■ NetApp # Maintain **ONTAP Systems** NetApp February 15, 2022 This PDF was generated from https://docs.netapp.com/us-en/ontap-systems/a400/bootmedia-replace-overview.html on February 15, 2022. Always check docs.netapp.com for the latest. # **Table of Contents** | Maintain | 1 | |--|----| | Boot media | 1 | | Chassis | 22 | | Controller module | 30 | | Replace a DIMM - AFF A400 | 52 | | Hot-swap a fan module - AFF A400 | 62 | | Replace the NVDIMM battery - AFF A400 | 64 | | Replace an NVDIMM - AFF A400 | 73 | | Replace a PCIe or mezzanine card - AFF A400 | 84 | | Replacing a power supply - AFF A400 | 95 | | Replace the real-time clock battery - AFF A400 | 96 | # **Maintain** ## **Boot media** ## Replace the boot media - AFF A400 The boot media stores a primary and secondary set of system (boot image) files that the system uses when it boots. Depending on your network configuration, you can perform either a nondisruptive or disruptive replacement. You must have a USB flash drive, formatted to FAT32, with the appropriate amount of storage to hold the image xxx.tgz file. You also must copy the image xxx.tgz file to the USB flash drive for later use in this procedure. - The nondisruptive and disruptive methods for replacing a boot media both require you to restore the var file system: - For nondisruptive replacement, the HA pair must be connected to a network to restore the var file system. - For disruptive replacement, you do not need a network connection to restore the var file system, but the process requires two reboots. - You must replace the failed component with a replacement FRU component you received from your provider. - It is important that you apply the commands in these steps on the correct node: - The *impaired* node is the node on which you are performing maintenance. - The *healthy node* is the HA partner of the impaired node. ## Check onboard encryption keys as needed - AFF A400 Prior to shutting down the impaired node and checking the status of the onboard encryption keys, you must check the status of the impaired node, disable automatic giveback, and check the version of ONTAP that is running. If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy node shows false for eligibility and health, you must correct the issue before shutting down the impaired node; see the NetApp Encryption overview with the CLI. #### Steps - 1. Check the status of the impaired node: - o If the impaired node is at the login prompt, log in as admin. - If the impaired node is at the LOADER prompt and is part of HA configuration, log in as admin on the healthy node. - If the impaired node is in a standalone configuration and at LOADER prompt, contact mysupport.netapp.com. - 2. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message ``` MAINT=number of hours downh ``` The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h - 3. Check the version of ONTAP the system is running on the impaired node if up, or on the partner node if the impaired node is down, using the version -v command: - If <Ino-DARE> or <10no-DARE> is displayed in the command output, the system does not support NVE, proceed to shut down the controller. - If <Ino-DARE> is not displayed in the command output, and the system is running ONTAP 9.6 or later, go to the next section. - 4. If the impaired node is part of an HA configuration, disable automatic giveback from the healthy node: storage failover modify -node local -auto-giveback false or storage failover modify -node local -auto-giveback-after-panic false ## Check NVE or NSE on systems running ONTAP 9.6 and later Before shutting down the impaired node, you need to verify whether the system has either NetApp Volume Encryption (NVE) or NetApp Storage Encryption (NSE) enabled. If so, you need to verify the configuration. 1. Verify whether NVE is in use for any volumes in the cluster: volume show -is-encrypted true If any volumes are listed in the output, NVE is configured and you need to verify the NVE configuration. If no volumes are listed, check whether NSE is configured and in use. - 2. Verify whether NSE is configured and in use: storage encryption disk show - If the command output lists the drive details with Mode & Key ID information, NSE is configured and you need to verify the NSE configuration and in use. - If no disks are shown, NSE is not configured. - If NVE and NSE are not configured, no drives are protected with NSE keys, it's safe to shut down the impaired node. #### **Verify NVE configuration** 1. Display the key IDs of the authentication keys that are stored on the key management servers: security key-manager key-query After the ONTAP 9.6 release, you may have additional key manager types. The types are KMIP, AKV, and GCP. The process for confirming these types is the same as confirming external or onboard key manager