M PHY

sl_bt_gap_phy_coding_125k_coded (0x4): 125k Coded PHY (S=8)

sl_bt_gap_phy_coding_500k_coded (0x8): 500k Coded PHY (S=2)

Get the transmit power of the remote device on the given connection and PHY. The application must include the LE Power

Control feature (bluetooth_feature_power_control) in order to use this command. Transmit power levels are returned in event

sl_bt_evt_connection_get_remote_tx_power_completed after the operation completed.

Returns

SL_STATUS_OK if the command is accepted. Error code otherwise.

Events

sl_bt_evt_connection_get_remote_tx_power_completed

Definition at line 7370 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_connection_set_tx_power

sl_status_t sl_bt_connection_set_tx_power (uint8_t connection, int16_t tx_power, int16_t *tx_power_out)

Parameters

[in] connection The connection handle

Connection

559/1306

[in] tx_power The requested TX power. Unit: 0.1 dBm

[out] tx_power_out The selected TX power. Unit: 0.1 dBm

Set the transmit power of a connection. The application must include component bluetooth_feature_user_power_control in

order to use this command for controlling the transmit power of the connection at application level. This command is

unavailable if the standard Bluetooth feature LE power control (component bluetooth_feature_power_control) is used by the

application.

The actual selected power level is returned from this command. The value may be different than the requested one because

of Bluetooth feature restrictions or radio characteristics.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 7393 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_connection_read_remote_used_features

sl_status_t sl_bt_connection_read_remote_used_features (uint8_t connection)

Parameters

[in] connection Connection Handle

Read link layer features supported by the remote device.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_connection_remote_used_features

Definition at line 7409 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_connection_get_security_status

sl_status_t sl_bt_connection_get_security_status (uint8_t connection, uint8_t *security_mode, uint8_t *key_size, uint8_t
*bonding_handle)

Parameters

[in] connection Connection handle

[out] security_mode Enum sl_bt_connection_security_t. Connection security mode. Values:

sl_bt_connection_mode1_level1 (0x0): No security

sl_bt_connection_mode1_level2 (0x1): Unauthenticated pairing with encryption

sl_bt_connection_mode1_level3 (0x2): Authenticated pairing with encryption

sl_bt_connection_mode1_level4 (0x3): Authenticated Secure Connections pairing with

encryption using a 128-bit strength encryption key

[out] key_size The size of encryption key

[out] bonding_handle Bonding handle. Values:

SL_BT_INVALID_BONDING_HANDLE (0xff): No bonding

Other: Bonding handle

Connection

560/1306

Get the security status of the connection.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 7434 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_connection_set_data_length

sl_status_t sl_bt_connection_set_data_length (uint8_t connection, uint16_t tx_data_len, uint16_t tx_time_us)

Parameters

[in] connection Connection handle

[in] tx_data_len Preferred maximum payload octets of a packet that the local Controller will send

Range: 27 (0x1B) to 251 (0xFB)

[in] tx_time_us Preferred maximum TX time in microseconds that the local Controller will take to send a packet

Range: 328 (0x0148) to 17040 (0x4290)

Request to update the maximum TX payload length and maximum packet TX time of a Bluetooth connection.

Event sl_bt_evt_connection_data_length is generated when the data length has been changed on the connection.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_connection_data_length

Definition at line 7467 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_connection_close

sl_status_t sl_bt_connection_close (uint8_t connection)

Parameters

[in] connection Handle of the connection to be closed

Close a Bluetooth connection gracefully by performing the ACL Termination procedure or cancel an ongoing connection

establishment process. The parameter is a connection handle which is reported in sl_bt_evt_connection_opened event or

sl_bt_connection_open command response.

Disconnecting a connection is an asynchronous operation. The disconnection is completed when a

sl_bt_evt_connection_closed event for the given connection handle is received. To open a new connection to the same

remote device, wait for the sl_bt_evt_connection_closed event and then initiate the connection.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_connection_closed

Connection

561/1306

Definition at line 7493 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_connection_forcefully_close

sl_status_t sl_bt_connection_forcefully_close (uint8_t connection)

Parameters

[in] connection Handle of the connection to be closed

Forcefully close a Bluetooth connection without performing the ACL Termination procedure. The parameter is a connection

handle which is reported in sl_bt_evt_connection_opened event or sl_bt_connection_open command response.

Closing a connection using this command could result in the observation of connection loss or supervision timeout on the

remote device. Only use this command for special cases, for example, when disconnecting a connection with

sl_bt_connection_close did not complete in expected time period.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_connection_closed

Definition at line 7515 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_connection_set_default_parameters_id

#define sl_bt_cmd_connection_set_default_parameters_id

Value:

0�00060020

Definition at line 6272 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_connection_set_default_preferred_phy_id

#define sl_bt_cmd_connection_set_default_preferred_phy_id

Value:

0�01060020

Definition at line 6273 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_connection_set_default_data_length_id

#define sl_bt_cmd_connection_set_default_data_length_id

Value:

0�10060020

Connection

562/1306

sl_bt_cmd_connection_open_id

#define sl_bt_cmd_connection_open_id

Value:

0�04060020

Definition at line 6275 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_connection_set_parameters_id

#define sl_bt_cmd_connection_set_parameters_id

Value:

0�06060020

Definition at line 6276 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_connection_set_preferred_phy_id

#define sl_bt_cmd_connection_set_preferred_phy_id

Value:

0�08060020

Definition at line 6277 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_connection_disable_slave_latency_id

#define sl_bt_cmd_connection_disable_slave_latency_id

Value:

0�03060020

Definition at line 6278 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_connection_get_rssi_id

#define sl_bt_cmd_connection_get_rssi_id

Value:

0�02060020

Definition at line 6279 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_connection_read_channel_map_id

#define sl_bt_cmd_connection_read_channel_map_id

Connection

563/1306

Value:

0x07060020

Definition at line 6280 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_connection_set_power_reporting_id

#define sl_bt_cmd_connection_set_power_reporting_id

Value:

0�09060020

Definition at line 6281 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_connection_set_remote_power_reporting_id

#define sl_bt_cmd_connection_set_remote_power_reporting_id

Value:

0�0a060020

Definition at line 6282 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_connection_get_tx_power_id

#define sl_bt_cmd_connection_get_tx_power_id

Value:

0�0b060020

Definition at line 6283 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_connection_get_remote_tx_power_id

#define sl_bt_cmd_connection_get_remote_tx_power_id

Value:

0�0c060020

Definition at line 6284 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_connection_set_tx_power_id

#define sl_bt_cmd_connection_set_tx_power_id

Value:

0�12060020

Definition at line 6285 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Connection

564/1306

sl_bt_cmd_connection_read_remote_used_features_id

#define sl_bt_cmd_connection_read_remote_used_features_id

Value:

0�0d060020

Definition at line 6286 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_connection_get_security_status_id

#define sl_bt_cmd_connection_get_security_status_id

Value:

0�0e060020

Definition at line 6287 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_connection_set_data_length_id

#define sl_bt_cmd_connection_set_data_length_id

Value:

0�11060020

Definition at line 6288 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_connection_close_id

#define sl_bt_cmd_connection_close_id

Value:

0�05060020

Definition at line 6289 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_connection_forcefully_close_id

#define sl_bt_cmd_connection_forcefully_close_id

Value:

0�0f060020

Definition at line 6290 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_connection_set_default_parameters_id

#define sl_bt_rsp_connection_set_default_parameters_id

Connection

565/1306

Value:

0x00060020

Definition at line 6291 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_connection_set_default_preferred_phy_id

#define sl_bt_rsp_connection_set_default_preferred_phy_id

Value:

0�01060020

Definition at line 6292 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_connection_set_default_data_length_id

#define sl_bt_rsp_connection_set_default_data_length_id

Value:

0�10060020

Definition at line 6293 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_connection_open_id

#define sl_bt_rsp_connection_open_id

Value:

0�04060020

Definition at line 6294 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_connection_set_parameters_id

#define sl_bt_rsp_connection_set_parameters_id

Value:

0�06060020

Definition at line 6295 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_connection_set_preferred_phy_id

#define sl_bt_rsp_connection_set_preferred_phy_id

Value:

0�08060020

Definition at line 6296 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Connection

566/1306

sl_bt_rsp_connection_disable_slave_latency_id

#define sl_bt_rsp_connection_disable_slave_latency_id

Value:

0�03060020

Definition at line 6297 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_connection_get_rssi_id

#define sl_bt_rsp_connection_get_rssi_id

Value:

0�02060020

Definition at line 6298 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_connection_read_channel_map_id

#define sl_bt_rsp_connection_read_channel_map_id

Value:

0�07060020

Definition at line 6299 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_connection_set_power_reporting_id

#define sl_bt_rsp_connection_set_power_reporting_id

Value:

0�09060020

Definition at line 6300 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_connection_set_remote_power_reporting_id

#define sl_bt_rsp_connection_set_remote_power_reporting_id

Value:

0�0a060020

Definition at line 6301 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_connection_get_tx_power_id

#define sl_bt_rsp_connection_get_tx_power_id

Connection

567/1306

Value:

0x0b060020

Definition at line 6302 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_connection_get_remote_tx_power_id

#define sl_bt_rsp_connection_get_remote_tx_power_id

Value:

0�0c060020

Definition at line 6303 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_connection_set_tx_power_id

#define sl_bt_rsp_connection_set_tx_power_id

Value:

0�12060020

Definition at line 6304 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_connection_read_remote_used_features_id

#define sl_bt_rsp_connection_read_remote_used_features_id

Value:

0�0d060020

Definition at line 6305 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_connection_get_security_status_id

#define sl_bt_rsp_connection_get_security_status_id

Value:

0�0e060020

Definition at line 6306 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_connection_set_data_length_id

#define sl_bt_rsp_connection_set_data_length_id

Value:

0�11060020

Definition at line 6307 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Connection

568/1306

sl_bt_rsp_connection_close_id

#define sl_bt_rsp_connection_close_id

Value:

0�05060020

Definition at line 6308 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_connection_forcefully_close_id

#define sl_bt_rsp_connection_forcefully_close_id

Value:

0�0f060020

Definition at line 6309 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Transmit Power Reporting Constants

569/1306

Transmit Power Reporting Constants

Transmit Power Reporting Constants
Constants in transmit power reporting

Macros

#define SL_BT_CONNECTION_TX_POWER_UNMANAGED 0�7e

#define SL_BT_CONNECTION_TX_POWER_UNAVAILABLE 0�7f

#define SL_BT_CONNECTION_TX_POWER_CHANGE_UNAVAILABLE 0�7f

Macro Definition Documentation

SL_BT_CONNECTION_TX_POWER_UNMANAGED

#define SL_BT_CONNECTION_TX_POWER_UNMANAGED

Value:

0�7e

Remote device is not managing power levels.

Definition at line 6360 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_CONNECTION_TX_POWER_UNAVAILABLE

#define SL_BT_CONNECTION_TX_POWER_UNAVAILABLE

Value:

0�7f

Transmit power level is not available.

Definition at line 6363 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_CONNECTION_TX_POWER_CHANGE_UNAVAILABLE

#define SL_BT_CONNECTION_TX_POWER_CHANGE_UNAVAILABLE

Value:

0�7f

Transmit Power Reporting Constants

570/1306

Change is not available or is out of range.

Definition at line 6366 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_connection_opened

571/1306

sl_bt_evt_connection_opened

Modules

sl_bt_evt_connection_opened_s

sl_bt_evt_connection_opened
Indicates that a new connection was opened.

This event does not indicate that the connection was established (i.e., that a data packet was received within 6 connection

interval). If the connection does not get established, an sl_bt_evt_connection_closed event may immediately follow. This

event also reports whether the connected devices are already bonded and what the role of the Bluetooth device (central or

peripheral) is. An open connection can be closed with sl_bt_connection_close command by giving the connection handle

obtained from this event.

Typedefs

typedef struct
sl_bt_evt_connect

ion_opened_s

sl_bt_evt_connection_opened_t

Macros

#define sl_bt_evt_connection_opened_id 0�000600a0
Identifier of the opened event.

Typedef Documentation

sl_bt_evt_connection_opened_t

typedef struct sl_bt_evt_connection_opened_s sl_bt_evt_connection_opened_t

Definition at line 6436 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_connection_opened_id

#define sl_bt_evt_connection_opened_id

Value:

0�000600a0

Identifier of the opened event.

sl_bt_evt_connection_opened

572/1306

Definition at line 6386 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_connection_opened_s

573/1306

sl_bt_evt_connection_opened_s

Data structure of the opened event.

Public Attributes

bd_addr address

uint8_t address_type

uint8_t master

uint8_t connection

uint8_t bonding

uint8_t advertiser

uint16_t sync

Public Attribute Documentation

address

bd_addr sl_bt_evt_connection_opened_s::address

Remote device address

Definition at line 6393 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

address_type

uint8_t sl_bt_evt_connection_opened_s::address_type

Enum sl_bt_gap_address_type_t. Remote device address type. Values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

sl_bt_gap_random_resolvable_address (0x2): Resolvable private random address

sl_bt_gap_random_nonresolvable_address (0x3): Non-resolvable private random address

sl_bt_gap_public_address_resolved_from_rpa (0x4): Public identity address resolved from a resolvable private address

(RPA)

sl_bt_gap_static_address_resolved_from_rpa (0x5): Static identity address resolved from a resolvable private address (RPA)

Definition at line 6394 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

master

sl_bt_evt_connection_opened_s

574/1306

uint8_t sl_bt_evt_connection_opened_s::master

Device role in connection. Values:

0: Peripheral

1: Central

Definition at line 6411 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

connection

uint8_t sl_bt_evt_connection_opened_s::connection

Handle for new connection

Definition at line 6414 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

bonding

uint8_t sl_bt_evt_connection_opened_s::bonding

Bonding handle. Values:

SL_BT_INVALID_BONDING_HANDLE (0xff): No bonding

Other: Bonding handle

Definition at line 6415 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

advertiser

uint8_t sl_bt_evt_connection_opened_s::advertiser

The local advertising set that this connection was opened to. Values:

SL_BT_INVALID_ADVERTISING_SET_HANDLE (0xff): Invalid value or not applicable. Ignore this field

Other: The advertising set handle

Definition at line 6419 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sync

uint16_t sl_bt_evt_connection_opened_s::sync

The sync handle if the local device is in the peripheral-role and the connection was opened via a Periodic Advertising with

Responses (PAwR) train that the local device has synchronized to. Values:

SL_BT_INVALID_SYNC_HANDLE (0xffff): The connection was not opened over a PAwR train that the local device is

synchronized to

Other: The sync handle for the PAwR train that was used to open the connection

Definition at line 6425 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_connection_parameters

575/1306

sl_bt_evt_connection_parameters

Modules

sl_bt_evt_connection_parameters_s

sl_bt_evt_connection_parameters
Triggered whenever the connection parameters are changed and at any time a connection is established.

Typedefs

typedef struct
sl_bt_evt_connect
ion_parameters_s

sl_bt_evt_connection_parameters_t

Macros

#define sl_bt_evt_connection_parameters_id 0�020600a0
Identifier of the parameters event.

Typedef Documentation

sl_bt_evt_connection_parameters_t

typedef struct sl_bt_evt_connection_parameters_s sl_bt_evt_connection_parameters_t

Definition at line 6478 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_connection_parameters_id

#define sl_bt_evt_connection_parameters_id

Value:

0�020600a0

Identifier of the parameters event.

Definition at line 6448 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_connection_parameters_s

576/1306

sl_bt_evt_connection_parameters_s

Data structure of the parameters event.

Public Attributes

uint8_t connection

uint16_t interval

uint16_t latency

uint16_t timeout

uint8_t security_mode

uint16_t txsize

Public Attribute Documentation

connection

uint8_t sl_bt_evt_connection_parameters_s::connection

Connection handle

Definition at line 6455 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

interval

uint16_t sl_bt_evt_connection_parameters_s::interval

Connection interval. Time = Value x 1.25 ms

Definition at line 6456 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

latency

uint16_t sl_bt_evt_connection_parameters_s::latency

Peripheral latency (how many connection intervals the peripheral can skip)

Definition at line 6457 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

timeout

sl_bt_evt_connection_parameters_s

577/1306

uint16_t sl_bt_evt_connection_parameters_s::timeout

Supervision timeout. Time = Value x 10 ms

Definition at line 6459 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

security_mode

uint8_t sl_bt_evt_connection_parameters_s::security_mode

Enum sl_bt_connection_security_t. Connection security mode. Values:

sl_bt_connection_mode1_level1 (0x0): No security

sl_bt_connection_mode1_level2 (0x1): Unauthenticated pairing with encryption

sl_bt_connection_mode1_level3 (0x2): Authenticated pairing with encryption

sl_bt_connection_mode1_level4 (0x3): Authenticated Secure Connections pairing with encryption using a 128-bit strength

encryption key

Definition at line 6460 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

txsize

uint16_t sl_bt_evt_connection_parameters_s::txsize

Deprecated and no longer used for reporting the connection data length update. Use the event

sl_bt_evt_connection_data_length instead.

Definition at line 6472 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_connection_phy_status

578/1306

sl_bt_evt_connection_phy_status

Modules

sl_bt_evt_connection_phy_status_s

sl_bt_evt_connection_phy_status
Indicates that PHY update procedure is completed.

Typedefs

typedef struct
sl_bt_evt_connect
ion_phy_status_s

sl_bt_evt_connection_phy_status_t

Macros

#define sl_bt_evt_connection_phy_status_id 0�040600a0
Identifier of the phy_status event.

Typedef Documentation

sl_bt_evt_connection_phy_status_t

typedef struct sl_bt_evt_connection_phy_status_s sl_bt_evt_connection_phy_status_t

Definition at line 6501 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_connection_phy_status_id

#define sl_bt_evt_connection_phy_status_id

Value:

0�040600a0

Identifier of the phy_status event.

Definition at line 6489 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_connection_phy_status_s

579/1306

sl_bt_evt_connection_phy_status_s

Data structure of the phy_status event.

Public Attributes

uint8_t connection

uint8_t phy

Public Attribute Documentation

connection

uint8_t sl_bt_evt_connection_phy_status_s::connection

Connection handle

Definition at line 6496 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

phy

uint8_t sl_bt_evt_connection_phy_status_s::phy

Current active PHY. See values from sl_bt_connection_set_preferred_phy command.

Definition at line 6497 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_connection_rssi

580/1306

sl_bt_evt_connection_rssi

Modules

sl_bt_evt_connection_rssi_s

sl_bt_evt_connection_rssi
Triggered when an connection_get_rssi command has completed.

Typedefs

typedef struct
sl_bt_evt_connect

ion_rssi_s

sl_bt_evt_connection_rssi_t

Macros

#define sl_bt_evt_connection_rssi_id 0�030600a0
Identifier of the rssi event.

Typedef Documentation

sl_bt_evt_connection_rssi_t

typedef struct sl_bt_evt_connection_rssi_s sl_bt_evt_connection_rssi_t

Definition at line 6530 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_connection_rssi_id

#define sl_bt_evt_connection_rssi_id

Value:

0�030600a0

Identifier of the rssi event.

Definition at line 6512 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_connection_rssi_s

581/1306

sl_bt_evt_connection_rssi_s

Data structure of the rssi event.

Public Attributes

uint8_t connection

uint8_t status

int8_t rssi

Public Attribute Documentation

connection

uint8_t sl_bt_evt_connection_rssi_s::connection

Connection handle

Definition at line 6519 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

status

uint8_t sl_bt_evt_connection_rssi_s::status

Command complete status:

0x00: The command succeeded

0x01-0xFF: The command failed. See Bluetooth Core specification v5.0 [Vol 2] Part D, Error Codes

Definition at line 6520 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

rssi

int8_t sl_bt_evt_connection_rssi_s::rssi

The median of the last seven measured RSSI values on the connection. Units: dBm. Range: -127 to +20. Ignore this

parameter if the command fails.

Definition at line 6525 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_connection_get_remote_tx_power_completed

582/1306

sl_bt_evt_connection_get_remote_tx_power_completed

Modules

sl_bt_evt_connection_get_remote_tx_power_completed_s

sl_bt_evt_connection_get_remote_tx_power_completed
Indicates that reading remote transmit power initiated by sl_bt_connection_get_remote_tx_power command has completed.

Typedefs

typedef struct
sl_bt_evt_connect
ion_get_remote_t
x_power_complet

ed_s

sl_bt_evt_connection_get_remote_tx_power_completed_t

Macros

#define sl_bt_evt_connection_get_remote_tx_power_completed_id 0�050600a0
Identifier of the get_remote_tx_power_completed event.

Typedef Documentation

sl_bt_evt_connection_get_remote_tx_power_completed_t

typedef struct sl_bt_evt_connection_get_remote_tx_power_completed_s
sl_bt_evt_connection_get_remote_tx_power_completed_t

Definition at line 6593 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_connection_get_remote_tx_power_completed_id

#define sl_bt_evt_connection_get_remote_tx_power_completed_id

Value:

0�050600a0

Identifier of the get_remote_tx_power_completed event.

Definition at line 6542 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_connection_get_remote_tx_power_completed_s

583/1306

sl_bt_evt_connection_get_remote_tx_power_completed_s

Data structure of the get_remote_tx_power_completed event.

Public Attributes

uint16_t status

uint8_t connection

uint8_t phy

int8_t power_level

uint8_t flags

int8_t delta

Public Attribute Documentation

status

uint16_t sl_bt_evt_connection_get_remote_tx_power_completed_s::status

SL_STATUS_OK or another error code indicating the reading remote transmit power operation failed.

Definition at line 6549 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

connection

uint8_t sl_bt_evt_connection_get_remote_tx_power_completed_s::connection

Handle of the connection

Definition at line 6551 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

phy

uint8_t sl_bt_evt_connection_get_remote_tx_power_completed_s::phy

Enum sl_bt_gap_phy_coding_t. The PHY for which the transmit power is reported. Values:

sl_bt_gap_phy_coding_1m_uncoded (0x1): 1M PHY

sl_bt_gap_phy_coding_2m_uncoded (0x2): 2M PHY

sl_bt_gap_phy_coding_125k_coded (0x4): 125k Coded PHY (S=8)

sl_bt_gap_phy_coding_500k_coded (0x8): 500k Coded PHY (S=2)

Definition at line 6552 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_connection_get_remote_tx_power_completed_s

584/1306

power_level

int8_t sl_bt_evt_connection_get_remote_tx_power_completed_s::power_level

Transmit power level. Values:

Range -127 to 20: The transmit power level in dBm

SL_BT_CONNECTION_TX_POWER_UNMANAGED (0x7E): Remote device is not managing power levels on this PHY.

SL_BT_CONNECTION_TX_POWER_UNAVAILABLE (0x7F): Transmit power level is not available.

Definition at line 6562 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

flags

uint8_t sl_bt_evt_connection_get_remote_tx_power_completed_s::flags

Enum sl_bt_connection_tx_power_flag_t. Transmit power level flags. Ignore this field if power_level is set to 0x7E or 0x7F.

Values:

sl_bt_connection_tx_power_flag_none (0x0): No flag is defined for the reported TX power level

sl_bt_connection_tx_power_at_minimum (0x1): Transmit power level is at minimum level.

sl_bt_connection_tx_power_at_maximum (0x2): Transmit power level is at maximum level.

Definition at line 6571 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

delta

int8_t sl_bt_evt_connection_get_remote_tx_power_completed_s::delta

Change in transmit power level. Values:

SL_BT_CONNECTION_TX_POWER_CHANGE_UNAVAILABLE (0x7F): Change is not available or is out of range.

Other values: positive indicates increased power, negative indicates decreased power, and zero indicates unchanged. Units:

dB

Definition at line 6583 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_connection_tx_power

585/1306

sl_bt_evt_connection_tx_power

Modules

sl_bt_evt_connection_tx_power_s

sl_bt_evt_connection_tx_power
Reports a transmit power change on the local device of a connection if transmit power reporting has been enabled.

Enable or disable transmit power reporting using sl_bt_connection_set_power_reporting command. Local transmit power

reporting is enabled by default for new connections.

When enabled, local transmit power change events may get triggered in the following situations:

When the connection has just opened and the initial transmit power is set

When the application explicitly changes the system TX power using the sl_bt_system_set_tx_power command

When the bluetooth_feature_power_control component is included and enabled in the application and the local transmit

power is adjusted by the power control feature

When the bluetooth_feature_afh component for Adaptive Frequency Hopping is included and enabled in the application and

the local transmit power is adjusted due to changes in the availability of good channels.

Typedefs

typedef struct
sl_bt_evt_connect
ion_tx_power_s

sl_bt_evt_connection_tx_power_t

Macros

#define sl_bt_evt_connection_tx_power_id 0�060600a0
Identifier of the tx_power event.

Typedef Documentation

sl_bt_evt_connection_tx_power_t

typedef struct sl_bt_evt_connection_tx_power_s sl_bt_evt_connection_tx_power_t

Definition at line 6667 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_connection_tx_power_id

#define sl_bt_evt_connection_tx_power_id

Value:

sl_bt_evt_connection_tx_power

586/1306

0x060600a0

Identifier of the tx_power event.

Definition at line 6621 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_connection_tx_power_s

587/1306

sl_bt_evt_connection_tx_power_s

Data structure of the tx_power event.

Public Attributes

uint8_t connection

uint8_t phy

int8_t power_level

uint8_t flags

int8_t delta

Public Attribute Documentation

connection

uint8_t sl_bt_evt_connection_tx_power_s::connection

Handle of the connection

Definition at line 6628 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

phy

uint8_t sl_bt_evt_connection_tx_power_s::phy

Enum sl_bt_gap_phy_coding_t. The PHY which the transmit power is reported for. Values:

sl_bt_gap_phy_coding_1m_uncoded (0x1): 1M PHY

sl_bt_gap_phy_coding_2m_uncoded (0x2): 2M PHY

sl_bt_gap_phy_coding_125k_coded (0x4): 125k Coded PHY (S=8)

sl_bt_gap_phy_coding_500k_coded (0x8): 500k Coded PHY (S=2)

Definition at line 6629 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

power_level

int8_t sl_bt_evt_connection_tx_power_s::power_level

Transmit power level. Values:

Range -127 to 20: The transmit power level in dBm

SL_BT_CONNECTION_TX_POWER_UNAVAILABLE (0x7F): Transmit power level is not available.

Definition at line 6639 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_connection_tx_power_s

588/1306

flags

uint8_t sl_bt_evt_connection_tx_power_s::flags

Enum sl_bt_connection_tx_power_flag_t. Transmit power level flags. Ignore this field if power_level is set to 0x7E or 0x7F.

Values:

sl_bt_connection_tx_power_flag_none (0x0): No flag is defined for the reported TX power level

sl_bt_connection_tx_power_at_minimum (0x1): Transmit power level is at minimum level.

sl_bt_connection_tx_power_at_maximum (0x2): Transmit power level is at maximum level.

Definition at line 6645 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

delta

int8_t sl_bt_evt_connection_tx_power_s::delta

Change in transmit power level. Values:

SL_BT_CONNECTION_TX_POWER_CHANGE_UNAVAILABLE (0x7F): Change is not available or is out of range.

Other values: positive indicates increased power, negative indicates decreased power, and zero indicates unchanged. Units:

dB

Definition at line 6657 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_connection_remote_tx_power

589/1306

sl_bt_evt_connection_remote_tx_power

Modules

sl_bt_evt_connection_remote_tx_power_s

sl_bt_evt_connection_remote_tx_power
Reports a transmit power change of the connection on the remote device that supports the LE Power Control for the

connection.

This event is enabled if reporting the remote transmit power change has been enabled with the

sl_bt_connection_set_remote_power_reporting command.

Typedefs

typedef struct
sl_bt_evt_connect
ion_remote_tx_po

wer_s

sl_bt_evt_connection_remote_tx_power_t

Macros

#define sl_bt_evt_connection_remote_tx_power_id 0�070600a0
Identifier of the remote_tx_power event.

Typedef Documentation

sl_bt_evt_connection_remote_tx_power_t

typedef struct sl_bt_evt_connection_remote_tx_power_s sl_bt_evt_connection_remote_tx_power_t

Definition at line 6731 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_connection_remote_tx_power_id

#define sl_bt_evt_connection_remote_tx_power_id

Value:

0�070600a0

Identifier of the remote_tx_power event.

Definition at line 6682 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_connection_remote_tx_power_s

590/1306

sl_bt_evt_connection_remote_tx_power_s

Data structure of the remote_tx_power event.

Public Attributes

uint8_t connection

uint8_t phy

int8_t power_level

uint8_t flags

int8_t delta

Public Attribute Documentation

connection

uint8_t sl_bt_evt_connection_remote_tx_power_s::connection

Handle of the connection

Definition at line 6689 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

phy

uint8_t sl_bt_evt_connection_remote_tx_power_s::phy

Enum sl_bt_gap_phy_coding_t. The PHY which the transmit power is reported for. Values:

sl_bt_gap_phy_coding_1m_uncoded (0x1): 1M PHY

sl_bt_gap_phy_coding_2m_uncoded (0x2): 2M PHY

sl_bt_gap_phy_coding_125k_coded (0x4): 125k Coded PHY (S=8)

sl_bt_gap_phy_coding_500k_coded (0x8): 500k Coded PHY (S=2)

Definition at line 6690 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

power_level

int8_t sl_bt_evt_connection_remote_tx_power_s::power_level

Transmit power level. Values:

Range -127 to 20: The transmit power level in dBm

SL_BT_CONNECTION_TX_POWER_UNMANAGED (0x7E): Remote device is not managing power levels on this PHY.

SL_BT_CONNECTION_TX_POWER_UNAVAILABLE (0x7F): Transmit power level is not available.

sl_bt_evt_connection_remote_tx_power_s

591/1306

Definition at line 6700 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

flags

uint8_t sl_bt_evt_connection_remote_tx_power_s::flags

Enum sl_bt_connection_tx_power_flag_t. Transmit power level flags. Ignore this field if power_level is set to 0x7E or 0x7F.

Values:

sl_bt_connection_tx_power_flag_none (0x0): No flag is defined for the reported TX power level

sl_bt_connection_tx_power_at_minimum (0x1): Transmit power level is at minimum level.

sl_bt_connection_tx_power_at_maximum (0x2): Transmit power level is at maximum level.

Definition at line 6709 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

delta

int8_t sl_bt_evt_connection_remote_tx_power_s::delta

Change in transmit power level. Values:

SL_BT_CONNECTION_TX_POWER_CHANGE_UNAVAILABLE (0x7F): Change is not available or is out of range.

Other values: positive indicates increased power, negative indicates decreased power, and zero indicates unchanged. Units:

dB

Definition at line 6721 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_connection_remote_used_features

592/1306

sl_bt_evt_connection_remote_used_features

Modules

sl_bt_evt_connection_remote_used_features_s

sl_bt_evt_connection_remote_used_features
List of link layer features supported by the remote device.

Typedefs

typedef struct
sl_bt_evt_connect
ion_remote_used_

features_s

sl_bt_evt_connection_remote_used_features_t

Macros

#define sl_bt_evt_connection_remote_used_features_id 0�080600a0
Identifier of the remote_used_features event.

Typedef Documentation

sl_bt_evt_connection_remote_used_features_t

typedef struct sl_bt_evt_connection_remote_used_features_s sl_bt_evt_connection_remote_used_features_t

Definition at line 6759 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_connection_remote_used_features_id

#define sl_bt_evt_connection_remote_used_features_id

Value:

0�080600a0

Identifier of the remote_used_features event.

Definition at line 6742 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_connection_remote_used_features_s

593/1306

sl_bt_evt_connection_remote_used_features_s

Data structure of the remote_used_features event.

Public Attributes

uint8_t connection

uint8array features

Public Attribute Documentation

connection

uint8_t sl_bt_evt_connection_remote_used_features_s::connection

Connection handle

Definition at line 6749 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

features

uint8array sl_bt_evt_connection_remote_used_features_s::features

This parameter is 8 bytes in little endian format and contains bit fields describing the supported link layer features of the

remote device. Bit value 1 means that the feature is supported.

The bits are explained in Bluetooth specification Vol 6, Part B, 4.6.

Definition at line 6750 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_connection_data_length

594/1306

sl_bt_evt_connection_data_length

Modules

sl_bt_evt_connection_data_length_s

sl_bt_evt_connection_data_length
Reports a change to the maximum payload length or maximum TX time in either direction of a connection.

Typedefs

typedef struct
sl_bt_evt_connect
ion_data_length_s

sl_bt_evt_connection_data_length_t

Macros

#define sl_bt_evt_connection_data_length_id 0�090600a0
Identifier of the data_length event.

Typedef Documentation

sl_bt_evt_connection_data_length_t

typedef struct sl_bt_evt_connection_data_length_s sl_bt_evt_connection_data_length_t

Definition at line 6789 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_connection_data_length_id

#define sl_bt_evt_connection_data_length_id

Value:

0�090600a0

Identifier of the data_length event.

Definition at line 6771 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_connection_data_length_s

595/1306

sl_bt_evt_connection_data_length_s

Data structure of the data_length event.

Public Attributes

uint8_t connection

uint16_t tx_data_len

uint16_t tx_time_us

uint16_t rx_data_len

uint16_t rx_time_us

Public Attribute Documentation

connection

uint8_t sl_bt_evt_connection_data_length_s::connection

Connection handle

Definition at line 6778 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

tx_data_len

uint16_t sl_bt_evt_connection_data_length_s::tx_data_len

The maximum payload octets of a packet that the local Controller will send

Definition at line 6779 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

tx_time_us

uint16_t sl_bt_evt_connection_data_length_s::tx_time_us

The maximum time in microseconds that the local Controller will take to send a data packet

Definition at line 6781 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

rx_data_len

uint16_t sl_bt_evt_connection_data_length_s::rx_data_len

The maximum payload octets of a packet that the local Controller expects to receive

sl_bt_evt_connection_data_length_s

596/1306

Definition at line 6783 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

rx_time_us

uint16_t sl_bt_evt_connection_data_length_s::rx_time_us

The maximum time in microseconds that the local Controller expects to take to receive a data packet

Definition at line 6785 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_connection_closed

597/1306

sl_bt_evt_connection_closed

Modules

sl_bt_evt_connection_closed_s

sl_bt_evt_connection_closed
Indicates that a connection was either closed or that no connection was established from a high duty cycle directed

advertising.

Typedefs

typedef struct
sl_bt_evt_connect

ion_closed_s

sl_bt_evt_connection_closed_t

Macros

#define sl_bt_evt_connection_closed_id 0�010600a0
Identifier of the closed event.

Typedef Documentation

sl_bt_evt_connection_closed_t

typedef struct sl_bt_evt_connection_closed_s sl_bt_evt_connection_closed_t

Definition at line 6818 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_connection_closed_id

#define sl_bt_evt_connection_closed_id

Value:

0�010600a0

Identifier of the closed event.

Definition at line 6801 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_connection_closed_s

598/1306

sl_bt_evt_connection_closed_s

Data structure of the closed event.

Public Attributes

uint16_t reason

uint8_t connection

Public Attribute Documentation

reason

uint16_t sl_bt_evt_connection_closed_s::reason

Reason of connection close.

Error code SL_STATUS_BT_CTRL_ADVERTISING_TIMEOUT indicates that the high duty cycle directed advertising timed out

and no connection was established. Ignore the value of connection in this case.

Definition at line 6808 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

connection

uint8_t sl_bt_evt_connection_closed_s::connection

Handle of the closed connection

Definition at line 6815 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

GATT Client

599/1306

GATT Client

Modules

sl_bt_evt_gatt_mtu_exchanged

sl_bt_evt_gatt_service

sl_bt_evt_gatt_characteristic

sl_bt_evt_gatt_descriptor

sl_bt_evt_gatt_characteristic_value

sl_bt_evt_gatt_descriptor_value

sl_bt_evt_gatt_procedure_completed

GATT Client
GATT Client.

The commands and events in this class are used to browse and manage attributes in a remote GATT server.

Enumerations

enum sl_bt_gatt_att_opcode_t {

sl_bt_gatt_read_by_type_request = 0�8
sl_bt_gatt_read_by_type_response = 0�9
sl_bt_gatt_read_request = 0xa
sl_bt_gatt_read_response = 0xb
sl_bt_gatt_read_blob_request = 0xc
sl_bt_gatt_read_blob_response = 0xd
sl_bt_gatt_read_multiple_request = 0xe
sl_bt_gatt_read_multiple_response = 0xf
sl_bt_gatt_write_request = 0�12
sl_bt_gatt_write_response = 0�13
sl_bt_gatt_write_command = 0�52
sl_bt_gatt_prepare_write_request = 0�16
sl_bt_gatt_prepare_write_response = 0�17
sl_bt_gatt_execute_write_request = 0�18
sl_bt_gatt_execute_write_response = 0�19
sl_bt_gatt_handle_value_notification = 0�1b
sl_bt_gatt_handle_value_indication = 0�1d

}
These values indicate which attribute request or response has caused the event.

enum sl_bt_gatt_client_config_flag_t {

sl_bt_gatt_disable = 0�0
sl_bt_gatt_notification = 0�1
sl_bt_gatt_indication = 0�2

}
These values define whether the client is to receive notifications or indications from a remote GATT server.

GATT Client

600/1306

enum sl_bt_gatt_execute_write_flag_t {

sl_bt_gatt_cancel = 0�0
sl_bt_gatt_commit = 0�1

}
These values define whether the GATT server is to cancel all queued writes or commit all queued writes to a remote

database.

Functions

sl_status_t sl_bt_gatt_set_max_mtu(uint16_t max_mtu, uint16_t *max_mtu_out)

sl_status_t sl_bt_gatt_discover_primary_services(uint8_t connection)

sl_status_t sl_bt_gatt_discover_primary_services_by_uuid(uint8_t connection, size_t uuid_len, const uint8_t *uuid)

sl_status_t sl_bt_gatt_find_included_services(uint8_t connection, uint32_t service)

sl_status_t sl_bt_gatt_discover_characteristics(uint8_t connection, uint32_t service)

sl_status_t sl_bt_gatt_discover_characteristics_by_uuid(uint8_t connection, uint32_t service, size_t uuid_len, const uint8_t
*uuid)

sl_status_t sl_bt_gatt_discover_descriptors(uint8_t connection, uint16_t characteristic)

sl_status_t sl_bt_gatt_discover_characteristic_descriptors(uint8_t connection, uint16_t start, uint16_t end)

sl_status_t sl_bt_gatt_set_characteristic_notification(uint8_t connection, uint16_t characteristic, uint8_t flags)

sl_status_t sl_bt_gatt_send_characteristic_confirmation(uint8_t connection)

sl_status_t sl_bt_gatt_read_characteristic_value(uint8_t connection, uint16_t characteristic)

sl_status_t sl_bt_gatt_read_characteristic_value_from_offset(uint8_t connection, uint16_t characteristic, uint16_t offset,
uint16_t maxlen)

sl_status_t sl_bt_gatt_read_multiple_characteristic_values(uint8_t connection, size_t characteristic_list_len, const uint8_t
*characteristic_list)

sl_status_t sl_bt_gatt_read_characteristic_value_by_uuid(uint8_t connection, uint32_t service, size_t uuid_len, const
uint8_t *uuid)

sl_status_t sl_bt_gatt_write_characteristic_value(uint8_t connection, uint16_t characteristic, size_t value_len, const uint8_t
*value)

sl_status_t sl_bt_gatt_write_characteristic_value_without_response(uint8_t connection, uint16_t characteristic, size_t
value_len, const uint8_t *value, uint16_t *sent_len)

sl_status_t sl_bt_gatt_prepare_characteristic_value_write(uint8_t connection, uint16_t characteristic, uint16_t offset, size_t
value_len, const uint8_t *value, uint16_t *sent_len)

sl_status_t sl_bt_gatt_prepare_characteristic_value_reliable_write(uint8_t connection, uint16_t characteristic, uint16_t
offset, size_t value_len, const uint8_t *value, uint16_t *sent_len)

sl_status_t sl_bt_gatt_execute_characteristic_value_write(uint8_t connection, uint8_t flags)

sl_status_t sl_bt_gatt_read_descriptor_value(uint8_t connection, uint16_t descriptor)

sl_status_t sl_bt_gatt_write_descriptor_value(uint8_t connection, uint16_t descriptor, size_t value_len, const uint8_t
*value)

GATT Client

601/1306

Macros

#define sl_bt_cmd_gatt_set_max_mtu_id 0�00090020

#define sl_bt_cmd_gatt_discover_primary_services_id 0�01090020

#define sl_bt_cmd_gatt_discover_primary_services_by_uuid_id 0�02090020

#define sl_bt_cmd_gatt_find_included_services_id 0�10090020

#define sl_bt_cmd_gatt_discover_characteristics_id 0�03090020

#define sl_bt_cmd_gatt_discover_characteristics_by_uuid_id 0�04090020

#define sl_bt_cmd_gatt_discover_descriptors_id 0�06090020

#define sl_bt_cmd_gatt_discover_characteristic_descriptors_id 0�14090020

#define sl_bt_cmd_gatt_set_characteristic_notification_id 0�05090020

#define sl_bt_cmd_gatt_send_characteristic_confirmation_id 0�0d090020

#define sl_bt_cmd_gatt_read_characteristic_value_id 0�07090020

#define sl_bt_cmd_gatt_read_characteristic_value_from_offset_id 0�12090020

#define sl_bt_cmd_gatt_read_multiple_characteristic_values_id 0�11090020

#define sl_bt_cmd_gatt_read_characteristic_value_by_uuid_id 0�08090020

#define sl_bt_cmd_gatt_write_characteristic_value_id 0�09090020

#define sl_bt_cmd_gatt_write_characteristic_value_without_response_id 0�0a090020

#define sl_bt_cmd_gatt_prepare_characteristic_value_write_id 0�0b090020

#define sl_bt_cmd_gatt_prepare_characteristic_value_reliable_write_id 0�13090020

#define sl_bt_cmd_gatt_execute_characteristic_value_write_id 0�0c090020

#define sl_bt_cmd_gatt_read_descriptor_value_id 0�0e090020

#define sl_bt_cmd_gatt_write_descriptor_value_id 0�0f090020

#define sl_bt_rsp_gatt_set_max_mtu_id 0�00090020

#define sl_bt_rsp_gatt_discover_primary_services_id 0�01090020

#define sl_bt_rsp_gatt_discover_primary_services_by_uuid_id 0�02090020

#define sl_bt_rsp_gatt_find_included_services_id 0�10090020

#define sl_bt_rsp_gatt_discover_characteristics_id 0�03090020

#define sl_bt_rsp_gatt_discover_characteristics_by_uuid_id 0�04090020

#define sl_bt_rsp_gatt_discover_descriptors_id 0�06090020

#define sl_bt_rsp_gatt_discover_characteristic_descriptors_id 0�14090020

#define sl_bt_rsp_gatt_set_characteristic_notification_id 0�05090020

GATT Client

602/1306

#define sl_bt_rsp_gatt_send_characteristic_confirmation_id 0�0d090020

#define sl_bt_rsp_gatt_read_characteristic_value_id 0�07090020

#define sl_bt_rsp_gatt_read_characteristic_value_from_offset_id 0�12090020

#define sl_bt_rsp_gatt_read_multiple_characteristic_values_id 0�11090020

#define sl_bt_rsp_gatt_read_characteristic_value_by_uuid_id 0�08090020

#define sl_bt_rsp_gatt_write_characteristic_value_id 0�09090020

#define sl_bt_rsp_gatt_write_characteristic_value_without_response_id 0�0a090020

#define sl_bt_rsp_gatt_prepare_characteristic_value_write_id 0�0b090020

#define sl_bt_rsp_gatt_prepare_characteristic_value_reliable_write_id 0�13090020

#define sl_bt_rsp_gatt_execute_characteristic_value_write_id 0�0c090020

#define sl_bt_rsp_gatt_read_descriptor_value_id 0�0e090020

#define sl_bt_rsp_gatt_write_descriptor_value_id 0�0f090020

Enumeration Documentation

sl_bt_gatt_att_opcode_t

sl_bt_gatt_att_opcode_t

These values indicate which attribute request or response has caused the event.

Enumerator

sl_bt_gatt_read_by_type_request

sl_bt_gatt_read_by_type_response

sl_bt_gatt_read_request

sl_bt_gatt_read_response

sl_bt_gatt_read_blob_request

sl_bt_gatt_read_blob_response

sl_bt_gatt_read_multiple_request

sl_bt_gatt_read_multiple_response

sl_bt_gatt_write_request

sl_bt_gatt_write_response

sl_bt_gatt_write_command

sl_bt_gatt_prepare_write_request

sl_bt_gatt_prepare_write_response

sl_bt_gatt_execute_write_request

sl_bt_gatt_execute_write_response

sl_bt_gatt_handle_value_notification

sl_bt_gatt_handle_value_indication

Definition at line 7577 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_client_config_flag_t

GATT Client

603/1306

These values define whether the client is to receive notifications or indications from a remote GATT server.

Enumerator

sl_bt_gatt_disable

sl_bt_gatt_notification

sl_bt_gatt_indication

Definition at line 7604 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_execute_write_flag_t

sl_bt_gatt_execute_write_flag_t

These values define whether the GATT server is to cancel all queued writes or commit all queued writes to a remote

database.

Enumerator

sl_bt_gatt_cancel

sl_bt_gatt_commit

Definition at line 7616 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Function Documentation

sl_bt_gatt_set_max_mtu

sl_status_t sl_bt_gatt_set_max_mtu (uint16_t max_mtu, uint16_t *max_mtu_out)

Parameters

[in] max_mtu Maximum size of Message Transfer Units (MTU) allowed

Range: 23 to 250

Default: 247

[out] max_mtu_out The maximum ATT_MTU selected by the system if this command succeeds

Set the maximum size of ATT Message Transfer Units (MTU). Functionality is the same as sl_bt_gatt_server_set_max_mtu

and this setting applies to both GATT client and server. If the given value is too large according to the maximum BGAPI

payload size, the system will select the maximum possible value as the maximum ATT_MTU. If the maximum ATT_MTU is

larger than 23, the GATT client in the stack will automatically send an MTU exchange request after a Bluetooth connection

has been established.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 7854 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_discover_primary_services

sl_status_t sl_bt_gatt_discover_primary_services (uint8_t connection)

Parameters

GATT Client

604/1306

[in] connection Connection handle

Discover all primary services of a remote GATT database. This command generates a unique gatt_service event for every

discovered primary service. Received sl_bt_evt_gatt_procedure_completed event indicates that this GATT procedure has

successfully completed or failed with an error.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_gatt_service - Discovered service from remote GATT database

sl_bt_evt_gatt_procedure_completed - Procedure was successfully completed or failed with an error.

Definition at line 7874 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_discover_primary_services_by_uuid

sl_status_t sl_bt_gatt_discover_primary_services_by_uuid (uint8_t connection, size_t uuid_len, const uint8_t *uuid)

Parameters

[in] connection Connection handle

[in] uuid_len Length of data in uuid

[in] uuid Service UUID in little endian format

Discover primary services with the specified UUID in a remote GATT database. This command generates unique

gatt_service event for every discovered primary service. Received sl_bt_evt_gatt_procedure_completed event indicates that

this GATT procedure was successfully completed or failed with an error.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_gatt_service - Discovered service from remote GATT database.

sl_bt_evt_gatt_procedure_completed - Procedure was successfully completed or failed with an error.

Definition at line 7896 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_find_included_services

sl_status_t sl_bt_gatt_find_included_services (uint8_t connection, uint32_t service)

Parameters

[in] connection Connection handle

[in] service GATT service handle. This value is normally received from the gatt_service event.

Find the services that are included by a service in a remote GATT database. This command generates a unique gatt_service

event for each included service. The received sl_bt_evt_gatt_procedure_completed event indicates that this GATT procedure

was successfully completed or failed with an error.

Returns

SL_STATUS_OK if successful. Error code otherwise.

GATT Client

605/1306

Events

sl_bt_evt_gatt_service - Discovered service from remote GATT database.

sl_bt_evt_gatt_procedure_completed - Procedure was successfully completed or failed with an error.

Definition at line 7920 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_discover_characteristics

sl_status_t sl_bt_gatt_discover_characteristics (uint8_t connection, uint32_t service)

Parameters

[in] connection Connection handle

[in] service GATT service handle. This value is normally received from the gatt_service event.

Discover all characteristics of a GATT service from a remote GATT database. This command generates a unique

gatt_characteristic event for every discovered characteristic. Received sl_bt_evt_gatt_procedure_completed event indicates

that this GATT procedure was successfully completed or failed with an error.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_gatt_characteristic - Discovered characteristic from remote GATT database.

sl_bt_evt_gatt_procedure_completed - Procedure was successfully completed or failed with an error.

Definition at line 7944 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_discover_characteristics_by_uuid

sl_status_t sl_bt_gatt_discover_characteristics_by_uuid (uint8_t connection, uint32_t service, size_t uuid_len, const uint8_t
*uuid)

Parameters

[in] connection Connection handle

[in] service GATT service handle. This value is normally received from the gatt_service event.

[in] uuid_len Length of data in uuid

[in] uuid Characteristic UUID in little endian format

Discover all characteristics of a GATT service in a remote GATT database having the specified UUID. This command

generates a unique gatt_characteristic event for every discovered characteristic having the specified UUID. Received

sl_bt_evt_gatt_procedure_completed event indicates that this GATT procedure was successfully completed or failed with an

error.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_gatt_characteristic - Discovered characteristic from remote GATT database.

sl_bt_evt_gatt_procedure_completed - Procedure was successfully completed or failed with an error.

GATT Client

606/1306

sl_bt_gatt_discover_descriptors

sl_status_t sl_bt_gatt_discover_descriptors (uint8_t connection, uint16_t characteristic)

Parameters

[in] connection Connection handle

[in] characteristic GATT characteristic handle. This value is normally received from the gatt_characteristic event.

Discover all descriptors in a remote GATT database starting from handle. It generates a unique gatt_descriptor event for

every discovered descriptor. Received sl_bt_evt_gatt_procedure_completed event indicates that this GATT procedure has

successfully completed or failed with an error.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_gatt_descriptor - Discovered descriptor from remote GATT database.

sl_bt_evt_gatt_procedure_completed - Procedure was successfully completed or failed with an error.

Definition at line 7996 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_discover_characteristic_descriptors

sl_status_t sl_bt_gatt_discover_characteristic_descriptors (uint8_t connection, uint16_t start, uint16_t end)

Parameters

[in] connection Connection handle

[in] start GATT characteristic handle. This value is normally received from the gatt_characteristic event.

[in] end GATT characteristic handle. This value is normally received from the gatt_characteristic event.

Discover all descriptors of a GATT characteristic in a remote GATT database. It generates a unique gatt_descriptor event for

every discovered descriptor. Received sl_bt_evt_gatt_procedure_completed event indicates that this GATT procedure has

successfully completed or failed with an error.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_gatt_descriptor - Discovered descriptor from remote GATT database.

sl_bt_evt_gatt_procedure_completed - Procedure was successfully completed or failed with an error.

Definition at line 8021 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_set_characteristic_notification

sl_status_t sl_bt_gatt_set_characteristic_notification (uint8_t connection, uint16_t characteristic, uint8_t flags)

Parameters

[in] connection Connection handle

[in] characteristic GATT characteristic handle. This value is normally received from the gatt_characteristic event.

GATT Client

607/1306

[in] flags Enum sl_bt_gatt_client_config_flag_t. Characteristic client configuration flags. Values:

sl_bt_gatt_disable (0x0): Disable notifications and indications

sl_bt_gatt_notification (0x1): Notification

sl_bt_gatt_indication (0x2): Indication

Enable or disable the notifications and indications sent from a remote GATT server. This procedure discovers a

characteristic client configuration descriptor and writes the related configuration flags to a remote GATT database. A

received sl_bt_evt_gatt_procedure_completed event indicates that this GATT procedure was successfully completed or that

it failed with an error.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_gatt_procedure_completed - Procedure was successfully completed or failed with an error.

sl_bt_evt_gatt_characteristic_value - If an indication or notification has been enabled for a characteristic, this event is

triggered whenever an indication or notification is sent by the remote GATT server. The triggering conditions of the GATT

server are defined by an upper level, for example by a profile. As a result, it is possible that no values are ever received, or

that it may take time, depending on how the server is configured.

Definition at line 8057 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_send_characteristic_confirmation

sl_status_t sl_bt_gatt_send_characteristic_confirmation (uint8_t connection)

Parameters

[in] connection Connection handle

Send a confirmation to a remote GATT server after receiving a characteristic indication. The

sl_bt_evt_gatt_characteristic_value event carries the att_opcode containing sl_bt_gatt_handle_value_indication (0x1d), which

reveals that an indication has been received and must be confirmed with this command. The confirmation needs to be sent

within 30 seconds, otherwise further GATT transactions are not allowed by the remote side.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 8075 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_read_characteristic_value

sl_status_t sl_bt_gatt_read_characteristic_value (uint8_t connection, uint16_t characteristic)

Parameters

[in] connection Connection handle

[in] characteristic GATT characteristic handle. This value is normally received from the gatt_characteristic event.

Read the value of a characteristic from a remote GATT database. A single sl_bt_evt_gatt_characteristic_value is generated if

the characteristic value fits in one ATT PDU. Otherwise, more than one sl_bt_evt_gatt_characteristic_value event is

generated because the firmware will automatically use the Read Long Characteristic Values procedure. A received

sl_bt_evt_gatt_procedure_completed event indicates that all data was read successfully or that an error response was

received.

GATT Client

608/1306

Note that the GATT client does not verify if the requested attribute is a characteristic value. Therefore, before calling this

command, ensure that the attribute handle is for a characteristic value, for example, by performing characteristic discovery.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_gatt_characteristic_value - Contains the data of a characteristic sent by the GATT Server.

sl_bt_evt_gatt_procedure_completed - Procedure was successfully completed or failed with an error.

Definition at line 8105 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_read_characteristic_value_from_offset

sl_status_t sl_bt_gatt_read_characteristic_value_from_offset (uint8_t connection, uint16_t characteristic, uint16_t offset,
uint16_t maxlen)

Parameters

[in] connection Connection handle

[in] characteristic GATT characteristic handle. This value is normally received from the gatt_characteristic event.

[in] offset Offset of the characteristic value

[in] maxlen Maximum bytes to read. If this parameter is 0, all characteristic values starting at a given offset will

be read.

Read a partial characteristic value with a specified offset and maximum length from a remote GATT database. It is

equivalent to sl_bt_gatt_read_characteristic_value if both the offset and maximum length parameters are 0. A single

sl_bt_evt_gatt_characteristic_value event is generated if the value to read fits in one ATT PDU. Otherwise, more than one

sl_bt_evt_gatt_characteristic_value events are generated because the firmware will automatically use the Read Long

Characteristic Values procedure. A received sl_bt_evt_gatt_procedure_completed event indicates that all data was read

successfully or that an error response was received.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_gatt_characteristic_value - Contains data of a characteristic sent by the GATT Server.

sl_bt_evt_gatt_procedure_completed - Procedure was successfully completed or failed with an error.

Definition at line 8136 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_read_multiple_characteristic_values

sl_status_t sl_bt_gatt_read_multiple_characteristic_values (uint8_t connection, size_t characteristic_list_len, const uint8_t
*characteristic_list)

Parameters

[in] connection Connection handle

[in] characteristic_list_len Length of data in characteristic_list

[in] characteristic_list List of uint16 characteristic handles each in little endian format.

GATT Client

609/1306

Read values of multiple characteristics from a remote GATT database at once. The GATT server returns values in one ATT

PDU as the response. If the total set of values is greater than (ATT_MTU - 1) bytes in length, only the first (ATT_MTU - 1)

bytes are included. A single sl_bt_evt_gatt_characteristic_value event is generated, in which the characteristic is set to 0 and

data in the value parameter is a concatenation of characteristic values in the order they were requested. The received

sl_bt_evt_gatt_procedure_completed event indicates either that this GATT procedure was successfully completed or failed

with an error.

Use this command only for characteristics values that have a known fixed size, except the last one that could have variable

length.

When the remote GATT server is from Silicon Labs Bluetooth stack, the server returns ATT Invalid PDU (0x04) if this

command only reads one characteristic value. The server returns ATT Application Error 0x80 if this command reads the

value of a user-type characteristic.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_gatt_characteristic_value - A concatenation of characteristic values in the order they were requested

sl_bt_evt_gatt_procedure_completed - Procedure was either successfully completed or failed with an error.

Definition at line 8175 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_read_characteristic_value_by_uuid

sl_status_t sl_bt_gatt_read_characteristic_value_by_uuid (uint8_t connection, uint32_t service, size_t uuid_len, const uint8_t
*uuid)

Parameters

[in] connection Connection handle

[in] service GATT service handle. This value is normally received from the gatt_service event.

[in] uuid_len Length of data in uuid

[in] uuid Characteristic UUID in little endian format

Read characteristic values of a service from a remote GATT database by giving the UUID of the characteristic and the

handle of the service containing this characteristic. If multiple characteristic values are received in one ATT PDU, one

sl_bt_evt_gatt_characteristic_value event is generated for each value. If the first characteristic value does not fit in one ATT

PDU, the firmware automatically uses the Read Long Characteristic Values procedure and generate more

sl_bt_evt_gatt_characteristic_value events until the value has been completely read. A received

sl_bt_evt_gatt_procedure_completed event indicates that all data was read successfully or that an error response was

received.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_gatt_characteristic_value - Contains the data of a characteristic sent by the GATT Server.

sl_bt_evt_gatt_procedure_completed - Procedure was successfully completed or failed with an error.

Definition at line 8207 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_write_characteristic_value

GATT Client

610/1306

sl_status_t sl_bt_gatt_write_characteristic_value (uint8_t connection, uint16_t characteristic, size_t value_len, const uint8_t
*value)

Parameters

[in] connection Connection handle

[in] characteristic GATT characteristic handle. This value is normally received from the gatt_characteristic event.

[in] value_len Length of data in value

[in] value Characteristic value

Write the value of a characteristic in a remote GATT database. If the value length is greater than (ATT_MTU - 3) and does

not fit in one ATT PDU, "write long" GATT procedure is used automatically. Received sl_bt_evt_gatt_procedure_completed

event indicates that all data was written successfully or that an error response was received.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_gatt_procedure_completed - Procedure was successfully completed or failed with an error.

Definition at line 8233 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_write_characteristic_value_without_response

sl_status_t sl_bt_gatt_write_characteristic_value_without_response (uint8_t connection, uint16_t characteristic, size_t
value_len, const uint8_t *value, uint16_t *sent_len)

Parameters

[in] connection Connection handle

[in] characteristic GATT characteristic handle. This value is normally received from the gatt_characteristic event.

[in] value_len Length of data in value

[in] value Characteristic value

[out] sent_len The length of data sent to the remote GATT server

Write the value of a characteristic in a remote GATT server. It does not generate an event. All failures on the server are

ignored silently. For example, if an error is generated in the remote GATT server and the given value is not written into the

database, no error message will be reported to the local GATT client. Note that this command can't be used to write long

values. At most ATT_MTU - 3 amount of data can be sent once.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 8257 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_prepare_characteristic_value_write

sl_status_t sl_bt_gatt_prepare_characteristic_value_write (uint8_t connection, uint16_t characteristic, uint16_t offset, size_t
value_len, const uint8_t *value, uint16_t *sent_len)

Parameters

GATT Client

611/1306

[in] connection Connection handle

[in] characteristic GATT characteristic handle. This value is normally received from the gatt_characteristic event.

[in] offset Offset of the characteristic value

[in] value_len Length of data in value

[in] value Value to write into the specified characteristic of the remote GATT database

[out] sent_len The length of data sent to the remote GATT server

Add a characteristic value to the write queue of a remote GATT server. It can be used when long attributes need to be

written or a set of values needs to be written atomically. At most ATT_MTU - 5 amount of data can be sent at one time.

Writes are executed or canceled with the sl_bt_gatt_execute_characteristic_value_write command. Whether the writes

succeed or not is indicated in the response of the sl_bt_gatt_execute_characteristic_value_write command.

In all use cases where the amount of data to transfer fits into the BGAPI payload, use the command

sl_bt_gatt_write_characteristic_value to write long values because it transparently performs the prepare_write and

execute_write commands.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_gatt_procedure_completed - Procedure was successfully completed or failed with an error.

Definition at line 8294 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_prepare_characteristic_value_reliable_write

sl_status_t sl_bt_gatt_prepare_characteristic_value_reliable_write (uint8_t connection, uint16_t characteristic, uint16_t offset,
size_t value_len, const uint8_t *value, uint16_t *sent_len)

Parameters

[in] connection Connection handle

[in] characteristic GATT characteristic handle. This value is normally received from the gatt_characteristic event.

[in] offset Offset of the characteristic value

[in] value_len Length of data in value

[in] value Value to write into the specified characteristic of the remote GATT database

[out] sent_len The length of data sent to the remote GATT server

Add a characteristic value to the write queue of a remote GATT server and verify whether the value was correctly received

by the server. Received sl_bt_evt_gatt_procedure_completed event indicates that this GATT procedure was successfully

completed or failed with an error. Specifically, error code 0x0194 (data_corrupted) will be returned if the value received from

the GATT server's response fails to pass the reliable write verification. At most, ATT_MTU - 5 amount of data can be sent at

one time. Writes are executed or canceled with the sl_bt_gatt_execute_characteristic_value_write command. Whether the

writes succeed or not is indicated in the response of the sl_bt_gatt_execute_characteristic_value_write command.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_gatt_procedure_completed - Procedure was successfully completed or failed with an error.

Definition at line 8330 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

GATT Client

612/1306

sl_bt_gatt_execute_characteristic_value_write

sl_status_t sl_bt_gatt_execute_characteristic_value_write (uint8_t connection, uint8_t flags)

Parameters

[in] connection Connection handle

[in] flags Enum sl_bt_gatt_execute_write_flag_t. Execute write flag. Values:

sl_bt_gatt_cancel (0x0): Cancel all queued writes

sl_bt_gatt_commit (0x1): Commit all queued writes

Commit or cancel previously queued writes to a long characteristic of a remote GATT server. Writes are sent to the queue

with sl_bt_gatt_prepare_characteristic_value_write command. Content, offset, and length of queued values are validated by

this procedure. A received sl_bt_evt_gatt_procedure_completed event indicates that all data was written successfully or that

an error response was received.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_gatt_procedure_completed - Procedure was successfully completed or failed with an error.

Definition at line 8359 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_read_descriptor_value

sl_status_t sl_bt_gatt_read_descriptor_value (uint8_t connection, uint16_t descriptor)

Parameters

[in] connection Connection handle

[in] descriptor GATT characteristic descriptor handle

Read the descriptor value of a characteristic in a remote GATT database. A single sl_bt_evt_gatt_descriptor_value event is

generated if the descriptor value fits in one ATT PDU. Otherwise, more than one sl_bt_evt_gatt_descriptor_value events are

generated because the firmware automatically uses the Read Long Characteristic Values procedure. A received

sl_bt_evt_gatt_procedure_completed event indicates that all data was read successfully or that an error response was

received.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_gatt_descriptor_value - Descriptor value received from the remote GATT server.

sl_bt_evt_gatt_procedure_completed - Procedure was successfully completed or failed with an error.

Definition at line 8384 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_write_descriptor_value

sl_status_t sl_bt_gatt_write_descriptor_value (uint8_t connection, uint16_t descriptor, size_t value_len, const uint8_t *value)

GATT Client

613/1306

[in] connection Connection handle

[in] descriptor GATT characteristic descriptor handle

[in] value_len Length of data in value

[in] value Descriptor value

Write the value of a characteristic descriptor in a remote GATT database. If the value length is greater than ATT_MTU - 3

and does not fit in one ATT PDU, "write long" GATT procedure is used automatically. Received

sl_bt_evt_gatt_procedure_completed event indicates either that all data was written successfully or that an error response

was received.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_gatt_procedure_completed - Procedure was successfully completed or failed with an error.

Definition at line 8407 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_gatt_set_max_mtu_id

#define sl_bt_cmd_gatt_set_max_mtu_id

Value:

0�00090020

Definition at line 7530 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_discover_primary_services_id

#define sl_bt_cmd_gatt_discover_primary_services_id

Value:

0�01090020

Definition at line 7531 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_discover_primary_services_by_uuid_id

#define sl_bt_cmd_gatt_discover_primary_services_by_uuid_id

Value:

0�02090020

Definition at line 7532 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_find_included_services_id

#define sl_bt_cmd_gatt_find_included_services_id

GATT Client

614/1306

Value:

0x10090020

Definition at line 7533 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_discover_characteristics_id

#define sl_bt_cmd_gatt_discover_characteristics_id

Value:

0�03090020

Definition at line 7534 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_discover_characteristics_by_uuid_id

#define sl_bt_cmd_gatt_discover_characteristics_by_uuid_id

Value:

0�04090020

Definition at line 7535 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_discover_descriptors_id

#define sl_bt_cmd_gatt_discover_descriptors_id

Value:

0�06090020

Definition at line 7536 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_discover_characteristic_descriptors_id

#define sl_bt_cmd_gatt_discover_characteristic_descriptors_id

Value:

0�14090020

Definition at line 7537 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_set_characteristic_notification_id

#define sl_bt_cmd_gatt_set_characteristic_notification_id

Value:

0�05090020

Definition at line 7538 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

GATT Client

615/1306

sl_bt_cmd_gatt_send_characteristic_confirmation_id

#define sl_bt_cmd_gatt_send_characteristic_confirmation_id

Value:

0�0d090020

Definition at line 7539 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_read_characteristic_value_id

#define sl_bt_cmd_gatt_read_characteristic_value_id

Value:

0�07090020

Definition at line 7540 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_read_characteristic_value_from_offset_id

#define sl_bt_cmd_gatt_read_characteristic_value_from_offset_id

Value:

0�12090020

Definition at line 7541 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_read_multiple_characteristic_values_id

#define sl_bt_cmd_gatt_read_multiple_characteristic_values_id

Value:

0�11090020

Definition at line 7542 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_read_characteristic_value_by_uuid_id

#define sl_bt_cmd_gatt_read_characteristic_value_by_uuid_id

Value:

0�08090020

Definition at line 7543 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_write_characteristic_value_id

#define sl_bt_cmd_gatt_write_characteristic_value_id

GATT Client

616/1306

Value:

0x09090020

Definition at line 7544 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_write_characteristic_value_without_response_id

#define sl_bt_cmd_gatt_write_characteristic_value_without_response_id

Value:

0�0a090020

Definition at line 7545 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_prepare_characteristic_value_write_id

#define sl_bt_cmd_gatt_prepare_characteristic_value_write_id

Value:

0�0b090020

Definition at line 7546 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_prepare_characteristic_value_reliable_write_id

#define sl_bt_cmd_gatt_prepare_characteristic_value_reliable_write_id

Value:

0�13090020

Definition at line 7547 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_execute_characteristic_value_write_id

#define sl_bt_cmd_gatt_execute_characteristic_value_write_id

Value:

0�0c090020

Definition at line 7548 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_read_descriptor_value_id

#define sl_bt_cmd_gatt_read_descriptor_value_id

Value:

0�0e090020

Definition at line 7549 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

GATT Client

617/1306

sl_bt_cmd_gatt_write_descriptor_value_id

#define sl_bt_cmd_gatt_write_descriptor_value_id

Value:

0�0f090020

Definition at line 7550 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_set_max_mtu_id

#define sl_bt_rsp_gatt_set_max_mtu_id

Value:

0�00090020

Definition at line 7551 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_discover_primary_services_id

#define sl_bt_rsp_gatt_discover_primary_services_id

Value:

0�01090020

Definition at line 7552 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_discover_primary_services_by_uuid_id

#define sl_bt_rsp_gatt_discover_primary_services_by_uuid_id

Value:

0�02090020

Definition at line 7553 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_find_included_services_id

#define sl_bt_rsp_gatt_find_included_services_id

Value:

0�10090020

Definition at line 7554 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_discover_characteristics_id

#define sl_bt_rsp_gatt_discover_characteristics_id

GATT Client

618/1306

Value:

0x03090020

Definition at line 7555 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_discover_characteristics_by_uuid_id

#define sl_bt_rsp_gatt_discover_characteristics_by_uuid_id

Value:

0�04090020

Definition at line 7556 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_discover_descriptors_id

#define sl_bt_rsp_gatt_discover_descriptors_id

Value:

0�06090020

Definition at line 7557 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_discover_characteristic_descriptors_id

#define sl_bt_rsp_gatt_discover_characteristic_descriptors_id

Value:

0�14090020

Definition at line 7558 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_set_characteristic_notification_id

#define sl_bt_rsp_gatt_set_characteristic_notification_id

Value:

0�05090020

Definition at line 7559 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_send_characteristic_confirmation_id

#define sl_bt_rsp_gatt_send_characteristic_confirmation_id

Value:

0�0d090020

Definition at line 7560 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

GATT Client

619/1306

sl_bt_rsp_gatt_read_characteristic_value_id

#define sl_bt_rsp_gatt_read_characteristic_value_id

Value:

0�07090020

Definition at line 7561 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_read_characteristic_value_from_offset_id

#define sl_bt_rsp_gatt_read_characteristic_value_from_offset_id

Value:

0�12090020

Definition at line 7562 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_read_multiple_characteristic_values_id

#define sl_bt_rsp_gatt_read_multiple_characteristic_values_id

Value:

0�11090020

Definition at line 7563 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_read_characteristic_value_by_uuid_id

#define sl_bt_rsp_gatt_read_characteristic_value_by_uuid_id

Value:

0�08090020

Definition at line 7564 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_write_characteristic_value_id

#define sl_bt_rsp_gatt_write_characteristic_value_id

Value:

0�09090020

Definition at line 7565 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_write_characteristic_value_without_response_id

#define sl_bt_rsp_gatt_write_characteristic_value_without_response_id

GATT Client

620/1306

Value:

0x0a090020

Definition at line 7566 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_prepare_characteristic_value_write_id

#define sl_bt_rsp_gatt_prepare_characteristic_value_write_id

Value:

0�0b090020

Definition at line 7567 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_prepare_characteristic_value_reliable_write_id

#define sl_bt_rsp_gatt_prepare_characteristic_value_reliable_write_id

Value:

0�13090020

Definition at line 7568 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_execute_characteristic_value_write_id

#define sl_bt_rsp_gatt_execute_characteristic_value_write_id

Value:

0�0c090020

Definition at line 7569 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_read_descriptor_value_id

#define sl_bt_rsp_gatt_read_descriptor_value_id

Value:

0�0e090020

Definition at line 7570 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_write_descriptor_value_id

#define sl_bt_rsp_gatt_write_descriptor_value_id

Value:

0�0f090020

Definition at line 7571 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_mtu_exchanged

621/1306

sl_bt_evt_gatt_mtu_exchanged

Modules

sl_bt_evt_gatt_mtu_exchanged_s

sl_bt_evt_gatt_mtu_exchanged
Indicates that an ATT_MTU exchange procedure is completed.

The mtu parameter describes new MTU size. MTU size 23 is used before this event is received.

Typedefs

typedef struct
sl_bt_evt_gatt_mt
u_exchanged_s

sl_bt_evt_gatt_mtu_exchanged_t

Macros

#define sl_bt_evt_gatt_mtu_exchanged_id 0�000900a0
Identifier of the mtu_exchanged event.

Typedef Documentation

sl_bt_evt_gatt_mtu_exchanged_t

typedef struct sl_bt_evt_gatt_mtu_exchanged_s sl_bt_evt_gatt_mtu_exchanged_t

Definition at line 7643 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_gatt_mtu_exchanged_id

#define sl_bt_evt_gatt_mtu_exchanged_id

Value:

0�000900a0

Identifier of the mtu_exchanged event.

Definition at line 7632 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_mtu_exchanged_s

622/1306

sl_bt_evt_gatt_mtu_exchanged_s

Data structure of the mtu_exchanged event.

Public Attributes

uint8_t connection

uint16_t mtu

Public Attribute Documentation

connection

uint8_t sl_bt_evt_gatt_mtu_exchanged_s::connection

Connection handle

Definition at line 7639 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

mtu

uint16_t sl_bt_evt_gatt_mtu_exchanged_s::mtu

Exchanged ATT_MTU

Definition at line 7640 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_service

623/1306

sl_bt_evt_gatt_service

Modules

sl_bt_evt_gatt_service_s

sl_bt_evt_gatt_service
Indicates that a GATT service in the remote GATT database was discovered.

This event is generated after issuing either the sl_bt_gatt_discover_primary_services or

sl_bt_gatt_discover_primary_services_by_uuid command.

Typedefs

typedef struct
sl_bt_evt_gatt_ser

vice_s

sl_bt_evt_gatt_service_t

Macros

#define sl_bt_evt_gatt_service_id 0�010900a0
Identifier of the service event.

Typedef Documentation

sl_bt_evt_gatt_service_t

typedef struct sl_bt_evt_gatt_service_s sl_bt_evt_gatt_service_t

Definition at line 7671 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_gatt_service_id

#define sl_bt_evt_gatt_service_id

Value:

0�010900a0

Identifier of the service event.

Definition at line 7659 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_service_s

624/1306

sl_bt_evt_gatt_service_s

Data structure of the service event.

Public Attributes

uint8_t connection

uint32_t service

uint8array uuid

Public Attribute Documentation

connection

uint8_t sl_bt_evt_gatt_service_s::connection

Connection handle

Definition at line 7666 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

service

uint32_t sl_bt_evt_gatt_service_s::service

GATT service handle

Definition at line 7667 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

uuid

uint8array sl_bt_evt_gatt_service_s::uuid

Service UUID in little endian format

Definition at line 7668 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_characteristic

625/1306

sl_bt_evt_gatt_characteristic

Modules

sl_bt_evt_gatt_characteristic_s

sl_bt_evt_gatt_characteristic
Indicates that a GATT characteristic in the remote GATT database was discovered.

This event is generated after issuing either the sl_bt_gatt_discover_characteristics or

sl_bt_gatt_discover_characteristics_by_uuid command.

Typedefs

typedef struct
sl_bt_evt_gatt_ch
aracteristic_s

sl_bt_evt_gatt_characteristic_t

Macros

#define sl_bt_evt_gatt_characteristic_id 0�020900a0
Identifier of the characteristic event.

Typedef Documentation

sl_bt_evt_gatt_characteristic_t

typedef struct sl_bt_evt_gatt_characteristic_s sl_bt_evt_gatt_characteristic_t

Definition at line 7700 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_gatt_characteristic_id

#define sl_bt_evt_gatt_characteristic_id

Value:

0�020900a0

Identifier of the characteristic event.

Definition at line 7687 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_characteristic_s

626/1306

sl_bt_evt_gatt_characteristic_s

Data structure of the characteristic event.

Public Attributes

uint8_t connection

uint16_t characteristic

uint8_t properties

uint8array uuid

Public Attribute Documentation

connection

uint8_t sl_bt_evt_gatt_characteristic_s::connection

Connection handle

Definition at line 7694 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

characteristic

uint16_t sl_bt_evt_gatt_characteristic_s::characteristic

GATT characteristic handle

Definition at line 7695 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

properties

uint8_t sl_bt_evt_gatt_characteristic_s::properties

Characteristic properties

Definition at line 7696 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

uuid

uint8array sl_bt_evt_gatt_characteristic_s::uuid

Characteristic UUID in little endian format

Definition at line 7697 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_descriptor

627/1306

sl_bt_evt_gatt_descriptor

Modules

sl_bt_evt_gatt_descriptor_s

sl_bt_evt_gatt_descriptor
Indicates that a GATT characteristic descriptor in the remote GATT database was discovered.

It is generated after issuing the sl_bt_gatt_discover_descriptors or sl_bt_gatt_discover_characteristic_descriptors command.

Typedefs

typedef struct
sl_bt_evt_gatt_de

scriptor_s

sl_bt_evt_gatt_descriptor_t

Macros

#define sl_bt_evt_gatt_descriptor_id 0�030900a0
Identifier of the descriptor event.

Typedef Documentation

sl_bt_evt_gatt_descriptor_t

typedef struct sl_bt_evt_gatt_descriptor_s sl_bt_evt_gatt_descriptor_t

Definition at line 7727 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_gatt_descriptor_id

#define sl_bt_evt_gatt_descriptor_id

Value:

0�030900a0

Identifier of the descriptor event.

Definition at line 7715 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_descriptor_s

628/1306

sl_bt_evt_gatt_descriptor_s

Data structure of the descriptor event.

Public Attributes

uint8_t connection

uint16_t descriptor

uint8array uuid

Public Attribute Documentation

connection

uint8_t sl_bt_evt_gatt_descriptor_s::connection

Connection handle

Definition at line 7722 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

descriptor

uint16_t sl_bt_evt_gatt_descriptor_s::descriptor

GATT characteristic descriptor handle

Definition at line 7723 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

uuid

uint8array sl_bt_evt_gatt_descriptor_s::uuid

Descriptor UUID in little endian format

Definition at line 7724 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_characteristic_value

629/1306

sl_bt_evt_gatt_characteristic_value

Modules

sl_bt_evt_gatt_characteristic_value_s

sl_bt_evt_gatt_characteristic_value
Indicates that the value of one or several characteristics in the remote GATT server was received.

It is triggered by several commands: sl_bt_gatt_read_characteristic_value, sl_bt_gatt_read_characteristic_value_from_offset,

sl_bt_gatt_read_characteristic_value_by_uuid, sl_bt_gatt_read_multiple_characteristic_values; and when the remote GATT

server sends indications or notifications after enabling notifications with sl_bt_gatt_set_characteristic_notification. The

parameter att_opcode indicates which type of GATT transaction triggered this event. In particular, if the att_opcode type is

sl_bt_gatt_handle_value_indication (0x1d), the application needs to confirm the indication with

sl_bt_gatt_send_characteristic_confirmation.

Typedefs

typedef struct
sl_bt_evt_gatt_ch
aracteristic_value_

s

sl_bt_evt_gatt_characteristic_value_t

Macros

#define sl_bt_evt_gatt_characteristic_value_id 0�040900a0
Identifier of the characteristic_value event.

Typedef Documentation

sl_bt_evt_gatt_characteristic_value_t

typedef struct sl_bt_evt_gatt_characteristic_value_s sl_bt_evt_gatt_characteristic_value_t

Definition at line 7769 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_gatt_characteristic_value_id

#define sl_bt_evt_gatt_characteristic_value_id

Value:

0�040900a0

sl_bt_evt_gatt_characteristic_value

630/1306

Identifier of the characteristic_value event.

Definition at line 7751 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_characteristic_value_s

631/1306

sl_bt_evt_gatt_characteristic_value_s

Data structure of the characteristic_value event.

Public Attributes

uint8_t connection

uint16_t characteristic

uint8_t att_opcode

uint16_t offset

uint8array value

Public Attribute Documentation

connection

uint8_t sl_bt_evt_gatt_characteristic_value_s::connection

Connection handle

Definition at line 7758 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

characteristic

uint16_t sl_bt_evt_gatt_characteristic_value_s::characteristic

GATT characteristic handle. This value is normally received from the gatt_characteristic event.

Definition at line 7759 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

att_opcode

uint8_t sl_bt_evt_gatt_characteristic_value_s::att_opcode

Enum sl_bt_gatt_att_opcode_t. Attribute opcode, which indicates the GATT transaction used.

Definition at line 7762 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

offset

uint16_t sl_bt_evt_gatt_characteristic_value_s::offset

Value offset

sl_bt_evt_gatt_characteristic_value_s

632/1306

Definition at line 7765 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

value

uint8array sl_bt_evt_gatt_characteristic_value_s::value

Characteristic value

Definition at line 7766 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_descriptor_value

633/1306

sl_bt_evt_gatt_descriptor_value

Modules

sl_bt_evt_gatt_descriptor_value_s

sl_bt_evt_gatt_descriptor_value
Indicates that the value of a descriptor in the remote GATT server was received.

This event is generated by the sl_bt_gatt_read_descriptor_value command.

Typedefs

typedef struct
sl_bt_evt_gatt_de
scriptor_value_s

sl_bt_evt_gatt_descriptor_value_t

Macros

#define sl_bt_evt_gatt_descriptor_value_id 0�050900a0
Identifier of the descriptor_value event.

Typedef Documentation

sl_bt_evt_gatt_descriptor_value_t

typedef struct sl_bt_evt_gatt_descriptor_value_s sl_bt_evt_gatt_descriptor_value_t

Definition at line 7796 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_gatt_descriptor_value_id

#define sl_bt_evt_gatt_descriptor_value_id

Value:

0�050900a0

Identifier of the descriptor_value event.

Definition at line 7783 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_descriptor_value_s

634/1306

sl_bt_evt_gatt_descriptor_value_s

Data structure of the descriptor_value event.

Public Attributes

uint8_t connection

uint16_t descriptor

uint16_t offset

uint8array value

Public Attribute Documentation

connection

uint8_t sl_bt_evt_gatt_descriptor_value_s::connection

Connection handle

Definition at line 7790 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

descriptor

uint16_t sl_bt_evt_gatt_descriptor_value_s::descriptor

GATT characteristic descriptor handle

Definition at line 7791 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

offset

uint16_t sl_bt_evt_gatt_descriptor_value_s::offset

Value offset

Definition at line 7792 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

value

uint8array sl_bt_evt_gatt_descriptor_value_s::value

Descriptor value

Definition at line 7793 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_procedure_completed

635/1306

sl_bt_evt_gatt_procedure_completed

Modules

sl_bt_evt_gatt_procedure_completed_s

sl_bt_evt_gatt_procedure_completed
Indicates that the current GATT procedure was completed successfully or that it failed with an error.

All GATT commands excluding sl_bt_gatt_write_characteristic_value_without_response and

sl_bt_gatt_send_characteristic_confirmation will trigger this event. As a result, the application must wait for this event before

issuing another GATT command (excluding the two aforementioned exceptions).

Note: After a failed GATT procedure with SL_STATUS_TIMEOUT error, further GATT transactions over this connection are not

allowed by the stack.

Typedefs

typedef struct
sl_bt_evt_gatt_pro
cedure_complete

d_s

sl_bt_evt_gatt_procedure_completed_t

Macros

#define sl_bt_evt_gatt_procedure_completed_id 0�060900a0
Identifier of the procedure_completed event.

Typedef Documentation

sl_bt_evt_gatt_procedure_completed_t

typedef struct sl_bt_evt_gatt_procedure_completed_s sl_bt_evt_gatt_procedure_completed_t

Definition at line 7828 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_gatt_procedure_completed_id

#define sl_bt_evt_gatt_procedure_completed_id

Value:

0�060900a0

sl_bt_evt_gatt_procedure_completed

636/1306

Identifier of the procedure_completed event.

Definition at line 7817 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_procedure_completed_s

637/1306

sl_bt_evt_gatt_procedure_completed_s

Data structure of the procedure_completed event.

Public Attributes

uint8_t connection

uint16_t result

Public Attribute Documentation

connection

uint8_t sl_bt_evt_gatt_procedure_completed_s::connection

Connection handle

Definition at line 7824 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

result

uint16_t sl_bt_evt_gatt_procedure_completed_s::result

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 7825 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

GATT Database

638/1306

GATT Database

Modules

GATT Service Property Flags

GATT Attribute Security Requirement Flags

GATT Database Flags

GATT Characteristic Property Flags

GATT Descriptor Property Flags

GATT Database
GATT Database.

These commands and events are used for managing the local GATT database.

Many commands in this class return the handles of created attributes. These handles may change during commit if

attributes are not created in the order they present in the database. For example, when creating a new service using the

sl_bt_gattdb_add_service command, the service declaration handle returned from this command becomes invalid later when

an attribute is added or removed in front of this service. If the user requires that the attribute handles returned from these

commands must remain valid after the database update has been committed, attributes must be created in the order they

present in the database.

Enumerations

enum sl_bt_gattdb_service_type_t {

sl_bt_gattdb_primary_service = 0�0
sl_bt_gattdb_secondary_service = 0�1

}
This enum defines GATT service types.

enum sl_bt_gattdb_value_type_t {

sl_bt_gattdb_fixed_length_value = 0�1
sl_bt_gattdb_variable_length_value = 0�2
sl_bt_gattdb_user_managed_value = 0�3

}
This enum defines characteristic and descriptor value types.

Functions

sl_status_t sl_bt_gattdb_new_session(uint16_t *session)

sl_status_t sl_bt_gattdb_add_service(uint16_t session, uint8_t type, uint8_t property, size_t uuid_len, const uint8_t *uuid,
uint16_t *service)

sl_status_t sl_bt_gattdb_remove_service(uint16_t session, uint16_t service)

GATT Database

639/1306

sl_status_t sl_bt_gattdb_add_included_service(uint16_t session, uint16_t service, uint16_t included_service, uint16_t
*attribute)

sl_status_t sl_bt_gattdb_remove_included_service(uint16_t session, uint16_t attribute)

sl_status_t sl_bt_gattdb_add_uuid16_characteristic(uint16_t session, uint16_t service, uint16_t property, uint16_t security,
uint8_t flag, sl_bt_uuid_16_t uuid, uint8_t value_type, uint16_t maxlen, size_t value_len, const uint8_t *value,
uint16_t *characteristic)

sl_status_t sl_bt_gattdb_add_uuid128_characteristic(uint16_t session, uint16_t service, uint16_t property, uint16_t security,
uint8_t flag, uuid_128 uuid, uint8_t value_type, uint16_t maxlen, size_t value_len, const uint8_t *value, uint16_t
*characteristic)

sl_status_t sl_bt_gattdb_remove_characteristic(uint16_t session, uint16_t characteristic)

sl_status_t sl_bt_gattdb_add_uuid16_descriptor(uint16_t session, uint16_t characteristic, uint16_t property, uint16_t
security, sl_bt_uuid_16_t uuid, uint8_t value_type, uint16_t maxlen, size_t value_len, const uint8_t *value,
uint16_t *descriptor)

sl_status_t sl_bt_gattdb_add_uuid128_descriptor(uint16_t session, uint16_t characteristic, uint16_t property, uint16_t
security, uuid_128 uuid, uint8_t value_type, uint16_t maxlen, size_t value_len, const uint8_t *value, uint16_t
*descriptor)

sl_status_t sl_bt_gattdb_remove_descriptor(uint16_t session, uint16_t descriptor)

sl_status_t sl_bt_gattdb_start_service(uint16_t session, uint16_t service)

sl_status_t sl_bt_gattdb_stop_service(uint16_t session, uint16_t service)

sl_status_t sl_bt_gattdb_start_characteristic(uint16_t session, uint16_t characteristic)

sl_status_t sl_bt_gattdb_stop_characteristic(uint16_t session, uint16_t characteristic)

sl_status_t sl_bt_gattdb_commit(uint16_t session)

sl_status_t sl_bt_gattdb_abort(uint16_t session)

Macros

#define sl_bt_cmd_gattdb_new_session_id 0�00460020

#define sl_bt_cmd_gattdb_add_service_id 0�01460020

#define sl_bt_cmd_gattdb_remove_service_id 0�02460020

#define sl_bt_cmd_gattdb_add_included_service_id 0�03460020

#define sl_bt_cmd_gattdb_remove_included_service_id 0�04460020

#define sl_bt_cmd_gattdb_add_uuid16_characteristic_id 0�05460020

#define sl_bt_cmd_gattdb_add_uuid128_characteristic_id 0�06460020

#define sl_bt_cmd_gattdb_remove_characteristic_id 0�07460020

#define sl_bt_cmd_gattdb_add_uuid16_descriptor_id 0�08460020

#define sl_bt_cmd_gattdb_add_uuid128_descriptor_id 0�09460020

#define sl_bt_cmd_gattdb_remove_descriptor_id 0�0a460020

#define sl_bt_cmd_gattdb_start_service_id 0�0b460020

GATT Database

640/1306

#define sl_bt_cmd_gattdb_stop_service_id 0�0c460020

#define sl_bt_cmd_gattdb_start_characteristic_id 0�0d460020

#define sl_bt_cmd_gattdb_stop_characteristic_id 0�0e460020

#define sl_bt_cmd_gattdb_commit_id 0�0f460020

#define sl_bt_cmd_gattdb_abort_id 0�10460020

#define sl_bt_rsp_gattdb_new_session_id 0�00460020

#define sl_bt_rsp_gattdb_add_service_id 0�01460020

#define sl_bt_rsp_gattdb_remove_service_id 0�02460020

#define sl_bt_rsp_gattdb_add_included_service_id 0�03460020

#define sl_bt_rsp_gattdb_remove_included_service_id 0�04460020

#define sl_bt_rsp_gattdb_add_uuid16_characteristic_id 0�05460020

#define sl_bt_rsp_gattdb_add_uuid128_characteristic_id 0�06460020

#define sl_bt_rsp_gattdb_remove_characteristic_id 0�07460020

#define sl_bt_rsp_gattdb_add_uuid16_descriptor_id 0�08460020

#define sl_bt_rsp_gattdb_add_uuid128_descriptor_id 0�09460020

#define sl_bt_rsp_gattdb_remove_descriptor_id 0�0a460020

#define sl_bt_rsp_gattdb_start_service_id 0�0b460020

#define sl_bt_rsp_gattdb_stop_service_id 0�0c460020

#define sl_bt_rsp_gattdb_start_characteristic_id 0�0d460020

#define sl_bt_rsp_gattdb_stop_characteristic_id 0�0e460020

#define sl_bt_rsp_gattdb_commit_id 0�0f460020

#define sl_bt_rsp_gattdb_abort_id 0�10460020

Enumeration Documentation

sl_bt_gattdb_service_type_t

sl_bt_gattdb_service_type_t

This enum defines GATT service types.

Enumerator

sl_bt_gattdb_primary_service

sl_bt_gattdb_secondary_service

Definition at line 8472 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gattdb_value_type_t

GATT Database

641/1306

This enum defines characteristic and descriptor value types.

Enumerator

sl_bt_gattdb_fixed_length_value

sl_bt_gattdb_variable_length_value

sl_bt_gattdb_user_managed_value

Definition at line 8481 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Function Documentation

sl_bt_gattdb_new_session

sl_status_t sl_bt_gattdb_new_session (uint16_t *session)

Parameters

[out] session The database update session ID

Start a new GATT database update session. If the operation is successful, the Bluetooth stack returns a session ID, with

which the GATT database can be updated by calling other database management APIs of this class. Changes in the

database are not immediately saved. Unsaved changes are invisible to a connected remote GATT client.

After all changes were performed successfully, commit the changes using the sl_bt_gattdb_commit command. The

Bluetooth stack will save the changes and handle GATT caching as needed. Unsaved database changes can also be

canceled by calling the sl_bt_gattdb_abort command. In either case, after a commit or abort command is called, the current

session is closed and the session ID becomes invalid.

Only one session is allowed at a time. Error SL_STATUS_ALREADY_EXISTS is returned if another session has been started

already.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 8639 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gattdb_add_service

sl_status_t sl_bt_gattdb_add_service (uint16_t session, uint8_t type, uint8_t property, size_t uuid_len, const uint8_t *uuid,
uint16_t *service)

Parameters

[in] session The database update session ID

[in] type Enum sl_bt_gattdb_service_type_t. The service type. Values:

sl_bt_gattdb_primary_service (0x0): Primary service

sl_bt_gattdb_secondary_service (0x1): Secondary service

[in] property Service properties. Value: 0 or bit flag SL_BT_GATTDB_ADVERTISED_SERVICE

[in] uuid_len Length of data in uuid

[in] uuid The service UUID in little endian format

[out] service The service declaration attribute handle. This handle is ensured valid in current session. It may change

after the session if attributes have been inserted or deleted in front of it.

GATT Database

642/1306

Add a service into the local GATT database. When successful, the service is appended to the service list and is in stopped

state. Use sl_bt_gattdb_start_service command to set it visible to remote GATT clients.

You are not allowed to add the Generic Attribute Profile service. If the application needs GATT caching, enable the feature in

the configuration of this component and the GATT server will handle GATT caching according to the procedures specified

by the Bluetooth core specification.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 8668 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gattdb_remove_service

sl_status_t sl_bt_gattdb_remove_service (uint16_t session, uint16_t service)

Parameters

[in] session The database update session ID

[in] service The service declaration attribute handle of the service

Remove a service and its characteristics from the local GATT database.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 8685 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gattdb_add_included_service

sl_status_t sl_bt_gattdb_add_included_service (uint16_t session, uint16_t service, uint16_t included_service, uint16_t
*attribute)

Parameters

[in] session The database update session ID

[in] service The service declaration attribute handle of the service which the included-service attribute is

added to

[in] included_service The service declaration attribute handle of the service to be included

[out] attribute The included-service attribute handle. This handle is ensured valid in current session. It may

change after the session if attributes have been inserted or deleted in front of it.

Add an included-service attribute to a service.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 8703 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gattdb_remove_included_service

sl_status_t sl_bt_gattdb_remove_included_service (uint16_t session, uint16_t attribute)

GATT Database

643/1306

Parameters

[in] session The database update session ID

[in] attribute The included-service attribute handle

Remove an included-service attribute from a service.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 8718 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gattdb_add_uuid16_characteristic

sl_status_t sl_bt_gattdb_add_uuid16_characteristic (uint16_t session, uint16_t service, uint16_t property, uint16_t security,
uint8_t flag, sl_bt_uuid_16_t uuid, uint8_t value_type, uint16_t maxlen, size_t value_len, const uint8_t *value, uint16_t
*characteristic)

Parameters

[in] session The database update session ID

[in] service The service declaration attribute handle of the service which the characteristic is added to

[in] property Characteristic value properties. Value: bitmask of GATT Characteristic Property Flags

[in] security Security requirement. Value: 0 or bitmask of GATT Attribute Security Requirement Flags. A security

requirement flag for a property is ignored if the property is not set for the characteristic value.

[in] flag Option flags. Value: 0 or bitmask of GATT Database Flags.

[in] uuid The 16-bits UUID in little endian format

[in] value_type Enum sl_bt_gattdb_value_type_t. The value type. Values:

sl_bt_gattdb_fixed_length_value (0x1): A fixed-length value managed by the local GATT server

for responding the read and write requests of remote GATT clients

sl_bt_gattdb_variable_length_value (0x2): A variable-length value managed by the local GATT

server for responding the read and write requests of remote GATT clients

sl_bt_gattdb_user_managed_value (0x3): A value managed by the user application for

responding the read and write requests of remote GATT clients.

[in] maxlen The maximum length of the characteristic value. Ignored if value_type is

sl_bt_gattdb_user_managed_value.

[in] value_len Length of data in value

[in] value The initial characteristic value. Length of this value must be less than or equal to maxlen . Ignored if

value_type is sl_bt_gattdb_user_managed_value.

[out] characteristic The characteristic value attribute handle. This handle is ensured valid in current session. It may

change after the session if attributes have been inserted or deleted in front of it.

Add a 16-bits UUID characteristic to a service. On success, the characteristic is appended to the characteristic list of the

service and it inherits the started or stopped state of the service. In addition, it can be started and stopped separately with

the sl_bt_gattdb_start_characteristic and sl_bt_gattdb_stop_characteristic commands.

If the flag parameter does not set SL_BT_GATTDB_NO_AUTO_CCCD, the stack will automatically add a Client Characteristic

Configuration descriptor to this characteristic when it has the notify or indicate property. If SL_BT_GATTDB_NO_AUTO_CCCD

is set, the user application should add the descriptor separately as needed.

A Characteristic Extended Properties descriptor is automatically added if the reliable write property is set.

Use the sl_bt_gattdb_add_uuid128_characteristic command to add a 128-bits UUID characteristic.

GATT Database

644/1306

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 8777 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gattdb_add_uuid128_characteristic

sl_status_t sl_bt_gattdb_add_uuid128_characteristic (uint16_t session, uint16_t service, uint16_t property, uint16_t security,
uint8_t flag, uuid_128 uuid, uint8_t value_type, uint16_t maxlen, size_t value_len, const uint8_t *value, uint16_t
*characteristic)

Parameters

[in] session The database update session ID

[in] service The service declaration attribute handle of the service which the characteristic is added to

[in] property Characteristic value properties. Value: bitmask of GATT Characteristic Property Flags

[in] security Security requirement. Value: 0 or bitmask of GATT Attribute Security Requirement Flags. A security

requirement flag for a property is ignored if the property is not set for the characteristic value.

[in] flag Option flags. Value: 0 or bitmask of GATT Database Flags.

[in] uuid The 128-bits UUID in little endian format

[in] value_type Enum sl_bt_gattdb_value_type_t. The value type. Values:

sl_bt_gattdb_fixed_length_value (0x1): A fixed-length value managed by the local GATT server

for responding the read and write requests of remote GATT clients

sl_bt_gattdb_variable_length_value (0x2): A variable-length value managed by the local GATT

server for responding the read and write requests of remote GATT clients

sl_bt_gattdb_user_managed_value (0x3): A value managed by the user application for

responding the read and write requests of remote GATT clients.

[in] maxlen The maximum length of the characteristic value. Ignored if value_type is

sl_bt_gattdb_user_managed_value.

[in] value_len Length of data in value

[in] value The initial characteristic value. Length of this value must be less than or equal to maxlen . Ignored if

value_type is sl_bt_gattdb_user_managed_value.

[out] characteristic The characteristic value attribute handle. This handle is ensured valid in current session. It may

change after the session if attributes have been inserted or deleted in front of it.

Add a 128-bits UUID characteristic to a service. When successful, the characteristic is appended to the characteristic list of

the service and inherits the started or stopped state of the service. Additionally, it can be started and stopped separately

with the sl_bt_gattdb_start_characteristic and sl_bt_gattdb_stop_characteristic commands.

If the flag parameter does not set SL_BT_GATTDB_NO_AUTO_CCCD, the stack will automatically add a Client Characteristic

Configuration descriptor to this characteristic when it has the notify or indicate property. If SL_BT_GATTDB_NO_AUTO_CCCD

is set, the user application should add the descriptor separately as needed.

A Characteristic Extended Properties descriptor is automatically added if the reliable write property is set.

Use the sl_bt_gattdb_add_uuid16_characteristic command to add a 16-bits UUID characteristic.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 8845 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

GATT Database

645/1306

sl_bt_gattdb_remove_characteristic

sl_status_t sl_bt_gattdb_remove_characteristic (uint16_t session, uint16_t characteristic)

Parameters

[in] session The database update session ID

[in] characteristic The characteristic value attribute handle of the characteristic

Remove a characteristic and its descriptors from a service.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 8868 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gattdb_add_uuid16_descriptor

sl_status_t sl_bt_gattdb_add_uuid16_descriptor (uint16_t session, uint16_t characteristic, uint16_t property, uint16_t security,
sl_bt_uuid_16_t uuid, uint8_t value_type, uint16_t maxlen, size_t value_len, const uint8_t *value, uint16_t *descriptor)

Parameters

[in] session The database update session ID

[in] characteristic The characteristic value attribute handle of the characteristic the descriptor is added to

[in] property The descriptor properties. Value: bitmask of GATT Descriptor Property Flags

[in] security Security requirement. Value: 0 or bitmask of GATT Attribute Security Requirement Flags. A security

requirement flag for a property is ignored if the property is not set for the descriptor.

[in] uuid The 16-bits UUID in little endian format

[in] value_type Enum sl_bt_gattdb_value_type_t. The value type. Ignored if this is a Client Characteristic

Configuration descriptor. Values:

sl_bt_gattdb_fixed_length_value (0x1): A fixed-length value managed by the local GATT server

for responding the read and write requests of remote GATT clients

sl_bt_gattdb_variable_length_value (0x2): A variable-length value managed by the local GATT

server for responding the read and write requests of remote GATT clients

sl_bt_gattdb_user_managed_value (0x3): A value managed by the user application for

responding the read and write requests of remote GATT clients.

[in] maxlen The maximum length of the descriptor value. Ignored if value_type is

sl_bt_gattdb_user_managed_value, or if this is a Client Characteristic Configuration descriptor.

[in] value_len Length of data in value

[in] value The initial descriptor value. Length of this value must be less than or equal to maxlen . Ingored if

value type is sl_bt_gattdb_user_managed_value, or if this is a Client Characteristic Configuration

descriptor.

[out] descriptor The descriptor attribute handle. This handle is ensured valid in current session. It may change after

the session if attributes have been inserted or deleted in front of it.

Add a 16-bits UUID descriptor to a characteristic. When successful, the descriptor is appended to the descriptor list of the

characteristic and inherits the started or stopped state of the characteristic.

This command does not support adding Characteristic Extended Properties descriptors. This descriptor is automatically

added if the characteristic value has the reliable-write property or when a Characteristic User Description descriptor is

added and the user description has the write property.

GATT Database

646/1306

Use the sl_bt_gattdb_add_uuid128_descriptor command to add a 128-bits UUID descriptor.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 8922 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gattdb_add_uuid128_descriptor

sl_status_t sl_bt_gattdb_add_uuid128_descriptor (uint16_t session, uint16_t characteristic, uint16_t property, uint16_t
security, uuid_128 uuid, uint8_t value_type, uint16_t maxlen, size_t value_len, const uint8_t *value, uint16_t *descriptor)

Parameters

[in] session The database update session ID

[in] characteristic The characteristic value attribute handle of the characteristic the descriptor is added to

[in] property Bitmask of characteristic descriptor properties

[in] security Security requirement. Value: 0 or bitmask of GATT Attribute Security Requirement Flags. A security

requirement flag for a property is ignored if the property is not set for the descriptor.

[in] uuid The 128-bits UUID in little endian format

[in] value_type Enum sl_bt_gattdb_value_type_t. The value type. Ignored if this is a Client Characteristic

Configuration descriptor. Values:

sl_bt_gattdb_fixed_length_value (0x1): A fixed-length value managed by the local GATT server

for responding the read and write requests of remote GATT clients

sl_bt_gattdb_variable_length_value (0x2): A variable-length value managed by the local GATT

server for responding the read and write requests of remote GATT clients

sl_bt_gattdb_user_managed_value (0x3): A value managed by the user application for

responding the read and write requests of remote GATT clients.

[in] maxlen The maximum length of the descriptor value. Ignored if value_type is

sl_bt_gattdb_user_managed_value, or if this is a Client Characteristic Configuration descriptor.

[in] value_len Length of data in value

[in] value The initial descriptor value. Length of this value must be less than or equal to maxlen . Ignored if

value type is sl_bt_gattdb_user_managed_value, or if this is a Client Characteristic Configuration

descriptor.

[out] descriptor The descriptor attribute handle. This handle is ensured valid in current session. It may change after

the session if attributes have been inserted or deleted in front of it.

Add a 128-bits UUID descriptor to a characteristic. When successful, the descriptor is appended to the descriptor list of the

characteristic and inherits the started or stopped state of the characteristic.

This command does not support adding Characteristic Extended Properties descriptors. This descriptor is automatically

added if the characteristic value has the reliable-write property or when a Characteristic User Description descriptor is

added and the user description has the write property.

Use the sl_bt_gattdb_add_uuid16_descriptor command to add a 16-bits UUID descriptor.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 8983 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

GATT Database

647/1306

sl_status_t sl_bt_gattdb_remove_descriptor (uint16_t session, uint16_t descriptor)

Parameters

[in] session The database update session ID

[in] descriptor The descriptor handle

Remove a descriptor from a characteristic.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9004 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gattdb_start_service

sl_status_t sl_bt_gattdb_start_service (uint16_t session, uint16_t service)

Parameters

[in] session The database update session ID

[in] service The service declaration attribute handle of the service

Start a service, so that the service and its attributes including characteristics and descriptors become visible to remote

GATT clients after this change has been committed.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9019 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gattdb_stop_service

sl_status_t sl_bt_gattdb_stop_service (uint16_t session, uint16_t service)

Parameters

[in] session The database update session ID

[in] service The service declaration attribute handle of the service

Stop a service, so that the service and its attributes including characteristics and descriptors become invisible to remote

GATT clients after this change has been committed.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9033 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gattdb_start_characteristic

sl_status_t sl_bt_gattdb_start_characteristic (uint16_t session, uint16_t characteristic)

GATT Database

648/1306

Parameters

[in] session The database update session ID

[in] characteristic The characteristic value attribute handle of the characteristic

Start a characteristic, so that the characteristic and its attributes become visible to remote GATT clients after this change

has been committed. SL_STATUS_INVALID_STATE error is returned if the parent service is not started.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9049 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gattdb_stop_characteristic

sl_status_t sl_bt_gattdb_stop_characteristic (uint16_t session, uint16_t characteristic)

Parameters

[in] session The database update session ID

[in] characteristic The characteristic value attribute handle of the characteristic

Stop a characteristic, so that the characteristic and its attributes become invisible to remote GATT clients after this change

has been committed.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9064 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gattdb_commit

sl_status_t sl_bt_gattdb_commit (uint16_t session)

Parameters

[in] session The database update session ID

Save all changes performed in the current session and close the session. The stack will assign final handles to new and

affected attributes and handle GATT caching as needed. The stack removes the client characteristic configurations of non-

connected GATT clients except the service-changed configuration. For connected GATT clients during this database

change, the stack removes the configurations to the removed characteristics. The session ID, temporary attribute handles

returned during this session, and other existing attribute handles that are after newly added or removed attributes are

invalidated.

Some attribute handles returned in this session may become invalid if attributes are not created in the order they present in

the database. In this case, attribute handle cache of the database in the user application must be refreshed to avoid

accidentally using an invalidated handle in subsequent operations.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9090 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gattdb_abort

GATT Database

649/1306

sl_status_t sl_bt_gattdb_abort (uint16_t session)

Parameters

[in] session The database update session ID

Cancel all changes performed in the current session and close the session. The database remains in the same state it was

in just before the session was started. The session ID and all temporary attribute handles returned during this session are

invalidated.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9104 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_gattdb_new_session_id

#define sl_bt_cmd_gattdb_new_session_id

Value:

0�00460020

Definition at line 8434 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gattdb_add_service_id

#define sl_bt_cmd_gattdb_add_service_id

Value:

0�01460020

Definition at line 8435 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gattdb_remove_service_id

#define sl_bt_cmd_gattdb_remove_service_id

Value:

0�02460020

Definition at line 8436 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gattdb_add_included_service_id

#define sl_bt_cmd_gattdb_add_included_service_id

Value:

0�03460020

GATT Database

650/1306

Definition at line 8437 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gattdb_remove_included_service_id

#define sl_bt_cmd_gattdb_remove_included_service_id

Value:

0�04460020

Definition at line 8438 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gattdb_add_uuid16_characteristic_id

#define sl_bt_cmd_gattdb_add_uuid16_characteristic_id

Value:

0�05460020

Definition at line 8439 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gattdb_add_uuid128_characteristic_id

#define sl_bt_cmd_gattdb_add_uuid128_characteristic_id

Value:

0�06460020

Definition at line 8440 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gattdb_remove_characteristic_id

#define sl_bt_cmd_gattdb_remove_characteristic_id

Value:

0�07460020

Definition at line 8441 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gattdb_add_uuid16_descriptor_id

#define sl_bt_cmd_gattdb_add_uuid16_descriptor_id

Value:

0�08460020

Definition at line 8442 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gattdb_add_uuid128_descriptor_id

GATT Database

651/1306

#define sl_bt_cmd_gattdb_add_uuid128_descriptor_id

Value:

0x09460020

Definition at line 8443 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gattdb_remove_descriptor_id

#define sl_bt_cmd_gattdb_remove_descriptor_id

Value:

0�0a460020

Definition at line 8444 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gattdb_start_service_id

#define sl_bt_cmd_gattdb_start_service_id

Value:

0�0b460020

Definition at line 8445 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gattdb_stop_service_id

#define sl_bt_cmd_gattdb_stop_service_id

Value:

0�0c460020

Definition at line 8446 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gattdb_start_characteristic_id

#define sl_bt_cmd_gattdb_start_characteristic_id

Value:

0�0d460020

Definition at line 8447 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gattdb_stop_characteristic_id

#define sl_bt_cmd_gattdb_stop_characteristic_id

Value:

GATT Database

652/1306

0x0e460020

Definition at line 8448 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gattdb_commit_id

#define sl_bt_cmd_gattdb_commit_id

Value:

0�0f460020

Definition at line 8449 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gattdb_abort_id

#define sl_bt_cmd_gattdb_abort_id

Value:

0�10460020

Definition at line 8450 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gattdb_new_session_id

#define sl_bt_rsp_gattdb_new_session_id

Value:

0�00460020

Definition at line 8451 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gattdb_add_service_id

#define sl_bt_rsp_gattdb_add_service_id

Value:

0�01460020

Definition at line 8452 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gattdb_remove_service_id

#define sl_bt_rsp_gattdb_remove_service_id

Value:

0�02460020

Definition at line 8453 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

GATT Database

653/1306

sl_bt_rsp_gattdb_add_included_service_id

#define sl_bt_rsp_gattdb_add_included_service_id

Value:

0�03460020

Definition at line 8454 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gattdb_remove_included_service_id

#define sl_bt_rsp_gattdb_remove_included_service_id

Value:

0�04460020

Definition at line 8455 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gattdb_add_uuid16_characteristic_id

#define sl_bt_rsp_gattdb_add_uuid16_characteristic_id

Value:

0�05460020

Definition at line 8456 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gattdb_add_uuid128_characteristic_id

#define sl_bt_rsp_gattdb_add_uuid128_characteristic_id

Value:

0�06460020

Definition at line 8457 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gattdb_remove_characteristic_id

#define sl_bt_rsp_gattdb_remove_characteristic_id

Value:

0�07460020

Definition at line 8458 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gattdb_add_uuid16_descriptor_id

#define sl_bt_rsp_gattdb_add_uuid16_descriptor_id

GATT Database

654/1306

Value:

0x08460020

Definition at line 8459 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gattdb_add_uuid128_descriptor_id

#define sl_bt_rsp_gattdb_add_uuid128_descriptor_id

Value:

0�09460020

Definition at line 8460 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gattdb_remove_descriptor_id

#define sl_bt_rsp_gattdb_remove_descriptor_id

Value:

0�0a460020

Definition at line 8461 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gattdb_start_service_id

#define sl_bt_rsp_gattdb_start_service_id

Value:

0�0b460020

Definition at line 8462 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gattdb_stop_service_id

#define sl_bt_rsp_gattdb_stop_service_id

Value:

0�0c460020

Definition at line 8463 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gattdb_start_characteristic_id

#define sl_bt_rsp_gattdb_start_characteristic_id

Value:

0�0d460020

Definition at line 8464 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

GATT Database

655/1306

sl_bt_rsp_gattdb_stop_characteristic_id

#define sl_bt_rsp_gattdb_stop_characteristic_id

Value:

0�0e460020

Definition at line 8465 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gattdb_commit_id

#define sl_bt_rsp_gattdb_commit_id

Value:

0�0f460020

Definition at line 8466 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gattdb_abort_id

#define sl_bt_rsp_gattdb_abort_id

Value:

0�10460020

Definition at line 8467 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

GATT Service Property Flags

656/1306

GATT Service Property Flags

GATT Service Property Flags
This enum defines GATT service property flags.

