SPOTLIGHT ON HOME THEATER

\& 48784

Popular Electronics

BUILD AN AVATION-BAND RECEIVER
Listen-in to dramatic radio communications from pilots, ground controllers, and more

BUILD A

DOG-BARK INHIBITOR

Give yourself and your neighbors some peace and quiet with this training aid that humanely curbs your dog's barking

GERNSBACK

PUBLICATION
NAVIGATION SYSTEMS
FOR YOUK CAR
Learn about on-board navigation systems, satellite positioning, roadside beacons, and more

UNDERSTANDING MICROPROCESSORS
We all know what microprocessors do, but how many of
us understand how they work?

3 NEW FactCards IN THIS ISSUE

Also: • Product Reviews - Scanner Scene - Computer Bits - Antique Radio - Think Tank - Ham Radio • DX Listening - And A Whole Lot More!

CONSTRUCTION ARTICLES

BUILD AN AVIATION RECEIVER Fred Blechman 31Join a growing throng of listening enthusiasts who tune in to the drama of aircraft communications
BUILD A DOG BARK INHIBITOR Robert J. Gaffigan Jr. 36
Give yourself and your neighbors some peace and quiet with this humane training aid
A TELEPHONE LINE-IN-USE INDICATOR Michael A. Covington 43
Keep others from barging in on your telephone conversations with a simple line-monitor circuit
BUILD A WIRE TRACER
Cut those tough home-repair and remodeling jobs down to size with this wire-tracing circuitCharles D. Rakes45
FEATURE ARTICLES
ON-BOARD NAVIGATION SYSTEMS FOR YOUR CAR Bill Siuru 39
Satellite positioning, roadside beacons, and other new developments to help drivers stay on course
TRACKING DISTANT SIGNALS 47
By monitoring the VHF low-band for skip, you could easily make some wonderful long-distance contacts
ALL ABOUT MICROPROCESSORS Timothy D. Green 59
We explore what makes these powerful chips tick in an informative but intuitive style
THE CODE MAKERS Larry Lisle 63
Trace the history of code and code-sending gear from the early days to today's computerized equipment
PRODUCT REVIEWS
GIZMO
Spotlight on home theater: Sharp Sharpvision LCD Projector; Carver AV Receiver; Cerwin-Vega Sensurround5Speaker Systems; and much more
HANDS-ON REPORT 22
Heath/Reflex Wireless Doorbell
PRODUCT TEST REPORT Len Feldman 26
Cannon UC1 8 mm Camcorder
COLUMNS
antigue radio Marc Ellis 65
The Sky Buddy: All together again
COMPUTER BITS Jeff Holtzman 67
The XT syndrome
CIRCUIT CIRCUS Charles D. Rakes 70
UJT circuits
John Yacono 72
RF bulbs
Don Jensen 75
Targeting the world
Joseph J. Carr 80
Some more potpourri
SCANNER SCENE Marc Saxon 82
A couple of winners
DEPARTMENTS
EDITORIAL Carl Laron 2
LETTERS 3
FACTCARDS 49
POPULAR ELECTRONICS MARKET CENTER 50A
FREE INFORMATION CARD 51
1992 ANNUAL INDEX 53
ELECTRONICS LIBRARY 84
NEW PRODUCTS 87
ELECTRONICS MARKET PLACE 95
ADVERTISER'S INDEX 98

Larry Steckler
EHF. CET
Editor-In-Chief and Publisher
EDITORIAL DEPARTMENT
Carl Laron Ediior
Robert A. Young
Associate Editor
John J. Yacono Associate Editor Byron G. Wels, K2AVB Associate Editor Teri Scaduto Assistant Editor Kathy Terenzi Editorial Assistant Marc Spiwak Ediuorial Associate Joseph J. Carr, K4IPV Marc Ellis Len Feldman Jeffrey K. Holtzman Don Jensen Chris F. O'Brian Charles D. Rakes Marc Saxon Contributing Editors

Since some of the equipment and circuitry described in POPULAR ELECTRONICS may relate to or be covered by U.S. patents, POPULAR ELECTRONICS disclaims any liability for the infringement of such patents by the making, using, or selling of any such equipment or circuitry, and suggests that anyone interested in such projects consult a patent attomey.

A MIXED BAG

Since deregulation, cable-TV companies have pretty much had their way. In most communities, they enjoy a monopoly. If consumers don't like the pricing structure, programming choices, or have other complaints, they have had little recourse except not to subscribe. And while local governments could threaten a poorly performing cable company with franchise revocation, such actions were essentially impractical. The cable industry could operate as it saw fit, and without fear.

That situation changed somewhat with the passage of the cable-TV bill this past October. Passed over the veto of President Bush the bill helps level the playing field a little. Unfortunately, the key words here are "a little."

Furthermore, the bill is far from perfect. For instance, the new bill provides some limited rate relief. It allows the FCC to regulate only the most basic tier of programming; the FCC has no input on other rates unless it receives complaints from consumers, municipalities, etc.

Also important is a provision calling for cable systems to be technically compatible with all TV's, VCR's, etc. Except where off-premises descrambling is used (and currently few operators use that technology), most scrambling techniques render features such as picture-in-picture essentially useless (unless additional descramblers are rented). Unfortunately, it is unclear how this provision will be interpreted (perhaps it will give life to the EIA's multiport standard?), and it is vague enough to give operators the leeway they need to skirt it with little imagination.

Somewhat troubling is a provision that allows TV broadcasters to charge cable companies for use of their signals. It ignores the fact that broadcasters already receive value for their signals in terms of higher viewership and, hence, higher advertising revenues. Worse, intertwined with modified mustcarry regulations, it could tax the channel capacity of older, smaller systems, or deprive viewers of channels they desire. This provision was unnecessary, and could be a source of trouble in the years to come.

In short, all the sound and the fury aside, the bill appears to be a mixed bag. Its benefits will largely depend on how, and how vigorously, the FCC chooses to implement and enforce its provisions. But at least it's a start.

MUDDLED MESSAGE

I'm writing concerning a minor problem with the "Personal Message Recorder" project (Popular Electronics, October 1992). As described on page 40, the electret microphone must be tied to analog ground, but according to Fig. 2 (schematic diagram) of the article, there is no such connection. The correct connection is shown in Fig. 1 here. There is

Fig. 1
also a problem with the partsplacement diagram (Fig.4). The designations for the three

LETTERS
$0.1-\mu \mathrm{F}$ capacitors have been interchanged. The part designated C 1 is actually C 2 , C 2 is C 3 , and C 3 is C 1 . C.B.

Brooklyn, NY

HIGH-ENERGY, HIGHRISK IGNITION

Charles Ball's article, "Build A High-Energy Ignition System For Your Car" (Popular Electronics, September 1992) appears to be a good article in general, but makes a few risky assumptions that must be pointed out to your readers.
First, retrofitting a high-output ignition on an older car requires that the entire ignition system be capable of handling all that
extra energy that the old point' Kettering ignitions weren't intended or designed to handle. In any ignition that has a 40 kV or higher peak output voltage, the distributor cap, rotor, plug wires, and plug-wire boots must be designed with sufficient insulation and high dielectric strength materials, to withstand the high voltages at automotive under-hood temperatures. To prevent problems with ionization and crossfire between adjacent terminals, mosi late-model highenergy ignitions use distributor caps with wider spaced terminals, many are vented, and most are made of better insulating material. The rotors are correspondingly redesigned and made of high dielectric strength
materials. The plug wires have thicker, better insulation and thicker boots (8 mm plug wires are used in the late-model ignition systems, compared to 7 mm wires with thinner boots that are usually used on point/Kettering systems).

On cars having OEM suppression plug wires, those wires should be replaced after about four years or 35,000 to 40,000 miles, as the carbon core in them doesn't last much longer than that. When the wires go bad, the electricity may find a path to ground through the insulation. You should use highquality plug wires of suppression core, wire-wound suppression type, or (where legal) copper-core wires made

by "hot rod" after-market ignition makers such as Accel, Mallory, Jacobs, Moroso, or MSD. The distributor cap and rotor should be similarly upgraded to highquality after-market parts.
Second, Mr. Ball assumes that higher spark energy automatically reduces emissions, but the degree of emission reductions really depends on many variables such as ignition timing-advance settings, carburetor air/fuel ratio, cam-shaft timing, etc. The air/fuel ratio should be set with the aid of an emission analyzer for best results.

Third, ignition energy may not necessarily improve from the addition of a capacitive-discharge ignition box alone if the original coil is not up to handling the job. Most ignition coils designed for point/Kettering or conventional (non-capacitive discharge) electronic ignitions have higher inductance, especially primary winding inductance, than coils specifically designed to give maximum output with capacitive-discharge (or CD) ignition boxes. To ensure maximum output you should use a CD-compatible ignition coil with a CD ignition unit. Those after-market ignition coils have better insulation to protect against internal coil shorts at very high output voltages for which OEM coils aren't usually designed.

Fourth, while CD ignitions boast extremely fast voltage rise time and high output voltage, you must consider the impedance through which that voltage is measured. Voltage measured on a high secondary side impedance can be very high, but current delivered to the plugs will be low. Spark plugs and wires with lower resistance or impedance will "load" the coil's output and lower the voltage output measurement, but plug current will be higher. Total energy output is voltage \times amperage \times time, and many CD ignitions produce sparks of shorter duration than conventional point/Kettering or electronically switched ignitions. In fact, some conventional electronically switched ignitions with suitable high-performance coils can produce sparks of sufficient voltage, current, and duration
time to rival some capacitivedischarge ignitions.
J.M.N.

Donora, PA

A TESLA COIL ADDICT

I really enjoyed the "Circuit Circus" column entitled "Fun With Tesla Coils" (October 1992). I built the Tesla coil oscillator and was surprised that the coil actually produced a significant (1/2inch arc) output with such a small input signal. I am currently modifying the circuit to drive the primary circuit of my standard Tesla coil, with the intent of using the solid-state circuit to help me optimize capacitor/inductor values in my Tesla coil's primary/secondary circuit.
Because I used open construction when I breadboarded the oscillator circuit, using no RF shielding, I managed eventually to fry all my in-stock 567 chips, as well as two or three voltage regulators. I am going to go to a 555 timer chip circuit because that chip is more readily available at my local Radio Shack store. You can be sure that I am also going to shield this thing!
My biggest surprise was just how sensitive these coils are when it comes to setting them to resonant frequency. They are very, very touchy.

I have been building Tesla coils since 1965 (prompted by, coincidentally, a Tesla-coil project in the July 1965 issue of Popular Electronics). I have yet to build that one special "big one" that most coil builders dream about, although I really gave it a good try several years ago.

That attempt was a Tesla coil that had a primary nine feet in diameter and a secondary 18 inches in diameter. The 52-inch tall coil was space wound with over 4700 feet of 24 -gauge wire, sprayed with 24 cans of acrylic plastic. The primary coil was tapped, of course, but \mid could also precisely tune it by a mechanical arrangement that varied the spacing between turns-no mean feat on a coil the width of my garage!

The capacitor was an oil-filled glass-plate job, which weighed almost 700 pounds. The transformer was a 4-kva, 300-pound,
oil-filled monster that I had rebuilt at a local transformer company. The transformer was originally from a surplus groundbased military radar: 18,000 volts, 220 milliamps. I had to use a 3000 -watt clothes dryer as a current limiter because the 100 -amp circuit breakers ! used as "on/off" switches could not handle the primary current of the transformer!

All that work, time, and money, and I was never able to achieve resonance! I was more disappointed in the failure of that Tesla coil than I was in the failure of my first marriage! A couple of years later, a water leak in a storage building ruined the secondary-a very sad sight, indeed.

I am currently trying to locate as much "practical" information on Tesla coil tuning, construction, etc., as possible.

Anyone who has spent any time building Tesla coils knows that they are addictive, and that they can be the most challenging, frustrating, yet exciting projects that a person can build. I think the article will help in future Tesla-coil projects, and I encourage Popular Electronics to publish more Teslarelated articles. In fact, if you were to start a Tesla project construction magazine, I'd become a charter subscriber! B.P.

Irving, $T X$

DOWN MEMORY LANE

Reading the article, "Build the Idiot Box" (Popular Electronics, September 1992), sent me hunting through the attic for a similar device that I made in 1952. I found it, and it still works.

I made mine with 100 lamps mounted in shallow holes in a square of plexiglass. It was made to be hung like a picture from the wall and was AC powered. It served as a night light and for entertainment for two small children.
In 1952 you could buy bags of surplus components at a very low cost. I believe I purchased 200 capacitors for less than $\$ 3$, and I got the same number of 10-megohm resistors for even less. The circuit is identical to the one shown in the article,
including a potentiometer for adjusting the flicker rate. I probably still have a few of the lamps and other components in my junk box.

Serving as the Electronics Officer on board the USS Saratoga, I made a flashing symbol of an electron to hang over my desk. First I made two loops of \#12 wire with the largest dimension being 8 inches. I soldered the body of an NE51 lamp to the loop. I soldered a capacitor in parallel with the lamp and used the resistor to complete the circuit to the other loop. I used \#32 wire to support the loops from a battery lying in the cables in the overhead. It looked like it was floating in the air and blinking at the same time. After I had it wired and working, I sprayed the components with gold-colored spray paint, masking the lamps first, so nobody could see what the values of the parts were.
R.A.N., LCDR USN, Ret. Brunswick, GA

HAVES \& NEEDS

I am looking for a schematic of a Model 700 DF-AF crystal marker/TV generator made by the Electronic Measurements Corporation. I am also looking for a VN10K MOSFET transistor. Thanks.
David L. Murphy
4948 Caribee Drive
St. Louis, MO 63628
I own a Sansui SR-838 turntable. Last year it lost speed control and strobe. I have tried several "so-called" Sansui service centers in the local area for repairs. All claim to provide prompt and professional service of Sansui products; however, I have had no success.

Please help me find someone in my area that will service this turntable. I am willing to pay the cost of shipping, if necessary, since I am not ready to trash the turntable.

As a final alternative, l'd appreciate if someone could send me a copy of the schematic and parts list for the SR-838, and I will attempt to repair it myself. Arthur Alston
1468 Key Parkway, Apt. 302 Frederick, MD 21702

(YIMMO
 VOLUME 6, NUMBER 1
 A CHRONICLE OF CONSUMER ELECTRONICS

Spotlight on Home Theater

We have to admit that we love poring through the glossy pages of Audio/Video Interiors and other high-end magazines, ogling custom A / V installations that are as expensive as they are visually, audibly, and aesthetically pleasing. Ten-foot screens gracefully descend from the ceiling, motorized panels slide back to reveal a huge back-projection TV, speakers are recessed into the walls, touch-screen computer monitors control a dozen different $\mathrm{A} /$ V "zones." One recent issue featured a custom installation in which the equipment included 97 in-wall speakers plus three other pairs, two amplifiers, a receiver, two tuners, a CD player, a cassette deck, assorted remote equipment to route the audio and video throughout the house, four VCR's, a seven-foot front projection TV, a 50 -inch rear-projection set, and 18 (yes, eighteen) 20-inch TV's!

Time for a reality check: If we tried to put all that equipment into our house, there would be no room left for the family, let alone furniture, clothing, and other basic necessities. In fact, it's unlikely that our house is worth as much as was paid for that custom installation!

That's not to say that average people can't incorporate some of the ideas and technology represented in that "dream installation" in their own relatively modest homes, keeping within their own relatively modest budgets. In this month's Gizmo, we'll take you on a tour of home theater-what it means, what's required, what's optional, and how you can make it work in your home. Then we'll take a look at several products that you might consider integrating into your own home-theater setup.

The goal of any home theater, of course, is to recreate the video and audio sensations experienced in a movie theater (or concert hall, or sports arena, depending on your viewing tastes) as closely as possible in the home. Doing so requires, at the very least, a large-screen stereo television, a stereo VCR, some sort of surround-sound

processor, and speakers. Sounds simple enough, right? The problem is that between that basic installation and the custom dream job described above, there lies a whole world of options and a wide range of prices. Deciding what sort of components would work best for you is no easy lask.

These are several factors to be considered before you venture out shopping and get ewen more confused by fast-talking sales people. Money, of course, is a major concem. But "bargain" and "value" are totally different concepts. What might be a real deal for someone-grabbing up a sale-priced low-end A/V receiver, or skimping on the speakers, for instancecould ruin the whole home-theater experience for someone with more sophisticated ears. That's not a good value at any price. In a similar vein, you might decide to go all out and splurge on the biggest screen available ("If I'm going to do it, I'll do it right!"), only to get it home and discover that it's much too large for comfortable viewing in your home theater.

WHO, WHAT, WHEN, WHERE?

It's easy to imagine all the things you'd like your home theater to have. But it's important not only to determine what you want from a home-theater system-but also to make sure that your dreams are compatible with your home, your family, and yoū̄ wallet. Ask yourself the following questions before making any purchase decisions:

Who is going to be using the hometheater system? If you're an electronics enthusiast, and no one else will be touching the controls, then simplicity won't be a high priority. Chances are, however, that everyone in the family will want to use the system. If no one can figure out how to switch functions, there will be a lot of grief-for you as well as everyone else.

Whem are they going to be watching it? Daylight conditions aversely affect frontprojection systems and, to a lesser extent, rear-projection sets; a direct-view set would be a better choice for those who watch TV during the day, or who prefer to keep some lights on in the room.

This month in

 GIZMOSpotight on Home Theater.pg. 5

Sharp XV-H3OU SharpVision LCD
Projector.....................pg. 12 Carver HR-894 A/V Receiver with Dolby Pro Logicpg. 14
Cerwin-Vega Sensurround 7-Piece Speaker System.............pg. 16
Toshiba CD/CDV/LD Disc Player Model XR-W70A.

Gizmo is published by Gernsback Publications, Inc., $500-\mathrm{B}$ Bi-County Blvd., Farmingdale, NY 11735. Senior Writers: Chris F. O'Brian and Teri Scaduto. Contributor to this issue: Frank Barr, APEL. ©Copyright 1992 by Gernsback Publications, Inc. Gizmo is a registered trademark. All rights reserved.

Where is the system to be placed? Do you have a room available that can be used solely for home theater? Most of us don't have that luxury. If the system will be set up in the living room. there probably will be restrictions due to decorating concems. If it's in the family room, keep in mind the other activities carried out there-doing homework or school projects, listening to music, paying bills, reading the paper, playing board games. Again, keep in mind the lighting required for those other activities.

What size is the room? A screen that's too small can get lost in a large room; a screen that's too large can be even worse.

We'll discuss component, speaker, and furniture placement later in this article.

What will you be warching? Do you prefer live performances of opera and symphonies, or action films like Terminator Π ? Sporting events, or foreign films? Network sitcoms, or nature shows? All of the above, and then some?

How can your existing components be integrated in the new system? It's often not necessary to buy all new gear. Use your existing TV or hi-fi VCR and put the money you would have spent toward a better A/V receiver: you can always upgrade the other pieces later.

What wiring/installation skills do you possess? Will you have to call in a pro to set up your home theater, or can you handle the connections on your own? If you decide that you need help with all or part of the job, or with selecting the components, you might want to consult an audio/video installer (who should ask you some of the same questions we are).

How much can you comfortably afford to spend on a home-theater system? A well-planned home-theater can provide your family with hours of inexpensive entertainment. But if you have to take a second job to pay for it, you won't have any time to enjoy it!

THE HOME-THEATER ENVIRONMENT

Although home theaters can come in all shapes and sizes, there are some basic rules that should be followed, although they aren't written in stone. Figure 1 illustrates the recommended arrangement of furniture and components. If there are plenty of windows, special curtains or shades might be required to give you better control over the room lighting. Carpeting is recommended to minimize the reflection of sound. The minimum distance from the couch (or recliner) to the screen should be $2-3$ times the screen size (measured diagonally). If, for instance, your sofa is 12 feet from the television, the ideal screen size would be $48-72$-inches. In general, projectors need to be placed at a distance of about $11 / 2$ times the diagonal screen size. (One exception to that rule is the SharpVision reviewed in this issue, which requires somewhat less space between projector and screen; be sure to follow the manual's recommendations.) Chairs and couches should be set up so that the viewing angle doesn't exceed 30°. Speaker placement requires the center speaker to be as close as possible to the screen; magnetic shielding is essential to avoid distortion to direct-view screens. The front speakers should be placed to either side of, and at an equal distance from, the screen; again, shielded speakers will likely be required. The surround speakers go behind the viewers-prefera-
bly the same distance behind the viewers as the front speakers are forward, although time-delay circuitry in a surround processor lets you mount the rear speakers closer. A second set of surround speakers might be necessary in very deep rooms; they should be placed at the sides of the room. The subwoofer can be placed anywhere in the room, and many are designed to slide out of view under a couch or chair. For room-shaking bass, you'll probably want a separate amp to drive the subwoofer.

That much equipment can overtake a small room, and push other activities to the background. To avoid conflicts with decor and retain the use of the family room or living room for more than watching movies, you might consider converting a previously unused area of your home for use as a home theater. A basement, attic, or attached garage that you wouldn't consider prime living space due to lack of windows and/or lower than normal ceilings just might be ideal for a home theater. The natural dimness is a plus, and because you'll spend virtually all your home-theater time seated, the only worry with low ceilings is speaker placement. And if you're handy with tools, finishing a previously unfinished space would also give you the chance to create your own custom installation.

Instead of using a separate space, it might be possible to use the same space at different times for different purposes. Front-projection setups are particularly well-suited for home theaters that must disappear when not in use. It's often possible to mount the projector unobtrusively on the ceiling (in custom jobs, you can even have the projector recessed into the ceiling on a motorized lift), and some manufacturers offer projectors that have been factory-mounted in coffee tables. Ceiling-mounted screens roll up and out of sight when not in use. Today's in-wall speakers are almost invisible, and a subwoofer can be easily tucked out of sight. Such a set-up allows you to use your living room or family room for everyday activities, until it's time to "raise the curtain" on your home theater.

A friend of ours built an innovative home-theater setup (shown in the opening photo) in a room that measures about 14×22, with only one small window on one of the short walls. He replaced that one with an 8 -foot-wide picture window. Flanking the window, he built floor-toceiling, 18 -inch deep shelving units; under the window is an upholstered window seat-a feature that his wife had always wanted. Ceiling mounted in front of the window is a video screen. A Vidikron projector is mounted on the ceiling above the couch. Assorted components-VCR, Pioneer laserdisc player, Fosgate Pro-Log-

Televisions and Monitors. First, make sure the stereo TV or monitor you choose is the right size for your room. Keep in mind how big that 27 -incher looked when it replaced your old 21inch set-TV's seem to shrink with time. At the same time, you might want to bring along a tape measure to make sure that that huge rear-projection set will fit through your door, and not take up too much floor space once it's in. Some manufacturers, Mitsubishi, for one, are now making slim-line rear-projection sets that take up surprisingly little space.
The overriding factor in determining the largest screen size you should use is how far away from it you're going to sit. You want to see the picture, but you don't want to be able to see all of ine elements that make up the picture. If you sit too close to a screen-no matter what its size-you'll start to see there:zontal line structure of the TV picture. (Some display devices, the Sharp LCD projector that we review in this issue, add their own visible structure as well.)

If you want to get that true movietheater feeling-where the screen fills a large percentage of your field of viewyou might be able to ignore the line structure and sit closer than the recommended 4-8 times the picture height. Usually, though, you'll have to move back. You don't want a bigger picture, you want a better one.

Let's look at what this means in rea numbers. A 50 -inch (diagonal) screen has a picture height of 30 inches. (Remember: the aspect ratio of a TV screen is 4×3, so the diagonal measurement is the hypotenuse of a 3-4-5 triangle. If you can remember some high-school geometry, you can calculate the picture height once you know the diagonal measurement.) A viewing distance of 10 feet would be required for best viewing of the 50 -inch monitor.

Some projection sets suggest that you can sit at $11 / 2$ to 2 times the picture height from the screen. They usually have a "soft-focus" setting that exaggerates the width of the horizontal lines. If you can afford the $\$ 20,000$ price, Faroujda Laboratories has a line-doubling system that lets you get as close as you would to a movie-theater screen.

A laserdisc, which produces the highest-resolution images of any consumer video device, has a horizontal resolution of about 450 lines. Think twice before you consider a monitor or projector that offers less. You'll likely see many projectors and direct-view sets touting much higher resolution.

But the picture on a projector-front or rear-with a horizontal resolution of 500 lines won't look the same as the one on a direct view set with a 500 -line horizontal resolution. That's because the contrast and brightness will vary.

For the largest picture, you'll need a front-projection unit. For the brightest,
highest-contrast picture, you'll want a direct-view monitor. Rear-projection sets are a compromise between the two. LCD projectors can't match the three-tube projectors-yet. But if you need huge-screen portability, they're the only way to go.

Don't forget to listen to your display device, too. Many sets provide good enough sound that you might be willing to forgo a separate audio setup. Some provide traditional surround sound. Others might use two-speaker "surround" systems, such as Carver's Sonic Holography or Hughes Sound Retrieval System.

VCR's. VHS, stereo, and hi-fi are the three most important things to look for in a home-theater VCR. Yes, we know that the S-VHS format will provide better resolution. But if you can't rent tapes-and if you don't have a S-VHS camcorderwho cares?
Do you use a VCR to watch scenes in slow motion or to watch still pictures? You need a four-head deck for those special effects. Otherwise, a two-head deck should do you fine, and merely provide a somewhat worse picture when you're fast-scanning over all those commercials. Do you edit tapes? A flying erase head will help you obtain seamless edits, and audio/video dubbing will let you add something to your edits. Do you use a VCR extensively for time shifting, including when you travel? Easy but sophisticated programming features are what you should be looking for.

Don't forget the little things that can make a VCR special. A 30-second skip feature makes bypassing commercials a breeze. Timer backup lets you laugh at intermittent power outages. And you might consider buying the same brand TV/monitor and VCR, for the matching remotes that many brands offer
AV Receivers. An AV receiver can be the nerve center of your home-theater system and will provide a convenient link to your audio components. Make sure your AV receiver provides sufficient switching capability. You'll want an easy way to dub audio and video sources, and you'll want everyone in your home to be able to use it as well Many people find that on-screen displays make the setup easier.
Good sound can draw you into a movie even faster than a teriffic picture. For most applications, Dolby Pro-Logic capability is what you want. The added center channel of a Pro-Logic amplifier, and the active sound-steering circuitry, provides a more realistic theater-like sound.

If you must stay on a small budget, consider a standard Dolby Surround (not Pro-Logic) amplifier. It won't compare favorably to a Pro-Logic amplifier in accurately placing and tracking some of the sound, but you might well be happy with it-especially since you
should be able to find one at a bargain price these days.
If money is not an issue, you'll want equipment that has Home THX certification. Such equipment must receive an official OK from Lucasfilm, Ltd., the same people who certify THX movie theaters. In short, Home THX certification is a sort of performance guarantee.

Speakers. Speakers are arguably the most difficult components to choose for a home-theater system. The only feature that counts is how they sound. That means that only you can choose the speakers that sound best to you. Making your decision more difficult is the fact that speakers sound dramatically different depending on their placement and your home-theater acoustics. Nevertheless, there are some general things to keep in mind as you shop.

If your home theater will use a directview screen, your front speakers must be magnetically shielded. The purpose of Pro-Logic decoding is to place sounds accurately. Your front speakers should be directive, so they won't muddy the directional information. The surround speakers are meant to provide "fill" sound. They should provide wide dispersion of the sound.

We generally prefer using three matched speakers for the front. If you must scrimp, get a cheaper centerchannel speaker. You might also be able to economize on the rear speakers. Many speaker manufacturers have made things easier by selling complete surround-sound speaker packages.
Laserdisc Players. For the highest-quality video anid audio playback, you need a laserdisc player. Don't forget that video quality becomes more important with a large-screen home theater. The relatively recent growth of large-screen sales might be why it's taken about fifteen years for laserdiscs to catch on.

Are videodiscs for you? Since videodiscs are still difficult to rent (but generally becoming less difficult), you might be disappointed with a player that sits idle most of the time. But if you like the idea of a video library-and one that will last, presumably, forever-then laserdiscs are tough to beat. Here are a few things to keep in mind as you shop.

If you plan to use your home theater. for audio as well as video, a combi play-er-which also plays CD's-is important. Almost all videodisc players you'll find will affer that capability. Most will play only a single disc. Others provide a 5-disc CD changer.

A feature we think is important is automatic side-changing. Having to get up to flip over a disc reminds us too much of the days of the LP! Digital effects, available on most higher-priced units, can add usable scan and still modes to CLV discs. (CLV discs have longer playing times than do CAV discs, but they require digital effects if pictures are to be scanned.)

Shopping for a home-theater system can be intimidating If you're confused about the basics. This illustration, which shows the principle elements of any home theater, provides a starting point.

ic surround amplifier -fit neatly on a built-in component rack. Infinity speaker fit n the new shelves; the center channel is mounted inside the window seat, with only the grille showing. The subwoofer is mounted under the floor-a heating grate lets the bass into the room.

The first time we saw the room, we weren't aware that it doubled as a hometheater. But later, watching a football game and a few scenes from Robin Hood: Prince of Theives, we realized that it was one of the best setups we've ever seen. The design represents the best of both worlds-
excellent audio and video reproduction, and comfortably attractive surroundings. When it's not used as a home theater, the room benefits from added light, extra storage space, improved proportions, and attractive new seating-all thanks to a thoughtful home-theater design

Graduate as a Fully Trained Electronics Professionall

If you want to learn about electronics, and earn a good income with that knowledge, then CIE is the best educational value you can receive.

CIE's reputation as the world leader in home study electronics is based solely on the success of our graduates. And we've earned our reputation with an unconditional commitment to provide our students with the very best electronics training.

Just ask any of the 150,000 -plus graduates of the Cleveland Institute of Electronics who are working in highpaying positions with aerospace, computer, medical, automotive and communications firms throughout the world.

They'll tell you success didn't come easy...but it did come...thanks to their CIE training. And today, a career in electronics offers more rewards than ever before.

CIE'S COMMITTED TO BEING THE BEST...IN ONE

 AREA...ELECTRONICS.CIE isn't another be-everything-toeveryone school. CIE teaches only one subject and we believe we're the best at what we do. Also, CIE is accredited by the National Home Study Council. And with more than 1.000 graduates each year, we're the
largest home study school specializing exclusively in electronics. CIE has been training career-minded students like yourself for nearly sixty years and we're the best at our
subject....ELECTRONICS...BECAUSE IT'S THE ONLY SUBJECT WE TEACH!

CIE PROVIDES A LEARNING METHOD SO GOOD IT'S PATENTED.

CIE's AUTO-PROGRAMMED ${ }^{*}$ lessons are a proven learning method for building valuable electronics career skills. Each lesson is designed to take you step-by-step and principle-byprincipal. And while all of CIE lessons are designed for independent study. CIE's instructors are personally available to assist you with just a toll free call. The result is practical training.. the kind of experience you can put to work in today's marketplace

LEARN BY DOING..WITH STATE-OF-THE-ART EOUIPMENT AND TRAINING.

CIE pioneered the first Electronics Laboratory Course and the first Microprocessor Course. Today, no other home study school can match CIE's state-of-the-art equipment and
training. And all your laboratory equipment, books and lessons are included in your tuition. It's all yours to use white you study and for on-thejob after you graduate.

PERSONALIZED TRAINING....TO MATCH YOUR BACKGROUND.

While some of our students have a working knowledge of electronics others are just starting out. That's why CIE has developed twelve career courses and an A.A.S. Degree program to choose from. So, even if you're not sure which electronics career is best for you, CIE can get you started with core lessons applicable to all areas in electronics. And every CIE Course earns credit towards the completion of your Associate in Applied Science Degree. So you can work toward your degree in stages or as fast as you wish. In fact, CIE is the only school that actually rewards you for fast study, which can save you money.

SEND FOR YOUR CIE COURSE CATALOG AND WE'LL SEND YOU A FREE 24-PAGE CIE ELECTRONIC SYMBOLS HANDBOOK.

YESI I want to get started. Send me my CIE course catalog including details about the Associate Degree Program. (For your convenience, CIE will have a representative contact you - there is no obligation.)

SEND FOR YOUR CIE HOME STUDY COURSE CATALOG AND RECEIVE A FREE 24 PAGE CIE ELECTRONIC SYMBOLS HANDBOOK!
Includes hundreds of the most frequently used electronic symbols. Published exclusively by CIE for our students and alumni. Yours free when you request a CIE Course Catalog.

CALL IN THE PRO'S

If you're not handy with wiring or with tools, or if you want a system with a ceil-ing-mounted projector and a motorized screen, it might be wise to call in a specialist. CEDIA, the Custom Electronic Design \& Installation Association, can supply a list of professionals in your area (1-800-CEDIA30). They don't work only for millionaires; in fact, according to a responses to a recent CEDIA poll of its members, the "average" job for a custom installation company can range from $\$ 400$ to $\$ 60,000$. You can hire a professional to do it all - select the components, design the installation, hire and supervise cabinetmakers and electricians, and calibrate the finished system. Many custom-installed home-theaters are just a small part of whole-house, multi-zone audio-video systems (which is a topic that we'll cover in a future issue of Gizmo!). But you can also hire a custom installer to consult on a small project, and some will even come in just to properly set up the components you've purchased.

FOOTING THE BILL

So, what can you realistically expect to spend on a home-theater system? The high-quality setup that we review in this issue-Sharp LCD projector, Carver Dolby Pro-Logic A/V receiver, Cerwin-Vega seven-piece Sensurround speaker system, and Toshiba laserdisc player-has a total suggested retail price of $\$ 6958.95$, not counting the screen. (We used our own VCR and an extra amplifier to drive the subwoofers.)

Of course, no one who shops carefully ever pays the full suggested retail price; it pays to shop around. Learn what features on each component are essential, and which are just icing.

Shopping is made that much easier if you decide to go with a pre-packaged system that includes all or most of the required audio and video components. For instance, Fisher's 9235 AVX A/V component system includes a 27 -inch television, a 120 -watts per channel receiver with Dolby Pro Logic, a five-disc CD changer, a double cassette deck, and five speakers. Also included for a suggested price of $\$ 2199.95$ is a unified remote control that can also operate Fisher VCR's, and a light-oak-finished cabinet. Similar systems are available from several manufacturers; most include TV's that have a relatively small screen size-generally, 26 or 27 inches.

At the opposite end of the pre-packaged spectrum is JBL's Synthesis One, which includes a front projector, a screen, a video controller, signal-processing equipment, multi-component loudspeakers, crossovers, equalizers, a surround-sound processor, dual 18 -inch subwoofers, six am-

Fisher AV Component System
plifiers for a bone-ratuling total of more than 1400 watts, direct radiators for music playback. and a compression driver horn combination for video playback. JBL's aim is to provide a complete home-theater experience that accurately reproduces movie soundtracks, but not compromise music listening. To that end, the system offers two modes. For home-theater use, Synthesis is THX licensed and approved and offers Dolby Pro Logic and ten supplementary surround settings. Switching to the music mode disconnects the center and surround loudspeakers and replaces them with components specifically designed for audio sound systems. The suggested price, which doesn't include a video scurce (VCR or laserdisc player) or installation (which must te done professionally) is $\$ 47,900$.

JBL Syntiesis One Home-Thea:er System

Whether you decide to go the pre-packaged route, or purchase incividual components, good shopping skills are important. Determine precisely what features you expect from each component, and then look for products in your price sange that offer those features. Scan the circulars that come in your Sunday paper fand read consumer magazines. Then go out to each of the electronics stores in yous area to comparison shop.

That's just what we did, and we found some affordable, and somé interesting, home-theater alternatives-including a
(Contimued on page 17)

Look Sharp!

SHARPVISION XV-H30U HIGHBRIGHTNESS LCD PROJECTOR. From: Sharp Electronics Corporation, Sharp Plaza, Mahwah, NJ 07430-2135. Price: \$3995.

Dedicated Gizmo readers might recall our May 1991 review of the Sharp XV-100 LCD front-projection TV. To recap: The XV-100, weighing just over 31 pounds, had the advantages of portability and easy set up. We put it through its paces, bringing it with us to a ski house in Vermont, and making it the "guest of honor" at an impromptu Super Bowl party. The largescreen experience was vivid enough to make up for a picture that, while quite impressive for a portable projection system, left some room for improvement.

At the last Consumer Electronics Show, demonstrations of Sharps latest LCD projectors suggested that some major improvements had been made in the past couple of years. We arranged to try out the $X V$ H3OU in a home-theater setup.

Physically, the XV-H30U somewhat resembles its predecessor. It's even easier to carry around or store out of sight when not in use, now that close to ten pounds have been knocked off-the XV-H30U weighs only 23 pounds. At the top of the unit is a carrying handle; an on/off button; indicators for power, temperature, and lamp replacement; and a cover that flips open to reveal controls for the adjustment of the projector's picture and audio. That's one major improvement-unlike the XV-100, the new SharpVision is equipped with its own audio amplifier and matched stereo speakers built in. In some installations, those top-panel controls can be difficult to access. But that's not a problem, since the XV-H30U comes with a remote control, another convenience missing from its predecessor. Jacks at the rear of the unit provide audio inputs from two sources, audio output, one S-Video and two video inputs, and a video output. The back of the unit also has a cooling fan; the air intake fan is located on the side of the projector.
The XV-H30U still uses basically the same LCD technology, with some refinements. The projector uses three LCD panels, a series of mirrors, a bright, metalhalide bulb, and a quality lens to project the image. One LCD is provided for each color component of a TV picture: red, green, and blue. The LCD panels themselves provide no color information. They transmit or block the colored light that is fed to them. The light from the metalhalide bulb is separated into the red, green, and blue components by dichroic mirrors, which are special mirrors that re-

flect light of one color while transmitting all others.

Each LCD panel contains 112,320 pixels (for a total of 336,960 pixels). That translates to a horizontal resolution of 400 lines, compared to the XV-100's 300.

In addition, the SharpVision XVH3OU's high-intensity metal-halide lamp generates up to 800 lux of projected brightness at a 40 -inch screen size. That brightness level decreases slightly as the picture size is increased. And you can do quite a bit of increasing the maximum screen size is 150 inches diagonally, compared to the XV-100's 100 -inch maximum. The XV-H30U also offers viewers the option of using it as a rear projector-or using a mirror to reflect the image to the screen-simply by flipping the reverseimage switch.

The differences between new and old models are immediately obvious. With no external audio source required, hookup is even easier. All that's required is connec tion to a video source (laserdisc player or VCR) via the supplied audio and videc cables. While that's perfect for largescreen portability, you wouldn't be happy with the sound in a home-theater installation, where you'd want to connect the projector to an A / V amplifier, surroundsound speakers, a second video source, etc. (The projector's manual, which details various possible setups, is another drastic improvement over the XV-100.) By twisting the zoom lens, the screen size can be adjusted from 25 to 150 inches, depending on the amount of space between the projector and the screen and the size of your room. Actually, room size isn't quite as critical as it was with previous models,
because a close-focus lens lets you view a 150 -inch picture from just over 18 feet away, or a 100 -inch picture from about 12 feet. And once the unit is connected and the screen size selected, the remote control allows you to conveniently adjust the picture without leaving your seat.

Front-projection systems do demand darkened viewing conditions, and Sharp wisely supplies a lighted remote control. The buttons don't remain lighted at all times; pressing any button or the illumination switch located on the side of the remote causes all the buttons to light for about five seconds. The remote can be used to control power and volume, select the videa input source, and adjust the video and audio. On-screen displays make it easy to adjust the picture, brightness, color, tint, sharpness, treble. bass. and balance. The remote control also can be used to nute the sound. and to set a sleep timer to turn the projector off after 30,60 , 90 or 120 minutes.

We got a lot of use out of the remote picture-adjustment capability because the displayed image never seemed to be consistent. We found ourselves continually changing the brightness, sharpness, and color to get a watchable picture depending on both the room brightness and the particular movie we were watching.

Audio and video adjustments, as well as input sefection, also can be done using the top-panel controls on the projector. The top-panel controls include one that's missing from the remote-a focus-pattern display button. Pressing that button causes a pattern to be displayed on the screen for about 15 seconds, while you make adjustments using the focus ring around the lens.

Using the pattern makes accurately focusing the projector much easier.

Our home-theater system-the SharpVision Projector, a Carver AV receiver with Dolby Pro-Logic, Cerwin-Vega's Sensurround speaker system, and a Toshiba laserdisc player-was installed in a room measuring just 16×14 feet. The room was pretty crowded before we unpacked the screen provided by Sharp (sold separately from the projector). On a tripod stand, the screen stood out a couple of feet from the wall, while the projector was set up about a foot from the opposite wall. That left a space of about 13 feet-too short to use the projector to its full $150-$ inch picture potential. In fact, in such a small room, we were more comfortable with the picture size set to about 70 inches or smaller, although the manual said that 100 inches would be fine at that distance. The screen does make a difference in picture quality, but it simply took up to much space. Because of that, we found ourselves frequently watching videos on a bare white wall instead of bothering with the screen.

Watching movies on the large screen (or on the white wall) was a treat once the picture was adjusted properly. As with any large projection TV, you have to be careful not to make the image too large or you'll see the line structure of the picture. (Large-screen projectors are one reason we "need" HDTV.) With the Sharp projector, you can also see the individual pixels that make up the image. The only real complaint we had with our sample unit, however, was that the picture brightness was not consistent over the entire screenthere were a couple of "hot spots" that we found disturbing.

For everyday "background" television viewing, we found ourselves switching back to our 27 -inch set that happened for a couple of reasons: First, viewing the smaller set doesn't require a darkened room. and we like to read the paper or do crossword puzzles while watching. Second, most network-TV shows just don't have enough substance to warrant such a big picture. After all, Rosanne and Dan Connor and family are bigger than life even on the small screen! (And their whining is not enhanced by surround sound, either.)

But when it came to movie-watching, the large picture lent a whole new dimension, surrounding us with video. And, best of all, Sharp Vision's bigger and better picture is not accompanied by a bigger price tag! We don't think that LCD projection is ready to take over the hometheater market-yet. But as LCD manufacturing technology improves-and the dramatic improvements in the last couple of years are likely to continue-SharpVision projectors are going to be tough to beat.

A (Pro-) Logical Choice

CARVER HR-895 AUDIO/VIDEO RECEIVER. From: Carver Corporation, P.O. Box 1237, Lynwood, WA 98046. Price: \$1199.95.

We've always maintained that the true heart of a home-theater system is not the video screen. Rather, it's a good audio system that pulls a viewer into the action. We find a small-screen system with bigscreen sound far more enjoyable than a big-screen with small-screen sound. The true heart of a home-theater sound system is an A/V receiver, which not only provides the Dolby Pro-Logic sound that's so important, but also serves as a command center for video and audio equipment. This month, in our quest for sensible home theater, we tried Carver's HR-895 Dolby Pro Logic AudiolVideo Receiver

The HR-895 is Carver's first Pro-Logic receiver. It features a five-channel sur-round-sound amplifier, a "learning" type remote, and multi-room capability that allows a user in a second room to use the amplifier to listen to a CD , for example, while the receiver is used in the main room to watch a videodisc.

The front-left and front-right amplifiers provide power outputs of 110 watts per channel. The center-channel amplifier provides 75 watts, and two 35 -watt amplifiers provide the surround outputs

Seven audio inputs, four composite video inputs, and three S-video inputs provide convenient switching capability. Front-panel audio and video inputs are provided for easy accessibility when hooking up a camcorder.

The tuner section of the HR-895 provides a total of thirty FM and AM presets. (If you receive FM-band stations over your cable-TV system, a separate antenna input is available for those stations; that input and the available stations can also be stored in presets.) An auto-preset mode scans through the selected band and automatically stores received stations in the preset memories. While it's possible to let the receiver handle the entire function automatically, we preferred to customize the settings as they were stored. As each received station is tuned, scanning stops for five seconds. During that time, you can set the tuning mode (to mono, for example) and set the IF bandwidth (to narrow, for example). If you do not want to store a particular station, pressing the tuning up control causes it to be skipped.

If you're like us, you might have trouble remembering more than a few preset stations. The tuner, however, includes a function that lets you set the station name so

that it is shown in the display each time the station is tuned. Up to five alphanumeric characters can be stored for each memory. Stations cani be tuned directly by entering the preset rumber on either the remote control or the front-panel keypad. It's also possible to scan through the presets, or to change stations by tuning in the conventional manner.

A Carver feature callea ACCD (for asymmetrical charge-ccoupled FM detector) is provided to reduce multipath distortion. ACCD, which is switchable, is said to be able to transform a multipath signal into a clear signal by separating the stereo sum and difference sigrals and rejecting up to 80% of the distotion-filled stereo signal. Then, "the $15-20 \%$ of the signal which is clean is used to accurately recreate the rest of the stereo signal." Because our suburban location is not typically plagued by multipath problems, we can vouch for ACCD's success only by noting that the feature seemed to quiet some noise from marginal signals, without cegrading strong signals.

Besides the tuner, the HR-835 offers other purely audio functions; CD player inputs and audio tape inputs and outputs are provided. We're thankful that Carver also included a phono input for connecting a turntable. Primarily intended for use with those functions, Carver's "Sonic Holography" is also provided. The intent of Sonic Holography is to "restore the 3dimensional ity of a live performance through special signal-cancellation and time-delay circuitry." It attempts to correct the problems of traditional stereo that occur because your ears hear the output of both stereo speakers. It works by injecting some degree of out-of-phase right-channel information into the left channel signal and vice versa. Theoretically, with the
right time delay, the out-of-phase right channel information will arrive at the left ear at the same time the signal from the right speaker does, and the signals will cancel. With proper speaker setupwhich is very critical or the processing to work-we found that Sonic Holography dramatically widened the soundstage of stereo recordings, and produced excellent imaging. Sonic Holography is not, of course, intended to replace Dolby Pro Logic.
The HR-895 provides rear-panel inputs for a laserdisc player and two VCR's. A front-panel input is provided, primarily for connecting a camcoider. S-yideo connectors are provided for the laserdisc input and VCRI inputs and outputs. The second set of VCR connectors provides only com-posite-video jacks. Why, we wondered, did Carver provide an S-video input for a videodisc player, where it provides little benefit, and not for a second VCR where S-video can be very beneficial? Whatever the reason, we should note that the frontpanel inputs do provide for S-video, so tape dubbing between S-video-equipped video recorders is possible, although not necessarily convenients

Two tape-dubbing options are provided on the amplifier. Pressing the TAPE-vCRI button lets you dub audio from your audio tape deck to your VCR. (If you haven't discovered that your hi-fi VHS VCR can play the part of a high-quality audio re-corder-with the distinct advantage of 6 hour tapes-do yourself a favor and give it a try.) A second, VCR:-VCR2 button lets you dub video tapes. Dubbing can be done even while you're watching a laserdisc. Remember, however, that the vCR2 connections don't support S-video. You'll have to use the front-panel camcorder-input jacks for that; whatever source you

Take this CIANH Handbook for only $\$ 9.95$
 when you join the Electronics Engineers' Book Club

ELECTRONICS ENGINEERS' HANDBOOK, Third Edition

Edited by D.G. Fink and D. Christiansen

Completely revised, expanded, and updated, this third edition of the desktop reference is widely considered the definitive work in its field, covering all aspects of today's electronics engineering. Written and compiled by more than 170 experts, this giant handbook shows you how to use the latest design and cost-cutting solutions at work in the industry today. You'll find a wealth of new material on electronic systems design, computer systems and digital recording, telecommunications, process control, laser technology, and CAD of electronic circuits. It deals with the full range of theory and practice, covering essential principles, data, devices, components, assemblies, circuits, functions, and applications.

2,624 pages 1,800 illustrations Book No. 9255H Hardcover

As a member of the Electronics Engineers' Book Club . . -

. . . you'll enjoy receiving Club bulletins every 3-4 weeks containing exciting offers on the latest books in the field at savings of up to 50% off of regular publishers' prices. If you want the Main Selection do nothing and it will be shipped automatically. If you want another book, or no book at all, simply return the reply form to us by the date specified. You'll always have at least 10 days to decide. Your only obligation is to purchase 3 more books during the next 2 years, after which you may cancel your membership at any time.

Publishers' prices shown. ©1992 EEBC

If coupon is missing, write to: Electronics Engineers" Book Club, Blue Ridge Summit, PA 17294-0860

ELECTRONICS ENGINEERS'

Blue Ridge Summit, PA 17294-0860
\square YES! Please send me Electronics Engineers' Handbook, 3rd Ed. $(9255 \mathrm{H})$, billing me $\$ 9.95$ plus shipping/handling \& tax. Enroll me as a member of the Electronics Engineers' Book Club according to the terms outlined in this ad. If not satisfied, I may return the book within 10 days and have my membership cancelled. A shipping/handling charge \& sales tax will be added to all orders

Name
Address
City/State
Zip \qquad Phone
Valid for new members only, subject to acceptance by EEBC. Canada must remit in U.S. funds, Applicants outside the U.S. and Canada will receive special ordering instructions. PPIF193
choose as the main signal source is also output to all video and audio outputs (unless one of the amplifier's dubbing buttons is pressed).

Four surround-sound modes are offered. The Dolby mode is the one to use if your source is Dolby encoded. Most recent movies you're likely to rent will have a Dolby-encoded soundtrack; with proper speaker placement, the results that can be achieved at home will be at least as good as you're likely to hear in most movie theaters. It's likely to be better, in fact, because you can adjust the level and location of the speakers to perfectly suit your seating position.
"Hall" and "matrix" surround modes are also provided for non-Dolby sound sources. The hall mode adds what we perceived as time-delay and echo effects to give a feeling of spaciousness. The matrix mode, we assume, passively extracts the difference between the left and right signals and feeds it to the rear speakers. Neither mode can compete with Dolby Pro Logic (to our ears, they simply distort the sound), but we can imagine some instances where they would prove to be useful. A simulated stereo mode is provided to create a stereo effect from monaural sources.

The amplifier also offers four centerchannel modes that are switchable. Normally, Dolby Pro Logic requires a centerchannel speaker so that on-screen sounds appear to come from the screen. A "normal" mode is provided for that. A "phantom" mode creates a center-channel effect using just the left- and right-channel speakers. A "wide" mode electronically processes the front-channel audio to create a wider soundstage; it's useful if you must place your speakers very close together. The center channel can also be turned off if you wish.

The HR-895 features a clock that can display time in either the 12 - or 24 -hour format. The clock provides sleep-timer and program-timer capability as well. We think that a program timer is very important in an audio system. (Some of us record more programming from the radio than from television.) While we're happy to see Carver provide a program timer, which many manufacturers ignore, we're not satisfied with the single-event capability.

Our experience with the Carver HR-895 makes us think that it could be a sensible source of terrific home-theater sound. Its multi-room capability will keep the video watchers and audiophiles on speaking terms-or let you keep track of what's happening on the screen when you can't be there to see it. But, the funny thing is, we didn't find ourselves leaving the room very often when the HR-895 was doing its thing.

Sound Decisions

SENSURROUND HOME-THEATER SPEAKER SYSTEM. From Cerwin-Vega, 555 East Easy Street, Simi Valley, CÁ 93065; Price: $\$ 1660$.

There was a time, not long ago, when we would base our movie-going decisions on sound alone. If we thought a film demanded the depth and drama of Dolby Surround or THX sound systems, we would see them in a good theater. Films whose soundtrack we didn't consider crucial to our enjoyment would be relegated to "let's wait until it comes out on video" status.

Using that selection process, we decided to see The Commirments, a film about a group of working-class young Dubliners who form a soul band, at an expensive theater on Manhattan's Upper East Side. We certainly didn't get our \$7.50's worth-the theater's outdated sound swstem didn't do justice to the film's wonderful soundtrack, and since the music made the movie, the whole experience was disappointing.

We finally got to hear the Commitments the way the director intended them to sound. No. we didn't shell out another $\$ 7.50$ each, or buy the soundtrack on $C D$. We rented the film on laserdisc, and listened to it through Cerwin-Vega's Sensurround seven-piece home-theater speaker system, connected to a Carver Dolby ProLogic A/V receiver. We quickly dis-
covered what a difference the right sound system can make!

Sensurround technology was developed by Cerwin-Vega and Universal Studios. It was first used in the movie Earthquake, and with such success that its developers were honored with an Academy Award.

