
R

Intel® Ethernet Fabric
Performance Tuning Guide

Rev. 1.3

June 2022

Doc. No.: 632488, Rev.: 1.3

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described
herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed
herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the
property of others.

Copyright © –2022, Intel Corporation. All rights reserved.

R

Intel® Ethernet Fabric
Performance Tuning Guide June 2022
2 Doc. No.: 632488, Rev.: 1.3

Revision History

Date Revision Description

June 2022 1.3 Product 11.3.0.0 release - Changes to this document include:
• Increase PSM3_RV_MR_CACHE_SIZE for very large MPI messages

with PSM3_RDMA mode 1. PSM3 Environment Variables
• Improving MPI Alltoall performance. MPI Collective and Intel®

oneCCL Tunings
• Improving PSM3 TCP performance with

PSM3_TCP_SKIPPOLL_COUNT. TCP Performance
• Added Intel®oneCCL Multi-NIC guidance: MPI Collective and Intel®

oneCCL Tunings on page 27
• Increase PSM3_CUDA_THRESH_RNDV to a very large value (always

use eager) when using CUDA with TCP. CUDA and GPUDirect*
• PSM3 as of IEFS 11.3 release may provide higher GPU Direct

bandwidth on systems with PCIe switches. CUDA and GPUDirect*

March 2022 1.2 Product 11.2.0.0 release - Changes to this document include:
• Added guidance to disable PCIe Access Control Services. GPUDirect*

Requirements
• Removed guidance on how to reduce CPU clock frequency with

intel_pstate, since it is not commonly used
• Enhanced chapter on Priority Flow Control (PFC) configuration on

NICs and example switches Priority Flow Control Configuration and
Tuning

• Added section on Intel®oneCCL MPI Collective and Intel® oneCCL
Tunings

• Added discussion on NVIDIA* Multi-Process Service (MPS) CUDA
and GPUDirect* and NCCL* NVIDIA* Collectives Communication
Library (NCCL*)

• Added section on TCP performance tuning with PSM3 TCP
Performance

July 2021 1.1 Product 11.1.0.0 release - Changes to this document include:
• MPI collective tuning algorithms added to MPI Collective and Intel®

oneCCL Tunings
• Added guidance to lower NIC Tx/Rx queues for improved application

performance over TCP. IRQ affinity and irqbalance.
• Updated description of the roce_ena parameter in irdma module

settings.
• Added section on CUDA and GPUDirect*
• Added discussion on using PSM3_PRINT_STATS to detect fabric

drops in PSM3 Environment Variables
• Added details on Arista 7170 PFC tuning in Priority Flow Control

February 2021 1.0 Initial release.

December 2020 0.7 Initial (Beta) release.

RRevision History—Intel® Ethernet Fabric

Intel® Ethernet Fabric
June 2022 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.3 3

Contents

Revision History..3

Preface... 6
Intended Audience... 6
Intel® Ethernet Fabric Suite Documentation Library.. 6

How to Search the Intel® Ethernet Fabric Suite Documentation Set........................... 7
Documentation Conventions.. 7
Best Practices..8
License Agreements... 8
Technical Support...8

1.0 Introduction... 9
1.1 Terminology...9
1.2 Performance Tuning Quick Start Guide.. 10

2.0 BIOS and Platform Settings.. 11
2.1 BIOS Recommendations..11
2.2 GPUDirect* Requirements.. 12

3.0 Linux* Settings... 13
3.1 CPU Frequency Scaling Drivers... 13

3.1.1 Using the Intel® P-State Driver...13
3.1.2 Using the ACPI CPUfreq Driver and cpupower Governor..................................14

3.2 Priority Flow Control..16
3.3 IRQ affinity and irqbalance...16
3.4 Memory Fragmentation..16
3.5 irdma module settings...17
3.6 Intel Ethernet driver (ice) settings...18
3.7 Tuned tuning service... 19

4.0 MPI Performance.. 20
4.1 MPI Benchmark Fundamentals..21
4.2 Intel® MPI Library Settings...24
4.3 PSM3 Environment Variables... 25
4.4 MPI Collective and Intel® oneCCL Tunings.. 27
4.5 MPI Affinity.. 28
4.6 Dual / Multi-Rail..29
4.7 TCP Performance.. 29

5.0 Performance Tuning for NVIDIA* GPU.. 31
5.1 CUDA and GPUDirect*... 31
5.2 NVIDIA* Collectives Communication Library (NCCL*)...32

6.0 Priority Flow Control Configuration and Tuning.. 33
6.1 NIC Configuration for PFC.. 33
6.2 Switch Configurations for PFC...34

R Intel® Ethernet Fabric—Contents

Intel® Ethernet Fabric
Performance Tuning Guide June 2022
4 Doc. No.: 632488, Rev.: 1.3

Tables
1 Terminology..9
2 Recommended BIOS Settings (Intel® Xeon® Scalable Processors).................................. 11
3 PSM3 RoCEv2 (verbs) Performance Tunings...25

RTables—Intel® Ethernet Fabric

Intel® Ethernet Fabric
June 2022 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.3 5

Preface

This manual is part of the documentation set for the Intel® Ethernet Fabric Suite
Fabric (Intel® EFS Fabric), which is an end-to-end solution consisting of Network
Interface Cards (NICs), fabric management and diagnostic tools.

The Intel® EFS Fabric delivers the next generation, High-Performance Computing
(HPC) network solution that is designed to cost-effectively meet the growth, density,
and reliability requirements of HPC and AI training clusters.

Intended Audience

The intended audience for the Intel® Ethernet Fabric Suite (Intel® EFS) document set
is network administrators and other qualified personnel.

Intel® Ethernet Fabric Suite Documentation Library

Intel® Ethernet Fabric Suite publications are available at the following URL:

https://www.intel.com/content/www/us/en/support/articles/000088090/ethernet-
products/intel-ethernet-software.html

Use the tasks listed in this table to find the corresponding Intel® Ethernet Fabric Suite
document.

Task Document Title Description

Installing host
software
Installing NIC
firmware

Intel® Ethernet Fabric Suite Software
Installation Guide

Describes using a Text-based User Interface (TUI) to guide
you through the installation process. You have the option of
using command line interface (CLI) commands to perform the
installation or install using the Linux* distribution software.

Managing a fabric
using FastFabric

Intel® Ethernet Fabric Suite FastFabric
User Guide

Provides instructions for using the set of fabric management
tools designed to simplify and optimize common fabric
management tasks. The management tools consist of Text-
based User Interface (TUI) menus and command line
interface (CLI) commands.

Running MPI
applications on
Intel® EFS
Running middleware
that uses Intel® EFS

Intel® Ethernet Fabric Suite Host
Software User Guide

Describes how to set up and administer the Network Interface
Card (NIC) after the software has been installed and provides
a reference for users working with Intel® PSM3. Performance
Scaled Messaging 3 (PSM3) is an Open Fabrics Interface (OFI,
aka libfabric) provider which implements an optimized user-
level communications protocol. The audience for this
document includes cluster administrators and those running
or implementing Message-Passing Interface (MPI) programs.

continued...

R Intel® Ethernet Fabric—Preface

Intel® Ethernet Fabric
Performance Tuning Guide June 2022
6 Doc. No.: 632488, Rev.: 1.3

https://www.intel.com/content/www/us/en/support/articles/000088090/ethernet-products/intel-ethernet-software.html
https://www.intel.com/content/www/us/en/support/articles/000088090/ethernet-products/intel-ethernet-software.html

Task Document Title Description

Optimizing system
performance

Intel® Ethernet Fabric Performance
Tuning Guide

Describes BIOS settings and parameters that have been
shown to ensure best performance, or make performance
more consistent, on Intel® Ethernet Fabric Suite Software. If
you are interested in benchmarking the performance of your
system, these tips may help you obtain better performance.

Learning about new
release features,
open issues, and
resolved issues for a
particular release

Intel® Ethernet Fabric Suite Software Release Notes

How to Search the Intel® Ethernet Fabric Suite Documentation Set

Many PDF readers, such as Adobe* Reader and Foxit* Reader, allow you to search
across multiple PDFs in a folder.

Follow these steps:

1. Download and unzip all the Intel® Ethernet Fabric Suite PDFs into a single folder.

2. Open your PDF reader and use CTRL-SHIFT-F to open the Advanced Search
window.

3. Select All PDF documents in...

4. Select Browse for Location in the dropdown menu and navigate to the folder
containing the PDFs.

5. Enter the string you are looking for and click Search.

Use advanced features to further refine your search criteria. Refer to your PDF reader
Help for details.

Documentation Conventions

The following conventions are standard for Intel® Ethernet Fabric Suite
documentation:

• Note: provides additional information.

• Caution: indicates the presence of a hazard that has the potential of causing
damage to data or equipment.

• Warning: indicates the presence of a hazard that has the potential of causing
personal injury.

• Text in blue font indicates a hyperlink (jump) to a figure, table, or section in this
guide. Links to websites are also shown in blue. For example:

See License Agreements on page 8 for more information.

For more information, visit www.intel.com.

• Text in bold font indicates user interface elements such as menu items, buttons,
check boxes, key names, key strokes, or column headings. For example:

Click the Start button, point to Programs, point to Accessories, and then click
Command Prompt.

Press CTRL+P and then press the UP ARROW key.

RPreface—Intel® Ethernet Fabric

Intel® Ethernet Fabric
June 2022 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.3 7

http://www.intel.com

• Text in Courier font indicates a file name, directory path, or command line text.
For example:

Enter the following command: sh ./install.bin
• Text in italics indicates terms, emphasis, variables, or document titles. For

example:

Refer to Intel® Ethernet Fabric Suite Software Installation Guide for details.

In this document, the term chassis refers to a managed switch.

Procedures and information may be marked with one of the following qualifications:

• (Linux) – Tasks are only applicable when Linux* is being used.

• (Host) – Tasks are only applicable when Intel® Ethernet Host Software or Intel®
Ethernet Fabric Suite is being used on the hosts.

• Tasks that are generally applicable to all environments are not marked.