Macros

#define SL_BT_GATTDB_ADVERTISED_SERVICE 0�1

Macro Definition Documentation

SL_BT_GATTDB_ADVERTISED_SERVICE

#define SL_BT_GATTDB_ADVERTISED_SERVICE

Value:

0�1

The service should be advertised.

Definition at line 8507 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

GATT Attribute Security Requirement Flags

657/1306

GATT Attribute Security Requirement Flags

GATT Attribute Security Requirement Flags
This enum defines the security requirement flags for GATT characteristic value properties.

Macros

#define SL_BT_GATTDB_ENCRYPTED_READ 0�1

#define SL_BT_GATTDB_BONDED_READ 0�2

#define SL_BT_GATTDB_AUTHENTICATED_READ 0�4

#define SL_BT_GATTDB_ENCRYPTED_WRITE 0�8

#define SL_BT_GATTDB_BONDED_WRITE 0�10

#define SL_BT_GATTDB_AUTHENTICATED_WRITE 0�20

#define SL_BT_GATTDB_ENCRYPTED_NOTIFY 0�40

#define SL_BT_GATTDB_BONDED_NOTIFY 0�80

#define SL_BT_GATTDB_AUTHENTICATED_NOTIFY 0�100

Macro Definition Documentation

SL_BT_GATTDB_ENCRYPTED_READ

#define SL_BT_GATTDB_ENCRYPTED_READ

Value:

0�1

The read property requires pairing and encrypted connection.

Definition at line 8520 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_GATTDB_BONDED_READ

#define SL_BT_GATTDB_BONDED_READ

Value:

0�2

The read property requires bonding and encrypted connection.

Definition at line 8523 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

GATT Attribute Security Requirement Flags

658/1306

SL_BT_GATTDB_AUTHENTICATED_READ

#define SL_BT_GATTDB_AUTHENTICATED_READ

Value:

0�4

The read property requires authenticated pairing and encrypted connection.

Definition at line 8527 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_GATTDB_ENCRYPTED_WRITE

#define SL_BT_GATTDB_ENCRYPTED_WRITE

Value:

0�8

The write property requires pairing and encrypted connection.

Definition at line 8530 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_GATTDB_BONDED_WRITE

#define SL_BT_GATTDB_BONDED_WRITE

Value:

0�10

The write property requires bonding and encrypted connection.

Definition at line 8533 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_GATTDB_AUTHENTICATED_WRITE

#define SL_BT_GATTDB_AUTHENTICATED_WRITE

Value:

0�20

The write property requires authenticated pairing and encrypted connection.

Definition at line 8537 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_GATTDB_ENCRYPTED_NOTIFY

#define SL_BT_GATTDB_ENCRYPTED_NOTIFY

Value:

GATT Attribute Security Requirement Flags

659/1306

0x40

The notification and indication properties require pairing and encrypted connection.

Definition at line 8541 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_GATTDB_BONDED_NOTIFY

#define SL_BT_GATTDB_BONDED_NOTIFY

Value:

0�80

The notification and indication properties require bonding and encrypted connection.

Definition at line 8545 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_GATTDB_AUTHENTICATED_NOTIFY

#define SL_BT_GATTDB_AUTHENTICATED_NOTIFY

Value:

0�100

The notification and indication properties require authenticated pairing and encrypted connection.

Definition at line 8549 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

GATT Database Flags

660/1306

GATT Database Flags

GATT Database Flags
This enum defines the options of GATT attribute management.

Macros

#define SL_BT_GATTDB_NO_AUTO_CCCD 0�1

Macro Definition Documentation

SL_BT_GATTDB_NO_AUTO_CCCD

#define SL_BT_GATTDB_NO_AUTO_CCCD

Value:

0�1

Do not automatically create a Client Characteristic Configuration descriptor when adding a characteristic that has the notify

or indicate property.

Definition at line 8562 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

GATT Characteristic Property Flags

661/1306

GATT Characteristic Property Flags

GATT Characteristic Property Flags
This enum defines the property flags for GATT characteristic values. Lower byte is Characteristic Properties and higher byte

is Characteristic Extended Properties.

Macros

#define SL_BT_GATTDB_CHARACTERISTIC_READ 0�2

#define SL_BT_GATTDB_CHARACTERISTIC_WRITE_NO_RESPONSE 0�4

#define SL_BT_GATTDB_CHARACTERISTIC_WRITE 0�8

#define SL_BT_GATTDB_CHARACTERISTIC_NOTIFY 0�10

#define SL_BT_GATTDB_CHARACTERISTIC_INDICATE 0�20

#define SL_BT_GATTDB_CHARACTERISTIC_EXTENDED_PROPS 0�80

#define SL_BT_GATTDB_CHARACTERISTIC_RELIABLE_WRITE 0�101

Macro Definition Documentation

SL_BT_GATTDB_CHARACTERISTIC_READ

#define SL_BT_GATTDB_CHARACTERISTIC_READ

Value:

0�2

A GATT client can read the characteristic value.

Definition at line 8576 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_GATTDB_CHARACTERISTIC_WRITE_NO_RESPONSE

#define SL_BT_GATTDB_CHARACTERISTIC_WRITE_NO_RESPONSE

Value:

0�4

A GATT client can write the characteristic value without a response.

Definition at line 8579 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

GATT Characteristic Property Flags

662/1306

SL_BT_GATTDB_CHARACTERISTIC_WRITE

#define SL_BT_GATTDB_CHARACTERISTIC_WRITE

Value:

0�8

A GATT client can write the characteristic value.

Definition at line 8582 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_GATTDB_CHARACTERISTIC_NOTIFY

#define SL_BT_GATTDB_CHARACTERISTIC_NOTIFY

Value:

0�10

The characteristic value can be notified without acknowledgment.

Definition at line 8585 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_GATTDB_CHARACTERISTIC_INDICATE

#define SL_BT_GATTDB_CHARACTERISTIC_INDICATE

Value:

0�20

The characteristic value can be notified with acknowledgment.

Definition at line 8588 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_GATTDB_CHARACTERISTIC_EXTENDED_PROPS

#define SL_BT_GATTDB_CHARACTERISTIC_EXTENDED_PROPS

Value:

0�80

The additional characteristic properties are defined.

Definition at line 8591 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_GATTDB_CHARACTERISTIC_RELIABLE_WRITE

#define SL_BT_GATTDB_CHARACTERISTIC_RELIABLE_WRITE

Value:

GATT Characteristic Property Flags

663/1306

0x101

The characteristic value supports reliable write.

Definition at line 8594 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

GATT Descriptor Property Flags

664/1306

GATT Descriptor Property Flags

GATT Descriptor Property Flags
This enum defines the property flags for GATT characteristic descriptors.

Macros

#define SL_BT_GATTDB_DESCRIPTOR_READ 0�1

#define SL_BT_GATTDB_DESCRIPTOR_WRITE 0�2

#define SL_BT_GATTDB_DESCRIPTOR_LOCAL_ONLY 0�200

Macro Definition Documentation

SL_BT_GATTDB_DESCRIPTOR_READ

#define SL_BT_GATTDB_DESCRIPTOR_READ

Value:

0�1

A GATT client can read the descriptor value.

Definition at line 8606 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_GATTDB_DESCRIPTOR_WRITE

#define SL_BT_GATTDB_DESCRIPTOR_WRITE

Value:

0�2

A GATT client can write the descriptor value.

Definition at line 8609 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_GATTDB_DESCRIPTOR_LOCAL_ONLY

#define SL_BT_GATTDB_DESCRIPTOR_LOCAL_ONLY

Value:

0�200

GATT Descriptor Property Flags

665/1306

The descriptor is local only and should be invisible to GATT clients.

Definition at line 8612 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

GATT Server

666/1306

GATT Server

Modules

sl_bt_evt_gatt_server_attribute_value

sl_bt_evt_gatt_server_user_read_request

sl_bt_evt_gatt_server_user_write_request

sl_bt_evt_gatt_server_characteristic_status

sl_bt_evt_gatt_server_execute_write_completed

sl_bt_evt_gatt_server_indication_timeout

sl_bt_evt_gatt_server_notification_tx_completed

GATT Server
GATT Server.

These commands and events are used for accessing to the local GATT server and database.

Enumerations

enum sl_bt_gatt_server_client_configuration_t {

sl_bt_gatt_server_disable = 0�0
sl_bt_gatt_server_notification = 0�1
sl_bt_gatt_server_indication = 0�2
sl_bt_gatt_server_notification_and_indication = 0�3

}
These values define whether the server is to sent notifications or indications to a remote GATT server.

enum sl_bt_gatt_server_characteristic_status_flag_t {

sl_bt_gatt_server_client_config = 0�1
sl_bt_gatt_server_confirmation = 0�2

}
These values describe whether the characteristic client configuration was changed or whether a characteristic

confirmation was received.

Functions

sl_status_t sl_bt_gatt_server_set_max_mtu(uint16_t max_mtu, uint16_t *max_mtu_out)

sl_status_t sl_bt_gatt_server_get_mtu(uint8_t connection, uint16_t *mtu)

sl_status_t sl_bt_gatt_server_find_attribute(uint16_t start, size_t type_len, const uint8_t *type, uint16_t *attribute)

sl_status_t sl_bt_gatt_server_read_attribute_value(uint16_t attribute, uint16_t offset, size_t max_value_size, size_t
*value_len, uint8_t *value)

sl_status_t sl_bt_gatt_server_read_attribute_type(uint16_t attribute, size_t max_type_size, size_t *type_len, uint8_t *type)

GATT Server

667/1306

sl_status_t sl_bt_gatt_server_write_attribute_value(uint16_t attribute, uint16_t offset, size_t value_len, const uint8_t *value)

sl_status_t sl_bt_gatt_server_send_user_read_response(uint8_t connection, uint16_t characteristic, uint8_t att_errorcode,
size_t value_len, const uint8_t *value, uint16_t *sent_len)

sl_status_t sl_bt_gatt_server_send_user_write_response(uint8_t connection, uint16_t characteristic, uint8_t att_errorcode)

sl_status_t sl_bt_gatt_server_send_notification(uint8_t connection, uint16_t characteristic, size_t value_len, const uint8_t
*value)

sl_status_t sl_bt_gatt_server_send_indication(uint8_t connection, uint16_t characteristic, size_t value_len, const uint8_t
*value)

sl_status_t sl_bt_gatt_server_notify_all(uint16_t characteristic, size_t value_len, const uint8_t *value)

sl_status_t sl_bt_gatt_server_read_client_configuration(uint8_t connection, uint16_t characteristic, uint16_t
*client_config_flags)

sl_status_t sl_bt_gatt_server_send_user_prepare_write_response(uint8_t connection, uint16_t characteristic, uint8_t
att_errorcode, uint16_t offset, size_t value_len, const uint8_t *value)

sl_status_t sl_bt_gatt_server_set_capabilities(uint32_t caps, uint32_t reserved)

sl_status_t sl_bt_gatt_server_enable_capabilities(uint32_t caps)

sl_status_t sl_bt_gatt_server_disable_capabilities(uint32_t caps)

sl_status_t sl_bt_gatt_server_get_enabled_capabilities(uint32_t *caps)

sl_status_t sl_bt_gatt_server_read_client_supported_features(uint8_t connection, uint8_t *client_features)

Macros

#define sl_bt_cmd_gatt_server_set_max_mtu_id 0�0a0a0020

#define sl_bt_cmd_gatt_server_get_mtu_id 0�0b0a0020

#define sl_bt_cmd_gatt_server_find_attribute_id 0�060a0020

#define sl_bt_cmd_gatt_server_read_attribute_value_id 0�000a0020

#define sl_bt_cmd_gatt_server_read_attribute_type_id 0�010a0020

#define sl_bt_cmd_gatt_server_write_attribute_value_id 0�020a0020

#define sl_bt_cmd_gatt_server_send_user_read_response_id 0�030a0020

#define sl_bt_cmd_gatt_server_send_user_write_response_id 0�040a0020

#define sl_bt_cmd_gatt_server_send_notification_id 0�0f0a0020

#define sl_bt_cmd_gatt_server_send_indication_id 0�100a0020

#define sl_bt_cmd_gatt_server_notify_all_id 0�110a0020

#define sl_bt_cmd_gatt_server_read_client_configuration_id 0�120a0020

#define sl_bt_cmd_gatt_server_send_user_prepare_write_response_id 0�140a0020

#define sl_bt_cmd_gatt_server_set_capabilities_id 0�080a0020

#define sl_bt_cmd_gatt_server_enable_capabilities_id 0�0c0a0020

GATT Server

668/1306

#define sl_bt_cmd_gatt_server_disable_capabilities_id 0�0d0a0020

#define sl_bt_cmd_gatt_server_get_enabled_capabilities_id 0�0e0a0020

#define sl_bt_cmd_gatt_server_read_client_supported_features_id 0�150a0020

#define sl_bt_rsp_gatt_server_set_max_mtu_id 0�0a0a0020

#define sl_bt_rsp_gatt_server_get_mtu_id 0�0b0a0020

#define sl_bt_rsp_gatt_server_find_attribute_id 0�060a0020

#define sl_bt_rsp_gatt_server_read_attribute_value_id 0�000a0020

#define sl_bt_rsp_gatt_server_read_attribute_type_id 0�010a0020

#define sl_bt_rsp_gatt_server_write_attribute_value_id 0�020a0020

#define sl_bt_rsp_gatt_server_send_user_read_response_id 0�030a0020

#define sl_bt_rsp_gatt_server_send_user_write_response_id 0�040a0020

#define sl_bt_rsp_gatt_server_send_notification_id 0�0f0a0020

#define sl_bt_rsp_gatt_server_send_indication_id 0�100a0020

#define sl_bt_rsp_gatt_server_notify_all_id 0�110a0020

#define sl_bt_rsp_gatt_server_read_client_configuration_id 0�120a0020

#define sl_bt_rsp_gatt_server_send_user_prepare_write_response_id 0�140a0020

#define sl_bt_rsp_gatt_server_set_capabilities_id 0�080a0020

#define sl_bt_rsp_gatt_server_enable_capabilities_id 0�0c0a0020

#define sl_bt_rsp_gatt_server_disable_capabilities_id 0�0d0a0020

#define sl_bt_rsp_gatt_server_get_enabled_capabilities_id 0�0e0a0020

#define sl_bt_rsp_gatt_server_read_client_supported_features_id 0�150a0020

Enumeration Documentation

sl_bt_gatt_server_client_configuration_t

sl_bt_gatt_server_client_configuration_t

These values define whether the server is to sent notifications or indications to a remote GATT server.

Enumerator

sl_bt_gatt_server_disable

sl_bt_gatt_server_notification

sl_bt_gatt_server_indication

sl_bt_gatt_server_notification_and_indication

Definition at line 9160 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_server_characteristic_status_flag_t

GATT Server

669/1306

sl_bt_gatt_server_characteristic_status_flag_t

These values describe whether the characteristic client configuration was changed or whether a characteristic confirmation

was received.

Enumerator

sl_bt_gatt_server_client_config

sl_bt_gatt_server_confirmation

Definition at line 9184 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Function Documentation

sl_bt_gatt_server_set_max_mtu

sl_status_t sl_bt_gatt_server_set_max_mtu (uint16_t max_mtu, uint16_t *max_mtu_out)

Parameters

[in] max_mtu Maximum size of Message Transfer Units (MTU) allowed

Range: 23 to 250

Default: 247

[out] max_mtu_out The maximum ATT_MTU selected by the system if this command succeeded

Set the maximum size of ATT Message Transfer Units (MTU). The functionality is the same as sl_bt_gatt_set_max_mtu and

this setting applies to both GATT client and server. If the given value is too large according to the maximum BGAPI payload

size, the system will select the maximum possible value as the maximum ATT_MTU. If the maximum ATT_MTU is larger than

23, the GATT client in the stack will automatically send an MTU exchange request after a Bluetooth connection was

established.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9459 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_server_get_mtu

sl_status_t sl_bt_gatt_server_get_mtu (uint8_t connection, uint16_t *mtu)

Parameters

[in] connection Connection handle

[out] mtu The maximum ATT_MTU used by the connection

Get the size of ATT Message Transfer Units (MTU) for a connection.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9472 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_server_find_attribute

GATT Server

670/1306

sl_status_t sl_bt_gatt_server_find_attribute (uint16_t start, size_t type_len, const uint8_t *type, uint16_t *attribute)

Parameters

[in] start Search start handle

[in] type_len Length of data in type

[in] type The attribute type UUID

[out] attribute Attribute handle

Find attributes of a certain type from a local GATT database. The type is usually given as a 16-bit or 128-bit UUID in little

endian format.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9487 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_server_read_attribute_value

sl_status_t sl_bt_gatt_server_read_attribute_value (uint16_t attribute, uint16_t offset, size_t max_value_size, size_t
*value_len, uint8_t *value)

Parameters

[in] attribute Attribute handle

[in] offset Value offset

[in] max_value_size Size of output buffer passed in value

[out] value_len On return, set to the length of output data written to value

[out] value The attribute value

Read the value of an attribute from a local GATT database. Only (maximum BGAPI payload size - 3) amount of data can be

read at once. The application can continue reading with increased offset value if it receives (maximum BGAPI payload size -

3) amount of data.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9509 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_server_read_attribute_type

sl_status_t sl_bt_gatt_server_read_attribute_type (uint16_t attribute, size_t max_type_size, size_t *type_len, uint8_t *type)

Parameters

[in] attribute Attribute handle

[in] max_type_size Size of output buffer passed in type

[out] type_len On return, set to the length of output data written to type

[out] type The attribute type UUID

GATT Server

671/1306

Read the type of an attribute from a local GATT database. The type is a UUID, usually 16 or 128 bits long in little endian

format.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9529 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_server_write_attribute_value

sl_status_t sl_bt_gatt_server_write_attribute_value (uint16_t attribute, uint16_t offset, size_t value_len, const uint8_t *value)

Parameters

[in] attribute Attribute handle

[in] offset Value offset

[in] value_len Length of data in value

[in] value Value

Write the value of an attribute in the local GATT database. Writing the value of a characteristic of the local GATT database

will not trigger notifications or indications to the remote GATT client if the characteristic has a property to indicate or notify

and the client has enabled notification or indication. Notifications and indications are sent to the remote GATT client using

sl_bt_gatt_server_send_notification or sl_bt_gatt_server_send_indication commands.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9552 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_server_send_user_read_response

sl_status_t sl_bt_gatt_server_send_user_read_response (uint8_t connection, uint16_t characteristic, uint8_t att_errorcode,
size_t value_len, const uint8_t *value, uint16_t *sent_len)

Parameters

[in] connection Connection handle

[in] characteristic GATT characteristic handle received in the sl_bt_evt_gatt_server_user_read_request event.

[in] att_errorcode Attribute protocol error code

0: No error

Non-zero: See Bluetooth specification, Host volume, Attribute Protocol, Error Codes table.

[in] value_len Length of data in value

[in] value Characteristic value to send to the GATT client. Ignored if att_errorcode is not 0.

[out] sent_len The length of data sent to the remote GATT client

Send a response to a sl_bt_evt_gatt_server_user_read_request event. The response needs to be sent within 30 seconds,

otherwise no more GATT transactions are allowed by the remote side. If attr_errorcode is set to 0, the characteristic value is

sent to the remote GATT client in the standard way. Other attr_errorcode values will cause the local GATT server to send an

attribute protocol error response instead of the actual data. At most, ATT_MTU - 1 amount of data can be sent at one time.

The client will continue reading by sending new read request with an increased offset value if it receives ATT_MTU - 1

amount of data.

GATT Server

672/1306

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9584 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_server_send_user_write_response

sl_status_t sl_bt_gatt_server_send_user_write_response (uint8_t connection, uint16_t characteristic, uint8_t att_errorcode)

Parameters

[in] connection Connection handle

[in] characteristic GATT characteristic handle received in the sl_bt_evt_gatt_server_user_write_request event

[in] att_errorcode Attribute protocol error code

0: No error

Non-zero: See Bluetooth specification, Host volume, Attribute Protocol, Error Codes table.

Send a response to a sl_bt_evt_gatt_server_user_write_request event when parameter att_opcode in the event is

sl_bt_gatt_write_request or sl_bt_gatt_execute_write_request (see sl_bt_gatt_att_opcode_t). The response needs to be sent

within 30 seconds, otherwise no more GATT transactions are allowed by the remote side. When responding to

sl_bt_gatt_execute_write_request, the value of parameter characteristic is ignored. If attr_errorcode is set to 0, the ATT

protocol's write response is sent to indicate to the remote GATT client that the write operation was processed successfully.

Other values will cause the local GATT server to send an ATT protocol error response.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9615 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_server_send_notification

sl_status_t sl_bt_gatt_server_send_notification (uint8_t connection, uint16_t characteristic, size_t value_len, const uint8_t
*value)

Parameters

[in] connection A handle of the connection over which the notification is sent.

[in] characteristic Characteristic handle

[in] value_len Length of data in value

[in] value Value to be notified

Send a notification to a remote GATT client. At most, ATT_MTU - 3 amount of data can be sent in a notification. An error

SL_STATUS_COMMAND_TOO_LONG is returned if the value length exceeds ATT_MTU - 3.

A notification is sent only if the client has enabled it by setting the corresponding flag to the Client Characteristic

Configuration descriptor. The error SL_STATUS_INVALID_PARAMETER is returned if the characteristic does not have the

notification property. The error SL_STATUS_INVALID_STATE is returned if the client has not enabled the notification.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9640 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

GATT Server

673/1306

sl_bt_gatt_server_send_indication

sl_status_t sl_bt_gatt_server_send_indication (uint8_t connection, uint16_t characteristic, size_t value_len, const uint8_t
*value)

Parameters

[in] connection A handle of the connection over which the indication is sent.

[in] characteristic Characteristic handle

[in] value_len Length of data in value

[in] value Value to be indicated

Send an indication to a remote GATT client. At most, ATT_MTU - 3 amount of data can be sent in an indication. An error

SL_STATUS_COMMAND_TOO_LONG is returned if the value length exceeds ATT_MTU - 3.

An indication is sent only if the client has enabled it by setting the corresponding flag to the Client Characteristic

Configuration descriptor. The error SL_STATUS_INVALID_PARAMETER is returned if the characteristic does not have the

indication property. The error SL_STATUS_INVALID_STATE is returned if the client has not enabled the indication.

A new indication to a GATT client can't be sent until an outstanding indication procedure with the same client has

completed. The procedure is completed when a confirmation from the client is received. The confirmation is indicated by

sl_bt_evt_gatt_server_characteristic_status.

The error SL_STATUS_IN_PROGRESS is returned if an indication procedure with the same client is outstanding. Always wait

for confirmation for previous indication before sending a new indication.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_gatt_server_characteristic_status - This event is triggered after the confirmation from the client is received.

sl_bt_evt_gatt_server_indication_timeout - This event indicates confirmation from the remote GATT client has not been

received within 30 seconds after an indication was sent. Further GATT transactions over this connection are not allowed by

the stack.

Definition at line 9683 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_server_notify_all

sl_status_t sl_bt_gatt_server_notify_all (uint16_t characteristic, size_t value_len, const uint8_t *value)

Parameters

[in] characteristic Characteristic handle

[in] value_len Length of data in value

[in] value Value to be notified or indicated

Send notifications or indications to all connected remote GATT clients. At most, ATT_MTU - 3 amount of data can be sent in

a notification or indication. If the value length exceeds the limit on a connection, the first ATT_MTU - 3 bytes will be sent

and rest of data is ignored.

A notification or indication is sent only if the client has enabled it by setting the corresponding flag to the Client

Characteristic Configuration descriptor. If the Client Characteristic Configuration descriptor supports both notifications and

indications, the stack will always send a notification even when the client has enabled both.

GATT Server

674/1306

A new indication to a GATT client can't be sent until an outstanding indication procedure with the same client has

completed, and the operation will continue for the next client. The procedure is completed when a confirmation from the

client is received. The confirmation is indicated by sl_bt_evt_gatt_server_characteristic_status.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9714 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_server_read_client_configuration

sl_status_t sl_bt_gatt_server_read_client_configuration (uint8_t connection, uint16_t characteristic, uint16_t
*client_config_flags)

Parameters

[in] connection A handle of the connection to a remote client.

[in] characteristic Characteristic handle

[out] client_config_flags Enum sl_bt_gatt_server_client_configuration_t. Client characteristic configuration of a remote

client.

Read client characteristic configuration of a remote GATT client.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9731 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_server_send_user_prepare_write_response

sl_status_t sl_bt_gatt_server_send_user_prepare_write_response (uint8_t connection, uint16_t characteristic, uint8_t
att_errorcode, uint16_t offset, size_t value_len, const uint8_t *value)

Parameters

[in] connection Connection handle

[in] characteristic GATT characteristic handle. This value is normally received from the gatt_characteristic event.

[in] att_errorcode Attribute protocol error code

0: No error

Non-zero: See Bluetooth specification, Host volume, Attribute Protocol, Error Codes table.

[in] offset Value offset

[in] value_len Length of data in value

[in] value Value

Send a response to a sl_bt_evt_gatt_server_user_write_request event when parameter att_opcode in the event is

sl_bt_gatt_prepare_write_request (see sl_bt_gatt_att_opcode_t). The response needs to be sent within 30 seconds,

otherwise no more GATT transactions are allowed by the remote side. If att_errorcode is set to 0, the ATT protocol's prepare

write response is sent to indicate to the remote GATT client that the write operation was processed successfully. Other

values will cause the local GATT server to send an ATT protocol error response. The application should set values of

parameters offset and value to identical values from the sl_bt_evt_gatt_server_user_write_request event. The values will be

verified on the client side in case the request is a reliable write (by Bluetooth Core Specification Volume 3, Part G, 4.9.5).

GATT Server

675/1306

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9764 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_server_set_capabilities

sl_status_t sl_bt_gatt_server_set_capabilities (uint32_t caps, uint32_t reserved)

Parameters

[in] caps Bit flags of capabilities to reset. Value 0 sets the default database capabilities.

[in] reserved Use the value 0 on this reserved field. Do not use none-zero values because they are reserved for future

use.

Reset capabilities that should be enabled by the GATT database. A service is visible to remote GATT clients if at least one of

its capabilities is enabled. The same applies to a characteristic and its attributes. Capability identifiers and their

corresponding bit flag values are in the auto-generated database header file. See UG118: Blue Gecko Bluetooth Profile

Toolkit Developer's Guide for how to declare capabilities in the GATT database.

Changing the capabilities of a database effectively causes a database change (attributes being added or removed) from a

remote GATT client point of view. If the database has a Generic Attribute service and Service Changed characteristic, the

stack will monitor the local database change status and manage service changed indications for a GATT client that has

enabled the indication configuration of the Service Changed characteristic.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9795 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_server_enable_capabilities

sl_status_t sl_bt_gatt_server_enable_capabilities (uint32_t caps)

Parameters

[in] caps Capabilities to enable

Enable additional capabilities in the local GATT database. Already enabled capabilities keep unchanged after this command.

See sl_bt_gatt_server_set_capabilities for more information.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9809 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_server_disable_capabilities

sl_status_t sl_bt_gatt_server_disable_capabilities (uint32_t caps)

Parameters

[in] caps Capabilities to disable

GATT Server

676/1306

Disable the given capabilities in the local GATT database. See sl_bt_gatt_server_set_capabilities for more information.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9821 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_server_get_enabled_capabilities

sl_status_t sl_bt_gatt_server_get_enabled_capabilities (uint32_t *caps)

Parameters

[out] caps Enabled capabilities

Get capabilities currently enabled in the local GATT database.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9832 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_gatt_server_read_client_supported_features

sl_status_t sl_bt_gatt_server_read_client_supported_features (uint8_t connection, uint8_t *client_features)

Parameters

[in] connection A handle of the connection to a remote client.

[out] client_features Bit field describing client supported features of a remote client. See Bluetooth specification Vol 3,

Part G, 7.2 for the values.

Read client supported features of a remote GATT client.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9846 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_gatt_server_set_max_mtu_id

#define sl_bt_cmd_gatt_server_set_max_mtu_id

Value:

0�0a0a0020

Definition at line 9119 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_server_get_mtu_id

GATT Server

677/1306

#define sl_bt_cmd_gatt_server_get_mtu_id

Value:

0x0b0a0020

Definition at line 9120 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_server_find_attribute_id

#define sl_bt_cmd_gatt_server_find_attribute_id

Value:

0�060a0020

Definition at line 9121 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_server_read_attribute_value_id

#define sl_bt_cmd_gatt_server_read_attribute_value_id

Value:

0�000a0020

Definition at line 9122 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_server_read_attribute_type_id

#define sl_bt_cmd_gatt_server_read_attribute_type_id

Value:

0�010a0020

Definition at line 9123 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_server_write_attribute_value_id

#define sl_bt_cmd_gatt_server_write_attribute_value_id

Value:

0�020a0020

Definition at line 9124 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_server_send_user_read_response_id

#define sl_bt_cmd_gatt_server_send_user_read_response_id

Value:

GATT Server

678/1306

0x030a0020

Definition at line 9125 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_server_send_user_write_response_id

#define sl_bt_cmd_gatt_server_send_user_write_response_id

Value:

0�040a0020

Definition at line 9126 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_server_send_notification_id

#define sl_bt_cmd_gatt_server_send_notification_id

Value:

0�0f0a0020

Definition at line 9127 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_server_send_indication_id

#define sl_bt_cmd_gatt_server_send_indication_id

Value:

0�100a0020

Definition at line 9128 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_server_notify_all_id

#define sl_bt_cmd_gatt_server_notify_all_id

Value:

0�110a0020

Definition at line 9129 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_server_read_client_configuration_id

#define sl_bt_cmd_gatt_server_read_client_configuration_id

Value:

0�120a0020

Definition at line 9130 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

GATT Server

679/1306

sl_bt_cmd_gatt_server_send_user_prepare_write_response_id

#define sl_bt_cmd_gatt_server_send_user_prepare_write_response_id

Value:

0�140a0020

Definition at line 9131 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_server_set_capabilities_id

#define sl_bt_cmd_gatt_server_set_capabilities_id

Value:

0�080a0020

Definition at line 9132 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_server_enable_capabilities_id

#define sl_bt_cmd_gatt_server_enable_capabilities_id

Value:

0�0c0a0020

Definition at line 9133 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_server_disable_capabilities_id

#define sl_bt_cmd_gatt_server_disable_capabilities_id

Value:

0�0d0a0020

Definition at line 9134 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_server_get_enabled_capabilities_id

#define sl_bt_cmd_gatt_server_get_enabled_capabilities_id

Value:

0�0e0a0020

Definition at line 9135 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_gatt_server_read_client_supported_features_id

#define sl_bt_cmd_gatt_server_read_client_supported_features_id

GATT Server

680/1306

Value:

0x150a0020

Definition at line 9136 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_server_set_max_mtu_id

#define sl_bt_rsp_gatt_server_set_max_mtu_id

Value:

0�0a0a0020

Definition at line 9137 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_server_get_mtu_id

#define sl_bt_rsp_gatt_server_get_mtu_id

Value:

0�0b0a0020

Definition at line 9138 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_server_find_attribute_id

#define sl_bt_rsp_gatt_server_find_attribute_id

Value:

0�060a0020

Definition at line 9139 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_server_read_attribute_value_id

#define sl_bt_rsp_gatt_server_read_attribute_value_id

Value:

0�000a0020

Definition at line 9140 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_server_read_attribute_type_id

#define sl_bt_rsp_gatt_server_read_attribute_type_id

Value:

0�010a0020

Definition at line 9141 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

GATT Server

681/1306

sl_bt_rsp_gatt_server_write_attribute_value_id

#define sl_bt_rsp_gatt_server_write_attribute_value_id

Value:

0�020a0020

Definition at line 9142 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_server_send_user_read_response_id

#define sl_bt_rsp_gatt_server_send_user_read_response_id

Value:

0�030a0020

Definition at line 9143 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_server_send_user_write_response_id

#define sl_bt_rsp_gatt_server_send_user_write_response_id

Value:

0�040a0020

Definition at line 9144 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_server_send_notification_id

#define sl_bt_rsp_gatt_server_send_notification_id

Value:

0�0f0a0020

Definition at line 9145 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_server_send_indication_id

#define sl_bt_rsp_gatt_server_send_indication_id

Value:

0�100a0020

Definition at line 9146 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_server_notify_all_id

#define sl_bt_rsp_gatt_server_notify_all_id

GATT Server

682/1306

Value:

0x110a0020

Definition at line 9147 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_server_read_client_configuration_id

#define sl_bt_rsp_gatt_server_read_client_configuration_id

Value:

0�120a0020

Definition at line 9148 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_server_send_user_prepare_write_response_id

#define sl_bt_rsp_gatt_server_send_user_prepare_write_response_id

Value:

0�140a0020

Definition at line 9149 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_server_set_capabilities_id

#define sl_bt_rsp_gatt_server_set_capabilities_id

Value:

0�080a0020

Definition at line 9150 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_server_enable_capabilities_id

#define sl_bt_rsp_gatt_server_enable_capabilities_id

Value:

0�0c0a0020

Definition at line 9151 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_server_disable_capabilities_id

#define sl_bt_rsp_gatt_server_disable_capabilities_id

Value:

0�0d0a0020

Definition at line 9152 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

GATT Server

683/1306

sl_bt_rsp_gatt_server_get_enabled_capabilities_id

#define sl_bt_rsp_gatt_server_get_enabled_capabilities_id

Value:

0�0e0a0020

Definition at line 9153 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_gatt_server_read_client_supported_features_id

#define sl_bt_rsp_gatt_server_read_client_supported_features_id

Value:

0�150a0020

Definition at line 9154 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_server_attribute_value

684/1306

sl_bt_evt_gatt_server_attribute_value

Modules

sl_bt_evt_gatt_server_attribute_value_s

sl_bt_evt_gatt_server_attribute_value
Indicates that the value of an attribute in the local GATT database was changed by a remote GATT client.

The parameter att_opcode describes which GATT procedure was used to change the value.

Typedefs

typedef struct
sl_bt_evt_gatt_ser
ver_attribute_valu

e_s

sl_bt_evt_gatt_server_attribute_value_t

Macros

#define sl_bt_evt_gatt_server_attribute_value_id 0�000a00a0
Identifier of the attribute_value event.

Typedef Documentation

sl_bt_evt_gatt_server_attribute_value_t

typedef struct sl_bt_evt_gatt_server_attribute_value_s sl_bt_evt_gatt_server_attribute_value_t

Definition at line 9219 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_gatt_server_attribute_value_id

#define sl_bt_evt_gatt_server_attribute_value_id

Value:

0�000a00a0

Identifier of the attribute_value event.

Definition at line 9203 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_server_attribute_value_s

685/1306

sl_bt_evt_gatt_server_attribute_value_s

Data structure of the attribute_value event.

Public Attributes

uint8_t connection

uint16_t attribute

uint8_t att_opcode

uint16_t offset

uint8array value

Public Attribute Documentation

connection

uint8_t sl_bt_evt_gatt_server_attribute_value_s::connection

Connection handle

Definition at line 9210 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

attribute

uint16_t sl_bt_evt_gatt_server_attribute_value_s::attribute

Attribute Handle

Definition at line 9211 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

att_opcode

uint8_t sl_bt_evt_gatt_server_attribute_value_s::att_opcode

Enum sl_bt_gatt_att_opcode_t. Attribute opcode that informs the procedure from which the value was received.

Definition at line 9212 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

offset

uint16_t sl_bt_evt_gatt_server_attribute_value_s::offset

Value offset

sl_bt_evt_gatt_server_attribute_value_s

686/1306

Definition at line 9215 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

value

uint8array sl_bt_evt_gatt_server_attribute_value_s::value

Value

Definition at line 9216 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_server_user_read_request

687/1306

sl_bt_evt_gatt_server_user_read_request

Modules

sl_bt_evt_gatt_server_user_read_request_s

sl_bt_evt_gatt_server_user_read_request
Indicates that a remote GATT client is attempting to read a value of an attribute from the local GATT database, where the

attribute was defined in the GATT database XML file to have the type="user".

The parameter att_opcode informs which GATT procedure was used to read the value. The application needs to respond to

this request by using the sl_bt_gatt_server_send_user_read_response command within 30 seconds, otherwise further GATT

transactions are not allowed by the remote side.

Typedefs

typedef struct
sl_bt_evt_gatt_ser
ver_user_read_re

quest_s

sl_bt_evt_gatt_server_user_read_request_t

Macros

#define sl_bt_evt_gatt_server_user_read_request_id 0�010a00a0
Identifier of the user_read_request event.

Typedef Documentation

sl_bt_evt_gatt_server_user_read_request_t

typedef struct sl_bt_evt_gatt_server_user_read_request_s sl_bt_evt_gatt_server_user_read_request_t

Definition at line 9254 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_gatt_server_user_read_request_id

#define sl_bt_evt_gatt_server_user_read_request_id

Value:

0�010a00a0

Identifier of the user_read_request event.

sl_bt_evt_gatt_server_user_read_request

688/1306

Definition at line 9237 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_server_user_read_request_s

689/1306

sl_bt_evt_gatt_server_user_read_request_s

Data structure of the user_read_request event.

Public Attributes

uint8_t connection

uint16_t characteristic

uint8_t att_opcode

uint16_t offset

Public Attribute Documentation

connection

uint8_t sl_bt_evt_gatt_server_user_read_request_s::connection

Connection handle

Definition at line 9244 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

characteristic

uint16_t sl_bt_evt_gatt_server_user_read_request_s::characteristic

GATT characteristic handle. This value is normally received from the gatt_characteristic event.

Definition at line 9245 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

att_opcode

uint8_t sl_bt_evt_gatt_server_user_read_request_s::att_opcode

Enum sl_bt_gatt_att_opcode_t. Attribute opcode that informs the procedure from which the value was received.

Definition at line 9248 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

offset

uint16_t sl_bt_evt_gatt_server_user_read_request_s::offset

Value offset

Definition at line 9251 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_server_user_write_request

690/1306

sl_bt_evt_gatt_server_user_write_request

Modules

sl_bt_evt_gatt_server_user_write_request_s

sl_bt_evt_gatt_server_user_write_request
Indicates that a remote GATT client is attempting to write a value of an attribute into the local GATT database, where the

attribute was defined in the GATT database XML file to have the type="user".

The parameter att_opcode informs which attribute procedure was used to write the value. If the att_opcode is

sl_bt_gatt_write_request (see sl_bt_gatt_att_opcode_t), the application needs to respond to this request by using the

sl_bt_gatt_server_send_user_write_response command within 30 seconds, otherwise further GATT transactions are not

allowed by the remote side. If the att_opcode is sl_bt_gatt_prepare_write_request, the application needs to respond to this

request by using the sl_bt_gatt_server_send_user_prepare_write_response command within 30 seconds, otherwise further

GATT transactions are not allowed by the remote side. If the value of att_opcode is sl_bt_gatt_execute_write_request, it

indicates that there was one or more prepare writes earlier and now the GATT server is processing the execute write, the

value of characteristic is set to 0 and should be ignored. The event sl_bt_evt_gatt_server_execute_write_completed will be

emitted after responding to sl_bt_gatt_execute_write_request by using sl_bt_gatt_server_send_user_write_response.

Typedefs

typedef struct
sl_bt_evt_gatt_ser
ver_user_write_re

quest_s

sl_bt_evt_gatt_server_user_write_request_t

Macros

#define sl_bt_evt_gatt_server_user_write_request_id 0�020a00a0
Identifier of the user_write_request event.

Typedef Documentation

sl_bt_evt_gatt_server_user_write_request_t

typedef struct sl_bt_evt_gatt_server_user_write_request_s sl_bt_evt_gatt_server_user_write_request_t

Definition at line 9302 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_gatt_server_user_write_request_id

#define sl_bt_evt_gatt_server_user_write_request_id

sl_bt_evt_gatt_server_user_write_request

691/1306

Value:

0x020a00a0

Identifier of the user_write_request event.

Definition at line 9284 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_server_user_write_request_s

692/1306

sl_bt_evt_gatt_server_user_write_request_s

Data structure of the user_write_request event.

Public Attributes

uint8_t connection

uint16_t characteristic

uint8_t att_opcode

uint16_t offset

uint8array value

Public Attribute Documentation

connection

uint8_t sl_bt_evt_gatt_server_user_write_request_s::connection

Connection handle

Definition at line 9291 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

characteristic

uint16_t sl_bt_evt_gatt_server_user_write_request_s::characteristic

GATT characteristic handle. This value is normally received from the gatt_characteristic event.

Definition at line 9292 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

att_opcode

uint8_t sl_bt_evt_gatt_server_user_write_request_s::att_opcode

Enum sl_bt_gatt_att_opcode_t. Attribute opcode that informs the procedure from which the value was received.

Definition at line 9295 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

offset

uint16_t sl_bt_evt_gatt_server_user_write_request_s::offset

Value offset

sl_bt_evt_gatt_server_user_write_request_s

693/1306

Definition at line 9298 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

value

uint8array sl_bt_evt_gatt_server_user_write_request_s::value

Value

Definition at line 9299 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_server_characteristic_status

694/1306

sl_bt_evt_gatt_server_characteristic_status

Modules

sl_bt_evt_gatt_server_characteristic_status_s

sl_bt_evt_gatt_server_characteristic_status
Indicates either that a local Client Characteristic Configuration descriptor was changed by the remote GATT client, or that a

confirmation from the remote GATT client was received upon a successful reception of the indication.

A confirmation by the remote GATT client should be received within 30 seconds after an indication was sent with the

sl_bt_gatt_server_send_indication command, otherwise further GATT transactions over this connection are not allowed by

the stack.

Typedefs

typedef struct
sl_bt_evt_gatt_ser
ver_characteristic

_status_s

sl_bt_evt_gatt_server_characteristic_status_t

Macros

#define sl_bt_evt_gatt_server_characteristic_status_id 0�030a00a0
Identifier of the characteristic_status event.

Typedef Documentation

sl_bt_evt_gatt_server_characteristic_status_t

typedef struct sl_bt_evt_gatt_server_characteristic_status_s sl_bt_evt_gatt_server_characteristic_status_t

Definition at line 9353 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_gatt_server_characteristic_status_id

#define sl_bt_evt_gatt_server_characteristic_status_id

Value:

0�030a00a0

Identifier of the characteristic_status event.

sl_bt_evt_gatt_server_characteristic_status

695/1306

Definition at line 9321 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_server_characteristic_status_s

696/1306

sl_bt_evt_gatt_server_characteristic_status_s

Data structure of the characteristic_status event.

Public Attributes

uint8_t connection

uint16_t characteristic

uint8_t status_flags

uint16_t client_config_flags

uint16_t client_config

Public Attribute Documentation

connection

uint8_t sl_bt_evt_gatt_server_characteristic_status_s::connection

Connection handle

Definition at line 9328 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

characteristic

uint16_t sl_bt_evt_gatt_server_characteristic_status_s::characteristic

GATT characteristic handle. This value is normally received from the gatt_characteristic event.

Definition at line 9329 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

status_flags

uint8_t sl_bt_evt_gatt_server_characteristic_status_s::status_flags

Enum sl_bt_gatt_server_characteristic_status_flag_t. Describes whether Client Characteristic Configuration was changed or

if a confirmation was received. Values:

sl_bt_gatt_server_client_config (0x1): Characteristic client configuration has been changed.

sl_bt_gatt_server_confirmation (0x2): Characteristic confirmation has been received.

Definition at line 9332 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

client_config_flags

sl_bt_evt_gatt_server_characteristic_status_s

697/1306

uint16_t sl_bt_evt_gatt_server_characteristic_status_s::client_config_flags

Enum sl_bt_gatt_server_client_configuration_t. This field carries the new value of the Client Characteristic Configuration. If

the status_flags is 0x2 (confirmation received), the value of this field can be ignored.

Definition at line 9343 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

client_config

uint16_t sl_bt_evt_gatt_server_characteristic_status_s::client_config

The handle of client-config descriptor.

Definition at line 9350 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_server_execute_write_completed

698/1306

sl_bt_evt_gatt_server_execute_write_completed

Modules

sl_bt_evt_gatt_server_execute_write_completed_s

sl_bt_evt_gatt_server_execute_write_completed
Indicates that the execute write command from a remote GATT client has completed with the given result.

Typedefs

typedef struct
sl_bt_evt_gatt_ser
ver_execute_write

_completed_s

sl_bt_evt_gatt_server_execute_write_completed_t

Macros

#define sl_bt_evt_gatt_server_execute_write_completed_id 0�040a00a0
Identifier of the execute_write_completed event.

Typedef Documentation

sl_bt_evt_gatt_server_execute_write_completed_t

typedef struct sl_bt_evt_gatt_server_execute_write_completed_s sl_bt_evt_gatt_server_execute_write_completed_t

Definition at line 9376 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_gatt_server_execute_write_completed_id

#define sl_bt_evt_gatt_server_execute_write_completed_id

Value:

0�040a00a0

Identifier of the execute_write_completed event.

Definition at line 9365 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_server_execute_write_completed_s

699/1306

sl_bt_evt_gatt_server_execute_write_completed_s

Data structure of the execute_write_completed event.

Public Attributes

uint8_t connection

uint16_t result

Public Attribute Documentation

connection

uint8_t sl_bt_evt_gatt_server_execute_write_completed_s::connection

Connection handle

Definition at line 9372 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

result

uint16_t sl_bt_evt_gatt_server_execute_write_completed_s::result

Execute write result

Definition at line 9373 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_server_indication_timeout

700/1306

sl_bt_evt_gatt_server_indication_timeout

Modules

sl_bt_evt_gatt_server_indication_timeout_s

sl_bt_evt_gatt_server_indication_timeout
Indicates confirmation from the remote GATT client has not been received within 30 seconds after an indication was sent.

Furthermore, the stack does not allow GATT transactions over this connection.

Typedefs

typedef struct
sl_bt_evt_gatt_ser
ver_indication_tim

eout_s

sl_bt_evt_gatt_server_indication_timeout_t

Macros

#define sl_bt_evt_gatt_server_indication_timeout_id 0�050a00a0
Identifier of the indication_timeout event.

Typedef Documentation

sl_bt_evt_gatt_server_indication_timeout_t

typedef struct sl_bt_evt_gatt_server_indication_timeout_s sl_bt_evt_gatt_server_indication_timeout_t

Definition at line 9400 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_gatt_server_indication_timeout_id

#define sl_bt_evt_gatt_server_indication_timeout_id

Value:

0�050a00a0

Identifier of the indication_timeout event.

Definition at line 9390 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_server_indication_timeout_s

701/1306

sl_bt_evt_gatt_server_indication_timeout_s

Data structure of the indication_timeout event.

Public Attributes

uint8_t connection

Public Attribute Documentation

connection

uint8_t sl_bt_evt_gatt_server_indication_timeout_s::connection

Connection handle

Definition at line 9397 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_server_notification_tx_completed

702/1306

sl_bt_evt_gatt_server_notification_tx_completed

Modules

sl_bt_evt_gatt_server_notification_tx_completed_s

sl_bt_evt_gatt_server_notification_tx_completed
Indicates that one or more GATT notifications have been transmitted.

By default, this event is not enabled on Bluetooth connections due to additional resource usages

Following enablers are required to enable the Bluetooth stack's functionality for supporting this event,

Include feature bluetooth_feature_resource_report in the application project.

Use command sl_bt_resource_enable_connection_tx_report to enable data packet TX status reports before this Bluetooth

connection is established.

Typedefs

typedef struct
sl_bt_evt_gatt_ser
ver_notification_tx

_completed_s

sl_bt_evt_gatt_server_notification_tx_completed_t

Macros

#define sl_bt_evt_gatt_server_notification_tx_completed_id 0�060a00a0
Identifier of the notification_tx_completed event.

Typedef Documentation

sl_bt_evt_gatt_server_notification_tx_completed_t

typedef struct sl_bt_evt_gatt_server_notification_tx_completed_s sl_bt_evt_gatt_server_notification_tx_completed_t

Definition at line 9433 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_gatt_server_notification_tx_completed_id

#define sl_bt_evt_gatt_server_notification_tx_completed_id

Value:

0�060a00a0

sl_bt_evt_gatt_server_notification_tx_completed

703/1306

Identifier of the notification_tx_completed event.

Definition at line 9422 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_gatt_server_notification_tx_completed_s

704/1306

sl_bt_evt_gatt_server_notification_tx_completed_s

Data structure of the notification_tx_completed event.

Public Attributes

uint8_t connection

uint8_t count

Public Attribute Documentation

connection

uint8_t sl_bt_evt_gatt_server_notification_tx_completed_s::connection

Connection handle

Definition at line 9429 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

count

uint8_t sl_bt_evt_gatt_server_notification_tx_completed_s::count

Number of notifications that have been transmitted

Definition at line 9430 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

NVM

705/1306

NVM

Modules

Defined Keys

NVM
NVM.

Provide an interface to manage user data objects (key/value pairs) in the flash memory. User data stored within the flash

memory is persistent across reset and power cycling of the device. Because Bluetooth bondings are also stored in the flash

area, in addition to the flash storage size, the space available for user data also depends on the number of bondings the

device has at the time.

On EFR32[B|M]G1x devices, either PS Store or NVM3 data storage driver can be used. PS Store is supported by the

Bluetooth stack only. Using NVM3 is recommended if the device needs to support Dynamic Multiple Protocol (DMP). On

EFR32[B|M]G2x devices, only NVM3 is supported. When NVM3 is used, applications can also use the NVM3 APIs directly.

In PS Store, the flash storage size is fixed at 2048 bytes. The maximum data object size associated to a key is 56 bytes. A

Bluetooth bonding uses at maximum 138 bytes for secure connections and 174 bytes for legacy pairing.

In NVM3, the flash store size is configurable and the minimum is 3 flash pages. The maximum data object size is

configurable up to 4096 bytes. A Bluetooth bonding uses maximum 110 bytes for secure connections and 138 bytes for

legacy pairing. For more details, see AN1135 "Using Third Generation NonVolatile Memory (NVM3) Data Storage".

Functions

sl_status_t sl_bt_nvm_save(uint16_t key, size_t value_len, const uint8_t *value)

sl_status_t sl_bt_nvm_load(uint16_t key, size_t max_value_size, size_t *value_len, uint8_t *value)

sl_status_t sl_bt_nvm_erase(uint16_t key)

sl_status_t sl_bt_nvm_erase_all()

Macros

#define sl_bt_cmd_nvm_save_id 0�020d0020

#define sl_bt_cmd_nvm_load_id 0�030d0020

#define sl_bt_cmd_nvm_erase_id 0�040d0020

#define sl_bt_cmd_nvm_erase_all_id 0�010d0020

#define sl_bt_rsp_nvm_save_id 0�020d0020

#define sl_bt_rsp_nvm_load_id 0�030d0020

#define sl_bt_rsp_nvm_erase_id 0�040d0020

NVM

706/1306

#define sl_bt_rsp_nvm_erase_all_id 0�010d0020

Function Documentation

sl_bt_nvm_save

sl_status_t sl_bt_nvm_save (uint16_t key, size_t value_len, const uint8_t *value)

Parameters

[in] key NVM key

[in] value_len Length of data in value

[in] value Value to store into the specified NVM key

Store a value into the specified NVM key. Allowed NVM keys are in range from 0x4000 to 0x407F. At most, 56 bytes user

data can be stored in one NVM key. The error code 0x018a (command_too_long) is returned if the value data is more than

56 bytes.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9917 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_nvm_load

sl_status_t sl_bt_nvm_load (uint16_t key, size_t max_value_size, size_t *value_len, uint8_t *value)

Parameters

[in] key NVM key of the value to be retrieved

[in] max_value_size Size of output buffer passed in value

[out] value_len On return, set to the length of output data written to value

[out] value The returned value of the specified NVM key

Retrieve the value of the specified NVM key.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9934 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_nvm_erase

sl_status_t sl_bt_nvm_erase (uint16_t key)

Parameters

[in] key NVM key to delete

Delete a single NVM key and its value from the persistent store.

Returns

NVM

707/1306

Definition at line 9948 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_nvm_erase_all

sl_status_t sl_bt_nvm_erase_all ()

Delete all NVM keys and their corresponding values.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 9958 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_nvm_save_id

#define sl_bt_cmd_nvm_save_id

Value:

0�020d0020

Definition at line 9882 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_nvm_load_id

#define sl_bt_cmd_nvm_load_id

Value:

0�030d0020

Definition at line 9883 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_nvm_erase_id

#define sl_bt_cmd_nvm_erase_id

Value:

0�040d0020

Definition at line 9884 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_nvm_erase_all_id

#define sl_bt_cmd_nvm_erase_all_id

Value:

0�010d0020

NVM

708/1306

Definition at line 9885 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_nvm_save_id

#define sl_bt_rsp_nvm_save_id

Value:

0�020d0020

Definition at line 9886 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_nvm_load_id

#define sl_bt_rsp_nvm_load_id

Value:

0�030d0020

Definition at line 9887 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_nvm_erase_id

#define sl_bt_rsp_nvm_erase_id

Value:

0�040d0020

Definition at line 9888 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_nvm_erase_all_id

#define sl_bt_rsp_nvm_erase_all_id

Value:

0�010d0020

Definition at line 9889 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Defined Keys

709/1306

Defined Keys

Defined Keys
Define keys

Macros

#define SL_BT_NVM_KEY_CTUNE 0�32

Macro Definition Documentation

SL_BT_NVM_KEY_CTUNE

#define SL_BT_NVM_KEY_CTUNE

Value:

0�32

Crystal tuning value override

Definition at line 9899 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Testing Commands

710/1306

Testing Commands

Modules

sl_bt_evt_test_dtm_completed

Testing Commands
Testing Commands.

Enumerations

enum sl_bt_test_packet_type_t {

sl_bt_test_pkt_prbs9 = 0�0
sl_bt_test_pkt_11110000 = 0�1
sl_bt_test_pkt_10101010 = 0�2
sl_bt_test_pkt_11111111 = 0�4
sl_bt_test_pkt_00000000 = 0�5
sl_bt_test_pkt_00001111 = 0�6
sl_bt_test_pkt_01010101 = 0�7
sl_bt_test_pkt_pn9 = 0xfd
sl_bt_test_pkt_carrier = 0xfe

}
Test packet types supported by the stack.

enum sl_bt_test_phy_t {

sl_bt_test_phy_1m = 0�1
sl_bt_test_phy_2m = 0�2
sl_bt_test_phy_125k = 0�3
sl_bt_test_phy_500k = 0�4

}
Test PHY types.

Functions

sl_status_t sl_bt_test_dtm_tx_v4(uint8_t packet_type, uint8_t length, uint8_t channel, uint8_t phy, int8_t power_level)

sl_status_t sl_bt_test_dtm_tx_cw(uint8_t packet_type, uint8_t channel, uint8_t phy, int16_t power_level)

sl_status_t sl_bt_test_dtm_rx(uint8_t channel, uint8_t phy)

sl_status_t sl_bt_test_dtm_end()

Macros

#define sl_bt_cmd_test_dtm_tx_v4_id 0�030e0020

#define sl_bt_cmd_test_dtm_tx_cw_id 0�040e0020

#define sl_bt_cmd_test_dtm_rx_id 0�010e0020

Testing Commands

711/1306

#define sl_bt_cmd_test_dtm_end_id 0�020e0020

#define sl_bt_rsp_test_dtm_tx_v4_id 0�030e0020

#define sl_bt_rsp_test_dtm_tx_cw_id 0�040e0020

#define sl_bt_rsp_test_dtm_rx_id 0�010e0020

#define sl_bt_rsp_test_dtm_end_id 0�020e0020

Enumeration Documentation

sl_bt_test_packet_type_t

sl_bt_test_packet_type_t

Test packet types supported by the stack.

Enumerator

sl_bt_test_pkt_prbs9

sl_bt_test_pkt_11110000

sl_bt_test_pkt_10101010

sl_bt_test_pkt_11111111

sl_bt_test_pkt_00000000

sl_bt_test_pkt_00001111

sl_bt_test_pkt_01010101

sl_bt_test_pkt_pn9

sl_bt_test_pkt_carrier

Definition at line 9982 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_test_phy_t

sl_bt_test_phy_t

Test PHY types.

Enumerator

sl_bt_test_phy_1m

sl_bt_test_phy_2m

sl_bt_test_phy_125k

sl_bt_test_phy_500k

Definition at line 9998 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Function Documentation

sl_bt_test_dtm_tx_v4

sl_status_t sl_bt_test_dtm_tx_v4 (uint8_t packet_type, uint8_t length, uint8_t channel, uint8_t phy, int8_t power_level)

Parameters

Testing Commands

712/1306

[in] packet_type Enum sl_bt_test_packet_type_t. Packet type to transmit. Values:

sl_bt_test_pkt_prbs9 (0x0): PRBS9 packet payload

sl_bt_test_pkt_11110000 (0x1): 11110000 packet payload

sl_bt_test_pkt_10101010 (0x2): 10101010 packet payload

sl_bt_test_pkt_11111111 (0x4): 11111111 packet payload

sl_bt_test_pkt_00000000 (0x5): 00000000 packet payload

sl_bt_test_pkt_00001111 (0x6): 00001111 packet payload

sl_bt_test_pkt_01010101 (0x7): 01010101 packet payload

sl_bt_test_pkt_pn9 (0xfd): PN9 continuously modulated output

sl_bt_test_pkt_carrier (0xfe): Unmodulated carrier

[in] length Packet length in bytes

Range: 0-255

[in] channel Bluetooth channel

Range: 0-39

Channel is (F - 2402) / 2,

where F is frequency in MHz

[in] phy Enum sl_bt_test_phy_t. PHY to use. Values:

sl_bt_test_phy_1m (0x1): 1M PHY

sl_bt_test_phy_2m (0x2): 2M PHY

sl_bt_test_phy_125k (0x3): 125k Coded PHY

sl_bt_test_phy_500k (0x4): 500k Coded PHY

[in] power_level TX power level in unit dBm. Values:

-127 to +20: Use specified or the nearest TX power level. The minimum -127 dBm is specified in

the Bluetooth specification. However, a device may not support this low TX power. In addition,

only some devices support 20 dBm TX power. Effective TX power will be limited by the global

system TX power that can be set with the sl_bt_system_set_tx_power command.

0x7E: Use minimum TX power level the device supports.

0x7F: Use the smallest of the maximum TX power level the device supports and the global

maximum TX power setting in stack.

For continuous unmodulated carrier mode, the values are set in 0.1 dBm unit. If the value exceeds the

range of power level value allowed by the device, the command will adjust the power level to the

closest minimum or maximum value.

Start a transmitter test against a separate Bluetooth tester device. When the command is processed by the radio, a

sl_bt_evt_test_dtm_completed event is triggered. This event indicates whether the test started successfully.

In the transmitter test, the device sends packets continuously with a fixed interval. The type and length of each packet is

set by packet_type and length parameters. The parameter phy specifies which PHY is used to transmit the packets. All

devices support at least 1M PHY. A special packet type, test_pkt_carrier , can be used to transmit continuous unmodulated

carrier. The length field is ignored in this mode. As this command has the limitation within the value of power_level , use of

sl_bt_test_dtm_tx_cw for custom waves is recommended.

Stop the test using the sl_bt_test_dtm_end command.

Returns

Command result

Events

sl_bt_evt_test_dtm_completed - This event is received when the command is processed.

Definition at line 10109 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Testing Commands

713/1306

sl_bt_test_dtm_tx_cw

sl_status_t sl_bt_test_dtm_tx_cw (uint8_t packet_type, uint8_t channel, uint8_t phy, int16_t power_level)

Parameters

[in] packet_type Enum sl_bt_test_packet_type_t. Packet type to transmit. Values:

sl_bt_test_pkt_pn9 (0xfd): PN9 continuously modulated output

sl_bt_test_pkt_carrier (0xfe): Unmodulated carrier

[in] channel Bluetooth channel

Range: 0-39

Channel is (F - 2402) / 2,

where F is frequency in MHz

[in] phy Enum sl_bt_test_phy_t. PHY to use. Values:

sl_bt_test_phy_1m (0x1): 1M PHY

sl_bt_test_phy_2m (0x2): 2M PHY

sl_bt_test_phy_125k (0x3): 125k Coded PHY

sl_bt_test_phy_500k (0x4): 500k Coded PHY

[in] power_level TX power level. Unit: 0.1 dBm.

If the value exceeds the range of power level value, allowed by the device, the command will adjust

the power level to the closest minimum or maximum value.

Start a transmitter test for a custom wave. When the command is processed by the radio, a sl_bt_evt_test_dtm_completed

event is triggered. This event indicates whether the test started successfully.

In the custom wave transmitter test, the device continuously transmits the career. The parameter packet_type specifies the

packet type. The parameter phy specifies which PHY is used to transmit the packets. All devices support at least 1M PHY.

Stop the test using the sl_bt_test_dtm_end command.

Returns

Command result

Events

sl_bt_evt_test_dtm_completed - This event is received when the command is processed.

Definition at line 10161 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_test_dtm_rx

sl_status_t sl_bt_test_dtm_rx (uint8_t channel, uint8_t phy)

Parameters

[in] channel Bluetooth channel

Range: 0-39

Channel is (F - 2402) / 2,

where F is frequency in MHz

Testing Commands

714/1306

[in] phy Enum sl_bt_test_phy_t. PHY to use. Values:

sl_bt_test_phy_1m (0x1): 1M PHY

sl_bt_test_phy_2m (0x2): 2M PHY

sl_bt_test_phy_125k (0x3): 125k Coded PHY

sl_bt_test_phy_500k (0x4): 500k Coded PHY

Start a receiver test against a separate Bluetooth tester device. When the command is processed by the radio, a

sl_bt_evt_test_dtm_completed event is triggered. This event indicates whether the test started successfully.

Parameter phy specifies which PHY is used to receive the packets. All devices support at least 1M PHY.

The test may be stopped using sl_bt_test_dtm_end command. This will trigger another sl_bt_evt_test_dtm_completed event,

which carries the number of packets received during the test.

Returns

Command result

Events

sl_bt_evt_test_dtm_completed - This event is received when the command is processed.

Definition at line 10201 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_test_dtm_end

sl_status_t sl_bt_test_dtm_end ()

End a transmitter or a receiver test. When the command is processed by the radio and the test has ended, a

sl_bt_evt_test_dtm_completed event is triggered.

Returns

Command result

Events

sl_bt_evt_test_dtm_completed - Received when the command is processed by the radio and the test has ended.

Definition at line 10217 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_test_dtm_tx_v4_id

#define sl_bt_cmd_test_dtm_tx_v4_id

Value:

0�030e0020

Definition at line 9970 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_test_dtm_tx_cw_id

#define sl_bt_cmd_test_dtm_tx_cw_id

Testing Commands

715/1306

Value:

0x040e0020

Definition at line 9971 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_test_dtm_rx_id

#define sl_bt_cmd_test_dtm_rx_id

Value:

0�010e0020

Definition at line 9972 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_test_dtm_end_id

#define sl_bt_cmd_test_dtm_end_id

Value:

0�020e0020

Definition at line 9973 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_test_dtm_tx_v4_id

#define sl_bt_rsp_test_dtm_tx_v4_id

Value:

0�030e0020

Definition at line 9974 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_test_dtm_tx_cw_id

#define sl_bt_rsp_test_dtm_tx_cw_id

Value:

0�040e0020

Definition at line 9975 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_test_dtm_rx_id

#define sl_bt_rsp_test_dtm_rx_id

Value:

0�010e0020

Definition at line 9976 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Testing Commands

716/1306

sl_bt_rsp_test_dtm_end_id

#define sl_bt_rsp_test_dtm_end_id

Value:

0�020e0020

Definition at line 9977 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_test_dtm_completed

717/1306

sl_bt_evt_test_dtm_completed

Modules

sl_bt_evt_test_dtm_completed_s

sl_bt_evt_test_dtm_completed
Indicates that the radio has processed a test start or end command.

The result parameter indicates the success of the command.

After the receiver or transmitter test is stopped, the number_of_packets parameter in this event indicates the number of

received or transmitted packets.

Typedefs

typedef struct
sl_bt_evt_test_dt
m_completed_s

sl_bt_evt_test_dtm_completed_t

Macros

#define sl_bt_evt_test_dtm_completed_id 0�000e00a0
Identifier of the dtm_completed event.

Typedef Documentation

sl_bt_evt_test_dtm_completed_t

typedef struct sl_bt_evt_test_dtm_completed_s sl_bt_evt_test_dtm_completed_t

Definition at line 10033 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_test_dtm_completed_id

#define sl_bt_evt_test_dtm_completed_id

Value:

0�000e00a0

Identifier of the dtm_completed event.

Definition at line 10019 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_test_dtm_completed_s

718/1306

sl_bt_evt_test_dtm_completed_s

Data structure of the dtm_completed event.

Public Attributes

uint16_t result

uint16_t number_of_packets

Public Attribute Documentation

result

uint16_t sl_bt_evt_test_dtm_completed_s::result

Command result

Definition at line 10026 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

number_of_packets

uint16_t sl_bt_evt_test_dtm_completed_s::number_of_packets

Number of packets

Only valid for sl_bt_test_dtm_end command.

Definition at line 10027 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Security Manager

719/1306

Security Manager

Modules

Security Manager configuration flags

sl_bt_evt_sm_passkey_display

sl_bt_evt_sm_passkey_request

sl_bt_evt_sm_confirm_passkey

sl_bt_evt_sm_bonded

sl_bt_evt_sm_bonding_failed

sl_bt_evt_sm_confirm_bonding

Security Manager
Security Manager.

The commands in this class manage Bluetooth security, including commands for starting and stopping encryption and

commands for management of all bonding operations.

Use the following procedure to bond with a remote device:

Use the command sl_bt_sm_configure to configure security requirements and I/O capabilities of this device.

Use the command sl_bt_sm_set_bondable_mode to set this device into bondable mode.
Use the command sl_bt_connection_open to open a connection to the remote device.

After the connection is open, use command sl_bt_sm_increase_security to encrypt the connection. This will also start the

bonding process.

Use the following procedure to respond to the bonding initiated by a remote device:

Use the command sl_bt_sm_configure to configure security requirements and I/O capabilities of this device.

Use the command sl_bt_sm_set_bondable_mode to set this device into bondable mode.

Use the command sl_bt_advertiser_start to start connectable advertising.

Open a connection to this device from the remote device.

After the connection is open, start the bonding process on the remote device.

If MITM is required, the application needs to display or ask the user to enter a passkey during the process. See events

sl_bt_evt_sm_passkey_display and sl_bt_evt_sm_passkey_request for more information.

Enumerations

enum sl_bt_sm_io_capability_t {

sl_bt_sm_io_capability_displayonly = 0�0
sl_bt_sm_io_capability_displayyesno = 0�1
sl_bt_sm_io_capability_keyboardonly = 0�2
sl_bt_sm_io_capability_noinputnooutput = 0�3
sl_bt_sm_io_capability_keyboarddisplay = 0�4

}
These values define the security management related I/O capabilities supported by the device.

Security Manager

720/1306

Functions

sl_status_t sl_bt_sm_configure(uint8_t flags, uint8_t io_capabilities)

sl_status_t sl_bt_sm_set_minimum_key_size(uint8_t minimum_key_size)

sl_status_t sl_bt_sm_set_debug_mode()

SL_BGAPI_DEPRE
CATED sl_status_t

sl_bt_sm_add_to_whitelist(bd_addr address, uint8_t address_type)

sl_status_t sl_bt_sm_store_bonding_configuration(uint8_t max_bonding_count, uint8_t policy_flags)

sl_status_t sl_bt_sm_set_bondable_mode(uint8_t bondable)

sl_status_t sl_bt_sm_set_passkey(int32_t passkey)

sl_status_t sl_bt_sm_increase_security(uint8_t connection)

sl_status_t sl_bt_sm_enter_passkey(uint8_t connection, int32_t passkey)

sl_status_t sl_bt_sm_passkey_confirm(uint8_t connection, uint8_t confirm)

sl_status_t sl_bt_sm_bonding_confirm(uint8_t connection, uint8_t confirm)

sl_status_t sl_bt_sm_delete_bonding(uint8_t bonding)

sl_status_t sl_bt_sm_delete_bondings()

sl_status_t sl_bt_sm_get_bonding_handles(uint32_t reserved, uint32_t *num_bondings, size_t max_bondings_size, size_t
*bondings_len, uint8_t *bondings)

sl_status_t sl_bt_sm_get_bonding_details(uint32_t bonding, bd_addr *address, uint8_t *address_type, uint8_t
*security_mode, uint8_t *key_size)

sl_status_t sl_bt_sm_find_bonding_by_address(bd_addr address, uint32_t *bonding, uint8_t *security_mode, uint8_t
*key_size)

sl_status_t sl_bt_sm_set_bonding_key(uint32_t bonding, uint8_t key_type, aes_key_128 key)

sl_status_t sl_bt_sm_set_legacy_oob(uint8_t enable, aes_key_128 oob_data)

sl_status_t sl_bt_sm_set_oob(uint8_t enable, aes_key_128 *random, aes_key_128 *confirm)

sl_status_t sl_bt_sm_set_remote_oob(uint8_t enable, aes_key_128 random, aes_key_128 confirm)

sl_status_t sl_bt_sm_set_bonding_data(uint8_t connection, uint8_t type, size_t data_len, const uint8_t *data)

Macros

#define sl_bt_cmd_sm_configure_id 0�010f0020

#define sl_bt_cmd_sm_set_minimum_key_size_id 0�140f0020

#define sl_bt_cmd_sm_set_debug_mode_id 0�0f0f0020

#define sl_bt_cmd_sm_add_to_whitelist_id 0�130f0020

#define sl_bt_cmd_sm_store_bonding_configuration_id 0�020f0020

#define sl_bt_cmd_sm_set_bondable_mode_id 0�000f0020

Security Manager

721/1306

#define sl_bt_cmd_sm_set_passkey_id 0�100f0020

#define sl_bt_cmd_sm_increase_security_id 0�040f0020

#define sl_bt_cmd_sm_enter_passkey_id 0�080f0020

#define sl_bt_cmd_sm_passkey_confirm_id 0�090f0020

#define sl_bt_cmd_sm_bonding_confirm_id 0�0e0f0020

#define sl_bt_cmd_sm_delete_bonding_id 0�060f0020

#define sl_bt_cmd_sm_delete_bondings_id 0�070f0020

#define sl_bt_cmd_sm_get_bonding_handles_id 0�150f0020

#define sl_bt_cmd_sm_get_bonding_details_id 0�160f0020

#define sl_bt_cmd_sm_find_bonding_by_address_id 0�170f0020

#define sl_bt_cmd_sm_set_bonding_key_id 0�180f0020

#define sl_bt_cmd_sm_set_legacy_oob_id 0�190f0020

#define sl_bt_cmd_sm_set_oob_id 0�1a0f0020

#define sl_bt_cmd_sm_set_remote_oob_id 0�1b0f0020

#define sl_bt_cmd_sm_set_bonding_data_id 0�1c0f0020

#define sl_bt_rsp_sm_configure_id 0�010f0020

#define sl_bt_rsp_sm_set_minimum_key_size_id 0�140f0020

#define sl_bt_rsp_sm_set_debug_mode_id 0�0f0f0020

#define sl_bt_rsp_sm_add_to_whitelist_id 0�130f0020

#define sl_bt_rsp_sm_store_bonding_configuration_id 0�020f0020

#define sl_bt_rsp_sm_set_bondable_mode_id 0�000f0020

#define sl_bt_rsp_sm_set_passkey_id 0�100f0020

#define sl_bt_rsp_sm_increase_security_id 0�040f0020

#define sl_bt_rsp_sm_enter_passkey_id 0�080f0020

#define sl_bt_rsp_sm_passkey_confirm_id 0�090f0020

#define sl_bt_rsp_sm_bonding_confirm_id 0�0e0f0020

#define sl_bt_rsp_sm_delete_bonding_id 0�060f0020

#define sl_bt_rsp_sm_delete_bondings_id 0�070f0020

#define sl_bt_rsp_sm_get_bonding_handles_id 0�150f0020

#define sl_bt_rsp_sm_get_bonding_details_id 0�160f0020

#define sl_bt_rsp_sm_find_bonding_by_address_id 0�170f0020

#define sl_bt_rsp_sm_set_bonding_key_id 0�180f0020

Security Manager

722/1306

#define sl_bt_rsp_sm_set_legacy_oob_id 0�190f0020

#define sl_bt_rsp_sm_set_oob_id 0�1a0f0020

#define sl_bt_rsp_sm_set_remote_oob_id 0�1b0f0020

#define sl_bt_rsp_sm_set_bonding_data_id 0�1c0f0020

Enumeration Documentation

sl_bt_sm_io_capability_t

sl_bt_sm_io_capability_t

These values define the security management related I/O capabilities supported by the device.

Enumerator

sl_bt_sm_io_capability_displayonly

sl_bt_sm_io_capability_displayyesno

sl_bt_sm_io_capability_keyboardonly

sl_bt_sm_io_capability_noinputnooutput

sl_bt_sm_io_capability_keyboarddisplay

Definition at line 10361 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Function Documentation

sl_bt_sm_configure

sl_status_t sl_bt_sm_configure (uint8_t flags, uint8_t io_capabilities)

Parameters

Security Manager

723/1306

[in] flags Security requirement flags. This value can be a bitmask of multiple flags from Security Manager

configuration flags

Bit 0:

0: Allow bonding without authentication

1: Bonding requires authentication (Man-in-the-Middle protection)

Bit 1:

0: Allow encryption without bonding

1: Encryption requires bonding. Note that this setting will also enable bonding.

Bit 2:

0: Allow bonding with legacy pairing

1: Secure connections only

Bit 3:

0: Bonding request does not need to be confirmed

1: Bonding requests need to be confirmed. Received bonding requests are notified by

sl_bt_evt_sm_confirm_bonding

Bit 4: This option is ignored when the application includes the

bluetooth_feature_external_bonding_database feature.

0: Allow all connections

1: Allow connections only from bonded devices

Bit 5:

0: Prefer just works pairing when both options are possible based on the settings.

1: Prefer authenticated pairing when both options are possible based on the settings.

Bit 6:

0: Allow secure connections OOB pairing with OOB data from only one device.

1: Require secure connections OOB data from both devices.

Bit 7:

0: Allow debug keys from remote device.

1: Reject pairing if remote device uses debug keys.

Default value: 0x00

[in] io_capabilities Enum sl_bt_sm_io_capability_t. I/O Capabilities. The default I/O Capability used by the stack is No

Input and No Output. Values:

sl_bt_sm_io_capability_displayonly (0x0): Display Only

sl_bt_sm_io_capability_displayyesno (0x1): Display with Yes/No-buttons

sl_bt_sm_io_capability_keyboardonly (0x2): Keyboard Only

sl_bt_sm_io_capability_noinputnooutput (0x3): No Input and No Output

sl_bt_sm_io_capability_keyboarddisplay (0x4): Display with Keyboard

Configure security requirements and I/O capabilities of the system.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 10648 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sm_set_minimum_key_size

Security Manager

724/1306

sl_status_t sl_bt_sm_set_minimum_key_size (uint8_t minimum_key_size)

Parameters

[in] minimum_key_size Minimum allowed key size for bonding. Range: 7 to 16

Set the minimum allowed key size used for bonding. The default value is 16 bytes.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 10661 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sm_set_debug_mode

sl_status_t sl_bt_sm_set_debug_mode ()

Set Security Manager in debug mode. In this mode, the secure connections bonding uses known debug keys, so that the

encrypted packet can be opened by Bluetooth protocol analyzer. To disable the debug mode, restart the device.

Bondings made in debug mode are unsecure.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 10675 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sm_add_to_whitelist

SL_BGAPI_DEPRECATED sl_status_t sl_bt_sm_add_to_whitelist (bd_addr address, uint8_t address_type)

Parameters

[in] address Address of the device added to accept list

[in] address_type Enum sl_bt_gap_address_type_t. Address type of the device added to accept list. Values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

Deprecated and replaced by sl_bt_accept_list_add_device_by_bonding and sl_bt_accept_list_add_device_by_address

provided by the bluetooth_feature_accept_list component.

Add device to accept list, which can be enabled with sl_bt_gap_enable_whitelisting.

When using external bonding database, the accept list size must be set before adding devices to the list using

sl_bt_sm_store_bonding_configuration.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 10699 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sm_store_bonding_configuration

Security Manager

725/1306

sl_status_t sl_bt_sm_store_bonding_configuration (uint8_t max_bonding_count, uint8_t policy_flags)

Parameters

[in] max_bonding_count Maximum allowed bonding count. Range: 1 to 32

Sets the accept list size with external bonding database.

[in] policy_flags Bonding policy. Values:

0: If database is full, new bonding attempts will fail

1: New bonding will overwrite the oldest existing bonding

2: New bonding will overwrite the bonding that was used the longest time ago

Default: 0

With external bonding database the parameter is ignored.

Set the maximum allowed bonding count and bonding policy. The maximum number of bondings that can be supported

depends on how much user data is stored in the NVM and the NVM size. When bond policy value 1 or 2 is selected, the

stack will automatically write the new bond, as per the policy, only if the maximum allowed bonding count has been

reached. If the stack can't write a new bond for any other reason (e.g., NVM is full), an error will be thrown through the

bonding_failed event indicating why the bonding was not written. The application has to manually release space from the

NVM (e.g., by deleting one of the existing bonds or application data) so that a new bond can be saved. The default value is

13.

When using external bonding database with accept list filtering, this command must be called before adding devices to the

accept list to define the list size. Calling this function empties the existing accept list.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 10738 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sm_set_bondable_mode

sl_status_t sl_bt_sm_set_bondable_mode (uint8_t bondable)

Parameters

[in] bondable Bondable mode. Values:

0: New bondings not accepted

1: Bondings allowed

Default value: 0

Set whether the device should accept new bondings. By default, the device does not accept new bondings.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 10757 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sm_set_passkey

sl_status_t sl_bt_sm_set_passkey (int32_t passkey)

Security Manager

726/1306

Parameters

[in] passkey Passkey. Valid range: 0-999999. Set -1 to disable and start using random passkeys.

Enter a fixed passkey, which will be used in the sl_bt_evt_sm_passkey_display event.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 10770 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sm_increase_security

sl_status_t sl_bt_sm_increase_security (uint8_t connection)

Parameters

[in] connection Connection handle

Enhance the security of a connection to current security requirements. On an unencrypted connection, it will encrypt the

connection and will also perform bonding if requested by both devices. On an encrypted connection, it will cause the

connection to be re-encrypted.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_connection_parameters - Triggered after increasing security has been completed successfully and indicates the

latest security mode of the connection.

sl_bt_evt_sm_bonded - Triggered if pairing or bonding was performed in this operation and the result is successful.

sl_bt_evt_sm_bonding_failed - Triggered if pairing or bonding was performed in this operation and the result has failed.

Definition at line 10793 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sm_enter_passkey

sl_status_t sl_bt_sm_enter_passkey (uint8_t connection, int32_t passkey)

Parameters

[in] connection Connection handle

[in] passkey Passkey. Valid range: 0-999999. Set -1 to cancel pairing.

Enter a passkey after receiving a passkey request event.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 10805 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sm_passkey_confirm

sl_status_t sl_bt_sm_passkey_confirm (uint8_t connection, uint8_t confirm)

Security Manager

727/1306

[in] connection Connection handle

[in] confirm Acceptance. Values:

0: Reject

1: Accept confirm value

Accept or reject the reported passkey confirm value.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 10819 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sm_bonding_confirm

sl_status_t sl_bt_sm_bonding_confirm (uint8_t connection, uint8_t confirm)

Parameters

[in] connection Connection handle

[in] confirm Acceptance. Values:

0: Reject

1: Accept bonding request

Accept or reject the bonding request.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 10833 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sm_delete_bonding

sl_status_t sl_bt_sm_delete_bonding (uint8_t bonding)

Parameters

[in] bonding Bonding handle

Delete the specified bonding or accept list filtering. The connection will be closed if the remote device is connected

currently.

This commands deletes the information from the persistent bonding database when the built-in bonding database

(bluetooth_feature_builtin_bonding_database) is used.

This command is unavailable if the external bonding database (bluetooth_feature_external_bonding_database) is used.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 10852 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sm_delete_bondings

Security Manager

728/1306

sl_status_t sl_bt_sm_delete_bondings ()

Delete all bondings, accept list filtering and device local identity resolving key (IRK). All connections to affected devices are

closed as well.

This command empties the persistent bonding database when the built-in bonding database

(bluetooth_feature_builtin_bonding_database) is used.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 10866 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sm_get_bonding_handles

sl_status_t sl_bt_sm_get_bonding_handles (uint32_t reserved, uint32_t *num_bondings, size_t max_bondings_size, size_t
*bondings_len, uint8_t *bondings)

Parameters

[in] reserved Use the value 0 on this reserved field. Do not use none-zero values because they are

reserved for future use.

[out] num_bondings Total number of bondings and accept list filtering devices stored in bonding database.

[in] max_bondings_size Size of output buffer passed in bondings

[out] bondings_len On return, set to the length of output data written to bondings

[out] bondings 4 byte bit field of used bonding handles in little endian format. Bit 0 of first byte is bonding

handle 0, bit 0 of second byte is bonding handle 8 etc. If the bit is 1 that bonding handle

exists in the bonding database.

Get number of entries and bitmask of their handles saved in the bonding database. The entry in the bonding database can

be either bonding or accept list filtering device.

To get the bonding type and peer device address of a bonding, use the sl_bt_sm_get_bonding_details command. The

bonding handle can be calculated from the handle bitmask returned by this command, or alternatively, repeat calling the

sl_bt_sm_get_bonding_details command to get the detailed information of all bondings.

This command is unavailable if the external bonding database (bluetooth_feature_external_bonding_database) is used.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 10898 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sm_get_bonding_details

sl_status_t sl_bt_sm_get_bonding_details (uint32_t bonding, bd_addr *address, uint8_t *address_type, uint8_t
*security_mode, uint8_t *key_size)

Parameters

[in] bonding Bonding handle

[out] address Bluetooth address of the remote device

Security Manager

729/1306

[out] address_type Enum sl_bt_gap_address_type_t. Address type. Values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

[out] security_mode Enum sl_bt_connection_security_t. Connection security mode. Accept list filtering entry has

security mode as no security. Values:

sl_bt_connection_mode1_level1 (0x0): No security

sl_bt_connection_mode1_level2 (0x1): Unauthenticated pairing with encryption

sl_bt_connection_mode1_level3 (0x2): Authenticated pairing with encryption

sl_bt_connection_mode1_level4 (0x3): Authenticated Secure Connections pairing with

encryption using a 128-bit strength encryption key

[out] key_size Key length in bytes, 0 for accept list filtering entry

Get the detailed information for a bonding entry. Data includes remote device address and address type as well as security

mode for bonding and a used encryption key length.

To get the detailed information of all bondings, repeat calling this command starting from 0 as the bonding handle value

until the maximum number of configured bondings are reached. Use 32 as the maximum number if the configured number is

unknown.

This command is unavailable if the external bonding database (bluetooth_feature_external_bonding_database) is used.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 10940 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sm_find_bonding_by_address

sl_status_t sl_bt_sm_find_bonding_by_address (bd_addr address, uint32_t *bonding, uint8_t *security_mode, uint8_t
*key_size)

Parameters

[in] address The Bluetooth device address

[out] bonding The bonding handle

[out] security_mode Enum sl_bt_connection_security_t. Connection security mode. Accept list filtering entry has

security mode as no security. Values:

sl_bt_connection_mode1_level1 (0x0): No security

sl_bt_connection_mode1_level2 (0x1): Unauthenticated pairing with encryption

sl_bt_connection_mode1_level3 (0x2): Authenticated pairing with encryption

sl_bt_connection_mode1_level4 (0x3): Authenticated Secure Connections pairing with

encryption using a 128-bit strength encryption key

[out] key_size Key length in bytes, 0 for accept list filtering entry

Find the bonding or accept list filtering entry by using a Bluetooth device address.

This command is unavailable if the external bonding database (bluetooth_feature_external_bonding_database) is used.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 10972 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Security Manager

730/1306

sl_bt_sm_set_bonding_key

sl_status_t sl_bt_sm_set_bonding_key (uint32_t bonding, uint8_t key_type, aes_key_128 key)

Parameters

N/A bonding

N/A key_type

N/A key

Definition at line 11003 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sm_set_legacy_oob

sl_status_t sl_bt_sm_set_legacy_oob (uint8_t enable, aes_key_128 oob_data)

Parameters

[in] enable Enable OOB with legacy pairing. Values:

0: disable

1: enable

[in] oob_data 16-byte legacy pairing OOB data in little endian format.

Set Out-Of-Band (OOB) encryption data for a legacy pairing of a device. OOB data may be, for example, a PIN code

exchanged over an alternate path, such as NFC. The device will not allow any other bonding if OOB data is set. OOB data

can't be set simultaneously with secure connections OOB data.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 11022 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sm_set_oob

sl_status_t sl_bt_sm_set_oob (uint8_t enable, aes_key_128 *random, aes_key_128 *confirm)

Parameters

[in] enable Enable OOB with secure connections pairing. Values:

0: disable

1: enable

[out] random 16-byte randomly-generated secure connections OOB data in little endian format.

[out] confirm 16-byte confirm value for the OOB random value in little endian format.

Enable the use of Out-Of-Band (OOB) encryption data for a device for secure connections pairing. Enabling will generate

new OOB data and confirm values, which can be sent to the remote device. After enabling the secure connections OOB

data, the remote devices OOB data can be set with sl_bt_sm_set_remote_oob. Calling this function will erase any set remote

device OOB data and confirm values. The device will not allow any other bonding if OOB data is set. The secure connections

OOB data cannot be enabled simultaneously with legacy pairing OOB data.

Returns

Security Manager

731/1306

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 11046 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sm_set_remote_oob

sl_status_t sl_bt_sm_set_remote_oob (uint8_t enable, aes_key_128 random, aes_key_128 confirm)

Parameters

[in] enable Enable remote device OOB data with secure connections pairing. Values:

0: disable

1: enable

[in] random 16-byte remote device secure connections OOB data in little endian format.

[in] confirm 16-byte remote device confirm value for the OOB random value in little endian format.

Set Out-Of-Band (OOB) data and confirm values received from the remote device for secure connections pairing. OOB data

must be enabled with sl_bt_sm_set_oob before setting the remote device OOB data.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 11068 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_sm_set_bonding_data

sl_status_t sl_bt_sm_set_bonding_data (uint8_t connection, uint8_t type, size_t data_len, const uint8_t *data)

Parameters

N/A connection

N/A type

N/A data_len

N/A data

Definition at line 11105 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_sm_configure_id

#define sl_bt_cmd_sm_configure_id

Value:

0�010f0020

Definition at line 10260 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_sm_set_minimum_key_size_id

#define sl_bt_cmd_sm_set_minimum_key_size_id

Security Manager

732/1306

Value:

0x140f0020

Definition at line 10261 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_sm_set_debug_mode_id

#define sl_bt_cmd_sm_set_debug_mode_id

Value:

0�0f0f0020

Definition at line 10262 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_sm_add_to_whitelist_id

#define sl_bt_cmd_sm_add_to_whitelist_id

Value:

0�130f0020

Definition at line 10263 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_sm_store_bonding_configuration_id

#define sl_bt_cmd_sm_store_bonding_configuration_id

Value:

0�020f0020

Definition at line 10264 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_sm_set_bondable_mode_id

#define sl_bt_cmd_sm_set_bondable_mode_id

Value:

0�000f0020

Definition at line 10265 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_sm_set_passkey_id

#define sl_bt_cmd_sm_set_passkey_id

Value:

0�100f0020

Definition at line 10266 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Security Manager

733/1306

sl_bt_cmd_sm_increase_security_id

#define sl_bt_cmd_sm_increase_security_id

Value:

0�040f0020

Definition at line 10267 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_sm_enter_passkey_id

#define sl_bt_cmd_sm_enter_passkey_id

Value:

0�080f0020

Definition at line 10268 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_sm_passkey_confirm_id

#define sl_bt_cmd_sm_passkey_confirm_id

Value:

0�090f0020

Definition at line 10269 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_sm_bonding_confirm_id

#define sl_bt_cmd_sm_bonding_confirm_id

Value:

0�0e0f0020

Definition at line 10270 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_sm_delete_bonding_id

#define sl_bt_cmd_sm_delete_bonding_id

Value:

0�060f0020

Definition at line 10271 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_sm_delete_bondings_id

#define sl_bt_cmd_sm_delete_bondings_id

Security Manager

734/1306

Value:

0x070f0020

Definition at line 10272 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_sm_get_bonding_handles_id

#define sl_bt_cmd_sm_get_bonding_handles_id

Value:

0�150f0020

Definition at line 10273 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_sm_get_bonding_details_id

#define sl_bt_cmd_sm_get_bonding_details_id

Value:

0�160f0020

Definition at line 10274 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_sm_find_bonding_by_address_id

#define sl_bt_cmd_sm_find_bonding_by_address_id

Value:

0�170f0020

Definition at line 10275 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_sm_set_bonding_key_id

#define sl_bt_cmd_sm_set_bonding_key_id

Value:

0�180f0020

Definition at line 10276 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_sm_set_legacy_oob_id

#define sl_bt_cmd_sm_set_legacy_oob_id

Value:

0�190f0020

Definition at line 10277 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Security Manager

735/1306

sl_bt_cmd_sm_set_oob_id

#define sl_bt_cmd_sm_set_oob_id

Value:

0�1a0f0020

Definition at line 10278 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_sm_set_remote_oob_id

#define sl_bt_cmd_sm_set_remote_oob_id

Value:

0�1b0f0020

Definition at line 10279 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_sm_set_bonding_data_id

#define sl_bt_cmd_sm_set_bonding_data_id

Value:

0�1c0f0020

Definition at line 10280 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sm_configure_id

#define sl_bt_rsp_sm_configure_id

Value:

0�010f0020

Definition at line 10281 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sm_set_minimum_key_size_id

#define sl_bt_rsp_sm_set_minimum_key_size_id

Value:

0�140f0020

Definition at line 10282 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sm_set_debug_mode_id

#define sl_bt_rsp_sm_set_debug_mode_id

Security Manager

736/1306

Value:

0x0f0f0020

Definition at line 10283 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sm_add_to_whitelist_id

#define sl_bt_rsp_sm_add_to_whitelist_id

Value:

0�130f0020

Definition at line 10284 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sm_store_bonding_configuration_id

#define sl_bt_rsp_sm_store_bonding_configuration_id

Value:

0�020f0020

Definition at line 10285 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sm_set_bondable_mode_id

#define sl_bt_rsp_sm_set_bondable_mode_id

Value:

0�000f0020

Definition at line 10286 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sm_set_passkey_id

#define sl_bt_rsp_sm_set_passkey_id

Value:

0�100f0020

Definition at line 10287 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sm_increase_security_id

#define sl_bt_rsp_sm_increase_security_id

Value:

0�040f0020

Definition at line 10288 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Security Manager

737/1306

sl_bt_rsp_sm_enter_passkey_id

#define sl_bt_rsp_sm_enter_passkey_id

Value:

0�080f0020

Definition at line 10289 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sm_passkey_confirm_id

#define sl_bt_rsp_sm_passkey_confirm_id

Value:

0�090f0020

Definition at line 10290 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sm_bonding_confirm_id

#define sl_bt_rsp_sm_bonding_confirm_id

Value:

0�0e0f0020

Definition at line 10291 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sm_delete_bonding_id

#define sl_bt_rsp_sm_delete_bonding_id

Value:

0�060f0020

Definition at line 10292 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sm_delete_bondings_id

#define sl_bt_rsp_sm_delete_bondings_id

Value:

0�070f0020

Definition at line 10293 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sm_get_bonding_handles_id

#define sl_bt_rsp_sm_get_bonding_handles_id

Security Manager

738/1306

Value:

0x150f0020

Definition at line 10294 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sm_get_bonding_details_id

#define sl_bt_rsp_sm_get_bonding_details_id

Value:

0�160f0020

Definition at line 10295 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sm_find_bonding_by_address_id

#define sl_bt_rsp_sm_find_bonding_by_address_id

Value:

0�170f0020

Definition at line 10296 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sm_set_bonding_key_id

#define sl_bt_rsp_sm_set_bonding_key_id

Value:

0�180f0020

Definition at line 10297 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sm_set_legacy_oob_id

#define sl_bt_rsp_sm_set_legacy_oob_id

Value:

0�190f0020

Definition at line 10298 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sm_set_oob_id

#define sl_bt_rsp_sm_set_oob_id

Value:

0�1a0f0020

Definition at line 10299 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Security Manager

739/1306

sl_bt_rsp_sm_set_remote_oob_id

#define sl_bt_rsp_sm_set_remote_oob_id

Value:

0�1b0f0020

Definition at line 10300 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_sm_set_bonding_data_id

#define sl_bt_rsp_sm_set_bonding_data_id

Value:

0�1c0f0020

Definition at line 10301 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Security Manager configuration flags

740/1306

Security Manager configuration flags

Security Manager configuration flags
These values are used to configure security requirements.

Macros

#define SL_BT_SM_CONFIGURATION_MITM_REQUIRED 0�1

#define SL_BT_SM_CONFIGURATION_BONDING_REQUIRED 0�2

#define SL_BT_SM_CONFIGURATION_SC_ONLY 0�4

#define SL_BT_SM_CONFIGURATION_BONDING_REQUEST_REQUIRED 0�8

#define SL_BT_SM_CONFIGURATION_CONNECTIONS_FROM_BONDED_DEVICES_ONLY 0�10

#define SL_BT_SM_CONFIGURATION_PREFER_MITM 0�20

#define SL_BT_SM_CONFIGURATION_OOB_FROM_BOTH_DEVICES_REQUIRED 0�40

#define SL_BT_SM_CONFIGURATION_REJECT_DEBUG_KEYS 0�80

Macro Definition Documentation

SL_BT_SM_CONFIGURATION_MITM_REQUIRED

#define SL_BT_SM_CONFIGURATION_MITM_REQUIRED

Value:

0�1

Bonding requires authentication (Man-in-the-Middle protection).

Definition at line 10380 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_SM_CONFIGURATION_BONDING_REQUIRED

#define SL_BT_SM_CONFIGURATION_BONDING_REQUIRED

Value:

0�2

Encryption requires bonding. Note that this setting will also enable bonding.

Definition at line 10384 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Security Manager configuration flags

741/1306

SL_BT_SM_CONFIGURATION_SC_ONLY

#define SL_BT_SM_CONFIGURATION_SC_ONLY

Value:

0�4

Require secure connections pairing.

Definition at line 10387 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_SM_CONFIGURATION_BONDING_REQUEST_REQUIRED

#define SL_BT_SM_CONFIGURATION_BONDING_REQUEST_REQUIRED

Value:

0�8

Bonding requests need to be confirmed. Received bonding requests are notified by sl_bt_evt_sm_confirm_bonding.

Definition at line 10391 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_SM_CONFIGURATION_CONNECTIONS_FROM_BONDED_DEVICES_ONLY

#define SL_BT_SM_CONFIGURATION_CONNECTIONS_FROM_BONDED_DEVICES_ONLY

Value:

0�10

Allow connections only from bonded devices. This option is ignored when the application includes the

bluetooth_feature_external_bonding_database feature.

Definition at line 10396 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_SM_CONFIGURATION_PREFER_MITM

#define SL_BT_SM_CONFIGURATION_PREFER_MITM

Value:

0�20

Prefer authenticated pairing when both options are possible based on the settings. Otherwise just works pairing is

preferred.

Definition at line 10400 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_SM_CONFIGURATION_OOB_FROM_BOTH_DEVICES_REQUIRED

Security Manager configuration flags

742/1306

#define SL_BT_SM_CONFIGURATION_OOB_FROM_BOTH_DEVICES_REQUIRED

Value:

0x40

Require secure connections OOB data from both devices.

Definition at line 10403 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_SM_CONFIGURATION_REJECT_DEBUG_KEYS

#define SL_BT_SM_CONFIGURATION_REJECT_DEBUG_KEYS

Value:

0�80

Reject pairing if remote device uses debug keys.

Definition at line 10406 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_sm_passkey_display

743/1306

sl_bt_evt_sm_passkey_display

Modules

sl_bt_evt_sm_passkey_display_s

sl_bt_evt_sm_passkey_display
Indicates a request to display the passkey to the user.

Typedefs

typedef struct
sl_bt_evt_sm_pas
skey_display_s

sl_bt_evt_sm_passkey_display_t

Macros

#define sl_bt_evt_sm_passkey_display_id 0�000f00a0
Identifier of the passkey_display event.

Typedef Documentation

sl_bt_evt_sm_passkey_display_t

typedef struct sl_bt_evt_sm_passkey_display_s sl_bt_evt_sm_passkey_display_t

Definition at line 10433 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_sm_passkey_display_id

#define sl_bt_evt_sm_passkey_display_id

Value:

0�000f00a0

Identifier of the passkey_display event.

Definition at line 10417 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_sm_passkey_display_s

744/1306

sl_bt_evt_sm_passkey_display_s

Data structure of the passkey_display event.

Public Attributes

uint8_t connection

uint32_t passkey

Public Attribute Documentation

connection

uint8_t sl_bt_evt_sm_passkey_display_s::connection

Connection handle

Definition at line 10424 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

passkey

uint32_t sl_bt_evt_sm_passkey_display_s::passkey

Passkey. Range: 0 to 999999.

NOTE! When displaying the passkey to the user, prefix the number with zeros to obtain a 6 digit number

Example: Passkey value is 42

Number to display to the user is 000042

Definition at line 10425 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_sm_passkey_request

745/1306

sl_bt_evt_sm_passkey_request

Modules

sl_bt_evt_sm_passkey_request_s

sl_bt_evt_sm_passkey_request
Indicates a request for the passkey prompt displayed on the remote device.

Use the command sl_bt_sm_enter_passkey to input the passkey value.

Typedefs

typedef struct
sl_bt_evt_sm_pas
skey_request_s

sl_bt_evt_sm_passkey_request_t

Macros

#define sl_bt_evt_sm_passkey_request_id 0�010f00a0
Identifier of the passkey_request event.

Typedef Documentation

sl_bt_evt_sm_passkey_request_t

typedef struct sl_bt_evt_sm_passkey_request_s sl_bt_evt_sm_passkey_request_t

Definition at line 10457 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_sm_passkey_request_id

#define sl_bt_evt_sm_passkey_request_id

Value:

0�010f00a0

Identifier of the passkey_request event.

Definition at line 10447 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_sm_passkey_request_s

746/1306

sl_bt_evt_sm_passkey_request_s

Data structure of the passkey_request event.

Public Attributes

uint8_t connection

Public Attribute Documentation

connection

uint8_t sl_bt_evt_sm_passkey_request_s::connection

Connection handle

Definition at line 10454 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_sm_confirm_passkey

747/1306

sl_bt_evt_sm_confirm_passkey

Modules

sl_bt_evt_sm_confirm_passkey_s

sl_bt_evt_sm_confirm_passkey
Indicates a request for passkey display and confirmation by the user.

Use the command sl_bt_sm_passkey_confirm to accept or reject the displayed passkey.

Typedefs

typedef struct
sl_bt_evt_sm_conf
irm_passkey_s

sl_bt_evt_sm_confirm_passkey_t

Macros

#define sl_bt_evt_sm_confirm_passkey_id 0�020f00a0
Identifier of the confirm_passkey event.

Typedef Documentation

sl_bt_evt_sm_confirm_passkey_t

typedef struct sl_bt_evt_sm_confirm_passkey_s sl_bt_evt_sm_confirm_passkey_t

Definition at line 10487 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_sm_confirm_passkey_id

#define sl_bt_evt_sm_confirm_passkey_id

Value:

0�020f00a0

Identifier of the confirm_passkey event.

Definition at line 10471 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_sm_confirm_passkey_s

748/1306

sl_bt_evt_sm_confirm_passkey_s

Data structure of the confirm_passkey event.

Public Attributes

uint8_t connection

uint32_t passkey

Public Attribute Documentation

connection

uint8_t sl_bt_evt_sm_confirm_passkey_s::connection

Connection handle

Definition at line 10478 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

passkey

uint32_t sl_bt_evt_sm_confirm_passkey_s::passkey

Passkey. Range: 0 to 999999.

NOTE! When displaying the passkey to the user, prefix the number with zeros to obtain a 6 digit number

Example: Passkey value is 42

Number to display to the user is 000042

Definition at line 10479 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_sm_bonded

749/1306

sl_bt_evt_sm_bonded

Modules

sl_bt_evt_sm_bonded_s

sl_bt_evt_sm_bonded
Triggered when the pairing or bonding procedure is successfully completed.

Typedefs

typedef struct
sl_bt_evt_sm_bon

ded_s

sl_bt_evt_sm_bonded_t

Macros

#define sl_bt_evt_sm_bonded_id 0�030f00a0
Identifier of the bonded event.

Typedef Documentation

sl_bt_evt_sm_bonded_t

typedef struct sl_bt_evt_sm_bonded_s sl_bt_evt_sm_bonded_t

Definition at line 10526 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_sm_bonded_id

#define sl_bt_evt_sm_bonded_id

Value:

0�030f00a0

Identifier of the bonded event.

Definition at line 10499 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_sm_bonded_s

750/1306

sl_bt_evt_sm_bonded_s

Data structure of the bonded event.

Public Attributes

uint8_t connection

uint8_t bonding

uint8_t security_mode

Public Attribute Documentation

connection

uint8_t sl_bt_evt_sm_bonded_s::connection

Connection handle

Definition at line 10506 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

bonding

uint8_t sl_bt_evt_sm_bonded_s::bonding

Bonding handle. Values:

SL_BT_INVALID_BONDING_HANDLE (0xff): Pairing completed without bonding - the pairing key will be discarded after

disconnection.

Other: Procedure completed, pairing key stored with given bonding handle

Definition at line 10507 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

security_mode

uint8_t sl_bt_evt_sm_bonded_s::security_mode

Enum sl_bt_connection_security_t. Connection security mode. Values:

sl_bt_connection_mode1_level2 (0x1): Unauthenticated pairing with encryption

sl_bt_connection_mode1_level3 (0x2): Authenticated pairing with encryption

sl_bt_connection_mode1_level4 (0x3): Authenticated Secure Connections pairing with encryption using a 128-bit strength

encryption key

Definition at line 10514 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_sm_bonding_failed

751/1306

sl_bt_evt_sm_bonding_failed

Modules

sl_bt_evt_sm_bonding_failed_s

sl_bt_evt_sm_bonding_failed
This event is triggered if the pairing or bonding procedure fails.

Typedefs

typedef struct
sl_bt_evt_sm_bon

ding_failed_s

sl_bt_evt_sm_bonding_failed_t

Macros

#define sl_bt_evt_sm_bonding_failed_id 0�040f00a0
Identifier of the bonding_failed event.

Typedef Documentation

sl_bt_evt_sm_bonding_failed_t

typedef struct sl_bt_evt_sm_bonding_failed_s sl_bt_evt_sm_bonding_failed_t

Definition at line 10548 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_sm_bonding_failed_id

#define sl_bt_evt_sm_bonding_failed_id

Value:

0�040f00a0

Identifier of the bonding_failed event.

Definition at line 10537 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_sm_bonding_failed_s

752/1306

sl_bt_evt_sm_bonding_failed_s

Data structure of the bonding_failed event.

Public Attributes

uint8_t connection

uint16_t reason

Public Attribute Documentation

connection

uint8_t sl_bt_evt_sm_bonding_failed_s::connection

Connection handle

Definition at line 10544 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

reason

uint16_t sl_bt_evt_sm_bonding_failed_s::reason

Describes error that occurred

Definition at line 10545 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_sm_confirm_bonding

753/1306

sl_bt_evt_sm_confirm_bonding

Modules

sl_bt_evt_sm_confirm_bonding_s

sl_bt_evt_sm_confirm_bonding
Indicates a user request to display that the new bonding request is received and for the user to confirm the request.

Use the command sl_bt_sm_bonding_confirm to accept or reject the bonding request.

Typedefs

typedef struct
sl_bt_evt_sm_conf
irm_bonding_s

sl_bt_evt_sm_confirm_bonding_t

Macros

#define sl_bt_evt_sm_confirm_bonding_id 0�090f00a0
Identifier of the confirm_bonding event.

Typedef Documentation

sl_bt_evt_sm_confirm_bonding_t

typedef struct sl_bt_evt_sm_confirm_bonding_s sl_bt_evt_sm_confirm_bonding_t

Definition at line 10580 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_sm_confirm_bonding_id

#define sl_bt_evt_sm_confirm_bonding_id

Value:

0�090f00a0

Identifier of the confirm_bonding event.

Definition at line 10563 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_sm_confirm_bonding_s

754/1306

sl_bt_evt_sm_confirm_bonding_s

Data structure of the confirm_bonding event.

Public Attributes

uint8_t connection

uint8_t bonding_handle

Public Attribute Documentation

connection

uint8_t sl_bt_evt_sm_confirm_bonding_s::connection

Connection handle

Definition at line 10570 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

bonding_handle

uint8_t sl_bt_evt_sm_confirm_bonding_s::bonding_handle

Bonding handle for the request. Range: 0 to 31, or SL_BT_INVALID_BONDING_HANDLE (0xff).

NOTE! When the bonding handle is anything other than SL_BT_INVALID_BONDING_HANDLE (0xff), a bonding already exists

for this connection. Overwriting the existing bonding is a potential security risk.

Definition at line 10571 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

External Bonding Database

755/1306

External Bonding Database

Modules

sl_bt_evt_external_bondingdb_data_request

sl_bt_evt_external_bondingdb_data

sl_bt_evt_external_bondingdb_data_ready

External Bonding Database
External Bonding Database.

Receive and respond to requests related to managing an external bonding database. When the application uses the

bluetooth_feature_external_bonding_database feature, the Bluetooth stack and the application use the commands and

events in this class to store and retrieve data from the persistent bonding storage.

When this feature is used, the built-in bonding database (bluetooth_feature_builtin_bonding_database) and the address

resolving in the Bluetooth stack are excluded. The user application and external bonding database are responsible for the

following functionalities:

The external bonding database must be able to reliably and permanently store the bonding data and type tuples that are

provided by the stack in the sl_bt_evt_external_bondingdb_data_request event. Data types

sl_bt_external_bondingdb_data_remote_address and sl_bt_external_bondingdb_data_remote_address_type can be used by

the application to identify the device, but they are not used by the stack and hence the stack will not ask for their values.

Other data types in sl_bt_external_bondingdb_data_t are needed by the Bluetooth Security Manager or GATT Server. The

Long Term Keys (LTK) and Identity Resolving Keys (IRK) must be stored securely. When the database is on a separate host

device, they must be securely transmitted between the host and target over the NCP transport. The application also needs

to manage the bondings in the storage, e.g., delete a bonding when requested by the business logic.

Manage a local RAM-based bookkeeping to keep track of open connections. At a minimum, the remote Bluetooth address

address and address type must be stored in the bookkeeping when a sl_bt_evt_connection_opened event is received. If the

remote Bluetooth device address is a resolvable private random (RPA) address, the application may perform address

resolving using the IRK keys of the remote devices stored in the bonding database. Address resolving is required for

identifying a connected device using an RPA address. When the scanner or periodic advertising synchronization feature is

used, RPA addresses in advertisement report or sync events may need to be resolved if required by the business

requirements.

When the Bluetooth stack requires bonding data, it will send an sl_bt_evt_external_bondingdb_data_request event. The

application must respond to the request by sending the data value using the sl_bt_external_bondingdb_set_data command.

The GATT server will pend the requests from the remote GATT client and encryption or bonding is not possible until all

requested bonding data has been sent to the stack. The stack will send sl_bt_evt_external_bondingdb_data_ready when it

has received all the necessary bonding data from the application.

In this configuration, the value of bonding parameter in sl_bt_evt_advertiser_scan_request, sl_bt_evt_connection_opened,

sl_bt_evt_sm_bonded, sl_bt_evt_scanner_scan_report, sl_bt_evt_scanner_legacy_advertisement_report,
sl_bt_evt_scanner_extended_advertisement_report, sl_bt_evt_sync_opened, and sl_bt_evt_sync_transfer_received is always

SL_BT_INVALID_BONDING_HANDLE (0xff). Resolving the bonding handle is the responsibility of the external bonding

database. Additionally, the following BGAPI commands are not available and will return the SL_STATUS_NOT_AVAILABLE

error:

sl_bt_sm_delete_bonding

sl_bt_sm_get_bonding_handles

sl_bt_sm_get_bonding_details

External Bonding Database

756/1306

sl_bt_sm_find_bonding_by_address

Enumerations

enum sl_bt_external_bondingdb_data_t {

sl_bt_external_bondingdb_data_remote_address = 0�0
sl_bt_external_bondingdb_data_remote_address_type = 0�1
sl_bt_external_bondingdb_data_remote_ltk = 0�2
sl_bt_external_bondingdb_data_local_ltk = 0�3
sl_bt_external_bondingdb_data_remote_central_inf = 0�4
sl_bt_external_bondingdb_data_local_central_inf = 0�5
sl_bt_external_bondingdb_data_irk = 0�6
sl_bt_external_bondingdb_data_meta = 0�7
sl_bt_external_bondingdb_data_gatt_client_config = 0�8
sl_bt_external_bondingdb_data_gatt_client_features = 0�9
sl_bt_external_bondingdb_data_gatt_db_hash = 0xa

}
These values define the bonding data types, which are stored in the persistent store.

Functions

sl_status_t sl_bt_external_bondingdb_set_data(uint8_t connection, uint8_t type, size_t data_len, const uint8_t *data)

Macros

#define sl_bt_cmd_external_bondingdb_set_data_id 0�005c0020

#define sl_bt_rsp_external_bondingdb_set_data_id 0�005c0020

Enumeration Documentation

sl_bt_external_bondingdb_data_t

sl_bt_external_bondingdb_data_t

These values define the bonding data types, which are stored in the persistent store.

