

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.44 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.59 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.18 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.50 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.69 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	20 S 2 202
SAR measured	250 mW input power	1.63 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.36 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d069_Jul16

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.9 Ω - 2.1 jΩ	
Return Loss	- 31.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.8 Ω - 2.5 jΩ	
Return Loss	- 31.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.394 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 09, 2007

Certificate No: D835V2-4d069_Jul16

DASY5 Validation Report for Head TSL

Date: 20.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d069

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; σ = 0.94 S/m; ϵ_r = 40.6; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.72, 9.72, 9.72); Calibrated: 15.06.2016;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

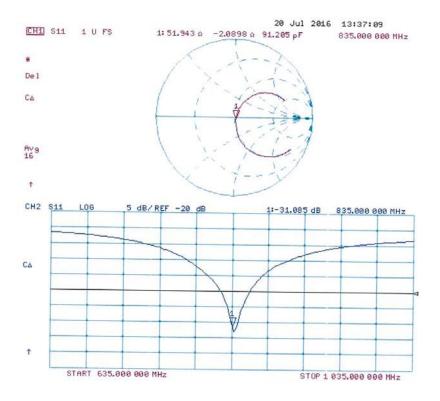
Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 62.09 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.70 W/kg

SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.59 W/kgMaximum value of SAR (measured) = 3.26 W/kg



0 dB = 3.26 W/kg = 5.13 dBW/kg

Certificate No: D835V2-4d069_Jul16

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-4d069_Jul16

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 20.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN: 4d069

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\epsilon_r = 54.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

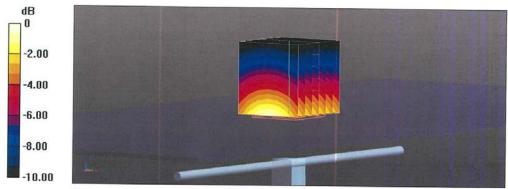
DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.73, 9.73, 9.73); Calibrated: 15.06.2016;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.12.2015

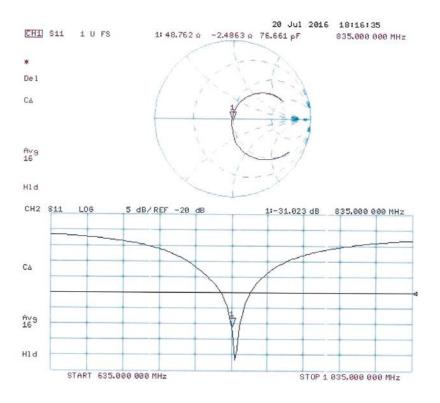
Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002


• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.64 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.68 W/kg

SAR(1 g) = 2.5 W/kg; SAR(10 g) = 1.63 W/kg


Maximum value of SAR (measured) = 3.31 W/kg

0 dB = 3.31 W/kg = 5.20 dBW/kg

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-4d069_Jul16

Page 8 of 8

1900 MHz Dipole Calibration Certificate for 2016

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

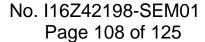
Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

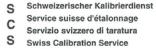

CTTL-BJ (Auden)

Certificate No: D1900V2-5d101 Jul16

CALIBRATION C	CERTIFICATE		
Object	D1900V2 - SN:50	3101	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	July 28, 2016		
The measurements and the unce	ertainties with confidence p	ional standards, which realize the physical un robability are given on the following pages arry facility: environment temperature $(22 \pm 3)^{\circ}$	d are part of the certificate.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
Power sensor NRP-Z91	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Reference 20 dB Attenuator	SN: 5058 (20k)	05-Apr-16 (No. 217-02292)	Apr-17
Type-N mismatch combination	SN: 5047.2 / 06327	05-Apr-16 (No. 217-02295)	Apr-17
Reference Probe EX3DV4	SN: 7349	15-Jun-16 (No. EX3-7349_Jun16)	Jun-17
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
	1	Object Bate (In house)	
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (No. 217-02222)	In house check: Oct-16
Power meter EPM-442A Power sensor HP 8481A	SN: GB37480704 SN: US37292783	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222)	In house check: Oct-16 In house check: Oct-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	SN: GB37480704 SN: US37292783 SN: MY41092317	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15)	In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: GB37480704 SN: US37292783 SN: MY41092317	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15)	In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15)	In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16 In house check: Oct-16

