
PROFINET
PROFIdrive Controller
Application

User Manual

11/2021

Introduction 1
Description of the example
application 2
How to use the example
application 3
Hardware configuration in
engineering system 4

Legal information
Warning notice system
This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage
to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices
referring only to property damage have no safety alert symbol. These notices shown below are graded according to the
degree of danger.

DANGER

indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION

indicates that minor personal injury can result if proper precautions are not taken.

NOTICE

indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be
used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property
damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific task
in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified
personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential
hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical docu-
mentation. If products and components from other manufacturers are used, these must be recommended or approved
by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are re-
quired to ensure that the products operate safely and without any problems. The permissible ambient conditions
must be complied with. The information in the relevant documentation must be observed.

Trademarks

All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication may
be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described.
Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this
publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Siemens AG
Digital Industries
Postfach 48 48
90026 NÜRNBERG
GERMANY

11/2021Subject to change
Copyright © Siemens AG 2017-2021.
All rights reserved

Table of contents

1 Introduction . 1
1.1 System Overview . 1

1.2 Security information . 4

1.3 Open Source Software . 5

2 Description of the example application . 6
2.1 Overview . 6

2.1.1 Software layer structure overview . 9

2.2 Application layer structure . 10

2.3 Runtime structure . 12

2.3.1 Execution flow of the example application . 13

2.4 Source code structure . 18

2.5 PDC - PROFIdrive controller . 22

2.5.1 PDC Data types . 22

2.5.1.1 Standard data types . 22

2.5.1.2 Standard function return values . 22

2.5.1.3 PDC - configuration . 23

2.5.1.4 Parameter handling . 25

2.5.1.5 Fault handling . 26

2.6 PNC - PROFINET controller . 27

2.6.1 Data types . 27

2.6.1.1 Reference . 27

2.6.1.2 Function return values . 28

2.6.1.3 Project ident . 28

2.6.1.4 Communication management . 31

2.6.1.5 Cyclic communication . 31

2.6.1.6 Acyclic communication . 31
2.6.1.7 Alarms . 32

3 How to use the example application . 35
3.1 CP1625 Stand-alone use case . 35

3.1.1 Preparing Buildroot Image . 35
3.1.2 Building the application for stand-alone usage . 35

3.1.3 Running the application on the target . 37

3.2 CP1625 Host use case . 38

3.2.1 Preparing Buildroot image . 38

PROFIdrive Controller Application
User Manual, 11/2021

i

3.2.2 Installing PN Device Driver . 39

3.2.3 Loading the PN Device Driver . 39

3.2.4 Building the example application . 39

3.2.5 Running the example application . 40

4 Hardware configuration in engineering system . 41
4.1 Hardware configuration in the TIA Portal . 41

4.1.1 Importing TIA projects . 41

4.1.2 Generating the configuration XML . 42

4.2 Hardware configuration in PNConfigLib . 42

4.2.1 Generating an XML configuration file . 42

ii PROFIdrive Controller Application
User Manual, 11/2021

Introduction 1
1.1 System Overview

Purpose of this documentation

This document aims to describe PROFIdrive controller example application. By means of

PROFIdrive controller example application, users of PROFINET Driver can easily create a user

application for motion controllers that supports PROFIdrive feature connected via PROFINET,

because all standard functionalities for PROFINET and PROFIdrive are provided by easy to use

interface functions. Creator of the user application part does not need to know all details of

PROFINET and especially PROFIdrive profile to make connected drives work in desired way.

In addition to that, it is independent from specific controller system and designed to support

multiple operating systems.

Target group for the manual

These instructions are intended for software developers and should help them to create a motion

controller application user program in a very short amount of time. This requires the following

basic knowledge:

• Programming experience with C/C++

• User experience in Linux operating system

• Experience with PROFINET IO systems

• Experience with PROFIdrive technology

• Basic knowledge of the configuration software TIA Portal or PNConfigLib

• General knowledge of automation technology

What is PROFINET Driver?

PROFINET Driver is a PROFINET IO controller development kit. It is delivered as a com-

plete source code with various example applications. PROFINET driver enables to develop a
PROFINET IO controller in a little development effort. Additionally, PROFINET Driver is able to

support PROFINET IRT (Isochronous Real-Time) communication in case of CP 1625 Develop-
ment board usage in host mode or stand-alone mode. PROFINET IRT communication is highly

important for motion control applications since it provides a communication cycle down to below

31.25 us and PROFINET Driver V2.3 is capable to provide 250 us for CP1625 Host variant and

500 us for CP1625 Stand-alone variant. PROFINET Driver is thus an attractive option partic-

ularly for machine builders who use their own control software, to simply and cost-effectively

connect PROFINET field devices, such as I/Os or drives.

What is PROFIdrive?

PROFIdrive Controller Application
User Manual, 11/2021

1

Introduction
1.1. System Overview

PROFIdrive is the standard profile for drive technology in conjunction with the PROFIBUS and

PROFINET communication systems. PROFIdrive is a vendor-neutral application profile from

PROFIBUS and PROFINET International (PI) (https://www.profibus.com/pi-organization/) which

is focused on drives, encoders, motors, and their applications, which range from simple to very

demanding motion control tasks. It supports both PROFIBUS and PROFINET communication

technologies.

What are the requirements?

In addition to the PROFINET Driver V2.3, you need a PC with a SIMATIC CP

1625 Development Board (https://mall.industry.siemens.com/mall/en/WW/Catalog/Product/

6ES7648-2CF10-1AA0). PROFINET Driver Host and PROFINET Driver Stand alone variants.

A hardware configuration can be created with the TIA Portal engineering system as well as with

PNConfigLib. PNConfigLib is a library that allows you to create PROFINET projects, perform

consistency checks ensure their validation, and to compile these projects. It provides an API to

allow users to call PNConfigLib in their own code.

Supported PROFINET Driver variants

PROFIdrive Controller application supports CP1625 Stand-alone and CP1625 Host variants for

PROFINET Driver V2.3.

Overview of the supplied documentation

a user may need additional documentation that are listed below to develop their system with

PROFINET Driver and PNConfigLib.

2 PROFIdrive Controller Application
User Manual, 11/2021

https://www.profibus.com/pi-organization/
https://mall.industry.siemens.com/mall/en/WW/Catalog/Product/6ES7648-2CF10-1AA0
https://mall.industry.siemens.com/mall/en/WW/Catalog/Product/6ES7648-2CF10-1AA0

Introduction
1.1. System Overview

Table 1.1: Supplied Documentation

Name of the document Why you should read it, and where you can find it

PROFINET System Description
System Manual

This document includes the basics of the following

topics involved in PROFINET IO:

Network components, data exchange and commu-

nication, PROFINET IO, application example for

PROFINET IO controller.

This document can be found over this web link.

Quick Start PROFINET Driver V2.3
Getting Started

Quick Start describes the steps required for commis-

sioning PROFINET Driver on supported platforms.

This document is included in PROFINET Driver CD

delivery.

IO-Base User Programming Inter-
face for PN Driver
Programming Manual

This document describes the IO-Base API which rep-

resents the interface for creating your own user pro-

grams.

This document is included in PROFINET Driver CD

delivery.

PNConfigLib User Manual and
Documentation
Manual

The scope of this user documentation is to provide

technical details about the technology, components,

requirements and constraints of PNConfigLib as well

as acting as a guide for using PNConfigLib.

This document is included in PROFINET Driver CD

delivery.

Technical Specification for
PROFINET
Manual

This document describes the PROFIdrive feature over

PROFIBUS and PROFINET devices.

This document can be found over this web link.

Isochronous Mode Guideline
Guideline

This document describes PROFINET Isochronous

Mode in detailed.
This document can be found over this web link.

PROFIdrive Technical Spec-
ification for PROFIBUS and
PROFINET
Manual

This document describes PROFIdrive technology and

its communication structure in detailed.

This document can be found over this web link.

Additional support

Please send questions, comments and suggestions regarding this manual in writing to the spec-
ified e-mail addresses below. For useful product information about PROFINET Driver and PN-

ConfigLib, please visit the following address (https://support.industry.siemens.com/cs/products/

6es7195-3aa00-0ya0).

