TEST REPORT

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-390, Korea TEL: 82 70 5008 1021 FAX: 82 505 299 8311

Report No.: KCTL15-FR0046

Page(1)/(15) Pages

Hyundai Mobis Co., Ltd.	
203, Teheran-ro, Gangnam-gu, Seoul, 135-977, Korea	
TQ8-ATC40G2AN	
DIGITAL CAR AVN SYSTEM	
ATC40G2AN	
September 21 ~ October 07, 2015	
FCC Part 22 Subpart H and Part 24 Subpart E	
Refer to page 8	
Refer to page 9 ~ page 14	
Refer to page 8	

This result shown in this report refer only to the sample(s) tested unless otherwise stated.

Affirmation	Tested by Blue Name: KIM, TAE YOUNG	Technical Manager Name: SON, MIN GI
		2015. 10. 08

[Contents]

1. Client information	3
2. Laboratory information	4
3. Description of E.U.T.	5
3.1 Basic description	5
3.2 General description	6
3.3 Test frequency Test mode	
3.4 Test Voltage	7
4. Summary of test results	8
4.1 Standards & results	8
4.2 Uncertainty	8
5. Test results	9
5.1 RF Radiated Output Power	9
5.2 Spurious radiated emission	11
6. Test equipment used for test	15

1. Client information

Applicant:	Hyundai Mobis Co., Ltd.
Address:	203, Teheran-ro, Gangnam-gu, Seoul, 135-977, Korea
Telephone number:	+82-31-260-0098
Facsimile number:	+82-31-899-1788
Contact person:	Seung-Hoon Choe / csh@mobis.co.kr

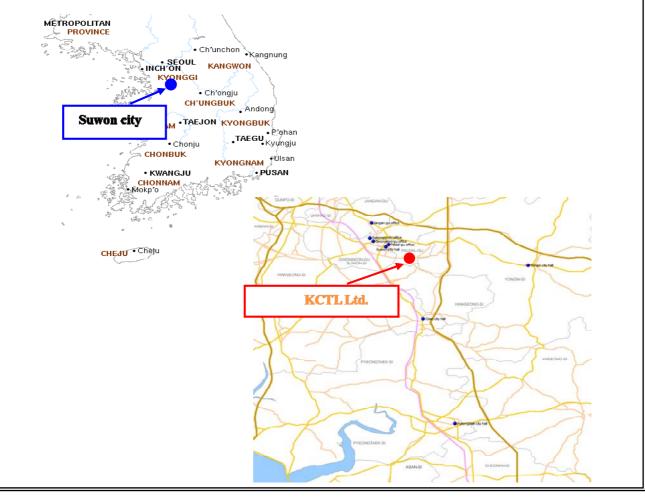
Manufacturer:	Hyundai Mobis Co., Ltd.
Address:	95, Sayang 2-Gil, Munbaek-Myeon, Jincheon-Gun,
	Chungcheongbuk-Do 365-862 Korea

KCTL-TIR001-003/0

Page: (3) / (15) Pages

2. Laboratory information

Address


KCTL Ltd.

65 Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea Telephone Number: 82-70-5008-1016 Facsimile Number: 82-505-299-8311

Certificate

KOLAS No.: 231 FCC Site Designation No: KR0040 FCC Site Registration No: 687132 VCCI Site Registration No.: R-3327, G-198, C-3706, T-1849 IC Site Registration No.:8035A-2

SITE MAP

KCTL-TIR001-003/0

Page: (4) / (15) Pages

3. Description of E.U.T.

3.1 Basic description

<u>5.1 Basic description</u>	
Applicant	Hyundai Mobis Co., Ltd.
Address of Applicant	203, Teheran-ro, Gangnam-gu, Seoul, 135-977, Korea
Manufacturer	Hyundai Mobis Co., Ltd.
Address of Manufacturer	95, Sayang 2-Gil, Munbaek-Myeon, Jincheon-Gun, Chungcheongbuk-Do 365-862 Korea
Type of equipment	DIGITAL CAR AVN SYSTEM
Basic Model	ATC40G2AN
Serial number	N/A

