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1. Introduction 

 MCNelectron is an open-source single-event Monte Carlo code for simulation of coupled 
electron-photon transport. MCNelectron was written by Andrius Poškus (Vilnius University, 
Faculty of Physics, Department of Solid State Electronics). MCNelectron uses a public-domain 
Fibonacci series random number generator by George Marsaglia and Arif Zaman (downloaded from 
www.netlib.org). MCNelectron is distributed under the GNU General Public License. 
 MCNelectron can be downloaded from http://web.vu.lt/ff/a.poskus/mcnelectron/. 

1.1. Comparison with MCNP6 
 The physics models implemented in MCNelectron are essentially the same as those applied 
by MCNP6 [1]. However, MCNelectron allows only the simplest possible geometry of the 
simulated system: a parallel beam of electrons, positrons or photons with arbitrary energy spectrum 
incident at any angle on an infinite homogeneous layer of arbitrary thickness and arbitrary 
composition. The beam radius is zero. There are no restrictions on position of the starting point of 
the beam (for example, it may be inside the layer). Tallying capability of MCNelectron is much 
more limited than that of MCNP. MCNelectron has only two types of tallies: a plane-crossing tally 
and a pulse-height tally (their MCNP counterparts are “F1” and “F8” tallies, respectively). All 
tallies have equidistant bins. In addition to the tallies, MCNelectron outputs the following statistics: 
• total numbers of various types of energy-loss interaction events, 
• total numbers of secondary electrons and photons created in various types of interactions, 
• total energies of secondary electrons and photons created in various types of interactions, 
• total energy losses of electrons and photons due to various types of interactions, 
• the average energy loss per one secondary electron. 

Only publicly-available information about physics models and simulation methods implemented in 
MCNP was used when writing MCNelectron. The author of MCNelectron has never had access to 
source code of any version of MCNP or any other Monte Carlo simulation software. MCNelectron 
has been written in order to circumvent some of the limitations of MCNP6: 

• Simulation of low-energy (less than 1 keV) electron and photon transport in MCNP6 is done 
using only ENDF/B-VI.8 data (MCNelectron allows replacing ENDF/B cross sections of some 
types of electron interactions by alternative cross sections from other libraries); 

• MCNP6 does CPU-only computations, whereas MCNelectron can perform so-called “hybrid” 
computations, when both the central processing unit (CPU) and Nvidia graphics processing units 
(GPU) are employed in parallel. This is achieved using CUDA (see Section 1.3 for details); 

• MCNP6 does not allow setting the low-energy cutoff limit for electrons to values less than 10 eV 
(MCNelectron allows that); 

• MCNP6 outputs only the statistics pertaining to tracked electrons and photons. Hence, if initial 
energy of a knock-on electron is less than the cutoff energy, that electron will not be counted in 
the total number of knock-on electrons that is reported in the MCNP output file. On the other 
hand, MCNelectron counts the number of ionization events, regardless of the knock-on electron 
energy. This allows to take into account the knock-on electrons with energies less than the cutoff 
energy; 

• MCNP6 does not allow turning off elastic scattering of electrons (MCNelectron allows that); 
• MCNP6 does not allow turning off tracking of particle coordinates (MCNelectron allows that). 

The latter two options are useful for speeding up the simulation when calculating the average 
energy loss per one secondary electron due to complete absorption of incident particle energy in an 
infinite medium (in such a case, coherent scattering of photons should be turned off, too). However, 
even in the case of the maximum complexity of simulation, i.e., when all possible types of 
interactions are “turned on” and particle coordinates are tracked, a CPU-only simulation done with 

http://www.netlib.org/�
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MCNelectron is shorter than a simulation done with MCNP6 in single-event mode (under identical 
simulation conditions, the time of a CPU-only simulation with MCNelectron v1.1.2 is usually from 
40 % to 70 % of the simulation time with MCNP6 in single-event mode, depending on the 
simulated system). 
 By default, the data used by MCNelectron are taken from the ENDF/B-VI.8 library, except 
for cross sections of inner-shell electroionization (they were calculated according to the distorted-
wave Born approximation), cross sections of electron elastic scattering and corresponding angular 
distributions (they were obtained from relativistic (Dirac) partial-wave calculations), and cross 
sections of positron bremsstrahlung (they reflect the effect of partial suppression of positron 
bremsstrahlung in comparison with electron bremsstrahlung, which is not taken into account by the 
ENDF/B data). Those replacements of ENDF/B data are “on” by default, because they increase 
accuracy of the simulation results. However, the user has an option to revert to the ENDF/B data 
when simulating each of the mentioned interactions. In addition, it is possible to replace ENDF/B 
low-energy electroionization and excitation cross sections by third-party cross sections provided by 
the user (with optional interpolation between those low-energy alternative cross sections and high-
energy ENDF/B cross sections). The data that are always taken from the ENDF/B library (i.e., can 
not be replaced) include electron bremsstrahlung cross sections, excitation energy transfer, all 
photon interaction cross sections and atomic relaxation data. 

1.2. Single-event method vs. condensed-history approximations 
 In most available general-purpose Monte Carlo codes, electron transport is simulated using a 
combination of two methods – single-event (SE) and condensed-history (CH), with a possibility to 
choose between the two methods via a user-adjustable parameter. The SE method simulates 
individual electron collisions separately, whereas the CH approximation is based on breaking the 
electron’s path into many steps, chosen long enough to encompass many collisions, which are 
treated by multiple-scattering theories. The need for the CH approximation arises from the fact that 
the average energy loss in one ionizing collision of an electron with energy much higher than the 
ionization threshold is of the order of 10 eV or less in most materials, i.e., relatively small. 
Consequently, as it follows from the law of conservation of momentum, the average angular 
deflection of the incident electron is also relatively small. Hence an electron with energy of the 
order of 10 keV experiences several thousand inelastic collisions with small-angle deflections, and 
an even greater number of elastic collisions before coming to a halt. As electron energy is increased, 
the number of collisions increases proportionally. This large number of collisions can make the 
detailed event-by-event simulation prohibitively long when simulating interaction of high-energy 
electrons with thick targets. The CH approximations make it possible to shorten the simulation 
significantly while preserving the essential physical features of the simulated process. 
 In comparison with the condensed-history approximations, the single-event method is 
conceptually much simpler. In the case of the SE method, motion of a particle is simulated by 
repeating those four steps: 

1) calculate the total cross section and use it to calculate distance to collision, 
2) select target (if there are several types of atoms in the material), 
3) select the type of interaction, 
4) calculate energies and directions of the primary and secondary particles after the interaction. 

This scheme is always applied to photons, because photon transport is faster than electron transport, 
i.e., the number of photon collisions is typically much less than the number of electron collisions. 
 Since the SE method is less dependent on implementation-specific theoretical assumptions 
than the CH approximation, the SE method is potentially more accurate. Its accuracy is mainly 
determined by accuracy of cross sections used for the simulation. 
 MCNelectron simulates coupled electron-photon transport using only the single-event 
method (both for electrons and for photons), except at extremely low electron energies, when a 
diffusion model of elastic scattering may be optionally applied. 
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1.3. CUDA support in MCNelectron 
 There are two versions of MCNelectron: the CPU-only version (the executable file name 
MCNelectron.exe) and the version with CUDA support (MCNelectron_CUDA.exe). The file 
MCNelectron_CUDA.exe can perform so-called “hybrid” computations, when both the central 
processing unit (CPU) and Nvidia graphics processing units (GPU) are employed in parallel. The 
CUDA version of MCNelectron can also perform GPU-only or CPU-only computations (in CPU-
only mode, MCNelectron_CUDA.exe produces the same results as MCNelectron.exe). 
 CUDA (Compute Unified Device Architecture) is a parallel computing platform and 
application programming model created by Nvidia Corporation [2]. It allows using Nvidia video 
cards for general-purpose processing. The GPUs used for the simulation need not to be dedicated 
for general-purpose computations: the video card that outputs images to a computer monitor may be 
used at the same time for the simulation. MCNelectron implements automatic workload balancing 
between the CPU and available CUDA devices during the simulation, so that the CPU and the GPU 
(or several GPUs, if there are two or more Nvidia video cards in the system) spend approximately 
equal times for the simulation. The GPUs must have CUDA compute capability 2.0 or higher. The 
improvement of performance when GPUs are used together with the CPU in comparison with a 
CPU-only computation depends on a particular CPU/GPU combination present in the system. For 
example, simulation time on a single Nvidia GeForce GTX 780 Ti video card is about 1/4 of the 
time required for the same simulation using a single thread on an Intel Core i7-4930K processor. 
However, from a practical point of view it is more meaningful to compare the simulation times 
when the CPU is at full load, i.e., when all cores of the CPU are used in parallel, because in practice 
one is interested in utilizing all available computing power as fully as possible. Since the Intel Core 
i7-4930K processor has 6 cores and uses hyper-threading, the maximum CPU load is achieved with 
12 or more threads, and then the CPU is approximately 8 times faster than a single CPU thread 
(performance does not scale linearly with the number of CPU threads). Hence, an improvement in 
processing speed in hybrid computations is about 50 % when a single GTX 780 Ti video card is 
used together with the CPU, and about 100 % when two GTX 780 Ti video cards are used. This is 
evident in Table 1, which compares simulation times using an Intel Core i7-4930K processor and 
two Nvidia GeForce GTX 780 Ti video cards. In this case, the simulated system consisted of 5 ⋅ 107 
electrons with energy 15 keV, incident normally on a thick layer of germanium. The electron and 
photon cutoff energy was 1 keV. The operating system was 64-bit Windows 8.1. 

 The performance gains caused by using CUDA are strongly dependent on the amount of 
branching in the code that is executed by the GPUs. The GPU architecture can be defined as “Single 
Instruction, Multiple Data streams” (SIMD), which means that in order to achieve maximum 
performance a majority of the CUDA threads should always perform the same instruction 
simultaneously, albeit on different data. This is in contrast with the “Single Instruction, Single Data 
stream” (SISD) architecture implemented on each core of a multi-core CPU. Because of the SISD 
architecture, the different cores of a CPU are completely independent and branching does not affect 
the performance gains caused by using multiple CPU cores simultaneously. However, the code that 
is executed by CUDA devices must be structured quite differently. CUDA groups all GPU threads 
into so-called “warps”, each consisting of 32 threads. To quote “CUDA C Programming Guide” [2]: 
“If threads of a warp diverge via a data-dependent conditional branch, the warp serially executes 

Table 1. Comparison of simulation times 

Program Number of 
CPU threads 

Mode Number of 
GPUs used 

Time 
(min) 

MCNP6.1 16 CH 0 15.5 
MCNP6.1 16 SE 0 54 

MCNelectron v.1.1.0 16 SE 0 23.8 
MCNelectron v.1.1.0 11 SE 1 15.7 
MCNelectron v.1.1.0 11 SE 2 12.5 
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each branch path taken, disabling threads that are not on that path, and when all paths complete, the 
threads converge back to the same execution path.” Thus, all threads of each warp should perform 
the same sequence of instructions in order to minimize branching (also called “warp divergence”). 
In the case of MCNelectron, warp divergence is reduced by breaking each particle history into 
“states” (e.g., one state is generation of a source particle, another one is calculation of cross section, 
yet another one is calculation of the distance to collision, etc.), assigning each warp a particular 
state, and ensuring that at every moment of time the number of particles with identical states is 
sufficient to completely “populate” each warp (i.e., one particle of a given state per one GPU thread 
of the corresponding warp). Each thread of a warp then invokes the corresponding “state handler”. 
Since the state is the same for all threads in a warp, their state handlers perform roughly the same 
sequence of instructions, hence branching is reduced. The new state after executing a state handler 
may be different for different threads of a given warp. This necessitates re-assigning states to warps 
and re-distributing the particles among warps in the next iteration. This step is done serially, hence 
it limits the maximum performance that can be achieved. In MCNelectron v1.1.2, the mentioned re-
distribution step takes about 15 % of entire processing time. 

2. Cross section data files 

 The MCNelectron distribution package includes ENDF cross sections only for five noble 
gases (helium, neon, argon, krypton and xenon), as well as for oxygen, gold and uranium. They are 
in the subfolder “Data\ENDF”. The complete set of ENDF/B electro-atomic, photo-atomic and 
atomic relaxation data can be downloaded from http://www.nndc.bnl.gov/endf/b7.1/download.html, 
as well as from several other locations. Below are the links to the three zip archives with all ENDF 
data that may be needed: 

http://www.nndc.bnl.gov/endf/b7.1/zips/ENDF-B-VII.1-electrons.zip , 
http://www.nndc.bnl.gov/endf/b7.1/zips/ENDF-B-VII.1-photoat.zip , 
http://www.nndc.bnl.gov/endf/b7.1/zips/ENDF-B-VII.1-atomic_relax.zip . 

Each of those files contains one of the three needed sublibraries of the ENDF/B-VI.8 library: 

• Electro-atomic 
• Photo-atomic 
• Atomic relaxation 

 There must be three files with ENDF data for each of the chemical elements that compose 
the target material: 

• a file with electron interaction cross sections, 
• a file with photon interaction cross sections, 
• a file with atomic relaxation data. 

Those files must be in three subfolders of the folder specified in the input file after the keyword 
DIR (for a complete list of keywords, see Sections 4.1 – 4.6). The names of those subfolders are 
fixed: they must be “electrons”, “photoat” and “atomic_relax”, respectively. Format of the names of 
the mentioned files is also fixed. That format becomes clear after looking at those three names of 
files containing the ENDF data for argon: 

e-018_Ar_000.endf 
photoat-018_Ar_000.endf 
atom-018_Ar_000.endf 

(the number after the hyphen is the atomic number of the chemical element). For example, if the 
ENDF data are stored in the folder C:\ENDF\, then the full path names corresponding to the above-
mentioned three files with the data for argon would be the following: 

 

http://www.nndc.bnl.gov/endf/b7.1/download.html�
http://www.nndc.bnl.gov/endf/b7.1/zips/ENDF-B-VII.1-electrons.zip�
http://www.nndc.bnl.gov/endf/b7.1/zips/ENDF-B-VII.1-photoat.zip�
http://www.nndc.bnl.gov/endf/b7.1/zips/ENDF-B-VII.1-atomic_relax.zip�
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C:\ENDF\electrons\e-018_Ar_000.endf 
C:\ENDF\photoat\photoat-018_Ar_000.endf 
C:\ENDF\atomic_relax\atom-018_Ar_000.endf 

Note: If the ENDF/B data were downloaded using the three links to electro-atomic, photo-atomic 
and atomic relaxation data given above, then it is sufficient to place those files into a chosen folder 
and extract them (the names of extracted files and subfolders will be as described above). If the 
ENDF/B data were downloaded from other locations, then the file names may be different. 

 The files with alternative low-energy electron interaction cross sections must have the same 
format as the files posted on the LXCat website (www.lxcat.net). Those files may have any names 
and may be stored in any location, because MCNelectron requires specification of full paths to 
those files for each of the chemical elements separately. The alternative low-energy 
electroionization and atomic excitation cross sections must be in different files. Thus, if alternative 
cross sections are used, there must be two additional files for each of the chemical elements: a file 
with alternative electroionization cross sections and a file with alternative excitation cross sections. 
There may be several electroionization or excitation processes defined in each of those files (the file 
format must be the same as format of files posted on www.lxcat.net). Instructions for retrieving 
cross sections from www.lxcat.net : 

1) Select menu “DATA CENTER”, then select the menu item “browse and download”. 
2) In the menu on the right, select “SCATTERING CROSS SECTION” and click “NEXT”. 
3) In the menu on the right, select or unselect the necessary databases and click “NEXT”. 
4) Select the necessary chemical element and click “NEXT”. 
5) Select either “Excitation” or “Ionization” and click “NEXT”. 
6) Ensure that all excitation or ionization processes are selected and click “NEXT”. 
7) Left-click the button “DOWNLOAD DATA” and save the page, or right-click that button and 

use the context menu item “Save Link As…”. The full path of the created file will have to be 
specified in the file with alternative cross section information (its format is described in 
Section 4.2).   

Note: Alternatively, data can be retrieved from www.lxcat.net by selecting the menu item 
“download for offline use” in Step 1. However, then the downloaded file will contain data for all 
interaction processes. Since MCNelectron requires the excitation and ionization cross sections to be 
in separate files, the file retrieved by the latter method will have to be edited with a text editor. 
 

3. Compiling MCNelectron 

 MCNelectron is a Windows application (the oldest supported version of Windows is 
Windows XP SP2; all newer versions of Windows are supported). There is a separate distribution 
package (a WinRAR self-extracting archive) for each of the two mentioned versions of 
MCNelectron, i.e., the CPU-only version and the CUDA version. Each of those packages contains 
the source files, the final executable file (“MCNelectron.exe” or “MCNelectron_CUDA.exe”, 
respectively) and a Microsoft Visual Studio 2010 project for compiling MCNelectron. The 
mentioned two file names correspond to the executables compiled using the “Release” 
configuration of Microsoft Visual Studio 2010. The names of executables compiled using the 
“Debug” configuration are “MCNelectron_debug.exe” and “MCNelectron_CUDA_debug.exe”, 
respectively (the latter two files are not included in the distribution packages). The following four 
source files are needed for compiling the CPU-only version of MCNelectron: 

MCNelectron.cpp, 
RandGen.cpp, 
RandGen.h, 
get_executable_name.cpp. 