In addition, you can find general information on the internet (https://www.siemens.com/

PROFIdrive Controller Application
User Manual, 11/2021

3

https://www.profibus.com/download/profinet-technology-and-application-system-description/
https://www.profibus.com/download/profinet-specification/
https://www.profibus.com/download/isochronous-mode-guideline/
https://www.profibus.com/download/profidrive-profile-drive-technology
https://support.industry.siemens.com/cs/products/6es7195-3aa00-0ya0
https://support.industry.siemens.com/cs/products/6es7195-3aa00-0ya0
https://www.siemens.com/profinet-development
https://www.siemens.com/profinet-development

Introduction
1.2. Security information

profinet-development).

Technical contact information worldwide

Siemens Sanayi ve Ticaret A.Ş. - E-mail:(mailto:profinet.devkits.industry@siemens.com)

Office Address:

Yakacık Caddesi No 111

34870 Istanbul, Turkey

Technical contact information for the U.S.

The PROFI Interface Center - Phone: +1 (423) 262-2576

(https://www.profiinterfacecenter.com) - E-mail:(mailto:PIC.industry@siemens.com)

Office Address:

Siemens Industry, Inc.

C/O The PROFI Interface Center

One Internet Plaza

Johnson City, TN 37604

Technical contact information for China

The PROFI Interface Center China - Phone: +86 (10) 6476-4725

Office Address: - E-mail: (mailto:Profinet.cn@siemens.com)

7, Wangjing Zhonghuan Nanlu

100102 Beijing

1.2 Security information

Siemens provides products and solutions with industrial security functions that support the se-

cure operation of plants, systems, machines and networks. In order to protect plants, systems,

machines and networks against cyber threats, it is necessary to implement and continuously
maintain a holistic, state-of-the-art industrial security concept. Siemens’ products and solutions

constitute one element of such a concept. Customers are responsible for preventing unau-

thorized access to their plants, systems, machines, networks. Such systems, machines and

components should only be connected to an enterprise network or the internet if and to the

extent such a connection is necessary and only when appropriate security measures (e.g. fire-

walls and/or network segmentation) are in place. For additional information on industrial security

measures that may be implemented, please visit (https://www.siemens.com/industrialsecurity).

Siemens’ products and solutions undergo continuous development to make them more secure.

Siemens strongly recommends that product updates are applied as soon as they are avail-

able and that the latest product versions are used. Use of product versions that are no longer
supported, and failure to apply the latest updates may increase customers’ exposure to cyber

threats. To stay informed about product updates, follow us on Twitter (@ProductCERT), regis-
ter to our advisory mailing list or subscribe to the Siemens Industrial Security RSS Feed under

(https://new.siemens.com/global/en/products/services/cert.html#Subscriptions).

4 PROFIdrive Controller Application
User Manual, 11/2021

https://www.siemens.com/profinet-development
https://www.siemens.com/profinet-development
https://www.siemens.com/profinet-development
mailto:profinet.devkits.industry@siemens.com
(https://www.profiinterfacecenter.com
mailto:PIC.industry@siemens.com
mailto:Profinet.cn@siemens.com
https://www.siemens.com/industrialsecurity
https://new.siemens.com/global/en/products/services/cert.html#Subscriptions

Introduction
1.3. Open Source Software

1.3 Open Source Software

The product/system described in this document may use Open Source Software or any sim-

ilar software of a third party (hereinafter referred to as “OSS”). The OSS is listed in the

Readme_OSS-file of the product. The purchaser of the product/system described in this doc-

ument (hereinafter referred to as “the Customer”) is responsible for the right to use OSS that

is required for the product to operate safely and without any problems in accordance with the

respective license conditions of the OSS.

PROFIdrive Controller Application
User Manual, 11/2021

5

Description of the example application 2
2.1 Overview

PROFIdrive motion controller example application aims to demonstrate how PROFINET Driver

and PROFIdrive interfaces can be used in order to develop a motion controller for drives, en-

coders, industrial motor applications, which range from simple to very demanding motion control

tasks.

Structure of PROFIdrive motion controller example application

In order to provide an actual demonstration, the components that are shown in Fig. 2.1 are used

for this purpose.

Fig. 2.1: PROFIdrive controller application

6 PROFIdrive Controller Application
User Manual, 11/2021

Description of the example application
2.1. Overview

Note: The required components and their responsibilities in the example application are

explained below. Article numbers for the related devices can be found at the table Table 2.1.

Table 2.1: Component List

Component Name Article Number

1 SIMATIC CP 1625 6ES7648-2CF10-1BA0

PROFINET Driver 6ES7195-3AA00-0YA0

2 SINAMICS S210 Servo Drive System 6SL3210-5HB10-1UF0

3 EB200P-2 Evaluation Board 6ES7195-3BE00-0YA0

4 SIMATIC HMI KP8 6AV3688-3AF37-0AX0

PROFINET Driver and SIMATIC CP 1625Dev development board

PROFINET Driver (https://mall.industry.siemens.com/mall/en/WW/Catalog/Product/

6ES7195-3AA00-0YA0) is a development kit that allows the users to create their in-house

PROFINET controller solutions. In this example application, PROFINET Driver controls

and configures PROFINET IO Devices that are connected to the system regarding its user

application algorithm.

The user application layer of this example is compiled with PROFINET Driver source code and

PROFIdrive library that is delivered inside this example application. The user application calls

IO-Base interface of PROFINET Driver to establish PROFINET communication with PROFINET

IO Devices that are located on the network. To be able to send PROFINET IO data to IO De-

vices, the user application calls the related interface functions of IO-Base that is explained in

the document “IO-Base User Programming Interface for PN Driver”. To be able to provide pre-

cise control on motion control devices and PROFINET IO Devices, the PROFINET Isochronous

Realtime feature of PROFINET Driver has been used in this example. This example application

can be considered as an example of PROFIdrive controller as well as Isochronous Realtime

Controller since both features have been demonstrated.

Since the user application algorithm of this example application requires all PROFINET IO data

to be handled within a restricted time, PROFINET Isochronous Realtime mode communication

must be provided by PROFINET Driver. Due to only CP1625 Host and CP1625 Stand-alone

variants of PROFINET Driver provide such a capability, one of these variants must be used

as PROFINET IO Controller in the example application. In the next chapters, the usage of
both variants are explained. The user who is a member of PROFINET organization PI (https:

//www.profibus.com) is able to find more detailed information about PROFINET Isochronous

Realtime mode, the user can refer “Isochronous Mode Guideline”* document.

SINAMICS S210 servo drive system

The SINAMICS S210 (https://mall.industry.siemens.com/mall/de/WW/Catalog/Product/

6SL3210-5HB10-1UF0) is a single-axis servo motor drive, it is designed for connection

PROFIdrive Controller Application
User Manual, 11/2021

7

https://mall.industry.siemens.com/mall/en/WW/Catalog/Product/6ES7195-3AA00-0YA0
https://mall.industry.siemens.com/mall/en/WW/Catalog/Product/6ES7195-3AA00-0YA0
https://www.profibus.com
https://www.profibus.com
https://mall.industry.siemens.com/mall/de/WW/Catalog/Product/6SL3210-5HB10-1UF0
https://mall.industry.siemens.com/mall/de/WW/Catalog/Product/6SL3210-5HB10-1UF0

Description of the example application
2.1. Overview

to SIMOTICS S-1FK2 synchronous servomotors. PROFINET RT/IRT is available for connection

to a higher-level control system.

In order to establish communication between the PROFINET Driver and SINAMICS S210,

PROFINET Driver configures SINAMICS S210 at the initialization step, and activate the

topology-based initialization. SINAMICS S210 also imports the telegram settings from the

PROFINET Driver.

PROFINET Driver communicates with SINAMICS S210 servo drive systems over PROFIdrive

telegram messages. PROFIdrive telegrams are used to cyclically transfer IO data in a defined

format between the PROFINET IO controller and IO devices that support PROFIdrive. By means

of the telegram messages, this example application is able to receive the position of servos and

adjust the velocity of servos.

For more detailed information about PROFIdrive technology and PROFIdrive telegram mes-

sages, the user who is a member of PROFINET organization PI (https://www.profibus.com)

can refer to PROFIdrive specification “PROFIdrive Technical Specification for PROFIBUS and

PROFINET”.

EB200P-2 evaluation board

EK-ERTEC 200P PN IO Evaluation kit for PROFINET IO Device development (https://

mall.industry.siemens.com/mall/de/WW/Catalog/Product/6ES7195-3BE00-0YA0), this kit uses

ERTEC 200P-2 Evaluation Board EB200P-2 as base development board. This product can be

used in the PROFINET IO Device development process by the PROFINET IO device manufac-

turers.