That same technology is now available for home use, in a pre-packaged sevenpiece system or as separate components. The seven-piece system that we tried ont is intended for use with "big-screen" hometheater setups-those using front- or rearprojection TV's. It consists of the HT-CTR shielded center-channel speaker, two $H T-100$ shielded subwoofers, and four $H T$. S6 satellite speakers. For home theaters centered around direct-view televisions, Cerwin-Vega recommends a five-piece Sensurround setup that includes the same four satellite speakers (sold for $\$ 380$ a pair) and one HT-210C "dual subwoofer/ center-channel system" (\$320). That enit integrates two 10 -inch subwoofers and center-channel speakers into a single, fully-shielded cabinet that doubles (or should we say triples?) as a pedestal for the television or monitor. It's also possible to use the HT-210C and a pair of HT-S6 saiellites aiong with a pair of your own speakers, as long as the center speaker matches the leff and right ones. (The excellent manual supplied with the speakers explains how to calibrate the system, regardless of the configuration.)
Now that you've heard all the options that are available, we'll get back on track and tell you about the seven-piece setup that we actually tested.

Our first reaction upon seeing the six large boxes in which the system was packed was that we'd be spending an entire day simply unpacking and wiring the system. In reality, the process wasn't that bad-and our pre-production Sensurround arrived two weeks before the manual did!

The HT-S6 left. right, and surround speakers feature a $61 / 2$-inch midrange and 1 -inch polycarbonate dome tweeter. (Our pre-production models were not shielded). The direct-radiating speakers are housed in bass-reflex (vented) enclosures that measure $113 / 4 \times 81 / 2 \times 11$ inches. Their frequency response is rated at $80 \mathrm{~Hz}-20 \mathrm{kHz}$, $\pm 2 \mathrm{~dB}$.
The HT-CTR center-channel speaker features two $61 / 2$-inch midrange drivers and a 1 -inch polycarbonate dome twceter. The speaker system is also housed in a bass-reflex enclosure, but not in a standard rectangular box. Instead, the enclosure is a trapezoid that measures about $163 / 8 \times 81 / 4 \times 113 / 4$ inches. The tweeter and port are located between, and slightly forward of, the midrange drivers. The midrange drivers are angled out from the center. The idea is to eliminate an on-axis hot spot for smoother, more realistic sound that corresponds better to the on-screen action. The frequency response of the HTCTR is rated at $80 \mathrm{~Hz}-20 \mathrm{kHz}, \pm 2 \mathrm{~dB}$.

The HT-110 subwoofers are what really make Sensurround work. They consist of a 10 -inch driver mounted in a bass-reflex enclosure that measures $171 / 2 \times 13 \times 24 \frac{1}{2}$ inches. The HT-110 can handle inputs up to 250 watts. Although not on our preproduction models, the HT-110 offers a defeatable passive crossover. If you were to use a single amplifier to drive the speakers, you would feed the left, right, and center-channel amplifier outputs to the subwooofer, and then feed the left. right, and center speakers from the subwoofer's wiring panel. The crossover switch would be in, or on. for this setup.

We didn't get to try that wiring scheme, but instead used the line-level subwoofer output of our Carver A/V receiver, along with a separate amplifier. to drive the subwoofers. The results were outstanding. If you enjoy explosions in your home theater, of the sort so plentiful in Terminator II, then you won't be able to get enough of the HT-110's. Explosions, we must admit. aren't our thing. Even so, the subwoofers added tremendous enjoyment to the movie watching experience. Trucks sounded like real trucks. Unexpected thumps could make us jump.

Once the setup was complete, we were ready to give The Commitments a second chance. We were impressed with the accuracy of the positioning of the sound. Even more impressive, the balance of the sound was so even that we could not pick out the particular speaker from which a
given sound was emanating. In other words, we quickly forgot that we were listening to three front speakers-and seven speakers altogether. We were spending too much time enjoying the movie.

For the truly realistic sound reproduction that we experienced, it's crucial that the system is wired, arranged, and calibrated properly. Luckily, the manual that accompanies the speakers goes beyond the call of duty, explaining not just how to set up the system, but providing a thorough tutorial in home-theater concepts that reveals why each piece must be placed just so. Detailed drawings depict proper wiring for each configuration. The manual also provides the consumer with advice on improving room acoustics and incorporating existing speakers into the system-all in plain English.

Since we've had the Sensurround system in our living room, we've changed our movie-selection process. Now we prefer to watch even the epics, adventures, and music films on videotape or laserdisc in the comfort of home-where we can realistically expect our sound system to he significantly better than those we found in most local theaters.

HOME-THEATER
 (Contimued from page 12)

46-inch GE rear-projection TV on sale for just $\$ 1500$, a center-channel speaker from Kenwood for \$129. a Fisher A/V receiver with Dolby Pro-Logic for $\$ 300$. a Panasonic four-head hi-fi stereo VCR for $\$ 330$, and a Pioneer laserdisc player for $\$ 400$. That's $\$ 2329$, and you'd just need to add speakers and perhaps a subwoofer to create a full-fledged home theater. A Sony rack system caught our eye alsosale priced at $\$ 1299$, it included a tuner, a 5 -disc CD changer, a 5 -cassette changer. an A/V amplifier with Dolby Pro-Logic, and center-channel, right, left, and two surround speakers. The same system with a dual cassette deck cost $\$ 999$. Either system would look nice next to an existing large-screen TV, and their racks even had two shelves conveniently available to accommodate a laserdisc player and a VCR.

The scouting around that we did took about the time we might have spent watching a movie. If we were actually about to buy a home-theater system, we'd be willing to spend quite a bit more time than that. We would have auditioned the systems to get a better feel for their capabilities, and we would have pressed the sales personnel with questions-or demanded to see the operating manuals to make sure that each component offered the functions we required. Because in hometheater installations, good planning will definitely pay off.

Video Viewing in the 90's

CD/CDV/LD COMBINATION DISC PLAYER MODEL XR-WTOA; from Toshiba America Consumer Products, Inc., 82 Totowa Road, Wayne, NJ 07470; Price: $\$ 599$.

When videodisc players were first introduced back in the 1970's, the format bombed. Video cassette recorders, on the other hand, caught on like wildfire. Considering that most people's home-video setups at the time consisted of a smallscreen color TV, it's not surprising that more folks weren't leaping at the chance to buy the more-expensive videodisc players, despite their superior picture and audio quality. After all, the VCR offered consumers the ability to record television shows as well as to watch prerecorded movies-and the selection of films on videocassette was far greater than those available on disc. After a few years of sluggish sales, Philips, the inventor of the LaserVision, pulled their videodisc players off the market, and so did most other videodise manufacturers.

The LaserVision format, however, was the only videodisc format that was never totally abandoned. Now, in the 90 's, it has finally come into its own. In a way, the very success of the VCR, which pushed the videodisc player out of the market in the 70 s , helped pave the way toward its increasing acceptance today. There's no question that the VCR changed the way we used our television sets. After all, with all those movies being watched at home, the next logical step was for consumers try to duplicate the movie-theater experience using their home video and audio equipment. Manufacturers were quick to respond to (and inflame) that desire, introducing stereo TV's, increasingly largescreen direct-view sets, rear- and frontprojection systems, surround-sound processors, A/V receivers, and speakers intended for use with audio and video equipment.

As consumers became more accustomed to sophisticated home-theater systems. a new niche was created for the laserdisc player. After all, once you've spent hundreds or thousands of dollars on A/V equipment, you're going to want the best possible source material. With good equipment, the flaws in VCR performance become obvious. That's why many serious A/V enthusiasts now consider the laserdisc player to be an essential ingredient in any home-theater installation-more important, even, than a VCR. The difference in quality is dramatic: Laserdisc players

The video frequency response of a laserdisc player is a measurement of how accurately it can reproduce signals of different frequencies. It is measured by playing a special signal from a test disc that contains bursts of several specific frequencies and observing the output on a waveform monitor. The laboratory-measured frequency response of the Toshiba XR-W70A was not what we had expected from our subjective evaluations. At 4.2 MHz , the response was down 3.84 dB . That's a bit worse than we've seen from other, similar players.
The signal-to-noise ratio is a measurement of the amount of unwanted noise on a fixed, flat-field video signal. A red field, used in our lab tests, is usually preferred to measure the chroma signal-to-noise ratio. AM chroma measurements indicate the strength of the color signal, while PM chroma indicate the purity of the color signal. The AM chroma signal-to-noise ratio was measured at 44.8 dB , the PM signal-to-noise ratio was measured at $36.5 \mathrm{~dB}_{\text {, both }}$ adequate, but not outstanding.
The luminance signal-to-noise measurements indicate the brightness and detail that you can expect to see in recorded videos. Such measurements indicate the amount of snow that you're likely to see in the picture. Depending on the reference luminance level used when making the measurement, the luma signal-to-noise ratio was measured at 45.1 dB , which is what we would expect. Using the S-video output improved the luminance signal-to-noise ratio by about 1.5 dB .
The audio section of the XR-W70A yielded better than average performance, as indicate by the tabulated results.
In summary, the lab results seemed to be a bit of a mixed bag. But the results are the same as with our subjective tests. The XR-W70A is not something that an audio/videophile is going to rush out and buy. But its deficiencies are small enough that a double-blind viewing test between the XR-W70A and some more expensive players would end in a draw

Testing revealed a larger than expected drop-off at higher frequencies.

TEST RESULTS——IDEO SECTION

Frequency Response

(@0.5 MHz)
@2.0 MHz)
0 dB
(@3.58 MHz)
$-0.78 \mathrm{~dB}$
$-2.92 \mathrm{~dB}$
(@4.2 MHz) -3.84dB
Signal-to-Noise Ratio Red Field Chroma

AM	44.8 dB
PM	36.5 dB
Luminance	
100 IRE	45.1 dB

TEST RESULTS—ANALOG AUDIO SECTION
Output Level
(1 kHz)
1.53 volts (CX on), 0.52 volts (CX off)

THD
(@75\% modulation)
Signal/Noise Ratio
0.76% (CX on), 0.59% (CX off)
86.4 dB (CX on), 64.1 dB (CX off)

TEST RESULTS—DIGITAL AUDIO SECTION

Outpul Level
(1 kHz)

Signal/Noise
(De-emphasis in)
2.17 volts
110.0 dB
(De-emphasis out)
110.0 dB

Channel Separation	
left	121.0 dB
right	126.9 dB

THD @0 dB	
20 Hz	0.0031
1 kHz	0.0028
10 kHz	0.0045

Linearity Error

(0 dB to -50 dB)
$-0.01 \mathrm{~dB}$
Frequency Response
(20 Hz to 20 kHz)

Weight
Dimension ($\mathrm{H} \times \mathrm{W} \times \mathrm{D}$)
Power Requirement
Random-Access time
Scan Time (Side 1 to Side 2) Notable Features
$+0,-0.12$

ADDITIONAL DATA

19 pounds
$51 / 4 \times 187 / 8 \times 171 / 4$ inches
31.5 Watts
2.0 seconds
5.5 seconds

Flying erase head, Digital noise reduction, Timebase corrector, Bidirectional frame advance, Slow motion play $1 / 5 \mathrm{X}$ and $1 / 10 \mathrm{X}$), Auto indexing, Real-time counter with memory, 1-month/6-month program timer, Front-panel AV jacks, Control-L editing interface, Control-S input.

display twice the horizontal resolution (more than 420 lines) of VHS VCR's, and have the added advantage of providing CD-quality sound.

During those years when the laserdisc was floundering, the audio compact disc (which was introduced a couple of years after the LD), was making a big name for itself. Consumers who have become familiar with the sound quality and convenience features of the CD format now are quite willing to consider a similar format for video. Laserdisc players, like standard CD players, offer quick access to "tracks"many videodiscs are arranged in sections to make it easy to "fast forward" to a specific scene in a movie or song on a concert video. And now that the price of laserdise players has dropped and virtually all laserdisc players also play CD's, an LD CD player represents an economical choice of an A / V component.

In our home-theater setup, we used a combination disc player from Toshiba. The Model XR-W7OA CDICDVILD Player can play 3 - and 5 -inch CD's, 5 -inch CDV's (CD with Video discs), CDV singles, 8 - and 12 -inch CD Video LD's, and 8 - and 12 -inch laserdiscs. It also adds a couple of convenience features to homemovie viewing.

The most important convenience feature is two-sided play. It's not necessary to manually flip the discs from side 1 to side 2 because the player automatically positions the pick-up carriage assembly from one side of a disc to another. That solves the only complaint we had with videodisc players. (Now, if we could only get disc manufacturers to end side 1 at some place other than the middle of a scene... .)

Intre Scan is another convenience feature that lets you play the first eight sec-
onds of évery laserdisc chapter ō CD track so you can find what you're looking for. (It will automatically change to the second side of a laserdisc.) You can program the unit to play up to 24 chapters or tracks in any desired order; again, you can switth back and forth between laserdisc sides. Of course, there aren'i too many laserdiscs that we would like to watch in raidom order.) A random mode lets you play all songs on a CD in random erder; on a lasereisc with a table of contents (such as: a CD video laserdisc), you can play the chapters on one side of the disc in random order

Another handy feature is automaticaily called into play if you turn the power switch off during playtzack of a laserdisc: when you turn the player back on, it will pick up where it left off. For dubbing CD's onto cassette tape, a peak-search function makes it a breeze to set your recording level ir will find the peak level, and output it for about eight seconds so you can presperly set your recorder.

When you insert a disc into the XRW7OA , whether it's a CD, a CDV, or a lasedisc, the player will automatically detect what kind of disc it is-just as any othe combi player will do. A special function, "Direct CD," tells the player that you are gong to be playing a $C D$. That not only speeds its decision-making process, but it turns off the video circuitry to elimisate the peassibility of interference with the audio

An optical digital output terminal is prowiced for direct connection to amplifiers and other equiproent with digital inputs.

Both the remote control and the front panel offer a rotary three-speed scan control: The clear-scan mode gives slow scan-

MAIL-ORDER LASERDISCS

As laserdisc players have grown in popularity, the selection of movies and music videos available on disc has kept pace. Unfortunately for LD converts who don't live in big cities on the East and West Coasts, stores that sell laserdiscs are still few and far between, and those that offer a decent selection of LD's available as overnight rentals are even more scarce.

Some entrepreneurs have seen opportunity in that situation, and mailorder laserdisc shops are now flourishing. There are big companies, such as Columbia House Laserdisc Club (800-538-2233). Discount clubs include Ken Crane's in Westminster, CA (800-624-3978 or 800-626-1768 in CA); the LaserDisc Fan Club of Long Beach, CA (800-322-2285); Laser Craze in Boston (617-338-9820), Sight and Sound in Waltham, MA (617-894-8633); and Brooklyn-based SEM Video Products (800-247-6644 or 718-645-1663). Used laserdiscs are available from such companies as Video Brokers in Washington $D C$ (202-328-0428) and Triton Video in New York City (212-243-3610).
ning; the low-scan mode steps scanning up to about $10 \times$ nomnal; and high-scan steps it up to $30 \times$ normal. The scanning was serviceable on CLV (constant linear velocity or extended-play) discs, but, of course, cculdn't compare to that for CAV (constant angular velocity) discs.

A soft-picture function can filter some background noise from old vintage movies. We also found it useful to soften the image when we were sitting too close to a large screen.

The XP-W70A was a strong performer that doesn't offer any surprises. It didn't wow us with all kinds of high-tech, highend features, but it certainly did a respectable job doing what it was supposed to. If you're a videophile who's been watching laserdisce since the late 1970's, then look elsewhere for your next player. But if you're still wondering what all the laserdisc fuss is about, why not find out by giving the XR-W70A a try?

ELECTRONICS WISH LIST

Panasonic Prolection TV

Bose Home-Theater Speaker System

Zenith/Bose Surround-Sound System

SuperFlat Rear-Projection TV

Incorporating much of the technology used in their SuperFlat direct-view TV's, Panansonic Company's (One Panasonic Way, Secaucus, NJ 07094) PTP-5IXF20 also features a new screen and lens system developed for rear-projection sets. The 51 -inch set is capable of more than 700 lines of horizontal resolution, and can deliver more than 300 foot-lamberts of brightness for a clear picture even in brightly lit rooms. The TV's audio specs include 20 -watts-per-channel output (8 ohms, $60 \mathrm{~Hz}-15 \mathrm{kHz}, 1 \%$ THD), MTS stereo with dbx noise reduction, and Dolby Surround Sound. Other features include picture-in-picture, Artificial Intelligence Control of image quality to maintain the proper contrast level, parental guidance control, built-in clock and sleep timers, dual on/off timers, favorite-channel and favorite-picture memories, and a remote that's capable of controlling most VCR's and cable boxes and all Panasonic laserdisc players. The set is just 27 -inches deep, allowing it to fit through standard doorways. Price: $\$ 2999.95$.

CIRCLE 54 ON FREE INFORMATION CARD

Small Speakers for Big Sound

If you believe that speakers should be heard but not seen, setting up a home theater can be a real challenge. Bose Corporation (The Mountain, Framingham, MA 01701-9168) presents an easy solution in the unobtrusive form of their Acoustimass-7 Home-Theater Speaker System. The matched, front-channel speaker system includes three dual-cube arrays (center, front, and right channels) and a bass module. The magnetically shielded front-channel speakers, which measure just $63 / 4 \times 31 / 8 \times 4^{3 / 4}$ inches, include hardware that allows several mounting options-wall and ceiling brackets, table stands, and floor stands. Each array includes a pair of $21 / 2$-inch wide-range drivers. Using a matched center speaker ensures that sound remains balanced and consistent from channel to channel. The bass module, which is small enough to be hidden anywhere in the room, launches sound waves from a pair of high-performance $51 / 4$-inch low-frequency drivers into the room in the form of moving air masses. All connections are made through the bass module, and built-in protection circuitry guards the system components against excessive input levels. Price: $\$ 899$.

CIRCLE 55 ON FREE INFORMATION CARD

Instant Home Theater

Intended to provide better sound without complex hookups, the HTS-100 instant home-theater component from Mitsubishi Electronics America, Inc. (5665 Plaza Drive, Cypress, CA 90630) delivers Dolby Pro Logic Surround Sound as a function of normal television operation. Installation requires only one step and does not disrupt the normal connections between the TV and VCR or laserdisc player. Price: $\$ 599$

CIRCLE 56 ON FREE INFORMATION CARD

Video by Zenith, Sound by Bose

Bose Acoustimass speaker technology is also available built into several models of Zenith (1000 Milwaukee Avenue, Glenview, IL 60025) television sets, creating all-in-one home theaters featuring "Bose VideoStage Surround System." It might not be Dolby Pro-Logic, but for those interested in surround-sound without the fuss, the combination of front-channel speakers built into the TV, and two separate rear speakers works well. The Model $A B 5285 B G$ is a 52 -inch rear-projection set that features black level expansion, which expands the number of gray-to-black shades that can be displayed, leading to greater depth and richer colors. White compression reduces glare from bright white areas, for crisper edges of bright images. Lumina noise reduction decreases the "noise" that often occurs when sharpness levels are increased, and edge enhancement circuitry eliminates fuzzy edges in individual scenes. Price: $\$ 3295$.

 HEATH/REFLEX

 HEATH/REFLEX WIRELESS WIRELESS DOORBELL

 DOORBELL}

CIRCLE 119 ON FREE INFORMATION CARD

A quick and easy way to add or replace a doorbell

Most of you are probably familiar with the Heath Com-pany-or at least "Heath kits." While Heath is no longer in the kit market, they have launched what they call the Reflex line of home electronics. That line of products is designed to allow the home do-ityourselfer to install automated lighting, wireless light switches, auto-shutoff lighting, or a wireless doorbell. All at very affordable prices. This report will focus on their SL-6153 wireless doorbell.

The Device. The SL-6153 is a pre-built unit that allows you to install a doorbell anywhere without having to hook up any wires at all. Apart from the "doorbell button transmitter" and a "doorbell bell receiver," a few mounting screws or some double-sided tape (both of which are included) are all you need to do the installation. The $\$ 29.97$ doorbell system has a maximum range of 50 feet and works for a year on one set of batteries. That range should provide plenty of sultable locations to place the receiver.

The transmitter, or button, is roughly the same size as a match box, and it's powered from a small 12-volt battery, which is included with the unit. The receiver, or bell, is powered from three "D" cells, which are not included.

The transmitter will look attractive mounted at any doorway, and the receiver looks much like a traditional doorbell chime box-both units are an off-white color.
The receiver unit offers three switchselectable sound options. There's a traditional "ding dong" setting, a "ding ding" setting, and a single "ding" setting. Besides serving the purpose of user preference, the three sound options allow you to have a different sounding bell at each of up to three doors. That's the main reason why the wireless doorbell is available in three different RF frequencies. It is also useful in case your next-door neighbor has the same unit.

The most obvious need for a wireless doorbell is in cases where no doorbell exists at all. The user is then able to quickly install an "instant" doorbell. You may even want a wireless doorbell for your bedroom door. Many homes will have a doorbell at the front door only, in which case a wireless bell could come in handy for the side or back door.

Installation. When we first tested our wireless doorbell-with one person holding the bell and another holding the button-it did indeed have a range of at least 50 feet. However, when testing out the doorbell at its
approximate installation point, we learned the value of something mentloned in the installation manual: "Don't mount the receiver or transmitter directly on a metal surface, as the range will be drastically reduced." if you must locate either the receiver or transmitter on a metal surface, it's suggested that you mount it on a piece of wood at least $1 / 4$-inch thick.

Our doorbell has been installed for a couple of weeks now and is still working perfectly. That shouldn' \dagger sound impressive to you-atter all, two weeks isn't all that much timebut it is at the very least gratifying to this reviewer who had something to compare this new doorbell to; a wireless doorbell from another manufacturer. The receiver of this "other" wireless doorbell used only two "AA" cells for power, which lasted only a couple of days. Also, the chime on the Heath doorbell is much louder and realistic sounding than that other one. Even though that other doorbell cost ten dollars less than the Heath unit, it was certainly no bargain.

If the Heath/Reflex SL-6153 wireless doorbell sounds like something you could use, or if you're interested in any of the other Reflex products, contact Heath (PO Box 1288, Benton Harbor، MI 49023-1288) directly or circle No. 119 on the Free Information Card.

No other training shows you how to troubleshoot and service computens like NRII

NEWI 3868N/20 MHZ MIN
TOWER COMPUTER!
Features 32-bit 80386sx
CPU, 1 meg RAM, 64 K ROM, 1.2 meg high-density floppy disk drive

MONTOR

High-resolution, nonglare, $12^{\prime \prime}$ TTL monochrome monitor with tilt and swivel base

NEN! 40 MES HARD DESK DRIVEI You install this 40 meg IDE hard disk drive internally, for greater data storage capacity

DMABNOSTIC HARDWARE

AND SOFTWARE
R.A.C.E.R. plug-in diagnostic card and QuickTech menudriven software, both from Ultra-X, give you hands-on experience with today's professional

80FTWARE

Train with MS-DOS, GW-BASIC, and popular Microsoft Works applications software

DIGITAL MULTMETER

Professional test instrument for quick and easy measurements

DISCOYERY LAB

Complete breadboarding Complete breadboarding
system lets you design and modify circuits, diagnose and repair faults

DIAITAL LOGIC PROBE
Simplifies analyzing digital circuit operation

LE880N8
Clear, illustrated texts build your understanding of computers step by step

Only Nid walks you through the step-by-step

assembly of a powerful 388sx computer

systam you train with and keep - glving you the hands-on expariance you nead to work with, troubleshoot, and sarvice today's most widely used computer systems. Only NRI gives you everything you need to start a money-making career, even a business of your own, in computar service.
No doubt about it: The best way to learn to service computers is to actually build a state-of-the-art computer from the keyboard on up. Only NRI, the leader in career-building at-home electronics training for more than 75 years, gives you that kind of practical, real-world computer servicing experience.

Indeed, no other training - in school, on the job, anywhere - shows you how to troubleshoot and service computers like NRI.

Get inside the West Coast 386sx computer systom ... and experience all the power and speed of today's computer tachnologyl

With NRI's exclusive hands-on training, you actually build and keep the powerful new West Coast $386 \mathrm{sx} / 20 \mathrm{MHz}$ mini tower computer system.

You start by assembling and testing your computer's 101-key "intelligent" keyboard, move on to test the circuitry of the main logic board, install the power supply and 1.2 meg high-density floppy disk drive, then interface your high-resolution monitor.

What's more, you now go on to install and test a powerful 40 meg IDE hard disk drive - today's most-wanted computer peripheral - included in your course to dramatically increase your computer's data storage capadity while giving you lightning-quick data access. But that's not all!

Professional diagnostic hardware and software makes troubleshooting last and accurate

Your NRI training now includes a remarkable diagnostic package that allows you to quickly locate and correct defects in IBM XT, AT 80286/80386, and compatible computers.

You'll use your Ultra-X QuickTech diagnostic software to test the system RAM and such peripheral adapters as parallel printer ports, video adapters, and floppy and hard disk drives. You'll go on to use your R.A.C.E.R. diagnostic card, also from Ultra-X, to identify individual defective RAM chips, locate interfacing problems, and pinpoint defective support chips.

This ingenious diagnostic package is just one more way NRI gives you the confidence and the know-how for advancement, a new career, or a moneymaking business of your own.

No experience necessary ... Ninl bullds it in

With NRI, you learn at your own pace in your own home. No classroom pressures, no night school, no need to quit your present job until you're ready to make your move. And all throughout your training, you have the full support of your personal NRI instructor and the NRI technical staff, always ready to answer your questions and give you help whenever you need it.

FREI catalog teils more. Send todayl

Send today for NRI's big, free catalog that describes every aspect of NRI's innovative computer training, as well as hands-on training in TV/video/audio servicing, telecommunications, industrial electronics, and other high-growth, high-tech career fields.

If the coupon is missing, write to NRI School of Electronics, McGraw-Hill Continuing Education Center, 4401 Connecticut Avenue, NW, Washington, DC 20008.

IBM is a registered trademark of International Business Machines Corp. QuickTech and R.A.C.E.R. are registered trademarks of Ultra-X, Inc.

PRODUCT TEST REPORTS

By Len Feldman

Canon UC1 8 mm Camcorder

More and more camcorder enthusiasts are these days turning to the 8 mm format. For reasons that remain something of a mystery, American video enthusiasts initially thought that "bigger is better" and opted for heaw, bulky, fullsize VHS camcorders. Lighter and smaller compact VHS units, dubbed VHS-C, made some inroads when

The Canon UCI compact 8 mm camcorder.
introduced. But since recording time was limited to a maximum of 20 minutes, and later extended to 30 minutes, their success was limited. The introduction of the 8 mm format solved both the size and weight and the recording-time
problems, offering 2 hours of recording time (and, more recently, $21 / 2$ hours on somewhat thinner tape).

Canon has been a major proponent of the 8 mm format almost since it was standardized. That innovative company now offers three camcorders in their "UC" series. Of those, the UC1, which was tested for this report, is the least expensive, with a suggested list price of \$1499.00.

Billed as the world's lightest 8 mm camcorder (at 1.28 pounds without tape, wireless controller, and battery), the UC1 features an $8 \times$ internal-focus zoom lens and six-layer ceramic circuit assemblies. A detachable, full-function. wireless remote control; an on-screen menu system; and a 2-page title superimposer with "shadow" letters and battery backup (for retaining titles) are a few of its many features. The titles are displayed in frames using an interlace method that prevents the broken diagonal lines that are usually apparent in other camcorders that use a fieldmemory method.

Other features include a 7-mode high-speed shutter, a "gain-up" switch for lowlevel (2-lux) light sensitivity, a 24-zone evaluated whitebalance system, automatic wind screen, and a variety of power-supply options (including alkaline batteries). As is true of many 8 mm camcorder models, you can set time and date so that they may be displayed
at the beginning of a scene or at any time you choose.

More advanced features include "edit erase," a system for erasing up to a minute's worth of unsatisfactory recording and returning to the starting point of a scene that is to be re-recorded; backlighting compensation, which can be used when excessive background lighting occurs behind the subject being taped; fade-in and fade-out; and self-timer recording, a ten-second standby mode that allows you to get into the picture. Finally, if you are using a partially recorded tape, a blank-tape search function allows you to locate the end of the recorded section; that avoids having long blank, unrecorded sections on the tape.

CONTROLS

As viewed from. the rear, the left-side surface of the unit houses power-focusing buttons; an automaticfocus on/off button; the fade, backlight compensation, and date buttons; and buttons associated with titling. Toward the rear of that surface, near the electronic viewfinder, are a counterreset button, a menu/play button, fast- forward/record search and rewind/record search buttons, a select/ record review/stop button, and an edit switch. The function of the buttons that have more than one purpose depends on whether you are in the record or play mode.

The right side panel of the camcorder body (again, viewed from the rear) houses the power on/ off switch, a power-zoom rocker switch, the start/stop (record) switch, and a mode select switch that chooses camera or playback modes. A detachable wireless controller can be swung up (or detached) to uncover tape return, rewind, play, fast forward, start/stop, zoom, stop, record, still-frame, and counter reset buttons. With the wireless controller swuing out of the way and with the handgrip section swung down, access is gained to the eject switch that is used to open the cassette compartment for loading and unloading of a cassette. As long as a battery or power adaptor is connected to the camcorder, the eject button will work even when power is off.

The audio and video input/output terminals are located up front, below the camcorder's lens and builtin microphone. Those terminals can be used to
playback recordings on a N set equipped with audio/ video inputs or to use the camcorder to record from another source, such as a VCR. A battery pack or an AC power adaptor (supplied) attaches easily to the rear of the camcorder.

TEST RESULTS

Advanced Product Evaluation Labs (APEL) measured the performance of this camcorder. Using the "gain up" function, minimum illumination required to produce a full-amplitude video signal was 1.9 lux, which was slightly better than the 2.0-lux level claimed by Canon. White balance, or the amount of chrominance (color) that appears on a neutral object when the whitebalance control is set for optimum was 12 IRE, which was a bit poorer than we would have expected. While color contamination (color bursts appearing on a fine black and white pattern) measured 8 IRE when measured from the camera

TEST RESULTS-CANON UC1 8mm CAMCORDER

Specifications	Mfr's Claim	PE Measured
Minimum illumination	2.0 lux	1.9 lux
White balance	N/A	12 IRE
Color contamination	N/A	8 IRE*
Horizontal resolution		
Camera	N/A	330 lines
Record/play cycles	N/A	240 lines
Video signal-to-noise ratio		
Camera		
Chroma AM	N/A	43.9 dB
Luminance	N/A	39.5 dB
Record/play video out		
Chroma AM	N/A	40.1 dB
Luminance	N/A	40.3 dB
Lens	f/1.8, $8 \times 200 \mathrm{~m}$	Confirmed
Minimum focal distance	36 inches	35 inches
Microphone max. output	N/A	0.41 volts
Ext. microphone sensitivity	N/A	3.1 mV
Audio signal-to-nolse ratio	N/A	58.3 dB
Power requirements	4.9 watts	6.5 watts
Weight	1.28 lbs .	2.0 lbs.*
Dimensions ($H \times W \times D$, inches)	$51 / 2 \times 31 / 8 \times 63 / 8$	Confirmed
Suggested list price	\$1499.00	
*See text		

Earn Your B.S. Degree in ELECTRONICS or
COMPUTERS

By Studying at Home

Grantham College of Engineering, now in our 42 nd year, is highly experienced in "distance education"teaching by correspondence-through printed materials, computer materials, fax, and phone.

No commuting to class. Study at your own pace, while continuing on your present job. Learn from easy-tounderstand but complete and thorough lesson materials, with additional help from our instructors.

Our Computer B.S. Degree Program includes courses in BASIC, PASCAL and C languages - as well as Assembly Language, MS DOS, CADD, Robotics, and much more.

Our Electronics B.S. Degree Program includes courses in Solid-State Circuit Analysis and Design, Control Systems, Analog/Digital Communications, Microwave Engr, and much more.

An important part of being prepared to move up is holding the right college degree, and the absolutely necessary part is knowing your field. Grantham can help you both waysto learn more and to earn your degree in the process.

Write or phone for our free catalog. Toll free, 1-800-955-2527, or see mailing address below.

Accredited by
the Accrediting Commission of the National Home Study Council

> GRANTHAM College of Engineering Grantham College Road

DIGITAL VIDEO STABILIZER ELIMINATES ALL VIDEO COPYGUARDS

While watching rent-
al movies, you will notice annoying periodic color darkening, color shift, unwanted lines, flashing or jagged edges. This is caused by the copy protection jamming signals embedded in the video tape, such as Macrovision copy protection. THE DIGITAL VIDEO STABIUZER: RXII COMPLETELY ELIMINATES ALL COPY PROTECTIONS AND JAMMING SIGNALS AND BRINGS YOU CRYSTAL CLEAR PICTURES.
WARNING
THE DIGITAL VIDEO STABIUZERIS INTENDED FOR PRIVATE HOME USE ONLY. IT IS NOT INTENDED TO COPY RENTAL MOVIES OR COPYRIGHTED VIDEO TAPES THAT MAY CON. STITUTE COPYRIGHT INFRINGEMENT

FEATURES

- Easy to use and a snap to install
- State-of-the-art Microchip technology
- 100\% automatic
- Compatible to all types of VCRs and Ivs
- The best and most exciting Video Stabilizer in the market
- Light weight (8 ounces) and compact ($1 \times 3.5 \times 5^{\prime \prime}$)
- Uses a standard 9 Volt battery (last 1 . 2 years)
- Fast UPS delivery
- Air shipping avail able
- UNCONDITIONAL

30 day money back guarantee

- 1 year warranty
(Dealers Welcome)
FREE 20P Catalog

To Order: $\$ 59.95$ ea $+\$ 5$ for $p \& h$ Visa, M/C, COD Mon-Fri: 9-6 EST 1-800-445-9285
ZENTEK CORP. DEPT. CPE193 3670-12 WEST OCEANSIDE RD. OCEANSIDE. NY 11572

CIRCLE 11 ON FREE INFORMATION CARD

As shown in this vectorscope photo, color-phase accuracy and color saturation were just about perfect.
output itself, that figure decreased to a more than acceptable 2 IRE when the test was made for the complete record/playback cycle.

Color-phase accuracy and color saturation were just about perfect, as illustrated in the vectorscope photo of Fig. 1, which was taken by APEL from a red field. There was virtually no evidence of streaking, lag, or image retention when the camcorder was panned across bright light sources.
Resolution, or the maximum number of horizontal lines as viewed from a resolution test chart, measured 330 lines for the camera output, about equal to the best resolution obtainable from broadcast TV. When measured via the complete record/play cycle, however. resolution decreased to 240 lines, or about what we have come to expect from standard 8 mm -format cam corders.

For the camera output, the video color (chroma AM) signal-to-noise ratio measured 43.9 dB , while the signal-to-noise ratio relative to the brightness signal (luminance) measured 39.5 dB . For the
complete record/play cycle, those signal-to-noise figures changed to 40.1 dB and 40.3 dB , respectively.

The built-in microphone delivered a maximum au-dio-output signal of 0.41 volts, while external-microphone input sensitivity measured 3.1 millivolts for full audio output. Audio sig-nal-to-noise ratio measured a satisfactory 58.3 dB .

Additional data supplied by APEL indicated that the minimum focus distance for this camcorder was 35 inches in the normal mode, and $1 / 8$ inch in the "macro" closeup mode. The camcorder consumed 6.5 watts of power when in the record mode. With its battery pack and wireless controller attached, and a 120-minute 8 mm -cassette installed, the total weight of the camcorder approached 2 pounds. The overall dimensions of the unit were $51 / 2(\mathrm{H})$ by $31 / 8(\mathrm{~W})$ by $63 / 8$ (D) inches.

HANDS-ON TESTS

Since so many of the controls are of the dualfunction type and the unit is so compact, learning how to use the UC1's many features and special effects takes a bit of time and practice. However, it is well
worth the effort because this very compact unit is able to produce profession-al-looking video tapes that would have required the use of a much heavier and bulkier camcorder just a couple of years ago.

We should note that those seeking better picture resolution than is provided by the UC1 can choose Canon's UCS1. That unit is a slightly heavier but equally compact model that offers all the features of the UC1, plus Hi -Band 8 mm -video recording and several additional features such as a 2-speed 10x power zoom and a built-in character generator with numerous digital title functions. For those who insist upon better sound, Canon offers still another cam-corder-the UC20, which features hi-fi stereo and a 7-mode high-speed shutter. The UCS1 carries a suggested list price of $\$ 2099.00$ while the UC20 has a suggested list price of \$1849.00.

However, for the typical camcorder user seeking a lightweight, full featured 8 mm camcorder to use for recording vacations, family events, and other memories, we can recommend the Canon UC1 without any reservations. For more information on the UC1 or other Canon camcorders, contact the company directly (Canon USA, Inc., Video Division, One Canon Plaza, Lake Success, NY 11042-1113), or circle No. 120 on the Free Information Card.

Home study course shows you how to make good money in VCB repair.

An amazing fact: you can do more than four out of five VCR repairs with ordinary tools and basic fix-it procedures. Our home study program shows you how.

Learn all of the systems, mechanisms, and parts of almost all brands of VCRs. With no expensive instruments. No complicated electronics. No fancy workshop.
 The step-by-step texts and close personal attention from your instructor make learning easy.
 Texts, course materials, and tool kit are sent to your home. Graduate ready to make up to $\$ 50.00$ or more per hour in your own spare-time or full-time business.

> Send today for your free career booklet. Or call 800-223-4542

Name
Address
City \qquad State \qquad Zip

The School of VCR Repair

2245 Perimeter Park, Dept. VA341, Atlanta, Georgia 30341 CIRCLE 9 ON FREE INFORMATION CARD

[^0] Durable Lightweight Plastic.

PHONE RECORDING ADAPTER

\$28.50*
FCC Asproved ONTROL
VOX VOICE ACTIVATED CONTROL
Solids ate Ad ustable Sensit vity. Voices \& Sounds Activate Recorder Adjustable Sensitivity
Provisions for Remote
Mike
\$28.50*

* Add for ship. \& handling. Phone Adapter \& Vox $\$ 2.00$ each, Recorders $\$ 5.00$ each. Colo. Res add tax. Mail Order, VISA, M/C, COD's OK. Money Back Guar. Oty Disc. available. Dealer inquiries invited. Free data on other products.

AMC SALES INC. 193 Vaquero Dr. Boulder, CO. 80303
Phones (303) 499-5405 1-800-926-2488
FAX (303) 494-4924
Mon-Fri 8-5 MTN, TIME

Welcome to.

 PROBE! The Amateur Scientist's JournalEmbark on an irresistible new journey into the realm of mystery, challenge, and exploration! The perfect magazine for the budding scientist, the serious amateur, the professional who would like to relax, and those who simply want to gaze at the stars.

Articles to appear in upcoming issues of Science PROBE! are:

> Inside Internet—A Scientific Computer Network Make your own Seismometer Operate a Solar-Powered Weather Station Assemble a Solid-State Portable Barometer The Bicycle-A Traveling Scientific Laboratory

If you're fascinated by science in all its many forms, if you are compelled to experiment and explore, then Science PROBE! is your kind of magazine!

For Faster Service-Call Today: 1-800-777-5489

Science PROBE! 7PA31	
500-B Bi-County Boulevard	
Farmingdale, NY 11735	
Please forward my copy of Science PROBE! as soon as it comes off the press.	
I am enclosing $\$ 3.50$-U.S.A. (\$4.23-Canada-includes G.S.T.) plus $\$ 1.00$ for shipping and handling. Better still, please enroll me as a subscriber and send the next four (4) quarterly issues of Science Probe. I am enclosing $\$ 9.95$ -	
U.S.A. (Canada: $\$ 16.00$-includes G.S.T.)	
Offers valid in the U.S.A. and Canada only. No foreign orders.	
Name	
Address	
City \qquad State \qquad All Orders payable in U.S.A. Funds only	

Build an
 Aviation-Bamd Receiver

Join a growing throng of listening enthusiasts who regularly tune in

 commercial air-to-ground and ground-to-air aeronautic communications.If, like many scanner enthusiasts and ham operators, you are interested in listening in on all the excitement manifest in aeronautic communication, but lack the equipment to pursue your interest, then perhaps the Aviation Receiver described in this article is for you. The Aviation Receiver, designed to tune the $118-135-\mathrm{MHz}$ band, features exceptional sensitivity, image rejection, sig-nal-to-noise ratio, and stability. The receiver is ideally suited to listening in on ground and air communications associated with commercial airlines and general aviation.

Powered from a 9 -volt transistor-radio battery, it can be taken along with you to local airports so that you won't miss a moment of the action. And even if you're nowhere near an airport, this little receiver will pick-up the air-to-ground and ground-to-air communications of any plane or ground facillity within about 100 miles!

Circuit Description. Figure 1 shows a schematic diagram of the Aviation Receiver-a superhetrodyned AM (amplitude modulated) unit built around four IC's: an NE602 doublebalanced mixer (U1), an MC1350 linear IF amplifier (U2), an LM324 quad op-amp (U3), and an LM386 audio amplifier (U4).

In operation, an antenna that plugs into J1 picks up the AM signal. That signal is then coupled through C1 to a three-section, tuned-filter network,

BY FRED BLECHMAN

consisting of L1-L5 and C2-C6. Signals in the 118-135-MHz VHF (very high frequency) range are coupled through C7 to a VHF transistor (Q1), where the signals are amplified. From there, the signals are fed through C8 to the input of U1 (the NE602 doublebalanced mixer), which in this application serves as a local oscillator. A variable inductor (L6) and its associated capacitor network set the localoscillator frequency at $10.7-\mathrm{MHz}$ higher than the incoming $118-135-\mathrm{MHz}$ signals. A tuning network, consisting of varactor diode D1 and potentiometer R1, allows the local-oscillator frequency to be tuned across about 15 MHz .

The $10.7-\mathrm{MHz}$ difference between the received signal and the local-oscillator frequency (i.e., the intermediate frequency or IF is output al pin 4 of U1 to a $10.7-\mathrm{MHz}$ ceramic filter (FIL1). The filter is used to ensure a narrow pass band and sharp signal selectivity.

The output of FIL 1 is amplified by Q2 and then fed through C16 to U 2 (an MC1350 IF amplifier), which, as configured, also offers automatic gain control (AGC), as we'll see shortly. The amplified $10.7-\mathrm{MHz}$ IF signal is peaked using variable transformer T1. The AM audio is then demodulated by diode D2. After that, the audio is fed in sequence through the four sections of U3 (an LM324 quad op-amp).

Note that a portion of U3-a's output signal is fed back through resistor R25 to the AGC -control input of U 2 at pin 5 .

That signal is used to automatically decrease the gain of U2 when strong signals are presentor to automatically increase U2's gain for weak signals. That keeps the output volume of the circuit within a comfortable listening range regardless of the strength of the incoming signals.

The receiver circuit also contains a squelch circuit that is controlled by potentiometer R3, which is used to kill random noise below a selected threshold level. When properly set, the squelch control virtually eliminates background noise, so that all you hear are incoming signals that can be brought up to a usable level. Potentiometer R2 controis the overall volume fed through C26 to U4, an LM386 lowvoltage audio-power amplifier. Due to the overall design and squelch control, the audio output is quite low in background noise, and yet it's capable of driving simple communications speakers or earphones to excellent volume levels.

Construction. The Aviation Receiver was assembled on a printed-circuit board, measuring about $4 \times 43 / 4$ inches. Figure 2 shows a full-size template of that printed-circuit board's layout. A kit of parts (which includes an etched and pre-drilled, printedcircuit board, but no case) is offered by the supplier listed in the Parts List.

Although most of the parts for this project are commonly available through conventional electronic-

Fig. 1. The Aviation Receiver-a superheterodyne unit, built around four IC's-is designed to receive AM signals in the $118-135-\mathrm{MHz}$ frequency range.

All of the components for the Aviation Receiver (including the 9-volt transistorradio battery that powers the circuit) mount on a single printed-circuit board.
components suppliers, a source for some of the more difficult to find parts is given in the Parts List for those who prefer to do their own shopping. If you opt to gather your own parts or you
plan to use what you have on hand, keep in mind that the circuit-board layout was designed to accommodate components of specific dimensions in some cases; jacks J1 and J2, switch S1, transformer T1, and all three potentiometers, for example. To ease the pain of obtaining those parts, a "Special Parts Kit" is also available from the listed source.

Also note that either of the Siemens parts specified in the Parts List for varactor diode D1 will work, but both may be difficult to find from hobbyist sources. However, the second unit (BB505) is available from Allied Electronics.

However you go about collecting the parts for this project, don't even think about building the receiver clrcuit without the printed-circuit board.

At the frequencies involved, the placement of every wire and part, and every part value is critical for trou-ble-free performance.
Once you've obtained all of the components and the board for the Aviation Receiver, construction can begin. A parts-placement diagram is shown in Fig. 3. When assembling the project, take special care that polar-ity-sensitive components (electrolytic capacitors, diodes, and transistors) are installed properly. Just one part installed backwards can cause grievous harm!
Begin by installing the passive components (jumper wires, resistors, capacitors, and inductors). Follow that by installing the active components; diodes, transistors, and IC's. Once the active components have been in-

Fig. 2. Here's a full-size printed-circuit pattern for the Aviation Receiver. The printedcircuit board can be purchased as part of a full-blown kit or separately from the supplier listed, in the Parts List.

The Aviation Receiver's printed-circuit board fits neatly into this optional 5- $\times 5.25-$ $\times 1.5$-inch custom cabinet (which comes with knobs, hardware, silk-screened front and back panels, as well as rubber mounting feet).
stalled, check your work for the usual construction errors: cold solder joints, misplaced or misoriented compo-
nents, solder bridges, etc. Once you've determined that the circuit has been correctly assembled, it's time to
consider the enclosure that will house your receiver.

The receiver's circuit board can be housed in any enclosure that you choose. However, if you prefer, an optional case and knob kit for the receiver is available from the supplier listed in the Parts List. The optional case is supplied with neatly lettered front and rear panels, knobs, rubber feet, and mounting screws.

If you choose a case other than the one available from the listed supplier, it will be necessary to drill holes in the front and rear panels of the enclosure to accommodate the controls ($\mathrm{S} 1, \mathrm{R} 1$ R2, R3) and the jacks (J1 and J2). Once drilled, the front and rear panels of the enclosure can be labeled using drytransfer lettering.

The antenna for the Aviation Re ceiver can be as simple as a 21 -inch length of wire, or you can get a fancy roof-mounted aviation antenna. If you are near an airport, you'll get plenty of on-the-air action from the wire antenna, but if you're more than a few miles away, a decent roofmount antenna offers a big improvement.

Alignment and Adjustment.

Aligning the Aviation Receiver consists of nothing more than adjusting the slug in the local-oscillator coil (L6) for the center of the desired tuning range, and peaking the IF transformer (T1). The receiver can be calabrated using a VHF RF signal generator, frequency counter, or another VHF receiver by setting R1 to its mid-position; remember that you want to set the local-oscillator frequency $\uparrow 0.7-\mathrm{MHz}$ higher than the desired signal or range to be received. Then, using a non-metallic alignment tool-a metal tool of any kind will drastically detune the coil, making alignment almost impossible-adjust L6 (the LO coil) until you hear aircraft or airport communications.

Once you are receiving aircraft or airport frequencies, adjust T1 for the best reception. Typically, T1 is adjusted 2-3 turns from the top of the shield can. If you don't have any signal-reference equipment for alignment, and are not yet hearing airplanes, your best bet is to pack up the receiver and the necessary alignment tools, and head for the_nearest airport! If the airport has no control tower, visit a gen-

WHAT YOU CAN EXPECT TO HEAR

No matter where you live, you will be able to receive at least the airborne side of many air-traffic communications. If you know where to tune, you can hear any aircraft that you can see, plus planes a hundred miles away and more, since VHF signals travel "line of sight." An airliner at an altitude of 35,000 feet and in the next state is probably still line-of-sight to your antenna

Similarly, whatever ground stations you may hear are also determined by the line-of-sight character of VHF communication. If there are no major obstacles (tall buildings, hills, etc.) between your antenna and an airport, you'll be able to hear both sides of many kinds of aviation communication. Be prepared for them to be fast and to the point, and for the same airplane to move to several different frequencies in the span of a few minutes!
At most metropolitan airports, pilots communicate with the FAA on a "Clearance Delivery" frequency to obtain approval or clearance of the intended
flight plan, which is done before contacting ground control for taxi instructions.

From the control tower, ground movements on ramps and taxiways are handled on the Ground Control Frequency, while runway and in-flight maneuvers near the airport (takeotts, local-traffic patterns, final approaches, and landings) are on the Tower Frequency. ATIS, or "Automatic Terminal Information System," is a repeated broadcast about basic weather information, runways in use, and any special information such as closed taxiways or runways. Such a broadcast offers an excellent steady signal source for initial adjustment of your receiver, if you are close enough to the airport to receive ATIS

Approach Control and Departure Control are air-traffic radar controllers that coordinate all flight operations in the vicinity of busy metropolitan-airport areas. When you hear a pilot talking with "Jacksonville Center" or "Indianapolis Center," these are regional ATC (Air Traf-
fic Control) centers. The aircraft is really en route on a flight, rather than just leaving or approaching a destination. A pilot will be in touch with several different Regional Centers" during a cross-country flight

Airports without control towers rely on the local Unicom frequency for strictly advisory communications between pilots and ground personnel, such as fuel service operators. The people on the ground can advise the pilot what they know about incoming or outgoing aircraft, but the pilot remains responsible for landing and takeoff decisions. Typical Unicom frequencies are 122.8 and 123.0 MHz

The FAA's network of FSS (Flight Service Stations) keeps track of flight plans, provides weather briefings and other services to pilots. Some advisory radio communication takes place between pilots and a regional FSS. If there is an FSS in your local area, but no airport control towers, the FSS radio frequency will stay interesting

PARTS LIST FOR THE AVIATION RECEIVER

SEMICONDUCTORS

U1-NE602 double-balanced mixer, integrated circuit (Digi-Key)
U2-MC1350 linear IF amplifier, integrated circuit (Allied 858-3011)
U3-LM324 quad op-amp, integrated circuit (Digi-Key)
U4-LM386 low-voltage audio-power amplifier, integrated circuit (DigiKey)
Q1-2SC2570 or 2N5179 NPN UHF transistor (Allied 858-1041)
Q2-2N3904 general-purpose NPN silicon transistor (Digi-Key)
D1-BB405 or BB505 varactor diode (Siemens, Allied 586-0610)
D2-IN270, IN34, or similar germanium diode
D3-IN914 silicon diode

RESISTORS

(All fixed resistors are $1 / 4$-watt, 5% units.)
R1-R3-10,000-ohm PC-mount potentiometer
R4, R9, R15, R16, R20, R21, R24-47,000-ohm
R5, R7, R11, R18, R25, R27-1000ohm
R6, R28-270-ohm
R8, R12, R17, R23- 10,000 -ohm
R10, R14-1-megohm
R13, R22-33,000-ohm

R19-100,000-ohm
R26-22,000-ohm

CAPACITORS

$\mathrm{Cl}, \mathrm{C} 7, \mathrm{C} 8, \mathrm{Cl} 3, \mathrm{Cl} 6-0.001-\mu \mathrm{F}$, ceramic-disc
C2, C4, C6-82-pF, ceramic-disc
C3, C5-3.9-pF, ceramic-disc
C9, C17, C19, C20, C28, C30-$0.01-\mu \mathrm{F}$, ceramic-disc
C10, C15. C21, C25, C26, C31-4.7to $10-\mu \mathrm{F}, 16-\mathrm{WVDC}$, electrolytic
C11-10-pF, ceramic-disc
$\mathrm{Cl} 2, \mathrm{Cl} 4-27-\mathrm{pF}$, NPO ceramic-disc
C18, C27, C29-100- to $220-\mu \mathrm{F}, 16-$
WVDC, electrolytic
C22-0.47- $\mu \mathrm{F}, 16-\mathrm{WVDC}$, electrolytic
$\mathrm{C} 23, \mathrm{C} 24-0.1-\mu \mathrm{F}$, ceramic-disc

INDUCTORS

L1, L3, L5-1 $1 / 2$-turns \#24 to \#30 gauge wire
L2, L4 $0.33-\mu \mathrm{H}$, inductor (DigiKey M9R33-ND)
L6-0.1- $\mu \mathrm{H}, 31 / 2$-turn, slug-tuned coil (Digi-Key TK2816)
$\mathrm{Tl}-10.7-\mathrm{MHz}$, shielded transformer (Mouser 42IF123)

ADDITIONAL PARTS AND MATERIALS

FLI-10.7-MHz ceramic filter (Digi-

Key TK-2306)
SI-SPST switch, PC mount JI-RCA jack. PC mount
J2-Subminiature phone jack, PC mount
B1-9-volt transistor-radio battery
Perfboard materials, enclosure, AC molded power plug with line cord, battery(s), battery holder and connector, wire, solder, hardware, etc.