types. - If the Key Manager type displays external and the Restored column displays yes, it's safe to shut down the impaired node. - If the Key Manager type displays onboard and the Restored column displays yes, you need to complete some additional steps. - If the Key Manager type displays external and the Restored column displays anything other than yes, you need to complete some additional steps. - If the Key Manager type displays onboard and the Restored column displays anything other than yes, you need to complete some additional steps. - 1. If the Key Manager type displays onboard and the Restored column displays yes, manually back up the OKM information: - a. Go to advanced privilege mode and enter y when prompted to continue: set -priv advanced - b. Enter the command to display the key management information: security key-manager onboard show-backup - c. Copy the contents of the backup information to a separate file or your log file. You'll need it in disaster scenarios where you might need to manually recover OKM. - d. Return to admin mode: set -priv admin - e. Shut down the impaired node. - 2. If the Key Manager type displays external and the Restored column displays anything other than yes: - a. Restore the external key management authentication keys to all nodes in the cluster: security key-manager external restore If the command fails, contact NetApp Support. mysupport.netapp.com - b. Verify that the Restored column equals yes for all authentication keys: security key-manager key-query - c. Shut down the impaired node. - 3. If the Key Manager type displays onboard and the Restored column displays anything other than yes: - a. Enter the onboard security key-manager sync command: security key-manager onboard sync Enter the customer's onboard key management passphrase at the prompt. If the passphrase cannot be provided, contact NetApp Support. mysupport.netapp.com - b. Verify the Restored column shows yes for all authentication keys: security key-manager key-query - c. Verify that the Key Manager type shows onboard, and then manually back up the OKM information. - d. Go to advanced privilege mode and enter y when prompted to continue: set -priv advanced - e. Enter the command to display the key management backup information: security key-manager onboard show-backup - f. Copy the contents of the backup information to a separate file or your log file. You'll need it in disaster scenarios where you might need to manually recover OKM. - g. Return to admin mode: set -priv admin - h. You can safely shut down the node. #### **Verify NSE configuration** 1. Display the key IDs of the authentication keys that are stored on the key management servers: security key-manager key-query -key-type NSE-AK After the ONTAP 9.6 release, you may have additional key manager types. The types are KMIP, AKV, and GCP. The process for confirming these types is the same as confirming external or onboard key manager types. - If the Key Manager type displays external and the Restored column displays yes, it's safe to shut down the impaired node. - If the Key Manager type displays onboard and the Restored column displays yes, you need to complete some additional steps. - If the Key Manager type displays external and the Restored column displays anything other than yes, you need to complete some additional steps. - If the Key Manager type displays external and the Restored column displays anything other than yes, you need to complete some additional steps. - 1. If the Key Manager type displays onboard and the Restored column displays yes, manually back up the OKM information: - a. Go to advanced privilege mode and enter y when prompted to continue: set -priv advanced - b. Enter the command to display the key management information: security key-manager onboard show-backup - c. Copy the contents of the backup information to a separate file or your log file. You'll need it in disaster scenarios where you might need to manually recover OKM. - d. Return to admin mode: set -priv admin - e. You can safely shut down the node. - 2. If the Key Manager type displays external and the Restored column displays anything other than yes: - a. Enter the onboard security key-manager sync command: security key-manager external sync If the command fails, contact NetApp Support. #### mysupport.netapp.com - b. Verify that the Restored column equals yes for all authentication keys: security key-manager key-query - c. You can safely shut down the node. - 3. If the Key Manager type displays onboard and the Restored column displays anything other than yes: - a. Enter the onboard security key-manager sync command: security key-manager onboard sync Enter the customer's onboard key management passphrase at the prompt. If the passphrase cannot be provided, contact NetApp Support. #### mysupport.netapp.com - b.