Best Practices

• Intel recommends that users update to the latest versions of Intel® Ethernet
Fabric Suite software to obtain the most recent functional and security updates.

• To improve security, the administrator should log out users and disable multi-user
logins prior to performing provisioning and similar tasks.

License Agreements

This software is provided under one or more license agreements. Please refer to the
license agreement(s) provided with the software for specific detail. Do not install or
use the software until you have carefully read and agree to the terms and conditions
of the license agreement(s). By loading or using the software, you agree to the terms
of the license agreement(s). If you do not wish to so agree, do not install or use the
software.

Technical Support

Creating a technical support ticket for Intel® Ethernet Fabric Suite products is
available 24 hours a day, 365 days a year. Please contact Intel® Customer Support or
visit https://www.intel.com/content/www/us/en/support.html for additional details.

R Intel® Ethernet Fabric—Preface

Intel® Ethernet Fabric
Performance Tuning Guide June 2022
8 Doc. No.: 632488, Rev.: 1.3

https://www.intel.com/content/www/us/en/support.html

1.0 Introduction

The Intel® Ethernet Fabric Suite (Intel® EFS) is designed for excellent out-of-the-box
performance. However, you may be able to further tune the performance to better
meet the needs of your system.

This document describes settings and parameters that have been shown to improve
MPI/HPC performance on Intel® Ethernet Fabric Suite . If you are interested in
benchmarking the performance of your system, these tips may help you obtain better
performance.

For details about the other documents for the Intel® EFS product line, refer to Intel®
Ethernet Fabric Suite Documentation Library on page 6 of this document. You may
also consult the Intel® Ethernet 800 Series Linux Performance Tuning Guide for E810
Ethernet adapter-specific tunings.

This version of the tuning guide is focused only on the optimization of MPI/HPC
applications. Future versions will contain guidance for optimization with parallel file
systems for high performance storage.

Terminology

The table below lists the abbreviations and acronyms used in this document.

Table 1. Terminology

Term Description

ACPI Advanced Configuration and Power Interface

BIOS Basic Input/Output System

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

GCC GNU Compiler Collection

HPC High-Performance Computing

HPL High-Performance Linpack

HT Intel® Hyper Threading

EFS Intel® Ethernet Fabric Suite

IMB Intel® MPI Benchmarks

IO Input/Output

IP Internet Protocol

IRQ Interrupt Request

MPI Message Passing Interface

MTU Maximum Transmission Unit

continued...

1.1

RIntroduction—Intel® Ethernet Fabric

Intel® Ethernet Fabric
June 2022 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.3 9

Term Description

NCCL NVIDIA Collective Communication Library

NUMA Non-Uniform Memory Access

OFED OpenFabrics Enterprise Distribution*

OFI OpenFabrics Interface

OMB OSU Micro Benchmarks

OS Operating System

OSU Ohio State University

PPN Processes per Node

PSM3 Performance Scaled Messaging 3

QP Queue Pair

RDMA Remote Direct Memory Access

RoCE RDMA over Converged Ethernet

SDMA Send Direct Memory Access

SMP Symmetric Multiprocessing

TBB Intel® Threading Building Blocks

TC Traffic Class

TCP Transmission Control Protocol

THP Transparent Huge Pages

VM Virtual Machine

VT Intel® Virtualization Technology

Performance Tuning Quick Start Guide

The list below is intended to outline the most important tunings for Intel® EFS
performance, sorted by most important at the top, to least important moving towards
the bottom of the list. This is only a rough guide and individual clusters may require
other tunings, discussed in other sections of this guide.

• Set BIOS settings. (See BIOS and Platform Settings.)

• Enable Intel® Turbo Boost Technology if possible.

Enable "Performance Governor" with either ACPI or Intel® P-State frequency
driver:

cpupower -c all frequency-set -g performance

• Make sure the MPI is using libfabric with the PSM3 provider. (See Intel® MPI
Library Settings.)

Use the latest available version of the Intel® MPI Library for optimized application
performance.

• Confirm that priority flow control (PFC) is configured correctly and there is no
packet loss in the fabric impacting performance. (See Priority Flow Control)

• Consider adjusting PSM3 environment variables to further tune performance

1.2

R Intel® Ethernet Fabric—Introduction

Intel® Ethernet Fabric
Performance Tuning Guide June 2022
10 Doc. No.: 632488, Rev.: 1.3

2.0 BIOS and Platform Settings

Setting the system BIOS is an important step in configuring a cluster to provide the
best mix of application performance and power efficiency. This section lists settings
that can maximize application performance. Optimally, settings similar to these should
be used during a cluster bring-up and validation phase in order to show that the fabric
is performing as expected. For the long term, you may want to set the BIOS to
provide more power savings, even though that may reduce overall application and
fabric performance to some extent.

BIOS Recommendations

This section provides an example of the recommended BIOS settings.

Table 2. Recommended BIOS Settings (Intel® Xeon® Scalable Processors)

BIOS Setting Value

CPU Power and Performance Policy Performance or Balanced
Performance1

Workload Configuration Balanced

Uncore Frequency Scaling Enabled

Performance P-limit Enabled

Enhanced Intel SpeedStep® Technology Enabled

Intel Configurable TDP Disabled

Intel® Turbo Boost Technology Enabled

Intel® VT for Directed I/O (VT-d) Disabled

Energy Efficient Turbo Enabled

Package C-State C6(Retention) state

C1E Enabled

Processor C6 Enabled

Intel® Hyper-Threading Technology No recommendation

IOU Non-posted Prefetch Disabled (where available)2

NUMA Optimized Enable3

Sub_NUMA Cluster Disabled

Snoop Holdoff Count 94

Notes: 1. To get the most consistent Turbo mode performance for demanding workloads, set this to
"Performance". Either Performance or Balanced Performance will result in good Intel®
Ethernet Fabric performance.

2. May not be visible in the BIOS settings. A setting of enabled may cause limits in peak
bandwidth.

3. Also known as Memory.SocketInterleave=NUMA in some BIOSes.
4. Also known as Snooped Response Wait Time for Posted Prefetch in some BIOSes.

2.1

RBIOS and Platform Settings—Intel® Ethernet Fabric

Intel® Ethernet Fabric
June 2022 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.3 11

GPUDirect* Requirements

For GPUDirect to function properly, NVIDIA* recommends disabling PCIe Access
Control Services (ACS), also known as IO virtualization, VT-d, or IOMMU. If left
enabled, unpredictable behavior such as application failures may be experienced.
Refer to the NVIDIA documentation, PCIe Access Control Services (ACS), for how to
disable these services.

2.2

R Intel® Ethernet Fabric—BIOS and Platform Settings

Intel® Ethernet Fabric
Performance Tuning Guide June 2022
12 Doc. No.: 632488, Rev.: 1.3

https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/troubleshooting.html#pci-access-control-services-acs

3.0 Linux* Settings

Intel recommends the following settings to enable consistent performance
measurements on the Linux* distributions supported with Intel® Ethernet Fabric Suite.

CPU Frequency Scaling Drivers

Methods for power saving on CPUs can adversely impact performance. By reducing the
CPU clock frequency based on sustained demand and thermal conditions, CPUs reduce
power consumption. This can result in substantial savings on power and cooling
requirements. However, this can reduce the performance or make performance
measurements more variable.

The default scaling driver in RHEL* 8.x is the Intel® P-State (intel_pstate) driver.
An alternative driver called the Advanced Configuration and Power Interface (ACPI)
CPUfreq (acpi_cpufreq) is also available. Both have their advantages and
disadvantages, but only one can be active at a time. This section describes how to use
each driver for consistent, best-effort performance measurements. Setting a
frequency scaling driver for maximum performance is advisable during cluster/fabric
bring-up when trying to determine if all components of the cluster are performing up
to their full capabilities.

For long-run operation of a production cluster/super-computer, settings other than
those described in the following sections may be desired to scale up for performance
when loaded, and to scale down for energy savings when idle.

Using the Intel® P-State Driver

The Intel® P-State Driver is the default driver for RHEL*8.x, so no additional setup is
required. A detailed description of the design and features available with Intel P-State
drivers is available here: https://www.kernel.org/doc/html/v4.18/admin-guide/pm/
intel_pstate.html. Detailed explanation of these features is beyond the scope of this
document. In general, no customization beyond the default is required for the best
fabric performance, other than ensuring that the turbo frequencies are enabled and
the performance governor is enabled.

The following settings are sysfs entries that can be controlled by the system
administrator in real time, and a reboot is not required in order to take effect.
However, due to the nature of Intel P-State, it is not always straight-forward to
monitor the core frequencies and confirm your settings are in effect. For example, a
command such as grep MHz /proc/cpuinfo will return a wide range of clock
frequencies at any given time, unlike ACPI, which would return a consistent value in a
format like "2X00000" or "2X01000" if Turbo mode is enabled. Intel recommends
confirming and monitoring the clock frequencies using a kernel tool such as
turbostat.

3.1

3.1.1

RLinux* Settings—Intel® Ethernet Fabric

Intel® Ethernet Fabric
June 2022 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.3 13

https://www.kernel.org/doc/html/v4.18/admin-guide/pm/intel_pstate.html
https://www.kernel.org/doc/html/v4.18/admin-guide/pm/intel_pstate.html

To run the CPU at its maximum non-Turbo frequency (P1) without scaling to lower
frequencies, as root set the minimum frequency to 100% as shown below:

echo 100 > /sys/devices/system/cpu/intel_pstate/min_perf_pct

To run the CPU at its maximum Turbo frequency, in the BIOS, set the following values:

• Set Intel® Turbo Boost Technology ➤ Enabled

• If it is in your BIOS, set Advanced ➤ Advanced Power Management
Configuration ➤ CPU P State Control ➤ Turbo Mode

• echo 0 > /sys/devices/system/cpu/intel_pstate/no_turbo
• Set the cpufreq policy to "performance": cpupower frequency-set -g

performance
For information about the CPU frequency driver you are running and other
frequency information, use the command:

cpupower frequency-info
If you have previously disabled the P-state driver, you must re-enable it before
applying the tunings listed above. To re-enable the P-state driver:

1. In /etc/default/grub, remove intel_pstate=disable from the
GRUB_CMDLINE_LINUX command line.

2. Apply the change using:

if [-e /boot/efi/EFI/redhat/grub.cfg]; then
GRUB_CFG=/boot/efi/EFI/redhat/grub.cfg
elif [-e /boot/grub2/grub.cfg]; then
GRUB_CFG=/boot/grub2/grub.cfg
fi
grub2-mkconfig -o $GRUB_CFG

NOTE

The code example above is for Red Hat. Other OSes may require a different
method for modifying grub boot parameters.