Certificate No: D1900V2-5d101_Jul16

Page 1 of 8



Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d101_Jul16 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.32 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.3 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$50.8 \Omega + 5.5 j\Omega$
Return Loss	- 25.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.0 Ω + 6.7 jΩ
Return Loss	- 22.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 28, 2008

DASY5 Validation Report for Head TSL

Date: 22.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:5d101

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

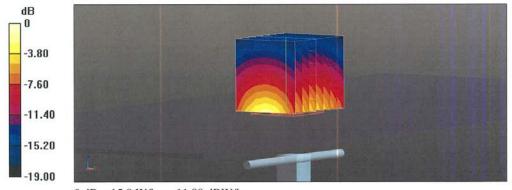
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.99, 7.99, 7.99); Calibrated: 15.06.2016;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

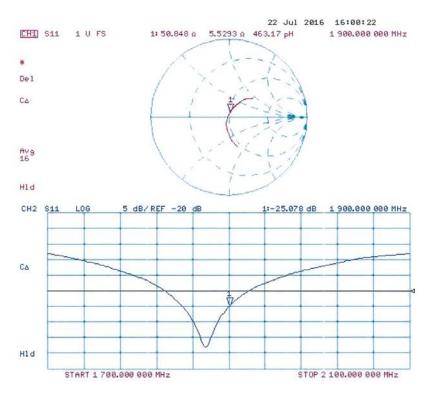
• Electronics: DAE4 Sn601; Calibrated: 30.12.2015


Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x8x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.9 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 19.0 W/kg


SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.28 W/kgMaximum value of SAR (measured) = 15.8 W/kg

0 dB = 15.8 W/kg = 11.99 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 28.07.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN: 5d101

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.51$ S/m; $\varepsilon_r = 52.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.03, 8.03, 8.03); Calibrated: 15.06.2016;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

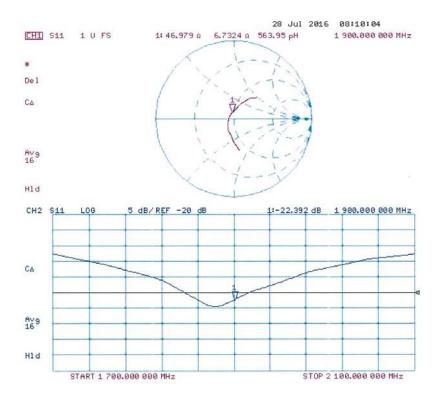
Electronics: DAE4 Sn601; Calibrated: 30.12.2015

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.2 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.6 W/kg


SAR(1 g) = 10 W/kg; SAR(10 g) = 5.32 W/kg Maximum value of SAR (measured) = 15.0 W/kg

0 dB = 15.0 W/kg = 11.76 dBW/kg

Impedance Measurement Plot for Body TSL

ANNEX I SPOT CHECK TEST

As the test lab for 2051A from TCL Communication Ltd, we, CTTL (Shouxiang), declare on our sole responsibility that, according to "Declaration of changes" provided by applicant, only the Spot check test should be performed. The test results are as below.

I.1 Conducted power of selected case

Table I.1-1: The conducted power results for GSM850/1900

	Conducted Power (dBm)		
GSM	Channel 251(848.8MHz)	Channel 190(836.6MHz)	Channel 128(824.2MHz)
850MHz	31.60	31.68	31.77
0014	Conducted Power (dBm)		
GSM	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)
1900MHz	29.23	29.14	29.16

Table I.1-2: The conducted power results for GPRS

GSM 850	Measured Power (dBm)								
GPRS (GMSK)	251	190	128						
3 Txslots	28.37	28.48	28.60						
PCS1900	Measured Power (dBm)								
GPRS (GMSK)	810	661	512						
3 Txslots	25.52	25.75	25.96						

I.2 Measurement results

Table I.2-1: SAR Values (GSM 850 MHz Band - Head)