Note: The following items are available from Ramsey Electronics, Inc., 793 Canning Parkway, Victor, NY 14564; Tel. 716-924-4560: A complete kit of parts (AR-1BP), including printed-circuit board (but not the case or control knobs), $\$ 24.95$; an etched and drilled printed-circuit board only
(AR-IPCBP), $\$ 10.00$; a Special Parts Kit (AR-ISPKBP) containing all semiconductors, R1-R3, all inductors, Sl, Jl and J 2 , and FILI, $\$ 14.50$; Custom case and knob set (C-AR-1BP), $\$ 12.95$. Please add $\$ 3$ for orders under $\$ 20$. All orders are subject to a $\$ 3.75$ postage/ handling charge. New York State residents, please add appropriate sales tax.

Fig. 3. Use this parts-placement diagram as a guide when assembling the printedcircuit board
eral aviation service center on the airport grounds, and ask which are the most active frequencies. Then adjust L6 and R1 until you hear the action.
A ground-service operator or private pilot may be willing to give you a brief test transmission on the 122.8 Unicom frequency. Remember, also, that if your airport has ATIS transmissions, you can get a steady test signal as soon as you are within line-of-sight of its antenna. (See the sidebar for explanation of Unicom and ATIS.)

Use. Plug an antenna into J 1 and a 4to 8 -ohm speaker or earphone into J2. Turn on the Aviation Receiver by closing S1. You may or may not hear background noise. Turn R2 (the squelch control) fully counterclockwise. Then rotate R2 clockwise until you hear a "pop" and some background noise;
then back it off slightly (counterclockwise) past the pop. You are now in squelch mode.

With pilots and controllers talking so briefly, you will need to get used to tuning your receiver. As you sweep across the band (via R1), listen for a sound, then rock back and forth slightly to tune it in clearly.

Troubleshooting Suggestions. If the receiver does not work at all, carefully check the obvious things first; battery polarity, soldering of the battery wires and switch, and the connections to the speaker jack. Also, be sure to check that you've correctly installed all of the jumpers. If the circuits operation is erratic, a solder connection is usually the culprit, or there could be a break in the antenna or speaker wire. Pay special attention to the orienta-

PILOT AND CONTROLLER TALK

Don't blame the Aviation Receiver if all you hear are short bursts of words that don't make a lot of sense at tirst. Aviation communication is necessarily quick and brief, but clear and full of meaning. Generally, pilots repeat exactly what they hear from a controller, so that both know the message or instructions were correctly interpreted. If you are listening in, it's hard to track everything said from a cockpit, particularly in big city areas. Just to taxi, takeoff, and fly a few miles, a pilot may talk with 6 or 8 different air-traffic-control operations within a few minutes, all on different frequencies.

Here's the meaning of just a few typical communications:
"Miami Center, Delta 545 heavy out of three-zero for two-five." Delta Flight 545 acknowledges Miami Center's clearance to descend from 30,000 feet to 25,000 feet. The word "heavy" means that the plane is a jumbo jet. perhaps a 747. DC.10, or L-1011.
"Seneca 432 lima cleared to outer marker. Contact lower 118.7. "The local Approach Control is saying that the Piper Seneca with the N-number, or "tail rumber" ending in " 432 L " is cleared to continue flying an instrument approach to the outer marker (a precision radio beacon located near the airport), and should immediately call the airport radio control tower on 118.7 MHz . That message also implies that the controller does not expect to talk again with that aircraft.
"Cessna 723, squawk 6750, climb and maintain five thousand." A controller is telling the Cessna pilot to set the airplane's radar transponder to code "6750," climb to and level off at the alfitude of " 5000 feet."
"United 330, traffic at 90^{\prime} clock, 4 miles, clitude unknown." The controller alerts the United Airlines flight of radar contact with some other aircraft off to the pilot's left at a "9 o'clock" position. Since the unknown plane's altitude is also unknown, both controller and pilot realize that it is a smaller private plane not equipped with altitude-reporting equipment.
tion of all IC's, transistors, diodes, and electrolytic capacitors. Also, be sure that C11 and C12 in U1's oscillator circuit are of the right values. Local-oscillator operation can be verified with a simple VHF receiver or frequency counter. Remember that the local oscillator should be set to a frequency 10.7 MHz above the desired listening range, If the oscillator works, only a defecrive or incorrectly installed part can prevent the rest of the receiver circuit from functioning.

AIthough it may seem quite distant now, summer is approaching with the anticipation of backyard games, barbecues, and the dog next door barking incessantly, If you happen to be the owner of the irritating, barking dog next door, then neighborhood harmony is at risk. But, worry not... for in this article, we're going to show you how to build a Dog Bark Inhibitor that will restore neighborhood harmony by humanely stopping your dog from barking.
Commercially available dog bark inhibitors (electronic devices built into a dog's collar) that are currently on the market are both expensive and can in some circles be considered inhumane. With such devices, every time the dog barks an electrical charge is sent to the dog's neck. While that stops the dog from barking, it can also turn a dog into a cowering animal afraid of its own shadow.
However, the Dog Bark•Inhibitor described here is inexpensive and humanely stops the dog from barking by actuating a buzzer every time the barking begins. The buzzing is used to give the dog negative feedback that he'll associate with his barking , causing him to refrain from that annoying tendency.

Circuit Description. Figure 1 shows a schematic diagram of the Dog Bark Inhibitor. At power up, a one-shot multivibrator, consisting of one-third of a 40106 hex Schmitt trigger (U4-c and U4-d), resets U2 and U3, keeping the buzzer (BZ1) cut off. At the same time, resistors R1 and R2 set the trigger level of U1-a, U1-c, and U1-d ($3 / 4$ of an LP324 quad op-amp) to 2.5 volts. Op-amps U1-a and U1-d are configured as inverting comparators with hysteresis, while U1-c is configured as a voltage follower

The voltage follower (U1-c) provides a standing DC bias voltage for an electret microphone (MIC1). When MIC1 picks up the dog's barking (see the waveform diagram in Fig. 2A), the bias voltage applied to MIC1 fluctuates, and the output of U1-C follows. Fluctuations in the microphone's bias voltage are applied to U1-d, which amplifies the signal and feeds its output to U1-a. The overall sensitivity of

Dog-Bark Inhibitor

Give yourself and your neighbors some peace and quiet with this training aid BY ROBERT J. GAFFIGAN JR.

the circuit is determined by the gains provided by U1-a and U1-d. The hysteresis provided by those two opamps helps to keep background noise out of the signal applied to U1-b, which is setup as a low-pass filter. That low-pass filter is used to remove frequencies from the signal that are not in the range of a dog's bark.
From the filter, the signal (see Fig. 2B) is made compatible with digital circuitry by U4-a ($\%$ of a 40106 hex inverting Schmitt trigger), which also inverts the input signal. That signal is again inverted by U4-f and output to the following circuitry as a train of negativegoing pulses. Those pulses are produced each time that the sound picked up by the microphone falls within the low-pass range of the filter (see the waveform in Fig. 2C).
The output of U4-f divides along two signal paths: in one path, the signal is fed to the clock input of U2 (a 404012 stage ripple carry binary counter); in the other path, the signal is applied to the trigger input of U3-a ($1 / 2$ of a 556 dual oscillator/timer). The negative pulses trigger U3-a, whose output, in turn, enables U2, causing it to count the number of times that the sound falls within the low-pass range of the
filter. The purpose of U2 and U3-a is to reject 'spurious sounds that fall within the filter's range and to allow the dog a period of free barking.

If the counter (U2) counts 256 bark pulses within eight seconds, its output goes high. That high is inverted by U4-b and applied to the trigger input of U3-b at pin 8 , forcing its output at pin 9 high. The high output of U3-b is applied to the base of Q1 (an MPSA12' Darlington transistor), causing itto conduct. With Q1 conducting, BZ1 (a 6 -volt electronic buzzer) activates for about half a second. At the same time, the ripple counter (U2) is reset via an or gate, made up of D1, D2, and R11.
If, on the other hand, U2 counts fewer than 256 pulses within that 8 -second period, the counter resets, and awaits the next barking session.
The circuit is powered by a 9 volt transistor-radio battery. Because of that, the semiconductors used for this circuit were chosen for their low-current re-quirements-the circuit draws ap:proximately 0.9 microamps of quiescent current, and 15 mA with the buzzer on-and should not be substituted unless swapped for lowerpower components.

Construction. Although the author's prototype was built on a section of perfboard, using point-to-point wiring to interconnect the circult elements, the final version was assembled on a printed-circuit board, measuring about 3×2 inches. A template of the printed-circuit layout is shown in Fig. 3. You can etch your own printed-circuit board from the template shown in Fig. 3 , or you can order a printed-circuit board and the parts (separately) to populate it from the supplier listed in the Parts List.
. Once you have obtained the board and the parts that go with it, construction can begin. Figure 4 shows the parts-placement diagram for the author's printed-circuit layout. It is recommended that IC sockets be provided for all of the DIP units (U1-U4). The regulator, U5, is housed in a TO-92 style package. Begin construction by installing the DIP sockets and the jumper wires. Once that is done, install

Fig. 1. The Dog Bark Inhibitor is comprised of an LP324 quad op-amp (U1), a 4040 12-stage ripple carry binary counter (U2), an LM556 dual oscillator/timer (U3), a CD40106 hex inverting Schmitt trigger (U4), an LM2931A 5-volt series, low-dropout, voltage regulator (U5), an MPSA12 Darlington transistor (Q1), two IN914 general-purpose, small-signal silicon diodes (D1 and D2) and a handful of additional components.

Fig. 2. Shown in A is the waveform produced at the output of UI-d when the dog barks; B shows the same waveform after it has undergone filtering; and C shows how the waveform looks after being processed for application to the digital circuitry that follows.
the passive components (resistors and capacitors).

After the passive components have been installed, mount the active components lexcluding the DIP IC's,
they will be installed in their respective sockets later), and connect a 9-volt battery connector to the appropriate points on the board. In the author's prototype unit, the microphone
(MIC1) was mounted directly to the circuit board, although it might appear otherwise in the parts-placement diagram.

It will be necessary to prepare the enclosure that is to house the circuit board and the off-board components. The author's unit was housed in a plastic project box with a metal lid, measuring about $31 / 4 \times 21 / 8 \times 1$ inches. Begin preparing the enclosure by first placing the circuit board into the enclosure to determine where the microphone will be located when it is permanently mounted. Mark that position on the wall of the enclosure, and drill several tiny holes at that location.

Next, on the same side of the enclosure, drill two holes (one near each end), which will be used to mount a nylon web strap (dog collar) to the project box. Then make two cutouts at opposite ends of the enclosure for the buzer (BZ1) and the slide switch ($\$ 1$); the cutouts should be approximately $7 / 8 \times 5 / 8$ inches for the buzzer, and the

PARTS LIST FOR THE DOG BARK INHIBITOR

SEMICONDUCTORS

Ul-LP324 micropower quad op-amp (National), integrated circuit
U2-CD4040 12-stage ripple carry binary counter, integrated circuit
U3-LM556 dual oscillator/timer, integrated circuit
U4 CD40106 hex inverting Schmitttrigger, integrated circuit
U5-LM2931A 5 -volt series, lowdropout, voltage regulator, integrated circuit
Q1-MPSA12 Darlington NPN silicon transistor
D1, D2-1N914 general-purpose, small-signal silicon diode

RESISTORS

(All fixed resistors are $1 / 4$-watt, 5% units.)
R1, R2, R11, R16- 100,000 -ohm
R3-1000-ohm
R4, R9-39,000-ohm
R5-75,000-ohm
R6-2200-ohm
R7, R8- 11,000 -ohm
R10-56,000-ohm
R12- 10,000 -ohm
R13-R15-1-megohm

CAPACITORS

$\mathrm{Cl}-2.2-\mu \mathrm{F}, 16-\mathrm{WVDC}$, tantalum
$\mathrm{C} 2-0.047-\mu \mathrm{F}$, monolithic
C3- $0.1-\mu \mathrm{F}$, monolithic
$\mathrm{C} 4, \mathrm{C} 5-0.01-\mu \mathrm{F}$, monolithic
C6-8.2- $\mu \mathrm{F}, 16-\mathrm{WVDC}$, tantalum
C7, C8-1- $-\mathrm{F}, 16-\mathrm{WVDC}$, tantalum C9- $22-\mu \mathrm{F}, 16$-WVDC, miniature electrolytic

ADDITIONAL PARTS AND MATERIALS

Sl-SPST slide switch
MICl -Electret microphone
BZ1-6-volt electronic buzzer (RS \#273-054)
B1-9-volt transistor-radio battery
Printed-circuit materials, enclosure, $3 / 4 \times 24$-inch web strap, adhesive backed cushion feet, battery holder and connector, wire, solder, hardware, etc.

Note: The following items are available from Futronics, 22524 Millenbach, St. Clair Shores, MI 48081. A complete kit of parts, $\$ 29.95$; printed-circuit board only, $\$ 9.95$. Please add $\$ 3.00$ for shipping and handling. Michigan residents please add appropriate sales tax.

Fig. 3. The final version of the circuit was assembled on a printed-circuit board, measuring about 3×2 inches. A template of that layout is shown here full size.

Fig. 4. Once you've obtained the board and the parts that will populate it (either on your own or by ordering them from the supplier listed in the Parts List), use this partsplacement diagram to locate and install the components in their proper positions.
other approximately $5 / 16 \times 1 / 4$ inches for the slide switch.

Connect short lengths of hook-up wire to the buzzer and the switch, connect the wires from the off-board components to the appropriate points on the printed-circuit board. Mount the printed-circuit board, switch, and buzzer to the enclosure, and then secure the nylon web strap to the side of the enclosure using a pair of $4 / 40$ screws and nuts. The strapping used to secure the project to the dog's neck is available at most sports and army surplus stores.

Cut off any excess strap length after sizing it to the dog's neck: the free end of the strap should be meited to avoid fraying. Finally, instail the IC's in their respective sockets, install a 9 -volt battery, and close up the project box.

Operation. Using the circuit is easy. Simply strap the Dog Bark Inhibitor to your dog's neck (be sure to orient the unit so that the microphone is up), turn the unit on using $\$ 1$. Any long duration or repeated barking by the dog will cause the buzzer to sound for one half second. If greater sensitivity is desired, increase the value of R5.
A longer free-barking period can be achieved by increasing the number of counts $\mathrm{U4}$ allows before turning on the buzzer (that can be done by cutting the trace to pin 13 of U 2 and moving the wire to the 29 outputpin 12 or the Q10 outputpin 14). The project has been used on the author's dog for more than a year and has stopped the dog's nuisance barking and has restored neighborhood harmony.

> On-board navigation systems, satelite positioning, roadside beacons, and many more developments may dramatically change the relationship between man and his car.

BY BILL SIURU

I's your first trip to this city and you have much business to conduct. You don't have any time to spare, especially driving around lost. Therefore, you spring for a deluxe rental car complete with an on-board navigation system and ceilular phone.
Slipping behind the wheel, you immediately notice the small CRT screen in the center of the dashboard. After reading the brief userfriendly instruction pamphlet, you flip on the ignition switch and the screen lights up with a monochromatic map of the city's streets. An icon on the screen displays your current location. Pressing one of the buttons along the side of the CRT, the map changes to a menu. Scrolling through the menu, you enter your first destination. Switching back to the map display, you see another icon at the destination plus the streets you have to travel highlighted. Also shown is the current com-
pass direction and the mileage to your destination. This trip is going to be a piece of cake!

Moving out of the parking garage, you glance to your right and see the map moving with the vehicle as you turn right or left, or even back up. To help keep your orientation, the top of the screen represents "straight ahead." Halfway to your destination, the system starts "beeping" quietly to get your attention. Without taking your eyes off the road, you notice a "congestion" warning and a new route is suggested to avoid the problem. As you near your destination, you press another side button to zoom-in on the display so the local streets are shown in greater detail.

After parking, but before leaving the car for your appointment, you remember you need to make a hotel reservation. Pressing another button brings up a menu that gives you a
listing of motels and hotels in a familiar Yellow Pages format. You choose one and then use the cellular phone to make the reservation. As you go through this menu, you note for later reference that there are also listings of restaurants, entertainment attractions, towing services, and even local happenings with dates, locations, and times.

Sounds like a bit of science fantasy? Well, in-car navigation systems with at least most of these capabilities are starting to appear on the market in Europe, Japan, and even the U.S. For instance, some 50,000 navigation systems are already in operation in Japan. In Europe and the U.S., navigation equipment is starting to appear in police cars, fire trucks, ambulances, express delivery vans, and other time-critical vehicles. "Civilian" aftermarket units are now on sale in the U.S. as well.

How They Work. Let's look at the Blaupunkt Travelpilot by the Robert Bosch Corporation, which is already offered in the United States as well as in Europe with a suggested retail price of $\$ 2,495$. The Traveipilot uses "deadreckoning" navigation, a technique first used by mariners and aviators, combined with map matching.
Dead reckoning uses speed, time, and compass direction to continuously compute the vehicle's estimated location with respect to a known position. Dead reckoning is sometimes referred to as "deduced reck, oning." That is because you are deducing where you must now be given that you have, for example, traveled for 15 miles (determined by an odometer or a speedometer and a clock) due east from a known starting position.
In simple dead reckoning, you would plot your course on a map with a pencil. That roughly corresponds to map matching in a navigation system like the Travelpilot. Here the path being driven (determined from dead reckoning) is compared, or technically called "cross-correlated," with the available paths that are on the map. That is like tracing your path on a piece of paper, putting it over a map and moving it around until it matches up with the roads on the map. Of course, in a computerized navigation system, this correlation is done using hundreds of algorithms (computerized equations) and a digitizedmap database. Therefore, if you have driven a path on existing roads, it will correspond to a particular path in the map database. Even if you drive off roads and into parking lots, the algorithms look at the "bigger picture" to find out where you probably are.

Speaking of maps, Etak Inc. in Men1o Park, California is the major producer of digitized maps for use in onboard navigation systems as well as many other appllcations from taxi and ambulance dispatchers to public utilities and travel agents. Some 75 -percent of the U.S. is covered by at least one version of an EtakMap digitized map, as are extensive areas of Germany, France, and the Netherlands.

Travelpilot uses an electronic fluxgate compass and dual wheel sensors to measure direction and distance traveled, respectively (See Fig.
1). The two wheel sensors determine when the car is turning and moving at different speeds. The heart of the Travelpilot system is the "black box" located in the car's trunk or under the seat in commercial vehicles. Inside is a 600 -megabyte CD-ROM player and a navigational Computer. The compact disc stores the EtakMap digitized maps of the required geographic regionused for map matching. The Travelpilot computer consists of a 16 -bit processor with 8 k SRAM, 64k EPROM, and 512 k DRAM.
The Travelpilot's real-time moving map display (see Fig. 2) shows current location and the alternate routes to
get from point A to point B. The distance and compass direction to the selected destination is also shown. The map display scrolls and rotates under the fixed cursor placed over the ever-changing current location. Map movement corresponds to the car's movement on the map and the road. Destinations can be selected by city locale, street address, or the intersection of two streets. Up to 99 user-programmed destinations can be stored in the memory. According to Blaupunkt, a vector-type video display was chosen for the system because it is easier to read than a TV style raster-scan display. The driver

Fig. 1. The computer and CD ROM of the Blaupunkt Travelpilot are located in the trunk. The electronic flux-gate compass is located over the rear window, and speed sensors are located in the rear wheels.

*NO ACCESS WHEN VEHICLE IS MOVING.
Fig. 2. This is the display CRT for the Blaupunkt. Control buttons are located along
either side, as shown. either side, as shown.
can zoom the display in or out for more or less detail as is needed.

Obtaining More Accuracy. In the simplest case, you could dead reckon with nothing more than a compass and odometer, plus a map and pencil. However, these "sensors" are pretty crude and location errors can quickly accumulate. Even precision wheelspeed sensors and flux-gate compasses are not prefect. Therefore, while on-board navigation systems like Travelpilot can be completely selfcontained and give good results, many on-board navigation systems use external and/or internal methods to further improve their accuracy. External sources involve interfacing with the Global-Positioning System (GPS) satellites in space (for more on this, see the July, 1992 issue of Popular Electronics), Loran transmitters, or roadside and overhead beacons. The downside is that these interfaces usually require user fees or, for example in the case of beacons, major investments in infrastructure. internal methods, on the other hand. require additional inertial-guidance components. However, map matching is still a necessary ingredient to precisely locate the vehicle on the map in just about every system.

The prototype Motorola In-Vehicle Navigation System uses position data from GPS satellites to enhance the accuracy of the vehicle's current location. Besides GPS data, the navigation computer receives measurements from a differential odometer and magnetometer to provide dead reckoning. A digital map stored in the CD ROM is used for map matching, route planning, and route guidance. Drivers are provided instructions via both a simplified dashboard video display and synthesized voice commands.

Germany's Siemens Automotive AliScout navigation system (see Fig. 3) communicates with infrared beacons mounted on existing traffic lights. An infrared transmitter/receiver mounted on the back of the rear-view mirror receives information from the beacons. Infrared communication was chosen because \mathbb{R} diodes emit incoherent beams eliminating interference problems caused by multipath propagation or when several transmitters are operating in mutually overlapping regions. Being an in-

Fig. 3. These are the in-vehicle components for the Ali-Scout navigation system. Note the IR remote keyboard used for entering data and controlling the system.

Fig. 4. This is a depiction of the optical-fiber gyroscope used in Nissan's new onboard navigation system available in Japan. Any angular deflection of the large disk results in a variation of angular velocity in the fiber.
coherent radiation source, simultaneous infrared flashes can never extinguish each other, only amplify each other. Even the most complicated intersections pose no problems with \mathbb{R}. The \mathbb{R} signal is transmitted at a 125 k baud rate at a maximum range of 60 meters (200 feet) so that the vehicle is only within the transmission range when passing near the beacon.

The Ali-Scout's dead reckoning navigation computer uses measurements from a magnetic-field sensor that measures the earth's magnetic field. Distance travelled is determined using a speed sensor attached to the odometer or transmission.
One potential problem with onboard navigation systems is that complex map displays can overtax driver attention especially when trying to cope with demanding urban-traffic conditions. Therefore rather than
using somewhat more distracting map displays, the All-Scout uses a dashboard display with simplified graphic symbols for instructions. For example, arrows show turn directions and a bar graph decreases in size as the corner approaches. The visual display is augmented by audible instructions as well. A 36 -key handheld alphanumeric keyboard is used for inputting destinations either in the form of street names or map coordinates. The memory has the capacity for 100 destinations. Some other navigation systems allow both maps and symbolic instructions by changing dlsplays on the screen.
Several navigation systems are already coming into routine use in Japan. For example, Nissan has just introduced lis third-generation vehi-cle-navigation system that is optional on its Cedric, Gloria, and Cima models sold in their home market. The sys-
tem uses a new optical-fiber gyroscope (shown in Fig. 4) to accurately sense the direction of vehicle motion. The gyroscope uses 100 meters of 0.3mm optical fiber coiled into a 130mm diameter loop. The gyroscope measures angular velocities by determining the difference in the time of light traveling clockwise versus counterclockwise in the circular optical-fiber path. The time differences, which are actually frequency shifts, can be correlated with the rate of angular motion. Bumpy roads are no problem because this type of gyro is not affected by shock in the horizontal plane.
Nissan also uses roadside electronic beacons that broadcast their specific location coordinates via digital broadcasts at 2.5 GHz . They are delliberately weak to limit the reception area to approximately 35 meters before and after the beacon in a strip that is only about 15 meters wide. This avoids any possibility of cross-beacon interference. Beacons are already being set up along major roadways in Tokyo, Osaka, and Nagoya, with even more beacons to be installed in the future. Data broadcast by the beacons include intersection names and coordinates, distances from a
central point, destinations of roads leading from the intersections, road restrictions, and more. The optical-fiber gyroscope and roadside beacons are used with dead reckoning and a digital-map database to provide greater accuracy than previous Nissan systems, which relied only on position updates from GPS satellites.
Nissan uses a dual-system mapmatching logic. In the micromatching mode, the calculated vehicle location is matched every second to roads in the internal map database. Here the searching is done in a small zone by detecting the angular velocity of the vehicle. In the macromatching mode, matching is done about every 50 -meters of travel to compare vehicle direction with roadway shapes. Searching in the macromatching mode is done in a wider zone using 5 -kilometer segments. The map database is stored on a single CD ROM. According to Nissan, vehicles can be located within five meters.

More Than Finding Your Way.

 Probably the greatest contribution navigation systems can make to society is helping to reduce urban-traf-travel technology

Fig. 5. This block diagram shows the interfaces between on-board equipment, information sources, and the Traffic Management Center that is being used in Orlando's TravTek system.
fic congestion and its byproducts: wasted fuel, additional pollution, wasted time, and frayed nerves. There are several major Intelligent Vehicle/ Highway System (VHS) demonstration projects underway in several countries that mate on-board navigation equipment with centralized trafficmanagement systems.

The $\$ 12$ million Travtek (which stands for Travel Technology) experimental program in Orlando, Florida probably represents the most ambitious VHS demonstration projectunderway in the U.S. today. For this oneyear demonstration program, 100 Oldsmobiles have been fitted with an in-dash CRT monitor, TravTek navigation hardware and software, plus radio gear for two-way communication with the Orlando Traffic Management Center. Seventy-five of these specially equipped cars are part of Avis' rentalcar fleet in Orlando. The rest will be evaluated by high-mileage drivers. TravTek is a joint program with the American Automobile Association, General Motors, the Federal Highway Administration, Florida Department of Transportation, and the City of Orlando.
For navigatlon, TravTek uses computerized dead reckoning and map matching with updates from the GPS satellites to pinpoint vehicle location within a 1200 square-mile area that includes 10,000 roadway miles. After the driver enters the desired destination, TravTek computes the best route and then guides the driver to the destination using both visual and synthesized voice commands.
TravTek is much more than an onboard navigation system. It also advises drivers of traffic congestion and delays (see Fig. 5). Besides warnings, the system automatically provides reroutings to avoid the problems using advisories transmitted from the Traffic Management Center. The in-vehicle TravTek processor receives the advisories, then determines if the driver's selected route is affected, calculates a new route and informs the driver that an alternate route is available. These advisories are generated using data from several sources including the city's centralized traffic signal system, the Florida Department of Transportation's freeway-management system, the AAA TravTek Information and Ser-
(Continued on page 92)

A Telephone-Line

How many times have you lifted the telephone recelver from the hook, in a valn attempt to make an important call, only to find that the phone is in use. Or, what about those times when you're involved in a confidential call and somebody lifts the recelver off hook just in time to hear just enough of the dialogue to misconstrue the meaning of your conversation. Or maybe while you're trying to upload or download a timedependent, critical computer document, someone takes a remote recelver off hook, allowing noise (which can lead to glitches) to get into the transmission. Such events can lead to interfamlly conflicts.

Wouldn't it be nice if your home telephone contained circuitry that would let you know when the line is being used (a feature that is readily available in most office environments). Well, with the Line-In-Use Indicator described in this article, you can add such a feature to your present home-telephone network. The circuitwhich uses a bright, blinking LED to indlcate whether the line is in use-can be installed next to any telephone to warn other family members not to interrupt your modem connections or private conversations.

How It Works. The indicator works by sensing the voltage across the telephone line. The line voltage is normally 48 volts $D C$ when the phone is on hook, and drops to about 2 to 10 volts when a telephone is off hook. When the voltage across the telephone line drops below 15 volts, an LED begins to blink. While many circuits of this ilk pirate power from the phone line for their operation, this one doesn't... it is powered from a 9-volt transistor radio battery. The reason is that there isn't always enough power

> In-Use Indicator
cy oscillator; the other two gates (U1-a and U1-b) are used to buffer the output of the oscillator, which is used to drive LED1.

Resistors R1-R3 sample the phone line voltage and divide it to one third of its original value. When the voltage across R2 exceeds 5 volts, (lindicating a phone line voltage of at least 15 volts), the oscillator is gated off and LED1 remains dark.

When the telephone rings, the line voltage goes to 100 volts AC, which puts 33 volts across R2. That is beyond the maximum rating of the CMOS IC, not to mention that the polarity is backward half the time. So why doesn't the IC fry? The answer has to do with the input protection diodes built into every B-series CMOS logic chip (see Fig. 2). Because R1, R2, and R3 are so large, the input current is tiny even when the voltage is very high. The diodes inside the chip shunt the excess voltage to the battery, which absorbs it. Since the current is only a couple of microamps, it has no effect on the battery.

Construction. The author's prototype was assembled on a small section of per-

Keep others from barging in on your telephone conversations

BY MICHAEL A. COVINGTON

available to light an LED brightty. The power supply arrangement used for the project ensures that the LED is alwoys bright and prominent.

Figure 1 shows a schematic diagram of the Line-in-Use Indicator. At the heart of the circuit is a CD4001B quad CMOS NOR gate. Two of the gates from that chip-U1-C and U1-d-are configured as a low-frequen-
fboard. As always, it is recommended that an IC socket be provided for U1. Begin construction by first mounting a 14-pin IC socket to the perfboard. Flip the board over and then mark the pin 1 terminal of the socket, which will serve as a reference point. Now. guided by Fig. 1, wire the circult together using point-to-point wiring techniques.

When it comes to the LED, there are a couple of ways to handle it. The LED can be wired to the board using hook-up wire, or it can be installed with its leads left long enough so that LED lens protrudes through the enclosure's front panel.

After the circuit has been as-

Fig. I. At the heart of the Line-In-Use Indicator is a CD400IB quad CMOS NOR gate. Two of the gates (UI-c and UI-d) are configured as a low-frequency oscillator; the other two gates (UI-a and UI-b) are used to buffer the output of the oscillator, which is used to drive LED1.

The author's prototype was assembled on a small section of perfboard and housed in a plastic enclosure that comes complete with a built-in battery compartment.

Fig. 2. When the telephone rings, the line voltage rises to 100 volts $A C$, placing 33 volts across $R 2$. That voltage, which is applied to the input of U1-d, would normally fry the chip, but because the CD4001B has input protection diodes (as shown here) built into it, that doesn't happen in our circuit.
sembled, check your work for construction errors, particularly around the IC socket. If all is well, install the IC in its socket.
The author's prototype was housed in a plastic enclosure with battery compartment (available from Radió Shack as part 270-293). The only enclosure preparation required is to drill two holes in the enclosure; one in the front panel of the enclosure through which LED1 will protrude, and the other in the side of the enclosure for a telephone line cord for connection to the board.

Once the holes are drilled, feed the wire that will connect the circuit to the

PARTS LIST FOR THE TELEPHONE LINE-IN-USE INDICATOR

SEMICONDUCTORS

U1-CD4001B (or MC14001B) quad CMOS NOR gate, integrated circuit
LEDI-Light-emitting diode, any color

RESISTORS

(All resistors are $1 / 8$-watt, 5% units.)
R1, R2, R3-22-megohm
R4, R5-4.7-megohm
R6-270-ohm

ADDITIONAL PARTS AND

 MATERIALS$\mathrm{Cl}-0.04-\mu \mathrm{F}$ or $0.05-\mu \mathrm{F}$, ceramicdisc capacitor
B1-9-volt alkaline, transistor-radio battery
Perfboard materials, enclosure, 14pin IC socket, battery connector, wire, solder, hardware, etc.
telephone line through the appropriate hole in the enclosure and connect it to the circuit. The type of wire and the termination used for that will be determined by the terminal block used in your phone installation. The author used two lengths of wire that he twisted together (as in "twisted pair"). However, if your home-telephone network has modular jacks, modular cable is the way to go; in that case, simply connect the red and green wire of a modular telephone cable as shown in Fig. 1. Once the cable is connected, the LED can be press-mounted in the front panel LED hole.

Installation. Installation is a simple procedure; just connect the cable from the project across the telephone line, as indicated in Fig. 1. Resistor R1 should go to the positive (green) wire and R3 to the negative (red) wire. In normal operation, the LED will be off if the line is idle; the LED will blink if a telephone is off hook, a ringing signal is present, or the line is dead (0 volts). If the LED never stops blinking, try swapping the connections.

Don't install the battery until you're ready to connect the indicator to the phone line; if you do, the LED will blink constantly and run the battery down. Conversely, don't leave the indicator attached to the line without a battery installed; it relies on the battery for overvoltage protection.

1n these difficult economic times, many home owners are opting, wherever possible, to do their own home repairs and remodeling. Do-it-yourself home repairs often entail spending many hours trying to trace the AC wiring through walls and junction boxes. Remodeling, such as adding a new window or door to your home, often requires that you cut a section out of a wall. When hacking through a wall, you had better know the location of the electrical wiring or it's lights out.

A simple solution to those and other similar wire-tracing dilem-mas-such as tracing a signal through your automobile's electrical system-can be found in the McTrak wire-tracing circuit described in this article. The McTrak can turn a job that might otherwise require hours of cutting, whacking, and pulling into child's play (well al'most), cutting your work time from a few hours to only a few minutes.

The McTrak is easy and inexpensive to build, and best of all, there is nothing difficult about using the unit. All you have to do is connect the McTrak to the wire of interest and, using a portable AM receiver, trace a signal (put out by the McTrak) to its final destination.

How It Works. A schematic diagram of the McTrak is shown in Fig. 1. At the heart of the circuit is a 567 tone decoder. The tone decoder (U1) is configured as a simple astable, squarewave oscillator, operating at about 250 Hz . The $250-\mathrm{Hz}$ output of the squarewave oscillator, at pin 5 , is fed to the base of Q1 (a 2N3904 generalpurpose NPN transistor), which in this application, functions as a buffer stage. The alternating output of U1

Cut those seemingly insurmountable wire-tracing

 jobs down to sizeBY CHARLES D. RAKES

causes Q1 to switch on and off in time with the drive signal.

The output of $Q 1$, taken from its collector, is fed through capacitor C 2 to Q2 and Q3-a second 2N3904 NPN unit and its companion 2N3906 PNP transistor, respectively-which form a complementary pair. Together, those transistors alternately amplify both halves of the applied signal; e.g., when one transistor is off the other one is on. That pair of transistors provides a low output-impedance-signal source that can be used to drive either an open- or closed-loop circuit.

The output of the complementary pair (Q2 and Q3) splits along two paths; in one path, the output of the complementary pair is applied to C 5 , causing the $250-\mathrm{Hz}$ output of the complementary pair to be induced into the $A C$ wiring and radiated
throughout the wiring system. The circuit's $250-\mathrm{Hz}$ squarewave output, which is rich in harmonic signals that reach into the $A M$ broadcast band, allows the signal to be traced through the house or other wiring with an inexpensive AM transistor radio. The radiated signal, when detected by an AM receiver, produces a buzzsaw-like sound in the receiver's speaker.

In the other path, the signal goes through C4 and is delivered to output jack J 1 (the open-loop output); the signal also continues on through 47-ohm current-limiting resistor R6 (which is used to protect the tracker's output from overload) to J2 (the closed-loop output). Those output jacks, along with J3 (common), are used when conditions are less than optimum. We'll give examples of how and when to use those jacks at the appropriate time later in this article.)

Construction. Building the McTrak is simple and the parts layout is not critical, so just about any construction scheme will suffice. However, the author's prototype of the circuit was assembled on a printed-circuit board. A template for that printed-circuit layout is shown in Fig. 2. If you opt to go the printed-circuit route, follow the parts-placement diagram shown in Fig. 3.

As usual, start by installing the passive components (resistors, capacitors, etc.) followed by the semiconductors, double-checking all part locations and their orientations as they are installed on the board. Once the electronic components have been installed, connect a 9-volt battery connector to the board at the points indicated in Fig. 3. Be sure that the proper polarity is observed:

Fig. 1. At the heart of the McTrak is a 567 tone decoder, configured as a simple squarewave oscillator, operating at about 250 Hz .
side and prepare the enclosure.
The author's prototype was housed in a $45 / 8 \times 29 / 10 \times 19 / 10$-inch plastic project box (available from Radio Shack and other sources) that is slotted to hold small circuit boards in place. The circuit board was sized to fit the case's internal slots.

It will be necessary to drill holes in the enclosure for the off-board components: 51 (along with its mounting hardware), J1-J3, and PL1. Note that although the author used a slide switch for S 1 , there is no reason that a toggle or even a locking pushbutton (push on/push off) switch could not be substituted. Mount switch $\$ 1$ to one side of the cabinet, and the three output jacks on the opposite side. Then

Fig. 2. The author's prototype of the circuit was assembled on a printed-circuit board, the template for that printed-circuit layout is shown here full size.

PARTS LIST FOR THE MCTRAK

SEMICONDUCTORS
U1-LM567 tone-decoder, integrated circuit
Q1, Q2-2N3904 general-purpose
NPN silicon transistor
Q3-2N3906 general-purpose PNP silicon transistor

RESISTORS

(All fixed resistors are $1 / 4$-watt, 5% units.)
R1-47,000-ohm
R2 - 4700 -ohm
R3- 1000 -ohm
R4, R5- 10,000 -ohm
R6-47-ohm

CAPACITORS

C1- $0.068-\mu \mathrm{F}, 100$-volt Mylar C2-4.7- $\mu \mathrm{F}, 16-\mathrm{WVDC}$, electrolytic
C3, C4 $47-\mu \mathrm{F}, 16-\mathrm{WVDC}$,
electrolytic
C5, C6-0.01- $\mu \mathrm{F}, 500-1000-\mathrm{WVDC}$, ceramic-disc
ADDITIONAL PARTS AND MATERIALS
B1-9-volt transistor-radio battery
S1-SPST slide switch
J1-J3-See text
Printed-circuit materials, enclosure (Radio Shack \# 270-222), molded AC power plug with line cord, 9 volt battery holder and connector, wire, solder, hardware, etc.
Note: The circuit board and all of the parts that mount on it are available for $\$ 14.95$, plus $\$ 1.00$ shipping and handling from: Krystal Kits, P.O. Box 445, Bentonville, AR 72712. Arkansas residents please add appropriate sales tax.

Fig. 3. Follow this parts-placement diagram when assembling McTrak's printed-circuit board. As usual, start with the passive components, followed by the semiconductors, double-checking the.part's location and orientation as it is installed.

After all of the on-board components have been installed, check your work for potential problems-solder bridges, cold solder joints, and so on.

When you are satisfied that the circult board contains no errors (of the nature usually associated with hobbyist projects), place the board to the
using hook-up wire, connect the switch and the three jacks to the circuit board at the approprlate points.
Once that is done, mount an AC plug with line cord to one end of the enclosure. That can be accomplished by first passing the plug's line cord the through a $1 / 8$-inch hole in one end of the enclosure, and then clipping off the excess cord length and connecting the line cord to the circult board as shown in Fig. 3. After that is done, the plug can be secured to the enclosure using hot-melt glue.

Check Out and Use. To check the operation of the McTrak, first install a
(Continued on page 98)

By monitoring the VHF low-band for skip, you could easily make some wonderful long-distance contacts.

BY LAURA QUARANTIELLO

The transmissions were weak, scratchy and, more often than not, lost behind the other voices on the frequency. l'd been listening to 33.7 MHz for two days now and still had failed to hear any information that would help me to identify the station speaking. It had become a minor obsession over the past couple of hours to positively identify the distant fire-department dispatches.

Unfortunately, given the changing nature of the atmosphere, it was likely that when I woke up the next morning and turned on the radio, 33.7 MHz would be silent and the transmissions gone. To understand how a long-distance transmission can appear and disappear like that, we'll have to de a quick study of radio-wave propaga-tion-the near magic of what happens to a radio wave once it heads off into the atmosphere.

One Little Wave. When a radio signal or wave leaves the antenna of a transmitter, it becomes, in theory, two distinct parts: a ground wäve that travels along the surface of the Earth and a sky wave that travels out into the sky. The ground wave travels a
short distance before it becomes absorbed by the Earth, but the sky wave is much more resilient and that's the wave low-band, distant-transmission listeners tune-in to.

The sky wave travels on its merry way, high up into the wild blue yonder, until it encounters the ionosphere. That layer of the Earth's atmosphere. some 150 to 200 miles high, is constantly bombarded by the Sun, which charges the ionized gases of the ionosphere. When a sky wave hits that layer of charged gas, it is partially reflected. Some of the part of the wave that is not reflected is absorbed by the gas, and the remainder flies into deep space. The portion that is reflected returns to Earth at an angle. which means that it comes down many thousands of miles from its point of origin. That phenomenon is known as "skip."

Skip is almost a mystical thing, affected by sunspots, weather, and even the time of year. It can also be a scanner enthusiast's best friend if you know how to take advantage of it.

Equipment. You don't need a control room full of radios in order to re-
ceive VHF skip transmissions. In fact, any scanner that will search the range of $30-50 \mathrm{MHz}$ will do nicely. Hoving a search feature is important, because you'll definitely want to program-in short ranges of frequencies and let the scanner do the work.

An outdoor antenna is not mandatory, but it will improve your chances of hearing transmissions tenfold. A good all-band ground-plane antenna does nicely, but a beam antenna can have advantages if you are searching for transmissions from a specific direction. Since the prevailing atmospheric conditions have the most to do with reception, whatever you use should pull in some signals, so give it a try.

Frequency guides are a great resource if you're serious about identifying the stations heard. For example, a complete set of Police Call magazine's frequency directories is invaluable for tracking down domestic public-safety stations. For military stations, try a federal frequency directory such as Tom Kneitel's Top Secret Registry of US Government Frequencies. A good map book of the United States is also handy.

Fig. 1. As you can tell from these catches logged by the author, skip can really help you pull-in transmissions from all over the country.

Finding Skip. Frequencies on the low band- 30 to 50 MHz -are most affected by skip because of their long wavelengths. Frequencies on the higher VHF bands tend to skip less. I don't consider 50 MHz the absolute top of the possible skip range. Occasional forays above 50 MHz hove netted some interesting catches, but for the best results, "go low."
Searching through the basement of the VHF band, your chances improve drastically. On a good day, it isn't unusual to hear communications from thousands of miles away, sometimes even from Central America, Canada, or overseas. The key to hearing all this is knowing when and where to listen.
Since skip is affected primarily by the actions of the sun, it almost goes without saying that daytime is the best time to listen. Try between 9 A.M. and 7 P.M., or whenever local dusk occurs. if you're shortwave equipped, listen at 18 minutes past each hour for propagation reports from WWN on $2.5,5,10$, 15 , or 20 MHz . The solar flux number they give reflects the amount of ionization of the ionosphere's 22 layer, and so the possibility of picking up long-distance transmissions.
Itarget specific frequencies, which | check for communications. For instance, 38.9 MHz is a popular military range-control frequency that I have programmed into my regular scan bank. If I hear communications on this channel, I know that skip is present and set-up search ranges to see what other frequencles might be active.

Try programming in the range from 30.0 to 31.0 MHz and set your scanner
to scan between these two values. This is about as low as typical scanners will receive and is a good place to start. Here you'll come across business communications, forestry reports, power and water utllifies, and some public safety and military communlcations. If you find active distant stations here, work progressively higher. On some days only a small swath of frequencies will be affected, and on others you won't know where to tune first because of all the activity.
The region between 31 and 33 MHz is a super place to look for military communications, as are the 38-39 MHz and $40-42 \mathrm{MHz}$ areas. Fire departments can be found primarly between $33-35$ and $37-38 \mathrm{MHz}$. Highway patroi, a good target for beginnérs, can be found operating between $42-43 \mathrm{MHz}$. These ranges will get you started. Take a look at the back of an issue of Police Call for their Consolidated Frequency List, which will further guide you.
Don't be afraid to experiment and seek ranges beyond the norm for skip. I frequently scan from 49.0 to 49.7 MHz , just below the cordless telephone/baby monitor band, which yields up such catches as militaryrange communications (like Camp Pendleton, California at 49.0 MHz), and tactical operations (such as Army Explosives Ordnance Disposal on 49.7 and 49.8 MHz). You never know what you'll find: I occasionally even hear live horse-race announcements on 41.725 MHz .

During the Gulf War, scanner monitors reported heavy communi-
cations activity all across the low band from American and foreign troops in Saudi Arabia. Voices from Central American stations, Panama, Honduras, and the Dominican Republic are regularly heard engaged in US military operations. Furthermore, lots of counter-drug missions take place on the low band, as well as a large amount of fire communications. Fish and Wildilife officers, whose activities often take them far from normal radio range, can often be heard talking on frequencies between 31 and 32 MHz .

Identifying Stations. The first order of business when you come across an active frequency is to take down some of the information you hear coming across the speaker. Call signs, place names, and unit ID's are all helpful. More than once l've tracked down a frequency user by tracing city names through a map book.
Here's an example: say, 42.12 MHz is active with a dispatcher calling herself "San Diego." Looking up San Diego In a map book will reveal a California location. Drag out volume nine of Police Call, check all the Hcenses under 42.12 MHz and you'll find a listing for the California Highway Patrol San Diego Office.

Military stations can be difficult if call signs such as "Alpha Six Echo" are used, but if you listen long enough you might hear the base name or a unit number. When that happens, check a federal trequency book for active stations on the frequency to get you closer to a positive ID.

DX'ing Low Band: Searching for distant slgnals (DXing) can be an engrossing, frustrating, exciting, and highly variable hobby.
As I predicted, the 33.7-MHz signal| mentioned did fade away by the time I listened again the next morning. It was three weeks before I finally heard the signal strong enough to warrant. some serious listening. With a little more attention I had my catch in no time: Jefferson Township Fire Department, Ohio.
If local communications are getting too routine and you'd like to explore how other services across the country handle their communications, "go low" and give low-band skip monitoring a try.

Here are your free FactCards!

Introducing Popular Electronics FactCards.
Each issue, Popular Electronics will present 3 new FactCards, each dealing with one of a variety of electronics topics. Some will deal with electronics basics, some will deal with discrete components, some will deal with IC's, and some will deal with circuits and applications.

All will contain the type of information electronics hobbyists need, but sometimes must search to find. With FactCards, you can find that information in a hurry.

Clip your cards, save them, and start building your FactCards library today!

Popular Electronics

 APPLICATION CIRCUITS
236 Ppular $\frac{\text { Hectronics FactCard APPLICATION cIRCUITS }}{}$

237 Apular Dlectionics FactCard application cIicuits

$235 \frac{\text { Rluphr }}{\text { Diertomics }}$ FactCard

APPLICATION CIRCUITS

296 Ponular

Hetronicx FactCard

APPLICATION CIRCUITS

20.WATT AUDIO AMPLIFIER

237 童 iplat

APPLCATION CIRCUTS

"ACTIVE" VOLUME CONTROL

For the best in hobby electronics read Popular Electronics

During

 the next 12
months

Popular Electronics will feature timely and informative articles that help you get the most from your hobby. Each issue will include:

- Exciting construction projects for the beginning and advanced builder
- News and reviews on the hottest new consumer and hobby gear
- Helpful hints and circuits that are an experimenter's delight
- Technology articles that entertain while they teach
- Stories and columns that cover every important part of our hobby from antique radio to computers
- and much more!

Don't take a
chance on missing
even one
exciting issue.
Subscribe now
and save!

The magazine for the electronics activist and the consumer electronics enthusiast!

The best in hobby electronics appears each and every month in Popular Electronics!

Subscribe Today!

Paperback Books

GREAT PAPERBACKS AT SPECIAL PRICES

COMPUTER HOBBYISTS

HANDBOOK-BP251-

 $\$ 8.95$Subjects covered include microprocessors and their register sets; interfacing serial, paralley, monitor, games and MIDI ports; numbering systems, operating systems and computer graphics. While the book is aimed at the computer hobbyist, it should also prove useful to anyone who intends to use a computer to follow their interests.

Further

 Practical Electronics Calculations and Formulaefa whsow

\square FURTHER PRACTICAL

 ELECTRONIES CALCULATIONS-BP144-59.00450 pages crammed full of all the formulae you are likely to need. Covers Electricity, Eiectrostatics, Electromagnetism, Complex Numbers, Amplifiers, Signal Generation and Processing, Communications, Statistics, Reliability, Audio, Radio Systems, Transmission Lines, Digital Logic, Power Supplies. Then there's an appendix of Conversion Factors, Mathematical Formulae and more.

\square INTERNATIOMAL RADIO STATIONS GUIDE-BP255- 99.95

Provides the casual listener, amateur radio DXer and the professional radio monitor with an essential reference work designed as a guide for the complex radio bands.

Includes coverage on Listening to Short Wave Radio, ITU Country Codes, Worldwide Radio Stations, European Long Wave and Medium Wave Stations, Broadcasts in English and more.

WIRELESS 8 ELECTRICAL CYCLOPEDIA-ETTI-\$5.75

A slice of history. This early electronics catalog was issued in 1918. It consists of 176 pages that document the early history of electricity, radio and electronics. It was the "bible" of the electrical experimenter of the period. Take a look at history and see how far we have come. And by the way, don't try to order any of the merchandise shown, it's unlikely that it will be available. And if it is, the prices will be many times higher.

ELECTRONIC TECHNOLOGY TODAY INC.
P.O. Box 240, Massapequa Park, NY 11762-0240

Name
Address
City \qquad State \qquad [Zii \qquad P193

SHIPPING CHARGES IN USA AND CANADA
$\$ 0.01$ to $\$ 5.00 \ldots . . . \$ \$.50$
$\$ 5.01$ to $\$ 10.00 \ldots . . \$ 2.50$
$\$ 10.01$ to $20.00 \ldots . . \$ 3.50$
$\$ 20.01$ to $30.00 \ldots . \$ 4.50$
$\$ 30.01$ to $40.00 \ldots . \$ 5.50$
$\$ 40.01$ to $50.00 \ldots . . \$ 6.50$
$\$ 50.01$ and above..$\$ 8.00$

SORRY No orders accepted outside of USA \& Canada

Total price of merchandise
Shipping (see chart)
Subtotal .
Sales Tax (NYS only) Total Enclosed

General Radiotelephone
Radiotelegraph
Amateur Radio Licenses
We offer the most up-to-date study materials available. Our formats include: tests, audio programs, and video programs. Q \& A Disks

WPT PUBLICATIONS
7015 N.E. 6lst Ave.
Vancouver, WA 98661
(206) 750-9933

ADVERTISERS INDEX

Free Information No.		Page	Free Information No.		Page
35	Ace Communications .	. 50 U	-	Internt'I Micropower .	50 V
41	Alfa Electronics	. 50L	-	Inverter Scientific	50R
25	All Electronics	. 50 W	-	JP Video	50X
26	Alltronics	. . 50 S	38	Kelvin.	50 E
-	C\&C Specialties	. 50P	29	Mark V	50 V
32	C\&S Sales	. . 50J	43	MD Electronics.	500
28	Consumertronics	. 50 F	27	MWK	. 50 F
-	Datak	. 50 P	39	Ocean State Electronics.	50Q
-	Design Computation	. 50 V	42	Optoelectronics	50M
-	EDE	. 50 P	-	P.C. Boards.	. 50R
37	EKI	. 50 N	33	Prairie Digital	50N
-	Electronic Tech. Today	. 50 A	-	Silicon Valley Surplus	50R
-	Greenleaf	. . 50 F	-	Spy Supply 50D
-	H.T. Orr	. 50 R	36	United Electronic Supply	50C
-	Information Unlimited.	. 50 G	31	WPT	. 50 B
40	Interactive Images	. 50 H	34	Xandi	50B

XANDI
 Electronics

The XTT100 is a battery powered phonetransmitter whith a range of up to one mile. It only transmits when the phone is being used in order to conserve battery life.
XTT100(C) Kit

The Use of sur-
face mount technology makes this the small-s telephone telephone can buy. Powered by the phone line, it can transmit a phone conversation up to $1 / 4$ mile. Our E-Z kit has all the surface mount parts preassembled to the circult board. XSP250(E-Z) E-ZKit $\$ 29.95$

The XBD200 quickly locates hidden transmitters from 1 to $\mathbf{2 0 0 0} \mathbf{~ M H z}$ by emitting an audio output proportional to the tranemil level. XBD200(C) Kit

The XTR100 Tracking Transmitter transmits a continuously beeping tone that can be recelved by any FM recelver. Can be usedforgames, contesta, or as an anti-theft device. XTR100(C) Kit .

Use the XPS 100 to callyourhomefrom any other phone and listen in using the built in microphone and amplifier. XPS100(C) KIt

The XFM100 FM transmitter has a range of up to 1 mlle . It worke with any standard FM receiver. It contains a bulit in high gain two stage audio a mplifier for maximum sensitivity XFM100(C) Kit $\$ 35.95$

The XPE1 is a telephone transmitter capable of transmitting to any FM recelver up to a $1 / 4$ mile away Powered by the telephone line it requires no batteries.