The following seven source files are needed for compiling the CUDA version of MCNelectron: 

http://www.lxcat.net/�
http://www.lxcat.net/�
http://www.lxcat.net/�
http://www.lxcat.net/�
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MCNelectron_CUDA.cu, 
MCNelectron_CUDA2.cu, 
MCNelectron_CUDA.h, 
RandGen.cu, 
RandGen_CUDA.cu, 
RandGen_CUDA.h, 
get_executable_name.cpp. 

In order to be able to compile the CUDA version of MCNelectron, the CUDA Toolkit 6.5 must be 
installed (it can be downloaded from https://developer.nvidia.com/cuda-toolkit-65). Note that 
compiling MCNelectron_CUDA does not require presence of a CUDA device in the computer. If 
no CUDA devices are available, the compiled code will still be able to perform CPU-only 
computations. At least 8 GB of available physical memory are recommended in order to be able to 
compile the release version of MCNelectron_CUDA on 64-bit Windows 7 or 8 (the requirements 
for computers running 32-bit Windows are not known, because at the time of this writing the only 
attempt to compile MCNelectron_CUDA on 32-bit Windows was made on a computer with 4 GB 
of RAM, of which approximately 2.5 GB were available, and then only the debug version of 
MCNelectron_CUDA was compiled successfully, whereas an attempt to compile the release version 
failed with a message about a memory allocation error). 
 The Microsoft Visual Studio 2010 project for compiling MCNelectron_CUDA produces an 
executable file that will run on CUDA devices with compute capabilities 2.0, 3.0, 3.5, 3.7, and 5.0. 
However, because of this wide range of target architectures, the compilation time is more than twice 
longer and the executable file is several times larger than in the case of a single compute capability. 
If the code is intended to be used on a particular type of CUDA devices, then the compilation time 
may be shortened and the size of the executable file may be decreased by specifying only the 
compute capability of that device in CUDA C compiler options. This is done using the Visual 
Studio menu command “Project/MCNelectron_CUDA Properties…”. When this command is 
selected, a dialog window with the project property pages is opened. Then, using the left-hand pane 
of that dialog window, the page “Configuration Properties / CUDA C/C++ / Device” must be 
activated. The target architectures are entered in the cell “Code Generation”. The above-mentioned 
set of target architectures is specified by the following line: 

compute_20,sm_20;compute_30,sm_30;compute_35,sm_35;compute_37,sm_37;compute_50,sm_50; 

In order to produce a code for CUDA devices with a specific compute capability, e.g., 3.5, that line 
must be replaced by 
compute_35,sm_35; 

An example of a CUDA device with compute capability 3.5 is a Nvidia GeForce GTX 780 video 
card. An example of a CUDA device with compute capability 2.0 is a Nvidia GeForce GTX 580 
video card. 

4. Running Monte Carlo simulations with MCNelectron 
 MCNelectron is a Win32 console application (the Windows console is opened by running 
the Windows command-line interpreter “cmd.exe”). In the simplest case, the command line is 

MCNelectron.exe  in  <input_file_name>  out  <output_file_name> 

or: 

MCNelectron.exe  in  <input_file_name>  out  <output_file_name>  alt  <alternative_cross_sections_info_file> 

(if the CUDA version is used, “MCNelectron” must be replaced by “MCNelectron_CUDA”). In the 
case of the first command-line format, only ENDF cross section data files and the data files 
contained in the MCNelectron distribution package (subfolder “Data”) will be used. In the case of 
the second command-line format, a part of low-energy electron interaction cross sections will be 
read from files with alternative cross sections supplied by the user. The file with alternative cross 

https://developer.nvidia.com/cuda-toolkit-65�
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section info contains the names of files where those cross sections are stored, the optional 
interpolation information and optional additional energies (eV) for linearly interpolated values of 
alternative electroionization cross sections that should be inserted in the energy range where the 
alternative electroionization cross sections are defined. If there are no additional energies, then the 
final set of alternative electroionization cross sections will be defined for the same energies as 
ENDF electroionization cross sections. 
 By default, MCNelectron runs in single-thread mode on the CPU only (i.e., without using 
CUDA). In order to use multiple concurrent threads during simulation, their number must be 
specified on the command line by inserting the keyword “tasks”, followed by the number of 
threads, for example: 
MCNelectron.exe   tasks  4   in  input.txt   out  output.txt 
In the latter example, four independent threads would be used on the CPU during the simulation. On 
multi-processor (or multi-core) systems, multithreading can significantly reduce simulation time. 
The number of threads can be assigned any value that does not exceed the number of streams of 
random numbers (see description of the keyword NSTREAMS below). However, there is no point 
in using a number of threads that is greater than the number of logical processors in the system (a 
further increase of the number of threads will not cause a decrease of the simulation time). The final 
results of the simulation do not depend on the number of threads that was used during the 
simulation. In the case of the CUDA version of MCNelectron, the number of GPU threads used by 
each available CUDA device can also be specified on the command line using the keyword 
“threads_CUDA”, e.g., “threads_CUDA 960” (for more information about CUDA-specific 
keywords, see Section 4.6). 
 Another optional keyword that may be inserted in the command line is “output_cs 1” or 
“output_cs 0”. If “output_cs 1” is used, files with values of electron interaction cross sections are 
created before starting the simulation. In such a case, MCNelectron creates a folder “Cross 
sections” in the current folder, with subfolders for each of the chemical elements. Each of those 
subfolders contains the following text files: 
• a file with values of elastic, bremsstrahlung, excitation, total ionization, total inelastic and total 

interaction cross sections corresponding to the energy interval that is used during the simulation, 
• files with values of ionization cross section for each electronic subshell and for all available 

energies of the incident electron (including the energies that are not needed for the simulation), 
• a file with values of the energy loss during atomic excitation for all available energies of the 

incident electron. 
Each of those files contains two or more columns of numbers. The first column contains electron 
energy values (eV). The other columns contain cross section values (b) or energy loss values (eV). 
 It is possible to override the specification of the source energy distribution defined in the 
input file by using the command-line keyword “E”, followed by an energy value, (e.g., “E 10”). In 
such a case, a source of monoenergetic particles will be simulated. The number of source particles 
specified in the input file may be overridden on the command line using the keyword “N”. 
 During the simulation, the CPU-only version of MCNelectron displays the time elapsed 
since the start of simulation (in seconds), the current number of finished histories, as well as the 
sequence number of the last source particle and the current number of banked particles for each of 
the first three or five active threads (those numbers are updated every second). In addition, if 
“control tallies” are used (see Section 4.4), the corresponding largest error is shown. 
MCNelectron_CUDA displays some real-time statistical information about the CUDA devices used 
for the simulation (for more information about the CUDA device statistics, see Section 4.7). At the 
end of the simulation, the contents of the output file are reproduced in the console window. The 
output format is similar to format of a section of a MCNP output file. All statistics under 
“electrons” include the contribution from positrons, too. To avoid text wrapping (which would 
reduce readability of the output data on the screen), the screen buffer width must be at least 170 
(this can be achieved, e.g., by entering “mode 170” at the command prompt in the console window 
before starting the simulation). Simulation can be interrupted by pressing the keys “Ctrl+C”. 
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4.1. Input file format 
Input file example: 

MAT   54 0.1  18 0.2  2 0.7 
CONC -1 
THICK 1e-5 
E_UNIT MeV 
CUT_E 1e-5 
CUT_P 1e-6 
PART E 
TRACKPOS 0 
DIR C:\ENDF\ 
N 1000 
1 
 Each line of the input file, excluding the lines with the definition of the source energy 
spectrum (the final line in the above example), starts with a keyword. Keywords are case-
insensitive. Below are descriptions of the keywords that are common to both the CPU-only and 
CUDA versions of MCNelectron: 
MAT is used to define composition of the target material. For each chemical element, there must be 

two numbers: atomic number and atomic fraction. If the fractions are negative, they will be 
interpreted as mass fractions. No more than 20 chemical elements are allowed. 

CONC is used to specify the total atomic concentration (cm−3). If the number that follows CONC is 
negative, it is interpreted as total density (g/cm3). 

THICK is used to specify the thickness of the target layer (cm). If the number that follows THICK 
is negative, it is interpreted as mass thickness (g/cm2). 

SURFACE   X Y Z   A B C   is used to specify one surface of the layer. X, Y and Z are coordinates 
of any one point of that surface (in cm). A, B and C are the components of the normal vector 
(that vector is not required to be of length 1). The other surface of the layer is in the direction of 
the normal vector relative to the surface defined by this keyword, at a distance defined using 
the keyword THICK (see above). 

BEAM   X Y Z   A B C   is used to specify the starting point and direction of the incident beam. X, 
Y and Z are the coordinates of the starting point (in cm). A, B and C are the components of the 
vector that has the same direction as the incident beam (that vector is not required to be of 
length 1). There are no restrictions on the values of X, Y and Z (for example, the starting point 
of the beam may be inside the target layer). 

E_UNIT specifies the unit of energy that is used in the input and output files. It must be one of three 
units: “MeV”, “keV”, or “eV”. 

CUT_E is used to specify the low-energy cutoff value for electrons. 
CUT_P is used to specify the low-energy cutoff value for photons. 
PART should be followed by the letter ‘E’ if source particles are electrons, ‘P’ for photons, or “E+” 

for positrons. 
TASKS is used to specify the number of concurrent simulation threads on the CPU (for example, 

“TASKS 4”). I.e., this keyword has the same function as the mentioned command-line keyword 
“tasks”. If the keyword “TASKS” is specified both on the command line and in the input file, 
then priority is given to the number of threads specified on the command line (in such a case, a 
corresponding message is displayed in the console window). Note: If CUDA devices are used, 
then one CPU thread is dedicated to communication with them and is not used for the actual 
simulation of particle interactions. This thread is not included in the number of threads 
specified after the keyword TASKS. 
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The following 19 keywords are used as “switches”, which “turn on” or “turn off” certain features of 
the simulation. A non-zero value of the integer number that follows each of those keywords means 
that the feature is “turned on”, and the zero value means that it is “turned off”. Those features are: 

TRACKPOS – tracking of particle coordinates (i.e., position and direction of motion), 
COH – coherent scattering of photons (if TRACKPOS is 0, then the option “COH 1” is applied to 

source photons only), 
ELASTIC – elastic scattering of electrons and positrons, 
TRACK_E – tracking of secondary electrons and positrons, 
TRACK_P – tracking of secondary photons, 
TRACK_P_E – tracking of photon-produced electrons and positrons, 
TRACK_K – tracking of knock-on electrons, 
TRACK_B – tracking of bremsstrahlung photons, 
TRACK_X – tracking of X-ray photons (both fluorescence and electron X-rays), 
ION_DWBA – replacement of the ENDF/B inner-shell electron impact ionization cross sections by 

those calculated using the distorted-wave Born approximation (DWBA). The latter cross 
sections are the same ones that are used by the PENELOPE code system. They were calculated 
using the code by D. Bote, F. Salvat, A. Jablonski, and C. J. Powell, which was published in 
2009 [3]. Those cross sections are stored in the file “Data\IonDWBA.dat” in binary format. 
Note: The option “ION_DWBA 1” is not allowed when a file with alternative cross sections 
information is used (command-line keyword “alt”). 

ELASTIC_DPW – replacement of the ENDF/B electron elastic scattering cross sections by those 
obtained from relativistic (Dirac) partial-wave calculations. Those cross sections were 
calculated using the code ELSEPA by F. Salvat, A. Jablonski and C. J. Powell [4] (the same 
cross sections are used by the PENELOPE code system). They are stored in binary files 
“Data\ElasticDPW_totalCS.dat” and “Data\ElasticDPW_angularDistr.dat”. The latter file 
contains angular distributions calculated for electron energies from 10 eV to 1 GeV on a 
logarithmic scale (the increment of the base-10 logarithm of energy is equal to 0.1). 

BREMS_ANGULAR_DISTR – non-isotropic angular distribution of bremsstrahlung, 
BREMS_BINARY_DATA – using binary bremsstrahlung angular distribution data (otherwise, the 

bremsstrahlung data are loaded from text files specified by the user), 
BREMS_POSITRON_CORRECTION – partial suppression of positron bremsstrahlung in 

comparison with electron bremsstrahlung, 
PE_ANGULAR_DISTR – non-isotropic angular distribution of photoelectrons, 
PP_ENERGY_DISTR – non-uniform distribution of positron and electron energies during pair 

production, 
PP_ANGULAR_DISTR – angular distribution of electrons and positrons created in pair production 

events, 
INCOH_DOPPLER – Doppler broadening of energy distribution of incoherently scattered photons, 
INCOH_SUBTRACT_BINDING_E – apply the binding energy correction to the energy of the 

Compton recoil electron (i.e., subtract the binding energy of the subshell from which the 
electron was ejected). 

When TRACKPOS is 0 and the source emits photons, the geometrical parameters (defined using 
the keywords THICK, SURFACE and BEAM) are only used to determine if a source photon 
collided with an atom in the layer. All subsequent interactions in the same history are treated as 
though the layer was infinite in all directions. If the source emits electrons or positrons, then in the 
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case of TRACKPOS equal to 0 the geometrical parameters are not used at all. The option 
“TRACKPOS 0” should be used to calculate the number of secondary electrons when energy of the 
source particle is completely absorbed in the target material. For keywords COH, ELASTIC, 
TRACK_P_E, TRACK_K, TRACK_B and TRACK_X, a negative value has a special meaning: it 
means that the corresponding switch should be set to a default value (the latter may depend on 
values of other switches). The last eight mentioned “switches” (from 
“BREMS_ANGULAR_DISTR” to “INCOH_SUBTRACT_BINDING_E”) control simulation of 
several physical effects, for which the ENDF/B-VI.8 library provides neither tabular probabilities 
nor an analytic prescription. For some of those effects, there are additional keywords controlling 
some details of the simulation. Those keywords and the corresponding simulation methods are 
described in Section 5 of this document. 

SEED is used to specify the seed of the “type 1” random number generator (this is the mentioned 
Fibonacci series random number generator; the “type 2” random number generator is the 
XORWOW generator from the cuRAND library, which can be used only by CUDA devices). 
The seed may be any integer number from 0 to 30081 inclusive. The seed may be also specified 
on the command line (similarly to the above-mentioned keyword TASKS). 

DIR is used to specify the folder with ENDF data. If that folder name does not contain the full path 
(i.e., if it does not start with the backslash ‘\’ and does not contain the colon ‘:’), then it is 
assumed to be a subfolder of the folder where the MCNelectron executable is. 

NSTREAMS is used to specify the number of independent streams of random numbers. For 
optimum performance, the number of streams should be a multiple of the number of threads. 
The maximum allowed number of streams is 65536. This parameter may be also specified on 
the command line. Note: The maximum number of unique random number streams that can be 
generated by the Fibonacci series generator using a given seed (specified after the mentioned 
keyword “SEED”) is 31329. Consequently, the streams with sequence numbers from 31330 to 
2 ⋅ 31329 = 62658 will be generated using the next seed (i.e., the seed that exceeds the specified 
seed by 1), and the streams with sequence numbers from 62659 to 65536 will be generated 
using the seed that exceeds the specified seed by 2 (if the seed value obtained by adding 1 or 2 
is greater than 30081, then it is reduced by 30082). This should be kept in mind when re-doing 
a simulation with a different seed: if the number of random number streams is greater than 
31329 and the seeds differ only by 1, then some of the streams will be the same in both 
simulations. As a result, some of the simulated histories will be also exactly the same, which is 
usually undesirable. In order to ensure that different simulations do not re-use the same random 
number streams when the total number of streams exceeds 31329, the values of the seed in 
those simulations should differ at least by 2 or 3. 

N is used to specify the number of incident particles. This parameter may be also specified on the 
command line. 

COH_THR is used to specify the coherent scattering angular sampling threshold value. This value 
should not be greater than 0.001 or less than 0. A larger value may shorten the simulation when 
the angular distribution of photon coherent scattering is extremely peaked in the forward 
direction (i.e., when photon energy is very large). A smaller value leads to more accurate 
sampling of angular deflections in such a situation. However, a very small (e.g., zero) value of 
this parameter can make the rejection-based sampling algorithm very inefficient. This means 
that a very large number of tries may be needed before accepting a sampled value of angular 
deflection after a coherent scattering event. 

CUT_WT and the keywords starting with “FORCE_” or “FORCING_” are related to interaction 
forcing (one of the variance reduction techniques) and are described in Section 4.5. 

DIFFUSION_TOTAL_TO_INELASTIC_RATIO_THR controls an option to apply a diffusion 
model of elastic scattering of electrons at extremely low electron energies, when the elastic 
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scattering cross section is much larger than cross sections of all other types of electron 
interactions. When the diffusion model is applied, the program first generates the distance to 
the next inelastic interaction event (i.e., the path traveled to that event, not the displacement), 
and samples the electron coordinates corresponding to that event from a Gaussian distribution 
with a root-mean-square displacement proportional to the square root of the generated path. 
This reduces the “electron trapping” effect (which could otherwise slow the simulation 
significantly) at the expense of fidelity of the simulated electron trajectory when the electron 
energy is only a few electronvolts above the ionization threshold of the material, or when the 
energy is below the ionization threshold. The transition to the diffusion model occurs at a user-
specified value of the total-to-inelastic cross section ratio. The keyword 
“DIFFUSION_TOTAL_TO_INELASTIC_RATIO_THR” is used to specify the mentioned 
threshold value of that ratio. The allowed values of that threshold are from 10 to 1018. The 
diffusion model of elastic scattering is never applied if the distance from the electron to the 
nearest surface of the layer is less than the mean free path times the square root of this 
parameter. In order to “turn off” application of the diffusion model, this parameter must be set 
to any sufficiently large value (e.g., to the maximum possible value 1e18). 