3. Reboot.

For more information on controlling and tuning the behavior of the Intel P-State driver,
please consult https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt.

Using the ACPI CPUfreq Driver and cpupower Governor

NOTE

If you are satisfied with the behavior of your system when using the Intel® P-State
driver, you do not need to set up the acpi_cpufreq driver.

The ACPI CPUfreq (acpi_cpufreq) driver, in conjunction with cpupower, can be used to
set a consistent CPU clock rate on all CPU cores.

To enable the ACPI CPUfreq driver:

3.1.2

R Intel® Ethernet Fabric—Linux* Settings

Intel® Ethernet Fabric
Performance Tuning Guide June 2022
14 Doc. No.: 632488, Rev.: 1.3

https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt

1. Disable intel_pstate in the kernel command line:

Edit /etc/default/grub by adding intel_pstate=disable to
GRUB_CMDLINE_LINUX.

For example:

GRUB_CMDLINE_LINUX=vconsole.keymap=us console=tty0
vconsole.font=latarcyrheb-sun16 crashkernel=256M
console=ttyS0,115200 intel_pstate=disable

2. Apply the change using:

if [-e /boot/efi/EFI/redhat/grub.cfg]; then
GRUB_CFG=/boot/efi/EFI/redhat/grub.cfg
elif [-e /boot/grub2/grub.cfg]; then
GRUB_CFG=/boot/grub2/grub.cfg
fi
grub2-mkconfig -o $GRUB_CFG

NOTE

The code example above is for Red Hat. Other OSes may require a different
method for modifying grub boot parameters.

3. Reboot.

When the system comes back up with intel_pstate disabled, the acpi_cpufreq
driver is loaded.

To reduce run-to-run performance variations during benchmarking, you may want to
pin the CPU clock frequency to a specific value and use the Performance setting of
the CPU power governor.

To set the CPU clock frequency and power governor:

1. Set the clock frequency values and governor using the command line below.

 sudo cpupower -c all frequency-set --min <value> --max <value>
\ -g Performance

Where <value> is a valid number and unit (GHz) for min and max settings. Note
the values can be the same.

For example, the following command will set the frequency of all cores to a value of
2.3 GHz and Performance governor, when using the acpi-cpufreq driver.

sudo cpupower -c all frequency-set --min 2.3GHz --max 2.3GHz \
-g Performance

NOTE

The power savings will diminish and the server chassis temperature will most likely
rise if the above scheme is used.

To get the maximum advantage from Intel® Turbo Boost Technology:

RLinux* Settings—Intel® Ethernet Fabric

Intel® Ethernet Fabric
June 2022 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.3 15

1. Ensure that Turbo mode is set to Enabled in the BIOS (as recommended in BIOS
and Platform Settings on page 11).

2. Set the frequencies appending "01" to the clock rate. This will enable Intel® Turbo
Boost Technology.

For example, if running on an Intel® Xeon® Gold 6148 Processor (nominal 2.4 GHz
clock rate), then the corresponding command option would be:

sudo cpupower -c all frequency-set --min 2.401GHz --max 2.401GHz \
-g Performance

Priority Flow Control

Enabling priority flow control (PFC) and confirming it is in use is an important aspect
of performance tuning. For small node counts and point to point microbenchmarks, it
is not essential to have PFC enabled for acceptable performance. However, collective
communications or using high core counts per node, or HPC applications running on
roughly 8 nodes or more, depend heavily on PFC for the best possible performance
and lowest run to run variation.

The chapter titled Priority Flow Control Configuration and Tuning covers various
examples for how to configure Ethernet NICs and switches for PFC.

IRQ affinity and irqbalance

The purpose of irqbalance is to distribute hardware interrupts across cores on a multi-
core system in order to increase performance. Intel has not identified a crucial role in
manually setting IRQ affinities for the ice driver in order to obtain good performance
with MPI applications using PSM3/RoCEv2. However, if you want to adjust the IRQ
affinity, follow the guidance provided by Intel with the ice Linux* Base Driver for the
Intel(R) Ethernet Controller 800 Series driver package.

To stop irqbalance, execute

systemctl stop irqbalance

or to ensure it is disabled on boot,

systemctl disable irqbalance

The next step is to run the set_irq_affinity script, as outlined in the ice driver
readme file.

Some MPI applications running over TCP may benefit from lowering the number of
Tx/Rx queues. See the section titled Intel Ethernet driver (ice) settings on page 18
for details.

Memory Fragmentation

When a Linux system has been running for a while, memory fragmentation, which
depends heavily on the nature of the applications that are running on it, can increase.
The more processes that request the kernel to allocate and free physical memory, the

3.2

3.3

3.4

R Intel® Ethernet Fabric—Linux* Settings

Intel® Ethernet Fabric
Performance Tuning Guide June 2022
16 Doc. No.: 632488, Rev.: 1.3

quicker the physical memory becomes fragmented. If that happens, performance on
applications can suffer significantly. Over time, the performance of benchmarks and
applications can decrease because of this issue.

Cluster/system administrators and users can take steps to address the memory
fragmentation issue as described below. Note that users will not be able to apply their
settings until the system administrators have applied theirs first.

System Administrator Settings

The following settings are performed by system administrators.

1. Enable THP to always.

2. As an alternative to THP, reserve huge pages with the sysfs entries,
nr_hugepages or nr_overcommit_hugepages.

3. To better ensure that the system will allocate 2M pages to the job, set the cluster's
job submission system to drop the caches and compact memory before each user
job with these commands:

echo 3 >/proc/sys/vm/drop_caches
echo 1 >/proc/sys/vm/compact_memory

User Settings

The following settings are performed by users.

1. Assuming that the system administrator has enabled THP (described in #1 above),
the user can align larger MPI buffers on 2M boundaries and pad the total size to a
multiple of 2M.

You can use posix_memalign or Intel's _mm_malloc to cause the OS to try to
allocate 2 MB pages.

2. Assuming that the system administrator has enabled the alternative to THP
(described in #2 above), the user can explicitly allocate huge pages using mmap,
Intel® Threading Building Blocks (TBB) malloc with
TBB_MALLOC_USE_HUGE_PAGES=1, or libhugetlbfs.

irdma module settings

The irdma (Intel RDMA) module is used to communicate using the RoCE protocol over
compatible Intel NICs. The module parameter roce_ena=1 must be set in order to
globally set all ports on the NIC to run in RoCE mode. If the cluster was installed using
the Intel® Ethernet Fabric Suite FastFabric install process, this module parameter
should be set automatically. To check the value,

:> cat /sys/module/irdma/parameters/roce_ena
1

if the value instead is 0, you must change it to 1. Perform the following to make the
change persistent on reboots:

:> echo 'options irdma roce_ena=1' >> /etc/modprobe.d/irdma.conf
:> dracut -f
:> reboot

3.5

RLinux* Settings—Intel® Ethernet Fabric

Intel® Ethernet Fabric
June 2022 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.3 17

Setting all ports globally with roce_ena=1 is sufficient for most HPC use cases. In the
case where you want to only set a specific port to use RoCE, use the parameter
roce_port_cfg as described in README_irdma.txt that is contained within the irdma
software release.

Note that there may already by other contents in the irdma.conf file and the above
will just append to them. You may want to check the contents of the file to be sure it
fits the needs of your system.

4K MTU

For the highest possible bandwidth, ensure the MTU for the device is 4KB, for
example:

:> ibv_devinfo -v -d <devname> | grep active_mtu
 active_mtu: 4096 (5)
this requires the corresponding network interface is using an MTU of at least roughly
100 bytes larger (which includes IP and RoCE headers, maybe VLAN headers), but is
typically set to 9K (jumbo). For example, in /etc/sysconfig/network-scripts/
ifcfg-<interface>, insert the line:

MTU=9000

Increasing irdma Queue Pair (QP) limit
There may be some applications which fail with the following message (or similar):

libirdma-irdma_vmapped_qp: failed to create QP, status 75
libirdma-irdma_ucreate_qp: failed to map QP
node1.314829Ran out of memory (err=4)
node1.314851Process connect/disconnect error: 4, opcode 206

The default number of QPs for irdma is 4096. If this happens, you can add this
additional module parameter to irdma.conf:

:> echo 'options irdma limits_sel=5' >> /etc/modprobe.d/irdma.conf
again, dracut -f and reboot is required to make the changes persistent. This new
value allows for 65,532 QPs.

Intel Ethernet driver (ice) settings

Some MPI applications running over TCP may benefit from lowering the number of
Tx/Rx queues. The default number of queues enabled for each Ethernet port by the
driver at initialization is equal to the total number of cores, including hyper threads. In
platforms with high core count CPUs, this configuration can cause resource contention.
In practice, Intel has found that reducing the number of Tx/Rx queues down to 8 has
resulted in improved performance for applications such as the Weather Research and
Forecasting Model (WRF).

ethtool -L <interface> combined 8

3.6

R Intel® Ethernet Fabric—Linux* Settings

Intel® Ethernet Fabric
Performance Tuning Guide June 2022
18 Doc. No.: 632488, Rev.: 1.3

where <interface> is the name of the Ethernet NIC in use. In order to make these
settings persistent, you may wish to use the NetworkManager utility. This script would
make the settings described above persistent on boot:

:> cat /etc/NetworkManager/dispatcher.d/20-ethtool
#!/bin/bash
if ["$1" = "<interface>"] && ["$2" = "up"]; then
 /sbin/ethtool -L <interface> combined 8
fi
Make sure 755 permissions are assigned to the file for it to be properly executed at
boot time.