WHOLESALE SPECIALS LIMITED QUANTITIES
 CABLE CONVERTERS
 Blow Out!! XL- 103

550 MHZ - 86 Channel $\$ 89.95$ each

> TOP CHANNEL ROLLOVER, LAST CHANNEL MEMORY, , CHABFAVORITE CHANNEL +1 CAPABILITY, PROTECTION, 4 db AMP, DECODER COMPATABLE, STD/HRC SWITCHABLE, ONE YEAR REPLACEMENT WARRANTY, A/B TWINLINE OPTIONAL
$\$ 70.00$ each - 5 Lot
\$65.00 each - 10 Lot
\$57.00 each - 20 Lot
$\$ 52.00$ each - 50 Lot
$\$ 50.00$ each - 100 Lot

VIEWSTAR IS HERE

MXC-2520-525 MHZ remote volume remote volume control Audio/video Baseband Output, decoder loop Parental Lockout Favorite channel Remote Fine tuning 'Universal' Decoder Compatable

NEW "North Соast"

'Excel' 66 channel
Fine tune remote, 60 min . Sleep timer
$\$ 80.005$ lot
Display dimmer Favorite channel $\$ 75.0010$ lot Parental Lockout, HRC/STD Remote $\$ 70.0020$ lot
Selectable Twinline A/B Select Optional AMERICAN MADE Keep OUR People Working

CELLLULAR TELEPHONE MODIFICATION HANDBOOK

How do you reprogram

 a cellular phone?- Descriptions of cellular phones' vulnerabilities!
- Techniques for decoding and changing cellular phones' NAMS and ESN's
- Where to buy programming devices
- Chip supplier's phone numbers
- Instructions on how to change phone numbers on all models
- Cellular phone manufacturer's ESN codes

Complete Manual only \$79.95
M.O. or C.O.D. to SPY Supply
7 Colby Court Suite 215 Bedford, NH 03110
(617) 327-7272

Sold for educational purposes only

等跬
 疍

CONSUMERTRONICS
2011 Crescent Dr，P．O．Drawer 537
Alamogordo，NM 88310
Add \＄4 SAH（USA．Canada）．All items in stock．COD UPS cash only）．VISA，MCard OK．New Catalog is seen on TV etc．John Wilfiams－tormer Lockheed Senior Engineer，NMSU Professor of Compurer Sa onco．NIH Haalth Physicist Educational pupposes only All software supports all IBM－PC compa ble systems（8086－80486）

VOICE LINES：8AM－9PM MST，Mon－Sat FAX（orders only）： 24 －hour， 7 days／week $(505) 434-0234,434-1778$ FAX：（505）434－0234（if you get answer ing machine press＂H＂，then＂1＂any time）

Off The－Shelf HARDWARE

Van Eck Systems，Automated Tempest Mod Ule，KX Radar Emitter，Volce Disguiser Shriek Module，Hearing Assistor，EM Countermeasure，TENS， 6 th Sense Com municator，Bumper Beeper，Sublimina Mixer／Amp，Super MWO，Hieronymus Ma Chine，Neurophone，M，Magnetometer Dwelling Securlty System，Levitator，Stealt Paint－morel See details in new Catalog．

SPECIAL PROUECTS

We design，build，repair，modify，maintain and－ or consult on any device system，process， project（electrical，electronic，compuler，phone mechanical，optical，automotive）．Invention prototyping．Confidentiality guaranteed． De scribe and include $\$ 25$ fee（does not obligate you）．Time and cosi estimates in $7-10$ days．

CEIHULAR PHONE MANUAL

 How cellular phones are designed，operated， re－programmed．How ceilular sysiems are vul－ nerabie to hack attacks，and countermeasures Comprehensivaly describes＇modilying NAMs and ESNs（includes specific info．on $30+$ popu lar models），scanning，scanner restorations（in cludes UHF TV method），freq and channel allo cations，roaming，tracking，ECPA－morel $\$ 39$.
VOICE MAIL BOX HACKINS

How Voice Mail Box（VMB）syslems are used and the specilic ways they are hacked．In－ SYDNEY PHONE MAIL CENDIX ，BIX，EZ SYDNEY，PHONE MAIL，AUDIX，eic．AbS lutely required for all users and sysops！
PHONF COLOR BOXES

PHONE COLOR EOXZS

 As designed by Phone Phreaksl 15 phone simulator programs．Plus call forwarding con ferencing，phreak history， 50 useful and lege phone circuit plans－morel \＄29．
COMPUTER PHREAKING

 TROJAN HORSES，VIRUSES，WORMS，etc and countermeasures．Includes disk with 360 K of hacker texi files and utilities，and logendary FLUSHOT＋protection system（Ed．Choice PC Magazine）．Dozens of computer crime and systems are penetrated．BBS advice，pass word deleats，glossary－much morel Manuals ＋Disk ${ }^{*}$ \＄39．
BEYOND VAN ECK PHREAKINC

 using an ordinary TVI Documented in security industry literature．Range up to 1 KM ．Plans in clude both TOP SECRETV MN ECK original TOP SECRET V AN ECK designs $\$ 29$CRYPTANAYSIS TECHNIOUES COM and their BAS sources）to analyze（in Crypt＂secure＂ciphertexts．Worked－out ex amples Recommended in prestigious COM PUTERS \＆SECURITY Manual＋Disk＊$\$ 29$
ABSOLUTE COMPUTER SECURITY
Dozens of simple，versatile，secure methods gram（in ．COM and its ．BAS source）．Plus $\$ 1.000$ CIPHER CONTEST ciphertext and rules．Manual＋Disk $\$ 24$ ．

HARD DRIVE MANUAL

Covers all hard drive and controller implemen tations（emphasis on PCs）．How to select，in terlace，initialize，set up，Use，maintain，trou bleshoot and repair them．How to protect them from mistakes，sabotage，prying eyes and sticky lingers．How to recover damaged and lost files．How to prevent crashes to begin with． Includes soltware reviews．Loaded with infor mation，advice，tips．\＄29．

DISK SEBVICE MANLAL

 Kaintain，roubleshoot，repair，adjust，align $35^{\circ} / 5.25^{\prime \prime} / 8^{\circ}$ ．PC Commodore，itc systems，All Commodore，etc sysiems，Al Iloppies nee Theory practical facts on flopDy drives disks Theory，praclical iacts on moppy drives，disks， ting，interlacing，FDC，etc．S19，Both \＄39． feats exposed 100＋ C cinods delalled， mise cade front，TEMPEST，Van Eck，tapping，spooling inside job，super－cool，vibration，pulser，high voltage－others．Case histories，law，counter－ measures，detailed security checklist，labeled $\$ 250,000$ in cashl Recent $\$ 350,000$ ATM crime spree still unsolvedl \＄39
CREDIT CARD SCAMS

ardhoiders，merchanis and banks suffer \＄Br－ hons in losses annually because of credit card card Describes every known means of crech pyene and scams．Protect your

CONS \＆SCAMS
Cons \＆scams lleece Americans of $\$ 100+81-$ lion per yearl The mosi comprehensive survival manual on cons a scams of all kinds－from une classic 10 the high－tech．Details on 100 s and their many variations．Protect yourselfl \＄29．

STOPPING POWER METERS： As reporled on CBS＂60 MiNUTES＂How cer tain devices can slow down－even stop watthour meters－while loads draw full powerl Device simply plugs into one outlet and normal loads inlo other outlets．Also describes neter creap，overload droop，atc．Plans．\＄19 THE 1．G，MANUAL：Extemal magnetic way applied to the meter itself）to slow down and Plans \＄19 KW．HR Where drawing full loads． meters work calibration eror mod wa ANSI Stards， ANSI Slars Experimental results and Polyphas helers．Exporis 510 Any 2,53 ．All 3 ， 517 ． meters by others．\＄19．Any 2，\＄33．All 3，

HICH VOLTACE DEVICES HV devices plans：Stun Gun，Taser，Prod Cane，Flasher，Blaster，Zapper，AudidRFi Van de Graaff Gens．Fence Charger，Geiger Counter．Ozone Gen Fish Stunner Peige Stim．，Kirlian，moral Shockingl $\$ 29$.
UNDERATTACK!

Electromagnetic Interference and Electronic Weapon Atracks can cause：Cancer，birth de ects，and protound psychological，neurologi cal，cardiovascular and immune system disor dersl Destructive to people，animals，plants equipmentl includes ACTUAL CASES OF E ATTACKS ON PEOPLE（we investigated） more common than believed！Includes how to verity and pinpoint EMI and electronic attack sources，and specific countermeasures．$\$ 29$.

EM BRAINBLASTER

utorial and plans ior powerlu ELECIRO MAGNETIC WEAPONS and LAB DEVICES Optimum circuits，freqs，waveforms，duty cyclas，intensities．Comprehensive．$\$ 29$

RADIONICS MANUAL

 Exciting electrical，electronic and electromag netic therapeutic，diagnostic and preventive de vices（mostly experimental）．History descrip－ tions，plans（dozens），avallabilities of Radion－ cs Devices from early to modern．While drugs cost § Hundreds，electricity costs pennies！\＄29 RILOBOFONE AUTODIAEER Powerlul，versatile，menu－driven Wargames autodialer iets you dial any quantity（up to 10K） or mix of local／iong distance numbers in any or－ der，over any length of time，whether busy or answered（your choice）and log the times， commands and results to monitor，printer and－ or disk．Ouick－dial directory of up to 600 num－ bers．BUSY redial options．Direct modem com－ mand and control．Al Result Codes，including VOICE and RINGING．Optional shell to termi－ nal program upon CONNECT．Exit to menu or DOS（tor batching）．Manual＋Disk＊$\$ 29$SOFTWARE PROTECTION SYSTEM Unique system that highly discourages costly sottware piracy while not interlering with legit archival copies．No known way to defeal．No special equipment required．Simple and auto matic to install on your distributed software Compatible with all ouner copy－prevention sys ems．Manual＋Disk＊$\$ 59$

SECREI \＆SURVIVAL RADIO Oplimum survival and security radio equip－ ment，methods，freq allocations and voice／data scrambling／encoding．Includes small receivers／ transmitlers，telemetry，antenna oplimizations， remote monitoring and control，security，sur commo． $70+$ circuit plans，tables．$\$ 29$.

STEALTH TECHNOLOGY
Ponce radar is fascnating！il aiso has erro rates of $10-20 \%$ Every known error mode radar reflections－tactic and strategy to fight unjust radar tickets（that cost you $\$ 100 \mathrm{~s}$ in in－ surance and risk cancellation）－methods to de－ ect and jam signals－fully described！$\$ 29$

ROCKETS RIED GLARE

 How 10 design and build solid－propeliant ama eur and survival rockels Enasis on formu－ ation，manufacture，installation of propellants． motors，igniters，etc．Includes list of commonly available materials，and the design of launchpads and test beds and their electronics． 529 ．

NEW CONCEPTI

Remember War of the Worlds? Objects float in air and move to the touch. Defies gravity, amazing gift, conversation piece, magic trick or great science project. ANTIK Easy to Assemble KIt / 'Plans $\$ 19.50$

Combination Solid State Tesla Coil \& Variable 100,000VDC Generator

Experiments Using Tesla Coll: - Plasma in a JarTTornado, Furnace - Kirlian Photography - Wireless Energy Transmission Operates 12.19 voc tori Induction Fields. Pyrotechnic Effects - Corona and Brush Discharge - Energizer for Neon Plasma Tubes Experiments Using HI Volts DC: - Plasma Blaster Driller/Cutter - Anti-Gravity/Force Fields - Ion Reaction Motors - Lightning Generation - High lon Source - Ozone For Áir Purification - Electrification of People \& Objects Particle Accelerators/Atom Smashing - High Energy Capacity Charging HVM7 Plans Complete System $\$ 15.00$ HVM7K Complete System KItPPlans $\$ 174.50$ TCL4K Tesla Coll Only KitiPlans $\$ 99.50$ 115/19AC Wall Adapter for 115AC . $\$ 15.50$

Table Top Tesla Coil

 Spectacular -A Real Attention Getter! - 250,000 Volts! • 7 -10' Sparks! Energy even passes through windows. Great for science projects, displays, advertising. Highly spectacular devices produces visible, audible bolts of lightning
 appearing to flash in the air. Causes certain materials to burn from within and glow, lights bulbs without wires, produces induction fields, St Elmo's fire corona. Clearly demonstrates high frequency high voliages yet terminal may be touched by user during operation with a metal object. 115VAC operation only. BTC3 Plans.. \$15.00 BTC3K KIt/Plans $\$ 299.50$ BTC30 Assembled and Tested \$399.50

Plasma

Fire Saber

Produces the spectacular effect that captured the fantasy of millions of movie fans. Visible plasma field is controlled by grip pressure and adjusts saber length. Active energy field produces weird \& bizarre effects. Excellent for special effects. Specity photon blue, neon red, phasor green, or startire purple
PFS2 Plans \$8.00 PFS2K KIt/Pians $\$ 49.50$ \$pecial Offer PFS20 Assembled reg $\$ 89^{50}, \$ 59.50$

Solar Power Devices

Build a fence shocker, solar motor light, bug zappe. charger es shocker, solar motor, light, bug zapper, batt SOL2 $6 \times 12^{\prime \prime}, 14 \mathrm{~V}$ Cell w/Plans

Shocker Force Field / Vehicle

Electrifier - Neat little device allows you to make hand and shock balls, shock wands and electrity objects, charge capacitors. Great pay back for those wise guys who have wronged youl
SHK1KM Easy To Assemble Electronlc Klt . $\$ 24.50$
100,000V Intimidator / Shock Wand Module Build an electrical device that is affective up to 20 feet. May be enclosed for handheid, portable field or laboratory applications.
ITM2KM Easy to Assemble Electronic Kit . . . $\$ 49.50$ ITM2 Plans Only; Credit-able to Kit $\$ 10.00$

Ion Ray Gun - Projects charged ions that induce shocks in people \& objects without any connection! Great science project as well as a high tech party prank.

IOG3 Plans \qquad . $\$ 10.00$ IOG3K KIt/Pians $\$ 69.50$ Invisible Pain

Field Generator

Shirl pocket size electronic device produces time variant complex shock waves of intense directional acoustic energy capable of warding off aggressive animals, etc. IPG7 Plans . . . $\$ 8.00$ IPG7K KIt/Plans $\$ 49.50$ IPG70 Assembled $\$ 74.50$

Homing / Tracking Transmitter .
Beeper device, 3 mile range.
HOD1 Plans $\$ 10.00$ HODIK KIHPPans $\$ 49.50$
Listen Thru Walls, Floors
Highly sensitive stethoscope mike.
STETH1 Plans . . $\$ 8.00$ STETH1K Kit/Plans $\$ 44.50$

3 Mile FM Wireless

Mike - Subminlature!
Crystal clear, ultra-sensitive
pickup transmits voices and sounds

to FM radio. Excallent security system, warns of intrusion. Become your neighbohood disk jockey! Monitor children and invalids.
FMV1 Plans $\$ 7.00$ FMV1K Kit/Plans . $\$ 39.50$
Telephone Transmitter - 3 Miles! Automatically transmits both sides of a telephone conversation io an FM radio. - Tunable Frequency - Undetectable on Phone . Easy to Build \& Use - Up to 3 Mile Range - Only transmits during phone use VWPM7 Plans $\$ 7.00$ VWPM7K KithPlans $\$ 39.50$
(0)

Projects a metal object over a considerable distance Become part of and perhaps contribute to this exciting new concept of weaponry. EML2 Plans $\$ 8.00$ EML2K KitiPlans $\$ 99.50$

Operates on safe, low voltage to produce spectacular lighting effects. Neon \& fluorescents glow without wires! GTRON Ready to Use

TV \& FM Joker / Jammer • Shit pocket device allows you to totally control and remotely disrupt TV or radio reception. Great gag to play on family or friends. Discretion required. EJK1KM Easy to Assemble Electronic Kit . $\mathbf{\$ 1 9 . 5 0}$
Visible Beam Laser
High brightness red HeNe laser visible for miles. 17 Produce your own light show! Projects a beam or red lite clearly visible under most circumstances. Can be used to intimidate by projection of a red dot on target subject. Also may be used to "listen in" utilizing
 to Buld Modules Produce A Working Visible Laser: LAS1KM Kit w/1mw Laser Tube, Class II . $\$ 69.50$ LAS3KM Kli w/2.5mw Laser Tube, Class IIIA $\$ 99.50$

"Laser Bounce" Listener System allows you to hear sounds from an area via a lite beam reflected from a window or other similar object. System uses our ready-to-use LATRt Laser Terminator gun site as the transmitter. The receiver section is supplied as an easy to-build kit, including our cushioned HS1O headsets. Order " LLIST20 System, Includes our LATR1 Ready-to-Use Laser Gun Site, LLRIK Special Recalver KIt, and HS10 Headset, all for only $\$ 299.50$

Smw Visible Red Pocket Laser $/ \boldsymbol{N}$
Utilizes our touch power control
VRL3KMX KIt / Plans
$\$ 119.50$

See In The Dark Viewing

 lasers and other IR sources Functional unit, many useful applications.
 SD5K Kit / Tube / Plans $\$ 299.50$ GPV10 Ready to Use Vlewer //I $\$ 499.50$ 6032A Tube / Plans to bulld your own

Order by Mail,

(c) or by 24 Hour Orders-Only Phone: 800-221-1705

The Electronics Lab in a Computer!

Testing an analog threestage amplifier with the simulated oscilloscope.

Electronics Workbench

 Powenful software to build and simulateBuilding and testing circuits is fast and easy with Electronics Workbench. Just click-and-drag with a mouse to add parts, run wires, and adjust instruments. The traces on the simulated instruments are the same as you'd get on real equipment.

Electronics Workbench really is an electronics lab in a computer. It's ideal for learning about electronics, experimenting, and prototyping circuits.

Includes:

- Analog Module with passive and active components including transistors, diodes, and op-amps; a function generator, an oscilloscope, a multimeter and a Bode plotter.
- Digital Module with gates, flip-flops, adders, a word generator, a multimeter, a logic analyzer and a unique logic simplifier.

DOS Professional Version - $\mathbf{\$ 2 9 9}$ Macintosh Version - \$199

(416) 361-0333

Interactive Image Technologies Ltd. 908 Niagara Falls Boulevard, North Tonawanda, NY 14120-2060
Fax (416) 368-5799

Testing a gate imptementation of three differentyflp-flops.
"Electronics Workbench is pretty amazing." - Jerry Rourtielle, PhiD., InfoWorld
". . . Electronics Workbench is a marvelous learning and teaching tool for the study of electronics."

- Art Salsberg, Editor-in-Chief, Modern Electronics Magazine
"Building a circuit is simple and intuitive."
- Jeff Holtzman, Computer Editor, Radio-Electronics Magazine
". . . if you're trying to learn electronics, you can do 10 times as many experiments with Electronics

[^1]CALL TOLL FREE
1-800-292.7711
1-800-445-3201 (Can.)

TEST EQUIPMENT
AT DISCOUNT PRICES

48 HOUR
SHIPPING

DIGITAL METERS

Digital Multimeter w/ Inductance \& Capacitance
$\$ 75.00$
LCM-1850
Ten Functions
by Elenco

The Survivor
Model 2860
\$89
B+Ks Best DMM Large 3-1/2 Digit

Rugged Construction Full Featured

Fluke Multimeters
Model 12 $\$ 79.95$ Model 7011 $\$ 65.00$ Model 771I $\$ 145.00$ Model 79|l $\$ 169.00$ Model 87 $\$ 289.00$ Model 93 . . . \$1,095.00 Model 97 \$1,695.00 All Models Available - Call

QUALITY AMERICAN MADE POWER SUPPLIES

12A DC Power Supply

B+K 1686
$\$ 169.95$
3-14V@12A Fully regulated \& protected Separate Volt \& Current Meters Current Limiting, Low Ripple

Quad Power Supply XP-580

Triple Power Supply XP-620 Assembled \$75 Kit $\$ 49.95$

21015 V @ 1A, -210-15V@1A (or 4 to 30V @ 1A) and 5V @ 3A
All the desired features for doing experiments.
Features short circuit protection, all supplies.

Function Generator

Provides sine, triangle, square wave
Kit \$26.95
from 1 Hz to 1 MHz AM or FM capability
Color Convergence Generator SG-250

\$89.95
KIt $\$ 69.95$ Finest in the industry 10 rock steady patterns AF \& Video output

Wide Band Signal Generators SG-9000
\$129
RF Freq $100 \mathrm{~K}-450 \mathrm{MHz}$ AM Modulation of 1 KHz Variable RF output SG-9500 w/ Digital Display \& 150 MHz built-in counter $\$ 249$

Sweep/Function Generator with Freq. Counter
\$259

Invext Operation,
Sine, Square, Triangle, Pulse,
Ramp, 2 to 2 MHz , Freq Counter . $1-10 \mathrm{MHz}$

EDUCATIONAL KITS - FUN \& EASY TO BUILD

Robotlc Arm Kit

Model Y-01 \$48.95
Teaches basics of robotics. Arm grabs \& releases, litts \& lowers, \& pivots from side to side

Digital Multimeter Kit whth Training Course Elenco Model M-2665K $\$ 49.95$ Fun \& Easy to Build

Ideal School Project

Full Function 34 Ranges, Includes Capacitance, Transistor/Diode Testing 20Amp AC/DC, Extra Large Display

Multi-Function Counter Elenco F-1200 1.2 GHz
\$229

AM/FM Translstor Radio Kit with Training Course Model AM/FM 108 $\$ 27.95$
14 Transistors - 5•Diodes Easy to build because schematic is printed right on the PCB Makes a great school project Model AM 550 AM Only $\$ 17.95$

Learn to Build and Program Computers with this kit

Includes: All Parts Assembly and Lesson Manual

Model MM-8000
$\$ 129.00$
Starting from scratch you build a complete system Our Micro-Master trainer teaches you to write into RAMs, ROMs and run a 8085 microprocessor, which uses similar machine language as IBM PC.

XK-500 Digital / Analog Trainer

A complete mini-lab for bullding, testing, prototyping analog and digital clrcuits Elenco's Digital/Analog Trainer is specially designed for school projects, with 5 built-in power supplies. Includes a function generator with continously variable, sine, triangular, square wave forms. All power supplies are regulated and protected against shorts.
Power Supplles
\$159.95 Assembled
$\$ 129.95$ Kit

- Variable Power Supply
+1.25 to 2OVDC @ 5 Amp
(+1.25 to 15VDC @ 1 Amp)
-1.2510-20VDC@ 5 Amp
-1.25 to-15VDC@ 1 Amp)
- +12 VDC @ 1 Amp
-12VDC@1 Amp
- 5 VDCC @ 1 Amp
- 30VAC Center lapped @15VAC at 1 Amp
Analog. Section
- Function Generator Sine.

Triangular, Square wave torms
Frequency adiustable in tive ranges from 1100100 kHz
Finges frequancy adiust

- Amplituce adjus!
- AC ollsel
- Modulation FM-AM

Digital-Section

- Eight data swiches
- Two no bounce logic switches
- 8 LED readouts TLL buthered
- Clock trequency 1 to 100 KHz
- Clock amplifude 5VPP square wave

Breadboards

- 2 breadboards, each coniain: 840 tie points (total 1,680)

Measures Frequency, Period, Totalizer 8 LED digits, Crysral Oven Oscillator

WE WILL NOT BE UNDERSOLD UPS SHIPPING: 48 STATES 5% IL RES 7.5\% TAX (S3 min S10 max) OTHERS CALL

C\&S SALES INC.
1245 ROSEWOOD, DEERFIELD, IL 60015
FAX: 708-520-0085 • (708) 541-0710

15 DAY MONEY BACK GUARANTEE FULL FACTORY WARRANTY WRITE FOR FREE CATALOG

ELENCO \& HITACHI \& B+K SCOPES AT DISCOUNT PRICES

25 MHz
2 Channel

$\mathrm{S}-136060 \mathrm{MHz}$
Dual Trace - Delayed Sweep

EAutomatic Beam Finder E Built-in Component Tester
\$775
1 mV Sensitivity

- Dual Time Base - Illuminated Internal Gradicule

DS-203 20MHz, $10 \mathrm{MS} / \mathrm{s}$ Digital Storage Oscilloscope

- 2K Word Per Channel
- Plotter Output
$\$ 775$ - 8 Bit Vert. Resolution - 2048 Pis Hor. Resolution
- Much More

B+K 2120

20MHz \$395 Model 2125 \$539.95
2 Channel Delayed Sweep 40 MHz DUAL-TRACE Madel 1541B

- $1 \mathrm{mV} / \mathrm{div}$ sensitivity
749.95 Video sync separators

Z \mathbf{Z} axis input

- Single sweep

■ V mode-displays two signals unrelated in frequency

60 MHz DUAL-TRACE Model 2160

- $1 \mathrm{mV} /$ div sensitivity
949.95
- Sweep to $5 \mathrm{~ns} / \mathrm{div}$
- Dual time base - Signal delay line - V mode-displays two signals unrelated in frequency . Component tester
100 MHz THREE-TRACE Model 2190

1,395.95

- $1 \mathrm{mV} /$ division sensitivity
- Sweeps to 2ns/division
- Dual time base
- Calibrated delay time multiplier - Signal delay line - 19kV accelerating voltage

20MHz ANALOG
WITH DIGITAL STORAGE Model 2522

- 20 MHz analog bandwidth
869.9 a $^{10 \mathrm{MS} / \mathrm{s}^{2} \text { sampling rate }}$ - 2k memory per channel - 20 MHz equivalent time sampling
- Pre-trigger capture
1.0 GHz PORTABLE SPECTRUM ANALYZER Model 2610
- AC/DC operation (battery included)
- 70dB dynamic range
- Resolution bandwidth of 10 kHz $\square 50 \Omega$ and 75Ω input impedance (switch selectable) - Fixed bandwidth setting for viewing TV signals - Field calibratible with internally generated $100 \mathrm{MHz}, 80 \mathrm{~dB}$ signal

SPECIAL BUY HITACHI V-2 12

20 MHz

2 Channel

\$409

Hitachi Popular Series

V-525-50MHz, Cursors	\$975
V-523-50MHz, Delayed Sweep	49
V-522-50MHz, DC Offset	\$849
$\mathrm{V}-422$ - 40 MHz , DC Offset	\$749
V-222-20MHz, DC Offset	\$625
Hitachi Compact	这
V-660-60MHz, Dual Trace	\$1,095
V-665A - 60MHz,DT, w/cursor	225
V-1060-100MHz, Dual Trace	\$1,375
V-1065A - 100 MHz , DT, w/curso	\$1,649
V-1085 - 100 MHz , QT, w/cursor	\$1,995
V-1100A - 100 MHz , Quad Trace	\$2,195
V-1150-150MHz, Quad Trace	\$2,69

Hitachi RSO Series

RSO's feature; roll mode, averaging, save memory, smoothing, interpolation, pretriggering, cursor measurements.
VC-6023-20MHz,20MS/s \qquad $\$ 1,650$ $\mathrm{VC}-6024-50 \mathrm{MHz}, 20 \mathrm{MS} / \mathrm{s} \quad \$ 1,950$ VC-6025A $-50 \mathrm{MHz}, 20 \mathrm{MS} / \mathrm{s}$ \qquad $\$ 2,350$ VC-6045A $-100 \mathrm{MHz}, 40 \mathrm{MS} / \mathrm{s}$ Call VC-6145-100MHz, $100 \mathrm{MS} / \mathrm{s}$ \qquad Call

Logic Analysers

- 32 channels (VC-3120) or 48 channels (VC3130)
- 25 MHz synchronous operation on all channels - 100 MHz asynchronous operation (8 or 12 channels)
- 5 ns glitch capture capability
- Multi-level trigger sequencing - Non-volatile data and set-up memories - Disassembler options for popular uPs - Very low cost - Call - 9 inch LCD screen

ALFA PLECTRONICS qunur tist feumant AFFORDABLE PRICE

LCR Meter 814

$\$ 199.95$
The Best Handheld
LCR
Inductance: $0.1 \mu \mathrm{H}-200 \mathrm{H}$ Capadtance: $0 . \mathrm{jpF}-20,000 \mu \mathrm{~F}$
Resistance:1m $\Omega-20 \mathrm{M} \Omega$
1% bastc accuracy
Dissipation factor indcates leakage in capacior and Q factor in inductor Zero adjustment to reduce parasttics from test fixture
Very good for high lrequency RF and surface mount components.

DMM 175A \$67.95
DMM with 20 MHz
Frequency Counter
Most popular DMM
Freq. Coumer 1Hz-20MHz
DCV . 1 mV -1000V
ACV . 1 mV - 750 V
ACADCA .ImA-10A
R. $1 \Omega-2000 \mathrm{M} \Omega$

Cap 1pF-20 F
TIL Logic test 20 MHz
Transistor HFE lest
Diode test
LED test
$31 / 2$ dgh display

Fluke Multimeter
Fluke 70 II $\$ 62$
$\begin{array}{lll}\text { Fluke } & 73 \text { II } & \$ 87 \\ \text { Fluke } & 75 \text { II } & \$ 125\end{array}$
Fluke 77 II $\$ 145$
Fluke 79 II $\quad \$ 165$
$\begin{array}{lll}\text { Fluke } 83 & \$ 215 \\ \text { Fluke } & 85 & \$ 255\end{array}$
Fluke 87 True RMS $\$ 285$
Fluke 86 Aubmotive $\$ 359$
Fluke 88
$\$ 419$
$10 \mathrm{M} \Omega$ impedance

LCR Meter 195 $\$ 119.95$

Very popular LCR Inductance:1 $\mu \mathrm{H}-200 \mathrm{H}$
Capackance:0.1pF-200 $\mu \mathrm{F}$
Resistance $0.01 \Omega-20 \mathrm{M} \Omega$
Basic accuracy:R:1\%, C.2\%,
L.3\%

Test frequency 1 kHz

Capacitance Meter

 $7705 \quad \$ 57.95$$0.1 \mathrm{pF}-20,000 \mu \mathrm{~F}$ in 9 ranges 0.5% basic accuracy Zero adjustmemt $\pm 20 \mathrm{pF}$ to compen:sate parastics from test fixture

Aso Avallable:
Heavy duty DNM
Heaw duty DMM
AC/DC clamp meler
Thermometer, wx meter pH meter, Loglc probe High voitage probe RC oscillator Electronic scale
Frequency counter

20 MHz Oscilloscope with Delay Sweep PS-205
$\$ 429.95$
Dual Trace, Component lest, 6 , CRT, X-Y Operation, TV Sync, Z Modulation, CH 2 Output, Graticule llium, 2 probes $x 1, \times 10$. Best price wht delay sweep.

| PS-200 20 MHz | DUAL TRACE | $\$ 339.95$ |
| :--- | :--- | :--- | :--- |
| PS-405 40 MHz | DELAY | $\$ 569.95$ |
| PS-605 60 MHz | DELAY | $\$ 769.95$ |

PS-405 40MHz DELAY $\$ 569.95$ PS-605 60MHz DELAY $\$ 769.95$

20 MHz Digital Storage
Oscilloscope DS-203 \$769.95
Swichabie between digital and analog 2 K word per channel storage Sampling rate: 10 M sample sec 8 bit vertical resolution (25 Lerels/div) Expanded Timebase $10 \mathrm{~ms} / \mathrm{div}$ - $0.5 \mathrm{~s} / \mathrm{div}$ Refresh, Roll, Save all, Save CH2, Pre-Trig Ploter Control

Power Supply

 PS-3030-30 VDC, 0-3A output $0.02 \%+2 \mathrm{mV}$ line regulation 0.02% + 3 mV load regulation 1 mVims noise and ripple Shon circutt and overtoad prolected

Power Supply

PS-1610
$\$ 299.95$
0-16 VDC, 0-10A output Constant voltage \& constant current mode $0.2 \%+2 m \vee$ line regulation $0.04 \%+2 \mathrm{mV}$ load regulation 1 mV rms nolse and npple Short circult and overiosd protected

RF SIGNAL GENERATOR SG-4160B \$124.95

$100 \mathrm{kHz}-150 \mathrm{MHz}$ sinewave in 6 ranges
Ouput 100 mVms to 35 MHz Intemal 1kHz, External $50 \mathrm{~Hz}-20 \mathrm{kHz}$ modulation

RF SIGNAL GEN./COUNTER

 SG-4162AD \$234.95Generates RF signal same as SG4160B
Frequency counter $1 \mathrm{~Hz}-150 \mathrm{MHz}$ Sonsitluty $\mathbf{5 0 m V}$
For intemal and extemal sources

AUDIO GENERATOR AG-2601A
 $\$ 124.95$

10 Hz - 1 MHz in 5 ranges
Output: 8 Vrms sine, $10 \mathrm{Vp}-\mathrm{p}$ squarewave Synchronkation: $\pm 3 \%$ of oscillation troquency per Vrms
Outpu distortion: $0.05 \% 500 \mathrm{~Hz}-50 \mathrm{kHz}$
$0.5 \% 50 \mathrm{~Hz}-500 \mathrm{kHz}$
Output impedance: 600 ohm

AUDIO GEN.COUNTER

 AG-2603AD \$239.95Generates audio signal same as AG2601A
Frequency courter $1 \mathrm{~Hz}-150 \mathrm{MHz}$
Senstivity < 50 mV
For internal and external sources

FUNCTION GENERATOR FG-2100A
 \$169.95

$0.2 \mathrm{~Hz}-2 \mathrm{MHz}$ in 7 ranges
Sine, square, triangle, pulse and ramp Output: 5 mV -20Vp-p
1% disiortion, DC offset $\pm 10 \mathrm{~V}$
VCF: 0 -10V commol frequency to 1000:1
FUNCTION GEN./COUNTER FG-2102AD \$234.95
Generates slgnal same as FG-2100A
Frequency counter 4 digits
Feature th and CMOS output

SWEEP FUNCTION

GEN/COUNTER 329.95
0.5 MHz to 5 MHz

Sweep: Lin 10:1/og 10:1 20ms to $2 S$ AM Modulation
Gated Burst, Vottage Control Generator, Generator Control Votage \& 6 digit Counter.

INTERCEPT, DETECT \& CAPTURE

 Near Field Transmissions withOptoelectronics' New INTERCEPTOR

NEW TECHNOLOGY

- Follows \& Locks on even when frequency changes.
- Intercepts ALL FM Two-Way Transmissions without gaps in coverage.
- Does Not have to tune through RF Spectrum to find signals.

FCC Classified as Communication Test Instrument for:

- Deviation, FM, FMN - Relative Signal Strength
- Signaling Tones (CTCSS) •Modulation Monitor
- Great for testing VHF, UHF \& Cellular transmitters

A New Dimension in Recreational Monitoring - Intercept the Two-Way Communication that Surrounds You. Increase Your RF Security. Hand Held/Shirt Pocket Size

INTRODUCTORY OFFER
Interceptor ${ }^{\text {Tw }}$ R10 FM Communications Interceptor (Includes NiCads, AC/Charger Adapter, Antenna, Earphone). $\$ 359$.
OPTIONS
Headphones (Lightweight personal headphones) \$ 15.
Antenna Pak 2 (Five assorted rubber duck antennas - save \$32.) \$ 99.
TC200 Tone Counter (CTCSS signalling tones) 179.
APS-104 (Extends RF detection distance 10x) $\$ 995$.
CF800 Cellular Band Pass Filter/Amplifier. \$ 299.
CMO댇ㄷ№ntics
FACTORY DIRECT ORDER LINE 1-800-327-5912

MODEL 7018 BIT (5.5 DIGIT)
A/D WITH RS232 INTERFACE \$239
\star Inexpensive: Equivalent resolution of $51 / 2$ digit DVMs costing over $\$ 1000$! FAST - 16.7 to $133 \mathrm{~ms} /$ conversion depending on resolution and mode.

* Multi-Channel Capability - Up to 32 model 70's can be daisy chained together off of 1 serial port
* Software: Virtual instrument software features easy pull down menus, mouse support, CGA, EGA, VGA support. Will log to screen, printer, or disk data file for easy import to spreadsheets and graphic programs. Source code included (Quick Basic)
$\star \$ 239$ Complete: Includes software on 360 K $5.25^{\prime \prime}$ floppy, PC cable, 9 volt wall mount power supply and manual.
* \$199 Without Sofware and cable

MODEL 150
TRUE RMS DMM W/RS232 PORT
Software includes RS232 cable and
software on 5.25" Floppy

* Large $33 / 4$ digit display (3.999 vs. 1.999 for 3 1/2 digit meters)
\star RS232 serial interface communicates with computers and printers
\star Measures AC-DC voltage and current, frequency, resistance
* 20 amp current range, 30 hz to 40 khz frequency range
* Diode test and audible continuity

Send CHECK, MO, VISA, MC, AX Include $\$ 8$ for shipping and handling

PC DATA ACQUISITION SYSTEM - \$79 Includes software on 5.25" Floppy
Model 30-for 386's, XT's, AT's PS2
Model 25 \& 30's.
FEATURES:
$\star 24$ lines of programmable input/output
$\star 8$ bit analog to digital converter
$\star 8$ channel analog multiplexor

* 12 bit CMOS counter
\star Easy interface to all popular languages
* Optional 7 channel 50 V driver available for additional \$5
APPLICATIONS:
\star Control relays, lights and motors
* Measure temperature, pressure, light levels and humidity
* Input switch positions, thermostats and liquid levels
\star Great for robotics, servo control loops

We can customize for use in your product!

MODEL 30 ACCESSORIES:
\star Schooner softwáre - Real time displaying and plotting of data from the board. Up to 1 K sample/s, 8 channels simultaneously. Basic digital input and output to a DAS port. Stores up to 8 channels of data to disk. Software calibration of each channel can be stored to disk and retrieved - $\$ 39.95$ with purchase of Model 30; $\$ 59.95$ if purchased separately.
\star Ribbon Cable - 3 ft . cable with connectors \$19. 6 ft. cable with connectors - \$28
\star High Current Driver IC - 7 channel, .5 amp , 50 V , open collector - $\$ 5$

Prairia Digital, Inc.
846 Seventeenth Street, Industrial Park Prairie du Sac, Wisconsin 53578 U.S.A. Tel:(608) 643-8599
Fax:(608) 643-6754

CIRCLE 33 ON FREE INFORMATION CARD

Together we can locate missing children 1-800-I-AM-LOST

PO Box 277, New Paltz, New York 12561-9277

SEE THEM AT

 YOUR LOCAL
HOBBY/CRAFT

AND
ELECTRONIC STORES : 1-800-453-1708

16631 Noves Ave.. Irvinc. CA Y2714

Are Cable Companies Sucking You Dry?

Take a Bite out of High Rental Fees with your own

Converfers \& Descramblers

Everquest • Panasonic • Jerrold • Zenith • Pioneer Scientific Atlanta•Oak•Eagle • Hamlin • Tocom

Call today for a FREE catalog!

Call today for a FREE catalog!
P.O. Box 241296 • Omaha, NE 68124

PE MARKET CENTER CLASSIFIEDS

MISCELLANEOUS
 ELECTRONICS FOR SALE

GOVERNMENT SURPLUS test equipment and parts. Free catalog. EF Electronics, Box 326, Aurora, IL 60507.
USED "Sweet Art" computer cake decorsting machine. Can reproduce photos using edible food color on cakes. Widow must sacrifice. Make offer. (619) 944-7244.
SAMS PHOTO Facts. Complete folders, \#1000 to \#2291. \$8.00 each plus postage. (914) 562-2805.
SOLAR 20W 4V 5A $\$ 65.00$. 100p CAT $\$ 5.00$ refundable. Dallas Solar, POB 611927, San Jose, CA 95161. 1 (800) 345-4913.

HAM GEAR FOR SALE

HARD TO find special purpose integrated circuits, GaAs FETs, low cost FM telephone bug \& FM microphone kit, FM crystal controlled transmitter chip MC2833. Digital voice recorder chip. 900 MHz down converter chip, etc. Automatic audio volume controllers. Low cost test equipment. Easy-PC, schematic and PCB CAD. Free demo with manual. Send $\$ 5.00$ for shipping and handling deductable from your order. Quick Plot: Plotter Screen Dump utility program. Call or write for free catalog. C \& S Electronics, PO Box 2142, Belden Station, Norwalk, CT 06852-2142. Phone Fax: (203) 866-3208

PLANS-KITS-SCHEMATICS

FM STEREO BROADCASTER kit. This kit outperforms the competition. Transmitter will broadcast any audio signal from a CD player, VCR, or cassette player to FM stereo radios throughout your home and yard. All the complex circuitry is in the unique BA1404 integrated circuit. Tunable across the FM band, runs on 1.5 to 12 volts DC. Complete kit of PC board and components for $\$ 24.00$. Visa/MC. TENTRONIX, Dept. PM193, 3605 Broken Arrow, Coeur d'Alene, ID 83814. (208) 664-2312.

PGINTED CIRCUTT KTT

EA-4 PMoto ETCH" kit lets you copy art from this magazine onto your PC board. includes everthing but exposure bulbs. Shipped UPS to your street address for $\$ 43.00$.
ER-18 Exposuat mur set fon En-4. Contains $3400 \% \mathrm{~K}$ reflector flood and $4800^{\circ} \mathrm{K}$ long wave UV lamp for ordinary retlector tlood and $4800^{\circ} \mathrm{K}$ long wave UV lamp for ordinary
120 V socket. Shipped UPS to your street address for $\$ 88.45$. FREE CATALOG of dry transfers and PC supplies. Write or phone Davem, 55 freeport Blvd, Sparks, NV 89431. 702-359-7474 FAX: 702-359-7494.

NI-CAD ZAPPER can rejuvenate those unre-

 chargeable NI-CAD batteries. Instructions, schematic and parts list to construct NI-CAD Zapper: $\$ 5.00$. TENTRONIX, Dept. PM193, 3605 Broken Arrow, Coeur d'Alene, ID 83814.MAGNETIC AMPLIFIER. Solid state amplifier without semiconductors or vacuum. Amplifies through the use of magnetic fields. Plans $\$ 10.00$, kit (plans + one amplifier) \$20.00. ELECTROMAN, Dept. PE, PO Box 24474, New Orleans, LA 70184.
68HC11 MICROCONTROLLER design manual. Interfacing, schematics, software algorithms, PCB artwork. Rush $\$ 10,00$. AJR Circuits, 42073 Addison, Canton, MI 48187.
RADIO-SCANNER MODIFICATIONS. Over 180 different models $\$ 12.00$ for (3) IBM 5.25 disks, J. Worthington, Box 1953, Eugene, OR 97401.
VOCAL REMOVER Plans to build a simple circuit for less than ten dollars, which removes vocals from tapes, records, and C.D.'s. Send five dollars to EIC, PO Box 184, Belleview, FL 34420.

SURVEILLANCE

COUNTERSURVEILLANCE Electronic Devices Miniature Trunsmitter Kits.. $\$ 29.95$ Voice Changers, Phone Scramblers, Vetiicle Iracking, Phone Recording Systems, Buy \& Phene Tap Datectors, \& More! CALL IDENTIFIER device * displays callers phone number betore you answer with date α time of call...s49.95 E(D) B. FOA CATALOG SEND $\$ 5.00$ TO...

CHRISTMAS PROJECTS. Electronic fun for the holidays. Ten festive plans only $\$ 7.00$. CAMPBELL ENTERPRISES, 27955 Terrace, Dept. PE, North Olmsted, OH 44070.
SALVAGE RECHARGEABLE NICAD BATTERIES from defunict battery packs. Complete information and spacer slug. \$4.00 BUILD A CHARGER that won't harm nicad batteries, and keep them fresh, ready for use. Illustrated plans, $\$ 4.00$. BOTH BOOKLETS FOR \$7.00, NV residents add 7\% tax. Money back guarantee. Day by Day Publishing, Box 490, Overton NV 89040.
NEVER NEED A JUMP START AGAIN! Build a circuit that automatically disconnects your battery before it discharges. Send $\$ 14.95$ for "PROTECTING YOUR CAR BATTERY" containing theory, methods, circuits, diagrams and clear explanations. Grayze EI, 230A Burkehaven Hill Road, Sunapee, NH 03782.
FLAME SPEAKER. Finally, a speaker with no moving parts! Omnidirectional sound, with higher frequency response than conventional loudspeakers. No diaphragm or voice coil. Plans, $\$ 10.00$. ELECTROMAN, PO Box 24474, Dept. PE, New Orleans, LA 70184.

Tert chips for JERROLD, TOCOM ZENTTH SA mora. Puts ceble boxas in full service mode. Esesy installation. Zenith anly \$39.95. Most othars undor \$50ee

TEST EQUIPMENT

QUICK-SHOOTER. Fix problems FAST. Find bad components in seconds. For information send S.A.S.E. or $\$ 1.00$ and your FAX\#. LYNN JOHNSON, Box 51268, San Jose, CA 95151-1268.
TEKTRONIX R564B 10 meg storage os cilloscope with 3A6 dual trace and 3B3 delaying timebase \$350.00 (813) 746-4479.

EDUCATION

LEARN TO EARN. Increase your income with electronic skills. Courses written for easy leaming. Most courses $\$ 49.50$ or less. Electronic parts and equipment also sold. Send $\$ 2.00$ for catalog to A\&A Products, Rt 1, Box 482-L, Rockdale, TX 76567.

BARCODES BARCODES BARCODES they're everywhere you look! Now you can get in on an industry that is growing by 20% each year with THE BARCODE COURSE. This course comes complete with a detailed barcode textbook, portable barcode reader, RS232 interface and barcode printing sottware for only $\$ 149.95+\$ 7.00 \mathrm{~S} \& \mathrm{H}$. OBR Inc., RR3 Box 47-7, Carbondale, IL 62901. (618) 549-7100.

COMPUTER HARDWARE

PC PARTS, Mbs, disk drives, hard drives etc. Overstocks, reconditioned. Multiwatt Systems, Box 1147, Burlington, MA 01803. Fax: (617) 229-9798.

COMPUTER SOFTWARE

THOUSANDS OF IBM SHAREWARE PROGRAMS. \$3.00 S\&H for 2 disks full plus catalog disk. American Soltware, PO Box 509, Suite M6, Roseville, MI 48066-0509.
ELECTRONICS SOFTWARE. From $\$ 2.00$ per disk. IBM 5.25". Free catalog on disk. GENERIC SOFTWARE, POB 502, Dayton, OH 45401.
ELECTRONICS TUTORIAL software program. Over 1000 screens, 48 modules, of interactive jnformation, schematics and help on DC, AC, ana\log and digital. Menu driven. Ideal for job preparation, reference, or for use as a study aid. IBM format. (Specify monochrome, EGA or VGA.) Tu-tor-Tech, 5591 kimberly St., San Jose, CA 95129. (408) 252-3223.

IBM SHAREWARE PROGRAMS, DATABASES AND INFORMATIVE ARTICLES ALL RELATING TO ELECTRONICS, RADIO, SCANNING ETC. $\$ 2.50$ S\&H FOR CATALOG DISK. RIGHT BYTE COMPUTING LTD., 724 HUNTS CR. NW, CALGARY, AB. CANADA T2K 4H9.
AMIGA, MACINTOSH, ATARI ST/XL/XE Amateur radio, astronomy, MIDI, and electronics PD/ shareware software, $\$ 4.00$ per disk full. Send SASE with 2 stamps for catalog. Please specify which computer! KD Software, Box 1646, Orange Park, FL 32067-1646.

CB-SCANNERS

COMMUNICATION AT ITS BEST. AR-900 $\$ 219.00$, AR-1000XC $\$ 399.00$, AR-2500 $\$ 439.00$, AR-3000A $\$ 969.00$, BC-200XLT $\$ 249.00$. Guaranteed lowest prices on AOR radios. We carry a variety of CB's, scanners, radar detectors and more. FREE SHIPPING. Visa/MC/Amex. Turbo Electronics, 366 N. Broadway, Sulte 310, Jericho, NY 11753. Questions: (516) 938-1946, Orders: 1 (800) 33-TURBO.

ANTIQUE ELECTRONICS

TUBES, PARTS (Old stock from closed or bankrupt Radio-TV stores). Extensive listings in 16 page illustrated catalog: \$2.00. Don Diers, 4276 North 50th Street \#MC4, Milwaukee, W 53216-1313.

SATELLITE EQUIPMENT

REVOLUTIONARY DIGITAL DIRECT BROADCAST SATELLITE SYSTEM Ground floor marketing opportunities. For information write: PSystems, 7640 Cherry Tree, Willowbrook, IL 60514.

TELEPHONE

YOUR OWN 800 number for only $\mathbf{\$ 3 . 7 5}$ a day? Yes! Information and application: Send $\$ 3.00$ to Phone, PO Box 185P, Hemingford, NE 69348-0185.

OCEAN STATE ELECTRONICS

PROFESSIONAL, AMATEUR, OR COMMERCIAL - WERE YOUR ONE STOP ELECTRONIC SOURCE CALL OR WRITE FOR OUR FREE 112 PAGE CATALOG 1-401-596-3080

BUILD THIS REGULATED 12VDC TO 120VAC
INVERTER

select the wattace YOU NEED-200W to 1000 W

Perfect for Campers or Emergencies Send $\$ 29.95$ for Complete Set of Plans \& Theory of Operation to

INVERTER SCIENTIFIC
Box 778, Suffern, N.Y. 10901

PE MARKET CENTER CLASSIFIEDS

Abstract

\section*{CABLE TV} "BULLET" BUSTER. Protect your cable box against the infamous "bullet." The "Bullet" Buster acts as an electronic shield. Installs in-line in seconds. Don't wait until it's too late! $\$ 19.95$ plus $\$ 3.00$ S\&H. ELECTROMAN, Dept. RE, PO Box 24474, New Orleans, LA 70184. TOCOM MAPPER chip. Align those channels One chip - no soldering $20 @ \$ 110.00$ ppd. UPS COD. Jerrold Starcom remotes SCR 1120 @ $\$ 6.50+$ ship. Call Stan - Apex, (414) 554-8618 phone-fax. Also for sale cable encoders. SA, Jerrold.

COMPUTER EQUIPMENT WANTED

TEACHER WANTS Tandy color computer junk Charles Scanion, 2 Eagle, Simsbury, CT 06070. Keep trying! (203) 657-8373.

BUSINESS OPPORTUNITIES

CASH FOR TRASH. Hams/hobbyists turn electronic scrap into CASH. Extra money or start a new career. VHS video shows all, $\$ 19.95$ plus $\$ 3.00$ S\&H. LYNN JOHNSON, Box 51268, San Jose, CA 95151-1268.

PUBLICATIONS

MARCONI SALAD and Tesla Taters! ElectroMeals Cookbook, available just in time for holiday gift giving. The perfect present for the Ham's mate. $125+$ recipes, $\$ 12.00$ plus $\$ 3.00$ S\&H. ELECTROMAN, Dept PE, Box 24474, New Orieans, LA 70184.

FLHaspris

PCB ARTWORK MADE EASY!

"Are you tired of laying down tape or wire wrapping to make printed circuit art? End the nightmare with the PCBoards Circuit Layout Program for just \$99.00! Easily create single or double-sided circuit boards with professionalresults."