Responsibility of EB200P-2 Evaluation Board in this example application is to set its output ac-

cording to the command from PROFINET Driver. PROFINET Driver updates I/O data of the

EB200P-2 Evaluation Board. By means of the output data of EB200P-2 Evaluation Board, exter-

nal systems such as flashing led in this example application can be controlled for any purpose.

SIMATIC HMI KP8

SIMATIC HMI KP8 (https://mall.industry.siemens.com/mall/en/WW/Catalog/Product/

6AV3688-3AF37-0AX0) is a Key Panel that is containing 8 short-stroke switches with

multi-colored LEDs. It supports PROFINET communication. This HMI device shows you

operating states of the system. In addition to that, it is used to get user inputs and transmit them

to a super-ordinated system over PROFINET.

In this example application, PROFINET Driver receives HMI KP8’s output messages and set the

color of KP8’s button regarding to program state. The received outputs from KP8 are transmitted

to the user application over PROFINET Driver’s user interface and these input messages are
interpreted by the user application. According to these inputs, user application sets the system

state.

8 PROFIdrive Controller Application
User Manual, 11/2021

https://www.profibus.com
https://mall.industry.siemens.com/mall/de/WW/Catalog/Product/6ES7195-3BE00-0YA0
https://mall.industry.siemens.com/mall/de/WW/Catalog/Product/6ES7195-3BE00-0YA0
https://mall.industry.siemens.com/mall/en/WW/Catalog/Product/6AV3688-3AF37-0AX0
https://mall.industry.siemens.com/mall/en/WW/Catalog/Product/6AV3688-3AF37-0AX0

Description of the example application
2.1. Overview

2.1.1 Software layer structure overview

This section describes the general architecture of the PROFIdrive controller example application.

Fig. 2.2: Architecture of a PROFIdrive controller

For implementation of given PROFIdrive example application, it is necessary to use the

PROFIdrive Controller layer and the Communication layer. Beside functionalities mentioned

below, the PDC provides interface for motion control applications.

The PDC layer implements following PROFIdrive specification related functionalities:

• Handling the PROFIdrive state machine (e.g. switch an axis ON/OFF)

• Running an axis in velocity or position mode

• Reading and writing parameters

• Mapping telegrams

• Handling sign of life

• Handling faults and alarms

Note: All PROFIdrive related IO data are handled by PDC layer. When the PROFIdrive related

IO data is ready, it is sent to PNC layer in order to transmit in PROFINET context.

PROFIdrive Controller Application
User Manual, 11/2021

9

Description of the example application
2.2. Application layer structure

The PNC layer implements PROFINET related functionalities:

• Cyclic data handling

• Acyclic data handling

• Alarm data handling

• Clock synchronization

Note: The PNC layer is a wrapper for PROFINET Driver IO Base interface, since this adapta-

tion makes the usage easier.

2.2 Application layer structure

Inside PROFIdrive motion controller example application there are two interface layers that sim-

plify the usage of PROFIdrive devices, which are connected to a PROFINET controller system.

The PNC (PROFINET Controller) API is used to provide PROFINET controller related function-

alities like cyclic, acyclic and alarm data handling at application layer in a standardized way.

So, it is possible to use the whole example application on different runtime systems by just

implementing a proper wrapper for target system.

The PDC (PROFIdrive Controller) API is used to provide main PROFIdrive functionalities in a

more abstract way. It provides functions to run connected axis with velocity or position set points

with respect of chosen PROFIdrive application class and take over all necessary normalization,

calculation and mapping in internal modules.

Both application interfaces provide standardized data types and functions to user application

layer. That means public PNC function can be used in user application level as well as public

PDC functions. PDC is using PNC functionalities as well. In addition to that, sources will include

also internal functions and data types which are used by standard application layer (for basic

controller application structure and elements).

10 PROFIdrive Controller Application
User Manual, 11/2021

Description of the example application
2.2. Application layer structure

Fig. 2.3: Application Layer Structure

PROFIdrive Controller Application
User Manual, 11/2021

11

Description of the example application
2.3. Runtime structure

2.3 Runtime structure

After startup phase the example application runs in a main cycle divided into system and appli-

cation parts. In system part all internal, not time critical tasks are executed. In application part

the user can implement any background tasks by use of appropriate PNC and PDC functions. If

there are configured and connected devices with cyclic data exchange, the cyclic part is sepa-

rated into an ordered sequence of PROFINET and appropriate profile parts. The internal system

part handles reading and writing of PROFINET input and output data (of submodules) and em-

beds the internal cyclic PROFIdrive related parts, like mapping raw data to used PROFIdrive

telegrams. The user then will be able to implement cyclic related programs in Servo part.

Fig. 2.4: PROFIdrive Controller Application Runtime Structure

12 PROFIdrive Controller Application
User Manual, 11/2021

Description of the example application
2.3. Runtime structure

2.3.1 Execution flow of the example application

The execution flow of the example application can be seen as a flow chart at Fig. 2.5.

Fig. 2.5: Execution flow

PROFIdrive Controller Application
User Manual, 11/2021

13

Description of the example application
2.3. Runtime structure

The execution flow of the example application and critical steps are explained below.

System Startup

Initialization of the system is initiated by calling ctrl_Startup() inside the main entry. The

initialization phase consists of the following steps:

Table 2.2: Initialization Steps

Step Function Description

1 ctrl_Startup() This function starts all PROFINET Driver’s

tasks and calls all necessary functions in or-

der to establish PROFINET communication.

2 PNC_ctrl_load_config() Configuration XML which is produced by en-

gineering tools is loaded to PROFINET Driver

over IO-Base interface.

3 PNC_ctrl_start() Services that are required to start PROFINET

Driver are initiated in this function.

Inside this function, callback functions that

are necessary in order to communicate with

IO-Base interface are registered.

4 PNC_submodList_read_req() Submodule parameters of each device are

transported to the user application level over

the related IO-Base function. During commu-

nication with PN IO Devices, these parame-

ters are used to control the related parame-

ters of PN IO Devices that are located on the

PROFINET network.

5 PNC_ctrl_set_mode() The mode of PROFINET Driver is set to OP-

ERATE in order to initiate PROFINET Driver’s
services.

6 APP_Common_Init_Us_Param() Initialization of global user data related to the
this example application.

Note: For more detailed information about callback mechanism, please refer to “IO-Base User

Programming Interface for PN Driver” document.

14 PROFIdrive Controller Application
User Manual, 11/2021

Description of the example application
2.3. Runtime structure

Registered callback functions

Callback functions that are used in this example applications are explained below.

Table 2.3: Callback Functions

Callback Function Description

l_cbf_ctrl_diag_resp() This function is called by IO-Base interface when a re-

sponse for the diagnostic request arrives from the PN IO

device.

l_cbf_mode_ind() This function is called by IO-Base interface when the local

mode of PROFINET Driver is changed.

l_cbf_ds_read_conf() This function is called by IO-Base interface when read data

record arrives from the PN IO device.

l_cbf_ds_write_conf() This function is called by IO-Base interface when write data

record arrives from the PN IO device.

l_cbf_alarm_ind() This function is called by IO-Base interface when an alarm

is received from the PN IO device. All alarms are handled

inside this callback function.

l_cbf_dev_act() This function is called by IO-Base interface when the result

of activation/deactivation message arrives.

l_cbf_opfault_ind() This function is called by IO-Base interface when a violation

of isochronous real-time mode occurs.

l_cbf_startop_ind() This function is called by IO-Base interface to inform the

start of isochronous real-time data processing.

Establishment of PROFINET communication

The establishment process of PROFINET communication is started inside the

ctrl_Startup() function by calling IOB_ctrl_start() function. PROFINET Driver

tries to establish an Application Relation (AR) with the PN IO devices that are provided in

engineering XML input.

Table 2.4: Device return

Function Description

alrm_DeviceReturn() For every successful Application Relation establishment with

each PN IO device, the user application layer is informed

over l_cbf_alarm_ind callback function with alarm type

PNIO_ALARM_DEV_RETURN.

Device failure control

PROFIdrive Controller Application
User Manual, 11/2021

15

Description of the example application
2.3. Runtime structure

In case of a failure in PN IO devices which are located on the PROFINET network, alarm in-

formation is noticed to the user application over l_cbf_alarm_ind callback function with the

PNC_PNIO_ALARM_DEV_FAILURE flag.