DIFFUSION_DIST_TO_RMSPATH_RATIO_THR controls application of the diffusion model of 
elastic scattering when the electron is close to the surface of the layer. The above-mentioned 
Gaussian distribution is only exact when the electron is at a depth d large enough to make the 
probability that the electron escapes from the layer before the next inelastic collision occurs 
practically zero. Consequently, the diffusion model of elastic scattering may introduce 
significant errors when estimating the moment and position of electron’s escape from the layer 
if the electron is close to the surface. In order to decrease those errors, a single diffusion step 
mentioned above is replaced by a sufficiently large number of shorter diffusion steps, which are 
less than the root-mean-square displacement and also less than d (but still greater than the mean 
free path) if d is less than a user-specified number of r.m.s. displacements (the latter r.m.s. 
displacement is estimated as described above). This number is specified by the latter keyword. 
The allowed values of that number are from 2 to 10. 

The following three keywords control the error introduced into the angular cumulative distribution 
function (CDF) of elastic scattering when some of the points in the CDF tables are removed (this 
removal of points is needed to speed up the process of searching for a probability value in the CDF 
table). The random variable that is sampled using those CDF tables is the cosine of the scattering 
angle. That cosine will be denoted μ. 

ELASTIC_CDF_CUTOFF specifies the minimum value of the CDF, below which all points are 
removed (except for the initial point, which corresponds to CDF = 0 and μ = −1). If at least one 
point is removed, then the initial value of the probability density function (PDF) is replaced by 
the average PDF over the interval of μ from −1 up to the value of μ corresponding to the first 
CDF value that is above the mentioned cutoff. 

ELASTIC_CDF_STEP is the maximum allowed difference of two adjacent CDF values in the CDF 
table. A point can be removed only if the corresponding CDF value exceeds the previous 
accepted CDF value by less than this “step”. However, this condition is not sufficient for 
removal of a point (see description of the next keyword).  

ELASTIC_PDF_ERROR controls another condition that must be tested in order to determine if a 
point can be removed: the deviations of PDF values corresponding to the removed points from 
the linearly interpolated PDF (i.e., from the straight line joining the two accepted PDF values 
over the interval where the removed points are) must not exceed this parameter multiplied by 
the average PDF calculated over the same interval. I.e., this parameter may be interpreted as the 
maximum allowed relative error of PDF introduced by removal of points. If 
ELASTIC_PDF_ERROR is zero, no points will be removed, i.e., the original CDF and PDF 
tables will be used during the simulation. Note: This removal of points is useful only in the 
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case “ELASTIC_DPW 1” (see above for a description of the keyword “ELASTIC_DPW”); 
otherwise, it would not cause a significant improvement of performance, because the tables of 
elastic scattering angular PDF in the ENDF/B library are already small enough. Consequently, 
the following convention is used: if this parameter is entered with the minus sign, then it will be 
applied only in the case “ELASTIC_DPW 1”, otherwise it will be assumed to be zero. In order 
to force the reduction of points in the ENDF/B elastic scattering angular CDF tables, too, this 
parameter must be entered without the minus sign. 

The 15 keywords that will be described next are related to “mapping” of various tables of sorted 
non-equidistant values used for cross section lookup (e.g., the table of electron energies used for 
selecting the angular CDF of elastic scattering corresponding to the current energy, or the table of 
CDF used for selecting the elastic scattering angle corresponding to the current value of probability) 
to “index arrays”. Each element of an index array corresponds to a particular “index value”, and all 
index values are equidistant (further on, each interval between two adjacent index values will be 
called a “bin”). Each element of the index array is equal to the sequence number of the largest 
element of the corresponding original table that does not exceed the corresponding index value. If 
the bins can be made narrow enough to accommodate no more than one value of the original table 
(a “breakpoint”), then the index array can significantly shorten the look-up procedure, because the 
sequence number of the index value corresponding to the current value of the control variable (for 
example, energy) is determined simply by dividing the latter value by the bin width. After that, only 
one comparison operation is needed in order to locate the two adjacent elements of the 
corresponding original table that “bracket” the current value of the control variable. In 
MCNelectron, each bin is allowed to contain up to 2 breakpoints, hence the maximum number of 
comparison operations that may be needed is 2. This mapping may be not only linear (as in the 
above example), but also logarithmic (which is optimal when the value of the control variable 
increases exponentially as a function of its sequence number), or “reverse logarithmic” (which is 
optimal when the deviation of the control variable from its maximum value decreases exponentially 
as a function of its sequence number). 

 There are six types of tables that can be mapped to index arrays: 

1) the table of incident electron energy values used for estimating the cross sections of various 
types of electron interactions, 

2) the table of electron energies, where each energy corresponds to a table of angular CDF of 
elastic scattering, 

3) tables of angular CDF of elastic scattering mentioned above, 

4) the table of incident electron energy values used for estimating the energy transfer during 
atomic excitation, 

5) the table of incident electron energies, where each energy corresponds to a table of energy 
CDF of a knock-on electron (emitted during impact ionization), 

6) tables of energy CDF of knock-on electrons mentioned above. 

The latter 5 types of tables are defined for each chemical element separately. The first mentioned 
table is used for sampling both the chemical element and the type of the interaction. Regardless of 
the table type, at least two parameters must be defined: “index type” and “index exponent”. The 
corresponding keywords end with “_INDEXTYPE” and “_INDEXEXPONENT”, respectively. The 
list of 12 keywords used for specifying the index type and the index exponent for each of the 
mentioned six types of tables is provided below: 

1) SIGMA_E_INDEXTYPE, SIGMA_E_INDEXEXPONENT 
2) ELASTIC_E_INDEXTYPE, ELASTIC_E_INDEXEXPONENT 
3) ELASTIC_CDF_INDEXTYPE, ELASTIC_CDF_INDEXEXPONENT 
4) EXC_E_INDEXTYPE, EXC_E_INDEXEXPONENT 
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5) ION_E_INDEXTYPE, ION_E_INDEXEXPONENT 
6) ION_SEC_E_CDF_INDEXTYPE, ION_SEC_E_CDF_INDEXEXPONENT 

The index type defines the type of mapping. The types of mapping, sorted by increasing 
complexity, are the following: 

index type = 1: linear, with at most 1 breakpoint in a bin, 

index type = 2: linear, with at most 2 breakpoints in a bin, 

index type = -1: logarithmic, with at most 1 breakpoint in a bin, 

index type = -2: logarithmic, with at most 2 breakpoints in a bin, 

index type = -3: reverse logarithmic, with at most 1 breakpoint in a bin, 

index type = -4: reverse logarithmic, with at most 2 breakpoints in a bin. 

If the index type is 0, then no mapping will be applied to the given type of tables, i.e., values will be 
found in those tables using the method of binary search. 

The index exponent defines the maximum number of index values, i.e., the maximum size of the 
index array. The latter number is calculated as 2index exponent + 1. Having specified the index type and 
the index exponent, the program will test all index types from the simplest one up to the specified 
one (in the same order as above) in an attempt to find the simplest possible type of mapping that can 
be obtained without exceeding the specified maximum size of the index array (if no more than 1 
breakpoint is required, then the types of mapping with 2 breakpoints will be skipped). If such type 
of mapping is found, the program will successively halve the size of the index array (i.e., decrease 
the index exponent by 1) in an attempt to find the smallest index exponent that can be used without 
exceeding the specified maximum number of breakpoints in a bin. If all attempts fail, index type 
will be reset to 0, which means that no mapping will be applied to the given type of tables, i.e., 
values will be found in those tables using the method of binary search. 

In addition to the index type and the index exponent, the two types of tables with CDF values (i.e., 
tables of angular CDF of elastic scattering and tables of energy CDF of knock-on electrons) need 
one more parameter specified. That parameter indicates if the first interval in the table (i.e., the 
interval between the first two points) should be excluded from mapping. If so, then before starting 
the lookup process the program will check if the current value of the control variable belongs to that 
interval, and the index array will be used only if it is determined that the value is outside that 
interval. The corresponding two keywords are 

ELASTIC_CDF_EXCLUDEFIRST   and   ION_SEC_E_CDF_EXCLUDEFIRST 
Those two keywords must be followed by “1” or “0”, depending on whether the first interval should 
be excluded or not. Note: These keywords have an effect only in the case of linear mapping (in the 
case of logarithmic or reverse logarithmic mapping of CDF tables, the first interval is always 
excluded). 

The last parameter related to index arrays is a “switch” that controls output of information about 
used index arrays (i.e., types of mapping and maximum sizes of index arrays for each type of tables 
and each type of mapping) in the console window before starting the simulation. The corresponding 
keyword is 

OUTPUT_INDEX_ARRAY_INFO 
(it must be followed by “1” or “0”, as for all other switches). 

The following keywords are related to pulse-height and plane-crossing tallies: 

PULSE_HEIGHT is used to specify calculation of the pulse-height tally, i.e., the tally of absorbed 
energy. It must be followed by three space-delimited numbers: the lower bound of the energy 
range, the upper bound of the energy range, and the number of bins. Then MCNelectron will 
divide the specified energy interval into the specified number of equidistant bins and count the 
number of histories when the energy absorbed in the target material belonged to each of those 
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bins. Each bin count is incremented when the absorbed energy is less than or equal to the high-
energy limit of the bin and greater than the low-energy limit of the bin. The histories when the 
absorbed energy was less than or equal to the low-energy bound of the first bin, or greater than 
the high-energy limit of the last bin, are not counted. The tally data are placed into a text file 
“PulseHeight.txt”, which is in a subfolder created in the same folder as the main output file. 
The subfolder name includes the output file name (the subfolder name format is 
“Files_<output_file_name>”). The file “PulseHeight.txt” contains three columns of numbers: 
the high-energy limits of all bins, the corresponding number of counts and the relative standard 
deviation of each number (the relative standard deviation is equal to the inverse square root of 
the number of counts). Note: It is also possible to specify the “target” relative standard 
deviation that must be reached in order to stop the simulation (see Section 4.4 for more details). 

ETALLY or ETALLY<n>, where “<n>” is an integer number from 1 to 20, specifies a plane or a 
set of parallel equidistant planes, as well as one or more tallies of the number of electrons or 
positrons crossing those planes (see Section 4.3 for more information about the tallies). 

PTALLY or PTALLY<n>, where “<n>” is an integer number from 1 to 20, specifies a plane or a 
set of parallel equidistant planes, as well as one or more tallies of the number of photons 
crossing those planes (see Section 4.3 for more information about the tallies). 

E, THETA, MU, R, PHI, X, or Y, or the same keyword followed by an integer number from 1 to 20 
(without a space), specifies a range of values of one of seven quantities (energy, angle of 
incidence, cosine of the incidence angle, radial coordinate, azimuthal angle, X coordinate, or Y 
coordinate respectively) to be used in specifications of plane-crossing tallies (see Section 4.3 
for more information about plane-crossing tallies and about defining a range of values). 

TALLIES_PER_SOURCE is a “switch” that specifies whether the counts in pulse-height and plane-
crossing tallies should be divided by the total number of source particles.  

E_CONTIGUOUS is a “switch” that specifies the order of energy and probability values in the 
definition of the source energy spectrum (see below). 

Any non-empty line that starts not with one of the mentioned keywords is interpreted as a part of 
the definition of the energy spectrum of incident particles. Such lines must contain only numbers. If 
there is only one such line and if it contains only one number (as in the above example), then a 
source of monoenergetic particles will be simulated, and that number will be interpreted as the 
source energy value. In the above example, the source emits 1000 electrons with energy 1 MeV. If 
there are two or more numeric values in total, then one half of them should have the meaning of 
energy and the other half should have the meaning of corresponding weights. Each weight is 
proportional to probability that the source particle energy will belong to the energy interval with 
limits equal to the last two energy values (i.e., those numbers define the table of the particle energy 
distribution). The mentioned weights need not to be normalized to 1 (MCNelectron does that 
automatically). The first weight must be zero. The relative order of energies and weights is defined 
using the mentioned keyword “E_CONTIGUOUS”. If the integer number that follows 
E_CONTIGUOUS is non-zero, then the first half of all numbers will be interpreted as energy 
values, and the second half will be interpreted as the weights, listed in the same order as energies. 
Otherwise, energies and corresponding weights must be in pairs: “Energy No.1  Weight No.1   
Energy No.2  Weight No.2”, etc. Note: In order to make it easier to copy spectrum data from 
MCNP input files into MCNelectron input files, MCNelectron ignores the character ‘&’, which is 
used as a line-continuation character in MCNP input files (in MCNelectron input files, a line 
continuation character is not required). 
 Only the definition of the source energy spectrum and the keywords MAT, CONC, THICK, 
N must be present in the input file. All other keywords may be absent. Then the corresponding 
parameters will be assigned default values. The keyword THICK may be absent when TRACKPOS 
is 0 and the source emits electrons or positrons, because in that case the geometrical parameters are 
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not used during simulation. In addition, if the source energy value and the number of source 
particles have been specified on the command line using the keywords “E” and “N”, then definition 
of the source energy spectrum and the keyword “N” may be absent, too (otherwise those 
specifications in the input file will be ignored). The default values are the following: 

SURFACE 0 0 0 0 0 1 
BEAM  0 0 0 0 0 1 
E_UNIT  MeV 
CUT_E  1e-5 
CUT_P  1e-6 
TASKS  1 
PART   E 
All 19 switches related to the physical models are “on” (i.e., equal to 1) 
TALLIES_PER_SOURCE 0 
E_CONTIGUOUS 1 
SEED  123 
DIR  C:\ENDF\ 
NSTREAMS 64 
COH_THR 0.0001 
DIFFUSION_TOTAL_TO_INELASTIC_RATIO_THR 100 
DIFFUSION_DIST_TO_RMSPATH_RATIO_THR 5 
ELASTIC_CDF_CUTOFF 1e-12 
ELASTIC_CDF_STEP  0.01 
ELASTIC_PDF_ERROR -0.1 
SIGMA_E_INDEXTYPE -2 
SIGMA_E_INDEXEXPONENT 17 
ELASTIC_E_INDEXTYPE -2 
ELASTIC_E_INDEXEXPONENT 17 
ELASTIC_CDF_INDEXTYPE -2 
ELASTIC_CDF_INDEXEXPONENT  18 
EXC_E_INDEXTYPE  -2 
EXC_E_INDEXEXPONENT 17 
ION_E_INDEXTYPE  -2 
ION_E_INDEXEXPONENT 17 
ION_SEC_E_CDF_INDEXTYPE -4 
ION_SEC_E_CDF_INDEXEXPONENT 18 
ELASTIC_CDF_EXCLUDEFIRST 1 
ION_SEC_E_CDF_EXCLUDEFIRST  0 
OUTPUT_INDEX_ARRAY_INFO 0 

The default values of the parameters related to interaction forcing are given in Section 4.5. 
 The subfolder “Test” of the distribution package contains input files for MCNelectron and 
MCNP6 corresponding to identical simulation conditions, along with respective output files, which 
demonstrate a very good agreement between the results obtained with both those programs 
(instructions for doing those simulations and additional information are in the file 
“Test\_Test_Info_.pdf” and in Section 7 of this document). 
 
4.2. Format of the file with alternative cross section information 

An example of the file with alternative cross section information: 

EXC_FN 18 c:\Plasma Data Exchange Project\e-Ar excitation - SIGLO.txt 
EXC_INTERP_END 18 5e5 
EXC_INTERP_RULE 18 5 
EXC_INTERP_COEFS 18 12.3276 2.08644 -0.273936 0.00864765 
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ION_FN 18 c:\Plasma Data Exchange Project\e-Ar ionization - SIGLO.txt 
ION_INTERP_END 18 1e5 
ION_INTERP_RULE 18 5 
ION_INTERP_COEFS 18 26.0849 -0.962273 -0.035216 0.00279351 
 
EXC_FN 54 c:\Plasma Data Exchange Project\e-Xe excitation - SIGLO.txt 
EXC_INTERP_END 54 5e5 
EXC_INTERP_RULE 54 5 
EXC_INTERP_COEFS 54 31.0399 -3.8101 0.32736 -0.0103518 
ION_FN 54 c:\Plasma Data Exchange Project\e-Xe ionization - SIGLO.txt 
ION_INTERP_END 54 1e5 
ION_INTERP_RULE 54 5 
ION_INTERP_COEFS 54 15.3521 2.44828 -0.370784 0.0135908 
 
70 
80 
90 
100 
110 
120 
130 
 
Each line of the file with alternative cross section information, excluding the lines with additional 
energies, starts with a keyword, which is followed by the atomic number (Z) of a chemical element. 
Explanation of the keywords used in that file: 
EXC_FN is used to specify the file name with alternative low-energy excitation cross sections. In 

the above example, that file name is specified for Ar and Xe (Z = 18 and 54). 
EXC_INTERP_END is used to specify the high-energy endpoint of the interpolation range (eV) for 

excitation cross sections. In the above example, that endpoint is 500 keV. Note: The low-
energy endpoint of the interpolation range coincides with the largest value of the electron 
energy in the file with alternative cross sections. If the specified high-energy interpolation 
endpoint is less than the just-mentioned energy, then there will be no interpolation. 