NOTE

It is recommended to unload and reload irdma after the system boots, or perform this
change to the ice driver before loading irdma.

To confirm the settings took effect:

[root@node ~]# ethtool -l <interface>
...
Current hardware settings:
RX: 0
TX: 0
Other: 1
Combined: 8

Tuned tuning service

The tuned tuning service has the potential to improve network latency and/or
bandwidth depending on the profile selected, especially when running applications or
benchmarks over TCP. It should be used carefully because certain profiles consume
significantly more power and demand more cooling. A complete description of the
tuned service can be found here: https://access.redhat.com/documentation/en-us/
red_hat_enterprise_linux/8/html/
monitoring_and_managing_system_status_and_performance/getting-started-with-
tuned_monitoring-and-managing-system-status-and-performance.

Based on internal testing on 16 3rd Generation Intel® Xeon® Scalable Processors
nodes connected with a 200Gb Ethernet network, the best point to point latency is
achieved with the latency-performance, hpc-compute and network-latency profiles.
These profiles deliver the lowest and most consistent point to point latency. The best
application performance is achieved with the throughput-performance profile (which is
the default). Conversely, although the latency-performance profile gave the lowest
and most consistent point to point latency, it impacted some applications negatively
by approximately 5%.

Although the tuned tuning service has the potential to improve latency, its impact on
application performance, power consumption, and the thermal state of the servers
should be understood before deploying a more aggressive profile in production.

3.7

RLinux* Settings—Intel® Ethernet Fabric

Intel® Ethernet Fabric
June 2022 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.3 19

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance

4.0 MPI Performance

MPI libraries are a key type of middleware for building HPC applications. The Intel®
Ethernet Fabric Suite Software package includes a build of Open MPI, though many
times it is recommended and preferred to use the latest Intel® MPI Library. This
chapter shows how to use Open MPI and the Intel® MPI Library, followed by general
performance tuning recommendations.

If the Open MPI package was installed, the exact version can be seen
under /usr/mpi/gcc such as:

[/usr/mpi/gcc]$ ls -r *
openmpi-x.y.z-ofi

NOTE

x.y.z refers to the latest version of openmpi.

The gcc directory means that the Gnu Compiler Collection (GCC) was used to build
the MPI library.

For best performance, run MPIs using libfabric with the Performance Scaled Messaging
3 (PSM3) provider included with Intel® Ethernet Host Software.

To run Open MPI with the PSM3 provider:

1. Source a mpivars.sh file from the bin directory of one of the MPIs from your
Linux* shell's startup scripts.

For example, include the following statement in a startup script such as
~/.bashrc or in your run script:

:> source /usr/mpi/gcc/openmpi-x.y.z-ofi/bin/mpivars.sh

This will set the PATH and LD_LIBRARY_PATH and MANPATH variables for this MPI
version.

2. Specify the location of the installed PSM3 provider. If Intel® Ethernet Host
Software was installed properly, this should be

:> export FI_PROVIDER_PATH=/usr/lib64/libfabric

3. Use the options in your mpirun command to specify the use of libfabric (ofi) with
the PSM3 provider.

For example:

:> mpirun -mca mtl ofi -x FI_PROVIDER_PATH=$FI_PROVIDER_PATH -x
FI_PROVIDER=psm3 …

R Intel® Ethernet Fabric—MPI Performance

Intel® Ethernet Fabric
Performance Tuning Guide June 2022
20 Doc. No.: 632488, Rev.: 1.3

4. Verify that the PSM3 library was found and is being used by MPI.

The following command will display PSM3 information to stdout:

:> mpirun ... -x PSM3_IDENTIFY=1 ...

NOTE

If you do not see PSM3 output with this variable set, then PSM3 was not found nor
is being used.

5. Due to the failover nature of Open MPI and libfabric, it is possible if something is
not exactly correct with the PSM3 software environment, a lower performing stack
could be used that does not include PSM3. This can happen silently. The below
options should reduce the likeliness of a silent failover and cause an error if PSM3
is not working correctly.

a. Construct FI_PROVIDER to specifically exclude any provider other than
identically psm3:

:> export FI_PROVIDER="${FI_PROVIDER:-^$(fi_info | sed -n 's/^provider: //p'
| sort -u | grep -v 'psm3$' | tr '\n' ',' | sed 's/,$//')}"
If this worked it should construct a string for FI_PROVIDER such as:

:> echo $FI_PROVIDER
^psm2,usnic,verbs,ofi_rxm,ofi_rxd,shm,UDP,tcp,sockets,ofi_perf_hook,ofi_noop_h
ook,ofi_mrail,psm3;ofi_rxd
Note the last psm3;ofi_rxd is the layered provider, different than psm3.

6. b. Disable the tcp btl. This will prevent Open MPI from using it in case the ofi
mtl fails completely:

:> mpirun ... -mca btl ^tcp ...

Alternatively, Open MPI could be configured with --enable-mca-no-
build=btl-tcp.

MPI Benchmark Fundamentals

Two common benchmark applications are used to measure MPI performance: OSU
Micro-Benchmarks (OMB) (https://mvapich.cse.ohio-state.edu/benchmarks/) and
Intel® MPI Benchmarks (IMB) (https://github.com/intel/mpi-benchmarks). In general,
the goal of these benchmarks is to measure point-to-point performance (latency,
bandwidth, and message rate) between two nodes. Additionally, MPI collectives
performance can be measured using a large group of nodes.

For simplicity, this section demonstrates how to run the Intel® MPI Benchmarks using
Open MPI as packaged with Intel® EFS to measure latency, bandwidth, and message
rate. These examples use the IMB-MPI1 benchmark. For more information, refer to
the Intel® MPI Benchmarks User Guide.

4.1

RMPI Performance—Intel® Ethernet Fabric

Intel® Ethernet Fabric
June 2022 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.3 21

https://mvapich.cse.ohio-state.edu/benchmarks/
https://github.com/intel/mpi-benchmarks
https://software.intel.com/content/www/us/en/develop/documentation/imb-user-guide/top.html

NOTE

Examples are shown here for Open MPI, however, for many applications, Intel® MPI
Library may offer better performance and stability.

To begin, load Open MPI into the environment:

:> source /usr/mpi/gcc/openmpi-<version>-ofi/bin/mpivars.sh

NOTE

You must have password-less ssh enabled between all nodes where you want to run
benchmarks.

MPI Latency

MPI latency is measured between two nodes using one core (MPI rank) per node.

:> mpirun -np 2 --map-by ppr:1:node -host node1,node2 -x FI_PROVIDER=psm3 ./IMB-
MPI1 Pingpong
...
#---
Benchmarking PingPong
#processes = 2
#---
#bytes #repetitions t[usec] Mbytes/sec
...

The resulting output in the third column (t[usec]) is latency as a function of
message size. Typically, 8-byte latency is used for performance analysis. The
analogous benchmark with OMB is called osu_latency. Sometimes, the MPI rank
needs to be pinned to a certain CPU socket in order to achieve the best latency (see
MPI Affinity on page 28). Note that the bandwidth returned is from a single buffer
(mpi_send/recv) and does not fully stress the throughput capability of the network.

MPI Bandwidth

MPI bandwidth is measured between two nodes using one or more ranks per node. As
you use more ranks per node, the aggregate bandwidth increases for lower message
sizes. The Uniband and Biband benchmarks for MPI bandwidth measurements are
used because they perform many simultaneous, non-blocking sends and are able to
stream messages continuously and saturate the network.

The following is an example of one rank per node for uni-directional bandwidth:

:> mpirun -np 2 --map-by ppr:1:node -host node1,node2 -x FI_PROVIDER=psm3 ./IMB-
MPI1 Uniband
...
#---
Benchmarking Uniband
#processes = 2
#---
#bytes #repetitions Mbytes/sec Msg/sec
...

R Intel® Ethernet Fabric—MPI Performance

Intel® Ethernet Fabric
Performance Tuning Guide June 2022
22 Doc. No.: 632488, Rev.: 1.3

The third column (Mbytes/sec) reports MPI bandwidth. The fourth column (Msg/
sec) is message rate (discussed in the next section).

To run a bidirectional bandwidth test, replace Uniband with Biband in the example
above. The analogous benchmarks in OMB are osu_bw and osu_bibw.

The following example shows how to run both Uniband and Biband simultaneously,
using four MPI ranks per node:

:> mpirun -np 8 --map-by ppr:4:node -host node1:4,nodes2:4 -x FI_PROVIDER=psm3 ./
IMB-MPI1 Uniband Biband -npmin 8

NOTE

The -npmin 8 flag is required to ensure that exactly four communicating pairs are
running, the first four ranks on node1 and the second four ranks on node2.

The analogous benchmark in OMB is osu_mbw_mr. There is no equivalent bidirectional
benchmark.

MPI Message Rate

Message rate is also measured with Uniband and Biband benchmarks, but using as
many ranks per node as there are cores on the node. The message rate is the total
number of MPI messages (typically eight bytes) sent between the two nodes. This is a
derived quantity that can be calculated from the bandwidth output.

On nodes with 32 physical cores per node,

:> mpirun -np 64 --map-by ppr:32:node -host node1:32,node2:32 -x
FI_PROVIDER=psm3 ./IMB-MPI1 Uniband -npmin 64
...
#---
Benchmarking Uniband
#processes = 64
#---
#bytes #repetitions Mbytes/sec Msg/sec
...

The fourth column (Msg/sec) is the message rate and is typically quoted for eight
bytes. The same method can be used to measure bidirectional message rate with the
Biband benchmark.

NOTE

When running with OpenMPI, depending on your environment it may be necessary to
add the number of processes per node (<host>:<ppn>) after each name in the host
list. Alternatively, use a hostfile with the slots=<ppn> method. If you are using
OpenMPI within a SLURM job, depending on the environment you may need to
properly specify the environment variable SLURM_TASKS_PER_NODE. For example, for
a 2 node, 32 process per node job, it may be necessary to export
SLURM_TASKS_PER_NODE="32(x2)". This may also be handled by directives to srun
or sbatch.