By means of alrm_DeviceFailure function, the user application layer is able to determine

the PN IO device that has alarm information.

Table 2.5: Alarm device return

Function Description

alrm_DeviceFailure() The user application is informed in case of alarm information is

available in one of the PN IO devices.

Command execution

In every communication cycle time the user application is informed by l_cbf_startop_ind()

callback function. The IO data of all devices must be processed within a restricted time inside this

function handler. IO data that are coming from IO devices are updated and stored in the global

buffer. Inside the function ctrl_cycUpdateData(), data is processed regarding whether it is

coming from PROFIdrive devices or other PN IO devices. If the data belongs to one of the other

PN IO devices expect PROFIdrive, it is handled by usr_IoDevs() function.

Table 2.6: Command execution functions

Function Description

KeyPanel_Handler() This function handles the IO data of HMI KP8.

EB200P_Device _Handler() This function handles the IO data of EB200P-2 Evalu-

ation Board.

If devNo is equal to the value of L_DEV_ID_KEYB that is defined in the header file “pn_device.h”
which is located under “ProfidriveAppl/src/pnio_common” folder, KeyPanel_Handler() is ex-

ecuted. Inside this function, the output data from the HMI KP8 is processed regarding the
definitions in “ProfidriveAppl/src/pnio-devices/KP8/kp8.h”.

There are 8 types of commands that can be executed over HMI KP8. Each command is as-

signed to a different button of HMI KP8. The definition of the commands can be found in
“ProfidriveAppl/src/command-exec/cmd_exec.cpp”.

Control of the PROFIdrive devices

After the successful establishment of AR with the PROFIdrive devices which are 2 SINAMICS

S210 in this example application, the user application will be informed in every IRT clock cycle

over l_cbf_startop_ind() callback function that is registered at the startup sequence. The

handling of the PROFIdrive state machine, the sign of life, and the absolute degree update are
handled in this function.

16 PROFIdrive Controller Application
User Manual, 11/2021

Description of the example application
2.3. Runtime structure

Table 2.7: Control function of PROFIdrive devices

Step Function Description

1 pd_state_machine() This function handles PROFIdrive state machine

mechanism regarding to PROFIdrive technical

specification.

2 pd_SOL() This function handles of Sign Of Life.

3 pf_read_XIST2_cyc() This function updates absolute degree value of

encoders.

IRT send clock is selected 500 us for CP1625 Host variant and 1 ms for CP1625 Stand-alone

variant for this example application, the user can adjust these values over the engineering inter-

face.

Motion control in endless loop

After the successful initialization of PROFINET Driver and AR establishment with the PN IO de-

vices as described above, in case the user sends the “Motion control in endless loop” command

over HMI KP8 device, the system starts to run in endless loop as described the Table 2.8.

Motion control in an endless loop is a state machine that can be enabled over HMI KP8 panel

by the user. In this state machine, the system is running forever until the user stops. Execution

steps in this state machine:

PROFIdrive Controller Application
User Manual, 11/2021

17

Description of the example application
2.4. Source code structure

Table 2.8: Steps of motion control in endless loop

Step Function Description

1 Servo_Init() Initializes of servos to be able start to move.

2 Servo_Home_Axes() Sets the position angle of servos to the homing position

that is defined in “servo-control.hh” which is located

under “ProfidriveAppl/src/servo-control/”. When the

homing position established both servos are stopped.

3 DemoWallStateMachine() Starts to run both servos from the homing posi-

tion. The velocity of servos are determined regard-

ing the defined values in “demowall-statemachine.cpp”

which is located under “ProfidriveAppl/src/ ” The

speed value of servos is increased until it reaches

MAX_SPEED_1000RPM value. If the velocity is equal to

MAX_SPEED_1000RPM value, then the velocity of ser-

vos is decreased slowly until it reaches to 0.

4 Servo_Get_Position() The actual positions of both servos are updated in ev-

ery cycle inside l_cbf_startop_ind().

5 Flash_LED_ON() If the position of servos matches the homing position,

the related output of the EB200P-2 Evaluation board

is set to high in order to flash the LEDs that are con-

nected to the EB200P-2 Evaluation board.

2.4 Source code structure

The following table describes all source structure elements and the corresponding content re-

ferring to the functionality inside the PROFIdrive Controller Application. On the table below, the

“mandatory” statement refers that these components are compulsory, and they are required by

PROFINET Driver library, on the contrary to the “mandatory” statement, the “optional” statement
refers that there is no obligation to implement these APIs in case the user prefers to adapt this

source code to his application. Such as “math.h”, if application does not require this library, the

user can remove it from the “common.h” header file. However, files that are stated as “manda-

tory” must be used in the user’s custom application.

18 PROFIdrive Controller Application
User Manual, 11/2021

Description of the example application
2.4. Source code structure

Table 2.9: Source Structure

Folder File Description

Common common.h Common includes and definitions (manda-

tory).

Additional common includes and definitions

(optional) (for example <math.h>).

trace.cpp

trace.h

Involves trace modules (mandatory). Header

includes macro definitions for trace endpoint

(for example “printf” on a console).

utils.cpp

utils.h

Header includes common macros (manda-

tory).

Implementation of some macro content is op-

tional for PNC wrapper layer specific utilities

(optional). The user is free to use some of

these macros according to his application

pnc pnc_api.cpp

pnc_api.h

PROFINET controller application interface

Implementation of PNC functions and data

types (calls system specific functions of PNC

wrapper).

pnc_wrapper.cpp

pnc_wrapper.h

Implementation of wrapper functions

(mandatory). Content depends completely

on used system and is connected to defined

functions in PNC.

pnio_devices kp8.cpp

kp8.h

KP8 general button input control structure

and color management, KP8 as an IOD is de-

clared in header file.

tm-didq-10-24v.cpp

kp8.h

tm-didq-10-24v.h

Timer DIDQ-10-24v module internal data

structure definitions, input / output control

management.

PROFIdrive Controller Application
User Manual, 11/2021

19

Description of the example application
2.4. Source code structure

Table 2.10: Source Structure

Folder File Description

pdc pdc_acyc.cpp

pdc_acyc.h

PROFIdrive controller application interface

Implementation of PDF functions and data

types Handling of PROFIdrive Parameter

functionalities (calls system specific functions

of PDC wrapper).

pdc_api.cpp

pdc_api.h

Handling of cyclic PROFIdrive related data

implementation of state machine, fault han-

dling, sign of life, telegram data mapping, in-

terpolator and position Controller.

pdc_int.h Type and structure definitions for PROFIdrive

related content.

pdc_main.cpp Main implementations of PROFIdrive related

content.

ctrl ctrl_acyc_data.cpp

ctrl_acyc_data.h

Processing of acyclic data updates and data

records.

ctrl_alrm_data.cpp

ctrl_alrm_data.h

Handling of alarm data.

ctrl_cyc_data.cpp

ctrl_cyc_data.h

Handling of cyclic update of data (called / trig-

gered by PNC API). Handling of change of

data status Implementation for cyclic thread

(for RT only configurations).

ctrl_cycle.cpp Cyclic operation of the controller and in-

cludes functionality for create reference num-

bers and device identification.

ctrl_main.cpp Main function of application triggers startup

and cyclic operation phase Enables stop

functionality for controller (PNC API).

ctrl_startup.cpp Handling of startup phase Initialization of Ap-

plication Loading of controller configuration.

• Start controller.

• Readout submodule configuration.

• Change controller mode (PNC API).

• Creation of cyclic (RT only configura-
tion) and interpolator thread.

ctrl.h Common header for the controller (basic

structures for controller and device(s)).

20 PROFIdrive Controller Application
User Manual, 11/2021

Description of the example application
2.4. Source code structure

Table 2.11: Source Structure

Folder File Description

demo-app cmd_exec.cpp

cmd_exec.h

Execute incoming commands from main ap-

plication or Demo-app state machine. All

system upper level commands are pro-

ceeded.

demoapp-Statemach.cpp Demo-app state machine is controlled. It

controls the word to be shown to the user ac-

cording to system’s speed.

eb200p.cpp Control of EB200P IO data as IOD in cyclic

communication.

flash-light.cpp

flash-light.h

EB200P IOD control from user application

regarding to demo-app application’s special

application requirements.

key-panel.cpp KP8 input / output control from user applica-

tion.

servo-control.cpp

servo-control.h

Controlling drive unit according to application

requirements.

Control of velocity, homing angle and position

control.

app_main.cpp Check all command sources, acknowledge

all devices errors, user parameter initializa-

tion.