EXC_INTERP_RULE is used to specify interpolation rule for excitation cross sections. Four 
interpolation rules are supported: linear-linear, linear-log, log-linear and log-log. They are 
denoted by integer numbers from 2 to 5 (by analogy with ENDF format): 

2 – linear-linear,  3 – linear-log,  4 – log-linear,  5 – log-log. 
EXC_INTERP_COEFS is used to specify four coefficients of the third-degree polynomial that is 

used for interpolation of excitation cross sections. Those coefficients must be listed in the order 
of increasing degree: the first coefficient corresponds to the term of degree zero, and the last 
coefficient corresponds to the term of degree 3. In the above example, the natural logarithm of 
the excitation cross section for argon in the interpolation range is calculated as follows: 
ln(σ) = 12.3276 + 2.08644 ⋅ ln(E) − 0.273936 ⋅ [ln(E)]2 + 0.00864765 ⋅ [ln(E)]3, 
where the energy E is expressed in eV, and the cross section σ is expressed in barns. 

Keywords ION_FN, ION_INTERP_END, ION_INTERP_RULE, ION_INTERP_COEFS are used 
to specify the files with alternative ionization cross sections and the corresponding interpolation 
information. Their usage is the same as for excitation cross sections (see above). 

If no interpolation is needed, the lines starting with “EXC_ INTERP_” or “ION_INTERP_” may be 
omitted. Any non-empty line that starts not with one of the mentioned keywords is interpreted as a 
part of the list of additional energies for calculation of ionization cross sections. Each such line 
must contain only one energy value (eV), and all those energies must be less than the largest energy 
in all files with alternative ionization cross sections. If there are no additional energies, then the 
values of alternative ionization cross sections will be calculated for the same energies that are given 
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in the ENDF tables of ionization cross sections for each electronic subshell, using linear 
interpolation. The set of additional energies is the same for all chemical elements that compose the 
target material. Note: The additional energies should be used when the maximum of the ionization 
cross section is not represented well enough in ENDF tables of ionization cross sections (because of 
too large intervals between energy values in the ENDF electroionizaton data). 

4.3. Plane-crossing tallies 
 MCNelectron can calculate tallies of electrons or photons that have crossed a user-defined 
“tallying plane” or a set of parallel equidistant tallying planes during the simulation. The tally 
parameter (i.e., the variable whose value determines the sequence number of the incremented bin of 
the tally) can be any one of those seven quantities: 

1) the particle energy, 
2) the angle between the plane’s normal and the particle’s momentum vector, 
3) the cosine of the angle between the plane’s normal and the particle’s momentum vector, 
4) the radial coordinate of the crossing point on the tallying plane, 
5) the azimuthal angle of the crossing point on the tallying plane, 
6) the X' coordinate of the crossing point on the tallying plane, 
7) the Y' coordinate of the crossing point on the tallying plane. 

The latter four variables are defined in the tallying plane’s coordinate system, whose axes are in 
general different from the axes of the system that is used for specifying position of the target layer 
and the incident beam direction. That is why there is the prime symbol in notations X' and Y'. It is 
also possible to calculate “two-dimensional” tallies, where each bin corresponds to a pair of 
intervals of any two variables (for example, the particle energy and the radial coordinate). All bins 
are of equal width. 
 The specification of a plane-crossing tally contains notations of ranges of the variables that 
must be used for calculating the “scoring” bin. Each of those ranges must be defined before the 
specification of the corresponding tally in the input file. Definition of a range must begin with any 
one of those seven keywords: 
  “E”, “THETA”, “MU”, “R”, “PHI”, “X”, or “Y”, 
or the same keyword with an appended number from 1 to 20 (for example, “E1”, “MU10”, etc). 
This keyword defines the meaning of the variable (the energy, the incidence angle, the cosine of the 
incidence angle, the radial coordinate, the azimuthal angle, the X' coordinate, or the Y' coordinate, 
respectively). After that keyword, there must be three space-delimited numbers: the lower bound of 
the range, the upper bound of the range, and the number of bins. For example, the definition of an 
energy range consisting of 10 equidistant bins from 1 MeV to 2 MeV might look like this: 
 E1   1 2 10 
In this example, the first bin corresponds to energies from 1.0 MeV to 1.1 MeV, and the last bin 
corresponds to energies from 1.9 MeV to 2.0 MeV (the unit of energy is the same one as for all 
other energy values, i.e., it is defined by the keyword “E_UNIT”). The values of the incidence angle 
“THETA” and the azimuthal angle “PHI” must be given in degrees. 
 The specification of a plane-crossing tally for electrons or positrons must begin with the 
keyword “ETALLY”, or the same keyword with an appended number from 1 to 20 (for example, 
“ETALLY2”). The specification of a plane-crossing tally for photons must begin with the keyword 
“PTALLY”, or the same keyword with an appended number from 1 to 20 (for example, 
“PTALLY2”). That keyword must be followed by six space-delimited numbers: three coordinates 
of a point on the tallying plane (in cm) and three components of the normal vector of the tallying 
plane (that vector is not required to be of length 1). Those numbers must be followed by space-
delimited notations of ranges that have been previously defined in the input file. An example of the 
simplest possible tally: 
 ETALLY1   0 0 0   0 0 1   E1 
The above example defines an energy tally of electrons or positrons crossing the XY plane. During 
the simulation, each bin count will be incremented when an electron or a positron crosses that plane 
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and it is determined that the value of the control variable (energy in the above example) is less than 
or equal to the upper limit of that bin and greater than the lower limit of that bin. If the control 
variable is not the incidence angle or its cosine (“THETA” or “MU”, respectively), the count is 
increased by 1 when the tallying plane is crossed in the direction of its normal vector, and decreased 
by 1 when the tallying plane is crossed in the opposite direction. If the control variable is the 
incidence angle or its cosine, then the count is always increased by 1, because the value of that 
variable already indicates the direction of crossing. 
 In order to specify a set of parallel equidistant tallying planes, two additional space-
delimited numbers must be inserted before the list of ranges: the number of planes and the inter-
plane distance (in cm). For example, the following line defines 100 tallies, each corresponding to 
one of 100 planes, which are at a distance of 0.1 cm from each other: 
 ETALLY1   0 0 0   0 0 1   100 0.1   E1 
In the latter case, the first three numbers define a point that is on the first plane in the set. All other 
planes in the set are “stacked” in the direction of the normal vector (defined by the fourth, fifth and 
sixth numbers). 
 It is possible to group any two ranges in the specification of a plane-crossing tally by 
enclosing their notations with parentheses, for example: 
 ETALLY1   0 0 0   0 0 1   100 0.1   E1   (X1 Y1)   (E1 MU2) 
Each such pair of ranges corresponds to a two-dimensional tally, which is represented by a table 
with rows numbered by the first (or “primary”) variable of the pair, and with columns numbered by 
the second (or “secondary”) variable of the pair. There can be up to 20 one-dimensional tallies and 
up to 20 two-dimensional tallies defined in a single specification of a plane-crossing tally. Thus, the 
maximum possible number of tallies defined in a single line of the input file is 40 (multiplied by the 
number of planes in the “stack”). 
 Any of the mentioned seven variables can be limited by specifying its bounds (i.e., 
minimum and maximum values) in the definition of a tally. This is achieved using the keyword 
“LIM”, followed by notation of the variable (“E”, “THETA”, “MU”, “R”, “PHI”, “X” or “Y”), 
followed by two space-delimited values of the bounds. Those four components may be inserted 
anywhere after the geometric parameters (i.e., after the first six numbers in the case of a single-
plane tally, or after the first eight numbers in the case of a multi-plane tally). For example, in the 
case of the following tally, “scoring” will be possible only for electrons and positrons that cross a 
ring-shaped area with inner and outer radii equal to 10 cm and 12 cm, respectively, and with 
energies between 0.05 MeV and 0.1 MeV: 
 ETALLY1   0 0 0   0 0 1   100 0.1   LIM R 10 12   (MU1 PHI1)   LIM E 0.05 0.1 
Those limits apply to all tallies defined on the same line of the input file. The lower bound is 
excluded from allowed values, whereas the upper bound is included in allowed values. 
 Usage of the variables “R”, “PHI”, “X”, and “Y” requires defining the coordinate system on 
the tallying plane (i.e., position of the origin and directions of the coordinate axes X' and Y'). The 
origin of that coordinate system is the same point that is specified by the first three numbers in the 
specification of a tally (or projection of that point for other planes in the “stack”). If the tallying 
plane is not normal to the X axis of the “main” coordinate system, then direction of the X' axis is the 
same as direction of the projection of the “main” X axis to the tallying plane. This means that if the 
tallying plane is not parallel to the X axis, then direction of the X' axis is the same as direction of the 
vector with components (A', B, C), where A' = A − (1 / A) and A, B, C are the components of the 
tallying plane’s normal vector with length 1. If the tallying plane is normal to the X axis of the main 
coordinate system, then the X' axis is the one that is either the same direction as the Y axis of the 
main coordinate system (if the normal is directed in the positive X direction), or opposite to the Y 
axis (if the normal is directed in the negative X direction). In any case, direction of the Y' axis on the 
tallying plane is such that the X' axis, the Y' axis and the normal vector of the tallying plane are 
oriented relative to each other according to the right-hand rule (for example, if the tallying plane is 
normal to the X axis, then, according to the previously-defined direction of the X' axis, the direction 
of the Y' axis is the same as the direction of the Z axis of the “main” coordinate system). Having 
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defined the coordinate system on the tallying plane, the radial coordinate “R” can be defined as the 
distance from the point of crossing to the origin of that coordinate system, and the azimuthal angle 
“PHI” can be defined as the angle between the X' axis and the line joining the origin with the point 
of crossing. The positive direction of measuring the azimuthal angle “PHI” is counterclockwise 
when observed from the half-space where the normal vector is pointing to. 
 Each tally data are written to a separate text file. Those files are in the same subfolder as 
pulse-height tally data files (the subfolder name format is “Files_<output_file_name>”). For single-
plane tallies, the file name consists of the tally and range identifiers, separated by an underscore, 
e.g., “ETALLY1_E1.txt” in the case of a 1D tally, or “ETALLY1_X1_Y1.txt” in the case of a 2D 
tally. For multi-plane tallies, the file name also includes the sequence number of the plane in the set 
of parallel planes and the distance between that plane and the first plane of the set (in cm), which is 
written in parentheses immediately after the plane number, e.g., “ETALLY1_30(2.9)_E1.txt”. In 
each file, the first line contains column headers. All other lines contain upper bounds of the bins of 
the primary variable in the first column and the corresponding particle counts and relative standard 
deviations in the other columns. If the input file contains the option “TALLIES_PER_SOURCE 1”, 
then the counts will be per source particle (i.e., they will be divided by the total number of source 
particles). For 1D tallies, the header of the second column is “N”, and the header of the third 
column is “RelSDev”. For 2D tallies, headers of all columns with particle counts or relative 
standard deviations have the format “N_<value>” or “D_<value>”, respectively, where “<value>” 
is the upper bound of the corresponding bin of the secondary variable. The column headers and all 
numerical values in tally data files are tab-delimited. 
 If no interaction forcing is used (see Section 4.5), then the (absolute) standard deviation of 
the particle count in each bin is equal to the square root of the number of particles that have crossed 
the given plane in any direction, subject to the constraints of the given bin. This is equivalent to 
assuming that all particles counted in a given bin are independent and have weights equal to 1. The 
relative standard deviation is obtained by dividing the mentioned absolute standard deviation by the 
absolute value of the particle count corresponding to the same bin (note that the latter particle count 
may have been calculated with different signs assigned to particles crossing the plane in different 
directions). If interaction forcing is used, then particles that are counted in each bin have in general 
different weights. In this case, the absolute standard error is calculated as the square root of the sum 
of squared weights of all particles that have been counted in the given bin, regardless of their 
direction of crossing. 
 
4.4. Specifying the maximum error for plane-crossing and pulse-height tallies 
 For each plane-crossing or pulse-height tally, it is possible to specify the maximum relative 
standard deviation (or “target relative error”). If it is determined during the simulation that the 
relative standard deviation for each of those tallies is less than the corresponding target error, the 
simulation will be terminated immediately. Thus, the target errors are used as alternative criteria for 
determining if a simulation may be stopped. The tallies with specified target errors will be therefore 
called “control tallies”. The simulation is stopped when the target error is reached for each of the 
control tallies, or when all source particles are processed (the number of source particles is specified 
in the input file or on the command line after the keyword “N”). The target error is specified using 
one of the following three keywords: 
 AVGERR 
 MINERR 
 MAXERR 
That keyword must be followed by a value of the target error. In order to determine if the target is 
met, the program will periodically compare the average, minimum or maximum relative standard 
deviation, calculated over all bins of all tallies defined on the same line, with the corresponding 
target error (this comparison is done once every second). In the case of a plane-crossing tally, that 
keyword may be inserted anywhere after the geometric parameters (i.e., after the first six numbers 
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in the case of a single-plane tally, or after the first eight numbers in the case of a multi-plane tally), 
for example: 
 ETALLY1   0 0 0   0 0 1   100 0.1   E1   AvgErr 0.05 
In this example, the simulation will be stopped when the standard deviation averaged over all bins 
in all 100 tallies of the set becomes less than 5 % (assuming that there are no other control tallies 
defined). In the case of a pulse-height tally, one of the mentioned three keywords must be added at 
the end of the tally specification, for example: 
 PULSE_HEIGHT    0 1 100   MaxErr 0.02 
In this example, the simulation will be stopped when the maximum standard deviation over all 100 
bins of this pulse-height tally becomes less than 2 %. 
 During the simulation, the program displays the current value of the relative error for the 
control tally and the corresponding target error. If there are two or more control tallies, then the 
displayed error is the one that is furthest from the target error (in relative terms), i.e., that has the 
largest ratio to the target error. For example, in the case of the two tallies defined above, the 
message that is appended to the line of text with second-by-second statistics shown in the console 
window might look like this: 

AvgErr (ET1) = 9.4% / 5% 
or: 
 MaxErr (PH1) = 2.82% / 2% 
In those messages, the characters in parentheses indicate the type of the tally and its sequence 
number among all tallies of the same type (in the above examples, those are the plane-crossing tally 
No. 1 for electrons, i.e., “ETALLY1”, and the pulse-height tally No. 1). 
 
4.5. Interaction forcing 
 Interaction forcing is a variance reduction technique that is based on an artificial increase of 
frequencies of certain types of particle interactions. The bias that could be caused by this method is 
avoided by assigning weights to particles such that the sum of the weights of all secondary particles 
produced in a certain type of interactions is equal to the number of secondary particles that would 
be produced in the same interactions during an analog simulation (the “analog” simulation is the 
one that does not apply variance reduction techniques). 
 In principle, the following approach could be applied in order to take into account all 
possible interactions (even the ones with extremely small probability) without the need to simulate a 
large number of histories (one “history” is the sequence of all interaction events started by a single 
source particle): 
1. Whenever a collision occurs, split the particle into as many particles (“replicas”) as there are 

interaction types and assign the weight to each “replica” equal to the weight of the original 
particle (W) multiplied by the relative frequency of the corresponding interaction type. Since the 
sum of all relative frequencies is equal to 1, the sum of all those weights is equal to W. 

2. Make all those “replicas” identical to the original particle in all other respects (i.e., the same 
energy, the same direction of motion and the same position). 

3. Simulate each type of interaction (one type of interaction for each “replica”) in the usual way, 
i.e., sample energies and directions of the secondary particles from the relevant probability 
distributions. 

4. Assign weights to the secondary particles equal to the weight of the corresponding “replica” of 
the original particle. 

After that, each of the particles produced by each type of interaction (possibly including the primary 
particle with a changed energy or direction) is tracked by repeating the same steps. In order to 
obtain an unbiased value of the tallied quantity (e.g., the total energy loss, or the total number of 
particles produced in a certain type of interactions, or the total count in a particular bin of a 
particular tally), the contribution of each particle to that sum must be multiplied by the particle 
weight. However, this method has two obvious drawbacks: 
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a) Some of the interaction types may be already frequent enough, or those interactions may be not 
important for the simulated phenomenon (for example, elastic scattering of electrons is not 
important when simulating electron-induced characteristic X-ray emission). In those cases, no 
significant improvement in accuracy would be achieved by forcing those interactions. 

b) Since each interaction is accompanied by particle “splitting”, such an approach would cause an 
exponential growth of the total number of particles that have to be tracked, resulting in 
prohibitive memory requirements. In addition, the simulation time per history may become so 
long that it would offset any gains caused by a decrease of the number of histories that have to 
be simulated. 