Enumerator

sl_bt_external_bondingdb_data_remote_address

sl_bt_external_bondingdb_data_remote_address_type

sl_bt_external_bondingdb_data_remote_ltk

sl_bt_external_bondingdb_data_local_ltk

sl_bt_external_bondingdb_data_remote_central_inf

sl_bt_external_bondingdb_data_local_central_inf

sl_bt_external_bondingdb_data_irk

sl_bt_external_bondingdb_data_meta

sl_bt_external_bondingdb_data_gatt_client_config

sl_bt_external_bondingdb_data_gatt_client_features

sl_bt_external_bondingdb_data_gatt_db_hash

Definition at line 11186 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Function Documentation

External Bonding Database

757/1306

sl_status_t sl_bt_external_bondingdb_set_data (uint8_t connection, uint8_t type, size_t data_len, const uint8_t *data)

Parameters

[in] connection Connection handle

[in] type Enum sl_bt_external_bondingdb_data_t. Bonding data type. Values:

sl_bt_external_bondingdb_data_remote_address (0x0): Identity address of the remote device,

which a resolvable random address can be resolved to

sl_bt_external_bondingdb_data_remote_address_type (0x1): Type of the remote device identity

address. Value 0 is public device address and 1 is static device address

sl_bt_external_bondingdb_data_remote_ltk (0x2): Long Term Key (LTK) used as central device.

The value of this type must be stored securely.

sl_bt_external_bondingdb_data_local_ltk (0x3): Long Term Key (LTK) used as peripheral device.

The value of this type must be stored securely.

sl_bt_external_bondingdb_data_remote_central_inf (0x4): Identification info used as a central

device

sl_bt_external_bondingdb_data_local_central_inf (0x5): Identification info used as a central

device

sl_bt_external_bondingdb_data_irk (0x6): Identity Resolving Key (IRK) of the remote device that

is used for resolving its RPA addresses when the device is in privacy mode. The value of this type

must be stored securely.

sl_bt_external_bondingdb_data_meta (0x7): Metadata about the bonding

sl_bt_external_bondingdb_data_gatt_client_config (0x8): The remote GATT client characteristic

configurations

sl_bt_external_bondingdb_data_gatt_client_features (0x9): The remote GATT client supported

features

sl_bt_external_bondingdb_data_gatt_db_hash (0xa): Latest local GATT database hash value that

the remote client has seen for GATT robust caching feature

[in] data_len Length of data in data

[in] data Bonding data

Set bonding data of a connection from the external bonding database. When the Bluetooth stack needs bonding data, it will

send the request to user application with a sl_bt_evt_external_bondingdb_data_request event that contains the requested

data type. The application must respond to the request by sending data using this command.

Send 0 length data to the stack with this command if the requested data is not available in the external bonding database.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 11472 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_external_bondingdb_set_data_id

#define sl_bt_cmd_external_bondingdb_set_data_id

Value:

0�005c0020

Definition at line 11179 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

External Bonding Database

758/1306

sl_bt_rsp_external_bondingdb_set_data_id

#define sl_bt_rsp_external_bondingdb_set_data_id

Value:

0�005c0020

Definition at line 11180 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_external_bondingdb_data_request

759/1306

sl_bt_evt_external_bondingdb_data_request

Modules

sl_bt_evt_external_bondingdb_data_request_s

sl_bt_evt_external_bondingdb_data_request
Indicates that the Bluetooth stack requests the bonding data of a connection from the external bonding database.

The application must respond by setting bonding data using the sl_bt_external_bondingdb_set_data command.

The Bluetooth stack will send this event one or more times after a connection is open following the

sl_bt_evt_connection_opened event to get ready for security related operations.

Typedefs

typedef struct
sl_bt_evt_external
_bondingdb_data_

request_s

sl_bt_evt_external_bondingdb_data_request_t

Macros

#define sl_bt_evt_external_bondingdb_data_request_id 0�005c00a0
Identifier of the data_request event.

Typedef Documentation

sl_bt_evt_external_bondingdb_data_request_t

typedef struct sl_bt_evt_external_bondingdb_data_request_s sl_bt_evt_external_bondingdb_data_request_t

Definition at line 11331 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_external_bondingdb_data_request_id

#define sl_bt_evt_external_bondingdb_data_request_id

Value:

0�005c00a0

Identifier of the data_request event.

Definition at line 11280 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_external_bondingdb_data_request_s

760/1306

sl_bt_evt_external_bondingdb_data_request_s

Data structure of the data_request event.

Public Attributes

uint8_t connection

uint8_t type

Public Attribute Documentation

connection

uint8_t sl_bt_evt_external_bondingdb_data_request_s::connection

Connection handle

Definition at line 11287 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

type

uint8_t sl_bt_evt_external_bondingdb_data_request_s::type

Enum sl_bt_external_bondingdb_data_t. The requested bonding data type. Values:

sl_bt_external_bondingdb_data_remote_address (0x0): Identity address of the remote device, which a resolvable random

address can be resolved to

sl_bt_external_bondingdb_data_remote_address_type (0x1): Type of the remote device identity address. Value 0 is public

device address and 1 is static device address

sl_bt_external_bondingdb_data_remote_ltk (0x2): Long Term Key (LTK) used as central device. The value of this type must

be stored securely.

sl_bt_external_bondingdb_data_local_ltk (0x3): Long Term Key (LTK) used as peripheral device. The value of this type must

be stored securely.

sl_bt_external_bondingdb_data_remote_central_inf (0x4): Identification info used as a central device

sl_bt_external_bondingdb_data_local_central_inf (0x5): Identification info used as a central device

sl_bt_external_bondingdb_data_irk (0x6): Identity Resolving Key (IRK) of the remote device that is used for resolving its RPA

addresses when the device is in privacy mode. The value of this type must be stored securely.

sl_bt_external_bondingdb_data_meta (0x7): Metadata about the bonding

sl_bt_external_bondingdb_data_gatt_client_config (0x8): The remote GATT client characteristic configurations

sl_bt_external_bondingdb_data_gatt_client_features (0x9): The remote GATT client supported features

sl_bt_external_bondingdb_data_gatt_db_hash (0xa): Latest local GATT database hash value that the remote client has seen

for GATT robust caching feature

Definition at line 11288 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_external_bondingdb_data

761/1306

sl_bt_evt_external_bondingdb_data

Modules

sl_bt_evt_external_bondingdb_data_s

sl_bt_evt_external_bondingdb_data
Indicates that updated bonding data of a connection is available.

The application must store it in the external bonding database permanently.

Typedefs

typedef struct
sl_bt_evt_external
_bondingdb_data_

s

sl_bt_evt_external_bondingdb_data_t

Macros

#define sl_bt_evt_external_bondingdb_data_id 0�015c00a0
Identifier of the data event.

Typedef Documentation

sl_bt_evt_external_bondingdb_data_t

typedef struct sl_bt_evt_external_bondingdb_data_s sl_bt_evt_external_bondingdb_data_t

Definition at line 11397 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_external_bondingdb_data_id

#define sl_bt_evt_external_bondingdb_data_id

Value:

0�015c00a0

Identifier of the data event.

Definition at line 11344 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_external_bondingdb_data_s

762/1306

sl_bt_evt_external_bondingdb_data_s

Data structure of the data event.

Public Attributes

uint8_t connection

uint8_t type

uint8array data

Public Attribute Documentation

connection

uint8_t sl_bt_evt_external_bondingdb_data_s::connection

Connection handle

Definition at line 11351 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

type

uint8_t sl_bt_evt_external_bondingdb_data_s::type

Enum sl_bt_external_bondingdb_data_t. The bonding data type. Values:

sl_bt_external_bondingdb_data_remote_address (0x0): Identity address of the remote device, which a resolvable random

address can be resolved to

sl_bt_external_bondingdb_data_remote_address_type (0x1): Type of the remote device identity address. Value 0 is public

device address and 1 is static device address

sl_bt_external_bondingdb_data_remote_ltk (0x2): Long Term Key (LTK) used as central device. The value of this type must

be stored securely.

sl_bt_external_bondingdb_data_local_ltk (0x3): Long Term Key (LTK) used as peripheral device. The value of this type must

be stored securely.

sl_bt_external_bondingdb_data_remote_central_inf (0x4): Identification info used as a central device

sl_bt_external_bondingdb_data_local_central_inf (0x5): Identification info used as a central device

sl_bt_external_bondingdb_data_irk (0x6): Identity Resolving Key (IRK) of the remote device that is used for resolving its RPA

addresses when the device is in privacy mode. The value of this type must be stored securely.

sl_bt_external_bondingdb_data_meta (0x7): Metadata about the bonding

sl_bt_external_bondingdb_data_gatt_client_config (0x8): The remote GATT client characteristic configurations

sl_bt_external_bondingdb_data_gatt_client_features (0x9): The remote GATT client supported features

sl_bt_external_bondingdb_data_gatt_db_hash (0xa): Latest local GATT database hash value that the remote client has seen

for GATT robust caching feature

Definition at line 11352 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

data

sl_bt_evt_external_bondingdb_data_s

763/1306

uint8array sl_bt_evt_external_bondingdb_data_s::data

Bonding data

Definition at line 11394 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_external_bondingdb_data_ready

764/1306

sl_bt_evt_external_bondingdb_data_ready

Modules

sl_bt_evt_external_bondingdb_data_ready_s

sl_bt_evt_external_bondingdb_data_ready
Indicates that stack has received all the necessary bonding data from the application and is now fully functional.

Typedefs

typedef struct
sl_bt_evt_external
_bondingdb_data_

ready_s

sl_bt_evt_external_bondingdb_data_ready_t

Macros

#define sl_bt_evt_external_bondingdb_data_ready_id 0�025c00a0
Identifier of the data_ready event.

Typedef Documentation

sl_bt_evt_external_bondingdb_data_ready_t

typedef struct sl_bt_evt_external_bondingdb_data_ready_s sl_bt_evt_external_bondingdb_data_ready_t

Definition at line 11419 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_external_bondingdb_data_ready_id

#define sl_bt_evt_external_bondingdb_data_ready_id

Value:

0�025c00a0

Identifier of the data_ready event.

Definition at line 11409 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_external_bondingdb_data_ready_s

765/1306

sl_bt_evt_external_bondingdb_data_ready_s

Data structure of the data_ready event.

Public Attributes

uint8_t connection

Public Attribute Documentation

connection

uint8_t sl_bt_evt_external_bondingdb_data_ready_s::connection

Connection handle

Definition at line 11416 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Address Resolving List

766/1306

Address Resolving List

Address Resolving List
Address Resolving List.

Provides support for adding and removing devices from the Resolving List in controller-based privacy.

Adding a peer device to the Resolving List allows the Bluetooth controller to resolve the address when the peer device is

using privacy and is transmitting with a Resolvable Private Address (RPA). When the controller has resolved an address in a

received Bluetooth packet such as an advertisement, the corresponding event will report the peer device's identity address
even if a Resolvable Private Address was used over the air.

When the application has added a peer device to the Resolving List, the application may use the peer device's identity

address in commands such as sl_bt_connection_open or sl_bt_sync_scanner_open even if the peer device is using privacy

and is using a Resolvable Private Address over the air.

Enumerations

enum sl_bt_resolving_list_privacy_mode_t {

sl_bt_resolving_list_privacy_mode_network = 0�0
sl_bt_resolving_list_privacy_mode_device = 0�1

}
Specifies the Privacy Mode used for a peer device in the Resolving List.

Functions

sl_status_t sl_bt_resolving_list_add_device_by_bonding(uint32_t bonding, uint8_t privacy_mode)

sl_status_t sl_bt_resolving_list_add_device_by_address(bd_addr address, uint8_t address_type, aes_key_128 key, uint8_t
privacy_mode)

sl_status_t sl_bt_resolving_list_remove_device_by_bonding(uint32_t bonding)

sl_status_t sl_bt_resolving_list_remove_device_by_address(bd_addr address, uint8_t address_type)

sl_status_t sl_bt_resolving_list_remove_all_devices()

Macros

#define sl_bt_cmd_resolving_list_add_device_by_bonding_id 0�005d0020

#define sl_bt_cmd_resolving_list_add_device_by_address_id 0�015d0020

#define sl_bt_cmd_resolving_list_remove_device_by_bonding_id 0�025d0020

#define sl_bt_cmd_resolving_list_remove_device_by_address_id 0�035d0020

#define sl_bt_cmd_resolving_list_remove_all_devices_id 0�045d0020

#define sl_bt_rsp_resolving_list_add_device_by_bonding_id 0�005d0020

Address Resolving List

767/1306

#define sl_bt_rsp_resolving_list_add_device_by_address_id 0�015d0020

#define sl_bt_rsp_resolving_list_remove_device_by_bonding_id 0�025d0020

#define sl_bt_rsp_resolving_list_remove_device_by_address_id 0�035d0020

#define sl_bt_rsp_resolving_list_remove_all_devices_id 0�045d0020

Enumeration Documentation

sl_bt_resolving_list_privacy_mode_t

sl_bt_resolving_list_privacy_mode_t

Specifies the Privacy Mode used for a peer device in the Resolving List.

Enumerator

sl_bt_resolving_list_privacy_mode_network

sl_bt_resolving_list_privacy_mode_device

Definition at line 11518 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Function Documentation

sl_bt_resolving_list_add_device_by_bonding

sl_status_t sl_bt_resolving_list_add_device_by_bonding (uint32_t bonding, uint8_t privacy_mode)

Parameters

[in] bonding The bonding handle

[in] privacy_mode Enum sl_bt_resolving_list_privacy_mode_t. The Privacy Mode to use for the peer device. Values:

sl_bt_resolving_list_privacy_mode_network (0x0): Use Network Privacy Mode for the peer

device

sl_bt_resolving_list_privacy_mode_device (0x1): Use Device Privacy Mode for the peer device

Default: sl_bt_resolving_list_privacy_mode_network (Use Network Privacy Mode for the peer device)

Add a device to the Resolving List based on its bonding handle.

This command is not available if the application uses the external bonding database provided by the component

bluetooth_feature_external_bonding_database. In that configuration the application can use the command

sl_bt_resolving_list_add_device_by_address and provide the peer's identity address and its Identity Resolving Key (IRK).

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 11554 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_resolving_list_add_device_by_address

sl_status_t sl_bt_resolving_list_add_device_by_address (bd_addr address, uint8_t address_type, aes_key_128 key, uint8_t
privacy_mode)

Parameters

Address Resolving List

768/1306

[in] address Bluetooth address of the peer device

[in] address_type Enum sl_bt_gap_address_type_t. The peer device address type. Values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

[in] key Identity Resolving Key (IRK) of the peer device in little endian format.

[in] privacy_mode Enum sl_bt_resolving_list_privacy_mode_t. The Privacy Mode to use for the peer device. Values:

sl_bt_resolving_list_privacy_mode_network (0x0): Use Network Privacy Mode for the peer

device

sl_bt_resolving_list_privacy_mode_device (0x1): Use Device Privacy Mode for the peer device

Default: sl_bt_resolving_list_privacy_mode_network (Use Network Privacy Mode for the peer device)

Add a device to the Resolving List based on its identity address and its Identity Resolving Key (IRK).

This command is typically only needed when the application uses the external bonding database provided by the

component bluetooth_feature_external_bonding_database. When the application uses the built-in bonding database, the

command sl_bt_resolving_list_add_device_by_bonding is more convenient.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 11590 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_resolving_list_remove_device_by_bonding

sl_status_t sl_bt_resolving_list_remove_device_by_bonding (uint32_t bonding)

Parameters

[in] bonding The bonding handle

Remove a device from the Resolving List based on its bonding handle.

This command is not available if the application uses the external bonding database provided by the component

bluetooth_feature_external_bonding_database. In that configuration the application can use the command

sl_bt_resolving_list_remove_device_by_address and provide the peer's identity address.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 11611 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_resolving_list_remove_device_by_address

sl_status_t sl_bt_resolving_list_remove_device_by_address (bd_addr address, uint8_t address_type)

Parameters

[in] address Bluetooth address of the peer device

[in] address_type Enum sl_bt_gap_address_type_t. The peer device address type. Values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

Address Resolving List

769/1306

Remove a device from the Resolving List based on its identity address.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 11626 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_resolving_list_remove_all_devices

sl_status_t sl_bt_resolving_list_remove_all_devices ()

Remove all devices from the Resolving List.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 11637 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_resolving_list_add_device_by_bonding_id

#define sl_bt_cmd_resolving_list_add_device_by_bonding_id

Value:

0�005d0020

Definition at line 11503 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_resolving_list_add_device_by_address_id

#define sl_bt_cmd_resolving_list_add_device_by_address_id

Value:

0�015d0020

Definition at line 11504 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_resolving_list_remove_device_by_bonding_id

#define sl_bt_cmd_resolving_list_remove_device_by_bonding_id

Value:

0�025d0020

Definition at line 11505 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_resolving_list_remove_device_by_address_id

Address Resolving List

770/1306

#define sl_bt_cmd_resolving_list_remove_device_by_address_id

Value:

0x035d0020

Definition at line 11506 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_resolving_list_remove_all_devices_id

#define sl_bt_cmd_resolving_list_remove_all_devices_id

Value:

0�045d0020

Definition at line 11507 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_resolving_list_add_device_by_bonding_id

#define sl_bt_rsp_resolving_list_add_device_by_bonding_id

Value:

0�005d0020

Definition at line 11508 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_resolving_list_add_device_by_address_id

#define sl_bt_rsp_resolving_list_add_device_by_address_id

Value:

0�015d0020

Definition at line 11509 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_resolving_list_remove_device_by_bonding_id

#define sl_bt_rsp_resolving_list_remove_device_by_bonding_id

Value:

0�025d0020

Definition at line 11510 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_resolving_list_remove_device_by_address_id

#define sl_bt_rsp_resolving_list_remove_device_by_address_id

Value:

Address Resolving List

771/1306

0x035d0020

Definition at line 11511 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_resolving_list_remove_all_devices_id

#define sl_bt_rsp_resolving_list_remove_all_devices_id

Value:

0�045d0020

Definition at line 11512 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Filter Accept List

772/1306

Filter Accept List

Filter Accept List
Filter Accept List.

Provides support for adding and removing devices from the Filter Accept List in the Bluetooth controller.

The Filter Accept List allows filtering transmissions from other Bluetooth devices so that the local device only

receives/accepts transmissions from the devices that it's interested in or wants to communicate with. Operations that

support filtering provide a means to control how the Filter Accept List is used:

For advertising, use the command sl_bt_advertiser_configure and flags bits

SL_BT_ADVERTISER_USE_FILTER_FOR_SCAN_REQUESTS and

SL_BT_ADVERTISER_USE_FILTER_FOR_CONNECTION_REQUESTS to control the advertising filter policy

For scanning, use the command sl_bt_scanner_set_parameters_and_filter to control the scanning filter policy

Functions

sl_status_t sl_bt_accept_list_add_device_by_bonding(uint32_t bonding)

sl_status_t sl_bt_accept_list_add_device_by_address(bd_addr address, uint8_t address_type)

sl_status_t sl_bt_accept_list_remove_device_by_bonding(uint32_t bonding)

sl_status_t sl_bt_accept_list_remove_device_by_address(bd_addr address, uint8_t address_type)

sl_status_t sl_bt_accept_list_remove_all_devices()

Macros

#define sl_bt_cmd_accept_list_add_device_by_bonding_id 0�005e0020

#define sl_bt_cmd_accept_list_add_device_by_address_id 0�015e0020

#define sl_bt_cmd_accept_list_remove_device_by_bonding_id 0�025e0020

#define sl_bt_cmd_accept_list_remove_device_by_address_id 0�035e0020

#define sl_bt_cmd_accept_list_remove_all_devices_id 0�045e0020

#define sl_bt_rsp_accept_list_add_device_by_bonding_id 0�005e0020

#define sl_bt_rsp_accept_list_add_device_by_address_id 0�015e0020

#define sl_bt_rsp_accept_list_remove_device_by_bonding_id 0�025e0020

#define sl_bt_rsp_accept_list_remove_device_by_address_id 0�035e0020

#define sl_bt_rsp_accept_list_remove_all_devices_id 0�045e0020

Function Documentation

Filter Accept List

773/1306

sl_bt_accept_list_add_device_by_bonding

sl_status_t sl_bt_accept_list_add_device_by_bonding (uint32_t bonding)

Parameters

[in] bonding The bonding handle

Add a device to the Filter Accept List based on its bonding handle.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 11685 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_accept_list_add_device_by_address

sl_status_t sl_bt_accept_list_add_device_by_address (bd_addr address, uint8_t address_type)

Parameters

[in] address Bluetooth address of the peer device

[in] address_type Enum sl_bt_gap_address_type_t. The peer device address type. Values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

sl_bt_gap_anonymous_address (0xff): Anonymous address. A Filter Accept List entry with this

type matches all advertisements sent with no address.

Add a device to the Filter Accept List based on its identity address.

Use the special address type sl_bt_gap_anonymous_address to add an entry that matches all advertisements sent with no

address.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 11706 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_accept_list_remove_device_by_bonding

sl_status_t sl_bt_accept_list_remove_device_by_bonding (uint32_t bonding)

Parameters

[in] bonding The bonding handle

Remove a device from the Filter Accept List based on its bonding handle.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 11718 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Filter Accept List

774/1306

sl_bt_accept_list_remove_device_by_address

sl_status_t sl_bt_accept_list_remove_device_by_address (bd_addr address, uint8_t address_type)

Parameters

[in] address Bluetooth address of the peer device

[in] address_type Enum sl_bt_gap_address_type_t. The peer device address type. Values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

sl_bt_gap_anonymous_address (0xff): Anonymous address. A Filter Accept List entry with this

type matches all advertisements sent with no address.

Remove a device from the Filter Accept List based on its identity address.

Use the special address type sl_bt_gap_anonymous_address to remove an entry that matches all advertisements sent with

no address.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 11739 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_accept_list_remove_all_devices

sl_status_t sl_bt_accept_list_remove_all_devices ()

Remove all devices from the Filter Accept List.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 11750 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_accept_list_add_device_by_bonding_id

#define sl_bt_cmd_accept_list_add_device_by_bonding_id

Value:

0�005e0020

Definition at line 11665 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_accept_list_add_device_by_address_id

#define sl_bt_cmd_accept_list_add_device_by_address_id

Value:

0�015e0020

Filter Accept List

775/1306

Definition at line 11666 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_accept_list_remove_device_by_bonding_id

#define sl_bt_cmd_accept_list_remove_device_by_bonding_id

Value:

0�025e0020

Definition at line 11667 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_accept_list_remove_device_by_address_id

#define sl_bt_cmd_accept_list_remove_device_by_address_id

Value:

0�035e0020

Definition at line 11668 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_accept_list_remove_all_devices_id

#define sl_bt_cmd_accept_list_remove_all_devices_id

Value:

0�045e0020

Definition at line 11669 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_accept_list_add_device_by_bonding_id

#define sl_bt_rsp_accept_list_add_device_by_bonding_id

Value:

0�005e0020

Definition at line 11670 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_accept_list_add_device_by_address_id

#define sl_bt_rsp_accept_list_add_device_by_address_id

Value:

0�015e0020

Definition at line 11671 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_accept_list_remove_device_by_bonding_id

Filter Accept List

776/1306

#define sl_bt_rsp_accept_list_remove_device_by_bonding_id

Value:

0x025e0020

Definition at line 11672 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_accept_list_remove_device_by_address_id

#define sl_bt_rsp_accept_list_remove_device_by_address_id

Value:

0�035e0020

Definition at line 11673 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_accept_list_remove_all_devices_id

#define sl_bt_rsp_accept_list_remove_all_devices_id

Value:

0�045e0020

Definition at line 11674 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

OTA

777/1306

OTA

OTA
OTA.

Commands in this class are used for configuring OTA DFU using the Apploader.

Note that this class is used on EFR series 1 and is not available for series 2 devices. The Apploader runs as a Bootloader

communication plugin on series 2 and the Apploader plugin API supports setting device name and advertising data. Other

configurations can be implemented in the Apploader plugin application space.

Functions

sl_status_t sl_bt_ota_set_device_name(size_t name_len, const uint8_t *name)

sl_status_t sl_bt_ota_set_advertising_data(uint8_t packet_type, size_t adv_data_len, const uint8_t *adv_data)

sl_status_t sl_bt_ota_set_configuration(uint32_t flags)

sl_status_t sl_bt_ota_set_rf_path(uint8_t enable, uint8_t antenna)

Macros

#define sl_bt_cmd_ota_set_device_name_id 0�01100020

#define sl_bt_cmd_ota_set_advertising_data_id 0�02100020

#define sl_bt_cmd_ota_set_configuration_id 0�03100020

#define sl_bt_cmd_ota_set_rf_path_id 0�04100020

#define sl_bt_rsp_ota_set_device_name_id 0�01100020

#define sl_bt_rsp_ota_set_advertising_data_id 0�02100020

#define sl_bt_rsp_ota_set_configuration_id 0�03100020

#define sl_bt_rsp_ota_set_rf_path_id 0�04100020

Function Documentation

sl_bt_ota_set_device_name

sl_status_t sl_bt_ota_set_device_name (size_t name_len, const uint8_t *name)

Parameters

[in] name_len Length of data in name

[in] name OTA device name

Set the device name to be used during the OTA update. The name is stored in the persistent store. Maximum name length is

17 bytes.

OTA

778/1306

Default is "OTA" if a name is not set.

Note that this command is available for EFR series 1 devices only.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 11794 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_ota_set_advertising_data

sl_status_t sl_bt_ota_set_advertising_data (uint8_t packet_type, size_t adv_data_len, const uint8_t *adv_data)

Parameters

[in] packet_type This value selects whether data is intended for advertising packets or scan response packets.

2: OTA advertising packets

4: OTA scan response packets

[in] adv_data_len Length of data in adv_data

[in] adv_data Data to be set

Set advertising packets in OTA. Maximum 31 bytes of data can be set.

Note that this command is available for EFR series 1 devices only.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 11812 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_ota_set_configuration

sl_status_t sl_bt_ota_set_configuration (uint32_t flags)

Parameters

[in] flags OTA configuration flags. This value is given as a bitmask. Flags:

Bit 0: Advertising address

0: Use public device address

1: Use a random address

Bit 1: Application update version check. Check the version number and product ID of the application upgrade

before applying. If the version number of the current application can't be determined, this implementation will

assume that it is OK to apply the new image. Note that this is not a security feature.

0: Disable version check

1: Enable version check

Bit 2 to 31: Reserved

Default value: 0

Set OTA configuration. The setting is stored in the persistent store.

OTA

779/1306

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 11847 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_ota_set_rf_path

sl_status_t sl_bt_ota_set_rf_path (uint8_t enable, uint8_t antenna)

Parameters

[in] enable If enabled antenna selection is used in OTA, otherwise default antenna is used.

[in] antenna Set antenna used in OTA. Value should be come from RAIL_AntennaSel_t enum. See antenna path

selection in RAIL rail_chip_specific.h.

Set RF path antenna for OTA. This command should be used only if the device has multiple antenna ports. The setting is

stored in the persistent store.

Note that this command is available for EFR series 1 devices only.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 11865 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_ota_set_device_name_id

#define sl_bt_cmd_ota_set_device_name_id

Value:

0�01100020

Definition at line 11770 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_ota_set_advertising_data_id

#define sl_bt_cmd_ota_set_advertising_data_id

Value:

0�02100020

Definition at line 11771 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_ota_set_configuration_id

#define sl_bt_cmd_ota_set_configuration_id

Value:

0�03100020

OTA

780/1306

Definition at line 11772 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_ota_set_rf_path_id

#define sl_bt_cmd_ota_set_rf_path_id

Value:

0�04100020

Definition at line 11773 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_ota_set_device_name_id

#define sl_bt_rsp_ota_set_device_name_id

Value:

0�01100020

Definition at line 11774 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_ota_set_advertising_data_id

#define sl_bt_rsp_ota_set_advertising_data_id

Value:

0�02100020

Definition at line 11775 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_ota_set_configuration_id

#define sl_bt_rsp_ota_set_configuration_id

Value:

0�03100020

Definition at line 11776 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_ota_set_rf_path_id

#define sl_bt_rsp_ota_set_rf_path_id

Value:

0�04100020

Definition at line 11777 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Coexistence

781/1306

Coexistence

Coexistence
Coexistence.

Coexistence BGAPI class. Coexistence interface is enabled and initialized with sl_bt_init_coex_hal function.

Enumerations

enum sl_bt_coex_option_t {

sl_bt_coex_option_enable = 0�100
sl_bt_coex_option_tx_abort = 0�400
sl_bt_coex_option_high_priority = 0�800

}
Coexistence configuration options.

Functions

sl_status_t sl_bt_coex_set_options(uint32_t mask, uint32_t options)

sl_status_t sl_bt_coex_set_parameters(uint8_t priority, uint8_t request, uint8_t pwm_period, uint8_t pwm_dutycycle)

sl_status_t sl_bt_coex_set_directional_priority_pulse(uint8_t pulse)

sl_status_t sl_bt_coex_get_parameters(uint8_t *priority, uint8_t *request, uint8_t *pwm_period, uint8_t *pwm_dutycycle)

sl_status_t sl_bt_coex_get_counters(uint8_t reset, size_t max_counters_size, size_t *counters_len, uint8_t *counters)

Macros

#define sl_bt_cmd_coex_set_options_id 0�00200020

#define sl_bt_cmd_coex_set_parameters_id 0�02200020

#define sl_bt_cmd_coex_set_directional_priority_pulse_id 0�03200020

#define sl_bt_cmd_coex_get_parameters_id 0�04200020

#define sl_bt_cmd_coex_get_counters_id 0�01200020

#define sl_bt_rsp_coex_set_options_id 0�00200020

#define sl_bt_rsp_coex_set_parameters_id 0�02200020

#define sl_bt_rsp_coex_set_directional_priority_pulse_id 0�03200020

#define sl_bt_rsp_coex_get_parameters_id 0�04200020

#define sl_bt_rsp_coex_get_counters_id 0�01200020

Coexistence

782/1306

Enumeration Documentation

sl_bt_coex_option_t

sl_bt_coex_option_t

Coexistence configuration options.

Enumerator

sl_bt_coex_option_enable

sl_bt_coex_option_tx_abort

sl_bt_coex_option_high_priority

Definition at line 11894 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Function Documentation

sl_bt_coex_set_options

sl_status_t sl_bt_coex_set_options (uint32_t mask, uint32_t options)

Parameters

[in] mask Bitmask of following coexistence options to change

sl_bt_coex_option_enable : (0x100) Enable coexistence feature

sl_bt_coex_option_tx_abort : (0x400) Abort transmission if grant is denied

sl_bt_coex_option_high_priority : (0x800) Enable priority signal

[in] options Bitmask of following coexistence option values to set

sl_bt_coex_option_enable : (0x100) Enable coexistence feature

sl_bt_coex_option_tx_abort : (0x400) Abort transmission if grant is denied

sl_bt_coex_option_high_priority : (0x800) Enable priority signal

Configure coexistence options at runtime.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 11925 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_coex_set_parameters

sl_status_t sl_bt_coex_set_parameters (uint8_t priority, uint8_t request, uint8_t pwm_period, uint8_t pwm_dutycycle)

Parameters

[in] priority Coexistence priority threshold. Coexistence priority is toggled if priority is below this value.

[in] request Coexistence request threshold. Coexistence request is toggled if priority is below this value.

[in] pwm_period PWM functionality period length in 1 ms units

[in] pwm_dutycycle PWM functionality duty cycle in percentage

Coexistence

783/1306

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 11941 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_coex_set_directional_priority_pulse

sl_status_t sl_bt_coex_set_directional_priority_pulse (uint8_t pulse)

Parameters

[in] pulse Directional priority pulse width in us

Set Directional Priority Pulse Width.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 11955 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_coex_get_parameters

sl_status_t sl_bt_coex_get_parameters (uint8_t *priority, uint8_t *request, uint8_t *pwm_period, uint8_t *pwm_dutycycle)

Parameters

[out] priority Coexistence priority threshold. Coexistence priority is toggled if priority is below this value.

[out] request Coexistence request threshold. Coexistence request is toggled if priority is below this value.

[out] pwm_period PWM functionality period length in 1 ms units

[out] pwm_dutycycle PWM functionality duty cycle in percentage

Get the coexistence parameters.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 11971 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_coex_get_counters

sl_status_t sl_bt_coex_get_counters (uint8_t reset, size_t max_counters_size, size_t *counters_len, uint8_t *counters)

Parameters

[in] reset Reset counters if parameter value is not zero.

[in] max_counters_size Size of output buffer passed in counters

[out] counters_len On return, set to the length of output data written to counters

[out] counters Coexistence statistic counters

Read coexistence statistic counters from the device. Response contains the list of uint32 type counter values. Counters in

the list are in following order: low priority requested, high priority requested, low priority denied, high priority denied, low-

Coexistence

784/1306

priority TX aborted, and high-priority TX aborted. Passing a non-zero value also resets counters.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 11993 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_coex_set_options_id

#define sl_bt_cmd_coex_set_options_id

Value:

0�00200020

Definition at line 11880 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_coex_set_parameters_id

#define sl_bt_cmd_coex_set_parameters_id

Value:

0�02200020

Definition at line 11881 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_coex_set_directional_priority_pulse_id

#define sl_bt_cmd_coex_set_directional_priority_pulse_id

Value:

0�03200020

Definition at line 11882 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_coex_get_parameters_id

#define sl_bt_cmd_coex_get_parameters_id

Value:

0�04200020

Definition at line 11883 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_coex_get_counters_id

#define sl_bt_cmd_coex_get_counters_id

Coexistence

785/1306

Value:

0x01200020

Definition at line 11884 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_coex_set_options_id

#define sl_bt_rsp_coex_set_options_id

Value:

0�00200020

Definition at line 11885 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_coex_set_parameters_id

#define sl_bt_rsp_coex_set_parameters_id

Value:

0�02200020

Definition at line 11886 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_coex_set_directional_priority_pulse_id

#define sl_bt_rsp_coex_set_directional_priority_pulse_id

Value:

0�03200020

Definition at line 11887 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_coex_get_parameters_id

#define sl_bt_rsp_coex_get_parameters_id

Value:

0�04200020

Definition at line 11888 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_coex_get_counters_id

#define sl_bt_rsp_coex_get_counters_id

Value:

0�01200020

Definition at line 11889 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Accurate Bluetooth Ranging

786/1306

Accurate Bluetooth Ranging

Modules

sl_bt_evt_cs_security_enable_complete

sl_bt_evt_cs_config_complete

sl_bt_evt_cs_procedure_enable_complete

sl_bt_evt_cs_result

Accurate Bluetooth Ranging
Accurate Bluetooth Ranging.

This class provides commands and events for Accurate Bluetooth Ranging (ABR) between Bluetooth devices.

Enumerations

enum sl_bt_cs_role_t {

sl_bt_cs_role_initiator = 0�0
sl_bt_cs_role_reflector = 0�1

}
Specifies the role for the device during ABR procedure.

enum sl_bt_cs_role_status_t {

sl_bt_cs_role_status_disable = 0�0
sl_bt_cs_role_status_enable = 0�1

}
Defines the status of a given role for an ABR capable device.

enum sl_bt_cs_companion_signal_status_t {

sl_bt_cs_companion_signal_status_disable = 0�0
sl_bt_cs_companion_signal_status_enable = 0�1

}
Defines the status of a companion signal.

enum sl_bt_cs_procedure_state_t {

sl_bt_cs_procedure_state_disabled = 0�0
sl_bt_cs_procedure_state_enabled = 0�1

}
Defines the ABR procedure state for the device.

enum sl_bt_cs_mode_t {

sl_bt_cs_mode_calibration = 0�0
sl_bt_cs_mode_rtt = 0�1
sl_bt_cs_mode_pbr = 0�2
sl_bt_cs_mode_pbr_and_rtt = 0�3

}
Defines the different modes for ABR steps.

Accurate Bluetooth Ranging

787/1306

enum sl_bt_cs_rtt_type_t {

sl_bt_cs_rtt_type_coarse = 0�0
sl_bt_cs_rtt_type_fractional_96_bit_sounding = 0�2

}
Defines the Round Trip Time (RTT) payload types used during the ABR sequence.

enum sl_bt_cs_channel_selection_algorithm_t {

sl_bt_cs_channel_selection_algorithm_3b = 0�0
sl_bt_cs_channel_selection_algorithm_3c = 0�1
sl_bt_cs_channel_selection_algorithm_user_shape_interleaved = 0�2

}
Specifies the ABR channel selection algorithms.

enum sl_bt_cs_ch3c_shape_t {

sl_bt_cs_ch3c_shape_hat = 0�0
sl_bt_cs_chc3_shape_interleaved = 0�1

}
Specifies the ch3c shapes.

enum sl_bt_cs_done_status_t {

sl_bt_cs_done_status_complete = 0�0
sl_bt_cs_done_status_partial_results_continue = 0�1
sl_bt_cs_done_status_current_aborted = 0xfe
sl_bt_cs_done_status_all_aborted = 0xff

}
Describes the current status of the procedure or subevents.

enum sl_bt_cs_abort_reason_t {

sl_bt_cs_abort_reason_no_abort = 0�0
sl_bt_cs_abort_reason_host_request = 0�1
sl_bt_cs_abort_reason_insufficient_channels = 0�2
sl_bt_cs_abort_reason_no_map_update = 0�3
sl_bt_cs_abort_reason_unspecified = 0xf

}
Describes the abort reasons for ABR procedures and subevents and is represented by 4 bits in a byte.

enum sl_bt_cs_config_state_t {

sl_bt_cs_config_state_removed = 0�0
sl_bt_cs_config_state_created = 0�1

}
Specifies the role for the device during ABR procedure.

Functions

sl_status_t sl_bt_cs_security_enable(uint8_t connection)

sl_status_t sl_bt_cs_set_default_settings(uint8_t connection, uint8_t initiator_status, uint8_t reflector_status, uint8_t
antenna_identifier, int8_t max_tx_power)

sl_status_t sl_bt_cs_create_config(uint8_t connection, uint8_t config_id, uint8_t create_context, uint8_t main_mode_type,
uint8_t sub_mode_type, uint8_t min_main_mode_steps, uint8_t max_main_mode_steps, uint8_t
main_mode_repetition, uint8_t mode_calibration_steps, uint8_t role, uint8_t rtt_type, uint8_t cs_sync_phy,
const sl_bt_cs_channel_map_t *channel_map, uint8_t channel_map_repetition, uint8_t
channel_selection_type, uint8_t ch3c_shape, uint8_t ch3c_ jump, uint8_t companion_signal_state)

sl_status_t sl_bt_cs_remove_config(uint8_t connection, uint8_t config_id)

sl_status_t sl_bt_cs_set_channel_classification(const sl_bt_cs_channel_map_t *channel_map)

Accurate Bluetooth Ranging

788/1306

sl_status_t sl_bt_cs_set_procedure_parameters(uint8_t connection, uint8_t config_id, uint16_t max_procedure_len,
uint16_t min_procedure_interval, uint16_t max_procedure_interval, uint16_t max_procedure_count, uint32_t
min_subevent_len, uint32_t max_subevent_len, uint8_t tone_antenna_config_selection, uint8_t phy, int8_t
tx_pwr_delta, uint8_t preferred_peer_antenna)

sl_status_t sl_bt_cs_procedure_enable(uint8_t connection, uint8_t enable, uint8_t config_id)

sl_status_t sl_bt_cs_set_antenna_configuration(size_t antenna_element_offset_len, const uint8_t
*antenna_element_offset)

Macros

#define sl_bt_cmd_cs_security_enable_id 0�00590020

#define sl_bt_cmd_cs_set_default_settings_id 0�01590020

#define sl_bt_cmd_cs_create_config_id 0�02590020

#define sl_bt_cmd_cs_remove_config_id 0�03590020

#define sl_bt_cmd_cs_set_channel_classification_id 0�04590020

#define sl_bt_cmd_cs_set_procedure_parameters_id 0�05590020

#define sl_bt_cmd_cs_procedure_enable_id 0�06590020

#define sl_bt_cmd_cs_set_antenna_configuration_id 0�07590020

#define sl_bt_rsp_cs_security_enable_id 0�00590020

#define sl_bt_rsp_cs_set_default_settings_id 0�01590020

#define sl_bt_rsp_cs_create_config_id 0�02590020

#define sl_bt_rsp_cs_remove_config_id 0�03590020

#define sl_bt_rsp_cs_set_channel_classification_id 0�04590020

#define sl_bt_rsp_cs_set_procedure_parameters_id 0�05590020

#define sl_bt_rsp_cs_procedure_enable_id 0�06590020

#define sl_bt_rsp_cs_set_antenna_configuration_id 0�07590020

Enumeration Documentation

sl_bt_cs_role_t

sl_bt_cs_role_t

Specifies the role for the device during ABR procedure.

Enumerator

sl_bt_cs_role_initiator

sl_bt_cs_role_reflector

Definition at line 12031 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cs_role_status_t

Accurate Bluetooth Ranging

789/1306

sl_bt_cs_role_status_t

Defines the status of a given role for an ABR capable device.

Enumerator

sl_bt_cs_role_status_disable

sl_bt_cs_role_status_enable

Definition at line 12042 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cs_companion_signal_status_t

sl_bt_cs_companion_signal_status_t

Defines the status of a companion signal.

Enumerator

sl_bt_cs_companion_signal_status_disable

sl_bt_cs_companion_signal_status_enable

Definition at line 12051 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cs_procedure_state_t

sl_bt_cs_procedure_state_t

Defines the ABR procedure state for the device.

Enumerator

sl_bt_cs_procedure_state_disabled

sl_bt_cs_procedure_state_enabled

Definition at line 12062 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cs_mode_t

sl_bt_cs_mode_t

Defines the different modes for ABR steps.

Enumerator

sl_bt_cs_mode_calibration

sl_bt_cs_mode_rtt

sl_bt_cs_mode_pbr

sl_bt_cs_mode_pbr_and_rtt

Definition at line 12072 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cs_rtt_type_t

sl_bt_cs_rtt_type_t

Accurate Bluetooth Ranging

790/1306

Defines the Round Trip Time (RTT) payload types used during the ABR sequence.

Enumerator

sl_bt_cs_rtt_type_coarse

sl_bt_cs_rtt_type_fractional_96_bit_sounding

Definition at line 12086 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cs_channel_selection_algorithm_t

sl_bt_cs_channel_selection_algorithm_t

Specifies the ABR channel selection algorithms.

Enumerator

sl_bt_cs_channel_selection_algorithm_3b

sl_bt_cs_channel_selection_algorithm_3c

sl_bt_cs_channel_selection_algorithm_user_shape_interleaved

Definition at line 12097 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cs_ch3c_shape_t

sl_bt_cs_ch3c_shape_t

Specifies the ch3c shapes.

Enumerator

sl_bt_cs_ch3c_shape_hat

sl_bt_cs_chc3_shape_interleaved

Definition at line 12133 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cs_done_status_t

sl_bt_cs_done_status_t

Describes the current status of the procedure or subevents.

Enumerator

sl_bt_cs_done_status_complete

sl_bt_cs_done_status_partial_results_continue

sl_bt_cs_done_status_current_aborted

sl_bt_cs_done_status_all_aborted

Definition at line 12144 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cs_abort_reason_t

sl_bt_cs_abort_reason_t

Describes the abort reasons for ABR procedures and subevents and is represented by 4 bits in a byte.

Accurate Bluetooth Ranging

791/1306

Enumerator

sl_bt_cs_abort_reason_no_abort

sl_bt_cs_abort_reason_host_request

sl_bt_cs_abort_reason_insufficient_channels

sl_bt_cs_abort_reason_no_map_update

sl_bt_cs_abort_reason_unspecified

Definition at line 12166 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cs_config_state_t

sl_bt_cs_config_state_t

Specifies the role for the device during ABR procedure.

Enumerator

sl_bt_cs_config_state_removed

sl_bt_cs_config_state_created

Definition at line 12184 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Function Documentation

sl_bt_cs_security_enable

sl_status_t sl_bt_cs_security_enable (uint8_t connection)

Parameters

[in] connection Connection handle

Start or restart ABR security start procedure for the specified connection.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_cs_security_enable_complete - Triggered when ABR security start procedure has completed.

Definition at line 12640 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cs_set_default_settings

sl_status_t sl_bt_cs_set_default_settings (uint8_t connection, uint8_t initiator_status, uint8_t reflector_status, uint8_t
antenna_identifier, int8_t max_tx_power)

Parameters

[in] connection Connection handle

[in] initiator_status Enum sl_bt_cs_role_status_t. Enable or disable status of the Initiator role. Values:

sl_bt_cs_role_status_disable (0x0): The given role is disabled

sl_bt_cs_role_status_enable (0x1): The given role is enabled

Accurate Bluetooth Ranging

792/1306

[in] reflector_status Enum sl_bt_cs_role_status_t. Enable or disable status of the Reflector role. Values:

sl_bt_cs_role_status_disable (0x0): The given role is disabled

sl_bt_cs_role_status_enable (0x1): The given role is enabled

[in] antenna_identifier Antenna identifier to be used for ABR sync packets.

Range: 1 to 4

[in] max_tx_power Maximum transmit power level to be used in all ABR transmissions. Units: dBm.

Range: -127 to +20

Set the default ABR settings for the specified connection. By default, all roles are disabled and the antenna is set to 1.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 12666 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cs_create_config

sl_status_t sl_bt_cs_create_config (uint8_t connection, uint8_t config_id, uint8_t create_context, uint8_t main_mode_type,
uint8_t sub_mode_type, uint8_t min_main_mode_steps, uint8_t max_main_mode_steps, uint8_t main_mode_repetition,
uint8_t mode_calibration_steps, uint8_t role, uint8_t rtt_type, uint8_t cs_sync_phy, const sl_bt_cs_channel_map_t
*channel_map, uint8_t channel_map_repetition, uint8_t channel_selection_type, uint8_t ch3c_shape, uint8_t ch3c_ jump,
uint8_t companion_signal_state)

Parameters

[in] connection The connection handle

[in] config_id ABR configuration identifier.

Range: 0 to 3

[in] create_context Defines in which device the created configuration will be written

Value: 0x00. Write ABR configuration in the local controller only

Value: 0x01. Write ABR configuration in both the local and remote controller using a

configuration procedure

[in] main_mode_type Enum sl_bt_cs_mode_t. Main mode type. Values:

sl_bt_cs_mode_calibration (0x0): Frequency offset and timing calibration measurement

sl_bt_cs_mode_rtt (0x1): Round Trip Time (RTT) measurement

sl_bt_cs_mode_pbr (0x2): Phase-Based Ranging (PBR) measurement

sl_bt_cs_mode_pbr_and_rtt (0x3): PBR and RTT measurement

[in] sub_mode_type Enum sl_bt_cs_mode_t. Sub mode type. Values:

sl_bt_cs_mode_calibration (0x0): Frequency offset and timing calibration measurement

sl_bt_cs_mode_rtt (0x1): Round Trip Time (RTT) measurement

sl_bt_cs_mode_pbr (0x2): Phase-Based Ranging (PBR) measurement

sl_bt_cs_mode_pbr_and_rtt (0x3): PBR and RTT measurement

Accurate Bluetooth Ranging

793/1306

[in] min_main_mode_steps Minimum number of ABR main mode steps to be executed prior to a sub mode step.

Range: 1 to 160

[in] max_main_mode_steps Maximum number of ABR main mode steps to be executed prior to a sub mode step.

Range: 1 to 160

[in] main_mode_repetition Number of main mode steps taken from the end of the last ABR subevent to be repeated at

the beginning of the current ABR subevent directly after the value r last Mode 0 step of

that event.

Range: 0 to 3

[in] mode_calibration_steps Number of Mode 0 steps to be included at the beginning of the test ABR subevent

Range: 1 to 3

[in] role Enum sl_bt_cs_role_t. Device's role during the ABR procedure Values:

sl_bt_cs_role_initiator (0x0): The device will initiate the procedure

sl_bt_cs_role_reflector (0x1): The device will reciprocate transmission

[in] rtt_type Enum sl_bt_cs_rtt_type_t. RTT payload type used in the ABR procedure Values:

sl_bt_cs_rtt_type_coarse (0x0): RTT Coarse

sl_bt_cs_rtt_type_fractional_96_bit_sounding (0x2): RTT Fractional with 96-bit

Sounding Sequence

[in] cs_sync_phy Enum sl_bt_gap_phy_t. Used PHY for ABR SYNC exchanges during a procedure Values:

sl_bt_gap_phy_1m (0x1): 1M PHY

[in] channel_map A fixed length byte array of 10 bytes consisting of 79 1-bit fields.

The nth such field (in the range 0 to 78) contains the value for the ABR channel index n.

Bit value 0: Channel n is disabled

Bit value 1: Channel n is enabled

The rest of most significant bits are reserved for future use and must be set to 0. Channels

n = 0, 1, 23, 24, 25, 77 and 78 shall be ignored and not used for ABR. At least 15 channels

shall be marked as used.

[in] channel_map_repetition Number of times the channel_map field will be cycled through for non-Mode 0 steps within

an ABR procedure.

Range: 0x01 to 0xFF

[in] channel_selection_type Enum sl_bt_cs_channel_selection_algorithm_t. Channel selection algorithm Values:

sl_bt_cs_channel_selection_algorithm_3b (0x0): Use Channel Selection Algorithm

#3b for non-mode 0 ABR steps

sl_bt_cs_channel_selection_algorithm_3c (0x1): Use Channel Selection Algorithm #3c

for non-mode 0 ABR steps

sl_bt_cs_channel_selection_algorithm_user_shape_interleaved (0x2): Use

Interleaved shape for user specified channel sequence

[in] ch3c_shape Enum sl_bt_cs_ch3c_shape_t. Ch3c shape Values:

sl_bt_cs_ch3c_shape_hat (0x0): Use Hat shape for user specified channel sequence

sl_bt_cs_chc3_shape_interleaved (0x1): Use Interleaved shape for user specified

channel sequence

Accurate Bluetooth Ranging

794/1306

[in] ch3c_ jump Number of channels skipped in each rising and falling sequence.

Range: 2 to 8

[in] companion_signal_state Enum sl_bt_cs_companion_signal_status_t. Companion device's signal status Values:

sl_bt_cs_companion_signal_status_disable (0x0): The companion signal is disabled

sl_bt_cs_companion_signal_status_enable (0x1): The companion signal is enabled

Create a new ABR configuration in the local and remote controller. The role used in this command must be enabled prior to

issuing this command using sl_bt_cs_set_default_settings command.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_cs_config_complete - Triggered when an ABR configuration procedure completed

Definition at line 12772 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cs_remove_config

sl_status_t sl_bt_cs_remove_config (uint8_t connection, uint8_t config_id)

Parameters

[in] connection Connection handle

[in] config_id ABR configuration identifier

Range: 0 to 3

Remove an ABR configuration from the local controller.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_cs_config_complete - Triggered when an ABR configuration procedure is completed

Definition at line 12806 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cs_set_channel_classification

sl_status_t sl_bt_cs_set_channel_classification (const sl_bt_cs_channel_map_t *channel_map)

Parameters

[in] channel_map A fixed length byte array of 10 bytes consisting of 79 1-bit fields.

The nth field (in the range 0 to 78) contains the value for the link layer channel index n.

Bit value 0: Channel n is disabled.

Bit value 1: Channel n is enabled.

The rest of most significant bits are reserved for future use and must be set to 0. Channels n = 0, 1,

23, 24, 25, 77 and 78 shall be ignored and not used for ABR.

Accurate Bluetooth Ranging

795/1306

Update the channel classification for ABR. This classification persists until overwritten with a subsequent command or until

the system is reset.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 12830 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cs_set_procedure_parameters

sl_status_t sl_bt_cs_set_procedure_parameters (uint8_t connection, uint8_t config_id, uint16_t max_procedure_len, uint16_t
min_procedure_interval, uint16_t max_procedure_interval, uint16_t max_procedure_count, uint32_t min_subevent_len,
uint32_t max_subevent_len, uint8_t tone_antenna_config_selection, uint8_t phy, int8_t tx_pwr_delta, uint8_t
preferred_peer_antenna)

Parameters

[in] connection The connection handle

[in] config_id ABR configuration identifier.

Range: 0 to 3.

[in] max_procedure_len Maximum duration for each measurement procedure. Value in units of 0.625 ms.

Range: 0x0001 to 0xFFFF.

Time: N x 0.625ms. N being the input.

Time range: 0.625 ms to 40.959375 s.

[in] min_procedure_interval Minimum duration in number of connection events between consecutive

measurement procedure.

Range: 0x01 to 0xFFFF.

[in] max_procedure_interval Maximum duration in number of connection events between consecutive

measurement procedure.

Range: 0x01 to 0xFFFF.

[in] max_procedure_count Maximum number of ABR procedures to be scheduled

Range: 0x01 to 0xFFFF: Maximum number of procedures to be scheduled.

Value: 0x00. Procedures to continue until disabled.

[in] min_subevent_len Minimum suggested duration for each ABR subevent. Units: microseconds.

Range: 0x01 to 0xFFFFFF

Time range: 1250 us to 4s

[in] max_subevent_len Maximum suggested duration for each ABR subevent. Units: microseconds.

Range: 0x01 to 0xFFFFFF

Time range: 1250 us to 4s

[in] tone_antenna_config_selection Antenna configuration index

Range: 0 to 7

Accurate Bluetooth Ranging

796/1306

[in] phy Enum sl_bt_gap_phy_t. PHY on which the ABR transmission will take place Values:

sl_bt_gap_phy_1m (0x1): 1M PHY

sl_bt_gap_phy_2m (0x2): 2M PHY

sl_bt_gap_phy_coded (0x4): Coded PHY, 125k (S=8) or 500k (S=2)

sl_bt_gap_phy_any (0xff): Any PHYs the device supports

[in] tx_pwr_delta Transmit power delta. Units: dB.

Value: 0x80. Host does not have a recommendation for transmit power delta

[in] preferred_peer_antenna Preferred peer-ordered antenna elements to be used by the remote device for the antenna

configuration denoted by the tone antenna config selection.

Bit 0: Use first ordered antenna element

Bit 1: Use second ordered antenna element

Bit 2: Use third ordered antenna element

Bit 3: Use fourth ordered antenna element

Set the parameters for scheduling ABR procedures with the remote device.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 12884 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cs_procedure_enable

sl_status_t sl_bt_cs_procedure_enable (uint8_t connection, uint8_t enable, uint8_t config_id)

Parameters

[in] connection The connection handle

[in] enable Enum sl_bt_cs_procedure_state_t. Enabled or disabled ABR procedure state. Values:

sl_bt_cs_procedure_state_disabled (0x0): ABR procedures are disabled

sl_bt_cs_procedure_state_enabled (0x1): ABR procedures are enabled

[in] config_id ABR configuration identifier

Enable or disable scheduling ABR procedures with the remote device.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_cs_procedure_enable_complete - Triggered when local controller has scheduled or disabled an ABR procedure

measurement

sl_bt_evt_cs_result - Triggered when local controller has results to report for every ABR event within the ABR procedure

Definition at line 12919 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cs_set_antenna_configuration

sl_status_t sl_bt_cs_set_antenna_configuration (size_t antenna_element_offset_len, const uint8_t *antenna_element_offset)

Accurate Bluetooth Ranging

797/1306

Parameters

[in] antenna_element_offset_len Length of data in antenna_element_offset

[in] antenna_element_offset Offset of each antenna, each element is a signed 16-bit integer stored in two

consecutive bytes in little-endian order. Units: 1 cm.

Set the antenna configuration for the ABR feature.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 12936 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_cs_security_enable_id

#define sl_bt_cmd_cs_security_enable_id

Value:

0�00590020

Definition at line 12011 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_cs_set_default_settings_id

#define sl_bt_cmd_cs_set_default_settings_id

Value:

0�01590020

Definition at line 12012 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_cs_create_config_id

#define sl_bt_cmd_cs_create_config_id

Value:

0�02590020

Definition at line 12013 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_cs_remove_config_id

#define sl_bt_cmd_cs_remove_config_id

Value:

0�03590020

Definition at line 12014 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Accurate Bluetooth Ranging

798/1306

sl_bt_cmd_cs_set_channel_classification_id

#define sl_bt_cmd_cs_set_channel_classification_id

Value:

0�04590020

Definition at line 12015 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_cs_set_procedure_parameters_id

#define sl_bt_cmd_cs_set_procedure_parameters_id

Value:

0�05590020

Definition at line 12016 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_cs_procedure_enable_id

#define sl_bt_cmd_cs_procedure_enable_id

Value:

0�06590020

Definition at line 12017 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_cs_set_antenna_configuration_id

#define sl_bt_cmd_cs_set_antenna_configuration_id

Value:

0�07590020

Definition at line 12018 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cs_security_enable_id

#define sl_bt_rsp_cs_security_enable_id

Value:

0�00590020

Definition at line 12019 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cs_set_default_settings_id

#define sl_bt_rsp_cs_set_default_settings_id

Accurate Bluetooth Ranging

799/1306

Value:

0x01590020

Definition at line 12020 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cs_create_config_id

#define sl_bt_rsp_cs_create_config_id

Value:

0�02590020

Definition at line 12021 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cs_remove_config_id

#define sl_bt_rsp_cs_remove_config_id

Value:

0�03590020

Definition at line 12022 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cs_set_channel_classification_id

#define sl_bt_rsp_cs_set_channel_classification_id

Value:

0�04590020

Definition at line 12023 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cs_set_procedure_parameters_id

#define sl_bt_rsp_cs_set_procedure_parameters_id

Value:

0�05590020

Definition at line 12024 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cs_procedure_enable_id

#define sl_bt_rsp_cs_procedure_enable_id

Value:

0�06590020

Definition at line 12025 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Accurate Bluetooth Ranging

800/1306

sl_bt_rsp_cs_set_antenna_configuration_id

#define sl_bt_rsp_cs_set_antenna_configuration_id

Value:

0�07590020

Definition at line 12026 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_cs_security_enable_complete

801/1306

sl_bt_evt_cs_security_enable_complete

Modules

sl_bt_evt_cs_security_enable_complete_s

sl_bt_evt_cs_security_enable_complete
Indicates that a locally initiated ABR security start procedure has completed or the local controller has responded to a

channel security request from the remote controller.

Typedefs

typedef struct
sl_bt_evt_cs_secu
rity_enable_compl

ete_s

sl_bt_evt_cs_security_enable_complete_t

Macros

#define sl_bt_evt_cs_security_enable_complete_id 0�005900a0
Identifier of the security_enable_complete event.

Typedef Documentation

sl_bt_evt_cs_security_enable_complete_t

typedef struct sl_bt_evt_cs_security_enable_complete_s sl_bt_evt_cs_security_enable_complete_t

Definition at line 12211 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_cs_security_enable_complete_id

#define sl_bt_evt_cs_security_enable_complete_id

Value:

0�005900a0

Identifier of the security_enable_complete event.

Definition at line 12201 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_cs_security_enable_complete_s

802/1306

sl_bt_evt_cs_security_enable_complete_s

Data structure of the security_enable_complete event.

Public Attributes

uint8_t connection

Public Attribute Documentation

connection

uint8_t sl_bt_evt_cs_security_enable_complete_s::connection

Connection handle

Definition at line 12208 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_cs_config_complete

803/1306

sl_bt_evt_cs_config_complete

Modules

sl_bt_evt_cs_config_complete_s

sl_bt_evt_cs_config_complete
Indicates that a locally initiated ABR configuration procedure has completed or the local controller has responded to an ABR

configuration request from the remote controller.

Typedefs

typedef struct
sl_bt_evt_cs_confi

g_complete_s

sl_bt_evt_cs_config_complete_t

Macros

#define sl_bt_evt_cs_config_complete_id 0�015900a0
Identifier of the config_complete event.

Typedef Documentation

sl_bt_evt_cs_config_complete_t

typedef struct sl_bt_evt_cs_config_complete_s sl_bt_evt_cs_config_complete_t

Definition at line 12425 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_cs_config_complete_id

#define sl_bt_evt_cs_config_complete_id

Value:

0�015900a0

Identifier of the config_complete event.

Definition at line 12224 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_cs_config_complete_s

804/1306

sl_bt_evt_cs_config_complete_s

Data structure of the config_complete event.

Public Attributes

uint8_t connection

uint8_t config_id

uint16_t status

uint8_t config_state

uint8_t main_mode_type

uint8_t sub_mode_type

uint8_t min_main_mode_steps

uint8_t max_main_mode_steps

uint8_t main_mode_repetition

uint8_t mode_calibration_steps

uint8_t role

uint8_t rtt_type

uint8_t cs_sync_phy

sl_bt_cs_channel_
map_t

channel_map

uint8_t channel_map_repetition

uint8_t channel_selection_type

uint8_t ch3c_shape

uint8_t ch3c_ jump

uint8_t companion_signal_enable

Public Attribute Documentation

connection

uint8_t sl_bt_evt_cs_config_complete_s::connection

Connection handle

Definition at line 12231 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_cs_config_complete_s

805/1306

uint8_t sl_bt_evt_cs_config_complete_s::config_id

ABR configuration identifier.

Range: 0 to 3

Definition at line 12232 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

status

uint16_t sl_bt_evt_cs_config_complete_s::status

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 12235 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

config_state

uint8_t sl_bt_evt_cs_config_complete_s::config_state

Enum sl_bt_cs_config_state_t. ABR configuration state Values:

sl_bt_cs_config_state_removed (0x0): The ABR device configuration is removed

sl_bt_cs_config_state_created (0x1): The ABR device configuration is created

Definition at line 12238 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

main_mode_type

uint8_t sl_bt_evt_cs_config_complete_s::main_mode_type

Enum sl_bt_cs_mode_t. Main mode type. Values:

sl_bt_cs_mode_calibration (0x0): Frequency offset and timing calibration measurement

sl_bt_cs_mode_rtt (0x1): Round Trip Time (RTT) measurement

sl_bt_cs_mode_pbr (0x2): Phase-Based Ranging (PBR) measurement
sl_bt_cs_mode_pbr_and_rtt (0x3): PBR and RTT measurement

Definition at line 12250 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sub_mode_type

uint8_t sl_bt_evt_cs_config_complete_s::sub_mode_type

Enum sl_bt_cs_mode_t. Sub mode type. Values:

sl_bt_cs_mode_calibration (0x0): Frequency offset and timing calibration measurement

sl_bt_cs_mode_rtt (0x1): Round Trip Time (RTT) measurement

sl_bt_cs_mode_pbr (0x2): Phase-Based Ranging (PBR) measurement

sl_bt_cs_mode_pbr_and_rtt (0x3): PBR and RTT measurement

sl_bt_evt_cs_config_complete_s

806/1306

Definition at line 12269 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

min_main_mode_steps

uint8_t sl_bt_evt_cs_config_complete_s::min_main_mode_steps

Minimum number of ABR main mode steps to be executed prior to a sub mode step.

Range: 1 to 160

Definition at line 12288 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

max_main_mode_steps

uint8_t sl_bt_evt_cs_config_complete_s::max_main_mode_steps

Maximum number of ABR main mode steps to be executed prior to a sub mode step.

Range: 1 to 160

Definition at line 12293 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

main_mode_repetition

uint8_t sl_bt_evt_cs_config_complete_s::main_mode_repetition

Number of main mode steps taken from the end of the last ABR subevent to be repeated at the beginning of the current

ABR subevent directly after the last Mode 0 step of that event.

Range: 0 to 3

Definition at line 12298 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

mode_calibration_steps

uint8_t sl_bt_evt_cs_config_complete_s::mode_calibration_steps

Number of calibration mode steps to be included at the beginning of the test ABR subevent.

Range: 1 to 3

Definition at line 12307 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

role

uint8_t sl_bt_evt_cs_config_complete_s::role

Enum sl_bt_cs_role_t. Device role during the ABR procedure Values:

sl_bt_cs_role_initiator (0x0): The device will initiate the procedure

sl_bt_cs_role_reflector (0x1): The device will reciprocate transmission

sl_bt_evt_cs_config_complete_s

807/1306

Definition at line 12312 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

rtt_type

uint8_t sl_bt_evt_cs_config_complete_s::rtt_type

Enum sl_bt_cs_rtt_type_t. RTT payload type used in the ABR procedure Values:

sl_bt_cs_rtt_type_coarse (0x0): RTT Coarse

sl_bt_cs_rtt_type_fractional_96_bit_sounding (0x2): RTT Fractional with 96-bit Sounding Sequence

Definition at line 12324 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

cs_sync_phy

uint8_t sl_bt_evt_cs_config_complete_s::cs_sync_phy

Enum sl_bt_gap_phy_t. Used PHY for ABR SYNC exchanges during a procedure Values:

sl_bt_gap_phy_1m (0x1): 1M PHY

Definition at line 12335 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

channel_map

sl_bt_cs_channel_map_t sl_bt_evt_cs_config_complete_s::channel_map

A fixed length byte array of 10 bytes consisting of 79 1-bit fields.

The nth field (in the range 0 to 78) contains the value for the ABR channel index n.

Bit value 0: Channel n is disabled

Bit value 1: Channel n is enabled

The rest of most significant bits are reserved for future use and must be set to 0. Channels n = 0, 1, 23, 24, 25, 77 and 78

shall be ignored and not used for ABR. At least 15 channels shall be marked as used.

Definition at line 12342 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

channel_map_repetition

uint8_t sl_bt_evt_cs_config_complete_s::channel_map_repetition

Number of times the channel_map field will be cycled through for non-Mode 0 steps within a ABR procedure.

Range: 0x01 to 0xFF

Definition at line 12366 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

channel_selection_type

sl_bt_evt_cs_config_complete_s

808/1306

uint8_t sl_bt_evt_cs_config_complete_s::channel_selection_type

Enum sl_bt_cs_channel_selection_algorithm_t. ABR algorithm to be used during the procedure for non-mode 0 steps Value:

sl_bt_cs_channel_selection_algorithm_3b (0x0): Use Channel Selection Algorithm #3b for non-mode 0 ABR steps

sl_bt_cs_channel_selection_algorithm_3c (0x1): Use Channel Selection Algorithm #3c for non-mode 0 ABR steps

sl_bt_cs_channel_selection_algorithm_user_shape_interleaved (0x2): Use Interleaved shape for user specified channel

sequence

Definition at line 12372 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

ch3c_shape

uint8_t sl_bt_evt_cs_config_complete_s::ch3c_shape

Enum sl_bt_cs_ch3c_shape_t. Shape for user-specified channel sequence Values:

sl_bt_cs_ch3c_shape_hat (0x0): Use Hat shape for user specified channel sequence

sl_bt_cs_chc3_shape_interleaved (0x1): Use Interleaved shape for user specified channel sequence

Definition at line 12392 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

ch3c_ jump

uint8_t sl_bt_evt_cs_config_complete_s::ch3c_ jump

Number of channels skipped in each rising and falling sequence

Range: 0x03 to 0x08

Definition at line 12406 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

companion_signal_enable

uint8_t sl_bt_evt_cs_config_complete_s::companion_signal_enable

Enum sl_bt_cs_companion_signal_status_t. Enabled or disabled companion signal status Values:

sl_bt_cs_companion_signal_status_disable (0x0): The companion signal is disabled

sl_bt_cs_companion_signal_status_enable (0x1): The companion signal is enabled

Definition at line 12410 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_cs_procedure_enable_complete

809/1306

sl_bt_evt_cs_procedure_enable_complete

Modules

sl_bt_evt_cs_procedure_enable_complete_s

sl_bt_evt_cs_procedure_enable_complete
Indicates the controller has scheduled a new ABR procedure measurement, as a result of sl_bt_cs_procedure_enable

command or disabled an ongoing, as a result of sl_bt_cs_procedure_enable command.

Typedefs

typedef struct
sl_bt_evt_cs_proc
edure_enable_co

mplete_s

sl_bt_evt_cs_procedure_enable_complete_t

Macros

#define sl_bt_evt_cs_procedure_enable_complete_id 0�025900a0
Identifier of the procedure_enable_complete event.

Typedef Documentation

sl_bt_evt_cs_procedure_enable_complete_t

typedef struct sl_bt_evt_cs_procedure_enable_complete_s sl_bt_evt_cs_procedure_enable_complete_t

Definition at line 12486 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_cs_procedure_enable_complete_id

#define sl_bt_evt_cs_procedure_enable_complete_id

Value:

0�025900a0

Identifier of the procedure_enable_complete event.

Definition at line 12438 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_cs_procedure_enable_complete_s

810/1306

sl_bt_evt_cs_procedure_enable_complete_s

Data structure of the procedure_enable_complete event.

Public Attributes

uint8_t connection

uint8_t config_id

uint16_t status

uint8_t state

uint8_t antenna_config

int8_t tx_power

uint32_t subevent_len

uint8_t subevents_per_interval

uint16_t subevent_interval

uint16_t event_interval

uint16_t procedure_interval

uint16_t procedure_count

Public Attribute Documentation

connection

uint8_t sl_bt_evt_cs_procedure_enable_complete_s::connection

Connection handle

Definition at line 12445 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

config_id

uint8_t sl_bt_evt_cs_procedure_enable_complete_s::config_id

ABR configuration identifier.

Range: 0 to 3

Definition at line 12446 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

status

sl_bt_evt_cs_procedure_enable_complete_s

811/1306

uint16_t sl_bt_evt_cs_procedure_enable_complete_s::status

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 12448 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

state

uint8_t sl_bt_evt_cs_procedure_enable_complete_s::state

Enum sl_bt_cs_procedure_state_t. ABR procedure enabled or disabled Values:

sl_bt_cs_procedure_state_disabled (0x0): ABR procedures are disabled

sl_bt_cs_procedure_state_enabled (0x1): ABR procedures are enabled

Definition at line 12450 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

antenna_config

uint8_t sl_bt_evt_cs_procedure_enable_complete_s::antenna_config

Antenna configuration index

Range: 0 to 7

Definition at line 12459 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

tx_power

int8_t sl_bt_evt_cs_procedure_enable_complete_s::tx_power

Transmit power level used in the transmission. Units: dBm.

Range: -127 to +20

Value: 0x07F. Transmit power level is unavailable

Definition at line 12461 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

subevent_len

uint32_t sl_bt_evt_cs_procedure_enable_complete_s::subevent_len

Duration for each subevent in microseconds

Range: 1250 μs to 4 s

Definition at line 12466 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

subevents_per_interval

sl_bt_evt_cs_procedure_enable_complete_s

812/1306

uint8_t sl_bt_evt_cs_procedure_enable_complete_s::subevents_per_interval

Number of subevents anchored off the same ACL connection event

Range: 1 to 16

Definition at line 12469 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

subevent_interval

uint16_t sl_bt_evt_cs_procedure_enable_complete_s::subevent_interval

Duration in microseconds between consecutive ABR subevents anchored off the same ACL connection event. Units: 0.625

ms.

Definition at line 12472 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

event_interval

uint16_t sl_bt_evt_cs_procedure_enable_complete_s::event_interval

Number of ACL connection events between consecutive ABR event anchor points

Definition at line 12476 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

procedure_interval

uint16_t sl_bt_evt_cs_procedure_enable_complete_s::procedure_interval

Number of ACL connection events between consecutive ABR procedure anchor points

Definition at line 12478 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

procedure_count

uint16_t sl_bt_evt_cs_procedure_enable_complete_s::procedure_count

Number of procedures to continue until disabled. Maximum number of procedures to be scheduled.

Range: 0x01 to 0xFFFF.

Definition at line 12480 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_cs_result

813/1306

sl_bt_evt_cs_result

Modules

sl_bt_evt_cs_result_s

sl_bt_evt_cs_result
Reports results of every ABR subevent within the ABR procedure.

Typedefs

typedef struct
sl_bt_evt_cs_resul

t_s

sl_bt_evt_cs_result_t

Macros

#define sl_bt_evt_cs_result_id 0�035900a0
Identifier of the result event.

Typedef Documentation

sl_bt_evt_cs_result_t

typedef struct sl_bt_evt_cs_result_s sl_bt_evt_cs_result_t

Definition at line 12623 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_cs_result_id

#define sl_bt_evt_cs_result_id

Value:

0�035900a0

Identifier of the result event.

Definition at line 12497 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_cs_result_s

814/1306

sl_bt_evt_cs_result_s

Data structure of the result event.

Public Attributes

uint8_t connection

uint8_t config_id

uint16_t start_acl_conn_event

uint16_t procedure_counter

int16_t frequency_compensation

uint8_t procedure_done_status

uint8_t subevent_done_status

uint8_t abort_reason

int8_t reference_power_level

uint8_t num_antenna_paths

uint8_t num_steps

uint8array data

Public Attribute Documentation

connection

uint8_t sl_bt_evt_cs_result_s::connection

Connection handle. Returns a SL_BT_INVALID_CONNECTION_HANDLE (0xFF) when triggered as a result of

sl_bt_cs_test_start command

Definition at line 12504 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

config_id

uint8_t sl_bt_evt_cs_result_s::config_id

ABR configuration identifier

Range: 0 to 3

Definition at line 12508 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_cs_result_s

815/1306

start_acl_conn_event

uint16_t sl_bt_evt_cs_result_s::start_acl_conn_event

Starting an ACL connection event count for the results reported in the event. This is reported only in the first subevent in

the procedure. For subsequent subevents, this value is set to 0.

Definition at line 12510 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

procedure_counter

uint16_t sl_bt_evt_cs_result_s::procedure_counter

Indicates the associated ABR procedure count for the results reported in this event

Definition at line 12516 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

frequency_compensation

int16_t sl_bt_evt_cs_result_s::frequency_compensation

Frequency compensation value. Units: 0.01 ppm (15-bit signed integer).

Range: -10000 to 10000

Value: 0xC000. Frequency compensation value is not available or the role is not initiator. This is reported only in the first

subevent in the procedure. For subsequent subevents, this value is set to 0.

Definition at line 12519 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

procedure_done_status

uint8_t sl_bt_evt_cs_result_s::procedure_done_status

Enum sl_bt_cs_done_status_t. Current status of the ABR procedure Values:

sl_bt_cs_done_status_complete (0x0): All results complete for the ABR procedure or subevent

sl_bt_cs_done_status_partial_results_continue (0x1): Partial results with more to follow

sl_bt_cs_done_status_current_aborted (0xfe): Current ABR procedure or subevent aborted

sl_bt_cs_done_status_all_aborted (0xff): Current and all subsequent subevents in the procedure aborted

Definition at line 12529 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

subevent_done_status

uint8_t sl_bt_evt_cs_result_s::subevent_done_status

Enum sl_bt_cs_done_status_t. Current status of the ABR subevent Values:

sl_bt_cs_done_status_complete (0x0): All results complete for the ABR procedure or subevent

sl_bt_cs_done_status_partial_results_continue (0x1): Partial results with more to follow

sl_bt_cs_done_status_current_aborted (0xfe): Current ABR procedure or subevent aborted

sl_bt_evt_cs_result_s

816/1306

sl_bt_cs_done_status_all_aborted (0xff): Current and all subsequent subevents in the procedure aborted

Definition at line 12545 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

abort_reason

uint8_t sl_bt_evt_cs_result_s::abort_reason

Enum sl_bt_cs_abort_reason_t. Indicates the abort reason when the procedure_done_status or subevent_done_status is set

to 0xF, otherwise the default value is set to zero. The first 4 bits are related to the procedure abort reasons and the last 4

bits are related to the subevent done. Values:

sl_bt_cs_abort_reason_no_abort (0x0): Not aborted

sl_bt_cs_abort_reason_host_request (0x1): Local or remote host request

sl_bt_cs_abort_reason_insufficient_channels (0x2): Filtered channel has less than 15 channels

sl_bt_cs_abort_reason_no_map_update (0x3): Channel map update instant has passed

sl_bt_cs_abort_reason_unspecified (0xf): Unspecified reasons for abortion

Definition at line 12561 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

reference_power_level

int8_t sl_bt_evt_cs_result_s::reference_power_level

Reference power level used by the transmission. Units: dBm.

Range: -127 to 20

Value: 0x07F. The reference power level is not applicable

Definition at line 12584 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

num_antenna_paths

uint8_t sl_bt_evt_cs_result_s::num_antenna_paths

Number of antenna paths supported by the local controller for the ABR tone exchanges.

Range: 1 to 4. The number of antenna paths used during the phase measurement stage of the ABR step

Value: 0. Phase measurement does not occur during the ABR step, therefore ignored

Definition at line 12589 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

num_steps

uint8_t sl_bt_evt_cs_result_s::num_steps

Number of steps in the ABR subevent for which results are reported.

Range: 1 to 160

Definition at line 12599 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_cs_result_s

817/1306

data

uint8array sl_bt_evt_cs_result_s::data

The result data is structured as follows:

step_status: 1 octet for each num_steps. 0x00 for step scheduled and reported. 0xFE for step aborted.

step_mode: 1 octet for each num_steps. Mode type. Range 0 to 3.

step_channel: 1 octet for each num_steps. Channel index. Range 1 to 78.

step_data_length: 1 octet for each num_steps. Length of mode and role specific information being reported. Range 0x00 to

0xFF.

step_data: step_data_length octet for each corresponding steps in num_steps.

Definition at line 12602 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Accurate Bluetooth Ranging Test

818/1306

Accurate Bluetooth Ranging Test

Accurate Bluetooth Ranging Test
Accurate Bluetooth Ranging Test.

This class provides optional test commands and events for ABR between Bluetooth devices.

Enumerations

enum sl_bt_cs_test_tone_extension_t {

sl_bt_cs_test_tone_extension_both_without = 0�0
sl_bt_cs_test_tone_extension_reflector_without = 0�1
sl_bt_cs_test_tone_extension_initiator_without = 0�2
sl_bt_cs_test_tone_extension_both_with = 0�3
sl_bt_cs_test_tone_extension_round_robin = 0�4

}
Defines tone extension for ABR test.

enum sl_bt_cs_test_sounding_sequence_marker_t {

sl_bt_cs_test_sounding_sequence_marker_1 = 0�0
sl_bt_cs_test_sounding_sequence_marker_2 = 0�1
sl_bt_cs_test_sounding_sequence_marker_round_robin = 0�2

}
This defines sounding sequence marker for ABR test.

Functions

sl_status_t sl_bt_cs_test_start(uint8_t main_mode_type, uint8_t sub_mode_type, uint8_t main_mode_repetition, uint8_t
mode_calibration_steps, uint8_t role, uint8_t rtt_type, uint8_t cs_sync_phy, uint8_t antenna_selection, const
sl_bt_cs_subevent_length_t *subevent_len, uint16_t subevent_interval, int8_t tx_power, uint8_t t_ip1_time,
uint8_t t_ip2_time, uint8_t t_fcs_time, uint8_t t_pm_time, uint8_t t_sw_time, uint8_t tone_antenna_config,
uint8_t companion_signal_state, uint16_t drbg_nonce, uint16_t override_config, size_t
override_parameters_len, const uint8_t *override_parameters)

Macros

#define sl_bt_cmd_cs_test_start_id 0�005a0020

#define sl_bt_rsp_cs_test_start_id 0�005a0020

Enumeration Documentation

sl_bt_cs_test_tone_extension_t

sl_bt_cs_test_tone_extension_t

Defines tone extension for ABR test.

Enumerator

sl_bt_cs_test_tone_extension_both_without

Accurate Bluetooth Ranging Test

819/1306

sl_bt_cs_test_tone_extension_reflector_without

sl_bt_cs_test_tone_extension_initiator_without

sl_bt_cs_test_tone_extension_both_with

sl_bt_cs_test_tone_extension_round_robin

Definition at line 12958 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cs_test_sounding_sequence_marker_t

sl_bt_cs_test_sounding_sequence_marker_t

This defines sounding sequence marker for ABR test.

Enumerator

sl_bt_cs_test_sounding_sequence_marker_1

sl_bt_cs_test_sounding_sequence_marker_2

sl_bt_cs_test_sounding_sequence_marker_round_robin

Definition at line 12984 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Function Documentation

sl_bt_cs_test_start

sl_status_t sl_bt_cs_test_start (uint8_t main_mode_type, uint8_t sub_mode_type, uint8_t main_mode_repetition, uint8_t
mode_calibration_steps, uint8_t role, uint8_t rtt_type, uint8_t cs_sync_phy, uint8_t antenna_selection, const
sl_bt_cs_subevent_length_t *subevent_len, uint16_t subevent_interval, int8_t tx_power, uint8_t t_ip1_time, uint8_t t_ip2_time,
uint8_t t_fcs_time, uint8_t t_pm_time, uint8_t t_sw_time, uint8_t tone_antenna_config, uint8_t companion_signal_state,
uint16_t drbg_nonce, uint16_t override_config, size_t override_parameters_len, const uint8_t *override_parameters)

Parameters

[in] main_mode_type Enum sl_bt_cs_mode_t. Main mode type. Values :

sl_bt_cs_mode_calibration (0x0): Frequency offset and timing calibration

measurement

sl_bt_cs_mode_rtt (0x1): Round Trip Time (RTT) measurement

sl_bt_cs_mode_pbr (0x2): Phase-Based Ranging (PBR) measurement

sl_bt_cs_mode_pbr_and_rtt (0x3): PBR and RTT measurement

[in] sub_mode_type Enum sl_bt_cs_mode_t. Sub mode type. Values:

sl_bt_cs_mode_calibration (0x0): Frequency offset and timing calibration

measurement

sl_bt_cs_mode_rtt (0x1): Round Trip Time (RTT) measurement

sl_bt_cs_mode_pbr (0x2): Phase-Based Ranging (PBR) measurement

sl_bt_cs_mode_pbr_and_rtt (0x3): PBR and RTT measurement

[in] main_mode_repetition Number of main mode steps taken from the end of the last ABR subevent to be repeated at

the beginning of the current ABR subevent directly after the last Mode 0 step of that event.

Range: 0 to 3

[in] mode_calibration_steps Number of calibration mode steps to be included at the beginning of the test ABR subevent

Range: 1 to 3

Accurate Bluetooth Ranging Test

820/1306

[in] role Enum sl_bt_cs_role_t. Role during ABR procedure Values:

sl_bt_cs_role_initiator (0x0): The device will initiate the procedure

sl_bt_cs_role_reflector (0x1): The device will reciprocate transmission

[in] rtt_type Enum sl_bt_cs_rtt_type_t. RTT payload type used in the ABR procedure Values:

sl_bt_cs_rtt_type_coarse (0x0): RTT Coarse

sl_bt_cs_rtt_type_fractional_96_bit_sounding (0x2): RTT Fractional with 96-bit
Sounding Sequence

[in] cs_sync_phy Enum sl_bt_gap_phy_t. Used PHY for ABR SYNC exchanges during a procedure Values:

sl_bt_gap_phy_1m (0x1): 1M PHY

sl_bt_gap_phy_2m (0x2): 2M PHY

sl_bt_gap_phy_coded (0x4): Coded PHY, 125k (S=8) or 500k (S=2)

sl_bt_gap_phy_any (0xff): Any PHYs the device supports

[in] antenna_selection Antenna Identifier to be used for RTT packets

Range: 1 to 4

[in] subevent_len ABR subevent length in units of microseconds.

[in] subevent_interval Interval between the start of two consecutive ABR events. Units: 0.625 ms.

Value: 0x0000. Single ABR subevent

[in] tx_power Transmit power level for the transmission. Units: dBm.

Range: -127 to +20

Value: 0x7E. Set transmitter to minimum transmit power level

Value: 0x7F. Set transmitter to maximum transmit power level

[in] t_ip1_time Idle time in microseconds between the RTT packets

Values: 10, 20, 30, 40, 50, 60, 80 or 145

[in] t_ip2_time Interlude time in microseconds between the ABR tones

Values: 10, 20, 30, 40, 50, 60, 80 or 145

[in] t_fcs_time Time in microseconds for frequency changes

Values: 15, 20, 30, 40, 50, 60, 80, 100, 120 or 150

[in] t_pm_time Time in microseconds for the phase measurement period of the ABR tones

Values: 10, 20 or 40

[in] t_sw_time Time in microseconds for the antenna switch period of the ABR tones

Values: 0, 1, 2, 4 or 10

[in] tone_antenna_config Antenna Configuration Index used during antenna switching

Range: 0 to 7

[in] companion_signal_state Enum sl_bt_cs_companion_signal_status_t. Enable or disable status of the companion

signal. Values:

sl_bt_cs_companion_signal_status_disable (0x0): The companion signal is disabled

sl_bt_cs_companion_signal_status_enable (0x1): The companion signal is enabled

Accurate Bluetooth Ranging Test

821/1306

[in] drbg_nonce Antenna Configuration Index used during antenna switching

Range: 0 to 7

[in] override_config Configuration of the parameters in override_parameters

Bit 0: The channel sequence for the subevent is determined by the values of channel

map repetition, channel length, and channel parameters.

Bit 2: The number of main mode ABR steps to be executed before a sub mode ABR

step during the ABR procedure is determined by the value of main mode steps

parameter.

Bit 3: The transmission of tone extensions within each Mode 2 or Mode 3 step is

determined by the value of T_PM_Tone_Ext parameter.

Bit 4: The Tone antenna permutation index for each Mode 2 or Mode 3 step is

determined by the value of Tone_Antenna_Permutation parameter.
Bit 5: The ABR Access Address of all packets sent by the initiator is determined by

ABR_SYNC_AA_Initiator parameter. The ABR Access Address of all packets sent by

the reflector is determined by ABR_SYNC_AA_Reflector parameter. B

Bit 6: The Marker positions for each ABR SYNC packet with a marker is determined

by the value of SS_Marker1_Position and SS_Marker2_Position parameters.

Bit 7: The Marker value for each marker within a ABR SYNC packet is determined by

SS_Marker_Value parameter.

Bit 8: The payload of the ABR SYNC packet is determined by the value of

ABR_SYNC_Payload_Pattern parameter.

Bit 10: Stable Phase test

[in] override_parameters_len Length of data in override_parameters

[in] override_parameters Variable set of parameters which are present dependent on the bits set in the override

config parameter.

Bit 0: channel_map_repetition, channel_length and channel

Bit 2: main_mode_steps

Bit 3: t_pm_tone_ext

Bit 4: tone_antenna_permutation
Bit 5: aa_initiator and aa_reflector

Bit 6: ss_marker1_position and ss_marker2_position

Bit 7: ss_marker_value

Bit 8: ABR_SYNC_Payload_Pattern and ABR_SYNC_User_Payload

Start a single ABR procedure using the given configuration. The reflector must be initialized before starting the initiator. To

stop an ongoing test, use the sl_bt_test_dtm_end command.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_cs_result - Triggered when local controller has results to report for every ABR subevent within the ABR procedure

Definition at line 13119 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_cs_test_start_id

#define sl_bt_cmd_cs_test_start_id

Accurate Bluetooth Ranging Test

822/1306

Value:

0x005a0020

Definition at line 12952 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cs_test_start_id

#define sl_bt_rsp_cs_test_start_id

Value:

0�005a0020

Definition at line 12953 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

L2CAP Connection Oriented Channels

823/1306

L2CAP Connection Oriented Channels

Modules

sl_bt_evt_l2cap_le_channel_open_request

sl_bt_evt_l2cap_le_channel_open_response

sl_bt_evt_l2cap_channel_data

sl_bt_evt_l2cap_channel_credit

sl_bt_evt_l2cap_channel_closed

sl_bt_evt_l2cap_command_rejected

L2CAP Connection Oriented Channels
L2CAP Connection Oriented Channels.

The commands and events in this class provide Logical Link Control and Adaptation Protocol (L2CAP) credit-based logical

channels.

An L2CAP credit-based logical channel is a logical link identified by a channel identifier (the cid parameter in the

commands and events of this API class). These channels use a credit-based flow control mechanism. The credit can be

configured at the channel opening and later dynamically updated on the channel.

The Simplified Protocol/Service Multiplexer (SPSM) of a channel specifies the protocol or services the channel implements.

It can be a value for a fixed service assigned by the Bluetooth SIG or a dynamically-allocated value and used with services

defined in the GATT Server. The dynamically-assigned value may be used to support multiple implementations of a

particular protocol. See the Bluetooth core specification for more details. The application specifies the SPSM value in a

channel open request in the spsm parameter of the sl_bt_l2cap_open_le_channel command.

Each of the local and peer channel endpoints must specify the maximum Service Data Unit (SDU) size (the 'MTU' field of the

L2CAP packets in the Bluetooth Core specification) that it can receive on the channel. The application specifies the

maximum Service Data Unit size (the max_sdu parameter in commands and events) of the local channel endpoint.

Each channel endpoint has a maximum PDU payload Size that the L2CAP layer can receive in a single data packet on the

channel. The maximum PDU payload size supported by the stack for local channel endpoints is 252 bytes, which is the

maximum data length the sl_bt_evt_l2cap_channel_data event can support. The application specifies the max PDU payload

size (the max_pdu parameter in commands and events). Additionally, the application is responsible for handling the

segmentation from SDU to PDU and reassembly from PDU to SDU.

Enumerations

L2CAP Connection Oriented Channels

824/1306

enum sl_bt_l2cap_connection_result_t {

sl_bt_l2cap_connection_result_successful = 0�0
sl_bt_l2cap_connection_result_spsm_not_supported = 0�2
sl_bt_l2cap_connection_result_no_resources_available = 0�4
sl_bt_l2cap_connection_result_insufficient_authentication = 0�5
sl_bt_l2cap_connection_result_insufficient_authorization = 0�6
sl_bt_l2cap_connection_result_encryption_key_size_too_short = 0�7
sl_bt_l2cap_connection_result_insufficient_encryption = 0�8
sl_bt_l2cap_connection_result_invalid_source_cid = 0�9
sl_bt_l2cap_connection_result_source_cid_already_allocated = 0xa
sl_bt_l2cap_connection_result_unacceptable_parameters = 0xb

}
Defines possible result values in the responses to credit based channel connection requests.

enum sl_bt_l2cap_command_reject_reason_t {

sl_bt_l2cap_command_not_understood = 0�0
sl_bt_l2cap_signaling_mtu_exceeded = 0�1
sl_bt_l2cap_invalid_cid_request = 0�2

}
Describes why a request command was rejected.

enum sl_bt_l2cap_command_code_t {

sl_bt_l2cap_disconnection_request = 0�6
sl_bt_l2cap_le_connection_request = 0�14
sl_bt_l2cap_flow_control_credit = 0�16

}
Describes which of the request commands has been rejected.

Functions

sl_status_t sl_bt_l2cap_open_le_channel(uint8_t connection, uint16_t spsm, uint16_t max_sdu, uint16_t max_pdu, uint16_t
credit, uint16_t *cid)

sl_status_t sl_bt_l2cap_send_le_channel_open_response(uint8_t connection, uint16_t cid, uint16_t max_sdu, uint16_t
max_pdu, uint16_t credit, uint16_t errorcode)

sl_status_t sl_bt_l2cap_channel_send_data(uint8_t connection, uint16_t cid, size_t data_len, const uint8_t *data)

sl_status_t sl_bt_l2cap_channel_send_credit(uint8_t connection, uint16_t cid, uint16_t credit)

sl_status_t sl_bt_l2cap_close_channel(uint8_t connection, uint16_t cid)

Macros

#define sl_bt_cmd_l2cap_open_le_channel_id 0�01430020

#define sl_bt_cmd_l2cap_send_le_channel_open_response_id 0�02430020

#define sl_bt_cmd_l2cap_channel_send_data_id 0�03430020

#define sl_bt_cmd_l2cap_channel_send_credit_id 0�04430020

#define sl_bt_cmd_l2cap_close_channel_id 0�05430020

#define sl_bt_rsp_l2cap_open_le_channel_id 0�01430020

#define sl_bt_rsp_l2cap_send_le_channel_open_response_id 0�02430020

#define sl_bt_rsp_l2cap_channel_send_data_id 0�03430020

L2CAP Connection Oriented Channels

825/1306

#define sl_bt_rsp_l2cap_channel_send_credit_id 0�04430020

#define sl_bt_rsp_l2cap_close_channel_id 0�05430020

Enumeration Documentation

sl_bt_l2cap_connection_result_t

sl_bt_l2cap_connection_result_t

Defines possible result values in the responses to credit based channel connection requests.

Enumerator

sl_bt_l2cap_connection_result_successful

sl_bt_l2cap_connection_result_spsm_not_supported

sl_bt_l2cap_connection_result_no_resources_available

sl_bt_l2cap_connection_result_insufficient_authentication

sl_bt_l2cap_connection_result_insufficient_authorization

sl_bt_l2cap_connection_result_encryption_key_size_too_short

sl_bt_l2cap_connection_result_insufficient_encryption

sl_bt_l2cap_connection_result_invalid_source_cid

sl_bt_l2cap_connection_result_source_cid_already_allocated

sl_bt_l2cap_connection_result_unacceptable_parameters

Definition at line 13199 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_l2cap_command_reject_reason_t

sl_bt_l2cap_command_reject_reason_t

Describes why a request command was rejected.

Enumerator

sl_bt_l2cap_command_not_understood

sl_bt_l2cap_signaling_mtu_exceeded

sl_bt_l2cap_invalid_cid_request

Definition at line 13270 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_l2cap_command_code_t

sl_bt_l2cap_command_code_t

Describes which of the request commands has been rejected.

Enumerator

sl_bt_l2cap_disconnection_request

sl_bt_l2cap_le_connection_request

sl_bt_l2cap_flow_control_credit

Definition at line 13283 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

L2CAP Connection Oriented Channels

826/1306

Function Documentation

sl_bt_l2cap_open_le_channel

sl_status_t sl_bt_l2cap_open_le_channel (uint8_t connection, uint16_t spsm, uint16_t max_sdu, uint16_t max_pdu, uint16_t
credit, uint16_t *cid)

Parameters

[in] connection The connection handle

[in] spsm The protocol/services implemented by the local channel endpoint

[in] max_sdu The Maximum Service Data Unit size the local channel endpoint can accept

Range: 23 to 65533.

[in] max_pdu The maximum PDU payload size the local channel endpoint can accept

Range: 23 to 252.

[in] credit The initial credit value of the local channel endpoint, i.e., number of PDUs the peer channel endpoint

can send

[out] cid The channel identifier

Create and configure an L2CAP channel on a Bluetooth connection using the LE credit based connection request packet.

Event sl_bt_evt_l2cap_le_channel_open_response or sl_bt_evt_l2cap_command_rejected will be received after the peer

device responded to the request.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_l2cap_command_rejected - Triggered when the peer device rejected the connection request. Typically a legacy

peer device that does not support the feature could send this response. When this event is received under the context of

opening a channel using this command, the stack automatically closes the local channel and the user application should

clean up the resources associated to the channel identifier.

sl_bt_evt_l2cap_le_channel_open_response - Triggered when an LE credit-based connection response has been received in

response to this command. If the result code in errorcode of the event is not equal to

sl_bt_l2cap_connection_result_successful, it means that connection request was rejected by the peer device. In this case,

the stack automatically closes the local channel and the user application should clean up the resources associated to the

channel identifier.

sl_bt_evt_l2cap_channel_closed - Triggered when an LE credit-based connection response has not been received within 30

seconds after this command has been issued.

Definition at line 13535 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_l2cap_send_le_channel_open_response

sl_status_t sl_bt_l2cap_send_le_channel_open_response (uint8_t connection, uint16_t cid, uint16_t max_sdu, uint16_t
max_pdu, uint16_t credit, uint16_t errorcode)

Parameters

[in] connection The connection handle

[in] cid The channel identifier

[in] max_sdu The Maximum Service Data Unit size the local channel endpoint can accept

Range: 23 to 65533.

L2CAP Connection Oriented Channels

827/1306

[in] max_pdu The maximum PDU payload size the local channel endpoint can accept

Range:23 to 252.

[in] credit The initial credit value of the local channel endpoint, i.e., number of PDUs that the peer channel endpoint

can send

[in] errorcode Enum sl_bt_l2cap_connection_result_t. An L2CAP error code as the outcome of the connection request

Send an LE credit-based connection response to an LE credit-based connection request received in the

sl_bt_evt_l2cap_le_channel_open_request event. Result code sl_bt_l2cap_connection_result_successful in errorcode implies

that the logical channel is established and data can be sent or received on the channel.

To reject the connection request, use a result code other than sl_bt_l2cap_connection_result_successful in errorcode . Other

parameters in this command are ignored in this case. The stack automatically closes the local channel and the user

application should clean up the resources associated to the channel identifier.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 13576 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_l2cap_channel_send_data

sl_status_t sl_bt_l2cap_channel_send_data (uint8_t connection, uint16_t cid, size_t data_len, const uint8_t *data)

Parameters

[in] connection The connection handle

[in] cid The channel identifier

[in] data_len Length of data in data

[in] data Data to be sent. The data length must not be greater than the lesser of the peer channel endpoint

max_pdu and 252 bytes, which is the maximum data length this command can send.

Send data to the peer channel endpoint on a Bluetooth connection. If the SDU length is larger than max_pdu size or 250

bytes, the application should fragment the SDU into multiple K-frames and call this command once for each K-frame.

The first K-frame of the SDU should start with 2 bytes of SDU length followed with payload. Therefore, the first K-frame

contains PDU length minus 2 bytes of the actual payload. All subsequent K-frames of the same SDU contain PDU length of

the payload. The sum of the payload lengths for K-frames should be equal to the specified SDU length.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 13606 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_l2cap_channel_send_credit

sl_status_t sl_bt_l2cap_channel_send_credit (uint8_t connection, uint16_t cid, uint16_t credit)

Parameters

[in] connection The connection handle

[in] cid The channel identifier

L2CAP Connection Oriented Channels

828/1306

Send flow control credits to the peer channel endpoint indicating that the local channel endpoint is capable of receiving

more data.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 13628 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_l2cap_close_channel

sl_status_t sl_bt_l2cap_close_channel (uint8_t connection, uint16_t cid)

Parameters

[in] connection The connection handle

[in] cid The channel identifier

Send a disconnect request to close a credit-based logical channel.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_l2cap_channel_closed - Triggered when an credit-based logical channel is closed in response to this command.

Definition at line 13646 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_l2cap_open_le_channel_id

#define sl_bt_cmd_l2cap_open_le_channel_id

Value:

0�01430020

Definition at line 13184 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_l2cap_send_le_channel_open_response_id

#define sl_bt_cmd_l2cap_send_le_channel_open_response_id

Value:

0�02430020

Definition at line 13185 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_l2cap_channel_send_data_id

#define sl_bt_cmd_l2cap_channel_send_data_id

L2CAP Connection Oriented Channels

829/1306

Value:

0x03430020

Definition at line 13186 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_l2cap_channel_send_credit_id

#define sl_bt_cmd_l2cap_channel_send_credit_id

Value:

0�04430020

Definition at line 13187 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_l2cap_close_channel_id

#define sl_bt_cmd_l2cap_close_channel_id

Value:

0�05430020

Definition at line 13188 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_l2cap_open_le_channel_id

#define sl_bt_rsp_l2cap_open_le_channel_id

Value:

0�01430020

Definition at line 13189 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_l2cap_send_le_channel_open_response_id

#define sl_bt_rsp_l2cap_send_le_channel_open_response_id

Value:

0�02430020

Definition at line 13190 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_l2cap_channel_send_data_id

#define sl_bt_rsp_l2cap_channel_send_data_id

Value:

0�03430020

Definition at line 13191 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

L2CAP Connection Oriented Channels

830/1306

sl_bt_rsp_l2cap_channel_send_credit_id

#define sl_bt_rsp_l2cap_channel_send_credit_id

Value:

0�04430020

Definition at line 13192 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_l2cap_close_channel_id

#define sl_bt_rsp_l2cap_close_channel_id

Value:

0�05430020

Definition at line 13193 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_l2cap_le_channel_open_request

831/1306

sl_bt_evt_l2cap_le_channel_open_request

Modules

sl_bt_evt_l2cap_le_channel_open_request_s

sl_bt_evt_l2cap_le_channel_open_request
Indicates that an LE credit-based connection request on a Bluetooth connection is received.

The application must respond with the sl_bt_l2cap_send_le_channel_open_response command.

Typedefs

typedef struct
sl_bt_evt_l2cap_le
_channel_open_re

quest_s

sl_bt_evt_l2cap_le_channel_open_request_t

Macros

#define sl_bt_evt_l2cap_le_channel_open_request_id 0�014300a0
Identifier of the le_channel_open_request event.

Typedef Documentation

sl_bt_evt_l2cap_le_channel_open_request_t

typedef struct sl_bt_evt_l2cap_le_channel_open_request_s sl_bt_evt_l2cap_le_channel_open_request_t

Definition at line 13324 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_l2cap_le_channel_open_request_id

#define sl_bt_evt_l2cap_le_channel_open_request_id

Value:

0�014300a0

Identifier of the le_channel_open_request event.

Definition at line 13303 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_l2cap_le_channel_open_request_s

832/1306

sl_bt_evt_l2cap_le_channel_open_request_s

Data structure of the le_channel_open_request event.

Public Attributes

uint8_t connection

uint16_t spsm

uint16_t cid

uint16_t max_sdu

uint16_t max_pdu

uint16_t credit

uint16_t remote_cid

Public Attribute Documentation

connection

uint8_t sl_bt_evt_l2cap_le_channel_open_request_s::connection

The connection handle

Definition at line 13310 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

spsm

uint16_t sl_bt_evt_l2cap_le_channel_open_request_s::spsm

The protocol/services implemented by the peer channel endpoint

Definition at line 13311 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

cid

uint16_t sl_bt_evt_l2cap_le_channel_open_request_s::cid

The channel identifier on the local device

Definition at line 13313 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

max_sdu

sl_bt_evt_l2cap_le_channel_open_request_s

833/1306

uint16_t sl_bt_evt_l2cap_le_channel_open_request_s::max_sdu

The Maximum Service Data Unit size of the peer channel endpoint

Definition at line 13314 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

max_pdu

uint16_t sl_bt_evt_l2cap_le_channel_open_request_s::max_pdu

The maximum PDU payload size of the peer channel endpoint

Definition at line 13316 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

credit

uint16_t sl_bt_evt_l2cap_le_channel_open_request_s::credit

The initial credit value of the peer channel endpoint, i.e., number of PDUs that the local channel endpoint can send

Definition at line 13318 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

remote_cid

uint16_t sl_bt_evt_l2cap_le_channel_open_request_s::remote_cid

The channel identifier on the peer device

Definition at line 13321 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_l2cap_le_channel_open_response

834/1306

sl_bt_evt_l2cap_le_channel_open_response

Modules

sl_bt_evt_l2cap_le_channel_open_response_s

sl_bt_evt_l2cap_le_channel_open_response
Indicates that an LE credit-based connection response is received.

Result code sl_bt_l2cap_connection_result_successful in errorcode implies that the logical channel is established and data

can be sent or received on the channel.

If the connection request was rejected by the peer, indicated by errorcode , the stack automatically closes the local channel

and the user application should clean up the resources associated to the channel identifier.

Typedefs

typedef struct
sl_bt_evt_l2cap_le
_channel_open_re

sponse_s

sl_bt_evt_l2cap_le_channel_open_response_t

Macros

#define sl_bt_evt_l2cap_le_channel_open_response_id 0�024300a0
Identifier of the le_channel_open_response event.

Typedef Documentation

sl_bt_evt_l2cap_le_channel_open_response_t

typedef struct sl_bt_evt_l2cap_le_channel_open_response_s sl_bt_evt_l2cap_le_channel_open_response_t

Definition at line 13375 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_l2cap_le_channel_open_response_id

#define sl_bt_evt_l2cap_le_channel_open_response_id

Value:

0�024300a0

Identifier of the le_channel_open_response event.

sl_bt_evt_l2cap_le_channel_open_response

835/1306

Definition at line 13344 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_l2cap_le_channel_open_response_s

836/1306

sl_bt_evt_l2cap_le_channel_open_response_s

Data structure of the le_channel_open_response event.

Public Attributes

uint8_t connection

uint16_t cid

uint16_t max_sdu

uint16_t max_pdu

uint16_t credit

uint16_t errorcode

uint16_t remote_cid

Public Attribute Documentation

connection

uint8_t sl_bt_evt_l2cap_le_channel_open_response_s::connection

The Bluetooth connection handle on which the response is received

Definition at line 13351 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

cid

uint16_t sl_bt_evt_l2cap_le_channel_open_response_s::cid

The channel identifier on the local device

Definition at line 13353 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

max_sdu

uint16_t sl_bt_evt_l2cap_le_channel_open_response_s::max_sdu

The Maximum Service Data Unit size of the peer channel endpoint

Definition at line 13354 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

max_pdu

sl_bt_evt_l2cap_le_channel_open_response_s

837/1306

uint16_t sl_bt_evt_l2cap_le_channel_open_response_s::max_pdu

The maximum PDU payload size of the peer channel endpoint

Definition at line 13356 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

credit

uint16_t sl_bt_evt_l2cap_le_channel_open_response_s::credit

The initial credit value of the peer channel endpoint, i.e., number of PDUs the local channel endpoint can send

Definition at line 13358 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

errorcode

uint16_t sl_bt_evt_l2cap_le_channel_open_response_s::errorcode

Enum sl_bt_l2cap_connection_result_t.

An L2CAP error code as the outcome of the connection request.

Result sl_bt_l2cap_connection_result_successful indicates the connection request was accepted and the logical channel is

established. Other error code value indicates the connection request was refused by the peer device and other parameters

of this event must be ignored.

Definition at line 13361 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

remote_cid

uint16_t sl_bt_evt_l2cap_le_channel_open_response_s::remote_cid

The channel identifier on the peer device

Definition at line 13372 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_l2cap_channel_data

838/1306

sl_bt_evt_l2cap_channel_data

Modules

sl_bt_evt_l2cap_channel_data_s

sl_bt_evt_l2cap_channel_data
Indicates that data is received on a channel.

Each event should contain a K-frame of payload. The length of SDU should be specified in the first 2 bytes of the first K-

frame. The sum of the payload lengths in received K-frames should be equal to the specified SDU length. Otherwise,

application should disconnect the channel using sl_bt_l2cap_close_channel command. The same should happen also if the

SDU length exceeds the max_sdu of local channel endpoint.

Typedefs

typedef struct
sl_bt_evt_l2cap_c
hannel_data_s

sl_bt_evt_l2cap_channel_data_t

Macros

#define sl_bt_evt_l2cap_channel_data_id 0�034300a0
Identifier of the channel_data event.

Typedef Documentation

sl_bt_evt_l2cap_channel_data_t

typedef struct sl_bt_evt_l2cap_channel_data_s sl_bt_evt_l2cap_channel_data_t

Definition at line 13405 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_l2cap_channel_data_id

#define sl_bt_evt_l2cap_channel_data_id

Value:

0�034300a0

Identifier of the channel_data event.

Definition at line 13393 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_l2cap_channel_data_s

839/1306

sl_bt_evt_l2cap_channel_data_s

Data structure of the channel_data event.

Public Attributes

uint8_t connection

uint16_t cid

uint8array data

Public Attribute Documentation

connection

uint8_t sl_bt_evt_l2cap_channel_data_s::connection

The connection handle

Definition at line 13400 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

cid

uint16_t sl_bt_evt_l2cap_channel_data_s::cid

The channel identifier

Definition at line 13401 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

data

uint8array sl_bt_evt_l2cap_channel_data_s::data

Data received

Definition at line 13402 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_l2cap_channel_credit

840/1306

sl_bt_evt_l2cap_channel_credit

Modules

sl_bt_evt_l2cap_channel_credit_s

sl_bt_evt_l2cap_channel_credit
Indicates that flow control credits are received on a channel informing that the peer channel endpoint is capable of

receiving more data.

Typedefs

typedef struct
sl_bt_evt_l2cap_c
hannel_credit_s

sl_bt_evt_l2cap_channel_credit_t

Macros

#define sl_bt_evt_l2cap_channel_credit_id 0�044300a0
Identifier of the channel_credit event.

Typedef Documentation

sl_bt_evt_l2cap_channel_credit_t

typedef struct sl_bt_evt_l2cap_channel_credit_s sl_bt_evt_l2cap_channel_credit_t

Definition at line 13431 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_l2cap_channel_credit_id

#define sl_bt_evt_l2cap_channel_credit_id

Value:

0�044300a0

Identifier of the channel_credit event.

Definition at line 13417 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_l2cap_channel_credit_s

841/1306

sl_bt_evt_l2cap_channel_credit_s

Data structure of the channel_credit event.

Public Attributes

uint8_t connection

uint16_t cid

uint16_t credit

Public Attribute Documentation

connection

uint8_t sl_bt_evt_l2cap_channel_credit_s::connection

The Bluetooth connection handle on which the credit is received

Definition at line 13424 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

cid

uint16_t sl_bt_evt_l2cap_channel_credit_s::cid

The channel identifier

Definition at line 13426 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

credit

uint16_t sl_bt_evt_l2cap_channel_credit_s::credit

The credit value, i.e., the additional number of PDUs the peer channel endpoint can receive

Definition at line 13427 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_l2cap_channel_closed

842/1306

sl_bt_evt_l2cap_channel_closed

Modules

sl_bt_evt_l2cap_channel_closed_s

sl_bt_evt_l2cap_channel_closed
Indicates that a credit-based logical channel is closed by the local or peer device.

Typedefs

typedef struct
sl_bt_evt_l2cap_c
hannel_closed_s

sl_bt_evt_l2cap_channel_closed_t

Macros

#define sl_bt_evt_l2cap_channel_closed_id 0�054300a0
Identifier of the channel_closed event.

Typedef Documentation

sl_bt_evt_l2cap_channel_closed_t

typedef struct sl_bt_evt_l2cap_channel_closed_s sl_bt_evt_l2cap_channel_closed_t

Definition at line 13455 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_l2cap_channel_closed_id

#define sl_bt_evt_l2cap_channel_closed_id

Value:

0�054300a0

Identifier of the channel_closed event.

Definition at line 13443 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_l2cap_channel_closed_s

843/1306

sl_bt_evt_l2cap_channel_closed_s

Data structure of the channel_closed event.

Public Attributes

uint8_t connection

uint16_t cid

uint16_t reason

Public Attribute Documentation

connection

uint8_t sl_bt_evt_l2cap_channel_closed_s::connection

The connection handle

Definition at line 13450 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

cid

uint16_t sl_bt_evt_l2cap_channel_closed_s::cid

The channel identifier

Definition at line 13451 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

reason

uint16_t sl_bt_evt_l2cap_channel_closed_s::reason

The disconnection reason

Definition at line 13452 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_l2cap_command_rejected

844/1306

sl_bt_evt_l2cap_command_rejected

Modules

sl_bt_evt_l2cap_command_rejected_s

sl_bt_evt_l2cap_command_rejected
Indicates that the peer device rejected a command.

This might happen if, for example, the device does not support the feature or the command has an incorrect CID.

Typedefs

typedef struct
sl_bt_evt_l2cap_c
ommand_rejected

_s

sl_bt_evt_l2cap_command_rejected_t

Macros

#define sl_bt_evt_l2cap_command_rejected_id 0�064300a0
Identifier of the command_rejected event.

Typedef Documentation

sl_bt_evt_l2cap_command_rejected_t

typedef struct sl_bt_evt_l2cap_command_rejected_s sl_bt_evt_l2cap_command_rejected_t

Definition at line 13485 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_l2cap_command_rejected_id

#define sl_bt_evt_l2cap_command_rejected_id

Value:

0�064300a0

Identifier of the command_rejected event.