	Ambient Temperature: 22.5 °C Liquid Temperature: 22.0 °C											
Freque	requency		Test	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power	
		Side	Position	Figure No./Battery	Power	tune-up Power	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
MHz	Ch.		1 03111011	140./ Dattery	(dBm)	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)	
848.8	251	Right	Touch	Fig.I.1 / B1	31.60	33.3	0.454	0.67	0.793	1.17	0.18	
836.6	190	Right	Touch	B1	31.68	33.3	0.433	0.63	0.766	1.11	0.04	
824.2	128	Right	Touch	B1	31.77	33.3	0.398	0.57	0.714	1.02	-0.07	
848.8	251	Right	Touch	Fig.I.2 / B2	31.60	33.3	0.452	0.67	0.791	1.17	0.08	

Note: B1 is the battery CAB22B0000C1, B2 is the new battery CAB0400016C1.

Table I.2-2: SAR Values (GSM 850 MHz Band - Body)

			Ambien	t Temperatui	re: 22.5 °C	Liquid	Temperatu	re: 22.0°C			
Freque	ency	Mode	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	(number of timeslots)	Position	No./Battery	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
848.8	251	GPRS (3)	Rear closed	Fig.I.3 / B1	28.37	29	0.664	0.77	0.936	1.08	-0.03
848.8	251	GPRS (3)	Rear closed	Fig.I.4 / B2	28.37	29	0.645	0.75	0.908	1.05	-0.13

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: B1 is the battery CAB22B0000C1, B2 is the new battery CAB0400016C1.

Table I.2-3: SAR Values (GSM 1900 MHz Band - Head)

	Ambient Temperature: 22.5 °C Liquid Temperature: 22.0 °C											
	Freque	ency		Toot	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power
	MHz	Ch.	Side	Test Position	Figure No./Battery	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
	1880	661	Right	Touch	Fig.I.5 / B1	29.14	30.3	0.163	0.21	0.291	0.38	0.06
Ī	1880	661	Right	Touch	Fig.I.6 / B2	29.14	30.3	0.164	0.21	0.289	0.38	-0.10

Note: B1 is the battery CAB22B0000C1, B2 is the new battery CAB0400016C1.

Table I.2-4: SAR Values (GSM 1900 MHz Band - Body)

			Ambient ⁻	Ambient Temperature: 22.5 °C			l Temperatu	re: 22.0°C			
Freque	ency	Mode	Test	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power
MHz	Ch.	(number of timeslots)	Position	No./Battery	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1850.2	512	GPRS (3)	Rear closed	Fig.I.7 / B1	25.96	26	0.54	0.54	0.926	0.93	0.06
1850.2	512	GPRS (3)	Rear closed	Fig.I.8 / B2	25.96	26	0.529	0.53	0.896	0.90	-0.08

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: B1 is the battery CAB22B0000C1, B2 is the new battery CAB0400016C1.

I.3 Reported SAR Comparison

Exposure Configuration	Technology Band	Reported SAR 1g (W/Kg): original Battery1	Reported SAR 1g (W/Kg): spot check Battery1	Reported SAR 1g (W/Kg): spot check Battery2
Head	GSM 850	0.93	1.17	1.17
(Separation Distance 0mm)	PCS 1900	0.48	0.38	0.38
Body-worn	GSM 850	1.54	1.08	1.05
(Separation Distance 10mm)	PCS 1900	1.11	0.93	0.90

Note: The spot check result of GSM850 for Head is larger than the original result, so it replace the original result and others are quoted. We have evaluated all position and the position with highest value is not changed.