The first of the mentioned drawbacks can be eliminated by forcing only the types of interactions 
that are both relatively infrequent and important for the investigated phenomenon. For example, the 
type of interaction that is most important for simulations of electron-induced characteristic X-ray 
emission is inner-shell impact ionization, which is much less frequent than outer-shell impact 
ionization. All other types of interactions are sampled in the usual way, i.e., by selecting one of 
them randomly. This decreases the number of particles that have to be tracked, because all non-
forced interactions are represented by just one “replica” per collision. However, the second 
drawback is not eliminated, because there are still at least two “replicas” per collision, and their 
energies are equal to energy of the original particle. The latter equality means that each of the 
“replicas”, if tracked in an analog manner, would create, on the average, the same number of 
secondary particles as the original particle (although with a smaller weight). Thus, a single collision 
may double the total number of particles that have to be tracked. If this “doubling” is applied to all 
subsequent collisions, too, then the total number of tracked particles will grow in a geometric 
progression, slowing down the simulation and eventually causing memory overflow. 
 One of the ways to deal with this proliferation of tracked particles is to define a “weight 
cutoff”, i.e., the minimum weight such that all particles with a smaller weight are removed. The 
growth of the number of particles is accompanied by a decrease of their weights, so that they 
eventually fall below the weight cutoff. However, it is difficult to determine beforehand the 
optimum value of the weight cutoff, i.e., such a value that would decrease the simulation time 
significantly without introducing a noticeable bias into the simulation results. 

The default approach applied in MCNelectron is based on decreasing the average frequency 
of collisions where interaction forcing is applied, and a corresponding increase of the weight of the 
“replicas” participating in forced interactions. This is achieved by defining probability of interaction 
forcing (“forcing probability”) Pf, and by generating an additional uniform random number before 
each collision. If that number is less than Pf, then the particle “splitting” is applied to the given 
collision as described above. Otherwise, “splitting” is not applied and one of non-forced 
interactions is selected randomly (in this case, particle weights are not modified). In the case of a 
collision with interaction forcing, the mentioned “natural” weights of all “replicas” participating in 
forced interactions are increased by a factor equal to 1 / Pf in order to compensate for the decreased 
frequency of interaction forcing. Thus, if the sum of the “natural” relative frequencies of all forced 
interactions is wf and the weight of the original particle is W, then the sum of weights of all replicas 
participating in forced interactions is W ⋅ wf / Pf, whereas the replica corresponding to the randomly 
selected non-forced interaction is assigned the weight equal to W (1 − wf / Pf). The forcing 
probability Pf is re-calculated before each collision using the formula Pf = wf ⋅ F, where F is a 
“forcing factor” F defined by the user (F must be 10 or greater; its default value is 10). After that, Pf 
is compared with maximum and minimum allowed values of the forcing probability (also defined 
by the user), Pfmax and Pfmin. If Pf < Pfmin, then Pf is replaced by Pfmin (the largest possible value of 
Pfmin is 0.01, and the default is 10−4). If Pf > Pfmax, then the set of forced interactions is reduced by 
changing the status of the interactions from “forced” to “non-forced” one by one, starting from the 
interaction with the highest relative frequency, until the “natural” total relative frequency of all 
remaining forced interactions, multiplied by the forcing factor, becomes less than the maximum 
allowed forcing probability (its default value is 0.01). In this case, a corresponding warning is 
displayed in the console window. This removal of forced interactions is temporary; all those steps 
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are repeated before each collision (however, the mentioned warning is displayed only once for each 
type of forced interactions in each CPU thread and in each used CUDA device). 
 As it is obvious from the above, the implementation of interaction forcing in MCNelectron 
ensures that the total relative frequency (i.e., total weight) of all forced interactions (wf), adjusted to 
compensate for the decreased frequency of interaction forcing, i.e., the value of wf / Pf, is much less 
than 1 in each collision. The largest possible value of wf / Pf is equal to the inverse forcing factor, 
i.e., to 1 / F. Since the minimum possible value of F is 10, wf / Pf can not exceed 0.1. It is also 
obvious that this method increases only the interaction frequencies relative to other (non-forced) 
interactions, but does not change the mean free path (the average distance to collision). 
 The described variant of interaction forcing in some situations allows reducing simulation 
time needed to achieve the required accuracy in the tallies. For example, interaction forcing causes 
a significant decrease of the simulation time (sometimes more than by an order of magnitude) when 
simulating electron-induced characteristic X-ray emission. In MCNelectron v1.1.2, interaction 
forcing can be applied only to electron and positron interactions. There are six types of electron and 
positron interactions that can be forced: 

1) elastic scattering, 
2) bremsstrahlung, 
3) atomic excitation, 
4) K-shell impact ionization, 
5) L-shell impact ionization, 
6) M-shell impact ionization. 

L-shell impact ionization is actually a set of three interactions (one for each of the three subshells of 
the L shell), and M-shell impact ionization is a set of five interactions (one for each of the five 
subshells). Consequently, if M-shell impact ionization is the only type of forced interaction, then 
the primary electron will be split into six replicas (five replicas corresponding to the five forced 
interactions and one replica for the single randomly selected non-forced interaction). 
 Below are descriptions of all keywords that control interaction forcing. 
FORCING_FACTOR is used to specify the mentioned “forcing factor” (F). 
FORCING_PROB_MIN is used to specify the minimum allowed value of the mentioned “forcing 

probability” (Pfmin). 
FORCING_PROB_MAX is used to specify the maximum allowed value of the mentioned “forcing 

probability” (Pfmax). 
FORCING_WT_MIN is used to specify the minimum weight of an electron or a positron that must 

be exceeded in order to apply interaction forcing. Particles with smaller weights can not be 
split into “replicas” as described above. Instead, they are tracked in an analog manner. If the 
particle energy (E) exceeds the minimum electron binding energy of the target material (B), 
then the mentioned minimum weight is additionally reduced by multiplying it by the ratio 
B / E. That is to say, the interaction forcing algorithm is applied to such particles, if their 
weight is greater than FORCING_WT_MIN ⋅ B / E. 

CUT_WT is used to specify the minimum sum of weights of all “replicas” corresponding to the 
forced interactions that must be exceeded in order to apply interaction forcing. If the 
mentioned total weight is less than this threshold, then the next collision will be simulated in 
an analog manner. 

Caution should be exercised when modifying FORCING_WT_MIN and CUT_WT. Although an 
increase of those parameters may decrease simulation time, it may also introduce bias into the 
simulation results. For this reason, the default values of FORCING_WT_MIN and CUT_WT are 
zero, i.e., those thresholds are not applied by default. The remaining keywords related to interaction 
forcing, which are listed below, are used as “switches”, which “turn on” or “turn off” forcing of 
certain types of interactions (a non-zero value of the integer number that follows each of those 
keywords means that the corresponding interaction type will be forced, and the zero value means 
that it will not be forced): 
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FORCE_ELASTIC – forcing of elastic scattering from all types of atoms, 
FORCE_BREMS – forcing of bremsstrahlung from all types of atoms, 
FORCE_EXC – forcing of excitation of all types of atoms, 
FORCE_ION_K – forcing of K-shell impact ionization of all types of atoms, 
FORCE_ION_L – forcing of L-shell impact ionization of all types of atoms, 
FORCE_ION_M – forcing of M-shell impact ionization of all types of atoms. 

Note: The specified interaction will be forced only if its cross section is non-zero. 

In addition, it is possible to specify interaction forcing only for a particular chemical element. This 
is done by appending the atomic number to any of the previous six keywords. For example, the 
keyword FORCE_ION_M92 should be used to turn on or off M-shell impact ionization for 
uranium. If both the keyword with the atomic number and the keyword without it are present, 
priority is given to the keyword with the atomic number. For example, if the input file contains the 
directives “FORCE_ION_L 1” and “FORCE_ION_L8 0”, then the program will force L-shell 
impact ionization of all atoms excluding oxygen. 

The default values of the mentioned parameters related to interaction forcing are the following: 

FORCING_FACTOR  10 
FORCING_PROB_MIN 0.0001 
FORCING_PROB_MAX 0.01 
FORCING_WT_MIN  0 
CUT_WT   0 
All switches are “off” (zero), i.e., interaction forcing is not applied by default. 

The above-mentioned default values of parameters F, Pfmin and Pfmax have been successfully tested 
in simulations of electron-induced characteristic X-ray emission. However, there is no guarantee 
that they will work as well in other kinds of problems. 
 
4.6. CUDA-specific keywords 
 There are 23 keywords that control usage of computer resources by the GPUs and the 
division of workload between the CPU and the GPUs. Before describing those keywords, several 
terms must be defined. The term “task” will be used to mean the part of the code that simulates a 
particle history. During the simulation, each task generates source particles and follows each source 
particle together with all secondary particles until all of them either escape from the layer or are lost 
during various interactions. Then that task generates the next source particle, etc. On a lower level 
(i.e., the level of hardware and the operating system), simulation is run by independent “threads”, 
whose number is limited by the available computing resources. In the case of Nvidia GPUs, the 
maximum possible number of threads per one CUDA device is 1024. As explained in Section 1.3, 
the CUDA version of MCNelectron does not assign a fixed set of tasks to each thread. Instead, each 
task is done in steps by various threads, i.e., the tasks are frequently “redistributed” among the 
threads. For maximum performance, the number of tasks should be much larger than the number of 
active threads, because then there is a greater freedom for choosing the optimum set of tasks to run 
at each given moment of time (the mentioned “optimum” set of tasks is the one that minimizes warp 
divergence, as explained in Section 1.3). In contrast, each thread on the CPU follows a particle 
history in its entirety, i.e., each CPU task is executed by a single thread. Hence, in the case of a 
CPU-only simulation, the terms “task” and “thread” may be used interchangeably. The maximum 
possible total number of tasks (including the tasks on all used GPUs and on the CPU) is 65536. 
 For each history, a task uses a stream of random numbers generated from a fixed “seed”. 
The total number of streams of random numbers is defined using the mentioned keyword 
“NSTREAMS” (see Section 4.1). This number includes both the streams that are used on the CPU 
and the streams that are used by the CUDA devices. Ideally, all streams should not be correlated 
with each other and should not repeat themselves. Each task is assigned a fixed set of streams and 
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then cycles between them for different histories (thus, the streams of random numbers are assigned 
to tasks, not to threads). The maximum possible total number of streams is 65536. 
 The part of an application that runs on a CUDA device is called a “kernel”. On each CUDA 
device, one kernel is executed at a time, but many threads execute the kernel simultaneously. On the 
application level, those threads are grouped into “blocks”, which are not synonymous with “warps” 
mentioned in Section 1.3. A block may span several warps, or it may be only a part of a single 
warp. In absence of warp divergence, the optimum size of a block is a multiple of the warp size, i.e., 
32. If warp divergence is significant, better performance may be sometimes achieved using block 
size less than 32 (however, the block size should still be a multiple of 8). The results of testing 
indicate that the best performance on desktop computers with GeForce GTX 780 Ti and GTX 580 
cards is usually achieved when the block size is 8, and in the case of a laptop computer with a 
GeForce GTX 960M card the best performance has been achieved using block size 32. 
 All CUDA-specific keywords end with “_CUDA”. As all other keywords, they must be 
followed by the value of the corresponding parameter. 19 of the 23 CUDA-specific keywords may 
be specified either on the command line or in the input file. The remaining 4 keywords may be 
specified only on the command line. If a keyword is specified both on the command line and in the 
input file, then the parameter value specified on the command line will be used. Below is the list of 
the mentioned 19 keywords: 

rand_CUDA is used to specify the type of the random number generator to be used on the CUDA 
devices. The number 1 indicates the Fibonacci series random number generator that is used on the 
CPU (in this case, the parameter SEED in the input file will also be used to initialize the instances 
of that generator that run on the CUDA devices). The number 2 indicates the XORWOW generator 
from the cuRAND library. Simulations using the latter generator are usually faster by up to 10 %; 

seed_CUDA is used to specify the seed of the XORWOW generator from the cuRAND library (this 
parameter is used only with the option “rand_CUDA 2”, otherwise it is ignored). This seed must be 
positive and less than 264; 

tasks_CUDA is used to specify the number of tasks per one CUDA device. If that number is zero, 
then CUDA devices will not be used and all CUDA-specific keywords will be ignored; 

threads_CUDA is used to specify the number of threads per one CUDA device (it has been noticed 
that the best performance is achieved when this parameter is slightly less than the maximum 
possible number 1024, e.g., 960); 

streams_CUDA is used to specify the number of random-number streams per one task on a CUDA 
device. The total number of streams per one device is obtained by multiplying streams_CUDA and 
tasks_CUDA. The program calculates the number of streams on the CPU by subtracting the 
numbers of streams on all used CUDA devices from the total number of streams (defined by the 
keyword NSTREAMS). If the resulting number is less than the number of CPU threads (defined by 
the keyword TASKS), then a corresponding error message is displayed; 

blockSize_CUDA is the number of CUDA threads per one block; 

time_CUDA is used to specify the duration of a single invocation of the CUDA kernel (in 
milliseconds). The recommended value is 100 or less. If this number is too large, the computer may 
become unresponsive. If this happens, then after a few seconds the Nvidia video driver will usually 
recover (terminating MCNelectron_CUDA in the process), however, occasionally the recovery fails 
and the computer needs to be restarted. In addition, if the video card that is connected with the 
computer monitor is among the CUDA devices used for the simulation, then a too large value of 
that parameter may cause “stuttering” of the video signal, which may interfere with other work that 
is being done on the same computer at the same time. On the other hand, if this parameter is too 
small (e.g., less than 1), then the number of kernel calls may be become so large that the “overhead” 
caused by multiple kernel calls may become important and performance may drop; 
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ratio_CUDA is used to specify the fraction of particle histories that should be simulated by CUDA 
devices. If more than one CUDA device is used, then those histories are distributed equally among 
all used CUDA devices. During the simulation, the CPU and GPU workloads may be dynamically 
adjusted (see descriptions of the keywords “heap_CUDA” and “balance_CUDA” below); 

heap_CUDA is used to specify how CUDA tasks start a new history. If that parameter is zero, then 
each task is assigned a fixed number of source particles (i.e., a fixed number of histories). This 
option precludes workload balancing between CUDA devices and the CPU; it should be used if 
exact repeatability of simulation results is needed. If that parameter is 1, then, after finishing a 
history, each task starts a new history if the total number of started histories on the CUDA device is 
less than the assigned total number of histories that have to be simulated; otherwise, the task 
becomes inactive. Thus, if histories that were initially assigned to a particular task were short, then 
that task may have enough time left for simulating extra histories and thus decreasing the workload 
of the tasks that are “lagging”. Since the processing times of different histories are affected by 
various random factors, and since different tasks use different streams of random numbers, this 
option introduces a random component into the simulation results, i.e., they are no longer exactly 
repeatable (however, this is usually not a problem, because the aim of Monte Carlo simulations is 
estimation of statistical averages). If that parameter is 2, then each task does not follow a history 
from start to finish; instead, a “global” buffer of banked particles (consisting of secondary particles 
in all unfinished histories) is available to all tasks on a given CUDA device. After a particle is lost 
(e.g., due to escape from the layer or due to decrease of its energy below the cutoff value), the task 
first attempts to read the banked particle data from the mentioned buffer. If the read attempt is 
successful, then that particle is tracked (even if it belongs to a history that was started by another 
task). If the read attempt fails (i.e., if the mentioned buffer is empty) and if the total number of 
started histories on the CUDA device is less than the assigned total number of histories that have to 
be simulated, then the task generates a new source particle and starts a new history. The option 
“heap_CUDA 2” introduces an even larger random component into simulation results than the 
option “heap_CUDA 1” does (however, this does not affect the statistical averages). In the case 
“heap_CUDA 2”, the number of source particles is allowed to be less than the number of tasks. 
Notes: 1) Pulse-height tallies can be calculated only with “heap_CUDA 0” or “heap_CUDA 1”. 
2) Workload balancing between CUDA devices and the CPU is possible only with “heap_CUDA 1” 
or “heap_CUDA 2” (see the description of the keyword “balance_CUDA” below); 

balance_CUDA is a “switch” that “turns on” workload balancing between CUDA devices and the 
CPU. When this feature is “turned on”, then during the simulation the number of histories assigned 
to the CPU and to each CUDA device is dynamically adjusted on the basis of performance of the 
CPU and of each CUDA device, in an attempt to minimize differences between total processing 
times of the CPU and of each CUDA device. The workload balancing in conjunction with option 
“heap_CUDA 1” or “heap_CUDA 2” eliminates the need to determine the optimal value of the 
parameter “ratio_CUDA” beforehand (the latter parameter defines only the initial distribution of 
workload, which is automatically adjusted during the simulation). Notes: 1) Workload balancing 
can not be used together with the option “heap_CUDA 0”. 2) When workload balancing is turned 
on, MCNelectron_CUDA may occasionally simulate up to four “extra” histories; 

avgBanked_CUDA is used to specify the memory amount that must be allocated on a CUDA 
device for storing the banked particle data (the “banked particles buffer”). If this parameter is 
positive, then it is interpreted as the average number of banked particles per one task when the 
mentioned buffer is full. If this parameter is negative, then it is interpreted as the fraction of the 
global memory on each CUDA device that must be allocated for banked particles. A cautionary 
note regarding SLI, quoted from “CUDA C Programming Guide” [2]: “an allocation in one CUDA 
device on one GPU will consume memory on other GPUs that are part of the SLI configuration of 
the Direct3D or OpenGL device. Because of this, allocations may fail earlier than otherwise 
expected.” Thus, if there are two Nvidia video cards in SLI configuration, then values of the 
allocated memory fraction close to 0.5 or greater (for example, “avgBanked_CUDA -0.6”) will 
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cause a CUDA memory error (except for video cards with more than 4 GB of video memory). If 
there are more than two cards in SLI configuration, then the memory error may occur at an even 
lower fraction of the memory specified. For this reason, if a large number of banked particles are 
expected, it is recommended to disable SLI before the simulation. 