Control of application specific application.

demoapp-common.h Common data types and definitions for

Demo-app

pd_devices pd-servo-DU.cpp

pd-servo-DU.h

Velocity setting, Axis tipping, Axis start / stop

management.

pdc_acyc.cpp

pdc_acyc.h

Handling of PROFIdrive Parameter function-

alities.

pdc_api.cpp
pdc_api.h

PROFIdrive controller application interface.
Implementation of PDC functions and data

types.

pdc_main.cpp Main implementations of PROFIdrive related

content.

pn-common pn_device.h Common data structure definition for

PROFINET devices.

PROFIdrive Controller Application
User Manual, 11/2021

21

Description of the example application
2.5. PDC - PROFIdrive controller

2.5 PDC - PROFIdrive controller

In PDC, user related part includes just necessary and easy to use functions and data types for

handling a PROFIdrive device in the controller application.

The internal handling of PROFIdrive controller in connection with PROFINET controller interface

is implemented by the standard application and internal PDC parts. The interface also handles

all functions and data from user related part. The sources for the internal part are also visible /

present but they shouldn’t be known or modified by the user.

2.5.1 PDC Data types

2.5.1.1 Standard data types

“PROFIdrive Technical Specification for PROFIBUS and PROFINET” is referenced for data

types of PDC interface. The type definitions for used runtime system are placed in the header

file of PDC API function interface.

Note: The complete list of standard type definitions can be found in file “pdc_api.h”.

Table 2.12: Standard Data Types

Data type PROFIdrive Data Type
(numeric identifier)

PDC Data type

Boolean 1 PDC_BOOL

Integer8 2 PDC_INT8

Unsigned16 6 PDC_UINT16

Unsigned32 7 PDC_UINT32

2.5.1.2 Standard function return values

Besides function related return values “status” is describing the actual execution state of function.

All possible returned values are grouped in separate ranges to classify the status more quickly.

22 PROFIdrive Controller Application
User Manual, 11/2021

Description of the example application
2.5. PDC - PROFIdrive controller

Table 2.13: Standard Function Return Values

Return values Description

0x00000000 Function executed successfully (without any error)

0x0001 – 0x0FFF Function returns specific status

0x1000 – 0x10FF User defined error codes

0x8000 – 0x8FFF Error because of an internal execution

0xFFFFFFFF Global error (not specified in detail)

2.5.1.3 PDC - configuration

Drive object reference

Reference to identify a drive object in list of all available drive objects.

Table 2.14: Drive Object Reference

PDC_DO_REF Description

ID Identification of drive object

Drive object properties

This structure represents all available properties as set by PROFIdrive parameters in the DO

(Drive Object). For instance, parameter p922 is used to display the actual setting of the

PROFIdrive telegram configuration in the DO. Please refer “PROFIdrive Technical Specification

for PROFIBUS and PROFINET”.

PROFIdrive Controller Application
User Manual, 11/2021

23

Description of the example application
2.5. PDC - PROFIdrive controller

Table 2.15: Drive Object Properties

PDC_DO_PROP Description

ID Identification of drive object (PDC_DO_REF)

DOtype (p975.1) Manufacturer specific

DOtypeClass (p975.5) CU, AXIS, INFEED

HWversion Hardware version(s) (p975)

SWversion Software version(s) (p975)

SpeedNormVal Speed normalization value

SpeedMax Maximum speed

SpeedRes Speed resolution

G1MeasType Measurement type of G1 (p979)

G1Res Resolution of G1 (p979)

G1RefStratType Reference strategy type of G1 (p979)

SolTolErr Sign of life tolerated errors (p925)

FaultBufSize Fault buffer size (p944-p952)

Note: It may be used to set / write (some) properties of the DOs in future versions.

Drive object status

Table 2.16: Drive Object Status

PDC_DO_STAT Description

InOp Device is in operation

InPositioning Device is in Positioning mode

InVelocity Device is in Velocity mode

InError Device is in Error state

Telegram content

The telegram structure consists of all possible telegram elements, which can appear in imple-

mented telegrams. The elements are mapped to input / output data by internal functions.

24 PROFIdrive Controller Application
User Manual, 11/2021

Description of the example application
2.5. PDC - PROFIdrive controller

Table 2.17: Telegram Content

PDC_DO_TELEGRAM Description

TelNo Number of telegram

STW1 Control word 1

N_SOLL_A Set point value (16 Bit)

N_SOLL_B Set point value (32Bit)

STW1 Control word 2

.

ZSW1 Status word 1

Note: There is a lot of PDC_DO_TELEGRAM data type that is defined in PROFIdrive standard.

In order to provide a less complex and understandable table in this document, only a few of them

are mentioned at the table above, to be able to find all data types please refer to “PROFIdrive

Technical Specification for PROFIBUS and PROFINET”.

2.5.1.4 Parameter handling

For each element of a Parameter, a corresponding structure is defined.

Table 2.18: Paramater Values

PDC_PAR_VALUE_DATA Description

ParamNo Number of parameter

ParamSubIdx Sub index of parameter

NoOfElements Count of parameter (single or sub index)

NoOfValues Count of values (sub index)

nDataLen Length of data

Format Data format

nFormatLen Length of data format

pi8Value. . . pf32Value Reference to parameter values

PROFIdrive Controller Application
User Manual, 11/2021

25

Description of the example application
2.5. PDC - PROFIdrive controller

Table 2.19: Paramater Description

PDC_PAR_DESC_DATA Description

ParamDesc Parameter data description

Table 2.20: Paramater Text

PDC_PAR_TEXT_DATA Description

aParamText Character array with parameter text

2.5.1.5 Fault handling

Table 2.21: Fault Handling

PDC_ERROR Description

FaultEntryNo Fault error entry number

FaultNo Fault error code (p944)

26 PROFIdrive Controller Application
User Manual, 11/2021

Description of the example application
2.6. PNC - PROFINET controller

2.6 PNC - PROFINET controller

In PNC the PROFINET functionalities of the controller are represented by functions and data

types for the user application part, which are not related to a specific driver or platform solution.

These functions and data types are oriented to PROFINET standards for cyclic, acyclic and

alarm channel ARs. The implementation of these standardized functions then represents the

usage of the target PROFINET controller platform with their specific functionalities. Therefore,

for PNC it will be necessary to write a proper wrapper file for used controller type to adapt it to

used platform. All application content is independent of used controller platform.

2.6.1 Data types

Basic data types from the C standard library are used by the PNC component.

2.6.1.1 Reference

Table 2.22: Submodule

PNC_GEO_ADDR_SUBMOD Data type Description

devNo uint16_t device / station number

API uint32_t application identifier

slot uint32_t slot number

subSlot uint32_t subslot number

Table 2.23: Submodule Reference

PNC_SUBMOD_REF Data type Description

GeoAddr PNC_GEO_ADDR_SUBMOD Geographical address (submodule)

according to PROFINET standard

handleID uint32_t Handle for identification of commu-
nication object

Table 2.24: Device

PNC_GEO_ADDR_DEV Data type Description

devNo uint16_t device / station number

PROFIdrive Controller Application
User Manual, 11/2021

27

Description of the example application
2.6. PNC - PROFINET controller

Table 2.25: Device Reference

PNC_DEV_REF Data type Description

GeoAddr PNC_GEO_ADDR_SUBMOD Geographical address (submodule) ac-

cording to PROFINET standard

handleID uint32_t Handle for identification of communica-

tion object

2.6.1.2 Function return values

Table 2.26: PNC Function return values

Name Data type Description

PNC_RESULT uint32_t Geographical address (submodule)

according to PROFINET standard

PNC_OK uint32_t Function executed successfully

(without any error)

PNC_ERR uint32_t Error at internal Execution

PNC_xyz uint32_t Specific error description depend-

ing on returning function

2.6.1.3 Project ident

Table 2.27: PN IO Types

PNC_IO_TYPE (enum) Value Description

PNC_IO_IN 0 Input data type

PNC_IO_OUT 1 Output data type

Table 2.28: PN data types

PNC_PN_DATA_TYPE
(enum)