Verify the Restored column shows yes for all authentication keys: security key-manager key-query - c. Verify that the Key Manager type shows onboard, and then manually back up the OKM information. - d. Go to advanced privilege mode and enter y when prompted to continue: set -priv advanced - e. Enter the command to display the key management backup information: security key-manager onboard show-backup - f. Copy the contents of the backup information to a separate file or your log file. You'll need it in disaster scenarios where you might need to manually recover OKM. - g. Return to admin mode: set -priv admin - h. You can safely shut down the node. ## Shut down the impaired controller - AFF A400 #### **Option 1: Most configurations** After completing the NVE or NSE tasks, you need to complete the shutdown of the impaired node. #### Steps 1. If the impaired node isn't at the LOADER prompt: | If the impaired node displays | Then | |--|---| | Waiting for giveback | Press Ctrl-C, and then respond ${\bf y}$ when prompted. | | System prompt or password prompt (enter system password) | Take over or halt the impaired node from the healthy node: storage failover takeover -ofnode impaired_node_name | | | + When the impaired node shows Waiting for giveback, press Ctrl- C, and then respond ${\bf y}.$ | | | + | 2. From the LOADER prompt, enter: printenv to capture all boot environmental variables. Save the output to your log file. This command may not work if the boot device is corrupted or non-functional. #### Option 2: Controller is in a MetroCluster configuration After completing the NVE or NSE tasks, you need to complete the shutdown of the impaired node. Do not use this procedure if your system is in a two-node MetroCluster configuration. To shut down the impaired node, you must determine the status of the node and, if necessary, take over the node so that the healthy node continues to serve data from the impaired node storage. - If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy node shows false for eligibility and health, you must correct the issue before shutting down the impaired node; see the Administration overview with the CLI. - If you have a MetroCluster configuration, you must have confirmed that the MetroCluster Configuration State is configured and that the nodes are in an enabled and normal state (metrocluster node show). #### Steps 1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number of hours downh The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h - 2. Disable automatic giveback from the console of the healthy node: storage failover modify -node local -auto-giveback false - 3. Take the impaired node to the LOADER prompt: | If the impaired node is displaying | Then | |--|---| | The LOADER prompt | Go to Remove controller module | | Waiting for giveback | Press Ctrl-C, and then respond \underline{y} when prompted. | | System prompt or password prompt (enter system password) | Take over or halt the impaired node from the healthy node: storage failover takeover -ofnode impaired_node_name | | | + When the impaired node shows Waiting for giveback, press Ctrl- C, and then respond ${\bf y}.$ | | | + | #### **Option 3: Controller is in a two-node Metrocluster** After completing the NVE or NSE tasks, you need to complete the shutdown of the impaired node. To shut down the impaired node, you must determine the status of the node and, if necessary, switch over the node so that the healthy node continues to serve data from the impaired node storage. #### About this task - If you are using NetApp Storage Encryption, you must have reset the MSID using the instructions in the "Return a FIPS drive or SED to unprotected mode" section of NetApp Encryption overview with the CLI. - You must leave the power supplies turned on at the end of this procedure to provide power to the healthy node. #### Steps - 1. Check the MetroCluster status to determine whether the impaired node has automatically switched over to the healthy node: metrocluster show - 2. Depending on whether an automatic switchover has occurred, proceed according to the following table: | If the impaired node | Then | |---|--| | Has automatically switched over | Proceed to the next step. | | Has not automatically switched over | Perform a planned switchover operation from the healthy node: metrocluster switchover | | Has not automatically switched over, you attempted switchover with the metrocluster switchover command, and the switchover was vetoed | Review the veto messages and, if possible, resolve the issue and try again. If you are unable to resolve the issue, contact technical support. | 3. Resynchronize the data aggregates by running the metrocluster heal -phase aggregates command from the surviving cluster. ``` controller_A_1::> metrocluster heal -phase aggregates [Job 130] Job succeeded: Heal Aggregates is successful. ``` If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation. 