maxBankedRatio_CUDA is used to specify the size of the “index buffer”, i.e., the memory amount 
that must be allocated per one task for storing positions of banked particles in the above-mentioned 
banked particles buffer. The “index buffer” is used only with “heap_CUDA 0” and “heap_CUDA 
1”, because in those cases each task tracks only those secondary particles that were created by the 
same task in the same history. The number that follows this keyword is interpreted as the ratio of 
the number of elements of “index buffer” to the average number of banked particles per one task 
(defined by the keyword “avgBanked_CUDA”); 

bankModeThr_CUDA controls the “bank mode” when option “heap_CUDA 2” is used. The term 
“bank mode” refers to the choice of an electron that has to be banked after an impact ionization 
event: the banked electron may be either the lower-energy one (the so-called “secondary” or 
“knock-on” electron), or the higher-energy one (the “primary” electron). Normally, when option 
“heap_CUDA 2” is used, the knock-on electron is the one that is banked. However, this may cause 
an overflow of the banked particles buffer in the case of high energies of source particles and thick 
targets. Consequently, the bank mode is changed when the filling fraction of the banked particles 
buffer exceeds a certain value. That “threshold” value of the filling fraction is specified after this 
keyword. Its default value is 0.8 (i.e., while the banked particles buffer is less than 80 % full, the 
knock-on electron will be banked, and when the banked particles buffer is more than 80 % full, the 
primary electron will be banked). Note: In the case “heap_CUDA 0” or “heap_CUDA 1”, this 
keyword is ignored (in those cases, the primary electron is always the one that is banked); 

first_CUDA is used to specify the sequence number of the first CUDA device in the range of 
CUDA devices used for the simulation (CUDA devices are numbered sequentially starting from 1); 

last_CUDA is used to specify the sequence number of the last CUDA device in the range of CUDA 
devices used for the simulation (CUDA devices are numbered sequentially starting from 1). If 
firstCUDA is 1 and last_CUDA is 0, then all available CUDA devices will be used; 

use_CUDA is used to specify the sequence numbers of the CUDA devices that must be used for the 
simulation. When specified on the command line, those numbers must be comma-delimited. For 
example, “use_CUDA 1,3” means that CUDA devices No. 1 and No. 3 have to be used. Notes: 
1) When specified in the input file, the numbers may be either comma-delimited or space-delimited. 
2) The keyword “use_CUDA” can not be used together with keywords “first_CUDA”, 
“last_CUDA”, or “skip_CUDA”. 3) If the keyword “use_CUDA” is missing, then the range of used 
CUDA devices will be determined according to the numbers entered after the above-mentioned 
keywords “first_CUDA” and “last_CUDA”. 

r_CUDA is used to specify the workload ratios for each of the CUDA devices that must be used for 
the simulation. I.e., the program divides the total CUDA workload ratio (specified using the 
mentioned keyword “ratio_CUDA”) among the CUDA devices proportionally to the numbers 
specified after this keyword. When specified on the command line, those numbers must be comma-
delimited. This keyword can be used only together with the mentioned keyword “use_CUDA”, and 
the number of entries after “r_CUDA” must be the same as the number of entries after 
“use_CUDA”. For example, in the case “use_CUDA 1,3 r_CUDA 2,1 ratio_CUDA 0.6” the 
workload of the CUDA device No. 1 will be twice larger than the workload of the CUDA device 
No. 3. Since in this example the total workload of the CUDA devices is 60 %, the CUDA device 
No. 1 will simulate 40 % of all histories, and the CUDA device No. 3 will simulate 20 % of all 
histories. Notes: 1) When specified in the input file, the numbers may be either comma-delimited or 
space-delimited. 2) If any of the workload ratios specified after “r_CUDA” is zero, the 
corresponding CUDA device will not be used. 3) If the keyword “r_CUDA” is missing, the 
workload will be divided equally among all used CUDA devices. 
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skip_CUDA is used to specify the sequence numbers of the CUDA devices that must be skipped, 
i.e., not used for the simulation. When specified on the command line, those numbers must be 
comma-delimited. For example, “skip_CUDA 2,4 first_CUDA 1 last_CUDA 6” is equivalent to 
“use_CUDA 1,3,5,6”. The keyword “skip_CUDA” can not be used together with “use_CUDA”. 
Note: 1) When specified in the input file, the device numbers listed after “skip_CUDA” may be 
either comma-delimited or space-delimited. 2) If the keyword “skip_CUDA” is missing, then there 
will be no skipped CUDA devices, i.e., the sequence numbers of the used CUDA devices will be 
entirely defined using the above-mentioned keywords “first_CUDA” and “last_CUDA”, or using 
the list of devices specified after the above-mentioned keyword “use_CUDA”. 

stats_CUDA controls output of CUDA device statistics to files. The allowed values are: 
0 –  no CUDA device statistics will be written to files, 
1 –  the summary statistics will be included in the output file, 
2 – second-by-second statistics will be written to files in the same subfolder where the tally 

data are (the subfolder name format is “Files_<output_file_name>”). The names of files 
with second-by-second statistics have format “d<n>.txt”, where “<n>” is the sequence 
number of a CUDA device. 

3 – both the summary statistics and second-by-second statistics will be written.  
[For more information about CUDA device statistics, see Section 4.7.] 

The remaining 4 CUDA-specific keywords control “emulation” of CUDA devices by the CPU 
(those keywords may be used only on the command line). Here, the term “emulation” means that 
the particle histories are simulated by the CPU using exactly the same random number streams that 
would be used by the CUDA device. I.e., the only difference between a normal CPU-only 
computation and a computation done in emulation mode is that the random number streams are 
assigned to particle histories differently. In emulation mode, assignment of random number streams 
to particle histories is controlled by the mentioned keywords “NSTREAMS”, “tasks_CUDA”, 
“streams_CUDA”, “ratio_CUDA” and “r_CUDA”. This makes it possible to reproduce the results 
of a hybrid CPU/GPU simulation using only the CPU or using only a part of available CUDA 
devices. For exact reproduction of the results in emulation mode, the options “rand_CUDA 1” and 
“heap_CUDA 0” are required. Below are descriptions of the four emulation-related keywords: 

em_CUDA is used to specify the sequence numbers of the CUDA devices that must be emulated. 
Those numbers must be comma-delimited. For example, “em_CUDA 1,3” means that CUDA 
devices No. 1 and No. 3 have to be emulated. Notes: The keyword “use_CUDA” can not be used 
together with keywords “emFirst_CUDA”, “emLast_CUDA”, or “emulate_CUDA”, which are 
described below; 

emFirst_CUDA is used to specify the sequence number of the first emulated CUDA device in the 
range of emulated CUDA devices (CUDA devices are numbered sequentially starting from 1); 

emLast_CUDA is used to specify the sequence number of the last emulated CUDA device in the 
range of emulated CUDA devices (CUDA devices are numbered sequentially starting from 1); 

emulate_CUDA is a “switch” that “turns on” emulation of all devices specified after the keyword 
“use_CUDA” or belonging to the range of devices defined using the keywords “first_CUDA” and 
“last_CUDA”. This option can not be used together with “em_CUDA”, “emFirst_CUDA” or 
“emLast_CUDA”. 

The default values of the CUDA-specific parameters are the following: 
rand_CUDA 2 
seed_CUDA 123 
tasks_CUDA 0 
threads_CUDA 960 
streams_CUDA 1 
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blockSize_CUDA 8 
time_CUDA 100 
ratio_CUDA 0.5 
heap_CUDA 1 or 2 (depending on whether pulse-height tallies are used or not) 
balance_CUDA 1 
avgBanked_CUDA -0.2 
maxBankedRatio_CUDA 3 
bankModeThr_CUDA 0.8 
first_CUDA 1 
last_CUDA 0 
stats_CUDA 0 
emFirst_CUDA 0 
emLast_CUDA 0 
emulate_CUDA 0 

 
4.7. CUDA device statistics 
 MCNelectron_CUDA outputs CUDA device statistics in three ways: 
1) during the simulation, the second-by-second statistics as well as current values of the summary 

statistics are displayed on one line in the console window (that line is updated every second); 
2) during the simulation, second-by-second statistics may be optionally written to a file (as 

explained in Section 4.6, this is achieved using the option “stats_CUDA 2” or “stats_CUDA 3”); 
3) after the simulation is finished, the summary statistics may be optionally written to the output 

file (as explained in Section 4.6, this is achieved using the option “stats_CUDA 1” or 
“stats_CUDA 3”). 

The formats of each of those three outputs are described below. 
 
One-line statistics in the console window 
 
 Since all statistics can not fit on a single line, MCNelectron displays only a portion of the 
total set of statistics at a time. The displayed set of statistics is selected by repeatedly pressing the 
“+” or “-” key on the keyboard during the simulation (the key “+” cycles the statistics forward, and 
the key “-” cycles the statistics backwards). There are three lines of statistics for each CUDA device 
used and one line with some overall statistics. The latter line also contains the statistics pertaining to 
the part of the simulation that is done by the CPU. If two or more CUDA devices are used, then it is 
possible to cycle between statistics of the same kind for different devices (the CUDA devices are 
numbered sequentially starting from 1, and the CPU is the device No. 0). This is achieved by 
repeatedly pressing the “]” or “[” key on the keyboard during the simulation. After pressing the key 
“]”, the same type of statistics for the next device will be displayed, and after pressing the key “[”, 
the same type of statistics for the previous device will be displayed (if the next or previous device is 
the CPU, then after pressing “]” or “[“ the line with overall statistics will be displayed). 
 During a hybrid CPU/GPU simulation, the line with overall statistics could look like this: 
3.160 s: 8883/30000 (29.61%), CPU - 423/19500 (2.17%), CUDA - 8460/10500 
(80.57%), threads 1920/1920, time 99.02%, 99.94%. 

This line has the following components: 
• The time elapsed since the start of the simulation (in seconds). 
• The total number of finished histories, the total number of source particles and their ratio. Note: 

In the case “heap_CUDA 2”, the number of finished histories on CUDA devices is replaced by 
the number of finished source tracks (see the description of output parameter “src” below). 

• The number of finished histories on the CPU, the total number of histories assigned to the CPU, 
and their ratio. 
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• The number of finished histories on CUDA devices, the total number of histories assigned to 
the CUDA devices, and their ratio (the same note as above applies). 

• The number of active CUDA threads and the total number of CUDA threads. 
• Ratio of the total kernel execution time to the total elapsed time (both those times are calculated 

using the system timer). This ratio indicates the amount of “overhead” caused by multiple 
invocations of the kernel (because of that overhead, this ratio is less than 1). 

• Ratio of the total useful time spent by all CUDA threads to the total execution time of all 
CUDA threads (both those times are calculated using the CUDA native high-performance 
timer). The “useful” time is the time when a thread is active (i.e., the time interval between 
starting the thread and terminating it). This ratio indicates differences between workloads of 
different CUDA threads on a CUDA device, as well as between workloads of different CUDA 
devices (because of those differences, that ratio is less than 1). 

If the simulation is performed using two or more CUDA devices and not using the CPU, then in 
addition to the above-mentioned overall value of the useful-to-total time ratio, its values for each of 
the devices are given between parentheses (this component is not present in the above example). 

During a CPU-only simulation, this line contains some statistics for the first four simulation threads, 
for example: 
2.001 s: 2780/40000 (6.95%), active threads - 1:2220:2220 (4), 2:2844:2844 (4), 
3:2845:2845 (1), 4:3035:3035 (1), ... 

In this case, the following three colon-delimited numbers are given for each of the first four active 
threads: the thread number, the sequence number of the currently used random-number stream (if 
this number is equal to the thread number, then it is not shown), and the sequence number of the 
current history (in the total number of source particles). After those three numbers, the current 
number of banked particles in that thread is given in parentheses. 

If control tallies are used (see Section 4.4), then the largest current relative error for those tallies is 
included at the end of the same line (the message format is explained in Section 4.4). In this case, 
some of the previous information is omitted (in order to keep this line sufficiently short). 

The three mentioned lines with CUDA device statistics could look, for example, like this: 
2.049 s: dev. 1-1 - src 912 / 1960 = 46.53% (199) rem 70939 (48943) tb 100.16 
(100.16) tcy 164.74 (163.50) tcl 92.68 (97.94) 

4.218 s: dev. 1-2 - nk 42 (11) brk 0.000% (0.000%) cyc 617.922 (633.486) nTh 
5.544 (5.221) maxLoad 10.285% (6.117%) nw 0.00% (0.00%) 

5.219 s: dev. 1-3 - nB 105555, 0.310% (402, 0.001%) nThR 191.774 (924.000) nThW 
608.208 (294.727) nThN 1120.019 (701.273) 

Each of those three lines starts with the time elapsed since the start of the simulation (in seconds), 
followed by the device number and the sequence number of the set of statistics for that device. After 
that, there are several numbers (or pairs of numbers) which have the meaning of certain sums or 
averages, calculated by summing or averaging certain quantities over all kernel calls for the current 
device (there is one exception: “nB” has the meaning of a maximum value, rather than a sum). Each 
of those numbers (or a pair of numbers) is preceded by its notation and followed by a number (or 
two numbers) in parentheses. The numbers in parentheses indicate the change of the corresponding 
sum, or the value of the corresponding average, during the last second. The first set of CUDA 
statistics consists of the following components: 
src – the number of finished histories, the total number of histories (i.e., source particles) assigned 

to that device, and their ratio. In the case “heap_CUDA 2”, the number of finished histories 
is replaced by the number of finished source tracks. A “source track” is a connected series of 
line segments, each one representing a free flight of a particle. A source track starts at the 
point of entry of the source particle and ends at the point where the last particle of a chosen 
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“path” in a given history is lost. If there is a “fork” in this “path” due to creation of a 
secondary particle, then the “branch” that is assigned to the source track is chosen according 
to arbitrary criteria (for example, if the source particle is a high-energy photon, then after a 
pair production event the source track will be continued by the electron created in that event, 
whereas the positron will be banked). Thus, a single source track may represent several 
particles. In a task that started a new history, the first attempt to read banked particle data 
after generating the source particle occurs immediately after the source track is finished. 
Since each source track starts with a source particle, the number of finished source tracks is 
less than or equal to the number of started histories and greater than or equal to the number 
of finished histories. The number of histories or source tracks finished during the last second 
is given in parentheses; 

rem – the number of removed or replaced particles (or the sum of their weights if interaction 
forcing is used); 

tb – average duration of a single block of CUDA threads during one kernel call (in milliseconds); 
tcy – average duration of a single loop cycle in the kernel (in microseconds). A single loop cycle 

in one CUDA thread corresponds to a single call to a “state handler” mentioned in Section 
1.3. In addition, a single loop cycle includes re-distribution of tasks among threads (see 
Section 1.3); 

tcl − average duration of a single call to a state handler (in nanoseconds). 
The second set of CUDA statistics consists of the following components: 
nk – number of kernel calls; 

brk − fraction of block calls ended by breaking the loop (as opposed to ending the loop because 
the assigned time is exceeded). This occurs when it is determined that all threads of the 
current block are inactive; 

cyc − average number of loop cycles per one block call; 

nTh − average number of active CUDA threads per one loop cycle; 
maxLoad − fraction of loop cycles with maximum load (i.e., with all threads in the block active); 
nw − fraction of loop cycles when a task, which was in the “read” state at the start of a cycle, 

remained in the “read” state at the end of that loop cycle (i.e., an attempt to read particle data 
from the banked particles buffer was unsuccessful and no more particle histories remained to 
be started). This can happen only with the option “heap_CUDA 2”. Consequently, in the 
case “heap_CUDA 0” or “heap_CUDA 1” this fraction is always 0. 

The third set of CUDA statistics consists of the following components: 
nB – the maximum number of banked particles and its ratio to the maximum allowed number of 

banked particles. In the case “heap_CUDA 0” or “heap_CUDA 1”, the maximum is per one 
task, and in the case “heap_CUDA 2”, it is the maximum number of banked particles in the 
global buffer (the numbers in parentheses are calculated for the last kernel call). 

nThR − average number of tasks that were in the “read” state at the start of a kernel call (a task is in 
the “read” state just before attempting to read banked particle data, or when it is inactive 
after finishing simulations of all histories that were assigned to it); 

nThW − average number of tasks that were in the “write” state at the start of a kernel call (a task is 
in the “write” state just before simulating an interaction event characterized by creation of 
new particles, which may need to be banked); 

nThN − average number of tasks that were in the “neutral” state at the start of a kernel call. A state 
is called “neutral” if it does not involve either reading from the banked particles buffer or 
writing to it (e.g., calculation of interaction cross sections). 
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Second-by-second CUDA device statistics written to files 

 The first line in the file with second-by-second CUDA device statistics contains the column 
headers, and the other lines contain the values of various statistics for each second of the simulation. 
The first column of that file contains values of the time elapsed since the start of the simulation (in 
seconds), rounded to the nearest second. The next 16 columns contain 15 previously-described 
statistics, calculated for each one-second interval and listed in the same order as in one-line 
statistics (see above), and one additional statistic “tw” (column No. 13), whose meaning is similar 
to the mentioned quantity “nw”, with the only difference that “tw” is the fraction of time rather than 
the fraction of loop cycles. I.e., “tw” is the fraction of total time spent for unsuccessful reads from 
the banked particles buffer by a task that was in the “read” state at the start of a loop cycle, with a 
condition that no more source particles had to be generated. The headers of those columns are the 
same as previously-mentioned notations. The numbers in columns No. 2 – 12 (“src” to “nw”) and 
No. 15 – 17 (“nThR”, “nThW” and “nThN”) are the same ones that would be displayed in 
parentheses in the one-line statistics during the simulation at the corresponding moment of time. In 
the case “heap_CUDA 0” or “heap_CUDA 1”, the numbers in column No. 14 (“nB”) have the 
meaning of the maximum number of banked particles per one history observed up to that moment in 
time, and in the case “heap_CUDA 2” they have the meaning of the maximum total number of 
banked particles observed during the last kernel call. 
 The next 18 columns (i.e., columns 18 to 35) contain fractions of the numbers of calls to 
various state handlers in the total number of calls. In other words, those are fractions of the total 
number of loop cycles spent for processing different stages of the simulation. The meanings of 
those 18 columns are explained below: 

nPsig – calculation of photon interaction cross sections; 
nPdist – calculation of the distance to photon collision; 
nPinter – sampling of chemical element and interaction type in the case of a photon collision; 
nCoh – simulation of coherent scattering of photons; 
nIncoh – simulation of incoherent scattering of photons; 
nPE – simulation of photoelectric absorption; 
nPP – simulation of pair production; 
nEsig – calculation of electron interaction cross sections; 
nEdist – calculation of the distance to electron collision; 
nEinter – sampling of chemical element and interaction type in the case of an electron collision; 
nElast – simulation of elastic scattering of electrons; 
nBrems – simulation of bremsstrahlung; 
nExc – simulation of atomic excitation by electron collisions; 
nIon – simulation of electron impact ionization; 
nRelax – simulation of atomic relaxation; 
nAnnih – simulation of positron annihilation; 
nSource – generation of source particles; 
nRead – reading banked particle data when a task in the “read” state at the start of a loop cycle. 