Value Description

PNC_DATA_RT 0 Realtime data

PNC_DATA_IRT 1 Isochronous Realtime data

28 PROFIdrive Controller Application
User Manual, 11/2021

Description of the example application
2.6. PNC - PROFINET controller

Table 2.29: Submodule list

PNC_SUBMOD_LIST Data type Description

SmRef PNC_SUBMOD_REF Submodule reference

lenIn uint32_t Length of input data

dataType PNC_IO_TYPE Type of data (input/output)

lenOut uint32_t Length of output data

dataType PNC_PN_DATA_TYPE RT/IRT data

cycleTime uint32_t Cycle time in us

cacf uint32_t CACF controller application cycle

factor

redFactor uint32_t Reduction Factor

phase uint32_t Phase

ti uint32_t Ti time in us

to uint32_t To time in us

modId uint32_t Module ID

submodId uint32_t Submodule ID

Table 2.30: Controller Information

PNC_CTRL_INFO Data type Description

CtrlName Array of uint8_t

[PNC_IP_LEN]

Controller name (a.k.a. PN name)

CtrlIp Array of uint8_t

[PNC_IP_LEN]

Controller IP address

SubnetMask Array of uint8_t

[PNC_IP_LEN]

Controller Subnet Mask

GatewayIp Array of uint8_t

[PNC_IP_LEN]

Controller Gateway IP address

(a.k.a. Router IP)

PROFIdrive Controller Application
User Manual, 11/2021

29

Description of the example application
2.6. PNC - PROFINET controller

Table 2.31: Controller Cycle Information

PNC_CTRL_CYCLE_INFO Data type Description

tcaStart uint32_t Time controller application start value

(referring to cycle start) in us

tcaEnd uint32_t Time controller application end value

(referring to cycle start) in us

Table 2.32: PN Controller Configuration

PNC_CONFIG Data type Description

pConfig uint8_t * Pointer to configuration data

configLen uint32_t Length of configuration data

pRema uint8_t * Pointer to remanent data

remaLen uint32_t Length of remanent data

Table 2.33: Device Information

PNC_DEV_LIST Data type Description

DevRef PNC_DEV_REF Pointer to configuration data

struct deviceIfProp Array of uint8_t

[PNC_PN_NAME_LEN]

Length of configuration data

DevName Array of uint8_t

[PNC_PN_NAME_LEN]

Device name (a.k.a. PN name)

DevIP Array of uint8_t

[PNC_IP_LEN]

Device IP address

SubnetMask Array of uint8_t

[PNC_IP_LEN]

Device Subnet Mask

GatewayIP Array of uint8_t

[PNC_IP_LEN]

Device Gateway IP ad-dress (a.k.a.

Router IP)

30 PROFIdrive Controller Application
User Manual, 11/2021

Description of the example application
2.6. PNC - PROFINET controller

2.6.1.4 Communication management

Table 2.34: Controller Mode

PNC_PN_DATA_TYPE
(enum)

Value Description

PNC_PNIO_GOOD 0 Offline

PNC_PNIO_BAD 1 Operate

2.6.1.5 Cyclic communication

Table 2.35: PROFINET IO data status

PNC_PN_DATA_TYPE
(enum)

Value Description

PNC_PNIO_GOOD 0 Status ok

PNC_PNIO_BAD 1 Status not ok

2.6.1.6 Acyclic communication

Table 2.36: PN Error Status

PNC_PN_DATA_TYPE
(enum)

Value Description

ErrCode uint8_t ErrorCode: Most significant

word, most significant byte

of PNIO Status

ErrDecode uint8_t ErrorDecode: Most significant
word, least significant

byte of PNIO Status

ErrCode1 uint8_t ErrorDecode: Least significant

word, most significant byte of PNIO
Status

ErrCode2 uint8_t ErrorCode2: Least significant

word, least significant byte of PNIO

Status

AddValue1 uint16_t additional information 1

AddValue2 uint16_t additional information 2

PROFIdrive Controller Application
User Manual, 11/2021

31

Description of the example application
2.6. PNC - PROFINET controller

2.6.1.7 Alarms

Table 2.37: PN Alarm priorities Types

PNC_PN_ALARM_PRIO_TYPE
(enum)

Value Description

PNC_PNIO_APRIO_LOW 0 Alarm priority low

PNC_PNIO_APRIO_HIGH 1 Alarm priority high

32 PROFIdrive Controller Application
User Manual, 11/2021

Description of the example application
2.6. PNC - PROFINET controller

Table 2.38: PN Alarm Types

PNC_PN_ALARM_TYPE (enum) Value Description

PNC_PNIO_ALARM_DIAGNOSTIC 0x01 Diagnostic alarm PN IOD

PNC_PNIO_ALARM_PROCESS 0x02 Process alarm from PN IOD

PNC_PNIO_ALARM_PULL 0x03 Pull alarm from PN IOD

PNC_PNIO_ALARM_PLUG 0x04 Plug alarm from PN IOD

PNC_PNIO_ALARM_STATUS 0x05 Status alarm from PN IOD

PNC_PNIO_ALARM_UPDATE 0x06 Update alarm from PN IOD

PNC_PNIO_ALARM_REDUNDANCY 0x07 Redundancy alarm from PN IOD

PNC_PNIO_ALARM_CONTROLLED_BY-

_SUPERVISOR

0x08 Controlled by Supervisor alarm from PN

IOD

PNC_PNIO_ALARM_RELEASED_BY- _SU-

PERVISOR

0x09 Released by Supervisor alarm from PN

IOD

PNC_PNIO_ALARM_PLUG_WRONG 0x0A Wrong Plug alarm from PN IOD

PNC_PNIO_ALARM_RETURN_OF- _SUB-

MODULE

0x0B Return of submodule alarm from PN

IOD

PNC_PNIO_ALARM_DIAGNOSTIC- _DIS-

APPEARS

0x0C Diagnostic disappeared alarm from PN

IOD

PNC_PNIO_ALARM_MCR_MISMATCH 0x0D MCR mismatch alarm from PN IOD

PNC_PNIO_ALARM_PORT_DATA-

_CHANGED

0x0E Port data changed alarm from PN IOD

PNC_PNIO_ALARM_SYNC_DATA-

_CHANGED

0x0F Sync data changed alarm from PN IOD

PNC_PNIO_ALARM_ISOCHRONE-

_MODE_PROBLEM

0x10 ISO mode problem alarm from PN IOD

PNC_PNIO_ALARM-

_TIME_DATA_CHANGED

0x12 Time data changed alarm from PN IOD

PNC_PNIO_ALARM_UPLOAD_AND-

_STORAGE

0x1E Upload and storage alarm from PN IOD

PNC_PNIO_ALARM_PULL_MODULE 0x1F Pull module alarm from PN IOD

PDC_PNIO_ALARM_DEV_FAILURE 0x00010000 Device failure alarm from PN IOD

PDC_PNIO_ALARM_DEV_RETURN 0x00010001 Device return alarm from PN IOD

PROFIdrive Controller Application
User Manual, 11/2021

33

Description of the example application
2.6. PNC - PROFINET controller

Table 2.39: PN Alarm data

PNC_CTRL_ALARM_DATA
(enum)

Value Description

alarmType PNC_PN_ALARM_TYPE Original alarm-identifier from alarm-

data-block

alarmPrio PNC_PN_ALARM_PRIO Priority of alarm

devNum uint32_t Device number that sends alarm data

slotNum uint32_t Slot number

subslotNum uint32_t Sub slot number

34 PROFIdrive Controller Application
User Manual, 11/2021

How to use the example application 3
There are two possible use cases of the example application. First use case is PROFINET

Driver CP1625 Stand-alone variant with CP 1625Dev board. The other use case is PROFINET

Driver CP1625 Host variant with CP 1625Dev board. The user needs to use the Linux operating

system to create the necessary firmware and applications for both PROFINET Driver variants.

3.1 CP1625 Stand-alone use case

Overview

This section describes the steps for commissioning PROFINET Driver under a custom Linux

operating system, built with Buildroot.

Customers are responsible for building PROFINET Driver source code and preparing target

operating system that is Buildroot image for SIMATIC CP 1625Dev board. The required steps

are explained below.

Requirements

The example application requires a Buildroot image for the SIMATIC CP 1625Dev Board and

PROFINET Driver application. You must configure your board for stand-alone usage. For more

details, please refer to CP 1625 operating instructions in (https://support.industry.siemens.com/

cs/ww/en/view/109756564). You also need a cable for serial connection. We recommend using

TTL-232R-RPI cable from FTDI.

3.1.1 Preparing Buildroot Image

CP 1625 Dev board requires a buildroot image to boot up. You must prepare buildroot image for

stand-alone usage. Please refer to document “Quick Start PROFINET Driver V2.3” and chapter

“5.2 Installing Buildroot Image”. To prepare Buildroot image, the user must follow the instructions

which are explained under this chapter.