KCTL-TIR001-003/0

Page: (5) / (15) Pages

	$2402 \text{ Mz} \sim 2480 \text{ Mz}$ (Bluetooth)
	2 412 MHz ~ 2 462 MHz (802.11b/g/n HT20)
	824.70 Mz ~ 848.31 Mz (CDMA 800)
Frequency Range	1 851.25 Mz ~ 1 908.75 Mz (CDMA1 900)
	779.5 MHz ~ 784.5 MHz (LTE Band 13)
	1 710.7 Młz ~ 1 754.3 Młz (LTE Band 4)
	GFSK, $\pi/4DQPSK$, 8DPSK (Bluetooth),
Type of Modulation	DSSS (802.11b), OFDM (802.11g/n_HT20) 1xRTT (CDMA800, CDMA1 900)
	QPSK, 16QAM (LTE Band 13, LTE Band 4)
Type of Antenna	79 ch (Bluetooth), 11 ch (802.11b/g/n_HT20)
Antenna Gain	External Antenna
	-0.4 dBi (Bluetooth), 3.08 dBi (802.11b/g/n_HT20),
	3.35 dBi (CDMA 800)
Transmit Power	7.0 dBi (CDMA 1 900)
	3.16 dBi (LTE Band 13)
	4.29 dBi (LTE Band 4)
Transmit Power	24.44 dBm
Power supply	DC 14.4 V
Product SW/HW version	1.0
Radio SW/HW version	1.0
Test SW Version	Refer to the # DRTFCC1408-1006(1) (Model Name: LTD-VL1000, FCC ID: YZP-VL1000)
	Refer to the # DRTFCC1408-1006(1) (Model Name: LTD-VL1000,

* Declared by the applicant.

3.3 Test frequency Test mode

The transmitter has a maximum average output power as follows:

* 1xRTT

-Cellular Band-

Frequency (Mb)	Service Option (SO)	Channel
824.70	DC1	1 013
836.52	RC1 2 (Loopback)	384
848.31	2 (Loopback)	777

-PCS Band-

Frequency (Mb)	Service Option (SO)	Channel
1 851.25	DC1	25
1 880.00	RC1	600
1 908.75	2 (Loopback)	1 175

CDMA (800 / 1 900)

We found out the test mode with the highest power level after we investigated average output power of all the modulations and (or) data rates for each mode. So we chose below test mode as a representative of worst case. - CDMA (800) 1xRTT : RC1 / 2 (Loopback),

- CDMA (1 900) 1xRTT : RC1 / 2 (Loopback),

3.4 Test Voltage

Mode	Voltage
Norminal voltage	DC 14.4 V

4. Summary of test results

4.1 Standards & results

FCC Part 22 Subpart H and Part 24 Subpart E			
FCC Rule Reference	Parameter	Report Section	Test Result
§2.1046, §22.913(a) §24.232(c)	RF Radiated Output Power	5.1	С
§2.1053, §22.917(a) §24.238(a)	Spurious Radiated Emission	5.2	С
§ 2.1046	Conducted Output Power	5.3	N/A1)
§ 2.1049	26 dB Bandwidth	5.4	N/A1)
§24.232(d)	Peak-Average Ratio	5.5	N/A1)
§2.1051, §22.917(a) §24.238(a)	Spurious Emission at Antenna Terminal	5.6	N/A1)
\$2.1055, \$22.355 \$24.235	Frequency Stability	5.7	N/A1)
§22.917(a), §24.238(a)	Band Edge	5.8	N/A1)
§15.207(a)	Conducted Emission	-	N/A ₂)

Note: C = complies

NC = Not complies

NT = Not tested

NA = Not Applicable

 N/A_1): Refer to the RF test report # DRTFCC1408-1006(1), FCC ID #YZP-VL1000

 N/A_{2} : The test is not applicable since the EUT is not the device that is designed to be connected to the public utility(AC) power line(This EUT is automotive device)

4.2 Uncertainty

Measurement Item	Une	Expanded Uncertainty U = KUc (K = 2)	
Conducted RF power	±	± 1.36 dB	
Conducted Spurious Emissions	±	1.52 dB	
	20 Mir - 200 Mir	+ 4.94 dB, - 5.06 dB	
	30 MHz ~ 300 MHz:	+ 4.93 dB, - 5.05 dB	
Radiated Spurious Emissions	200 ML 1 000 ML	+ 4.97 dB, - 5.08 dB	
	300 MHz $\sim 1\ 000$ MHz:	+ 4.84 dB, - 4.96 dB	
	1 GHz ~ 25 GHz:	+ 6.03 dB, - 6.05 dB	

KCTL-TIR001-003/0

5. Test results

5.1 RF Radiated Output Power

5.1.1 Measurement Procedure

- 1. On a test site, the EUT shall be placed at 80cm height on a turn table, and in the position close to normal use as declared by the applicant.
- 2. The test antenna shall be oriented initially for vertical polarization located 3 m from EUT to correspond to the fundamental frequency of the transmitter.
- 3. The output of the test antenna shall be connected to the measuring receiver and the peak detector is used for the measurement.
- 4. During the measurement of the EUT, the resolution bandwidth was to 3 Mb and the video bandwidth was set to 3 Mb.
- 5. The transmitter shall be switched on, the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 6. The test antenna shall be raised and lowered through the specified range of height until the maximum signal level is detected by the measuring receiver.
- 7. The transmitter shall be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 8. The test antenna shall be raised and lowered again through the specified range of height until the maximum signal level is detected by the measuring receiver.
- 9. The maximum signal level detected by the measuring receiver shall be noted.
- 10. The EUT was replaced by half-wave dipole ($824 \sim 849 \text{ Mz}$) or horn antenna ($1850 \sim 1910 \text{ Mz}$) connected to a signal generator.
- 11. In necessary, the input attenuator setting on the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 12. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- 13. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring received, which is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- 14. The input level to the substitution antenna shall be recorded as power level in dB m, corrected for any change of input attenuator setting of the measuring receiver.
- 15. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.