- Herc, CGA, EGA, VGA, \& SuperVGA
- Use mouse and/or keyboard
- Built-in help screens
- Dip and Sip footprint libraries
- Build custom parts easily
- Copper flood for building ground planes
- Block move, copy, rotate, save, etc.
- Comes with dot-matrix \& laser output
- Make your own films with $1 x$ laser art
- Gerber and Excellon output available

Requirements: DOS 3.0 or later, 1 disk drive, 384 k of RAM, IBM-PC or compatible

Download Demos from our 24hr BBS at (205) 933-2954			
PCBoards Software Prices:	Add on Software:		
PCBoards Layout	99.0	PCRoute Autorouter	99.00
Gerber and Excellon Drivers	49.0	PCRoute+ Autorouter	149.00
Plotter Drivers	49.00	SuperCAD Schematic	99.00
Demo Package (all software)	10.00	SuperCAD+ Schematic	199.00

Use PCBoards, PCRoute, and SuperCAD as a "system" to create pcb art from a schematic!
PCBoarde -2110 14th Avenue South, Birmingham, AL 35205 /Ph. (600)473-PCBS Fax (205)933-2954
\$49
Four
motor

kit with computer interface

High speed
Closed loop Galvo kit Squares to $180 \mathrm{hz}, \&$ Circles to 900 hz

FREE catalog of Kits

Silicon Valley Surplus
1273 Industrial Prkwy West Bldg 460
Hayward, Ca .94544-7025
510-582-6602

ADJUSTABLE REGULATED POWER SUPPLY
2 -28 VDC at 1 A continuous 1% regulation. $\$ 69.95$ each

BREVEL
DC GEAR
MOTOR

24 to 130 RPM, reversible, 12 V to 120 VDC with thermal overload, $0.375^{\prime \prime}$ shaft $\times 225^{\prime \prime}$ long.
$\$ 19.95$ each

(4)
TRANSFORMER
12 VAC, 1 A , with power cord and secondary wires. $\$ 4.95$ each

AUTOMOTIVE POWER CORD
Room for fuse inside heavyduty plug. 6 " cordincluded.
 \$1.49

COLLINS

 PRECISION CRYSTAL CONTROLLED OSCILLATOR100 KHz and 500 KHz outputs. Diagrams included. $\$ 1295$ each

DTS413 NPN SILICON
TRANSISTOR
Similar to NTE162 Commonly used in TV vertical deflection $500 \mathrm{~V}, 1 \mathrm{~A}$.
$\$ 2.00$ each - 12 for $\$ 10.00$

4 MB EPROM
Brand new! Toshiba No.
TC574000D-150.
$\$ 37.95$ each

27 C512 EPROM

 Erase and save! $\$ 1.99$ each

PHILMORE ANTENNA KIT

For improved broadcast and shortwave reception The perfect starter antenna. $\$ 7.95$

ROBOT PUPPY

A fun canine with an internal microprocessor control system is a marvel of state of the art technology, featuring DUAL DC DRIVE MOTORS with GEAR REDUCTION and two-inch diameter RUBBER TREAD DRIVEWHEELS that provide excellent mobility and traction. Special integrated sound analysis and recognition circuitry allow you to command your Robot Puppy with simple hand claps. When your Robot Puppy hears your commands, it moves, whines and barks, and its eyes light upl If you ignore it, it will "go to sleep" and then awaken at your command Original retail price over $\$ 100.001 \$ 29.95$

PRECISION OBJECTIVE
 LENS

21 mm f:3.5. Four coated glass lenses in black aluminum case measuring 1-5/32" long by 1-1/ 16^{n} diameter. Excellent correction of all aberration for an angle
 of 35° without vignetting (obstruction of view at edge), or 45° angle with slight vignerting. Linear resolution in focus is very near the theoretical limit of 385 lines/mm when the image of object is in focus ($\mathrm{D}=6 \mathrm{~mm}$), or 500 lines/mm when object is in focus (numerical aperature=1.41). Possible applications include: objectivelens for scanners; photographic objective enlarging linearly 10X; objective for a handheld microscope, enlarging from 30X to 120 X (numerical aperature $=1.41$); lens working with light sensor or emitter as a precise focusing element; or lens for shaping a laser beam.
$\$ 12.50$

3-BUTTON MOUSE

For PC's and compatibles. Microsoft and MouseSystems compatible, 350-700 DPI dynamic resolution Withsoftware and instructions \$14.95 each

AT RLL DRIVE CONTROLLER
2 hard drives, 4 floppies.
$\$ 19.95$

IDE CONTROLLER.CARD

JP3: HDD LED JP1: FDC enable/disable. JP2: HDC enable/disable. J3: I/O channel ready. \$14.95

MINICIRCUITS LABORATORIES PRODUCTS

PSC2-1	10.95
PSC3-1	20.50
PSC3-1W	32.00
PSCQ-2-50	18.00
PSCQ-2-180	18.00
SRA-1	10.00

MUMBLEY BEAR 12^{4} Tall Teddy Bear
Talk and it imitates your voice in "bear talk" Soft and cuddly. \$19.95 each

BIG RED

4×4 TRUCK

Radio controlled (2 channel), $120 \times 8.0 \mathrm{~cm}$ pneumatic rubber tires, range up to 100 ft , removable camper shell, climbs $40^{\circ}-45^{\circ}$ angle, dual proportional radio control, dual speeds, recharging jack, full power to all 4 wheels, reinforced front bumper, fun for all ages. This is not a cheap toy!
$\$ 49.95$

SCANNER
 PACKAGE

386 DX 20 MHz system, 3
MB RAM, $360 \mathrm{~K}-5.25^{\text {n }}$
floppy, 20 MB hard drive, Hercules-compatible mono monitor. Canon flatbed scanner with JLaser AT-3 interface, drivers and software.
$\$ 899.00$

CANON FULL PAGE

DESKTOP SCANNER

$300 \times 300 \mathrm{DPI}$. With I/O card cable, software and documentation.
\$349.95

BARE BONES SYSTEM

XT type motherboard with 8 slots, slide-in cabinet, power sypply, 256 K RAM, upgraded BIOS, NECV20 CPU. Expandable. New. Accessories and upgrades are available. Call or FAX for quote. Monitor and keyboard not included.)
$\$ 99.95$
1200 BAUD INTERNAL MODEM
For PC's and compatibles. With software.
\$19.95 each

14" MONITOR

Brand new, boxed, open frame hi-res TTL monochromemonitor. Standard pin-out. Diagrams for power supply and connections included.
$\$ 14.95$

[^2]| M PHON | | |
| :---: | :---: | :---: |
| | | IMPC-620 CONVERTER
 2 TO SERIAL
 PHONE LINE WATH OM PORT |
| | | OUVE HEARD ABOUT THEM WEVE GOT THEM HERE! |
| | | BOOS TER FOR MINIATURE TRANS MITTERS RF POWER AMP BOOSTS B8-108MhZ MINIATURE FM TRANSMITTERS RANGE-GUARANTEED I
 COMPLETE KIT W/SCHEMATICS IMPC-REZ $\$ 26.00$
 E-Z IUNE (25 TURN) STABLE HLFI FM MIC - SURF. MNT. (MEDIUM RANGE. SUPER SENSITIVE) IMPC-RM5 $\$ 44.00$ |
| | | LONG RANGE FM MIC - SMALL BUT VEAY POWERFUL 1" SQ., NON-SURFACE-MOUNT KIT IMPC-RM52 \$39.00 TOUCH TONE DECODER DISPLAYS PHONE NUMBERS AS HEARD FROM RADIO TAPE OR PHONE LINE. BUILT-IN 200 , DIGIT MEMORY IMPC-TDD $\$ 169$ |
| | | International MlcroPower Inc. |
| | | Camarillo, CA 93010 $+\$ 3.50$ E. H.
 $1-805-389-1270$ 1 $\$ 7.00$ IF C.0.0.$\|$
 MC On VSA Accepted CA residents add Sales Tax |

Enter A World Of Excitement with a Subscription to Popular Electronics Get the latest electronic technology and information monthly!
 Now you can subscribe to the magazine that plugs you into the exciting world of electronics. With every issue of Popular Electronics you'll find a wide variety of electronics projects you can build and enjoy.
 Popular Electronics brings you informative new product and literature listings, feature articles on test equipment and tools-all designed to keep you tuned in to the latest developments in electronics. So if you love to build fascinating electronics, just fill out the subscription form below to subscribe to Popular Electronics . . It's a power-house of fun for the electronics enthusiast.
 EXCITING MONTHLY FEATURES LIKE:

\square CONSTRUCTION \square FEATURES
\square HANDS-ON-REPORTS
\square SPECIAL COLUMNS
PLUS: ALL OUR GREAT DEPARTMENTS!

FOR FASTER SERVICE CALL TODAY
1-800-827-0383
(7:30AM-8:30PM)
EASIERN STANDARD fime

Popular Electronics subscripion orderform
YES! I want to subscribe to Ponular Electronics for 1 Full year (12 lssues) for only $\$ 18.95$. That's a savings of $\$ 23.05$ off the newstand price IBasic Subscription Rate-1 yr/\$21. 1.5 .
\square Payment Enchosed Bill me later
Please charge my: DVisa M Mastercard
Acct. $41|1111+11| 1 \mid$
Signature
p.o. Box 338. Mt. Morris IL. 61054 PLEASE PRINT BELOW:

Dial 3178498683 to get instant tech information FREE from your Fax! You can obtain specs and info on these products and more by dialing our Fax Facts automated service. Cail our number from your fax, then request the oocument as listed below. Stan your fax and the document will stat printing immediately on your laxl

Mobile Scanners

Bearcat
760XLTM
$\$ 249.95$
100 Channel

AOR AR1000XLT
$\$ 429.00$
AM Broadcast to Microwave
1000 Channels
500 KHz to 1300 MHz coverage in a programmable hand held. Ten scan banks, ten search banks. Lockout on search and scan. AM plus narrow and broadcast FM. Priority, hold, delay and selectable search increment of 5 to 995 KHz . Permanent memory. 4 AA ni-cads and wall plus cig charger included along with belt clip, case, ant. \& earphone. Size: $67 / 8 \times 13 / 4 \times$ $21 / 2$. Wt 12 oz . Fax fact document \# 205.

AR2500

$\$ 399.00$
2016 Channels
1 to 1300 MHz
Camputer Cantrol
62 Scan Banks, 16 Search Banks, 35 Channels per second. Computer control for logging and spectum display. AM, NFM, WFM, \& BFO for CW/SSB. Priority bank, delay/hold and selectable search increments. Permanent memory. DC or AC with adaptors. Ming Brkt \& Antenna included. Size: $21 / 4 \mathrm{H} \times 5$ 5/8W x $61 / 2 \mathrm{D}$. Wt. 1lb. Fax fact \# 305

AR3000

\$1095.00
400 Channels
100 KHz to 2036 MHz
Extreme coverage, excellent sensitivity, plus processor controlled band pass filtering and attenuation to eliminate interference. Top rated receiver in its class, offers AM, NFM Wide FM, LSB, USB, CW modes. RS232 control. Lockout in search. 4 priority channels. Delay \& hold \& Freescan modes. AC/DC pwr cord and whip ant. included. Size: $31 / 7 \mathrm{H} \times 52 / 5 \mathrm{~W} \times 77 / 8 \mathrm{D}$. Wt 21 bs ., 100z. Fax fact document \#105.

Free Stuff

Demo disk of SCS (scanner control system) software for AR 3000 \& AR2500. Call toll free
 to order. Also, Free with AR2500: Control software, a $\$ 49.95$ value. Allocation chart of all voice frequencies. Dial Fax Facts for doc. \#999.

800 MHz
Five banks of 20 channels each. Covers 29-54, $118-174,406-512$ and $806-954 \mathrm{MHz}$ (with cell lock). Features scan, search, delay, priority, memory backup, lockout, service search, \& keylock. Includes ACDC cords, ming brkt, antenn. Size: $43 / 8 \times 615 / 16 \times 15 / 8$. Wt: 4.5 lbs . Fax fact document \#550.

Bearcat

590XLTX
$\$ 199.95$
100 Channel
 11 Band
Five banks of 20 channels each. Covers 29-54, $118-174$, and $406-512 \mathrm{MHz}$. Features scan, search, delay, priority, memory backup, lockout, service search, \& keylock. Includes AC/DC cords, ming brkt, antenna. Size: $73 / 8 \times 615 / 16 \times$ $15 / 8$. Wt: 4.1 lbs . Fax fact document \#570.

Bearcat

560XLTZ
$\$ 99.95$
16 Channel
 10 Band
Compact, digital programmable unit covers 29 -$54,136-174$, and $406-512 \mathrm{MHz}$. Features scan, WX search, delay, prionity, memory backup, lockout, review,\& auto delay. Includes AC/DC cords, mtng brkt, antenna. Size: $73 / 8 \times 21 / 2 \times 1$ 5/8. Wt: 2.5 lbs . Fax fact document \#560.

Trident

TR-2C
$\$ 89.95$

Scan/CB with optional laser detector Scans pre-programmed by state channels in low, high, UHF \& T bands. Weather, $40 \mathrm{ch} . \mathrm{CB}$ receive plus mobile relay. Size: $55 / 8 \times 47 / 8 \times 1$ 3/4. Wt: 1.5 lbs . Fax fact document \#580.
Mag Mount Antemna. Eary to install whip antenme with 20 of coax \& heavy duty magnet BNC MA $100 \$ 19.95$ Base Antenna. 25 no 1000 MH z cowerage wid 50% of coas. All mounting hardware included. BNC AS $\mathbf{3 0 0} \$ 59.95$ External Speaker. Bace or mobile mount. MS190 $\$ 19.50$ Wide Band Pre-Amp. Varible gain up to 2013 covers 100 KHz io 1500 MHz . 9 Vbart included. BNC. GW-2 $\$ 89.00$ Interference Filter. Fiters and eliminates common causes of interference to ccamers. BNC. Model MPIP-1. \$59.00 Downconverter. Converts 800 MHz freqs to 400 MHz for 3 bend scanners. Quatz locked, 9 V bell. DC89. $\mathbf{5 8 9 . 0 0}$ Extended Warranties a Service. Extended warrantice aviilable for moat modela. Call for quote. Out of warranty wervice by ex- Bearca/Regency factory woch. Call for quote.

AOR 900 \$199.95

100 Channel 800 MHz Five scan banks 5 search banks. Covers 29-54, 118 174, 406-512 and 830-950 MHz (no cell lock). Features scan, search, delay, priority, permanent memory, lockout, backlite, \& keylock. Includes AC/DC adaptor, belt clip, antennas. Size: $53 / 4 \mathrm{H} \times 2 \mathrm{~W} \times 11 / 2 \mathrm{D}$. Wt: 120z. Fax fact document \#650.

Bearcat 200XLTN $\$ 219.95200$ Chameses 800 MHz

Ten scan banks plus search. Covers 29-54, 118-174, 406-512 and 806 956 MHz (with cell lock). Features scan, search, delay, 10 priorities, mem backup, lockout, WX search, \& keylock. Includes NiCad \& Chrgr. Size: $13 / 8 \times 2$ $11 / 16 \times 71 / 2$. Wt. 32 oz. Fax Facts \# 450 Bearcat 100XLTNNow\$159.95 100 Chamnels, Keytoand Programmable. Simile to 200×1 IN above without 800 MHz . $\mathrm{P}_{2 x}$ fucts 1460 Bearcat 70XLTP Only $\$ 139.95$ 20 Chamnels Keyboard Programmable. 10 Band Hand Held winh Ni-Cade \& Charger. Fax facts *470 Bearcat 55XLTR Now \$99.95! 10 Chamels Keytoand Programmable.

Table Top Scanners

Bearcat 855xLTE Now $\$ 179.95$!
50 Channels Keyboard Programmable with 800 MHz . LCD display, lock, priority, Search, WX Pax facts \#655
Bearcat 142XLM Only \$87.95
16 Chanocla with 10 bande. LED display, lockout, priority, WX scan , review key and memary beckmp. Fax factu 11600.
Bearcat 147XIJ Now \$89.95 16 Chnnnels with 10 bands. Track tuned, IED dieplay, priarity. WX search, review, memory beckup. Pex facta 1670.
Bearcat $172 \times \mathrm{ML}$ Only $\$ 124.95$ 16 Chunnele wihh 10 bande. Track tured, LED display, priority, WX search , eview, memory beckup. Pax facter 16880.

Bearcat
 800XIX
 \$239.95

12 bands and 40 channels with 800 MHz and nothing cut out. AC or DC. Fax facts $\$ 690$.

2 Way Radios

VHF hi band programmable mobiles as low as \$299.95. Call for quotes or Fax Fact \#755

MARK V ELECTRONICS, INC.
 . OUISIDE CA $1.800-423$-FNE (orders only ORDER BY FAX (213) BEB-685 Competitive Prices Fast Shipping Since 1985 catatog a informarion (213) ans-8985

Δ indicates the levet of difficulty in the assembing of our Products.
Special offer will be given to the purchase ol Amplifier + Metal Cabinat + Power Translormer! $\quad 100 \mathrm{H}$ +100W NEW CLASS A DC STEREO 300W HI-FI PDWER AMPLIFIER (MOND) $100 \mathrm{~W}+100 \mathrm{~W}$ NEW

KIt: Assembled

$\$ 85.00$into 8 ohms. 540 watts music power into 8 ohms. Frequency response: 10 Hz to 20 KHz - Total harmonic distortion: Less than 0.05\% 85.00 Intermodulation distortion: Tested: $\$ 110.00$ itivity. 1 V 0.05% - Sens- KIL Power requirements: 60 to 75 VDC at 8 amp 0 Di mensions: $8^{\circ} \times 711^{\circ} \times 21^{\prime \prime}$
120W MOSFET PDWER AMPLIFIER (MONO) LIFIER (MONO)

It $-{ }^{25}$

 Assembleda T. H. O.: Less Than 0.007\% 8 ohms RMS. Frequency resoense: 8 Hz to $20 \mathrm{KHz}+0-0$ dB - Sensitivity: 1 V - Power requirements: 55 VOC ou 3 amps. May use Mark V Model a Tosted: 60W + 60W Stereo Power Amplifier (with Mic. Inpuit)

KIt: Assembled Tested: 88.00 channel into 8 ohm load - 33 W per
 Benter than 70 . Pown - Signal to noise ratio: mensions: $360 \mathrm{~mm} \times 75 \mathrm{~mm} \times 200 \mathrm{~mm}$ PROFESSIOMAL COLOR LIGHT CONTROLLER SN-328 *

- Independent input signal control - Professional stytec control panel
- 4 independent outputs
- 4 independent dimmer contrals
- Chaser speed controls Assambled \& - Automatic chaser operation Tested: \$165.00
- 4 preser chaser programs
- Clockwise chaser control
- Anti-clochwise chaser control
- Match with any stepdown transiormer from 12 to 24 V AC.

srectricarioms

input sensitivity (mussic mode): 100 mV : (music + program): 2 O - Ounlput power: 1170 W per channei Max 4680 W tota Power requiraments: $105-120 \mathrm{~V}$. $60 \mathrm{~Hz} *$ Dimiensions. 14.32° wide. 9° high 3.19° deep. Fack Mount Metal Cabinets with sluminlum panel art suitable for mady projects and most of our tits. 003 Transtormer.

Frequency response: 20 Hz to 20 KHz - Tota harmonic distortion: $<0.1 \%$ - Power 60 W per channel into 4

Power output: 80 watts per channel into 8 ohms to0 watts per channel into 4 ohms Total harmonic distortion: Less than 0.03% - Frequency response: Aux input: 5 to

KIt:
 quency respense: Power am Assembled 91 quency respense: Power am Tested: $\$ 95.81$ plicer 5 mV ou 47K Aux: 150 200kHz " Sensic mV (a 10 K Dutput: Tape: 150 mV mV (" 47K Mic: 6 mV ("t 10K Dutput: Tape: 150 mv (1) 47K Preamp: 1V (") 60C ohms - Power trans tormer: 26 V to 32 V AC $\times 2$ (is 6 A (Mark V Model D01) - P.C. Board Dimensions: $10.5 \times 6.13 \times 2.25$ Heat sink: $5.13 \times 2.63 \times 3^{\circ}$ (Each) Use rack moun cabinet LG 1924 or LG 1925.
80W + 80W PURE DC STEREO MANN POWER AMPLIFIER

Alt: 845.94
Power output: 80 watts per channel into 8 ohms - Total harmonic distortion: Less than 0.05\% at rated power Intermodulation distortion: Less than 0.05% at rated power - Frequency response: DC to
 200 KHz . -0 dB . -30 BB . "1 1 watt \cdot Power require-
ments: $30 \mathrm{VAC} \times 2$ (") 6 amp. May use Mark V model 001 transtormer P. C. Board: $8-1 / 2^{\circ} \times 5^{*} \times 1-1 / 8^{\circ}$ Heat sink: $5-1 / 8^{\prime} \times 2-5 / 8^{\circ} \times 3^{\prime \prime}($ Each $)$
VIDEO/AUDIO SURROUND SOUND PROCESSOR SM-333 $\triangle A \Delta$ * Frequency response: 20 Hz to 20 KHz - Total Harmonic distortion: Front channel: $\begin{array}{lll}\text { Assembled } & & \text { Front channel: } \\ \text { R Tesled: } \\ 585.00 & 0.05 \% \text {. Rear chan- }\end{array}$ nel: Less than 0.25% - Input signal voltage: 0.1 to 3.5 V - Dutput: Front channel: 0.1 to 3.5 V - Rear channel: 6.6 V - Delay time: 5 to 50 milliseconds Input impedance: 47 K - Power requirements: 100-120 VAC. 60 H - - Dimensions: 14.2 wide. 4.82 deep, $2.11^{\text {high }}$. 120W + 120W AC/OC STEREO HI-FI \& PA AMP. SM-720 \triangle A
SPECIFICATIONS
Dutput Power: 120W $\times 2$ (P.M.P.D.)
Input Sensitivity: Tape 300 mV - Aux 300 mV - Phono
Tone Conirol: Treble $\pm 8 \mathrm{~dB} \cdot$ Bass $\pm 8 \mathrm{d8}$ Frequency Response: $20 \mathrm{~Hz}-20 \mathrm{KHz}, \mathrm{KHz}$
Power Requirements: $\mathrm{AC} 110160 \mathrm{~Hz}, \mathrm{DC1}-16 \mathrm{~V}$ Oimensions: $10-5 / 8^{\circ} \times 8-1 / 8^{\circ} \times 3-1 / 8^{7}(W \times D \times H)$

We provide trasformers for KI
most of our Mark V amplifier kits.
t: $\quad \$ 75.001$
Assombled
o Testad: $\$ 89.00$ -

MARK V ELECTRONICS, INC.
 8019 E. Slauson Ave. Montebello. CA 906+0 CIRCLE 29 ON FREE INFORMATION CARD

DC/CAD
 introducing...

THE TERMINATOR

Super High Density Router (Complete with Schematic \& PCB EDITOR)

Features the following powerfui algorithm \& capability:

- Rip - up and Retry
- Pre-routing of SMT components
- Real-Time via minimization
- Real-Time clean up passes
- User defined strategies

- Window 3.0 capability as DOS Task
- 1-mil Autoplacer and Autopanning
- Two-way Gerber and DXF
- Automatic Ground Plane w/ Cross-Hatching
- Complete w/ Schematic \& Dolly Libraries
- Optional simulation capability \& protected mode for 386 users
* PCB LAYOUT SERVICE AT LOW COST *

LEASE PROGRAM \& SITE LICENSE AVAILABLE

Design
Computation
1771 State Highway 34
Fampingdale NJ 07727
(908) 681 - 7700 - 908) 681 - 8733 (FAX
" DC/CAD . . The focal poins of furure CAD market"

ALL THE PARTS YOU'LL EVER NEED AT MCM ELECTRONICS

Because needs in the electronics industry are constantly changing, MCM Electronics continually researches the market and reacts to the market's changing needs.
MCM is constantly in touch with national and international manufacturers to bring both commonly used and hard-to-find products to its customers.

There are over 20,000 items stocked and ready to ship, including: Semiconductors, connectors, audio and VCR parts and accessories, television parts, hardware, test equipment, chemicals, tools and many name brand items.

For A FREE Catalog Call: 1-800-543-4330 To Order By Fax: 1-513-434-6959 For Product Questions Call: 1-800-824-TECH (8324)

Ppular Electronics.

The Magazine for the Electronics Activist!
© Gernsback Publications, Inc.

Abbreviations: (AR)Antique Radio, (C)Construction, (CB)Computer Bits, (CC)Circuit Circus, (D)Department, (DX)DX Listening, (ED)Editorial (FS)Fun Software, (HOR)Hands-On Reports, (HR)Ham Radio, (G)Gizmo (LTR)Letters, (PTR)Product Test Report, (SS)Scanner Scene; (TT)Think Tank
3×3 Visual Contiruity Tester (Harpton)(C)
555-Based Alerm (Rakes)(CC) 558
and Alarm Circuits, More (Yacono)(IT)
Finale (Yacono)(TT)
Timer, the (Yacono)(TT)
$300-\mathrm{MHz}$ Digital Cordless Telephone
Tropez 900 DX (O'Brian and Scajuto)(G)
Feb 53 Feb 65 Oct 72 Oct 72 Sep 73

Jul 8

A

ABC Sports Gort: Palm Springs Open
Fathom Pictures (O'Brian and Scaduto)(G) AC Line Monitor (Alakes)(CC)
AMFM/Shortweve Stereo Cassette Receiver Phillps' DC777 (O'Brian and Scaduto)(G)

Feb 11
Jut 70
Jun 14
ASAP Fax
Command Communications
(O'Bnan and Scaduto)(G)
AV
Amplifier, Sansui AV-7000 (Feldmen)(PTR) Recelver, Onikyo SV70 Pro (Feldinan)(PTR)
Ace Communtcations

AR-2800 Scanner (Saxan)(SS)	Mar 82
Trident CBB ScannerRadar	Der 80
Detector (Saxcen)(SS)	
ction-Packed Issue. An (Laron)(EJ)	Jan 2

Action-Packad Issue. An (Laron)(EJ)
Adjustable
Voltage Monitor (Rakes)(CC)
Vottage Current Regulator (Rakes)(CC)
Sep 70 Mar 70
Air Traffic on SW (Jensen)(DX)
Alarm
Clicuil (Yacono)(TT)
Circuits (Rakes) (CC
Clock/Chronometer Kit, TSM G-Eigit (HOR) isounder Circuits (Rakes)(CC)

Nov 75

Alexander Popov: Russia's Radio Pionee (Rybak)

Aug 20

Jul 26 Feb 65

ALL ABOUT
Electrical Nolse (Eggleston)
Optoisolators and Oplocouplers (Carr)
Parallel-Port Sicnals (Yacono)
Proper input Termination (Hansex)
All-Purpose Insulation (Yacono)(TT)
Alpine 5951 Caz CD Remote Changer System (O'Brian and Scaduto)(G)

Aug 59

Altemate Sensor (Rakes) (CC)
Jul 62
Aug 47
Oct 53
Jan 38
Jun 70
Jun 12
America Power Conversion Back-UPS 250 (HOR) Sep 26 Ameritron
ICP-120 in-Rush-Current Protector (Car) (HR) Aug 79
ICP-240 in-Rusn Current Protector (Carr) (HR) Aug 79 QSK-5 External QSK Swith (Cart)(HR)

Aug 79
Answering System Telephcne
ATST 1532 (O'Brian and Scaduto)(G)
Aug 13

ANTENNA

Build A Precision Antenna-Rotor Control System (Hocking)(C)

Jun 34 Design and Build Loaded Dipolzs (Carr)(HR) Mar BO Dipoles, Loaded Design and Build (Carr)(HR) Mar 80 For DXing the Low Bands, An (Cam)(HR) Nov 78 Quick \& Dirty alied, A (Deuprect
Radio Shack Amplified VHF/UHFFM (Saxon)(SS)

Sep 48
Receiving Loop (Carr)(HP)
Rotor Control System, Bulld A
Why Not Try A Fo:ded Dipole? (Carr)(HR)
Jun 74

Wire Beams: Gain On The Cheap (Carr)
Jun 34

ANTIOUE RADIC (EIlls)(D)
Jan 76,Fob 63, Mar 68 Apr 55,May 66,Jun 63 Jui 66,Aug 68,Sep 66
Cleaning Up the Sky Buddy
Collectors Contest Encore
Coming: A New Restoration Prowec
Getting Started on the Sky Budey

Mall Cai
Sep 66 Mail Ca月
Reassembling the Sky Buddy Sky Buddy Saga, The
Therem n Plays Agaln, The The
galn, Aug 68 Tips and Tidbits May 86 With The Collectors Contest Results Hov 65

Archer Wireless AudioNVideo Distribution System Radio Shack (O'Brian and Scaduto)(G) Artisoft Lantastic Network Starter Kit Aug 12 AT\&T Answering System Telephone 1532 (O'Brian and Scaduto)(G)

Aug 13
Audible Memo Alert (Fakes)(CC) AUDIO (SEE ALSO CD)
Ace Communications Trident CB/Scanner/Radar Detector (Saxon)(SS)

Dec 8 Alarm (Yacono)(TT,
-eb 68 Amplifier (Rakes) (C.C)
AudioSource SS ThreenI Pro Logic SurroundSound Processo: (O Brian and Scaduto)(G) Oct 18 Aucio-Tachnica SM-502 Audio Mixer (Feidman)(PTR)

Dec 26
Bang \& Oifison Beosystem 2500
Uar 23
Music System (Fgldman)(PTR) (Singmin)(C) Apr 2 Build
A 49-MHz FM Transmitter (Becker)(C) Wov 39
A Speaker Protector (Flymn)(C) Mar 41
An Eight-Channel Audio Switcher
(Goebel) (C)
the "Tiny funer" ISalas)(C
Carver DPL-33 Surnound-Sound
Processor/Amplifier (Feldman)(PTR) Jul 27
Choosing and Using Aucio
and Video Tape ispiwak)
citizen T530 Color LCD Pocket TV
Nov 35
with AMIFM Radio (O'Brian and Scaduto)(G) Jul 16 Cobra Model 39 Plis S.O.S Portable
CB Radio (O'Brian and Scaduro)(G) Jan 47
-Frequency Meter (Rakes)(CC) Apr 66

Choose Audio Equipment (Spiwak) Electronically Tune Planos and Other insiruments (Brown)(C)

Apr 35
Indicators and Acoistics (Martin)
Fob 29
Installing and Troubieshooting
Car-Audio Systems (Gipson)
Magnawox CD-ROM DivelCD
Jec 35
Mode! CDD461FS (O'Brian and Scaduto)(G) Feb 18
Mazda RX-7 with Bose Audio
System (O'Bran and Scaduto)(G) Sep 5
Memorex
CDX-605 Extended-Play Personal Stereo (O'Brian and Scaduto)(G)
Triumph is-5 Three-Piece Speaker

PA-Sys:em Primer, A (Allen)
Fob 55
Philips DC777 AMiFMiShortwave Stereo
Cassatte Recelvar (O'Brian and Scaduto)(G) Jun 14

Apr 66
Aadio Shack Archer Wireless AN Distribution System (O'Brian and Scadiuto)(G)
Ramsey FX-146 Two-Meter FM Transceiver

Audio Note A-4 Notebook
Stereo (O'Brian and Scaduto)(G) Jui 10
Model AV-7000 AN Amplifier Aay 27
Sanyo MCD- 285 Portable Audio
Dec 12
System (O'Brian and Scadsio) (G)
Sharp Booksheff Stereo System/CD Changer
Model CD-C900 (O'Brian and Scaduto)(G) Apr 16
Sherwood SS-150c Compact Stereo
System (O'Brian and Scaduto)(G)
Sony MDP-605 COICDVA.P Player
Sound Master II PC Sound Eoard
Covox (O'Brian and Scaduto)
Subwoofer, Build A fWhitehead)(C)

Jan 49
Jan 31

Dock (Feldman)(PTR)
Sep 27
Mixer ($)^{\prime}$ 'irian and Scaduto)(G)
Mar 8
Zonith-Scse Coior TV
Model IB2794BG (O'Brian and Scaduto)(G) May 10
AudicSourca SS Threefl Pro-Logic Surround-Sound
Processor (O'Brian and Scaduto)(G) Oct 1

Proceisgor (O'Brian and Scaduto) (G)
Audic-Techsica SM-502 Audio
Mixer (Feidran)(PTR)
Mixer (Feidman)(PTR) Dec 26
Automap (OBsian and Scaduto)(G) Nov 5
AUTOMOTIVE
$\begin{array}{ll}\text { Alpine } 6951 \text { Car CD Remote Changer } & \\ \text { Systern (C'Brian and Scaduto)(G) } & \text { Jun } 12 \\ \text { Baupunke Travelpilot vehicle Navigation } & \\ \text { Syster (C'Brian and Scaduto)l(G) } & \text { Jun } 7\end{array}$
Buld A
High-Energy Ignition System
For bour Car (Ball)(C) Sep 31, (LET)Dec 3
Voltage AJapter For Your Car (Yacono)(C) Jun 47 Circuits. More (Yacono)(TM)
Cobra Tapeshooter Solar Stealth
Radar Detector (O'Erian and Scaduto)(G) Jun 18
Electronle Tracking Foils Car Theives (Angus) Mar 57
Inssalling and Troubleshooting
Car-Ausio Systems (Gipson) Dec 35
Mazda FIX-7 with Bose Audio
Systern (O'Brian and Scaduto) (G)
Philps' D 777 AM/FM/Shorwave Stereo 5
Philps' DS777 AM/FM/Shortwave Stereo
Gassete Receiver (O'Brian and Scaduto)(G) Jun 14
Projects (Yacono)(TT) Mar 73
Race Pernote Key Car-Control
System (O'Brian and Scaduto)'G) Jun 10
Road to Tomorrow,
The iOBnan and Scaduto)(G) Jun 5
Axxess Touch-Screen Personal Organizer
Oregon Scientific (O'Brian and Scadut) (G) Sep 15
B
Baby Monitor, Build A (Caristi)(C) Oct 31
Back-UPS 250, America Power Conversion (HOR) Sep 26
Bad Videottepes (Feldman) Nov 31
Balun Transfomer, What's A (Carr)(HA) Feb 76
Bandoass Flher (Rakes)(CC) Jun 67 Bang \& Olu'sen Beosystem 2500
Music Systen (Foldman)(PTR) Mar 23
Bass and Tretie Booster Controls (Singmin)(C) Apr 34 BATTERY
Charger CYasono(TT) Apr 70
-Charger Probe (Yacono)(TT)

Clips (Yacono)(TII
Mar 73
Jun 70
uper-Simple NiCd-Battery
Beckman Diw1DXL Mutimeter (HOR) Sop 63
Biq Leaque Besebail Encyclopedia Bit of Moditarranean DX, A (Jensen)(DX) Apr 74 Blaupunkt fravelpilot Vehicle Navigation
System (O'Erian and Scaduto)(G) Jun ?
Block-Heater Minder (Vacono)(TT) Mar 73
Boing Biox Sound Effects Mixer
Videonice (o'Brian and Scaduto)'G) Mar 8 Booster Controls, Eass and Treble (Singmin)(C) Apr 34 Bose.Mazda FX- 7 Audio
System (O'Erian and Scaduto)(G)
Brazi ian Dm on a Rollercoaster Ride Sep 5
(Jensen) $10 \times$)
Breakout Box, Build A (Yacono)(C)
Bridging Touct Plate Sensor (Rakes)(CC)
Jun 72

Britannica Software's Comptons Concise
Encyclopiodia (O'Brian and Scaduto)(G) Feb 13 British Bosten's Interpreter II
Fivo-Language Talking Translator (O'Brian and Scaduto)(G)

Sep 13

All About Parallet-Port Signals (Yacono)
Amenca Power Conversinn
Back- Ower Conversion
Back.UPS 250 (HOR)
Artisoft Lantastic Network
Starter Kit (O'Brian and Scaduto)(G)
Build
a Quickie Breakout Box (Yacono)(C) the Printer Sentry (Yacono)(C)
the Universal RS-232 Connector (Tarchinski (C)

Jan 38 Sep 26 Aug 12 May 61 Mar 59 Oct 62
Corox Sound Master II
DynaPulse 200 M Blood-Pressure Pulse
Monitor, Pulse Metric
(O'Brian and Scaduto)(G)
Sep 20
Logitech Fotoman Digital
Camera (O'Brian and Scaduto)(G)
NEC Uitraline III Nolebook Compurter Apr 12
(OC-Erian and Scaduto) (G) Sharing File and Printer Shating
System, Soltworx (O Brian and Scaduto)(G) Aug 21
Plug'n Power Computer Interface
Radio Shack (O'Brian and Scaduto)(G) May 16
Radio Sheck (O'Brian and Scaduto)(G)
Printer Spooling-Hardware
May 16
Printer Spooling-Hardware
Aug 40
Troubleshocting Faralilel Connections (Yacono) Feb 41
COMPUTER BITS (Hottaman) (J) Jan 81, Feb 72, Mar 76 Apr 72, May 68,Jun 65 Jui 68,Aug 71,Sep 68
Oct 67 Nov $68,00 c$
66
Buying Your First (or Next) PC Oct 67,Nov 68,Dec 66
Computer Evolution
Integrated Soltware Tools
Modem Mania
Norton
Deskitop for Windows Utilities Verston 6.0
Secre: Life of a Computer Products
Revewer, The
Hzing Up Your PC Needs
Tuning Up
Word
BASIC
Wizardry
Aug 71
Sep 68
Oct 67
Mar 76
Rack (Yacono)(TT)

Concise Columbia Encyclopedia EC-700
Franklin Electronics (O'Brian and Scaduto)(G) Mar 12 CONSTRUCTION
3×3 Visual Continuity Tester (Hampton)(C) Feb 53 Bass and Ireble Booster Controls (Singmin)(C) Apr 34

Build A

49-MHz FM Transmitter (Becker)(C)
Baby Monitor (Caristi)(C)
Nov 39

Cable Tester (Recklies)(C)
Compass, Talking (Mitschke)(C)
Cordless-Telephone Lock (Sokoiowski)(C) Geiger Counter (lovine)(C)
High- Energy Ignition Syste
For Your
Sep 31 ,
Holidayr Car (Bail)(C) cono and Spwak Low-Cost Rit Tester (Yacono Minalure Tracking Transmitter (Votlono) (C) Jun 29 One-Amp Current Injector (Johnson)(C) Nov 46 Personat Message Recorder (Williams)(C)
Pop-Up Ouidoor Lighting
System (Schmiedeberg)(C)
Portable 2-MHz Frequency Coumter (Cansti)(C)
Precision Antenna-Rotor Control System (Hocking)(C) Precision Darkroom Timer (Graf and Sheets)(C)
Quickie Breakout Box (Yacono)(C
Soldering-Iron Controller (Yacono and Spiwak)(C)
Sonic Kaleidoscope (Ray)(C)
Speaker Protector (Flynn)(C)
Subwocter (Whitehead)(C)
Voice Disquiser (Vollono)r
Vorce-Mail Alert (O'Keliey)(C)
Vorce-Mall Alert (O'Kelley)(C) Nou 53
Voltage Adapter For Your Car (Yecono)rC) Jun 47
Bulld An
Automatic Porch-Light Control (Ponting)(C) Mar 46 Automatic Power Switch
For Your TV (Vaughn)(C) Nov 43
Eight-Channel Audlo Switcher, (Goebel)(C) Dec 31
Emergency Telephone Dialer (Caristi)(C)
Sep 38

Bulld The

"Tiny Tuner" (Salas)(C) Jun 45
diof Box (Head)(C) Sep 53
Printer Sentry (Yaconol(C)
Universal RS-232 Connector (Tarchinski (C)
Classic induction Coll, The (Czamik)(C) Mar 35
Mar 59
Oct 62

Controls (Spiwak)(C)
Aug 37
Create a High-Voltage Miniature
Tornado (Ford)(C)
May 55
Electnc Waves and the Hertz
Oscillator (Czarnik)(C)
Electromagnetic Ring Launcher (Vollono)(C)
Oct 45
Electromagnetic Fing Launcher (Voliono)
Enlarging Light Meter for Photographic
Enlarging Light Meter for Photographic
Printing, An (Graf and Sheets)(C)
Printing, An (Graf and Sheets)(C) Apr 31
Experiment With Plasma Acoustics (lovine)(C) Oct 37
Good Vibrations Printed-Circuit Board
Good Vibrations Printed-Circuit Board
Woristation (Yacono)(C)
Woristation (Yacono)(C)
How To Electronically Tune Pianos
and Other Instruments (Brown)t
Incredible Hot Canaries, The (Clarke)(C)
Make Your Own
Make Your Own
High-Voltage Capacitors (Charton)(C)

Apr 62
Fob 29
Jan 42

Holograms (lovine)(C) Aug	Aug 31, Sep 43
Negative lon Generator (lovine)(C)	Jan 29
PC-Based Stepper-Motor Controller (Antonuk)(C)	
Protecl Your Equipment With The	
Power Block (Yacono) (C)	Fob 37
Quick \& Dirty Quad, A (Deupree)(C)	Sep 48
Simple Remote-Control Analyzer,	
A (Yacono and Spiwak)(C)	Jun 38
Super-Simple NiCd-Batiery	
Rejuvenator (Blechman)(C)	Sop 63
Telephone Ring Converter, The (Poeth) (C)	(C) Apr 38
Consumer Alert (Lamn)(ED)	Nov 2

CONSUMER ELECTRONICS (SEE ALSO GIZMO,

 PRODUCT TEST REPORTSBad Videotapes (Feldman)
Choosing and Using Audio
CONSUMER ELECTRONICS SHOW
Summer (O'Brian and Scaduto)(G) Oct 5
$\begin{array}{lr}\text { Summer (O'Brian and Scaduto)(G) } & \text { Oct } 5 \\ \text { Winter (O'Brian and Scaduto)(G) } & \text { May } 5\end{array}$
Convenience Light for Remote Controls Aug 37
(Soiwak)(C)
Cool Oldies Jukebox, PIMA
Feb 11
Cop Talk: Understanding Police
Communications (Quarantielio) Jan 61
Cordiess-Telephone Lock,
Build A (Sokolowski)(C)
Jul 44,(LET) Oct 3
Courier Procom UHF-FM Transcelver (Saxon)(SS) Sep 80
Covox Sound Master II PC Sound
Board (O'Brian and Scaduto)(G)
Jan 49
Create a High-Voltage Miniature
Tornado (Ford)(C)
May 55
Cross-Reterence Software, Philips ECG (HOR) Dec 62
Current Injector, One Amp (Johnson)(C) Nov 46
D
dB or Not dB (Honeycutt) Aug 65
DC Motor Controller (Rakes)(CC)
Mar 70
DIT Telephone Security Device,
Jul 8
DX LISTENING (Jensen)(D) Jan 85.Feb 74, Mor 78 Apr 74,May 78, Jun 72 Jul 75,Aug 77,Sep 76

Air Tratfic on SW
Oet 75,Nov 80.Dec 76
Bit of Mediterranean DX, A
Brazilian DX on a Rollercoaster Ride
Changing Face of Russian DX. The
Exploring the Lower Shortwave Bands
Into The Maitbag
Just "Chill" Out
Programming For SWL.s
Radro Polonia is Gone; Polish Radio is Back
Shortwave Reviva!, The
United Nations Radio
WWV and WWVH Offer More Than You Think! May 78
Data Discman Model DDr-EX. Sony
(O'Brian and Scaduto)(G)
Feb 13
Daewoo DVP-1060N Video Cassette Player
(Feldman)(PTR)
Jun 26
Buitd A Precision (Graf and Sheets)(C) Aug 53
David Hughes: Electromagnetic Pioneer (Rybak) Nov 60
Delayod Alarm Alarm/Sounder Cireuits
(Rakes)(CC)
Fob 65
DeLorome Mapping's Street Atias USA
Nov 5
Design and Build Loaded Dipoles (Carr)(HR) Mar 80
Deskmate Automatic House Software
Radio Shack (O'Brian and Scadulo)(G) Mey 16
Digital
requency Counter, Heathkit $\operatorname{IM-2410}$ (HOF) May 22
Multimeters, Fiuke Series 10 (HOR)
Nullimeters, Fiuke Series 10 (HOR)
Apr 28
Dipoles, Loaded, Design and Build (Carr)(HF) Mar 80
Do You Compute? (Yacono)(TT)
Dec 72
Drive-Through Sermons (Saxon)(SS
Nov 82
Oriver Circutt (Rakes)(CC)
Nov 72
Dual-Tone Sounder (Rakes)(CC)
Duofone Outgoing Call Restrictor
Radio Shack (O'Brian and Scaduto)(G) Mar 13
DynaPulse 200 M Computerized Blood-Pressura/Pulse
Monitor, Pulse Metric (O'Brian and Scaduto)(G) Sep 20
E

EDITORIAL (Laron)
Jan 2,Fob 2,Mar 2
Apr 2,May 2,Jun 2
Jul 2,Aus 2,Sep 2
Action-Packed Issue, An
Consumer Alert
Oct 2,Nov 2, Dec 2
Automobile ${ }_{2}$
End of a and the Automobile
End of a Legend, The
Get Up. Get Active!
HDTV Update
importance of Perspective, The
Jun 2
Mar 2
Sep 2

F

FACTCARDS (D)
Jan 51,Feb 49,Mar 53
Apr 49,May 49,Jun 48
Jul 49,Aug 49,Sep 49
Oct 49, Nov $49,0 e c ~ 49$
Fathom Pictures ABC Sports Golf:
Palm Springs Open (O'Brian and Scaduto)(G) Feb 11 Filter Circuits (Rakes) (CC)

Jun 67
Fluke Series-10 Digital Multimeters (HOR) Apr 28
FM Transmitter, Build a 49-MHz (Becker)(C) Nov 39
Folded Dipole, Why Not Try A? (Carr)(HR) Nor 3
Fotoman Digital Camera for Computers
Logitech (O° Brian and Scaduto)(G)
Jul 18

Franklin Electronics Big League Baseball

Encyciopedia (O'Brian and Scaduto)(G) Concise Columbla
Encyclopedla (O'Brian and Scaduto)(G) Nar 12 Frequency Counter, Portable $2-\mathrm{MHz}$ (Caristi)(C) Jul 53
Fridge Alarm (Yacono)(TT)
Nov 75
Fun Software (Blechman)(D)
$\operatorname{Jan} 83$
$\operatorname{Jan} 83$
Fun whth
Analog Tachometer Circults (Carr)
Jul 59
Op-Amps (Yacono)(TT)
Jan 22
Funai TVCP 9T 9-Inch TVI
Video Cassette Player (Feldman)(PTR)
Nov 27
Function-Generator Kit, TSM (HOR)
Nov 22
Funex's Motion-Converter Exercise-Gear
Interiace (O'Brian and Scatol
G
GPS
Navigation System, The (Fenton)
Recelver, Sony Pyxis (O'Brian and Scaduto)(G) Jul 31 Geiger Counter, Bulld A (lovine)(C)
Geten Systems CD Sound Music Manager Sottware (O Brian and Scaduto)(G) Dec 5
Get Up, Get Activel (Laron)(ED)
GottIng
Started on the Sky Buddy (Elis) (AR)
to the Bottom of the Mailbag (Saxon)(SS)
Jun 63
Glve Your Handheid A Boost! (Saxon)(SS)
May 76
GIZMO (O'Brian and Scaduto)(D) Jan 45, Feb 4, Mar 5
Apr 5, May 5, Jun 5, LETJAug 3
Jul 5,Aug 5,Sep 5, LETHDec 3
Oct 5, Nov 5,Dec 5
Atpine 5951 Car CD Remose Changer System Jun 12 Artisoff Lantastic Network Starter Kit
AT\&T Answering System Telephone 1532

Franklin Electronics $\begin{array}{ll}\text { Big League Baseball Encyclopedia } & \text { Nov } 16 \\ \text { Conclse Columbia Encyclopedia } & \text { Mar } 12\end{array}$
Funex's Motion-Converter Exercise-Gear Intertace
Software
Dec 5
Grolier Electronic Encyclopedia, The New Feb 5, Feb 18
Home-Otfice Round-Up (O'Brian and Scaduto)
Instant Replay's Image Translator
IVC GR-AX50U Compact VHS Camcorder
Nov 12
Logitech Fotoman Dightal Camera
Jul 18
Magnavoxs CD-ROM Drive/CD
Mazda FX-7 with Bose Audio System Fab 18
Sep 5
Memorex
Trumph TS-5 Three-Piece Speaker System Mar 5
Microsoft
Fob 18
Multimedia Beethoven: The Ninth Symphony Feb 20
Multi-Link's SR2 Selective Ping Processor Aug 15
NEC Uliraltit II Nolebook Computer
Personal Organizer
oc Gic Prompact Video Projector
PC Maps
Philips
CD-I Player, Model C01910
DC777 AM FM/Shortwave Stereo Cassette Recolver
piMA Cool Oldies Jukebox
Psygnosis Lemmings
Blood-Pressure/Pulse Monitor
Race's Remote Key Car-Controt System
Radio Shack
Archer Wireless AV Distribution System Deskmate Automatic House Software Duotone Outgoing Call Restrictor Pocketvision-26 LCD Color TV

May 1

Road to Tomorrow, The
Apr 8
Rolodex Personal Planner Model EO-100 Oct 20
Sansul Audio Note A-4 Notebook Stereo Dec 12
Pulse Meter HRM-5520 Heart-Rate Monitor Jan 48
Sharp Bookshelf Stereo Syatem/CD
Changer Model CD-C900
Sherwood SS-1500 Compact Stereo System
Softworx PC Interlink Flle and Printer
Sharing System
Mar 6

Sole Control Universal Heplacement
Sony
CD-F501 Video Camcorder
CD-F $\times 5108 \mathrm{~mm}$ Camcorder Dala Discman Model DD1-EX
Pyxis GPS Receme
Tandy 25005 SX 20 Multimedia PC
Feb 20
Cordless Telephone
Jul 8
Universal Electronics One For All 4

Mar 8
Sep 12
VidiPax international Video Conversion Service Nov 13

Whistler Interstate Tripmate
Highway Travel Planner
Zenith-Bose Color TV Modal ZB2794BG Mpr 10
Global Positioning System
GPS Navigation System, The (Fenton) Jul 31
GPS Receiver
Sony Pyxis (O'Brian and Scaduto)(G) Jul 5
Good Vibrations Printed. Circull Board
Workstation (Yacono)(C)
Apr 62
Grand Piano Kit, The OWI (HOF)
Jan 72
Grolier Electronic Encyclopedla,
The New (O'Brian and Scaduto)(G) Feb 9,Fab 18
Guglielmo Marconi (Rybak)
Apr 43

H

HDTV Update (Laron)(ED)	Mar 2
Antenna For DX'ing the Low Bands, At	Nov 78
Design and Build Loaded Dipoles	Mar 80
Dighal Sawtooth Generator, The	May 76
Ol Sol-Friend or Foe	Jul 77
Receiving Loop Antennas	Jun 74
Some	
More Spectrum Analyzer Stufi	Oct 78
New Products and Some Questions	
Answered	Aug 79
Thoughts on Radio Propagation	Apr 76
Tools for Emmers and Elmees	Sep 78
What's A Balun Transformer?	Feb 76
Why Not Try A Folded Dipole?	Jan 87

Handheld That Won't Break the Bank, Aug 82
A (Saxon)(SS)
HANDS-ON REPORT (D) Jan 72,Feb 61,Mar 65 Apr 28,May 22, Jun 22 Jul 26 ,Aug 26 , Sep 26 Oct 22, Nov 22, Dec 6
America Power Conversion Back-UPS 250 Sep 2
Beckman DM10XL Muttimeter
Elenco Micro-Master MM-8000 Basic
Systems Course
Fluke Series-10 Digital Multimeters
Jun 22

Fluke Series-10 Digital Muitmeters Aug 26
Heathal Autar Counter May 22
Design Somare SuperCAD Eloctronics
OWi Grand Piano Kit. The
Mar 65
Philips ECG Cross-Reterence Software
Jan 72
Protel Schematic Circuit-Design Software Feb 61 TSM

Function-Generator Kit
6-Digit Alarm Clock/Chronometer Kit Nov 22

HARDWARE

Buying Your First (or Next) PC (Holtzman)(CB) Aug 71 Elenco Micro-Master MM-8000 Basic
Systems Course (HOR)
Back-UPS 2 Con
Hayes Microcomputer Products,
Optima 96 (Holtzman)(CB)
Aug 26

Mar 76
Heathkit IM-2410 Digital
Frequency Counter (HOR) May 22
Hertz Oscillator, The,
and Electric Waves (Czamik)(C) Oct 45
High-Energy Ignition System For
Your Car (Ball)(C)
Sep 31 , (LET)Dec 3
High-Power Alam Driver (Rakes)(CC) Jan 78
High-Voltage
Make Your Own (Chariton)(C) May 31, (LET) Aug 3
Circuits, More (Rakes)(CC) \quad Nov 72
history
Alexander Popov
Russia's Radio Pioneer (Rybak) Aug 59
David Hughes:
Electromagnelic Ploneer (Rybak) Nov 60
Electric Waves and the
Hertz Oscillator (Czarnik)(C) Oct 45
Electricky and Medicine in the
Electricty and Medicine in the
19th Century (Czamik)
Gugliefmo Marconl (Rybak)
Magnetic Light (Czarnik)
Magnetic Light (Czarnik)
Hoilday-Light Tester (Yacono and Spiwak)(C) Dec 59
Holograms, Make Your Own (lovine)(C) Aug 31, Sep 43
HOME CONTROL
Padio Shack
Deskmate Automatic House
Software (O'Brian and Scaduto)(G) May 16