I.4 Graph Results

GSM850 Right Cheek High with battery CAB22B0000C1

Date: 2016-11-10

Electronics: DAE4 Sn1331 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.938$ mho/m; $\epsilon r = 42.746$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 – SN7307 ConvF(10.01, 10.01, 10.01)

Area Scan (61x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.14 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.536 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 1.93 W/kg

SAR(1 g) = 0.793 W/kg; SAR(10 g) = 0.454 W/kg

Maximum value of SAR (measured) = 0.928 W/kg

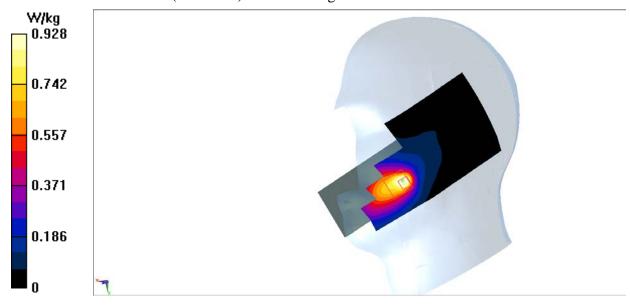


Fig I.1 GSM850MHz

GSM850 Right Cheek High with battery CAB0400016C1

Date: 2016-11-10

Electronics: DAE4 Sn1331 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.938$ mho/m; $\epsilon r = 42.746$; $\rho = 0.938$ mho/m; $\epsilon r = 42.746$; $\epsilon r = 42.746$;

 1000 kg/m^3

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 – SN7307 ConvF(10.01, 10.01, 10.01)

Area Scan (61x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.03 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.620 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 2.00 W/kg

SAR(1 g) = 0.791 W/kg; SAR(10 g) = 0.452 W/kg

Maximum value of SAR (measured) = 1.03 W/kg

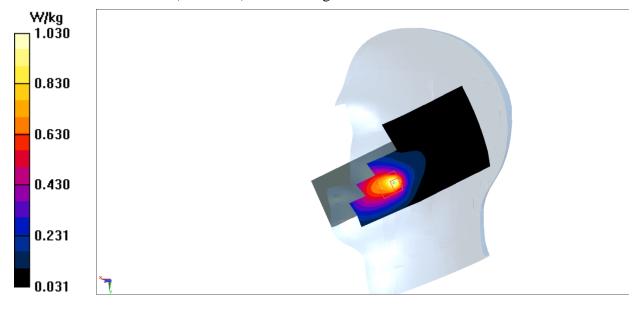


Fig I.2 GSM850MHz

GSM850 Body Rear closed High with battery CAB22B0000C1

Date: 2016-11-10

Electronics: DAE4 Sn1331 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.967$ mho/m; $\epsilon r = 56.511$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2.67

Probe: EX3DV4 – SN7307 ConvF(9.83, 9.83, 9.83)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.05 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.54 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.936 W/kg; SAR(10 g) = 0.664 W/kg

Maximum value of SAR (measured) = 1.06 W/kg

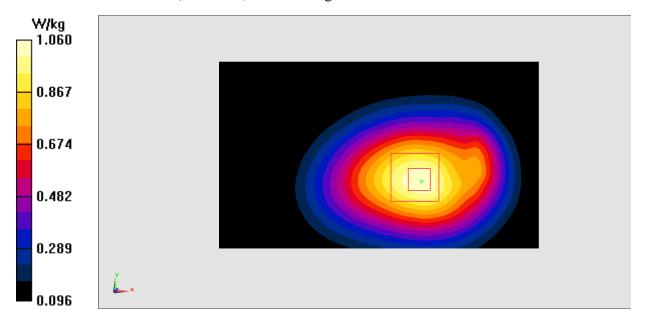


Fig I.3 GSM850 MHz

GSM850 Body Rear closed High with battery CAB0400016C1

Date: 2016-11-10

Electronics: DAE4 Sn1331 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.967$ mho/m; $\epsilon r = 56.511$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2.67

Probe: EX3DV4 – SN7307 ConvF(9.83, 9.83, 9.83)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.02 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.10 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.908 W/kg; SAR(10 g) = 0.645 W/kg

Maximum value of SAR (measured) = 1.02 W/kg

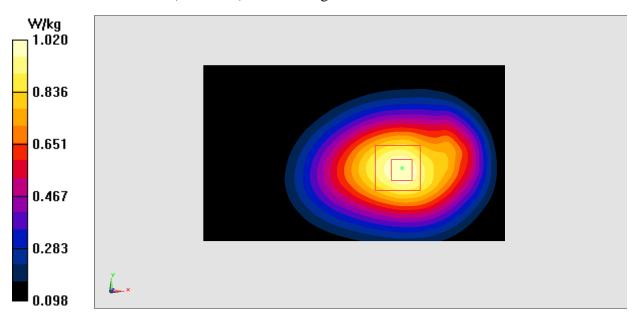


Fig I.4 GSM850 MHz

PCS1900 Right Cheek Middle with battery CAB22B0000C1

Date: 2016-11-11

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters use: f = 1880 MHz; $\sigma = 1.409 \text{ mho/m}$; $\epsilon r = 40.467$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C

Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 – SN7307 ConvF(8.10, 8.10, 8.10)

Area Scan (61x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.296 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.582 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.445 W/kg

SAR(1 g) = 0.291 W/kg; SAR(10 g) = 0.163 W/kg

Maximum value of SAR (measured) = 0.336 W/kg

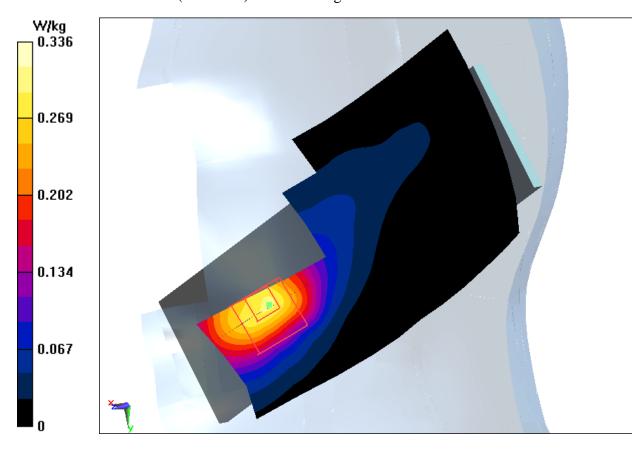


Fig I.5 PCS1900 MHz

PCS1900 Right Cheek Middle with battery CAB0400016C1

Date: 2016-11-11

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters use: f = 1880 MHz; $\sigma = 1.409 \text{ mho/m}$; $\epsilon r = 40.467$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C

Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 – SN7307 ConvF(8.10, 8.10, 8.10)

Area Scan (61x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.307 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.531 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.443 W/kg

SAR(1 g) = 0.289 W/kg; SAR(10 g) = 0.164 W/kg

Maximum value of SAR (measured) = 0.340 W/kg

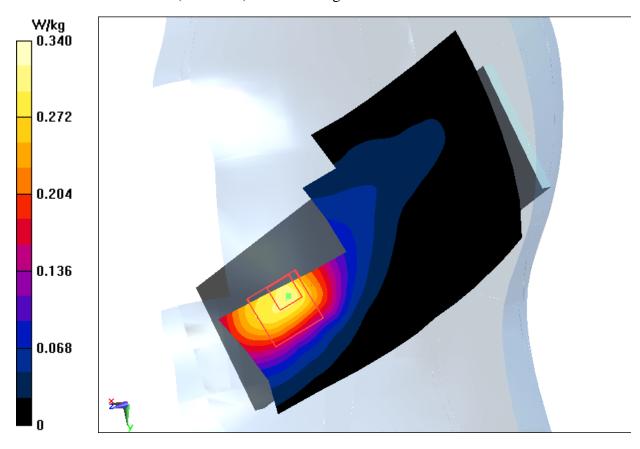


Fig I.6 PCS1900 MHz

PCS1900 Body Rear closed Low with battery CAB22B0000C1

Date: 2016-11-11

Electronics: DAE4 Sn1331 Medium: Body 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.51$ mho/m; $\epsilon r = 54.418$; $\rho = 1.51$

 1000 kg/m^3

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C

Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:2.67

Probe: EX3DV4 – SN7307 ConvF(7.67, 7.67, 7.67)

Area Scan (91x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.13 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.65 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.51 W/kg