5.1.2 Limit

FCC §22.913(a), The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.FCC §24.232(c) Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

5.1.3 Test Result

CDMA 800 BC0 1xRTT mode

Frequency	Ant. Pol.	E.R	Lizzit (nW)	
(MHz)	(H/V)	(dBm)	(mW)	Limit (nW)
824.70	Н	16.50	44.67	7 000
824.70	V	15.90	38.90	7 000
836.52	Н	16.70	46.77	7 000
836.52	V	16.20	41.69	7 000
848.31	Н	17.00	50.12	7 000
848.31	V	15.90	38.90	7 000

CDMA 1 900 BC1 1xRTT mode

Frequency	Ant. Pol.	E.R		
(MHz)	(H/V)	(dBm)	(mW)	Limit (mW)
1 851.25	Н	22.80	190.55	2 000
1 851.25	V	24.30	269.15	2 000
1 880.00	Н	24.60	288.40	2 000
1 880.00	V	24.00	251.19	2 000
1 908.75	Н	21.60	144.54	2 000
1 908.75	V	22.90	194.98	2 000

KCTL-TIR001-003/0

Page: (10) / (15) Pages

5.2 Spurious radiated emission

5.2.1 Measurement Procedure

- 1. On a test site, the EUT shall be placed at 80 cm height on a turn table, and in the position close to normal use as declared by the applicant.
- 2. The test antenna shall be oriented initially for vertical polarization located 3 m from EUT to correspond to the fundamental frequency of the transmitter.
- 3. The output of the test antenna shall be connected to the measuring receiver and the peak detector is used for the measurement.
- 4. During the measurement of the EUT, the resolution bandwidth was to 3 Mt and the video bandwidth was set to 3 Mt.
- 5. The transmitter shall be switched on, the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 6. The test antenna shall be raised and lowered through the specified range of height until the maximum signal level is detected by the measuring receiver.
- 7. The transmitter shall be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 8. The test antenna shall be raised and lowered again through the specified range of height until the maximum signal level is detected by the measuring receiver.
- 9. The maximum signal level detected by the measuring receiver shall be noted.
- 10. The EUT was replaced by half-wave dipole ($824 \sim 849 \text{ Mz}$) or horn antenna ($1850 \sim 1910 \text{ Mz}$) connected to a signal generator.
- 11. In necessary, the input attenuator setting on the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 12. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- 13. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring received, which is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- 14. The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
- 15. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.

5.2.2 Limit

22.917(a) and 24.238 (a) Out of band emissions. The power of any emission outside of the Authorized operating frequency must be attenuated below the transmitting (P) by a factor of at least 43+10log(P) dB.

5.2.3 Test Result

CDMA 800 BC0 1xRTT mode

Low Channel (824.70 ₩z)

Limit = 43+10log(P) dB = 29.50 dBc

(P = 16.5 dBm = 0.044 W)

Frequency (Mz)	Ant. Pol. (H/V)	Operation Frequency Power level (dBm)	Spurious Level (dBm)	*Result (dBc)	Limit (dBm)	*Margin
1 649.35	Н	16.5	-47.6	64.1	-13.0	34.6
2 473.76	V	16.5	-40.6	57.1	-13.0	27.6
4 123.73	Н	16.5	-56.7	73.2	-13.0	43.7

Middle Channel (836.52 ₩z)

Limit = $43+10\log(P) dB = 29.7 dBc$ (P = 16.7 dBm = 0.046 W)

Frequency (Mz)	Ant. Pol. (H/V)	Operation Frequency Power level (dBm)	Spurious Level (dBm)	* Result (dBc)	Limit (dBm)	*Margin
1 673.11	Н	16.7	-47.7	64.4	-13.0	34.7
2 414.70	V	16.7	-57.0	73.7	-13.0	44.0
2 509.45	Н	16.7	-59.2	75.9	-13.0	46.2

High Channel (848.31 ₩z)

Limit = 43+10log(P) dB = 30.0 dBc

(P = 17.0 dBm = 0.050 W)