 The next 18 columns (i.e., columns 36 to 53) contain the time fractions corresponding to 
fractions of the number of calls given in the previous 18 columns. I.e., the only difference is that 
they give the fraction of simulation time spent for various states, instead of the fraction of the 
number of calls to various state handlers. The headers of those columns start with “t” instead of “n” 
(i.e., “tPsig”, “tPdist”, etc.). 
 The last two columns (No. 54 and No. 55) contain the time fractions spent for selecting the 
tasks to be processed in the current loop cycle (the corresponding column title is “tCheck1”) and for 
updating numbers of tasks corresponding to various states after exiting from a state handler (the 
corresponding column title is “tCheck2”). The former of the two mentioned steps is done at the start 
of a loop cycle by the first thread of the block, and the latter step is done at the end of a loop cycle 
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by each thread of the block (in this step, multiple threads modify a number stored in one memory 
location, and such memory accesses are done serially). 
 If one of the options “stats_CUDA 2” or “stats_CUDA 3” has been specified in the input file 
or on the command line, then output of second-by-second CUDA device statistics to files can be 
stopped or resumed at any time during the simulation by pressing the ‘S’ or ‘F’ key on the 
keyboard, respectively. 
 
Summary CUDA device statistics in output files 
 
 If one of the options “stats_CUDA 1” or “stats_CUDA 3” has been used, then average 
values of most of the time fractions mentioned above will be written to the output file. Several other 
statistics will be output as well, e.g., the maximum number of banked particles for each CUDA 
device and for the CPU. Note: In the case “heap_CUDA 2”, the maximum value of the total number 
of banked particles on each CUDA device will be output, whereas in the case “heap_CUDA 0” and 
“heap_CUDA 1” the maximum number of banked particles in one history will be output. 
 Since most CUDA statistics written to the output file have descriptive labels explaining their 
meaning, a separate explanation is not needed here. For an explanation of other information 
included in the output file, see Section 6. 
 
5. Simulation of physical effects that are not included in specification of the ENDF/B library 
 
 In addition to various types of interactions and effects whose cross sections and probabilities 
are stored in the ENDF/B data library [5], MCNelectron simulates six physical effects, for which 
the ENDF/B-VI.8 library provides neither tabular probabilities nor an analytic prescription: 

(a) non-isotropic angular distribution of bremsstrahlung photons, 
(b) partial suppression of positron bremsstrahlung in comparison with electron bremsstrahlung, 
(c) non-isotropic angular distribution of photoelectrons, 
(d) non-uniform distribution of positron and electron energies during pair production, 
(e) angular distribution of electrons and positrons created in pair production events, 
(f) Doppler broadening of energy distribution of incoherently scattered photons. 

For each of those effects, there is a keyword in the MCNelectron input file, which allows “turning 
on” or “turning off” simulation of the effect. By default, all those effects are simulated. If any of 
those effects is “turned off”, then it will be replaced by a simplified model (e.g., isotropic 
bremsstrahlung) or neglected completely. The mentioned keywords, listed in the same order as the 
corresponding effects, are the following: 

(a) BREMS_ANGULAR_DISTR, 
(b) BREMS_POSITRON_CORRECTION, 
(c) PE_ANGULAR_DISTR, 
(d) PP_ENERGY_DISTR, 
(e) PP_ANGULAR_DISTR, 
(f) INCOH_DOPPLER. 

For some of those effects, there are other keywords controlling some details of the simulation. 
Those keywords are explained in the descriptions of the methods used for simulating each of the 
mentioned effects, which are provided below. 
 
(a) Non-isotropic angular distribution of bremsstrahlung photons 
 
 If the integer number that follows the keyword “BREMS_ANGULAR_DISTR” is non-zero, 
then bremsstrahlung photons will be emitted non-isotropically, with angular probability density 
depending both on incident electron energy and on emitted photon energy (this is the default 
behavior). Otherwise, the bremsstrahlung photons will be emitted isotropically. In any case, the 
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electron’s direction is unchanged by the bremsstrahlung event. Simulation of bremsstrahlung 
angular distribution requires pre-computed values of angular probability density of bremsstrahlung. 
Those values are in the file “Brems_angular_prob_dens.dat”, which is in subfolder “Data” of the 
MCNelectron distribution package. The probability density values that are stored in that file were 
calculated by integrating analytically over the triply differential cross-sections derived by Bethe and 
Heitler. Those calculations were done using a code that is a supplement to the article [6] (that code 
was downloaded from the website of the journal where that article was published). The data in the 
file “Brems_angular_prob_dens.dat” are in binary format. Below is a description of that format 
(nested sequences are indicated by indentations; the lines starting with the words “Sequence” and 
“End of sequence” are only included for clarity and are not represented in the data): 

First 400 bytes of the file contain the starting positions in this file for each of 100 chemical elements, 
Sequence 1, which is repeated 100 times (once for each chemical element): 
 4 bytes contain the number of incident electron energies (“nInc”), 
 Sequence 2, which is repeated nInc times: 
  8 bytes contain the incident electron energy (eV), 
  4 bytes contain the number of bremsstrahlung photon energies (“nBrem”), 
  Sequence 3, which is repeated nBrem times: 
   8 bytes contain the bremsstrahlung photon energy (eV), 
   4 bytes contain the number of probability density values (“nProb”), 
   Sequence 4, which is repeated nProb times: 
    8 bytes contain the value of the cosine of the angular deflection of the photon, 
    8 bytes contain the corresponding value of the probability density. 
   End of sequence 4 
  End of sequence 3 
 End of sequence 2 
End of sequence 1 

 The MCNelectron package includes the executable “Data\ExtractBremsAngularDistr.exe”, 
which extracts ASCII data from the mentioned binary file and creates a subfolder 
“Brems_angular_prob_dens” with 100 human-readable files (a separate file for each chemical 
element). The meaning and order of numbers in each of those text files is the same as in a single 
“Sequence 1” in the above description of the binary format. Those text files can be used as input 
data for the simulation, too, instead of the mentioned binary file. This is controlled by the keyword 
“BREMS_BINARY_DATA”. If the integer number that follows that keyword is non-zero, then the 
data will be loaded from the mentioned binary file “Data\Brems_angular_prob_dens.dat” (this is the 
default behavior). Otherwise, the data will be loaded from the mentioned ASCII files. In the latter 
case, the user has an option to specify the folder with those text files. The folder name must be 
specified after the keyword “BREMS_ANGULAR_DISTR_DIR” in the input file. The default 
name of the folder with text files containing angular probability densities of bremsstrahlung is 
“C:\Brems_angular_prob_dens\”. 
  In the case of simulation of non-isotropic bremsstrahlung, the mentioned additional 
probability density data are only used when the incident electron energy (E) belongs to a pre-
defined energy interval [Emin, Emax]. When E < Emin or E > Emax, then a simple analytical probability 
distribution 

p(µ) dµ = ½ (1 − β 2) / (1 − β µ)2 dµ                                          (5.1) 
is used, where β is the ratio of the electron speed and the speed of light, and µ is the cosine of the 
angular deflection of the photon relative to velocity vector of the incident electron or positron. The 
default values of Emin and Emax are 1 keV and 1 GeV, respectively. Due to simplicity of the function 
p(μ) defined by Eq. (5.1), the values of µ corresponding to that distribution are sampled 
analytically, by solving the following equation: 
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where r is a random number that is uniformly distributed between 0 and 1. By substituting the 
expression (5.1) into the integral (5.2) and solving for µ, the following expression of the sampled 
value of µ is obtained: 
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βμ

β
+ −

=
− +

.                                                         (5.3) 

 The mentioned default value of Emin (i.e., 1 keV) is mainly for comparison with MCNP6: as 
stated in [1], this analytical distribution “is not really appropriate for low energies, and its presence 
in the current code is a temporary expedient”. The user may set other values of Emin and Emax. Emin 
must be specified in the input file after the keyword “BREMS_ANGULAR_DISTR_LOW_EN”, 
and Emax must be specified after the keyword “BREMS_ANGULAR_DISTR_HIGH_EN” (the unit 
of energy is the same as for all other energies specified in the input file, i.e., it is defined by the 
keyword “E_UNIT” described n Section 4.1). In order to use a more realistic angular distribution of 
bremsstrahlung photons at low energies, Emin should be set to zero. If necessary, the analytical 
distribution defined by Eq. (5.1) can be applied for all values of electron energy. This is achieved by 
setting Emin = Emax. Then the values of Emin and Emax are not used during simulation, and the data 
files with bremsstrahlung angular probability density data are not loaded (in such a case, the text 
entered after the keywords “BREMS_BINARY_DATA” and “BREMS_ANGULAR_DISTR_DIR” 
is ignored). 
 
(b) Partial suppression of positron bremsstrahlung in comparison with electron bremsstrahlung 
 
 As reported in [7], the ratio of the radiative stopping powers for positrons and electrons can 
be approximated as a function only of the variable E / Z2, where E is the energy of the incident 
electron or positron and Z is the atomic number. The values of that ratio, which are tabulated in [7], 
can be approximated by the following function of the variable x = ln(E / Z2) − 5.87522, where E is 
expressed in units of eV: 
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The relative deviation of the values calculated according to (5.4) from the values tabulated in [7] is 
less than 1.4 % for all values of E. 
 If the current particle is a positron, then the mentioned partial suppression of positron 
bremsstrahlung is taken into account by multiplying the electron bremsstrahlung cross section by the 
factor calculated according to Eq. (5.4). This is the default behavior. The user may “turn off” 
simulation of this effect using the keyword BREMS_POSITRON_CORRECTION in the 
MCNelectron input file. If the number that follows that keyword is zero, then this effect will not be 
simulated, i.e., the positron bremsstrahlung cross section will be equal to the electron bremsstrahlung 
cross section. 
 
(c) Non-isotropic angular distribution of photoelectrons 
 
 If the integer number that follows the keyword “PE_ANGULAR_DISTR” is non-zero, then 
photoelectrons will be emitted non-isotropically (this is the default behavior). Otherwise, the 
photoelectrons will be emitted isotropically. In the case of non-isotropic emission of photoelectrons, 
two forms of their angular distribution are used, depending on the energy of the emitted electron. 
For electron energies below 50 keV, the angular probability density function p(μ) is of the form 

2 1 2( )d ~ (1 )[Im(( i ) ) / ] dnp s sμ μ μ α μ′− −− + ⋅ ,                                        (5.5) 
where μ is the cosine of the angle between incident photon and photoelectron wave vectors, s is the 
absolute value of the vector that is equal to the difference of those two wave vectors, “i” is the 
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imaginary unit, and notation “Im(…)” means the imaginary part of a complex number. If the 
electron is ejected from one of the first 4 shells (K, L, M or N), then n' coincides with the principal 
quantum number (n) of that shell. For higher shells, n' is fixed at 4. α is the factor in the exponent 
of the approximate (nodeless) wave function of the electrons in that shell. The approximate wave 
function is of the form 

1( ) ~ en rr r αψ ′− − ,                                                           (5.6)  

*
B

,Z
n a

σα −
=                                                               (5.7) 

where Z is the atomic number, σ is the screening constant, n* is the effective quantum number and 
aB is the Bohr radius. The values of n* and σ are calculated according to the Slater rules [8]. 
Eq. (5.5) has been obtained by calculating the matrix element of the perturbation operator 
describing the incident electromagnetic plane wave, when the initial state of the electron is 
described by the wave function (5.6) and the final state of the electron is described by another plane 
wave. In [9], this procedure was applied to the case when n* = n' = n = 1 (K electrons). The angular 
distribution corresponding to the latter case is called “the Fischer distribution”. 
 For photoelectron energies above 50 keV, the angular probability density function p(μ) is 
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,                                     (5.8) 

where γ is the ratio of the photoelectron kinetic energy and the electron rest energy, β is the ratio of 
the electron speed and the speed of light, and μ is the cosine of the angle between directions of the 
incident photon and the photoelectron. The distribution defined by Eq. (5.8) is called “the Sauter 
distribution” [10]. 
 The mentioned value of 50 keV, which corresponds to transition from the low-energy 
angular probability density (5.5) to the high-energy angular probability density (5.8), is the same as 
in MCNP, where a similar (although probably not exactly the same) approach has been applied [1, 
11]. This “transition energy” may be modified by the user. Its value must be specified in the input 
file after the keyword “PE_ANGULAR_DISTR_THR” (the unit of energy is the same as for all 
other energies specified in the input file, i.e., it is defined by the keyword “E_UNIT” described n 
Section 4.1). 
 In addition, it is possible to modify the number of values of μ in the tables of photoelectron 
angular probability densities, which are calculated by MCNelectron before the simulation. The 
default value of that number is 21 (i.e., μ is varied in increments of 0.1 from −1 to 1). In order to 
change that number, it must be specified in the input file after the keyword 
“PE_ANGULAR_DISTR_N”. In any case, the values of μ will be equidistant. 
 
(d) Non-uniform distribution of positron and electron energies during pair production 
 
 If the integer number that follows the keyword “PP_ENERGY_DISTR” is non-zero, then the 
energy distribution of positrons emitted when a photon with energy E is absorbed in a pair-
production event is non-uniform (this is the default behavior). Otherwise, the positron energy will 
be sampled from a uniform distribution. Once the positron energy is sampled, the electron energy is 
uniquely determined by conservation of energy. 
 The non-uniform energy distribution function is calculated using the following formula, 
which is an approximation of the Bether-Heitler singly differential cross section for pair production: 

2 2
1 2

d 2~ [ (1 ) ] (1 ) ,
d 3

x x x x
x
σ ϕ ϕ+ − + −                                            (5.9) 

where x = (E+ + mec2) / E is the reduced energy, i.e., the fraction of the photon energy carried off by 
the positron (E+ is the positron kinetic energy, me is the electron rest mass, c is the speed of light), 
and factors ϕ1 and ϕ2 are defined as follows: 

2 2 1
1 2[1 ln( )] 2ln(1 ) 4 arctan( ),a b b bϕ −= + − + −                                  (5.10a) 
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2 2 2 1 2
2 2[(2 / 3) ln( )] 2ln(1 ) 8 [1 arctan( ) 0.75ln(1 )],a b b b b bϕ − −= + − + + − − +       (5.10b) 

where a only depends on the atomic number Z: 
a = 122.8 for Z = 1, 
a = 90.8 for Z = 2, 
a = 100 for Z = 3, 
a = 106 for Z = 4, 
a = 111.7 for Z > 4, 

and b is defined as follows: 
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The expression (5.9) has been obtained from the formula provided in [10] by eliminating the terms 
proportional to the high-energy Coulomb correction (as stated in [10], “because of the approximate 
nature of this correction, it should not be used for photon energies of less than about 100 MeV”). 
The two terms of Eq. (5.9), which are proportional to ϕ1 and ϕ2, are the same as in a more complex 
formula derived in [12]. However, the expressions of the factors ϕ1 and ϕ2 that are given in [10] are 
slightly different from their definitions provided in [12]. The expressions (5.10a) and (5.10b) have 
been taken from [12]. 
 The argument of the positron energy probability density that is used during simulation is 
defined slightly differently than the reduced energy x in Eq. (5.9): it is the fraction y of the total 
kinetic energy Tmax = E − 2mec2 that is carried away by the positron. Unlike x, the variable y can be 
equal to any number from 0 to 1. Before starting the simulation, MCNelectron calculates tables of 
positron energy probability densities p(y) corresponding to 12 values of the incident photon energy 
from 1022 keV to 100 GeV. During simulation, the probability densities corresponding to the 
current photon energy are calculated by interpolation. 
 