Plugin'Power Computer
Intertace(O'Brian and Scaduto)(G)
One For All 4 Universal Remote
Controi (O'Brian and Scaduto)(G)
HOME OFFICE
AT\&T Answering System Telephone
1532 (O'Brian and Scaduto)(G)
Command Communications
Artisoft Lantastic Network
Starter Kit (O'Brian and Scaduto)(G)
Aug 12
ASAP Fax (O'Brian and Scaduto)(G)
Aug 20

Home-Office Round. Up (O'Brian and Scaduto)(G)	Aug 5
Multi-Link SR2 Selective Ring	
Processor (O'Brian and Scaduto)(G)	Aug 15
Sottworx PC-Interlink File and Printer Sharing	
Sharing System (0'Brian and Scaduto)(G)	21
How to	
Choose Audio Equipment (Spiwak)	Apr 35
Electronically Tune Pianos and Other	
Inmumens (Brown	Feb 29
Hughes, David: Electromagnetic Pioneer (Rybak)	Nov 60

If
Decoder (Yacono)(TH) Jan 22
Op-Amp (Yacono)(TI)
ISCET Certlfication Tests
Electronics Technicians Day (Steckler)
Apr 40
Idiot Box, Build the (Head)(C)
Ignition System For Your Car,
Build a High-Energy (Ball)(C)
Sep 53
image Translator Standards Converting VCR.
Instant Replay (O'Brian and Scaduro)(G)
Sep 31

Importance of Perspective, The (Laron)(ED)
Nov 12
nduction Coil, The Classic (Czarnik)(C)
Input Termination, All About Proper (Hansen)
Feb 58
In-Rush Current Limiter (Rakes)(CC)
Mar 70
instailing and
Maintaining Tolephone Systems (Young) Nov 55 Troubleshooting Car-Audio Systems (Gipsonp Dec 35 Instant Replay's Image Translator
(O'Brian and Scaduto)(G)
inlograted Software Tools (Hotizman)(CB)
Interpreter II Five-Language Talking Transłater
British Boston (O'Bran and Scaduto)(G)
Interstate Tripmate Highway Travel Planner Whistler (O'Erian and Scaduto)(G)
Into The Mailbag (Jensen)(DX)
Intruder-Detector Circuits, More (Rakes)(CC)
Intrusion-Indicator Circuit (Yacono)(TT)
Nov 12

Sep 76
Aug 72

JVC GR-AX50U Compact VHS
Camcorder (O'Brian and Scaduto)(G)
Sep 6 Just "Chill" Out (Jensen)(DX)

K

Kaieidoscope, Sonic (Ray)(C)
Oct 58
Kit Building Lives (Laron)(ED)
Dec 2

on)	Jun 61
Lamp-Switching Circuit (Rakes)(CC)	c 6
Lantastic Network Starter Kit Artisoft (0'Brian and Scaduto)(G)	Aug 12
Lemmings, Psygnosis Lld. (O'Brian and Scaduto)(G)	Feb 9
	$\begin{aligned} & \text { 3,Mar } 3 \\ & \text { 3, Jun } 3 \\ & \text { 3,Sep } 3 \\ & 3, \text { Dec } 3 \end{aligned}$
Light	
-Dependent Sensor (Rakes)(CC) Sources For Projects and Instruments (Carr) Sources, Solid-Slate (Carr)	Aug 72 Mar 49 Jun 31
Lights-On Reminder (Yacono)(TT)	Apr 70
Logical Turn Signal (Yacono)(TT)	Mar
Logitech Fotoman Digital Camera for Computers (O'Erian and Scaduto)(G)	Jul 18
Long-Period Monostable (Yacono)(TT)	ct 72
Look at the Mailbag, A (Saxon)(SS)	Feb 7
Low-Frequency Antenna (Carr)(HP)	Nov 78
Low-Level Sounder (Rakes)(CC)	Fe

MC14538 Monostable Applications (Rakes)(CC) Dec 68 Made In Japan (Laron)(ED)

May 2
Magnavox's CD-ROM Drive/CD Player
Model CDD461RS (O'Brian and Scaduto)(G) Feb 18
Magnetic Light (Czarnik)
Apr 57
Mail Call (Ellis)(AR)
Aug 68
Mail Call (Ellis)(AR)
Mar 68
Make Your Own
High-Voltage
High-Voltage Capacitors (Charlton)(C)
Holograms (lovine)(C)
May 31,(LET) Aug 3 Aug 31,Sep 43

Making the Connection (Carr) Dec 45 Marconi, Guglielmo (Rybak) Mazda RX-7 with Bose Audio System (O'Brian and Scaduto)(G) Apr 43

(Czamiki

Mediterranean DX, A Bit of (Jensen)(DX)

Memorex

CDX-605 Extended-Play
Personal Stereo (O'Brian and Scaduto)(G) Model 87 Video Cassette Recorder (Feldman)(PTR)
Model 1538 mm Camcorder (Feldman)(PTR)
Trumph TS-5 Three-Piece Speaker System (O'Brian and Scaduto)(G)
Mental Automation Supen LAD Electronics
Micro-Master MM-8000 Basic Systems
ro- Mas
Course, Elenco (HOR)
Microclips and More (Yacono)(TT)
Microphone Amplifier (Pakes)(CC)
Microsoft
Bookshelf (O'Brian and Scaduto)(G) Feb 18
Multmedia Beethoven (Holtzman)(CB)
Nord tor Wna Scaduto)(G) (Holtzman)(CB)
Word for Windows (Holzman)(CE)
Miltary Electronics, All About (Hansen)
Miniature Tracking Transmitter, Bulld A (Voliono)(C)
Modem Mania (Holtzman)(CB)
Modified Squarewave Oscillator (Rakes)(CC
Monitoring
Motion-Ficture Sets (Saxon)(SS)
Remote News Crews (Saxon)(SS)
More
558 and Alarm Circuits (Yacono)(TT)
Automotive Circults (Yacono)(T) Fun With Op-Amps (Yacono)(TT) High-Voltage Circuits (Rakes)(CC) intruder-Detector Circuits (Rakes)(CC) Tips (Vacono)(TT)
Morse-Code Transmitter Build A Low-Cost (Lisle)(C)
Motion-Converter Exercise-Gear Interface Funex (O'Brian and Scaduto)(G)
\qquad

- Loop Parallel Alarm (Rakes) (CC)
- Point Intrusion Detector (Yacono)(TT)

Aulti-Link's SR2 Selective Fing
Processor (O'Brian and Scaduto)(G)

MULTIMEDIA

Britannica Software Compton's Conclse Encyclopedia (O'Brian and Scaduto)(G) Commodore CDTV Interactive
Multimedia Player (O'Brian and Scaduto)(G) Feb 9 Fathom Pictures ABC Sporis Golf:
Palm Springs Open (O'Brian and Scaduto)(G) Feb 11 Madness (Laron) (ED)
Madnessl (O'Brian and Scaduto)(G)
Magnavox CD-ROM Drive/CD Player
Model CDD461RS (O'Brian and Scaduto)(G) Feb 18 Microsoft
Beethoven (Holtzman)(CB) Ninth Aug 71 (O'Bran and Scaduto)(G)

Aug 26
May 70

Aug 7
Feb 20
8,Dec 66 Apr 72

Jun 29

Jan 78
Oct 7

Aug 15
Sol-Friend or Foe (Carr)(HR)
Jul 77
Old Gear, New Lives (Laron)(ED)
Oct 2
On-Delay Monostable (Yacono)(TT) Oct 72
One-
Chip Receiver Front-End, A (Carr)

- Way Voice-Activated Intercom (Rakes)(CC)
Jun 53
Onkyo SV70 Pro AudloNideo
Receiver (Feldman)(PTR) Apr 66
Dec 57
Article, Not Another (Dougherty) Dec 57
Based Circults (Rakos)(CC)
Apr 66
Op-Amps Fun With (Yacono)(TT)
Jan 22
More Fun With (Yacono)(TT)
Optima 96, Hayes Microcomputer
Products (Holtzman)(CB)
Mar 76
Optoisolators and Optocouplers, All About (Carr) Oct 53
Oregon Scientific Axxess Touch-Screen Personal
Organizer. (O'Brian and Scaduto)(G) Sep 1
Oscitloscopes, Buyer's Guide to Low-Cost (Spiwak) Jul 35
Outdoor Lighting System, Build A
Pop-Up (Schmiedeberg)(C)
May 38,(LET) Aug 2
OWI Grand Piano Kit, The (HOR)

PA-System Primer, A (Allen)
Feb 55
PC-
Based Stepper-Motor
Controller (Antonuk)(C) Jun 41,(LET)Sep 3
The "Good Vibrations" (Yacono)(C) Apr 62
Boards, Etch Your Own (Young)
(O'Brian and Scaduto)(G)
interlink File and Printer Sharing System
interink File and Printer Sharing System
Soltworx (O'Brian and Scaduto)(G)
Soltworx (O'Brian and Scaduto)(C)
Maps (O'Brian and Scaduto)(G)
-SIGLibrary (O'Brian and Scaduto)(G)
Panasonic PT-10L Compact
Video Projector (O'Brian and Scaduto)(G) Apr 5
Parallel

Connections, Troubleshooting (Vacono)	Fob 41
-Loop Alarm (Rakes)(CC)	Jan 78

-Port Signals, All About (Yacono)
Personal
Message Recorder, Bulld A (Williams)(C)
Oct 39
Planner Model EO-100s
Rolodex (O'Brian and Scaduro)(G)
Stereo, Memorex Extended
Play (O'Brian and Scaduto)(G)
Oct 20
May 18
CD.I Player

Model CD1910 (O'Brian and Scaduto)(G)
Feb 11
DC777 AM/FM/Shortwave Stereo Cassette
Receiver (O'Brian and Scaduto)(G)
PHONE (SEE ALSO TELEPHONE)
Guard Telephone Security Device DTI (O'Brian and Scaduto)(G)
Line "Tester" (Yacono)TTI
-Line Interface (Yacono)(TT)

- Use Indicator (Yacono)(TT)

PHOTOGRAPHY
Build A Precision Darkroom Timer
Jun 14
 pro 62 68
Oct 72
7
Apr 70
Feb 68
Feb 68
Nov 72
Aug 72
(O'Brian and Scaduto)(G)
Feb 20
Multimeter, Beckman DM10XL (HOR) Oct 22
NE602 Circuits One-Chlp Receiver (Carr)
NEC Ultralite III Notebook

NEC Ultralite III Notebook
Computer (O'Brian and Scaduto)(G)
Negative Ion Generator (lovine)(C) Jan 29

New Kid on the Block (Saxon)(SS)
Jan 89
NEW PRODUCTS (D) Jan 14,Feb 86,Mar 88 Jul 84,Aug 86,Sep 88 Jul 84,Aug 86,Sep 88
Oct 85 ,Nov 86, Dec 85
NiCd-Battery Rejuvenator.
Super-Simple (Blechman)(C) Sep 63 No-Doze Alarm (Rakes)(CC)
Non-Inverting Ampllier (Yacono)(TT)

Norton

Desktop for Windows (Moltzman)(CB)
Utilities Version 6.0 (Hotizman)(CB)
Not Another Op-Amp Articte! (Dougherty)
Notch Filter (Rakes)(CC)
Null-Modem Cable (Yacono)(TT)
(Graf and Sheets)(C)
Enlarging Light Moter for Photographic Printing, A An (Graf and Sheets)(C)
Logitech Fotoman Digital Camera
for Computers (O'Brian and Scaduto)(G) Jul 18
Plasma Acoustics, Experiment With (lovine)(C) Oct 37
Plug'n'Power Computer Interface
Radio Shack (O'Brian and Scaduto)(G) May 16
Polartly Indicator (Yacono)(TT) Apr 70
Poor Man's Spectrum Analyzer (Carr)(HR) Oct 78
Popov, Alexander:
Russia's Radio Pioneer (Rybak) Aug 59
Porch-Light Control.
Build An Automatic (Ponting)(C) Mar 46
Positioning Ourselves (Laron)(ED) Jul 2,(LET) Sep 3
Power Block Potect Your Equipmont
ug 53
Apr 31

Block. Protect Your Equipment
With The (Yacono)(C)
Feb 37,(LET)May 3
With The (Yacono)(C) Feb 37,(LET)May 3
Supply (Rakes)(CC) Mutomatic (Vaughn)(C) Nov 73
Switch For Your TV, A
Printer
Sentry, Build the (Yacono) (C) Mar 59
Spooling-Hardware and Software (Blechman) Aug 40

Dec 68
PIMA Cool Oldies Jukebox
(O'Erian and Scaduto)(G) Feb 11
PRODUCT TEST REPORTS (Feldman)(D) Jan 73
Fob 72
Jan 81
Dec 57
Jun 67
Dec 72

Sep 63

11
7

I

Carver OPL-33 Surround-Sound
Processor/A unal TVCP 1060 N Video Cassette Player

Memorex 7 Video Cassette Recorder
Model 1538 mm Camcorder
Apr 26
Aug 26
Onkyo SV70 Pro AudioNideo Receiver Aug 26
Jan 73
Sansui Model AV-7000 AN Amplifier
2. 605 CDICDV $/$ P Player May 27,(LET)Oct 3
Sony MDR 605 CDICDVR.P Player Oct 27
Technics RS-BX606 Stereo Cassette Deck Sep 27
Programming For SWL's (Jensen)(OX)
Jan 85
Protect Your Equipment with
The Power Block (Yacono)(C) Feb 37,(LET)May 3 Protel Schematic Circuit-Design Software (HOR) Feb 61 Psygnosl's Lemmings (O'Brian and Scaduto)(G) Feb 9
Publlc-Address Systems
PA-System Primer, A (Allen)
Pulse Meter HRM-5520 Heart-Rate Monitor Sanyo (O'Brian and Scaduto)(G)
Pulse Metric's DymaP 200 M (100 Pressur
Monitor (O'Brian and Scaduto)(G)
Sep 20

Quick \& Dirty Quad, A (Deupree)(C)
Sep 48

R

RS-232 Connector, Universal (Tarchinski)(C)
Oct 62
Race Remote Key Car-Control
System (O'Brian and Scaduto)(G)
Jun 10

RADAR DETECTOR

Ace Communications' Trident
CB/Scanner/Radar Detector (Saxon)(SS) Dec 80 Cobra Trapshooter Solar
Steath (O'Brian and Scaduto)(G) Jun 18
RADIO (SEE ALSO ANTIQUE RADIO, DX LISTENING,
HAM RADIO, SCANNER SCENE
Ace Communications Trident
CB/Scanner/Radar Detector (Saxon)(SS) Dec 80 Build A Low-Cost Morse-Code Transmitter (Liste)(C) Aug 45 49-MHz FM Transmitter (Becker)(C)
Cobra Model 39 Plus S.O.S Portable CB Radio (O'Brian and Scaduto)(G)

Jan 47
Guglielmo Marconi (Rybak)
Making the Connection (Carr)
Phillips DC777 AM/FM/Shortwave Stereo Cassette Receiver (O'Brian and Scaduto) (G) Jun 14
Radio Polonia is Gone;
Polish Radio is Back (Jensen)(DX) Aug 77
Radio Propagation,
Some thoughts on (Carr)(HR)
Apr 76
Radio Shack Amplified VHF/UHF/FM Portable Jun 76
Antenna (Saxon)(SS) Archer Wireless AN Distribution System (O'Brian and Scaduto)(G) Jan 45 Deskmate Automatic House Soltware (O'Brian and Scaduto)(G)

May 16 Duofone Outgoing Call
Restrictor (O Brian and Scaduto)(G)
Mar 13 Plug'n'Power Computer
Intertace (O'Brian and Scaduto)(G
May 16 Pocketvision- 26
LCD Color TV (O'Brian and Scadulo)(G) Apr 8 Realistic
PRO-41 Scanner (Saxan)(SS) Feb 78,Aug 82 PRO-58 Scanner (Saxon)(SS
PRO-59 Scanner
Saxon)(SS
Ramsey FX-146 Two-Meter FM Transceiver Kit (Kanter)

Dec 39
Readers' Requests (Yacono)(TT) Jui 73
Real REC, A (Blechman)(FS) Jui 73

Reassembling the Sky Buddy (Ellis)(AR)
Dec 64
Recelver Front-End, A One-Chip (Carr)
Jun 53
Receiving Loop Antennas (Carr)(HR) Jun 74
Regenerative Capacitor-Discharge
Driver (Rakes)(CC)

Nov 72

Regulator Applications (Rakes)(CC)
Remote
-Control Analyzer.
A Simple (Vacono and Spiwak)(C) Jun 38
Control, Sole Controi Universal (O'Brian and Scaduro)(G) May 12
Controls, Convenience Light for (Spiwak)(C) Aug 37
Key Car-Control System
Race (O'Brian and Scaduto)(G) Jun 10
Resertable Shurdown Circuil (Rakes)(CC) May 73
Resistor Calculations Made Easier (Axelson) Jun 58
Ring
Indicator (Yacono)(TT)
Launcher, Electromagnetic (Vollono)(C)
Rolodex Personal Planner
Model EO-100 (O'Brian and Scaduto)(G)

Driver (Rakes) CC
Light Sources (Carr)
More Spectrum Analyzer Stufl (Carr)(HA)
New Products and Some Questions
Answered (Car) (HR)
(Carr)(HA)
Apr 76
Sonic Kaleidoscope, Build A (Ray)(C)

Jan 50
Camcorder (O'Brian and Scaduto)(G)
Oct 17
Camcorder (O'Brian and Scaduto)(G)
Data Discman Model
DD1-EX (O'Brian and Scaduto)(G) Feb 13
EV-S3000 Hi8 VCR (O'Erian and Scadulo)(G) Dec 7
Pyxis GPS Receiver (O'Brian and Scaduto)(G) Jul 5
Sound Master II PC Sound Eoard
Jan 49
Soviet Space Station, Scanning A (Saxon)(SS) Apr 78
Speaker Protector, Build A (Flynn)(C) Mar 41
Spectrum Analyzer
Digital Sawtooth Generator, The (Carr)(HR)
Spor Mans (Carr)(HR)
Some More (Carr)(HR)
Squarewave Oscillator
Stac Electronics' Stacker (Hotzman)(C8) Jun 65
Stepper-Motor Controller, PG-Based (Antonuk)(C) Jun 41
Siereo Cassette Deck

DeLorome Mapping (O'Brian and Scaduto)(G) Nov 5
$\begin{array}{ll}\text { Subwooter, Buld A (Whitehead)(C) Jan } 31 \\ \text { Sump Alarm (Yacono)(TT) } & \text { Sep } 73\end{array}$
Super Bandpass Filter (Rakes)(CC) Jun 67
Super-Simple NICd-Battery,
Sep 63
SuperCAD Electronics Design Software (HOR) Mar 65
Surge Suppressor
The Power Rock (Yacona)
The Shocking Facts About (Anous) Feb 35, (LETI
Surround-Sound Processor
Amplifler, Carver DPL. 33 (Feidman)(PTR) Jul 27
Three!ll (O'Brian
ct 18
Simple Remote-Control Analyzer,
Jun 38
Simulator Software (Blechman)(FS) Jan 83
Sinewave-lo-Squarewave Converter (Rakes)(CC) Jul 70 Single-Plate Touch Sensor (Rakes)(CC) Aug 72 Sizing Up Your PC Neods (Holtzman)(CB

May 66
sy Buddy Saga, The (Elis)(AR)
Nov 5
AutoMap (O'Brian and Scaduto)(G)
Encyclopedia (O'Brian and Scaduio)(G) Feb 13
Buying Your First (or Next) PC (Holtzman)(CB) Aug 71 Bome Mappin
Street Atlas USÁ (O'Brian and Scaduto)(G) Nov 5
Fathom Pictures ABC Sports Golf:
Palm Springs Open (O'Brian and Scaduto)(G) Feb 11 Sothare (Ot
Grolier Electronic Encyclopedia,
The New (O'Brian and Scaduto)(G) Feb 9, Feb 18 Integrated Software Tools (Hoitzman)(CB) Oct 67
Mentai Automatlon SuperCAD Electronics Design Sortad Design Somare (HOR) Bookshelf (O'Brlan and Scaduto)(G) Feb 18 CD-ROM Multimodia Beethoven: The Ninth Symphony (O'Brian and Scaduto)(G)
Word for Windows 2.0 (Hottzman)(CB) Feb 20

Word Wizardry (Holtzman)(CB
Norton
Deskiop for Windows (Holzman)(CB)
Jan 8
PC Glos 6.0 (Holtzman)(CB)
(O'Brian and Scaduto)(G)
Feb 18
Maps (O'Brian and Scaduio)(G)
Feb 18
Philips ECG Cross-Reference Soltware (HOR) Dec 62 PIMA Cool Oldies Jukeoox
Protel Schematic Circuit-Design Software (HOR) Feb Psygnosis' Lemmings (O'Brian and Scaduto)(G) Feb 9 Radio Shack Deskmate Automatic
House Soltware (O'Brian and Scaduio)(G) The (Holizman)(CB)

Softworx PC Interlink File and Printer Sharing System (O'Brian and Scaduto)(G)

Aug 21

Soldering-tron Controller (Yacono and Spiwak)(C) May 53

Tachomeler Circuits, Fun With Analog (Carr) Jul 59
Taiking Compass (Milschike)(C)
PC (O'Brian and Scaduto)(G) Feb 20
Technics RS-BX606 Stereo Cassette
TELEPHONE (SEE ALSO PHONE)
Telephone 1532 (O'Brian and Scaduto)(G) Aug 13 Armplifier (Yacono)(TT)

A Cordless-Telephone Lock (Sokolowski)(C) Jul 44 A Voice-Mall Alert (O'Kelley)(C) Nov 53 An Emergency Telephone Dialer (Caristi)(C) Sep 39
Duotone Outgoing Call Restrictor
Radio Shack (O'Brian and Scaduto)(G) Mar 13
Intercom (Yacono)(T)
Phone Guard Telephone Security Device Jul 8 (O'Brian and Scaduio)(G)
DTI
Recording Control (Yacono) (TY)
R2́ Selectlve Ring Processor
Multi-Link (O'Brian and Scaduto)(G) Tele-Timer (Rakes)(CC)
Trogez 900 DX Digital $900-\mathrm{MHz}$ Cordless
LEVISION (SEE ALSO VIDEO)
with AM/FM Radio (O'Brian and Scaduto)(G) Jul 10 Unai g-inch TVNideo
Cassone Player (Feldman)(PTR)
VCR (OPrian and Scans) (G) Nov 12
Radlo Shack Pocketvislon-26
Sony EV-S 3000 HI8 VCR
$\sqrt{ }$ Answer. What's the Guestion? (Angus)
Zenlith-Bose Color TV
TESLA COILS
Fun With (Rakes)(CC) ake Your Own High-Voltage

Test-Bench Helpers. Experimenter's (Rakes)(CC) May 73 EQUIPMENT

Build A

Cable Tester (Recklies)(C
One-Amp Current injector (Johnsor:)(C)
Portabie $2-\mathrm{MHz}$
Frequency Counter (Caristi)(C)
Apr 53

Buyer's Guide to Low-Cos Oscilloscopes (Spiwak) Digital Sawtooth Generator, The (Cam)(HR) Figlar Sawooth General Heathkit 1 M -2410 Digital Frequency
Counter (MOR
Simple Remote-Control Analyzer, A (Yacono and Spiwak) (C)
TSM Function-Generator Kit (HOR) Tester, 3×3 Vis conity Tharemin

Coming: A New Restoration Project (Ellis)(AR) Apr-65 Theremin Plays Again, The (Ellis)(AR)

Jan 76 THINK TANK (Yacono)(D) 22 Feb 68 Mar Jan 22, Feb 68, Mar 73
Apr 70 , May 70, Jun 70 Apr 70,May 70, Jun 70
Jul 73 ,Aug 75 , Sop 73 Jul 73,Aug 75,Sep 73
Oct 72 ,Nov 75, Dec 72
75

558 Finale

558 Timer, Th
Automotive Projects
Do You Compute?
Fun with Op.Amps
Microclips and More
More
558 and Alarm Circuits Automotive Circuits Fun With Op-Amps Tips
Readers' Requests
Telephone Circuit Parade
Tiny Tuner, Build The (Salas)(C)
Tips and Tidbits (Ellis)(AR)
Tools for Elmers and Elmoes (Carf)(HR)
Touch Switch Circuit (Rakes)(CC)
Transistor Checker (Rakes)(CC)
Transmitter, FM (Becker)(C)
Travelpitot Vehicle Navigation System
Blaupunkt (O'Brian and Scaduto)(G)
Th-Color Indicator (Yacono)(TT)
Trimmer Tool (Yacono)(TT)
Tropez 900 DX Digital $900 \cdot \mathrm{MHz}$
Cordless Telephione (O'Brian and Scaduto)(G) Jul 8
Troubieshooting Paralle Connections (Vacono) Feb 41

TSM

6.Digit Alarm Clock/Chronometer Kit (HOR) Jul 26

Function-Generator Kit (HOR)

Nov 22

Tuning

in the GMRS (Saxon)(SS)
Up (Holzman)(CB
Planos and Other instruments
Electronically (Brown)(C)
Two

- Meter FM Transceiver Kit, Ramsey FX-146 (Kanter) -Way AC Switch (Rakes)(CC)
TV Answer: What's the Question? (Angus)
TVNideo Cassette Player
Funai 9-Inch (Feldman)(PTR)

U

Understanding Police Communications:
Cop Talk (Quaramtiello)
Jen 61
United Nations Radio (Jensen)(DX)
Dec 76
Universal Elecrronics One For All 4 Home Control Remote Control (O'Brian and Scaduto)(G) Nev 20
Universal RS-232 Connector, Build The (Tarchinski)(C)
$0: 162$

VCR
Funal TVCP 9T 9-Inch TVivideo Cassette Player (Feldman)(PTR) instant Replay's Image franslator Standards Converting VCR
Memorex Mocel 87 (Feidman)(PTR)
Nov 12
Sony 2EV-S 3000 HiB VCR
Vacation Scanning (Saxon)(SS)
Variable
-Frequency Oscillator (Rakes)(CC) Trip-Point Shuldown Circuit (Rakes)(CC) Voltage Dlvider (Rakes)(CC) Build an Automatic Power Switch For Your TV (Vaughn)(C)
Colorthurst SV1000 Video Digitizer (HO Colorturst SV1000 Video Digitizer (HOR) Daewoo DVP-1060N Video Cassette Player (Feldman)(PTR) Nov 43 HOTV Updato (Laron)(ED) Onkyo SV7O Pro Audio Nideo Receiver (Feldman)(PTR) anasonic PT-10L Compact Video Projector (O'Brian and Scaduto)(G) Apr 5 Radio Shack Archer Wireless AV Distritution System (O'Brian and Scaduto)(G) tan 45 Sansui Model AV. 7000 AN Amplifier (Feldman)(PTR)

May 27

Prapis

"I have a logic probe-I'm looking for an 'illogic probe' for things that don't make sense"

"To be honest, it started out to be a pocket calculator-but it sort of got out of hand"

ALL ABOUT micro

The most common complaint I hear from old-world hams and technicians about microprocessors is that there is no convenient way to visualize how they work. They make that assumption because most books treat microprocessors as black boxes. They ask the user to memorize what a given microprocessor does rather than try to explain how the microprocessor works. Few introductory books, if any, give the user a way to visualize and understand how a microprocessor works.

The lack of information is due in part to the fact that microprocessors are internally complex devices that require the user to juggle many facts about their hardware and software. However, although they are "messy" to use in practice, they are built out of simple logic devices and can be easily explained in a block-diagram fashion.

In this article, we will break-down the microprocessor into simple logic building blocks such as counters, latches, and read-only-memories. That will make it easier to show you how and why a microprocessor works. However, for the sake of brevity it will be assumed that you more or less know what those building blocks do.

A Microprocessor System. Figure 1 shows a small microprocessor system. The microprocessor can get its program instructions from the ReadOnly Memory (ROM). It can get data from or place data in the RandomAccess Memory (RAM), and it might get or send data through the ports. The control-lines, "read," "write," "input/output," and "memory" go to the ROM, RAM, and input/output ports as shown.

The microprocessor directs the ROM, RAM, and the ports with its control and address lines according to the microprocessor's internal controls and according to the instructions it receives. The ROM, RAM, and ports are enslaved through the controland address-line signals that come

from the microprocessor. Each of these devices are given unique address codes. As far as the microprocessor is concerned, the sole function of each device is to send data to or accept data from the microprocessor on the data-bus lines when it is selected by the microprocessor.

For example, assume that the microprocessor is about to execute an "add to memory" instruction. This instruction consists of the "ADD" instruction code and two halves of a 16-bit address in RAM. The microprocessor will get the instruction code by setting the address lines to the address of the "ADD" instruction in ROM and activating the "read" and "memory" controllines. This will select the ROM and allow the instruction code to fill the data bus so that the microprocessor can read the ADD instruction. Then the microprocessor will set-up and read from the next sequential address and read the ROM two more times to get the two halves of the 16-bit RAM ad-

We explore what makes these powerful chips tick in an informative but intuitive style.
dress containing the number to be added. The microprocessor will execute the addition just after that and place the result into memory.
At this point, you might be wondering: How does all of this occur? What drives the microprocessor to do those things? How are the address and control lines activated? How are these things done in sequence? What causes the microprocessor to get its own instructions from the ROM? How are these instructions interpreted and translated into action?
To help explain, look at the internalview of a typical microprocessor shown in Fig. 2. It shows several registers, which the microprocessor uses to keep track of data and address information, the arithmetic-logic-unit (or ALU), which performs math and logic operations, and the internal data bus, which allows the transfer of information within the microprocessor. It also shows an instruction register tied to a "control-unit," which is the source of several control-lines. Although the control-lines shown only point in the direction of the external devices they control, every part of the microprocessor is connected to and manipulated by the control-unit.
The control-unit runs the microprocessor, sequences and commands its internal parts, and interprets and executes the instructions in full. Completely understanding exactly how the control-unit works is the key to

Fig. 1. In a microprocessor system, the microprocessor treats all the other system components as devices to give data to and receive data from.
understanding how and why a microprocessor works.

A Controller: The controller circuit shown in Fig. 3 is not a true control unit, but it has the feel of one and contains most of the essentials of a control unit. Ignoring the dashed portion of the circuit and the instruction latch for now, a binary counter counts clock pulses and sends its count to the address lines of a programmable ROM (PROM). The PROM looks at the address and sends the value of the data located in the address to the input of the octal latch that's connected to the control lines. That latch captures and holds this data at its outputs, thus manipulating the control lines.

Notice that the binary counter clocks on the falling-edges of the clock, while the latch clocks on the rising-edges. That is done for making clean, stable transitions in the latchoutput data and for synchronization.

The latch-output lines can be used as a set to represent a number or value. They can also be used individually as controlling signals to other logic
devices. For example, when used individually, these lines can drive other gates, flip-flops, counters, latches, PROM's, RAM's, and other devices.

As the counter counts, it provides new addresses to the PROM, which sends out the pre-programmed data from each requested address. One of these lines is fed back to the "clear" input of the counter as shown in Fig. 3. That allows a fixed-length process to run in a continuous loop provlded the data and instructions needed for the process are stored in the PROM.

More PROM's can be added to provide more control lines, as indicated by the parts with the dashed outlines. The outputs of the counter would feed the same corresponding address lines of each new PROM.

Some Examples. Figure 4 shows a controller without an instruction latch running a data-acquisition system. The user of this system would program the PROM to select an analog channel to be sent through the analog multiplexer, start and read the ana-log-to-digital-converter, and latch the
output data. This sequence of instructions or steps would then be repeated over and over again as part of an instruction loop. That can be done for a schedule of 100 channels, 200 channels, or any number of channels.

Figure 5 shows another such simple controller running a beacon transmitter and sending Morse code. A fixedlength, repeating message in Morse code would be programmed into the PROM with the sequence to turn on the transmitter and the keyer.

Both of the circuits in Figs. 4 and 5 could have been controlled by the microprocessor system back in Fig. 1. The ROM in the microprocessor system would just have to contain a sequence of instructions to manipulate the output-port lines, which would in turn control the external devices. Both the simple controller and the microprocessor system solve similar control problems and allow the user to program simple, arbitrary-length control sequences with great flexibility. However, the microprocessor can do mathematical and logic operations on its data as well.

The reason that a simple controller lacking an instruction latch cannot serve as the control-unit in a microprocessor is that it would only be capable of running one sequence of instructions located in the PROM. A microprocessor's control-unit must be able to run many different control sequences, therefore it must be able to accept input from the outside world to select the desired control sequence from those in the PROM. That input is received by the control-unit's instruction latch.

The Instruction Latch. To help point out the importance of the instrucfion latch look back at Fig. 3. Note that the binary-counter outputs only set the lowest six address lines of the PROM. That allows the counter to count out up to 64 sequence steps at a time rather than stepping through the whole PROM.

The instruction latch supplies the PROM with eight, additional, higheraddress lines. The input latch and the counter, together, are used to index 256 separate sequences of up to 64 steps each. In a microprocessor, each of the 256 possible latch codes are used as instruction or operation codes. Each instruction code is a sin-

Fig. 2. The inside of a microprocessor is much like the system the microprocessor sits in; there's a data bus for communication between the components.
gle code that indexes a whole sequence of sub-operations within the microprocessor. A sub-operation may be used to manipulate the controls of a latch, a counter, or the ALU. Each sequence of sub-operations will perform one complete microprocessor operation (such as ADD).

As mentioned earlier, more PROM's may be added to the control-unit, so that the new PROM's. share the same address bus as the first PROM. It is not uncorrimon for a microprocessor's control-unit to have more than 80 control lines (or, more than ten PROM's).

Two of the control lines from the output latches of the PROM's go to the "clear-counter" input of the counter and to the "latch" control of the instruction latch. The PROM must be
programmed to activate those two lines at the same time to get a new instruction at the end of a sequence, which might be smaller than 64 steps long.

The control-unit shown in Fig. 3 must be modified in two ways to enable it to handle some special instructions and features. These will be discussed later, as they are needed.

Microprocessors vs. Controlers. The operation of a microprocessor is directly parallel to the operation of the simple controller. However, since the microprocessor itself contains a contral unit, the microprocessor operates at a "higher level" than a controller. In this higher level, the microprocessor controls the external system in "indirect" instruction steps, at a
lower speed than a simple controller. However, a microprocessor can perform many different operations as is, while a controler would require a PROM for each sequence that it must períorm.

Back in Fig. 4 for example, we shawed how a simple controller would operate a data-acquisition system "directly" from a PROM. There is a one-to-one correspondence between a PROM's latched data and the operation it performs. However, if the data-acquisition system were controlled by the microprocessor system of Fig. 1, the microprocessor system would manipulate the output-port lines to control the same devices using a series of "indirect" instructions from the ROM. There would be no one-to-one correspondence be-

Fig. 3. The control unit is the key to how a microprocessor processes data and performs operations. There are simple descrete controllers available that lack the instruction latch shown here.
tween the instruction codes in the ROM of Fig. 1 and the controlling signals on the output-port lines.

Furthermore, the simple controllers suitable for Figs. 4 and 5 will run their control sequences exactly at the clock speed. The slowest device that these controllers control is the only thing that limits their operating speed. A microprocessor, on the other hand, will run its control-instruction sequence at a lower speed than the clock speed. That is because the microprocessor must run a few sub-operations at the clock speed for each control operation it must perform.

Another key difference is that if the simple controller had a lot of devices to control, it would need several PROM's. However, the microprocessor needs only one PROM for its instruc-
tions since the instructions are decoded by the microprocessor's con-trol-unit.

To summiarize, although the mlcroprocessor does its controlling "indirectly" and more slowly than the simple controller, it uses a fixed set of instructions which are easily coded into a single PROM. In general, a microprocessor is a compromlsed controller. Instead of building a separate and complete control-unit to perform each complex task, a microprocessor is used to perform each task with a sequence of instructions selected from a fixed set of instructions. The complete freedom that comes with using a control-unit is traded for the restricted freedom of using a given microprocessor's structure and instruction set.

A Simple Microprocessor. Looking back at Fig. 2 as a guide. let's discuss the intended functions of each of the microprocessor sub-components. A detailed explanation of these subcomponents is essential for programming the control-unit.

The microprocessor's internal, eight-line data bus connects the outputs of each register to its own input and to the inputs of the other registers to allow data to be transferred to and from the registers, the ALU, the data buffer, and the address latches. Any register, latch, or device that sends data onto the internal data bus must have three-state (low/high/high-impedance) logic outputs so that it can "disconnect" itself from the bus when it is not needed, as only one device may place data on the bus at any one time.

Each register in Fig. 2, including both the low and high halves of the program-counter and the datacounter, is an octal latch. Each register, or latch, has two control lines to be connected to the control-unit's output latches: one to "latch" or capture the data at the inputs and the other to "three-state" its outputs. The "threestate" control is also called the "output enable."

The arithmetic/logic unit (ALU) performs such operations as addition. subtraction, incrementing, decrementing, and logical operations on the data present at its inputs. The selection of each operation and which input or inputs to operate on is made by giving a binary code to the ALU's control lines. These control lines are, of course, connected to the control-unit.

The ALU can accept data from the temporary register and any other register except the instruction register. The temporary register is used as a temporary holding place for ALU input data.

The accumulator register is used only for the programmer's data. The control-unit must not disturb its contents unless an instruction tells it to do so.

The ALU has outputs for data results and the "status" of the results. The data-output register is a temporary holding place for the results of the ALU's operations. The ALU's status information indicates whether or not there was a bit carried during addition,
(Continued on page 93)

Nearly everyone knows that the ability to send messages from one place to another in the form of an electrical code has been around for about 150 years. But relatively few realize that the instruments, and even the code itself, have undergone many changes in that time. In this article l'd like to take a look at some of the devices that opened the age of electrical communication, and then trace the development of the Morse code and code-sending devices to the present time.

The First Telegraph. Samuel Morse didn't use either a key or a letter code for his first telegraph. Instead he used a "portrule," a number code and a "register." The portrule was a wooden stick with a groove designed to hold small lead blocks. (Similar devices were used in printing.) Each of the lead blocks had protrusions arranged to represent the numbers zero through nine. In use, the portrule was pulled past "an electrical contact and the protruslons closed the circult in a sequence corresponding to the number.
At the receiving end, a strip of paper was automatically inscribed by the register with marks corresponding to the protrusions and numbers. An operator would then look up the numbers in a code book and write down the appropriate letter, word, or phrase. There are a few holdovers of that system still in use-the familiar "73" or "best regards" of ham operators and the "30" used to mark the end of newspaper and wire-service stories are two examples of that.

The system worked-but siowly. Unlike others who were experimenting with electrical telegraphs at the time, Morse didn't stop Inventing when he had a system that barely functioned. With the help of his assistant and partner, Alfred Vail, Morse improved his telegraph until it was simple, reliable, and convenient to use. The portrule and number code were the first to go.

Enter the Telegraph Key. The first telegraph key was a strip of brass fastened to a block of wood and a wire at one end, and ber!t upwards at an angle over a contact at the other. Pushing down on a knob at the free end of the strip closed the circuit.

The key used by Morse in his 1844

THE

 CODE MAKERS
Trace the history of code and code-sending gear from its earliest days to today's computerized equipment.

BY LARRY LISLE, K9KZT

demonstration between Washington and Baltimore was more elabarate. with a plvoting wooden lever and screw adjustments. Conventional or "straight" keys have changed very lltHe since then.

Morse and Vail also dropped the number and códe-book idea. After several false starts, they came up with the system of dots and dashes for letters, numbers, and punctuation that became known as the American Morse Code. In 1851 the code was modified in Europe and callec the Continental or International Morse

Code. That is the version of the code that was adopted for used when wireless (radio) telegraphy was developed.
As operators became more experienced, it was found they could understand the sound of the register as easily as they could the marks on the moving strip of paper. That led to the invention of the "sounder" by Vail in the early 1850's. The sounder consisted of an electromagnet and a lightweight, movable arm that clicked when the current flowed and the circuit was closed, and cllcked again

A Signal Electric key and sounder in a homemade metal resonator.

A spring-powered Morse-code sending machine. A perforated paper tape was pulled past the electrical contact and operated a sounder hooked to the binding posts. The speed control is located at the opposite corner.
when the current was turned off. A short interval between the clicks was a dot; a long interval was a dash.

Trying to copy a sounder in a noisy office could be difficult, especially if there were several other sounders going at the same time. The usual practice was to mount the sounder in a wooden or sheet-metal box, open on one side, which was called a resonator. That made the clicking seem louder and gave each sounder a distinctive tone.

Learning the code in the wire-telegraph days usually meant hanging around the telegraph office and doing odd jobs. During the slack periods, the operator might then be persuaded to teach the code on a practice set. Another way, if you could afford it. was to rent a code-sending machine. These devices used a pa-

An Instructograph AC-powered codepractice machine. This model had a built-in oscillator. The knobs were used to control volume and speed.
wired for electricity, code-practice machines were built to run with electric motors, and later ones had built-in code oscillators. Incidentally, should you pick up one of these old devices from a flea market, etc., be very careful. Some were built to poor standards of safety, and even in the better ones the insulation may have deteriorated. If the earphones, key, or cabinet is connected directly to the power line, you might receive a deadly shock.

Improved Sending Devices. Sending high-speed messages for hours at a time with a straight key could be very tiring. Many operators had their careers cut short by a condition called a "glass arm." That was caused by the constant switching of opposing sets of muscles in the fore-

Here's an assortment of semi-automatic keys or "bugs:" From left to right they are an old and new Vibroplex, a McElroy, and a Johnson Speed-X.

An assortment of electronic keyers: From left to right they are A Mon-Key (the first electronic keyer), the "TO" by Hallicrafters, and models made by Hammarlund and Heath. A "Vibro-keyer" bug sits on top of the Hammarlund unit
per tape punched with holes to represent the dots and dashes of the code. A spring-wound motor pulled the tape past a contact, which operated a sounder. When wireless came in, a buzzer was substituted for the sounder. These machines could be adjusted for whatever speed you wanted-something not always possible when a live operator was doing the sending!

As more and more homes were
arm from full on to full off and back again.
The earliest remedy was the "dou-ble-speed key" also known as the "double-action key" or more commonly, the "sideswiper." The sideswiper key moves from side to side instead of up and down. There are contacts on either side and the operator holds the key against one of them longer for dashes than for dots.
(Continued on page 89)

ANTIOUE RADIO

By Marc Ellis

> The Sky Buddy: All Together Again!

Last month, we began reassembling our Sky Buddy model S-19R receiver, which had been partly dismantled for cleaning and dial-cord restringing. In this column, we'll be completing the job and testing the set for operation. For those who have just joined us, the Sky Buddy was Hallicrafters' "low-end" shortwave receiver during the late 1930's. As such, it was quite a popular starter set for shortwave listeners

The front view of the Sky Buddy-all together again and ready to try out.
and newly-licensed hams.
This series of articles began in the May, 1992 issue, with a discussion of the Sky Buddy's history. Restoration work started the following month, and has been continuing at intervals ever since.

THE DIAL CORD HASSLE

Last month's column chronicled the disassembly, cleaning, reassembly, and reinstallation of the subchassis containing the main tuning/bandspread capacitor and associated drive pulleys. In the process, both
the main tuning and bandspread control drives were restrung with new cord. And that cord had better last quite a long timel There's no way to restring those controls without disconnecting the subchassis (an arduous job indeed) and removing it from the main chassis.

The removal (not to mention the subsequent reinstallation) was almost as difficult as the disconnection. The subchassis is virtually locked in place by the radio's. front panel, which must have been installed after the subchassis was. And the front panel is not now removable because it was fastened to the main chassis by some type of a spot-welding process.

Taking out the subchassis with the front panel in place requires a bit of ingenuity and a bit of forcing, as I described in last month's column. And if anyone out there in reader-land has figured a method for restringing the Sky Buddy's dial cords without going through this exercise, l'd certainly like to hear about it!

THE LOUDSPEAKER HASSLE

With the tuning subassembly back in place. the only major component still to be installed was the loudspeaker. That took a little longer than necessary because of uncertainties about the lead connections. And while I can probably blame the Hallicrafters design engineers for the previously described hassle, I can blame only myself for the difficulty I had with the speaker. The moral:

Take the time to make good clear notes when disconnecting wiring.

The speaker in the S-19R has six leads: two to the field coil (which also serves as the power-supply filter choke), two to the primary of the output transformer (which is mounted on the speaker frame), and two from the voice-coil circuit to the closed-circuit headphone jack (which mutes the speaker when phones are plugged in).

In a hurry to get on with the restoration work, I had made only a few rough sketches to indicate where those leads were connected. When reinstallation time rolled around, I found that I hadn't adequately differentiated between a pair of terminal lugs where a couple of the wires were to be connected. (l'd carefully marked one "top" and one "bottom," but now wasn't sure whether "top" referred to the terminal that would be uppermost with the set in operating position or to the terminal that was uppermost with the chassis upside down for servicing.)

I had also indicated the wrong tube socket as the connection point for a third lead. And just to add to the complication, the color coding on the grimy and time-faded wires no longer seemed as clear to me as it did when I removed them.
"Big deal," you may think. "Ellis has a schematic of the set. What's so hard about finding the connection points for six speaker leads?" In actuality, however, that was more of a problem than it seemed. Set designers of the era
were not as concerned about keeping interconnecting leads short as they were about cabling them neatly together. So I found myself attempting to trace circuil pathways from one side of the chassis to the other via wires obscurely bundled up in harnesses.
The confusion I created for myself extended what should have been a 10 minute job into one that lasted for more than an hour. So don't make the mistake I did! Take the time to sketch accurate diagrams showing the locations of all the connections that you remove. In the long run, that will save you time and possibly even prevent you from damagIng irreplaceable parts by wiring them incorrectly.
switch terminal that it didn't look disconnected.

I ran into a similar problem with an Echophone set that I restored on these pages a few years ago and I know why, in all likelihood, those wires were cut. During World War II, in a securityrelated move to restrict shortwave listening, our government apparently encouraged radio service shops to disable certain shortwave bands on sets that were brought in for repair.
l've heard of cases where the zealous service man crushed the shortwave coils, damaging them beyond all hope of repair. Lucklly this radio (and the Echophone) were disabled in far gentler fashion, so that all functions could easi-

The newly reassembled Sky Buddy as seen from the rear. The tuning control subchassis (behind the IF cans) was a bear to get back in!

ECHOES OF WWII

I have to admit, though, that being forced to rummage around tracing wires did have its up-sidel I accidentally dlscovered that one of the wires from the oscillator coil to the bandswitch had been neatly severed, effectively disabling band $2(1.7-5.5 \mathrm{MHz})$. It would have otherwise taken me quite a bit of time to find that problem because the wire was cut so cleanly and so close to the
ly be restered after the war. But I doubt that either of the folks who cut those wires would have imagined that half a century would pass before the severed connections were found and soldered back in placel
In one of the Echophone articles, I invited readers who might know something about those wartime government guidelines for disabling shortwave sets to write and enlighten us. No one responded back then,
but perhaps someone will now. If you have information about this issue, how about contacting me? ${ }^{\prime \prime} l l$ be delighted to print your recollections in this column.

FINAL ASSEMBLY AND TEST

After cleaning and reinstalling the knobs, tuning dial, and dial pointer, all I had left to do before the S-19R could be tried out was to add a line cord. The old one, dangerously cracked and deteriorated, had been removed early in the restoration prolect.
I wish I could tell you that I'd been able to dig up a perfect perlod replacement for the cord, but I'm not even sure what the original looked like. The clumsy solder joints and shreds of previous wiring at the set's cord connections indicated that the deteriorated cord had itseif been a replacement. So I satisfied myself by installing a length of modern black zipcord having an innocuous molded plug.
When I first turned the set on, not a sound came forth. My heart sank because the set had played a bit when I tried it out prior to disassembly. I figured that I must have messed up the speaker wiring after all, perhaps burning out the unit in the process. Then I realized that the problem could just as well be dirty contacts on the phone jack's speakermuting switch.
That hunch was correct, since shorting out the switch with a clip lead immediately brought the Sky Buddy back to life. I could hear activity on all bands and, since I was hooked up to a good antenna, I even pulled in several foreign shortwave stations.

Performance was lackluster, however, particularly on the broadcast band-
where I definitely was not receiving the full complement of local stations. The tuning in that band also seemed a little broad, and signals were weak. A bad IF stage maybe? Only further testing will tell!

READER COMMENTS

Now that the Sky Buddy restoration has been running for a while, some reader comments have started to come in, and। have room for a couple of the letters here. To start off, I was pleased to receive a note from Alan Douglas, author of the very important three-volume reference set, Radio Manufacturers of the 1920's (published by Vestal Press, Vestal, NY, and available from most major sources of antique-radio literature).

- In his communication (which was typed on a reproduction of Atwater Kent Manufacturing Works stationary dating from the early 1900's!!, Alan pointed out that the yellow deposit I had reported cleaning from the S-19R's if transformers and other metal parts (October, 1992 issue) could very well have been a compound of cadmium. Cadmium plating of steel parts, he went on to point out, began about 1930 and has been common ever since.

Cadmium plating normally has a bright metallic look, but after long-term exposure to the atmosphere, cadmium oxide (brown) and/or cadmium sulfide (yellow) deposits can form on the surface. When cleaning off such deposits during restoration projects, extreme caution should be used because cadmium is a poisonous substance and inhaling its dust can be quite dangerous.

Many thanks to Alan for
(Continued on page 91)

COMPUTER BITS

By Jeff Holtzman

The XT Syndrome

Fig. 1. In just a few years, all-digital global communications networks and high-powered personal computers will totally dwarf the already tremendous changes of the past 30 years in the fields of communications, consumer electronics, computers, and entertainment.

And because said user has undoubtedly paid significant dues in mastering a program or two (DOS WordPerfect or 1-2-3, for example), he or she resists change in direct proportion to the effort expended in paying those dues-not to mention the status earned thereby.

There's a significant problem with that world view. It assumes that computers are here simply to improve the efficiency of common procedures-such as writing letters to the editor. Of course they do that, but they also open up a whole new world of experience that has no analog in past experience. Think about video games. Think about the kind of show that you get at a good planetarium. Think about the effects that you see in movies like Roger Rabbit and Terminator 2. Think about what composers like Todd Rundgren and Philip Glass are doing. Think about fractal graphics. Think about desktop publishing (which didn't exist ten years ago). Think about desktop-video production (coming in a big way in the next few years).

Those phenomena have one thing in common: They're all built around rich data: gobs of formatted text, high-resolution truecolor graphics, animation, recorded and synthesized sound, and full-motion video. Like it or not, rich data is here to stay. The "MTV generation" simply demands it.

Those demands are tearing down the wall that's dividing education and entertainment. Some use the term "infotainment" to de-
scribe these rich new forms of information.

A DIGITAL WORLD

We're already living in a digital world; it's only going to become more so. Technologies including High Definition Television (HDM) and ISDN are going to make a big difference during the next decade. You may have heaid of ISDN. Officially, the acronym stands for Integrated Services Digital Network, but due to interminable delays, wags have for years supplied alternate expansions: e.g., It S till Does Nothing.

However, that is changing. Some analysts think that ISDN will be available to more than 50% of telephone subscribers by the end of 1993_little more than a year from now. We'll have to buy new phones, and they'll be expensive at first. But we'll be able to throw away our modems, install a cheap digital port (somewhat like an RS-232 card), and get 27 times better performance than a 2400 bps modem. We'll also get videophones, cheap. Talk to Grandma during the holidays, let her see the kids.

We're going to need even greater bandwidth than ISDN can provide to purchase and download videos on demand. Pllot sites on both coasts already provide that type of service. in the business environment. presentations have evolved rapidly over the past few years to include fancier and fancier graphical elements. That trend is likely to continue by adding sound, simple animations (e.g.,

projected sales growth), and video clips. Clearly. that environment demands powerful computers to accomplish anything beyond mindless data entry.

Factories need to collect data, predict and schedule maintenance activities, and alert management to inventory and manufacturing problems. Workers need on-demand video training. A 30-second video (ovallable instantaneously across the network) detailling a complex assembly procedure is infinitely more effectlve than flve pages of dense prose and static diagrams. Imagine receiving a VHS tape or interactive CD-ROM instead of printed assembly instructions when buying your child's (or grandchild's) next bike.

Schools have unique needs that far exceed the capabillities of the Apple ll's and C64's that once promised salvation.