RMPI Performance—Intel® Ethernet Fabric

Intel® Ethernet Fabric
June 2022 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.3 23

MPI Collectives

Performance can be measured for a variety of collectives such as Allreduce. These
benchmarks can be run between many nodes. For example, a 128 node, 32 rank per
node Allreduce can be run with the following command:

:> mpirun -np $((128*32)) --map-by ppr:32:node -hostfile 128hosts -x
FI_PROVIDER=psm3 ./IMB-MPI1 Allreduce
-npmin $((128*32))
...
#-- #
Benchmarking Allreduce # #processes = 4096
#--
#bytes #repetitions t_min[usec] t_max[usec] t_avg[usec]
...

where 128hosts is a list of nodes you are using to run your test across. Typically,
t_avg latency gives a good idea of the performance of the system. Sometimes, large
deviations between t_min and t_max can indicate sub-optimal performance and
perhaps system jitter effects.

Intel® MPI Library Settings

NOTE

The information in this section assumes the use of Intel® MPI Library as recommended
in the Intel® Ethernet Fabric Suite Software Release Notes.

For best performance, Intel recommends that you use the PSM3 libfabric (OFI)
provider - a high-performance interface to the Intel® Ethernet Fabric. Note that as of
Intel® MPI 2019, only OFI fabric is supported. First load the Intel® MPI library (and
other Intel tools) into your environment:

:> source /opt/intel/oneapi/setvars.sh

If this was successful, you may check the version of MPI loaded in the environment:

:> mpirun -version
Intel(R) MPI Library for Linux* OS, Version 2021.3 Build 20210601 (id: 6f90181f1)
Copyright 2003-2021, Intel Corporation.
You may instead wish to source the exact MPI library instead of the one bundled with
Intel® oneAPI. The exact paths and location of the corresponding mpivars.sh or
env/vars.sh will vary from system to system. Then, set these two environment
variables:

• export I_MPI_FABRICS=shm:ofi (preferred)

or

export I_MPI_FABRICS=ofi to not use Intel® MPI's shared-memory
communications

• export FI_PROVIDER=psm3

4.2

R Intel® Ethernet Fabric—MPI Performance

Intel® Ethernet Fabric
Performance Tuning Guide June 2022
24 Doc. No.: 632488, Rev.: 1.3

For more details on available options, refer to the Intel® MPI Library Developer
Reference for Linux* OS found at https://software.intel.com/en-us/mpi-developer-
reference-linux, especially the section titled "Environment Variables for Fabrics
Control". To ensure that the Intel® MPI fabric or provider is what you expect
(especially that PSM3 is the provider for OFI), use -genv I_MPI_DEBUG=5 option to
view the debug output. You should see output such as:

[0] MPI startup(): libfabric version: 1.12.1-impi
[0] MPI startup(): libfabric provider: psm3

PSM3 Environment Variables

Certain non-default settings for PSM3 environment variables may improve HPC
applications or microbenchmark performance. The following tunings have been tested
on Intel® Xeon® Scalable Processors with positive results. See the Intel® Ethernet
Fabric Suite Host Software User Guide for additional details of the PSM3 environment
variables.

NOTE

It is possible that adjusting these variables for other workloads not shown below may
also help improve performance

NOTE

Do not enable every setting found below and expect to improve performance for an
arbitrary application. In most cases, the optimal performance is achieved with the
default settings.

It is possible that adjusting these variables for other workloads not shown below may
also help improve performance.

Table 3. PSM3 RoCEv2 (verbs) Performance Tunings

Application/Benchmark/Metric Tuning Parameters

HPCC PTRANS PSM3_FLOW_CREDITS=16 significantly increases PTRANS GB/s
performance (measured at 16 nodes, 52 cores per node).

HPCC MPIFFT PSM3_FLOW_CREDITS=16 significantly increases MPIFFT GFlops
performance (measured at 16 nodes, 52 cores per node).
PSM3_RDMA=0 (currently the default) performs better than RDMA mode
1.

QCD, Alltoall Collectives, and other bandwidth
dependent applications

PSM3_ERRCHK_TIMEOUT=20:640:2, default is 160:640:2
(min:max:factor) in milliseconds. Decreasing the first number increases
the rate of PSM3 retries in the case of packet drops.

122.tachyon (Graphics, parallel ray tracing - Spec
MPI 2007, medium suite)

PSM3_RCVTHREAD_FREQ=600:1000:1, increasing frequency of
receive thread polling (default is PSM3_RCVTHREAD_FREQ=10:100:1)

MPI Uni and Bi-directional bandwidth PSM3_RDMA=1,2, or 3 increases bandwidth from the default of
PSM3_RDMA=0

MPI Uni and Bi-directional bandwidth, PSM3_RDMA=1
mode, 128KB+

PSM3_RV_QP_PER_CONN=4 (default). Uses multiple queue pairs per
MPI process.

continued...

4.3

RMPI Performance—Intel® Ethernet Fabric

Intel® Ethernet Fabric
June 2022 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.3 25

https://software.intel.com/en-us/mpi-developer-reference-linux
https://software.intel.com/en-us/mpi-developer-reference-linux

Application/Benchmark/Metric Tuning Parameters

PSM3_RV_MR_CACHE_SIZE=1024 increase the maximum amount of
CPU memory to be pinned per process by the rendezvous module's CPU
MR cache. In units of megabytes. Prevents major bandwidth drops for
very large message sizes such as 128MB+.

MPI Uni and bi-directional bandwidth, PSM3_RDMA=1
mode, 8192-32768 bytes

PSM3_MQ_RNDV_NIC_THRESH=8000 switches to rendezvous protocol
at smaller message sizes (default is
PSM3_MQ_RNDV_NIC_THRESH=64000)

MPI Uni-directional bandwidth PSM3_QP_PER_NIC=2 (or 4) increases Uni-directional streaming
bandwidth (measured with IMB-MPI1 Uniband or osu_mbw_mr). No
impact on bi-directional bandwidth.

MPI latency PSM3_RDMA=3 decreases single core latency relative to other modes

In order to set these environment variables with the Intel® MPI Library, you can
export them in your environment (e.g. export PSM3_RDMA=1), or you can pass
them as mpirun command arguments (e.g. mpirun ... -genv
PSM3_RDMA=1 ...). In order to set these environment variables with Open MPI, you
must pass them as mpirun command arguments (e.g. mpirun ... -x
PSM3_RDMA=1 ...)

You can confirm the environment variables took effect, or determine what the existing
settings are, by setting PSM3_VERBOSE_ENV=2:. Including the colon at the end will
output only for rank number 0 and prevent a lot of repeated output.

PSM3_RDMA modes

PSM3 supports multiple RoCE data movement modes which are configurable with the
environment variable PSM3_RDMA. For more detail, refer to the Intel® Ethernet Fabric
Suite Host Software User Guide. In general , PSM3_RDMA=1 mode provides the best
single thread bandwidth performance, and PSM3_RDMA=3 provides the lowest latency.
Most applications perform the best with either mode 0 or 1.

Packet Loss/Drops

If PFC is configured and tuned properly, there should be very minimal or no packet
losses or drops. You can use PSM3 profiling (PSM3_PRINT_STATS) to determine if
PSM3 is experiencing drops and re-transmitting messages which is very bad for
performance. If you see non-zero entries for err_chk_send or err_chk_recv, this
means that the network is experiencing losses that PSM3 has to recover from. Check
the PFC configuration, and also try to pace PSM3 by reducing PSM3_FLOW_CREDITS,
to alleviate the drops and possibly improve performance.

PSM3_PRINT_STATS

The profiling tool PSM3_PRINT_STATS can be used to debug low performance
problems. Set to "-1" to output statistics after the end of the run, or a positive integer
value (in seconds) to print statistics at every interval in seconds. Note that a file is
generated per PSM3 process.\

For delicate comparisons between runs, you may want to also enable
PSM3_PRINT_STATSMASK=0xfffffff in order to print all values, including zero
values, so side-by-side comparisons of output are formatted similarly.

R Intel® Ethernet Fabric—MPI Performance

Intel® Ethernet Fabric
Performance Tuning Guide June 2022
26 Doc. No.: 632488, Rev.: 1.3

MPI Collective and Intel® oneCCL Tunings

Intel recommends using the latest Intel® MPI Library when possible for optimized MPI
collectives performance. The following table is a collection of additional tuning
recommendations. It is possible the tunings apply to other versions of Intel® MPI
Library, but the version where it was discovered is listed for completeness.

Application/
Collective

MPI Tuning Notes

NAS Parallel
Benchmarks, FT
kernel

Intel® MPI
Library 2019
Update 9

-genv I_MPI_ADJUST_ALLTOALL=3 Significantly improves NAS
Parallel Benchmarks performance
for FT kernel (class C, 8 nodes,
52 processes per node)

MPI Alltoall Intel® MPI
Library 2019
Update 9

-genv I_MPI_ADJUST_ALLTOALL=4 for 16
nodes, 52ppn, 512B-1KB, 8KB-512KB

Other algorithms may help other
node counts, ppn, and message
sizes

MPI Alltoall Intel® MPI
Library 2021
Update 5

-genv I_MPI_ADJUST_ALLTOALL=2 for 32
nodes, 1ppn

use in conjunction with . -genv
PSM3_RDMA=1

MPI_Allreduce Intel® MPI
Library 2021
Update 2

-genv
I_MPI_ADJUST_ALLREDUCE="4:0-1048575;2
:1048576-104857600" for 16-32 nodes, 52ppn

use in conjunction with
PSM3_RDMA=1. Algorithm 4
(Topology aware Reduce and
Bcast) is used for message sizes
below 1MB, and algorithm 2
(Rabenseifner's) is used for
message sizes >=1MB.

Note that Intel® MPI Library is specifically tuned for PSM3 running with RDMA mode 0.
When running in a mode other than 0 (such as PSM3_RDMA=1), it is possible that
other MPI collective algorithms may provide improved performance. See https://
www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-
linux/top/environment-variable-reference/i-mpi-adjust-family-environment-
variables.html for a summary of the available variables.