SAR(1 g) = 0.926 W/kg; SAR(10 g) = 0.540 W/kg

Maximum value of SAR (measured) = 1.12 W/kg

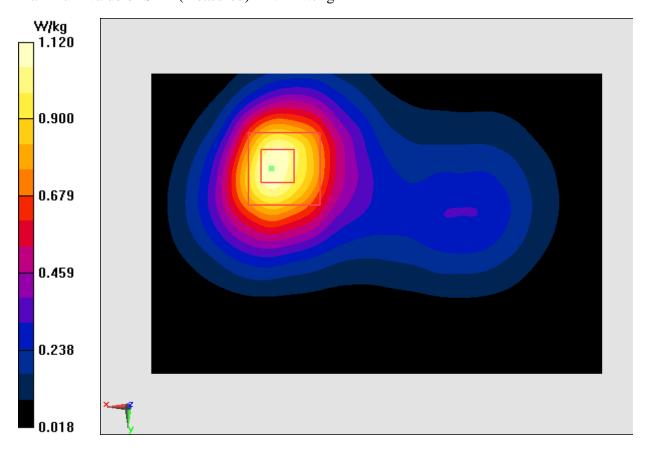


Fig I.7 PCS1900 MHz

PCS1900 Body Rear closed Low with battery CAB0400016C1

Date: 2016-11-11

Electronics: DAE4 Sn1331 Medium: Body 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.51$ mho/m; $\epsilon r = 54.418$; $\rho = 1.51$

 1000 kg/m^3

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C

Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:2.67

Probe: EX3DV4 – SN7307 ConvF(7.67, 7.67, 7.67)

Area Scan (91x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.10 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.48 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.46 W/kg

SAR(1 g) = 0.896 W/kg; SAR(10 g) = 0.529 W/kg

Maximum value of SAR (measured) = 1.06 W/kg

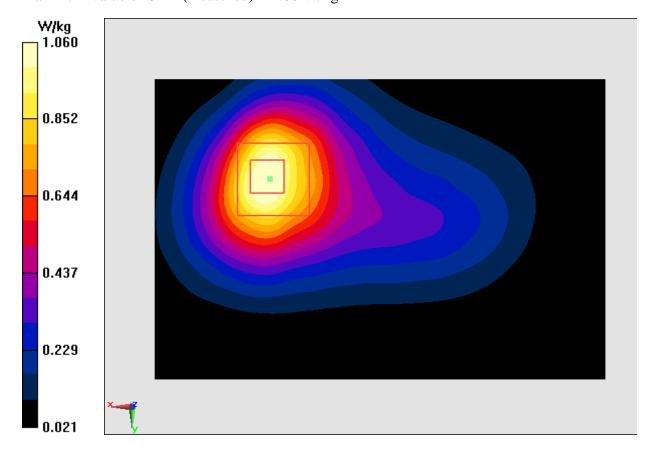


Fig I.8 PCS1900 MHz

ANNEX J Accreditation Certificate

China National Accreditation Service for Conformity Assessment LABORATORY ACCREDITATION CERTIFICATE (Registration No. CNAS L0570)

Telecommunication Technology Labs,
Academy of Telecommunication Research, MIIT

No.52, Huayuan North Road, Haidian District, Beijing, China

No.51, Xueyuan Road, Haidian District, Beijing, China

TCL International E City, No. 1001 Zhongshanyuan Road, Nanshan

District, Shenzhen, Guangdong Province

is accredited in accordance with ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories(CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence to undertake testing and calibration service as described in the schedule attached to this certificate.

The scope of accreditation is detailed in the attached schedule bearing the same registration number as above. The schedule form an integral part of this certificate.

Date of Issue: 2015-11-13
Date of Expiry: 2017-06-19

Date of Initial Accreditation: 1998-07-03

Signed on behalf of China National Accreditation Service for Conformity Assessment

China National Accreditation Service for Conformity Assessment(CNAS) is authorized by Certification and Accreditation Administration of the People's Republic of China (CNCA) to operate the national accreditation schemes for conformity assessment. CNAS is a signatory of the International Laboratory Accreditation Cooperation Mutual Recognition Arrangement (ILAC MRA) and the Asia Pacific Laboratory Accreditation Cooperation Mutual Recognition Arrangement (APLAC MRA). The validity of the certificate can be checked on CNAS website at http://www.cnas.org.cn/english/findanaccreditedbody/index.shtml