TEACHER'S PEST

Reader T. G. mentions "many middle-aged school teachers. . . who only want to write letters and perhaps look at CompuServe," and then goes on to imply that they don't need big 486's with lots of RAM and hard disk space. That's probably true.
It is also regrettable. It is regrettable both for the teachers themselves and for our society. I have several school-age children, and frankly I don't want them to hove those kinds of teachers. I want my kids to be taught by war-scarred veterans who've been tried by fire, who've lived to tell about it, and who are eager for more. I want my kids to experlence, first-hand, the new possibilities that these technologies are opening up. I want my kids to experience the frustrations and the joys of using
these tools. It's good training, both professionally and personally.

That "middle-aged school teacher" type of complacency is on the way out. Businesses like GM, IBM. Digital, and countless others are trimming the fat. Companies large and small are releasing those who never showed enough initiative to learn new things, to reinvent themselves, to improve their worth to the company. I only wonder how they'll get new jobs when their skllls are five, ten, and even twenty years old.

Nonetheless, education will follow, and soon. If the public institutions don't get with the program, expect greater and greater numbers of private institutions to take over. Washington is already talking about education credits that can be applied to both public and private schools.

The U.S. has supported a "secure," complacent way of life for the past 60 or so years. However, that ostrich attitude has come back to haunt us. The old ways were good enough, so we didn't modernize our steel plants, our semiconductor fabrication, or our educational systems. Now we're paying the price. We didn't modernize, so the Pacific Rim countries surged ahead.
The solution is not to try to regain dominance in particular industries. The world is much too complex for that. But that's a topic for another time. For now, don't let anyone fool you. The world is going digitai. Everything will be available in digital form. You need lots of computer power to retrieve, create, and manipulate rich data.

Its scary, and it's hard. But even the smallest successes are satisfying. And a big success will let you leove your mark on the world.

By Charles D. Rakes

This visit, we are featuring several circuits built around the unijunction transistor (or UJT as it is commonly called). The UJT is a two-layer, three-terminal PN device that has two bases (B1 and B2) and a single emitter (known as the gate). If you're relatively new to electronics or just haven't crossed paths with the UJT, then the following circuits just may spark an interest in using this device in some future circuit or project.

RELAXATION OSCILLATOR

Figure 1 shows a UJT configured as a relaxation oscillator. In that circuit, the positive supply voltage is connected to B2, while the negative side of the supply is connected to $B 1$. The emitter terminal is connected to the junction formed by timing capacitor

Fig. 1. In the relaxation oscillator, B2 is connected to the positive supply rail through R2, while B1 is connected to the negative side of the supply, and its emitter terminal (commonly known as the gate) is connected to the junction formed by timing capacitor CI and potentiometer R4 (which ties the emitter to the positive-supply rail).

C1 and potentiometer R4; R4 ties the emitter to the positive-supply rail. When the emitter voltage is below the trigger level of the UJT, the impedance between its emitter and $B 1$ is very high. But when the emitter voltage rises to the trigger level, the impedance between the emitter and B1 drops dramatically.

At the instant that power is applied to the circuit, the voltage across C 1 is near ground. As time passes, the voltage across C1 rises. When the charge on C1 reaches the UJT's trigger level, Q1 turns on, discharging C_{1} 's stored energy into B1's negative-return resistor, R3, producing a fast-rising pulse at B1. At the same instant, the resistance between B2 and ground is lowered, causing a similar but opposite (negative) pulse at B2. After C1 has discharged, the cycle starts over.

The basic UJT circuit in Fig. 1 can supply output signals for a number of applications. It may be used as a clock generator, a timer circuit, a sawtooth generator, or a positive- or negative-pulse generator.

MODIFIED RELAXATION OSCILLATOR

Our second UJT circuit, shown in Fig. 2, is a slightly modified version of the basic relaxation circuit shown in Fig. 1. A small 8- or 16-ohm speaker replaces B1's ground return resistor (R3), while a three-position switch (S1) and three capacitors (C1-C3) replace

Fig. 2. In the modified relaxation oscillator, an 8- or 16 -ohm speaker replaces R 3 , while a three-position switch (Sl) and three capacitors (Cl-C3) replace Cl.

C1 in Fig. 1. The switch/ capacitor combination is used to set the oscillator to operate in one of the three

PARTS LIST FOR THE RELAXATION OSCILLATOR

RESISTORS

(All fixed resistors are $1 / 4$-watt, 5% units.)
R1-6800-ohm
R2-270-ohm
R3-22-ohm
R4-100,006-ohm potentiometer

ADDITIONAL PARTS AND MATERIALS

$\mathrm{Cl}-0.1-\mu \mathrm{F}$, ceramic-disc capacitor
Q1-2N2646 or similar unijunction transistor
Perfboard materials, enclosure, 9-16-volt power source, wire, solder, hardware, etc.

PARTS LIST FOR THE MODIFIED RELAXATION OSCILLATOR

RESISTORS

(All fixed resistors are $1 / 4$-watt, 5% units.)
Rl-3300-ohm
R2-270-ohm
R3-25,000-ohm potentiometer

CAPACITORS

$\mathrm{Cl}-0.1-\mu \mathrm{F}$, ceramic-disc
C2-1- $\mu \mathrm{F}, 25-\mathrm{WVDC}$, electrolytic
C3-10-20- $\mu \mathrm{F}, 25-\mathrm{WVDC}$, electrolytic

ADDITIONAL PARTS AND MATERIALS

Q1-2N2646 or similar unijunction transistor
S1-SP3T switch
SPKR1-8- or 16 -ohm speaker
Perfboard materials, enclosure, 9-16-volt power source, wire, solder, hardware, etc.
frequency ranges offered by this circuit. That switch/ capacitor combination serves as a coarse frequency adjust. Fine-frequency adjustments for this circuit are made via R3, a 25 k potentiometer.

When S1 is in either the A or B position, the circuit functions as a variable, au-dio-frequency oscillator. When $S 1$ is placed in the C position, the circuit operates as a metronome. The circuit's frequency of operation can be reduced by increasing the values of either C3 or R3.

Fig. 3. Linearity in this version of the relaxation oscillator has been improved by adding a separate charging source. By using a higher source voltage to charge the timing capacitor, the entire sawtooth waveform period occurs during a smaller percentage of the total charging voltage.

IMPROVED-LINEARITY RELAXATION OSCILLATOR

Our next UJT entry, see Fig. 3, takes the basic Fig. 1 circuit a bit further-adding a separate charging source to improve output waveform linearity. In any RC charging circuit that's not driven by a constantcurrent source, linearity is always better at the beginning and deteriorates as charging progresses

By using a higher source voltage, the timing capacitor charges more rapidly, thereby improving the linearity of the output sawtooth waveform. The higher voltage won't damage the UJT because the voltage at the emitter never exceeds the UJT's trig-

RESISTORS

(All fixed resistors are $1 / 4$-watt, 5% units.)
R1-4700-ohm
R2-270-ohm
R3-47-ohm
R4-100,000-ohm potentiometer

ADDITIONAL PARTS AMD MATERIALS

Q1-2N2646 or similar unijunction transistor $\mathrm{Cl}-0.01-0.22-\mu \mathrm{F}$, ceramic-disc capacitor sources, wire, solder, hardware, etc.

Fig. 4. In addition to the consiant-current charging source used in the previous circuit, this one throws a buffer stage into the game, allowing the circuis to drive low-impedance loads.

PARTS LIST FOR THE CONSTANT-CURRENT RELAXATION OSCILLATOR

SEMICONDUCTORS

Q1-2N2646 or similar unijunction transistor
Q2-2N3906 general-purpose PNP silicon transistor
Q3-2N3904 general-purpose NPN silicon transistor
DI- 6 -volt, $1 / 2$-watt Zener diode

RESISTORS

(All fixed resistors are $1 / 4$-watt, 5% units.)
R1-3300-ohm
R2-10,000-ohm
R3-270-ohm
R4 47 - ohm
R5-10,000-ohm
R6-50,000-ohm potentiometer

ADDITIONAL PARTS AND MATERIALS

$\mathrm{Cl}-0.01-100-\mu \mathrm{F}$, see text
Perfboard materials, enclosure, 12- and 20-25-volt power sources, wire, solder, hardware, etc.
ger voltage, which is olways less than the operating voltage applied to $B 2$.

PARTS LIST FOR THE
 IMPROVED-LINEARITY RELAXATION OSCILLATOR

 C2- $25-\mu \mathrm{F}, 25-\mathrm{WVDC}$, electrolytic capacitorPerfboard materials, enclosure, $6-16$-volt and 35 -volt power

CONSTANT-CURRENT RELAXATION OSCILLATOR

The circuit in Fig. 4 adds a constant-current charging source and a buffer stage to the basic UJT circuit in Fig. 1. In the Fig. 4 circuit, Q2, D1, R1, and R6 form a simple constant-current regulator. The level of regulated current is set by the values of R1 and R6. Transistor Q2's collector supplies the constant charging current to C 1 , whose value is selected for the desired frequency range. The value of C1 can range from . 005 to
(Continued on page 90)

By John J. Yacono

RF Bulbs

The topic for this month, about a new light-bulb technology, was inspired by a letter that lill present shortly. It just goes to show you there will always be a better "mouse trap" waiting to be invented. Perhaps we should re-think the wheel?
After we discuss the functioning and features of the new light, we'll explore a general mix of correspondence, including the

Fig. 1. The small coil transfers RF energy from the transmitter in the base to the gas in the bulb.
"simplest, simplest" headlight reminder, a request from one reader answered by yet another, and advice about circuits that have ap peared here before. Now let's discuss this new light under the sun.

A BRIGHT IDEA

Just yesterday, I saw an interesting new product on

TV. It was a "radio" light bulb. The globe of the bulb was removed (apparently it wasn't hot) during the show to reveal a thread-spoollike inductor made from heavy-gauge wire (see Fig. 1). I would like to know how this device works and would appreciate any help on this.
-Loyd J. Crisp, Metairie, LA
I'd be glad to pass along what I know about the new bulbs. However, it is important to point out that these bulbs are in the prototype stage and may never be commercially available. As to the bulb, it consists of an RF transmitter (located in the unit's base) and a sealed bulb of gas with an internal fluorescent coating. The sealed bulb has a depression on one side (kind of like a finger-hole in a bowling ball) to accommodate an inductor on a cylindrical form that protrudes from the base, as you mentioned. The coil couples the RF energy produced by the transmitter to the gas within the bulb. The RF frequency, the gas mixture, and the coating have been selected so that the RF energy ionizes the gas, causing the coating to radiate light.
The bulb has some great advantages over other fluorescent designs, let alone incandescent units. Since their are no filaments to burn out, the bulb's estimated lifetime is about 30 years. As they don't require the slightly inefficient stepup transformers used in other fluorescent schemes, they conserve energy and are less expensive to oper-
ate. By virtue of the coating and gas mixture, the bulbs emit a more complete spectrum of light, reducing (perhaps.eliminating) eye strain for those sensitive to other forms of fluorescent lighting. To summarize, they are a nearly 100% efficient, longer-lasting, healthier. cost-effective alternative to anything else we have.

As for me, I have only one concern about these "super bulbs:" it regards the RF radiation they emit. With all the fuss people are making lately about being incidentally radiated (by powerdistribution lines, household wiring, and appliances). how safe are these small RF-transmitters? I don't know myself, and I would appreciate hearing from anyone with input on the matter.

By the way, this idea is not totally new. It was originally conceived by Nicola Tesla who thought it might be possible to beam energy directly to bulbs and other devices without wires.

A WINNER

A recent issue told of "one of the simplest" and also the "simplest" headlight reminder. Well, here is an even simpler "simplest" (see Fig. 2). To install it, simply tap into the driver-side. dome-light switch (which is a grounding switch) and into a positive parking-light line and connect a mechanical buzzer to them. To make the connection you will probably need a couple of feet of wire and a couple of connector clamps.

While I have used this circuit for years, my 1990

Nissan pickup had this warning system from the factory.
-Walt Wheelock, Glendale, CA
l've received dozens of headlight-reminder circuits in response to the column that you've mentioned. Your's has been chosen to appear because it is the simplest one with the highest number of good features. Among its distinguishing characteristics are: one-part design, it turns off when the door closes to further preserve battery life, and it warns you even if just the parking lights are on.

BZ1
MECHANICAL
BUZZER
TO PARKING
LIGHT LINE
TO DOOR
LIGHT SWITCH

Fig. 2. Can a headlights-on reminder get any simpler than this? If you think so then write in.

The other circuits l've received had one or two of those features, but not all of them at once. Since you were able to distinguish yourself from such a large group of readers l've decided to send you a little something extra with your book. It's the special MC1010 chip mentioned in the first Think Tank column I wrote. They are hard to find since Motorola no longer supports them, so I though you might like to have the little novelty to add to your junkbox. You've earned it.

IMPROVING CONDITIONS

First l'd like to thank you for providing me and many other readers with information and projects that have often proved to be just what I needed.

Winter may now be here, but the air-conditioning
season will be upon us before you know it. And as those who live in two-level dwellings (as | do) know, when you use air conditioning, the upstairs is often warmer than the downstairs due to hot air rising and cool air sinking. In my own case, that situation is aggravated by the thermostat, which is located downstairs. As the lower level cools more rapidly than the upper level (with lower-level temperature causing the air-conditioner to shut down prematurely), the upper level is always unbearably warm.

In an attempt to preempt that annoying situation, 1 have concluded that what I need is a way to automatically control a circulating fan so that it cycles on for perhaps ten to fifteen minutes every hour, thereby maintaining a consistent temperature throughout the structure. And if a variable on/off cycle were to be designed into the control circuit, so much the better! Unfortunately, I'm not the designing kind. But, my guess is that such a circuit could be built around a pair of 555's and a relay(?).

If you think this circuit could be of interest to your readers, l'd look forward to your reply in a future installment of Think Tank.
-Jon Hauko, Acworth, GA

One alternative is to use something based on the 558 quad monostable timer (see the November and December installment of Think Tank for more information on that chip). Another way to go is to use a limited version of the circuit presented by this next reader.

IN THE DOG HOUSE

This circuit (shown in Fig. 3) can be used in almost any situation to keep the temperature within a cer-

Go ahead, put on some weight

 bose. A new, potented, internol modification to the 300 split boll locking mechanism ollows is to hold twice os much weight os its predecessor. Of course, the 372 still comes with the industry's best circuit hoord holder, the PonoVise 315 , which con hold PCBs up to 12 inches wide (uc to $28^{\prime \prime}$ with $30^{\prime \prime} 318$ Accessory Cross Bars.) You con even handle multiple boords when you use odditionol 316 Circuit Boord Arms. The new PanoVise 372 Circuit Boord Holder. When circuit boords ore your business.

RaNavise

1485 Southen Woy • Sporks, NV 89431 • (702) 353.2900 • FAX (800) $395-8002$
CIRCLE 6 ON FREE INFORMATION CARD

Fig. 3. Here's a complete cycling heating and venting system for any small enclosed space.

Fig. 4. This circuit can be used to test 555 timer IC's for proper functioning. However, does the circuit need to be modified for its own proper operation?

TO TELEPHONE

Fig. 5. This recording control relies on the doubled minimum saturation voltage of the Darlington pair to keep from turning off.
tain range. I use it in a doghouse for year-round temperature control. (My
wife made me do it.) It can be easily reconfigured to meet many needs.

Switch S1 is a mercury switch located in an old thermostat assembly that mounted in the dog house. You can adjust the temperature range by adjusting the angle of the buib on the coil.
When building your own control units, make sure the contacts of relay K1 exceed the current draw of the fan(s) and lamp that you use. Mine were old comput-er-cooling AC fans that were on hand. Neon lamps were used instead of noisesuppressing capacitors for no special reason. It just looks neat when the fans go off and the neon bulbs flash. Just be sure to use enough neon lamps for your fan motor(s) or the counter EMF will burn them up.

The heating lamp, a regular 60-watt light bulb, should be mounted in relation to the thermostat coil to give the desired time you want the area to receive heat. Mounting it far away from the thermostat will allow more heat to escape into the area; mounting it closer will cause the relay to switch on and off more frequently.

- Jim Austin, Arlington, IX

You shouldn't feel awkward about your circuit. Your wife had a good idea that another reader will benefit from. Your book is on the way.

SOME MODIFICATIONS

I built the 555 timer tester (Think Tank, October 1991) shown in Fig. 4, but could not make it work until I changed R3 from 330-ohms to 9500 ohms. All other parts in my unit are very close to the indicated values. It now works quite well and is very useful.

I really enjoy Think Tank! Keep it up.
-Howard Fogle, Katonah, NY

Thanks for the information. The problems you've experienced could be due to the fact that you used parts other than those originally specified in other places in the circuit.

DOUBLE TROUBLE

I found Andy Barfield's Telephone Recording Control circuit (from August, 1992, and shown in Fig. 5) and your comments about it interesting. The reason that Q2 "doesn't shut itself off by reducing current flow through $\mathrm{R} 3^{\prime \prime}$ is that the Q2 collector-emitter junction does not achieve full saturation. The saturation voltage will remain just above the minimum baseemitter forward barrier potential of Q2 (about 0.6V). That's because the saturation voltage is slightly greater than the sum of the 2 base-emitter forward barrier potentials (about 1.2 V). The circuit is thus a stabilized self-limiting linear amplifier.

This phenomenon usually presents a common problem when using Darlingtonpair transistors. For example. in low-voltage motor-control circuits, such as in a microcassette recorder, which uses only 3 volts, the high saturation voltage of Q2 could result in a slowing of the motor, and distorted sound on playback. It may be possible to give Q2 a little extra "boost" to reduce the collector-emitter saturation voltage by connecting a large-value resistor between the positive output of the bridge, and the collector of Q1.

The value of the resistor should be low enough to provide Q2 with the extra base-emitter current required for collector-emitter saturation of about 0.1 volt with a bridge output of 5 volts. However, it should not
(Continued on page 91)

By Don Jensen

 Targeting the

 Targeting the World

 World}

There's an easy way, and a hard way, to do most things. And there is something to be said for each approach. As a shortwave listener, doubtless you have your goals. It may be to hear as many different stations as you can. Or, perhaps, the challenge is to tune in a certain as-yet unheard broadcaster half a world away.

This station sticker is sent, along with a QSL card. to those SWL's who report hearing WJCR, a new US shortwave station.

For many beginning SW DX listeners, the self-selected target is to tune in, and then collect QSL-card verifications from at least one world-band station on each of the continents.
While an interesting goal, it's not too difficult to achieve in this age of super-highpowered shortwave transmitters. With a bit of effort and some time, one can accomplish that even with a fairly unsophisticated receiver.

But logging all con-tinents-Africa, Antarctica, Asia, Australia/Oceania, Europe, and North and South America-can also be a very difficult task if you limit yourself to other stations in those areas, such as lowpowered, domestic, or home-service shortwave broadcasters.

When it comes to HAC (Heard All Continents), there's an easy way, and a hard way. So, for beginning SWL and veteran DX'er alike, here are some different ways to accomplish that HAC goal. There are, of course, many other stations that would fit the bill, as well. The following is just a sampling:

AFRICA:

Egypt--Radio Cairo shouldn't be difficult as a starter. For years, this NorthAfrican SW'er has been a regular on $9,475 \mathrm{kHz}$ during the evening hours. You will find it easily if you tune in shortly before 0300 UTC, when its Arabic-music programming is a dead giveaway. English programming begins on the hour.
Angola-Emissora Provincial do Lobito, a difficult catch, is one of the seldomheard regional stations from this southern African country. It has been logged with Portuguese-language programming in the eastern U.S. on 7.151 kHz at around 2230 until 2304 UTC sign off. It relays the Radio Nacional service, but has been heard with a local identification for Radio Emissora Regional Lobito at about 2240 UTC.

ANTARCTICA:

Well, there are only two shortwave stations that
have operated from this frozen "bottom-of-theworld" continent, so the choices are limited. The easier of the two is clearly the Argentine Army's Radio Nacional Arcangel San Gabriel, LRA36, at Base Antartida Esperanza (which translates from Spanish as Antarctic Base "Hope"). When it is on the air, which it is periodically, it can be heard with quite good signals at times on $15,475 \mathrm{kHz}$, in Spanish from 2100 to 2300 UTC.
The other Antarctic SW station, which has been logged even more sporadically in North America, is the American Forces Antarctic Network station at the U.S. research station at McMurdo. Programming is mostly local-deejay popmusic shows. The frequency is $6,012 \mathrm{kHz}$, and seems best heard from around 100 to 1200 UTC when it is active. ASIA:

China-Radio Bejing is hard not to hear. This is one of the world's major shortwave broadcasters, and it operates many transmitters on many different frequencies. Look for their English programming, which is beamed to eastern North America at 0000-0100 UTC on 9,770 and $11,715 \mathrm{kHz} ;$ and to western North America on 0300-0400 UTC, on the same two frequencies, plus $9,690 \mathrm{kHz}$.

Bhutan-Bhutan Broadcasting Service, from Thimpu (the capital city of this tiny Himalayan kingdom), is a prize catch for any DX'er. It has been heard as far east as Ontario, however, at around 1300 to 1345 UTC, or later,
on 5.025 kHz .

aUSTRALIA/OCEANIA:

Australia-Radio Aus- . tralia is a good choice, since it operates with decent power from about 0000 to 0400 UTC on 21,740 kHz; 0400 to 0830 UTC on $15,240 \mathrm{kHz}$, and 0830 to 1500 UFC on $9,580 \mathrm{kHz}$.
Bougainville-Site of a bloody battle during WW2, Bougainville is part of the far-flung island nation of Papua, New Guinea. But the local inhabitants are in a state of rebellion against the distant government. The clandestine SW station, Radio Free Bougainville has been heard with some difficulty by North American DX'ers on $3,880 \mathrm{kHz}$, between about 0800 and 1100 UTC.
EUROPE:
Italy-The choices for an easy European logging are many. l've selected Italy's

RAI, Radiotelevisione Italiana, whose English programming is beamed to North America at about 0100 UTC on 9,575 or 11,800 kHz.
Scotland-There are no licensed shortwave stations in this northern part of the United Kingdom, but there are a couple of now-andthen illicit "pirates" on the air. One whose low-power signal has been known to jump the Atlantic is Weekend Music Radio, which uses different frequencies at different times. One frequency that you might try is $15,044 \mathrm{kHz}$ on the weekends at around 0100 UTC.

NORTH AMERICA:

United States-While there are a number of different shortwave voices that could qualify as easily heard, one of the newest on the air is a relatively

All About Ham Radio by Harry Helms, AA6FW, tells how to get your codefree ham license and talk to the world. In over 300 pages, you'll learn about:

- packet (computer-to-computer) radio
- ham television
- using ham radio satellites
- contacting stations in foreign countries
and many other exciting topics explained in a friendly, humorous style without a lot of math and or technical jargon. If you've been wanting a ham license, this is the book you've been waiting for!
Only $\$ 19.95$ at bookstores and radio equipment dealers. Or order direct from HighText! Add \$3 shipping (\$4 to Canada, $\$ 5$ elsewhere). CA please add sales tax. U.S. funds only please.

HighText

7128 Miramar Rd.. Suite 15L
San Diego, CA 92121
small religious broadcaster with a big signal, WJCR World Wide in Upton, Kentucky. Try for this one at almost anytime on 7,490 kHz .

Canada-CKFX in Vancouver, British Columbia, operates on $6,080 \mathrm{kHz}$ with a mere 10 watts of power. It is a tough log in most of North America. Your best chance for hearing this one would be during the wee hours of the morning between midnight and dawn. SOUTH AMERICA:

Ecuador-Flat out, the easiest way to \log South America is HCJB in Quito. There is a good chance that HCJB will be for most beginning SW's what it was for me nearly 46 years ago, the first shortwave station we ever heard. But if you haven't found it yet, try funing 9,745 or $15,155 \mathrm{kHz}$ between 0030 and 0500 UTC.

Surinam—Radio Apintie on 5.006 kHz has been an extremely tough logging for more than a few years. It has been running a mere 50 watts of power in a noisy area of the 60 -meter band. But it was heard not too long ago in the eastern U.S. at around 0400 UTC.

It's up to you whether you want to try the easy or hard path to HAC.

IN THE MAIL

Your letters are always welcome. What are you hearing on the shortwave bands? What are your favorite stations or QSL's? Do you have questions or comments about SWL'ing? Drop me a line in care of $D X$ Listening, Popular Electronics, $500-\mathrm{B}$ Bi-County
"Credits: Dan Ferguson, VA; Bob Padula, Australia; Fred Barkley, Richard Langley, Canada; Art Magnussen, MN; North American SW Association, 45 Wildflower Road, Levittown, PA 19057.

Blvd., Farmingdale, NY 11735.

Jack DeAntonio of Coral Gables, FL, has an opinion question for me. "What," he asks, "do you think is the most significant thing that has happened to SWL'ing in the past few years?"

Unquestionably, Jack, it is the drastic and dramatic changes that have occurred in shortwave broadcasting within the former Soviet Union. With the disappearance of the old monolithic USSR, with its huge, centrally directed broadcasting apparatus, shortwave radio has been turned on its ear.

Within the new "commonwealth," there remain hundreds of high-powered SW transmitting facilities and no central controlling organization. What we now are seeing are all sorts of new broadcasting operations, using the existing stations. Some have been leased to western religious broadcasters. Some have come on the air as fledgling commercial stations. There are all sorts of new stations coming on the air.
Its a fun time to be SWL'ing!

DOWN THE DIAL

Here are a couple of eastern European stations to tune for:
BULGARIA Radio Sofia has been reported with English programming from 0300 to 0400 UTC on 9,850 , 11,720 and $15,160 \mathrm{kHz}$.
CROATLA-Zagreb's Croatian Radio features En-glish-language news shortly after 0600 and at 0800 UTC. $\operatorname{Try} 9,830 \mathrm{kHz}$. They've also been noted on $21,480 \mathrm{kHz}$ at about 1200 UTC.

UKRAINE-The Radio Ukraine World Service, formerly "Radio Kev," can be heard at various times between 0200 and 0730 UTC on 15,195 and $17,690 \mathrm{kHz}$.

$3337-\times x \quad \$ 35.95$
Counts as 2

3589 \$27.95

4000P 59.95
Softcover

$3700-\mathrm{xx}$
Counts sax 2

$3777 \times \times \quad 532.95$
Counls as 2

3632P $\$ 10.95$
Softcover

2790P \$15.95 Sollicover

1938-xxx 560.00
Counts as 3

$3475 \mathrm{P} \quad \$ 17.95$

2867P \$18.95

$585928 \quad \$ 24.95$

Select any 5 books for $\$ / 95$ sime

$3258 \quad \$ 28.95$

2480p $\$ 14.95$

2986P $\$ 19.95$

3627 P \$19.95

$3669 \$ 27.95$

2883p 518.95
Soltcover

$3671 \quad 529.95$

$3886 \quad \mathbf{9 2 2 . 9 5}$

As a member of

the Electronics Book Club . . .

you'll enjoy receiving Club bulletins every $3-4$ weeks containing exciting offers on the latest books in the field at savings of up to 50% off of regular publishers' prices. If you want the Main Selection do nothing and it will be shipped automatically. If you want another book, or no book at all, simply return the reply form to us by the date specified. You'll have at least 10 days to decide. And you'll be eligible for FREE books through the NEW Bonus Book Program. Your only obligation is io purchase 3 more books during the next 12 months, after which you may cancel your membership at any tirre. PE193 A shipping/handling charge and sales lax will be added to all orders. All books are hardcover uniess otherwise neted. (Publishers' Prices Shown) If you select a book that counts as 2 choicas, write the book number in one box and $X X$ in the next. If you select a Counts as 3 choice, write the
book number in one box and $X X X$ in the next Z boxes.

> Your most complote and comprehensive source for the finest clectronics books.

3044P $\$ 12.95$
Softcover

$4143 \quad \$ 22.95$

$3362 \quad \$ 22.95$

$3825 \quad \$ \mathbf{8 . 9 5}$

2900P $\$ 16.9$

3 (14.x2. 539.95
Counts as 2
Enexta \& Auta ELECIRONIC POWER SUPPLES

$\mathbf{3 5 . 4 0} \mathbf{2 6 . 9 5}$

If eand is missing, write to: Electronics Book Club, Blue Ridge Summit, PA 17294-0810

HAM RADIO

By Joseph J. Carr, K4IPV

Some More Potpourri

From time to time, I like to take a look at my mail bag and answer some questions posed by readers. This "potpourri" usually rambles from one topic to another, as does the actual mail. But first, however, le \dagger me say thank you for all of the mail that l've received. With only a couple of exceptions, the mail has been running very positive. I am

A

Fig. 1. These two 10-meter-plus LPF circuits, which are designed to remove VHF signals that can cause receiver front-end overload, can be made small enough to fit inside many transceiver cabinets. The LPF in A is a two-section LC filter that has a cut-off frequency in the $32-\mathrm{MHz}$ region. The one in B is simpler, but has a less steep roll-off characteristic above the cutoff frequency. -
glad that shortwave listeners, monitor buffs, and general electronics enthusiasts all find this column so useful.

LOW-BAND VHF SIGNAL'S

One reader complained that the 15 - and $10-$ meter bands were compromised by a local FM broadcasting
station (88 - to $108-\mathrm{MHz}$ band). It seems that he lived only a few blocks from the FM "blowtorch," and it overloaded the front end of his receiver. Many modern receivers do not have terribly selective front ends. They use a wide bandpass filter rather than peaked, resonant circuits (which was the former way of doing the job). As such, some of those "wonder-boxes" seem eager to overload in the presence of strong local signals.
The solution to the pioblem is the same as l've harped on for many years: use a lowpass filter (LPF) with a cut-off frequency (F_{c}) that's above the 10-meter band, but sufficiently below the frequency of the offending signal that it is way down the roll-off curve. All hams should use some sort of lowpass filter in the antenna line in order to prevent TMI from your transmitter (the "good neighbor policy" is best).

However, l've seen some cases where a lowpass TVI filter messes up the bandpass filters that are used in the output circuits of modern solid-state rigs. As long as both the output and input have impedances of 50 -ohms, and as long as the entire system is impedance matched, then the filter should cause no harm. But that ideal is seldom reached in practical cases.

There have been some problems when certain brands of LPF's are used with some transmitters. The problems seem aggravated when certain antenna-tuning units are used in the line as well. If
you want the receiver to be less sensitive to all forms of VHF signals (including channels 2-5 TV, FM BCB, 6-meter hams, and "low-band" landmobile VHF-FM communications stations), then use a TVI filter in the output of your transceiver.

However, if you are not able to use such a filter because of mismatch problems in your rig, or if you use a separate receiver, then try one of the circuits in Fig. 1. Those circuits are 10 -meter-plus LPF's, and will probably do the job. You can make them small enough to fit inside many transceiver cabinets on the receiver side of the T / R relay.

Of course, with a separate receiver that's not a problem. Build them in an outboard shielded box and be happy. The LPF in Fig. 1A is a two-section LC filter that has a cut-off frequency in the $32-\mathrm{MHz}$ region. The capacitors (C1-C4) should be silvered mica or NPO ce-ramic-disc units. The inductors can be either store-bought (try Digi-Key, P.O. Box 677, Thief River Falls, MN, 56701-0677; Tel. 1-800-344-4539) or made from Amidon Associates (P.O. Box 956, Torrance, CA 90508) toroidal cores. Try Amidon's T-37-6 (yellow) core wound with ten turns of \#26 enameled wire.

The other filter is simpler, but has a less steep roll-off characteristic above the cut-off frequency. It will nonetheless work for attenuation of FM signals. The small 7.7-pF capacitors should be either ceramicdisc or tubular-ceramic units. The inductor can be

Fig. 2. This HPF filter circuit can be used in cases where AM broadcast-band interference is a problem.
wound on the same core as above (Amidon T-37-6), but requires 33 turns of wire. That's a lot of turns for a T-37-size core, so use \#30 wire. Alternatively, use a T-50-6 (yellow) core, wound with 29 turns of \#26 wire.

In cases of AM broad-cast-band interference, you can use the circuit of Fig. 2 (which l've mentioned before in this column). I've had good results using both the T-50-2 (red) and T-50-6 (yellow) cores. In the case of the T-50-2 core, only 26 turns of \#26 wire are needed.
By the way, when I give wire sizes for filters, the wire size is for reference only. The filter will work the same with other wire sizes if you can get the right number of turns on the form. Its the turns count that counts, not the size of wire (except in transmitters, where high power is involved).

Remember, these filters are for receiver applications only. The higher power filters needed for transmitters use heavier duty capacitors and much heavier inductors.

WHAT'S THE "LAW OF RECIPROCITY?"

Well, it's not some flaky New Age concept (George Gurdieff notwithstanding), but rather a property of antennas. The "Law of Reciprocity" concept means that an antenna works on receive exactly as it works on transmit. In other words,
if it has $5.5-\mathrm{dBi}$ gain on transmit, it will also have $5.5-\mathrm{dBi}$ gain on receive. The transmit and receiver azimuthal and elevation patterns remain the same in both modes.

There is no known case where the Law of Reciprocity for Antennas is violated. The only case where it looked like such an Earth-shaking breakthrough might have occurred turned out to be a hoax. It appeared in the April issue of a popular ham-radio magazine.

The Law of Reciprocity does not, however, imply that all antennas are "created equal" in regaras to the receive and transmit modes. It can be argued that the major antennas (dipoles, yagis, quads, and verticals) are pretty nearly matched with respect to receiving and transmitting. But that is not universally the case: For example, the small loop antenna is great for small-space reception of low frequencies (75meters down to VLF), but transmits for squat. I've used a 24 -inch square loop to cut down the crud on 75meters by nulling out some of the interference. That scheme works well when the interference is arriving from an angle that's different from the desired station (it doesn't work well at all if your location lies in a line that also passes through both the interfering and the desired station).

Another "dyn-o-mite" receive antenna that doesn't work as well on transmit is the Beverage antenna. This claim may seem contradictory because a Beverage is similar to a long-wire beam antenna. But the Beverage works best on receive over poor ground, and is thus somewhat lossy for transmitting. It's not a total bust, however, and may have more gain than a dipole, but it doesn't work quite as well on transmit as receive.

SECOND RECEIVER

A little earlier, I mentioned that some hams use a second receiver on the HF bands. Why, you ask? Well, there are several reasons. DX'ers like to keep track of other DX opportunities on the band while waiting their turn in a pileup. The second receiver
also makes sense when the pile-up is on one frequency (you eavesdrop on the competition) and the DX quarry is on a slightly different frequency.

To be maximally effective the second receiver must be at least as good as the receiver in the transceiver. One recent model that is a very good radio is the R.L. Drake (P.O. Box 3006. Miamisburg, OH , 45342;513-866-2421) Model R8. That American-made radio receiver walks with the best of them, and is a pleasure to operate. I recently test drove one and was most pleased.

We welcome your letters, comments, suggestions, etc. Send all correspondence to Ham Radio, clo Popular Electronics, $500-\mathrm{BBi}$-County Blvd., Farmingdale, NY 11735.

No costly school. No commuting to class. The Original Home-Study course prepares you for the "FCC Commercial Radiotelephone License." This valuablelicense is your professional "ticket" to thousands of exciting jobs in Communications, RadioTV, Microwave, Maritime, Radar, Avionics and more...even start your own business! You don't need a coilege degree to qualify. but you do need an FCC License.
No Need to Quit Your Job or Go To School This proven course is easy, fast and low cost! GUARANTEED PASS-You get your FCC License or money refunded. Send for FREE facts now. MAIL COUPON TODAY!

[^3]
SCANNER SCENE

A Couple of Winners

Radio Shack's Realistic Patrolman PRO-2026 kicks off the new year with a field goal. It consists of an attractive mobile scanner that reprises a feature we always liked when it was available-service search. Pressing one of the five front-panel buttons marked POLCE. FIRE, AR, WEATHER, and MARINE, instantiy causes the scanner to begin searching (at 19 channels per second)

The new Radio Shack Realistic PRO-2026 offers service search.
ail frequencles assigned to the selected service. You don't have to program search frequency limits for those services on any bands.
The PRO-2026 has 100 memory slots, arranged in five banks of 20 channels each. The frequency range is 29 to $54 \mathrm{MHz}, 108$ to 174 $\mathrm{MHz}, 406$ to 512 MHz , and 806 to 956 MHz . The cellular bands are locked out at the factory. The If frequencies are 10.8 and 450 kHz . Scan speed is 14 channels per second, with an optional two-second delay for each channel. There's also a priority channel that's sampled every two seconds.

This new mobile scanner sells for $\$ 199.95$, and can be seen at your nearest Radio Shack. We were very impressed with the PRO-2026 and found that the service-search feature was a much used function at our installation. We also liked that the light in the backlit LCD could be turned off, which we appreciated while driving at night. Good set!

ANOTHER INTERESTING PRODUCT

For the many readers who are deeply into monitoring the 800-900MHz band, we stumbled across something really usefu-a powerful, 11-element, rear-mount 800-900MHz (only) loop yagi beam antenna for base station use. It's fully assembled, so all you need do is attach a coaxial cable with a type N connector to the beam, and feed the signals into your scanner.

Try this $800-\mathrm{MHz}$ yagi on those distant stations!

If the $800-\mathrm{MHz}$ band stations that you most want to hear are in only one direction, then stick it on your roof aimed in that direction for long-range reception. Or you can mount the yagi on any V antenna rotor and then aim it in the many directions that suit you. This antenna really pulls them in from far away.

The $800-\mathrm{MHz}$-band yagi costs $\$ 75$ (plus $\$ 4$ shipping), from the Cellular Security Group, 4 Gerring Road, Gloucester, MA 01930. Their toll-free number is 1-800-487-7539.

CALLING DR. SCANNER!

We have always been of the opinion that the least monitored local emergency services relate to medical communications. People load up on police and fire communications channels, but somehow don't take good advantage of this third partner in local emergency sevvice providers.

Frequencies 155.325, $155.355,155.385$, and 155.40 MHz are designated in the U.S. for hospitals communicating with approaching ambulances. Communications on those channels most often consist of the ambulance personnel advising the hospital of their expected arrival time, the nature of the medical problem of the patient being transported, the patient's symptoms and vital signs, plus any special medical conditions that exist.

Scanner owners tend to overlook the exciting medic frequencies.

Among the frequencies commonly used to dispatch ambulances are 155.28 , 155.34, 460.525, and 460.55 MHz , although others might be used in specific communities. Sometimes fire departments have their own medical vehicles, and those might be dispatched on fire-agency frequencies.

Ambulance crews, as well as medic teams using portable equipment, often need to send bio-medical telemetry data. Most often, that consists of an EKG sent to a hospital for quick medical evaluation by a physician who can advise on medication to be immediately administered. Those communications take
place on any of eight channels, known as "MED-1" to "MED-8," that run from 463.000 to 463.175 MHz (with $25-\mathrm{kHz}$ spacing), with the mobile and portable units operating on paired frequencies from 468.000 to 468.175 MHz .

Some ambulance crews have low-power handheld transceivers that offer short range. Those units are able to communicate with hospitals only via mobile repeaters installed in the ambulances. The handheids generally use 150.775 and 150.79 MHz to input to
the mobile repeaters.
Hospitals with helipads often have 123.05 or 123.075 MHz available (in Canada, 129.275 MHz is popular) for communicating with arriving medevac helicopters.
All of those frequencies should be entered into your scanner and checked for activity local to your area. There are other medic frequencies as well. You should check for activity on 33.02 to $33.10,37.90$ to 37.98, 45.92 to 46.04, 47.46 to $47.66,155.175,155.205$, 155.22, 155.235, 155.265, and 155.295 MHz . Some frequencies below 38 MHz are shared with stations in the Highway Maintenance Radio Service.
Although not precisely medical, communications connected with search and rescue activities are related to this area of monitoring. Good frequencies to monitor for those communications include 122.9, 123.1, 148.15, 155.16, 156.30, $157.05,157.175,282.8$, and 381.8 MHz .

Also remember that 47.42 MHz is the primary American Red Cross frequency.

MOVE OVER, BATMAN!

It's been no secret in recent years that in many
metropolitan areas, unlicensed two-way radio users abound on the business and other VHF frequencies. The FCC is too understaffed to adequately crack down on the problem, and, besides, FCC personnel say they don't get paid enough to go into some of the rough neighborhoods where the bootleg stations are located in order to pinpoint their locations and shut them down. Licensed twoway radio users, nevertheless, complain about their communications being disrupted by the bootleg stations.

In Los Angeles, Van Williams (who played The Green Hornet on NV more than 25 years ago) got fed up with the abuses on the frequency of his business radio system so he took
matters into his own hands. He got into his van, which was equipped with direc-tion-finding equipment, and tracked down the guy who was chopping up his frequency with unlicensed chatter.

After turning in the bootlegger, Williams said that it was the first time in years that he was able to use the channel without interference. Maybe we need the Green Hornet in every large city.

WRITE TO US

Don't forget, we always look forward to hearing from you. Our address is Scanner Scene, Popular Electronics, $500-\mathrm{B} \mathrm{Bi}$-County Blva., Farmingdale, NY 11735. Send us your scanner questions, frequencies, photographs, comments and news clippings.

Enter A World Of Excitement with a Subscription to Popular Electronics

 Get the latest electronic technology and information monthly!Now you can subscribe to the magazine that plugs you into the exciting world of electronics. With every issue of Popular Electronics you'll find a wide variety of electronics projects you can build and enjoy.
Popular Electronics brings you informative new product and literature histings, feature. articles on test equipment and tools-all designed to keep you tuned in to the latest developments in electronics. So if you love to build fas-
 cinating electronics, just call toll free the number below to subscribe to Popular Electronics . . . It's a power-house of fun for the electronics enthusiast.

1 yr \$18.95 2 yrs $\$ 36.95$
(Basic Subscription Rate-1 yr/\$21.95; $2 \mathrm{yrs} / \$ 42.95$)
FOR FAST SERVICE CALL TODAY 1-800-827-0383
APEA3
(7:30 AM-8:30 PM - EASTERN STANDARD TIME)

> 1992-93 Educational Systems Catalog

from Heathkit Educationa! Systems

Edited by: Teri Scaduto

ELECTRONICS LIBRARY

This two-in-one catalog is aimed at electronics enthusiasts as well as vocational and technical teachers and industrial training managers. Half the catalog is devoted to individual learning products, the other half to classroom courses.

The "Individual Learning Products" section of the catalog offers courseware, training hardware, computer software, software applications training, and other high-tech learning products. Subject areas include Electronics, Computer-Aided Instruction; Lasers, Fiber Optics, and Data Communications; IC

Electronics and Op-Amps; and Beginning Electronics. Also offered are instructional video tapes; software; test equipment and tools; weather instruments and clocks; and assorted Heathkit projects.
The "Classroom Learning Products" section covers a wide range of subjects, from fundamental electronics for beginners
to laser, microprocessor, and telecommunications technologies for advanced students. Each course is designed to lay a foundation of basic theory and hands-on experience on which students can build as they learn new concepts and take on reallife applications.
Highlighted is Heathkit's new Version 2.0 of their computeraided instruction series of electronics training courses. Using the power of PC's to make learning electronics easier and faster than ever, the courses are available in the topics of DC Electronics, AC Electronics, Semiconductor Devices, and Electronic Circuits; soon-to-bereleased computer-aided courses include Digital Techniques and Troubleshooting.

The 1992-93 Educational Systems Catalog is free upon request from Heath Company, Marketing Department, P.O. Box 1288, Benton Harbor, MI 49023; Tel: 1-800-44-HEATH.

CIRCLE 91 ON FREE
INFORMATION CARD

LOW-COST TEST EQUIPMENT PROJECTS YOU CAN BULLD

by Delton T. Horn
Budget-minded hobbyists and technicians-in fact, anyone who works with electronic cir-cuitry-will appreciate the money-saving projects presented in this book. Included are easy-to-follow plans and practical instructions for building more than two dozen inexpensive analog and digital test instruments. Projects include equipment for monitoring/measuring voltage, resistance, capacitance, conductance and frequency. Specialized modifications for many of the projects are possible, allowing readers to customize the equipment to di-

rectly suit their specific applications. The book shows how to build a voltage range detector, a digital frequency meter, a logic probe, an audio sinewave oscillator, a sweep signal generator, and several other essential pieces of test equipment. All of the projects can be built using readily available components, at a fraction of the cost of buying equipment.
Low-Cost Test Equipment Projects You Can Build costs $\$ 13.95$ and is published by TAB Books, Division of McGraw-Hill Inc., Blue Ridge Summit, PA 17294-0850; Tel.
1-800-822-8138.
CIRCLE 98 ON FREE
INFORMATION CARD

YOUR QRP OPERATING COMPANION

by Brad Wells, KR7L
The hobby of QRP-ham operating with an output power of 5 watts or less-is both challenging and exciting. Most amateur radio contests have a QRP entry class, and hundreds of hams from around the world participate. In fact, many hams have managed to work more than 100 countries QRP to QRP.

This book is designed to help QRP'ers get the most from their hobby. No special rig or expensive and complicated equipment is needed. Taking a firm stance

that skill is more important than equipment in QRP, the author shares the wealth of his many years of QRP experience to help readers make more contacts and have more fun. The opening chapter deals with the basics of QRP, including its history and various tests and contests. Subsequent chapters cover operating techniques and explain how to maximize your signal, followed by an in-depth look at propagation. Appendixes list QRP clubs and nets, and contests that include QRP categories.

Your QRP Operating Companion costs $\$ 6.00$ and is published by The American Radio Relay League, 225 Main Street, Newington, CT 06111. CIRCLE 92 ON FREE INFORMATION CARD

PETER NORTON'S ADVANCED DOS 5

by Peter Norton, Ruth Ashley and Judi Fernandez

In this book, Peter Norton, acclaimed authority on DOS and the creator of the award-winning Norton Utilities, provides DOS 5 users with vital information needed to reach peak productivity. This follow-up to Peter Norton's DOS Guide reveals insider's tricks to squeezing the most out of DOS 5. The secrets to building effective batch programs with color and graphics are placed at the readers fingertips. In Norton's distinctive style, the best techniques for efficient memory management, data recovery, anti-virus protection, and correcting hardware and software malfunctions are explained. In addition, the book
contains thorough explanations of DOSKEY macros, GWBASIC, and BASICA programming.

Peter Norton's Advanced DOS 5 costs $\$ 29.95$ and is published by Brady, Division of Prentice Hall Computer Publishing, 11711 North College Avenue, Suite 140, Carmel, IN 46032; Tel: 1-800-428-5331. CIRCLE 99 ON FREE INFORMATION CARD

SOLID MODELING WITH AUTOCAD: Second Edition for AME

 2.0 \&2.1by Ronald W. Leigh
Just in time for AutoCAD Release 12, the second edition of this book focuses solely on Autodesk's Advanced Modeling Extension (AME) version 2.1the feature that joins the advantages of wireframe and surface models with descriptive data about the "insides" of the object. Complete with an eye-catching full-color section, the easy-toread book enables design professionals to exploit the improvements in AME 2.1 to create vivid three-dimensional

models with simple 3D shapes. After explaining the advantages of solid modeling, the book introduces the building blocks of AME: 3D "primitives"-boxes, cylinders, spheres, wedges, cones, and other simple forms that can be joined to create complex solid models. Given a shaded outer shell, such solid models are realistic-looking 3D drawings that can be edited, scaled, taken apart, reassembled, and used to calculate volume, center of gravity, and other mass properties. The book is arranged as a series of

461
ELECTRONIC
COMPONENTS

Whether you order 1 part or all 41,361 ...MOUSER stocks and...can ship today!! CALL... (800) 992-9943

MAHL TO：Electronic Technology Today，Inc． P．O．Box 240
Massapequa Park，NY 11762－0240
SHIPPING CHARGES IN USA AND CANADA
$\$ 0.01$ to $\$ 5.00$ ．．$\$ 1.50$ \＄30．01 to $\$ 40.00$ ．$\$ 5.50$
$\$ 5.01$ to $\$ 10.00$ ．$\$ 2.50 \quad \$ 40.01$ to $\$ 50.00$ ．$\$ 6.50$ $\$ 10.01$ to $\$ 20.00$ ．$\$ 3.50 \quad \$ 50.01$ and above $\$ 8.00$
$\$ 20.01$ to $\$ 30.00$ ．$\$ 4.50$
SORRY，No orders accepted outside of USA and Canada
Total price of merchandise ．．．．\＄
Shipping（see chart）．．．．．．．．．\＄
Subtotal ．．．．．．．．．．．．．．．．．．．．．$\$$
Sales Tax（NYS only）．．．．．．．．．
Tolal Enclosed ．．．．．．．．．．．．．S
Name
Address
City \qquad State
\qquad
exercises that illustrate the con－ cepts and procedures of solid modeling in progressive levels of complexity．

Solid Modeling With Auto－ CAD，Second Edition，costs \＄29．95．A companion diskette， which includes sample drawings from the book，AutoLISP pro－ grams for AME，and batch files that reduce various commands to single－keystroke operations， is available for $\$ 49.95$ ．Both are available from Ventana Press，
P．O．Box 2468，Chapel Hill，NC 27515；Tel：919－942－0220；Fax： 919－942－1140．

CIRCLE 93 ON FREE
INFORMATION CARD

THE CB RADIO HACKER＇S GUIDE

by Kevin Ross
This book tells readers exactly which screws to turn，which wires to cut，and which compo－ nents to add to help
substantially improve the perfor－ mance of their CB＇s and add updated controls，features，and capabilities．It also reveals methods of unlocking those hid－ den functions that were never activated at the factory and methods of adding new features that the factory forgot to include．

Charts show how to tweak and peak existing circuits so that they perform at their maximum potential for best power output， full modulation，best AGC and squelch action，and finest all－ around operation．The book shows how to add RF and microphone gain controls，a noise blanker，bright／dim con－ trol，switchable audio tone，high／ low transmitter power，a modu－ lation meter，and more．Also
included is practical advice on how to diagnose CB problems， how to test microphones and wire microphone plugs，and other useful information to en－ hance your CB station and operations．

The CB Radio Hacker＇s Guide costs $\$ 18.95$ plus $\$ 3.50$ shipping（NY residents must add $\$ 1.61$ sales tax）and is published by CRB Research Books，Inc．，P．O．Box 56，Com－ mack，NY 11725.

CIRCLE 90 ON FREE
 INFORMATION CARD

1992－93 EQUIPMENT， TOOLS \＆SUPPLIES CATALOG

from Print Products International

This catalog contains 68 pages of discount test and measure－ ment equipment for electronic production，maintenance，and service．Featured are items from such major manufacturers as B＋K，Fluke，Avcom，Hitachi， Leader，Pace，Kenwood，Philips， and more．Product categories include oscilloscopes，power supplies，meters，EPROM sys－ tems，static－control products， spectrum analyzers，and sur－ face－mount equipment．Also featured are replacement parts and new lines of closed－circuit TV systems．

The 1992－93 Equipment， Tools \＆Supplies Catalog is free upon request from Print Prod－ ucts International， 8931 Brookville Road，Silver Spring， MD 20910；Tel：1－800－638－2020 or 301－587－7824；Fax：
1－800－545－0058 or
301－585－5402．
CIRCLE 100 ON FREE
INFORMATION CARD

Video Information System

Radio Shack has entered the multimedia interactive market with the Memorex MD-2500
Video Information System, or VIS. The VIS unit, which connects to any TV set and can also be hooked up to a stereo system, plays interactive VIS discs that provide electronic access to reference books, instructional materials, learning and action games, and a variety of educational programs. A wireless controller allows users to interact with the pictures, voice, music, and animation sequences contained in VIS applications. The system pro-

vides high-quality pictures with color resolution of up to 16 million colors. Its audio system, which can be connected to a home stereo system using optional cables, is digitally synthesized and provides digital stereo sound from both VIS discs and audio CD's.

The MD-2500 comes with a VIS version of Compton's Multimedia Encyclopedia, which includes all 26 volumes plus a complete Webster's Intermediate Encyclopedia on one disc. A "Save-It" cartridge is included for saving game scores or preserving electronic "bookmarks" in reference books. Options include a second, wired, hand controller, and a modem for connecting to on-line information services.

The Memorex MD-2500 VIS system (Cat. no. 16-376) is
available for $\$ 699$ at Radio Shack stores nationwide. VIS software titles range in price from $\$ 29.95$ to $\$ 79.95$. For more information, contact Radio Shack, 700 One Tandy Center, Fort Worth, TX 76102.