Definition at line 13469 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_l2cap_command_rejected_s

845/1306

sl_bt_evt_l2cap_command_rejected_s

Data structure of the command_rejected event.

Public Attributes

uint8_t connection

uint8_t code

uint16_t reason

uint16_t cid

Public Attribute Documentation

connection

uint8_t sl_bt_evt_l2cap_command_rejected_s::connection

The Bluetooth connection handle on which the event is received

Definition at line 13476 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

code

uint8_t sl_bt_evt_l2cap_command_rejected_s::code

Enum sl_bt_l2cap_command_code_t. Code of the rejected command

Definition at line 13478 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

reason

uint16_t sl_bt_evt_l2cap_command_rejected_s::reason

Enum sl_bt_l2cap_command_reject_reason_t. The rejection reason

Definition at line 13480 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

cid

uint16_t sl_bt_evt_l2cap_command_rejected_s::cid

The channel identifier

Definition at line 13482 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

CTE Transmitter

846/1306

CTE Transmitter

CTE Transmitter
CTE Transmitter.

Commands and events in this class manage Constant Tone Extension (CTE) transmission.

CTE feature is only supported by specific devices. Commands from this class will return SL_STATUS_NOT_SUPPORTED on

devices that do not support CTE.

Functions

sl_status_t sl_bt_cte_transmitter_set_dtm_parameters(uint8_t cte_length, uint8_t cte_type, size_t switching_pattern_len,
const uint8_t *switching_pattern)

sl_status_t sl_bt_cte_transmitter_clear_dtm_parameters()

sl_status_t sl_bt_cte_transmitter_enable_connection_cte(uint8_t connection, uint8_t cte_types, size_t
switching_pattern_len, const uint8_t *switching_pattern)

sl_status_t sl_bt_cte_transmitter_disable_connection_cte(uint8_t connection)

sl_status_t sl_bt_cte_transmitter_enable_connectionless_cte(uint8_t handle, uint8_t cte_length, uint8_t cte_type, uint8_t
cte_count, size_t switching_pattern_len, const uint8_t *switching_pattern)

sl_status_t sl_bt_cte_transmitter_disable_connectionless_cte(uint8_t handle)

sl_status_t sl_bt_cte_transmitter_enable_silabs_cte(uint8_t handle, uint8_t cte_length, uint8_t cte_type, uint8_t cte_count,
size_t switching_pattern_len, const uint8_t *switching_pattern)

sl_status_t sl_bt_cte_transmitter_disable_silabs_cte(uint8_t handle)

Macros

#define sl_bt_cmd_cte_transmitter_set_dtm_parameters_id 0�04440020

#define sl_bt_cmd_cte_transmitter_clear_dtm_parameters_id 0�05440020

#define sl_bt_cmd_cte_transmitter_enable_connection_cte_id 0�00440020

#define sl_bt_cmd_cte_transmitter_disable_connection_cte_id 0�01440020

#define sl_bt_cmd_cte_transmitter_enable_connectionless_cte_id 0�02440020

#define sl_bt_cmd_cte_transmitter_disable_connectionless_cte_id 0�03440020

#define sl_bt_cmd_cte_transmitter_enable_silabs_cte_id 0�06440020

#define sl_bt_cmd_cte_transmitter_disable_silabs_cte_id 0�07440020

#define sl_bt_rsp_cte_transmitter_set_dtm_parameters_id 0�04440020

#define sl_bt_rsp_cte_transmitter_clear_dtm_parameters_id 0�05440020

CTE Transmitter

847/1306

#define sl_bt_rsp_cte_transmitter_enable_connection_cte_id 0�00440020

#define sl_bt_rsp_cte_transmitter_disable_connection_cte_id 0�01440020

#define sl_bt_rsp_cte_transmitter_enable_connectionless_cte_id 0�02440020

#define sl_bt_rsp_cte_transmitter_disable_connectionless_cte_id 0�03440020

#define sl_bt_rsp_cte_transmitter_enable_silabs_cte_id 0�06440020

#define sl_bt_rsp_cte_transmitter_disable_silabs_cte_id 0�07440020

Function Documentation

sl_bt_cte_transmitter_set_dtm_parameters

sl_status_t sl_bt_cte_transmitter_set_dtm_parameters (uint8_t cte_length, uint8_t cte_type, size_t switching_pattern_len,
const uint8_t *switching_pattern)

Parameters

[in] cte_length The length of the Constant Tone Extension in 8 us units

0: No CTE

0x02 to 0x14: CTE length

Default: 0 (no CTE)

[in] cte_type CTE type

0: AoA CTE

1: AoD CTE with 1 us slots

2: AoD CTE with 2 us slots

Default: 0

[in] switching_pattern_len Length of data in switching_pattern

[in] switching_pattern Antenna switching pattern. Antennas will be switched in this order with the antenna switch

pins during CTE. If the CTE is longer than the switching pattern, the pattern starts over. This

can be an empty array if CTE is unused.

Set the CTE-related parameters of the LE transmitter test.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 13709 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cte_transmitter_clear_dtm_parameters

sl_status_t sl_bt_cte_transmitter_clear_dtm_parameters ()

Clear CTE-related parameters that were previously set for LE transmitter test. Default values will be restored for these

parameters.

Returns

SL_STATUS_OK if successful. Error code otherwise.

CTE Transmitter

848/1306

sl_bt_cte_transmitter_enable_connection_cte

sl_status_t sl_bt_cte_transmitter_enable_connection_cte (uint8_t connection, uint8_t cte_types, size_t
switching_pattern_len, const uint8_t *switching_pattern)

Parameters

[in] connection Connection handle

[in] cte_types CTE types. Bitmask of the following:

Bit 0: AoA CTE response

Bit 1: AoD CTE response with 1 us slots

Bit 2: AoD CTE response with 2 us slots

[in] switching_pattern_len Length of data in switching_pattern

[in] switching_pattern Antenna switching pattern. Antennas will be switched in this order with the antenna switch

pins during CTE. If the CTE is longer than the switching pattern, the pattern starts over.

Enable different types of CTE responses on a connection. CTE response will be sent once requested by the peer device

using the CTE Request procedure.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 13743 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cte_transmitter_disable_connection_cte

sl_status_t sl_bt_cte_transmitter_disable_connection_cte (uint8_t connection)

Parameters

[in] connection Connection handle

Disable CTE responses on a connection.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 13757 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cte_transmitter_enable_connectionless_cte

sl_status_t sl_bt_cte_transmitter_enable_connectionless_cte (uint8_t handle, uint8_t cte_length, uint8_t cte_type, uint8_t
cte_count, size_t switching_pattern_len, const uint8_t *switching_pattern)

Parameters

[in] handle Periodic advertising handle

[in] cte_length CTE length in 8 us units.

Range: 0x02 to 0x14

Time Range: 16 us to 160 us

CTE Transmitter

849/1306

[in] cte_type CTE type

0: AoA CTE

1: AoD CTE with 1 us slots

2: AoD CTE with 2 us slots

[in] cte_count The number of CTEs to be transmitted in each periodic advertising interval

[in] switching_pattern_len Length of data in switching_pattern

[in] switching_pattern Antenna switching pattern. Antennas will be switched in this order with the antenna switch

pins during CTE. If the CTE is longer than the switching pattern, the pattern starts over.

Start a connectionless CTE transmit. CTEs will be transmitted in periodic advertisement packets. As a result, a periodic

advertising has to be started prior to this command.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 13783 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cte_transmitter_disable_connectionless_cte

sl_status_t sl_bt_cte_transmitter_disable_connectionless_cte (uint8_t handle)

Parameters

[in] handle Periodic advertising handle

Stop the connectionless CTE transmit.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 13799 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cte_transmitter_enable_silabs_cte

sl_status_t sl_bt_cte_transmitter_enable_silabs_cte (uint8_t handle, uint8_t cte_length, uint8_t cte_type, uint8_t cte_count,
size_t switching_pattern_len, const uint8_t *switching_pattern)

Parameters

[in] handle Advertising handle

[in] cte_length CTE length in 8 us units.

Range: 0x02 to 0x14

Time Range: 16 us to 160 us

[in] cte_type CTE type

0: AoA CTE

1: AoD CTE with 1 us slots

2: AoD CTE with 2 us slots

[in] cte_count The number of CTEs to be transmitted in each extended advertising interval. Currently, only cte_count =

1 is supported.

CTE Transmitter

850/1306

[in] switching_pattern_len Length of data in switching_pattern

[in] switching_pattern Antenna switching pattern. Antennas will be switched in this order with the antenna switch

pins during CTE. If the CTE is longer than the switching pattern, the pattern starts over.

Enable Silicon Labs CTE transmit. CTEs will be transmitted in extended advertisement packets. As a result, extended

advertising has to be started prior this command.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 13825 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cte_transmitter_disable_silabs_cte

sl_status_t sl_bt_cte_transmitter_disable_silabs_cte (uint8_t handle)

Parameters

[in] handle Advertising handle

Disable Silicon Labs CTE transmit.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 13841 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_cte_transmitter_set_dtm_parameters_id

#define sl_bt_cmd_cte_transmitter_set_dtm_parameters_id

Value:

0�04440020

Definition at line 13664 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_cte_transmitter_clear_dtm_parameters_id

#define sl_bt_cmd_cte_transmitter_clear_dtm_parameters_id

Value:

0�05440020

Definition at line 13665 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_cte_transmitter_enable_connection_cte_id

#define sl_bt_cmd_cte_transmitter_enable_connection_cte_id

Value:

CTE Transmitter

851/1306

0x00440020

Definition at line 13666 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_cte_transmitter_disable_connection_cte_id

#define sl_bt_cmd_cte_transmitter_disable_connection_cte_id

Value:

0�01440020

Definition at line 13667 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_cte_transmitter_enable_connectionless_cte_id

#define sl_bt_cmd_cte_transmitter_enable_connectionless_cte_id

Value:

0�02440020

Definition at line 13668 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_cte_transmitter_disable_connectionless_cte_id

#define sl_bt_cmd_cte_transmitter_disable_connectionless_cte_id

Value:

0�03440020

Definition at line 13669 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_cte_transmitter_enable_silabs_cte_id

#define sl_bt_cmd_cte_transmitter_enable_silabs_cte_id

Value:

0�06440020

Definition at line 13670 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_cte_transmitter_disable_silabs_cte_id

#define sl_bt_cmd_cte_transmitter_disable_silabs_cte_id

Value:

0�07440020

Definition at line 13671 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

CTE Transmitter

852/1306

sl_bt_rsp_cte_transmitter_set_dtm_parameters_id

#define sl_bt_rsp_cte_transmitter_set_dtm_parameters_id

Value:

0�04440020

Definition at line 13672 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cte_transmitter_clear_dtm_parameters_id

#define sl_bt_rsp_cte_transmitter_clear_dtm_parameters_id

Value:

0�05440020

Definition at line 13673 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cte_transmitter_enable_connection_cte_id

#define sl_bt_rsp_cte_transmitter_enable_connection_cte_id

Value:

0�00440020

Definition at line 13674 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cte_transmitter_disable_connection_cte_id

#define sl_bt_rsp_cte_transmitter_disable_connection_cte_id

Value:

0�01440020

Definition at line 13675 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cte_transmitter_enable_connectionless_cte_id

#define sl_bt_rsp_cte_transmitter_enable_connectionless_cte_id

Value:

0�02440020

Definition at line 13676 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cte_transmitter_disable_connectionless_cte_id

#define sl_bt_rsp_cte_transmitter_disable_connectionless_cte_id

CTE Transmitter

853/1306

Value:

0x03440020

Definition at line 13677 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cte_transmitter_enable_silabs_cte_id

#define sl_bt_rsp_cte_transmitter_enable_silabs_cte_id

Value:

0�06440020

Definition at line 13678 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cte_transmitter_disable_silabs_cte_id

#define sl_bt_rsp_cte_transmitter_disable_silabs_cte_id

Value:

0�07440020

Definition at line 13679 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

CTE Receiver

854/1306

CTE Receiver

Modules

CTE type flags for limiting periodic advertising synchronization

sl_bt_evt_cte_receiver_dtm_iq_report

sl_bt_evt_cte_receiver_connection_iq_report

sl_bt_evt_cte_receiver_connectionless_iq_report

sl_bt_evt_cte_receiver_silabs_iq_report

CTE Receiver
CTE Receiver.

Commands and events in this class manage Constant Tone Extension (CTE) receiving.

CTE feature is only supported by specific devices. Commands from this class will return SL_STATUS_NOT_SUPPORTED on

devices that do not support CTE.

Functions

sl_status_t sl_bt_cte_receiver_set_dtm_parameters(uint8_t cte_length, uint8_t cte_type, uint8_t slot_durations, size_t
switching_pattern_len, const uint8_t *switching_pattern)

sl_status_t sl_bt_cte_receiver_clear_dtm_parameters()

sl_status_t sl_bt_cte_receiver_set_sync_cte_type(uint8_t sync_cte_type)

sl_status_t sl_bt_cte_receiver_set_default_sync_receive_parameters(uint8_t mode, uint16_t skip, uint16_t timeout, uint8_t
sync_cte_type, uint8_t reporting_mode)

sl_status_t sl_bt_cte_receiver_set_sync_receive_parameters(uint8_t connection, uint8_t mode, uint16_t skip, uint16_t
timeout, uint8_t sync_cte_type, uint8_t reporting_mode)

sl_status_t sl_bt_cte_receiver_configure(uint8_t flags)

sl_status_t sl_bt_cte_receiver_enable_connection_cte(uint8_t connection, uint16_t interval, uint8_t cte_length, uint8_t
cte_type, uint8_t slot_durations, size_t switching_pattern_len, const uint8_t *switching_pattern)

sl_status_t sl_bt_cte_receiver_disable_connection_cte(uint8_t connection)

sl_status_t sl_bt_cte_receiver_enable_connectionless_cte(uint16_t sync, uint8_t slot_durations, uint8_t cte_count, size_t
switching_pattern_len, const uint8_t *switching_pattern)

sl_status_t sl_bt_cte_receiver_disable_connectionless_cte(uint16_t sync)

sl_status_t sl_bt_cte_receiver_enable_silabs_cte(uint8_t slot_durations, uint8_t cte_count, size_t switching_pattern_len,
const uint8_t *switching_pattern)

sl_status_t sl_bt_cte_receiver_disable_silabs_cte()

CTE Receiver

855/1306

Macros

#define sl_bt_cmd_cte_receiver_set_dtm_parameters_id 0�05450020

#define sl_bt_cmd_cte_receiver_clear_dtm_parameters_id 0�06450020

#define sl_bt_cmd_cte_receiver_set_sync_cte_type_id 0�09450020

#define sl_bt_cmd_cte_receiver_set_default_sync_receive_parameters_id 0�0a450020

#define sl_bt_cmd_cte_receiver_set_sync_receive_parameters_id 0�0b450020

#define sl_bt_cmd_cte_receiver_configure_id 0�00450020

#define sl_bt_cmd_cte_receiver_enable_connection_cte_id 0�01450020

#define sl_bt_cmd_cte_receiver_disable_connection_cte_id 0�02450020

#define sl_bt_cmd_cte_receiver_enable_connectionless_cte_id 0�03450020

#define sl_bt_cmd_cte_receiver_disable_connectionless_cte_id 0�04450020

#define sl_bt_cmd_cte_receiver_enable_silabs_cte_id 0�07450020

#define sl_bt_cmd_cte_receiver_disable_silabs_cte_id 0�08450020

#define sl_bt_rsp_cte_receiver_set_dtm_parameters_id 0�05450020

#define sl_bt_rsp_cte_receiver_clear_dtm_parameters_id 0�06450020

#define sl_bt_rsp_cte_receiver_set_sync_cte_type_id 0�09450020

#define sl_bt_rsp_cte_receiver_set_default_sync_receive_parameters_id 0�0a450020

#define sl_bt_rsp_cte_receiver_set_sync_receive_parameters_id 0�0b450020

#define sl_bt_rsp_cte_receiver_configure_id 0�00450020

#define sl_bt_rsp_cte_receiver_enable_connection_cte_id 0�01450020

#define sl_bt_rsp_cte_receiver_disable_connection_cte_id 0�02450020

#define sl_bt_rsp_cte_receiver_enable_connectionless_cte_id 0�03450020

#define sl_bt_rsp_cte_receiver_disable_connectionless_cte_id 0�04450020

#define sl_bt_rsp_cte_receiver_enable_silabs_cte_id 0�07450020

#define sl_bt_rsp_cte_receiver_disable_silabs_cte_id 0�08450020

Function Documentation

sl_bt_cte_receiver_set_dtm_parameters

sl_status_t sl_bt_cte_receiver_set_dtm_parameters (uint8_t cte_length, uint8_t cte_type, uint8_t slot_durations, size_t
switching_pattern_len, const uint8_t *switching_pattern)

Parameters

CTE Receiver

856/1306

[in] cte_length Expected CTE length in 8 us units

0: No CTE

0x02 to 0x14: Expected CTE length

Default: 0 (no CTE)

[in] cte_type Expected CTE type

0: Expect AoA CTE

1: Expect AoD CTE with 1 us slots

2: Expect AoD CTE with 2 us slots

Default: 0

[in] slot_durations Slot durations

1: Switching and sampling slots are 1 us each

2: Switching and sampling slots are 2 us each

Default: 1

[in] switching_pattern_len Length of data in switching_pattern

[in] switching_pattern Antenna switching pattern. Antennas will be switched in this order with the antenna switch

pins during CTE. If the CTE is longer than the switching pattern, the pattern starts over. This

can be an empty array if CTE is unused.

Set CTE-related parameters of LE receiver test.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_cte_receiver_dtm_iq_report - Triggered when IQ samples have been received.

Definition at line 14155 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cte_receiver_clear_dtm_parameters

sl_status_t sl_bt_cte_receiver_clear_dtm_parameters ()

Clear CTE-related parameters that were previously set for LE receiver test. Default values will be restored for these

parameters.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 14170 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cte_receiver_set_sync_cte_type

sl_status_t sl_bt_cte_receiver_set_sync_cte_type (uint8_t sync_cte_type)

Parameters

CTE Receiver

857/1306

[in] sync_cte_type Sync CTE type flags. This value can be a bitmask of multiple flags from CTE type flags for limiting

periodic advertising synchronization. Flags:

SL_BT_CTE_RECEIVER_DO_NOT_SYNC_TO_AOA (0x01, bit 0): Do not sync to packets with an

AoA Constant Tone Extension

SL_BT_CTE_RECEIVER_DO_NOT_SYNC_TO_AOD_1_US (0x02, bit 1): Do not sync to packets

with an AoD Constant Tone Extension with 1 us slots

SL_BT_CTE_RECEIVER_DO_NOT_SYNC_TO_AOD_2_US (0x04, bit 2): Do not sync to packets

with an AoD Constant Tone Extension with 2 us slots

SL_BT_CTE_RECEIVER_SYNC_TO_CTE_ONLY (0x10, bit 4): Do not sync to packets without a

Constant Tone Extension

Default: 0

Set the sync CTE type to limit what types of periodic advertisers to sync to when scanning for periodic advertising

synchronization. The set parameter takes effect immediately for all advertisers that have not already established

synchronization.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 14197 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cte_receiver_set_default_sync_receive_parameters

sl_status_t sl_bt_cte_receiver_set_default_sync_receive_parameters (uint8_t mode, uint16_t skip, uint16_t timeout, uint8_t
sync_cte_type, uint8_t reporting_mode)

Parameters

[in] mode Enum sl_bt_past_receiver_mode_t. The mode to specify how the Bluetooth stack reacts when

synchronization information is received. Values:

sl_bt_past_receiver_mode_ignore (0x0): No attempt is made to synchronize to a periodic advertising

train for which the synchronization information was received. No event will be triggered towards the

application.

sl_bt_past_receiver_mode_synchronize (0x1): Attempt to synchronize to a periodic advertising train

for which the synchronization information was received. When the information is received, an event

will be triggered to indicate success or failure and to provide the application with the periodic

advertising synchronization handle.

Default: sl_bt_past_receiver_mode_ignore (No attempt is made to synchronize)

[in] skip The maximum number of periodic advertising packets that can be skipped after a successful receive.

Range: 0x0000 to 0x01F3

Default value: 0

[in] timeout The maximum permitted time between successful receives. If this time is exceeded, synchronization is

lost. Unit: 10 ms.

Range: 0x0A to 0x4000

Unit: 10 ms

Time range: 100 ms to 163.84 s

Default value: 1000 ms

CTE Receiver

858/1306

[in] sync_cte_type Sync CTE type flags to limit what types of periodic advertising trains to sync to when receiving

sync transfers. This value can be a bitmask of multiple flags from CTE type flags for limiting

periodic advertising synchronization. Flags:

SL_BT_CTE_RECEIVER_DO_NOT_SYNC_TO_AOA (0x01, bit 0): Do not sync to packets with an

AoA Constant Tone Extension

SL_BT_CTE_RECEIVER_DO_NOT_SYNC_TO_AOD_1_US (0x02, bit 1): Do not sync to packets

with an AoD Constant Tone Extension with 1 us slots

SL_BT_CTE_RECEIVER_DO_NOT_SYNC_TO_AOD_2_US (0x04, bit 2): Do not sync to packets

with an AoD Constant Tone Extension with 2 us slots

SL_BT_CTE_RECEIVER_SYNC_TO_CTE_ONLY (0x10, bit 4): Do not sync to packets without a

Constant Tone Extension

Default: 0 (do not limit synchronization by CTE type)

[in] reporting_mode Enum sl_bt_sync_reporting_mode_t. Specifies the initial mode for reporting data received in the

periodic advertising train after it has achieved synchronization. Values:

sl_bt_sync_report_none (0x0): Data received in periodic advertising trains is not reported to

the application.

sl_bt_sync_report_all (0x1): Data received in periodic advertising trains is reported to the

application.

Default: sl_bt_sync_report_all (Data received in periodic advertising trains is reported to the

application)

Set the default parameters and the CTE type limitation for receiving Periodic Advertising Synchronization Transfers (PAST)

over connections. The default parameters will be in effect for all subsequent connections and do not affect connections that

have already opened. The parameters can be overridden for a specific connection using command

sl_bt_cte_receiver_set_sync_receive_parameters after the connection is opened.

This command is relevant and available only when the application has included the bluetooth_feature_past_receiver

component into the build. If the PAST receiver component is not included, this command returns the error

SL_STATUS_NOT_AVAILABLE.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_sync_transfer_received - Triggered after synchronization transfer is received for a periodic advertising train that

does not have subevents or response slots. This event is used only when the application does not include

bluetooth_feature_periodic_sync or bluetooth_feature_pawr_sync components.

sl_bt_evt_periodic_sync_transfer_received - If the application includes the bluetooth_feature_periodic_sync or

bluetooth_feature_pawr_sync component, triggered after synchronization transfer is received for a periodic advertising train

that does not have subevents or response slots.
sl_bt_evt_pawr_sync_transfer_received - If the application includes the bluetooth_feature_pawr_sync component, triggered

after synchronization transfer is received for a Periodic Advertising with Responses (PAwR) train.

Definition at line 14288 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cte_receiver_set_sync_receive_parameters

sl_status_t sl_bt_cte_receiver_set_sync_receive_parameters (uint8_t connection, uint8_t mode, uint16_t skip, uint16_t
timeout, uint8_t sync_cte_type, uint8_t reporting_mode)

Parameters

[in] connection Connection handle

CTE Receiver

859/1306

[in] mode Enum sl_bt_past_receiver_mode_t. The mode to specify how the Bluetooth stack reacts when

synchronization information is received. Values:

sl_bt_past_receiver_mode_ignore (0x0): No attempt is made to synchronize to a periodic

advertising train for which the synchronization information was received. No event will be

triggered towards the application.

sl_bt_past_receiver_mode_synchronize (0x1): Attempt to synchronize to a periodic

advertising train for which the synchronization information was received. When the

information is received, an event will be triggered to indicate success or failure and to provide

the application with the periodic advertising synchronization handle.

Default: sl_bt_past_receiver_mode_ignore (Do not attempt to synchronize)

[in] skip The maximum number of periodic advertising packets that can be skipped after a successful

receive.

Range: 0x0000 to 0x01F3

Default value: 0

[in] timeout The maximum permitted time between successful receives. If this time is exceeded,

synchronization is lost. Unit: 10 ms.

Range: 0x0A to 0x4000

Unit: 10 ms

Time range: 100 ms to 163.84 s

Default value: 1000 ms

[in] sync_cte_type Sync CTE type flags to limit what types of periodic advertising trains to sync to when receiving

sync transfers. This value can be a bitmask of multiple flags from CTE type flags for limiting

periodic advertising synchronization. Flags:

SL_BT_CTE_RECEIVER_DO_NOT_SYNC_TO_AOA (0x01, bit 0): Do not sync to packets with an

AoA Constant Tone Extension

SL_BT_CTE_RECEIVER_DO_NOT_SYNC_TO_AOD_1_US (0x02, bit 1): Do not sync to packets

with an AoD Constant Tone Extension with 1 us slots

SL_BT_CTE_RECEIVER_DO_NOT_SYNC_TO_AOD_2_US (0x04, bit 2): Do not sync to packets

with an AoD Constant Tone Extension with 2 us slots

SL_BT_CTE_RECEIVER_SYNC_TO_CTE_ONLY (0x10, bit 4): Do not sync to packets without a

Constant Tone Extension

Default: 0 (do not limit synchronization by CTE type)

[in] reporting_mode Enum sl_bt_sync_reporting_mode_t. Specifies the initial mode for reporting data received in the

periodic advertising train after it has achieved synchronization. Values:

sl_bt_sync_report_none (0x0): Data received in periodic advertising trains is not reported to

the application.

sl_bt_sync_report_all (0x1): Data received in periodic advertising trains is reported to the

application.

Default: sl_bt_sync_report_all (Data received in periodic advertising trains is reported to the

application)

Set the parameters and the CTE type limitation for receiving Periodic Advertising Synchronization Transfers (PAST) over the

specified connection. The parameters do not affect periodic advertising trains that the device has already synchronized to.

This command is relevant and available only when the application has included the bluetooth_feature_past_receiver

component into the build. If the PAST receiver component is not included, this command returns the error

SL_STATUS_NOT_AVAILABLE.

Returns

SL_STATUS_OK if successful. Error code otherwise.

CTE Receiver

860/1306

Events

sl_bt_evt_sync_transfer_received - Triggered after synchronization transfer is received for a periodic advertising train that

does not have subevents or response slots. This event is used only when the application does not include

bluetooth_feature_periodic_sync or bluetooth_feature_pawr_sync components.

sl_bt_evt_periodic_sync_transfer_received - If the application includes the bluetooth_feature_periodic_sync or

bluetooth_feature_pawr_sync component, triggered after synchronization transfer is received for a periodic advertising train

that does not have subevents or response slots.

sl_bt_evt_pawr_sync_transfer_received - If the application includes the bluetooth_feature_pawr_sync component, triggered

after synchronization transfer is received for a Periodic Advertising with Responses (PAwR) train.

Definition at line 14381 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cte_receiver_configure

sl_status_t sl_bt_cte_receiver_configure (uint8_t flags)

Parameters

N/A flags

Definition at line 14408 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cte_receiver_enable_connection_cte

sl_status_t sl_bt_cte_receiver_enable_connection_cte (uint8_t connection, uint16_t interval, uint8_t cte_length, uint8_t
cte_type, uint8_t slot_durations, size_t switching_pattern_len, const uint8_t *switching_pattern)

Parameters

[in] connection Connection handle

[in] interval Measurement interval. CTE requests may be sent less often. For example, if a connection

event is missed for any reason, the CTE request will be sent in the next connection event.

0: No interval. The request is initiated only once.

Other values N: Initiate the request every N-th connection events

[in] cte_length Minimum CTE length requested in 8 us units.

Range: 0x02 to 0x14

Time Range: 16 us to 160 us

[in] cte_type Requested CTE type

0: AoA CTE

1: AoD CTE with 1 us slots

2: AoD CTE with 2 us slots

[in] slot_durations Slot durations

1: Switching and sampling slots are 1 us each

2: Switching and sampling slots are 2 us each

[in] switching_pattern_len Length of data in switching_pattern

[in] switching_pattern Antenna switching pattern. Antennas will be switched in this order with the antenna switch

pins during CTE. If the CTE is longer than the switching pattern, the pattern starts over.

CTE Receiver

861/1306

Start IQ samplings on a connection. A CTE requests will be initiated periodically on the given connection and IQ sampling

will be made on the received CTE responses.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_cte_receiver_connection_iq_report - Triggered when IQ samples have been received.

Definition at line 14445 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cte_receiver_disable_connection_cte

sl_status_t sl_bt_cte_receiver_disable_connection_cte (uint8_t connection)

Parameters

[in] connection Connection handle

Stop the IQ sampling on a connection. CTEs will not be requested on the given connection.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 14463 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cte_receiver_enable_connectionless_cte

sl_status_t sl_bt_cte_receiver_enable_connectionless_cte (uint16_t sync, uint8_t slot_durations, uint8_t cte_count, size_t
switching_pattern_len, const uint8_t *switching_pattern)

Parameters

[in] sync Periodic advertising synchronization handle

[in] slot_durations Slot durations

1: Switching and sampling slots are 1 us each

2: Switching and sampling slots are 2 us each

[in] cte_count - 0: Sample and report all available CTEs

Other values: Maximum number of sampled CTEs in each periodic advertising interval

[in] switching_pattern_len Length of data in switching_pattern

[in] switching_pattern Antenna switching pattern. Antennas will be switched in this order with the antenna switch

pins during CTE. If the CTE is longer than the switching pattern, the pattern starts over.

Start IQ sampling on a periodic advertising synchronization. IQ samples are taken on each CTE found in the periodic

advertisements.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

CTE Receiver

862/1306

Definition at line 14489 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cte_receiver_disable_connectionless_cte

sl_status_t sl_bt_cte_receiver_disable_connectionless_cte (uint16_t sync)

Parameters

[in] sync Periodic advertising synchronization handle

Stop IQ sampling on a periodic advertising synchronization.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 14504 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cte_receiver_enable_silabs_cte

sl_status_t sl_bt_cte_receiver_enable_silabs_cte (uint8_t slot_durations, uint8_t cte_count, size_t switching_pattern_len,
const uint8_t *switching_pattern)

Parameters

[in] slot_durations Slot durations

1: Switching and sampling slots are 1 us each

2: Switching and sampling slots are 2 us each

[in] cte_count - 0: Sample and report all available CTEs

Other values: Maximum number of sampled CTEs in each extended advertising interval

[in] switching_pattern_len Length of data in switching_pattern

[in] switching_pattern Antenna switching pattern. Antennas will be switched in this order with the antenna switch

pins during CTE. If the CTE is longer than the switching pattern, the pattern starts over.

Enable IQ sampling of Silicon Labs CTE found in extended advertisements.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Events

sl_bt_evt_cte_receiver_silabs_iq_report - Triggered when IQ samples of Silicon Labs CTE have been received.

Definition at line 14528 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cte_receiver_disable_silabs_cte

sl_status_t sl_bt_cte_receiver_disable_silabs_cte ()

Disable IQ sampling of Silicon Labs CTE.

Returns

SL_STATUS_OK if successful. Error code otherwise.

CTE Receiver

863/1306

Definition at line 14541 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_cte_receiver_set_dtm_parameters_id

#define sl_bt_cmd_cte_receiver_set_dtm_parameters_id

Value:

0�05450020

Definition at line 13859 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_cte_receiver_clear_dtm_parameters_id

#define sl_bt_cmd_cte_receiver_clear_dtm_parameters_id

Value:

0�06450020

Definition at line 13860 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_cte_receiver_set_sync_cte_type_id

#define sl_bt_cmd_cte_receiver_set_sync_cte_type_id

Value:

0�09450020

Definition at line 13861 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_cte_receiver_set_default_sync_receive_parameters_id

#define sl_bt_cmd_cte_receiver_set_default_sync_receive_parameters_id

Value:

0�0a450020

Definition at line 13862 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_cte_receiver_set_sync_receive_parameters_id

#define sl_bt_cmd_cte_receiver_set_sync_receive_parameters_id

Value:

0�0b450020

Definition at line 13863 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

CTE Receiver

864/1306

sl_bt_cmd_cte_receiver_configure_id

#define sl_bt_cmd_cte_receiver_configure_id

Value:

0�00450020

Definition at line 13864 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_cte_receiver_enable_connection_cte_id

#define sl_bt_cmd_cte_receiver_enable_connection_cte_id

Value:

0�01450020

Definition at line 13865 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_cte_receiver_disable_connection_cte_id

#define sl_bt_cmd_cte_receiver_disable_connection_cte_id

Value:

0�02450020

Definition at line 13866 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_cte_receiver_enable_connectionless_cte_id

#define sl_bt_cmd_cte_receiver_enable_connectionless_cte_id

Value:

0�03450020

Definition at line 13867 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_cte_receiver_disable_connectionless_cte_id

#define sl_bt_cmd_cte_receiver_disable_connectionless_cte_id

Value:

0�04450020

Definition at line 13868 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_cte_receiver_enable_silabs_cte_id

#define sl_bt_cmd_cte_receiver_enable_silabs_cte_id

CTE Receiver

865/1306

Value:

0x07450020

Definition at line 13869 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_cte_receiver_disable_silabs_cte_id

#define sl_bt_cmd_cte_receiver_disable_silabs_cte_id

Value:

0�08450020

Definition at line 13870 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cte_receiver_set_dtm_parameters_id

#define sl_bt_rsp_cte_receiver_set_dtm_parameters_id

Value:

0�05450020

Definition at line 13871 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cte_receiver_clear_dtm_parameters_id

#define sl_bt_rsp_cte_receiver_clear_dtm_parameters_id

Value:

0�06450020

Definition at line 13872 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cte_receiver_set_sync_cte_type_id

#define sl_bt_rsp_cte_receiver_set_sync_cte_type_id

Value:

0�09450020

Definition at line 13873 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cte_receiver_set_default_sync_receive_parameters_id

#define sl_bt_rsp_cte_receiver_set_default_sync_receive_parameters_id

Value:

0�0a450020

Definition at line 13874 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

CTE Receiver

866/1306

sl_bt_rsp_cte_receiver_set_sync_receive_parameters_id

#define sl_bt_rsp_cte_receiver_set_sync_receive_parameters_id

Value:

0�0b450020

Definition at line 13875 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cte_receiver_configure_id

#define sl_bt_rsp_cte_receiver_configure_id

Value:

0�00450020

Definition at line 13876 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cte_receiver_enable_connection_cte_id

#define sl_bt_rsp_cte_receiver_enable_connection_cte_id

Value:

0�01450020

Definition at line 13877 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cte_receiver_disable_connection_cte_id

#define sl_bt_rsp_cte_receiver_disable_connection_cte_id

Value:

0�02450020

Definition at line 13878 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cte_receiver_enable_connectionless_cte_id

#define sl_bt_rsp_cte_receiver_enable_connectionless_cte_id

Value:

0�03450020

Definition at line 13879 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cte_receiver_disable_connectionless_cte_id

#define sl_bt_rsp_cte_receiver_disable_connectionless_cte_id

CTE Receiver

867/1306

Value:

0x04450020

Definition at line 13880 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cte_receiver_enable_silabs_cte_id

#define sl_bt_rsp_cte_receiver_enable_silabs_cte_id

Value:

0�07450020

Definition at line 13881 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_cte_receiver_disable_silabs_cte_id

#define sl_bt_rsp_cte_receiver_disable_silabs_cte_id

Value:

0�08450020

Definition at line 13882 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

CTE type flags for limiting periodic advertising synchronization

868/1306

CTE type flags for limiting periodic advertising synchronization

CTE type flags for limiting periodic advertising
synchronization
Defines sync CTE type flags that are used to limit what types of periodic advertisers to sync to when scanning for periodic

advertising synchronization or receiving periodic advertising synchronization transfers.

Macros

#define SL_BT_CTE_RECEIVER_DO_NOT_SYNC_TO_AOA 0�1

#define SL_BT_CTE_RECEIVER_DO_NOT_SYNC_TO_AOD_1_US 0�2

#define SL_BT_CTE_RECEIVER_DO_NOT_SYNC_TO_AOD_2_US 0�4

#define SL_BT_CTE_RECEIVER_SYNC_TO_CTE_ONLY 0�10

Macro Definition Documentation

SL_BT_CTE_RECEIVER_DO_NOT_SYNC_TO_AOA

#define SL_BT_CTE_RECEIVER_DO_NOT_SYNC_TO_AOA

Value:

0�1

Do not sync to packets with an AoA Constant Tone Extension

Definition at line 13894 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_CTE_RECEIVER_DO_NOT_SYNC_TO_AOD_1_US

#define SL_BT_CTE_RECEIVER_DO_NOT_SYNC_TO_AOD_1_US

Value:

0�2

Do not sync to packets with an AoD Constant Tone Extension with 1 us slots

Definition at line 13898 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_CTE_RECEIVER_DO_NOT_SYNC_TO_AOD_2_US

CTE type flags for limiting periodic advertising synchronization

869/1306

#define SL_BT_CTE_RECEIVER_DO_NOT_SYNC_TO_AOD_2_US

Value:

0x4

Do not sync to packets with an AoD Constant Tone Extension with 2 us slots

Definition at line 13902 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

SL_BT_CTE_RECEIVER_SYNC_TO_CTE_ONLY

#define SL_BT_CTE_RECEIVER_SYNC_TO_CTE_ONLY

Value:

0�10

Do not sync to packets without a Constant Tone Extension

Definition at line 13905 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_cte_receiver_dtm_iq_report

870/1306

sl_bt_evt_cte_receiver_dtm_iq_report

Modules

sl_bt_evt_cte_receiver_dtm_iq_report_s

sl_bt_evt_cte_receiver_dtm_iq_report
IQ sample report from DTM CTE packets.

Typedefs

typedef struct
sl_bt_evt_cte_rec
eiver_dtm_iq_repo

rt_s

sl_bt_evt_cte_receiver_dtm_iq_report_t

Macros

#define sl_bt_evt_cte_receiver_dtm_iq_report_id 0�024500a0
Identifier of the dtm_iq_report event.

Typedef Documentation

sl_bt_evt_cte_receiver_dtm_iq_report_t

typedef struct sl_bt_evt_cte_receiver_dtm_iq_report_s sl_bt_evt_cte_receiver_dtm_iq_report_t

Definition at line 13945 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_cte_receiver_dtm_iq_report_id

#define sl_bt_evt_cte_receiver_dtm_iq_report_id

Value:

0�024500a0

Identifier of the dtm_iq_report event.

Definition at line 13916 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_cte_receiver_dtm_iq_report_s

871/1306

sl_bt_evt_cte_receiver_dtm_iq_report_s

Data structure of the dtm_iq_report event.

Public Attributes

uint16_t status

uint8_t channel

int8_t rssi

uint8_t rssi_antenna_id

uint8_t cte_type

uint8_t slot_durations

uint16_t event_counter

uint8array samples

Public Attribute Documentation

status

uint16_t sl_bt_evt_cte_receiver_dtm_iq_report_s::status

Status of CTE IQ sampling

Definition at line 13923 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

channel

uint8_t sl_bt_evt_cte_receiver_dtm_iq_report_s::channel

The channel on which the CTE packet was received

Definition at line 13924 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

rssi

int8_t sl_bt_evt_cte_receiver_dtm_iq_report_s::rssi

RSSI in the received CTE packet. Unit: dBm

Definition at line 13926 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_cte_receiver_dtm_iq_report_s

872/1306

rssi_antenna_id

uint8_t sl_bt_evt_cte_receiver_dtm_iq_report_s::rssi_antenna_id

The ID of the antenna on which RSSI was measured

Definition at line 13927 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

cte_type

uint8_t sl_bt_evt_cte_receiver_dtm_iq_report_s::cte_type

The CTE type

0: AoA CTE response

1: AoD CTE response with 1us slots

2: AoD CTE response with 2us slots

Definition at line 13929 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

slot_durations

uint8_t sl_bt_evt_cte_receiver_dtm_iq_report_s::slot_durations

Slot durations

1: Switching and sampling slots are 1 us each

2: Switching and sampling slots are 2 us each

Definition at line 13933 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

event_counter

uint16_t sl_bt_evt_cte_receiver_dtm_iq_report_s::event_counter

The event counter of the periodic advertising train or the connection

Definition at line 13938 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

samples

uint8array sl_bt_evt_cte_receiver_dtm_iq_report_s::samples

IQ samples of the received CTE packet. I and Q samples follow each other alternately (I, Q, I, Q, ...)

Definition at line 13940 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_cte_receiver_connection_iq_report

873/1306

sl_bt_evt_cte_receiver_connection_iq_report

Modules

sl_bt_evt_cte_receiver_connection_iq_report_s

sl_bt_evt_cte_receiver_connection_iq_report
IQ sample report from connection CTE packets.

Typedefs

typedef struct
sl_bt_evt_cte_rec
eiver_connection_

iq_report_s

sl_bt_evt_cte_receiver_connection_iq_report_t

Macros

#define sl_bt_evt_cte_receiver_connection_iq_report_id 0�004500a0
Identifier of the connection_iq_report event.

Typedef Documentation

sl_bt_evt_cte_receiver_connection_iq_report_t

typedef struct sl_bt_evt_cte_receiver_connection_iq_report_s sl_bt_evt_cte_receiver_connection_iq_report_t

Definition at line 13989 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_cte_receiver_connection_iq_report_id

#define sl_bt_evt_cte_receiver_connection_iq_report_id

Value:

0�004500a0

Identifier of the connection_iq_report event.

Definition at line 13956 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_cte_receiver_connection_iq_report_s

874/1306

sl_bt_evt_cte_receiver_connection_iq_report_s

Data structure of the connection_iq_report event.

Public Attributes

uint16_t status

uint8_t connection

uint8_t phy

uint8_t channel

int8_t rssi

uint8_t rssi_antenna_id

uint8_t cte_type

uint8_t slot_durations

uint16_t event_counter

uint8array samples

Public Attribute Documentation

status

uint16_t sl_bt_evt_cte_receiver_connection_iq_report_s::status

Status of CTE IQ sampling

Definition at line 13963 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

connection

uint8_t sl_bt_evt_cte_receiver_connection_iq_report_s::connection

Connection handle or periodic advertising synchronization handle

Definition at line 13964 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

phy

uint8_t sl_bt_evt_cte_receiver_connection_iq_report_s::phy

The PHY on which the packet is received.

sl_bt_evt_cte_receiver_connection_iq_report_s

875/1306

1: 1M PHY

2: 2M PHY

Definition at line 13966 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

channel

uint8_t sl_bt_evt_cte_receiver_connection_iq_report_s::channel

The channel on which the CTE packet was received

Definition at line 13969 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

rssi

int8_t sl_bt_evt_cte_receiver_connection_iq_report_s::rssi

RSSI in the received CTE packet. Unit: dBm

Definition at line 13971 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

rssi_antenna_id

uint8_t sl_bt_evt_cte_receiver_connection_iq_report_s::rssi_antenna_id

The ID of the antenna on which RSSI was measured

Definition at line 13972 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

cte_type

uint8_t sl_bt_evt_cte_receiver_connection_iq_report_s::cte_type

The CTE type

0: AoA CTE response

1: AoD CTE response with 1us slots

2: AoD CTE response with 2us slots

Definition at line 13974 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

slot_durations

uint8_t sl_bt_evt_cte_receiver_connection_iq_report_s::slot_durations

Slot durations

1: Switching and sampling slots are 1 us each

2: Switching and sampling slots are 2 us each

sl_bt_evt_cte_receiver_connection_iq_report_s

876/1306

Definition at line 13978 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

event_counter

uint16_t sl_bt_evt_cte_receiver_connection_iq_report_s::event_counter

The event counter of the connection

Definition at line 13983 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

samples

uint8array sl_bt_evt_cte_receiver_connection_iq_report_s::samples

IQ samples of the received CTE packet. I and Q samples follow each other alternately (I, Q, I, Q, ...)

Definition at line 13984 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_cte_receiver_connectionless_iq_report

877/1306

sl_bt_evt_cte_receiver_connectionless_iq_report

Modules

sl_bt_evt_cte_receiver_connectionless_iq_report_s

sl_bt_evt_cte_receiver_connectionless_iq_report
IQ sample report from connectionless CTE packets.

Typedefs

typedef struct
sl_bt_evt_cte_rec
eiver_connectionl
ess_iq_report_s

sl_bt_evt_cte_receiver_connectionless_iq_report_t

Macros

#define sl_bt_evt_cte_receiver_connectionless_iq_report_id 0�014500a0
Identifier of the connectionless_iq_report event.

Typedef Documentation

sl_bt_evt_cte_receiver_connectionless_iq_report_t

typedef struct sl_bt_evt_cte_receiver_connectionless_iq_report_s sl_bt_evt_cte_receiver_connectionless_iq_report_t

Definition at line 14030 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_cte_receiver_connectionless_iq_report_id

#define sl_bt_evt_cte_receiver_connectionless_iq_report_id

Value:

0�014500a0

Identifier of the connectionless_iq_report event.

Definition at line 14000 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_cte_receiver_connectionless_iq_report_s

878/1306

sl_bt_evt_cte_receiver_connectionless_iq_report_s

Data structure of the connectionless_iq_report event.

Public Attributes

uint16_t status

uint16_t sync

uint8_t channel

int8_t rssi

uint8_t rssi_antenna_id

uint8_t cte_type

uint8_t slot_durations

uint16_t event_counter

uint8array samples

Public Attribute Documentation

status

uint16_t sl_bt_evt_cte_receiver_connectionless_iq_report_s::status

Status of CTE IQ sampling

Definition at line 14007 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sync

uint16_t sl_bt_evt_cte_receiver_connectionless_iq_report_s::sync

Periodic advertising synchronization handle

Definition at line 14008 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

channel

uint8_t sl_bt_evt_cte_receiver_connectionless_iq_report_s::channel

The channel on which the CTE packet was received

Definition at line 14009 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_cte_receiver_connectionless_iq_report_s

879/1306

rssi

int8_t sl_bt_evt_cte_receiver_connectionless_iq_report_s::rssi

RSSI in the received CTE packet. Unit: dBm

Definition at line 14011 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

rssi_antenna_id

uint8_t sl_bt_evt_cte_receiver_connectionless_iq_report_s::rssi_antenna_id

The ID of the antenna on which RSSI was measured

Definition at line 14012 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

cte_type

uint8_t sl_bt_evt_cte_receiver_connectionless_iq_report_s::cte_type

The CTE type

0: AoA CTE response

1: AoD CTE response with 1us slots
2: AoD CTE response with 2us slots

Definition at line 14014 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

slot_durations

uint8_t sl_bt_evt_cte_receiver_connectionless_iq_report_s::slot_durations

Slot durations

1: Switching and sampling slots are 1 us each

2: Switching and sampling slots are 2 us each

Definition at line 14018 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

event_counter

uint16_t sl_bt_evt_cte_receiver_connectionless_iq_report_s::event_counter

The event counter of the periodic advertising train

Definition at line 14023 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

samples

sl_bt_evt_cte_receiver_connectionless_iq_report_s

880/1306

uint8array sl_bt_evt_cte_receiver_connectionless_iq_report_s::samples

IQ samples of the received CTE packet. I and Q samples follow each other alternately (I, Q, I, Q, ...)

Definition at line 14025 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_cte_receiver_silabs_iq_report

881/1306

sl_bt_evt_cte_receiver_silabs_iq_report

Modules

sl_bt_evt_cte_receiver_silabs_iq_report_s

sl_bt_evt_cte_receiver_silabs_iq_report
IQ samples report from Silicon Labs CTE packets.

Typedefs

typedef struct
sl_bt_evt_cte_rec
eiver_silabs_iq_re

port_s

sl_bt_evt_cte_receiver_silabs_iq_report_t

Macros

#define sl_bt_evt_cte_receiver_silabs_iq_report_id 0�034500a0
Identifier of the silabs_iq_report event.

Typedef Documentation

sl_bt_evt_cte_receiver_silabs_iq_report_t

typedef struct sl_bt_evt_cte_receiver_silabs_iq_report_s sl_bt_evt_cte_receiver_silabs_iq_report_t

Definition at line 14112 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_cte_receiver_silabs_iq_report_id

#define sl_bt_evt_cte_receiver_silabs_iq_report_id

Value:

0�034500a0

Identifier of the silabs_iq_report event.

Definition at line 14041 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_cte_receiver_silabs_iq_report_s

882/1306

sl_bt_evt_cte_receiver_silabs_iq_report_s

Data structure of the silabs_iq_report event.

Public Attributes

uint16_t status

bd_addr address

uint8_t address_type

uint8_t phy

uint8_t channel

int8_t rssi

uint8_t rssi_antenna_id

uint8_t cte_type

uint8_t slot_durations

uint16_t packet_counter

uint8array samples

Public Attribute Documentation

status

uint16_t sl_bt_evt_cte_receiver_silabs_iq_report_s::status

Status of CTE IQ sampling

Definition at line 14048 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

address

bd_addr sl_bt_evt_cte_receiver_silabs_iq_report_s::address

Bluetooth address of the remote device

Definition at line 14049 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

address_type

uint8_t sl_bt_evt_cte_receiver_silabs_iq_report_s::address_type

sl_bt_evt_cte_receiver_silabs_iq_report_s

883/1306

Enum sl_bt_gap_address_type_t.

Advertiser address type.

If the application does not include the bluetooth_feature_use_accurate_api_address_types component, address_type uses

the following values:

0: Public address

1: Random address

255: No address provided (anonymous advertising)

If the application includes the bluetooth_feature_use_accurate_api_address_types component, address_type uses enum

sl_bt_gap_address_type_t values:

sl_bt_gap_public_address (0x0): Public device address

sl_bt_gap_static_address (0x1): Static device address

sl_bt_gap_random_resolvable_address (0x2): Resolvable private random address

sl_bt_gap_random_nonresolvable_address (0x3): Non-resolvable private random address

sl_bt_gap_anonymous_address (0xff): No address provided (anonymous advertising)

sl_bt_gap_public_address_resolved_from_rpa (0x4): Public identity address resolved from a resolvable private address

(RPA)

sl_bt_gap_static_address_resolved_from_rpa (0x5): Static identity address resolved from a resolvable private address (RPA)

Definition at line 14050 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

phy

uint8_t sl_bt_evt_cte_receiver_silabs_iq_report_s::phy

The PHY on which the packet is received.

1: 1M PHY

2: 2M PHY

Definition at line 14088 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

channel

uint8_t sl_bt_evt_cte_receiver_silabs_iq_report_s::channel

The channel on which the CTE packet was received

Definition at line 14091 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

rssi

int8_t sl_bt_evt_cte_receiver_silabs_iq_report_s::rssi

RSSI in the received CTE packet. Unit: dBm

Definition at line 14093 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

rssi_antenna_id

sl_bt_evt_cte_receiver_silabs_iq_report_s

884/1306

uint8_t sl_bt_evt_cte_receiver_silabs_iq_report_s::rssi_antenna_id

The ID of the antenna on which RSSI was measured

Definition at line 14094 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

cte_type

uint8_t sl_bt_evt_cte_receiver_silabs_iq_report_s::cte_type

The CTE type

0: AoA CTE response

1: AoD CTE response with 1us slots

2: AoD CTE response with 2us slots

Definition at line 14096 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

slot_durations

uint8_t sl_bt_evt_cte_receiver_silabs_iq_report_s::slot_durations

Slot durations

1: Switching and sampling slots are 1 us each

2: Switching and sampling slots are 2 us each

Definition at line 14100 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

packet_counter

uint16_t sl_bt_evt_cte_receiver_silabs_iq_report_s::packet_counter

The event counter of the periodic advertising train or the connection

Definition at line 14105 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

samples

uint8array sl_bt_evt_cte_receiver_silabs_iq_report_s::samples

IQ samples of the received CTE packet. I and Q samples follow each other alternately (I, Q, I, Q, ...)

Definition at line 14107 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

User Messaging

885/1306

User Messaging

Modules

sl_bt_evt_user_message_to_host

User Messaging
User Messaging.

This class provides commands and events, which can be used by a NCP host and target to implement a communication

mechanism with a custom proprietary protocol. An application must decide whether and how the command and event are

used. The stack does not produce or consume any messages belonging to this class.

Functions

sl_status_t sl_bt_user_message_to_target(size_t data_len, const uint8_t *data, size_t max_response_size, size_t
*response_len, uint8_t *response)

sl_status_t sl_bt_user_manage_event_filter(size_t data_len, const uint8_t *data)

void sl_bt_user_reset_to_dfu()

Macros

#define sl_bt_cmd_user_message_to_target_id 0�00ff0020

#define sl_bt_cmd_user_manage_event_filter_id 0�01ff0020

#define sl_bt_cmd_user_reset_to_dfu_id 0�02ff0020

#define sl_bt_rsp_user_message_to_target_id 0�00ff0020

#define sl_bt_rsp_user_manage_event_filter_id 0�01ff0020

#define sl_bt_rsp_user_reset_to_dfu_id 0�02ff0020

Function Documentation

sl_bt_user_message_to_target

sl_status_t sl_bt_user_message_to_target (size_t data_len, const uint8_t *data, size_t max_response_size, size_t
*response_len, uint8_t *response)

Parameters

[in] data_len Length of data in data

[in] data The message

[in] max_response_size Size of output buffer passed in response

[out] response_len On return, set to the length of output data written to response

User Messaging

886/1306

[out] response The response message

Used by an NCP host to send a message to the target application on device. The application on the target must send the

response with sl_bt_send_rsp_user_message_to_target.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 14606 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_user_manage_event_filter

sl_status_t sl_bt_user_manage_event_filter (size_t data_len, const uint8_t *data)

Parameters

[in] data_len Length of data in data

[in] data The message for managing event filter

Manage NCP event filter. When the event filter is in use, API events passing the filter will be sent to the host and those that

do not pass are discarded by the target. For functionality details, see the NCP component in the Bluetooth SDK.

By default, the NCP does not use the event filter.

Returns

SL_STATUS_OK if successful. Error code otherwise.

Definition at line 14627 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_user_reset_to_dfu

void sl_bt_user_reset_to_dfu ()

Reset the target device to DFU mode from the NCP host. This command is used by specific SDK DFU component on the

target device for the functionality related to DFU. Do not use it in other circumstances. This command does not have a

response.

Definition at line 14639 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_cmd_user_message_to_target_id

#define sl_bt_cmd_user_message_to_target_id

Value:

0�00ff0020

Definition at line 14559 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_user_manage_event_filter_id

User Messaging

887/1306

Value:

0x01ff0020

Definition at line 14560 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_cmd_user_reset_to_dfu_id

#define sl_bt_cmd_user_reset_to_dfu_id

Value:

0�02ff0020

Definition at line 14561 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_user_message_to_target_id

#define sl_bt_rsp_user_message_to_target_id

Value:

0�00ff0020

Definition at line 14562 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_user_manage_event_filter_id

#define sl_bt_rsp_user_manage_event_filter_id

Value:

0�01ff0020

Definition at line 14563 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_rsp_user_reset_to_dfu_id

#define sl_bt_rsp_user_reset_to_dfu_id

Value:

0�02ff0020

Definition at line 14564 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_user_message_to_host

888/1306

sl_bt_evt_user_message_to_host

Modules

sl_bt_evt_user_message_to_host_s

sl_bt_evt_user_message_to_host
Used by the target application on a device to initiate communication and send a message to the NCP host.

Do not send event messages in the context of the user command handling.

Typedefs

typedef struct
sl_bt_evt_user_me
ssage_to_host_s

sl_bt_evt_user_message_to_host_t

Macros

#define sl_bt_evt_user_message_to_host_id 0�00ff00a0
Identifier of the message_to_host event.

Typedef Documentation

sl_bt_evt_user_message_to_host_t

typedef struct sl_bt_evt_user_message_to_host_s sl_bt_evt_user_message_to_host_t

Definition at line 14586 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Macro Definition Documentation

sl_bt_evt_user_message_to_host_id

#define sl_bt_evt_user_message_to_host_id

Value:

0�00ff00a0

Identifier of the message_to_host event.

Definition at line 14576 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_evt_user_message_to_host_s

889/1306

sl_bt_evt_user_message_to_host_s

Data structure of the message_to_host event.

Public Attributes

uint8array message

Public Attribute Documentation

message

uint8array sl_bt_evt_user_message_to_host_s::message

The message

Definition at line 14583 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

Utility Functions

890/1306

Utility Functions

Utility Functions
Utility functions for applications on SoC.

Functions

sl_status_t sl_bt_pop_event(sl_bt_msg_t *event)

bool sl_bt_event_pending(void)

uint32_t sl_bt_event_pending_len(void)

void sl_bt_run()

void sl_bt_handle_command(uint32_t hdr, void *data)

void * sli_bt_get_command_response()

sl_bt_msg_t * sl_bt_get_command_response()

void sl_bt_priority_handle(void)

sl_status_t sl_bt_external_signal(uint32_t signals)
Signal the Bluetooth stack that an external event has happened.

void sl_bt_send_system_awake()

void sl_bt_send_system_error(uint16_t reason, uint8_t data_len, const uint8_t *data)

uint8_t sl_bt_is_sensitive_message(uint32_t message_header)

void sl_bt_send_rsp_user_message_to_target(uint16_t result, uint8_t data_len, uint8_t *data)

void sl_bt_send_evt_user_message_to_host(uint8_t data_len, uint8_t *data)

void sl_bt_send_rsp_user_manage_event_filter(uint16_t result)

Function Documentation

sl_bt_pop_event

sl_status_t sl_bt_pop_event (sl_bt_msg_t *event)

Parameters

N/A event the pointer for storing the new event

Get the next event that requires processing by user application. Application is not blocked if no event is waiting.

Returns

SL_STATUS_OK if a new event is returned, or SL_STATUS_NOT_FOUND if no event is waiting; other value indicates an error

occurred

Utility Functions

891/1306

Definition at line 14763 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_event_pending

bool sl_bt_event_pending (void)

Parameters

N/A

Check whether events are in queue pending for processing. Call sl_bt_pop_event to process pending events.

Returns

true if event is pending; false otherwise

Definition at line 14771 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_event_pending_len

uint32_t sl_bt_event_pending_len (void)

Parameters

N/A

Check whether events are in queue pending for processing and return the next event length in bytes if events are pending.

Call sl_bt_pop_event to process pending events.

Returns

the next event length if event is pending; 0 otherwise

Definition at line 14780 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_run

void sl_bt_run ()

Run the Bluetooth stack to process scheduled tasks. Events for user application may be generated as a result of this

operation.

Definition at line 14787 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_handle_command

void sl_bt_handle_command (uint32_t hdr, void *data)

Parameters

N/A hdr the command header

N/A data the command payload in a byte array

Handle an API command in binary format.

This is povided to NCP target applications for processing commands received from NCP transport.

Utility Functions

892/1306

Definition at line 14798 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sli_bt_get_command_response

void * sli_bt_get_command_response ()

Stack internal function used by sl_bt_get_command_response() API.

Definition at line 14803 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_get_command_response

static sl_bt_msg_t * sl_bt_get_command_response ()

Get the response to the command currently been handled.

This is provided to NCP target applications for processing commands received from NCP transport.

Definition at line 14811 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_priority_handle

void sl_bt_priority_handle (void)

Parameters

N/A

Priority message handler function if user application requires the use of PendSV interrupt.

If scheduler_callback function pointer in configuration struct is something else than NULL, then stack will not install its own

PendSV IRQ handler but instead uses callback/handler functions.

When application receives call to the scheduler_callback function it must schedule the call to gecko_priority_handle function

to later time to run on high priority thread. This callback may happen inside radio IRQ so processing must not block and has

to happen as fast as possible.

Recommended implementation: High priority thread is loop that waits on binary semaphore and calls gecko_priority_handler.

The scheduler_callback is simple function that only signals the semaphore.

Definition at line 14834 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_external_signal

sl_status_t sl_bt_external_signal (uint32_t signals)

Signal the Bluetooth stack that an external event has happened.

Parameters

N/A signals is a bitmask defining active signals that are reported back to the application by system_external_signal-

event.

Signals can be used to report status changes from interrupt context or from other threads to application. Signals are bits

that are automatically cleared after application has been notified.

Utility Functions

893/1306

If the Platform Core Interrupt API has been configured to use the CORE_ATOMIC_METHOD_BASEPRI as the implementation

method of atomic sections, this function must not be called from an interrupt handler with a priority higher than

CORE_ATOMIC_BASE_PRIORITY_LEVEL.

Returns

SL_STATUS_OK if the operation is successful, SL_STATUS_NO_MORE_RESOURCE indicating the request could not be

processed due to resource limitation at the moment, or SL_STATUS_INVALID_STATE when the on-demand start feature is

used and the stack is currently stopped.

Definition at line 14855 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_send_system_awake

void sl_bt_send_system_awake ()

Signals stack to send system_awake event when application received wakeup signal.

Definition at line 14861 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_send_system_error

void sl_bt_send_system_error (uint16_t reason, uint8_t data_len, const uint8_t *data)

Parameters

N/A reason

N/A data_len

N/A data

Signals stack to send system_error event when in case of an error.

Definition at line 14866 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_is_sensitive_message

uint8_t sl_bt_is_sensitive_message (uint32_t message_header)

Parameters

[in] message_header The header of the SL_BT_API message

Tells if a SL_BT_API message is sensitive.

Returns

1 if the message is sensitive; otherwise 0

Definition at line 14874 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_send_rsp_user_message_to_target

void sl_bt_send_rsp_user_message_to_target (uint16_t result, uint8_t data_len, uint8_t *data)

Utility Functions

894/1306

N/A result

N/A data_len

N/A data

Sends the NCP host a message whose SL_BT_MSG_ID is gecko_rsp_user_message_to_target_id.

This a utility helping a NCP host and target application to exchange user data. Do not use it in SoC mode.

Definition at line 14883 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_send_evt_user_message_to_host

void sl_bt_send_evt_user_message_to_host (uint8_t data_len, uint8_t *data)

Parameters

N/A data_len

N/A data

Sends the NCP host a message whose SL_BT_MSG_ID is gecko_evt_user_message_to_host_id.

This a utility helping a NCP host and target application to exchange user data. Do not use it in SoC mode.

Definition at line 14892 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

sl_bt_send_rsp_user_manage_event_filter

void sl_bt_send_rsp_user_manage_event_filter (uint16_t result)

Parameters

N/A result

Sends the NCP host a message whose SL_BT_MSG_ID is gecko_rsp_user_manage_event_filter_id.

This a utility helping a NCP host and target application to manage event filter. Do not use it in SoC mode.

Definition at line 14901 of file /mnt/raid/workspaces/ws.SZ9MaSA5u/overlay/gsdk/protocol/bluetooth/build_debug/bt_api/sw/bgapi/inc/sl_bt_api.h

BGAPI

895/1306

BGAPI

BGAPI

BGAPI message header format

The BGAPI message header is the first 4 bytes of a BGAPI message. It consists of device and message types, IDs, and data

payload length.

Byte 1

Bits 0 - 2: Highest 3 bits of the data payload length field

Bits 3 - 5: Device type

Bit value 100: Bluetooth LE

Bit value 101: Bluetooth Mesh

Bit 6: Reserved

Bit 7: Message type

Bit value 0: The message is a command or a response to command.

Bit value 1: The message is an event.

Byte 2

This byte is the lowest 8 bits of the data payload length field.

Byte 3

This byte is the BGAPI class ID.

Byte 4

This byte is the message ID of a command, response or event.

A device type, class ID, message type and message ID together construct a unique identifer of a message within the BGAPI

protocol.

Endianness

BGAPI protocol stores data in little endian.

Concurrency

When the application runs in an RTOS, the Bluetooth RTOS adaptation component has a mechanism to synchronize the

handling of individual BGAPI commands. Thus, individual BGAPI commands are safe to be called from multiple threads when

the Bluetooth RTOS adaptation component is used.

BGAPI commands cannot be called from interrupt context. Calling a command from interrupt context may delay the radio

activity. Furthermore, when commands are also called from the main event loop or an RTOS task simultaneously, concurrent

BGAPI calls may cause memory issues in the stack.

Payload Length Calculation

Use SL_BGAPI_MSG_LEN to calculate the payload length of a BGAPI message.

BGAPI

896/1306

Decode a BGAPI Message

On an NCP host, a received API message is either a response or an event. As the message is in binary format, users may

need to decode the binary to its corresponding named message definition. Following method can be used to decode a

message binary received on NCP host:

Find out the device type from Byte 1 of the message header. Go to the BGAPI message summary table according to the

device type. The table may be the BGAPI message summary in this document, or a table in another API reference manual.

Bluetooth LE and Bluetooth Mesh APIs have separate API reference manuals.

Find out the message type of the message from bit 7 of the Byte 1 in the message header.

Find out the class ID which is the Byte 3 of the message header. Together with the message type, locate either the command

or event message group for this class.

Locate the row in the message group according to the message ID which is the Byte 4 of the message header.

If the row is a command, the decoded message is a response to this command. Go to the command documentation. The 5th

and 6th bytes of the binary are the error code returned for the command. Rest data of the binary maps to the [out]

parameters of the command in declaration order.

If the row is an event, go to the event documentation. Data starting from the 5th byte maps to the event data structure fields

in declaration order.

BGAPI message summary

The following table summarizes the class and message IDs of commands and events in the BGAPI protocol. A response

message has the same class and message ID as the command it responds to.

The table also shows the minimum payload length for each message. Messages that have an array parameter can have

longer payload length depending on the length of the array.

BGAPI message header summary

Message Name Class ID Message ID Minimum Payload Length

Device Firmware Update

Commands

cmd_dfu_flash_set_address 0x00 0x01 4

cmd_dfu_flash_upload 0x00 0x02 1

cmd_dfu_flash_upload_finish 0x00 0x03 0

Events

evt_dfu_boot 0x00 0x00 4

evt_dfu_boot_failure 0x00 0x01 2

System

Commands

cmd_system_hello 0x01 0x00 0

cmd_system_start_bluetooth 0x01 0x1c 0

cmd_system_stop_bluetooth 0x01 0x1d 0

cmd_system_get_version 0x01 0x1b 0

cmd_system_reset 0x01 0x01 1

cmd_system_halt 0x01 0x0c 1

cmd_system_linklayer_configure 0x01 0x0e 2

cmd_system_set_tx_power 0x01 0x17 4

cmd_system_get_tx_power_setting 0x01 0x18 0

cmd_system_set_identity_address 0x01 0x13 7

BGAPI

897/1306

Message Name Class ID Message ID Minimum Payload Length

cmd_system_get_identity_address 0x01 0x15 0

cmd_system_get_random_data 0x01 0x0b 1

cmd_system_data_buffer_write 0x01 0x12 1

cmd_system_data_buffer_clear 0x01 0x14 0

cmd_system_get_counters 0x01 0x0f 1

cmd_system_set_lazy_soft_timer 0x01 0x1a 10

Events

evt_system_boot 0x01 0x00 18

evt_system_error 0x01 0x06 3

evt_system_hardware_error 0x01 0x05 2

evt_system_resource_exhausted 0x01 0x08 3

evt_system_external_signal 0x01 0x03 4

evt_system_awake 0x01 0x04 0

evt_system_soft_timer 0x01 0x07 1

Resource Report

Commands

cmd_resource_get_status 0x5f 0x00 0

cmd_resource_set_report_threshold 0x5f 0x01 8

cmd_resource_enable_connection_tx_report 0x5f 0x02 2

cmd_resource_get_connection_tx_status 0x5f 0x03 1

cmd_resource_disable_connection_tx_report 0x5f 0x04 0

Events

evt_resource_status 0x5f 0x00 4

GAP

Commands

cmd_gap_set_privacy_mode 0x02 0x01 2

cmd_gap_set_data_channel_classification 0x02 0x02 1

cmd_gap_enable_whitelisting 0x02 0x03 1

cmd_gap_set_identity_address 0x02 0x04 7

Advertiser

Commands

cmd_advertiser_create_set 0x04 0x01 0

cmd_advertiser_configure 0x04 0x12 5

cmd_advertiser_set_timing 0x04 0x03 12

cmd_advertiser_set_channel_map 0x04 0x04 2

cmd_advertiser_set_tx_power 0x04 0x0b 3

cmd_advertiser_set_report_scan_request 0x04 0x05 2

cmd_advertiser_set_random_address 0x04 0x10 8

cmd_advertiser_clear_random_address 0x04 0x11 1

cmd_advertiser_stop 0x04 0x0a 1

cmd_advertiser_delete_set 0x04 0x02 1

BGAPI

898/1306

Message Name Class ID Message ID Minimum Payload Length

cmd_advertiser_set_phy 0x04 0x06 3

cmd_advertiser_set_configuration 0x04 0x07 5

cmd_advertiser_clear_configuration 0x04 0x08 5

cmd_advertiser_set_data 0x04 0x0f 3

cmd_advertiser_set_long_data 0x04 0x0e 2

cmd_advertiser_start 0x04 0x09 3

cmd_advertiser_start_periodic_advertising 0x04 0x0c 9

cmd_advertiser_stop_periodic_advertising 0x04 0x0d 1

Events

evt_advertiser_timeout 0x04 0x01 1

evt_advertiser_scan_request 0x04 0x02 9

Legacy Advertiser

Commands

cmd_legacy_advertiser_set_data 0x56 0x00 3

cmd_legacy_advertiser_generate_data 0x56 0x01 2

cmd_legacy_advertiser_start 0x56 0x02 2

cmd_legacy_advertiser_start_directed 0x56 0x03 9

Extended Advertiser

Commands

cmd_extended_advertiser_set_phy 0x57 0x00 3

cmd_extended_advertiser_set_data 0x57 0x01 2

cmd_extended_advertiser_set_long_data 0x57 0x02 1

cmd_extended_advertiser_generate_data 0x57 0x03 2

cmd_extended_advertiser_start 0x57 0x04 6

cmd_extended_advertiser_start_directed 0x57 0x05 13

Periodic Advertiser

Commands

cmd_periodic_advertiser_set_data 0x58 0x00 2

cmd_periodic_advertiser_set_long_data 0x58 0x01 1

cmd_periodic_advertiser_start 0x58 0x02 9

cmd_periodic_advertiser_stop 0x58 0x03 1

Events

Scanner

Commands

cmd_scanner_set_parameters 0x05 0x06 5

cmd_scanner_set_parameters_and_filter 0x05 0x07 10

cmd_scanner_stop 0x05 0x05 0

cmd_scanner_set_timing 0x05 0x01 5

cmd_scanner_set_mode 0x05 0x02 2

cmd_scanner_start 0x05 0x03 2

Events

BGAPI

899/1306

Message Name Class ID Message ID Minimum Payload Length

evt_scanner_legacy_advertisement_report 0x05 0x00 19

evt_scanner_extended_advertisement_report 0x05 0x02 27

evt_scanner_scan_report 0x05 0x01 18

Synchronization

Commands

cmd_sync_set_parameters 0x42 0x02 8

cmd_sync_open 0x42 0x00 8

cmd_sync_set_reporting_mode 0x42 0x03 3

cmd_sync_update_sync_parameters 0x42 0x04 6

cmd_sync_close 0x42 0x01 2

Events

evt_sync_opened 0x42 0x00 16

evt_sync_transfer_received 0x42 0x03 21

evt_sync_data 0x42 0x02 6

evt_sync_closed 0x42 0x01 4

Periodic Advertising Sync Scanner

Commands

cmd_sync_scanner_set_sync_parameters 0x50 0x00 5

cmd_sync_scanner_open 0x50 0x01 8

PAST Receiver

Commands

cmd_past_receiver_set_default_sync_receive_parameters 0x51 0x00 6

cmd_past_receiver_set_sync_receive_parameters 0x51 0x01 7

Advertiser PAST

Commands

cmd_advertiser_past_transfer 0x52 0x00 4

Sync PAST

Commands

cmd_sync_past_transfer 0x5b 0x00 5

Periodic Advertising without responses Synchronization

Commands

Events

evt_periodic_sync_opened 0x53 0x00 16

evt_periodic_sync_transfer_received 0x53 0x01 21

evt_periodic_sync_report 0x53 0x02 8

Periodic Advertising with responses Synchronization

Commands

cmd_pawr_sync_set_sync_subevents 0x54 0x02 3

cmd_pawr_sync_set_response_data 0x54 0x03 8

Events

evt_pawr_sync_opened 0x54 0x00 20

BGAPI

900/1306

Message Name Class ID Message ID Minimum Payload Length

evt_pawr_sync_transfer_received 0x54 0x01 25

evt_pawr_sync_subevent_report 0x54 0x02 11

PAwR Advertiser

Commands

cmd_pawr_advertiser_start 0x55 0x00 14

cmd_pawr_advertiser_set_subevent_data 0x55 0x01 5

cmd_pawr_advertiser_create_connection 0x55 0x02 9

cmd_pawr_advertiser_stop 0x55 0x03 1

Events

evt_pawr_advertiser_subevent_data_request 0x55 0x00 3

evt_pawr_advertiser_subevent_tx_failed 0x55 0x02 2

evt_pawr_advertiser_response_report 0x55 0x01 9

Connection

Commands

cmd_connection_set_default_parameters 0x06 0x00 12

cmd_connection_set_default_preferred_phy 0x06 0x01 2

cmd_connection_set_default_data_length 0x06 0x10 2

cmd_connection_open 0x06 0x04 8

cmd_connection_set_parameters 0x06 0x06 13

cmd_connection_set_preferred_phy 0x06 0x08 3

cmd_connection_disable_slave_latency 0x06 0x03 2

cmd_connection_get_rssi 0x06 0x02 1

cmd_connection_read_channel_map 0x06 0x07 1

cmd_connection_set_power_reporting 0x06 0x09 2

cmd_connection_set_remote_power_reporting 0x06 0x0a 2

cmd_connection_get_tx_power 0x06 0x0b 2

cmd_connection_get_remote_tx_power 0x06 0x0c 2

cmd_connection_set_tx_power 0x06 0x12 3

cmd_connection_read_remote_used_features 0x06 0x0d 1

cmd_connection_get_security_status 0x06 0x0e 1

cmd_connection_set_data_length 0x06 0x11 5

cmd_connection_close 0x06 0x05 1

cmd_connection_forcefully_close 0x06 0x0f 1

Events

evt_connection_opened 0x06 0x00 13

evt_connection_parameters 0x06 0x02 10

evt_connection_phy_status 0x06 0x04 2

evt_connection_rssi 0x06 0x03 3

evt_connection_get_remote_tx_power_completed 0x06 0x05 7

evt_connection_tx_power 0x06 0x06 5

evt_connection_remote_tx_power 0x06 0x07 5

BGAPI

901/1306

Message Name Class ID Message ID Minimum Payload Length

evt_connection_remote_used_features 0x06 0x08 2

evt_connection_data_length 0x06 0x09 9

evt_connection_closed 0x06 0x01 3

GATT Client

Commands

cmd_gatt_set_max_mtu 0x09 0x00 2

cmd_gatt_discover_primary_services 0x09 0x01 1

cmd_gatt_discover_primary_services_by_uuid 0x09 0x02 2

cmd_gatt_find_included_services 0x09 0x10 5

cmd_gatt_discover_characteristics 0x09 0x03 5

cmd_gatt_discover_characteristics_by_uuid 0x09 0x04 6

cmd_gatt_discover_descriptors 0x09 0x06 3

cmd_gatt_discover_characteristic_descriptors 0x09 0x14 5

cmd_gatt_set_characteristic_notification 0x09 0x05 4

cmd_gatt_send_characteristic_confirmation 0x09 0x0d 1

cmd_gatt_read_characteristic_value 0x09 0x07 3

cmd_gatt_read_characteristic_value_from_offset 0x09 0x12 7

cmd_gatt_read_multiple_characteristic_values 0x09 0x11 2

cmd_gatt_read_characteristic_value_by_uuid 0x09 0x08 6

cmd_gatt_write_characteristic_value 0x09 0x09 4

cmd_gatt_write_characteristic_value_without_response 0x09 0x0a 4

cmd_gatt_prepare_characteristic_value_write 0x09 0x0b 6

cmd_gatt_prepare_characteristic_value_reliable_write 0x09 0x13 6

cmd_gatt_execute_characteristic_value_write 0x09 0x0c 2

cmd_gatt_read_descriptor_value 0x09 0x0e 3

cmd_gatt_write_descriptor_value 0x09 0x0f 4

Events

evt_gatt_mtu_exchanged 0x09 0x00 3

evt_gatt_service 0x09 0x01 6

evt_gatt_characteristic 0x09 0x02 5

evt_gatt_descriptor 0x09 0x03 4

evt_gatt_characteristic_value 0x09 0x04 7

evt_gatt_descriptor_value 0x09 0x05 6

evt_gatt_procedure_completed 0x09 0x06 3

GATT Database

Commands

cmd_gattdb_new_session 0x46 0x00 0

cmd_gattdb_add_service 0x46 0x01 5

cmd_gattdb_remove_service 0x46 0x02 4

cmd_gattdb_add_included_service 0x46 0x03 6

cmd_gattdb_remove_included_service 0x46 0x04 4

BGAPI

902/1306

Message Name Class ID Message ID Minimum Payload Length

cmd_gattdb_add_uuid16_characteristic 0x46 0x05 16

cmd_gattdb_add_uuid128_characteristic 0x46 0x06 30

cmd_gattdb_remove_characteristic 0x46 0x07 4

cmd_gattdb_add_uuid16_descriptor 0x46 0x08 15

cmd_gattdb_add_uuid128_descriptor 0x46 0x09 29

cmd_gattdb_remove_descriptor 0x46 0x0a 4

cmd_gattdb_start_service 0x46 0x0b 4

cmd_gattdb_stop_service 0x46 0x0c 4

cmd_gattdb_start_characteristic 0x46 0x0d 4

cmd_gattdb_stop_characteristic 0x46 0x0e 4

cmd_gattdb_commit 0x46 0x0f 2

cmd_gattdb_abort 0x46 0x10 2

GATT Server

Commands

cmd_gatt_server_set_max_mtu 0x0a 0x0a 2

cmd_gatt_server_get_mtu 0x0a 0x0b 1

cmd_gatt_server_find_attribute 0x0a 0x06 3

cmd_gatt_server_read_attribute_value 0x0a 0x00 4

cmd_gatt_server_read_attribute_type 0x0a 0x01 2

cmd_gatt_server_write_attribute_value 0x0a 0x02 5

cmd_gatt_server_send_user_read_response 0x0a 0x03 5

cmd_gatt_server_send_user_write_response 0x0a 0x04 4

cmd_gatt_server_send_notification 0x0a 0x0f 4

cmd_gatt_server_send_indication 0x0a 0x10 4

cmd_gatt_server_notify_all 0x0a 0x11 3

cmd_gatt_server_read_client_configuration 0x0a 0x12 3

cmd_gatt_server_send_user_prepare_write_response 0x0a 0x14 7

cmd_gatt_server_set_capabilities 0x0a 0x08 8

cmd_gatt_server_enable_capabilities 0x0a 0x0c 4

cmd_gatt_server_disable_capabilities 0x0a 0x0d 4

cmd_gatt_server_get_enabled_capabilities 0x0a 0x0e 0

cmd_gatt_server_read_client_supported_features 0x0a 0x15 1

Events

evt_gatt_server_attribute_value 0x0a 0x00 7

evt_gatt_server_user_read_request 0x0a 0x01 6

evt_gatt_server_user_write_request 0x0a 0x02 7

evt_gatt_server_characteristic_status 0x0a 0x03 8

evt_gatt_server_execute_write_completed 0x0a 0x04 3

evt_gatt_server_indication_timeout 0x0a 0x05 1

BGAPI

903/1306

Message Name Class ID Message ID Minimum Payload Length

evt_gatt_server_notification_tx_completed 0x0a 0x06 2

NVM

Commands

cmd_nvm_save 0x0d 0x02 3

cmd_nvm_load 0x0d 0x03 2

cmd_nvm_erase 0x0d 0x04 2

cmd_nvm_erase_all 0x0d 0x01 0

Testing Commands

Commands

cmd_test_dtm_tx_v4 0x0e 0x03 5

cmd_test_dtm_tx_cw 0x0e 0x04 5

cmd_test_dtm_rx 0x0e 0x01 2

cmd_test_dtm_end 0x0e 0x02 0

Events

evt_test_dtm_completed 0x0e 0x00 4

Security Manager

Commands

cmd_sm_configure 0x0f 0x01 2

cmd_sm_set_minimum_key_size 0x0f 0x14 1

cmd_sm_set_debug_mode 0x0f 0x0f 0

cmd_sm_add_to_whitelist 0x0f 0x13 7

cmd_sm_store_bonding_configuration 0x0f 0x02 2

cmd_sm_set_bondable_mode 0x0f 0x00 1

cmd_sm_set_passkey 0x0f 0x10 4

cmd_sm_increase_security 0x0f 0x04 1

cmd_sm_enter_passkey 0x0f 0x08 5

cmd_sm_passkey_confirm 0x0f 0x09 2

cmd_sm_bonding_confirm 0x0f 0x0e 2

cmd_sm_delete_bonding 0x0f 0x06 1

cmd_sm_delete_bondings 0x0f 0x07 0

cmd_sm_get_bonding_handles 0x0f 0x15 4

cmd_sm_get_bonding_details 0x0f 0x16 4

cmd_sm_find_bonding_by_address 0x0f 0x17 6

cmd_sm_set_legacy_oob 0x0f 0x19 17

cmd_sm_set_oob 0x0f 0x1a 1

cmd_sm_set_remote_oob 0x0f 0x1b 33

Events

evt_sm_passkey_display 0x0f 0x00 5

evt_sm_passkey_request 0x0f 0x01 1

evt_sm_confirm_passkey 0x0f 0x02 5

evt_sm_bonded 0x0f 0x03 3

BGAPI

904/1306

Message Name Class ID Message ID Minimum Payload Length

evt_sm_bonding_failed 0x0f 0x04 3

evt_sm_confirm_bonding 0x0f 0x09 2

External Bonding Database

Commands

cmd_external_bondingdb_set_data 0x5c 0x00 3

Events

evt_external_bondingdb_data_request 0x5c 0x00 2

evt_external_bondingdb_data 0x5c 0x01 3

evt_external_bondingdb_data_ready 0x5c 0x02 1

Address Resolving List

Commands

cmd_resolving_list_add_device_by_bonding 0x5d 0x00 5

cmd_resolving_list_add_device_by_address 0x5d 0x01 24

cmd_resolving_list_remove_device_by_bonding 0x5d 0x02 4

cmd_resolving_list_remove_device_by_address 0x5d 0x03 7

cmd_resolving_list_remove_all_devices 0x5d 0x04 0

Filter Accept List

Commands

cmd_accept_list_add_device_by_bonding 0x5e 0x00 4

cmd_accept_list_add_device_by_address 0x5e 0x01 7

cmd_accept_list_remove_device_by_bonding 0x5e 0x02 4

cmd_accept_list_remove_device_by_address 0x5e 0x03 7

cmd_accept_list_remove_all_devices 0x5e 0x04 0

OTA

Commands

cmd_ota_set_device_name 0x10 0x01 1

cmd_ota_set_advertising_data 0x10 0x02 2

cmd_ota_set_configuration 0x10 0x03 4

cmd_ota_set_rf_path 0x10 0x04 2

Coexistence

Commands

cmd_coex_set_options 0x20 0x00 8

cmd_coex_set_parameters 0x20 0x02 4

cmd_coex_set_directional_priority_pulse 0x20 0x03 1

cmd_coex_get_parameters 0x20 0x04 0

cmd_coex_get_counters 0x20 0x01 1

Accurate Bluetooth Ranging

Commands

cmd_cs_security_enable 0x59 0x00 1

cmd_cs_set_default_settings 0x59 0x01 5

cmd_cs_create_config 0x59 0x02 27

BGAPI

905/1306

Message Name Class ID Message ID Minimum Payload Length

cmd_cs_remove_config 0x59 0x03 2

cmd_cs_set_channel_classification 0x59 0x04 10

cmd_cs_set_procedure_parameters 0x59 0x05 22

cmd_cs_procedure_enable 0x59 0x06 3

cmd_cs_set_antenna_configuration 0x59 0x07 1

Events

evt_cs_security_enable_complete 0x59 0x00 1

evt_cs_config_complete 0x59 0x01 29

evt_cs_procedure_enable_complete 0x59 0x02 20

evt_cs_result 0x59 0x03 15

Accurate Bluetooth Ranging Test

Commands

cmd_cs_test_start 0x5a 0x00 26

L2CAP Connection Oriented Channels

Commands

cmd_l2cap_open_le_channel 0x43 0x01 9

cmd_l2cap_send_le_channel_open_response 0x43 0x02 11

cmd_l2cap_channel_send_data 0x43 0x03 4

cmd_l2cap_channel_send_credit 0x43 0x04 5

cmd_l2cap_close_channel 0x43 0x05 3

Events

evt_l2cap_le_channel_open_request 0x43 0x01 13

evt_l2cap_le_channel_open_response 0x43 0x02 13

evt_l2cap_channel_data 0x43 0x03 4

evt_l2cap_channel_credit 0x43 0x04 5

evt_l2cap_channel_closed 0x43 0x05 5

evt_l2cap_command_rejected 0x43 0x06 6

CTE Transmitter

Commands

cmd_cte_transmitter_set_dtm_parameters 0x44 0x04 3

cmd_cte_transmitter_clear_dtm_parameters 0x44 0x05 0

cmd_cte_transmitter_enable_connection_cte 0x44 0x00 3

cmd_cte_transmitter_disable_connection_cte 0x44 0x01 1

cmd_cte_transmitter_enable_connectionless_cte 0x44 0x02 5

cmd_cte_transmitter_disable_connectionless_cte 0x44 0x03 1

cmd_cte_transmitter_enable_silabs_cte 0x44 0x06 5

cmd_cte_transmitter_disable_silabs_cte 0x44 0x07 1

CTE Receiver

Commands

cmd_cte_receiver_set_dtm_parameters 0x45 0x05 4

cmd_cte_receiver_clear_dtm_parameters 0x45 0x06 0

BGAPI

906/1306

Message Name Class ID Message ID Minimum Payload Length

cmd_cte_receiver_set_sync_cte_type 0x45 0x09 1

cmd_cte_receiver_set_default_sync_receive_parameters 0x45 0x0a 7

cmd_cte_receiver_set_sync_receive_parameters 0x45 0x0b 8

cmd_cte_receiver_enable_connection_cte 0x45 0x01 7

cmd_cte_receiver_disable_connection_cte 0x45 0x02 1

cmd_cte_receiver_enable_connectionless_cte 0x45 0x03 5

cmd_cte_receiver_disable_connectionless_cte 0x45 0x04 2

cmd_cte_receiver_enable_silabs_cte 0x45 0x07 3

cmd_cte_receiver_disable_silabs_cte 0x45 0x08 0

Events

evt_cte_receiver_dtm_iq_report 0x45 0x02 10

evt_cte_receiver_connection_iq_report 0x45 0x00 12

evt_cte_receiver_connectionless_iq_report 0x45 0x01 12

evt_cte_receiver_silabs_iq_report 0x45 0x03 18

User Messaging

Commands

cmd_user_message_to_target 0xff 0x00 1

cmd_user_manage_event_filter 0xff 0x01 1

cmd_user_reset_to_dfu 0xff 0x02 0

Events

evt_user_message_to_host 0xff 0x00 1

List of Bluetooth SDK component categories

907/1306

List of Bluetooth SDK component categories

List of Bluetooth SDK component categories:
Firmware Update

Host Controller Interface (HCI)

Miscellaneous

Test

GATT Profiles

GATT Services

NCP Interface

NCP Host Demo

Utility

The components can be also found on GitHub:

Bluetooth SDK components

https://github.com/SiliconLabs/gecko_sdk/tree/gsdk_4.3/app/bluetooth/common

Firmware Update

908/1306

Firmware Update

Modules

Application OTA DFU

In-Place OTA DFU

Firmware Update
SW components that provide application level support for OTA (e.g. resetting the device into OTA mode, application level

OTA)

Application OTA DFU

909/1306

Application OTA DFU

Modules

sl_bt_app_ota_dfu_state_t

sl_bt_app_ota_dfu_btl_storage_info_t

sl_bt_app_ota_dfu_download_package_t

sl_bt_app_ota_dfu_msg_t

Application OTA DFU
Component that provides over-the-air (OTA) device firmware update (DFU) functionality in user application during runtime.

No need to enter a specialized OTA state to update, and no AppLoader utility required. No code is required from user to

enable this component.

Enumerations

enum sl_bt_app_ota_dfu_status_t {

SL_BT_APP_OTA_DFU_UNINIT = 0
SL_BT_APP_OTA_DFU_INIT
SL_BT_APP_OTA_DFU_ERASE
SL_BT_APP_OTA_DFU_READY
SL_BT_APP_OTA_DFU_DISCONNECT
SL_BT_APP_OTA_DFU_DOWNLOAD_BEGIN
SL_BT_APP_OTA_DFU_DOWNLOAD_END
SL_BT_APP_OTA_DFU_VERIFY
SL_BT_APP_OTA_DFU_FINALIZE
SL_BT_APP_OTA_DFU_WAIT_FOR_REBOOT
SL_BT_APP_OTA_DFU_ERROR

}

enum sl_bt_app_ota_dfu_error_t {

SL_BT_APP_OTA_DFU_NO_ERROR = 0
SL_BT_APP_OTA_DFU_ERR_UNEXPECTED_TRANSFER
SL_BT_APP_OTA_DFU_ERR_UNEXPECTED_CLOSE
SL_BT_APP_OTA_DFU_ERR_BOOTLOADER_API
SL_BT_APP_OTA_DFU_ERR_STORAGE_FULL

}

enum sl_bt_app_ota_dfu_event_id_t {

SL_BT_APP_OTA_DFU_EVT_BTL_STORAGE_INFO_ID = 0u
SL_BT_APP_OTA_DFU_EVT_STATE_CHANGE_ID
SL_BT_APP_OTA_DFU_EVT_DOWNLOAD_PACKET_ID
SL_BT_APP_OTA_DFU_EVT_VERIFY_IMAGE_ID

}

Typedefs

Application OTA DFU

910/1306

typedef struct
sl_bt_app_ota_dfu

_msg_t

sl_bt_app_ota_dfu_status_evt_t

Functions

void sl_bt_app_ota_dfu_init(void)

bool sl_bt_app_ota_dfu_is_ok_to_sleep(void)

sl_power_manage
r_on_isr_exit_t

sl_bt_app_ota_dfu_sleep_on_isr_exit(void)

void sl_bt_app_ota_dfu_restart_progress(void)

void sl_bt_app_ota_dfu_reboot(void)

void sl_bt_app_ota_dfu_on_status_event(sl_bt_app_ota_dfu_status_evt_t *evt)

Macros

#define SL_BT_APP_OTA_DFU_USED_SLOT 0u

#define SL_BT_APP_OTA_DFU_READ_STORAGE_CONTEXT_SIZE 256u

#define SL_BT_APP_OTA_DFU_EMPTY_FLASH_CONTENT 0xFFu

#define SL_BT_APP_OTA_DFU_VERIFICATION_BLOCK_SIZE 128u

Enumeration Documentation

sl_bt_app_ota_dfu_status_t

sl_bt_app_ota_dfu_status_t

Enumerator

SL_BT_APP_OTA_DFU_UNINIT

SL_BT_APP_OTA_DFU_INIT

SL_BT_APP_OTA_DFU_ERASE

SL_BT_APP_OTA_DFU_READY

SL_BT_APP_OTA_DFU_DISCONNECT

SL_BT_APP_OTA_DFU_DOWNLOAD_BEGIN

SL_BT_APP_OTA_DFU_DOWNLOAD_END

SL_BT_APP_OTA_DFU_VERIFY

SL_BT_APP_OTA_DFU_FINALIZE

SL_BT_APP_OTA_DFU_WAIT_FOR_REBOOT

SL_BT_APP_OTA_DFU_ERROR

Definition at line 51 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

sl_bt_app_ota_dfu_error_t

sl_bt_app_ota_dfu_error_t

Application OTA DFU

911/1306

Enumerator

SL_BT_APP_OTA_DFU_NO_ERROR

SL_BT_APP_OTA_DFU_ERR_UNEXPECTED_TRANSFER

SL_BT_APP_OTA_DFU_ERR_UNEXPECTED_CLOSE

SL_BT_APP_OTA_DFU_ERR_BOOTLOADER_API

SL_BT_APP_OTA_DFU_ERR_STORAGE_FULL

Definition at line 66 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

sl_bt_app_ota_dfu_event_id_t

sl_bt_app_ota_dfu_event_id_t

Enumerator

SL_BT_APP_OTA_DFU_EVT_BTL_STORAGE_INFO_ID

SL_BT_APP_OTA_DFU_EVT_STATE_CHANGE_ID

SL_BT_APP_OTA_DFU_EVT_DOWNLOAD_PACKET_ID

SL_BT_APP_OTA_DFU_EVT_VERIFY_IMAGE_ID

Definition at line 75 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

Typedef Documentation

sl_bt_app_ota_dfu_status_evt_t

typedef struct sl_bt_app_ota_dfu_msg_t sl_bt_app_ota_dfu_status_evt_t

Definition at line 125 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

Function Documentation

sl_bt_app_ota_dfu_init

void sl_bt_app_ota_dfu_init (void)

Parameters

N/A

Application OTA DFU initialization.

Definition at line 130 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

sl_bt_app_ota_dfu_is_ok_to_sleep

bool sl_bt_app_ota_dfu_is_ok_to_sleep (void)

Parameters

N/A

Function to check if it is okay if the device goes to sleep now.

Application OTA DFU

912/1306

Definition at line 135 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

sl_bt_app_ota_dfu_sleep_on_isr_exit

sl_power_manager_on_isr_exit_t sl_bt_app_ota_dfu_sleep_on_isr_exit (void)

Parameters

N/A

Routine to notify power manager handler.

Definition at line 140 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

sl_bt_app_ota_dfu_restart_progress

void sl_bt_app_ota_dfu_restart_progress (void)

Parameters

N/A

Function to restart application OTA DFU progress without rebooting in case of any error.

Definition at line 146 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

sl_bt_app_ota_dfu_reboot

void sl_bt_app_ota_dfu_reboot (void)

Parameters

N/A

Function to reboot only when the application OTA DFU process is already in the SL_BT_APP_OTA_DFU_WAIT_FOR_REBOOT

state.

Definition at line 152 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

sl_bt_app_ota_dfu_on_status_event

void sl_bt_app_ota_dfu_on_status_event (sl_bt_app_ota_dfu_status_evt_t *evt)

Parameters

[in] evt Actual app ota dfu event address.

Function to indicate Application OTA DFU status and in case of error the error codes for assertion. Note

To be implemented in user code.

Definition at line 160 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

Macro Definition Documentation

Application OTA DFU

913/1306

#define SL_BT_APP_OTA_DFU_USED_SLOT

Value:

0u

Definition at line 43 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

SL_BT_APP_OTA_DFU_READ_STORAGE_CONTEXT_SIZE

#define SL_BT_APP_OTA_DFU_READ_STORAGE_CONTEXT_SIZE

Value:

256u

Definition at line 46 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

SL_BT_APP_OTA_DFU_EMPTY_FLASH_CONTENT

#define SL_BT_APP_OTA_DFU_EMPTY_FLASH_CONTENT

Value:

0xFFu

Definition at line 47 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

SL_BT_APP_OTA_DFU_VERIFICATION_BLOCK_SIZE

#define SL_BT_APP_OTA_DFU_VERIFICATION_BLOCK_SIZE

Value:

128u

Definition at line 48 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

sl_bt_app_ota_dfu_state_t

914/1306

sl_bt_app_ota_dfu_state_t

Public Attributes

sl_bt_app_ota_dfu
_status_t

status

sl_bt_app_ota_dfu
_status_t

prev_status

Public Attribute Documentation

status

sl_bt_app_ota_dfu_status_t sl_bt_app_ota_dfu_state_t::status

Definition at line 84 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

prev_status

sl_bt_app_ota_dfu_status_t sl_bt_app_ota_dfu_state_t::prev_status

Definition at line 85 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

sl_bt_app_ota_dfu_btl_storage_info_t

915/1306

sl_bt_app_ota_dfu_btl_storage_info_t

Public Attributes

uint8_t bootloader_type

uint32_t bootloader_ver

uint32_t storage_start_addr

uint32_t storage_size_bytes

Public Attribute Documentation

bootloader_type

uint8_t sl_bt_app_ota_dfu_btl_storage_info_t::bootloader_type

Definition at line 91 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

bootloader_ver

uint32_t sl_bt_app_ota_dfu_btl_storage_info_t::bootloader_ver

Definition at line 92 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

storage_start_addr

uint32_t sl_bt_app_ota_dfu_btl_storage_info_t::storage_start_addr

Definition at line 93 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

storage_size_bytes

uint32_t sl_bt_app_ota_dfu_btl_storage_info_t::storage_size_bytes

Definition at line 94 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

sl_bt_app_ota_dfu_download_package_t

916/1306

sl_bt_app_ota_dfu_download_package_t

Public Attributes

uint8_t connection_handle

uint32_t write_image_position

Public Attribute Documentation

connection_handle

uint8_t sl_bt_app_ota_dfu_download_package_t::connection_handle

Definition at line 100 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

write_image_position

uint32_t sl_bt_app_ota_dfu_download_package_t::write_image_position

Definition at line 101 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

sl_bt_app_ota_dfu_msg_t

917/1306

sl_bt_app_ota_dfu_msg_t

Public Attributes

sl_bt_app_ota_dfu
_event_id_t

event_id

sl_bt_app_ota_dfu
_error_t

ota_error_code

int32_t btl_api_retval

sl_bt_app_ota_dfu
_state_t

sts

sl_bt_app_ota_dfu
_btl_storage_info_

t

btl_storage

sl_bt_app_ota_dfu
_download_packa

ge_t

download_packet

uint32_t verified_bytes

union
sl_bt_app_ota_dfu

_msg_t::@1

evt_info

Public Attribute Documentation

event_id

sl_bt_app_ota_dfu_event_id_t sl_bt_app_ota_dfu_msg_t::event_id

Definition at line 112 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

ota_error_code

sl_bt_app_ota_dfu_error_t sl_bt_app_ota_dfu_msg_t::ota_error_code

Definition at line 113 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

btl_api_retval

int32_t sl_bt_app_ota_dfu_msg_t::btl_api_retval

Definition at line 114 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

sts

sl_bt_app_ota_dfu_msg_t

918/1306

sl_bt_app_ota_dfu_state_t sl_bt_app_ota_dfu_msg_t::sts

Definition at line 117 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

btl_storage

sl_bt_app_ota_dfu_btl_storage_info_t sl_bt_app_ota_dfu_msg_t::btl_storage

Definition at line 118 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

download_packet

sl_bt_app_ota_dfu_download_package_t sl_bt_app_ota_dfu_msg_t::download_packet

Definition at line 119 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

verified_bytes

uint32_t sl_bt_app_ota_dfu_msg_t::verified_bytes

Definition at line 120 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

evt_info

union sl_bt_app_ota_dfu_msg_t::@1 sl_bt_app_ota_dfu_msg_t::evt_info

Definition at line 121 of file common/app_ota_dfu/sl_bt_app_ota_dfu.h

In-Place OTA DFU

919/1306

In-Place OTA DFU

In-Place OTA DFU
Component that provides in-place over-the-air (OTA) device firmware update (DFU) functionality. In this solution, the
application flash area is used as a temporary storage for the update. This is a Low-Code component because additional

security measures might be needed from user side for checking the correct security status. Our minimal solution can be

seen in sl_bt_in_place_ota_dfu_security_status() function in sl_bt_in_place_ota_dfu.c file.

Enumerations

enum sl_bt_in_place_ota_dfu_security_sts_t {

SL_BT_IN_PLACE_OTA_DFU_SECURITY_DENY = 0
SL_BT_IN_PLACE_OTA_DFU_SECURITY_ACCEPT

}

Functions

void sl_bt_in_place_ota_dfu_on_event(sl_bt_msg_t *evt)

sl_bt_in_place_ota
_dfu_security_sts_

t

sl_bt_in_place_ota_dfu_security_status(bd_addr address, uint8_t connection, uint8_t bonding)

Macros

#define SL_BT_IN_PLACE_OTA_DFU_BONDING_REQUIRED 0

Enumeration Documentation

sl_bt_in_place_ota_dfu_security_sts_t

sl_bt_in_place_ota_dfu_security_sts_t

Enumerator

SL_BT_IN_PLACE_OTA_DFU_SECURITY_DENY

SL_BT_IN_PLACE_OTA_DFU_SECURITY_ACCEPT

Definition at line 43 of file common/in_place_ota_dfu/sl_bt_in_place_ota_dfu.h

Function Documentation

sl_bt_in_place_ota_dfu_on_event

void sl_bt_in_place_ota_dfu_on_event (sl_bt_msg_t *evt)

Parameters

In-Place OTA DFU

920/1306

[in] evt Event coming from the Bluetooth stack.

Bluetooth stack event handler.

Definition at line 51 of file common/in_place_ota_dfu/sl_bt_in_place_ota_dfu.h

sl_bt_in_place_ota_dfu_security_status

sl_bt_in_place_ota_dfu_security_sts_t sl_bt_in_place_ota_dfu_security_status (bd_addr address, uint8_t connection, uint8_t
bonding)

Parameters

[in] address Bluetooth address of the device.

[in] connection Connection handle.

[in] bonding Bonding handle.

Callback function to check security requirements before starting the in-place OTA DFU transfer. At least bonding is

mandatory for a secure In-Place OTA DFU transfer. The device parameters are provided: Note

To be implemented in user code.

Definition at line 63 of file common/in_place_ota_dfu/sl_bt_in_place_ota_dfu.h

Macro Definition Documentation

SL_BT_IN_PLACE_OTA_DFU_BONDING_REQUIRED

#define SL_BT_IN_PLACE_OTA_DFU_BONDING_REQUIRED

Value:

0

Definition at line 50 of file common/in_place_ota_dfu/config/sl_bt_in_place_ota_dfu_config.h

Host Controller Interface �HCI�

921/1306

Host Controller Interface �HCI�

Modules

HCI Coex Vendor Specific Commands

HCI Get Version Vendor Specific Command

Host Controller Interface �HCI�
SW components that realize and contribute to the RCP (HCI) interface

HCI Coex Vendor Specific Commands

922/1306

HCI Coex Vendor Specific Commands

HCI Coex Vendor Specific Commands
Provides vendor specific commands to HCI to control coexistence RAIL plugin

HCI Get Version Vendor Specific Command

923/1306

HCI Get Version Vendor Specific Command

Modules

sli_bt_hci_version_response

HCI Get Version Vendor Specific Command
Provides vendor specific commands to HCI to read version information. Version information by default is the Bluetooth

software version, this can be customized in sl_bt_hci_version_config.h file.

Macros

#define SL_BT_HCI_GET_VERSION_OPCODE 0xff10

#define SL_BT_HCI_VERSION_RESPONSE { BG_VERSION_MAJOR, BG_VERSION_MINOR, BG_VERSION_PATCH,
BG_VERSION_BUILD }

Macro Definition Documentation

SL_BT_HCI_GET_VERSION_OPCODE

#define SL_BT_HCI_GET_VERSION_OPCODE

Value:

0xff10

Definition at line 50 of file common/hci_version/config/sl_bt_hci_version_config.h

SL_BT_HCI_VERSION_RESPONSE

#define SL_BT_HCI_VERSION_RESPONSE

Value:

{ BG_VERSION_MAJOR, BG_VERSION_MINOR, BG_VERSION_PATCH, BG_VERSION_BUILD }

Definition at line 64 of file common/hci_version/config/sl_bt_hci_version_config.h

sli_bt_hci_version_response

924/1306

sli_bt_hci_version_response

Public Attributes

uint16_t major

uint16_t minor

uint16_t patch

uint16_t build

Public Attribute Documentation

major

uint16_t sli_bt_hci_version_response::major

Definition at line 58 of file common/hci_version/config/sl_bt_hci_version_config.h

minor

uint16_t sli_bt_hci_version_response::minor

Definition at line 59 of file common/hci_version/config/sl_bt_hci_version_config.h

patch

uint16_t sli_bt_hci_version_response::patch

Definition at line 60 of file common/hci_version/config/sl_bt_hci_version_config.h

build

uint16_t sli_bt_hci_version_response::build

Definition at line 61 of file common/hci_version/config/sl_bt_hci_version_config.h

Miscellaneous

925/1306

Miscellaneous

Modules

BLE Post Build

Encrypted Advertising Data core API

ESL Tag User Defined Display Driver

ESL Tag WSTK LCD driver

iBeacon

Power supply measurement

Air quality sensor

Hall effect sensor

Inertial Measurement Unit sensor

Ambient light and UV index sensor

Ambient light sensor

Air pressure sensor

Relative Humidity and Temperature sensor

Relative Humidity and Temperature sensor (Mock)

Sensor select utility

Sound level sensor (microphone)

Wake-Lock

Miscellaneous
All other SW components that implement application level features.

BLE Post Build

926/1306

BLE Post Build

BLE Post Build
Post build scripts for BLE applications.

Encrypted Advertising Data core API

927/1306

Encrypted Advertising Data core API

Modules

sl_bt_ead_key_material_s

sl_bt_ead_nonce_s

sl_bt_ead_ad_structure_s

Encrypted Advertising Data core API
Provides simple to use API for Advertising, Periodic Advertising and Scan Response data encryption and decryption that is

compatible with the Bluetooth Core Encrypted Advertisement Data (EAD) enhancement. For the usage of the APIs defined in

sl_bt_ead_core.h please see esl_core_encrypt_message(void *msg, uint8_t *len) and esl_core_decrypt_message(void *msg,

uint8_t *len) functions in esl_tag_crypto.c within ESL Tag core component.

Typedefs

typedef uint8_t sl_bt_ead_session_key_t�16�

typedef uint8_t sl_bt_ead_iv_t�8�

typedef uint8_t sl_bt_ead_randomizer_t�5�

typedef uint8_t sl_bt_ead_mic_t�4�

typedef struct
sl_bt_ead_key_ma

terial_s *

sl_bt_ead_key_material_p

typedef struct
sl_bt_ead_nonce_

s *

sl_bt_ead_nonce_p

typedef struct
sl_bt_ead_ad_stru

cture_s *

sl_bt_ead_ad_structure_p

Functions

sl_status_t sl_bt_ead_randomizer_update(sl_bt_ead_nonce_p nonce)

sl_status_t sl_bt_ead_randomizer_set(sl_bt_ead_randomizer_t randomizer, sl_bt_ead_nonce_p nonce)

sl_status_t sl_bt_ead_session_init(sl_bt_ead_key_material_p key_material, sl_bt_ead_randomizer_t randomizer,
sl_bt_ead_nonce_p nonce)

sl_status_t sl_bt_ead_encrypt(sl_bt_ead_key_material_p key_material, sl_bt_ead_nonce_p nonce, uint8_t length, uint8_t
*data, sl_bt_ead_mic_t mic)

sl_status_t sl_bt_ead_decrypt(sl_bt_ead_key_material_p key_material, sl_bt_ead_nonce_p nonce, sl_bt_ead_mic_t mic,
uint8_t length, uint8_t *data)

Encrypted Advertising Data core API

928/1306

sl_status_t sl_bt_ead_unpack_decrypt(sl_bt_ead_key_material_p key_material, uint8_t **data, uint8_t *length)

sl_status_t sl_bt_ead_pack_ad_data(sl_bt_ead_ad_structure_p ad_info, uint8_t *size, uint8_t *pack_buf)

sl_status_t sl_bt_ead_unpack_ad_data(uint8_t *packed_data, sl_bt_ead_ad_structure_p ad_info)

Macros

#define SL_BT_EAD_RANDOMIZER_SIZE sizeof(sl_bt_ead_randomizer_t)
EAD Randomizer size.

#define SL_BT_EAD_KEY_MATERIAL_SIZE sizeof(struct sl_bt_ead_key_material_s)
EAD Key Material size.

#define SL_BT_EAD_SESSION_KEY_SIZE sizeof(sl_bt_ead_session_key_t)
EAD Session Key size.

#define SL_BT_EAD_NONCE_SIZE sizeof(struct sl_bt_ead_nonce_s)
EAD Nonce size.

#define SL_BT_EAD_IV_SIZE sizeof(sl_bt_ead_iv_t)
EAD IV size.

#define SL_BT_EAD_MIC_SIZE sizeof(sl_bt_ead_mic_t)
EAD Message Integrity Check size.

#define SL_BT_EAD_LENGTH_FIELD_SIZE sizeof(uint8_t)
Advertising Data - header length field size.

#define SL_BT_EAD_TYPE_FIELD_SIZE sizeof(uint8_t)
Advertising Data - header AD Type field size.

#define SL_BT_EAD_HEADER_SIZE undefined
Advertising Data header size, Core Ver.5.3, Vol 3. Part C, Fig.11.1.

#define SL_BT_EAD_PACKET_OVERHEAD undefined
EAD Message full packet size overhead.

#define SL_BT_EAD_PACKET_REDUCED_OVERHEAD undefined
EAD Message packet size overhead without the length field.

#define SL_BT_ENCRYPTED_DATA_AD_TYPE 0�31
Encrypted Data AD Type.

#define SL_BT_ENCRYPTED_DATA_B1_HEADER 0xEA
B1 block, octet 2 (header) for EAD encryption, CSS d11, Part A, 1.23.3.

#define SL_BT_ENCRYPTED_KEY_MATERIAL_UUID 0�2B88
EAD Key Material Characteristics UUID.