(e) Angular distribution of electrons and positrons created in pair production events 
 
 If the integer number that follows the keyword “PP_ANGULAR_DISTR” is non-zero, then 
the directions of positrons and electrons emitted in pair production events will be sampled using the 
probability density function p(μ) defined by Eq. (5.1), where β is the ratio of the particle speed (i.e., 
either positron speed or electron speed) and the speed of light [10]. The corresponding formula for 
calculating the sampled values of μ is (5.3). This is the default behavior. Otherwise (i.e., in the case 
“PP_ANGULAR_DISTR 0”), both the positron and the electron will continue in the direction of the 
incident photon. 

 
(f) Doppler broadening of energy distribution of incoherently scattered photons 
 
 If the integer number that follows the keyword “INCOH_DOPPLER” is non-zero, then 
MCNelectron simulates the so-called Doppler broadening of the energy spectrum of incoherently 
scattered photons (caused by the distribution of the electron momentum inside the atom). This is the 
default behavior. Otherwise, the energies of the scattered photon and the recoil electron will be 
calculated as though the electron is initially free and at rest. Doppler energy broadening is simulated 
exactly as described in [13, 14]. This simulation requires the so-called Compton profiles for each 
subshell of each chemical element that is present in the target material. Those Compton profiles 
were published in [15]. They are stored in the ASCII file “Data\ComptonProfiles.dat”, which is 
included in the MCNelectron distribution package. That file was downloaded from 
http://ftp.esrf.eu/pub/scisoft/xop2.3/DabaxFiles/ComptonProfiles.dat . 
 Another aspect of incoherent scattering of photons is controlled by the keyword 
“INCOH_SUBTRACT_BINDING_E”. If the integer number following that keyword is non-zero, 
then the recoil electron energy is additionally reduced by subtracting the binding energy of the 
subshell from which the electron was ejected (if the resulting energy value is negative, then the 

http://ftp.esrf.eu/pub/scisoft/xop2.3/DabaxFiles/ComptonProfiles.dat�
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recoil electron is not emitted). This is the default behavior. Otherwise, the recoil electron energy is 
simply the difference of the incident and scattered photon energies. Thus, in the case with 
“INCOH_SUBTRACT_BINDING_E 0” and with simulation of Doppler energy broadening “turned 
on”, conservation of energy and momentum is not simulated accurately (except in the high-energy 
limit, when atomic binding effects become negligible): the scattered photon energy is calculated 
under the assumption that the electron initially has some momentum, whereas the recoil electron 
energy is calculated under the assumption that its initial energy (and momentum) is zero. Another 
non-physical result of such simple calculation of the recoil electron energy is related to possible 
subsequent emission of X-ray photons or Auger electrons from the ionized atom: those secondary 
photons and electrons also carry off some energy and interact with the target material. Thus, the 
total energy carried off by the secondary particles (the recoil electron and the secondary photons 
and electrons from atomic relaxation) is slightly greater than the energy loss of the photon. This 
result violates conservation of energy. If the integer number following the keyword 
“INCOH_SUBTRACT_BINDING_E” is non-zero, then the violation of conservation of energy is 
eliminated: the mentioned binding energy is, in effect, the excitation energy of the ionized atom, 
and a part of that excitation energy may be carried off by Compton fluorescence photons and Auger 
electrons. 
 In any case, the direction of motion of the recoil electron is the same as the direction of the 
photon momentum transfer vector (i.e., the difference of the incident and scattered photon 
momentum vectors). This also is only accurate in the high-energy limit: since the mass of the target 
atom is much larger than the electron mass, the atom can absorb any amount of recoil momentum 
and, consequently, the directions of the scattered photon and the electron are not constrained by 
kinematics [10]. 
 
6. MCNelectron output file format 

 An MCNelectron or MCNelectron_CUDA output file consists of the following 7 sections: 

• the command line that was used to generate the current file, 
• contents of the input file and of the alternative cross sections info file (if it was used), 
• the elapsed time and maximum number of banked particles, 
• CUDA device statistics (optional; see Section 4.7), 
• fraction of source photons absorbed or scattered and fraction of their energy absorbed, 
• tables with summary statistics characterizing various types of energy-loss interactions, 
• average energy loss per one secondary electron. 

 Information about energy-loss interactions is presented in six tables: three tables with 
information pertaining to creation and loss of photons and three tables with information pertaining 
to creation and loss of electrons and positrons. Each of those six tables consists of three columns: 
number of interaction events, their weight per source particle and the total energy of secondary 
particles created in those events or the total energy lost in those events (the energy is also given per 
source particle). All statistics under “electrons” include the contribution from positrons, too. When 
the source emits photons, there are two additional lines before the tables, with the values of the 
fraction of source photons that have been scattered or absorbed in the layer and the fraction of 
source energy that has been absorbed. 
 There are two tables pertaining to photon creation and two tables pertaining to electron 
creation: the first of those tables only contains statistics for the events when the energy of the 
created photon or electron exceeded the low-energy cutoff value specified in the input file (see 
Section 4.1, keywords CUT_P and CUT_E, respectively). The second of those tables contains 
statistics for all particle-creation events, including those when the energy of the created particle was 
less than the cutoff value. The first of those tables is mainly included for comparison with MCNP6 
output, because, as mentioned in Section 1, MCNP6 only outputs statistics pertaining to particles 
with energy greater than the low-energy cutoff. 
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 In order to facilitate comparison with MCNP6 output, the names of the rows in the 
mentioned tables and their order are the same as in the MCNP6 output file. There is only one item 
in MCNelectron output that is absent in the MCNP6 output: the table with particle and energy loss 
information has a row “backscatter”, which contains the number and energy of particles that 
escaped from the layer through the surface that is exposed to the incident beam. The number and 
energy of photons or electrons that escaped from the other surface can be obtained by subtracting 
the values in the row “backscatter” from the corresponding values in the row “escape”. Another 
difference between the tables with energy loss information in MCNelectron and MCNP6 output 
files is in the meaning of the number “N” (column “tracks” in MCNP6 output). In MCNP6 output, 
that number is the actual number of lost particles. Electrons and positrons can only be lost by three 
mechanisms: 

• escape from the layer, 
• decrease of electron energy below the low-energy cutoff value, 
• positron annihilation (it occurs after the positron energy drops below the low-energy cutoff). 

Photons can only be lost by four mechanisms: 
• escape from the layer, 
• decrease of photon energy below the low-energy cutoff value, 
• photoelectric absorption (“capture”), 
• pair production. 

Consequently, the number of events given for all other energy loss mechanisms in the MCNP6 
output file is zero. Conversely, MCNelectron outputs the number of all energy-loss events. 
Consequently, the number in the column “N” of the energy-loss table is non-zero whenever the lost 
energy is non-zero, even when that type of events did not cause loss of the incident particle (in such 
a case, only the energy loss values can be compared between MCNelectron and MCNP6 output). 
However, for comparison with MCNP6 output, the number in the row “Total” of the energy-loss 
tables in MCNelectron output files only includes the events when particles were actually lost. 
 The last line contains the average energy loss per one secondary electron (the so-called “W-
value”). Two values of that energy loss are given: 1) taking into account only the electrons with 
energy greater than the low-energy cutoff value; 2) taking into account all secondary electrons, 
including those that were not tracked due to low-energy cutoff. Obviously, the latter value is closer 
to the true W-value of the target material. 
 
7. Information about MCNelectron test files 
 
 The subfolder “Test” contains nine MCNelectron input files and nine MCNP6 input files 
corresponding to identical simulation conditions, together with respective output files. In addition, 
there is an MCNelectron input file where the option “ION_DWBA 1” is specified, and the 
corresponding output file (since this option is not available in MCNP, there are no corresponding 
MCNP6 input and output files). Input file names start with the word “input”, and output file names 
start with the word “output”. Five of the mentioned 9 simulations use a source of monoenergetic 
electrons, two simulations use a source of monoenergetic photons (the names of the corresponding 
MCNelectron input files end with “P”), one simulation uses a source of X-ray photons with 
continuous spectrum (the name of the corresponding MCNelectron input file ends with “X-rays”), 
and one simulation uses a source of monoenergetic positrons (the name of the corresponding 
MCNelectron input file ends with “E+”). The names of MCNP6 input and output files are obtained 
by appending “_MCNP6” to the names of corresponding MCNelectron input and output files. 
 Each of the 10 simulations using MCNelectron can be run either manually (by entering a 
command in the console window), or by executing one of the batch files, which are in the “Test” 
subfolder. The file “Batch_E.bat” runs the simulations where the source particles are electrons or 
positrons, and the file “Batch_P.bat” runs the simulations where the source particles are photons. 
The other two batch files (“Batch_E_MCNP6.bat” and “Batch_P_MCNP6.bat”) attempt to run the 
corresponding simulations using MCNP6 in single-event mode. 
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 A more detailed information about the test simulations is presented below. 

 In two of the test simulations, the main aim is estimation of the average energy per one 
secondary electron (the so called “W-value”) when the target material completely absorbs energy of 
incident monoenergetic electrons. In both those simulations, the target material is pure xenon. Both 
those simulations make use of the ability of MCNelectron to “turn off” elastic scattering of 
electrons and tracking of particle coordinates (this makes the simulation much shorter). The 
corresponding MCNelectron input files are: 

“input_Xe_1MeV_10.96_W-value_E.txt”: energy of incident electrons is 1 MeV, 
“input_Xe_100MeV_10.96_W-value_E.txt”: energy of incident electrons is 100 MeV. 

The number after the energy value in those two file names is the low-energy cutoff value for 
electrons (eV). It is equal to ionization energy of xenon (as stored in the ENDF/B library). In order 
to ensure that all energy of source electrons is absorbed by the target material when MCNP6 is 
used, the geometry of the simulated system is defined in the MCNP6 input files as an isotropic point 
source at the center of a sphere with radius 1012 cm, which is filled with xenon at a density of 
1 g/cm3. 
 In six test simulations, interaction of source particles with a layer composed of Xe, Ar and 
He with atomic fractions 0.1, 0.2, 0.7 is simulated (since the aim of those simulations is comparison 
of MCNelectron output with MCNP6 output, the composition of the target material has been chosen 
arbitrarily, without any regard to its practical or scientific value). Density of the target material is 
1 g/cm3 and thickness is 1 cm, excluding the simulation with the continuous-spectrum X-ray source, 
where the thickness is 10−5 cm. It should be noted that results of the simulation only depend on the 
value of mass thickness ρ d, where ρ is density and d is thickness of the layer. Three of those six 
simulations use a monoenergetic source emitting particles with energy 1 MeV, and only differ by 
the particle type (electrons, photons or positrons). The fourth and fifth simulations use a 
monoenergetic source that emits photons or electrons with energy 100 MeV. Those two simulations 
are the most complex ones, because all physical processes and effects that MCNelectron can 
simulate are well represented in those two simulations. The sixth simulation uses a realistic 
spectrum of X-rays emitted by a Mo-tube with anode voltage 35 kV and filtered by a layer of Pyrex 
glass with thickness 1.2 mm. In order to make the definition of X-ray spectrum compatible with 
MCNP input format, each line of that definition ends with the character ‘&’, which is used as a line-
continuation character in MCNP input files (in MCNelectron input files, that character is not 
required and it is ignored by MCNelectron). 
 The last simulated system is a 25 keV electron beam that is incident normally on a 2 μm 
layer of U3O8 with density 8.3 g/cm3. This is the only simulation using a plane-crossing tally (a 
table of energy distribution of photons emitted in the direction opposite the incident beam). There 
are two versions of that simulation: one of them uses the option “ION_DWBA 0”, and another one 
uses “ION_DWBA 1”. An MCNP6 counterpart exists only for the version with “ION_DWBA 0”. 
 All test simulations were done using MCNelectron v1.1.1 or MCNelectron_CUDA v1.1.1 
(that is why the tally data do not include the relative standard deviations, which were introduced in 
v1.1.2). The first 8 mentioned test simulations used 8 concurrent threads on the CPU, and the 
simulations with U3O8 used 10 CPU threads. In addition, MCNelectron_CUDA used two Nvidia 
GeForce GTX 780 Ti cards for the two simulations with U3O8. All simulations were done on a 
computer with an Intel Core i7-4930K processor running 64-bit Windows 8.1. In order to avoid 
system slowdown, it is recommended to set the number of CPU threads to a value that does not 
exceed the number of logical processors (the latter number can be seen in Windows Tasks Manager, 
tab “Performance”). In the case of simulations that use CUDA devices, the number of CPU threads 
specified after the keyword “TASKS” must be additionally decreased by 1, because, as mentioned 
in Section 4.1, that number does not take into account one CPU thread that is reserved for 
exchanging data with CUDA devices (that thread is not used for the actual simulation of particle 
interactions). Note: If the number of threads does not exceed the number of logical processors on 
the computer, then the computer time specified in MCNP6 output files is larger than the true 
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simulation time by a factor equal to the square of the number of threads. In the case of 8 threads, the 
true time of an MCNP6 run is obtained by dividing the specified time by 64. In the case of 10 
threads, the true time of an MCNP6 run is obtained by dividing the specified time by 100. 
 Comparison of MCNelectron and MCNP6 output data shows a very good agreement 
between the simulation results computed by those two programs. Comparison of the times of CPU-
only simulations shows that MCNelectron significantly outperforms MCNP6 in all cases. In hybrid 
CPU/GPU computations using two GTX 780 Ti cards, the computation time is additionally reduced 
approximately by half. 
 
8. Information about files in the subfolder “Simulations\X-rays” of the distribution package 
 The subfolder “Simulations\X-rays” of the MCNelectron distribution package contains 99 
MCNelectron_CUDA input files and the corresponding output files (the output file name is 
obtained by appending “_out” to the input file name). Each of them is used to simulate 
characteristic X-ray emission from a thick target composed of one of those elements: C, Al, Si, Ti, 
Fe, Cu, Zn, Ge, Zr, Sn, Sm, Ta, W, Pt, Au and Pb, bombarded by monoenergetic electrons with 
energy from 5 keV to 30 keV (the element symbol and electron energy are included in the names of 
input and output files). Those simulations were performed using ENDF/B-VI.8 data, with the 
exception of inner-shell electron impact ionization cross sections, which were calculated using the 
distorted-wave Born approximation (this is achieved by specifying the option “ION_DWBA 1” in 
the MCNelectron input file). Interaction forcing was used (see Section 4.5). Those simulations were 
performed using MCNelectron v1.1.2 in “hybrid” CPU/GPU mode on a computer with an Intel 
Core i7-4930K processor and two Nvidia GeForce GTX 780 Ti video cards. The operating system 
was 64-bit Windows 8.1. 
 Two incidence angles were used: 0° and 45°. In the latter case, the file names contain the 
character string “45deg”. The tallied photons are the ones whose energy corresponds to the Kα, K 
(=Kα + Kβ) or Lα characteristic X-ray line (the energy range containing that energy value is 
specified using the keyword “E1” in the input file). In the case of normal incidence, the tallied 
photons are either Kα (for the elements Ti, Cu and Ge) or K (for the elements C, Al and Si). In the 
case of non-normal incidence, the tallied 
photons are either Kα (for the elements Ti, 
Fe, Cu, Zn and Zr) or Lα (for the elements 
Sn, Sm, Ta, W, Pt, Au and Pb). In the latter 
case, the characteristic X-ray line is 
specified by the letter “K” or “L” inserted 
after “45deg_”. 
 In all cases, an annular detector was 
assumed, i.e., only the photons hitting a 
ring-shaped area centered above the point of 
incidence were counted (see Fig. 1). The 
distance between the plane of incidence and 
the detector was 10000 cm, i.e., much larger 
than the part of the target where the photons 
originate. This, together with the fact that 
radiation emitted during atomic relaxation is isotropic, justifies the use of the annular detector even 
when the angle of incidence is not equal to 0°. The outer and inner radii of the ring correspond to 
takeoff angles Ψ − 5° and Ψ + 5°, respectively, where Ψ = 40° in the case of normal incidence, and 
Ψ = 45° in the case of non-normal incidence. Each simulation was terminated when the relative 
standard deviation of the photon count corresponding to the mentioned characteristic X-ray line 
dropped below 2 %, or when the total number of source particles reached 5 ⋅ 107. 
 The computed tally data are in subfolders of the folder “X-rays”. The names of those 
subfolders include the names of the corresponding output files. In order to obtain the characteristic 

Fig. 1.  Simulation geometry used to compute the X-ray yields 
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X-ray yield (in units of photons / (sr ⋅ electron)), the number of tallied photons must be divided by 
the solid angle subtended by the annular detector. The solid angle corresponding to the range of 
takeoff angles from 35° to 45° is 0.839 sr, and the solid angle corresponding to the range of takeoff 
angles from 40° to 50° is 0.774 sr. Notes: 1) The input files contain the option “tallies_per_source 
1”, which ensures that the photon numbers in the computed tally data are already given per source 
electron. 2) In the case of normal incidence, two photon tallies were calculated: the one mentioned 
above and another one corresponding to smaller takeoff angles. The name of the photon tally data 
file corresponding to takeoff angles from 35° to 45° is “PTALLY1_E1.txt”. 
 Each of the mentioned tallies contains three bins. The energy of characteristic X-ray 
radiation belongs to bin No. 2. Bins No. 1 and No. 3 contain only bremsstrahlung photon counts. 
Consequently, they may be used to eliminate the contribution of bremsstrahlung to the photon count 
in bin No. 2. This is achieved by subtracting the average photon count in bins No. 1 and No. 3 from 
the photon count in bin No. 2. 
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