3.1.2 Building the application for stand-alone usage

To be able to build the example application, firstly the user must build PROFINET Driver as static

library and copy it under the “../PROFIdrive_Controller_Application/”, run following commands:

$ cd {Work-Space}/PROFINET Driver/src/examples/lib/cp1625_

→˓standalone/build

$ make

PROFIdrive Controller Application
User Manual, 11/2021

35

https://support.industry.siemens.com/cs/ww/en/view/109756564
https://support.industry.siemens.com/cs/ww/en/view/109756564

How to use the example application
3.1. CP1625 Stand-alone use case

libpndriver.a will be created under “../PROFINET-Driver/src/examples/lib/cp1625_standalone/lib/”

after the build process has been successfully completed. The user must copy libpndriver.a

under “../PROFIdrive_Controller_Application/CP1625_Standalone/pnlib-standalone/”.

To build the demo application, the user must edit two areas of the makefile which is located

under “PROFIdrive_Controller_Application/CP1625_Standalone/build/” directory;

1. Example application is running on CP 1625Dev board environment. Due to this reason,

build process must be handled via cross-compiler. The user must give compiler location-

The user must give compiler location information to the makefile. BUILD_ROOT_DIR is a

makefile variable which holds cross-compiler location information. The user must assign

buildroot location to this variable. The makefile will use the cross-compiler which is located

in the buildroot package.

For example:

BUILD_ROOT_DIR=/home/siemens-pc/buildroot-2021.02.1/

2. Example application is using PROFINET Driver internal functions. Due to this reason, the

makefile must know the location of PROFINET Driver. The user must provide the source

code directory of PROFINET Driver by editing PN_STACK_DIR variable which is declared

in makefile.

For example:

PN_STACK_DIR= /home/siemens-pc/PNDriver/src/source

After editing make file the user can build the application, run following commands:

$ cd PROFIdrive_Controller_Application/CP1625_Standalone/build

$ make

Binary file profiDriveControllerApp.bin should be crated under

“../PROFIdrive_Controller_Application/CP1625_Standalone/” directory.

36 PROFIdrive Controller Application
User Manual, 11/2021

How to use the example application
3.1. CP1625 Stand-alone use case

3.1.3 Running the application on the target

To run PROFINET Driver application on SIMATIC CP 1625Dev board, you need to transfer the

application binary and the configuration file to the board. Buildroot’ s overlay structure is used

for integrating files in the Linux image. To do so, follow the procedure below.

Procedure

1. Copy the files profiDriveControllerApp.bin which is pro-

duced by the build process of the makefile, homing and

“PROFIdrive_Controller_Application/Configuration/TIA/standalone/demo-app-sa.xml”

which is given to the user inside example application package to the directory “/buildroot-

2021.02.1/board/cp1625/rootfs_overlay/root”.

2. To start firmware application automatically on CP 1625Dev board, edit the file ”/buildroot-

2021.02.1/board/cp1625/rootfs_overlay/root/.profile” as follows:

• Comment the last line like the figure below;

Fig. 3.1: .profile file with commented line

• Write /root/profiDriveControllerApp to last line of “.profile” file like the figure below.

Fig. 3.2: .profile file with the execution command line

PROFIdrive Controller Application
User Manual, 11/2021

37

How to use the example application
3.2. CP1625 Host use case

1. Run the following command in “~/buildroot-2021.02.1”

$ make all

4. The image called “uboot+linux.bin” will be created in “/buildroot-2021.02.1/output/images”

directory. Use this image to run the application as described in document “Quick Start

PROFINET Driver V2.3” chapter “5-Quick start for CP1625Stand-alone”.

3.2 CP1625 Host use case

Overview

This section describes the steps required for commissioning PROFINET Driver under a custom

Linux operating system, built with Buildroot (https://buildroot.org/). In CP1625 Host variant, it

is possible to run PROFINET Driver V2.3 distributed on Linux host PC and on CP 1625 PCIe

card. With the help of the processing power of the host PC, you are able to profit both from the

features of CP 1625 board and from the variety of applications on the host PC at the same time.

Customers are responsible for building PROFINET Driver source code and preparing target op-

erating system that is Buildroot image for CP 1625Dev board. The required steps are explained

below.

Requirements

For this example application , the building steps which are given below are explained on Debian

10.10 with Linux kernel V4.19 including RT patch; therefore, the user needs a Linux host de-

velopment PC running on Debian 10.10 with kernel V4.19 including RT patch. Please refer to

document “Quick Start PROFINET Driver V2.3” and section “6-Quick Start for CP 1625 Host”

for installation. You also need a CP 1625Dev board inserted into a free PCIe slot on the host

machine. You must configure it for PCIe usage. For more details, please refer to CP 1625Dev

operating instructions in (https://support.industry.siemens.com/cs/ww/en/view/109756564).

3.2.1 Preparing Buildroot image

Please refer to the document “Quick Start PROFINET Driver V2.3” and section “6.2 Installing

Buildroot Image” for installation of Buildroot image.

Adding CP 1625 firmware to the buildroot image

You need the firmware application to run on CP 1625 board. Therefore, you need to transfer the

application’s binary to the board. For details about how to create the firmware application binary,
please refer to the document “Quick Start PROFINET Driver V2.3” and section “6.4 Building

PROFINET Driver application”. Buildroot’s overlay structure is used for integrating files in the

Linux image.

After the following steps from quick start document, uboot+linux.bin will be cre-

ated under “/buildroot-2021.02.1/output/images” directory after the build process

38 PROFIdrive Controller Application
User Manual, 11/2021

https://buildroot.org/
https://support.industry.siemens.com/cs/ww/en/view/109756564

How to use the example application
3.2. CP1625 Host use case

has been successfully completed. The user must copy uboot+linux.bin under

“../PROFIdrive_Controller_Application/CP1625_Host/”. PROFINET Driver application will

search for this image under the same path where it is located.

3.2.2 Installing PN Device Driver

To use CP 1625Dev board under Linux, PROFINET Driver requires the PN Device Driver (Pn-

DevDriver). For details on how to use PnDevDriver under Linux Debian 10.10 with kernel V4.19,

see section “3.6 Using the PN Device Driver”.

To use the network adapters under Linux, PROFINET Driver requires the PN Device Driver

(PnDevDriver). You must compile the modules yourself as described section “3.6 Using the

PN Device Driver”. After the building PnDevDriver successfully, PnDev_DriverU32.so must be

copied to “PROFIdrive_Controller_Application/CP1625_Host/” directory.

3.2.3 Loading the PN Device Driver

Procedure

To load the PN Device Driver temporarily (until the next restart), use the following command in

the same folder in which the “PnDevDrv_32.ko” or “PnDevDrv_64.ko” module is located:

• for 32-bit systems:

$ sudo insmod PnDevDrv_32.ko

• for 64-bit systems:

$ sudo insmod PnDevDrv_64.ko

After the loading device driver, the user must bind device driver to appropriate PCI Card. Further
information to bind PCI card please refer to “Quick Start PROFINET Driver V2.3” and section

“3.6 Using the PN Device Driver”.

3.2.4 Building the example application

Procedure

To build the example application, follow the steps below:

1. Build PROFINET Driver as a library in PROFINET Driver source directory on your lo-

cal workspace “src/examples/shared/cp1625_host/linux_host/build/”. Make sure that libpn-

driver.a has been created in “src/examples/shared/cp1625_host/linux_host/build/lib” folder.
Copy “libpndriver.a” to “PROFIdrive_Controller_Application/CP1625_Host/pnlib-host/”.

$ make all

PROFIdrive Controller Application
User Manual, 11/2021

39

How to use the example application
3.2. CP1625 Host use case

2. Since this example application is using PROFINET Driver common func-

tions, the user must edit makefile which is located under the path

“PROFIdrive_Controller_Application/CP1625_Host/build/”. In makefile PN_STACK_DIR

variable is used to define location of PROFINET Driver stack. The user must assign

PROFINET Driver’ s local path to PN_STACK_DIR.

For example:

PN_STACK_DIR=/home/siemens-pc/PNDriver/src/source

1. Build example application in “PROFIdrive_Controller_Application/CP1625_Host/build/”.

$ make all

3.2.5 Running the example application

Requirements

Before you start PROFIdrive example application, be sure that firmware image uboot+linux.bin,

shared object file PnDev_DriverU32.so and configuration file homing are on the same directory

with executable of application.