Typedef Documentation

sl_bt_ead_session_key_t

typedef uint8_t sl_bt_ead_session_key_t[16] �16�

Definition at line 47 of file common/ead_core/sl_bt_ead_core.h

Encrypted Advertising Data core API

929/1306

sl_bt_ead_iv_t

typedef uint8_t sl_bt_ead_iv_t[8] �8�

Definition at line 50 of file common/ead_core/sl_bt_ead_core.h

sl_bt_ead_randomizer_t

typedef uint8_t sl_bt_ead_randomizer_t[5] �5�

Definition at line 53 of file common/ead_core/sl_bt_ead_core.h

sl_bt_ead_mic_t

typedef uint8_t sl_bt_ead_mic_t[4] �4�

Definition at line 56 of file common/ead_core/sl_bt_ead_core.h

sl_bt_ead_key_material_p

typedef struct sl_bt_ead_key_material_s* sl_bt_ead_key_material_p

Definition at line 59 of file common/ead_core/sl_bt_ead_core.h

sl_bt_ead_nonce_p

typedef struct sl_bt_ead_nonce_s* sl_bt_ead_nonce_p

Definition at line 62 of file common/ead_core/sl_bt_ead_core.h

sl_bt_ead_ad_structure_p

typedef struct sl_bt_ead_ad_structure_s* sl_bt_ead_ad_structure_p

Definition at line 65 of file common/ead_core/sl_bt_ead_core.h

Function Documentation

sl_bt_ead_randomizer_update

sl_status_t sl_bt_ead_randomizer_update (sl_bt_ead_nonce_p nonce)

Parameters

N/A nonce nonce - Pointer to the EAD Nonce struct to be updated

Encrypted Advertising Data core API

930/1306

sl_status_t

Definition at line 140 of file common/ead_core/sl_bt_ead_core.h

sl_bt_ead_randomizer_set

sl_status_t sl_bt_ead_randomizer_set (sl_bt_ead_randomizer_t randomizer, sl_bt_ead_nonce_p nonce)

Parameters

[in] randomizer - Value to be set in the Nonce

[out] nonce - Pointer to the EAD Nonce struct to be updated

Set the Randomizer field of the EAD Nonce value manually to a given value Note

Falls back to sl_bt_ead_randomizer_update() if Randomizer is NULL

Returns

sl_status_t

Definition at line 149 of file common/ead_core/sl_bt_ead_core.h

sl_bt_ead_session_init

sl_status_t sl_bt_ead_session_init (sl_bt_ead_key_material_p key_material, sl_bt_ead_randomizer_t randomizer,
sl_bt_ead_nonce_p nonce)

Parameters

N/A key_material key_material - Pointer to the key material in the higher layer

[in] randomizer - Pointer to the desired Randomizer value type or NULL. The Nonce will get a new random value

during the invocation if NULL is passed.

[out] nonce - Pointer to the complete EAD Nonce structure. Can be also omitted by passing NULL, in which case

only the session key will be prepared. This is useful for in-place decryption with

sl_bt_ead_unpack_decrypt(), and not meant to be used this way, otherwise.

(Re)initialize the entire Nonce value with the new key material provided Note

According to the Supplement to the Bluetooth Core Specification (d11) Part A, Section 1.23.3: the session key shall be set to

a value determined by a higher layer specification or otherwise negotiated between the devices that are sending and

receiving the encrypted AD type. Any session keys with at least 128 bits of entropy may be used. The byte order of the

session key field will be swapped in-place within the key_material in|out parameter after the invocation!

Returns

sl_status_t

Definition at line 173 of file common/ead_core/sl_bt_ead_core.h

sl_bt_ead_encrypt

sl_status_t sl_bt_ead_encrypt (sl_bt_ead_key_material_p key_material, sl_bt_ead_nonce_p nonce, uint8_t length, uint8_t
*data, sl_bt_ead_mic_t mic)

Parameters

Encrypted Advertising Data core API

931/1306

[in] key_material - Pointer to the key material in the higher layer

[in] nonce - Pointer to the complete EAD Nonce structure

[in] length - Length of the data to be encrypted

N/A data data - Pointer to the original message, contains encrypted message on success.

[out] mic - Pointer to the mic storage space

Encrypt message in-place using EAD encryption Returns

sl_status_t

Definition at line 187 of file common/ead_core/sl_bt_ead_core.h

sl_bt_ead_decrypt

sl_status_t sl_bt_ead_decrypt (sl_bt_ead_key_material_p key_material, sl_bt_ead_nonce_p nonce, sl_bt_ead_mic_t mic,
uint8_t length, uint8_t *data)

Parameters

[in] key_material - Pointer to the key material in the higher layer

[in] nonce - Pointer to the (received!) Nonce structure

[in] mic - Message integrity check value of the given message

[in] length - Length of the data to be decrypted

N/A data data - Pointer to the encrypted message, contains decrypted message on success.

Decrypt message in-place that is encrypted with EAD Returns

sl_status_t

Definition at line 203 of file common/ead_core/sl_bt_ead_core.h

sl_bt_ead_unpack_decrypt

sl_status_t sl_bt_ead_unpack_decrypt (sl_bt_ead_key_material_p key_material, uint8_t **data, uint8_t *length)

Parameters

[in] key_material - Pointer to the key material in the higher layer

N/A data data - Reference of the pointer to the full encrypted message in Advertising, Periodic Advertising,

and Scan Response data format specified by Core v5.3, Vol 3, Part C, Section 11. Will be updated to

the address to the decrypted message on success.

[out] length - Length of the decrypted data

Unpack advertising data that is encrypted with EAD and decrypt the message in place. Note

: This function obfuscates the input data since every operation is done in place for the best possible speed. If the input data

memory is allocated on the heap, then its original address and size has to be kept for proper deallocation. Consequently, it's

also the caller's responsibility to make a copy of the resulting decrypted message if needed, before freeing up the storage

space. Using this method instead of calling sl_bt_ead_unpack_ad_data and then sl_bt_ead_decrypt can be slightly faster, but

also requires more care when used.

Returns

sl_status_t

Encrypted Advertising Data core API

932/1306

Definition at line 230 of file common/ead_core/sl_bt_ead_core.h

sl_bt_ead_pack_ad_data

sl_status_t sl_bt_ead_pack_ad_data (sl_bt_ead_ad_structure_p ad_info, uint8_t *size, uint8_t *pack_buf)

Parameters

[in] ad_info - Pointer to the AD Data structure to be packed

N/A size size - In: size of the EAD Data buffer, out: packed length

[out] pack_buf - Pointer to the complete EAD Data buffer

Pack encrypted EAD AD_Data to Advertising, Periodic Advertising, and Scan Response data format specified by Core v5.3,

Vol 3, Part C, Section 11 Returns

sl_status_t

Definition at line 242 of file common/ead_core/sl_bt_ead_core.h

sl_bt_ead_unpack_ad_data

sl_status_t sl_bt_ead_unpack_ad_data (uint8_t *packed_data, sl_bt_ead_ad_structure_p ad_info)

Parameters

[in] packed_data - Pointer to the incoming EAD Data

N/A ad_info ad_info - Pointer to the AD Data struct for unpacked results. The 'length' parameter in the struct must

be pre-set to the 'ad_data' buffer size.

Unpack encrypted EAD Data from Advertising, Periodic Advertising, and Scan Response data format specified by Core v5.3,

Vol 3, Part C, Section 11 Returns

sl_status_t

Definition at line 255 of file common/ead_core/sl_bt_ead_core.h

Macro Definition Documentation

SL_BT_EAD_RANDOMIZER_SIZE

#define SL_BT_EAD_RANDOMIZER_SIZE

Value:

sizeof(sl_bt_ead_randomizer_t)

EAD Randomizer size.

Definition at line 89 of file common/ead_core/sl_bt_ead_core.h

SL_BT_EAD_KEY_MATERIAL_SIZE

#define SL_BT_EAD_KEY_MATERIAL_SIZE

Encrypted Advertising Data core API

933/1306

sizeof(struct sl_bt_ead_key_material_s)

EAD Key Material size.

Definition at line 92 of file common/ead_core/sl_bt_ead_core.h

SL_BT_EAD_SESSION_KEY_SIZE

#define SL_BT_EAD_SESSION_KEY_SIZE

Value:

sizeof(sl_bt_ead_session_key_t)

EAD Session Key size.

Definition at line 95 of file common/ead_core/sl_bt_ead_core.h

SL_BT_EAD_NONCE_SIZE

#define SL_BT_EAD_NONCE_SIZE

Value:

sizeof(struct sl_bt_ead_nonce_s)

EAD Nonce size.

Definition at line 98 of file common/ead_core/sl_bt_ead_core.h

SL_BT_EAD_IV_SIZE

#define SL_BT_EAD_IV_SIZE

Value:

sizeof(sl_bt_ead_iv_t)

EAD IV size.

Definition at line 101 of file common/ead_core/sl_bt_ead_core.h

SL_BT_EAD_MIC_SIZE

#define SL_BT_EAD_MIC_SIZE

Value:

sizeof(sl_bt_ead_mic_t)

EAD Message Integrity Check size.

Definition at line 104 of file common/ead_core/sl_bt_ead_core.h

Encrypted Advertising Data core API

934/1306

#define SL_BT_EAD_LENGTH_FIELD_SIZE

Value:

sizeof(uint8_t)

Advertising Data - header length field size.

Definition at line 107 of file common/ead_core/sl_bt_ead_core.h

SL_BT_EAD_TYPE_FIELD_SIZE

#define SL_BT_EAD_TYPE_FIELD_SIZE

Value:

sizeof(uint8_t)

Advertising Data - header AD Type field size.

Definition at line 110 of file common/ead_core/sl_bt_ead_core.h

SL_BT_EAD_HEADER_SIZE

#define SL_BT_EAD_HEADER_SIZE

Value:

0 �SL_BT_EAD_LENGTH_FIELD_SIZE \
0 + SL_BT_EAD_TYPE_FIELD_SIZE�

Advertising Data header size, Core Ver.5.3, Vol 3. Part C, Fig.11.1.

Definition at line 113 of file common/ead_core/sl_bt_ead_core.h

SL_BT_EAD_PACKET_OVERHEAD

#define SL_BT_EAD_PACKET_OVERHEAD

Value:

0 �SL_BT_EAD_RANDOMIZER_SIZE \
0 + SL_BT_EAD_MIC_SIZE \
0 + SL_BT_EAD_HEADER_SIZE�

EAD Message full packet size overhead.

Definition at line 117 of file common/ead_core/sl_bt_ead_core.h

SL_BT_EAD_PACKET_REDUCED_OVERHEAD

#define SL_BT_EAD_PACKET_REDUCED_OVERHEAD

Encrypted Advertising Data core API

935/1306

Value:

0 �SL_BT_EAD_RANDOMIZER_SIZE \
0 + SL_BT_EAD_MIC_SIZE \
0 + SL_BT_EAD_TYPE_FIELD_SIZE�

EAD Message packet size overhead without the length field.

Definition at line 122 of file common/ead_core/sl_bt_ead_core.h

SL_BT_ENCRYPTED_DATA_AD_TYPE

#define SL_BT_ENCRYPTED_DATA_AD_TYPE

Value:

0�31

Encrypted Data AD Type.

Definition at line 127 of file common/ead_core/sl_bt_ead_core.h

SL_BT_ENCRYPTED_DATA_B1_HEADER

#define SL_BT_ENCRYPTED_DATA_B1_HEADER

Value:

0xEA

B1 block, octet 2 (header) for EAD encryption, CSS d11, Part A, 1.23.3.

Definition at line 130 of file common/ead_core/sl_bt_ead_core.h

SL_BT_ENCRYPTED_KEY_MATERIAL_UUID

#define SL_BT_ENCRYPTED_KEY_MATERIAL_UUID

Value:

0�2B88

EAD Key Material Characteristics UUID.

Definition at line 133 of file common/ead_core/sl_bt_ead_core.h

sl_bt_ead_key_material_s

936/1306

sl_bt_ead_key_material_s

EAD Key Material, CORE Denver r04, Vol 3, Part C, 12.6.

Public Attributes

sl_bt_ead_session
_key_t

key

sl_bt_ead_iv_t iv

Public Attribute Documentation

key

sl_bt_ead_session_key_t sl_bt_ead_key_material_s::key

Definition at line 69 of file common/ead_core/sl_bt_ead_core.h

iv

sl_bt_ead_iv_t sl_bt_ead_key_material_s::iv

Definition at line 70 of file common/ead_core/sl_bt_ead_core.h

sl_bt_ead_nonce_s

937/1306

sl_bt_ead_nonce_s

EAD Nonce, Core Supplement Spec. d11, Part A, 1.23.3.

Public Attributes

sl_bt_ead_random
izer_t

randomizer

sl_bt_ead_iv_t iv

Public Attribute Documentation

randomizer

sl_bt_ead_randomizer_t sl_bt_ead_nonce_s::randomizer

Definition at line 75 of file common/ead_core/sl_bt_ead_core.h

iv

sl_bt_ead_iv_t sl_bt_ead_nonce_s::iv

Definition at line 76 of file common/ead_core/sl_bt_ead_core.h

sl_bt_ead_ad_structure_s

938/1306

sl_bt_ead_ad_structure_s

Advertising and Scan Response data struct, Core v5.3, Vol 3, Part C, S. 11.

Public Attributes

uint8_t length

uint8_t ad_type

sl_bt_ead_random
izer_t *

randomizer

uint8_t * ad_data

sl_bt_ead_mic_t * mic

Public Attribute Documentation

length

uint8_t sl_bt_ead_ad_structure_s::length

Definition at line 81 of file common/ead_core/sl_bt_ead_core.h

ad_type

uint8_t sl_bt_ead_ad_structure_s::ad_type

Definition at line 82 of file common/ead_core/sl_bt_ead_core.h

randomizer

sl_bt_ead_randomizer_t* sl_bt_ead_ad_structure_s::randomizer

Definition at line 83 of file common/ead_core/sl_bt_ead_core.h

ad_data

uint8_t* sl_bt_ead_ad_structure_s::ad_data

Definition at line 84 of file common/ead_core/sl_bt_ead_core.h

mic

sl_bt_ead_mic_t* sl_bt_ead_ad_structure_s::mic

sl_bt_ead_ad_structure_s

939/1306

Definition at line 85 of file common/ead_core/sl_bt_ead_core.h

ESL Tag User Defined Display Driver

940/1306

ESL Tag User Defined Display Driver

ESL Tag User Defined Display Driver
This component provides skeleton code for a user defined display driver - to be filled in with actual low level driver code for

driving any arbitrary ESL Tag display type. See the Doxygen comments in the header file on usage. This is a Custom-Code

component.

Functions

sl_status_t esl_user_display_init(int param_count,...)

sl_status_t esl_user_display_write(int param_count,...)

Function Documentation

esl_user_display_init

sl_status_t esl_user_display_init (int param_count,...)

Parameters

[in] param_count Number of parameters following (mandatory, equals to

'ESL_DISPLAY_INIT_FUNC_PARAMETERS_COUNT' defined by esl_tag_display component.

[in] uint8_t type of the display index

ESL Tag user defined display driver init function. Function naming is for reference, only - any arbitrary function naming can

be used, freely. For more - and especially, different type of displays - there might be a good approach to implement more

init functions, also. Then, these functions has to be assigned to the corresponding display during the esl_core_boot_event

as follows:

sl_status_t void esl_core_boot_event(void)

{

 sl_status_t sc;

 esl_display_info_p info;

 sc = esl_display_create(<user_display_witdth>,

<user_display_height>,

<user_display_type>,

&info);

app_assert_status(sc);

 sc = esl_display_add(info,

<your_init_function>, // can be NULL if not needed

<your_write_function>); // mandatory!

app_assert_status(sc);

}

Note: please do not forget to add #include "esl_display.h", previously.

Definition at line 71 of file common/esl_tag_user_display_driver/inc/esl_tag_user_display_driver.h

ESL Tag User Defined Display Driver

941/1306

esl_user_display_write

sl_status_t esl_user_display_write (int param_count,...)

Parameters

[in] param_count Number of parameters following (mandatory, equals to

'ESL_DISPLAY_WRITE_FUNC_PARAMETERS_COUNT' defined by esl_tag_display component.

[in] uint8_t type of the display index

[in] image_index uint8_t type of the image index

ESL Tag display user defined driver write function. See the comments at esl_user_display_init function on naming and usage.

Definition at line 82 of file common/esl_tag_user_display_driver/inc/esl_tag_user_display_driver.h

ESL Tag WSTK LCD driver

942/1306

ESL Tag WSTK LCD driver

ESL Tag WSTK LCD driver
This component is an example of a low level driver implementation for the LCD memory display mounted on the WSTK

Developer Board, to be used with an ESL Tag Display component. PLEASE NOTE that this driver automatically registers the

WSTK LCD screen as the first display on the ESL Tag!

Functions

sl_status_t esl_wstk_lcd_init(int param_count,...)

sl_status_t esl_wstk_lcd_write(int param_count,...)

void esl_wstk_lcd_bt_on_event(sl_bt_msg_t *evt)

bool esl_wstk_lcd_is_logo(void)

sl_status_t esl_tag_wstk_lcd_run_qrcode(void)

Function Documentation

esl_wstk_lcd_init

sl_status_t esl_wstk_lcd_init (int param_count,...)

Parameters

[in] param_count Number of parameters following (mandatory, equals to

'ESL_DISPLAY_INIT_FUNC_PARAMETERS_COUNT' defined by esl_tag_display component.

[in] uint8_t type of the display index

ESL Tag display driver init function. ESL display component will call this during the initialization of application. This call is

hidden and happens automatically on Bluetooth sl_bt_evt_system_boot_id event.

Definition at line 48 of file common/esl_tag_wstk_lcd_driver/inc/esl_tag_wstk_lcd_driver.h

esl_wstk_lcd_write

sl_status_t esl_wstk_lcd_write (int param_count,...)

Parameters

[in] param_count Number of parameters following (mandatory, equals to

'ESL_DISPLAY_WRITE_FUNC_PARAMETERS_COUNT' defined by esl_tag_display component.

[in] uint8_t type of the display index

[in] image_index uint8_t type of the image index

ESL Tag display driver write function.

ESL Tag WSTK LCD driver

943/1306

Definition at line 58 of file common/esl_tag_wstk_lcd_driver/inc/esl_tag_wstk_lcd_driver.h

esl_wstk_lcd_bt_on_event

void esl_wstk_lcd_bt_on_event (sl_bt_msg_t *evt)

Parameters

[in] evt Event coming from the Bluetooth stack.

ESL WSTK LCD driver's bluetooth stack event handler. This one runs by the user implementation (usually in app.c) in parallel.

Adds the WSTK display as the very first display, and initializes it silently.

Definition at line 66 of file common/esl_tag_wstk_lcd_driver/inc/esl_tag_wstk_lcd_driver.h

esl_wstk_lcd_is_logo

bool esl_wstk_lcd_is_logo (void)

Parameters

N/A

Definition at line 74 of file common/esl_tag_wstk_lcd_driver/inc/esl_tag_wstk_lcd_driver.h

esl_tag_wstk_lcd_run_qrcode

sl_status_t esl_tag_wstk_lcd_run_qrcode (void)

Parameters

N/A

Definition at line 83 of file common/esl_tag_wstk_lcd_driver/inc/esl_tag_wstk_lcd_driver.h

iBeacon

944/1306

iBeacon

iBeacon
iBeacon component for beacon advertising This is a No-Code component.

Functions

void sli_bt_ibeacon_on_event(sl_bt_msg_t *evt)

Function Documentation

sli_bt_ibeacon_on_event

void sli_bt_ibeacon_on_event (sl_bt_msg_t *evt)

Parameters

[in] evt Event coming from the Bluetooth stack.

Bluetooth stack event handler.

Definition at line 43 of file common/ibeacon/sl_bt_ibeacon.h

Power supply measurement

945/1306

Power supply measurement

Power supply measurement
Power supply measurement HW abstraction designed for Thunderboard.

Functions

void sl_power_supply_probe(void)

void sl_power_supply_get_characteristics(uint8_t *type, float *voltage, float *ir)

uint8_t sl_power_supply_get_type(void)

bool sl_power_supply_is_low_power(void)

float sl_power_supply_measure_voltage(unsigned int avg)

uint8_t sl_power_supply_get_battery_level(void)

Macros

#define SL_POWER_SUPPLY_TYPE_UNKNOWN 0
Unknown power supply type.

#define SL_POWER_SUPPLY_TYPE_USB 1
The board powered from the USB connector.

#define SL_POWER_SUPPLY_TYPE_AA 2
The board powered from AA batteries.

#define SL_POWER_SUPPLY_TYPE_AAA 3
The board powered from AAA batteries.

#define SL_POWER_SUPPLY_TYPE_CR2032 4
The board powered from a CR2032 battery.

Function Documentation

sl_power_supply_probe

void sl_power_supply_probe (void)

Parameters

N/A

Probe the connected supply and determine its type.

Note

The results can be acquired with sl_power_supply_get_characteristics.

Definition at line 53 of file common/power_supply/sl_power_supply.h

Power supply measurement

946/1306

sl_power_supply_get_characteristics

void sl_power_supply_get_characteristics (uint8_t *type, float *voltage, float *ir)

Parameters

[out] type Supply type.

[out] voltage Supply voltage.

[out] ir Internal resistance of the supply.

Retrieve the supply characteristic variables.

Definition at line 62 of file common/power_supply/sl_power_supply.h

sl_power_supply_get_type

uint8_t sl_power_supply_get_type (void)

Parameters

N/A

Getter for the power supply type.

Returns

Power supply type represented as an integer.

Definition at line 69 of file common/power_supply/sl_power_supply.h

sl_power_supply_is_low_power

bool sl_power_supply_is_low_power (void)

Parameters

N/A

Checks if the current power supply has low power capability.

Returns

True if the supply is low power type, false otherwise.

Definition at line 76 of file common/power_supply/sl_power_supply.h

sl_power_supply_measure_voltage

float sl_power_supply_measure_voltage (unsigned int avg)

Parameters

[in] avg Number of measurements to average.

Measure the supply voltage by averaging multiple readings.

Power supply measurement

947/1306

The measured voltage.

Definition at line 84 of file common/power_supply/sl_power_supply.h

sl_power_supply_get_battery_level

uint8_t sl_power_supply_get_battery_level (void)

Parameters

N/A

Measure the battery level.

Returns

The estimated battery capacity level in percent.

Definition at line 91 of file common/power_supply/sl_power_supply.h

Macro Definition Documentation

SL_POWER_SUPPLY_TYPE_UNKNOWN

#define SL_POWER_SUPPLY_TYPE_UNKNOWN

Value:

0

Unknown power supply type.

Definition at line 42 of file common/power_supply/sl_power_supply.h

SL_POWER_SUPPLY_TYPE_USB

#define SL_POWER_SUPPLY_TYPE_USB

Value:

1

The board powered from the USB connector.

Definition at line 43 of file common/power_supply/sl_power_supply.h

SL_POWER_SUPPLY_TYPE_AA

#define SL_POWER_SUPPLY_TYPE_AA

Value:

2

The board powered from AA batteries.

Power supply measurement

948/1306

Definition at line 44 of file common/power_supply/sl_power_supply.h

SL_POWER_SUPPLY_TYPE_AAA

#define SL_POWER_SUPPLY_TYPE_AAA

Value:

3

The board powered from AAA batteries.

Definition at line 45 of file common/power_supply/sl_power_supply.h

SL_POWER_SUPPLY_TYPE_CR2032

#define SL_POWER_SUPPLY_TYPE_CR2032

Value:

4

The board powered from a CR2032 battery.

Definition at line 46 of file common/power_supply/sl_power_supply.h

Air quality sensor

949/1306

Air quality sensor

Air quality sensor
Air quality sensor driver abstraction designed for Thunderboard.

Functions

sl_status_t sl_sensor_gas_init(void)

void sl_sensor_gas_deinit(void)

sl_status_t sl_sensor_gas_get(uint16_t *eco2, uint16_t *tvoc)

Function Documentation

sl_sensor_gas_init

sl_status_t sl_sensor_gas_init (void)

Parameters

N/A

Initialize air quality sensor.

Returns

Status of the operation.

Definition at line 47 of file common/sensor_gas/sl_sensor_gas.h

sl_sensor_gas_deinit

void sl_sensor_gas_deinit (void)

Parameters

N/A

Deinitialize air quality sensor.

Definition at line 52 of file common/sensor_gas/sl_sensor_gas.h

sl_sensor_gas_get

sl_status_t sl_sensor_gas_get (uint16_t *eco2, uint16_t *tvoc)

Parameters

[out] eco2 Equivalent CO2 level (in ppm).

Air quality sensor

950/1306

[out] tvoc Total Volatile Organic Compounds level (in ppb).

Getter for air quality sensor measurement data.

Definition at line 64 of file common/sensor_gas/sl_sensor_gas.h

Hall effect sensor

951/1306

Hall effect sensor

Hall effect sensor
Hall effect sensor driver abstraction designed for Thunderboard.

Functions

sl_status_t sl_sensor_hall_init(void)

void sl_sensor_hall_deinit(void)

sl_status_t sl_sensor_hall_get(float *field_strength, bool *alert, bool *tamper)

Function Documentation

sl_sensor_hall_init

sl_status_t sl_sensor_hall_init (void)

Parameters

N/A

Initialize hall sensor.

Note

With certain boards (e.g. 4184A, 4184B), using this initialization function enables other sensors, because they're on the same

enable pin. Please take that into account when using this function.

Returns

Status of the operation.

Definition at line 51 of file common/sensor_hall/sl_sensor_hall.h

sl_sensor_hall_deinit

void sl_sensor_hall_deinit (void)

Parameters

N/A

Deinitialize hall sensor.

Warnings

With certain boards (e.g. 4184A, 4184B), using this deinitialization function disables other sensors, because they're on the

same enable pin. Please use with caution.

Definition at line 60 of file common/sensor_hall/sl_sensor_hall.h

Hall effect sensor

952/1306

sl_sensor_hall_get

sl_status_t sl_sensor_hall_get (float *field_strength, bool *alert, bool *tamper)

Parameters

[out] field_strength Field strength level (in mT).

[out] alert Field strength has reached the alert level.

[out] tamper Field strength has reached the tamper level.

Getter for hall sensor measurement data. Returns

Status of the operation.

Definition at line 69 of file common/sensor_hall/sl_sensor_hall.h

Inertial Measurement Unit sensor

953/1306

Inertial Measurement Unit sensor

Inertial Measurement Unit sensor
Inertial Measurement Unit sensor driver abstraction designed for Thunderboard.

Functions

void sl_sensor_imu_init(void)

void sl_sensor_imu_deinit(void)

sl_status_t sl_sensor_imu_enable(bool enable)

sl_status_t sl_sensor_imu_get(int16_t ovec[3], int16_t avec[3])

sl_status_t sl_sensor_imu_calibrate(void)

Function Documentation

sl_sensor_imu_init

void sl_sensor_imu_init (void)

Parameters

N/A

Initialize IMU sensor.

Definition at line 45 of file common/sensor_imu/sl_sensor_imu.h

sl_sensor_imu_deinit

void sl_sensor_imu_deinit (void)

Parameters

N/A

Deinitialize IMU sensor.

Definition at line 50 of file common/sensor_imu/sl_sensor_imu.h

sl_sensor_imu_enable

sl_status_t sl_sensor_imu_enable (bool enable)

Parameters

Inertial Measurement Unit sensor

954/1306

Enable/disable IMU sensor. Returns

Status of the operation.

Definition at line 57 of file common/sensor_imu/sl_sensor_imu.h

sl_sensor_imu_get

sl_status_t sl_sensor_imu_get (int16_t ovec[3], int16_t avec[3])

Parameters

[out] ovec Three dimensional orientation vector (in 0.01 degree).

[out] avec Three dimensional acceleration vector.

Getter for orientation and acceleration sensor measurement data. Returns

Status of the operation.

Definition at line 65 of file common/sensor_imu/sl_sensor_imu.h

sl_sensor_imu_calibrate

sl_status_t sl_sensor_imu_calibrate (void)

Parameters

N/A

Perform IMU sensor calibration. Returns

Status of the operation.

Definition at line 71 of file common/sensor_imu/sl_sensor_imu.h

Ambient light and UV index sensor

955/1306

Ambient light and UV index sensor

Ambient light and UV index sensor
Ambient light and UV index sensor driver abstraction designed for Thunderboard.

Functions

sl_status_t sl_sensor_light_init(void)

void sl_sensor_light_deinit(void)

sl_status_t sl_sensor_light_get(float *lux, float *uvi)

Macros

#define SENSOR_LIGHT_POSITIVE_TOLERANCE 0

#define SENSOR_LIGHT_NEGATIVE_TOLERANCE 0

#define SENSOR_LIGHT_SAMPLING_FUNCTION SAMPLING_UNSPECIFIED

#define SENSOR_LIGHT_MEASUREMENT_PERIOD 0

#define SENSOR_LIGHT_UPDATE_INTERVAL 0

Function Documentation

sl_sensor_light_init

sl_status_t sl_sensor_light_init (void)

Parameters

N/A

Initialize ambient light and UV index sensor.

Note

With certain boards (e.g. 4166A, 4184A), using this initialization function enables other sensors, because they're on the same

enable pin. Please take that into account when using this function.

Returns

Status of the operation.

Definition at line 49 of file common/sensor_light/sl_sensor_light.h

sl_sensor_light_deinit

void sl_sensor_light_deinit (void)

Ambient light and UV index sensor

956/1306

Parameters

N/A

Deinitialize ambient light and UV index sensor.

Warnings

With certain boards (e.g. 4166A, 4184A), using this deinitialization function disables other sensors, because they're on the

same enable pin. Please use with caution.

Definition at line 58 of file common/sensor_light/sl_sensor_light.h

sl_sensor_light_get

sl_status_t sl_sensor_light_get (float *lux, float *uvi)

Parameters

[out] lux Ambient light illuminance (in lux).

[out] uvi UV index.

Getter for ambient light and UV index sensor measurement data. Returns

Status of the operation.

Definition at line 66 of file common/sensor_light/sl_sensor_light.h

Macro Definition Documentation

SENSOR_LIGHT_POSITIVE_TOLERANCE

#define SENSOR_LIGHT_POSITIVE_TOLERANCE

Value:

0

Definition at line 46 of file common/sensor_light/config/sl_sensor_light_config.h

SENSOR_LIGHT_NEGATIVE_TOLERANCE

#define SENSOR_LIGHT_NEGATIVE_TOLERANCE

Value:

0

Definition at line 52 of file common/sensor_light/config/sl_sensor_light_config.h

SENSOR_LIGHT_SAMPLING_FUNCTION

#define SENSOR_LIGHT_SAMPLING_FUNCTION

Value:

SAMPLING_UNSPECIFIED

Ambient light and UV index sensor

957/1306

Definition at line 66 of file common/sensor_light/config/sl_sensor_light_config.h

SENSOR_LIGHT_MEASUREMENT_PERIOD

#define SENSOR_LIGHT_MEASUREMENT_PERIOD

Value:

0

Definition at line 72 of file common/sensor_light/config/sl_sensor_light_config.h

SENSOR_LIGHT_UPDATE_INTERVAL

#define SENSOR_LIGHT_UPDATE_INTERVAL

Value:

0

Definition at line 78 of file common/sensor_light/config/sl_sensor_light_config.h

Ambient light sensor

958/1306

Ambient light sensor

Ambient light sensor
Ambient light sensor driver abstraction designed for Thunderboard.

Functions

sl_status_t sl_sensor_lux_init(void)

void sl_sensor_lux_deinit(void)

sl_status_t sl_sensor_lux_get(float *lux)

Macros

#define SENSOR_LUX_POSITIVE_TOLERANCE 0

#define SENSOR_LUX_NEGATIVE_TOLERANCE 0

#define SENSOR_LUX_SAMPLING_FUNCTION SAMPLING_UNSPECIFIED

#define SENSOR_LUX_MEASUREMENT_PERIOD 0

#define SENSOR_LUX_UPDATE_INTERVAL 0

Function Documentation

sl_sensor_lux_init

sl_status_t sl_sensor_lux_init (void)

Parameters

N/A

Initialize ambient light sensor.

Note

With certain boards (e.g. 4184B), using this initialization function enables other sensors, because they're on the same enable

pin. Please take that into account when using this function.

Returns

Status of the operation.

Definition at line 49 of file common/sensor_lux/sl_sensor_lux.h

sl_sensor_lux_deinit

void sl_sensor_lux_deinit (void)

Ambient light sensor

959/1306

Parameters

N/A

Deinitialize ambient light sensor.

Warnings

With certain boards (e.g. 4184B), using this deinitialization function disables other sensors, because they're on the same

enable pin. Please use with caution.

Definition at line 58 of file common/sensor_lux/sl_sensor_lux.h

sl_sensor_lux_get

sl_status_t sl_sensor_lux_get (float *lux)

Parameters

[out] lux Ambient light illuminance (in lux).

Getter for ambient light sensor measurement data. Returns

Status of the operation.

Definition at line 65 of file common/sensor_lux/sl_sensor_lux.h

Macro Definition Documentation

SENSOR_LUX_POSITIVE_TOLERANCE

#define SENSOR_LUX_POSITIVE_TOLERANCE

Value:

0

Definition at line 46 of file common/sensor_lux/config/sl_sensor_lux_config.h

SENSOR_LUX_NEGATIVE_TOLERANCE

#define SENSOR_LUX_NEGATIVE_TOLERANCE

Value:

0

Definition at line 52 of file common/sensor_lux/config/sl_sensor_lux_config.h

SENSOR_LUX_SAMPLING_FUNCTION

#define SENSOR_LUX_SAMPLING_FUNCTION

Value:

SAMPLING_UNSPECIFIED

Ambient light sensor

960/1306

Definition at line 66 of file common/sensor_lux/config/sl_sensor_lux_config.h

SENSOR_LUX_MEASUREMENT_PERIOD

#define SENSOR_LUX_MEASUREMENT_PERIOD

Value:

0

Definition at line 72 of file common/sensor_lux/config/sl_sensor_lux_config.h

SENSOR_LUX_UPDATE_INTERVAL

#define SENSOR_LUX_UPDATE_INTERVAL

Value:

0

Definition at line 78 of file common/sensor_lux/config/sl_sensor_lux_config.h

Air pressure sensor

961/1306

Air pressure sensor

Air pressure sensor
Air pressure sensor driver abstraction designed for Thunderboard.

Functions

sl_status_t sl_sensor_pressure_init(void)

void sl_sensor_pressure_deinit(void)

sl_status_t sl_sensor_pressure_get(float *pressure)

Function Documentation

sl_sensor_pressure_init

sl_status_t sl_sensor_pressure_init (void)

Parameters

N/A

Initialize pressure sensor.

Note

With certain boards (e.g. 4166A), using this initialization function enables other sensors, because they're on the same enable

pin. Please take that into account when using this function.

Returns

Status of the operation.

Definition at line 49 of file common/sensor_pressure/sl_sensor_pressure.h

sl_sensor_pressure_deinit

void sl_sensor_pressure_deinit (void)

Parameters

N/A

Deinitialize pressure sensor.

Warnings

With certain boards (e.g. 4166A), using this deinitialization function disables other sensors, because they're on the same

enable pin. Please use with caution.

Definition at line 58 of file common/sensor_pressure/sl_sensor_pressure.h

Air pressure sensor

962/1306

sl_sensor_pressure_get

sl_status_t sl_sensor_pressure_get (float *pressure)

Parameters

[out] pressure Barometric pressure (in millibars).

Getter for pressure sensor measurement data. Returns

Status of the operation.

Definition at line 65 of file common/sensor_pressure/sl_sensor_pressure.h

Relative Humidity and Temperature sensor

963/1306

Relative Humidity and Temperature sensor

Relative Humidity and Temperature sensor
Relative Humidity and Temperature sensor driver abstraction designed for Thunderboard.

Functions

sl_status_t sl_sensor_rht_init(void)

void sl_sensor_rht_deinit(void)

sl_status_t sl_sensor_rht_get(uint32_t *rh, int32_t *t)

Macros

#define SENSOR_THERMOMETER_STATUS_TRIGGER_TYPE_DISCRETE_VALUE 0

#define SENSOR_THERMOMETER_STATUS_TRIGGER_TYPE_PERCENTAGE 1

#define SENSOR_THERMOMETER_MIN_PERCENTAGE_DELTA_VALUE 0

#define SENSOR_THERMOMETER_MAX_PERCENTAGE_DELTA_VALUE 65535

#define SENSOR_THERMOMETER_MIN_DISCRETE_DELTA_VALUE �128

#define SENSOR_THERMOMETER_MAX_DISCRETE_DELTA_VALUE 127

#define SENSOR_THERMOMETER_POSITIVE_TOLERANCE 0

#define SENSOR_THERMOMETER_NEGATIVE_TOLERANCE 0

#define SENSOR_THERMOMETER_SAMPLING_FUNCTION SAMPLING_UNSPECIFIED

#define SENSOR_THERMOMETER_MEASUREMENT_PERIOD 0

#define SENSOR_THERMOMETER_UPDATE_INTERVAL 0

#define SENSOR_THERMOMETER_CADENCE_ENABLE 0

#define SENSOR_THERMOMETER_FAST_CADENCE_PERIOD_DIVISOR 0

#define SENSOR_THERMOMETER_STATUS_TRIGGER_TYPE
SENSOR_THERMOMETER_STATUS_TRIGGER_TYPE_DISCRETE_VALUE

#define SENSOR_THERMOMETER_STATUS_TRIGGER_DELTA_DOWN 0

#define SENSOR_THERMOMETER_STATUS_TRIGGER_DELTA_UP 0

#define SENSOR_THERMOMETER_STATUS_MIN_INTERVAL 0

#define SENSOR_THERMOMETER_FAST_CADENCE_LOW 0

#define SENSOR_THERMOMETER_FAST_CADENCE_HIGH 0

Relative Humidity and Temperature sensor

964/1306

Function Documentation

sl_sensor_rht_init

sl_status_t sl_sensor_rht_init (void)

Parameters

N/A

Initialize Relative Humidity and Temperature sensor.

Note

With certain boards (e.g. 4166A, 4184A, 4184B), using this initialization function enables other sensors, because they're on

the same enable pin. Please take that into account when using this function.

Returns

Status of the operation.

Definition at line 50 of file common/sensor_rht/sl_sensor_rht.h

sl_sensor_rht_deinit

void sl_sensor_rht_deinit (void)

Parameters

N/A

Deinitialize Relative Humidity and Temperature sensor.

Warnings

With certain boards (e.g. 4166A, 4184A, 4184B), using this deinitialization function disables other sensors, because they're on

the same enable pin. Please use with caution.

Definition at line 59 of file common/sensor_rht/sl_sensor_rht.h

sl_sensor_rht_get

sl_status_t sl_sensor_rht_get (uint32_t *rh, int32_t *t)

Parameters

[out] rh Relative humidity (in 0.001 percent).

[out] t Temperature (in 0.001 Celsius).

Getter for Relative Humidity and Temperature sensor measurement data. Returns

Status of the operation.

Definition at line 67 of file common/sensor_rht/sl_sensor_rht.h

Macro Definition Documentation

Relative Humidity and Temperature sensor

965/1306

SENSOR_THERMOMETER_STATUS_TRIGGER_TYPE_DISCRETE_VALUE

#define SENSOR_THERMOMETER_STATUS_TRIGGER_TYPE_DISCRETE_VALUE

Value:

0

Definition at line 40 of file common/sensor_rht/config/sl_sensor_rht_config.h

SENSOR_THERMOMETER_STATUS_TRIGGER_TYPE_PERCENTAGE

#define SENSOR_THERMOMETER_STATUS_TRIGGER_TYPE_PERCENTAGE

Value:

1

Definition at line 41 of file common/sensor_rht/config/sl_sensor_rht_config.h

SENSOR_THERMOMETER_MIN_PERCENTAGE_DELTA_VALUE

#define SENSOR_THERMOMETER_MIN_PERCENTAGE_DELTA_VALUE

Value:

0

Definition at line 43 of file common/sensor_rht/config/sl_sensor_rht_config.h

SENSOR_THERMOMETER_MAX_PERCENTAGE_DELTA_VALUE

#define SENSOR_THERMOMETER_MAX_PERCENTAGE_DELTA_VALUE

Value:

65535

Definition at line 45 of file common/sensor_rht/config/sl_sensor_rht_config.h

SENSOR_THERMOMETER_MIN_DISCRETE_DELTA_VALUE

#define SENSOR_THERMOMETER_MIN_DISCRETE_DELTA_VALUE

Value:

�128

Definition at line 47 of file common/sensor_rht/config/sl_sensor_rht_config.h

SENSOR_THERMOMETER_MAX_DISCRETE_DELTA_VALUE

#define SENSOR_THERMOMETER_MAX_DISCRETE_DELTA_VALUE

Relative Humidity and Temperature sensor

966/1306

Value:

127

Definition at line 49 of file common/sensor_rht/config/sl_sensor_rht_config.h

SENSOR_THERMOMETER_POSITIVE_TOLERANCE

#define SENSOR_THERMOMETER_POSITIVE_TOLERANCE

Value:

0

Definition at line 59 of file common/sensor_rht/config/sl_sensor_rht_config.h

SENSOR_THERMOMETER_NEGATIVE_TOLERANCE

#define SENSOR_THERMOMETER_NEGATIVE_TOLERANCE

Value:

0

Definition at line 65 of file common/sensor_rht/config/sl_sensor_rht_config.h

SENSOR_THERMOMETER_SAMPLING_FUNCTION

#define SENSOR_THERMOMETER_SAMPLING_FUNCTION

Value:

SAMPLING_UNSPECIFIED

Definition at line 79 of file common/sensor_rht/config/sl_sensor_rht_config.h

SENSOR_THERMOMETER_MEASUREMENT_PERIOD

#define SENSOR_THERMOMETER_MEASUREMENT_PERIOD

Value:

0

Definition at line 85 of file common/sensor_rht/config/sl_sensor_rht_config.h

SENSOR_THERMOMETER_UPDATE_INTERVAL

#define SENSOR_THERMOMETER_UPDATE_INTERVAL

Value:

0

Definition at line 91 of file common/sensor_rht/config/sl_sensor_rht_config.h

Relative Humidity and Temperature sensor

967/1306

SENSOR_THERMOMETER_CADENCE_ENABLE

#define SENSOR_THERMOMETER_CADENCE_ENABLE

Value:

0

Definition at line 98 of file common/sensor_rht/config/sl_sensor_rht_config.h

SENSOR_THERMOMETER_FAST_CADENCE_PERIOD_DIVISOR

#define SENSOR_THERMOMETER_FAST_CADENCE_PERIOD_DIVISOR

Value:

0

Definition at line 105 of file common/sensor_rht/config/sl_sensor_rht_config.h

SENSOR_THERMOMETER_STATUS_TRIGGER_TYPE

#define SENSOR_THERMOMETER_STATUS_TRIGGER_TYPE

Value:

SENSOR_THERMOMETER_STATUS_TRIGGER_TYPE_DISCRETE_VALUE

Definition at line 112 of file common/sensor_rht/config/sl_sensor_rht_config.h

SENSOR_THERMOMETER_STATUS_TRIGGER_DELTA_DOWN

#define SENSOR_THERMOMETER_STATUS_TRIGGER_DELTA_DOWN

Value:

0

Definition at line 121 of file common/sensor_rht/config/sl_sensor_rht_config.h

SENSOR_THERMOMETER_STATUS_TRIGGER_DELTA_UP

#define SENSOR_THERMOMETER_STATUS_TRIGGER_DELTA_UP

Value:

0

Definition at line 130 of file common/sensor_rht/config/sl_sensor_rht_config.h

SENSOR_THERMOMETER_STATUS_MIN_INTERVAL

#define SENSOR_THERMOMETER_STATUS_MIN_INTERVAL

Relative Humidity and Temperature sensor

968/1306

Value:

0

Definition at line 138 of file common/sensor_rht/config/sl_sensor_rht_config.h

SENSOR_THERMOMETER_FAST_CADENCE_LOW

#define SENSOR_THERMOMETER_FAST_CADENCE_LOW

Value:

0

Definition at line 146 of file common/sensor_rht/config/sl_sensor_rht_config.h

SENSOR_THERMOMETER_FAST_CADENCE_HIGH

#define SENSOR_THERMOMETER_FAST_CADENCE_HIGH

Value:

0

Definition at line 154 of file common/sensor_rht/config/sl_sensor_rht_config.h

Relative Humidity and Temperature sensor �Mock)

969/1306

Relative Humidity and Temperature sensor �Mock)

Relative Humidity and Temperature sensor �Mock)
Relative Humidity and Temperature sensor (Mock) driver abstraction.

Sensor select utility

970/1306

Sensor select utility

Sensor select utility
Utility for selecting I2C sensors, designed for Thunderboard.

Functions

sl_i2cspm_t * sl_sensor_select(sl_board_sensor_t sensor)

Function Documentation

sl_sensor_select

sl_i2cspm_t * sl_sensor_select (sl_board_sensor_t sensor)

Parameters

[in] sensor Sensor to be selected.

Select I2C peripheral for a given sensor. Returns

Pointer to the I2C peripheral. NULL if sensor is not available.

Definition at line 47 of file common/sensor_select/sl_sensor_select.h

Sound level sensor (microphone)

971/1306

Sound level sensor (microphone)

Sound level sensor (microphone)
Sound level sensor (microphone) driver abstraction designed for Thunderboard.

Functions

sl_status_t sl_sensor_sound_init(void)

void sl_sensor_sound_deinit(void)

sl_status_t sl_sensor_sound_get(float *sl)

void sl_sensor_sound_step(void)

Function Documentation

sl_sensor_sound_init

sl_status_t sl_sensor_sound_init (void)

Parameters

N/A

Initialize sound level sensor. Returns

Status of the operation.

Definition at line 45 of file common/sensor_sound/sl_sensor_sound.h

sl_sensor_sound_deinit

void sl_sensor_sound_deinit (void)

Parameters

N/A

Deinitialize sound level sensor.

Definition at line 50 of file common/sensor_sound/sl_sensor_sound.h

sl_sensor_sound_get

sl_status_t sl_sensor_sound_get (float *sl)

Parameters

[out] sl Sound pressure level (in dB).

Sound level sensor (microphone)

972/1306

Getter for sound level sensor measurement data. Returns

Status of the operation.

Definition at line 57 of file common/sensor_sound/sl_sensor_sound.h

sl_sensor_sound_step

void sl_sensor_sound_step (void)

Parameters

N/A

Sound level sensor event handler.

Definition at line 62 of file common/sensor_sound/sl_sensor_sound.h

Wake-Lock

973/1306

Wake-Lock

Wake-Lock
Component that provides support for sleep and remote wake-up functionality. The UART driver is not able to receive data in

EM2 (deep sleep) mode, therefore an external signal is needed to wake the controller up before UART communication. This

component can be used with NCP host and NCP target applications. Waking up is automatic after signal arrival, but

application has to decide about sleep. This functionality requires two dedicated pins to work. This is a No-Code component

if used together with NCP Interface or NCP Host Communication Interface components.

Functions

void sl_wake_lock_init(void)

void sl_wake_lock_set_remote_req(void)

void sl_wake_lock_clear_remote_req(void)

void sl_wake_lock_set_req_rx_cb(void)

void sl_wake_lock_clear_req_rx_cb(void)

void sl_wake_lock_set_local(void)

void sl_wake_lock_clear_local(void)

Macros

#define SL_WAKE_LOCK_ENABLE_LOCAL 1

#define SL_WAKE_LOCK_ENABLE_REMOTE 1

#define SL_WAKE_LOCK_INPUT_POLARITY_ACTIVE_HIGH 0

#define SL_WAKE_LOCK_OUTPUT_POLARITY_ACTIVE_HIGH 0

#define SL_WAKE_LOCK_INPUT_PORT gpioPortD

#define SL_WAKE_LOCK_INPUT_PIN 9

#define SL_WAKE_LOCK_OUTPUT_PORT gpioPortD

#define SL_WAKE_LOCK_OUTPUT_PIN 8

Function Documentation

sl_wake_lock_init

void sl_wake_lock_init (void)

Parameters

N/A

Wake-Lock

974/1306

Wake and sleep (lock) initialization function

Definition at line 44 of file common/wake_lock/sl_wake_lock.h

sl_wake_lock_set_remote_req

void sl_wake_lock_set_remote_req (void)

Parameters

N/A

Signal wake-up to remote controller.

Definition at line 49 of file common/wake_lock/sl_wake_lock.h

sl_wake_lock_clear_remote_req

void sl_wake_lock_clear_remote_req (void)

Parameters

N/A

Signal go to sleep (lock) to remote controller.

Definition at line 54 of file common/wake_lock/sl_wake_lock.h

sl_wake_lock_set_req_rx_cb

void sl_wake_lock_set_req_rx_cb (void)

Parameters

N/A

Wake-up signal arrived from remote controller.

Definition at line 59 of file common/wake_lock/sl_wake_lock.h

sl_wake_lock_clear_req_rx_cb

void sl_wake_lock_clear_req_rx_cb (void)

Parameters

N/A

Go to sleep (lock) signal arrived from remote controller.

Definition at line 64 of file common/wake_lock/sl_wake_lock.h

sl_wake_lock_set_local

Wake-Lock

975/1306

void sl_wake_lock_set_local (void)

Parameters

N/A

Enable sleep mode locally.

Definition at line 69 of file common/wake_lock/sl_wake_lock.h

sl_wake_lock_clear_local

void sl_wake_lock_clear_local (void)

Parameters

N/A

Disable sleep mode locally.

Definition at line 74 of file common/wake_lock/sl_wake_lock.h

Macro Definition Documentation

SL_WAKE_LOCK_ENABLE_LOCAL

#define SL_WAKE_LOCK_ENABLE_LOCAL

Value:

1

Definition at line 48 of file common/wake_lock/config/sl_wake_lock_config.h

SL_WAKE_LOCK_ENABLE_REMOTE

#define SL_WAKE_LOCK_ENABLE_REMOTE

Value:

1

Definition at line 53 of file common/wake_lock/config/sl_wake_lock_config.h

SL_WAKE_LOCK_INPUT_POLARITY_ACTIVE_HIGH

#define SL_WAKE_LOCK_INPUT_POLARITY_ACTIVE_HIGH

Value:

0

Definition at line 59 of file common/wake_lock/config/sl_wake_lock_config.h

Wake-Lock

976/1306

SL_WAKE_LOCK_OUTPUT_POLARITY_ACTIVE_HIGH

#define SL_WAKE_LOCK_OUTPUT_POLARITY_ACTIVE_HIGH

Value:

0

Definition at line 63 of file common/wake_lock/config/sl_wake_lock_config.h

SL_WAKE_LOCK_INPUT_PORT

#define SL_WAKE_LOCK_INPUT_PORT

Value:

gpioPortD

Definition at line 70 of file common/wake_lock/config/sl_wake_lock_config.h

SL_WAKE_LOCK_INPUT_PIN

#define SL_WAKE_LOCK_INPUT_PIN

Value:

9

Definition at line 71 of file common/wake_lock/config/sl_wake_lock_config.h

SL_WAKE_LOCK_OUTPUT_PORT

#define SL_WAKE_LOCK_OUTPUT_PORT

Value:

gpioPortD

Definition at line 76 of file common/wake_lock/config/sl_wake_lock_config.h

SL_WAKE_LOCK_OUTPUT_PIN

#define SL_WAKE_LOCK_OUTPUT_PIN

Value:

8

Definition at line 77 of file common/wake_lock/config/sl_wake_lock_config.h

Test

977/1306

Test

Modules

CLI Test Harness for ESL Tag application

Throughput Test helper

Throughput Test Receiver (Central) Role API

Throughput Test Transmitter (Peripheral) Role API

Throughput User Interface API

Throughput User Interface API with logging

Test
SW components that implement an application level functionality that can be used for testing purposes. (e.g. Throughput

test, loop test)

CLI Test Harness for ESL Tag application

978/1306

CLI Test Harness for ESL Tag application

CLI Test Harness for ESL Tag application
CLI Test Harness is an optional component for the ESL Tag example application, providing a set of commands to control and

observe the ESL Tag internal behavior directly via a serial terminal. This is a No-Code component, however only meaningful

in ESL context.

Functions

void esl_tag_cli_test_harness_init(void)

void cli_esl_tag_address_get(sl_cli_command_arg_t *arguments)

void cli_esl_tag_ap_key_get(sl_cli_command_arg_t *arguments)

void cli_esl_tag_response_key_get(sl_cli_command_arg_t *arguments)

void cli_esl_tag_absolute_time_get(sl_cli_command_arg_t *arguments)

void cli_esl_tag_led_info_get(sl_cli_command_arg_t *arguments)

void cli_esl_tag_display_info_get(sl_cli_command_arg_t *arguments)

void cli_esl_tag_image_info_get(sl_cli_command_arg_t *arguments)

void cli_esl_tag_sensor_info_get(sl_cli_command_arg_t *arguments)

void cli_esl_tag_status_get(sl_cli_command_arg_t *arguments)

void cli_esl_tag_basic_state_get(sl_cli_command_arg_t *arguments)

void cli_esl_tag_service_needed_set(sl_cli_command_arg_t *arguments)

void cli_esl_tag_advertising_set(sl_cli_command_arg_t *arguments)

void cli_esl_tag_image_set(sl_cli_command_arg_t *arguments)

void cli_esl_tag_restart(sl_cli_command_arg_t *arguments)

Macros

#define ESL_CORE_LOG_ENABLE 1

#define ESL_LOG_COMPONENT_APP_ENABLE 1

#define ESL_LOG_COMPONENT_CORE_ENABLE 1

#define ESL_LOG_COMPONENT_DISPLAY_ENABLE 1

#define ESL_LOG_COMPONENT_RAM_IMAGE_ENABLE 1

#define ESL_LOG_COMPONENT_NVM_IMAGE_ENABLE 1

CLI Test Harness for ESL Tag application

979/1306

#define ESL_LOG_COMPONENT_LED_ENABLE 1

#define ESL_LOG_COMPONENT_OTS_ENABLE 1

#define ESL_LOG_COMPONENT_SENSOR_ENABLE 1

#define VA (...)

#define CLI_RESPONSE (...)

#define CLI_RESPONSE_APPEND (...)

#define CLI_RESPONSE_HEADLESS (...)

#define CLI_OK "OK"

#define CLI_ERROR "ERROR"

Function Documentation

esl_tag_cli_test_harness_init

void esl_tag_cli_test_harness_init (void)

Parameters

N/A

Init ESL Tag CLI test harness

Definition at line 63 of file common/esl_tag_cli_test_harness/esl_tag_cli_test_harness.h

cli_esl_tag_address_get

void cli_esl_tag_address_get (sl_cli_command_arg_t *arguments)

Parameters

[in] arguments command line argument list

CLI command for reading the ESL Address value

Definition at line 69 of file common/esl_tag_cli_test_harness/esl_tag_cli_test_harness.h

cli_esl_tag_ap_key_get

void cli_esl_tag_ap_key_get (sl_cli_command_arg_t *arguments)

Parameters

[in] arguments command line argument list

CLI command for reading the ESL Access Point Key value

Definition at line 75 of file common/esl_tag_cli_test_harness/esl_tag_cli_test_harness.h

cli_esl_tag_response_key_get

CLI Test Harness for ESL Tag application

980/1306

void cli_esl_tag_response_key_get (sl_cli_command_arg_t *arguments)

Parameters

[in] arguments command line argument list

CLI command for reading the ESL Response Key value

Definition at line 81 of file common/esl_tag_cli_test_harness/esl_tag_cli_test_harness.h

cli_esl_tag_absolute_time_get

void cli_esl_tag_absolute_time_get (sl_cli_command_arg_t *arguments)

Parameters

[in] arguments command line argument list

CLI command for reading the ESL Absolute Time value

Definition at line 87 of file common/esl_tag_cli_test_harness/esl_tag_cli_test_harness.h

cli_esl_tag_led_info_get

void cli_esl_tag_led_info_get (sl_cli_command_arg_t *arguments)

Parameters

[in] arguments command line argument list

CLI command for reading the ESL LED Information

Definition at line 93 of file common/esl_tag_cli_test_harness/esl_tag_cli_test_harness.h

cli_esl_tag_display_info_get

void cli_esl_tag_display_info_get (sl_cli_command_arg_t *arguments)

Parameters

[in] arguments command line argument list

CLI command for reading the ESL Display Information

Definition at line 99 of file common/esl_tag_cli_test_harness/esl_tag_cli_test_harness.h

cli_esl_tag_image_info_get

void cli_esl_tag_image_info_get (sl_cli_command_arg_t *arguments)

Parameters

[in] arguments command line argument list

CLI Test Harness for ESL Tag application

981/1306

CLI command for reading the ESL Image Information

Definition at line 105 of file common/esl_tag_cli_test_harness/esl_tag_cli_test_harness.h

cli_esl_tag_sensor_info_get

void cli_esl_tag_sensor_info_get (sl_cli_command_arg_t *arguments)

Parameters

[in] arguments command line argument list

CLI command for reading the ESL Sensor Information

Definition at line 111 of file common/esl_tag_cli_test_harness/esl_tag_cli_test_harness.h

cli_esl_tag_status_get

void cli_esl_tag_status_get (sl_cli_command_arg_t *arguments)

Parameters

[in] arguments command line argument list

CLI command for reading the ESL State Machine status

Definition at line 117 of file common/esl_tag_cli_test_harness/esl_tag_cli_test_harness.h

cli_esl_tag_basic_state_get

void cli_esl_tag_basic_state_get (sl_cli_command_arg_t *arguments)

Parameters

[in] arguments command line argument list

CLI command for reading the ESL Basic State

Definition at line 123 of file common/esl_tag_cli_test_harness/esl_tag_cli_test_harness.h

cli_esl_tag_service_needed_set

void cli_esl_tag_service_needed_set (sl_cli_command_arg_t *arguments)

Parameters

[in] arguments command line argument list

CLI command for writing the ESL Basic State Service Needed flag

Definition at line 129 of file common/esl_tag_cli_test_harness/esl_tag_cli_test_harness.h

cli_esl_tag_advertising_set

CLI Test Harness for ESL Tag application

982/1306

void cli_esl_tag_advertising_set (sl_cli_command_arg_t *arguments)

Parameters

[in] arguments command line argument list

CLI command for enabling ESL advertising

Definition at line 135 of file common/esl_tag_cli_test_harness/esl_tag_cli_test_harness.h

cli_esl_tag_image_set

void cli_esl_tag_image_set (sl_cli_command_arg_t *arguments)

Parameters

[in] arguments command line argument list

CLI command for setting static image data

Definition at line 141 of file common/esl_tag_cli_test_harness/esl_tag_cli_test_harness.h

cli_esl_tag_restart

void cli_esl_tag_restart (sl_cli_command_arg_t *arguments)

Parameters

[in] arguments command line argument list

CLI command for restart the ESL Tag

Definition at line 147 of file common/esl_tag_cli_test_harness/esl_tag_cli_test_harness.h

Macro Definition Documentation

ESL_CORE_LOG_ENABLE

#define ESL_CORE_LOG_ENABLE

Value:

1

Definition at line 45 of file common/esl_tag_cli_test_harness/config/esl_log_config.h

ESL_LOG_COMPONENT_APP_ENABLE

#define ESL_LOG_COMPONENT_APP_ENABLE

Value:

1

CLI Test Harness for ESL Tag application

983/1306

Definition at line 50 of file common/esl_tag_cli_test_harness/config/esl_log_config.h

ESL_LOG_COMPONENT_CORE_ENABLE

#define ESL_LOG_COMPONENT_CORE_ENABLE

Value:

1

Definition at line 55 of file common/esl_tag_cli_test_harness/config/esl_log_config.h

ESL_LOG_COMPONENT_DISPLAY_ENABLE

#define ESL_LOG_COMPONENT_DISPLAY_ENABLE

Value:

1

Definition at line 60 of file common/esl_tag_cli_test_harness/config/esl_log_config.h

ESL_LOG_COMPONENT_RAM_IMAGE_ENABLE

#define ESL_LOG_COMPONENT_RAM_IMAGE_ENABLE

Value:

1

Definition at line 65 of file common/esl_tag_cli_test_harness/config/esl_log_config.h

ESL_LOG_COMPONENT_NVM_IMAGE_ENABLE

#define ESL_LOG_COMPONENT_NVM_IMAGE_ENABLE

Value:

1

Definition at line 70 of file common/esl_tag_cli_test_harness/config/esl_log_config.h

ESL_LOG_COMPONENT_LED_ENABLE

#define ESL_LOG_COMPONENT_LED_ENABLE

Value:

1

Definition at line 75 of file common/esl_tag_cli_test_harness/config/esl_log_config.h

ESL_LOG_COMPONENT_OTS_ENABLE

CLI Test Harness for ESL Tag application

984/1306

#define ESL_LOG_COMPONENT_OTS_ENABLE

Value:

1

Definition at line 80 of file common/esl_tag_cli_test_harness/config/esl_log_config.h

ESL_LOG_COMPONENT_SENSOR_ENABLE

#define ESL_LOG_COMPONENT_SENSOR_ENABLE

Value:

1

Definition at line 85 of file common/esl_tag_cli_test_harness/config/esl_log_config.h

VA

#define VA

Value:

(...)

Definition at line 45 of file common/esl_tag_cli_test_harness/esl_tag_cli_test_harness.h

CLI_RESPONSE

#define CLI_RESPONSE

Value:

0 sli_bt_esl_logger(ESL_LOG_COMPONENT_CLI, \
0 ESL_LOG_LEVEL_INFO, \
0 __VA_ARGS__)

Definition at line 46 of file common/esl_tag_cli_test_harness/esl_tag_cli_test_harness.h

CLI_RESPONSE_APPEND

#define CLI_RESPONSE_APPEND

Value:

0 sli_bt_esl_logger((ESL_LOG_COMPONENT_CLI \
0 | ESL_LOG_FLAG_APPEND�, \
0 ESL_LOG_LEVEL_INFO, \
0 __VA_ARGS__)

Definition at line 49 of file common/esl_tag_cli_test_harness/esl_tag_cli_test_harness.h

CLI Test Harness for ESL Tag application

985/1306

CLI_RESPONSE_HEADLESS

#define CLI_RESPONSE_HEADLESS

Value:

0 sli_bt_esl_logger((ESL_LOG_COMPONENT_CLI \
0 | ESL_LOG_FLAG_NOHEADER�, \
0 ESL_LOG_LEVEL_INFO, \
0 __VA_ARGS__)

Definition at line 53 of file common/esl_tag_cli_test_harness/esl_tag_cli_test_harness.h

CLI_OK

#define CLI_OK

Value:

"OK"

Definition at line 57 of file common/esl_tag_cli_test_harness/esl_tag_cli_test_harness.h

CLI_ERROR

#define CLI_ERROR

Value:

"ERROR"

Definition at line 58 of file common/esl_tag_cli_test_harness/esl_tag_cli_test_harness.h

Throughput Test helper

986/1306

Throughput Test helper

Modules

allowlist_s

throughput_t

Throughput Test helper
Helper for throughput tests

Enumerations

enum action_t {

act_none = 0
act_discover_service
act_discover_characteristics
act_enable_transmission_notification
act_enable_notification
act_enable_indication
act_subscribe_result

}

enum throughput_role_t {

THROUGHPUT_ROLE_PERIPHERAL
THROUGHPUT_ROLE_CENTRAL

}
Role enum type.

enum throughput_state_t {

THROUGHPUT_STATE_UNINITALIZED
THROUGHPUT_STATE_DISCONNECTED
THROUGHPUT_STATE_CONNECTED
THROUGHPUT_STATE_SUBSCRIBED
THROUGHPUT_STATE_TEST
THROUGHPUT_STATE_TEST_FINISH
THROUGHPUT_STATE_UNINITALIZING

}
State enum type.

enum throughput_mode_t {

THROUGHPUT_MODE_CONTINUOUS
THROUGHPUT_MODE_FIXED_TIME
THROUGHPUT_MODE_FIXED_LENGTH

}
Mode enum type.

Throughput Test helper

987/1306

enum throughput_discovery_state_t {

THROUGHPUT_DISCOVERY_STATE_IDLE
THROUGHPUT_DISCOVERY_STATE_CONN
THROUGHPUT_DISCOVERY_STATE_SCAN
THROUGHPUT_DISCOVERY_STATE_SERVICE
THROUGHPUT_DISCOVERY_STATE_CHARACTERISTICS
THROUGHPUT_DISCOVERY_STATE_FINISHED

}
Discovery state.

Typedefs

typedef int8_t throughput_tx_power_t
TX power type.

typedef int8_t throughput_rssi_t
RSSI type.

typedef uint16_t throughput_pdu_size_t
PDU size type.

typedef uint16_t throughput_mtu_size_t
MTU size type.

typedef uint16_t throughput_data_size_t
Data size type.

typedef
sl_bt_gap_phy_co

ding_t

throughput_phy_t
PHY type.

typedef
sl_bt_scanner_sca

n_phy_t

throughput_scan_phy_t

typedef
sl_bt_gatt_client_c

onfig_flag_t

throughput_notification_t
Notification/indication type.

typedef uint32_t throughput_value_t
Throughput type.

typedef uint32_t throughput_count_t
Data counter type type.

typedef uint32_t throughput_time_t
Time type type.

typedef struct
allowlist_s

throughput_allowlist_t
Throughput test allowlist structure.

Macros

#define CLI_RESPONSE (...)

#define CLI_OK "OK" APP_LOG_NEW_LINE

#define CLI_ERROR "ERROR" APP_LOG_NEW_LINE

Throughput Test helper

988/1306

Enumeration Documentation

action_t

action_t

Discovering services/characteristics and subscribing raises procedure_complete events Actions are used to indicate which

procedure was completed.

Enumerator

act_none

act_discover_service

act_discover_characteristics

act_enable_transmission_notification

act_enable_notification

act_enable_indication

act_subscribe_result

Definition at line 40 of file common/throughput/throughput_common.h

throughput_role_t

throughput_role_t

Role enum type.

Enumerator

THROUGHPUT_ROLE_PERIPHERAL

THROUGHPUT_ROLE_CENTRAL

Definition at line 45 of file common/throughput/throughput_types.h

throughput_state_t

throughput_state_t

State enum type.

Enumerator

THROUGHPUT_STATE_UNINITALIZED

THROUGHPUT_STATE_DISCONNECTED

THROUGHPUT_STATE_CONNECTED

THROUGHPUT_STATE_SUBSCRIBED

THROUGHPUT_STATE_TEST

THROUGHPUT_STATE_TEST_FINISH

THROUGHPUT_STATE_UNINITALIZING

Definition at line 51 of file common/throughput/throughput_types.h

throughput_mode_t

Throughput Test helper

989/1306

Mode enum type.

Enumerator

THROUGHPUT_MODE_CONTINUOUS

THROUGHPUT_MODE_FIXED_TIME

THROUGHPUT_MODE_FIXED_LENGTH

Definition at line 62 of file common/throughput/throughput_types.h

throughput_discovery_state_t

throughput_discovery_state_t

Discovery state.

Enumerator

THROUGHPUT_DISCOVERY_STATE_IDLE

THROUGHPUT_DISCOVERY_STATE_CONN

THROUGHPUT_DISCOVERY_STATE_SCAN

THROUGHPUT_DISCOVERY_STATE_SERVICE

THROUGHPUT_DISCOVERY_STATE_CHARACTERISTICS

THROUGHPUT_DISCOVERY_STATE_FINISHED

Definition at line 69 of file common/throughput/throughput_types.h

Typedef Documentation

throughput_tx_power_t

typedef int8_t throughput_tx_power_t

TX power type.

Definition at line 79 of file common/throughput/throughput_types.h

throughput_rssi_t

typedef int8_t throughput_rssi_t

RSSI type.

Definition at line 81 of file common/throughput/throughput_types.h

throughput_pdu_size_t

typedef uint16_t throughput_pdu_size_t

PDU size type.

Definition at line 83 of file common/throughput/throughput_types.h

Throughput Test helper

990/1306

throughput_mtu_size_t

typedef uint16_t throughput_mtu_size_t

MTU size type.

Definition at line 85 of file common/throughput/throughput_types.h

throughput_data_size_t

typedef uint16_t throughput_data_size_t

Data size type.

Definition at line 87 of file common/throughput/throughput_types.h

throughput_phy_t

typedef sl_bt_gap_phy_coding_t throughput_phy_t

PHY type.

Definition at line 89 of file common/throughput/throughput_types.h

throughput_scan_phy_t

typedef sl_bt_scanner_scan_phy_t throughput_scan_phy_t

Definition at line 90 of file common/throughput/throughput_types.h

throughput_notification_t

typedef sl_bt_gatt_client_config_flag_t throughput_notification_t

Notification/indication type.

Definition at line 92 of file common/throughput/throughput_types.h

throughput_value_t

typedef uint32_t throughput_value_t

Throughput type.

Definition at line 94 of file common/throughput/throughput_types.h

throughput_count_t

Throughput Test helper

991/1306

typedef uint32_t throughput_count_t

Data counter type type.

Definition at line 96 of file common/throughput/throughput_types.h

throughput_time_t

typedef uint32_t throughput_time_t

Time type type.

Definition at line 98 of file common/throughput/throughput_types.h

throughput_allowlist_t

typedef struct allowlist_s throughput_allowlist_t

Throughput test allowlist structure.

Definition at line 105 of file common/throughput/throughput_types.h

Macro Definition Documentation

CLI_RESPONSE

#define CLI_RESPONSE

Value:

(...)

Definition at line 148 of file common/throughput/throughput_types.h

CLI_OK

#define CLI_OK

Value:

"OK" APP_LOG_NEW_LINE

Definition at line 149 of file common/throughput/throughput_types.h

CLI_ERROR

#define CLI_ERROR

Value:

"ERROR" APP_LOG_NEW_LINE

Throughput Test helper

992/1306

Definition at line 150 of file common/throughput/throughput_types.h

allowlist_s

993/1306

allowlist_s

Throughput test allowlist structure.

Public Attributes

bd_addr address

sl_bt_gap_addres
s_type_t

address_type

struct allowlist_s * next

Public Attribute Documentation

address

bd_addr allowlist_s::address

Definition at line 102 of file common/throughput/throughput_types.h

address_type

sl_bt_gap_address_type_t allowlist_s::address_type

Definition at line 103 of file common/throughput/throughput_types.h

next

struct allowlist_s* allowlist_s::next

Definition at line 104 of file common/throughput/throughput_types.h

throughput_t

994/1306

throughput_t

Throughput test status structure.

Public Attributes

throughput_role_t role

throughput_state_
t

state

throughput_mode
_t

mode

throughput_notifi
cation_t

test_type

throughput_tx_po
wer_t

tx_power

throughput_tx_po
wer_t

tx_power_requested

throughput_phy_t phy

throughput_mtu_s
ize_t

mtu_size

throughput_time_t interval

throughput_rssi_t rssi

throughput_pdu_s
ize_t

pdu_size

throughput_data_
size_t

data_size

throughput_notifi
cation_t

notifications

throughput_notifi
cation_t

indications

throughput_scan_
phy_t

scan_phy

throughput_time_t connection_interval_min

throughput_time_t connection_interval_max

throughput_time_t connection_responder_latency

throughput_time_t connection_timeout

throughput_disco
very_state_t

discovery_state

throughput_notifi
cation_t

client_conf_flag

throughput_t

995/1306

throughput_allowli
st_t

allowlist

throughput_value_
t

throughput

throughput_value_
t

throughput_peripheral_side

throughput_count
_t

count

throughput_count
_t

packet_error

throughput_count
_t

packet_lost

throughput_time_t time

Public Attribute Documentation

role

throughput_role_t throughput_t::role

Definition at line 110 of file common/throughput/throughput_types.h

state

throughput_state_t throughput_t::state

Definition at line 111 of file common/throughput/throughput_types.h

mode

throughput_mode_t throughput_t::mode

Definition at line 112 of file common/throughput/throughput_types.h

test_type

throughput_notification_t throughput_t::test_type

Definition at line 113 of file common/throughput/throughput_types.h

tx_power

throughput_tx_power_t throughput_t::tx_power

Definition at line 115 of file common/throughput/throughput_types.h

throughput_t

996/1306

tx_power_requested

throughput_tx_power_t throughput_t::tx_power_requested

Definition at line 116 of file common/throughput/throughput_types.h

phy

throughput_phy_t throughput_t::phy

Definition at line 117 of file common/throughput/throughput_types.h

mtu_size

throughput_mtu_size_t throughput_t::mtu_size

Definition at line 118 of file common/throughput/throughput_types.h

interval

throughput_time_t throughput_t::interval

Definition at line 120 of file common/throughput/throughput_types.h

rssi

throughput_rssi_t throughput_t::rssi

Definition at line 121 of file common/throughput/throughput_types.h

pdu_size

throughput_pdu_size_t throughput_t::pdu_size

Definition at line 122 of file common/throughput/throughput_types.h

data_size

throughput_data_size_t throughput_t::data_size

Definition at line 123 of file common/throughput/throughput_types.h

notifications

throughput_t

997/1306

throughput_notification_t throughput_t::notifications

Definition at line 124 of file common/throughput/throughput_types.h

indications

throughput_notification_t throughput_t::indications

Definition at line 125 of file common/throughput/throughput_types.h

scan_phy

throughput_scan_phy_t throughput_t::scan_phy

Definition at line 127 of file common/throughput/throughput_types.h

connection_interval_min

throughput_time_t throughput_t::connection_interval_min

Definition at line 128 of file common/throughput/throughput_types.h

connection_interval_max

throughput_time_t throughput_t::connection_interval_max

Definition at line 129 of file common/throughput/throughput_types.h

connection_responder_latency

throughput_time_t throughput_t::connection_responder_latency

Definition at line 130 of file common/throughput/throughput_types.h

connection_timeout

throughput_time_t throughput_t::connection_timeout

Definition at line 131 of file common/throughput/throughput_types.h

discovery_state

throughput_t

998/1306

throughput_discovery_state_t throughput_t::discovery_state

Definition at line 132 of file common/throughput/throughput_types.h

client_conf_flag

throughput_notification_t throughput_t::client_conf_flag

Definition at line 133 of file common/throughput/throughput_types.h

allowlist

throughput_allowlist_t throughput_t::allowlist

Definition at line 134 of file common/throughput/throughput_types.h

throughput

throughput_value_t throughput_t::throughput

Definition at line 136 of file common/throughput/throughput_types.h

throughput_peripheral_side

throughput_value_t throughput_t::throughput_peripheral_side

Definition at line 137 of file common/throughput/throughput_types.h

count

throughput_count_t throughput_t::count

Definition at line 138 of file common/throughput/throughput_types.h

packet_error

throughput_count_t throughput_t::packet_error

Definition at line 139 of file common/throughput/throughput_types.h

packet_lost

throughput_t

999/1306

throughput_count_t throughput_t::packet_lost

Definition at line 140 of file common/throughput/throughput_types.h

time

throughput_time_t throughput_t::time

Definition at line 141 of file common/throughput/throughput_types.h

Throughput Test Receiver �Central) Role API

1000/1306

Throughput Test Receiver �Central) Role API

Modules

throughput_central_characteristic_t

throughput_central_characteristic_found_t

Throughput Test Receiver �Central) Role API
Throughput Test Receiver (Central) Role API opens connection to Throughput Test Transmitter (Peripheral) Role nodes,

registers to notifications or indications. Throughput parameters can be managed using the API calls or via CLI. The API

provides interface for configuring, starting and stopping transmission. Status and result callbacks can be also registered

using the API.

Functions

bool throughput_central_allowlist_add(uint8_t *address)

bool throughput_central_allowlist_clear(void)

void throughput_central_enable(void)

sl_status_t throughput_central_disable(void)

sl_status_t throughput_central_set_mode(throughput_mode_t mode, uint32_t amount)

sl_status_t throughput_central_set_mtu_size(uint8_t mtu)

sl_status_t throughput_central_set_tx_power(throughput_tx_power_t tx_power, bool power_control, bool deep_sleep)

sl_status_t throughput_central_set_connection_parameters(throughput_time_t min_interval, throughput_time_t
max_interval, throughput_time_t latency, throughput_time_t timeout)

sl_status_t throughput_central_set_type(throughput_notification_t type)

sl_status_t throughput_central_start(void)

sl_status_t throughput_central_stop(void)

sl_status_t throughput_central_set_scan_phy(throughput_scan_phy_t phy)

sl_status_t throughput_central_set_connection_phy(throughput_phy_t phy)

sl_status_t throughput_central_change_phy(void)

void throughput_central_step(void)

void bt_on_event_central(sl_bt_msg_t *evt)

void throughput_central_on_role_set(throughput_role_t role)

void throughput_central_on_state_change(throughput_state_t state)

Throughput Test Receiver �Central) Role API

1001/1306

void throughput_central_on_mode_change(throughput_mode_t mode)

void throughput_central_on_start(void)

void throughput_central_on_finish(throughput_value_t throughput, throughput_count_t count, throughput_count_t
lost, throughput_count_t error, throughput_time_t time)

void throughput_central_on_transmit_power_change(throughput_tx_power_t power)

void throughput_central_on_rssi_change(throughput_rssi_t rssi)

void throughput_central_on_phy_change(throughput_phy_t phy)

void throughput_central_on_notification_change(throughput_notification_t notification)

void throughput_central_on_indication_change(throughput_notification_t indication)

void throughput_central_on_result_indication_change(throughput_notification_t result)

void throughput_central_on_data_size_change(throughput_pdu_size_t data_size)

void throughput_central_on_connection_settings_change(throughput_pdu_size_t pdu, throughput_mtu_size_t mtu)

void throughput_central_on_connection_timings_change(throughput_time_t interval, throughput_time_t latency,
throughput_time_t timeout)

void throughput_central_on_characteristics_found(throughput_central_characteristic_found_t characteristics)

void throughput_central_on_discovery_state_change(throughput_discovery_state_t state)

float throughput_central_calculate(throughput_value_t *throughput)

bool throughput_central_decode_address(char *addess_str, uint8_t *address)

void waiting_indication(void)

void timer_start()

float timer_end()

void timer_refresh_rssi_start(void)

void timer_refresh_rssi_stop(void)

void timer_on_refresh_rssi(void)

Macros

#define THROUGHPUT_CENTRAL_TEST_TYPE sl_bt_gatt_notification

#define THROUGHPUT_CENTRAL_MODE_DEFAULT THROUGHPUT_MODE_CONTINUOUS

#define THROUGHPUT_CENTRAL_FIXED_DATA_SIZE 100000

#define THROUGHPUT_CENTRAL_FIXED_TIME 10000

#define THROUGHPUT_CENTRAL_MTU_SIZE 247

#define THROUGHPUT_DEFAULT_SCAN_PHY sl_bt_scanner_scan_phy_1m

#define THROUGHPUT_DEFAULT_PHY sl_bt_gap_phy_coding_1m_uncoded

Throughput Test Receiver �Central) Role API

1002/1306

#define THROUGHPUT_CENTRAL_CONNECTION_INTERVAL_MIN 32

#define THROUGHPUT_CENTRAL_CONNECTION_INTERVAL_MAX 32

#define THROUGHPUT_CENTRAL_CONNECTION_RESPONDER_LATENCY 0

#define THROUGHPUT_CENTRAL_CONNECTION_TIMEOUT 1000

#define THROUGHPUT_CENTRAL_TX_POWER 10

#define THROUGHPUT_CENTRAL_POWER_CONTROL_ENABLE 0

#define THROUGHPUT_CENTRAL_SLEEP_ENABLE 0

#define THROUGHPUT_CENTRAL_ALLOWLIST_ENABLE 0

#define THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_1_ENABLE 0

#define THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_1 "00�00�00�00�00�00"

#define THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_2_ENABLE 0

#define THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_2 "00�00�00�00�00�00"

#define THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_3_ENABLE 0

#define THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_3 "00�00�00�00�00�00"

#define THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_4_ENABLE 0

#define THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_4 "00�00�00�00�00�00"

#define THROUGHPUT_CENTRAL_CHARACTERISTICS_ALL 0�0F

#define ADR_LEN 6

#define THROUGHPUT_CENTRAL_REFRESH_TIMER_PERIOD 1000

Function Documentation

throughput_central_allowlist_add

bool throughput_central_allowlist_add (uint8_t *address)

Parameters

[in] address BT address in 6 byte format

Add an address to the allowlist. Returns

true if adding the address was successful

Definition at line 81 of file common/throughput_central/throughput_central.h

throughput_central_allowlist_clear

bool throughput_central_allowlist_clear (void)

Parameters

Throughput Test Receiver �Central) Role API

1003/1306

Clear the allowlist Returns

true if adding the clear was succesful

Definition at line 87 of file common/throughput_central/throughput_central.h

throughput_central_enable

void throughput_central_enable (void)

Parameters

N/A

Enable receiver.

Definition at line 92 of file common/throughput_central/throughput_central.h

throughput_central_disable

sl_status_t throughput_central_disable (void)

Parameters

N/A

Disable receiver.

Definition at line 97 of file common/throughput_central/throughput_central.h

throughput_central_set_mode

sl_status_t throughput_central_set_mode (throughput_mode_t mode, uint32_t amount)

Parameters

[in] mode the transmission mode is either of:

THROUGHPUT_MODE_CONTINUOUS: transfer until stop
THROUGHPUT_MODE_FIXED_TIME: transfer data for a fixed time

THROUGHPUT_MODE_FIXED_LENGTH: a fixed amount of data to transfer

[in] amount the time in ms or data in bytes to transfer

Set receiver mode. Returns

status of the operation

Definition at line 108 of file common/throughput_central/throughput_central.h

throughput_central_set_mtu_size

sl_status_t throughput_central_set_mtu_size (uint8_t mtu)

Parameters

Throughput Test Receiver �Central) Role API

1004/1306

[in] mtu MTU size in bytes

Set data sizes for reception. Returns

status of the operation

Definition at line 116 of file common/throughput_central/throughput_central.h

throughput_central_set_tx_power

sl_status_t throughput_central_set_tx_power (throughput_tx_power_t tx_power, bool power_control, bool deep_sleep)

Parameters

[in] tx_power requested tx power in dBm

[in] power_control enable adaptive power control

[in] deep_sleep enable deep sleep during test

Set transmission power. Returns

status of the operation

Definition at line 125 of file common/throughput_central/throughput_central.h

throughput_central_set_connection_parameters

sl_status_t throughput_central_set_connection_parameters (throughput_time_t min_interval, throughput_time_t
max_interval, throughput_time_t latency, throughput_time_t timeout)

Parameters

[in] min_interval Minimum connection interval (in 1.25 ms steps)

[in] max_interval Maximum connection interval (in 1.25 ms steps)

[in] latency Responder latency (in connection intervals)

[in] timeout Supervision timeout (in 10 ms steps)

Set connection parameters. Returns

status of the operation

Definition at line 137 of file common/throughput_central/throughput_central.h

throughput_central_set_type

sl_status_t throughput_central_set_type (throughput_notification_t type)

Parameters

[in] type type of the test (notification or indication)

Set type of transmission. Returns

status of the operation

Definition at line 147 of file common/throughput_central/throughput_central.h

Throughput Test Receiver �Central) Role API

1005/1306

throughput_central_start

sl_status_t throughput_central_start (void)

Parameters

N/A

Start transmission on remote side. Returns

status of the operation

Definition at line 153 of file common/throughput_central/throughput_central.h

throughput_central_stop

sl_status_t throughput_central_stop (void)

Parameters

N/A

Stop transmission on remote side. Returns

status of the operation

Definition at line 159 of file common/throughput_central/throughput_central.h

throughput_central_set_scan_phy

sl_status_t throughput_central_set_scan_phy (throughput_scan_phy_t phy)

Parameters

[in] phy PHY used for scanning

Set PHY used for scanning. Returns

status of the operation

Definition at line 166 of file common/throughput_central/throughput_central.h

throughput_central_set_connection_phy

sl_status_t throughput_central_set_connection_phy (throughput_phy_t phy)

Parameters

[in] phy PHY used for the connection

Set PHY used for connection. Returns

status of the operation

Definition at line 173 of file common/throughput_central/throughput_central.h

Throughput Test Receiver �Central) Role API

1006/1306

throughput_central_change_phy

sl_status_t throughput_central_change_phy (void)

Parameters

N/A

Change PHY to next one.

In case of scanning, it is used for changing between CODED and 1M PHY

In a connection, it is used to change between 1M, 2M and CODED PHYs Returns

status of the operation

Definition at line 181 of file common/throughput_central/throughput_central.h

throughput_central_step

void throughput_central_step (void)

Parameters

N/A

Process step for throughput central.

Definition at line 186 of file common/throughput_central/throughput_central.h

bt_on_event_central

void bt_on_event_central (sl_bt_msg_t *evt)

Parameters

[in] evt Event coming from the Bluetooth stack.

Bluetooth stack event handler.

Definition at line 192 of file common/throughput_central/throughput_central.h

throughput_central_on_role_set

void throughput_central_on_role_set (throughput_role_t role)

Parameters

[in] role the role can be only THROUGHPUT_ROLE_PERIPHERAL

Callback to handle role settings. Note

To be implemented in user code.

Definition at line 219 of file common/throughput_central/throughput_central.h

throughput_central_on_state_change

Throughput Test Receiver �Central) Role API

1007/1306

void throughput_central_on_state_change (throughput_state_t state)

Parameters

[in] state current state

Callback to handle state change. Note

To be implemented in user code.

Definition at line 226 of file common/throughput_central/throughput_central.h

throughput_central_on_mode_change

void throughput_central_on_mode_change (throughput_mode_t mode)

Parameters

[in] mode current mode

Callback to handle mode change. Note

To be implemented in user code.

Definition at line 233 of file common/throughput_central/throughput_central.h

throughput_central_on_start

void throughput_central_on_start (void)

Parameters

N/A

Callback to handle transmission start event. Note

To be implemented in user code.

Definition at line 239 of file common/throughput_central/throughput_central.h

throughput_central_on_finish

void throughput_central_on_finish (throughput_value_t throughput, throughput_count_t count, throughput_count_t lost,
throughput_count_t error, throughput_time_t time)

Parameters

[in] throughput throughput value in bits/second (bps)

[in] count data volume transmitted, in bytes

[in] lost number of packets lost

[in] error number of wrong packets

[in] time total measurement time

Callback to handle transmission finished event. Note

Throughput Test Receiver �Central) Role API

1008/1306

To be implemented in user code.

Definition at line 250 of file common/throughput_central/throughput_central.h

throughput_central_on_transmit_power_change

void throughput_central_on_transmit_power_change (throughput_tx_power_t power)

Parameters

[in] power tx power in dBm

Callback to handle tx power changed event. Note

To be implemented in user code.

Definition at line 261 of file common/throughput_central/throughput_central.h

throughput_central_on_rssi_change

void throughput_central_on_rssi_change (throughput_rssi_t rssi)

Parameters

[in] rssi RSSI value

Callback to handle RSSI changed event. Note

To be implemented in user code.

Definition at line 268 of file common/throughput_central/throughput_central.h

throughput_central_on_phy_change

void throughput_central_on_phy_change (throughput_phy_t phy)

Parameters

[in] phy PHY that is in use

Callback to handle phy changed event. Note

To be implemented in user code.

Definition at line 275 of file common/throughput_central/throughput_central.h

throughput_central_on_notification_change

void throughput_central_on_notification_change (throughput_notification_t notification)

Parameters

[in] notification notification status

Callback to handle notification changed event. Note

Throughput Test Receiver �Central) Role API

1009/1306

Definition at line 282 of file common/throughput_central/throughput_central.h

throughput_central_on_indication_change

void throughput_central_on_indication_change (throughput_notification_t indication)

Parameters

[in] indication indication status

Callback to handle indication changed event. Note

To be implemented in user code.

Definition at line 289 of file common/throughput_central/throughput_central.h

throughput_central_on_result_indication_change

void throughput_central_on_result_indication_change (throughput_notification_t result)

Parameters

[in] result result indication status

Callback to handle result indication changed event. Note

To be implemented in user code.

Definition at line 296 of file common/throughput_central/throughput_central.h

throughput_central_on_data_size_change

void throughput_central_on_data_size_change (throughput_pdu_size_t data_size)

Parameters

[in] data_size Data size in bytes

Callback to handle data size change when receiving data. Note

To be implemented in user code.

Definition at line 303 of file common/throughput_central/throughput_central.h

throughput_central_on_connection_settings_change

void throughput_central_on_connection_settings_change (throughput_pdu_size_t pdu, throughput_mtu_size_t mtu)

Parameters

[in] pdu PDU size in bytes

[in] mtu MTU size in bytes

Callback to handle connection parameter changes. Note

To be implemented in user code.

Throughput Test Receiver �Central) Role API

1010/1306

Definition at line 311 of file common/throughput_central/throughput_central.h

throughput_central_on_connection_timings_change

void throughput_central_on_connection_timings_change (throughput_time_t interval, throughput_time_t latency,
throughput_time_t timeout)

Parameters

[in] interval Connection interval (in 1.25 ms steps)

[in] latency Responder latency (in connection intervals)

[in] timeout Supervision timeout (in 10 ms steps)

Callback to handle connection timing changes. Note

To be implemented in user code.

Definition at line 321 of file common/throughput_central/throughput_central.h

throughput_central_on_characteristics_found

void throughput_central_on_characteristics_found (throughput_central_characteristic_found_t characteristics)

Parameters

[in] characteristics Found characteristics

Callback to handle characteristic found event. Note

To be implemented in user code.

Definition at line 330 of file common/throughput_central/throughput_central.h

throughput_central_on_discovery_state_change

void throughput_central_on_discovery_state_change (throughput_discovery_state_t state)

Parameters

[in] state State of the discovery

Callback to handle discovery state change. Note

To be implemented in user code.

Definition at line 338 of file common/throughput_central/throughput_central.h

throughput_central_calculate

float throughput_central_calculate (throughput_value_t *throughput)

Parameters

[out] throughput calculated throughput value

Calculate throughput. Returns

Throughput Test Receiver �Central) Role API

1011/1306

the elapsed time in seconds since measurement started

Definition at line 346 of file common/throughput_central/throughput_central.h

throughput_central_decode_address

bool throughput_central_decode_address (char *addess_str, uint8_t *address)

Parameters

[in] addess_str Address string

[out] address address byte array

Convert address string to address data bytes. Returns

true if operation was successful

Definition at line 354 of file common/throughput_central/throughput_central.h

waiting_indication

void waiting_indication (void)

Parameters

N/A

ASCII graphics for indicating wait status

Definition at line 45 of file common/throughput_central/throughput_central_interface.h

timer_start

void timer_start ()

Start timer

Definition at line 50 of file common/throughput_central/throughput_central_interface.h

timer_end

float timer_end ()

Timer end. The return value of this function shall be the time passed form the timer_start() call in seconds.

Definition at line 56 of file common/throughput_central/throughput_central_interface.h

timer_refresh_rssi_start

void timer_refresh_rssi_start (void)

Parameters

Throughput Test Receiver �Central) Role API

1012/1306

N/A

Start RSSI refresh timer

Definition at line 61 of file common/throughput_central/throughput_central_interface.h

timer_refresh_rssi_stop

void timer_refresh_rssi_stop (void)

Parameters

N/A

Stop RSSI refresh timer

Definition at line 66 of file common/throughput_central/throughput_central_interface.h

timer_on_refresh_rssi

void timer_on_refresh_rssi (void)

Parameters

N/A

Event handler

Definition at line 71 of file common/throughput_central/throughput_central_interface.h

Macro Definition Documentation

THROUGHPUT_CENTRAL_TEST_TYPE

#define THROUGHPUT_CENTRAL_TEST_TYPE

Value:

sl_bt_gatt_notification

Definition at line 19 of file common/throughput_central/config/throughput_central_config.h

THROUGHPUT_CENTRAL_MODE_DEFAULT

#define THROUGHPUT_CENTRAL_MODE_DEFAULT

Value:

THROUGHPUT_MODE_CONTINUOUS

Definition at line 26 of file common/throughput_central/config/throughput_central_config.h

THROUGHPUT_CENTRAL_FIXED_DATA_SIZE

#define THROUGHPUT_CENTRAL_FIXED_DATA_SIZE

Throughput Test Receiver �Central) Role API

1013/1306

Value:

100000

Definition at line 30 of file common/throughput_central/config/throughput_central_config.h

THROUGHPUT_CENTRAL_FIXED_TIME

#define THROUGHPUT_CENTRAL_FIXED_TIME

Value:

10000

Definition at line 34 of file common/throughput_central/config/throughput_central_config.h

THROUGHPUT_CENTRAL_MTU_SIZE

#define THROUGHPUT_CENTRAL_MTU_SIZE

Value:

247

Definition at line 42 of file common/throughput_central/config/throughput_central_config.h

THROUGHPUT_DEFAULT_SCAN_PHY

#define THROUGHPUT_DEFAULT_SCAN_PHY

Value:

sl_bt_scanner_scan_phy_1m

Definition at line 48 of file common/throughput_central/config/throughput_central_config.h

THROUGHPUT_DEFAULT_PHY

#define THROUGHPUT_DEFAULT_PHY

Value:

sl_bt_gap_phy_coding_1m_uncoded

Definition at line 56 of file common/throughput_central/config/throughput_central_config.h

THROUGHPUT_CENTRAL_CONNECTION_INTERVAL_MIN

#define THROUGHPUT_CENTRAL_CONNECTION_INTERVAL_MIN

Value:

32

Definition at line 64 of file common/throughput_central/config/throughput_central_config.h

Throughput Test Receiver �Central) Role API

1014/1306

THROUGHPUT_CENTRAL_CONNECTION_INTERVAL_MAX

#define THROUGHPUT_CENTRAL_CONNECTION_INTERVAL_MAX

Value:

32

Definition at line 68 of file common/throughput_central/config/throughput_central_config.h

THROUGHPUT_CENTRAL_CONNECTION_RESPONDER_LATENCY

#define THROUGHPUT_CENTRAL_CONNECTION_RESPONDER_LATENCY

Value:

0

Definition at line 72 of file common/throughput_central/config/throughput_central_config.h

THROUGHPUT_CENTRAL_CONNECTION_TIMEOUT

#define THROUGHPUT_CENTRAL_CONNECTION_TIMEOUT

Value:

1000

Definition at line 76 of file common/throughput_central/config/throughput_central_config.h

THROUGHPUT_CENTRAL_TX_POWER

#define THROUGHPUT_CENTRAL_TX_POWER

Value:

10

Definition at line 84 of file common/throughput_central/config/throughput_central_config.h

THROUGHPUT_CENTRAL_POWER_CONTROL_ENABLE

#define THROUGHPUT_CENTRAL_POWER_CONTROL_ENABLE

Value:

0

Definition at line 88 of file common/throughput_central/config/throughput_central_config.h

THROUGHPUT_CENTRAL_SLEEP_ENABLE

#define THROUGHPUT_CENTRAL_SLEEP_ENABLE

Throughput Test Receiver �Central) Role API

1015/1306

Value:

0

Definition at line 92 of file common/throughput_central/config/throughput_central_config.h

THROUGHPUT_CENTRAL_ALLOWLIST_ENABLE

#define THROUGHPUT_CENTRAL_ALLOWLIST_ENABLE

Value:

0

Definition at line 98 of file common/throughput_central/config/throughput_central_config.h

THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_1_ENABLE

#define THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_1_ENABLE

Value:

0

Definition at line 102 of file common/throughput_central/config/throughput_central_config.h

THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_1

#define THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_1

Value:

"00�00�00�00�00�00"

Definition at line 106 of file common/throughput_central/config/throughput_central_config.h

THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_2_ENABLE

#define THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_2_ENABLE

Value:

0

Definition at line 112 of file common/throughput_central/config/throughput_central_config.h

THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_2

#define THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_2

Value:

"00�00�00�00�00�00"

Definition at line 116 of file common/throughput_central/config/throughput_central_config.h

Throughput Test Receiver �Central) Role API

1016/1306

THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_3_ENABLE

#define THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_3_ENABLE

Value:

0

Definition at line 122 of file common/throughput_central/config/throughput_central_config.h

THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_3

#define THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_3

Value:

"00�00�00�00�00�00"

Definition at line 126 of file common/throughput_central/config/throughput_central_config.h

THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_4_ENABLE

#define THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_4_ENABLE

Value:

0

Definition at line 132 of file common/throughput_central/config/throughput_central_config.h

THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_4

#define THROUGHPUT_CENTRAL_ALLOWLIST_SLOT_4

Value:

"00�00�00�00�00�00"

Definition at line 136 of file common/throughput_central/config/throughput_central_config.h

THROUGHPUT_CENTRAL_CHARACTERISTICS_ALL

#define THROUGHPUT_CENTRAL_CHARACTERISTICS_ALL

Value:

0�0F

Definition at line 51 of file common/throughput_central/throughput_central.h

ADR_LEN

#define ADR_LEN

Throughput Test Receiver �Central) Role API

1017/1306

Value:

6

Definition at line 52 of file common/throughput_central/throughput_central.h

THROUGHPUT_CENTRAL_REFRESH_TIMER_PERIOD

#define THROUGHPUT_CENTRAL_REFRESH_TIMER_PERIOD

Value:

1000

Definition at line 40 of file common/throughput_central/throughput_central_interface.h

throughput_central_characteristic_t

1018/1306

throughput_central_characteristic_t

Bitfield for holding characteristic discovery status and result.

Public Attributes

uint8_t indication

uint8_t notification

uint8_t transmission_on

uint8_t result

Public Attribute Documentation

indication

uint8_t throughput_central_characteristic_t::indication

Definition at line 60 of file common/throughput_central/throughput_central.h

notification

uint8_t throughput_central_characteristic_t::notification

Definition at line 61 of file common/throughput_central/throughput_central.h

transmission_on

uint8_t throughput_central_characteristic_t::transmission_on

Definition at line 62 of file common/throughput_central/throughput_central.h

result

uint8_t throughput_central_characteristic_t::result

Definition at line 63 of file common/throughput_central/throughput_central.h

throughput_central_characteristic_found_t

1019/1306

throughput_central_characteristic_found_t

Union for checking characteristic discovery status and result.

Public Attributes

throughput_centr
al_characteristic_t

characteristic

uint8_t all

Public Attribute Documentation

characteristic

throughput_central_characteristic_t throughput_central_characteristic_found_t::characteristic

Definition at line 68 of file common/throughput_central/throughput_central.h

all

uint8_t throughput_central_characteristic_found_t::all

Definition at line 69 of file common/throughput_central/throughput_central.h

Throughput Test Transmitter �Peripheral) Role API

1020/1306

Throughput Test Transmitter �Peripheral) Role API

Modules

throughput_peripheral_characteristic_t

throughput_peripheral_characteristic_found_t

Throughput Test Transmitter �Peripheral) Role API
Throughput Test Transmitter (Peripheral) Role API acts as a server and accepts connection from Throughput Test Receivers

(Central) Role clients. It sends out data via notifications or indications to a registered Central node. Throughput parameters

can be managed using the API calls or via CLI. The API provides interface for configuring, starting and stopping

transmission. Status and result callbacks can be also registered using the API.

Functions

void throughput_peripheral_enable(void)

sl_status_t throughput_peripheral_disable(void)

sl_status_t throughput_peripheral_set_mode(throughput_mode_t mode, uint32_t amount)

sl_status_t throughput_peripheral_set_data_size(uint8_t mtu, uint8_t ind_data, uint8_t not_data)

sl_status_t throughput_peripheral_set_tx_power(throughput_tx_power_t tx_power, bool power_control, bool deep_sleep)

sl_status_t throughput_peripheral_start(throughput_notification_t type)

sl_status_t throughput_peripheral_stop(void)

void throughput_peripheral_on_bt_event(sl_bt_msg_t *evt)

void throughput_peripheral_step(void)

sl_power_manage
r_on_isr_exit_t

throughput_peripheral_sleep_on_isr_exit(void)

bool throughput_peripheral_is_ok_to_sleep(void)

void throughput_peripheral_on_role_set(throughput_role_t role)

void throughput_peripheral_on_state_change(throughput_state_t state)

void throughput_peripheral_on_mode_change(throughput_mode_t mode)

void throughput_peripheral_on_start(void)

void throughput_peripheral_on_finish(throughput_value_t throughput, throughput_count_t count)

void throughput_peripheral_on_finish_reception(throughput_value_t throughput, throughput_count_t count,
throughput_count_t lost, throughput_count_t error, throughput_time_t time)

void throughput_peripheral_on_power_change(throughput_tx_power_t power)

Throughput Test Transmitter �Peripheral) Role API

1021/1306

void throughput_peripheral_on_rssi_change(throughput_rssi_t rssi)

void throughput_peripheral_on_phy_change(throughput_phy_t phy)

void throughput_peripheral_on_connection_settings_change(throughput_time_t interval, throughput_pdu_size_t
pdu, throughput_mtu_size_t mtu, throughput_data_size_t data)

void throughput_peripheral_on_notification_change(throughput_notification_t notification)

void throughput_peripheral_on_indication_change(throughput_notification_t indication)

Macros

#define THROUGHPUT_PERIPHERAL_MODE_DEFAULT THROUGHPUT_MODE_CONTINUOUS

#define THROUGHPUT_PERIPHERAL_FIXED_DATA_SIZE 100000

#define THROUGHPUT_PERIPHERAL_FIXED_TIME 10000

#define THROUGHPUT_PERIPHERAL_TX_POWER 10

#define THROUGHPUT_PERIPHERAL_TX_POWER_CONTROL_ENABLE 0

#define THROUGHPUT_PERIPHERAL_TX_SLEEP_ENABLE 0

#define THROUGHPUT_PERIPHERAL_MTU_SIZE 247

#define THROUGHPUT_PERIPHERAL_DATA_TRANSFER_SIZE_INDICATIONS 0

#define THROUGHPUT_PERIPHERAL_DATA_TRANSFER_SIZE_NOTIFICATIONS 0

#define THROUGHPUT_PERIPHERAL_CHARACTERISTICS_ALL 0�07

Function Documentation

throughput_peripheral_enable

void throughput_peripheral_enable (void)

Parameters

N/A

Enables the transmission.

Definition at line 70 of file common/throughput_peripheral/throughput_peripheral.h

throughput_peripheral_disable

sl_status_t throughput_peripheral_disable (void)

Parameters

N/A

Disables the transmission.

Definition at line 75 of file common/throughput_peripheral/throughput_peripheral.h

Throughput Test Transmitter �Peripheral) Role API

1022/1306

throughput_peripheral_set_mode

sl_status_t throughput_peripheral_set_mode (throughput_mode_t mode, uint32_t amount)

Parameters

[in] mode the transmission mode is either of:

THROUGHPUT_MODE_CONTINOUS: transfer until stop

THROUGHPUT_MODE_FIXED_TIME: transfer data for a fixed time

THROUGHPUT_MODE_FIXED_DATA: a fixed amount of data to transfer

[in] amount the time in ms or data in bytes to transfer

Sets the the transmission mode. Returns

status of the operation

Definition at line 86 of file common/throughput_peripheral/throughput_peripheral.h

throughput_peripheral_set_data_size

sl_status_t throughput_peripheral_set_data_size (uint8_t mtu, uint8_t ind_data, uint8_t not_data)

Parameters

[in] mtu MTU size in bytes

[in] ind_data indication data size (1-MTU-3)

[in] not_data notification data size (1-MTU-3)

Sets the the transmission sizes. Returns

status of the operation

Definition at line 96 of file common/throughput_peripheral/throughput_peripheral.h

throughput_peripheral_set_tx_power

sl_status_t throughput_peripheral_set_tx_power (throughput_tx_power_t tx_power, bool power_control, bool deep_sleep)

Parameters

[in] tx_power requested TX power in dBm

[in] power_control enable adaptive power control

[in] deep_sleep enable deep sleep during test

Sets the transmission power. Returns

status of the operation

Definition at line 107 of file common/throughput_peripheral/throughput_peripheral.h

throughput_peripheral_start

sl_status_t throughput_peripheral_start (throughput_notification_t type)

Throughput Test Transmitter �Peripheral) Role API

1023/1306

Parameters

[in] type type of the test (notification or indication)

Starts the the transmission. Returns

status of the operation

Definition at line 116 of file common/throughput_peripheral/throughput_peripheral.h

throughput_peripheral_stop

sl_status_t throughput_peripheral_stop (void)

Parameters

N/A

Stops the transmission. Returns

status of the operation

Definition at line 122 of file common/throughput_peripheral/throughput_peripheral.h

throughput_peripheral_on_bt_event

void throughput_peripheral_on_bt_event (sl_bt_msg_t *evt)

Parameters

[in] evt Event coming from the Bluetooth stack.

Bluetooth stack event handler.

Definition at line 128 of file common/throughput_peripheral/throughput_peripheral.h

throughput_peripheral_step

void throughput_peripheral_step (void)

Parameters

N/A

Process step for throughput peripheral.

Definition at line 133 of file common/throughput_peripheral/throughput_peripheral.h

throughput_peripheral_sleep_on_isr_exit

sl_power_manager_on_isr_exit_t throughput_peripheral_sleep_on_isr_exit (void)

Parameters

N/A

Routine for power manager handler Returns

Throughput Test Transmitter �Peripheral) Role API

1024/1306

SL_POWER_MANAGER_WAKEUP if the test has been started

Definition at line 139 of file common/throughput_peripheral/throughput_peripheral.h

throughput_peripheral_is_ok_to_sleep

bool throughput_peripheral_is_ok_to_sleep (void)

Parameters

N/A

Checks if it is ok to sleep now Returns

false if the test has been started

Definition at line 145 of file common/throughput_peripheral/throughput_peripheral.h

throughput_peripheral_on_role_set

void throughput_peripheral_on_role_set (throughput_role_t role)

Parameters

[in] role the role can be only THROUGHPUT_ROLE_PERIPHERAL

Callback to handle role settings. Note

To be implemented in user code.

Definition at line 156 of file common/throughput_peripheral/throughput_peripheral.h

throughput_peripheral_on_state_change

void throughput_peripheral_on_state_change (throughput_state_t state)

Parameters

[in] state current state

Callback to handle state change. Note

To be implemented in user code.

Definition at line 163 of file common/throughput_peripheral/throughput_peripheral.h

throughput_peripheral_on_mode_change

void throughput_peripheral_on_mode_change (throughput_mode_t mode)

Parameters

[in] mode current mode

Callback to handle mode change. Note

Throughput Test Transmitter �Peripheral) Role API

1025/1306

To be implemented in user code.

Definition at line 170 of file common/throughput_peripheral/throughput_peripheral.h

throughput_peripheral_on_start

void throughput_peripheral_on_start (void)

Parameters

N/A

Callback to handle transmission start event. Note

To be implemented in user code.

Definition at line 176 of file common/throughput_peripheral/throughput_peripheral.h

throughput_peripheral_on_finish

void throughput_peripheral_on_finish (throughput_value_t throughput, throughput_count_t count)

Parameters

[in] throughput throughput value in bits/second (bps)

[in] count data volume transmitted, in bytes

Callback to handle transmission finished event. Note

To be implemented in user code.

Definition at line 184 of file common/throughput_peripheral/throughput_peripheral.h

throughput_peripheral_on_finish_reception

void throughput_peripheral_on_finish_reception (throughput_value_t throughput, throughput_count_t count,
throughput_count_t lost, throughput_count_t error, throughput_time_t time)

Parameters

[in] throughput throughput value in bits/second (bps)

[in] count data volume received, in bytes

[in] lost number of packets lost

[in] error number of wrong packets

[in] time total measurement time

Callback to handle reception finished event. Note

To be implemented in user code.

Definition at line 196 of file common/throughput_peripheral/throughput_peripheral.h

throughput_peripheral_on_power_change

Throughput Test Transmitter �Peripheral) Role API

1026/1306

Parameters

[in] power TX power in dBm

Callback to handle TX power changed event. Note

To be implemented in user code.

Definition at line 207 of file common/throughput_peripheral/throughput_peripheral.h

throughput_peripheral_on_rssi_change

void throughput_peripheral_on_rssi_change (throughput_rssi_t rssi)

Parameters

[in] rssi RSSI value

Callback to handle RSSI changed event. Note

To be implemented in user code.

Definition at line 214 of file common/throughput_peripheral/throughput_peripheral.h

throughput_peripheral_on_phy_change

void throughput_peripheral_on_phy_change (throughput_phy_t phy)

Parameters

[in] phy PHY that is in use

Callback to handle phy changed event. Note

To be implemented in user code.

Definition at line 221 of file common/throughput_peripheral/throughput_peripheral.h

throughput_peripheral_on_connection_settings_change

void throughput_peripheral_on_connection_settings_change (throughput_time_t interval, throughput_pdu_size_t pdu,
throughput_mtu_size_t mtu, throughput_data_size_t data)

Parameters

[in] interval connection interval

[in] pdu PDU size in bytes

[in] mtu MTU size in bytes

[in] data data size in bytes

Callback to handle connection settings changes. Note

To be implemented in user code.

Definition at line 231 of file common/throughput_peripheral/throughput_peripheral.h

Throughput Test Transmitter �Peripheral) Role API

1027/1306

throughput_peripheral_on_notification_change

void throughput_peripheral_on_notification_change (throughput_notification_t notification)

Parameters

[in] notification notification status

Callback to handle notification changed event. Note

To be implemented in user code.

Definition at line 241 of file common/throughput_peripheral/throughput_peripheral.h

throughput_peripheral_on_indication_change

void throughput_peripheral_on_indication_change (throughput_notification_t indication)

Parameters

[in] indication indication status

Callback to handle indication changed event. Note

To be implemented in user code.

Definition at line 248 of file common/throughput_peripheral/throughput_peripheral.h

Macro Definition Documentation

THROUGHPUT_PERIPHERAL_MODE_DEFAULT

#define THROUGHPUT_PERIPHERAL_MODE_DEFAULT

Value:

THROUGHPUT_MODE_CONTINUOUS

Definition at line 20 of file common/throughput_peripheral/config/throughput_peripheral_config.h

THROUGHPUT_PERIPHERAL_FIXED_DATA_SIZE

#define THROUGHPUT_PERIPHERAL_FIXED_DATA_SIZE

Value:

100000

Definition at line 24 of file common/throughput_peripheral/config/throughput_peripheral_config.h

THROUGHPUT_PERIPHERAL_FIXED_TIME

#define THROUGHPUT_PERIPHERAL_FIXED_TIME

Value:

Throughput Test Transmitter �Peripheral) Role API

1028/1306

10000

Definition at line 28 of file common/throughput_peripheral/config/throughput_peripheral_config.h

THROUGHPUT_PERIPHERAL_TX_POWER

#define THROUGHPUT_PERIPHERAL_TX_POWER

Value:

10

Definition at line 36 of file common/throughput_peripheral/config/throughput_peripheral_config.h

THROUGHPUT_PERIPHERAL_TX_POWER_CONTROL_ENABLE

#define THROUGHPUT_PERIPHERAL_TX_POWER_CONTROL_ENABLE

Value:

0

Definition at line 40 of file common/throughput_peripheral/config/throughput_peripheral_config.h

THROUGHPUT_PERIPHERAL_TX_SLEEP_ENABLE

#define THROUGHPUT_PERIPHERAL_TX_SLEEP_ENABLE

Value:

0

Definition at line 44 of file common/throughput_peripheral/config/throughput_peripheral_config.h

THROUGHPUT_PERIPHERAL_MTU_SIZE

#define THROUGHPUT_PERIPHERAL_MTU_SIZE

Value:

247

Definition at line 52 of file common/throughput_peripheral/config/throughput_peripheral_config.h

THROUGHPUT_PERIPHERAL_DATA_TRANSFER_SIZE_INDICATIONS

#define THROUGHPUT_PERIPHERAL_DATA_TRANSFER_SIZE_INDICATIONS

Value:

0

Definition at line 57 of file common/throughput_peripheral/config/throughput_peripheral_config.h

Throughput Test Transmitter �Peripheral) Role API

1029/1306

THROUGHPUT_PERIPHERAL_DATA_TRANSFER_SIZE_NOTIFICATIONS

#define THROUGHPUT_PERIPHERAL_DATA_TRANSFER_SIZE_NOTIFICATIONS

Value:

0

Definition at line 61 of file common/throughput_peripheral/config/throughput_peripheral_config.h

THROUGHPUT_PERIPHERAL_CHARACTERISTICS_ALL

#define THROUGHPUT_PERIPHERAL_CHARACTERISTICS_ALL

Value:

0�07

Definition at line 44 of file common/throughput_peripheral/throughput_peripheral.h

throughput_peripheral_characteristic_t

1030/1306

throughput_peripheral_characteristic_t

Bitfield for holding characteristic discovery status and result.