The autotuner feature of Intel® MPI Library can be used to re-tune an application and
replace the existing default tunings. See https://software.intel.com/
content/www/us/en/develop/documentation/mpi-developer-reference-windows/top/
environment-variable-reference/tuning-environment-variables/autotuning.html for
details. This may be beneficial after making a change such as switching from
PSM3_RDMA=0(default) to PSM3_RDMA=1.

Intel® oneCCL

Intel® oneAPI is a set of APIs and tools which provide a multi-vendor cohesive
environment for developing and executing high performance applications on CPUs as
well as various accelerated processing elements such as GPUs. Within oneAPI the
Intel® oneAPI Collectives Communications Library (oneCCL) is a scalable and high-
performance communication library for Deep Learning (DL) and Machine Learning (ML)
workloads. It develops the ideas originated in the Intel® Machine Learning Scaling
Library and expands the design and API to encompass new features and use cases.

Intel® oneCCL is not included in the Intel® Ethernet Fabric Suite software, but is
available separately. Go to https://www.intel.com/content/www/us/en/developer/
tools/oneapi/oneccl.html for more information on Intel® oneCCL and oneAPI.

Intel® oneCCL Algorithms

4.4

RMPI Performance—Intel® Ethernet Fabric

Intel® Ethernet Fabric
June 2022 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.3 27

https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/environment-variable-reference/i-mpi-adjust-family-environment-variables.html
https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/environment-variable-reference/i-mpi-adjust-family-environment-variables.html
https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/environment-variable-reference/i-mpi-adjust-family-environment-variables.html
https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/environment-variable-reference/i-mpi-adjust-family-environment-variables.html
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top/environment-variable-reference/tuning-environment-variables/autotuning.html
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top/environment-variable-reference/tuning-environment-variables/autotuning.html
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top/environment-variable-reference/tuning-environment-variables/autotuning.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/oneccl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/oneccl.html

It may be beneficial to specify a collective algorithm to use for oneCCL operations. For
example, you can control the allreduce algorithm used by setting CCL_ALLREDUCE.
See https://oneapi-src.github.io/oneCCL/env-variables.html for details. In general,
oneCCL attempts to use sensible defaults. In internal testing at 32 nodes with 1
process per node and 8 worker threads, the ring_rma algorithm was found to perform
the best for message sizes greater than 8MB. For intermediate message sizes, the
rabenseifner is the best. The optimal algorithm will vary based on node count,
message sizes, and other factors.

Intel® oneCCL Multi-NIC

oneCCL supports Multi-NIC environments and is controlled primarily by three
environment variables, CCL_MNIC, CCL_MNIC_NAME, and CCL_MNIC_COUNT. See the
oneCCL documentation here for more information : https://oneapi-src.github.io/
oneCCL/env-variables.html. Note that this methodology is used in place of the
traditional PSM3_MULTIRAIL method of striping data across multiple NICs. One
should carefully study the difference in performance between the two methods (using
oneCCL MNIC capability or PSM3 multi-rail capability) before choosing one over the
other.

PSM3 Tunings

For large message Allreduce collective sizes (8MB and larger), the performance is
improved with enabling PSM3_RDMA=1. At a scale of 32 nodes with 1 process per node
and 8 worker threads, performance is further improved by setting
PSM3_MQ_RNDV_NIC_WINDOW=524288(the default is 131072, or 128 KB).

MPI Affinity

The choice of the NIC with respect to the location of the MPI process has a measurable
impact on performance. For example, latency-sensitive applications that use a NIC on
a remote NUMA node will incur a performance cost related to memory/cache locality of
the MPI process and an additional delay related to inter-NUMA interconnect traffic.

To determine which NUMA node a NIC is connected to, for example an Intel® Ethernet
800 Series PCIe Adapter:

:> lspci | grep 810
18:00.0 Ethernet controller: Intel Corporation Ethernet Controller E810-C for
QSFP (rev 02)
18:00.1 Ethernet controller: Intel Corporation Ethernet Controller E810-C for
QSFP (rev 02)

The first column is the slot number. Then, find the NUMA node the slot is connected
to:

:> lspci -v -s 18:00.0 | grep NUMA
 Flags: bus master, fast devsel, latency 0, IRQ 39, NUMA node 0

4.5

R Intel® Ethernet Fabric—MPI Performance

Intel® Ethernet Fabric
Performance Tuning Guide June 2022
28 Doc. No.: 632488, Rev.: 1.3

https://oneapi-src.github.io/oneCCL/env-variables.html
https://oneapi-src.github.io/oneCCL/env-variables.html
https://oneapi-src.github.io/oneCCL/env-variables.html

From the output above you can see the adapter is connected to NUMA node 0. This
corresponds to the first 26 CPU cores, as seen with:

:> lscpu | grep NUMA
NUMA node(s): 2
NUMA node0 CPU(s): 0-25,52-77
NUMA node1 CPU(s): 26-51,78-103

To minimize the cross-NUMA latency penalties described above, you must make sure
the MPI process is pinned to any of the CPU cores 0-25. Typically this is the default
behavior of an MPI library. In the case that the NIC is connected to NUMA node 1,
instruct the MPI library to pin the rank to any of CPU cores 26-51. For example, with
Open MPI:

:> mpirun ... taskset -c 26 ./osu_latency

Here the utility affinitizes the MPI process to the first core on socket 1, and a lower
latency will result than if pinned to any of cores 0-25 (the default). With the Intel®
MPI Library, use the built-in environment variable -genv
I_MPI_PIN_PROCESSOR_LIST=26 . This environment variable can take a list or
range of cores for multi-ppn tests. For more details, see the Intel® MPI Library
documentation

Dual / Multi-Rail

On systems with more than one NIC per node, PSM3 can use a feature known as
Multi-rail in order to use multiple NICs and increase the available bandwidth to the
node. For bandwidth hungry applications, multi-rail configurations may offer improved
performance. See the Intel® Ethernet Fabric Suite Host Software User Guide for more
details on configuring and using multi-rail. Note that on systems with more than one
active NIC, each PSM3 process will use the NUMA-local NIC for communication. You do
not have to explicitly set PSM3_MULTIRAIL in order to use all NICs, as long as there
is at least one PSM3 process on the same NUMA node.

TCP Performance

While most HPC applications utilize RDMA-capable networks and use the RoCE
implementation of PSM3, it is also possible to run PSM3 using standard TCP. This
section outlines helpful tunings for running PSM3 with TCP. Please consult the Intel®
Ethernet Fabric Suite Host Software User Guide for details on how to run PSM3 over
TCP.

In the 11.2 software release (and later), you must specify at a minimum
PSM3_HAL=sockets. By default, PSM3 will select the fastest NIC in the system.
However, you may want to specify exactly which NIC to use with
PSM3_NIC=<interface>, where interface is the name of the net device (not RDMA
device)

4.6

4.7

RMPI Performance—Intel® Ethernet Fabric

Intel® Ethernet Fabric
June 2022 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.3 29

PSM3 Environment Variable Tuning impact

PSM3_TCP_SKIPPOLL_COUNT Default is "20:10". Some applications benefit from
disabling this feature (set to 0:0) such as tachyon,
socorro, and dmilc from the SpecMPI 2007
application suite.

PSM3_MTU Default is 65536. Higher values may increase
bandwidth for single-rank performance but lower
values (such as PSM3_MTU=16384) have been
shown to improve performance for some applications
(e.g. LAMMPS, rhodopsin protein benchmark).

FI_PSM3_LAZY_CONN Default is 0 (off) . Set to 1 to increase performance
of some applications. This only establishes
connections between endpoints when first used for
communications, instead of establishing connections
between all endpoints at job start.

R Intel® Ethernet Fabric—MPI Performance

Intel® Ethernet Fabric
Performance Tuning Guide June 2022
30 Doc. No.: 632488, Rev.: 1.3

5.0 Performance Tuning for NVIDIA* GPU

The focus of this chapter is on network performance tuning when running with
NVIDIA* GPUs.

CUDA and GPUDirect*

As with the non-CUDA enabled PSM3, the CUDA-enabled PSM3 is also tuned to deliver
optimized out-of-the-box performance for most workloads. There are certain PSM3
thresholds that are user configurable and may deliver improved performance
depending on the workload. See the Intel® Ethernet Fabric Suite Host Software User
Guide for detailed explanation on each environment variable. For example,

• PSM3_MQ_RNDV_NIC_WINDOW (default 2097152) - lowering to 65536
significantly improves large message pingpong latency (osu_latency) but has a
negative effect on streaming bandwidth (osu_bw/osu_bibw).

• PSM3_CUDA_THRESH_RNDV (default 8000) - defines the message size, in bytes,
when the protocol switches from eager to rendezvous. Messages below the
threshold use eager, and at or above the threshold use rendezvous.

— For the verbs HAL (PSM3_HAL=verbs), larger values decrease latency in
8KB-32KB message size range, but may have a negative impact on bandwidth

— For the sockets HAL (PSM3_HAL=sockets), increased bandwidth is seen in the
8KB-256KB msg size range when increasing this to a very large value such as
2147483648 (or just above whatever the largest message size in the
application is). This effectively disables rendezvous and uses eager for all the
messages sizes.

• PSM3_GPUDIRECT_RDMA_SEND_LIMIT - as of the IEFS 11.3 release , this limit is
set to UINT_MAX such that PSM3 always uses GPU Direct* for RDMA sends. On
systems with PCIe switches this gives the best performance. On systems without
PCIe switches, you may see a slight benefit to bandwidth by reducing this
environment variable down to the previous default, or approximately
PSM3_GPUDIRECT_RDMA_SEND_LIMIT=30000 (bytes).

the above observations are made when running the CUDA-enabled osu_latency,
osu_bw, and osu_bibw within the OSU Microbenchmarks suite.

NVIDIA* Multi-Process Service (MPS)

For the majority of use cases, MPI applications using GPUs assign one MPI rank per
GPU. All of the communication for the GPU is handled through the single MPI rank. In
the case where it is desired to use multiple MPI ranks per GPU, significantly lower
performance may be seen. In this case it may be beneficial to deploy NVIDIA* Multi-
Process Service(MPS). See https://docs.nvidia.com/deploy/mps/index.html for more
details.