CIRCLE 102 ON FREE INFORMATION CARD

PERSONAL AUTOPATCH

j-Com's Model SDP-600 Simplex/Duplex Smart Patch is a microprocessor-controlled interface between a VHF/UHF transceiver and a telephone line that allows the user to make and receive telephone calls from any H / T or mobile rig within range of the base station. Installation consists of connecting the autopatch to the rig's microphone and speaker jacks and plugging in an RJ-11 telephone jack. Control and programming is done by DTMF tones issued from the remote. Separate user-programmable access password codes can be set up for local and long-distance dialing. An external logic output, which can be used to control a repeater or to drive a relay for the control of any hamshack accessory, is provided. An automatic CW (Morse code) identification transmission occurs at the beginning and end of each call.

The SDP-600 can be used in full duplex mode with a dualband transceiver. Using full duplex, both parties can hear each other at the same time. Simplex mode may also be used with VOX control based on sampling both the telephone and receiver audio signals or with optional carrier detection. Turn-around beeps indicate the end of each transmission.

With the reverse patch option enabled, incoming calls will cause a short ring-out over the air. The user then can answer the call using his access password code. Ring-out activation can be adjusted from one to nine rings.

The Model SDP-600 autopatch is available at an introductory price of $\$ 199.95$. For more information, contact j Com, Box 194, Ben Lomond, CA 95005; Tel: 408-335-9120; Fax: 408-335-9121.

CIRCLE 103 ON FREE INFORMATION CARD

DC POWER OUTLET

If you need a neat and easy way to distribute 12VDC to various transceivers and accessories, the MFJ-116 Deluxe DC Power Outlet might be the solution. The multiple DC power-outlet strip features eight terminals for connecting rigs and keyers, TNC's, tuners, and other gear.

Output voltage is continuously monitored on its built-in voltmeter, making it a handy power outlet for electronics hobbyists, too. The MFJ-1116, which can be installed at the rear of a desk to eliminate the tangle of "haywires," features eight outlets with heavy-duty, five-way binding posts with standard spacing for dual banana jacks. The outlets are also RF bypassed. The strip also has a master power switch and a 15 -amp fuse.

The MFJ-1116 Deluxe DC Power Outiet costs \$44.95. For additional information, contact MFJ Enterprises, Inc., P.O. Box 494, Mississippi State, MS 39762.

CIRCLE 104 ON FREE INFORMATION CARD

SOUND-ENHANCEMENT COMPONENT

The Retriever is a lower-priced version of Hughes Aircraft Company's SRS three-dimensional sound-enhancement component for home audio and video systems. The stand-alone unit uses a new VLSI chip that produces a realistic surroundtype sound from conventional recorded or broadcast sources. The chip uses Hughes' patented Sound Retrieval System (SRS) technology, which expands the sound signal so that it appears to emanate from outside the physical limits of the usual two

loudspeakers. The Retriever retains the same user-control features and stereo enhancement effect of the original model AK-100, but lacks the three-way LED display that is found on the earlier model. At $23 / 6 \times 161 / 2 \times 7$ inches, the Retriever also is smaller than the AK-100.
The Retriever sound-enhancement component has a suggested list price of $\$ 179$. For further information, contact Hughes Audio Products, Division of Hughes Aircraft Company, P.O. Box 7000, Rancho Santa Margerita, CA 92688; Tel: 1-800-2HEAR3D (1-8000-243-2733).

CIRCLE 105 ON FREE INFORMATION CARD

HANDHELD LASER POINTERS

Harnessing the power of microlaser technology, the Laser PowerPointers are the smallest, brightest handheld lasers available to consumers today,
according to Lyte Optronics. The line includes the Laser PowerPointer (pictured) and the PointWrite Laser Pen, which combines a laser pointer with a writing instrument-the Space Pen from Fisher. Both PowerPointers use laser light to produce a brilliant orange/red dot that can be seen from 150 to 300 yards away.

The Laser PowerPointer is available in black anodized aluminum, 24-carat gold plate, and titanium; custom finishes and laser engraving also are available. Weighing just one ounce and measuring five inches in length and one-third of an inch in diameter, the pointer fits conveniently in a shirt pocket. Power is provided by two 1.5 volt batteries.

Laser pointers have many applications other than as presentation tools. Engineers and architects use them to point out specific features of a structure without climbing ladders; police officers to survey a crime scene without disturbing evi-

dence; doctors and medical sales consultants to identify anatomical structures and surgical tools in a sterile field; and plumbers, electricians, and contractors to illustrate where a pipe or wire will be installed.

The Laser PowerPointers have retail prices starting at under $\$ 200$. For more information, contact Lyte Optronics, 3015 Main Street, Suite 450, Santa Monica, CA 90405; Tel: 310-450-8551; Fax:
310-392-1754.
CIRCLE 106 ON FREE INFORMATION CARD

THE CODE MAKERS
 (Continued from page 64)

The first Morse telegraph of 1835 didn't use a key! Instead it used a "portrule," which was a wooden stick with a groove designed to hold small lead blocks.

Before long, telegraphers were adding hacksaw blades and additional contacts to make dots automatically when the handle was pulled to the right. Horace Martin refined the idea and patented the famous Vibroplex. That semi-automatic key or "bug" was the standard for highspeed telegraphy from the 1890's until the end of World War II. They're still popular, and in recent years old units have become something of a collector's item. However, if you are not a collector, and don't wish to pay collector's item prices, the Vibroplex Company is still very much in business.

The development of vacuum-tube logic circuits in World War II made electronic keyers practical. These keyers would make automatic dots or dashes depending on which way the lever was pushed and their speed could be adjusted by a knob. The earliest models were crude but soon selfcompleting dots and dashes, memories, iambic keying, and many other features became commonplace. Today, many operators are using computers and keyboards to send Morse, or a variety of other codes, with speed, code type, and more selectable at the touch of a key.

BUILD A WIRE TRACER
 (Continued from page 46)

9 -volt battery, then connect a clip lead to the closed-loop output, J2, and power up the circuit. Turn on a small AM receiver and position itclose to the clip lead. Tune the radio until you hear a buzzsaw-like sound, and then adjust the tuning for maximum signal strength. (The maximum transfer of energy occurs when the radio's internal ferrite loop is positioned perpendicular to the wire).

Once that is done, connect the opposite end of the clip lead to the common output, $J 3$, and note the increase in signal strength. The increase in signal strength is due to circulating current within the closed loop. (Anytime a closed loop can be used, the signal will be greater and, in most cases, easier to track.)

Now plug the McTrak into a 117 -volt AC outlet and try to trace the McTrak signal through the $A C$ wiring using the AM receiver. If the wiring happens to go behind a metal panel in the wall or is run through a metal conduit, the metal will attenuate the signal, possibly making it too weak to follow. When that happens (or if the signal is diminished for some other reason), try connecting the open-loop output (J1) to the conduit and see if the signal can be traced along the conduit.

Using McTrak to trace your auto's electrical wiring is just as easy. With all of the electronics in today's cars, it's almost impossible to visually trace a wire from one location to another without going through a maze of cables, and possibly becoming sidetracked. But McTrak can handle that task as well.

To trace your auto's wiring, connect the McTrak's J2 output to the wire you want to follow. Then track the signal by moving the radio along the path that produces the strongest signal. If the receiver's signal is too weak connect the common lead $(\mathrm{J} 3)$ to the car's ground system (negative battery terminal or chassis in most vehicles) to increase the signal strength. Since there are some circuits in a car's electrical system that could be effected by the full output of the Tracker, it would be better to always use the closed-loop output when working with automotive electronics.

CIRCUIT CIRCUS

(Continued from page 71)
over 25μ F. Frequencies greater than 50 kHz are possible when using smaller capacitor values for C 1 .

Transistor Q3, configured as an emitter-follower amplifier (which provides a voltage gain of 1) is used to buffer the output signal, so that the circuit can be used to drive a low-impedance (under 1 megohm) load. Only very high impedance loads may be connected directly to the sawtooth output at the UJT's emitter. Almost any loading at Q2 will cause the output level and frequency to drop, or
oscillation to cease altogether.

TIME-DELAY CIRCUIT

Our next entry, shown in Fig. 5, places the UJT in a time-delay circuit. With S1 and $S 2$ in the normally closed position, Q1's emitter and C 1 are tied to circuit ground through the two switches and R2, a 100-ohm resistor. Switching either S1 or $\$ 2$ to an open condition allows C 1 to begin charging through R1 and R6. If the switch remains open longer than the RC time period, Q1's emitter will reach the trigger point and fire. When that happens, the positive output pulse at B1 turns on the SCR and the

Fig. 5. Here the UJT is used in a time-delay circuit. The time delay afforded by this circuit can be varied from about one second to over 30 seconds by adjusting R6.

Fig. 6. In this handy little RF snooper, the UJT is configured as a voltage-controlled oscillator. As the RF signal strength increases, the output frequency of the voltage-controlled oscillator increases.

PARTS LIST FOR THE TIME-DELAY CIRCUIT

RESISTORS

(All fixed resistors are $1 / 4$-watt, 5% units.)
K1 - 4700 -ohm
R2- 100 -ohm
R3- 27 -ohm
R4 47 -ohm
R5-270-ohm
R6-1-megohm potentiometer

ADDITIONAL PARTS AND MATERIALS

Ql-2N2646 or unijunction transistor
SCR1-6-amp, or less, silicon-controlled rectifier
$\mathrm{Cl}-25-\mu \mathrm{F}, 25-\mathrm{WVDC}$, electrolytic capacitor
C2-0.1- $\mu \mathrm{F}$, ceramic-disc
S1, S2-Normally closed sensor switch
Perfboard materials, enclosure, alarm sounder, 12 -volt power source, wire, solder, hardware, etc.

PARTS LIST FOR THE RF SNOOPER

SEMICONDUCTORS

Q1-2N2222 general-purpose NPN silicon transistor
Q2-2N2646 or similar unijunction transistor
Q3-2N3904 general-purpose NPN silicon transistor D1, D2-1N914 small-signal silicon diode

RESISTORS

(All fixed resistors are $1 / 4$-watt, 5% units.)
R1-2200-ohm
R2-330,000-ohm
R3- 470 -ohm
R4-3300-ohm
R5-47-ohm
R6-270-ohm
R7-25,000-ohm potentiometer

CAPACITORS

C1, C4- $0.047-\mu \mathrm{F}$, ceramic-disc
C2, C3- $0.01-\mu \mathrm{F}$, ceramic-disc
C5-0.22- μ F, ceramic-disc
ADDITIONAL PARTS AND MATERIALS
SPKRI-Miniature 16 -ohm speaker
ANT1-19-inch or longer telescoping antenna
Perfboard materials, enclosure, knob, 9 -volt power source, wire, solder, hardware, etc
alarm sounder is activated. Even if the switch is returned to its normally closed position, the alarm sounder will remain activated until the circuit's power is interrupted.

The time delay can be varied from about one second to over 30 seconds by adjusting R6. If a good quality low-leakage 100- $\mu \mathrm{F}$, electrolytic capacitor is sub-
stituted for $C 1$, the time period can be increased to well over one minute. The alarm sounder may be replaced with a relay or optoisolator/coupler to control just about anything.

RF SNOOPER

A handy little RF snooper, using the UJT as a voltagecontrolled oscillator (VCO), is shown in Fig. 6. In that
circuit, an antenna (ANT1) picks up RF signals. That signal is coupled through C1 to the base of Q1, which is configured as an amplifier. Transistor Q1 amplifies the RF signal, and the resulting output signal (at Q1's collector) is fed to a twodiode (D1 and D2) voltagedoubler circuit, which outputs a positive pulsating DC output at the cathode of D1 that varies with the level of detected RF.

The DC output of the doubler is fed to the UJTbased VCO. As the RF increases in strength, the output frequency of the VCO increases. The VCO output is fed to Q3, which amplifies the signal to a level sufficient to drive SPKR1. Potentiometer R7 allows you to adjust UJTbased VCO's frequency range.

The antenna may be any 19-inch or longer telescoping antenna. The snooper's sensitivity may be increased by increasing the value of R6. That's a good place to experiment to obtain the best overalt circuit performance.

Here we are again at the end of our monthly visit. So, until we meet next time, good circuitry.

Let's close the book on forest fires.

ANTIQUE RADIO

(Continued from page 66)
the tip. Those brown films are quite common on early radio equipment, and l've always assumed that they were grease or tar deposits from household cooking or smoking activities. When removing them, Alan points out, one should always use a wet process (rubbing with steel wool dampened in Brasso, as I did, would qualify) so as to trap the dust. Dry sanding or rubbing processes should definitely be avoided.

Reader Duane Buell (Seattle, WA) responded to my musings (September, 1992 issue) about the large circular opening under the Sky Buddy's main tuning dial. That hole had been punched, for no apparent reason, then subsequently filled, during the manufacture of the cabinet. Duane theorizes that the cabinet was manufactured for Hallicrafters by a metal cabinet specialist such as Bud or Par-Metal. The same cabinet was sold, in slightly different configurations, to other radio manufacturers. One of those required the large hole; Hailicrafters didn't.

If you have some Sky Buddy lore that you'd like to share, be sure to write!. Contact me clo Antique Radio, Popular Electronics, 500-B Bi-County Blva., Farmingdale, NY 11735.

"His New Year's resolution this year is to finish the project he resolved to finish last New Year."

THINK TANK

(Continued from page 74)
be low enough to significantly load the telephone line at the on-hook voltage (48 volts). I would start with a 5 -megohm potentiometer, adjust for the desired results, then replace it with a fixed resistor. (Note that the saturation voltage of Q2 is also affected by re-corder-motor load current.)
What was the purpose for resistor R4? It could be eliminated, (shorted) and that might improve saturation of Q2. A 100K resistor should be connected across the base-emitter junction of Q1. That would shunt the small leakage current of D1 when the bridge output drops to 5 volts, and shunt the reverse leakage current of the Q1 collector-base junction. Cutoff would then be assured for $\mathrm{Q1}$.

I have not had the op-
portunity to experiment with this circuit. The preceeding analysis was based upon my industry experience.

I was impressed by the simplicity, and usefulness of Andy's circuit. I became interested in electronics myself at about his age. I hope Andy chooses to pursue electronics. It has been a rewarding career for me for the past 24 years.
-Charles Hardin, San Clemente, CA

Thank you for the excellent analysis. While examining the circuit myself, I forgot to double the junction potential to get the minimum saturation voltage for the pair (oops).

That's all the room for now. If you have a circuit, request, or comment you feel might earn you a "Think Tank II" or other book. please write to Think Tank,
Popular Electronics, 500-B Bi-County Blvd., Farmingdale, NY 11735.

NAVIGATION SYSTEMS

(Continued from page 42)
vice Center, police agencies, and various agencies doing highway maintenance and construction. TravTek cars themselves provide data by transmitting their speed and location, which can be used to infer when and where the vehicle encounters congestion or a traffic incident.

Travtek also offers an extensive information database of services and attractions and on-line emergency help with the ability to communicate via cellular phone. These include service stations, hotels, motels, restaurants, and tourist attractions. The driver is provided information in several formats. First, there are simplified maps of the Orlando area graphically showing routes plus traffic congestion locations, incidents, and services information. A push of a button brings up another format with information about traffic incidents or available services in text form. Another option provides guidance instructions via simple graphical cues such as directional arrows.

On the other side of the continent, the Pathfinder demonstration program is already underway in Los Angeles. Pathfinder also uses an onboard navigation system that includes a CRT map display that presents traffic advisories and optimal routes sent to it via radio. Alternatively, information can be conveyed by synthesized voice messages over the car radio's loudspeakers.

The on-board system interfaces with the Los Angeles Traffic Management Center that includes the Los Angeles Traffic Management system. Testing is being done on a 13-mile segment along the Santa Monica Freeway, considered to be one of the most heavily used roadways in the country. The "Smart Corridor" used in the demonstration not only includes the freeway, but also freeway feeder roads and five major arterial streets that can be used as alternate routes to the freeway. Besides sensors like existing induction loops embedded in the roadway that measure traffic flow, the Los Angeles TMS uses police accident reports and information on locations where maintenance is underway. Finally, sensors in Pathfinder-
equipped vehicles measure position, heading, speed, and number of stops, which is transmitted back by radio to the TMC. The California Department of Transportation (Caltrans), the Federal Highway Administration (FWHA), and GM are jointly sponsoring the Pathfinder Demonstration Project using 25 specially equipped Oldsmobiles.
An even larger NHS demonstration project is planned for Chicago starting in 1993. Motorola navigation/route guidance system could eventually be installed in as many as 5,000 vehicles in the Advanced Driver and Vehicle Advisory Navigation ConcEpt (ADVANCE) program. These will be tied-in with a Traffic Information Center via RF data-communication links. The llinois Department of Transportation, Federal Highway Administration, and the Hlinois University's Transportation Research Consortium are involved in the project. The field-operation tests will encompass a 200 -square-mile area in the Northwest suburbs of Chicago. Incidentally, for about two decades the Illinois Department of Transportation has operated a very extensive and quite successful free-way-survellance and control system in the Chicago area. Traffic advisories from this system are transmitted to individual drivers via updatable overhead and roadside signs, and reports on cable $T V$ and radio including lowpower roadside transmitters.

Over in Germany, the Siemens' Aliscout was tested as part of the Guidance and Information System, Berlin, or LISB for short in German. This is one of many "Smart Cars and Smart Highway" projects in the very ambitious Programme for European Traffic with the Highest Efficiency and Unprecedented Safety (PROMETHEUS) project that involves virtually every European automaker, many suppliers, universities, and research institutes. LISB used 700 vehicles, 250 traffic lights, over 2,000 infrared beacons and covered 1500 kilometers (932 miles) of Berlin streets. In the Ali-Scout system, data is transmitted between cars and the Central Computer via the \mathbb{R} link. The degree of traffic congestion is inferred by comparing actual versus nominal travel times between beacons. Information sent from cars is fused with other data such as historical congestion profiles, whether schools are
in session, weather conditions like fog or ice, traffic accidents, construction delays, and so forth. In the Ali-Scout setup, the up-date map is contained in the central computer rather than in individual cars. The Central Computer continually calculates a minimum trip-time route and transmits that information to the in-vehicle unit. If an AliScout equipped vehicle is on the path to a traffic snarl, the Central Computer would guide the driver through another route that avoids this slowdown. The Ali-Scout system also adjusts traf-fic-light timing to smooth overall flow throughout the system. We will be looking at the Prometheus Project in more depth in a future issue of PopuIar Electronics.)

The Japanese are also prototyping major systems such as the Advanced Mobile Traffic information and Communication System (AMTICS). Like equivalent projects in the U.S. and Europe, AMTICS uses elements like onboard navigation systems, trafficmanagement centers, congestion rerouting, and even telephone directories for services and such.

On-board navigation systems could help all drivers, even those without vehicles so equipped. For example, Blaupunkt points out an important fact about advanced driverinformation systems: Only a small percentage of the vehicles have to be equipped with the systems to have a noticeable effect. For example, if only 1% of all vehicles in a major metropolitan area were equipped with AliScout, overall traffic flow would be noticeably smoother. A 10% installation would result in a major reduction in congestion.

"OK, whose idea was it to hang Apples on the Christmas tree?"

MICROPROCESSORS
(Continued from page 62)

Fig. 4. A simple controller could even run an analog-to-digital data-acqusition system. That is because the task is limited to a series of steps that gets repeated over and over.

whether the result was a positive or negative value, and/or if the result is zero. The external status register provides these mathmatical results for use by a program, while the internal status register is used for the microprocessor's internal operations.
The outputs of the address latches are connected to the microprocessor's address bus. The address infor-
mation that is senthere is presented to the ROM, the RAM, and the ports prior to reading or writing data to these devices.
The data buffer is a bidirectional, non-inverting, three-state buffer that connects the microprocessor's internal data bus to the external data bus. That allows the microprocessor to send data to and receive data from
the devices on the external data bus. The data buffer has three-state controls and data-direction controls that are connected to the control-unit.
The low and high halves of the pro-gram-counter are registers that contain the address of the current instruction being processed. The con-trol-unit increments the programcounter registers and sends its contents to the address latches when the next instruction is to be read or when more information on the current instruction is needed.
The low and high halves of the data-counter are registers that contain the address where data is located in external memory. They may also be used as temporary registers.
The external control lines "Read, "Write," "Memory," and "Input/Output" come directly from the control-unit's latches.
Next month, we'll look at some instruction examples and some special instructions. That should show how all these separate blocks function together to process instructions.

GET THE LAIEST ADVANGES IN ELEGTRONICS

WITH A SUBSCRIPTION TO

Electronics Now gives you exciting articles like:

ENJOY THE WORLD OF ELECTRONICS EACH MONTH!
Subscribe to the best electronics magazinethe one that brings you the latest high-tech construction projects, feature articles on new technology, practical troubleshooting techniques, circuit design fundamentals, and much more.

Electronics Now looks to the future and shows you what new video, audio and computer products are on the horizon. What's more you'll find helpful, monthly departments such as Video News, Equipment Reports, Hardware Hacker, Audio Update, Drawing Board, Computer Connections, New Products, and more. All designed to give you instruction, tips, and fun.

- Buyer's Guide to Digital Oscilloscopes
- Build A Scanner Converter
- Single-Chip Voice Recorder
- Build A MIDI Interface for your PC
- Troubleshoot Microprocessor Circuits
- Build A High-Power Amplifier for your Car
- Add Music On Hold to your Phone
- All About Binaural Recording
- VGA-to-NTSC Converter

FOR FASTER SERVICE CALL TODAY

ELECTRONICS MARKET PlACE

FOR SALE

JERROLD, Tocom and Zenith "test" chips. Fully activates unit. $\$ 50.00$. Cable de 8 cramblers from $\$ 40.00$. Orders 1 (800) 452-7090. Information (310) 867-0081.

LASER \& solar energy products Lasers from \$9.95. We specialize in laser and solar energy products for commercial, and hobbyist applications. Free catalog: DESIGN IMAGES, Dept. P7 Box 292125, Lewisville, TX 75029. (214) 221-9711.

CLASSIFIED AD ORDER FORM

To run your own classified ad, put one word on each of the lines below and send this form along with your check to:
Popular Electronics Classified Ads, 500-B Bi-County Boulevard, Farmingdale, N.Y. 11735
PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $\$ 11.00$
() Plans/Kits () Business Opportunities i) For Sale
() Education/Instruction () Wanted () Satellite Television
Special Category: $\$ 11.00$
PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.
(No refunds or credits for typesetting errors can be made unless you clearly print or type your copy.) Rates indicated are for standard style classified ads only. See below for additional charges for special ads. Minimum: 15 words.

We accept MasterCard and Visa for payment of orders. If you wish to use your credit card to pay for your ad fill in the following additional information (Sorry, no telephone orders can be accepted.):

Card Number
Expiration Date
$\overline{\text { PRINT NAME }} /$ SIGNATURE

IF YOU USE A BOX NUMBER YOU MUST INCLUDE YOUR PERMANENT ADDRESS AND PHONE NUMBER FOR OUR FILES. ADS SUBMITTED WITHOUT THIS INFORMATION WILL NOT BE ACCEPTED. CLASSIFIED COMMERCIAL RATE: (for firms or individuals offering commercial products or services) $\$ 1.55$ per word prepaid (no charge for ZIP code)...MINIMUM 15 WORDS. 5% discount for same ad in 6 issues within one year; 10% discount for 12 issues within one year if prepaid. NON-COMMERCIAL RATE: (for individuals who want to buy or sell a personal item) $\$ 1.25$ per word, prepaid....no minimum. ONLY FIRST WORD AND NAME set in bold caps at no extra charge. Additional bold face (not available as all caps) 304 per word additional. Entire ad in boldface, $\$ 1.85$ per word. TINT SCREEN BEHIND ENTIRE AD: $\$ 1.90$ per word. TINT SCREEN BEHIND ENTIRE AD PLUS ALL BOLD FACE AD: $\$ 225$ per word EXPANDED TYPE AD: $\mathbf{\$ 2 . 0 5}$ per word prepaid. Entire ad in boldface, $\$ 2.45$ per word. TINT SCREENBEHIND ENTIRE EXPANDED TYPE AD: $\$ 2.55$ per word. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD PLUS ALL BOLD FACE AD: $\$ 2.95$ per word. DISPLAY ADS: $1^{\prime \prime} \times 21 / 4^{\prime \prime}-\$ 205.00 ; 2^{\prime \prime} \times 21 / 4-\$ 410.00 ; 3^{\prime \prime}<2 y_{4}^{\prime \prime}-$ ALL BOLD FACE AD: $\$ 2.95$ per word. DISPLAY ADS: $1^{\prime \prime} \times 21 / 4^{\prime \prime}-\$ 205.00 ; 2^{n} \times 21 / 4-\$ 410.00 ; 3^{n} \times 2^{n 1 / 4^{\prime \prime}-}$ - $\$ 615.00$. General Information: Frequency rates and prepayment discounts are available. ALL COPY $\$ 615.00$. General Information: Frequency rates and prepayment discounts are available. ALL COPY
SUBJECT TO PUBLISHERS APPROVAL. ADVERTISEMENTS USING P.O. BOX ADDRESS WHL NOT SUBJECT TO PUBLISHERS APPROVAL. ADVERTISEMENTS USING P.O. BOX ADDRESS WHLL NOT
BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER. Copy to be in our hands on the 18th of the fourth month preceding the date of issue (i.e.; Sept. issue copy must be received by May 18th). When normal closing date falls on Saturday, Sunday or Holiday, issue closes on preceding work day. Send for the classified brochure. Circle Number 49 on the Free Information Card.

SECRET Cable Descramblers! Build your own descrambler for less than $\$ 12.00$ in seven easy steps. Complete instructions $\$ 10.00$. Radio Shack parts list and FREE descrambling methods that cost nothing to try included. HARRYWHITE PO Box 1790, Baytown, TX 77520.

FREE electronics catalog. Transistors, IC's, electronic components, atc. Call INTERNATIONAL MICROELECTRONICS (817) 561-2244. PO BOX 170415, Dept. PE, Arlington, TX 76003.

CABLE TV DESCRAMBLERS * CONVERTERS * and ACCESSORIES. SAVE MONEY:
DONT RENT:

PANASONIC, PIONEER, JERROLD, OAK, SCIENTIFIC ATLANTA. AND MORE. LOWEST PRICES. FREE CATALOG.

(800) 234-1006 CABLE READY COMPANY

Abstract

SITELINE LASERS, INC. is offering its $5-8$ milliwatt He-Ne lasers and power supplies for sale at manufacturers pricing. Supplies can be purchased in Do-it-Yourself kits. Send SASE and phone number for free catalog, or call (206) 481-9490 HUGE 100 page communications catalog of shortwave, amateur and scanner equipment. An tennas, books, and accessories too. Send $\$ 1.00$ to: UNIVERSAL RADIO, 6830 Americana Pkwy., Dept. PE, Reynoldsburg, OH 43068. 300 EXPERIMENTERS CIRCUITS - Complete in 6 practical books using diodes, relays, FET's, LED's, IC 555's, and IC CA3130's for building blocks. Only $\$ 33.00$ plus $\$ 5.50$ for shipping. USA and Canada only. US funds. ETT, INC., PO Box 240, Massapequa Park, NY 11762-0240.

	Quality Microwave TV Antennas
	WIRELESS CABLE - IFTS - MMDS - Amateur TV Utira High Gain 50db (+) - Yuneable 1.9 to 2.7 Ghz . * 55-Channel Dish System $\$ 199.95$ - 36-Channel Dish System \$149.95 - 20-Channel Dish System \$124.95 - Optonal Commercaal Gidd Antema (nol shown) Ado $\$ 5000$ - Yag Antennas. Components, Custom Tuning Avaliable - Cal or write (SASE) tor "FREE"Catalog PHILLPS-TECH ELECTRONACS
Dish System	P.O. Boz 8533 . Scottsdale, AZ 85252
LIFETINE	(602) 947.7700 ($\$ 3.00$ Credit all phone orders)
WARRAMTY	

MORSE CODE MUSIC? Powerful-breakthrough! 43 Morse Code characters sent with a rhythmic beat. Easy way to learn or retain Morse Code skills. Now the secret is yours! Order "The Ahythm of the Code" cassette today! Send $\$ 9.95$ to: KAWA RECORDS, PO Box $319 \cdot \mathrm{PE}$, Weymouth, MA 02188.

FREE CATALOG

FAMOUS "FIRESTIK" BRAND CB ANTENNAS AND ACCESSORIES. QUALITY PRODUCTS FOR THE SERIOUS CB'er. SINCE 1962 FIRESTIK ANTENNA COMPANY 2614 EAST ADAMS

GENERAL Instrument DPV-7's $\$ 250.00$. Tocom Zenith, Scientific Atlanta, $\$ 150.00$ to $\$ 250.00$. Call CABLE WORLD, 1 (800) 234 -7193.
TOCOM-Jerrold Impulse-Scientlflc Atlanta converters, two year warranties, also test modules for your converters. Contact NATIONAL CABLE, (219) 935-4128 full details.

CB RADIO OWNERS!

We specialize in a wide variety of technical information, parts and services for CB radios. 10-Meter and FM conversion kits, repair books, plans, high-performance accessories. Thousands of satisfied customers since 1976! Catalog $\$ 2$.

CBC INTERNATIONAL
 P.O. BOX 31500PE, PHOENIX, AZ 85046

CABLE T.V. descramblers, converters, lowest prices. Guaranteed, best quality, free catalog. CNC CONCEPTS, Box 34503, Minneapolis, MN 55434. 1 (800) 535-1843.

USED "Sweet Art" computer cake decorating machine. Can reproduce photos using edible food color on cakes. Widow must sacrifice. Make offer. (619) 944-7244.

PLANS \& KITS

HOBBY/broadcasting/ham/CB/surveillance transmitters, amplifiers, cable TV, science, bugs, other great projects! Catalog \$1.00 PANAXIS, Box 130-H1, Paradise, CA 95967.
FASCINATING Electronic Devices! Dazers! Lasers! Transmitters! Detectors! Free energy! Tesla! Kits/Assembled! Catalog $\$ 4.00$. (refundable) QUANTUM RESEARCH, 17919-77 Avenue, Edmonton, Alberta T5T 2 S1.

GREAT Project. Silent Sam reminds you when you forget. SSTSR (Turn Signal Reminder) beeps 3 seconds atter 15 seconds. Cycle repeats until cancelled. Unobtrusive, recycles when braking. Compact kit mounts atop flasher. Parts, case, PCB, schematic, instructions $\$ 15 \mathrm{PPD} ; 2 / 525 ; 3 / 530$. Visa/MC. Free brochure 1-800-398-5605. Prewired \$20 PPD; 2/\$35; 3/\$45 Silent Sam, 1627 Basil Dr., Columbus, OH 43227.

DESCRAMBLER kits. Complete cable kit \$44.95. Complete satellite kit $\$ 49.95$. Add $\$ 5.00$ shipping. Free brochure. No New York sales. SUMMIT PË, Box 489, Bronx, NY 10465
SURVEILLANCE transmitter kits tune from 65 to 305 MHz . Mains powered duplex, telephone, room, combination telephone/room. Catalog with Popular Communications, Popular Electronics and Radio-Electronics book reviews of "Electronlc Eavesdropping Equipment Design," \$2.00. SHEFFIELD ELECTRONICS, PO Box 377785-A, Chicago, IL 60637-7785.
BUILD $0-50$ volt regulated dual tracking power supply. Complete schematics and instructions \$5.95. SMS ENGINEERING 5932 West Bell Road, Suite D106, Glendale, AZ 85308.
AUTOMOTIVE electrical monitor. Complete kit $\$ 6.95$. Assembled $\$ 9.95 . \$ 3.00 \mathrm{~S} / \mathrm{H}$. NY residents add tax. VR ELECTRONICS CORPORATION, 47-30 196 St., Flushing, NY 11358.

60 SOLDERLESS Breadboard Projects in two easy-to-read pocket books. Complete with circuit descriptions, schematics, parts layouts, component listings, etc. Both books (BP107 \& BP113) only $\$ 11.90$ plus $\$ 3.50$ for shipping. USA and Canada only. US funds. ETT, INC., PO Box 240, Massapequa Park, NY 11762-0240.
SURVEILLANCE - Counterspy equipment! Guaranteed low prices! Catalog $\$ 5.00$. SURVEILLANCE COUNTERMEASURE TECHNOLOGIES, Box 520013-B, Salt Lake City, Utah 84152.

SILENT submarine drive, MHD plans send \$11.95 to DNS RESEARCH, 2314 W. Harrison, Chandler, AZ 85224.
ETCH PCB's yourself, new technique, no chemicals, easy, cheap, full instructions, sharefare, \$1.00, SASE, NICKNAP PRODS., Suite 297, CN 1907, Wall, NJ 07719.
CABLE descramblers, build your own, SSAVI, Gated Sync, Sinewave. \$14.95. CABLETRONICS, Box 30502PE, Bethesda, MD 20824.

TEST-Aids for testing units in full servive mode. Starcom VII, $\$ 40.00$; Starcom VI, \$30.00; Starcom DPBB, \$50.00; Pioneer clears error codes E2-E5, \$60.00; Pioneer cubes, will not alter internal serial \#, \$125.00; Tocom VIP 5503/5507, \$25.00; Tocom mapping, $\$ 40.00$; S.A. 8500 , $\$ 25.00 ; 8550, \$ 30.00 ; 8580, \$ 40.00$; 8570/90, \$50.00; Zenith, \$25.00; secunity bits and remotes. N.E. ENGINEERING, (617) 770-3830.

BUGGED? Phonetapped? Free catalog coun-ter-surveillance equipment tells you fast! 1 (800) 732-5000.
SUPER electronic and scientific devices. Some never seen before by the public. T-lasers, alarms, surveillance devices, H. voltage devices, electronic projects, tubes, plans, and etc. at low prices. Catalog $\$ 3.00$. CM FALCO, Box 217, Rahway, NJ 07065.

BEST BY MAIL
 Rates: Write National, Box 5, Sarasota, FL 34230

 OF INTEREST TO ALLYOU TOO CAN import from Taiwan and Hong Kong. Free information. Box 661, Dalias, GA 30132.
ELECTRONIC ENGINEERING. 8 volumes complete. $\$ 109.95$. No prior knowledge required. Free brochure. BANNER TECHNICAL BOOKS, 1203 Grant Ave., Rockford, IL 61103.
AUTO COMPASS $\$ 3.95$ GUARANTEED. TREVKEL, 70A Greenwich Avenue, $\# 129 .(\mathrm{PE})$, New York, NY 10011. ELECTRONIC PROJECTS CONSTRUCTION Manuais, Catalog $\$ 1.00$: EEC Services, AR1, Priceville, Ontario, NOC 1 Ko Canada.

TRAVEL

FREE HAWAII, ORLANDO ACCOMMODATIONSI!! FOR DETAILS SEND \$2: DREAMLAND VACATIONS, BOX 56, FORTLEE, NJ 07024
50% OFF - TRAVEL \& HOTELS! Send $\$ 1.00$. Travelers, 372 Fiorin Rd., \#223A, Sacramento, CA 95831.

T.V. FILTERS

T.V. notch filters and bullet stopper, free brochure. MICRO THinc., Box 63/6025, Margate, FL 33063. (305) 752-9202.

ANTIGUE RADIO CLASSIFIED Free Sample!
 Artique Radio's
 Largest Circulation Monthly. Articles, Ads \& Classifieds.
 6-Month Trial: \$15. 1-Yr: \$27(\$40-1 st Class).
 A.R.C., P.O. Box 802-L8, Carlisle, MA 01741

BUSINESS OPPORTUNITIES

YOUR own radio station! Licensed/unlicensed. AM, FM, TV, cable. Information \$1.00 BROADCASTING, Box 130-H1, Paradise, CA 95967.
MAKE $\$ 75,000.00$ to $\$ 250,000.00$ yearly or more fixing IBM color monitors. No investment, start doing it from your home (a telephone required). Information, USA, Canada $\$ 2.00$ cash for brochure, other countries $\$ 10.00$ US funds. RANDALL DISPLAY, Box 2168-H, Van Nuys, CA 91404, USA. Fax (818) 990-7803.
HOME assembly work available! Guaranteed easy money! Free details! HOMEWORK-P, Box 520, Danville, NH 03819.
FEDERAL loans for small businesses now available. 1 (800) 777-6342 for free details.
FREE information! Research engineer earns living with stocks safely. HILL, PO Box 48194 , Niles, IL 60648.
START your own burglar alarm company. Be your own boss! Info packet $\$ 10.00$. JCE ENTERPRISES, 205 Maplewood, Hot Springs, AR 71913.
BIG Money Now in home-based business! Free new report gives easy how-to tips. Rush LSASE to: MBM-PE0193, Box 431648, Miami, FL 33143.
EASY work! Excellent pay! Assemble products at home. Call toll free 1 (800) 467-5566 ext. 5730.

WANTED

PROTECT and market your new product ideas! Call THE IDEA EXCHANGE - Fast, professional, confidential: 1 (800) 272-6875.
INVENTORS. Do your own patent searches at no cost. The Patent Office has provided this for decades. The Gulde to Patent Searches. \$19.95. CSC, Box 1729, Massapequa, NY 11758.

SATELLITE TV

FREE - Catalog - Do-it-Yourself save $40 \%-60 \%$ Lowest prices world wide, systems, up grades, parts. All major brands factory fresh and warrantied. SKYVISION, 1048 Frontier, Fergus Falls, MN 56537. 1 (800) 334-6455.
SATELLITE TV - Do It Yourself, major brands discounted, We'll beat everyone's price. Discoun LARRY, (609) 596-0656.
SUPER low satellite prices. Free U.S. and International catalog. SATMAN, (309) 692-4140 (Int'I.), 1 (800) 472-8626 in U.S.
VIDEOCIPHER II descrambling manual. Schematics, video and audio, $\$ 18.95$. Videocipher II 032, $\$ 15.00$. Videocipher II plus, $\$ 20.00$. Software, $\$ 25.00$. CABLETRONICS, Box 30502PE, Bethesda, MD 20824.

PERSONAL CODE EXPLORER

NEW! Exciting! Easy-to-use Personal Code Explorer copies digital radio signals - fax, morse, RTTY, ASCH, SITOR, packet and more on your IBM/P'C screen. Free brochure. Call, write. MC/ VISA. $\$ 129.00$ plus $\$ 4.00$ shipping. MICROCRAFT, Box 513PE, Thiensville, WI 53092. (414) 241-8144.

EDUCATION/INSTRUCTION

LEARN IBM PC assembly language. Disk $\$ 5.00$. Book $\$ 18.00$. ZIPFAST, Box 12238, Lexington, KY 40581-2238.
VCR repair. Save money - make big profits! Learn how from How to Keep Your VCR Alive. "This detailed, step-by-step manual enables anyone with no previous knowledge or experience to fix most VCR problems easily, quickly, and inexpensively with a few simple tools." - Small Press Review. Highly recommended by Electronic Servicing and Technology, Modern Electronics, Popular Electronics, Popular Communications, Videomaker, Video, Nuts and Volts, and many other electronics and video magazines "Far better than Viejo at $1 / 7$ the cost." 403 page book, with 704 illustrations, plus professional head-cleaning tool. Obtain from B. Daltons or send $\$ 24.95$ to WORTHINGTON PUBLISHING, $6907-202 \mathrm{H}$ Halifax River Drive, Tampa, FL 33617. Publisher pays S\&H. Money-back satisfaction guarantee!
LEARN computers. Tutorials and software. Programs sampler $\$ 11$. Catalog $\$ 1.00$. Complete IBM software line - education, business, scientific, games, Windows. State disk size. VISTA-PE SOFTWARE, 95106 Huaala Place, Mililani, HI 96789.

ESP, Bioelectricity, Microwave hearing. Introduction, comprehensive booklist... $\$ 1.00$. RESEARCH ASSOCIATES, PO Box 3583 , Boynton Beach, FL 33424-3583.
"PERMANENT Magnet Materials Short Course." Complete history, materials listing, glossary, specifications, applications, design criteria, sources. Details $\$ 2.50$, order refundable. SJL PUBLISHING, Dept. AOO4PE, Hanna, IN 46340-0152.

TELECOMMUNICATIONS

CORDLESS phone scandal! Long-range eavesdropping secrets exposed. Millions unaware! Protect your privacy. $\$ 12.00$. AIRWAVES, 5319 University, Suite 300PE1, Irvine, CA 92715. (Hurry! Limited offer.)

Open your eyes and see just how many subjects are covered in the new edition of the Consumer Information Catalog. II's free just for the asking and so are nearly half of the 200 federal publications described inside. Booklets on subjects like financial and career planning; eating right, exercising, and staying healthy: housing and child care; federal benefit programs. Just about everything you would need to know. Write today. We'll send you the latest edition of the Consumer information Catalog, which is updated and published quarterly. It'll be a great help, you'll see. Just write:

Consumer Information Center Department TD
 Pueblo, Colorado 81009

U.S. General Services Administration

> The Most Complete Line of Descramblers $>$ Friendly, professional service ORDSD \rightarrow FREE Catalog N

Go to the Source NU.TEIK ELECTRONICS 3250 Match RD Cedar Park TDOAS 78613
 WE HAVE THE RIGHT ANSWER

Advertisers who want to place their print ads in a quality publication ask the question: "Is your circulation audited?"
We're very proud to answer "Yes."
We are a member of the Audit Bureau of Circulations because we share ABC's belief that circulation audits are an essential assurance of value.
$A B C$ is the premier circulation auditing organization in the world, and has been since 1914. Each year, ABC auditors test and verify that our circulation figures are facts, not claims. An ABC audit is the sign of a sound investment for advertisers.

Not all publications are audited, but they should be. Because when advertisers ask "Is your circulation audited?" there's only one answer.
"Yes."

This 272-page reference contains both model and part-number crossreferences and now includes the FREE 56-page 1991 updates.
VCR's are made in a few factories from which hundreds of different brand names and model numbers identify cosmetically-changed identical and near-identical manufactured units. Interchangeable parts are very common. An exact replacement part may be available only a few minutes away from you even though the manufacturer supplier is out-of-stock. You may be able to cannibalize scrap units at no cost!
The ISCET VCR Cross Reference and 1991 Update pages are prepunched for standard loose-leaf binding.... $\$ 38.00$ plus $\$ 3.00$ for shipping for each reference.
Electronics Technology Today Inc.
VCR CROSS REFERENCE OFFER
P.O. Box 240,
Farmingdale, New York 11735
| Name

ADVERTISING INDEX

POPULAR ELECTRONICS magazine does not assume any responsibility for errors that may appear in the index below.

Free Information No. Page
5 AMC Sales 29

- Antique Radio Classified. 96
- CBC International 96
- CIE11
- Cable Ready Company95
- Electronic Tech. Today

CV2

- Electronic Tech. Today 83, 89
- Electronics Book Club 15, 79
- Firestik II 96
- Grantham College 27
- HighText Publications, Inc. . .68,76
- ISCET............................... . 85

8 Mouser 85

- NRI Schools 25
- Nu-Tek............................ . . 97
- Pacific Cable 97

6 Panavise. 73
10 People's College 3

- Phillips Tech 95
- Popular Electronics 69

13 Radio Shack CV4

- Republic Cable 97
- Silent Sam TSR Co............... . 96

12 U.S. Cable 28

- Video Dimensions. 93

15 Viejo Publications 91

- Weeder Technologies 96

11 Zentek Corp. 28

ADVERTISING SALES OFFICE
Gernsback Publications, Inc.
500-B Bi-County Blud.
Farmingdale, NY 11735
1-(516) 293-3000
Larry Steckler
President
Christina Estrada
Assistant to the President

For Advertising ONLY
516-293-3000
Fax 1-516-293-3115
Larry Steckler
publisher
Arline Fishman advertising director

Denise Mullen advertising assistant
Kelly McQuade
credit manager
Customer Service/Order Entry
1-800-827-0383
1-800-892-0753
7:30 AM - 8:30 PM EST

SALES OFFICES

EAST/SOUTHEAST

Stanley Levitan
Eastern Sales Manager
1 Overlook Ave.
Great Neck, NY 11021
1-516-487-9357
Fax 1-516-487-8402

MIDWEST/Texas/Arkansas/
Oklahoma, Colorado, Arizona Ralph Bergen

Midwest Sales Manager
One Northfield Plaza, Suite 300
Northfield, IL 60093-1214
1-708-446-1444
Fax 1-708-559-0562

PACIFIC COAST/Mountain States
Mike Brooks
Pattis/3M
1800 North Highland Avenue
Suite 717
Hollywood, CA 90028
1-213-462-2700
Fax 1-213-463-0544

PE Market Center
Nicki Van Suydam
Pattis/3M
1800 North Highland Avenue
Suite 717
Hollywood, CA 90028
1-213-462-2700
Fax 1-213-463-0544

Abstract

Never before has so much professional information on the art of detecting and eliminating electronic snooping devices-and how to defend against experienced information thieves-been placed in one VHS video. If you are a Fortune 500 CEO, an executive in any hi-tech industry, or a novice seeking entry into an honorable, rewarding field of work in countersurveillance, you must view this video presentation again and again.

Wake up! You may be the victim of stolen words-precious ideas that would have made you very wealthy! Yes, professionals, even rank amateurs, may be listening to your most private conversations.

Wake up! If you are not the victim, then you are surrounded by countless victims who need your help if you know how to discover telephone taps, locate bugs, or "sweep" a room clean.

There is a thriving professional service steeped in high-tech techniques that you can become a part of But first, you must know and understand Countersurveilance Technology. Your very first insight into this highly rewarding field is made possible by a video VHS presentation that you cannot view on broadcast television, satellite, or cable. It presents an informative program prepared by professionals in the field who know their industry, its techniques, kinks and loopholes. Men who can tell you more in 45 minutes in a straightforward, exclusive talk than was ever attempted before.

Foiling Information Thieves

Discover the targets professional snoopers seek out! The prey are stock brokers, arbitrage firms, manufacturers, high-tech companies, any competitive industry, or even small businnesses in the same community. The valuable information they filch may be marketing strategies, customer lists, product formulas, manufacturing techniques, even advertising plans. Information thieves eavesdrop on court decisions, bidding information, financial data. The list is unlimited in the mind of man-especially if he is a thief?

You know that the Russians secretly installed countless microphones in the concrete work of the American Embassy building in Moscow. They converted

HAVE YOUR VISA or MC CARD AVAILABLE

what was to be an embassy and private residence into the most sophisticated recording studio the world had ever known. The building had to be torn down in order to remove all the bugs.

Stolen Information
The open taps from where the information pours out may be from FAX's, computer communications, telephone calls, and everyday business meetings and lunchtime encounters. Businessmen need counselling on how to eliminate this information drain. Basic telephone use coupled with the user's understanding that someone may be listening or recording vital data and information greatly reduces the opportunity for others to purloin meaningful information.

[^4]The professional discussions seen on the TV screen in your home reveals how to detect and disable wiretaps, midget radio-frequency transmitters, and orher bugs, plus when to use disinformation to confuse the unwanted listener, and the technique of voice scrambling telephone communications. In fact, do you know how to look for a bug, where to look for a bug, and what to do when you find it?

Bugs of a very small size are easy to build and they can be placed quickly in a matter of seconds, in any object or room. Today you may have used a telephone handset that was bugged. It probably contained three bugs. One was a phony bug to fool you into believing you found a bug and secured the telephone. The second bug placates the investigator when he finds the real thing! And the third bug is found only by the professional, who continued to search just in case there were more bugs.

The professional is not without his tools. Special equipment has been designed so that the professional can sweep a room so that he can detect voice-activated (VOX) and remote-activated bugs. Some of this equipment can be operated by novices, others require a trained countersurveillance professional.

The professionals viewed on your television screen reveal information on the latest technological advances like laserbeam snoopers that are installed hundreds of feet away from the room they snoop on. The professionals disclose that computers yield information too easily.

This advertisement was not written by a countersurveillance professional, but by a beginner whose only experience came from viewing the video tape in the privacy of his home. After you review the video carefully and understand its contents, you have taken the first important step in either acquiring professional help with your surveillance problems, or you may very well consider a career as a countersurveillance professional.

The Dollars You Save

To obtain the information contained in the video VHS cassette, you would attend a professional seminar costing $\$ 350-750$ and possibly pay hundreds of dollars more if you had to travel to a distant city to attend. Now, for only $\$ 49.95$ (plus $\$ 4.00 \mathrm{P} \& \mathrm{H}$) you can view Countersurveillance Techniques at home and take refresher views often. To obtain your copy, complete the coupon or call.

THE

NEW! Autoranging

 LCD Digital MultimeterConvenient autoranging and autopolarity at a low price. Select the function-meter does the rest Diode-chect: mode. Measures to $1000 \mathrm{VDC}, 750 \mathrm{VAC}, 200 \mathrm{~mA} \mathrm{DC}$ current, 20 megohms resistance. Fuse protected, UL 1244 listed. \#22-166 36.99

TECHLINE ${ }^{\text {TW }}$ Tools—The new standard in strength and precision!

- Precision-crafted with top-quality materials
- Designed for long life and ease of use
- Backed by Radio Shack's 1-Year Limited Warranty

New TECHLINE tools represent Radio Shack's uncompromising dedication to quality. Each is precision-crafted of long-lasting, hard-working materials and employs the latest design innovations for comfort and ease of use. And, each is backed by our full 1-year limited warranty.

Speedy service and low prices on thousands of parts and accessories!

- FREE delivery to Radio Shack on orders $\$ 5$ and up
- Semiconductors and ICs \quad Hard-to-find batteries
- CB and scanner crystals - Long-life vacuum tubes
- Phono cartridges/styli ■ SAMS ${ }^{\oplus}$ service books

Why pay more for mail-order? Your Radio Shack stocks 1000 electronic components, and another 15,000 are available fast from our special-order warehouse. Ordering is easy! Bring in the exact part number (or old part). We'll check availability and order by phone. Delivery time to your nearby Radio Shack for most items is a week.

TECHLINE Rechargeable Soldering Gun. Great for autos, boats and campers-solder up to 250 joints on one charge. Trigger lock, light. UL listed AC charger, case
\#64-2194
39.95

CD Player AC-to-DC Voltage Adapter. Saves batteries! Connect to your portable CD player's DC jack and plug into wall outlet to play from 120VAC. 3VDC regulated output. UL listed. \#273-1659
16.95

AC Voltage Sensor. Detects broken connections, blown fuses, defective grounds, open breakers, more. Indicates presence of AC voltages from 70 to 440 VAC. Replaceable battery. \#22-103
11.99

TECHLINE 18-Piece Hex Key Set. Ideal for engine and machinery work. Heavy-duty steel alloy. Standard sizes \#64-1816 4.99

IR Transmitter Project Case. For beeper or remote. 9 V battery compartment. Molded $7 / 8 \times$ $2^{3 / 8} \times 4^{1 / 4^{\prime \prime}}$ enclosure. \#270-294 4.49

Project Holder. Alli-gator-type clamps adjust to hold work in any position. Solid cast-iron base prevents tipping. \#64-2093
8.49

DC Voltmeter. Measure vehicle or power-supply voltage. Jeweled movement. Mounts in 17/8"diameter round hole. \#270-1754 7.95

Infrared Sensor Card. Detects normally invisible infrared to confirm output from remotes, IR LEDs or lasers.
\#276-099
5.95

[^0]: To learn more about the Constitution write: Constitution, Washington. D.C. 20006. The Commis-
 sion on the Bicentennial of The U.S. Constitution. Council

[^1]: Electronics Workbench Professional Version runs on any IBM AT or PS/2 or true compatible with G40 KB RAM; Microsoft-compatible mouse; EGA/VGA graphics; hard disk; MS-DOS 3.0 or later. Monochrome version also available. Macintosh Version (monochrome only) runs on Macintosh Plus or greater. All irademarks are the property of their tespective owners. Prices are in US dollars. Offer valid in the USA and Canada only.

[^2]: Also visit:
 ASCII Electronics 1020 Marietta Way Sparks, NV 89431 (702) 355-8822

[^3]: COMMAND PRODUCTIONS
 FCC LICENSE TRAINING, Dept. 100
 P.O. Box 2824, San Francisco, CA 94126 Please rush FREE details immediately! NAME ADDRESS SS City

 STATE

[^4]: CLAGGK INC.
 PE
 P.O. Box 4099 • Farmingdale, NY 11735

 Please rush my cupy of the Countersurveillance Techniques Video VHS Cassette for al total cost of 553.25 cach (which includes St .10) postage and handling).

 No. of Cassectes orkered
 Amount of payments
 \qquad
 sakes tax (N.Y.S. onty)
 Total conclesed
 $13 i l l$ my \square VIsa \square Masters and
 (Gr! No.
 Expirc Date ___ $/$
 Signıuture
 Name
 Acklress
 (aty

 cassulte. No her-ign orders.