Public Attributes

uint8_t indication

uint8_t notification

uint8_t transmission_on

Public Attribute Documentation

indication

uint8_t throughput_peripheral_characteristic_t::indication

Definition at line 52 of file common/throughput_peripheral/throughput_peripheral.h

notification

uint8_t throughput_peripheral_characteristic_t::notification

Definition at line 53 of file common/throughput_peripheral/throughput_peripheral.h

transmission_on

uint8_t throughput_peripheral_characteristic_t::transmission_on

Definition at line 54 of file common/throughput_peripheral/throughput_peripheral.h

throughput_peripheral_characteristic_found_t

1031/1306

throughput_peripheral_characteristic_found_t

Union for checking characteristic discovery status and result.

Public Attributes

throughput_perip
heral_characterist

ic_t

characteristic

uint8_t all

Public Attribute Documentation

characteristic

throughput_peripheral_characteristic_t throughput_peripheral_characteristic_found_t::characteristic

Definition at line 59 of file common/throughput_peripheral/throughput_peripheral.h

all

uint8_t throughput_peripheral_characteristic_found_t::all

Definition at line 60 of file common/throughput_peripheral/throughput_peripheral.h

Throughput User Interface API

1032/1306

Throughput User Interface API

Throughput User Interface API
API for drawing throughput test state and results to LCD

Functions

void throughput_ui_init(void)
Initilize the the UI.

void throughput_ui_update(void)
Updates the the UI.

void throughput_ui_set_state(throughput_state_t state)
Sets the state value on UI.

void throughput_ui_set_role(throughput_role_t role)
Sets the role value on UI.

void throughput_ui_set_tx_power(throughput_tx_power_t power)
Sets the TX Power value on UI.

void throughput_ui_set_rssi(throughput_rssi_t rssi)
Sets the RSSI value on UI.

void throughput_ui_set_connection_interval(throughput_time_t interval)
Sets the connection interval value on UI.

void throughput_ui_set_pdu_size(throughput_pdu_size_t size)
Sets the PDU size value on UI.

void throughput_ui_set_mtu_size(throughput_mtu_size_t size)
Sets the MTU size value on UI.

void throughput_ui_set_data_size(throughput_data_size_t size)
Sets the data size value on UI.

void throughput_ui_set_phy(throughput_phy_t phy)
Sets the PHY on UI.

void throughput_ui_set_notifications(throughput_notification_t notifications)
Sets the notification state on UI.

void throughput_ui_set_indications(throughput_notification_t indications)
Sets the indication state on UI.

void throughput_ui_set_throughput(throughput_value_t throughput)
Sets the throughput value on UI.

void throughput_ui_set_count(throughput_count_t count)
Sets the counter value on UI.

void throughput_ui_set_all(throughput_t status)
Sets all values.

Throughput User Interface API

1033/1306

Macros

#define THROUGHPUT_UI_LOG_ENABLE 1

#define THROUGHPUT_UI_PRINT_RSSI 0

#define THROUGHPUT_UI_LOG_ENABLE 1

#define THROUGHPUT_UI_LOG_REFRESH_ALL 1

#define THROUGHPUT_UI_LOG_BOX_ENABLE 1

Function Documentation

throughput_ui_init

void throughput_ui_init (void)

Initilize the the UI.

Parameters

N/A

Definition at line 49 of file common/throughput_ui/throughput_ui.h

throughput_ui_update

void throughput_ui_update (void)

Updates the the UI.

Parameters

N/A

Definition at line 55 of file common/throughput_ui/throughput_ui.h

throughput_ui_set_state

void throughput_ui_set_state (throughput_state_t state)

Sets the state value on UI.

Parameters

[in] state current state

Definition at line 63 of file common/throughput_ui/throughput_ui.h

throughput_ui_set_role

void throughput_ui_set_role (throughput_role_t role)

Throughput User Interface API

1034/1306

Parameters

[in] role the role can be

THROUGHPUT_UI_ROLE_PERIPHERAL or

THROUGHPUT_UI_ROLE_CENTRAL

Definition at line 73 of file common/throughput_ui/throughput_ui.h

throughput_ui_set_tx_power

void throughput_ui_set_tx_power (throughput_tx_power_t power)

Sets the TX Power value on UI.

Parameters

[in] power TX power in dBm

Definition at line 81 of file common/throughput_ui/throughput_ui.h

throughput_ui_set_rssi

void throughput_ui_set_rssi (throughput_rssi_t rssi)

Sets the RSSI value on UI.

Parameters

[in] rssi measured RSSI value

Definition at line 89 of file common/throughput_ui/throughput_ui.h

throughput_ui_set_connection_interval

void throughput_ui_set_connection_interval (throughput_time_t interval)

Sets the connection interval value on UI.

Parameters

[in] interval connectio interval in ms

Definition at line 97 of file common/throughput_ui/throughput_ui.h

throughput_ui_set_pdu_size

void throughput_ui_set_pdu_size (throughput_pdu_size_t size)

Sets the PDU size value on UI.

Parameters

[in] size PDU size in bytes

Throughput User Interface API

1035/1306

Definition at line 105 of file common/throughput_ui/throughput_ui.h

throughput_ui_set_mtu_size

void throughput_ui_set_mtu_size (throughput_mtu_size_t size)

Sets the MTU size value on UI.

Parameters

[in] size MTU size in bytes

Definition at line 113 of file common/throughput_ui/throughput_ui.h

throughput_ui_set_data_size

void throughput_ui_set_data_size (throughput_data_size_t size)

Sets the data size value on UI.

Parameters

[in] size data size in bytes

Definition at line 121 of file common/throughput_ui/throughput_ui.h

throughput_ui_set_phy

void throughput_ui_set_phy (throughput_phy_t phy)

Sets the PHY on UI.

Parameters

[in] phy can be either of

sl_bt_gap_phy_coding_1m_uncoded: 1M phy

sl_bt_gap_phy_coding_2m_uncoded: 2M phy

sl_bt_gap_phy_coding_500k_coded: Coded phy

Definition at line 132 of file common/throughput_ui/throughput_ui.h

throughput_ui_set_notifications

void throughput_ui_set_notifications (throughput_notification_t notifications)

Sets the notification state on UI.

Parameters

[in] notifications settings in CCCD, that can be either of

sl_bt_gatt_notification: notifications enabled

sl_bt_gatt_disable: notifications disabled

Throughput User Interface API

1036/1306

Definition at line 142 of file common/throughput_ui/throughput_ui.h

throughput_ui_set_indications

void throughput_ui_set_indications (throughput_notification_t indications)

Sets the indication state on UI.

Parameters

[in] indications settings in CCCD, that can be either of

sl_bt_gatt_indication: indications enabled

sl_bt_gatt_disable: indications disabled

Definition at line 152 of file common/throughput_ui/throughput_ui.h

throughput_ui_set_throughput

void throughput_ui_set_throughput (throughput_value_t throughput)

Sets the throughput value on UI.

Parameters

[in] throughput measured throughput in bits/second (bps)

Definition at line 160 of file common/throughput_ui/throughput_ui.h

throughput_ui_set_count

void throughput_ui_set_count (throughput_count_t count)

Sets the counter value on UI.

Parameters

[in] count counted bytes

Definition at line 168 of file common/throughput_ui/throughput_ui.h

throughput_ui_set_all

void throughput_ui_set_all (throughput_t status)

Sets all values.

Parameters

[in] status throughput status

Definition at line 176 of file common/throughput_ui/throughput_ui.h

Macro Definition Documentation

Throughput User Interface API

1037/1306

THROUGHPUT_UI_LOG_ENABLE

#define THROUGHPUT_UI_LOG_ENABLE

Value:

1

Definition at line 14 of file common/throughput_ui/config/throughput_ui_config.h

THROUGHPUT_UI_PRINT_RSSI

#define THROUGHPUT_UI_PRINT_RSSI

Value:

0

Definition at line 19 of file common/throughput_ui/config/throughput_ui_config.h

THROUGHPUT_UI_LOG_ENABLE

#define THROUGHPUT_UI_LOG_ENABLE

Value:

1

Definition at line 13 of file common/throughput_ui/config/throughput_ui_log_config.h

THROUGHPUT_UI_LOG_REFRESH_ALL

#define THROUGHPUT_UI_LOG_REFRESH_ALL

Value:

1

Definition at line 17 of file common/throughput_ui/config/throughput_ui_log_config.h

THROUGHPUT_UI_LOG_BOX_ENABLE

#define THROUGHPUT_UI_LOG_BOX_ENABLE

Value:

1

Definition at line 21 of file common/throughput_ui/config/throughput_ui_log_config.h

Throughput User Interface API with logging

1038/1306

Throughput User Interface API with logging

Throughput User Interface API with logging
API for printing throughput test state and results to log

GATT Profiles

1039/1306

GATT Profiles

Modules

ESL Tag core

GATT Profiles
SW components that implement standard GATT profiles. They usually add additional functionality to GATT services, e.g. by

implementing state machines and roles. (e.g. Object Transfer Profile, ESL Profile)

ESL Tag core

1040/1306

ESL Tag core

ESL Tag core
Implements the ESL Tag role of the Bluetooth Electronic Shelf Label Profile. It contains the mandatory ESL Tag

characteristics, only. Optional features has to be added to the project as separate components, if needed. This component

implements all the core functionalities, while also declares the interface of the optional features (and provides the WEAK

implementations for them). This is a No-Code component, any additional feature can be added as a component.

Typedefs

typedef uint8_t esl_display_type_t
ESL Display Info Display Type.

typedef struct
esl_display_info_t

*

esl_display_info_p
ESL Display Info first class abstract data pointer type.

typedef uint8_t esl_error_t

typedef uint8_t esl_image_object_id_t�6�
ESL Service Specification d09r18, Section 3.7.2.4: 48 bit Image Object ID.

typedef uint8_t esl_led_type_t
ESL LED type.

typedef uint8_t esl_led_gamut_control_t
ESL LED color gamut control type.

typedef uint16_t esl_led_repeats_type_t
ESL LED repeats type.

typedef uint8_t tlv_t

typedef uint8_t tlv_tag_t

typedef uint8_t tlv_length_t

Functions

sl_status_t esl_sensor_battery_init(void)

sl_status_t esl_sensor_battery_read(void)

uint32_t esl_sensor_get_battery_voltage_mv(void)

void esl_sensor_core_check_battery_level(void)

void * esl_core_encrypt_message(void *msg, uint8_t *len)

void * esl_core_decrypt_message(void *msg, uint8_t *len)

void esl_display_init(void)

ESL Tag core

1041/1306

sl_status_t esl_display_refresh(uint8_t display_index, uint8_t *image_index)

sl_status_t esl_display_update(uint8_t display_index, uint8_t image_index)

uint8_t esl_display_get_count()

esl_error_t esl_core_get_last_error(void)

void esl_core_set_last_error(esl_error_t error_code)

void esl_image_init(void)

void esl_image_characteristic_update(void)

sl_status_t esl_image_get_data(uint8_t image_index, uint16_t *offset, uint16_t buf_size, uint8_t *target_buf)

uint8_t esl_image_get_count(void)

void esl_image_reset_storage(void)

sl_status_t esl_display_get_width(uint8_t display_index, uint16_t *width)

sl_status_t esl_display_get_height(uint8_t display_index, uint16_t *height)

sl_status_t esl_display_get_type(uint8_t display_index, esl_display_type_t *type)

sl_status_t esl_image_select_object(void const *data, uint16_t length)

sl_status_t esl_image_chunk_received(uint8_t const *data, uint32_t offset, uint16_t length)

sl_status_t esl_core_update_complete(void)

sl_status_t esl_core_start_advertising(void)

void esl_core_purge_responses(void)

void esl_reschedule_delayed_commands(uint32_t current_absolute_time)

uint16_t esl_core_get_sync_handle(void)

uint16_t esl_core_get_request_event(void)

uint8_t esl_core_get_request_subevent(void)

void esl_core_invalidate_config(void)

typedef(struct { uint8_t data[5];uint8_t bit_off_period;uint8_t bit_on_period;}) esl_led_flashing_pattern_t
ESL LED flashing pattern ESL Service Spec. d09r18, Section 3.10.2.10.2.2.

typedef(struct { uint8_t index;esl_led_gamut_control_t gamut;esl_led_flashing_pattern_t
pattern;esl_led_repeats_type_t repeats;}) esl_led_control_t
ESL LED Control parameter, ESL Service Spec. d09r18, Section 3.10.2.10.1.

void esl_led_init(void)

sl_status_t esl_led_control(esl_led_control_t *control_param)

uint8_t esl_led_get_count()

bool esl_led_is_srgb(uint8_t led_index)

void esl_core_respones_init()

ESL Tag core

1042/1306

sl_status_t esl_core_build_response(tlv_t tlv, const void *input_data)

uint8_t esl_core_get_responses(uint8_t remaining_length, uint8_t *buf_p)

void esl_sensor_init(void)

sl_status_t esl_sensor_read(uint8_t index)

uint8_t esl_sensor_get_count(void)

sl_status_t esl_display_create(uint16_t width, uint16_t height, esl_display_type_t type, esl_display_info_p *info)

sl_status_t esl_display_add(esl_display_info_p info, esl_va_method_p init_func, esl_va_method_p write_func)

void esl_display_bt_on_event(sl_bt_msg_t *evt)

sl_status_t esl_display_set_image(uint8_t display_index, uint8_t image_index)

sl_status_t esl_led_add(esl_led_type_t type, uint8_t red_value, uint8_t green_value, uint8_t blue_value)

sl_status_t esl_led_on(uint8_t led_index, esl_led_gamut_control_t gamut)

sl_status_t esl_led_off(uint8_t led_index)

esl_led_gamut_co
ntrol_t

esl_led_create_color(uint8_t red_value, uint8_t green_value, uint8_t blue_value, uint8_t brightness)

void esl_led_bt_on_event(sl_bt_msg_t *evt)

Macros

#define ESL_TAG_ADVERTISING_INTERVAL_MIN 750

#define ESL_TAG_ADVERTISING_INTERVAL_MAX 1500

#define ESL_TAG_MAX_SYNC_LOST_COUNT 3

#define ESL_TAG_VENDOR_OPCODES_ENABLED 1

#define ESL_TAG_BUILTIN_BATTERY_MEASURE_ENABLE 1

#define ESL_TAG_BATTERY_LEVEL_FULL_MILLIVOLTS 3200

#define ESL_TAG_BATTERY_LEVEL_LOW_MILLIVOLTS 2400

#define ESL_TAG_BATTERY_MEASUREMENT_INTERVAL_MIN 10

#define ESL_TAG_BATTERY_MEASUREMENT_INTERVAL_MS �ESL_TAG_BATTERY_MEASUREMENT_INTERVAL_MIN * 60
* 1000�

#define ESL_TAG_BATTERY_LEVEL_UNKNOWN 0
Definition for unknown battery voltage level (an implausible value)

#define ESL_DISPLAY_TYPE_BLACK_WHITE 0�01
ESL Display Type Assigned Numbers.

#define ESL_DISPLAY_TYPE_3_GRAY_SCALE 0�02

#define ESL_DISPLAY_TYPE_4_GRAY_SCALE 0�03

#define ESL_DISPLAY_TYPE_8_GRAY_SCALE 0�04

ESL Tag core

1043/1306

#define ESL_DISPLAY_TYPE_16_GRAY_SCALE 0�05

#define ESL_DISPLAY_TYPE_RED_BLACK_WHITE 0�06

#define ESL_DISPLAY_TYPE_YELLOW_BLACK_WHITE 0�07

#define ESL_DISPLAY_TYPE_RED_YELLOW_BLACK_WHITE 0�08

#define ESL_DISPLAY_TYPE_7_COLOR 0�09

#define ESL_DISPLAY_TYPE_16_COLOR 0�0A

#define ESL_DISPLAY_TYPE_FULL_RGB 0�0B

#define ESL_ERROR_UNSPECIFIED ((esl_error_t)0�01)

#define ESL_ERROR_INVALID_OPCODE ((esl_error_t)0�02)
Invalid Opcode: The opcode was not recognized.

#define ESL_ERROR_INVALID_STATE ((esl_error_t)0�03)
Invalid State: The request was not valid for the present ESL state.

#define ESL_ERROR_INVALID_IMAGE_INDEX ((esl_error_t)0�04)
Invalid Image Index: The Image_Index value was out of range.

#define ESL_ERROR_IMAGE_NOT_AVAILABLE ((esl_error_t)0�05)
Image Not Available: The requested image contained no image data.

#define ESL_ERROR_INVALID_PARAMETER ((esl_error_t)0�06)

#define ESL_ERROR_CAPACITY_LIMIT ((esl_error_t)0�07)

#define ESL_ERROR_INSUFFICIENT_BATTERY ((esl_error_t)0�08)

#define ESL_ERROR_INSUFFICIENT_RESOURCES ((esl_error_t)0�09)

#define ESL_ERROR_RETRY ((esl_error_t)0�0A)

#define ESL_ERROR_QUEUE_FULL ((esl_error_t)0�0B)

#define ESL_ERROR_IMPLAUSIBLE_TIME ((esl_error_t)0�0C)

#define ESL_ERROR_VENDOR_NOERROR ((esl_error_t)0xFF)

#define ESL_ERROR_VENDOR_NOREPORT ((esl_error_t)0xFE)

#define esl_core_clear_last_error ()

#define esl_core_has_no_error ()

#define ESL_IMAGE_OBJECT_BASE 0�100u
ESL Service Specification d09r18, Section 3.7.2.4: 48 bit Image Object ID.

#define ESL_LED_TYPE_SHIFT ((esl_led_type_t)6)

#define ESL_LED_BRIGHTNESS_SHIFT ((esl_led_gamut_control_t)6)

#define ESL_LED_RED_GAMUT_SHIFT ((esl_led_gamut_control_t)0)

#define ESL_LED_GREEN_GAMUT_SHIFT ((esl_led_gamut_control_t)2)

#define ESL_LED_BLUE_GAMUT_SHIFT ((esl_led_gamut_control_t)4)

ESL Tag core

1044/1306

#define ESL_LED_REPEATS_TYPE_MASK ((esl_led_repeats_type_t)0�0001�

#define ESL_LED_REPEATS_TYPE_COUNT ((esl_led_repeats_type_t)0�0000�

#define ESL_LED_REPEATS_TYPE_TIME ((esl_led_repeats_type_t)0�0001�

#define ESL_LED_REPEATS_DURATION_SHIFT ((esl_led_repeats_type_t)0�0001�

#define ESL_LED_TYPE_SRGB ((esl_led_type_t)(0�00 << ESL_LED_TYPE_SHIFT��
ESL LED type definition: sRGB.

#define ESL_LED_TYPE_MONOCHROME ((esl_led_type_t)(0�01 << ESL_LED_TYPE_SHIFT��
ESL LED type definition: Monochrome.

#define ESL_LED_TYPE_MASK ((esl_led_type_t)0xC0)

#define ESL_LED_GENERIC_2BIT_MASK ((esl_led_type_t)0�03)

#define ESL_LED_LEVEL_0 �0�00�
ESL LED color gamut / brightness values.

#define ESL_LED_LEVEL_1 �0�01�

#define ESL_LED_LEVEL_2 �0�02�

#define ESL_LED_LEVEL_3 �0�03�

#define ESL_LED_LEVEL_STEP_PERCENTAGE 25
ESL LED color gamut / brightness step percentage.

#define esl_led_get_brightness (_gamut)

#define esl_led_get_red_value (_gamut)

#define esl_led_get_green_value (_gamut)

#define esl_led_get_blue_value (_gamut)

#define ESL_TLV_RESPONSE_ERROR ((tlv_t)0�00)
The command could not be processed successfully.

#define ESL_TLV_RESPONSE_LED_STATE ((tlv_t)0�01)
Acknowledgment of a request to control an LED.

#define ESL_TLV_RESPONSE_BASIC_STATE ((tlv_t)0�10)
General acknowledgment containing ESL status data.

#define ESL_TLV_RESPONSE_DISPLAY_STATE ((tlv_t)0�11)
Acknowledgment of a request to display an image.

#define ESL_TLV_RESPONSE_SENSOR_VALUE ((tlv_t)0�0E)
Sensor report.

#define ESL_TLV_RESPONSE_VENDOR_VALUE ((tlv_t)0�0F)
Response data as specified by the vendor of the ESL.

#define ESL_TLV_TAG_MASK ((tlv_t)0�0F)
Mask for getting the Tag value from an ESL TLV.

#define ESL_TLV_LEN_MASK ((tlv_t)0xF0)
Mask for getting the Length value from an ESL TLV.

#define esl_core_get_tlv_tag (tlv_byte)

ESL Tag core

1045/1306

#define esl_core_get_tlv_len (tlv_byte)

#define esl_core_set_tlv_tag (_tlv, _tag)

#define esl_core_set_tlv_len (_tlv, _len)

#define ESL_DISPLAY_INIT_FUNC_PARAMETERS_COUNT �1�
ESL Display extra parameters count for init_func esl_va_method function.

#define ESL_DISPLAY_WRITE_FUNC_PARAMETERS_COUNT �2�
ESL Display extra parameters count for write_func esl_va_method function.

Typedef Documentation

esl_display_type_t

typedef uint8_t esl_display_type_t

ESL Display Info Display Type.

Definition at line 55 of file common/esl_tag_core/inc/esl_tag_display_core.h

esl_display_info_p

typedef struct esl_display_info_t* esl_display_info_p

ESL Display Info first class abstract data pointer type.

Definition at line 58 of file common/esl_tag_core/inc/esl_tag_display_core.h

esl_error_t

typedef uint8_t esl_error_t

Definition at line 41 of file common/esl_tag_core/inc/esl_tag_errors.h

esl_image_object_id_t

typedef uint8_t esl_image_object_id_t[6] �6�

ESL Service Specification d09r18, Section 3.7.2.4: 48 bit Image Object ID.

Definition at line 42 of file common/esl_tag_core/inc/esl_tag_image_core.h

esl_led_type_t

typedef uint8_t esl_led_type_t

ESL LED type.

ESL Tag core

1046/1306

Definition at line 43 of file common/esl_tag_core/inc/esl_tag_led_core.h

esl_led_gamut_control_t

typedef uint8_t esl_led_gamut_control_t

ESL LED color gamut control type.

Definition at line 46 of file common/esl_tag_core/inc/esl_tag_led_core.h

esl_led_repeats_type_t

typedef uint16_t esl_led_repeats_type_t

ESL LED repeats type.

Definition at line 49 of file common/esl_tag_core/inc/esl_tag_led_core.h

tlv_t

typedef uint8_t tlv_t

Definition at line 40 of file common/esl_tag_core/inc/esl_tag_tlv.h

tlv_tag_t

typedef uint8_t tlv_tag_t

Definition at line 43 of file common/esl_tag_core/inc/esl_tag_tlv.h

tlv_length_t

typedef uint8_t tlv_length_t

Definition at line 46 of file common/esl_tag_core/inc/esl_tag_tlv.h

Function Documentation

esl_sensor_battery_init

sl_status_t esl_sensor_battery_init (void)

Parameters

N/A

Definition at line 53 of file common/esl_tag_core/inc/esl_tag_battery_internal.h

esl_sensor_battery_read

ESL Tag core

1047/1306

sl_status_t esl_sensor_battery_read (void)

Parameters

N/A

Definition at line 59 of file common/esl_tag_core/inc/esl_tag_battery_internal.h

esl_sensor_get_battery_voltage_mv

uint32_t esl_sensor_get_battery_voltage_mv (void)

Parameters

N/A

Definition at line 67 of file common/esl_tag_core/inc/esl_tag_battery_internal.h

esl_sensor_core_check_battery_level

void esl_sensor_core_check_battery_level (void)

Parameters

N/A

Definition at line 74 of file common/esl_tag_core/inc/esl_tag_battery_internal.h

esl_core_encrypt_message

void * esl_core_encrypt_message (void *msg, uint8_t *len)

Parameters

[in] msg Pointer to the message to be encrypted

N/A len len Pointer to a variable containing the length of the message to be encrypted [in bytes]

Message encryption function Returns

void* Pointer to the encrypted message on success, NULL otherwise.

Note

Also changes the value of *len to the resulting length on successful operation.

Definition at line 48 of file common/esl_tag_core/inc/esl_tag_crypto.h

esl_core_decrypt_message

void * esl_core_decrypt_message (void *msg, uint8_t *len)

Parameters

[in] msg Pointer to the message to be decrypted

ESL Tag core

1048/1306

N/A len len Pointer to a variable containing the length of the message to be decrypted [in bytes]

Message decryption function Returns

void* Pointer to the decrypted message on success, NULL otherwise.

Note

Also changes the value of *len to the resulting length on successful operation.

Definition at line 59 of file common/esl_tag_core/inc/esl_tag_crypto.h

esl_display_init

void esl_display_init (void)

Parameters

N/A

ESL Tag display component init function. ESL Core component will call this during the initialization of application. This call is

hidden and happens automatically.

Definition at line 65 of file common/esl_tag_core/inc/esl_tag_display_core.h

esl_display_refresh

sl_status_t esl_display_refresh (uint8_t display_index, uint8_t *image_index)

Parameters

[in] display_index Selects the display to show the image on.

[out] image_index Returns last image set on the refreshed display.

Refresh the content of the ESL Tag Display. Re-displays the image which was previously set on the given screen. Returns

sl_status_t

Definition at line 74 of file common/esl_tag_core/inc/esl_tag_display_core.h

esl_display_update

sl_status_t esl_display_update (uint8_t display_index, uint8_t image_index)

Parameters

[in] display_index Selects the display to show the image on.

[in] image_index Selects the image to be shown on the display.

Update image data on ESL Tag Display. Returns

sl_status_t

Definition at line 82 of file common/esl_tag_core/inc/esl_tag_display_core.h

esl_display_get_count

ESL Tag core

1049/1306

uint8_t esl_display_get_count ()

ESL Display: display count getter Returns

Number of available displays

Definition at line 88 of file common/esl_tag_core/inc/esl_tag_display_core.h

esl_core_get_last_error

esl_error_t esl_core_get_last_error (void)

Parameters

N/A

Gets the last error code Returns

esl_error_t_t

Definition at line 112 of file common/esl_tag_core/inc/esl_tag_errors.h

esl_core_set_last_error

void esl_core_set_last_error (esl_error_t error_code)

Parameters

[in] error_code error code

Sets the last error code

Definition at line 118 of file common/esl_tag_core/inc/esl_tag_errors.h

esl_image_init

void esl_image_init (void)

Parameters

N/A

ESL Tag image init function. ESL Core component will call this during the initialization of application. This call is hidden and

happens automatically.

Definition at line 51 of file common/esl_tag_core/inc/esl_tag_image_core.h

esl_image_characteristic_update

void esl_image_characteristic_update (void)

Parameters

N/A

ESL Tag core

1050/1306

ESL Tag image characteristic update. ESL Core component will call this automatically on the bluetooth stack boot event.

The real implementation in the ESL Tag Image component will get the display info and write it to the ESL Image Information

Characteristic value for the lifecycle of the tag.

Definition at line 59 of file common/esl_tag_core/inc/esl_tag_image_core.h

esl_image_get_data

sl_status_t esl_image_get_data (uint8_t image_index, uint16_t *offset, uint16_t buf_size, uint8_t *target_buf)

Parameters

[in] image_index image_index Index of the image to get raw data chunk of

[out] offset *offset Size of data already read out

[in] buf_size buf_size Actual size of the target buffer

[out] target_buf *target_buf Buffer address to copy the image chunk into

Getter for an ESL Tag image raw data chunk

Note

To get full image data this function needs to be called repeatedly until the offset value increases - offset in caller has to be

persistent during the process, and usually its value must be set to 0, initially

Returns

sl_status_t

Definition at line 74 of file common/esl_tag_core/inc/esl_tag_image_core.h

esl_image_get_count

uint8_t esl_image_get_count (void)

Parameters

N/A

ESL Tag maximum image count getter Returns

Number of available images

Note

: To be implemented with each custom image storage implementation!

Definition at line 82 of file common/esl_tag_core/inc/esl_tag_image_core.h

esl_image_reset_storage

void esl_image_reset_storage (void)

Parameters

N/A

Reset image storage objects Note

ESL Tag core

1051/1306

: To be implemented with each custom image storage implementation!

Definition at line 88 of file common/esl_tag_core/inc/esl_tag_image_core.h

esl_display_get_width

sl_status_t esl_display_get_width (uint8_t display_index, uint16_t *width)

Parameters

[in] display_index Selects the display to get the width of.

[out] width Horizontal pixel count of the selected display.

Get a display width based on display index. Returns

sl_status_t SL_STATUS_OK if display_index is valid, error otherwise.

Note

: The function is only defined in esl_tag_display component (if added)

Display width getter. Returns

sl_status_t

Definition at line 48 of file common/esl_tag_core/inc/esl_tag_internal.h

esl_display_get_height

sl_status_t esl_display_get_height (uint8_t display_index, uint16_t *height)

Parameters

[in] display_index Selects the display to get the height of.

[out] height Vertical pixel count of the selected display.

Get a display height based on display index. Returns

sl_status_t SL_STATUS_OK if display_index is valid, error otherwise.

Note

: The function is only defined in esl_tag_display component (if added)

Display height getter Returns

sl_status_t

Definition at line 58 of file common/esl_tag_core/inc/esl_tag_internal.h

esl_display_get_type

sl_status_t esl_display_get_type (uint8_t display_index, esl_display_type_t *type)

Parameters

[in] display_index Selects the display to get the type of.

ESL Tag core

1052/1306

[out] type esl_display_type_t Display type defined in BT SIG.

Get a display type based on display index. Returns

sl_status_t SL_STATUS_OK if display_index is valid, error otherwise.

Note

: The function is only defined in esl_tag_display component (if added)

Display type getter. Returns

sl_status_t

Definition at line 68 of file common/esl_tag_core/inc/esl_tag_internal.h

esl_image_select_object

sl_status_t esl_image_select_object (void const *data, uint16_t length)

Parameters

[in] data Pointer to ESL OTS object ID 48 bit value in little endian.

[in] length Must be sizeof(esl_image_object_id_t)

Select an image storage OTS object. Returns

sl_status_t SL_STATUS_OK if select successful, error code otherwise.

Note

: The function is only defined in esl_tag_image component (if added)

Definition at line 78 of file common/esl_tag_core/inc/esl_tag_internal.h

esl_image_chunk_received

sl_status_t esl_image_chunk_received (uint8_t const *data, uint32_t offset, uint16_t length)

Parameters

[in] data Pointer to image chunk data.

[in] offset Start offset of received chunk.

[in] length Actual length of received chunk.

Callback on image chunk received event. Returns

sl_status_t SL_STATUS_OK if stored successfully, error otherwise.

Note

: The function is defined in esl_tag_image component (if added), and is used externally only by esl_tag_cli_test_harness to

mimic the image transfer during ESL PTS tests where OTS data transfer itself is far out of scope.

Definition at line 91 of file common/esl_tag_core/inc/esl_tag_internal.h

esl_core_update_complete

ESL Tag core

1053/1306

Parameters

N/A

Request ESL to return the Synchronized state from a connection if it's already synchronized to the AP's PAwR train. Note

: Defined in esl_core but not exposed to the public ESL API

Definition at line 100 of file common/esl_tag_core/inc/esl_tag_internal.h

esl_core_start_advertising

sl_status_t esl_core_start_advertising (void)

Parameters

N/A

Start ESL service advertisement. Note

: Defined in esl_core but not exposed to the public ESL API

Definition at line 106 of file common/esl_tag_core/inc/esl_tag_internal.h

esl_core_purge_responses

void esl_core_purge_responses (void)

Parameters

N/A

Purge any pending responses that aren't sent yet. Note

: Defined in esl_tag_response.c but not exposed to the public ESL API

Definition at line 112 of file common/esl_tag_core/inc/esl_tag_internal.h

esl_reschedule_delayed_commands

void esl_reschedule_delayed_commands (uint32_t current_absolute_time)

Parameters

[in] current_absolute_time current_absolute_time New ESL Current Absolute Time value after the clock drift adjustment.

Re-schedule pending commands if there're any. Note

: Called by esl core internally after absolute time has been adjusted. The function is defined in esl_tag_opcodes.c

Definition at line 121 of file common/esl_tag_core/inc/esl_tag_internal.h

esl_core_get_sync_handle

uint16_t esl_core_get_sync_handle (void)

Parameters

ESL Tag core

1054/1306

N/A

Get sync handle. Returns

The PAwR sync hanle or SL_BT_INVALID_SYNC_HANDLE if ESL is out of sync.

Note

: Called by esl core internally on opcodes parsing. The function is defined in esl_tag_core.c

Definition at line 130 of file common/esl_tag_core/inc/esl_tag_internal.h

esl_core_get_request_event

uint16_t esl_core_get_request_event (void)

Parameters

N/A

Get request event value for PAwR response. Returns

The most recent PAwR sync request event value.

Note

: Called by esl core internally on opcodes parsing. The function is defined in esl_tag_core.c

Definition at line 138 of file common/esl_tag_core/inc/esl_tag_internal.h

esl_core_get_request_subevent

uint8_t esl_core_get_request_subevent (void)

Parameters

N/A

Get request subevent value for PAwR response. Returns

The most recent PAwR sync request subevent value.

Note

: Called by esl core internally on opcodes parsing. The function is defined in esl_tag_core.c

Definition at line 146 of file common/esl_tag_core/inc/esl_tag_internal.h

esl_core_invalidate_config

void esl_core_invalidate_config (void)

Parameters

N/A

Invalidate entire ESL configuration to prevent later opcode processing. Note

: Called by esl core internally on factory reset opcode execution. The function is defined in esl_tag_core.c

ESL Tag core

1055/1306

Definition at line 153 of file common/esl_tag_core/inc/esl_tag_internal.h

typedef

typedef (struct { uint8_t data[5];uint8_t bit_off_period;uint8_t bit_on_period;}) esl_led_flashing_pattern_t

ESL LED flashing pattern ESL Service Spec. d09r18, Section 3.10.2.10.2.2.

Parameters

N/A

Definition at line 52 of file common/esl_tag_core/inc/esl_tag_led_core.h

typedef

typedef (struct { uint8_t index;esl_led_gamut_control_t gamut;esl_led_flashing_pattern_t pattern;esl_led_repeats_type_t
repeats;}) esl_led_control_t

ESL LED Control parameter, ESL Service Spec. d09r18, Section 3.10.2.10.1.

Parameters

N/A

Definition at line 59 of file common/esl_tag_core/inc/esl_tag_led_core.h

esl_led_init

void esl_led_init (void)

Parameters

N/A

ESL Tag LED init function. ESL Core component will call this during the initialization of application. This call is hidden and

happens automatically.

Definition at line 147 of file common/esl_tag_core/inc/esl_tag_led_core.h

esl_led_control

sl_status_t esl_led_control (esl_led_control_t *control_param)

Parameters

[in] control_param ESL LED control parameters defined by the ESL standard - excluding the ESL ID.

ESL Tag LED control function Note

updates the active LED bit in ESL basic state register according to the actual status of all LEDs

Returns

sl_status_t

Definition at line 157 of file common/esl_tag_core/inc/esl_tag_led_core.h

ESL Tag core

1056/1306

esl_led_get_count

uint8_t esl_led_get_count ()

Get ESL Tag LED count Returns

Number of available LEDs

Definition at line 163 of file common/esl_tag_core/inc/esl_tag_led_core.h

esl_led_is_srgb

bool esl_led_is_srgb (uint8_t led_index)

Parameters

N/A led_index

Get ESL Tag LED count Returns

Number of available LEDs

Definition at line 169 of file common/esl_tag_core/inc/esl_tag_led_core.h

esl_core_respones_init

void esl_core_respones_init ()

Init ESL Tag responses queue. ESL Core component will call this during the initialization of application. This call is hidden

and happens automatically.

Definition at line 62 of file common/esl_tag_core/inc/esl_tag_response.h

esl_core_build_response

sl_status_t esl_core_build_response (tlv_t tlv, const void *input_data)

Parameters

[in] tlv The TLV to create the response stream for

[in] input_data can be a pointer to the basic status, led status etc.

Create response byte stream for single TLV based on input data and error status (if any) then puts the response stream into

a circular buffer. The resulting output length of a single TLV will be the length encoded in that particular TLV + 1 byte as per

ESL specification. Multiple response streams will be then concatenated on consecutive calls up to the maximum length limit

of 48 bytes for multiple response data. Note

the actual length of the input data length MUST be in correspondence with the TLV passed as the first parameter!

Returns

sl_tatus_t

Definition at line 78 of file common/esl_tag_core/inc/esl_tag_response.h

ESL Tag core

1057/1306

esl_core_get_responses

uint8_t esl_core_get_responses (uint8_t remaining_length, uint8_t *buf_p)

Parameters

[in] remaining_length size of data out buffer

[out] buf_p pointer to data buffer to copy the responses into

Copy all possible responses from internal circular buffer to a temporary linear buffer. Circular buffer drops the successfully

read out data, while it might keep remaining responses which doesn't fit into the target buffer. Consistency of any response

will be kept, that is, it might copy less data than the allowed maximum length passed as the first parameter, if there are

responses left still in the internal circular buffer which otherwise wont fit into the target buffer. Returns

overall length of responses, might be 0 if there's no response

Definition at line 94 of file common/esl_tag_core/inc/esl_tag_response.h

esl_sensor_init

void esl_sensor_init (void)

Parameters

N/A

ESL Tag sensor init function. ESL Core component will call this during the initialization of application. This call is hidden and

happens automatically.

Definition at line 44 of file common/esl_tag_core/inc/esl_tag_sensor_core.h

esl_sensor_read

sl_status_t esl_sensor_read (uint8_t index)

Parameters

N/A index

Read interface (only) for ESL Sensor. Returns

sl_status_t SL_NOT_SUPPORTED if the ESL Sensor component is missing.

Definition at line 50 of file common/esl_tag_core/inc/esl_tag_sensor_core.h

esl_sensor_get_count

uint8_t esl_sensor_get_count (void)

Parameters

N/A

Get ESL Tag Sensor count Returns

Number of available sensors

ESL Tag core

1058/1306

Definition at line 56 of file common/esl_tag_core/inc/esl_tag_sensor_core.h

esl_display_create

sl_status_t esl_display_create (uint16_t width, uint16_t height, esl_display_type_t type, esl_display_info_p *info)

Parameters

[in] width Display horizontal pixel count.

[in] height Display vertical pixel count.

[in] type Display type defined in BT SIG Assigned Numbers.

[out] info esl_display_info_p type pointer to the newly created display info data. This value needs to pass to

esl_display_add call, which has to follow the invocation of esl_display_create for any new display to be

created, fully and properly.

Create an ESL Tag display. Any display which a Tag wants to implement needs to becreated properly in the first place.

Returns

sl_status_t

Definition at line 62 of file common/esl_tag_display/inc/esl_tag_display.h

esl_display_add

sl_status_t esl_display_add (esl_display_info_p info, esl_va_method_p init_func, esl_va_method_p write_func)

Parameters

[in] info esl_display_info_p type pointer, can be get by calling esl_display_create previously.

[in] init_func esl_va_method_p type pointer to the low-level init function of the display driver. Driver implementation,

however, it's up to the user to implement it properly - the only rule is to follow the interface specification

defined by the esl_va_method_p type. If the 'init' method is not necessary for the given display, then a

NULL pointer can be passed.

[in] write_func esl_va_method_p type pointer to the low-level write function of the display driver. Has to be

implemented by the users, and it's mandatory (can't be NULL).

Add an ESL Tag display to the list of available displays after creation. Any display on a Tag can be only used after adding it

to the list.

Returns

sl_status_t

Definition at line 85 of file common/esl_tag_display/inc/esl_tag_display.h

esl_display_bt_on_event

void esl_display_bt_on_event (sl_bt_msg_t *evt)

Parameters

[in] evt Event coming from the Bluetooth stack.

ESL display's bluetooth stack event handler. This one runs by the user implementation (usually in app.c) in parallel.

ESL Tag core

1059/1306

Definition at line 95 of file common/esl_tag_display/inc/esl_tag_display.h

esl_display_set_image

sl_status_t esl_display_set_image (uint8_t display_index, uint8_t image_index)

Parameters

[in] display_index Selects the display to show the image on.

[in] image_index Selects the image to be shown on the display.

ESL Display: chose an image to show. Invokes the users write_func passed to esl_display_add as its 3rd parameter. Returns

sl_status_t

Definition at line 104 of file common/esl_tag_display/inc/esl_tag_display.h

esl_led_add

sl_status_t esl_led_add (esl_led_type_t type, uint8_t red_value, uint8_t green_value, uint8_t blue_value)

Parameters

[in] type Possible ESL LED type defined by ESL standard

[in] red_value ESL LED (initial, in case of sRGB type) red color value.

[in] green_value ESL LED (initial, if sRGB) green color value.

[in] blue_value ESL LED (initial, if sRGB) blue color value.

Add an ESL Tag LED to the list of available LEDs after creation. Any LED on a Tag can be only used after adding it to the

internal LED registry.

Returns

sl_status_t

Definition at line 53 of file common/esl_tag_led/inc/esl_tag_led.h

esl_led_on

sl_status_t esl_led_on (uint8_t led_index, esl_led_gamut_control_t gamut)

Parameters

N/A led_index

N/A gamut

ESL Tag LED on function. Simple turn on function with given brightness and color values, to be implemented by end users.

It's the users responsibility to actually turn given LED on with the given brightness and color parameters (if applicable) and

the function shall return SL_STATUS_OK in case of success. Return SL_STATUS_FAIL on any other case (e.g. index out of

bound, detectable HW error etc. Returns

sl_status_t

Definition at line 69 of file common/esl_tag_led/inc/esl_tag_led.h

esl_led_off

ESL Tag core

1060/1306

sl_status_t esl_led_off (uint8_t led_index)

Parameters

N/A led_index

ESL Tag LED off function. Simple turn off function, similar to sl_esl_led_on method except it omits the gamut parameter

entirely. To be implemented by end users. It's the users responsibility to actually turn given LED off and the function shall

return SL_STATUS_OK in case of success. Return SL_STATUS_FAIL on any other case (e.g. index out of bound, detectable

HW error etc. Returns

sl_status_t

Definition at line 81 of file common/esl_tag_led/inc/esl_tag_led.h

esl_led_create_color

esl_led_gamut_control_t esl_led_create_color (uint8_t red_value, uint8_t green_value, uint8_t blue_value, uint8_t brightness)

Parameters

[in] red_value ESL LED red color level

[in] green_value ESL LED red color level

[in] blue_value ESL LED red color level

[in] brightness ESL LED red color level

Assembly ESL Tag LED gamut value from input parameters for esl_led_gamut_control_t type Returns

esl_led_gamut_control_t Resulting ESL LED gamut value

Definition at line 92 of file common/esl_tag_led/inc/esl_tag_led.h

esl_led_bt_on_event

void esl_led_bt_on_event (sl_bt_msg_t *evt)

Parameters

[in] evt Event coming from the Bluetooth stack.

ESL LED's bluetooth stack event handler. This one runs by the user implementation (usually in app.c) in parallel.

Definition at line 103 of file common/esl_tag_led/inc/esl_tag_led.h

Macro Definition Documentation

ESL_TAG_ADVERTISING_INTERVAL_MIN

#define ESL_TAG_ADVERTISING_INTERVAL_MIN

Value:

750

ESL Tag core

1061/1306

Definition at line 46 of file common/esl_tag_core/config/esl_tag_core_config.h

ESL_TAG_ADVERTISING_INTERVAL_MAX

#define ESL_TAG_ADVERTISING_INTERVAL_MAX

Value:

1500

Definition at line 51 of file common/esl_tag_core/config/esl_tag_core_config.h

ESL_TAG_MAX_SYNC_LOST_COUNT

#define ESL_TAG_MAX_SYNC_LOST_COUNT

Value:

3

Definition at line 58 of file common/esl_tag_core/config/esl_tag_core_config.h

ESL_TAG_VENDOR_OPCODES_ENABLED

#define ESL_TAG_VENDOR_OPCODES_ENABLED

Value:

1

Definition at line 63 of file common/esl_tag_core/config/esl_tag_core_config.h

ESL_TAG_BUILTIN_BATTERY_MEASURE_ENABLE

#define ESL_TAG_BUILTIN_BATTERY_MEASURE_ENABLE

Value:

1

Definition at line 68 of file common/esl_tag_core/config/esl_tag_core_config.h

ESL_TAG_BATTERY_LEVEL_FULL_MILLIVOLTS

#define ESL_TAG_BATTERY_LEVEL_FULL_MILLIVOLTS

Value:

3200

Definition at line 73 of file common/esl_tag_core/config/esl_tag_core_config.h

ESL_TAG_BATTERY_LEVEL_LOW_MILLIVOLTS

ESL Tag core

1062/1306

#define ESL_TAG_BATTERY_LEVEL_LOW_MILLIVOLTS

Value:

2400

Definition at line 78 of file common/esl_tag_core/config/esl_tag_core_config.h

ESL_TAG_BATTERY_MEASUREMENT_INTERVAL_MIN

#define ESL_TAG_BATTERY_MEASUREMENT_INTERVAL_MIN

Value:

10

Definition at line 83 of file common/esl_tag_core/config/esl_tag_core_config.h

ESL_TAG_BATTERY_MEASUREMENT_INTERVAL_MS

#define ESL_TAG_BATTERY_MEASUREMENT_INTERVAL_MS

Value:

 �ESL_TAG_BATTERY_MEASUREMENT_INTERVAL_MIN * 60 * 1000�

Definition at line 92 of file common/esl_tag_core/config/esl_tag_core_config.h

ESL_TAG_BATTERY_LEVEL_UNKNOWN

#define ESL_TAG_BATTERY_LEVEL_UNKNOWN

Value:

0

Definition for unknown battery voltage level (an implausible value)

Definition at line 47 of file common/esl_tag_core/inc/esl_tag_battery_internal.h

ESL_DISPLAY_TYPE_BLACK_WHITE

#define ESL_DISPLAY_TYPE_BLACK_WHITE

Value:

0�01

ESL Display Type Assigned Numbers.

Definition at line 42 of file common/esl_tag_core/inc/esl_tag_display_core.h

ESL_DISPLAY_TYPE_3_GRAY_SCALE

ESL Tag core

1063/1306

#define ESL_DISPLAY_TYPE_3_GRAY_SCALE

Value:

0x02

Definition at line 43 of file common/esl_tag_core/inc/esl_tag_display_core.h

ESL_DISPLAY_TYPE_4_GRAY_SCALE

#define ESL_DISPLAY_TYPE_4_GRAY_SCALE

Value:

0�03

Definition at line 44 of file common/esl_tag_core/inc/esl_tag_display_core.h

ESL_DISPLAY_TYPE_8_GRAY_SCALE

#define ESL_DISPLAY_TYPE_8_GRAY_SCALE

Value:

0�04

Definition at line 45 of file common/esl_tag_core/inc/esl_tag_display_core.h

ESL_DISPLAY_TYPE_16_GRAY_SCALE

#define ESL_DISPLAY_TYPE_16_GRAY_SCALE

Value:

0�05

Definition at line 46 of file common/esl_tag_core/inc/esl_tag_display_core.h

ESL_DISPLAY_TYPE_RED_BLACK_WHITE

#define ESL_DISPLAY_TYPE_RED_BLACK_WHITE

Value:

0�06

Definition at line 47 of file common/esl_tag_core/inc/esl_tag_display_core.h

ESL_DISPLAY_TYPE_YELLOW_BLACK_WHITE

#define ESL_DISPLAY_TYPE_YELLOW_BLACK_WHITE

Value:

0�07

ESL Tag core

1064/1306

Definition at line 48 of file common/esl_tag_core/inc/esl_tag_display_core.h

ESL_DISPLAY_TYPE_RED_YELLOW_BLACK_WHITE

#define ESL_DISPLAY_TYPE_RED_YELLOW_BLACK_WHITE

Value:

0�08

Definition at line 49 of file common/esl_tag_core/inc/esl_tag_display_core.h

ESL_DISPLAY_TYPE_7_COLOR

#define ESL_DISPLAY_TYPE_7_COLOR

Value:

0�09

Definition at line 50 of file common/esl_tag_core/inc/esl_tag_display_core.h

ESL_DISPLAY_TYPE_16_COLOR

#define ESL_DISPLAY_TYPE_16_COLOR

Value:

0�0A

Definition at line 51 of file common/esl_tag_core/inc/esl_tag_display_core.h

ESL_DISPLAY_TYPE_FULL_RGB

#define ESL_DISPLAY_TYPE_FULL_RGB

Value:

0�0B

Definition at line 52 of file common/esl_tag_core/inc/esl_tag_display_core.h

ESL_ERROR_UNSPECIFIED

#define ESL_ERROR_UNSPECIFIED

Value:

((esl_error_t)0�01)

Unspecified Error: any error condition that is not covered by a specific error code below

Definition at line 45 of file common/esl_tag_core/inc/esl_tag_errors.h

ESL Tag core

1065/1306

ESL_ERROR_INVALID_OPCODE

#define ESL_ERROR_INVALID_OPCODE

Value:

((esl_error_t)0�02)

Invalid Opcode: The opcode was not recognized.

Definition at line 48 of file common/esl_tag_core/inc/esl_tag_errors.h

ESL_ERROR_INVALID_STATE

#define ESL_ERROR_INVALID_STATE

Value:

((esl_error_t)0�03)

Invalid State: The request was not valid for the present ESL state.

Definition at line 51 of file common/esl_tag_core/inc/esl_tag_errors.h

ESL_ERROR_INVALID_IMAGE_INDEX

#define ESL_ERROR_INVALID_IMAGE_INDEX

Value:

((esl_error_t)0�04)

Invalid Image Index: The Image_Index value was out of range.

Definition at line 54 of file common/esl_tag_core/inc/esl_tag_errors.h

ESL_ERROR_IMAGE_NOT_AVAILABLE

#define ESL_ERROR_IMAGE_NOT_AVAILABLE

Value:

((esl_error_t)0�05)

Image Not Available: The requested image contained no image data.

Definition at line 57 of file common/esl_tag_core/inc/esl_tag_errors.h

ESL_ERROR_INVALID_PARAMETER

#define ESL_ERROR_INVALID_PARAMETER

Value:

ESL Tag core

1066/1306

((esl_error_t)0�06)

Invalid Parameter(s): The parameter value(s) or length did not match the opcode

Definition at line 61 of file common/esl_tag_core/inc/esl_tag_errors.h

ESL_ERROR_CAPACITY_LIMIT

#define ESL_ERROR_CAPACITY_LIMIT

Value:

((esl_error_t)0�07)

Capacity Limit: The required response could not be sent as it would exceed the payload size limit

Definition at line 65 of file common/esl_tag_core/inc/esl_tag_errors.h

ESL_ERROR_INSUFFICIENT_BATTERY

#define ESL_ERROR_INSUFFICIENT_BATTERY

Value:

((esl_error_t)0�08)

Insufficient Battery: The request could not be processed because of a lack of battery charge

Definition at line 69 of file common/esl_tag_core/inc/esl_tag_errors.h

ESL_ERROR_INSUFFICIENT_RESOURCES

#define ESL_ERROR_INSUFFICIENT_RESOURCES

Value:

((esl_error_t)0�09)

Insufficient Resources: The request could not be processed because of a lack of resources. This may be a temporary

condition.

Definition at line 73 of file common/esl_tag_core/inc/esl_tag_errors.h

ESL_ERROR_RETRY

#define ESL_ERROR_RETRY

Value:

((esl_error_t)0�0A)

Retry: The ESL is temporarily not able to give a full response (e.g., because the required sensor hardware was asleep) and

the AP is asked to try the same command again.

ESL Tag core

1067/1306

Definition at line 78 of file common/esl_tag_core/inc/esl_tag_errors.h

ESL_ERROR_QUEUE_FULL

#define ESL_ERROR_QUEUE_FULL

Value:

((esl_error_t)0�0B)

Queue Full: The ESL is temporarily unable to add a further timed command to the queue of pending commands Â the queue

has reached its limit.

Definition at line 82 of file common/esl_tag_core/inc/esl_tag_errors.h

ESL_ERROR_IMPLAUSIBLE_TIME

#define ESL_ERROR_IMPLAUSIBLE_TIME

Value:

((esl_error_t)0�0C)

Implausible time: The Absolute Time parameter value in the command would result in a delay longer than 48 days (that is,

it's a possible overflow)

Definition at line 86 of file common/esl_tag_core/inc/esl_tag_errors.h

ESL_ERROR_VENDOR_NOERROR

#define ESL_ERROR_VENDOR_NOERROR

Value:

((esl_error_t)0xFF)

No Error: 0xFF is reserved for 'no error' indication. For internal use only, and it is Silicon Labs specific.

Definition at line 90 of file common/esl_tag_core/inc/esl_tag_errors.h

ESL_ERROR_VENDOR_NOREPORT

#define ESL_ERROR_VENDOR_NOREPORT

Value:

((esl_error_t)0xFE)

No report: 0xFE is reserved for 'no error report needed for timed commands' indication. For internal use only, and it is Silicon

Labs specific.

Definition at line 94 of file common/esl_tag_core/inc/esl_tag_errors.h

ESL Tag core

1068/1306

esl_core_clear_last_error

#define esl_core_clear_last_error

Value:

()

Wrapper around esl_core_set_last_error() to clear the last error

Definition at line 99 of file common/esl_tag_core/inc/esl_tag_errors.h

esl_core_has_no_error

#define esl_core_has_no_error

Value:

()

Wrapper around esl_core_get_last_error() to check if there's no error

Definition at line 105 of file common/esl_tag_core/inc/esl_tag_errors.h

ESL_IMAGE_OBJECT_BASE

#define ESL_IMAGE_OBJECT_BASE

Value:

0�100u

ESL Service Specification d09r18, Section 3.7.2.4: 48 bit Image Object ID.

Definition at line 45 of file common/esl_tag_core/inc/esl_tag_image_core.h

ESL_LED_TYPE_SHIFT

#define ESL_LED_TYPE_SHIFT

Value:

((esl_led_type_t)6)

Definition at line 67 of file common/esl_tag_core/inc/esl_tag_led_core.h

ESL_LED_BRIGHTNESS_SHIFT

#define ESL_LED_BRIGHTNESS_SHIFT

Value:

((esl_led_gamut_control_t)6)

ESL Tag core

1069/1306

Definition at line 71 of file common/esl_tag_core/inc/esl_tag_led_core.h

ESL_LED_RED_GAMUT_SHIFT

#define ESL_LED_RED_GAMUT_SHIFT

Value:

((esl_led_gamut_control_t)0)

Definition at line 72 of file common/esl_tag_core/inc/esl_tag_led_core.h

ESL_LED_GREEN_GAMUT_SHIFT

#define ESL_LED_GREEN_GAMUT_SHIFT

Value:

((esl_led_gamut_control_t)2)

Definition at line 73 of file common/esl_tag_core/inc/esl_tag_led_core.h

ESL_LED_BLUE_GAMUT_SHIFT

#define ESL_LED_BLUE_GAMUT_SHIFT

Value:

((esl_led_gamut_control_t)4)

Definition at line 74 of file common/esl_tag_core/inc/esl_tag_led_core.h

ESL_LED_REPEATS_TYPE_MASK

#define ESL_LED_REPEATS_TYPE_MASK

Value:

((esl_led_repeats_type_t)0�0001�

Definition at line 77 of file common/esl_tag_core/inc/esl_tag_led_core.h

ESL_LED_REPEATS_TYPE_COUNT

#define ESL_LED_REPEATS_TYPE_COUNT

Value:

((esl_led_repeats_type_t)0�0000�

Definition at line 80 of file common/esl_tag_core/inc/esl_tag_led_core.h

ESL_LED_REPEATS_TYPE_TIME

ESL Tag core

1070/1306

#define ESL_LED_REPEATS_TYPE_TIME

Value:

((esl_led_repeats_type_t)0�0001�

Definition at line 83 of file common/esl_tag_core/inc/esl_tag_led_core.h

ESL_LED_REPEATS_DURATION_SHIFT

#define ESL_LED_REPEATS_DURATION_SHIFT

Value:

((esl_led_repeats_type_t)0�0001�

Definition at line 86 of file common/esl_tag_core/inc/esl_tag_led_core.h

ESL_LED_TYPE_SRGB

#define ESL_LED_TYPE_SRGB

Value:

((esl_led_type_t)(0�00 << ESL_LED_TYPE_SHIFT��

ESL LED type definition: sRGB.

Definition at line 89 of file common/esl_tag_core/inc/esl_tag_led_core.h

ESL_LED_TYPE_MONOCHROME

#define ESL_LED_TYPE_MONOCHROME

Value:

((esl_led_type_t)(0�01 << ESL_LED_TYPE_SHIFT��

ESL LED type definition: Monochrome.

Definition at line 92 of file common/esl_tag_core/inc/esl_tag_led_core.h

ESL_LED_TYPE_MASK

#define ESL_LED_TYPE_MASK

Value:

((esl_led_type_t)0xC0)

Definition at line 95 of file common/esl_tag_core/inc/esl_tag_led_core.h

ESL_LED_GENERIC_2BIT_MASK

ESL Tag core

1071/1306

#define ESL_LED_GENERIC_2BIT_MASK

Value:

((esl_led_type_t)0�03)

Definition at line 96 of file common/esl_tag_core/inc/esl_tag_led_core.h

ESL_LED_LEVEL_0

#define ESL_LED_LEVEL_0

Value:

�0�00�

ESL LED color gamut / brightness values.

Definition at line 99 of file common/esl_tag_core/inc/esl_tag_led_core.h

ESL_LED_LEVEL_1

#define ESL_LED_LEVEL_1

Value:

�0�01�

Definition at line 100 of file common/esl_tag_core/inc/esl_tag_led_core.h

ESL_LED_LEVEL_2

#define ESL_LED_LEVEL_2

Value:

�0�02�

Definition at line 101 of file common/esl_tag_core/inc/esl_tag_led_core.h

ESL_LED_LEVEL_3

#define ESL_LED_LEVEL_3

Value:

�0�03�

Definition at line 102 of file common/esl_tag_core/inc/esl_tag_led_core.h

ESL_LED_LEVEL_STEP_PERCENTAGE

#define ESL_LED_LEVEL_STEP_PERCENTAGE

ESL Tag core

1072/1306

Value:

25

ESL LED color gamut / brightness step percentage.

Definition at line 105 of file common/esl_tag_core/inc/esl_tag_led_core.h

esl_led_get_brightness

#define esl_led_get_brightness

Value:

0 (esl_led_gamut_control_t) \
0 ((_gamut & �ESL_LED_GENERIC_2BIT_MASK << ESL_LED_BRIGHTNESS_SHIFT�� \
0 >> ESL_LED_BRIGHTNESS_SHIFT�

Function like macro getter for 2-bit brightness value from a gamut value Returns

esl_led_gamut_control_t brightness

Definition at line 112 of file common/esl_tag_core/inc/esl_tag_led_core.h

esl_led_get_red_value

#define esl_led_get_red_value

Value:

0 (esl_led_gamut_control_t) \
0 ((_gamut & �ESL_LED_GENERIC_2BIT_MASK << ESL_LED_RED_GAMUT_SHIFT�� \
0 >> ESL_LED_RED_GAMUT_SHIFT�

Function like macro getter for 2-bit red value from a gamut value Returns

esl_led_gamut_control_t red value

Definition at line 121 of file common/esl_tag_core/inc/esl_tag_led_core.h

esl_led_get_green_value

#define esl_led_get_green_value

Value:

0 (esl_led_gamut_control_t) \
0 ((_gamut & �ESL_LED_GENERIC_2BIT_MASK << ESL_LED_GREEN_GAMUT_SHIFT�� \
0 >> ESL_LED_GREEN_GAMUT_SHIFT�

Function like macro getter for 2-bit green value from a gamut value Returns

esl_led_gamut_control_t green value

Definition at line 130 of file common/esl_tag_core/inc/esl_tag_led_core.h

ESL Tag core

1073/1306

esl_led_get_blue_value

#define esl_led_get_blue_value

Value:

0 (esl_led_gamut_control_t) \
0 ((_gamut & �ESL_LED_GENERIC_2BIT_MASK << ESL_LED_BLUE_GAMUT_SHIFT�� \
0 >> ESL_LED_BLUE_GAMUT_SHIFT�

Function like macro getter for 2-bit blue value from a gamut value Returns

esl_led_gamut_control_t blue value

Definition at line 139 of file common/esl_tag_core/inc/esl_tag_led_core.h

ESL_TLV_RESPONSE_ERROR

#define ESL_TLV_RESPONSE_ERROR

Value:

((tlv_t)0�00)

The command could not be processed successfully.

Definition at line 41 of file common/esl_tag_core/inc/esl_tag_response.h

ESL_TLV_RESPONSE_LED_STATE

#define ESL_TLV_RESPONSE_LED_STATE

Value:

((tlv_t)0�01)

Acknowledgment of a request to control an LED.

Definition at line 44 of file common/esl_tag_core/inc/esl_tag_response.h

ESL_TLV_RESPONSE_BASIC_STATE

#define ESL_TLV_RESPONSE_BASIC_STATE

Value:

((tlv_t)0�10)

General acknowledgment containing ESL status data.

Definition at line 47 of file common/esl_tag_core/inc/esl_tag_response.h

ESL_TLV_RESPONSE_DISPLAY_STATE

ESL Tag core

1074/1306

#define ESL_TLV_RESPONSE_DISPLAY_STATE

Value:

((tlv_t)0�11)

Acknowledgment of a request to display an image.

Definition at line 50 of file common/esl_tag_core/inc/esl_tag_response.h

ESL_TLV_RESPONSE_SENSOR_VALUE

#define ESL_TLV_RESPONSE_SENSOR_VALUE

Value:

((tlv_t)0�0E)

Sensor report.

Definition at line 53 of file common/esl_tag_core/inc/esl_tag_response.h

ESL_TLV_RESPONSE_VENDOR_VALUE

#define ESL_TLV_RESPONSE_VENDOR_VALUE

Value:

((tlv_t)0�0F)

Response data as specified by the vendor of the ESL.

Definition at line 56 of file common/esl_tag_core/inc/esl_tag_response.h

ESL_TLV_TAG_MASK

#define ESL_TLV_TAG_MASK

Value:

((tlv_t)0�0F)

Mask for getting the Tag value from an ESL TLV.

Definition at line 49 of file common/esl_tag_core/inc/esl_tag_tlv.h

ESL_TLV_LEN_MASK

#define ESL_TLV_LEN_MASK

Value:

((tlv_t)0xF0)

ESL Tag core

1075/1306

Mask for getting the Length value from an ESL TLV.

Definition at line 52 of file common/esl_tag_core/inc/esl_tag_tlv.h

esl_core_get_tlv_tag

#define esl_core_get_tlv_tag

Value:

(tlv_byte)

Function like macro getter for 'Tag' field from an ESL TLV Returns

tlv_tag_t 'Tag' value of the TLV

Definition at line 60 of file common/esl_tag_core/inc/esl_tag_tlv.h

esl_core_get_tlv_len

#define esl_core_get_tlv_len

Value:

0 ((tlv_t) \
0 ((tlv_byte & ESL_TLV_LEN_MASK� >> 4� + 1�

Function like macro getter for real 'Length' value from an ESL TLV Returns

tlv_length_t 'Length' value of the TLV

Definition at line 68 of file common/esl_tag_core/inc/esl_tag_tlv.h

esl_core_set_tlv_tag

#define esl_core_set_tlv_tag

Value:

0 do { \
0 _tlv &� (tlv_t)(~ESL_TLV_TAG_MASK�; \
0 _tlv |� (((tlv_t)(_tag)) \
0 & ESL_TLV_TAG_MASK�; \
0 } while �0�

Function like macro for setting the 'Tag' value of a TLV

Definition at line 77 of file common/esl_tag_core/inc/esl_tag_tlv.h

esl_core_set_tlv_len

#define esl_core_set_tlv_len

Value:

ESL Tag core

1076/1306

0 do { \
0 _tlv &� (tlv_t)(~ESL_TLV_LEN_MASK�; \
0 _tlv |� _tlv | (((tlv_t)(((_len) - 1� << 4�� \
0 & ESL_TLV_LEN_MASK�; \
0 } while �0�

Function like macro for setting the 'Length' value of a TLV

Definition at line 89 of file common/esl_tag_core/inc/esl_tag_tlv.h

ESL_DISPLAY_INIT_FUNC_PARAMETERS_COUNT

#define ESL_DISPLAY_INIT_FUNC_PARAMETERS_COUNT

Value:

�1�

ESL Display extra parameters count for init_func esl_va_method function.

Definition at line 43 of file common/esl_tag_display/inc/esl_tag_display.h

ESL_DISPLAY_WRITE_FUNC_PARAMETERS_COUNT

#define ESL_DISPLAY_WRITE_FUNC_PARAMETERS_COUNT

Value:

�2�

ESL Display extra parameters count for write_func esl_va_method function.

Definition at line 46 of file common/esl_tag_display/inc/esl_tag_display.h

GATT Services

1077/1306

GATT Services

Modules

ESL Tag Display

ESL Tag LED

ESL Tag NVM Image

ESL Tag RAM Image

ESL Tag Sensor

Static GATT Database and Configuration

Automation IO GATT Service

Battery GATT Service

Constant Tone Extension GATT Service (Connection)

Constant Tone Extension GATT Service (Connectionless)

Constant Tone Extension GATT Service (Silabs proprietary)

Device Information GATT Service

Air Quality GATT Service

Hall Effect GATT Service

Inertial Measurement Unit GATT Service

Environment Sensing - Ambient Light and UV Index GATT Service

Environment Sensing - Ambient Light GATT Service

Environment Sensing - Air Pressure GATT Service

RGB LED GATT Service

Environment Sensing - Relative Humidity and Temperature GATT Service

Environment Sensing - Sound Level GATT Service

Health Thermometer API

GATT Services
SW components that help to set and get values of standard GATT services. They can provide additional functionality as well

that makes it easier to populate the fields of the service. (e.g. Thermometer service)

ESL Tag Display

1078/1306

ESL Tag Display

ESL Tag Display
Extends the Bluetooth Electronic Shelf Label design with display class capabilities and its corresponding ESL Display

Information characteristic. This is an abstract display class, only. A user defined low level driver implementation for the

actual display is needed. See ESL Tag WSTK LCD driver as a reference, hence this is a Custom-Code component.

Macros

#define ESL_TAG_MAX_DISPLAYS �1�

Macro Definition Documentation

ESL_TAG_MAX_DISPLAYS

#define ESL_TAG_MAX_DISPLAYS

Value:

�1�

Definition at line 45 of file common/esl_tag_display/config/esl_tag_display_config.h

ESL Tag LED

1079/1306

ESL Tag LED

ESL Tag LED
Extends the Bluetooth Electronic Shelf Label design with LED class capabilities and its corresponding ESL LED Information

characteristic. This is an abstract LED class, only. A user defined low level driver implementation for the actual LED control

is needed. See SoC ESL Tag example as an implementation reference, hence this is a Custom-Code component.

Macros

#define ESL_TAG_MAX_LEDS �1�

Macro Definition Documentation

ESL_TAG_MAX_LEDS

#define ESL_TAG_MAX_LEDS

Value:

�1�

Definition at line 45 of file common/esl_tag_led/config/esl_tag_led_config.h

ESL Tag NVM Image

1080/1306

ESL Tag NVM Image

ESL Tag NVM Image
Extends the Bluetooth Electronic Shelf Label design with image handling capabilities and associated features, including OTS

image transfer capability as per ESL profile and service specifications. Best suited for larger multi-colour displays.

This component utilizes the non-volatile memory on the target MCU. This is a Low-Code component. For reference API

usage please see Bluetooth - SoC ESL Tag example application.

Macros

#define ESL_TAG_MAX_IMAGES �2�

#define ESL_TAG_MAX_IMAGES �1�

#define ESL_TAG_RAM_IMAGE_POOL_SIZE �2048�

Macro Definition Documentation

ESL_TAG_MAX_IMAGES

#define ESL_TAG_MAX_IMAGES

Value:

�2�

Definition at line 45 of file common/esl_tag_nvm_image/config/esl_tag_image_config.h

ESL_TAG_MAX_IMAGES

#define ESL_TAG_MAX_IMAGES

Value:

�1�

Definition at line 45 of file common/esl_tag_ram_image/config/esl_tag_image_config.h

ESL_TAG_RAM_IMAGE_POOL_SIZE

#define ESL_TAG_RAM_IMAGE_POOL_SIZE

Value:

�2048�

Definition at line 51 of file common/esl_tag_ram_image/config/esl_tag_image_config.h

ESL Tag RAM Image

1081/1306

ESL Tag RAM Image

ESL Tag RAM Image
Extends the Bluetooth Electronic Shelf Label design with image handling capabilities and its corresponding characteristics,

including OTS image transfer service with the limited feature set required by the ESL Profile and Service Specifications. Best

fit for tiny, monochrome displays. This component utilizes the static RAM on the target MCU. This is a Low-Code

component. For reference API usage please see Bluetooth - SoC ESL Tag example application.

ESL Tag Sensor

1082/1306

ESL Tag Sensor

ESL Tag Sensor
Extends the Bluetooth Electronic Shelf Label example design with ESL Sensor class capabilities and its corresponding ESL

Sensor Information characteristic. This is an abstract sensor class, while it may also provide a few useful sensor instances

for demonstration purposes. PLEASE NOTE that this component automatically registers those sensors which are enabled in

the configuration header at the beginning of the sensor list (from index 0). More supported sensors can be added later by

custom needs. To add your custom sensors please invoke the esl_sensor_add(<your_property_id>) method from

esl_core_boot_event() callback and then implement the provided esl_read_user_sensor() method accordingly. This is a

Custom-Code component.

Macros

#define ESL_SENSOR_INFO_POOL_SIZE 32

#define ESL_SENSOR_INPUT_VOLTAGE_ENABLE 1

#define ESL_SENSOR_OPERATING_TEMPERATURE_ENABLE 1

#define ESL_SENSOR_FW_REVISION_ENABLE 1

#define ESL_SENSOR_FW_REVISION_MAJOR 1

#define ESL_SENSOR_FW_REVISION_MINOR 0

#define ESL_SENSOR_FW_REVISION_PATCH 0

#define ESL_SENSOR_MANUFACTURING_DATE_ENABLE 1

#define ESL_SENSOR_MANUFACTURING_DAY 20

#define ESL_SENSOR_MANUFACTURING_MONTH 6

#define ESL_SENSOR_MANUFACTURING_YEAR 2022

#define ESL_SENSOR_DEVICE_TEMPERATURE_RANGE_ENABLE 1

#define ESL_SENSOR_DEVICE_TEMPERATURE_RANGE_MIN 0

#define ESL_SENSOR_DEVICE_TEMPERATURE_RANGE_MAX 70

Macro Definition Documentation

ESL_SENSOR_INFO_POOL_SIZE

#define ESL_SENSOR_INFO_POOL_SIZE

Value:

32

Definition at line 46 of file common/esl_tag_sensor/config/esl_tag_sensor_config.h

ESL Tag Sensor

1083/1306

ESL_SENSOR_INPUT_VOLTAGE_ENABLE

#define ESL_SENSOR_INPUT_VOLTAGE_ENABLE

Value:

1

Definition at line 51 of file common/esl_tag_sensor/config/esl_tag_sensor_config.h

ESL_SENSOR_OPERATING_TEMPERATURE_ENABLE

#define ESL_SENSOR_OPERATING_TEMPERATURE_ENABLE

Value:

1

Definition at line 56 of file common/esl_tag_sensor/config/esl_tag_sensor_config.h

ESL_SENSOR_FW_REVISION_ENABLE

#define ESL_SENSOR_FW_REVISION_ENABLE

Value:

1

Definition at line 62 of file common/esl_tag_sensor/config/esl_tag_sensor_config.h

ESL_SENSOR_FW_REVISION_MAJOR

#define ESL_SENSOR_FW_REVISION_MAJOR

Value:

1

Definition at line 66 of file common/esl_tag_sensor/config/esl_tag_sensor_config.h

ESL_SENSOR_FW_REVISION_MINOR

#define ESL_SENSOR_FW_REVISION_MINOR

Value:

0

Definition at line 70 of file common/esl_tag_sensor/config/esl_tag_sensor_config.h

ESL_SENSOR_FW_REVISION_PATCH

#define ESL_SENSOR_FW_REVISION_PATCH

ESL Tag Sensor

1084/1306

Value:

0

Definition at line 74 of file common/esl_tag_sensor/config/esl_tag_sensor_config.h

ESL_SENSOR_MANUFACTURING_DATE_ENABLE

#define ESL_SENSOR_MANUFACTURING_DATE_ENABLE

Value:

1

Definition at line 80 of file common/esl_tag_sensor/config/esl_tag_sensor_config.h

ESL_SENSOR_MANUFACTURING_DAY

#define ESL_SENSOR_MANUFACTURING_DAY

Value:

20

Definition at line 84 of file common/esl_tag_sensor/config/esl_tag_sensor_config.h

ESL_SENSOR_MANUFACTURING_MONTH

#define ESL_SENSOR_MANUFACTURING_MONTH

Value:

6

Definition at line 100 of file common/esl_tag_sensor/config/esl_tag_sensor_config.h

ESL_SENSOR_MANUFACTURING_YEAR

#define ESL_SENSOR_MANUFACTURING_YEAR

Value:

2022

Definition at line 104 of file common/esl_tag_sensor/config/esl_tag_sensor_config.h

ESL_SENSOR_DEVICE_TEMPERATURE_RANGE_ENABLE

#define ESL_SENSOR_DEVICE_TEMPERATURE_RANGE_ENABLE

Value:

1

Definition at line 110 of file common/esl_tag_sensor/config/esl_tag_sensor_config.h

ESL Tag Sensor

1085/1306

ESL_SENSOR_DEVICE_TEMPERATURE_RANGE_MIN

#define ESL_SENSOR_DEVICE_TEMPERATURE_RANGE_MIN

Value:

0

Definition at line 115 of file common/esl_tag_sensor/config/esl_tag_sensor_config.h

ESL_SENSOR_DEVICE_TEMPERATURE_RANGE_MAX

#define ESL_SENSOR_DEVICE_TEMPERATURE_RANGE_MAX

Value:

70

Definition at line 120 of file common/esl_tag_sensor/config/esl_tag_sensor_config.h

Static GATT Database and Configuration

1086/1306

Static GATT Database and Configuration

Static GATT Database and Configuration
Adds a basic, static GATT database. It can be customized by the GATT Configurator tool. It is compatible with the Dynamic

GATT feature <bluetooth_feature_dynamic_gattdb> - static and dynamic GATT databases can co-exist. It will also provide

the GATT Configurator tool.

Automation IO GATT Service

1087/1306

Automation IO GATT Service

Automation IO GATT Service
Provides the LEDs and buttons in GATT characteristics. Designed for the Thunderboard smartphone app.

Functions

void sl_gatt_service_aio_on_event(sl_bt_msg_t *evt)

void sl_gatt_service_aio_on_change(void)

void sl_gatt_service_aio_step(void)

Function Documentation

sl_gatt_service_aio_on_event

void sl_gatt_service_aio_on_event (sl_bt_msg_t *evt)

Parameters

[in] evt Event coming from the Bluetooth stack.

Bluetooth stack event handler.

Definition at line 45 of file common/gatt_service_aio/sl_gatt_service_aio.h

sl_gatt_service_aio_on_change

void sl_gatt_service_aio_on_change (void)

Parameters

N/A

Indicates that the bush button states have changed.

Definition at line 50 of file common/gatt_service_aio/sl_gatt_service_aio.h

sl_gatt_service_aio_step

void sl_gatt_service_aio_step (void)

Parameters

N/A

Push button event handler.

Automation IO GATT Service

1088/1306

Definition at line 55 of file common/gatt_service_aio/sl_gatt_service_aio.h

Battery GATT Service

1089/1306

Battery GATT Service

Battery GATT Service
Provides battery sensor data in GATT characteristics. Designed for the Thunderboard smartphone app.

Functions

void sl_gatt_service_battery_on_event(sl_bt_msg_t *evt)

uint8_t sl_gatt_service_battery_get_level(void)

uint8_t sl_gatt_service_battery_get_type(void)

Function Documentation

sl_gatt_service_battery_on_event

void sl_gatt_service_battery_on_event (sl_bt_msg_t *evt)

Parameters

[in] evt Event coming from the Bluetooth stack.

Bluetooth stack event handler.

Definition at line 45 of file common/gatt_service_battery/sl_gatt_service_battery.h

sl_gatt_service_battery_get_level

uint8_t sl_gatt_service_battery_get_level (void)

Parameters

N/A

Getter for Battery Level characteristic value. Returns

Battery charge level percent (0..100).

Note

To be implemented in user code.

Definition at line 52 of file common/gatt_service_battery/sl_gatt_service_battery.h

sl_gatt_service_battery_get_type

uint8_t sl_gatt_service_battery_get_type (void)

Parameters

Battery GATT Service

1090/1306

N/A

Getter for Power Source characteristic value. Returns

Power source type represented as an integer.

Note

To be implemented in user code.

Definition at line 59 of file common/gatt_service_battery/sl_gatt_service_battery.h

Constant Tone Extension GATT Service �Connection)

1091/1306

Constant Tone Extension GATT Service �Connection)

Constant Tone Extension GATT Service
�Connection)
Constant Tone Extension GATT Service reference implementation for ACL connection. The CTE mode (AoA or AoD) depends

on the presence of the AoD Transmitter Bluetooth stack feature. Limitations:

The Bluetooth SIG specifies bit 1 of the Constant Tone Extension Enable characteristic to enable/disable AoD Constant Tone

Extension in advertising packets. This runtime configuration is not supported by this component. If any of the advertising

CTE components are added to the project, the CTE in the advertising packets is enabled automatically upon system boot.

The AoD mode parameters are configured globally in this component.

Functions

void sl_gatt_service_cte_on_event(sl_bt_msg_t *evt)

Function Documentation

sl_gatt_service_cte_on_event

void sl_gatt_service_cte_on_event (sl_bt_msg_t *evt)

Parameters

[in] evt Event coming from the Bluetooth stack.

Bluetooth stack event handler.

Definition at line 44 of file common/gatt_service_cte/sl_gatt_service_cte.h

Constant Tone Extension GATT Service �Connectionless)

1092/1306

Constant Tone Extension GATT Service �Connectionless)

Constant Tone Extension GATT Service
�Connectionless)
Constant Tone Extension GATT Service reference implementation for periodic advertising. Limitations:

The Bluetooth SIG specifies to maintain a list about the characteristic values for each client and take the largest/smallest

value. Instead of this, the latest valid value will take effect.

The Advertising Constant Tone Extension Transmit Duration characteristic is not implemented.

The AoD mode parameters are configured globally in the Constant Tone Extension GATT Service (Connection) component.

Macros

#define SL_GATT_SERVICE_CTE_CONNECTIONLESS_ADV_INTERVAL 16

#define SL_GATT_SERVICE_CTE_CONNECTIONLESS_MIN_LEN 20

#define SL_GATT_SERVICE_CTE_CONNECTIONLESS_MIN_TX_COUNT 1

#define SL_GATT_SERVICE_CTE_CONNECTIONLESS_ADV_CTE_PHY 0

Macro Definition Documentation

SL_GATT_SERVICE_CTE_CONNECTIONLESS_ADV_INTERVAL

#define SL_GATT_SERVICE_CTE_CONNECTIONLESS_ADV_INTERVAL

Value:

16

Definition at line 44 of file common/gatt_service_cte_adv/config/sl_gatt_service_cte_connectionless_config.h

SL_GATT_SERVICE_CTE_CONNECTIONLESS_MIN_LEN

#define SL_GATT_SERVICE_CTE_CONNECTIONLESS_MIN_LEN

Value:

20

Definition at line 49 of file common/gatt_service_cte_adv/config/sl_gatt_service_cte_connectionless_config.h

SL_GATT_SERVICE_CTE_CONNECTIONLESS_MIN_TX_COUNT

#define SL_GATT_SERVICE_CTE_CONNECTIONLESS_MIN_TX_COUNT

Value:

Constant Tone Extension GATT Service �Connectionless)

1093/1306

1

Definition at line 54 of file common/gatt_service_cte_adv/config/sl_gatt_service_cte_connectionless_config.h

SL_GATT_SERVICE_CTE_CONNECTIONLESS_ADV_CTE_PHY

#define SL_GATT_SERVICE_CTE_CONNECTIONLESS_ADV_CTE_PHY

Value:

0

Definition at line 60 of file common/gatt_service_cte_adv/config/sl_gatt_service_cte_connectionless_config.h

Constant Tone Extension GATT Service �Silabs proprietary)

1094/1306

Constant Tone Extension GATT Service �Silabs proprietary)

Constant Tone Extension GATT Service �Silabs
proprietary)
Constant Tone Extension GATT Service reference implementation for extended advertising. This Silabs proprietary solution

uses the same characteristics as the standard Bluetooth SIG solution. Limitations:

The Bluetooth SIG specifies to maintain a list about the characteristic values for each client and take the largest/smallest

value. Instead of this, the latest valid value will take effect.

The Advertising Constant Tone Extension Transmit Duration characteristic is not implemented.

The AoD mode parameters are configured globally in the Constant Tone Extension GATT Service (Connection) component.

Macros

#define SL_GATT_SERVICE_CTE_SILABS_ADV_INTERVAL 32

#define SL_GATT_SERVICE_CTE_SILABS_MIN_LEN 20

#define SL_GATT_SERVICE_CTE_SILABS_MIN_TX_COUNT 1

#define SL_GATT_SERVICE_CTE_SILABS_ADV_CTE_PHY 0

Macro Definition Documentation

SL_GATT_SERVICE_CTE_SILABS_ADV_INTERVAL

#define SL_GATT_SERVICE_CTE_SILABS_ADV_INTERVAL

Value:

32

Definition at line 44 of file common/gatt_service_cte_adv/config/sl_gatt_service_cte_silabs_config.h

SL_GATT_SERVICE_CTE_SILABS_MIN_LEN

#define SL_GATT_SERVICE_CTE_SILABS_MIN_LEN

Value:

20

Definition at line 49 of file common/gatt_service_cte_adv/config/sl_gatt_service_cte_silabs_config.h

SL_GATT_SERVICE_CTE_SILABS_MIN_TX_COUNT

Constant Tone Extension GATT Service �Silabs proprietary)

1095/1306

#define SL_GATT_SERVICE_CTE_SILABS_MIN_TX_COUNT

Value:

1

Definition at line 54 of file common/gatt_service_cte_adv/config/sl_gatt_service_cte_silabs_config.h

SL_GATT_SERVICE_CTE_SILABS_ADV_CTE_PHY

#define SL_GATT_SERVICE_CTE_SILABS_ADV_CTE_PHY

Value:

0

Definition at line 60 of file common/gatt_service_cte_adv/config/sl_gatt_service_cte_silabs_config.h

Device Information GATT Service

1096/1306

Device Information GATT Service

Device Information GATT Service
This component provides the default values for the characteristics under the Device Information service upon boot event.

Functions

void sl_gatt_service_device_information_on_event(sl_bt_msg_t *evt)

Function Documentation

sl_gatt_service_device_information_on_event

void sl_gatt_service_device_information_on_event (sl_bt_msg_t *evt)

Parameters

[in] evt Event coming from the Bluetooth stack.

Bluetooth stack event handler.

Definition at line 45 of file common/gatt_service_device_information/sl_gatt_service_device_information.h

Air Quality GATT Service

1097/1306

Air Quality GATT Service

Air Quality GATT Service
Provides air quality sensor data in GATT characteristics. Designed for the Thunderboard smartphone app.

Functions

void sl_gatt_service_gas_on_event(sl_bt_msg_t *evt)

sl_status_t sl_gatt_service_gas_get(uint16_t *eco2, uint16_t *tvoc)

Macros

#define SL_GATT_SERVICE_GAS_ECO2_INVALID 0xFFFF

#define SL_GATT_SERVICE_GAS_TVOC_INVALID 0xFFFF

Function Documentation

sl_gatt_service_gas_on_event

void sl_gatt_service_gas_on_event (sl_bt_msg_t *evt)

Parameters

[in] evt Event coming from the Bluetooth stack.

Bluetooth stack event handler.

Definition at line 45 of file common/gatt_service_gas/sl_gatt_service_gas.h

sl_gatt_service_gas_get

sl_status_t sl_gatt_service_gas_get (uint16_t *eco2, uint16_t *tvoc)

Parameters

[out] eco2 Equivalent CO2 level (in ppm).

[out] tvoc Total Volatile Organic Compounds level (in ppb).

Getter for ECO2 and TVOC characteristic values. Returns

Status of the operation.

Note

To be implemented in user code.

Definition at line 54 of file common/gatt_service_gas/sl_gatt_service_gas.h

Air Quality GATT Service

1098/1306

Macro Definition Documentation

SL_GATT_SERVICE_GAS_ECO2_INVALID

#define SL_GATT_SERVICE_GAS_ECO2_INVALID

Value:

0xFFFF

Definition at line 43 of file common/gatt_service_gas/config/sl_gatt_service_gas_config.h

SL_GATT_SERVICE_GAS_TVOC_INVALID

#define SL_GATT_SERVICE_GAS_TVOC_INVALID

Value:

0xFFFF

Definition at line 47 of file common/gatt_service_gas/config/sl_gatt_service_gas_config.h

Hall Effect GATT Service

1099/1306

Hall Effect GATT Service

Hall Effect GATT Service
Provides hall sensor data in GATT characteristics. Designed for the Thunderboard smartphone app.

Functions

void sl_gatt_service_hall_on_event(sl_bt_msg_t *evt)

sl_status_t sl_gatt_service_hall_get(float *field_strength, bool *alert, bool *tamper)

Macros

#define SL_GATT_SERVICE_HALL_FIELD_STRENGTH_INVALID 0�7FFFFFFF

#define SL_GATT_SERVICE_HALL_ALERT_INVALID false

#define SL_GATT_SERVICE_HALL_TAMPER_INVALID true

Function Documentation

sl_gatt_service_hall_on_event

void sl_gatt_service_hall_on_event (sl_bt_msg_t *evt)

Parameters

[in] evt Event coming from the Bluetooth stack.

Bluetooth stack event handler.

Definition at line 45 of file common/gatt_service_hall/sl_gatt_service_hall.h

sl_gatt_service_hall_get

sl_status_t sl_gatt_service_hall_get (float *field_strength, bool *alert, bool *tamper)

Parameters

[out] field_strength Field strength level (in mT).

[out] alert Field strength has reached the alert level.

[out] tamper Field strength has reached the tamper level.

Getter for Field Strength and State characteristic values. Returns

Status of the operation.

Note

To be implemented in user code.

Hall Effect GATT Service

1100/1306

Definition at line 55 of file common/gatt_service_hall/sl_gatt_service_hall.h

Macro Definition Documentation

SL_GATT_SERVICE_HALL_FIELD_STRENGTH_INVALID

#define SL_GATT_SERVICE_HALL_FIELD_STRENGTH_INVALID

Value:

0�7FFFFFFF

Definition at line 43 of file common/gatt_service_hall/config/sl_gatt_service_hall_config.h

SL_GATT_SERVICE_HALL_ALERT_INVALID

#define SL_GATT_SERVICE_HALL_ALERT_INVALID

Value:

false

Definition at line 48 of file common/gatt_service_hall/config/sl_gatt_service_hall_config.h

SL_GATT_SERVICE_HALL_TAMPER_INVALID

#define SL_GATT_SERVICE_HALL_TAMPER_INVALID

Value:

true

Definition at line 53 of file common/gatt_service_hall/config/sl_gatt_service_hall_config.h

Inertial Measurement Unit GATT Service

1101/1306

Inertial Measurement Unit GATT Service

Inertial Measurement Unit GATT Service
Provides inertial measurement unit sensor data in GATT characteristics. Designed for the Thunderboard smartphone app.

Functions

void sl_gatt_service_imu_on_event(sl_bt_msg_t *evt)

void sl_gatt_service_imu_step(void)

sl_status_t sl_gatt_service_imu_get(int16_t ovec[3], int16_t avec[3])

sl_status_t sl_gatt_service_imu_calibrate(void)

void sl_gatt_service_imu_enable(bool enable)

Macros

#define SL_GATT_SERVICE_IMU_OVEC_INVALID 0�7FFF

#define SL_GATT_SERVICE_IMU_AVEC_INVALID 0�7FFF

Function Documentation

sl_gatt_service_imu_on_event

void sl_gatt_service_imu_on_event (sl_bt_msg_t *evt)

Parameters

[in] evt Event coming from the Bluetooth stack.

Bluetooth stack event handler.

Definition at line 45 of file common/gatt_service_imu/sl_gatt_service_imu.h

sl_gatt_service_imu_step

void sl_gatt_service_imu_step (void)

Parameters

N/A

IMU GATT service event handler.

Definition at line 50 of file common/gatt_service_imu/sl_gatt_service_imu.h

Inertial Measurement Unit GATT Service

1102/1306

sl_gatt_service_imu_get

sl_status_t sl_gatt_service_imu_get (int16_t ovec[3], int16_t avec[3])

Parameters

[out] ovec Three dimensional orientation vector (in 0.01 degree).

[out] avec Three dimensional acceleration vector.

Getter for Orientation and Acceleration characteristic values. Returns

Status of the operation.

Note

To be implemented in user code.

Definition at line 59 of file common/gatt_service_imu/sl_gatt_service_imu.h

sl_gatt_service_imu_calibrate

sl_status_t sl_gatt_service_imu_calibrate (void)

Parameters

N/A

Called when a calibration was requested by the GATT client. Returns

Status of the operation.

Note

To be implemented in user code.

Definition at line 66 of file common/gatt_service_imu/sl_gatt_service_imu.h

sl_gatt_service_imu_enable

void sl_gatt_service_imu_enable (bool enable)

Parameters

[in] enable (true) or disable (false).

Enable/disable IMU sensor. Note

To be implemented in user code.

Definition at line 73 of file common/gatt_service_imu/sl_gatt_service_imu.h

Macro Definition Documentation

SL_GATT_SERVICE_IMU_OVEC_INVALID

#define SL_GATT_SERVICE_IMU_OVEC_INVALID

Inertial Measurement Unit GATT Service

1103/1306

Value:

0x7FFF

Definition at line 43 of file common/gatt_service_imu/config/sl_gatt_service_imu_config.h

SL_GATT_SERVICE_IMU_AVEC_INVALID

#define SL_GATT_SERVICE_IMU_AVEC_INVALID

Value:

0�7FFF

Definition at line 47 of file common/gatt_service_imu/config/sl_gatt_service_imu_config.h

Environment Sensing - Ambient Light and UV Index GATT Service

1104/1306

Environment Sensing - Ambient Light and UV Index GATT Service

Environment Sensing - Ambient Light and UV Index
GATT Service
Provides ambient light and UV index sensor data in GATT characteristics. Designed for the Thunderboard smartphone app.

Functions

void sl_gatt_service_light_on_event(sl_bt_msg_t *evt)

sl_status_t sl_gatt_service_light_get(float *lux, float *uvi)

Macros

#define SL_GATT_SERVICE_LIGHT_LUX_INVALID 0xFFFFFFFF

#define SL_GATT_SERVICE_LIGHT_UVI_INVALID 0xFF

Function Documentation

sl_gatt_service_light_on_event

void sl_gatt_service_light_on_event (sl_bt_msg_t *evt)

Parameters

[in] evt Event coming from the Bluetooth stack.

Bluetooth stack event handler.

Definition at line 45 of file common/gatt_service_light/sl_gatt_service_light.h

sl_gatt_service_light_get

sl_status_t sl_gatt_service_light_get (float *lux, float *uvi)

Parameters

[out] lux Ambient light illuminance (in lux).

[out] uvi UV index.

Getter for Ambient Light and UV Index characteristic values. Returns

Status of the operation.

Note

To be implemented in user code.

Environment Sensing - Ambient Light and UV Index GATT Service

1105/1306

Definition at line 54 of file common/gatt_service_light/sl_gatt_service_light.h

Macro Definition Documentation

SL_GATT_SERVICE_LIGHT_LUX_INVALID

#define SL_GATT_SERVICE_LIGHT_LUX_INVALID

Value:

0xFFFFFFFF

Definition at line 43 of file common/gatt_service_light/config/sl_gatt_service_light_config.h

SL_GATT_SERVICE_LIGHT_UVI_INVALID

#define SL_GATT_SERVICE_LIGHT_UVI_INVALID

Value:

0xFF

Definition at line 47 of file common/gatt_service_light/config/sl_gatt_service_light_config.h

Environment Sensing - Ambient Light GATT Service

1106/1306

Environment Sensing - Ambient Light GATT Service

Environment Sensing - Ambient Light GATT Service
Provides ambient light sensor data in GATT characteristics. Designed for the Thunderboard smartphone app.

Functions

void sl_gatt_service_lux_on_event(sl_bt_msg_t *evt)

sl_status_t sl_gatt_service_lux_get(float *lux)

Macros

#define SL_GATT_SERVICE_LUX_LUX_INVALID 0xFFFFFFFF

Function Documentation

sl_gatt_service_lux_on_event

void sl_gatt_service_lux_on_event (sl_bt_msg_t *evt)

Parameters

[in] evt Event coming from the Bluetooth stack.

Bluetooth stack event handler.

Definition at line 45 of file common/gatt_service_lux/sl_gatt_service_lux.h

sl_gatt_service_lux_get

sl_status_t sl_gatt_service_lux_get (float *lux)

Parameters

[out] lux Ambient light illuminance (in lux).

Getter for Ambient Light characteristic value. Returns

Status of the operation.

Note

To be implemented in user code.

Definition at line 53 of file common/gatt_service_lux/sl_gatt_service_lux.h

Macro Definition Documentation

Environment Sensing - Ambient Light GATT Service

1107/1306

SL_GATT_SERVICE_LUX_LUX_INVALID

#define SL_GATT_SERVICE_LUX_LUX_INVALID

Value:

0xFFFFFFFF

Definition at line 43 of file common/gatt_service_lux/config/sl_gatt_service_lux_config.h

Environment Sensing - Air Pressure GATT Service

1108/1306

Environment Sensing - Air Pressure GATT Service

Environment Sensing - Air Pressure GATT Service
Provides air pressure sensor data in GATT characteristics. Designed for the Thunderboard smartphone app.

Functions

void sl_gatt_service_pressure_on_event(sl_bt_msg_t *evt)

sl_status_t sl_gatt_service_pressure_get(float *pressure)

Macros

#define SL_GATT_SERVICE_PRESSURE_INVALID 0xFFFFFFFF

Function Documentation

sl_gatt_service_pressure_on_event

void sl_gatt_service_pressure_on_event (sl_bt_msg_t *evt)

Parameters

[in] evt Event coming from the Bluetooth stack.

Bluetooth stack event handler.

Definition at line 45 of file common/gatt_service_pressure/sl_gatt_service_pressure.h

sl_gatt_service_pressure_get

sl_status_t sl_gatt_service_pressure_get (float *pressure)

Parameters

[out] pressure Barometric pressure (in millibars).

Getter for Pressure characteristic value. Returns

Status of the operation.

Note

To be implemented in user code.

Definition at line 53 of file common/gatt_service_pressure/sl_gatt_service_pressure.h

Macro Definition Documentation

Environment Sensing - Air Pressure GATT Service

1109/1306

SL_GATT_SERVICE_PRESSURE_INVALID

#define SL_GATT_SERVICE_PRESSURE_INVALID

Value:

0xFFFFFFFF

Definition at line 43 of file common/gatt_service_pressure/config/sl_gatt_service_pressure_config.h

RGB LED GATT Service

1110/1306

RGB LED GATT Service

RGB LED GATT Service
Provides RGB LED controls in GATT characteristics. Designed for the Thunderboard smartphone app.

Functions

void sl_gatt_service_rgb_on_event(sl_bt_msg_t *evt)

void sl_gatt_service_rgb_set_led(uint8_t m, uint8_t r, uint8_t g, uint8_t b)

uint8_t sl_gatt_service_rgb_get_led_mask(void)

Function Documentation

sl_gatt_service_rgb_on_event

void sl_gatt_service_rgb_on_event (sl_bt_msg_t *evt)

Parameters

[in] evt Event coming from the Bluetooth stack.

Bluetooth stack event handler.

Definition at line 45 of file common/gatt_service_rgb/sl_gatt_service_rgb.h

sl_gatt_service_rgb_set_led

void sl_gatt_service_rgb_set_led (uint8_t m, uint8_t r, uint8_t g, uint8_t b)

Parameters

[in] m LED bitmask.

[in] r Red intensity.

[in] g Green intensity.

[in] b Blue intensity.

Setter for RGB LEDs characteristic value. Note

To be implemented in user code.

Definition at line 55 of file common/gatt_service_rgb/sl_gatt_service_rgb.h

sl_gatt_service_rgb_get_led_mask

uint8_t sl_gatt_service_rgb_get_led_mask (void)

RGB LED GATT Service

1111/1306

Parameters

N/A

Returns a bitmask corresponding to the RGB LEDs the board has. Returns

RGB LED mask.

Note

To be implemented in user code.

Definition at line 62 of file common/gatt_service_rgb/sl_gatt_service_rgb.h

Environment Sensing - Relative Humidity and Temperature GATT Service

1112/1306

Environment Sensing - Relative Humidity and Temperature GATT Service

Environment Sensing - Relative Humidity and
Temperature GATT Service
Provides relative humidity and temperature sensor data in GATT characteristics. Designed for the Thunderboard smartphone

app.

Functions

void sl_gatt_service_rht_on_event(sl_bt_msg_t *evt)

sl_status_t sl_gatt_service_rht_get(uint32_t *rh, int32_t *t)

Macros

#define SL_GATT_SERVICE_RHT_RH_INVALID 0xFFFF

#define SL_GATT_SERVICE_RHT_T_INVALID 0�7FFF

Function Documentation

sl_gatt_service_rht_on_event

void sl_gatt_service_rht_on_event (sl_bt_msg_t *evt)

Parameters

[in] evt Event coming from the Bluetooth stack.

Bluetooth stack event handler.

Definition at line 45 of file common/gatt_service_rht/sl_gatt_service_rht.h

sl_gatt_service_rht_get

sl_status_t sl_gatt_service_rht_get (uint32_t *rh, int32_t *t)

Parameters

[out] rh Relative humidity (in 0.001 percent).

[out] t Temperature (in 0.001 Celsius).

Getter for Humidity and Temperature characteristic values. Returns

Status of the operation.

Note

To be implemented in user code.

Environment Sensing - Relative Humidity and Temperature GATT Service

1113/1306

Definition at line 54 of file common/gatt_service_rht/sl_gatt_service_rht.h

Macro Definition Documentation

SL_GATT_SERVICE_RHT_RH_INVALID

#define SL_GATT_SERVICE_RHT_RH_INVALID

Value:

0xFFFF

Definition at line 43 of file common/gatt_service_rht/config/sl_gatt_service_rht_config.h

SL_GATT_SERVICE_RHT_T_INVALID

#define SL_GATT_SERVICE_RHT_T_INVALID

Value:

0�7FFF

Definition at line 47 of file common/gatt_service_rht/config/sl_gatt_service_rht_config.h

Environment Sensing - Sound Level GATT Service

1114/1306

Environment Sensing - Sound Level GATT Service

Environment Sensing - Sound Level GATT Service
Provides microphone sound level data in GATT characteristics. Designed for the Thunderboard smartphone app.

Functions

void sl_gatt_service_sound_on_event(sl_bt_msg_t *evt)

sl_status_t sl_gatt_service_sound_get(float *sound_level)

Macros

#define SL_GATT_SERVICE_SOUND_INVALID 0�7FFF

Function Documentation

sl_gatt_service_sound_on_event

void sl_gatt_service_sound_on_event (sl_bt_msg_t *evt)

Parameters

[in] evt Event coming from the Bluetooth stack.

Bluetooth stack event handler.

Definition at line 45 of file common/gatt_service_sound/sl_gatt_service_sound.h

sl_gatt_service_sound_get

sl_status_t sl_gatt_service_sound_get (float *sound_level)

Parameters

[out] sound_level Sound pressure level (in dB).

Getter for Sound Level characteristic value. Returns

Status of the operation.

Note

To be implemented in user code.

Definition at line 53 of file common/gatt_service_sound/sl_gatt_service_sound.h

Macro Definition Documentation

Environment Sensing - Sound Level GATT Service

1115/1306

SL_GATT_SERVICE_SOUND_INVALID

#define SL_GATT_SERVICE_SOUND_INVALID

Value:

0�7FFF

Definition at line 43 of file common/gatt_service_sound/config/sl_gatt_service_sound_config.h

Health Thermometer API

1116/1306

Health Thermometer API

Health Thermometer API
API for the Health Thermometer GATT service This is a Low-Code component. At start, the temperature sensor has to be

initialized. Once the BLE connection is established, the sl_bt_ht_temperature_measurement_indication_changed_cb()

function will be called where either a single measurement can be done, or a timer started. A reference implementation for

this function can be found in Bluetooth - SoC Thermometer example, in app.c file. The result of the measurement can be

send using sl_bt_ht_temperature_measurement_indicate() function.

Enumerations

enum sl_bt_ht_temperature_type {

SL_BT_HT_TEMPERATURE_TYPE_ARMPIT = 1
SL_BT_HT_TEMPERATURE_TYPE_BODY
SL_BT_HT_TEMPERATURE_TYPE_EAR
SL_BT_HT_TEMPERATURE_TYPE_FINGER
SL_BT_HT_TEMPERATURE_TYPE_GASTRO_INTESTINAL_TRACT
SL_BT_HT_TEMPERATURE_TYPE_MOUTH
SL_BT_HT_TEMPERATURE_TYPE_RECTUM
SL_BT_HT_TEMPERATURE_TYPE_TOE
SL_BT_HT_TEMPERATURE_TYPE_TYMPANUM

}
Possible values of the Temperature Type characteristic (UUID: 2A1D)

Functions

void sl_bt_connection_closed_cb(uint16_t reason, uint8_t connection)

sl_status_t sl_bt_ht_temperature_measurement_indicate(uint8_t connection, int32_t value, bool fahrenheit)

void sl_bt_ht_temperature_measurement_indication_changed_cb(uint8_t connection, sl_bt_gatt_client_config_flag_t
client_config)

void sl_bt_ht_temperature_measurement_indication_confirmed_cb(uint8_t connection)

void sl_bt_ht_on_event(sl_bt_msg_t *evt)

Macros

#define SL_BT_HT_MEASUREMENT_INTERVAL_SEC 1

#define SL_BT_HT_TEMPERATURE_TYPE SL_BT_HT_TEMPERATURE_TYPE_BODY

Enumeration Documentation

sl_bt_ht_temperature_type

sl_bt_ht_temperature_type

Health Thermometer API

1117/1306

Possible values of the Temperature Type characteristic (UUID: 2A1D)

Enumerator

SL_BT_HT_TEMPERATURE_TYPE_ARMPIT

SL_BT_HT_TEMPERATURE_TYPE_BODY

SL_BT_HT_TEMPERATURE_TYPE_EAR

SL_BT_HT_TEMPERATURE_TYPE_FINGER

SL_BT_HT_TEMPERATURE_TYPE_GASTRO_INTESTINAL_TRACT

SL_BT_HT_TEMPERATURE_TYPE_MOUTH

SL_BT_HT_TEMPERATURE_TYPE_RECTUM

SL_BT_HT_TEMPERATURE_TYPE_TOE

SL_BT_HT_TEMPERATURE_TYPE_TYMPANUM

Definition at line 44 of file common/health_thermometer/sl_health_thermometer.h

Function Documentation

sl_bt_connection_closed_cb

void sl_bt_connection_closed_cb (uint16_t reason, uint8_t connection)

Parameters

[in] reason Result code.

[in] connection Handle of the closed connection

Callback to handle connection closed event. Note

To be implemented in user code.

Definition at line 62 of file common/health_thermometer/sl_health_thermometer.h

sl_bt_ht_temperature_measurement_indicate

sl_status_t sl_bt_ht_temperature_measurement_indicate (uint8_t connection, int32_t value, bool fahrenheit)

Parameters

[in] connection Connection handle of the client.

[in] value Temperature value in millidegree.

[in] fahrenheit Value is given in Fahrenheit (true) or Celsius (false).

Send Temperature Measurement characteristic indication to the client.

Definition at line 70 of file common/health_thermometer/sl_health_thermometer.h

sl_bt_ht_temperature_measurement_indication_changed_cb

void sl_bt_ht_temperature_measurement_indication_changed_cb (uint8_t connection, sl_bt_gatt_client_config_flag_t
client_config)

Parameters

Health Thermometer API

1118/1306

[in] connection Connection handle of the client.

[in] client_config Characteristic Client Configuration Flag.

Temperature Measurement characteristic's CCCD has changed. Note

To be implemented in user code.

Definition at line 80 of file common/health_thermometer/sl_health_thermometer.h

sl_bt_ht_temperature_measurement_indication_confirmed_cb

void sl_bt_ht_temperature_measurement_indication_confirmed_cb (uint8_t connection)

Parameters

[in] connection Connection handle of the client.

Temperature Measurement characteristic indication confirmed. Note

To be implemented in user code.

Definition at line 88 of file common/health_thermometer/sl_health_thermometer.h

sl_bt_ht_on_event

void sl_bt_ht_on_event (sl_bt_msg_t *evt)

Parameters

[in] evt Event coming from the Bluetooth stack.

Bluetooth stack event handler.

Definition at line 94 of file common/health_thermometer/sl_health_thermometer.h

Macro Definition Documentation

SL_BT_HT_MEASUREMENT_INTERVAL_SEC

#define SL_BT_HT_MEASUREMENT_INTERVAL_SEC

Value:

1

Definition at line 44 of file common/health_thermometer/config/sl_health_thermometer_config.h

SL_BT_HT_TEMPERATURE_TYPE

#define SL_BT_HT_TEMPERATURE_TYPE

Value:

SL_BT_HT_TEMPERATURE_TYPE_BODY

NCP Interface

1119/1306

NCP Interface

Modules

NCP Interface

NCP Event Filter Interface

NCP Security Interface

General BGAPI User Commands

NCP Interface
SW components that contribute to the NCP interface on the NCP target (EFR32) side

NCP Interface

1120/1306

NCP Interface

NCP Interface
Component that provides the Bluetooth Network Co-Processor (NCP) communication interface. This is a No-Code

component.

Functions

void sl_ncp_init(void)

void sl_ncp_step(void)

bool sl_ncp_local_evt_process(sl_bt_msg_t *evt)

void sl_ncp_user_cmd_message_to_target_cb(void *data)

void sl_ncp_user_cmd_message_to_target_rsp(sl_status_t result, uint8_t len, uint8_t *data)

void sl_ncp_user_evt_message_to_host(uint8_t len, uint8_t *data)

bool sli_ncp_is_ok_to_sleep(void)

sl_power_manage
r_on_isr_exit_t

sli_ncp_sleep_on_isr_exit(void)

void sl_ncp_os_task_init(void)

void sl_ncp_os_task_proceed(void)

Macros

#define SL_NCP_CMD_BUF_SIZE �260�

#define SL_NCP_EVT_BUF_SIZE �260�

#define SL_NCP_CMD_TIMEOUT_MS �500�

#define SL_NCP_TASK_PRIO 5

#define SL_NCP_TASK_STACK 1024

#define NCP_TASK_NAME "ncp_task"

#define SL_NCP_TASK_PRIO 5

#define SL_NCP_TASK_STACK 1024

#define NCP_TASK_NAME "ncp_task"

#define NCP_SEMAPHORE_NAME "ncp_semaphore"

NCP Interface

1121/1306

Function Documentation

sl_ncp_init

void sl_ncp_init (void)

Parameters

N/A

NCP initialization function.

Definition at line 49 of file common/ncp/sl_ncp.h

sl_ncp_step

void sl_ncp_step (void)

Parameters

N/A

NCP process action function.

Definition at line 54 of file common/ncp/sl_ncp.h

sl_ncp_local_evt_process

bool sl_ncp_local_evt_process (sl_bt_msg_t *evt)

Parameters

N/A evt

Local event processor

Definition at line 59 of file common/ncp/sl_ncp.h

sl_ncp_user_cmd_message_to_target_cb

void sl_ncp_user_cmd_message_to_target_cb (void *data)

Parameters

[in] data Data received from NCP through UART.

User command (message_to_target) handler callback.

Handle user defined commands received from NCP-host.

Definition at line 68 of file common/ncp/sl_ncp.h

sl_ncp_user_cmd_message_to_target_rsp

NCP Interface

1122/1306

Parameters

[out] result Result of the response to the command received.

[out] len Message length.

[out] data Data to send to NCP.

Send user command (message_to_target) response.

Send response to user defined (message_to_target) command to NCP-host.

Definition at line 79 of file common/ncp/sl_ncp.h

sl_ncp_user_evt_message_to_host

void sl_ncp_user_evt_message_to_host (uint8_t len, uint8_t *data)

Parameters

[out] len Message length.

[out] data Data to send to NCP.

Send user event (message_to_host).

Send user defined (message_to_host) event to NCP-host.