Frequency (Mz)	Ant. Pol. (H/V)	Operation Frequency Power level (dBm)	Spurious Level (dBm)	*Result (dBc)	Limit (dBm)	*Margin
1 696.7	V	17.0	-54.2	71.2	-13.0	41.2
2 544.9	Н	17.0	-55.3	72.3	-13.0	42.3
2 414.2	V	17.0	-57.5	74.5	-13.0	44.5

*Result = Operation Frequency Power level – Spurious level *Margin=Limit – Spurious Level

CDMA 1 900 BC1 1xRTT mode

Low Channel (1 851.25 Mz)

Limit = $43+10\log(P) dB = 37.30 dBc$ (P = 24.3 dBm = 0.269 W)

Frequency (Mz)	Ant. Pol. (H/V)	Operation Frequency Power level (dBm)	Spurious Level (dBm)	* Result (dBc)	Limit (dBm)	*Margin
3 702.3	Н	24.3	-17.3	41.6	-13.0	4.3
5 554.0	Н	24.3	-31.6	55.9	-13.0	18.6
7 404.9	V	24.3	-39.2	63.5	-13.0	26.2
9 256.3	V	24.3	-39.7	64.0	-13.0	26.7

Middle Channel (1 880.00 Mz)

Limit = $43+10\log(P) dB = 37.60 dBc$ (P = 24.6 dBm = 0.288 W)

I/V)	Frequency Power level (dBm)	Level (dBm)	* Result (dBc)	Limit (dBm)	*Margin
Н	24.6	-18.2	42.8	-13.0	5.2
Н	24.6	-35.2	59.8	-13.0	22.2
V	24.6	-33.0	57.6	-13.0	20.0
V	24.6	-36.3	60.9	-13.0	23.3
	H H V	(dBm) H 24.6 H 24.6 V 24.6	(dBm) (dBm) H 24.6 -18.2 H 24.6 -35.2 V 24.6 -33.0	(dBm) (dBm) H 24.6 -18.2 42.8 H 24.6 -35.2 59.8 V 24.6 -33.0 57.6	(dBm) (dBm) (dBm) H 24.6 -18.2 42.8 -13.0 H 24.6 -35.2 59.8 -13.0 V 24.6 -33.0 57.6 -13.0

KCTL-TIR001-003/0

Page: (13) / (15) Pages

High Channel (1 908.75 M₺)

Limit = 43+10log(P) dB = 35.90 dBc

(P = 22.9 dBm = 0.194 W)	
----------------------------	--

Frequency (Mz)	Ant. Pol. (H/V)	Operation Frequency Power level (dBm)	Spurious Level (dBm)	* Result (dBc)	Limit (dBm)	*Margin
3 817.7	Н	22.9	-16.9	39.8	-13.0	3.9
5 726.3	V	22.9	-30.3	53.2	-13.0	17.3
7 635.2	V	22.9	-39.1	62.0	-13.0	26.1
9 543.8	V	22.9	-34.2	57.1	-13.0	21.2

*Result = Operation Frequency Power level – Spurious level *Margin=Limit – Spurious Level

KCTL-TIR001-003/0

Page: (14) / (15) Pages

6. Test equip	oment used	for test
---------------	------------	----------

Description	Manufacturer	Model No.	Serial No.	Next Cal Date.
Spectrum Analyzer	R&S	FSV40	100988	16.01.26
■ Wideband Power Sensor	R&S	NRP-Z81	102398	15.11.27
DC Power Supply	AGILENT	E3632A	MY40004399	16.01.06
■ Loop Antenna	R&S	HFH2-Z2	861971/003	17.03.03
■ Bi-Log Antenna	SCHWARZBECK	VULB9163	552	16.06.14
Horn Antenna	SCHWARZBECK	3117	155787	16.02.05
■ Horn Antenna	ETS.lindgren	3116	86632	15.10.20
■ Amplifier	SONOMA INSTRUMENT	310	293004	16.09.02
■ Emi Test Receiver	R&S	ESCI	101078	16.02.16
Broadband Preamplifier	SCHWARZBECK	BBV9721	2	16.05.09
Preamplifier	AGILENT	8449B	3008A02343	16.09.02
■ Attenuator	HP	8494A	2631A09825	15.10.14
■ Attenuator	HP	8496A	3308A16640	15.10.14
■ Highpass Filter	Wainwright Instruments GmbH	WHKX3.0/ 18G-12SS	44	16.02.02
■ Bluetooth Tester	TESCOM	TC-3000A	3000A310047	16.04.06
 Spiral Antenna 	COBHAM	PSA-75301R/170	406827-0001	-
■ Wideband Radio Communication Tester	R&S	CMW500	102572	16.10.01
■ Highpass Filter	Wainwright Instruments GmbH	WHKX1.0/ 1.5S-10SS	14	16.02.02
Antenna Mast	Innco Systems	MA4000-EP	-	-
Turn Table	Innco Systems	DT2000	-	-

KCTL-TIR001-003/0