Procedure

To start PROFIdrive example application, follow steps below;

1. Change directory to where application binary is located, as default

“PROFIdrive_Controller_Application/CP1625_Host/” :

$ cd ~/PROFIdrive_Controller_Application/CP1625_Host/

2. Run the application:

$ sudo ./ProfidriveAppl ../Configuration/TIA/CP1625 Host/

→˓ProfidriveAppl-host.xml

40 PROFIdrive Controller Application
User Manual, 11/2021

Hardware configuration in engineering system 4
Overview

Engineering XML configuration files prepared for the examples for the PROFINET vari-

ants that are CP1625 Host and CP1625 Stand-alone are available in the directory

“../PROFIdrive_Controller_Application/Configuration/”. If you prefer to modify the engineering

configuration and create your own XML configuration files, you can either use TIA Portal or

PNConfigLib.

4.1 Hardware configuration in the TIA Portal

Overview

This section describes how the user can create required xml configuration files with the TIA

portal using existing TIA Portal projects.

4.1.1 Importing TIA projects

Requirements

Archived TIA Portal projects created for the example application. CP1625 Host and CP1625

Stand-alone variants have their own corresponding TIA Portal project. These projects exist

under,

• “../PROFIdrive_Controller_Application/Configuration/TIA/CP1625

Host/CP1625Host.zap17”.

• “../PROFIdrive_Controller_Application/Configuration/CP1625 Stand-alone/CP1625_Stand-

alone.zap17”.

Procedure

1. Click Retrieve under Project

2. Navigate the path according to the use case,

• “../PROFIdrive_Controller_Application/Configuration/TIA/CP1625 Host/”

• “../ProfidriveApp-Demowall/Configuration/TIA/CP1625 Stand-alone”

3. Select the .zap17 extension file and click open.

PROFIdrive Controller Application
User Manual, 11/2021

41

Hardware configuration in engineering system
4.2. Hardware configuration in PNConfigLib

4.1.2 Generating the configuration XML

Requirements

One of the example application of TIA Portal project must be opened in TIA portal.

Procedure

1. Click Project View.

2. Compile the entire project.

3. When your configuration is consistent, the TIA Portal automatically generates the XML configuration

file for the PROFINET Driver. The storage path of the XML configuration file and other messages are

displayed in the Inspector window under Info.

4.2 Hardware configuration in PNConfigLib

Overview

PNConfigLib is a library that allows you to create hardware configuration for PROFINET projects.

You can perform consistency checks to ensure created project validation.

4.2.1 Generating an XML configuration file

From the user point of view, PNConfigLib accepts three files (Configuration, ListOfN-

odes and optional Topology) as inputs and generate XML configuration file as an out-

put. see Fig. 4.1.

Note: GSDML files of PN IO Devices that are used in the system must be provided by the user

by referencing the local path address in ListOfNodes.xml file.

Fig. 4.1: PNConfigLib Files

Requirements

42 PROFIdrive Controller Application
User Manual, 11/2021

Hardware configuration in engineering system
4.2. Hardware configuration in PNConfigLib

The input files of PNConfigLib consist of two required and optional XML files:

• ListOfNodes.xml(mandatory)

• Configuration.xml(mandatory)

• Topology.xml (optional)

ListOfNodes.xml. In PNConfigLib concept, a “node” represents an IO device or an IO controller,

which is configured in the “Configuration” file. The user should present here all the nodes with

their identifiers.

Configuration.xml: The nodes defined in the ListOfNodes file are configured in the Configura-

tion file. The IO controller and IO device settings, their modules and submodules, subnets, sync

domain etc. are defined here.

Topology.xml: The port interconnections are defined in the optional Topology file. In this file,

the user may provide information on how devices are connected to each other.

You can find examples for ListOfNodes.xml, Configuration.xml and Topology.xml in the PNCon-

figLib manual.

Procedure

1. Use PNConfigLib to read the provided input files.

2. Use PNConfigLib to compile the project. If there is no error, an XML based configuration is created

for each PN IO Controller within the project.

3. Integrate the generated XML configuration file in your system.

Additional Notes

In order to generate an XML configuration file, you can use PnConfigLib.dll to create your own

application or you can use PNConfigLibRunner.exe. With PNConfigLibRunner.exe you can call

PnConfigLib.dll from command prompt with the following parameters:

PNConfigLibRunner.exe -c “Configuration.xml” -l “ListOfNodes.xml” -t

→˓“Topology.xml” -o “OutputFolderPath”

• -c, –configuration Required. Path to Configuration XML file

• -l, –listofnodes Required. Path to ListOfNodes XML file

• -t, –topology Optional. Path to Topology XML file

• -o, –output Optional. Output folder

• –help Displays help screen

• –version Displays version information

For more details, refer to the PNConfigLib manual.

PNConfigLib input files for this application

The user can find the required PNConfiglib input files in order to produce input XML file for

PROFINET Driver under the locations below.

PROFIdrive Controller Application
User Manual, 11/2021

43

Hardware configuration in engineering system
4.2. Hardware configuration in PNConfigLib

CP1625 Host use case,

• “../PROFIdrive_Controller_Application/Configuration/PNConfigLib/CP1625

Host/Configuration.xml

• “../PROFIdrive_Controller_Application/Configuration/PNConfigLib/CP1625

Host/ListOfNodes.xml

• “../PROFIdrive_Controller_Application/Configuration/PNConfigLib/CP1625

Host/Topology.xml

CP1625 Stand-alone use case,

• “../PROFIdrive_Controller_Application/Configuration/PNConfigLib/CP1625 Stand-

alone/Configuration.xml

• “../PROFIdrive_Controller_Application/Configuration/PNConfigLib/CP1625 Stand-

alone/ListOfNodes.xml

• “../PROFIdrive_Controller_Application/Configuration/PNConfigLib/CP1625 Stand-

alone/Topology.xml

Required GSDML files

The user can download the GSDML files of PN IO Devices that are used in this application

example by referring Table 4.1

Table 4.1: GSDML Files

PN IO Device GSDML Web link

SINAMICS S210 Web link.

EB200P-2 evaluation board Web link.

SIMATIC HMI KP8 Web link.

44 PROFIdrive Controller Application
User Manual, 11/2021

https://support.industry.siemens.com/cs/document/109752524/sinamics-s210-profinet-gsdml?dti=0&lc=en-CO
https://support.industry.siemens.com/cs/document/71884729/ertec-200p-evaluation-kit?dti=0&lc=en-WW
https://support.industry.siemens.com/cs/document/50710644/gsdml-file-for-configuration-of-the-kp8-pn-kp8f-pn-and-kp32f-pn-panels?dti=0&lc=en-AF

	PROFIdrive Controller Application
	Legal information
	1 Introduction
	1.1 System Overview
	1.2 Security information
	1.3 Open Source Software

	2 Description of the example application
	2.1 Overview
	2.1.1 Software layer structure overview

	2.2 Application layer structure
	2.3 Runtime structure
	2.3.1 Execution flow of the example application

	2.4 Source code structure
	2.5 PDC - PROFIdrive controller
	2.5.1 PDC Data types
	2.5.1.1 Standard data types
	2.5.1.2 Standard function return values
	2.5.1.3 PDC - configuration
	2.5.1.4 Parameter handling
	2.5.1.5 Fault handling

	2.6 PNC - PROFINET controller
	2.6.1 Data types
	2.6.1.1 Reference
	2.6.1.2 Function return values
	2.6.1.3 Project ident
	2.6.1.4 Communication management
	2.6.1.5 Cyclic communication
	2.6.1.6 Acyclic communication
	2.6.1.7 Alarms

	3 How to use the example application
	3.1 CP1625 Stand-alone use case
	3.1.1 Preparing Buildroot Image
	3.1.2 Building the application for stand-alone usage
	3.1.3 Running the application on the target

	3.2 CP1625 Host use case
	3.2.1 Preparing Buildroot image
	3.2.2 Installing PN Device Driver
	3.2.3 Loading the PN Device Driver
	3.2.4 Building the example application
	3.2.5 Running the example application

	4 Hardware configuration in engineering system
	4.1 Hardware configuration in the TIA Portal
	4.1.1 Importing TIA projects
	4.1.2 Generating the configuration XML

	4.2 Hardware configuration in PNConfigLib
	4.2.1 Generating an XML configuration file