Definition at line 91 of file common/ncp/sl_ncp.h

sli_ncp_is_ok_to_sleep

bool sli_ncp_is_ok_to_sleep (void)

Parameters

N/A

Check if NCP allows go to sleep

Definition at line 96 of file common/ncp/sl_ncp.h

sli_ncp_sleep_on_isr_exit

sl_power_manager_on_isr_exit_t sli_ncp_sleep_on_isr_exit (void)

Parameters

N/A

Routine for power manager handler

Definition at line 101 of file common/ncp/sl_ncp.h

sl_ncp_os_task_init

void sl_ncp_os_task_init (void)

NCP Interface

1123/1306

Parameters

N/A

OS initialization function - if the OS is present

Definition at line 106 of file common/ncp/sl_ncp.h

sl_ncp_os_task_proceed

void sl_ncp_os_task_proceed (void)

Parameters

N/A

Function to trigger the OS task to proceed - if the OS is present

Definition at line 111 of file common/ncp/sl_ncp.h

Macro Definition Documentation

SL_NCP_CMD_BUF_SIZE

#define SL_NCP_CMD_BUF_SIZE

Value:

�260�

Definition at line 44 of file common/ncp/config/sl_ncp_config.h

SL_NCP_EVT_BUF_SIZE

#define SL_NCP_EVT_BUF_SIZE

Value:

�260�

Definition at line 49 of file common/ncp/config/sl_ncp_config.h

SL_NCP_CMD_TIMEOUT_MS

#define SL_NCP_CMD_TIMEOUT_MS

Value:

�500�

Definition at line 54 of file common/ncp/config/sl_ncp_config.h

SL_NCP_TASK_PRIO

#define SL_NCP_TASK_PRIO

NCP Interface

1124/1306

Value:

5

Definition at line 44 of file common/ncp/config/sl_ncp_freertos_config.h

SL_NCP_TASK_STACK

#define SL_NCP_TASK_STACK

Value:

1024

Definition at line 49 of file common/ncp/config/sl_ncp_freertos_config.h

NCP_TASK_NAME

#define NCP_TASK_NAME

Value:

"ncp_task"

Definition at line 54 of file common/ncp/config/sl_ncp_freertos_config.h

SL_NCP_TASK_PRIO

#define SL_NCP_TASK_PRIO

Value:

5

Definition at line 44 of file common/ncp/config/sl_ncp_micriumos_config.h

SL_NCP_TASK_STACK

#define SL_NCP_TASK_STACK

Value:

1024

Definition at line 49 of file common/ncp/config/sl_ncp_micriumos_config.h

NCP_TASK_NAME

#define NCP_TASK_NAME

Value:

"ncp_task"

Definition at line 54 of file common/ncp/config/sl_ncp_micriumos_config.h

NCP Interface

1125/1306

#define NCP_SEMAPHORE_NAME

Value:

"ncp_semaphore"

Definition at line 59 of file common/ncp/config/sl_ncp_micriumos_config.h

NCP Event Filter Interface

1126/1306

NCP Event Filter Interface

Modules

user_cmd_manage_event_filter

NCP Event Filter Interface
Component that provides the Bluetooth Network Co-Processor (NCP) Event Filter interface. This is a No-Code component if

used together with NCP Interface component.

Typedefs

typedef uint32_t evt_filter_t

typedef struct
user_cmd_manag

e_event_filter

user_cmd_manage_event_filter_t

Functions

void sl_ncp_evt_filter_handler(user_cmd_manage_event_filter_t *cmd)

bool sl_ncp_evt_filter_is_filtered(uint32_t header)

Macros

#define SL_NCP_EVT_FILTER_ARRAY_LENGTH 8

#define SL_NCP_EVT_FILTER_CMD_ADD_ID 0

#define SL_NCP_EVT_FILTER_CMD_REMOVE_ID 1

#define SL_NCP_EVT_FILTER_CMD_RESET_ID 2

#define SL_NCP_EVT_FILTER_CMD_ADD_LEN 5

#define SL_NCP_EVT_FILTER_CMD_REMOVE_LEN 5

#define SL_NCP_EVT_FILTER_CMD_RESET_LEN 1

Typedef Documentation

evt_filter_t

typedef uint32_t evt_filter_t

Definition at line 43 of file common/ncp_evt_filter/sl_ncp_evt_filter.h

NCP Event Filter Interface

1127/1306

user_cmd_manage_event_filter_t

typedef struct user_cmd_manage_event_filter user_cmd_manage_event_filter_t

Definition at line 53 of file common/ncp_evt_filter/sl_ncp_evt_filter.h

Function Documentation

sl_ncp_evt_filter_handler

void sl_ncp_evt_filter_handler (user_cmd_manage_event_filter_t *cmd)

Parameters

[in] cmd payload of manage event filter

User command (manage_event_filter) handler. This function processes the event filter command which is in the cmd

parameter and according to it adds/removes/resets the events in the event filter array.

Definition at line 63 of file common/ncp_evt_filter/sl_ncp_evt_filter.h

sl_ncp_evt_filter_is_filtered

bool sl_ncp_evt_filter_is_filtered (uint32_t header)

Parameters

[in] header incoming Bluetooth stack event header

Checks if the given event is filtered or not.

Returns

Returns true if filtered, false otherwise.

Definition at line 71 of file common/ncp_evt_filter/sl_ncp_evt_filter.h

Macro Definition Documentation

SL_NCP_EVT_FILTER_ARRAY_LENGTH

#define SL_NCP_EVT_FILTER_ARRAY_LENGTH

Value:

8

Definition at line 44 of file common/ncp_evt_filter/config/sl_ncp_evt_filter_config.h

SL_NCP_EVT_FILTER_CMD_ADD_ID

#define SL_NCP_EVT_FILTER_CMD_ADD_ID

NCP Event Filter Interface

1128/1306

Value:

0

Definition at line 40 of file common/ncp_evt_filter/sl_ncp_evt_filter_common.h

SL_NCP_EVT_FILTER_CMD_REMOVE_ID

#define SL_NCP_EVT_FILTER_CMD_REMOVE_ID

Value:

1

Definition at line 41 of file common/ncp_evt_filter/sl_ncp_evt_filter_common.h

SL_NCP_EVT_FILTER_CMD_RESET_ID

#define SL_NCP_EVT_FILTER_CMD_RESET_ID

Value:

2

Definition at line 42 of file common/ncp_evt_filter/sl_ncp_evt_filter_common.h

SL_NCP_EVT_FILTER_CMD_ADD_LEN

#define SL_NCP_EVT_FILTER_CMD_ADD_LEN

Value:

5

Definition at line 45 of file common/ncp_evt_filter/sl_ncp_evt_filter_common.h

SL_NCP_EVT_FILTER_CMD_REMOVE_LEN

#define SL_NCP_EVT_FILTER_CMD_REMOVE_LEN

Value:

5

Definition at line 46 of file common/ncp_evt_filter/sl_ncp_evt_filter_common.h

SL_NCP_EVT_FILTER_CMD_RESET_LEN

#define SL_NCP_EVT_FILTER_CMD_RESET_LEN

Value:

1

Definition at line 47 of file common/ncp_evt_filter/sl_ncp_evt_filter_common.h

user_cmd_manage_event_filter

1129/1306

user_cmd_manage_event_filter

Public Attributes

uint8_t len

uint8_t id

struct
user_cmd_manag
e_event_filter::@2

hdr

evt_filter_t evt

Public Attribute Documentation

len

uint8_t user_cmd_manage_event_filter::len

Definition at line 47 of file common/ncp_evt_filter/sl_ncp_evt_filter.h

id

uint8_t user_cmd_manage_event_filter::id

Definition at line 48 of file common/ncp_evt_filter/sl_ncp_evt_filter.h

hdr

struct user_cmd_manage_event_filter::@2 user_cmd_manage_event_filter::hdr

Definition at line 49 of file common/ncp_evt_filter/sl_ncp_evt_filter.h

evt

evt_filter_t user_cmd_manage_event_filter::evt

Definition at line 50 of file common/ncp_evt_filter/sl_ncp_evt_filter.h

NCP Security Interface

1130/1306

NCP Security Interface

NCP Security Interface
Component that provides secure Bluetooth Network Co-Processor (NCP) communication interface. This is a No-Code

component if used together with NCP Interface component.

General BGAPI User Commands

1131/1306

General BGAPI User Commands

General BGAPI User Commands
Demonstrates the communication between an NCP host and NCP target using BGAPI user messages, responses and events.

Can be used as a starting point for creating custom commands or for testing purposes.

Macros

#define USER_CMD_PERIODIC_ASYNC_ID 0�01

#define USER_CMD_PERIODIC_ASYNC_STOP_ID 0�02

#define USER_CMD_GET_BOARD_NAME_ID 0�03

#define USER_CMD_RESPONSE_ID 0�04

#define USER_CMD_PERIODIC_SYNC_ID 0�05

#define USER_RSP_GET_BOARD_NAME_LEN 8

Macro Definition Documentation

USER_CMD_PERIODIC_ASYNC_ID

#define USER_CMD_PERIODIC_ASYNC_ID

Value:

0�01

Definition at line 39 of file common/ncp_user_cmd/ncp_user_cmd.h

USER_CMD_PERIODIC_ASYNC_STOP_ID

#define USER_CMD_PERIODIC_ASYNC_STOP_ID

Value:

0�02

Definition at line 40 of file common/ncp_user_cmd/ncp_user_cmd.h

USER_CMD_GET_BOARD_NAME_ID

#define USER_CMD_GET_BOARD_NAME_ID

Value:

0�03

General BGAPI User Commands

1132/1306

Definition at line 41 of file common/ncp_user_cmd/ncp_user_cmd.h

USER_CMD_RESPONSE_ID

#define USER_CMD_RESPONSE_ID

Value:

0�04

Definition at line 42 of file common/ncp_user_cmd/ncp_user_cmd.h

USER_CMD_PERIODIC_SYNC_ID

#define USER_CMD_PERIODIC_SYNC_ID

Value:

0�05

Definition at line 43 of file common/ncp_user_cmd/ncp_user_cmd.h

USER_RSP_GET_BOARD_NAME_LEN

#define USER_RSP_GET_BOARD_NAME_LEN

Value:

8

Definition at line 45 of file common/ncp_user_cmd/ncp_user_cmd.h

NCP Host Demo

1133/1306

NCP Host Demo

Modules

NCP GATT

NCP Host Communication Interface

NCP Host Demo
SW components that demonstrate how to implement an embedded NCP host.

NCP GATT

1134/1306

NCP GATT

NCP GATT
Composes the GATT database on the NCP target using the Dynamic GATT API. This is a No-Code component.

Functions

void sl_ncp_gatt_on_event(sl_bt_msg_t *evt)

Function Documentation

sl_ncp_gatt_on_event

void sl_ncp_gatt_on_event (sl_bt_msg_t *evt)

Parameters

[in] evt Event coming from the Bluetooth stack.

Bluetooth stack event handler.

Definition at line 42 of file common/ncp_gatt/sl_ncp_gatt.h

NCP Host Communication Interface

1135/1306

NCP Host Communication Interface

NCP Host Communication Interface
Component that provides the Bluetooth Network Co-Processor (NCP) host communication interface. This is a No-Code

component.

Functions

void sl_ncp_host_com_init(void)

void sl_ncp_host_com_write(uint32_t len, uint8_t *data)

int32_t sl_ncp_host_com_read(uint32_t len, uint8_t *data)

int32_t sl_ncp_host_com_peek(void)

bool sl_ncp_host_is_ok_to_sleep(void)

Macros

#define SL_NCP_HOST_COM_BUF_SIZE �260�

Function Documentation

sl_ncp_host_com_init

void sl_ncp_host_com_init (void)

Parameters

N/A

NCP host communication initialization.

Definition at line 43 of file common/ncp_host_com/sl_ncp_host_com.h

sl_ncp_host_com_write

void sl_ncp_host_com_write (uint32_t len, uint8_t *data)

Parameters

N/A len

N/A data

Transmit function

Definition at line 48 of file common/ncp_host_com/sl_ncp_host_com.h

NCP Host Communication Interface

1136/1306

sl_ncp_host_com_read

int32_t sl_ncp_host_com_read (uint32_t len, uint8_t *data)

Parameters

N/A len

N/A data

Receive function

Definition at line 53 of file common/ncp_host_com/sl_ncp_host_com.h

sl_ncp_host_com_peek

int32_t sl_ncp_host_com_peek (void)

Parameters

N/A

Gives back already received message length.

Definition at line 58 of file common/ncp_host_com/sl_ncp_host_com.h

sl_ncp_host_is_ok_to_sleep

bool sl_ncp_host_is_ok_to_sleep (void)

Parameters

N/A

Definition at line 60 of file common/ncp_host_com/sl_ncp_host_com.h

Macro Definition Documentation

SL_NCP_HOST_COM_BUF_SIZE

#define SL_NCP_HOST_COM_BUF_SIZE

Value:

�260�

Definition at line 43 of file common/ncp_host_com/config/sl_ncp_host_com_config.h

Utility

1137/1306

Utility

Modules

Simple Communication Interface (UART)

Utility
Utility SW components that provide additional tools to help developers.

Simple Communication Interface �UART�

1138/1306

Simple Communication Interface �UART�

Simple Communication Interface �UART�
Component that provides simple communication interface using UART. This component is mainly used in NCP

communication cases. This is a No-Code component if used together with NCP Interface or NCP Host Communication

Interface components.

Functions

void sl_simple_com_init(void)

void sl_simple_com_step(void)

void sl_simple_com_transmit(uint32_t len, uint8_t *data)

void sl_simple_com_transmit_cb(sl_status_t status)

void sl_simple_com_receive(void)

void sl_simple_com_receive_cb(sl_status_t status, uint32_t len, uint8_t *data)

void sl_simple_com_os_task_init(void)

void sl_simple_com_os_task_proceed(void)

Macros

#define SL_SIMPLE_COM_RX_BUF_SIZE �260�

#define SL_SIMPLE_COM_TX_BUF_SIZE �260�

#define SL_SIMPLE_COM_TASK_PRIO 4

#define SL_SIMPLE_COM_TASK_STACK 1024

#define SL_SIMPLE_COM_TASK_NAME "simple_com_task"

#define SL_SIMPLE_COM_TASK_PRIO 4

#define SL_SIMPLE_COM_TASK_STACK 1024

#define SL_SIMPLE_COM_TASK_NAME "simple_com_task"

#define SL_SIMPLE_COM_SEMAPHORE_NAME "simple_com_semaphore"

Function Documentation

sl_simple_com_init

void sl_simple_com_init (void)

Simple Communication Interface �UART�

1139/1306

Parameters

N/A

Simple Comm Init.

Definition at line 45 of file common/simple_com/sl_simple_com.h

sl_simple_com_step

void sl_simple_com_step (void)

Parameters

N/A

Step function (used in CPC mode)

Definition at line 50 of file common/simple_com/sl_simple_com.h

sl_simple_com_transmit

void sl_simple_com_transmit (uint32_t len, uint8_t *data)

Parameters

N/A len

N/A data

Transmit function

Definition at line 55 of file common/simple_com/sl_simple_com.h

sl_simple_com_transmit_cb

void sl_simple_com_transmit_cb (sl_status_t status)

Parameters

N/A status

Transmit completed callback

Definition at line 60 of file common/simple_com/sl_simple_com.h

sl_simple_com_receive

void sl_simple_com_receive (void)

Parameters

N/A

Receive function (used in UART mode)

Definition at line 65 of file common/simple_com/sl_simple_com.h

Simple Communication Interface �UART�

1140/1306

sl_simple_com_receive_cb

void sl_simple_com_receive_cb (sl_status_t status, uint32_t len, uint8_t *data)

Parameters

N/A status

N/A len

N/A data

Receive completed callback

Definition at line 70 of file common/simple_com/sl_simple_com.h

sl_simple_com_os_task_init

void sl_simple_com_os_task_init (void)

Parameters

N/A

OS initialization function - if the OS is present

Definition at line 75 of file common/simple_com/sl_simple_com.h

sl_simple_com_os_task_proceed

void sl_simple_com_os_task_proceed (void)

Parameters

N/A

Function to trigger the OS task to proceed - if the OS is present

Definition at line 80 of file common/simple_com/sl_simple_com.h

Macro Definition Documentation

SL_SIMPLE_COM_RX_BUF_SIZE

#define SL_SIMPLE_COM_RX_BUF_SIZE

Value:

�260�

Definition at line 44 of file common/simple_com/config/sl_simple_com_config.h

SL_SIMPLE_COM_TX_BUF_SIZE

#define SL_SIMPLE_COM_TX_BUF_SIZE

Simple Communication Interface �UART�

1141/1306

Value:

�260�

Definition at line 49 of file common/simple_com/config/sl_simple_com_config.h

SL_SIMPLE_COM_TASK_PRIO

#define SL_SIMPLE_COM_TASK_PRIO

Value:

4

Definition at line 44 of file common/simple_com/config/sl_simple_com_freertos_config.h

SL_SIMPLE_COM_TASK_STACK

#define SL_SIMPLE_COM_TASK_STACK

Value:

1024

Definition at line 49 of file common/simple_com/config/sl_simple_com_freertos_config.h

SL_SIMPLE_COM_TASK_NAME

#define SL_SIMPLE_COM_TASK_NAME

Value:

"simple_com_task"

Definition at line 54 of file common/simple_com/config/sl_simple_com_freertos_config.h

SL_SIMPLE_COM_TASK_PRIO

#define SL_SIMPLE_COM_TASK_PRIO

Value:

4

Definition at line 44 of file common/simple_com/config/sl_simple_com_micriumos_config.h

SL_SIMPLE_COM_TASK_STACK

#define SL_SIMPLE_COM_TASK_STACK

Value:

1024

Definition at line 49 of file common/simple_com/config/sl_simple_com_micriumos_config.h

Simple Communication Interface �UART�

1142/1306

SL_SIMPLE_COM_TASK_NAME

#define SL_SIMPLE_COM_TASK_NAME

Value:

"simple_com_task"

Definition at line 54 of file common/simple_com/config/sl_simple_com_micriumos_config.h

SL_SIMPLE_COM_SEMAPHORE_NAME

#define SL_SIMPLE_COM_SEMAPHORE_NAME

Value:

"simple_com_semaphore"

Definition at line 59 of file common/simple_com/config/sl_simple_com_micriumos_config.h

Hci_coex

1143/1306

Hci_coex

Hci_coex

Macros

#define SL_BT_HCI_COEX_SET_OPTIONS_OPCODE 0xff00

#define SL_BT_HCI_COEX_SET_PARAMETERS_OPCODE 0xff01

#define SL_BT_HCI_COEX_GET_PARAMETERS_OPCODE 0xff02

#define SL_BT_HCI_COEX_SET_DIRECTIONAL_PRIORITY_PULSE_OPCODE 0xff03

#define SL_BT_HCI_COEX_GET_COUNTERS_OPCODE 0xff04

Macro Definition Documentation

SL_BT_HCI_COEX_SET_OPTIONS_OPCODE

#define SL_BT_HCI_COEX_SET_OPTIONS_OPCODE

Value:

0xff00

Definition at line 19 of file common/hci_coex/config/sl_bt_hci_coex_config.h

SL_BT_HCI_COEX_SET_PARAMETERS_OPCODE

#define SL_BT_HCI_COEX_SET_PARAMETERS_OPCODE

Value:

0xff01

Definition at line 28 of file common/hci_coex/config/sl_bt_hci_coex_config.h

SL_BT_HCI_COEX_GET_PARAMETERS_OPCODE

#define SL_BT_HCI_COEX_GET_PARAMETERS_OPCODE

Value:

0xff02

Definition at line 37 of file common/hci_coex/config/sl_bt_hci_coex_config.h

SL_BT_HCI_COEX_SET_DIRECTIONAL_PRIORITY_PULSE_OPCODE

Hci_coex

1144/1306

#define SL_BT_HCI_COEX_SET_DIRECTIONAL_PRIORITY_PULSE_OPCODE

Value:

0xff03

Definition at line 46 of file common/hci_coex/config/sl_bt_hci_coex_config.h

SL_BT_HCI_COEX_GET_COUNTERS_OPCODE

#define SL_BT_HCI_COEX_GET_COUNTERS_OPCODE

Value:

0xff04

Definition at line 55 of file common/hci_coex/config/sl_bt_hci_coex_config.h

Ots_client

1145/1306

Ots_client

Modules

sl_bt_ots_client_callbacks_t

sl_bt_ots_client

sl_bt_object_type_variant_t

sl_bt_ots_object_type_t

sl_bt_ots_time_t

sl_bt_ots_object_id_t

sl_bt_ots_object_metadata_write_parameters_t

sl_bt_ots_object_metadata_read_parameters_t

sl_bt_ots_oacp_parameters_t

sl_bt_ots_oacp_response_data_t

sl_bt_ots_olcp_parameters_t

sl_bt_ots_object_t

sl_bt_ots_subscription_status_t

Ots_client

Typedefs

typedef struct
sl_bt_ots_client *

sl_bt_ots_client_handle_t
OTS Object Client handle.

typedef void(* sl_bt_ots_client_connection_callback_t)(sl_bt_ots_client_handle_t client)

typedef void(* sl_bt_ots_client_subscription_callback_t)(sl_bt_ots_client_handle_t client, sl_bt_ots_subscription_status_t
status)

typedef void(* sl_bt_ots_client_object_changed_callback_t)(sl_bt_ots_client_handle_t client, sl_bt_ots_object_changed_flags_t
flags, sl_bt_ots_object_id_t *object)

typedef void(* sl_bt_ots_client_features_callback_t)(sl_bt_ots_client_handle_t client, sl_status_t status, sl_bt_ots_features_t
features)

typedef void(* sl_bt_ots_client_list_filter_write_callback_t)(sl_bt_ots_client_handle_t client, uint16_t status)

typedef void(* sl_bt_ots_client_list_filter_read_callback_t)(sl_bt_ots_client_handle_t client, sl_status_t status,
sl_bt_ots_object_list_filter_content_t filter)

typedef void(* sl_bt_ots_client_olcp_callback_t)(sl_bt_ots_client_handle_t client, sl_bt_ots_object_id_t *object,
sl_bt_ots_olcp_opcode_t opcode, uint16_t status, sl_bt_ots_olcp_response_code_t response, uint32_t
number_of_objects)

Ots_client

1146/1306

typedef void(* sl_bt_ots_client_oacp_callback_t)(sl_bt_ots_client_handle_t client, sl_bt_ots_object_id_t *object,
sl_bt_ots_oacp_opcode_t opcode, uint16_t status, sl_bt_ots_oacp_response_code_t response,
sl_bt_ots_oacp_response_data_t *data)

typedef void(* sl_bt_ots_client_object_metadata_write_callback_t)(sl_bt_ots_client_handle_t client, sl_bt_ots_object_id_t
*object, sl_bt_ots_object_metadata_write_event_type_t event, uint16_t status)

typedef void(* sl_bt_ots_client_object_metadata_read_callback_t)(sl_bt_ots_client_handle_t client, sl_bt_ots_object_id_t
*object, uint16_t status, sl_bt_ots_object_metadata_read_event_type_t event,
sl_bt_ots_object_metadata_read_parameters_t *parameters)

typedef
sl_bt_ots_l2cap_cr

edit_t(*

sl_bt_ots_client_data_receive_callback_t)(sl_bt_ots_client_handle_t client, sl_bt_ots_object_id_t *object,
uint32_t current_offset, uint8_t *data, uint32_t size)

typedef void(* sl_bt_ots_client_data_transmit_callback_t)(sl_bt_ots_client_handle_t client, sl_bt_ots_object_id_t *object,
uint32_t current_offset, uint32_t size, uint8_t **data, uint32_t *data_size)

typedef void(* sl_bt_ots_client_data_transfer_finished_t)(sl_bt_ots_client_handle_t client, sl_bt_ots_object_id_t *object,
sl_bt_ots_transfer_result_t result)

typedef void(* sl_bt_ots_client_group_metadata_read_t)(sl_bt_ots_client_handle_t client, sl_bt_ots_object_t *object,
sl_bt_ots_metadata_fields_t remaining_fields, sl_status_t result)

typedef void(* sl_bt_ots_client_init_callback_t)(sl_bt_ots_client_handle_t client, sl_status_t result, sl_bt_ots_gattdb_handles_t
*gattdb_handles)

typedef struct
sl_bt_ots_client

sl_bt_ots_client_t
OTS Object Client instance type.

typedef uint32_t sl_bt_ots_oacp_features_t
Object Action Control Point Features.

typedef uint32_t sl_bt_ots_olcp_features_t
Object List Control Point Features.

typedef
sl_bt_ots_time_t

sl_bt_ots_object_first_created_t
Object first created.

typedef
sl_bt_ots_time_t

sl_bt_ots_object_last_modified_t
Object last modified.

typedef uint32_t sl_bt_ots_object_properties_t
Object properties.

typedef uint8_t sl_bt_ots_metadata_fields_t
Metadata fields type.

typedef
sl_bt_ots_oacp_op

code_t

sl_bt_ots_oacp_event_t

typedef
uint8array

sl_bt_ots_oacp_execute_parameters_t
OACP Execute opcode parameters.

typedef uint8_t sl_bt_ots_oacp_write_mode_t
Object write mode flags.

typedef uint16_t sl_bt_ots_l2cap_credit_t
Data response credits.

typedef
sl_bt_ots_olcp_op

code_t

sl_bt_ots_olcp_event_t

Ots_client

1147/1306

typedef
sl_bt_ots_object_

name_t

sl_bt_ots_object_list_filter_name_parameters_t
Name filter parameters.

typedef
sl_bt_ots_object_t

ype_t

sl_bt_ots_object_list_filter_type_parameters_t

typedef uint8_t sl_bt_ots_object_changed_flags_t
Object change flags.

typedef int(* sl_bt_ots_compare_t)(uint8_t *key_1, uint8_t *key_2�

Variables

const uint16_t sl_bt_ots_characteristic_uuids
Array of OTS Characteristic UUIDs.

Functions

SL_ENUM(sl_bt_ots_client_status_t)
OTS Object Client status.

sl_status_t sl_bt_ots_client_init(sl_bt_ots_client_handle_t client, uint8_t connection, uint32_t service,
sl_bt_ots_client_callbacks_t *callbacks, sl_bt_ots_gattdb_handles_t *gattdb_handles)

sl_status_t sl_bt_ots_client_read_ots_features(sl_bt_ots_client_handle_t client)

sl_status_t sl_bt_ots_client_read_object_name(sl_bt_ots_client_handle_t client)

sl_status_t sl_bt_ots_client_read_object_type(sl_bt_ots_client_handle_t client)

sl_status_t sl_bt_ots_client_read_object_size(sl_bt_ots_client_handle_t client)

sl_status_t sl_bt_ots_client_read_object_first_created(sl_bt_ots_client_handle_t client)

sl_status_t sl_bt_ots_client_read_object_last_modified(sl_bt_ots_client_handle_t client)

sl_status_t sl_bt_ots_client_read_object_id(sl_bt_ots_client_handle_t client)

sl_status_t sl_bt_ots_client_read_object_properties(sl_bt_ots_client_handle_t client)

sl_status_t sl_bt_ots_client_write_name(sl_bt_ots_client_handle_t client, char *name, uint8_t size)

sl_status_t sl_bt_ots_client_write_object_first_created(sl_bt_ots_client_handle_t client, sl_bt_ots_time_t *time)

sl_status_t sl_bt_ots_client_write_object_last_modified(sl_bt_ots_client_handle_t client, sl_bt_ots_time_t *time)

sl_status_t sl_bt_ots_client_write_object_properties(sl_bt_ots_client_handle_t client, sl_bt_ots_object_properties_t
properties)

sl_status_t sl_bt_ots_client_olcp_first(sl_bt_ots_client_handle_t client)

sl_status_t sl_bt_ots_client_olcp_last(sl_bt_ots_client_handle_t client)

sl_status_t sl_bt_ots_client_olcp_previous(sl_bt_ots_client_handle_t client)

sl_status_t sl_bt_ots_client_olcp_next(sl_bt_ots_client_handle_t client)

sl_status_t sl_bt_ots_client_olcp_go_to(sl_bt_ots_client_handle_t client, sl_bt_ots_object_id_t *object)

Ots_client

1148/1306

sl_status_t sl_bt_ots_client_olcp_order(sl_bt_ots_client_handle_t client, sl_bt_ots_list_sort_order_t order)

sl_status_t sl_bt_ots_client_olcp_request_number_of_objects(sl_bt_ots_client_handle_t client)

sl_status_t sl_bt_ots_client_olcp_clear_marking(sl_bt_ots_client_handle_t client)

sl_status_t sl_bt_ots_client_read_object_list_filter(sl_bt_ots_client_handle_t client)

sl_status_t sl_bt_ots_client_write_object_list_filter(sl_bt_ots_client_handle_t client, sl_bt_ots_object_list_filter_content_t
filter)

sl_status_t sl_bt_ots_client_oacp_create_object(sl_bt_ots_client_handle_t client, uint32_t size, sl_bt_ots_object_type_t
type)

sl_status_t sl_bt_ots_client_oacp_delete_object(sl_bt_ots_client_handle_t client)

sl_status_t sl_bt_ots_client_oacp_calculate_checksum(sl_bt_ots_client_handle_t client, uint32_t offset, uint32_t length)

sl_status_t sl_bt_ots_client_oacp_execute(sl_bt_ots_client_handle_t client, uint8_t *optional_data, uint8_t
optional_data_size)

sl_status_t sl_bt_ots_client_oacp_read(sl_bt_ots_client_handle_t client, uint32_t offset, uint32_t length, uint16_t max_sdu,
uint16_t max_pdu)

sl_status_t sl_bt_ots_client_oacp_write(sl_bt_ots_client_handle_t client, uint32_t offset, uint32_t length,
sl_bt_ots_oacp_write_mode_t mode, uint16_t max_sdu, uint16_t max_pdu)

sl_status_t sl_bt_ots_client_oacp_abort(sl_bt_ots_client_handle_t client)

sl_status_t sl_bt_ots_client_increase_credit(sl_bt_ots_client_handle_t client, uint16_t credit)

sl_status_t sl_bt_ots_client_abort(sl_bt_ots_client_handle_t client)

void sli_bt_ots_client_on_bt_event(sl_bt_msg_t *evt)

void sli_bt_ots_client_init(void)

void sli_bt_ots_client_step(void)

SL_ENUM(sl_bt_ots_characteristic_uuid_index)
OTS Characteristic UUID indices.

typedef(struct { sl_bt_ots_oacp_features_t oacp_features;sl_bt_ots_olcp_features_t olcp_features;})
sl_bt_ots_features_t
Object Transfer Service features.

typedef(struct { uint16_t length;char *name;}) sl_bt_ots_object_name_t
Object name.

typedef(struct { uint32_t current_size;uint32_t allocated_size;}) sl_bt_ots_object_size_t
Object size.

typedef(struct { uint8_t rfu;uint8_t usable[SL_BT_OTS_OBJECT_ID_USABLE_SIZE�;��
sl_bt_ots_object_id_complete_t
Complete Object ID.

SL_ENUM(sl_bt_ots_object_metadata_write_event_type_t)
Object metadata write event type.

SL_ENUM(sl_bt_ots_object_metadata_write_response_code_t)
Object metadata write response codes.

SL_ENUM(sl_bt_ots_object_metadata_read_event_type_t)
Object metadata read event type.

Ots_client

1149/1306

SL_ENUM(sl_bt_ots_object_metadata_read_response_code_t)
Object metadata read response codes.

SL_ENUM(sl_bt_ots_oacp_opcode_t)
OACP opcode.

SL_ENUM(sl_bt_ots_oacp_response_code_t)
OACP response code.

typedef(struct { uint32_t size;uint8_t type[SL_BT_OTS_UUID_SIZE_128�;�� sl_bt_ots_oacp_create_parameters_t
OACP Create opcode parameters.

typedef(struct { uint32_t offset;uint32_t length;}) sl_bt_ots_oacp_calculate_checksum_parameters_t
OACP Calculate Checksum opcode parameters.

typedef(struct { uint32_t offset;uint32_t length;sl_bt_ots_oacp_write_mode_t mode;})
sl_bt_ots_oacp_write_parameters_t
OACP Write opcode parameters.

SL_ENUM(sl_bt_ots_transfer_result_t)

typedef(struct { sl_bt_ots_oacp_opcode_t opcode;uint8_t data[];}) sl_bt_ots_oacp_message_t
OACP Message.

typedef(struct { sl_bt_ots_oacp_opcode_t response_opcode;sl_bt_ots_oacp_opcode_t
opcode;sl_bt_ots_oacp_response_code_t response;uint8_t data[];}) sl_bt_ots_oacp_response_message_t
OACP response.

SL_ENUM(sl_bt_ots_olcp_opcode_t)
OACP opcode.

SL_ENUM(sl_bt_ots_olcp_response_code_t)
OLCP response code.

SL_ENUM(sl_bt_ots_list_sort_order_t)
List Sort Order.

typedef(struct { sl_bt_ots_object_id_t id;}) sl_bt_ots_olcp_go_to_parameters_t
OLCP Go To opcode parameters.

typedef(struct { sl_bt_ots_list_sort_order_t list_sort_order;}) sl_bt_ots_olcp_order_parameters_t
OLCP Order opcode parameters.

typedef(struct { sl_bt_ots_olcp_opcode_t opcode;uint8_t data[];}) sl_bt_ots_olcp_message_t
OLCP message.

typedef(struct { sl_bt_ots_olcp_opcode_t response_opcode;sl_bt_ots_olcp_opcode_t
opcode;sl_bt_ots_olcp_response_code_t response;uint32_t number_of_objects;})
sl_bt_ots_olcp_response_message_t
OLCP response message.

SL_ENUM(sl_bt_ots_object_list_filter_type_t)
Object List Filter.

typedef(struct { sl_bt_ots_time_t from;sl_bt_ots_time_t to;}) sl_bt_ots_object_list_filter_time_parameters_t
Time filter parameters.

typedef(struct { uint32_t min;uint32_t max;}) sl_bt_ots_object_list_filter_size_parameters_t
Size filter parameters.

Ots_client

1150/1306

typedef(struct { sl_bt_ots_object_list_filter_type_t filter_type;union {
sl_bt_ots_object_list_filter_name_parameters_t name;sl_bt_ots_object_list_filter_time_parameters_t
time;sl_bt_ots_object_list_filter_size_parameters_t size;sl_bt_ots_object_list_filter_type_parameters_t type;}
parameters;}) sl_bt_ots_object_list_filter_content_t
Object List Filter content.

typedef(struct { sl_bt_ots_object_changed_flags_t flags;sl_bt_ots_object_id_t object;})
sl_bt_ots_object_changed_content_t
Object Changed content.

typedef(struct { uint32_t service;union { uint16_t array[12];1(struct { uint16_t ots_feature;uint16_t
object_name;uint16_t object_type;uint16_t object_size;uint16_t object_first_created;uint16_t
object_last_modified;uint16_t object_id;uint16_t object_properties;uint16_t object_action_control_point;uint16_t
object_list_control_point;uint16_t object_list_filter;uint16_t object_changed;}) handles;} characteristics;})
sl_bt_ots_gattdb_handles_t
OTS GATT database handles.

typedef(struct { sl_slist_node_t node;uint8_t *key;uint8_t *value;}) sl_bt_ots_list_item_t
Datatype for object list item.

typedef(struct { sl_bt_ots_compare_t compare;sl_bt_ots_list_item_t *list;}) sl_bt_ots_list_t
Datatype for object list.

Macros

#define SL_BT_OTS_CLIENT_CONFIG_READ_REQUEST_QUEUE_SIZE 5

#define SL_BT_OTS_CLIENT_CONFIG_WRITE_REQUEST_QUEUE_SIZE 1

#define SL_BT_OTS_CLIENT_CONFIG_WRITE_REQUEST_DATA_SIZE 255

#define ATT_STATUS_MASK 0xFF

#define ATT_ERR_SUCCESS 0�00

#define ATT_ERR_INVALID_HANDLE �SL_STATUS_BT_ATT_INVALID_HANDLE & ATT_STATUS_MASK�

#define ATT_ERR_READ_NOT_PERMITTED �SL_STATUS_BT_ATT_READ_NOT_PERMITTED & ATT_STATUS_MASK�

#define ATT_ERR_WRITE_NOT_PERMITTED �SL_STATUS_BT_ATT_WRITE_NOT_PERMITTED & ATT_STATUS_MASK�

#define ATT_ERR_INVALID_PDU �SL_STATUS_BT_ATT_INVALID_PDU & ATT_STATUS_MASK�

#define ATT_ERR_AUTHENTICATION �SL_STATUS_BT_ATT_INSUFFICIENT_AUTHENTICATION & ATT_STATUS_MASK�

#define ATT_ERR_NOT_SUPPORTED �SL_STATUS_BT_ATT_REQUEST_NOT_SUPPORTED & ATT_STATUS_MASK�

#define ATT_ERR_INVALID_OFFSET �SL_STATUS_BT_ATT_INVALID_OFFSET & ATT_STATUS_MASK�

#define ATT_ERR_AUTHORIZATION �SL_STATUS_BT_ATT_INSUFFICIENT_AUTHORIZATION & ATT_STATUS_MASK�

#define ATT_ERR_PREPARE_QUEUE_FULL �SL_STATUS_BT_ATT_PREPARE_QUEUE_FULL & ATT_STATUS_MASK�

#define ATT_ERR_ATTRIBUTE_NOT_FOUND �SL_STATUS_BT_ATT_ATT_NOT_FOUND & ATT_STATUS_MASK�

#define ATT_ERR_ATTRIBUTE_NOT_LONG �SL_STATUS_BT_ATT_ATT_NOT_LONG & ATT_STATUS_MASK�

#define ATT_ERR_ENCRYPTION_KEY_SIZE �SL_STATUS_BT_ATT_INSUFFICIENT_ENC_KEY_SIZE & ATT_STATUS_MASK�

#define ATT_ERR_INVALID_ATTRIBUTE_LEN �SL_STATUS_BT_ATT_INVALID_ATT_LENGTH & ATT_STATUS_MASK�

#define ATT_ERR_UNLIKELY �SL_STATUS_BT_ATT_UNLIKELY_ERROR & ATT_STATUS_MASK�

Ots_client

1151/1306

#define ATT_ERR_INSUFFICIENT_ENCRYPTION �SL_STATUS_BT_ATT_INSUFFICIENT_ENCRYPTION &
ATT_STATUS_MASK�

#define ATT_ERR_UNSUPPORTED_GROUP_TYPE �SL_STATUS_BT_ATT_UNSUPPORTED_GROUP_TYPE &
ATT_STATUS_MASK�

#define ATT_ERR_INSUFFICIENT_RESOURCES �SL_STATUS_BT_ATT_INSUFFICIENT_RESOURCES &
ATT_STATUS_MASK�

#define ATT_ERR_DB_OUT_OF_SYNC �SL_STATUS_BT_ATT_OUT_OF_SYNC & ATT_STATUS_MASK�

#define ATT_ERR_VALUE_NOT_ALLOWED �SL_STATUS_BT_ATT_VALUE_NOT_ALLOWED & ATT_STATUS_MASK�

#define ATT_ERR_IMPORER_CCCD
�SL_STATUS_BT_ATT_CLIENT_CHARACTERISTIC_CONFIGURATION_DESCRIPTOR_IMPROPERLY_CONFIGURED
& ATT_STATUS_MASK�

#define ATT_ERR_WRITE_REQUEST_REJECTED 0�80

#define ATT_ERR_OBJECT_NOT_SELECTED 0�81

#define ATT_ERR_CONCURRENCY_LIMIT_EXCEEDED 0�82

#define ATT_ERR_OBJECT_NAME_ALREADY_EXISTS 0�83

#define SL_BT_OTS_OACP_FEATURE_CREATE_OP_CODE_SUPPORTED_BIT_POS 0

#define SL_BT_OTS_OACP_FEATURE_CREATE_OP_CODE_SUPPORTED_MASK �1 <<
SL_BT_OTS_OACP_FEATURE_CREATE_OP_CODE_SUPPORTED_BIT_POS�

#define SL_BT_OTS_OACP_FEATURE_DELETE_OP_CODE_SUPPORTED_BIT_POS 1

#define SL_BT_OTS_OACP_FEATURE_DELETE_OP_CODE_SUPPORTED_MASK �1 <<
SL_BT_OTS_OACP_FEATURE_DELETE_OP_CODE_SUPPORTED_BIT_POS�

#define SL_BT_OTS_OACP_FEATURE_CALCULATE_CHECKSUM_OP_CODE_SUPPORTED_BIT_POS 2

#define SL_BT_OTS_OACP_FEATURE_CALCULATE_CHECKSUM_OP_CODE_SUPPORTED_MASK �1 <<
SL_BT_OTS_OACP_FEATURE_CALCULATE_CHECKSUM_OP_CODE_SUPPORTED_BIT_POS�

#define SL_BT_OTS_OACP_FEATURE_EXECUTE_OP_CODE_SUPPORTED_BIT_POS 3

#define SL_BT_OTS_OACP_FEATURE_EXECUTE_OP_CODE_SUPPORTED_MASK �1 <<
SL_BT_OTS_OACP_FEATURE_EXECUTE_OP_CODE_SUPPORTED_BIT_POS�

#define SL_BT_OTS_OACP_FEATURE_READ_OP_CODE_SUPPORTED_BIT_POS 4

#define SL_BT_OTS_OACP_FEATURE_READ_OP_CODE_SUPPORTED_MASK �1 <<
SL_BT_OTS_OACP_FEATURE_READ_OP_CODE_SUPPORTED_BIT_POS�

#define SL_BT_OTS_OACP_FEATURE_WRITE_OP_CODE_SUPPORTED_BIT_POS 5

#define SL_BT_OTS_OACP_FEATURE_WRITE_OP_CODE_SUPPORTED_MASK �1 <<
SL_BT_OTS_OACP_FEATURE_WRITE_OP_CODE_SUPPORTED_BIT_POS�

#define SL_BT_OTS_OACP_FEATURE_APPEND_ADDITIONAL_DATA_SUPPORTED_BIT_POS 6

#define SL_BT_OTS_OACP_FEATURE_APPEND_ADDITIONAL_DATA_SUPPORTED_MASK �1 <<
SL_BT_OTS_OACP_FEATURE_APPEND_ADDITIONAL_DATA_SUPPORTED_BIT_POS�

#define SL_BT_OTS_OACP_FEATURE_TRUNCATION_OF_OBJECTS_SUPPORTED_BIT_POS 7

#define SL_BT_OTS_OACP_FEATURE_TRUNCATION_OF_OBJECTS_SUPPORTED_MASK �1 <<
SL_BT_OTS_OACP_FEATURE_TRUNCATION_OF_OBJECTS_SUPPORTED_BIT_POS�

Ots_client

1152/1306

#define SL_BT_OTS_OACP_FEATURE_PATCHING_OF_OBJECTS_SUPPORTED_BIT_POS 8

#define SL_BT_OTS_OACP_FEATURE_PATCHING_OF_OBJECTS_SUPPORTED_MASK �1 <<
SL_BT_OTS_OACP_FEATURE_PATCHING_OF_OBJECTS_SUPPORTED_BIT_POS�

#define SL_BT_OTS_OACP_FEATURE_ABORT_OP_CODE_SUPPORTED_BIT_POS 9

#define SL_BT_OTS_OACP_FEATURE_ABORT_OP_CODE_SUPPORTED_MASK �1 <<
SL_BT_OTS_OACP_FEATURE_ABORT_OP_CODE_SUPPORTED_BIT_POS�

#define SL_BT_OTS_OLCP_FEATURE_GO_TO_OP_CODE_SUPPORTED_BIT_POS 0

#define SL_BT_OTS_OLCP_FEATURE_GO_TO_OP_CODE_SUPPORTED_MASK �1 <<
SL_BT_OTS_OLCP_FEATURE_GO_TO_OP_CODE_SUPPORTED_BIT_POS�

#define SL_BT_OTS_OLCP_FEATURE_ORDER_OP_CODE_SUPPORTED_BIT_POS 1

#define SL_BT_OTS_OLCP_FEATURE_ORDER_OP_CODE_SUPPORTED_MASK �1 <<
SL_BT_OTS_OLCP_FEATURE_ORDER_OP_CODE_SUPPORTED_BIT_POS�

#define SL_BT_OTS_OLCP_FEATURE_REQUEST_NUMBER_OF_OBJECTS_OP_CODE_SUPPORTED_BIT_POS 2

#define SL_BT_OTS_OLCP_FEATURE_REQUEST_NUMBER_OF_OBJECTS_OP_CODE_SUPPORTED_MASK �1 <<
SL_BT_OTS_OLCP_FEATURE_REQUEST_NUMBER_OF_OBJECTS_OP_CODE_SUPPORTED_BIT_POS�

#define SL_BT_OTS_OLCP_FEATURE_CLEAR_MARKING_OP_CODE_SUPPORTED_BIT_POS 3

#define SL_BT_OTS_OLCP_FEATURE_CLEAR_MARKING_OP_CODE_SUPPORTED_MASK �1 <<
SL_BT_OTS_OLCP_FEATURE_CLEAR_MARKING_OP_CODE_SUPPORTED_BIT_POS�

#define SL_BT_OTS_OBJECT_PROPERTY_DELETE_BIT_POS 0

#define SL_BT_OTS_OBJECT_PROPERTY_DELETE_MASK �1 << SL_BT_OTS_OBJECT_PROPERTY_DELETE_BIT_POS�

#define SL_BT_OTS_OBJECT_PROPERTY_EXECUTE_BIT_POS 1

#define SL_BT_OTS_OBJECT_PROPERTY_EXECUTE_MASK �1 << SL_BT_OTS_OBJECT_PROPERTY_EXECUTE_BIT_POS�

#define SL_BT_OTS_OBJECT_PROPERTY_READ_BIT_POS 2

#define SL_BT_OTS_OBJECT_PROPERTY_READ_MASK �1 << SL_BT_OTS_OBJECT_PROPERTY_READ_BIT_POS�

#define SL_BT_OTS_OBJECT_PROPERTY_WRITE_BIT_POS 3

#define SL_BT_OTS_OBJECT_PROPERTY_WRITE_MASK �1 << SL_BT_OTS_OBJECT_PROPERTY_WRITE_BIT_POS�

#define SL_BT_OTS_OBJECT_PROPERTY_APPEND_BIT_POS 4

#define SL_BT_OTS_OBJECT_PROPERTY_APPEND_MASK �1 << SL_BT_OTS_OBJECT_PROPERTY_APPEND_BIT_POS�

#define SL_BT_OTS_OBJECT_PROPERTY_TRUNCATE_BIT_POS 5

#define SL_BT_OTS_OBJECT_PROPERTY_TRUNCATE_MASK �1 <<
SL_BT_OTS_OBJECT_PROPERTY_TRUNCATE_BIT_POS�

#define SL_BT_OTS_OBJECT_PROPERTY_PATCH_BIT_POS 6

#define SL_BT_OTS_OBJECT_PROPERTY_PATCH_MASK �1 << SL_BT_OTS_OBJECT_PROPERTY_PATCH_BIT_POS�

#define SL_BT_OTS_OBJECT_PROPERTY_MARK_BIT_POS 7

#define SL_BT_OTS_OBJECT_PROPERTY_MARK_MASK �1 << SL_BT_OTS_OBJECT_PROPERTY_MARK_BIT_POS�

Ots_client

1153/1306

#define SL_BT_OTS_OBJECT_PROPERTY_RFU_MASK undefined

#define SL_BT_OTS_WRITE_MODE_NONE 0

#define SL_BT_OTS_WRITE_MODE_TRUNCATE_BIT_POS 1

#define SL_BT_OTS_WRITE_MODE_TRUNCATE_MASK �1 << SL_BT_OTS_WRITE_MODE_TRUNCATE_BIT_POS�

#define SL_BT_OTS_OBJECT_CHANGE_SOURCE_BIT_POS 0

#define SL_BT_OTS_OBJECT_CHANGE_SOURCE_MASK �1 << SL_BT_OTS_OBJECT_CHANGE_SOURCE_BIT_POS�

#define SL_BT_OTS_OBJECT_CHANGE_CONTENTS_BIT_POS 1

#define SL_BT_OTS_OBJECT_CHANGE_CONTENTS_MASK �1 << SL_BT_OTS_OBJECT_CHANGE_CONTENTS_BIT_POS�

#define SL_BT_OTS_OBJECT_CHANGE_METADATA_BIT_POS 2

#define SL_BT_OTS_OBJECT_CHANGE_METADATA_MASK �1 << SL_BT_OTS_OBJECT_CHANGE_METADATA_BIT_POS�

#define SL_BT_OTS_OBJECT_CHANGE_CREATION_BIT_POS 3

#define SL_BT_OTS_OBJECT_CHANGE_CREATION_MASK �1 << SL_BT_OTS_OBJECT_CHANGE_CREATION_BIT_POS�

#define SL_BT_OTS_OBJECT_CHANGE_DELETION_BIT_POS 4

#define SL_BT_OTS_OBJECT_CHANGE_DELETION_MASK �1 << SL_BT_OTS_OBJECT_CHANGE_DELETION_BIT_POS�

#define SL_BT_OTS_DLO_OBJECT_UUID_SIZE_BIT_POS 0

#define SL_BT_OTS_DLO_OBJECT_UUID_SIZE_MASK �1 << SL_BT_OTS_DLO_OBJECT_UUID_SIZE_BIT_POS�

#define SL_BT_OTS_DLO_OBJECT_FIRST_CREATED_PRESENT_BIT_POS 1

#define SL_BT_OTS_DLO_OBJECT_FIRST_CREATED_PRESENT_MASK �1 <<
SL_BT_OTS_DLO_OBJECT_FIRST_CREATED_PRESENT_BIT_POS�

#define SL_BT_OTS_DLO_OBJECT_LAST_MODIFIED_PRESENT_BIT_POS 2

#define SL_BT_OTS_DLO_OBJECT_LAST_MODIFIED_PRESENT_MASK �1 <<
SL_BT_OTS_DLO_OBJECT_LAST_MODIFIED_PRESENT_BIT_POS�

#define SL_BT_OTS_DLO_OBJECT_PROPERTIES_PRESENT_BIT_POS 3

#define SL_BT_OTS_DLO_OBJECT_PROPERTIES_PRESENT_MASK �1 <<
SL_BT_OTS_DLO_OBJECT_PROPERTIES_PRESENT_BIT_POS�

#define SL_BT_OTS_DLO_EXTENDED_FLAGS_PRESENT_BIT_POS 7

#define SL_BT_OTS_DLO_EXTENDED_FLAGS_PRESENT_MASK �1 <<
SL_BT_OTS_DLO_EXTENDED_FLAGS_PRESENT_BIT_POS�

#define METADATA_FIELD �X�

#define SL_BT_OTS_METADATA_FIELD_ALL 0xFF

#define SL_BT_OTS_METADATA_FIELD_NAME
METADATA_FIELD�SL_BT_OTS_OBJECT_METADATA_READ_OBJECT_NAME�

#define SL_BT_OTS_METADATA_FIELD_TYPE
METADATA_FIELD�SL_BT_OTS_OBJECT_METADATA_READ_OBJECT_TYPE�

#define SL_BT_OTS_METADATA_FIELD_SIZE METADATA_FIELD�SL_BT_OTS_OBJECT_METADATA_READ_OBJECT_SIZE�

Ots_client

1154/1306

#define SL_BT_OTS_METADATA_FIELD_FIRST_CREATED
METADATA_FIELD�SL_BT_OTS_OBJECT_METADATA_READ_OBJECT_FIRST_CREATED�

#define SL_BT_OTS_METADATA_FIELD_LAST_MODIFIED
METADATA_FIELD�SL_BT_OTS_OBJECT_METADATA_READ_OBJECT_LAST_MODIFIED�

#define SL_BT_OTS_METADATA_FIELD_ID METADATA_FIELD�SL_BT_OTS_OBJECT_METADATA_READ_OBJECT_ID�

#define SL_BT_OTS_METADATA_FIELD_PROPERTIES
METADATA_FIELD�SL_BT_OTS_OBJECT_METADATA_READ_OBJECT_PROPERTIES�

#define SL_BT_OTS_METADATA_FIELD_NONE 0�00

#define SL_BT_OTS_OBJECT_ID_SIZE 6

#define SL_BT_OTS_OBJECT_ID_USABLE_SIZE 5

#define SL_BT_OTS_OBJECT_ID_RFU_MASK 0�0000000000FF

#define SL_BT_OTS_INVALID_OBJECT_RFU 0xFF

#define SL_BT_OTS_DIRECTORY_LIST_OBJECT_ID 0�000000000000

#define SL_BT_OTS_TIME_SIZE 7

#define SL_BT_OTS_UUID_SIZE_16 2

#define SL_BT_OTS_UUID_SIZE_128 16

#define SL_BT_OTS_SUBSCRIPTION_STATUS_NONE 0
OTS Subscription status for no subscription.

#define SL_BT_OTS_CHARACTERISTIC_UUID_OTS_FEATURE 0�2ABD
OTS Characteristics.

#define SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_NAME 0�2ABE

#define SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_TYPE 0�2ABF

#define SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_SIZE 0�2AC0

#define SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_FIRST_CREATED 0�2AC1

#define SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_LAST_MODIFIED 0�2AC2

#define SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_ID 0�2AC3

#define SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_PROPERTIES 0�2AC4

#define SL_BT_OTS_CHARACTERISTIC_UUID_OACP 0�2AC5

#define SL_BT_OTS_CHARACTERISTIC_UUID_OLCP 0�2AC6

#define SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_LIST_FILTER 0�2AC7

#define SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_CHANGED 0�2AC8

#define SL_BT_OTS_CHARACTERISTIC_UUID_COUNT 12

#define SL_BT_OTS_INDICATION_OVERHEAD 4

#define SL_BT_OTS_INDICATION_HEADER 2

Ots_client

1155/1306

#define SL_BT_OTS_INDICATION_SIZE_MAX 7

Typedef Documentation

sl_bt_ots_client_handle_t

typedef struct sl_bt_ots_client* sl_bt_ots_client_handle_t

OTS Object Client handle.

Definition at line 60 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_connection_callback_t

typedef void(* sl_bt_ots_client_connection_callback_t) (sl_bt_ots_client_handle_t client))(sl_bt_ots_client_handle_t client)

Parameters

[in] client Client handle.

OTS Object Client callback function prototype for connection or disconnection

Definition at line 66 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_subscription_callback_t

typedef void(* sl_bt_ots_client_subscription_callback_t) (sl_bt_ots_client_handle_t client, sl_bt_ots_subscription_status_t
status))(sl_bt_ots_client_handle_t client, sl_bt_ots_subscription_status_t status)

Parameters

[in] client Client handle.

[in] status Subscription status.

OTS Object Client callback function prototype for indication subscription status

Definition at line 74 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_object_changed_callback_t

typedef void(* sl_bt_ots_client_object_changed_callback_t) (sl_bt_ots_client_handle_t client,
sl_bt_ots_object_changed_flags_t flags, sl_bt_ots_object_id_t *object))(sl_bt_ots_client_handle_t client,
sl_bt_ots_object_changed_flags_t flags, sl_bt_ots_object_id_t *object)

Parameters

[in] client Client handle.

[in] flags Change flags. The following masks can be used to indicate the nature of change:

SL_BT_OTS_OBJECT_CHANGE_CONTENTS_MASK : object contents changed

SL_BT_OTS_OBJECT_CHANGE_METADATA_MASK : metadata changed

SL_BT_OTS_OBJECT_CHANGE_CREATION_MASK : object creation

SL_BT_OTS_OBJECT_CHANGE_DELETION_MASK : object deletion

Ots_client

1156/1306

[in] object Object ID.

OTS Object Client callback function prototype to handle Object Change event

Definition at line 90 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_features_callback_t

typedef void(* sl_bt_ots_client_features_callback_t) (sl_bt_ots_client_handle_t client, sl_status_t status, sl_bt_ots_features_t
features))(sl_bt_ots_client_handle_t client, sl_status_t status, sl_bt_ots_features_t features)

Parameters

[in] client Client handle.

[in] status Result of the read.

[in] features Features supported by the Server.

OTS Object Client callback function prototype for OTS Feature read status

Definition at line 101 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_list_filter_write_callback_t

typedef void(* sl_bt_ots_client_list_filter_write_callback_t) (sl_bt_ots_client_handle_t client, uint16_t status))
(sl_bt_ots_client_handle_t client, uint16_t status)

Parameters

[in] client Client handle.

[in] status GATT result of the write operation.

OTS Object Client callback function prototype List Filter Write response

Definition at line 111 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_list_filter_read_callback_t

typedef void(* sl_bt_ots_client_list_filter_read_callback_t) (sl_bt_ots_client_handle_t client, sl_status_t status,
sl_bt_ots_object_list_filter_content_t filter))(sl_bt_ots_client_handle_t client, sl_status_t status,
sl_bt_ots_object_list_filter_content_t filter)

Parameters

[in] client Client handle.

[in] status Result of the write operation.

[in] filter Filter data.

OTS Object Client callback function prototype List Filter Write response

Definition at line 121 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_olcp_callback_t

Ots_client

1157/1306

typedef void(* sl_bt_ots_client_olcp_callback_t) (sl_bt_ots_client_handle_t client, sl_bt_ots_object_id_t *object,
sl_bt_ots_olcp_opcode_t opcode, uint16_t status, sl_bt_ots_olcp_response_code_t response, uint32_t number_of_objects))
(sl_bt_ots_client_handle_t client, sl_bt_ots_object_id_t *object, sl_bt_ots_olcp_opcode_t opcode, uint16_t status,
sl_bt_ots_olcp_response_code_t response, uint32_t number_of_objects)

Parameters

[in] client Client handle.

[in] object Object ID.

[in] opcode OLCP Opcode.

[in] status GATT result of the operation.

[in] parameters OLCP response parameters.

[in] number_of_objects Number of objects

OTS Object Client callback function prototype to handle OLCP responses

Definition at line 135 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_oacp_callback_t

typedef void(* sl_bt_ots_client_oacp_callback_t) (sl_bt_ots_client_handle_t client, sl_bt_ots_object_id_t *object,
sl_bt_ots_oacp_opcode_t opcode, uint16_t status, sl_bt_ots_oacp_response_code_t response,
sl_bt_ots_oacp_response_data_t *data))(sl_bt_ots_client_handle_t client, sl_bt_ots_object_id_t *object,
sl_bt_ots_oacp_opcode_t opcode, uint16_t status, sl_bt_ots_oacp_response_code_t response,
sl_bt_ots_oacp_response_data_t *data)

Parameters

[in] client Client handle.

[in] object Object ID.

[in] opcode OACP Opcode.

[in] status GATT result of the operation.

[in] event OACP response.

[in] event OACP response parameter.

OTS Object Client callback function prototype to handle OACP responses

Definition at line 152 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_object_metadata_write_callback_t

typedef void(* sl_bt_ots_client_object_metadata_write_callback_t) (sl_bt_ots_client_handle_t client, sl_bt_ots_object_id_t
*object, sl_bt_ots_object_metadata_write_event_type_t event, uint16_t status))(sl_bt_ots_client_handle_t client,
sl_bt_ots_object_id_t *object, sl_bt_ots_object_metadata_write_event_type_t event, uint16_t status)

Parameters

[in] client Client handle.

[in] object Object ID.

[in] event Metadata type.

[in] status GATT status of the write request. 0 means success.

Ots_client

1158/1306

Definition at line 166 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_object_metadata_read_callback_t

typedef void(* sl_bt_ots_client_object_metadata_read_callback_t) (sl_bt_ots_client_handle_t client, sl_bt_ots_object_id_t
*object, uint16_t status, sl_bt_ots_object_metadata_read_event_type_t event,
sl_bt_ots_object_metadata_read_parameters_t *parameters))(sl_bt_ots_client_handle_t client, sl_bt_ots_object_id_t *object,
uint16_t status, sl_bt_ots_object_metadata_read_event_type_t event, sl_bt_ots_object_metadata_read_parameters_t
*parameters)

Parameters

[in] client Client handle.

[in] object Object ID.

[in] status GATT status. 0 means success.

[in] event Metadata read event.

[in] parameters Metadata event parameters. NULL, if status differs from 0 (success).

OTS Object Client callback function prototype to handle metadata reads

Definition at line 180 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_data_receive_callback_t

typedef sl_bt_ots_l2cap_credit_t(* sl_bt_ots_client_data_receive_callback_t) (sl_bt_ots_client_handle_t client,
sl_bt_ots_object_id_t *object, uint32_t current_offset, uint8_t *data, uint32_t size))(sl_bt_ots_client_handle_t client,
sl_bt_ots_object_id_t *object, uint32_t current_offset, uint8_t *data, uint32_t size)

Parameters

[in] client Client handle.

[in] object Object ID.

[in] current_offset Current offset from the beginning of the object.

[in] data Pointer to the received data.

[in] size Size of the received data.

OTS Object Client callback function prototype to handle data reception Returns

Credits to give to the transmitter.

Definition at line 195 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_data_transmit_callback_t

typedef void(* sl_bt_ots_client_data_transmit_callback_t) (sl_bt_ots_client_handle_t client, sl_bt_ots_object_id_t *object,
uint32_t current_offset, uint32_t size, uint8_t **data, uint32_t *data_size))(sl_bt_ots_client_handle_t client,
sl_bt_ots_object_id_t *object, uint32_t current_offset, uint32_t size, uint8_t **data, uint32_t *data_size)

Parameters

[in] client Client handle.

[in] object Object ID reference.

[in] offset Current offset of requested data

[in] size Maximum size of requested data

Ots_client

1159/1306

[out] data Pointer of pointer to data

[out] data_size Size of the provided data

OTS Object Client callback function prototype to handle data transmission

Definition at line 209 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_data_transfer_finished_t

typedef void(* sl_bt_ots_client_data_transfer_finished_t) (sl_bt_ots_client_handle_t client, sl_bt_ots_object_id_t *object,
sl_bt_ots_transfer_result_t result))(sl_bt_ots_client_handle_t client, sl_bt_ots_object_id_t *object, sl_bt_ots_transfer_result_t
result)

Parameters

[in] client Client handle.

[in] object Object ID.

[in] result Status of the finish.

OTS Object Client callback function prototype to handle transmission status

Definition at line 221 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_group_metadata_read_t

typedef void(* sl_bt_ots_client_group_metadata_read_t) (sl_bt_ots_client_handle_t client, sl_bt_ots_object_t *object,
sl_bt_ots_metadata_fields_t remaining_fields, sl_status_t result))(sl_bt_ots_client_handle_t client, sl_bt_ots_object_t *object,
sl_bt_ots_metadata_fields_t remaining_fields, sl_status_t result)

Parameters

[in] client Client handle.

[in] object Object reference that passed to read metadata.

[in] remaining_fields Bitfield of remaining fields. The value is 0 if all the fields was read successfully.

[in] result Status of the read operation.

OTS Object Client callback function prototype to handle metadata read.

Definition at line 233 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_init_callback_t

typedef void(* sl_bt_ots_client_init_callback_t) (sl_bt_ots_client_handle_t client, sl_status_t result,
sl_bt_ots_gattdb_handles_t *gattdb_handles))(sl_bt_ots_client_handle_t client, sl_status_t result, sl_bt_ots_gattdb_handles_t
*gattdb_handles)

Parameters

[in] client Client handle.

[in] result Status of the initialization.

[in] gattdb_handles GATT database handles.

OTS Object Client callback function prototype to handle initialization status.

Ots_client

1160/1306

Definition at line 245 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_t

typedef struct sl_bt_ots_client sl_bt_ots_client_t

OTS Object Client instance type.

Definition at line 311 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_oacp_features_t

typedef uint32_t sl_bt_ots_oacp_features_t

Object Action Control Point Features.

Definition at line 250 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_olcp_features_t

typedef uint32_t sl_bt_ots_olcp_features_t

Object List Control Point Features.

Definition at line 253 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_object_first_created_t

typedef sl_bt_ots_time_t sl_bt_ots_object_first_created_t

Object first created.

Definition at line 301 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_object_last_modified_t

typedef sl_bt_ots_time_t sl_bt_ots_object_last_modified_t

Object last modified.

Definition at line 304 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_object_properties_t

typedef uint32_t sl_bt_ots_object_properties_t

Object properties.

Definition at line 319 of file common/ots/inc/sl_bt_ots_datatypes.h

Ots_client

1161/1306

sl_bt_ots_metadata_fields_t

typedef uint8_t sl_bt_ots_metadata_fields_t

Metadata fields type.

Definition at line 359 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_oacp_event_t

typedef sl_bt_ots_oacp_opcode_t sl_bt_ots_oacp_event_t

Definition at line 402 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_oacp_execute_parameters_t

typedef uint8array sl_bt_ots_oacp_execute_parameters_t

OACP Execute opcode parameters.

Definition at line 431 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_oacp_write_mode_t

typedef uint8_t sl_bt_ots_oacp_write_mode_t

Object write mode flags.

Definition at line 440 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_l2cap_credit_t

typedef uint16_t sl_bt_ots_l2cap_credit_t

Data response credits.

Definition at line 459 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_olcp_event_t

typedef sl_bt_ots_olcp_opcode_t sl_bt_ots_olcp_event_t

Definition at line 570 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_object_list_filter_name_parameters_t

Ots_client

1162/1306

typedef sl_bt_ots_object_name_t sl_bt_ots_object_list_filter_name_parameters_t

Name filter parameters.

Definition at line 644 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_object_list_filter_type_parameters_t

typedef sl_bt_ots_object_type_t sl_bt_ots_object_list_filter_type_parameters_t

Definition at line 658 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_object_changed_flags_t

typedef uint8_t sl_bt_ots_object_changed_flags_t

Object change flags.

Definition at line 672 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_compare_t

typedef int(* sl_bt_ots_compare_t) (uint8_t *key_1, uint8_t *key_2�)(uint8_t *key_1, uint8_t *key_2�

Parameters

[in] key_1 Pointer to key 1

[in] key_2 Pointer to key 2

Function prototype to compare keys (for list ordering) Returns

0 if key_1 is equal to key_2, less than 0 if key_2 < key_1 and more than 0 otherwise.

Definition at line 735 of file common/ots/inc/sl_bt_ots_datatypes.h

Variable Documentation

sl_bt_ots_characteristic_uuids

const uint16_t sl_bt_ots_characteristic_uuids[SL_BT_OTS_CHARACTERISTIC_UUID_COUNT�

Array of OTS Characteristic UUIDs.

Definition at line 226 of file common/ots/inc/sl_bt_ots_datatypes.h

Function Documentation

SL_ENUM

Ots_client

1163/1306

OTS Object Client status.

Parameters

N/A

Definition at line 270 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_init

sl_status_t sl_bt_ots_client_init (sl_bt_ots_client_handle_t client, uint8_t connection, uint32_t service,
sl_bt_ots_client_callbacks_t *callbacks, sl_bt_ots_gattdb_handles_t *gattdb_handles)

Parameters

[in] client Client handle.

[in] connection Client connection handle.

[in] service GATT database handle for the OTS service.

[in] callbacks Client callbacks' structure.

[in] gattdb_handles GATT database handles or NULL if not present.

Initialize Object Client. Returns

Status code

Definition at line 322 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_read_ots_features

sl_status_t sl_bt_ots_client_read_ots_features (sl_bt_ots_client_handle_t client)

Parameters

[in] client Client handle.

Read Object Transfer Service Features supported by the Server.

Read response is given in callback. Returns

Status code

Definition at line 335 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_read_object_name

sl_status_t sl_bt_ots_client_read_object_name (sl_bt_ots_client_handle_t client)

Parameters

[in] client Client handle.

Read Object Name of the Current Object.

Read response is given in callback. Returns

Status code

Ots_client

1164/1306

Definition at line 344 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_read_object_type

sl_status_t sl_bt_ots_client_read_object_type (sl_bt_ots_client_handle_t client)

Parameters

[in] client Client handle.

Read Object Type of the Current Object.

Read response is given in callback. Returns

Status code

Definition at line 353 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_read_object_size

sl_status_t sl_bt_ots_client_read_object_size (sl_bt_ots_client_handle_t client)

Parameters

[in] client Client handle.

Read Object Size of the Current Object.

Read response is given in callback. Returns

Status code

Definition at line 362 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_read_object_first_created

sl_status_t sl_bt_ots_client_read_object_first_created (sl_bt_ots_client_handle_t client)

Parameters

[in] client Client handle.

Read Object First Created time of the Current Object.

Read response is given in callback. Returns

Status code

Definition at line 371 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_read_object_last_modified

sl_status_t sl_bt_ots_client_read_object_last_modified (sl_bt_ots_client_handle_t client)

Parameters

[in] client Client handle.

Ots_client

1165/1306

Read Object Last Modifed time of the Current Object.

Read response is given in callback. Returns

Status code

Definition at line 380 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_read_object_id

sl_status_t sl_bt_ots_client_read_object_id (sl_bt_ots_client_handle_t client)

Parameters

[in] client Client handle.

Read Object ID of the Current Object.

Read response is given in callback. Returns

Status code

Definition at line 389 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_read_object_properties

sl_status_t sl_bt_ots_client_read_object_properties (sl_bt_ots_client_handle_t client)

Parameters

[in] client Client handle.

Read Object Properties of the Current Object.

Read response is given in callback. Returns

Status code

Definition at line 398 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_write_name

sl_status_t sl_bt_ots_client_write_name (sl_bt_ots_client_handle_t client, char *name, uint8_t size)

Parameters

[in] client Client handle.

[in] name String containing the new name of the object.

[in] size The size of the name argument.

Write Object Name of the Current Object.

Write response is given in callback. Returns

Status code

Definition at line 409 of file common/ots/inc/sl_bt_ots_client.h

Ots_client

1166/1306

sl_bt_ots_client_write_object_first_created

sl_status_t sl_bt_ots_client_write_object_first_created (sl_bt_ots_client_handle_t client, sl_bt_ots_time_t *time)

Parameters

[in] client Client handle.

[in] time Pointer to time structure.

Write Object First Created field of the Current Object.

Write response is given in callback. Returns

Status code

Definition at line 421 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_write_object_last_modified

sl_status_t sl_bt_ots_client_write_object_last_modified (sl_bt_ots_client_handle_t client, sl_bt_ots_time_t *time)

Parameters

[in] client Client handle.

[in] time Pointer to time structure.

Write Object Last Modifed field of the Current Object.

Write response is given in callback. Returns

Status code

Definition at line 432 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_write_object_properties

sl_status_t sl_bt_ots_client_write_object_properties (sl_bt_ots_client_handle_t client, sl_bt_ots_object_properties_t
properties)

Parameters

[in] client Client handle.

[in] properties Properties bitfield. Possible values:

SL_BT_OTS_OBJECT_PROPERTY_DELETE_MASK : Object is deletable

SL_BT_OTS_OBJECT_PROPERTY_EXECUTE_MASK : Object is executable

SL_BT_OTS_OBJECT_PROPERTY_READ_MASK : Object is readable

SL_BT_OTS_OBJECT_PROPERTY_WRITE_MASK : Object is writable

SL_BT_OTS_OBJECT_PROPERTY_APPEND_MASK : Object is appendable

SL_BT_OTS_OBJECT_PROPERTY_TRUNCATE_MASK : Object can be truncated

SL_BT_OTS_OBJECT_PROPERTY_PATCH_MASK : Object can be patched

SL_BT_OTS_OBJECT_PROPERTY_MARK_MASK : Object can be marked

Write Object Properties field of the Current Object.

Write response is given in callback. Returns

Ots_client

1167/1306

Status code

Definition at line 452 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_olcp_first

sl_status_t sl_bt_ots_client_olcp_first (sl_bt_ots_client_handle_t client)

Parameters

[in] client Client handle.

Select the first object as Current Object.

Returns

Status code

Definition at line 461 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_olcp_last

sl_status_t sl_bt_ots_client_olcp_last (sl_bt_ots_client_handle_t client)

Parameters

[in] client Client handle.

Select the last object as Current Object.

Returns

Status code

Definition at line 469 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_olcp_previous

sl_status_t sl_bt_ots_client_olcp_previous (sl_bt_ots_client_handle_t client)

Parameters

[in] client Client handle.

Select the previous object as Current Object.

Returns

Status code

Definition at line 477 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_olcp_next

sl_status_t sl_bt_ots_client_olcp_next (sl_bt_ots_client_handle_t client)

Parameters

Ots_client

1168/1306

[in] client Client handle.

Select the next object as Current Object.

Returns

Status code

Definition at line 485 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_olcp_go_to

sl_status_t sl_bt_ots_client_olcp_go_to (sl_bt_ots_client_handle_t client, sl_bt_ots_object_id_t *object)

Parameters

[in] client Client handle.

[in] object Object ID.

Select the specified object as Current Object.

Returns

Status code

Definition at line 494 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_olcp_order

sl_status_t sl_bt_ots_client_olcp_order (sl_bt_ots_client_handle_t client, sl_bt_ots_list_sort_order_t order)

Parameters

[in] client Client handle.

[in] order List sort order.

Select the List Sort Order.

Returns

Status code

Definition at line 504 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_olcp_request_number_of_objects

sl_status_t sl_bt_ots_client_olcp_request_number_of_objects (sl_bt_ots_client_handle_t client)

Parameters

[in] client Client handle.

Request total number of objects.

Returns

Status code

Ots_client

1169/1306

Definition at line 513 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_olcp_clear_marking

sl_status_t sl_bt_ots_client_olcp_clear_marking (sl_bt_ots_client_handle_t client)

Parameters

[in] client Client handle.

Clear marking of objects.

Returns

Status code

Definition at line 521 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_read_object_list_filter

sl_status_t sl_bt_ots_client_read_object_list_filter (sl_bt_ots_client_handle_t client)

Parameters

[in] client Client handle.

Read object list filter.

Read response is given in callback. Returns

Status code

Definition at line 530 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_write_object_list_filter

sl_status_t sl_bt_ots_client_write_object_list_filter (sl_bt_ots_client_handle_t client, sl_bt_ots_object_list_filter_content_t filter)

Parameters

[in] client Client handle.

[in] filter Filter type and arguments to set.

Write/set object list filter.

Write response is given in callback. Returns

Status code

Definition at line 540 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_oacp_create_object

sl_status_t sl_bt_ots_client_oacp_create_object (sl_bt_ots_client_handle_t client, uint32_t size, sl_bt_ots_object_type_t type)

Parameters

Ots_client

1170/1306

[in] client Client handle.

[in] size Object size.

[in] type Object type.

Create new object.

Write response is given in callback. Returns

Status code

Definition at line 552 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_oacp_delete_object

sl_status_t sl_bt_ots_client_oacp_delete_object (sl_bt_ots_client_handle_t client)

Parameters

[in] client Client handle.

Delete current object.

Write response is given in callback. Returns

Status code

Definition at line 563 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_oacp_calculate_checksum

sl_status_t sl_bt_ots_client_oacp_calculate_checksum (sl_bt_ots_client_handle_t client, uint32_t offset, uint32_t length)

Parameters

[in] client Client handle.

[in] offset Offset in bytes to calculate checksum from.

[in] length Length of calculation in bytes.

Calculate checksum for Current Object.

Returns

Status code

Definition at line 573 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_oacp_execute

sl_status_t sl_bt_ots_client_oacp_execute (sl_bt_ots_client_handle_t client, uint8_t *optional_data, uint8_t
optional_data_size)

Parameters

[in] client Client handle.

[in] optional_data Optional data content for execution.

[in] optional_data_size Length of the optional data in bytes.

Ots_client

1171/1306

Execute Current Object.

Returns

Status code

Definition at line 585 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_oacp_read

sl_status_t sl_bt_ots_client_oacp_read (sl_bt_ots_client_handle_t client, uint32_t offset, uint32_t length, uint16_t max_sdu,
uint16_t max_pdu)

Parameters

[in] client Client handle.

[in] offset Offset to read the object from in bytes.

[in] length Length of data in bytes to be read.

[in] max_sdu The Maximum Service Data Unit size the local channel endpoint can accept

Range: 23 to 65533.

[in] max_pdu The maximum PDU payload size the local channel endpoint can accept

Range:23 to 252.

Read Current Object.

Returns

Status code

Definition at line 607 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_oacp_write

sl_status_t sl_bt_ots_client_oacp_write (sl_bt_ots_client_handle_t client, uint32_t offset, uint32_t length,
sl_bt_ots_oacp_write_mode_t mode, uint16_t max_sdu, uint16_t max_pdu)

Parameters

[in] client Client handle.

[in] offset Offset to write the object from in bytes.

[in] length Length of data in bytes to be written.

[in] mode Write mode.

[in] max_sdu The Maximum Service Data Unit size the local channel endpoint can accept

Range: 23 to 65533.

[in] max_pdu The maximum PDU payload size the local channel endpoint can accept

Range:23 to 252.

Write Current Object.

Returns

Status code

Ots_client

1172/1306

Definition at line 632 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_oacp_abort

sl_status_t sl_bt_ots_client_oacp_abort (sl_bt_ots_client_handle_t client)

Parameters

[in] client Client handle.

Abort current read.

Returns

Status code

Definition at line 645 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_increase_credit

sl_status_t sl_bt_ots_client_increase_credit (sl_bt_ots_client_handle_t client, uint16_t credit)

Parameters

[in] client Client handle.

[in] credit Number of credit to give (in packets).

Increase the credit for the L2CAP transfer that is in progress Returns

Response code

Definition at line 653 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_abort

sl_status_t sl_bt_ots_client_abort (sl_bt_ots_client_handle_t client)

Parameters

[in] client Client handle.

Abort current write or read operation. Close the L2CAP channel in case of Write operation is in progress or execute OACP

Abort in case of Read operation is in progress.

Returns

Status code

Definition at line 664 of file common/ots/inc/sl_bt_ots_client.h

sli_bt_ots_client_on_bt_event

void sli_bt_ots_client_on_bt_event (sl_bt_msg_t *evt)

Parameters

Ots_client

1173/1306

Internal Bluetooth event handler.

Definition at line 670 of file common/ots/inc/sl_bt_ots_client.h

sli_bt_ots_client_init

void sli_bt_ots_client_init (void)

Parameters

N/A

OTS Client - internal init.

Definition at line 675 of file common/ots/inc/sl_bt_ots_client.h

sli_bt_ots_client_step

void sli_bt_ots_client_step (void)

Parameters

N/A

OTS Client - process internal action.

Definition at line 680 of file common/ots/inc/sl_bt_ots_client.h

SL_ENUM

SL_ENUM (sl_bt_ots_characteristic_uuid_index)

OTS Characteristic UUID indices.

Parameters

N/A

Definition at line 232 of file common/ots/inc/sl_bt_ots_datatypes.h

typedef

typedef (struct { sl_bt_ots_oacp_features_t oacp_features;sl_bt_ots_olcp_features_t olcp_features;}) sl_bt_ots_features_t

Object Transfer Service features.

Parameters

N/A

Definition at line 256 of file common/ots/inc/sl_bt_ots_datatypes.h

typedef

Ots_client

1174/1306

typedef (struct { uint16_t length;char *name;}) sl_bt_ots_object_name_t

Object name.

Parameters

N/A

Definition at line 263 of file common/ots/inc/sl_bt_ots_datatypes.h

typedef

typedef (struct { uint32_t current_size;uint32_t allocated_size;}) sl_bt_ots_object_size_t

Object size.

Parameters

N/A

Definition at line 282 of file common/ots/inc/sl_bt_ots_datatypes.h

typedef

typedef (struct { uint8_t rfu;uint8_t usable[SL_BT_OTS_OBJECT_ID_USABLE_SIZE�;�� sl_bt_ots_object_id_complete_t

Complete Object ID.

Parameters

N/A

Definition at line 307 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_ENUM

SL_ENUM (sl_bt_ots_object_metadata_write_event_type_t)

Object metadata write event type.

Parameters

N/A

Definition at line 322 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_ENUM

SL_ENUM (sl_bt_ots_object_metadata_write_response_code_t)

Object metadata write response codes.

Parameters

N/A

Ots_client

1175/1306

Definition at line 338 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_ENUM

SL_ENUM (sl_bt_ots_object_metadata_read_event_type_t)

Object metadata read event type.

Parameters

N/A

Definition at line 348 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_ENUM

SL_ENUM (sl_bt_ots_object_metadata_read_response_code_t)

Object metadata read response codes.

Parameters

N/A

Definition at line 373 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_ENUM

SL_ENUM (sl_bt_ots_oacp_opcode_t)

OACP opcode.

Parameters

N/A

Definition at line 381 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_ENUM

SL_ENUM (sl_bt_ots_oacp_response_code_t)

OACP response code.

Parameters

N/A

Definition at line 405 of file common/ots/inc/sl_bt_ots_datatypes.h

typedef

typedef (struct { uint32_t size;uint8_t type[SL_BT_OTS_UUID_SIZE_128�;�� sl_bt_ots_oacp_create_parameters_t

OACP Create opcode parameters.

Ots_client

1176/1306

Parameters

N/A

Definition at line 419 of file common/ots/inc/sl_bt_ots_datatypes.h

typedef

typedef (struct { uint32_t offset;uint32_t length;}) sl_bt_ots_oacp_calculate_checksum_parameters_t

OACP Calculate Checksum opcode parameters.

Parameters

N/A

OACP Read opcode parameters.

Definition at line 425 of file common/ots/inc/sl_bt_ots_datatypes.h

typedef

typedef (struct { uint32_t offset;uint32_t length;sl_bt_ots_oacp_write_mode_t mode;}) sl_bt_ots_oacp_write_parameters_t

OACP Write opcode parameters.

Parameters

N/A

Definition at line 443 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_ENUM

SL_ENUM (sl_bt_ots_transfer_result_t)

Parameters

N/A

Definition at line 461 of file common/ots/inc/sl_bt_ots_datatypes.h

typedef

typedef (struct { sl_bt_ots_oacp_opcode_t opcode;uint8_t data[];}) sl_bt_ots_oacp_message_t

OACP Message.

Parameters

N/A

Definition at line 470 of file common/ots/inc/sl_bt_ots_datatypes.h

typedef

Ots_client

1177/1306

typedef (struct { sl_bt_ots_oacp_opcode_t response_opcode;sl_bt_ots_oacp_opcode_t
opcode;sl_bt_ots_oacp_response_code_t response;uint8_t data[];}) sl_bt_ots_oacp_response_message_t

OACP response.

Parameters

N/A

Definition at line 485 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_ENUM

SL_ENUM (sl_bt_ots_olcp_opcode_t)

OACP opcode.

Parameters

N/A

Definition at line 493 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_ENUM

SL_ENUM (sl_bt_ots_olcp_response_code_t)

OLCP response code.

Parameters

N/A

Definition at line 573 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_ENUM

SL_ENUM (sl_bt_ots_list_sort_order_t)

List Sort Order.

Parameters

N/A

Definition at line 585 of file common/ots/inc/sl_bt_ots_datatypes.h

typedef

typedef (struct { sl_bt_ots_object_id_t id;}) sl_bt_ots_olcp_go_to_parameters_t

OLCP Go To opcode parameters.

Parameters

Ots_client

1178/1306

N/A

Definition at line 599 of file common/ots/inc/sl_bt_ots_datatypes.h

typedef

typedef (struct { sl_bt_ots_list_sort_order_t list_sort_order;}) sl_bt_ots_olcp_order_parameters_t

OLCP Order opcode parameters.

Parameters

N/A

Definition at line 604 of file common/ots/inc/sl_bt_ots_datatypes.h

typedef

typedef (struct { sl_bt_ots_olcp_opcode_t opcode;uint8_t data[];}) sl_bt_ots_olcp_message_t

OLCP message.

Parameters

N/A

Definition at line 615 of file common/ots/inc/sl_bt_ots_datatypes.h

typedef

typedef (struct { sl_bt_ots_olcp_opcode_t response_opcode;sl_bt_ots_olcp_opcode_t
opcode;sl_bt_ots_olcp_response_code_t response;uint32_t number_of_objects;}) sl_bt_ots_olcp_response_message_t

OLCP response message.

Parameters

N/A

Definition at line 621 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_ENUM

SL_ENUM (sl_bt_ots_object_list_filter_type_t)

Object List Filter.

Parameters

N/A

Definition at line 629 of file common/ots/inc/sl_bt_ots_datatypes.h

typedef

Ots_client

1179/1306

typedef (struct { sl_bt_ots_time_t from;sl_bt_ots_time_t to;}) sl_bt_ots_object_list_filter_time_parameters_t

Time filter parameters.

Parameters

N/A

Definition at line 647 of file common/ots/inc/sl_bt_ots_datatypes.h

typedef

typedef (struct { uint32_t min;uint32_t max;}) sl_bt_ots_object_list_filter_size_parameters_t

Size filter parameters.

Parameters

N/A

Definition at line 653 of file common/ots/inc/sl_bt_ots_datatypes.h

typedef

typedef (struct { sl_bt_ots_object_list_filter_type_t filter_type;union { sl_bt_ots_object_list_filter_name_parameters_t
name;sl_bt_ots_object_list_filter_time_parameters_t time;sl_bt_ots_object_list_filter_size_parameters_t
size;sl_bt_ots_object_list_filter_type_parameters_t type;} parameters;}) sl_bt_ots_object_list_filter_content_t

Object List Filter content.

Parameters

N/A

Definition at line 661 of file common/ots/inc/sl_bt_ots_datatypes.h

typedef

typedef (struct { sl_bt_ots_object_changed_flags_t flags;sl_bt_ots_object_id_t object;}) sl_bt_ots_object_changed_content_t

Object Changed content.

Parameters

N/A

Definition at line 675 of file common/ots/inc/sl_bt_ots_datatypes.h

typedef

typedef (struct { uint32_t service;union { uint16_t array[12];1(struct { uint16_t ots_feature;uint16_t object_name;uint16_t
object_type;uint16_t object_size;uint16_t object_first_created;uint16_t object_last_modified;uint16_t object_id;uint16_t
object_properties;uint16_t object_action_control_point;uint16_t object_list_control_point;uint16_t object_list_filter;uint16_t
object_changed;}) handles;} characteristics;}) sl_bt_ots_gattdb_handles_t

Ots_client

1180/1306

OTS GATT database handles.

Parameters

N/A

Definition at line 695 of file common/ots/inc/sl_bt_ots_datatypes.h

typedef

typedef (struct { sl_slist_node_t node;uint8_t *key;uint8_t *value;}) sl_bt_ots_list_item_t

Datatype for object list item.

Parameters

N/A

Definition at line 739 of file common/ots/inc/sl_bt_ots_datatypes.h

typedef

typedef (struct { sl_bt_ots_compare_t compare;sl_bt_ots_list_item_t *list;}) sl_bt_ots_list_t

Datatype for object list.

Parameters

N/A

Definition at line 746 of file common/ots/inc/sl_bt_ots_datatypes.h

Macro Definition Documentation

SL_BT_OTS_CLIENT_CONFIG_READ_REQUEST_QUEUE_SIZE

#define SL_BT_OTS_CLIENT_CONFIG_READ_REQUEST_QUEUE_SIZE

Value:

5

Definition at line 45 of file common/ots/config/sl_bt_ots_client_config.h

SL_BT_OTS_CLIENT_CONFIG_WRITE_REQUEST_QUEUE_SIZE

#define SL_BT_OTS_CLIENT_CONFIG_WRITE_REQUEST_QUEUE_SIZE

Value:

1

Definition at line 49 of file common/ots/config/sl_bt_ots_client_config.h

SL_BT_OTS_CLIENT_CONFIG_WRITE_REQUEST_DATA_SIZE

Ots_client

1181/1306

#define SL_BT_OTS_CLIENT_CONFIG_WRITE_REQUEST_DATA_SIZE

Value:

255

Definition at line 53 of file common/ots/config/sl_bt_ots_client_config.h

ATT_STATUS_MASK

#define ATT_STATUS_MASK

Value:

0xFF

Definition at line 54 of file common/ots/inc/sl_bt_ots_datatypes.h

ATT_ERR_SUCCESS

#define ATT_ERR_SUCCESS

Value:

0�00

Definition at line 55 of file common/ots/inc/sl_bt_ots_datatypes.h

ATT_ERR_INVALID_HANDLE

#define ATT_ERR_INVALID_HANDLE

Value:

�SL_STATUS_BT_ATT_INVALID_HANDLE & ATT_STATUS_MASK�

Definition at line 56 of file common/ots/inc/sl_bt_ots_datatypes.h

ATT_ERR_READ_NOT_PERMITTED

#define ATT_ERR_READ_NOT_PERMITTED

Value:

�SL_STATUS_BT_ATT_READ_NOT_PERMITTED & ATT_STATUS_MASK�

Definition at line 57 of file common/ots/inc/sl_bt_ots_datatypes.h

ATT_ERR_WRITE_NOT_PERMITTED

#define ATT_ERR_WRITE_NOT_PERMITTED

Value:

Ots_client

1182/1306

�SL_STATUS_BT_ATT_WRITE_NOT_PERMITTED & ATT_STATUS_MASK�

Definition at line 58 of file common/ots/inc/sl_bt_ots_datatypes.h

ATT_ERR_INVALID_PDU

#define ATT_ERR_INVALID_PDU

Value:

�SL_STATUS_BT_ATT_INVALID_PDU & ATT_STATUS_MASK�

Definition at line 59 of file common/ots/inc/sl_bt_ots_datatypes.h

ATT_ERR_AUTHENTICATION

#define ATT_ERR_AUTHENTICATION

Value:

�SL_STATUS_BT_ATT_INSUFFICIENT_AUTHENTICATION & ATT_STATUS_MASK�

Definition at line 60 of file common/ots/inc/sl_bt_ots_datatypes.h

ATT_ERR_NOT_SUPPORTED

#define ATT_ERR_NOT_SUPPORTED

Value:

�SL_STATUS_BT_ATT_REQUEST_NOT_SUPPORTED & ATT_STATUS_MASK�

Definition at line 61 of file common/ots/inc/sl_bt_ots_datatypes.h

ATT_ERR_INVALID_OFFSET

#define ATT_ERR_INVALID_OFFSET

Value:

�SL_STATUS_BT_ATT_INVALID_OFFSET & ATT_STATUS_MASK�

Definition at line 62 of file common/ots/inc/sl_bt_ots_datatypes.h

ATT_ERR_AUTHORIZATION

#define ATT_ERR_AUTHORIZATION

Value:

�SL_STATUS_BT_ATT_INSUFFICIENT_AUTHORIZATION & ATT_STATUS_MASK�

Definition at line 63 of file common/ots/inc/sl_bt_ots_datatypes.h

Ots_client

1183/1306

ATT_ERR_PREPARE_QUEUE_FULL

#define ATT_ERR_PREPARE_QUEUE_FULL

Value:

�SL_STATUS_BT_ATT_PREPARE_QUEUE_FULL & ATT_STATUS_MASK�

Definition at line 64 of file common/ots/inc/sl_bt_ots_datatypes.h

ATT_ERR_ATTRIBUTE_NOT_FOUND

#define ATT_ERR_ATTRIBUTE_NOT_FOUND

Value:

�SL_STATUS_BT_ATT_ATT_NOT_FOUND & ATT_STATUS_MASK�

Definition at line 65 of file common/ots/inc/sl_bt_ots_datatypes.h

ATT_ERR_ATTRIBUTE_NOT_LONG

#define ATT_ERR_ATTRIBUTE_NOT_LONG

Value:

�SL_STATUS_BT_ATT_ATT_NOT_LONG & ATT_STATUS_MASK�

Definition at line 66 of file common/ots/inc/sl_bt_ots_datatypes.h

ATT_ERR_ENCRYPTION_KEY_SIZE

#define ATT_ERR_ENCRYPTION_KEY_SIZE

Value:

�SL_STATUS_BT_ATT_INSUFFICIENT_ENC_KEY_SIZE & ATT_STATUS_MASK�

Definition at line 67 of file common/ots/inc/sl_bt_ots_datatypes.h

ATT_ERR_INVALID_ATTRIBUTE_LEN

#define ATT_ERR_INVALID_ATTRIBUTE_LEN

Value:

�SL_STATUS_BT_ATT_INVALID_ATT_LENGTH & ATT_STATUS_MASK�

Definition at line 68 of file common/ots/inc/sl_bt_ots_datatypes.h

ATT_ERR_UNLIKELY

#define ATT_ERR_UNLIKELY

Ots_client

1184/1306

Value:

�SL_STATUS_BT_ATT_UNLIKELY_ERROR & ATT_STATUS_MASK�

Definition at line 69 of file common/ots/inc/sl_bt_ots_datatypes.h

ATT_ERR_INSUFFICIENT_ENCRYPTION

#define ATT_ERR_INSUFFICIENT_ENCRYPTION

Value:

�SL_STATUS_BT_ATT_INSUFFICIENT_ENCRYPTION & ATT_STATUS_MASK�

Definition at line 70 of file common/ots/inc/sl_bt_ots_datatypes.h

ATT_ERR_UNSUPPORTED_GROUP_TYPE

#define ATT_ERR_UNSUPPORTED_GROUP_TYPE

Value:

�SL_STATUS_BT_ATT_UNSUPPORTED_GROUP_TYPE & ATT_STATUS_MASK�

Definition at line 71 of file common/ots/inc/sl_bt_ots_datatypes.h

ATT_ERR_INSUFFICIENT_RESOURCES

#define ATT_ERR_INSUFFICIENT_RESOURCES

Value:

�SL_STATUS_BT_ATT_INSUFFICIENT_RESOURCES & ATT_STATUS_MASK�

Definition at line 72 of file common/ots/inc/sl_bt_ots_datatypes.h

ATT_ERR_DB_OUT_OF_SYNC

#define ATT_ERR_DB_OUT_OF_SYNC

Value:

�SL_STATUS_BT_ATT_OUT_OF_SYNC & ATT_STATUS_MASK�

Definition at line 73 of file common/ots/inc/sl_bt_ots_datatypes.h

ATT_ERR_VALUE_NOT_ALLOWED

#define ATT_ERR_VALUE_NOT_ALLOWED

Value:

�SL_STATUS_BT_ATT_VALUE_NOT_ALLOWED & ATT_STATUS_MASK�

Definition at line 74 of file common/ots/inc/sl_bt_ots_datatypes.h

Ots_client

1185/1306

ATT_ERR_IMPORER_CCCD

#define ATT_ERR_IMPORER_CCCD

Value:

�SL_STATUS_BT_ATT_CLIENT_CHARACTERISTIC_CONFIGURATION_DESCRIPTOR_IMPROPERLY_CONFIGURED & ATT_STATUS_MASK�

Definition at line 75 of file common/ots/inc/sl_bt_ots_datatypes.h

ATT_ERR_WRITE_REQUEST_REJECTED

#define ATT_ERR_WRITE_REQUEST_REJECTED

Value:

0�80

Definition at line 78 of file common/ots/inc/sl_bt_ots_datatypes.h

ATT_ERR_OBJECT_NOT_SELECTED

#define ATT_ERR_OBJECT_NOT_SELECTED

Value:

0�81

Definition at line 79 of file common/ots/inc/sl_bt_ots_datatypes.h

ATT_ERR_CONCURRENCY_LIMIT_EXCEEDED

#define ATT_ERR_CONCURRENCY_LIMIT_EXCEEDED

Value:

0�82

Definition at line 80 of file common/ots/inc/sl_bt_ots_datatypes.h

ATT_ERR_OBJECT_NAME_ALREADY_EXISTS

#define ATT_ERR_OBJECT_NAME_ALREADY_EXISTS

Value:

0�83

Definition at line 81 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OACP_FEATURE_CREATE_OP_CODE_SUPPORTED_BIT_POS

#define SL_BT_OTS_OACP_FEATURE_CREATE_OP_CODE_SUPPORTED_BIT_POS

Ots_client

1186/1306

Value:

0

Definition at line 87 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OACP_FEATURE_CREATE_OP_CODE_SUPPORTED_MASK

#define SL_BT_OTS_OACP_FEATURE_CREATE_OP_CODE_SUPPORTED_MASK

Value:

�1 << SL_BT_OTS_OACP_FEATURE_CREATE_OP_CODE_SUPPORTED_BIT_POS�

Definition at line 88 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OACP_FEATURE_DELETE_OP_CODE_SUPPORTED_BIT_POS

#define SL_BT_OTS_OACP_FEATURE_DELETE_OP_CODE_SUPPORTED_BIT_POS

Value:

1

Definition at line 89 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OACP_FEATURE_DELETE_OP_CODE_SUPPORTED_MASK

#define SL_BT_OTS_OACP_FEATURE_DELETE_OP_CODE_SUPPORTED_MASK

Value:

�1 << SL_BT_OTS_OACP_FEATURE_DELETE_OP_CODE_SUPPORTED_BIT_POS�

Definition at line 90 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OACP_FEATURE_CALCULATE_CHECKSUM_OP_CODE_SUPPORTED_BIT_POS

#define SL_BT_OTS_OACP_FEATURE_CALCULATE_CHECKSUM_OP_CODE_SUPPORTED_BIT_POS

Value:

2

Definition at line 91 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OACP_FEATURE_CALCULATE_CHECKSUM_OP_CODE_SUPPORTED_MASK

#define SL_BT_OTS_OACP_FEATURE_CALCULATE_CHECKSUM_OP_CODE_SUPPORTED_MASK

Value:

�1 << SL_BT_OTS_OACP_FEATURE_CALCULATE_CHECKSUM_OP_CODE_SUPPORTED_BIT_POS�

Definition at line 92 of file common/ots/inc/sl_bt_ots_datatypes.h

Ots_client

1187/1306

SL_BT_OTS_OACP_FEATURE_EXECUTE_OP_CODE_SUPPORTED_BIT_POS

#define SL_BT_OTS_OACP_FEATURE_EXECUTE_OP_CODE_SUPPORTED_BIT_POS

Value:

3

Definition at line 93 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OACP_FEATURE_EXECUTE_OP_CODE_SUPPORTED_MASK

#define SL_BT_OTS_OACP_FEATURE_EXECUTE_OP_CODE_SUPPORTED_MASK

Value:

�1 << SL_BT_OTS_OACP_FEATURE_EXECUTE_OP_CODE_SUPPORTED_BIT_POS�

Definition at line 94 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OACP_FEATURE_READ_OP_CODE_SUPPORTED_BIT_POS

#define SL_BT_OTS_OACP_FEATURE_READ_OP_CODE_SUPPORTED_BIT_POS

Value:

4

Definition at line 95 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OACP_FEATURE_READ_OP_CODE_SUPPORTED_MASK

#define SL_BT_OTS_OACP_FEATURE_READ_OP_CODE_SUPPORTED_MASK

Value:

�1 << SL_BT_OTS_OACP_FEATURE_READ_OP_CODE_SUPPORTED_BIT_POS�

Definition at line 96 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OACP_FEATURE_WRITE_OP_CODE_SUPPORTED_BIT_POS

#define SL_BT_OTS_OACP_FEATURE_WRITE_OP_CODE_SUPPORTED_BIT_POS

Value:

5

Definition at line 97 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OACP_FEATURE_WRITE_OP_CODE_SUPPORTED_MASK

#define SL_BT_OTS_OACP_FEATURE_WRITE_OP_CODE_SUPPORTED_MASK

Ots_client

1188/1306

Value:

�1 << SL_BT_OTS_OACP_FEATURE_WRITE_OP_CODE_SUPPORTED_BIT_POS�

Definition at line 98 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OACP_FEATURE_APPEND_ADDITIONAL_DATA_SUPPORTED_BIT_POS

#define SL_BT_OTS_OACP_FEATURE_APPEND_ADDITIONAL_DATA_SUPPORTED_BIT_POS

Value:

6

Definition at line 99 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OACP_FEATURE_APPEND_ADDITIONAL_DATA_SUPPORTED_MASK

#define SL_BT_OTS_OACP_FEATURE_APPEND_ADDITIONAL_DATA_SUPPORTED_MASK

Value:

�1 << SL_BT_OTS_OACP_FEATURE_APPEND_ADDITIONAL_DATA_SUPPORTED_BIT_POS�

Definition at line 100 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OACP_FEATURE_TRUNCATION_OF_OBJECTS_SUPPORTED_BIT_POS

#define SL_BT_OTS_OACP_FEATURE_TRUNCATION_OF_OBJECTS_SUPPORTED_BIT_POS

Value:

7

Definition at line 101 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OACP_FEATURE_TRUNCATION_OF_OBJECTS_SUPPORTED_MASK

#define SL_BT_OTS_OACP_FEATURE_TRUNCATION_OF_OBJECTS_SUPPORTED_MASK

Value:

�1 << SL_BT_OTS_OACP_FEATURE_TRUNCATION_OF_OBJECTS_SUPPORTED_BIT_POS�

Definition at line 102 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OACP_FEATURE_PATCHING_OF_OBJECTS_SUPPORTED_BIT_POS

#define SL_BT_OTS_OACP_FEATURE_PATCHING_OF_OBJECTS_SUPPORTED_BIT_POS

Value:

8

Definition at line 103 of file common/ots/inc/sl_bt_ots_datatypes.h

Ots_client

1189/1306

SL_BT_OTS_OACP_FEATURE_PATCHING_OF_OBJECTS_SUPPORTED_MASK

#define SL_BT_OTS_OACP_FEATURE_PATCHING_OF_OBJECTS_SUPPORTED_MASK

Value:

�1 << SL_BT_OTS_OACP_FEATURE_PATCHING_OF_OBJECTS_SUPPORTED_BIT_POS�

Definition at line 104 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OACP_FEATURE_ABORT_OP_CODE_SUPPORTED_BIT_POS

#define SL_BT_OTS_OACP_FEATURE_ABORT_OP_CODE_SUPPORTED_BIT_POS

Value:

9

Definition at line 105 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OACP_FEATURE_ABORT_OP_CODE_SUPPORTED_MASK

#define SL_BT_OTS_OACP_FEATURE_ABORT_OP_CODE_SUPPORTED_MASK

Value:

�1 << SL_BT_OTS_OACP_FEATURE_ABORT_OP_CODE_SUPPORTED_BIT_POS�

Definition at line 106 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OLCP_FEATURE_GO_TO_OP_CODE_SUPPORTED_BIT_POS

#define SL_BT_OTS_OLCP_FEATURE_GO_TO_OP_CODE_SUPPORTED_BIT_POS

Value:

0

Definition at line 109 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OLCP_FEATURE_GO_TO_OP_CODE_SUPPORTED_MASK

#define SL_BT_OTS_OLCP_FEATURE_GO_TO_OP_CODE_SUPPORTED_MASK

Value:

�1 << SL_BT_OTS_OLCP_FEATURE_GO_TO_OP_CODE_SUPPORTED_BIT_POS�

Definition at line 110 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OLCP_FEATURE_ORDER_OP_CODE_SUPPORTED_BIT_POS

#define SL_BT_OTS_OLCP_FEATURE_ORDER_OP_CODE_SUPPORTED_BIT_POS

Ots_client

1190/1306

Value:

1

Definition at line 111 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OLCP_FEATURE_ORDER_OP_CODE_SUPPORTED_MASK

#define SL_BT_OTS_OLCP_FEATURE_ORDER_OP_CODE_SUPPORTED_MASK

Value:

�1 << SL_BT_OTS_OLCP_FEATURE_ORDER_OP_CODE_SUPPORTED_BIT_POS�

Definition at line 112 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OLCP_FEATURE_REQUEST_NUMBER_OF_OBJECTS_OP_CODE_SUPPORTED_BIT_POS

#define SL_BT_OTS_OLCP_FEATURE_REQUEST_NUMBER_OF_OBJECTS_OP_CODE_SUPPORTED_BIT_POS

Value:

2

Definition at line 113 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OLCP_FEATURE_REQUEST_NUMBER_OF_OBJECTS_OP_CODE_SUPPORTED_MASK

#define SL_BT_OTS_OLCP_FEATURE_REQUEST_NUMBER_OF_OBJECTS_OP_CODE_SUPPORTED_MASK

Value:

�1 << SL_BT_OTS_OLCP_FEATURE_REQUEST_NUMBER_OF_OBJECTS_OP_CODE_SUPPORTED_BIT_POS�

Definition at line 114 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OLCP_FEATURE_CLEAR_MARKING_OP_CODE_SUPPORTED_BIT_POS

#define SL_BT_OTS_OLCP_FEATURE_CLEAR_MARKING_OP_CODE_SUPPORTED_BIT_POS

Value:

3

Definition at line 115 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OLCP_FEATURE_CLEAR_MARKING_OP_CODE_SUPPORTED_MASK

#define SL_BT_OTS_OLCP_FEATURE_CLEAR_MARKING_OP_CODE_SUPPORTED_MASK

Value:

�1 << SL_BT_OTS_OLCP_FEATURE_CLEAR_MARKING_OP_CODE_SUPPORTED_BIT_POS�

Definition at line 116 of file common/ots/inc/sl_bt_ots_datatypes.h

Ots_client

1191/1306

SL_BT_OTS_OBJECT_PROPERTY_DELETE_BIT_POS

#define SL_BT_OTS_OBJECT_PROPERTY_DELETE_BIT_POS

Value:

0

Definition at line 119 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_PROPERTY_DELETE_MASK

#define SL_BT_OTS_OBJECT_PROPERTY_DELETE_MASK

Value:

�1 << SL_BT_OTS_OBJECT_PROPERTY_DELETE_BIT_POS�

Definition at line 120 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_PROPERTY_EXECUTE_BIT_POS

#define SL_BT_OTS_OBJECT_PROPERTY_EXECUTE_BIT_POS

Value:

1

Definition at line 121 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_PROPERTY_EXECUTE_MASK

#define SL_BT_OTS_OBJECT_PROPERTY_EXECUTE_MASK

Value:

�1 << SL_BT_OTS_OBJECT_PROPERTY_EXECUTE_BIT_POS�

Definition at line 122 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_PROPERTY_READ_BIT_POS

#define SL_BT_OTS_OBJECT_PROPERTY_READ_BIT_POS

Value:

2

Definition at line 123 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_PROPERTY_READ_MASK

#define SL_BT_OTS_OBJECT_PROPERTY_READ_MASK

Ots_client

1192/1306

Value:

�1 << SL_BT_OTS_OBJECT_PROPERTY_READ_BIT_POS�

Definition at line 124 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_PROPERTY_WRITE_BIT_POS

#define SL_BT_OTS_OBJECT_PROPERTY_WRITE_BIT_POS

Value:

3

Definition at line 125 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_PROPERTY_WRITE_MASK

#define SL_BT_OTS_OBJECT_PROPERTY_WRITE_MASK

Value:

�1 << SL_BT_OTS_OBJECT_PROPERTY_WRITE_BIT_POS�

Definition at line 126 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_PROPERTY_APPEND_BIT_POS

#define SL_BT_OTS_OBJECT_PROPERTY_APPEND_BIT_POS

Value:

4

Definition at line 127 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_PROPERTY_APPEND_MASK

#define SL_BT_OTS_OBJECT_PROPERTY_APPEND_MASK

Value:

�1 << SL_BT_OTS_OBJECT_PROPERTY_APPEND_BIT_POS�

Definition at line 128 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_PROPERTY_TRUNCATE_BIT_POS

#define SL_BT_OTS_OBJECT_PROPERTY_TRUNCATE_BIT_POS

Value:

5

Definition at line 129 of file common/ots/inc/sl_bt_ots_datatypes.h

Ots_client

1193/1306

SL_BT_OTS_OBJECT_PROPERTY_TRUNCATE_MASK

#define SL_BT_OTS_OBJECT_PROPERTY_TRUNCATE_MASK

Value:

�1 << SL_BT_OTS_OBJECT_PROPERTY_TRUNCATE_BIT_POS�

Definition at line 130 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_PROPERTY_PATCH_BIT_POS

#define SL_BT_OTS_OBJECT_PROPERTY_PATCH_BIT_POS

Value:

6

Definition at line 131 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_PROPERTY_PATCH_MASK

#define SL_BT_OTS_OBJECT_PROPERTY_PATCH_MASK

Value:

�1 << SL_BT_OTS_OBJECT_PROPERTY_PATCH_BIT_POS�

Definition at line 132 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_PROPERTY_MARK_BIT_POS

#define SL_BT_OTS_OBJECT_PROPERTY_MARK_BIT_POS

Value:

7

Definition at line 133 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_PROPERTY_MARK_MASK

#define SL_BT_OTS_OBJECT_PROPERTY_MARK_MASK

Value:

�1 << SL_BT_OTS_OBJECT_PROPERTY_MARK_BIT_POS�

Definition at line 134 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_PROPERTY_RFU_MASK

#define SL_BT_OTS_OBJECT_PROPERTY_RFU_MASK

Ots_client

1194/1306

Value:

0 ��SL_BT_OTS_OBJECT_PROPERTY_DELETE_MASK \
0 | SL_BT_OTS_OBJECT_PROPERTY_EXECUTE_MASK \
0 | SL_BT_OTS_OBJECT_PROPERTY_READ_MASK \
0 | SL_BT_OTS_OBJECT_PROPERTY_WRITE_MASK \
0 | SL_BT_OTS_OBJECT_PROPERTY_APPEND_MASK \
0 | SL_BT_OTS_OBJECT_PROPERTY_TRUNCATE_MASK \
0 | SL_BT_OTS_OBJECT_PROPERTY_PATCH_MASK \
0 | SL_BT_OTS_OBJECT_PROPERTY_MARK_MASK�

Definition at line 135 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_WRITE_MODE_NONE

#define SL_BT_OTS_WRITE_MODE_NONE

Value:

0

Definition at line 145 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_WRITE_MODE_TRUNCATE_BIT_POS

#define SL_BT_OTS_WRITE_MODE_TRUNCATE_BIT_POS

Value:

1

Definition at line 146 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_WRITE_MODE_TRUNCATE_MASK

#define SL_BT_OTS_WRITE_MODE_TRUNCATE_MASK

Value:

�1 << SL_BT_OTS_WRITE_MODE_TRUNCATE_BIT_POS�

Definition at line 147 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_CHANGE_SOURCE_BIT_POS

#define SL_BT_OTS_OBJECT_CHANGE_SOURCE_BIT_POS

Value:

0

Definition at line 150 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_CHANGE_SOURCE_MASK

Ots_client

1195/1306

#define SL_BT_OTS_OBJECT_CHANGE_SOURCE_MASK

Value:

�1 << SL_BT_OTS_OBJECT_CHANGE_SOURCE_BIT_POS�

Definition at line 151 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_CHANGE_CONTENTS_BIT_POS

#define SL_BT_OTS_OBJECT_CHANGE_CONTENTS_BIT_POS

Value:

1

Definition at line 152 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_CHANGE_CONTENTS_MASK

#define SL_BT_OTS_OBJECT_CHANGE_CONTENTS_MASK

Value:

�1 << SL_BT_OTS_OBJECT_CHANGE_CONTENTS_BIT_POS�

Definition at line 153 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_CHANGE_METADATA_BIT_POS

#define SL_BT_OTS_OBJECT_CHANGE_METADATA_BIT_POS

Value:

2

Definition at line 154 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_CHANGE_METADATA_MASK

#define SL_BT_OTS_OBJECT_CHANGE_METADATA_MASK

Value:

�1 << SL_BT_OTS_OBJECT_CHANGE_METADATA_BIT_POS�

Definition at line 155 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_CHANGE_CREATION_BIT_POS

#define SL_BT_OTS_OBJECT_CHANGE_CREATION_BIT_POS

Value:

Ots_client

1196/1306

3

Definition at line 156 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_CHANGE_CREATION_MASK

#define SL_BT_OTS_OBJECT_CHANGE_CREATION_MASK

Value:

�1 << SL_BT_OTS_OBJECT_CHANGE_CREATION_BIT_POS�

Definition at line 157 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_CHANGE_DELETION_BIT_POS

#define SL_BT_OTS_OBJECT_CHANGE_DELETION_BIT_POS

Value:

4

Definition at line 158 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_CHANGE_DELETION_MASK

#define SL_BT_OTS_OBJECT_CHANGE_DELETION_MASK

Value:

�1 << SL_BT_OTS_OBJECT_CHANGE_DELETION_BIT_POS�

Definition at line 159 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_DLO_OBJECT_UUID_SIZE_BIT_POS

#define SL_BT_OTS_DLO_OBJECT_UUID_SIZE_BIT_POS

Value:

0

Definition at line 162 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_DLO_OBJECT_UUID_SIZE_MASK

#define SL_BT_OTS_DLO_OBJECT_UUID_SIZE_MASK

Value:

�1 << SL_BT_OTS_DLO_OBJECT_UUID_SIZE_BIT_POS�

Definition at line 163 of file common/ots/inc/sl_bt_ots_datatypes.h

Ots_client

1197/1306

SL_BT_OTS_DLO_OBJECT_FIRST_CREATED_PRESENT_BIT_POS

#define SL_BT_OTS_DLO_OBJECT_FIRST_CREATED_PRESENT_BIT_POS

Value:

1

Definition at line 164 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_DLO_OBJECT_FIRST_CREATED_PRESENT_MASK

#define SL_BT_OTS_DLO_OBJECT_FIRST_CREATED_PRESENT_MASK

Value:

�1 << SL_BT_OTS_DLO_OBJECT_FIRST_CREATED_PRESENT_BIT_POS�

Definition at line 165 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_DLO_OBJECT_LAST_MODIFIED_PRESENT_BIT_POS

#define SL_BT_OTS_DLO_OBJECT_LAST_MODIFIED_PRESENT_BIT_POS

Value:

2

Definition at line 166 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_DLO_OBJECT_LAST_MODIFIED_PRESENT_MASK

#define SL_BT_OTS_DLO_OBJECT_LAST_MODIFIED_PRESENT_MASK

Value:

�1 << SL_BT_OTS_DLO_OBJECT_LAST_MODIFIED_PRESENT_BIT_POS�

Definition at line 167 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_DLO_OBJECT_PROPERTIES_PRESENT_BIT_POS

#define SL_BT_OTS_DLO_OBJECT_PROPERTIES_PRESENT_BIT_POS

Value:

3

Definition at line 168 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_DLO_OBJECT_PROPERTIES_PRESENT_MASK

#define SL_BT_OTS_DLO_OBJECT_PROPERTIES_PRESENT_MASK

Ots_client

1198/1306

Value:

�1 << SL_BT_OTS_DLO_OBJECT_PROPERTIES_PRESENT_BIT_POS�

Definition at line 169 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_DLO_EXTENDED_FLAGS_PRESENT_BIT_POS

#define SL_BT_OTS_DLO_EXTENDED_FLAGS_PRESENT_BIT_POS

Value:

7

Definition at line 170 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_DLO_EXTENDED_FLAGS_PRESENT_MASK

#define SL_BT_OTS_DLO_EXTENDED_FLAGS_PRESENT_MASK

Value:

�1 << SL_BT_OTS_DLO_EXTENDED_FLAGS_PRESENT_BIT_POS�

Definition at line 171 of file common/ots/inc/sl_bt_ots_datatypes.h

METADATA_FIELD

#define METADATA_FIELD

Value:

�X�

Definition at line 174 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_METADATA_FIELD_ALL

#define SL_BT_OTS_METADATA_FIELD_ALL

Value:

0xFF

Definition at line 175 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_METADATA_FIELD_NAME

#define SL_BT_OTS_METADATA_FIELD_NAME

Value:

METADATA_FIELD�SL_BT_OTS_OBJECT_METADATA_READ_OBJECT_NAME�

Definition at line 176 of file common/ots/inc/sl_bt_ots_datatypes.h

Ots_client

1199/1306

SL_BT_OTS_METADATA_FIELD_TYPE

#define SL_BT_OTS_METADATA_FIELD_TYPE

Value:

METADATA_FIELD�SL_BT_OTS_OBJECT_METADATA_READ_OBJECT_TYPE�

Definition at line 177 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_METADATA_FIELD_SIZE

#define SL_BT_OTS_METADATA_FIELD_SIZE

Value:

METADATA_FIELD�SL_BT_OTS_OBJECT_METADATA_READ_OBJECT_SIZE�

Definition at line 178 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_METADATA_FIELD_FIRST_CREATED

#define SL_BT_OTS_METADATA_FIELD_FIRST_CREATED

Value:

METADATA_FIELD�SL_BT_OTS_OBJECT_METADATA_READ_OBJECT_FIRST_CREATED�

Definition at line 179 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_METADATA_FIELD_LAST_MODIFIED

#define SL_BT_OTS_METADATA_FIELD_LAST_MODIFIED

Value:

METADATA_FIELD�SL_BT_OTS_OBJECT_METADATA_READ_OBJECT_LAST_MODIFIED�

Definition at line 180 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_METADATA_FIELD_ID

#define SL_BT_OTS_METADATA_FIELD_ID

Value:

METADATA_FIELD�SL_BT_OTS_OBJECT_METADATA_READ_OBJECT_ID�

Definition at line 181 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_METADATA_FIELD_PROPERTIES

#define SL_BT_OTS_METADATA_FIELD_PROPERTIES

Ots_client

1200/1306

Value:

METADATA_FIELD�SL_BT_OTS_OBJECT_METADATA_READ_OBJECT_PROPERTIES�

Definition at line 182 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_METADATA_FIELD_NONE

#define SL_BT_OTS_METADATA_FIELD_NONE

Value:

0�00

Definition at line 183 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_ID_SIZE

#define SL_BT_OTS_OBJECT_ID_SIZE

Value:

6

Definition at line 188 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_ID_USABLE_SIZE

#define SL_BT_OTS_OBJECT_ID_USABLE_SIZE

Value:

5

Definition at line 189 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_OBJECT_ID_RFU_MASK

#define SL_BT_OTS_OBJECT_ID_RFU_MASK

Value:

0�0000000000FF

Definition at line 190 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_INVALID_OBJECT_RFU

#define SL_BT_OTS_INVALID_OBJECT_RFU

Value:

0xFF

Definition at line 192 of file common/ots/inc/sl_bt_ots_datatypes.h

Ots_client

1201/1306

SL_BT_OTS_DIRECTORY_LIST_OBJECT_ID

#define SL_BT_OTS_DIRECTORY_LIST_OBJECT_ID

Value:

0�000000000000

Definition at line 193 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_TIME_SIZE

#define SL_BT_OTS_TIME_SIZE

Value:

7

Definition at line 194 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_UUID_SIZE_16

#define SL_BT_OTS_UUID_SIZE_16

Value:

2

Definition at line 196 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_UUID_SIZE_128

#define SL_BT_OTS_UUID_SIZE_128

Value:

16

Definition at line 197 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_SUBSCRIPTION_STATUS_NONE

#define SL_BT_OTS_SUBSCRIPTION_STATUS_NONE

Value:

0

OTS Subscription status for no subscription.