5.1

RPerformance Tuning for NVIDIA* GPU—Intel® Ethernet Fabric

Intel® Ethernet Fabric
June 2022 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.3 31

https://docs.nvidia.com/deploy/mps/index.html

NVIDIA* Collectives Communication Library (NCCL*)

The Intel® Ethernet Fabric Suite Host Software User Guide describes how to set up
and run PSM3 with NCCL*. In this section we highlight some of the NCCL and PSM3
environment variables that impact performance when running with NCCL.

When running PSM3 and NCCL, performance benefits have been seen when reducing
the size of the buffer used by NCCL by setting NCCL_BUFFSIZE=262144. The default
buffer size is 4194304 (4MB). See https://docs.nvidia.com/deeplearning/nccl/user-
guide/docs/env.html#environment-variables for more detail on the available NCCL
environment variables.

5.2

R Intel® Ethernet Fabric—Performance Tuning for NVIDIA* GPU

Intel® Ethernet Fabric
Performance Tuning Guide June 2022
32 Doc. No.: 632488, Rev.: 1.3

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html#environment-variables
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html#environment-variables

6.0 Priority Flow Control Configuration and Tuning

Priority Flow Control (PFC) allows Ethernet to be configured as a lossless network.
Lossless behavior is a prerequisite of RoCEv2 and essential to getting good
performance with RoCEv2 for both PSM3 and storage uses. This chapter will provide
guidelines and examples on how to configure PFC on various Ethernet NICs and
switches. Please consult your NIC and switch vendor documentation for all details
regarding enabling PFC. Note that these examples are aimed entirely at providing
lossless network traffic for one traffic class.

NIC Configuration for PFC

Detailed discussion of PFC is beyond the scope of this document. In general the
Ethernet NICs are configured to use firmware Data Center Bridging (DCB) in willing
mode. Then the switches are configured for DCB (priority settings, traffic classes,
bandwidth allocations, headroom, etc.) on the switch ports. Detailed explanation of
these implementations can be found in the Intel® Ethernet 800 Series Linux Flow
Control Configuration Guide for RDMA Use Cases. Note that when non-willing mode is
used to explicitly configure PFC (such as for a back-to-back test configuration without
a switch), additional steps must be taken to ensure the recipe is persistent across
node reboots.

The Intel® Ethernet Fabric Suite Software Installation Guide discusses how to use the
FastFabric installation procedure to automate setting up the NICs for PFC in willing
mode. Below is a step-by-step recipe that is known to work if you wish to customize or
understand more fully what settings are being implemented. In the examples, replace
<interface> with the name of the RDMA device's corresponding network interface
name.

Enable Willing mode on Intel Ethernet NICs

When the NICs are configured in Willing mode and connected to a switch with DCB
configured, the NICs will automatically apply the same DCB configuration. This
example shows how to enable firmware willing mode on a CVL NIC. Consult your
switch manual for DCB configuration steps, or the next section for an example.

Disable Link-level Flow Control (LFC)

:>ethtool -A <interface> rx off tx off

Verify that LFC is disabled

:> ethtool -a <interface>
Pause parameters for <interface>:
Autonegotiate: on
RX: off
TX: off
RX negotiated: off
TX negotiated: off

6.1

RPriority Flow Control Configuration and Tuning—Intel® Ethernet Fabric

Intel® Ethernet Fabric
June 2022 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.3 33

HTTPS://CDRDV2.INTEL.COM/V1/DL/GETCONTENT/635330
HTTPS://CDRDV2.INTEL.COM/V1/DL/GETCONTENT/635330

Configure the NIC for firmware DCB mode (as opposed to software DCB
mode)

ethtool --set-priv-flags <interface> fw-lldp-agent on

Verify that firmware DCB is enabled

:>ethtool --show-priv-flags <interface> | grep fw-lldp-agent
fw-lldp-agent : on
In order to make these settings persistent, you may wish to use the NetworkManager
utility. This script would make the settings described above persistent on boot for
<interface>:

:> cat /etc/NetworkManager/dispatcher.d/20-ethtool
#!/bin/bash
if ["$1" = "<interface>"] && ["$2" = "up"]; then
 /sbin/ethtool --set-priv-flags <interface> fw-lldp-agent on
 /sbin/ethtool -A <interface> rx off tx off
fi
Make sure 755 permissions are assigned to the file for it to be properly executed at
boot time.

Switch Configurations for PFC

This section provides examples for how to configure and tune various Ethernet
switches for the best PFC performance.

Arista DCS-7170-32CD-F

On an Arista DCS-7170-32CD-F switch with Arista EOS software version 4.22.1FX-
CLI , the following steps will setup PFC (see the complete Arista EOS documentation at
https://www.arista.com/en/um-eos for more guidance).

localhost>enable
localhost#config terminal
localhost(config)# interface ethernet 1/1-32/1
localhost(config-if-Et1/1,2/1,3/1,...,31/1,32/1)#priority-flow-control on
localhost(config-if-Et1/1,2/1,3/1,...,31/1,32/1)#dcbx mode ieee
localhost(config-if-Et1/1,2/1,3/1,...,31/1,32/1)#priority-flow-control priority 0
no-drop
localhost(config-if-Et1/1,2/1,3/1,...,31/1,32/1)#flowcontrol send off
localhost(config-if-Et1/1,2/1,3/1,...,31/1,32/1)#flowcontrol receive off
then confirm that PFC is actually enabled on priority 0 :

localhost(config-if-Et1/1,2/1,3/1,...,31/1,32/1)#show priority-flow-control
The hardware supports PFC on priorities 0 1 2 3 4 5 6
PFC receive processing is enabled on priorities 0 1 2 3 4 5 6 7
Global PFC : Enabled

E: PFC Enabled, D: PFC Disabled, A: PFC Active, W: PFC Watchdog Enabled
Port Status Priorities Action Timeout Recovery
Polling Note
 Interval/Mode Config/Oper
--

Et1/1 E A - 0 - - - / - - / -
Et2/1 E A - 0 - - - / - - / -
Et3/1 E A - 0 - - - / - - / -

6.2

R Intel® Ethernet Fabric—Priority Flow Control Configuration and Tuning

Intel® Ethernet Fabric
Performance Tuning Guide June 2022
34 Doc. No.: 632488, Rev.: 1.3

https://www.arista.com/en/um-eos

...

...
Port RxPfc TxPfc
Et1/1 2843498825 79913457
Et2/1 2203656611 73527802
Et3/1 2459768514 70122076
Et4/1 2508639684 74898208
...
note, only priority 0 is listed as "Enabled" and "Active". The Intel® Ethernet 800 Series
PCIe Adapter will by default use priority 0 when running in RoCEv2 mode. Other than
setting up the NICs as described in the section above, no additional flags are
necessary to target priority 0 when using Open MPI as packaged with Intel® EFS or
the Intel® MPI Library

Further PFC tuning of the Arista 7170 switch

Under highly loaded scenarios, the default headroom buffer sizes on the Arista 7170
switch with EOS are not large enough and packet loss occurs even if PFC appears to
be functioning correctly. When a receiving node sends a Tx pause packet, it takes time
for that packet to traverse the network and reach its destination. Headroom buffers on
the switch exist to absorb all packets that are already in flight at the time the Tx
pause is sent. The headroom tries to absorb all in flight packets before the node
receiving the pause packet stops sending. If the headroom is exceeded, then drops
still occur and poor performance may result.
In order to tune the PFC headroom, lower level registers must be adjusted. This can
be accomplished using the following steps:

localhost#enable

then enter the following command which queries pipe 1 for the existing headroom
limits:

localhost#platform barefoot access rr dev_0 device_select tm_top tm_wac_top
wac_pipe[1] csr_mem_wac_ppg_hdr_lmt
note that you can replace wac_pipe[1] with wac_pipe[3] to view the same limits
for pipe 3. The output will look similar to:

0 [0041a000] : 00000000 : hdr_lmt[0]
0 [0041a004] : 000000e8 : hdr_lmt[1]
0 [0041a008] : 00000000 : hdr_lmt[2]
0 [0041a00c] : 000000e8 : hdr_lmt[3]
0 [0041a010] : 00000000 : hdr_lmt[4]
0 [0041a014] : 000000e8 : hdr_lmt[5]
0 [0041a018] : 00000000 : hdr_lmt[6]
0 [0041a01c] : 000000e8 : hdr_lmt[7]
0 [0041a020] : 00000000 : hdr_lmt[8]
0 [0041a024] : 000000e8 : hdr_lmt[9]
0 [0041a028] : 00000000 : hdr_lmt[10]
0 [0041a02c] : 000000e8 : hdr_lmt[11]
0 [0041a030] : 00000000 : hdr_lmt[12]
0 [0041a034] : 000000e8 : hdr_lmt[13]
0 [0041a038] : 00000000 : hdr_lmt[14]
0 [0041a03c] : 000000e8 : hdr_lmt[15]
0 [0041a040] : 00000000 : hdr_lmt[16]
0 [0041a044] : 000000e8 : hdr_lmt[17]
0 [0041a048] : 00000000 : hdr_lmt[18]
0 [0041a04c] : 000000e8 : hdr_lmt[19]
0 [0041a050] : 00000000 : hdr_lmt[20]
0 [0041a054] : 000000e8 : hdr_lmt[21]
0 [0041a058] : 00000000 : hdr_lmt[22]

RPriority Flow Control Configuration and Tuning—Intel® Ethernet Fabric

Intel® Ethernet Fabric
June 2022 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.3 35