Definition at line 203 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_CHARACTERISTIC_UUID_OTS_FEATURE

Ots_client

1202/1306

#define SL_BT_OTS_CHARACTERISTIC_UUID_OTS_FEATURE

Value:

0x2ABD

OTS Characteristics.

Definition at line 206 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_NAME

#define SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_NAME

Value:

0�2ABE

Definition at line 207 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_TYPE

#define SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_TYPE

Value:

0�2ABF

Definition at line 208 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_SIZE

#define SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_SIZE

Value:

0�2AC0

Definition at line 209 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_FIRST_CREATED

#define SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_FIRST_CREATED

Value:

0�2AC1

Definition at line 210 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_LAST_MODIFIED

Ots_client

1203/1306

#define SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_LAST_MODIFIED

Value:

0x2AC2

Definition at line 211 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_ID

#define SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_ID

Value:

0�2AC3

Definition at line 212 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_PROPERTIES

#define SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_PROPERTIES

Value:

0�2AC4

Definition at line 213 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_CHARACTERISTIC_UUID_OACP

#define SL_BT_OTS_CHARACTERISTIC_UUID_OACP

Value:

0�2AC5

Definition at line 214 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_CHARACTERISTIC_UUID_OLCP

#define SL_BT_OTS_CHARACTERISTIC_UUID_OLCP

Value:

0�2AC6

Definition at line 215 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_LIST_FILTER

#define SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_LIST_FILTER

Value:

Ots_client

1204/1306

0x2AC7

Definition at line 216 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_CHANGED

#define SL_BT_OTS_CHARACTERISTIC_UUID_OBJECT_CHANGED

Value:

0�2AC8

Definition at line 217 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_CHARACTERISTIC_UUID_COUNT

#define SL_BT_OTS_CHARACTERISTIC_UUID_COUNT

Value:

12

Definition at line 219 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_INDICATION_OVERHEAD

#define SL_BT_OTS_INDICATION_OVERHEAD

Value:

4

Definition at line 221 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_INDICATION_HEADER

#define SL_BT_OTS_INDICATION_HEADER

Value:

2

Definition at line 222 of file common/ots/inc/sl_bt_ots_datatypes.h

SL_BT_OTS_INDICATION_SIZE_MAX

#define SL_BT_OTS_INDICATION_SIZE_MAX

Value:

7

Definition at line 223 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_client_callbacks_t

1205/1306

sl_bt_ots_client_callbacks_t

OTS Object Client Callbacks.

Public Attributes

sl_bt_ots_client_in
it_callback_t

on_init
Callback to handle initialization.

sl_bt_ots_client_c
onnection_callbac

k_t

on_connect
Callback to handle connection to the server.

sl_bt_ots_client_c
onnection_callbac

k_t

on_disconnect
Callback to handle disconnection from the server.

sl_bt_ots_client_s
ubscription_callba

ck_t

on_subscription_change
Callback to handle subscription status changes.

sl_bt_ots_client_fe
atures_callback_t

on_features_read
Callback to handle server feature read.

sl_bt_ots_client_o
bject_metadata_r
ead_callback_t

on_metadata_read_finished
Callback to handle metadata read results.

sl_bt_ots_client_o
bject_metadata_
write_callback_t

on_metadata_write_finished
Callback to handle metadata write results.

sl_bt_ots_client_ol
cp_callback_t

on_olcp_response
Callback to handle OLCP responses.

sl_bt_ots_client_o
acp_callback_t

on_oacp_response
Callback to handle OACP responses.

sl_bt_ots_client_d
ata_transmit_callb

ack_t

on_data_transmit
Callback to handle outgoing data.

sl_bt_ots_client_d
ata_receive_callb

ack_t

on_data_receive
Callback to handle incoming data.

sl_bt_ots_client_d
ata_transfer_finish

ed_t

on_data_transfer_finished
Callback to handle the end of a data transfer.

sl_bt_ots_client_o
bject_changed_ca

llback_t

on_object_change
Callback to handle object change events.

sl_bt_ots_client_lis
t_filter_read_callb

ack_t

on_filter_read
Callback to handle filter reads.

sl_bt_ots_client_callbacks_t

1206/1306

sl_bt_ots_client_lis
t_filter_write_callb

ack_t

on_filter_write
Callback to handle filter writes.

sl_bt_ots_client_gr
oup_metadata_re

ad_t

on_group_metadata_read
Callback to handle grouped metadata read.

Public Attribute Documentation

on_init

sl_bt_ots_client_init_callback_t sl_bt_ots_client_callbacks_t::on_init

Callback to handle initialization.

Definition at line 251 of file common/ots/inc/sl_bt_ots_client.h

on_connect

sl_bt_ots_client_connection_callback_t sl_bt_ots_client_callbacks_t::on_connect

Callback to handle connection to the server.

Definition at line 252 of file common/ots/inc/sl_bt_ots_client.h

on_disconnect

sl_bt_ots_client_connection_callback_t sl_bt_ots_client_callbacks_t::on_disconnect

Callback to handle disconnection from the server.

Definition at line 253 of file common/ots/inc/sl_bt_ots_client.h

on_subscription_change

sl_bt_ots_client_subscription_callback_t sl_bt_ots_client_callbacks_t::on_subscription_change

Callback to handle subscription status changes.

Definition at line 254 of file common/ots/inc/sl_bt_ots_client.h

on_features_read

sl_bt_ots_client_features_callback_t sl_bt_ots_client_callbacks_t::on_features_read

Callback to handle server feature read.

Definition at line 255 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_callbacks_t

1207/1306

on_metadata_read_finished

sl_bt_ots_client_object_metadata_read_callback_t sl_bt_ots_client_callbacks_t::on_metadata_read_finished

Callback to handle metadata read results.

Definition at line 256 of file common/ots/inc/sl_bt_ots_client.h

on_metadata_write_finished

sl_bt_ots_client_object_metadata_write_callback_t sl_bt_ots_client_callbacks_t::on_metadata_write_finished

Callback to handle metadata write results.

Definition at line 257 of file common/ots/inc/sl_bt_ots_client.h

on_olcp_response

sl_bt_ots_client_olcp_callback_t sl_bt_ots_client_callbacks_t::on_olcp_response

Callback to handle OLCP responses.

Definition at line 258 of file common/ots/inc/sl_bt_ots_client.h

on_oacp_response

sl_bt_ots_client_oacp_callback_t sl_bt_ots_client_callbacks_t::on_oacp_response

Callback to handle OACP responses.

Definition at line 259 of file common/ots/inc/sl_bt_ots_client.h

on_data_transmit

sl_bt_ots_client_data_transmit_callback_t sl_bt_ots_client_callbacks_t::on_data_transmit

Callback to handle outgoing data.

Definition at line 260 of file common/ots/inc/sl_bt_ots_client.h

on_data_receive

sl_bt_ots_client_data_receive_callback_t sl_bt_ots_client_callbacks_t::on_data_receive

Callback to handle incoming data.

Definition at line 261 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client_callbacks_t

1208/1306

on_data_transfer_finished

sl_bt_ots_client_data_transfer_finished_t sl_bt_ots_client_callbacks_t::on_data_transfer_finished

Callback to handle the end of a data transfer.

Definition at line 262 of file common/ots/inc/sl_bt_ots_client.h

on_object_change

sl_bt_ots_client_object_changed_callback_t sl_bt_ots_client_callbacks_t::on_object_change

Callback to handle object change events.

Definition at line 263 of file common/ots/inc/sl_bt_ots_client.h

on_filter_read

sl_bt_ots_client_list_filter_read_callback_t sl_bt_ots_client_callbacks_t::on_filter_read

Callback to handle filter reads.

Definition at line 264 of file common/ots/inc/sl_bt_ots_client.h

on_filter_write

sl_bt_ots_client_list_filter_write_callback_t sl_bt_ots_client_callbacks_t::on_filter_write

Callback to handle filter writes.

Definition at line 265 of file common/ots/inc/sl_bt_ots_client.h

on_group_metadata_read

sl_bt_ots_client_group_metadata_read_t sl_bt_ots_client_callbacks_t::on_group_metadata_read

Callback to handle grouped metadata read.

Definition at line 266 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_ots_client

1209/1306

sl_bt_ots_client

OTS Object Client instance type.

Public Attributes

sl_slist_node_t node
Client List node.

sl_bt_ots_client_st
atus_t

status
Client status.

sl_status_t error
Last error during init.

uint8_t connection
Connection.

sl_bt_ots_gattdb_
handles_t

gattdb_handles
GATT database handles for the Object Client.

sl_bt_ots_client_c
allbacks_t *

callbacks
Callbacks for the higher layers.

sl_bt_ots_object_i
d_t

current_object
Selected Current Object ID.

bool single_object
Single object feature.

sl_bt_ots_subscrip
tion_status_t

subscription
Subscription status.

uint8_t active_handle_index
Selected handle index.

uint8_t active_opcode
Selected olcp/oacp opcode.

sl_bt_ots_object_t
*

read_object
Pointer to the target of the read operation.

sl_bt_l2cap_transf
er_transfer_t

l2cap_transfer
Current object transfer on L2CAP channel.

uint32_t active_transfer_size
Size of the current L2CAP transfer.

uint32_t active_transfer_offset
Offset of the current L2CAP transfer.

uint16_t active_transfer_sdu
SDU of the current L2CAP transfer.

uint16_t active_transfer_pdu
PDU of the current L2CAP transfer.

sl_bt_ots_client

1210/1306

sl_bt_l2cap_transf
er_transfer_t

prior_channel
Prior L2CAP transfer storage.

uint8_t received_buffer

Public Attribute Documentation

node

sl_slist_node_t sl_bt_ots_client::node

Client List node.

Definition at line 292 of file common/ots/inc/sl_bt_ots_client.h

status

sl_bt_ots_client_status_t sl_bt_ots_client::status

Client status.

Definition at line 293 of file common/ots/inc/sl_bt_ots_client.h

error

sl_status_t sl_bt_ots_client::error

Last error during init.

Definition at line 294 of file common/ots/inc/sl_bt_ots_client.h

connection

uint8_t sl_bt_ots_client::connection

Connection.

Definition at line 295 of file common/ots/inc/sl_bt_ots_client.h

gattdb_handles

sl_bt_ots_gattdb_handles_t sl_bt_ots_client::gattdb_handles

GATT database handles for the Object Client.

Definition at line 296 of file common/ots/inc/sl_bt_ots_client.h

callbacks

sl_bt_ots_client

1211/1306

sl_bt_ots_client_callbacks_t* sl_bt_ots_client::callbacks

Callbacks for the higher layers.

Definition at line 297 of file common/ots/inc/sl_bt_ots_client.h

current_object

sl_bt_ots_object_id_t sl_bt_ots_client::current_object

Selected Current Object ID.

Definition at line 298 of file common/ots/inc/sl_bt_ots_client.h

single_object

bool sl_bt_ots_client::single_object

Single object feature.

Definition at line 299 of file common/ots/inc/sl_bt_ots_client.h

subscription

sl_bt_ots_subscription_status_t sl_bt_ots_client::subscription

Subscription status.

Definition at line 300 of file common/ots/inc/sl_bt_ots_client.h

active_handle_index

uint8_t sl_bt_ots_client::active_handle_index

Selected handle index.

Definition at line 301 of file common/ots/inc/sl_bt_ots_client.h

active_opcode

uint8_t sl_bt_ots_client::active_opcode

Selected olcp/oacp opcode.

Definition at line 302 of file common/ots/inc/sl_bt_ots_client.h

read_object

sl_bt_ots_client

1212/1306

sl_bt_ots_object_t* sl_bt_ots_client::read_object

Pointer to the target of the read operation.

Definition at line 303 of file common/ots/inc/sl_bt_ots_client.h

l2cap_transfer

sl_bt_l2cap_transfer_transfer_t sl_bt_ots_client::l2cap_transfer

Current object transfer on L2CAP channel.

Definition at line 304 of file common/ots/inc/sl_bt_ots_client.h

active_transfer_size

uint32_t sl_bt_ots_client::active_transfer_size

Size of the current L2CAP transfer.

Definition at line 305 of file common/ots/inc/sl_bt_ots_client.h

active_transfer_offset

uint32_t sl_bt_ots_client::active_transfer_offset

Offset of the current L2CAP transfer.

Definition at line 306 of file common/ots/inc/sl_bt_ots_client.h

active_transfer_sdu

uint16_t sl_bt_ots_client::active_transfer_sdu

SDU of the current L2CAP transfer.

Definition at line 307 of file common/ots/inc/sl_bt_ots_client.h

active_transfer_pdu

uint16_t sl_bt_ots_client::active_transfer_pdu

PDU of the current L2CAP transfer.

Definition at line 308 of file common/ots/inc/sl_bt_ots_client.h

prior_channel

sl_bt_ots_client

1213/1306

sl_bt_l2cap_transfer_transfer_t sl_bt_ots_client::prior_channel

Prior L2CAP transfer storage.

Definition at line 309 of file common/ots/inc/sl_bt_ots_client.h

received_buffer

uint8_t sl_bt_ots_client::received_buffer[SL_BT_OTS_CLIENT_CONFIG_WRITE_REQUEST_DATA_SIZE�

Definition at line 310 of file common/ots/inc/sl_bt_ots_client.h

sl_bt_object_type_variant_t

1214/1306

sl_bt_object_type_variant_t

Object type variants.

Public Attributes

sl_bt_uuid_16_t * sig
16 bit UUID object type

uuid_128 * custom
128 bit UUID object type

Public Attribute Documentation

sig

sl_bt_uuid_16_t* sl_bt_object_type_variant_t::sig

16 bit UUID object type

Definition at line 270 of file common/ots/inc/sl_bt_ots_datatypes.h

custom

uuid_128* sl_bt_object_type_variant_t::custom

128 bit UUID object type

Definition at line 271 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_object_type_t

1215/1306

sl_bt_ots_object_type_t

Object type.

Public Attributes

bool uuid_is_sig

uint8_t * uuid_data
Type data.

Public Attribute Documentation

uuid_is_sig

bool sl_bt_ots_object_type_t::uuid_is_sig

Field that indicating if the type has 16 or 128 bit length.

Definition at line 276 of file common/ots/inc/sl_bt_ots_datatypes.h

uuid_data

uint8_t* sl_bt_ots_object_type_t::uuid_data

Type data.

Definition at line 278 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_time_t

1216/1306

sl_bt_ots_time_t

Object times.

Public Attributes

uint16_t year
Year field of time.

uint8_t month
Month field of time.

uint8_t day
Day field of time.

uint8_t hours
Hour field of time.

uint8_t minutes
Minute field of time.

uint8_t seconds
Second field of time.

struct
sl_bt_ots_time_t::

�3

time

uint8_t data
Alternative byte based access to time.

Public Attribute Documentation

year

uint16_t sl_bt_ots_time_t::year

Year field of time.

Definition at line 290 of file common/ots/inc/sl_bt_ots_datatypes.h

month

uint8_t sl_bt_ots_time_t::month

Month field of time.

Definition at line 291 of file common/ots/inc/sl_bt_ots_datatypes.h

day

uint8_t sl_bt_ots_time_t::day

sl_bt_ots_time_t

1217/1306

Day field of time.

Definition at line 292 of file common/ots/inc/sl_bt_ots_datatypes.h

hours

uint8_t sl_bt_ots_time_t::hours

Hour field of time.

Definition at line 293 of file common/ots/inc/sl_bt_ots_datatypes.h

minutes

uint8_t sl_bt_ots_time_t::minutes

Minute field of time.

Definition at line 294 of file common/ots/inc/sl_bt_ots_datatypes.h

seconds

uint8_t sl_bt_ots_time_t::seconds

Second field of time.

Definition at line 295 of file common/ots/inc/sl_bt_ots_datatypes.h

time

struct sl_bt_ots_time_t::@3 sl_bt_ots_time_t::time

Definition at line 296 of file common/ots/inc/sl_bt_ots_datatypes.h

data

uint8_t sl_bt_ots_time_t::data[SL_BT_OTS_TIME_SIZE�

Alternative byte based access to time.

Definition at line 297 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_object_id_t

1218/1306

sl_bt_ots_object_id_t

Object ID.

Public Attributes

uint8_t data
Data for Object ID.

sl_bt_ots_object_i
d_complete_t

id
Structured access of Object ID.

Public Attribute Documentation

data

uint8_t sl_bt_ots_object_id_t::data[SL_BT_OTS_OBJECT_ID_SIZE�

Data for Object ID.

Definition at line 314 of file common/ots/inc/sl_bt_ots_datatypes.h

id

sl_bt_ots_object_id_complete_t sl_bt_ots_object_id_t::id

Structured access of Object ID.

Definition at line 315 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_object_metadata_write_parameters_t

1219/1306

sl_bt_ots_object_metadata_write_parameters_t

Object metadata write event parameters.

Public Attributes

sl_bt_ots_object_
name_t

object_name
Name of the object.

sl_bt_ots_object_fi
rst_created_t

object_first_created
Time of object First Created.

sl_bt_ots_object_l
ast_modified_t

object_last_modified
Time of object Last Modified.

sl_bt_ots_object_
properties_t

object_properties
Object properties.

Public Attribute Documentation

object_name

sl_bt_ots_object_name_t sl_bt_ots_object_metadata_write_parameters_t::object_name

Name of the object.

Definition at line 331 of file common/ots/inc/sl_bt_ots_datatypes.h

object_first_created

sl_bt_ots_object_first_created_t sl_bt_ots_object_metadata_write_parameters_t::object_first_created

Time of object First Created.

Definition at line 332 of file common/ots/inc/sl_bt_ots_datatypes.h

object_last_modified

sl_bt_ots_object_last_modified_t sl_bt_ots_object_metadata_write_parameters_t::object_last_modified

Time of object Last Modified.

Definition at line 333 of file common/ots/inc/sl_bt_ots_datatypes.h

object_properties

sl_bt_ots_object_properties_t sl_bt_ots_object_metadata_write_parameters_t::object_properties

sl_bt_ots_object_metadata_write_parameters_t

1220/1306

Object properties.

Definition at line 334 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_object_metadata_read_parameters_t

1221/1306

sl_bt_ots_object_metadata_read_parameters_t

Object metadata read event parameters.

Public Attributes

sl_bt_ots_object_
name_t

object_name
Name of the object.

sl_bt_ots_object_t
ype_t

object_type
Type of the object.

sl_bt_ots_object_s
ize_t

object_size
Size of the object.

sl_bt_ots_object_fi
rst_created_t

object_first_created
Time of object First Created.

sl_bt_ots_object_l
ast_modified_t

object_last_modified
Time of object Last Modified.

sl_bt_ots_object_i
d_t

object_id
Object ID.

sl_bt_ots_object_
properties_t

object_properties
Object properties.

Public Attribute Documentation

object_name

sl_bt_ots_object_name_t sl_bt_ots_object_metadata_read_parameters_t::object_name

Name of the object.

Definition at line 363 of file common/ots/inc/sl_bt_ots_datatypes.h

object_type

sl_bt_ots_object_type_t sl_bt_ots_object_metadata_read_parameters_t::object_type

Type of the object.

Definition at line 364 of file common/ots/inc/sl_bt_ots_datatypes.h

object_size

sl_bt_ots_object_size_t sl_bt_ots_object_metadata_read_parameters_t::object_size

sl_bt_ots_object_metadata_read_parameters_t

1222/1306

Size of the object.

Definition at line 365 of file common/ots/inc/sl_bt_ots_datatypes.h

object_first_created

sl_bt_ots_object_first_created_t sl_bt_ots_object_metadata_read_parameters_t::object_first_created

Time of object First Created.

Definition at line 366 of file common/ots/inc/sl_bt_ots_datatypes.h

object_last_modified

sl_bt_ots_object_last_modified_t sl_bt_ots_object_metadata_read_parameters_t::object_last_modified

Time of object Last Modified.

Definition at line 367 of file common/ots/inc/sl_bt_ots_datatypes.h

object_id

sl_bt_ots_object_id_t sl_bt_ots_object_metadata_read_parameters_t::object_id

Object ID.

Definition at line 368 of file common/ots/inc/sl_bt_ots_datatypes.h

object_properties

sl_bt_ots_object_properties_t sl_bt_ots_object_metadata_read_parameters_t::object_properties

Object properties.

Definition at line 369 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_oacp_parameters_t

1223/1306

sl_bt_ots_oacp_parameters_t

OACP parameters.

Public Attributes

sl_bt_ots_oacp_cr
eate_parameters_

t

create
Parameters for object creation.

sl_bt_ots_oacp_ca
lculate_checksum
_parameters_t

calculate_checksum
Parameters for checksum calculation.

sl_bt_ots_oacp_ex
ecute_parameters

_t

execute
Parameters for object execution.

sl_bt_ots_oacp_re
ad_parameters_t

read
Parameters for object read.

sl_bt_ots_oacp_wr
ite_parameters_t

write
Parameters for object write.

Public Attribute Documentation

create

sl_bt_ots_oacp_create_parameters_t sl_bt_ots_oacp_parameters_t::create

Parameters for object creation.

Definition at line 451 of file common/ots/inc/sl_bt_ots_datatypes.h

calculate_checksum

sl_bt_ots_oacp_calculate_checksum_parameters_t sl_bt_ots_oacp_parameters_t::calculate_checksum

Parameters for checksum calculation.

Definition at line 452 of file common/ots/inc/sl_bt_ots_datatypes.h

execute

sl_bt_ots_oacp_execute_parameters_t sl_bt_ots_oacp_parameters_t::execute

Parameters for object execution.

Definition at line 453 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_oacp_parameters_t

1224/1306

read

sl_bt_ots_oacp_read_parameters_t sl_bt_ots_oacp_parameters_t::read

Parameters for object read.

Definition at line 454 of file common/ots/inc/sl_bt_ots_datatypes.h

write

sl_bt_ots_oacp_write_parameters_t sl_bt_ots_oacp_parameters_t::write

Parameters for object write.

Definition at line 455 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_oacp_response_data_t

1225/1306

sl_bt_ots_oacp_response_data_t

OACP response data.

Public Attributes

uint32_t checksum
Checksum data for Calculate Checksum opcode response.

uint8_t len

uint8_t * data

struct
sl_bt_ots_oacp_re
sponse_data_t::@

4

execute
Execution response data for Execute Object opcode.

Public Attribute Documentation

checksum

uint32_t sl_bt_ots_oacp_response_data_t::checksum

Checksum data for Calculate Checksum opcode response.

Definition at line 477 of file common/ots/inc/sl_bt_ots_datatypes.h

len

uint8_t sl_bt_ots_oacp_response_data_t::len

Definition at line 479 of file common/ots/inc/sl_bt_ots_datatypes.h

data

uint8_t* sl_bt_ots_oacp_response_data_t::data

Definition at line 480 of file common/ots/inc/sl_bt_ots_datatypes.h

execute

struct sl_bt_ots_oacp_response_data_t::@4 sl_bt_ots_oacp_response_data_t::execute

Execution response data for Execute Object opcode.

Definition at line 481 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_olcp_parameters_t

1226/1306

sl_bt_ots_olcp_parameters_t

OACP opcode parameters.

Public Attributes

sl_bt_ots_olcp_go
_to_parameters_t

go_to
Go To opcode parameters.

sl_bt_ots_olcp_ord
er_parameters_t

order
Order opcode parameters.

Public Attribute Documentation

go_to

sl_bt_ots_olcp_go_to_parameters_t sl_bt_ots_olcp_parameters_t::go_to

Go To opcode parameters.

Definition at line 610 of file common/ots/inc/sl_bt_ots_datatypes.h

order

sl_bt_ots_olcp_order_parameters_t sl_bt_ots_olcp_parameters_t::order

Order opcode parameters.

Definition at line 611 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_object_t

1227/1306

sl_bt_ots_object_t

Directory Listing Object.

Public Attributes

uint16_t dls_length
DLO entry length.

sl_bt_ots_object_i
d_t

id
Object ID.

sl_bt_ots_object_
name_t

name
Object Name.

uint8_t dls_flags
Flags indicating the content of the DLO entry.

sl_bt_ots_object_t
ype_t

type
Object type.

sl_bt_ots_object_s
ize_t

size
Object size: current and allocated size (optional)

sl_bt_ots_object_fi
rst_created_t

first_created
Object First Created (optional)

sl_bt_ots_object_l
ast_modified_t

last_modified
Object Last Modified (optional)

sl_bt_ots_object_
properties_t

properties
Object properties (optional)

Public Attribute Documentation

dls_length

uint16_t sl_bt_ots_object_t::dls_length

DLO entry length.

Definition at line 682 of file common/ots/inc/sl_bt_ots_datatypes.h

id

sl_bt_ots_object_id_t sl_bt_ots_object_t::id

Object ID.

Definition at line 683 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_object_t

1228/1306

name

sl_bt_ots_object_name_t sl_bt_ots_object_t::name

Object Name.

Definition at line 684 of file common/ots/inc/sl_bt_ots_datatypes.h

dls_flags

uint8_t sl_bt_ots_object_t::dls_flags

Flags indicating the content of the DLO entry.

Definition at line 685 of file common/ots/inc/sl_bt_ots_datatypes.h

type

sl_bt_ots_object_type_t sl_bt_ots_object_t::type

Object type.

Definition at line 686 of file common/ots/inc/sl_bt_ots_datatypes.h

size

sl_bt_ots_object_size_t sl_bt_ots_object_t::size

Object size: current and allocated size (optional)

Definition at line 688 of file common/ots/inc/sl_bt_ots_datatypes.h

first_created

sl_bt_ots_object_first_created_t sl_bt_ots_object_t::first_created

Object First Created (optional)

Definition at line 689 of file common/ots/inc/sl_bt_ots_datatypes.h

last_modified

sl_bt_ots_object_last_modified_t sl_bt_ots_object_t::last_modified

Object Last Modified (optional)

Definition at line 690 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_object_t

1229/1306

properties

sl_bt_ots_object_properties_t sl_bt_ots_object_t::properties

Object properties (optional)

Definition at line 691 of file common/ots/inc/sl_bt_ots_datatypes.h

sl_bt_ots_subscription_status_t

1230/1306

sl_bt_ots_subscription_status_t

OTS characteristic indication subscription status type.

Public Attributes

uint8_t oacp
Indication status for OACP characteristic.

uint8_t olcp
Indication status for OLCP characteristic.

uint8_t object_changed
Indication status for Object Changed characteristic.

struct
sl_bt_ots_subscrip
tion_status_t::@5

subscribed

uint8_t data

Public Attribute Documentation

oacp

uint8_t sl_bt_ots_subscription_status_t::oacp

Indication status for OACP characteristic.

Definition at line 720 of file common/ots/inc/sl_bt_ots_datatypes.h

olcp

uint8_t sl_bt_ots_subscription_status_t::olcp

Indication status for OLCP characteristic.

Definition at line 721 of file common/ots/inc/sl_bt_ots_datatypes.h

object_changed

uint8_t sl_bt_ots_subscription_status_t::object_changed

Indication status for Object Changed characteristic.

Definition at line 722 of file common/ots/inc/sl_bt_ots_datatypes.h

subscribed

sl_bt_ots_subscription_status_t

1231/1306

struct sl_bt_ots_subscription_status_t::@5 sl_bt_ots_subscription_status_t::subscribed

Definition at line 723 of file common/ots/inc/sl_bt_ots_datatypes.h

data

uint8_t sl_bt_ots_subscription_status_t::data

Definition at line 724 of file common/ots/inc/sl_bt_ots_datatypes.h

Ots_server

1232/1306

Ots_server

Modules

sl_bt_ots_server_capabilities_t

sl_bt_ots_server_callbacks_t

sl_bt_ots_server_client_db_entry_t

sl_bt_ots_server

Ots_server

Typedefs

typedef struct
sl_bt_ots_server *

sl_bt_ots_server_handle_t
OTS Object Server handle.

typedef void(* sl_bt_ots_server_connection_callback_t)(sl_bt_ots_server_handle_t server, uint16_t client)

typedef void(* sl_bt_ots_subscription_callback_t)(sl_bt_ots_server_handle_t server, uint16_t client,
sl_bt_ots_subscription_status_t status)

typedef
sl_bt_ots_olcp_res
ponse_code_t(*

sl_bt_ots_server_olcp_callback_t)(sl_bt_ots_server_handle_t server, uint16_t client, sl_bt_ots_object_id_t
*object, sl_bt_ots_olcp_event_t event, sl_bt_ots_olcp_parameters_t *parameters, uint32_t *number_of_objects)

typedef
sl_bt_ots_oacp_re
sponse_code_t(*

sl_bt_ots_server_oacp_callback_t)(sl_bt_ots_server_handle_t server, uint16_t client, sl_bt_ots_object_id_t
*object, sl_bt_ots_oacp_event_t event, sl_bt_ots_oacp_parameters_t *parameters,
sl_bt_ots_oacp_response_data_t *response_data, uint16_t *max_sdu, uint16_t *max_pdu)

typedef
sl_bt_ots_l2cap_cr

edit_t(*

sl_bt_ots_server_data_callback_t)(sl_bt_ots_server_handle_t server, uint16_t client, sl_bt_ots_object_id_t
*object, int32_t current_offset, void *data, int32_t size)

typedef void(* sl_bt_ots_server_data_transfer_finished_t)(sl_bt_ots_server_handle_t server, uint16_t client,
sl_bt_ots_object_id_t *object, sl_bt_ots_transfer_result_t result)

typedef void(* sl_bt_ots_server_data_transmit_callback_t)(sl_bt_ots_server_handle_t server, uint16_t client,
sl_bt_ots_object_id_t *object, uint32_t current_offset, uint32_t size, uint8_t **data, uint32_t *data_size)

typedef
sl_bt_ots_object_
metadata_write_r
esponse_code_t(*

sl_bt_ots_server_object_metadata_write_callback_t)(sl_bt_ots_server_handle_t server, uint16_t client,
sl_bt_ots_object_id_t *object, sl_bt_ots_object_metadata_write_event_type_t event,
sl_bt_ots_object_metadata_write_parameters_t *parameters)

typedef
sl_bt_ots_object_
metadata_read_re
sponse_code_t(*

sl_bt_ots_server_object_metadata_read_callback_t)(sl_bt_ots_server_handle_t server, uint16_t client,
sl_bt_ots_object_id_t *object, sl_bt_ots_object_metadata_read_event_type_t event,
sl_bt_ots_object_metadata_read_parameters_t *parameters)

typedef
sl_bt_ots_object_
metadata_write_r
esponse_code_t(*

sl_bt_ots_server_object_list_filter_wtite_callback_t)(sl_bt_ots_server_handle_t server, uint16_t client,
sl_bt_ots_object_list_filter_content_t *filter)

Ots_server

1233/1306

typedef
sl_bt_ots_object_
metadata_read_re
sponse_code_t(*

sl_bt_ots_server_object_list_filter_read_callback_t)(sl_bt_ots_server_handle_t server, uint16_t client,
sl_bt_ots_object_list_filter_content_t *filter)

typedef void(* sli_bt_ots_server_capability_init_t)(void)

typedef struct
sl_bt_ots_server

sl_bt_ots_server_t
OTS Object Server instance type.

Functions

sl_status_t sl_bt_ots_server_init(sl_bt_ots_server_handle_t server, sl_bt_ots_gattdb_handles_t *handles,
sl_bt_ots_server_callbacks_t *callbacks)

sl_status_t sl_bt_ots_server_set_current_object(sl_bt_ots_server_handle_t server, uint16_t client, sl_bt_ots_object_id_t
*object, sl_bt_ots_object_properties_t *properties, sl_bt_ots_object_size_t *size)

sl_status_t sl_bt_ots_server_get_current_object(sl_bt_ots_server_handle_t server, uint16_t client, sl_bt_ots_object_id_t
*object)

sl_status_t sl_bt_ots_server_abort(sl_bt_ots_server_handle_t server, uint16_t client)

sl_status_t sl_bt_ots_server_object_changed(sl_bt_ots_server_handle_t server, sl_bt_ots_object_id_t *object,
sl_bt_ots_object_changed_flags_t flags)

sl_status_t sl_bt_ots_server_increase_credit(sl_bt_ots_server_handle_t server, uint16_t client, uint16_t credit)

void sli_bt_ots_server_on_bt_event(sl_bt_msg_t *evt)

void sli_bt_ots_server_init(void)

void sli_bt_ots_server_step(void)

Typedef Documentation

sl_bt_ots_server_handle_t

typedef struct sl_bt_ots_server* sl_bt_ots_server_handle_t

OTS Object Server handle.

Definition at line 69 of file common/ots/inc/sl_bt_ots_server.h

sl_bt_ots_server_connection_callback_t

typedef void(* sl_bt_ots_server_connection_callback_t) (sl_bt_ots_server_handle_t server, uint16_t client))
(sl_bt_ots_server_handle_t server, uint16_t client)

Parameters

[in] server Server handle.

[in] client Connection handle for the client.

OTS Object Server callback function prototype for client connection or disconnection

Definition at line 77 of file common/ots/inc/sl_bt_ots_server.h

Ots_server

1234/1306

sl_bt_ots_subscription_callback_t

typedef void(* sl_bt_ots_subscription_callback_t) (sl_bt_ots_server_handle_t server, uint16_t client,
sl_bt_ots_subscription_status_t status))(sl_bt_ots_server_handle_t server, uint16_t client, sl_bt_ots_subscription_status_t
status)

Parameters

[in] server Server handle.

[in] client Connection handle for the client.

[in] status Subscription status.

OTS callback function prototype for indication subscription status

Definition at line 86 of file common/ots/inc/sl_bt_ots_server.h

sl_bt_ots_server_olcp_callback_t

typedef sl_bt_ots_olcp_response_code_t(* sl_bt_ots_server_olcp_callback_t) (sl_bt_ots_server_handle_t server, uint16_t
client, sl_bt_ots_object_id_t *object, sl_bt_ots_olcp_event_t event, sl_bt_ots_olcp_parameters_t *parameters, uint32_t
*number_of_objects))(sl_bt_ots_server_handle_t server, uint16_t client, sl_bt_ots_object_id_t *object, sl_bt_ots_olcp_event_t
event, sl_bt_ots_olcp_parameters_t *parameters, uint32_t *number_of_objects)

Parameters

[in] server Server handle.

[in] client Connection handle for the client.

[in] object Object ID.

[in] event OLCP event.

[in] parameters OLCP event parameters.

[out] number_of_objects Number of objects in case of that opcode/event.

OTS Object Server callback function prototype to handle OLCP events Returns

OLCP response code

Definition at line 100 of file common/ots/inc/sl_bt_ots_server.h

sl_bt_ots_server_oacp_callback_t

typedef sl_bt_ots_oacp_response_code_t(* sl_bt_ots_server_oacp_callback_t) (sl_bt_ots_server_handle_t server, uint16_t
client, sl_bt_ots_object_id_t *object, sl_bt_ots_oacp_event_t event, sl_bt_ots_oacp_parameters_t *parameters,
sl_bt_ots_oacp_response_data_t *response_data, uint16_t *max_sdu, uint16_t *max_pdu))(sl_bt_ots_server_handle_t server,
uint16_t client, sl_bt_ots_object_id_t *object, sl_bt_ots_oacp_event_t event, sl_bt_ots_oacp_parameters_t *parameters,
sl_bt_ots_oacp_response_data_t *response_data, uint16_t *max_sdu, uint16_t *max_pdu)

Parameters

[in] server Server handle.

[in] client Connection handle for the client.

[in] object Object ID.

[in] event OACP event.

[in] parameters OACP event parameters.

Ots_server

1235/1306

[inout] max_sdu The Maximum Service Data Unit size the local channel endpoint can accept

Range: 23 to 65533.

Caller passes a suggested value of SDU as an input.

[inout] max_pdu The maximum PDU payload size the local channel endpoint can accept

Range:23 to 252.

PDU and SDU are optimal when SDU = n * PDU + 2. Caller passes a suggested value of PDU as an

input.

OTS Object Server callback function prototype to handle OACP events Returns

OACP response code

Definition at line 134 of file common/ots/inc/sl_bt_ots_server.h

sl_bt_ots_server_data_callback_t

typedef sl_bt_ots_l2cap_credit_t(* sl_bt_ots_server_data_callback_t) (sl_bt_ots_server_handle_t server, uint16_t client,
sl_bt_ots_object_id_t *object, int32_t current_offset, void *data, int32_t size))(sl_bt_ots_server_handle_t server, uint16_t
client, sl_bt_ots_object_id_t *object, int32_t current_offset, void *data, int32_t size)

Parameters

[in] server Server handle.

[in] client Connection handle for the client.

[in] object Object ID.

[in] current_offset Current offset from the beginning of the object.

[in] data Pointer to the received data.

[in] size Size of the received data.

OTS Object Server callback function prototype to handle data reception Returns

Credits to give to the transmitter.

Definition at line 153 of file common/ots/inc/sl_bt_ots_server.h

sl_bt_ots_server_data_transfer_finished_t

typedef void(* sl_bt_ots_server_data_transfer_finished_t) (sl_bt_ots_server_handle_t server, uint16_t client,
sl_bt_ots_object_id_t *object, sl_bt_ots_transfer_result_t result))(sl_bt_ots_server_handle_t server, uint16_t client,
sl_bt_ots_object_id_t *object, sl_bt_ots_transfer_result_t result)

Parameters

[in] server Server handle.

[in] client Connection handle for the client.

[in] object Object ID.

[in] result Size of the data.

OTS Object Server callback function prototype to handle transmission status

Definition at line 167 of file common/ots/inc/sl_bt_ots_server.h

Ots_server

1236/1306

sl_bt_ots_server_data_transmit_callback_t

typedef void(* sl_bt_ots_server_data_transmit_callback_t) (sl_bt_ots_server_handle_t server, uint16_t client,
sl_bt_ots_object_id_t *object, uint32_t current_offset, uint32_t size, uint8_t **data, uint32_t *data_size))
(sl_bt_ots_server_handle_t server, uint16_t client, sl_bt_ots_object_id_t *object, uint32_t current_offset, uint32_t size, uint8_t
**data, uint32_t *data_size)

Parameters

[in] server Client handle.

[in] object Object ID reference.

[in] offset Current offset of requested data

[in] size Maximum size of requested data

[out] data Pointer of pointer to data

[out] data_size Size of the provided data

OTS Object Server callback function prototype to handle data transmission

Definition at line 181 of file common/ots/inc/sl_bt_ots_server.h

sl_bt_ots_server_object_metadata_write_callback_t

typedef sl_bt_ots_object_metadata_write_response_code_t(* sl_bt_ots_server_object_metadata_write_callback_t)
(sl_bt_ots_server_handle_t server, uint16_t client, sl_bt_ots_object_id_t *object,
sl_bt_ots_object_metadata_write_event_type_t event, sl_bt_ots_object_metadata_write_parameters_t *parameters))
(sl_bt_ots_server_handle_t server, uint16_t client, sl_bt_ots_object_id_t *object,
sl_bt_ots_object_metadata_write_event_type_t event, sl_bt_ots_object_metadata_write_parameters_t *parameters)

Parameters

[in] server Server handle.

[in] client Connection handle for the client.

[in] object Object ID.

[in] event Metadata write event.

[in] parameters Metadata event parameters.

OTS Object Server callback function prototype to handle metadata writes Returns

Response code

Definition at line 198 of file common/ots/inc/sl_bt_ots_server.h

sl_bt_ots_server_object_metadata_read_callback_t

typedef sl_bt_ots_object_metadata_read_response_code_t(* sl_bt_ots_server_object_metadata_read_callback_t)
(sl_bt_ots_server_handle_t server, uint16_t client, sl_bt_ots_object_id_t *object,
sl_bt_ots_object_metadata_read_event_type_t event, sl_bt_ots_object_metadata_read_parameters_t *parameters))
(sl_bt_ots_server_handle_t server, uint16_t client, sl_bt_ots_object_id_t *object,
sl_bt_ots_object_metadata_read_event_type_t event, sl_bt_ots_object_metadata_read_parameters_t *parameters)

Parameters

[in] server Server handle.

[in] client Connection handle for the client.

Ots_server

1237/1306

[in] object Object ID.

[in] event Metadata read event.

[out] parameters Metadata event parameters to be filled.

OTS Object Server callback function prototype to handle metadata writes Returns

Response code

Definition at line 213 of file common/ots/inc/sl_bt_ots_server.h

sl_bt_ots_server_object_list_filter_wtite_callback_t

typedef sl_bt_ots_object_metadata_write_response_code_t(* sl_bt_ots_server_object_list_filter_wtite_callback_t)
(sl_bt_ots_server_handle_t server, uint16_t client, sl_bt_ots_object_list_filter_content_t *filter))(sl_bt_ots_server_handle_t
server, uint16_t client, sl_bt_ots_object_list_filter_content_t *filter)

Parameters

[in] server Server handle.

[in] client Connection handle for the client.

[in] filter Pointer to the filter

OTS Object Server callback function prototype to set Object List Filter Returns

Response code

Definition at line 226 of file common/ots/inc/sl_bt_ots_server.h

sl_bt_ots_server_object_list_filter_read_callback_t

typedef sl_bt_ots_object_metadata_read_response_code_t(* sl_bt_ots_server_object_list_filter_read_callback_t)
(sl_bt_ots_server_handle_t server, uint16_t client, sl_bt_ots_object_list_filter_content_t *filter))(sl_bt_ots_server_handle_t
server, uint16_t client, sl_bt_ots_object_list_filter_content_t *filter)

Parameters

[in] server Server handle.

[in] client Connection handle for the client.

[out] filter Pointer to the filter to be filled.

OTS Object Server callback function prototype to get Object List Filter Returns

Response code

Definition at line 237 of file common/ots/inc/sl_bt_ots_server.h

sli_bt_ots_server_capability_init_t

typedef void(* sli_bt_ots_server_capability_init_t) (void))(void)

OTS Object Server capability initialization function type

Definition at line 243 of file common/ots/inc/sl_bt_ots_server.h

Ots_server

1238/1306

typedef struct sl_bt_ots_server sl_bt_ots_server_t

OTS Object Server instance type.

Definition at line 283 of file common/ots/inc/sl_bt_ots_server.h

Function Documentation

sl_bt_ots_server_init

sl_status_t sl_bt_ots_server_init (sl_bt_ots_server_handle_t server, sl_bt_ots_gattdb_handles_t *handles,
sl_bt_ots_server_callbacks_t *callbacks)

Parameters

[in] server Server handle.

[in] handles GATT database handles.

[in] callbacks Callbacks to handle requests.

Initialize the OTS Object Server. Returns

Response code

Definition at line 295 of file common/ots/inc/sl_bt_ots_server.h

sl_bt_ots_server_set_current_object

sl_status_t sl_bt_ots_server_set_current_object (sl_bt_ots_server_handle_t server, uint16_t client, sl_bt_ots_object_id_t
*object, sl_bt_ots_object_properties_t *properties, sl_bt_ots_object_size_t *size)

Parameters

[in] server Server handle.

[in] client Connection handle for the client.

[in] object Pointer to the Object ID. If NULL, Current Object will set to Invalid Object.

[in] properties Pointer to the Object Properties. If NULL, all OACP actions will be passed using the callbacks. If not

NULL, the server will respond with OACP response codes automatically and pass only the OACP

operations those are permitted by the given object properties.

[in] size Pointer to the Object Size. If NULL, all OACP actions will be passed using the callbacks. If not NULL, the

server will respond with OACP response codes automatically and pass only the OACP operations those

are permitted by the given object size and server capability configuration.

Set the current object on the server for the specified client Returns

Response code

Definition at line 318 of file common/ots/inc/sl_bt_ots_server.h

sl_bt_ots_server_get_current_object

sl_status_t sl_bt_ots_server_get_current_object (sl_bt_ots_server_handle_t server, uint16_t client, sl_bt_ots_object_id_t
*object)

Ots_server

1239/1306

Parameters

[in] server Server handle.

[in] client Connection handle for the client.

[out] object Pointer to the Object ID.

Get the current object on the server for the specified client Returns

Response code

Definition at line 331 of file common/ots/inc/sl_bt_ots_server.h

sl_bt_ots_server_abort

sl_status_t sl_bt_ots_server_abort (sl_bt_ots_server_handle_t server, uint16_t client)

Parameters

[in] server Server handle.

[in] client Connection handle for the client.

Abort transmission on the Object Server instance for a specified client. Returns

Response code

Definition at line 341 of file common/ots/inc/sl_bt_ots_server.h

sl_bt_ots_server_object_changed

sl_status_t sl_bt_ots_server_object_changed (sl_bt_ots_server_handle_t server, sl_bt_ots_object_id_t *object,
sl_bt_ots_object_changed_flags_t flags)

Parameters

[in] server Server handle.

[in] object Pointer to the Object ID.

[in] flags The following masks can be used to indicate the nature of change:

SL_BT_OTS_OBJECT_CHANGE_CONTENTS_MASK : object contents changed

SL_BT_OTS_OBJECT_CHANGE_METADATA_MASK : metadata changed

SL_BT_OTS_OBJECT_CHANGE_CREATION_MASK : object creation

SL_BT_OTS_OBJECT_CHANGE_DELETION_MASK : object deletion

Indicate that an object has been changed on the server. Returns

Response code

Definition at line 356 of file common/ots/inc/sl_bt_ots_server.h

sl_bt_ots_server_increase_credit

sl_status_t sl_bt_ots_server_increase_credit (sl_bt_ots_server_handle_t server, uint16_t client, uint16_t credit)

Parameters

Ots_server

1240/1306

[in] server Server handle.

[in] client Connection handle for the client.

[in] credit Number of credit to give (in packets).

Increase the credit for the L2CAP transfer that is in progress Returns

Response code

Definition at line 367 of file common/ots/inc/sl_bt_ots_server.h

sli_bt_ots_server_on_bt_event

void sli_bt_ots_server_on_bt_event (sl_bt_msg_t *evt)

Parameters

[in] evt Bluetooth event.

Internal Bluetooth event handler.

Definition at line 375 of file common/ots/inc/sl_bt_ots_server.h

sli_bt_ots_server_init

void sli_bt_ots_server_init (void)

Parameters

[in] Bluetooth event.

Initialize OTS Server Core.

Definition at line 381 of file common/ots/inc/sl_bt_ots_server.h

sli_bt_ots_server_step

void sli_bt_ots_server_step (void)

Parameters

N/A

Internal step for queue handling.

Definition at line 386 of file common/ots/inc/sl_bt_ots_server.h

sl_bt_ots_server_capabilities_t

1241/1306

sl_bt_ots_server_capabilities_t

OTS Object Server Capabilities.

Public Attributes

uint8_t capability_multiple_objects
Allow multiple objects.

uint8_t capability_object_list_filter
Support Object List Filter.

uint8_t capability_dlo
Support Directory Listing Object.

uint8_t capability_time
Support Time.

uint8_t capability_first_created
Support Object First Created.

uint8_t capability_last_modified
Support Object Last Modified.

uint8_t capability_object_changed
Support Object Changed.

Public Attribute Documentation

capability_multiple_objects

uint8_t sl_bt_ots_server_capabilities_t::capability_multiple_objects

Allow multiple objects.

Definition at line 59 of file common/ots/inc/sl_bt_ots_server.h

capability_object_list_filter

uint8_t sl_bt_ots_server_capabilities_t::capability_object_list_filter

Support Object List Filter.

Definition at line 60 of file common/ots/inc/sl_bt_ots_server.h

capability_dlo

uint8_t sl_bt_ots_server_capabilities_t::capability_dlo

sl_bt_ots_server_capabilities_t

1242/1306

Support Directory Listing Object.

Definition at line 61 of file common/ots/inc/sl_bt_ots_server.h

capability_time

uint8_t sl_bt_ots_server_capabilities_t::capability_time

Support Time.

Definition at line 62 of file common/ots/inc/sl_bt_ots_server.h

capability_first_created

uint8_t sl_bt_ots_server_capabilities_t::capability_first_created

Support Object First Created.

Definition at line 63 of file common/ots/inc/sl_bt_ots_server.h

capability_last_modified

uint8_t sl_bt_ots_server_capabilities_t::capability_last_modified

Support Object Last Modified.

Definition at line 64 of file common/ots/inc/sl_bt_ots_server.h

capability_object_changed

uint8_t sl_bt_ots_server_capabilities_t::capability_object_changed

Support Object Changed.

Definition at line 65 of file common/ots/inc/sl_bt_ots_server.h

sl_bt_ots_server_callbacks_t

1243/1306

sl_bt_ots_server_callbacks_t

OTS Object Server Callbacks.

Public Attributes

sl_bt_ots_server_c
onnection_callbac

k_t

on_client_connect
Callback to handle connection of a client.

sl_bt_ots_server_c
onnection_callbac

k_t

on_client_disconnect
Callback to handle disconnection of a client.

sl_bt_ots_subscrip
tion_callback_t

on_client_subscription_change
Callback to handle client subscription status changes.

sl_bt_ots_server_o
bject_metadata_
write_callback_t

on_object_metadata_write
Callback to handle metadata writes.

sl_bt_ots_server_o
bject_metadata_r
ead_callback_t

on_object_metadata_read
Callback to handle metadata read operations.

sl_bt_ots_server_o
bject_list_filter_wt

ite_callback_t

on_object_list_filter_set
Callback to handle Object List Filter write operations.

sl_bt_ots_server_o
bject_list_filter_re
ad_callback_t

on_object_list_filter_get
Callback to handle Object List Filter read operations.

sl_bt_ots_server_o
lcp_callback_t

on_olcp_event
Callback to handle OLCP List management events.

sl_bt_ots_server_o
acp_callback_t

on_oacp_event
Callback to handle OACP Data management events.

sl_bt_ots_server_
data_callback_t

on_data_received
Callback to handle incoming data.

sl_bt_ots_server_
data_transfer_fini

shed_t

on_data_transfer_finished
Callback to handle the end of a data transfer.

sl_bt_ots_server_
data_transmit_call

back_t

on_data_transmit
Callback to handle outgoing data.

Public Attribute Documentation

on_client_connect

sl_bt_ots_server_connection_callback_t sl_bt_ots_server_callbacks_t::on_client_connect

sl_bt_ots_server_callbacks_t

1244/1306

Callback to handle connection of a client.

Definition at line 247 of file common/ots/inc/sl_bt_ots_server.h

on_client_disconnect

sl_bt_ots_server_connection_callback_t sl_bt_ots_server_callbacks_t::on_client_disconnect

Callback to handle disconnection of a client.

Definition at line 248 of file common/ots/inc/sl_bt_ots_server.h

on_client_subscription_change

sl_bt_ots_subscription_callback_t sl_bt_ots_server_callbacks_t::on_client_subscription_change

Callback to handle client subscription status changes.

Definition at line 249 of file common/ots/inc/sl_bt_ots_server.h

on_object_metadata_write

sl_bt_ots_server_object_metadata_write_callback_t sl_bt_ots_server_callbacks_t::on_object_metadata_write

Callback to handle metadata writes.

Definition at line 250 of file common/ots/inc/sl_bt_ots_server.h

on_object_metadata_read

sl_bt_ots_server_object_metadata_read_callback_t sl_bt_ots_server_callbacks_t::on_object_metadata_read

Callback to handle metadata read operations.

Definition at line 251 of file common/ots/inc/sl_bt_ots_server.h

on_object_list_filter_set

sl_bt_ots_server_object_list_filter_wtite_callback_t sl_bt_ots_server_callbacks_t::on_object_list_filter_set

Callback to handle Object List Filter write operations.

Definition at line 252 of file common/ots/inc/sl_bt_ots_server.h

on_object_list_filter_get

sl_bt_ots_server_object_list_filter_read_callback_t sl_bt_ots_server_callbacks_t::on_object_list_filter_get

sl_bt_ots_server_callbacks_t

1245/1306

Callback to handle Object List Filter read operations.

Definition at line 253 of file common/ots/inc/sl_bt_ots_server.h

on_olcp_event

sl_bt_ots_server_olcp_callback_t sl_bt_ots_server_callbacks_t::on_olcp_event

Callback to handle OLCP List management events.

Definition at line 254 of file common/ots/inc/sl_bt_ots_server.h

on_oacp_event

sl_bt_ots_server_oacp_callback_t sl_bt_ots_server_callbacks_t::on_oacp_event

Callback to handle OACP Data management events.

Definition at line 255 of file common/ots/inc/sl_bt_ots_server.h

on_data_received

sl_bt_ots_server_data_callback_t sl_bt_ots_server_callbacks_t::on_data_received

Callback to handle incoming data.

Definition at line 256 of file common/ots/inc/sl_bt_ots_server.h

on_data_transfer_finished

sl_bt_ots_server_data_transfer_finished_t sl_bt_ots_server_callbacks_t::on_data_transfer_finished

Callback to handle the end of a data transfer.

Definition at line 257 of file common/ots/inc/sl_bt_ots_server.h

on_data_transmit

sl_bt_ots_server_data_transmit_callback_t sl_bt_ots_server_callbacks_t::on_data_transmit

Callback to handle outgoing data.

Definition at line 258 of file common/ots/inc/sl_bt_ots_server.h

sl_bt_ots_server_client_db_entry_t

1246/1306

sl_bt_ots_server_client_db_entry_t

OTS Object Server Client database item.

Public Attributes

uint16_t connection_handle
The connection handle that identifies the client.

sl_bt_ots_object_i
d_t

current_object
Selected Current Object ID.

sl_bt_ots_object_
properties_t *

current_object_properties
Pointer to Current Object Properties (or NULL if not specified)

sl_bt_ots_object_s
ize_t *

current_object_size
Pointer to Current Object Size (or NULL if not specified)

sl_bt_ots_subscrip
tion_status_t

subscription_status
Subscription status for indication to OACP, OLCP and Object Change characteristics.

sl_bt_l2cap_transf
er_transfer_t

l2cap_transfer
Current object transfer channel (L2CAP channel)

uint16_t l2cap_transfer_sdu
SDU of the current L2CAP transfer.

uint16_t l2cap_transfer_pdu
PDU of the current L2CAP transfer.

sl_bt_ots_oacp_op
code_t

operation_in_progress
Current transfer related operation (Read or Write)

sl_bt_ots_object_i
d_t

object_in_use
Object used in the current transfer.

Public Attribute Documentation

connection_handle

uint16_t sl_bt_ots_server_client_db_entry_t::connection_handle

The connection handle that identifies the client.

Definition at line 263 of file common/ots/inc/sl_bt_ots_server.h

current_object

sl_bt_ots_object_id_t sl_bt_ots_server_client_db_entry_t::current_object

Selected Current Object ID.

sl_bt_ots_server_client_db_entry_t

1247/1306

Definition at line 264 of file common/ots/inc/sl_bt_ots_server.h

current_object_properties

sl_bt_ots_object_properties_t* sl_bt_ots_server_client_db_entry_t::current_object_properties

Pointer to Current Object Properties (or NULL if not specified)

Definition at line 265 of file common/ots/inc/sl_bt_ots_server.h

current_object_size

sl_bt_ots_object_size_t* sl_bt_ots_server_client_db_entry_t::current_object_size

Pointer to Current Object Size (or NULL if not specified)

Definition at line 266 of file common/ots/inc/sl_bt_ots_server.h

subscription_status

sl_bt_ots_subscription_status_t sl_bt_ots_server_client_db_entry_t::subscription_status

Subscription status for indication to OACP, OLCP and Object Change characteristics.

Definition at line 267 of file common/ots/inc/sl_bt_ots_server.h

l2cap_transfer

sl_bt_l2cap_transfer_transfer_t sl_bt_ots_server_client_db_entry_t::l2cap_transfer

Current object transfer channel (L2CAP channel)

Definition at line 268 of file common/ots/inc/sl_bt_ots_server.h

l2cap_transfer_sdu

uint16_t sl_bt_ots_server_client_db_entry_t::l2cap_transfer_sdu

SDU of the current L2CAP transfer.

Definition at line 269 of file common/ots/inc/sl_bt_ots_server.h

l2cap_transfer_pdu

uint16_t sl_bt_ots_server_client_db_entry_t::l2cap_transfer_pdu

PDU of the current L2CAP transfer.

Definition at line 270 of file common/ots/inc/sl_bt_ots_server.h

sl_bt_ots_server_client_db_entry_t

1248/1306

operation_in_progress

sl_bt_ots_oacp_opcode_t sl_bt_ots_server_client_db_entry_t::operation_in_progress

Current transfer related operation (Read or Write)

Definition at line 271 of file common/ots/inc/sl_bt_ots_server.h

object_in_use

sl_bt_ots_object_id_t sl_bt_ots_server_client_db_entry_t::object_in_use

Object used in the current transfer.

Definition at line 272 of file common/ots/inc/sl_bt_ots_server.h

sl_bt_ots_server

1249/1306

sl_bt_ots_server

OTS Object Server instance type.

Public Attributes

sl_bt_ots_gattdb_
handles_t *

gattdb_handles
GATT database handles for the Object Server Instance.

sl_bt_ots_server_c
allbacks_t *

callbacks
Callbacks for the higher layers.

uint8_t concurrency
Maximum number of concurrent connections.

sl_bt_ots_features
_t

features
Features of the server.

sl_bt_ots_server_c
lient_db_entry_t *

client_db
Internal database of clients.

sl_bt_ots_server_c
apabilities_t

capabilities
Server capabilites.

Public Attribute Documentation

gattdb_handles

sl_bt_ots_gattdb_handles_t* sl_bt_ots_server::gattdb_handles

GATT database handles for the Object Server Instance.

Definition at line 277 of file common/ots/inc/sl_bt_ots_server.h

callbacks

sl_bt_ots_server_callbacks_t* sl_bt_ots_server::callbacks

Callbacks for the higher layers.

Definition at line 278 of file common/ots/inc/sl_bt_ots_server.h

concurrency

uint8_t sl_bt_ots_server::concurrency

Maximum number of concurrent connections.

Definition at line 279 of file common/ots/inc/sl_bt_ots_server.h

sl_bt_ots_server

1250/1306

features

sl_bt_ots_features_t sl_bt_ots_server::features

Features of the server.

Definition at line 280 of file common/ots/inc/sl_bt_ots_server.h

client_db

sl_bt_ots_server_client_db_entry_t* sl_bt_ots_server::client_db

Internal database of clients.

Definition at line 281 of file common/ots/inc/sl_bt_ots_server.h

capabilities

sl_bt_ots_server_capabilities_t sl_bt_ots_server::capabilities

Server capabilites.

Definition at line 282 of file common/ots/inc/sl_bt_ots_server.h

Mobile Applications

1251/1306

Mobile Applications

Bluetooth Mobile Applications
These pages contain reference materials for working with Bluetooth Low Energy (BLE) mobile applications.

Finding the Bluetooth Features of Smartphones: Describes how to use the Bluetooth SIG qualification listings to find the

features supported by various smartphone models.

Selecting Suitable Connection Parameters for Apple Devices: Covers recommended connection parameters for iOS devices,

describes how to check the configuration, and includes examples.

Seeing BLE Devices on the iOS Bluetooth Settings Page: Includes a method to get a BLE device listed on the iOS Bluetooth

settings page using advertisements.

EFR Connect Reference: Provides a reference for working with EFR Connect, a generic mobile app for testing and debugging

BLE applications.

Finding Smartphone Features

1252/1306

Finding Smartphone Features

Finding the Bluetooth Features of Smartphones

Introduction

Many new features which were introduced in the Bluetooth 5.0 specification (such 2M PHY, LE coded PHY, and

advertisement extensions) have not been adopted by all smartphone models. Some require new hardware (such as the new

PHYs) but others are mostly software-based features. Often, it's difficult to know what is supported by a given smartphone

model. However, the Bluetooth SIG qualification listings provide detailed insight into all Bluetooth features supported under

each declaration.

Searching the SIG Qualification Listings

Example below shows how to get the listing information of Samsung Galaxy S8+, the model name is SM-G9550. You can

search for any other listed devices following the steps below.

Open the Bluetooth SIG launchstudio.

Type the model name into the search box and click the search button. If the device is listed in Bluetooth SIG, the declaration

ID should appear, including high-level information, such as specification name, products under that declaration ID, listing

date, and so on.

Click the Declaration ID and the declaration details will show on the page.

https://launchstudio.bluetooth.com/listings/search

Finding Smartphone Features

1253/1306

Click “View ISC details”.

The full listing is available. The left area shows all categories, while the right area shows all items included in the selected

category. The image below shows a search for “LE 2M PHY” and “LE Coded PHY” where you can see that the LE 2M PHY is

supported but the LE Coded PHY is not.

Conclusion

The Bluetooth SIG launch studio allows searching for the declarations of Bluetooth end products and/or components (such

as the Silicon Labs link layer or host stack), which provides insight into the features supported. This is extremely useful in

finding specific Bluetooth features supported by smartphones.

Suitable Parameters for iOS Devices

1254/1306

Suitable Parameters for iOS Devices

Selecting Suitable Connection Parameters for
Apple Devices

Introduction

For each Bluetooth connection, a set of parameters can be changed on the fly, depending on the application requirements.

These include: connection interval, slave latency, and supervision timeout. For example, to minimize power consumption

you can increase the connection interval and slave latency. This reduces the RF duty cycle and allows the peripheral to stay

longer in sleep mode if there is no need to transmit any user data.

For more details about Bluetooth connections, see UG103.14: Application Development Fundamentals: Bluetooth® Smart

Technology.

The master (typically a mobile device) controls which connection parameters are used. When master initiates a connection

to a slave, it selects the default parameters that are used. The slave can request updating the connection parameters.

However, the master can either accept or reject this request.

Depending on the master, different restrictions can apply on which parameter combinations are accepted. This document

focuses on the recommendations for iOS devices specified by Apple.

Apple Bluetooth Device Guidelines

The rules for selecting connection parameters for BLE peripherals that are defined in the document Accessory Design

Guidelines for Apple Devices, available for download here.

The BLE connection parameters are discussed in section 25.6 Connection Parameters. For example, the minimum

connection interval is specified as 15 ms. Note that the minimum interval allowed by the Bluetooth core specification is 7.5

ms.

At the time of writing this document, the latest version of the guideline document was R11 (dated 2019-11-12).

https://www.silabs.com/documents/login/user-guides/ug103-14-fundamentals-ble.pdf
https://developer.apple.com/accessories/Accessory-Design-Guidelines.pdf

Seeing BLE Devices on the iOS Settings Page

1255/1306

Seeing BLE Devices on the iOS Settings Page

Seeing BLE Devices on the iOS Bluetooth Settings
Page
According to Apple support, it is not possible to see BLE devices listed on the Bluetooth Settings page. Only Bluetooth

2.1/3.0 devices are listed, such as keyboards and headsets (source). For BLE devices, use the device's own app or any other

third party app which uses CoreBluetooth.

However, it seems that iOS does list BLE devices when they advertise some of the adopted services such as the Heart Rate

service. By advertising this service, your device can be visible in the Bluetooth Settings page. Test this by following these

steps:

Create an soc-empty project

Add the Heart Rate service in the Visual GATT Editor

Tick "Advertise" and click "Generate"
Build and flash the project

(Disclaimer: There was no information source to verify that iOS does indeed list BLE devices when certain adopted services

are advertised)

https://forums.developer.apple.com/thread/71627
http://stackoverflow.com/questions/27211573/bluetooth-low-energy-advertising-to-be-discoverable-in-ios-settings
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.heart_rate.xml

Seeing BLE Devices on the iOS Settings Page

1256/1306

EFR Connect Reference

1257/1306

EFR Connect Reference

EFR Connect Reference Guide

Introduction

Silicon Labs EFR Connect is a generic mobile app for testing and debugging Bluetooth® Low Energy (BLE) applications. It

can help developers to create and troubleshoot BLE applications running on Silicon Labs’ development boards. With EFR

Connect, you can quickly troubleshoot your BLE embedded application code, Over-the-Air (OTA) firmware update, data

throughput, interoperability, and many other features, with Android and iOS mobiles. You can use the EFR Connect app with

all Silicon Labs Bluetooth development kits, System-on-Chips (SoCs), and modules.

This application has five main functional areas:

Scan

Configure

Test

Demo

Settings

By default, the app opens in the Scan view. Use the bottom tab bar to move between views.

The EFR Connect mobile application source code for both iOS and Android is available on GitHub under the Apache 2.0

license.

This version of the document refers to the version 2.6.0 for both the iOS and Android app. Because the apps have the same

UI for most features, this document utilizes screenshots from the Android app. If a UI feature differs depending on platform,

the differences are explained.

Scan View

The Scan view contains a collection of tools for BLE firmware application developers. It consists of three sub-views:

Scanner, RSSI Graph and Active Connections. Together they form a feature-rich set of tools to scan, connect, and interact

with BLE devices.

Scanner

Scanner is the default view. It is a powerful tool to explore the BLE devices around you. Key features include the following:

Scan for BLE devices

Sort the list by the RSSI

Filter devices to narrow down the scan results

Label favorite devices to place them on the top of the list

Inspect advertising data

Connect to a specific device

https://play.google.com/store/apps/details?id=com.siliconlabs.bledemo&hl=en
https://apps.apple.com/us/app/efr-connect/id1030932759
https://github.com/SiliconLabs/EFRConnect-ios
https://github.com/SiliconLabs/EFRConnect-android
https://github.com/SiliconLabs?q=efrconnect&type=&language=&sort=

EFR Connect Reference

1258/1306

Start and Stop Scanning

You can control when scanning starts and stops. The application does this automatically in only four situations:

Opening Scanner view starts scanning

Connecting to a device stops scanning

Refreshing the list automatically starts scanning if it was stopped

Locking the screen automatically stops scanning

Scanning will continue indefinitely until you tap Stop Scanning at the bottom right or exit Scan View. Start/Stop action does

not clear the list of devices. This means that, if scanning resumes with an existing device list, new devices will be added to

the end. Exiting Scan view as well as pulling down and releasing the device list causes the list to refresh. As mentioned

above, pulling down also automatically starts scanning if it was stopped before.

Device Cards

Each device discovered by the app is represented by a card containing information about that device. The image below

shows the main elements of the device card.

EFR Connect Reference

1259/1306

 Device name, if it's part of the advertisement, either through AD type Complete Local Name (0x09) or Shortened Local Name

(0x08). If the device name is not part of the advertisement packet or the scan response packet, the app displays "N/A".
 Bluetooth address. Note: On iOS the Bluetooth address is not accessible by the application.
 Connect button if the advertisement is of connectable type.

 RSSI (Received Signal Strength Indicator).
 Advertising interval.

 Known beacon format (iBeacon, Eddystone or Altbeacon). If no beacon format is identified, it will be "Unspecified".
 Advertisement type (connectable or non-connectable).

 The star indicates whether the device has been marked as favorite (star is blue). This can be easily toggled by tapping the

star, which changes between blue and gray.

 Bonding status. Note: Bonding status is not available on iOS due to system limitations.
 Expand view, to inspect advertising data.

The device card can be expanded to show the advertisement data details. Once expanded, each row shows one of the

advertisement data types that are part of the advertisement packet.

EFR Connect Reference

1260/1306

If the advertisement has a known beacon format, the details are also parsed according to that specific beacon format. The

image below shows the details from an iBeacon advertisement (Bluetooth - SoC iBeacon sample application running on an

EFR32BG22 kit)

https://www.silabs.com/products/development-tools/wireless/efr32xg22-wireless-starter-kit

EFR Connect Reference

1261/1306

EFR Connect also supports extended advertising. However, it must also be supported by the specific mobile device where

the app is running. If the phone supports it and devices are sending extended advertising, that will be visible at the top of

the advertisement details.

EFR Connect Reference

1262/1306

Filter

The filter narrows down search results to a list of devices that fulfill a specific set of parameters. To reach the filter, tap the

Filter icon in the top right corner.

EFR Connect Reference

1263/1306

The filter allows searching for devices with the following parameters:

Device name, Bluetooth address, or raw advertising data. The Bluetooth address can be entered with or without colon. Note:
EFR Connect for iOS only displays the device name because the iOS Bluetooth stack does not provide the Bluetooth address

and raw advertising data to the application.
RSSI above a given value so that you can limit results by signal strength threshold.
Beacon type: iBeacon, Altbeacon, Eddystone or Unspecified (none of the other three).

Only favorites

Only connectable

Only bonded. Note: This option is not available on iOS due to system limitations.

To apply the rules, tap Apply Filters. The filter is applied to the list of devices regardless of whether scanning is on-going or

not. The X icon in the upper left corner closes the filter view without applying the new filtering rules. Tapping Reset clears

all the filter parameters.

When a filter is active, the current filtering criteria are displayed on the top of the Scanner view.

EFR Connect Reference

1264/1306

Sort

The sort functionality does not have a dedicated view. Pressing Sort (located in the top right corner of the Scanner and

RSSI Graph views) sorts the list of devices by the RSSI in descending order.

UUID Dictionary

The UUID dictionary can be accessed via the dictionary icon on the top right corner of the Scanner view. It contains a list of
all the 128-bit UUIDs that have been renamed by the user. Inside the UUID dictionary, you can further edit their names as

well as delete them.

EFR Connect Reference

1265/1306

Connect and Disconnect

You can connect and disconnect devices directly from the Scanner view.

EFR Connect Reference

1266/1306

Once the device is connected, the app jumps directly to the Device View. When the scan list is refreshed, connected
devices are removed from the list unless they continue advertising during the connection.

RSSI Graph

The RSSI Graph shows a graphical representation of RSSI (Received Signal Strength Indicator) over time for all scanned

devices. Features like sort and filter are analogous to the ones in Scanner. The RSSI Graph operates on the same data as

Scanner, so the filter applied in the Scanner view is reflected on th RSSI Graph.

EFR Connect Reference

1267/1306

The main elements of the RSSI Graph view are:

 Export control – save scan data to .csv file
 Filter control

 Sort control
 Device list – horizontally scrollable

 Graph data – scrollable and scalable

 Scroll graph to the start time control (visible if not already at start time)

 Scroll graph to the actual time control (visible if not already at actual time)
 Start/Stop scanning control

A data line belonging to a specific device can be highlighted by selecting a device name in the device list section, as shown

below.

EFR Connect Reference

1268/1306

Active Connections

The Active Connections view lists all connected devices. It allows you to go to a specific connection view or disconnect

from devices. All devices can be disconnected with the Disconnect all control at the bottom.

EFR Connect Reference

1269/1306

Device View

Once a connection with a device is established or you tap an existing connection in the Active Connections view, the app

jumps to the Device view, where GATT databases for both the remote and local side are displayed.

EFR Connect Reference

1270/1306

Remote �Client) vs Local �Server)

At the bottom of the device view, you can switch between the GATT database of the remote device (where the mobile app

acts as a client) or the GATT database of the local device (where the mobile app acts as a server). The UI representation of

both GATT databases is the same. The local GATT database can be modified in the GATT Configurator view.

GATT Services

Each card represents a GATT service and contains the service name and UUID. A custom service (128-bit UUID) that has not
been renamed by the user is displayed as Unknown service. Similarly, a custom characteristic that has not been renamed is

displayed as Unknown characteristic. There are a few exceptions for that rule, for example some Silicon Labs custom

services and their characteristics, which cannot be modified.

GATT Characteristics

Tapping the down arrow expands the card to show a list of all the characteristics belonging to the service as well as

supported properties. This will not automatically read the characteristics, which means that the data fields might be empty.
Read has to be done explicitly by the user. If the characteristic has descriptors, they are listed underneath the characteristic

UUID.

EFR Connect Reference

1271/1306

If other properties are available, they will have additional associated icons. For characteristics without any specific data

format, you can copy data to the clipboard with the copy icon on the right side of the characteristic data. Data is copied
using the respective format (hex, ascii, or decimal).

EFR Connect Reference

1272/1306

If the write property is available, tapping the write icon opens a dialog to write data to the characteristic. Within that dialog

you can select the write method (write request or write command), depending on what is supported by the characteristic. If
one is not supported, it will be grayed-out. You can also paste data from the clipboard by tapping the Paste icon on the right

side. If the data is not correctly formatted, data validation will show a warning.

EFR Connect Reference

1273/1306

Activity Log

The Activity Log button is located in the top right corner of the Device View. The log keeps a record of all the Bluetooth

activity. It can be shared via email or other methods for later analysis.

EFR Connect Reference

1274/1306

Connection Priority

The Connection Priority control is located in the top right corner of the Device View. It allows you to choose one of the

predefined connection intervals:

Low priority (100-125 ms)

Balanced priority (30-100 ms)
High priority (7,5-15 ms)

Notes:

The ranges are defined by the Android stack and are not a limitation imposed by EFR Connect mobile app.

This option is not available on iOS due to system limitations.

EFR Connect Reference

1275/1306

Request MTU

The Request MTU control is located in the top right corner of the Device View. It allows you to request new MTU size in

range 23 to 250 bytes.

Note: This option is not available on iOS due to system limitations.

EFR Connect Reference

1276/1306

OTA Firmware Update

OTA firmware update is a process of updating a device firmware image over a wireless connection (BLE in this case). There
is a dedicated OTA firmware control located below the top right corner icons. Tapping that control opens the OTA dialog. If

the Silicon Labs OTA service was not found in the GATT database a warning is displayed.

EFR Connect Reference

1277/1306

OTA type

Partial: Only the application is updated.

Full: Both application and apploader are updated. This requires uploading two separate GBL files, one for the application

and one for the apploader.

OTA mode

Reliability: Uses a write operation to send the GBL file data.

Speed: Uses write without response operation to send the GBL data.
Application/Apploader: The GBL file(s) to flash the device.

During the OTA process, the information about progress is displayed.

EFR Connect Reference

1278/1306

For additional guidance on the OTA process using EFR Connect, see Using EFR Connect Mobile App for OTA DFU.

Configure View

Advertiser

The advertiser allows you to use the mobile phone as a BLE peripheral by creating and customizing advertisement sets,
both in terms of their configurations as well as a payload. Advertiser additionally supports:

Legacy and extended advertising

Configurable advertisement interval, TX Power, primary/secondary PHYs

Manual advertisement start/stop and stop based on a time/event limit
Multiple AD types

This functionality comes in handy when you have a single Silicon Labs kit for a Bluetooth product, but you still want to

test/evaluate/develop applications that leverage the Silicon Labs Bluetooth stack functionalities as a central device.

Create a New Advertisement Set

When entering the Advertiser for the first time, the app shows an empty list of advertisement sets because none have been

created yet.

https://docs.silabs.com/bluetooth/6.1.0/bluetooth-bootloading-firmware-upgrade/using-efr-connect-for-ota-dfu
https://www.silabs.com/development-tools.p-wireless_bluetooth-low-energy

EFR Connect Reference

1279/1306

Tapping the Change device name icon in the top right corner brings up a dialog to change the device name. It is a global

setting and cannot be set individually for each advertisement set.

EFR Connect Reference

1280/1306

The other icon in the top right corner can be used to switch all advertisers off.

The Create new control adds a new advertisement set that contains AD Type flags in its payload. The advertisement set is

represented by a card, similar to the device representation in the Scanner view.

EFR Connect Reference

1281/1306

The image above shows the main elements of the advertiser card, which are as follows:

 Name of the advertisement set - User-defined name of the advertiser set. This is not the advertised device name.

 Enable/disable button - Enable/disable advertisement set.
 TX Power - Signal power in dBm.

 Advertisement interval - In milliseconds.
 Beacon type - Configured known beacon type (iBeacon, Eddystone, Altbeacon) or Unspecified.

 Advertisement type - Connectable or non-connectable.
 Edit - Edit view of the specific advertisement set.

 Copy - Clone the advertisement set and place at the end of the list.
 Delete - Delete the specific advertisement set.

 Expand/Collapse - Change the advertisement set to show more/fewer details.

Edit Advertisement Set

When you enter the edit view for a specific advertisement set, a list of customization options is displayed. Those options are

divided into three areas:

Advertising Type. Note: This section is not available on iOS due to system limitations.

Advertising Data and Scan Response Data

Advertising Parameters

EFR Connect Reference

1282/1306

The first text box at the top displays the user-defined name of the advertiser set. This is followed by the advertisement

type, which can be selected between Legacy Advertising and Extended Advertising (introduced in Bluetooth 5.0
specification). Support for Extended Advertising depends on the underlying mobile phone and OS stack. If not supported, a

note is displayed and the Extended Advertising option is grayed out.

The following Legacy Advertising types are supported:

Connectable, scannable

Non-connectable, scannable
Non-connectable, non-scannable

Extended Advertising supports the following types:

Connectable, non-scannable

Non-connectable, scannable
Non-connectable, non-scannable

TX power can be optionally included as part of extended advertising and, if the type is non-connectable, non-scannable, it
can optionally be set as anonymous advertising. Depending on the selected advertisement type, the Advertising Data and

Scan Response data will be available for editing. For example, a connectable, non-scannable type does not have a scan

EFR Connect Reference

1283/1306

response so the Add Data Type control for Scan Response Data is grayed out. Data is added by tapping Add Data Type and

selecting which data type to add.

The following advertising data types are currently supported:

0x09: Complete Local Name. Note: On iOS, this option is available only in Scan Response Data due to system limitation.
0x03: Complete List of 16-bit Service Class UUIDs. Note: On iOS, this option is available only in Advertising Data due to

system limitation.
0x07: Complete List of 128-bit Service Class UUIDs. Note: On iOS, this option is available only in Advertising Data due to

system limitation.
0x0A: TX Power Level. Note: This option is not available on iOS due to system limitations.
0xFF: Manufacturer Specific Data. Note: This option is not available on iOS due to system limitations.

If types 0x03 or 0x07 are chosen, each service has to be added individually by tapping Add 16-bit service or Add 128-bit
service controls.

EFR Connect Reference

1284/1306

Services are added via a dialog box where you can input the service UUID or name. For 16-bit services (so called adopted

services), an auto-complete functionality suggests services as they are being typed into the text box. Below the box, a link

Bluetooth GATT Services takes you to the Bluetooth SIG Web page that lists all adopted services.

EFR Connect Reference

1285/1306

Multiple services can be added under the 0x03 and 0x07 AD Types and can be individually deleted by tapping the trash bin

icon. If the trash bin icon for the AD type is tapped, all services are removed together with the AD Type. Advertising

parameters are below the advertising data and scan response data options. These allow you to select the advertising PHYs,
advertising interval, and TX Power. Note: These options are not available on iOS due to system limitation. Finally, an

Advertising Time Limit can be selected for the advertising set, which automatically disables the advertising after a time

period or a number of advertisement events.

The advertising PHYs options for the primary and secondary channel depend on support from the underlying smartphone

and OS. They are only available if extended advertising is supported. The alternative PHYs are available in the respective

drop-down menus.

EFR Connect Reference

1286/1306

GATT Configurator

The GATT Configurator is a powerful feature that allows you to create and modify the local GATT database on the mobile

device where EFR Connect has been installed. Furthermore, it allows you to import and export the GATT database definition

between GATT Configurator on EFR Connect mobile app and GATT Configurator in Simplicity Studio 5. This feature comes in

handy when you are developing a Bluetooth device with GATT client feature, as you can quickly emulate the GATT server

side with EFR Connect without having to write a single line of code.

Create a New GATT Server

When entering the GATT Configurator for the first time, the app shows an empty list of GATT servers and an option to create

a new one. This creates a new empty GATT database, which is represented by a card with the following elements:

 GATT database name - User-defined name of the GATT server.

 Enable/disable switch - Enable/disable database (Note: Only one GATT database can be enabled at any given time. Enabling
a new database automatically disables the existing one).

 Number of services - Number of services within the database.
 Edit - Edit view of a specific database.

 Copy - Clone the database and place at the end of the list.
 Delete - Delete the specific database.
 Expand/Collapse - Show more details about the database.

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-developing-with-project-configurator/bluetooth-gatt-configurator

EFR Connect Reference

1287/1306

Import / Export

The buttons in the upper right corner serve as an import/export functionality.

Import allows bringing in a GATT database file from Simplicity Studio GATT Configurator, starting from GSDK 3.0 and newer.
The file can be stored either on local or cloud storage. Before importing the file from Simplicity Studio, the extension must

be changed from btconf to xml .

Export allows converting one (or more) of the existing GATT databases into an xml file, which can be directly imported into

the GATT Configurator in Simplicity Studio.

EFR Connect Reference

1288/1306

The xml filename is taken from the GATT database name. If more than one database is selected, they will be exported as

individual xml files, and if there are duplicate GATT database names then the filename will be appended with a number.

Add Service

Tapping the edit control on the GATT database takes you to the edit view where you can add services, characteristics and

descriptors. A newly-created database will show an empty list of services and an option to start adding a service. This
opens a dialog where both standard as well as custom services can be added.

EFR Connect Reference

1289/1306

When typing a name, the auto-complete feature will match it against Bluetooth SIG standard service names. When a

standard service is selected, there is an option to add all mandatory service requirements (mandatory characteristics and
descriptors within that service). When adding a custom service, it is necessary to write both the service name and 128-bit

UUID. The UUID is automatically formatted and capped to the right size as it gets typed-in. Once the service is added, it will
be listed in the GATT server view. Tapping More Info expands the service to reveal its characteristics and descriptors.

EFR Connect Reference

1290/1306

At the service level, a service can be copied and deleted using the available controls. Editing a service is not possible. For

characteristic and descriptor, copy, edit, and delete controls are all available. The allowed operations on each characteristic

and descriptor (read, write, write without response, notify, indicate) are represented by the same icons as those used in the

Device View.

Add Characteristic

An Add Characteristic control is available at the bottom of each service. Similarly, an Add Descriptor control is available at

the bottom of each characteristic.

EFR Connect Reference

1291/1306

Tapping Add Characteristic opens a dialog where the characteristics parameters can be configured. Similarly to how

services are added, there is an auto-complete feature for Bluetooth SIG standard characteristics, but also custom

characteristics can be added with their unique 128-bit UUIDs.

EFR Connect Reference

1292/1306

Following the characteristic name and UUID are the properties and access parameters. Available access parameters may

vary between Android and iOS platforms. The last option in the list can be used to set the initial value of the characteristic.
The field can be left blank as well.

Add Descriptor

Adding a descriptor is similar to adding characteristic but with fewer properties available.

EFR Connect Reference

1293/1306

Test View

Interoperability Test �IOP�

The Interoperability Test executes a sequence of BLE test cases against the Bluetooth - SoC Interoperability Test sample

app running on selected EFR32 radio boards. It verifies the interoperability between the BLE hardware and the mobile

device. Once the test sequence is finished, there's an option to share the results.

EFR Connect Reference

1294/1306

EFR Connect Reference

1295/1306

More detailed information about IOP can be found in AN1346: Running the BLE Interoperability (IOP) Test Application Note

and AN1309: Bluetooth Low Energy Interoperability Testing Report.

Demo View

The demo view shows a selection of demos that can be used to easily test sample apps provided in Simplicity Studio. Each
demo is described in the following sections.

https://www.silabs.com/documents/public/application-notes/an1346-running-ble-iop-test.pdf
https://www.silabs.com/documents/public/application-notes/an1309-ble-interop-testing-report.pdf

EFR Connect Reference

1296/1306

Health Thermometer

This demo scans for devices that advertise the Health Thermometer service (UUID 0x1809). Once connected, it subscribes
to indications from the Temperature Measurement characteristic (UUID 0x2A1C). As a result, the actual temperature value is

displayed on the screen. You can switch between temperature units (Celsius and Fahrenheit).

EFR Connect Reference

1297/1306

For more information, see the readme of the Bluetooth - SoC Thermometer sample application from Simplicity Studio.

Connected Lighting

The Connected Lighting demo demonstrates the Dynamic Multiprotocol (DMP) capabilities of Silicon Labs' devices and

software. It can control a DMP light node from a mobile and protocol-specific switch node (Zigbee, proprietary) while
keeping the light status in sync across all devices. It requires two kits running dedicated sample apps which are

documented in QSG155: Using the Silicon Labs Dynamic Multiprotocol Demonstration Applications in GSDK v2.x. Once
launched, the demo scans for devices that are advertising themselves as a DMP node, running BLE and a second wireless

protocol, for example Zigbee or Proprietary. Once the connection with the DMP node is established, the demo allows

controlling the light on the DMP board by tapping the lightbulb icon. If you change the light status using the physical push

button on the kits, the light status on the app is updated accordingly. Furthermore, the source of the last event is shown on

the demo. For example, "Bluetooth" means the event was triggered by the mobile app while the "Proprietary" means that the

light was toggled by the push button on the Switch board.

https://www.silabs.com/documents/public/quick-start-guides/qsg155-dynamic-multiprotocol-demo-quick-start-guide.pdf

EFR Connect Reference

1298/1306

For more information, see the readme of the Bluetooth - SoC Light Standard DMP Micrium OS sample application from

Simplicity Studio.

Range Test

The Range Test demo can visualize the RSSI and other RF performance data on the mobile phone while running the Range

Test sample application on two Silicon Labs radio boards. The mobile app is first used to set up the TX and RX node

parameters. Then, it can present all the meaningful RF data during the test. Once launched, the demo scans for devices that

are advertising themselves as a Range Test nodes. After the nodes start performing the range test, the mobile app displays

the performance data from the RX node.

EFR Connect Reference

1299/1306

EFR Connect Reference

1300/1306

For more information, see the readme of the Flex (RAIL) - Range Test DMP sample application from Simplicity Studio. The
Range Test Demo is also documented in UG471: Flex SDK v3.x Range Test Demo User's Guide.

Blinky

The Blinky demo is the "Hello World" of BLE. Once launched, the demo scans for devices advertising themselves as a Blinky

Example or Thunderboard device. Once connected to a compatible device, you can control the dedicated LED and observe

the current state of the button located on the Silicon Labs development kit.

https://www.silabs.com/documents/public/user-guides/ug471-flex-v3x-range-test-demo.pdf

EFR Connect Reference

1301/1306

For more information, refer to the readme file of the Bluetooth - SoC Blinky or Bluetooth - SoC Thunderboard sample

application from Simplicity Studio.

Throughput

The Throughput demo allows measuring throughput between compatible Silicon Labs Development Board and the mobile

phone, in both directions. Once launched, the demo scans for devices that are advertising themselves as a Throughput

Example. Once connected, you can visualize the data throughput between the devices, which includes receiving data from

EFR32 (triggered by button press on the kit) or sending data to the kit (triggered from the demo view).

EFR Connect Reference

1302/1306

For more information, see the readme of the Bluetooth - SoC Throughput sample application from Simplicity Studio.

Motion

The Motion demo displays the accelerometer data in a user-friendly way. It shows the raw values of the Orientation and

Acceleration data together with a nice animation of the board orientation. Once launched, the demo scans for Thunderboard

devices.

EFR Connect Reference

1303/1306

For more information, see the readme of the Bluetooth - SoC Thunderboard sample application from Simplicity Studio.

Environment

The Environment demo displays a collection of sensor data read from a compatible Silicon Labs development kit. Once
launched, the demo scans for Thunderboard devices. Once connected, the app presents readings from environmental

sensors like:

Temperature

Humidity

Ambient light

UV index

Air pressure

Sound level

Carbon dioxide

VOCs

Magnetic field

Door state (hall sensor)

The list of tiles presented in the Environment demo depends on what is supported by the connected kit.

EFR Connect Reference

1304/1306

For more information, see the readme of the Bluetooth - SoC Thunderboard sample application from Simplicity Studio.

Wi-Fi Commissioning

The Wi-Fi Commissioning demo displays a list of Wi-Fi access points scanned by the EVK board and allows connection to

them once correct credentials are provided. The current state of the access point is displayed as a red/green dot for

disconnected/connected state. For more information about setup, see Updating RS9116W Firmware and Getting Started

with an EFx32 Host.

Settings View

The Settings View contains useful links to:

Silicon Labs support

Application source code repository on GitHub

EFR Connect User's Guide and Release Notes

Bluetooth documentation

All apps developed by Silicon Labs.

The current app version is also displayed at the bottom.

https://docs.silabs.com/rs9116-wiseconnect/latest/wifibt-wc-getting-started-with-pc/update-evk-firmware
https://docs.silabs.com/rs9116-wiseconnect/latest/wifibt-wc-getting-started-with-efx32/

EFR Connect Reference

1305/1306

EFR Connect Reference

1306/1306

Copyright © 2023 Silicon Laboratories. All rights reserved.

	Developing with Bluetooth
	Getting Started
	Overview
	Getting Started with the WSTK
	Getting Started with the BGM220
	More Demos and Examples

	Fundamentals
	Overview
	Advertising and Scanning
	Advertising Data Basics
	Accept List
	Periodic Advertising
	Using Scan Request Reporting

	Connections
	Multi-Peripheral Topology
	Dual Topology
	Multi-Central Topology
	Understanding the Connection Process
	Using 2M and LE Coded PHY (BT5)
	Connection Flowcharts

	GATT Protocol
	Server and Client Roles
	Acknowledged vs. Unacknowledged
	Polymorphic GATT
	GATT Caching
	Service Change Indication
	Using Characteristics Value Types
	GATT Operation Flowcharts

	Performance
	Throughput
	Adaptive Frequency Hopping
	Optimizing Current Consumption
	TX Power Limitations for Regulatory Compliance

	Developer's Guide
	Overview
	About the Stack
	Getting Started with Application Development
	Developing and Debugging
	Overview

	Code Examples
	Co-Processors (NCP/RCP)
	Overview
	NCP Local Event Handling

	Bootloading
	Overview
	Firmware Upgrade
	Using EFR Connect Mobile App for OTA DFU
	Adding Gecko Bootloader to Bluetooth Projects
	Upgrading Gecko Bootloader
	OTA Updates Using Customized Advertising Data
	Uploading Firmware Images Using OTA DFU
	Secure OTA DFU
	Adding Metadata to GBL Files

	Performance
	Overview
	System Performance
	Using the LFRCO as a Low Frequency Clock Source
	TX Power Settings
	Current Consumption and TX Power
	Radio Task Priorities
	Production Approach to Setting a Custom BT Address
	Auto-PA Mode

	Multiprotocol
	Overview

	Non-Volatile Data Storage
	Overview

	Security
	Overview
	Security Pairing Processes

	Operating Systems
	Overview
	Bluetooth and Zephyr OS

	Coexistence
	Overview

	Implementation Tips

	Bluetooth API Reference Guide
	Overview
	BGAPI Types
	uint8array
	byte_array
	bd_addr
	uuid_128
	aes_key_128
	sl_bt_uuid_16_t
	sl_bt_uuid_64_t

	BT Common Types
	sl_bt_msg
	sl_bt_msg.data

	Device Firmware Update
	sl_bt_evt_dfu_boot
	sl_bt_evt_dfu_boot_s

	sl_bt_evt_dfu_boot_failure
	sl_bt_evt_dfu_boot_failure_s

	System
	sl_bt_evt_system_boot
	sl_bt_evt_system_boot_s

	sl_bt_evt_system_error
	sl_bt_evt_system_error_s

	sl_bt_evt_system_hardware_error
	sl_bt_evt_system_hardware_error_s

	sl_bt_evt_system_resource_exhausted
	sl_bt_evt_system_resource_exhausted_s

	sl_bt_evt_system_external_signal
	sl_bt_evt_system_external_signal_s

	sl_bt_evt_system_awake
	sl_bt_evt_system_soft_timer
	sl_bt_evt_system_soft_timer_s

	Resource Report
	Connection TX status flags
	sl_bt_evt_resource_status
	sl_bt_evt_resource_status_s

	GAP
	Advertiser
	Generic Advertising Configuration Flags
	sl_bt_evt_advertiser_timeout
	sl_bt_evt_advertiser_timeout_s

	sl_bt_evt_advertiser_scan_request
	sl_bt_evt_advertiser_scan_request_s

	Legacy Advertiser
	Extended Advertiser
	Extended Advertising Configuration Flags

	Periodic Advertiser
	Periodic Advertising Configuration Flags

	Scanner
	Event Type Flags of Advertisement Reports
	sl_bt_evt_scanner_legacy_advertisement_report
	sl_bt_evt_scanner_legacy_advertisement_report_s

	sl_bt_evt_scanner_extended_advertisement_report
	sl_bt_evt_scanner_extended_advertisement_report_s

	sl_bt_evt_scanner_scan_report
	sl_bt_evt_scanner_scan_report_s

	Synchronization
	sl_bt_evt_sync_opened
	sl_bt_evt_sync_opened_s

	sl_bt_evt_sync_transfer_received
	sl_bt_evt_sync_transfer_received_s

	sl_bt_evt_sync_data
	sl_bt_evt_sync_data_s

	sl_bt_evt_sync_closed
	sl_bt_evt_sync_closed_s

	Periodic Advertising Sync Scanner
	PAST Receiver
	Advertiser PAST
	Sync PAST
	Periodic Advertising without responses Synchronization
	sl_bt_evt_periodic_sync_opened
	sl_bt_evt_periodic_sync_opened_s

	sl_bt_evt_periodic_sync_transfer_received
	sl_bt_evt_periodic_sync_transfer_received_s

	sl_bt_evt_periodic_sync_report
	sl_bt_evt_periodic_sync_report_s

	Periodic Advertising with responses Synchronization
	sl_bt_evt_pawr_sync_opened
	sl_bt_evt_pawr_sync_opened_s

	sl_bt_evt_pawr_sync_transfer_received
	sl_bt_evt_pawr_sync_transfer_received_s

	sl_bt_evt_pawr_sync_subevent_report
	sl_bt_evt_pawr_sync_subevent_report_s

	PAwR Advertiser
	sl_bt_evt_pawr_advertiser_subevent_data_request
	sl_bt_evt_pawr_advertiser_subevent_data_request_s

	sl_bt_evt_pawr_advertiser_subevent_tx_failed
	sl_bt_evt_pawr_advertiser_subevent_tx_failed_s

	sl_bt_evt_pawr_advertiser_response_report
	sl_bt_evt_pawr_advertiser_response_report_s

	Connection
	Transmit Power Reporting Constants
	sl_bt_evt_connection_opened
	sl_bt_evt_connection_opened_s

	sl_bt_evt_connection_parameters
	sl_bt_evt_connection_parameters_s

	sl_bt_evt_connection_phy_status
	sl_bt_evt_connection_phy_status_s

	sl_bt_evt_connection_rssi
	sl_bt_evt_connection_rssi_s

	sl_bt_evt_connection_get_remote_tx_power_completed
	sl_bt_evt_connection_get_remote_tx_power_completed_s

	sl_bt_evt_connection_tx_power
	sl_bt_evt_connection_tx_power_s

	sl_bt_evt_connection_remote_tx_power
	sl_bt_evt_connection_remote_tx_power_s

	sl_bt_evt_connection_remote_used_features
	sl_bt_evt_connection_remote_used_features_s

	sl_bt_evt_connection_data_length
	sl_bt_evt_connection_data_length_s

	sl_bt_evt_connection_closed
	sl_bt_evt_connection_closed_s

	GATT Client
	sl_bt_evt_gatt_mtu_exchanged
	sl_bt_evt_gatt_mtu_exchanged_s

	sl_bt_evt_gatt_service
	sl_bt_evt_gatt_service_s

	sl_bt_evt_gatt_characteristic
	sl_bt_evt_gatt_characteristic_s

	sl_bt_evt_gatt_descriptor
	sl_bt_evt_gatt_descriptor_s

	sl_bt_evt_gatt_characteristic_value
	sl_bt_evt_gatt_characteristic_value_s

	sl_bt_evt_gatt_descriptor_value
	sl_bt_evt_gatt_descriptor_value_s

	sl_bt_evt_gatt_procedure_completed
	sl_bt_evt_gatt_procedure_completed_s

	GATT Database
	GATT Service Property Flags
	GATT Attribute Security Requirement Flags
	GATT Database Flags
	GATT Characteristic Property Flags
	GATT Descriptor Property Flags

	GATT Server
	sl_bt_evt_gatt_server_attribute_value
	sl_bt_evt_gatt_server_attribute_value_s

	sl_bt_evt_gatt_server_user_read_request
	sl_bt_evt_gatt_server_user_read_request_s

	sl_bt_evt_gatt_server_user_write_request
	sl_bt_evt_gatt_server_user_write_request_s

	sl_bt_evt_gatt_server_characteristic_status
	sl_bt_evt_gatt_server_characteristic_status_s

	sl_bt_evt_gatt_server_execute_write_completed
	sl_bt_evt_gatt_server_execute_write_completed_s

	sl_bt_evt_gatt_server_indication_timeout
	sl_bt_evt_gatt_server_indication_timeout_s

	sl_bt_evt_gatt_server_notification_tx_completed
	sl_bt_evt_gatt_server_notification_tx_completed_s

	NVM
	Defined Keys

	Testing Commands
	sl_bt_evt_test_dtm_completed
	sl_bt_evt_test_dtm_completed_s

	Security Manager
	Security Manager configuration flags
	sl_bt_evt_sm_passkey_display
	sl_bt_evt_sm_passkey_display_s

	sl_bt_evt_sm_passkey_request
	sl_bt_evt_sm_passkey_request_s

	sl_bt_evt_sm_confirm_passkey
	sl_bt_evt_sm_confirm_passkey_s

	sl_bt_evt_sm_bonded
	sl_bt_evt_sm_bonded_s

	sl_bt_evt_sm_bonding_failed
	sl_bt_evt_sm_bonding_failed_s

	sl_bt_evt_sm_confirm_bonding
	sl_bt_evt_sm_confirm_bonding_s

	External Bonding Database
	sl_bt_evt_external_bondingdb_data_request
	sl_bt_evt_external_bondingdb_data_request_s

	sl_bt_evt_external_bondingdb_data
	sl_bt_evt_external_bondingdb_data_s

	sl_bt_evt_external_bondingdb_data_ready
	sl_bt_evt_external_bondingdb_data_ready_s

	Address Resolving List
	Filter Accept List
	OTA
	Coexistence
	Accurate Bluetooth Ranging
	sl_bt_evt_cs_security_enable_complete
	sl_bt_evt_cs_security_enable_complete_s

	sl_bt_evt_cs_config_complete
	sl_bt_evt_cs_config_complete_s

	sl_bt_evt_cs_procedure_enable_complete
	sl_bt_evt_cs_procedure_enable_complete_s

	sl_bt_evt_cs_result
	sl_bt_evt_cs_result_s

	Accurate Bluetooth Ranging Test
	L2CAP Connection Oriented Channels
	sl_bt_evt_l2cap_le_channel_open_request
	sl_bt_evt_l2cap_le_channel_open_request_s

	sl_bt_evt_l2cap_le_channel_open_response
	sl_bt_evt_l2cap_le_channel_open_response_s

	sl_bt_evt_l2cap_channel_data
	sl_bt_evt_l2cap_channel_data_s

	sl_bt_evt_l2cap_channel_credit
	sl_bt_evt_l2cap_channel_credit_s

	sl_bt_evt_l2cap_channel_closed
	sl_bt_evt_l2cap_channel_closed_s

	sl_bt_evt_l2cap_command_rejected
	sl_bt_evt_l2cap_command_rejected_s

	CTE Transmitter
	CTE Receiver
	CTE type flags for limiting periodic advertising synchronization
	sl_bt_evt_cte_receiver_dtm_iq_report
	sl_bt_evt_cte_receiver_dtm_iq_report_s

	sl_bt_evt_cte_receiver_connection_iq_report
	sl_bt_evt_cte_receiver_connection_iq_report_s

	sl_bt_evt_cte_receiver_connectionless_iq_report
	sl_bt_evt_cte_receiver_connectionless_iq_report_s

	sl_bt_evt_cte_receiver_silabs_iq_report
	sl_bt_evt_cte_receiver_silabs_iq_report_s

	User Messaging
	sl_bt_evt_user_message_to_host
	sl_bt_evt_user_message_to_host_s

	Utility Functions
	BGAPI

	SDK API Reference
	List of Bluetooth SDK component categories:
	Firmware Update
	Application OTA DFU
	sl_bt_app_ota_dfu_state_t
	sl_bt_app_ota_dfu_btl_storage_info_t
	sl_bt_app_ota_dfu_download_package_t
	sl_bt_app_ota_dfu_msg_t

	In-Place OTA DFU

	Host Controller Interface (HCI)
	HCI Coex Vendor Specific Commands
	HCI Get Version Vendor Specific Command
	sli_bt_hci_version_response

	Miscellaneous
	BLE Post Build
	Encrypted Advertising Data core API
	sl_bt_ead_key_material_s
	sl_bt_ead_nonce_s
	sl_bt_ead_ad_structure_s

	ESL Tag User Defined Display Driver
	ESL Tag WSTK LCD driver
	iBeacon
	Power supply measurement
	Air quality sensor
	Hall effect sensor
	Inertial Measurement Unit sensor
	Ambient light and UV index sensor
	Ambient light sensor
	Air pressure sensor
	Relative Humidity and Temperature sensor
	Relative Humidity and Temperature sensor (Mock)
	Sensor select utility
	Sound level sensor (microphone)
	Wake-Lock

	Test
	CLI Test Harness for ESL Tag application
	Throughput Test helper
	allowlist_s
	throughput_t

	Throughput Test Receiver (Central) Role API
	throughput_central_characteristic_t
	throughput_central_characteristic_found_t

	Throughput Test Transmitter (Peripheral) Role API
	throughput_peripheral_characteristic_t
	throughput_peripheral_characteristic_found_t

	Throughput User Interface API
	Throughput User Interface API with logging

	GATT Profiles
	ESL Tag core

	GATT Services
	ESL Tag Display
	ESL Tag LED
	ESL Tag NVM Image
	ESL Tag RAM Image
	ESL Tag Sensor
	Static GATT Database and Configuration
	Automation IO GATT Service
	Battery GATT Service
	Constant Tone Extension GATT Service (Connection)
	Constant Tone Extension GATT Service (Connectionless)
	Constant Tone Extension GATT Service (Silabs proprietary)
	Device Information GATT Service
	Air Quality GATT Service
	Hall Effect GATT Service
	Inertial Measurement Unit GATT Service
	Environment Sensing - Ambient Light and UV Index GATT Service
	Environment Sensing - Ambient Light GATT Service
	Environment Sensing - Air Pressure GATT Service
	RGB LED GATT Service
	Environment Sensing - Relative Humidity and Temperature GATT Service
	Environment Sensing - Sound Level GATT Service
	Health Thermometer API

	NCP Interface
	NCP Interface
	NCP Event Filter Interface
	user_cmd_manage_event_filter

	NCP Security Interface
	General BGAPI User Commands

	NCP Host Demo
	NCP GATT
	NCP Host Communication Interface

	Utility
	Simple Communication Interface (UART)

	Hci_coex
	Ots_client
	sl_bt_ots_client_callbacks_t
	sl_bt_ots_client
	sl_bt_object_type_variant_t
	sl_bt_ots_object_type_t
	sl_bt_ots_time_t
	sl_bt_ots_object_id_t
	sl_bt_ots_object_metadata_write_parameters_t
	sl_bt_ots_object_metadata_read_parameters_t
	sl_bt_ots_oacp_parameters_t
	sl_bt_ots_oacp_response_data_t
	sl_bt_ots_olcp_parameters_t
	sl_bt_ots_object_t
	sl_bt_ots_subscription_status_t

	Ots_server
	sl_bt_ots_server_capabilities_t
	sl_bt_ots_server_callbacks_t
	sl_bt_ots_server_client_db_entry_t
	sl_bt_ots_server

	Mobile Applications
	Finding Smartphone Features
	Suitable Parameters for iOS Devices
	Seeing BLE Devices on the iOS Settings Page
	EFR Connect Reference