0 [0041a05c] : 000000e8 : hdr_lmt[23]
0 [0041a060] : 00000000 : hdr_lmt[24]
0 [0041a064] : 000000e8 : hdr_lmt[25]
0 [0041a068] : 00000000 : hdr_lmt[26]
0 [0041a06c] : 000000e8 : hdr_lmt[27]
0 [0041a070] : 00000000 : hdr_lmt[28]
0 [0041a074] : 000000e8 : hdr_lmt[29]
0 [0041a078] : 00000000 : hdr_lmt[30]
0 [0041a07c] : 000000e8 : hdr_lmt[31]
in this example, the non-zero entries exist in the non-default PPG ids 1,3,5,7,...31
(odd numbered). The exact non-default PPGs may vary from switch reboot to switch
reboot. The value in hex is 0xe8 cells (232) , and each cell is 80 bytes -
232x80=18,560 bytes for each headroom buffer. In practice, increasing this up to
0xe80 (3712*80=296,960 bytes) is large enough to prevent drops in a cluster size of
32 nodes. In order to set this parameter, the following must be run on pipe 1 and 3,
for the PPG ids that are non-zero above:

platform barefoot access wr dev_0 device_select tm_top tm_wac_top wac_pipe[1]
csr_mem_wac_ppg_hdr_lmt hdr_lmt[1] 00000e80

platform barefoot access wr dev_0 device_select tm_top tm_wac_top wac_pipe[3]
csr_mem_wac_ppg_hdr_lmt hdr_lmt[1] 00000e80

platform barefoot access wr dev_0 device_select tm_top tm_wac_top wac_pipe[1]
csr_mem_wac_ppg_hdr_lmt hdr_lmt[3] 00000e80

platform barefoot access wr dev_0 device_select tm_top tm_wac_top wac_pipe[3]
csr_mem_wac_ppg_hdr_lmt hdr_lmt[3] 00000e80

platform barefoot access wr dev_0 device_select tm_top tm_wac_top wac_pipe[1]
csr_mem_wac_ppg_hdr_lmt hdr_lmt[5] 00000e80

platform barefoot access wr dev_0 device_select tm_top tm_wac_top wac_pipe[3]
csr_mem_wac_ppg_hdr_lmt hdr_lmt[5] 00000e80

...

platform barefoot access wr dev_0 device_select tm_top tm_wac_top wac_pipe[1]
csr_mem_wac_ppg_hdr_lmt hdr_lmt[31] 00000e80

platform barefoot access wr dev_0 device_select tm_top tm_wac_top wac_pipe[3]
csr_mem_wac_ppg_hdr_lmt hdr_lmt[31] 00000e80

You may then validate the setting took effect by re-running the first command above:

localhost#platform barefoot access rr dev_0 device_select tm_top tm_wac_top
wac_pipe[1] csr_mem_wac_ppg_hdr_lmt
0 [0040a000] : 00000000 : hdr_lmt[0]
0 [0040a004] : 00000e80 : hdr_lmt[1]
0 [0040a008] : 00000000 : hdr_lmt[2]
0 [0040a00c] : 00000e80 : hdr_lmt[3]
0 [0040a010] : 00000000 : hdr_lmt[4]
0 [0040a014] : 00000e80 : hdr_lmt[5]
0 [0040a018] : 00000000 : hdr_lmt[6]
...

Configuring PFC on Arista 7060 switches
The following recipe maps all traffic to priority 2 on the Arista DCS-7060CX-32S-R
switch running EOS 4.24.1.1F, which has been shown to reliably enable PFC:

myswitch>enable
myswitch#config terminal

R Intel® Ethernet Fabric—Priority Flow Control Configuration and Tuning

Intel® Ethernet Fabric
Performance Tuning Guide June 2022
36 Doc. No.: 632488, Rev.: 1.3

#Configure the QOS policy

myswitch(config)#sh run sec test
myswitch(config)#ip access-list test
myswitch(config-acl-test)#counters per-entry
myswitch(config-acl-test)#10 permit ip any any
myswitch(config-acl-test)#sh run sec class
myswitch(config-acl-test)#class-map type qos match-any test
myswitch(config-cmap-qos-test)#match ip access-group test
myswitch(config-cmap-qos-test)#policy-map type quality-of-service test
myswitch(config-pmap-quality-of-service-test)#class test
myswitch(config-pmap-c-quality-of-service-test-test)#set cos 2
myswitch(config-pmap-c-quality-of-service-test-test)#set traffic-class 2
myswitch(config-pmap-c-quality-of-service-test-test)#class class-default
myswitch(config-pmap-c-quality-of-service-test-class-default)#exit
myswitch(config-pmap-quality-of-service-test)#exit
myswitch(config)#

#Apply the policy on the input interface

myswitch(config)#interface ethernet 1/1-32/1
myswitch(config-if-Et1/1,2/1,3/1,...,31/1,32/1)#service-policy type qos input test
myswitch(config-if-Et1/1,2/1,3/1,...,31/1,32/1)#priority-flow-control priority 2
no-drop
myswitch(config-if-Et1/1,2/1,3/1,...,31/1,32/1)#exit

#optional, copy the running configuration to the startup configuration to persist
a reboot

myswitch(config)# copy running-config startup-config

Configuring PFC on SONiC OS
At this time, non-willing mode must be used with SONiC, so PFC must be configured
explicitly on both the NIC and the switch. To enable PFC explicitly on the NIC on TC0:

systemctl start lldpad
ethtool -A <interface> rx off tx off

ethtool --set-priv-flags ${interface} fw-lldp-agent off

lldptool -Ti ${interface} -V ETS-CFG willing=no
up2tc=0:0,1:0,2:0,3:0,4:0,5:0,6:0,7:0 \\
tsa=0:ets,1:strict,2:strict,3:strict,4:strict,5:strict,6:strict,7:strict
 \\
tcbw=100,0,0,0,0,0,0,0

lldptool -Ti ${iface} -V PFC willing=no enabled=0

Configuring PFC in the SONiC config_db.json file is beyond the scope of this document.
However, the following buffer sizes (in bytes) have been shown to work well for 16-32
nodes connected to a single 64 port Edgecore Mavericks switch with SONiC version
SONiC.202012.26143-dirty-20210729.160956:

 "BUFFER_PROFILE": {
 "ingress_lossless_profile": {
 "dynamic_th": "7",
 "pool": "[BUFFER_POOL|ingress_lossless_pool]",
 "size": "4096",
 "xoff": "100000",
 "xon": "18430"
 },
For more details in configuring SONiC, please see the documentation found here:
https://github.com/Azure/SONiC/wiki/Configuration

RPriority Flow Control Configuration and Tuning—Intel® Ethernet Fabric

Intel® Ethernet Fabric
June 2022 Performance Tuning Guide
Doc. No.: 632488, Rev.: 1.3 37

https://github.com/Azure/SONiC/wiki/Configuration

Validating PFC with FastFabric tools

In the Intel® Ethernet Fabric Suite FastFabric TUI, you can validate the functionality of
the PFC configuration. See Intel® Ethernet Fabric Suite FastFabric User Guide for more
detail. This tool performs many-to-one incast traffic tests and detects packet loss. In
the FastFabric TUI, select 2 (Host Verification/Admin), 6 (Verify PFC via empirical test).
This tool is more thorough than just verifying tx/rx pause counters, because an
improperly "tuned" PFC can still be lossy (for example, if headroom buffer is not large
enough as described earlier in this chapter).

Validating PFC with ethtool counters
The example switch outputs above shows that the switch is receiving and sending PFC
pause frames. These should increase over time when an application is running and
heavily loading the switch. In order to confirm pause frames are also being sent and
received by the hosts, you can use a watch command while the application is running:

:> watch -d -n1 "ethtool -S <interface> | grep priority_0"
Every 1.0s: ethtool -S <interface> | grep priority_0

 tx_priority_0_xon.nic: 8281348
 tx_priority_0_xoff.nic: 2835583234
 rx_priority_0_xon.nic: 39950042
 rx_priority_0_xoff.nic: 39963415
notice there are both tx and rx pause frames for both xon (requested on) and xoff
(requested off). You should see non-zero counters for all four. If you only see tx or rx,
PFC is not fully enabled on the system. In addition to seeing these pause frames
increasing, you should see zero LAN packet drops:

:> ethtool -S <interface> | grep drop
 rx_dropped: 0
 tx_dropped_link_down.nic: 0
 rx_dropped.nic: 0
and also zero RDMA discards reported by irdma:

:> grep . /sys/class/infiniband/<devname>/hw_counters/*Discards
/sys/class/infiniband/<devname>/hw_counters/ip4InDiscards:0
/sys/class/infiniband/<devname>/hw_counters/ip6InDiscards:0

R Intel® Ethernet Fabric—Priority Flow Control Configuration and Tuning

Intel® Ethernet Fabric
Performance Tuning Guide June 2022
38 Doc. No.: 632488, Rev.: 1.3

	Revision History
	Contents
	Tables

	Preface
	Intended Audience
	Intel® Ethernet Fabric Suite Documentation Library
	How to Search the Intel® Ethernet Fabric Suite Documentation Set

	Documentation Conventions
	Best Practices
	License Agreements
	Technical Support

	1.0 Introduction
	1.1 Terminology
	1.2 Performance Tuning Quick Start Guide

	2.0 BIOS and Platform Settings
	2.1 BIOS Recommendations
	2.2 GPUDirect* Requirements

	3.0 Linux* Settings
	3.1 CPU Frequency Scaling Drivers
	3.1.1 Using the Intel® P-State Driver
	3.1.2 Using the ACPI CPUfreq Driver and cpupower Governor

	3.2 Priority Flow Control
	3.3 IRQ affinity and irqbalance
	3.4 Memory Fragmentation
	3.5 irdma module settings
	3.6 Intel Ethernet driver (ice) settings
	3.7 Tuned tuning service

	4.0 MPI Performance
	4.1 MPI Benchmark Fundamentals
	4.2 Intel® MPI Library Settings
	4.3 PSM3 Environment Variables
	4.4 MPI Collective and Intel® oneCCL Tunings
	4.5 MPI Affinity
	4.6 Dual / Multi-Rail
	4.7 TCP Performance

	5.0 Performance Tuning for NVIDIA* GPU
	5.1 CUDA and GPUDirect*
	5.2 NVIDIA* Collectives Communication Library (NCCL*)

	6.0 Priority Flow Control Configuration and Tuning
	6.1 NIC Configuration for PFC
	6.2 Switch Configurations for PFC