4. Verify that the operation has been completed by using the metrocluster operation show command. ``` controller_A_1::> metrocluster operation show Operation: heal-aggregates State: successful Start Time: 7/25/2016 18:45:55 End Time: 7/25/2016 18:45:56 Errors: - ``` 5. Check the state of the aggregates by using the storage aggregate show command. ``` controller_A_1::> storage aggregate show Aggregate Size Available Used% State #Vols Nodes RAID Status ------ ... aggr_b2 227.1GB 227.1GB 0% online 0 mcc1-a2 raid_dp, mirrored, normal... ``` 6. Heal the root aggregates by using the metrocluster heal -phase root-aggregates command. ``` mcc1A::> metrocluster heal -phase root-aggregates [Job 137] Job succeeded: Heal Root Aggregates is successful ``` If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation. 7. Verify that the heal operation is complete by using the metrocluster operation show command on the destination cluster: ``` mcc1A::> metrocluster operation show Operation: heal-root-aggregates State: successful Start Time: 7/29/2016 20:54:41 End Time: 7/29/2016 20:54:42 Errors: - ``` 8. On the impaired controller module, disconnect the power supplies. # Remove the controller module, replace the boot media and transfer the boot image to the boot media - AFF A400 To replace the boot media, you must remove the impaired controller module, install the replacement boot media, and transfer the boot image to a USB flash drive. #### Step 1: Remove the controller module To access components inside the controller module, you must remove the controller module from the chassis. You can use the following animation, illustration, or the written steps to remove the controller module from the chassis. Removing the controller module #### Steps - 1. If you are not already grounded, properly ground yourself. - 2. Release the power cable retainers, and then unplug the cables from the power supplies. - Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFPs (if needed) from the controller module, keeping track of where the cables were connected. Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized. - 4. Remove the cable management device from the controller module and set it aside. - 5. Press down on both of the locking latches, and then rotate both latches downward at the same time. The controller module moves slightly out of the chassis. | • | Locking latches | |---|---------------------------------| | 2 | Slide controller out of chassis | 6. Slide the controller module out of the chassis. Make sure that you support the bottom of the controller module as you slide it out of the chassis. 7. Place the controller module on a stable, flat surface. #### Step 2: Replace the boot media You must locate the boot media in the controller module (see the FRU map on the controller module), and then follow the directions to replace it. ## Before you begin Although the contents of the boot media is encrypted, it is a best practice to erase the contents of the boot media before replacing it. For more information, see the Statement of Volatility for your system on the NetApp Support Site. You must log into the NetApp Support Site to display the Statement of Volatility for your system. You can use the following animation, illustration, or the written steps to replace the boot media. ### Replacing the boot media #### **Steps** 1. Open the air duct: | 1 | Locking tabs | |---|--| | 2 | Slide air duct toward back of controller | | 8 | Rotate air duct up | - a. Press the locking tabs on the sides of the air duct in toward the middle of the controller module. - b. Slide the air duct toward the back of the
controller module, and then rotate it upward to its completely open position. 2. Locate and remove the boot media from the controller module: | 0 | Press blue button | |---|---| | 2 | Rotate boot media up and remove from socket | - a. Press the blue button at the end of the boot media until the lip on the boot media clears the blue button. - b. Rotate the boot media up and gently pull the boot media out of the socket. - 3. Align the edges of the replacement boot media with the boot media socket, and then gently push it into the socket. - 4. Check the boot media to make sure that it is seated squarely and completely in the socket. If necessary, remove the boot media and reseat it into the socket. - 5. Lock the boot media in place: - a. Rotate the boot media down toward the motherboard. - b. Placing a finger at the end of the boot media by the blue button, push down on the boot media end to engage the blue locking button. - c. While pushing down on the boot media, lift the blue locking button to lock the boot media in place. Close the air duct. #### Step 3: Transfer the boot image to the boot media The replacement boot media that you installed does not have a boot image, so you need to transfer a boot image using a USB flash drive. ## Before you begin - You must have a USB flash drive, formatted to MBR/FAT32, with at least 4GB capacity - A copy of the same image version of ONTAP as what the impaired controller was running. You can download the appropriate image from the Downloads section on the NetApp Support Site - If NVE is enabled, download the image with NetApp Volume Encryption, as indicated in the download button. - If NVE is not enabled, download the image without NetApp Volume Encryption, as indicated in the download button. - If your system is an HA pair, you must have a network connection. - If your system is a stand-alone system you do not need a network connection, but you must perform an additional reboot when restoring the var file system. #### Steps - 1. Download and copy the appropriate service image from the NetApp Support Site to the USB flash drive. - a. Download the service image to your work space on your laptop. - b. Unzip the service image. If you are extracting the contents using Windows, do not use WinZip to extract the netboot image. Use another extraction tool, such as 7-Zip or WinRAR. There are two folders in the unzipped service image file: - boot - efi - c. Copy the efi folder to the top directory on the USB flash drive. The USB flash drive should have the efi folder and the same Service Image (BIOS) version of what the impaired controller is running. - d. Remove the USB flash drive from your laptop. - 2. If you have not already done so, close the air duct. - 3. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system. - 4. Reinstall the cable management device and recable the system, as needed. When recabling, remember to reinstall the media converters (SFPs or QSFPs) if they were removed. - 5. Plug the power cable into the power supply and reinstall the power cable retainer. - 6. Insert the USB flash drive into the USB slot on the controller module. Make sure that you install the USB flash drive in the slot labeled for USB devices, and not in the USB console port. - 7. Complete the installation of the controller module: - a. Plug the power cord into the power supply, reinstall the power cable locking collar, and then connect the power supply to the power source. - b. Firmly push the controller module into the chassis until it meets the midplane and is fully seated. The locking latches rise when the controller module is fully seated. Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors. The controller module begins to boot as soon as it is fully seated in the chassis. Be prepared to interrupt the boot process. - c. Rotate the locking latches upward, tilting them so that they clear the locking pins, and then lower them into the locked position. - d. If you have not already done so, reinstall the cable management device. - 8. Interrupt the boot process by pressing Ctrl-C to stop at the LOADER prompt. If you miss this message, press Ctrl-C, select the option to boot to Maintenance mode, and then halt the node to boot to LOADER. - 9. Although the environment variables and bootargs are retained, you should check that all required boot environment variables and bootargs are properly set for your system type and configuration using the printenv bootarg name command and correct any errors using the setenv variable-name <value> command. - a. Check the boot environment variables: - bootarg.init.boot clustered - partner-sysid - bootarg.init.flash optimized for AFF C190/AFF A220 (All Flash FAS) - bootarg.init.san optimized for AFF A220 and All SAN Array - bootarg.init.switchless cluster.enable - b. If External Key Manager is enabled, check the bootarg values, listed in the keny ASUP output: - bootarg.storageencryption.support <value> - bootarg.keymanager.support [value] - * kmip.init.interface [value] - * kmip.init.ipaddr <value> - * kmip.init.netmask <value> - * kmip.init.gateway <value> - c. If Onboard Key Manager is enabled, check the bootarg values, listed in the keny ASUP output: - bootarg.storageencryption.support value - 'bootarg.keymanager.support value' - bootarg.onboard_keymanager value - d. Save the environment variables you changed with the saveny command - e. Confirm your changes using the printenv variable-name command. - 10. If the controller is in a stretch or fabric-attached MetroCluster, you must restore the FC adapter configuration: - a. Boot to Maintenance mode: boot ontap maint - b. Set the MetroCluster ports as initiators: ucadmin modify -m fc -t initiator adapter_name - c. Halt to return to Maintenance mode: halt The changes will be implemented when the system is booted. ## **Booting the recovery image - AFF A400** The procedure for booting the impaired node from the recovery image depends on whether the system is in a two-node MetroCluster configuration. ## **Option 1: Most systems** You must boot the ONTAP image from the USB drive, restore the file system, and verify the environmental variables. This procedure applies to systems that are not in a two-node MetroCluster configuration. #### **Steps** - 1. From the LOADER prompt, boot the recovery image from the USB flash drive: boot_recovery The image is downloaded from the USB flash drive. - 2. When prompted, either enter the name of the image or accept the default image displayed inside the brackets on your screen. - 3. Restore the var file system: | If your system has | Then | |-----------------------|---| | A network connection | a. Press ${\bf y}$ when prompted to restore the backup configuration. | | | b. Set the healthy node to advanced privilege level: set
-privilege advanced | | | c. Run the restore backup command: system node restore-
backup -node local -target-address
impaired_node_IP_address | | | d. Return the node to admin level: set -privilege admin | | | e. Press ${\bf y}$ when prompted to use the restored configuration. | | | f. Press ${\bf y}$ when prompted to reboot the node. | | No network connection | a. Press n when prompted to restore the backup configuration. | | | b. Reboot the system when prompted by the system. | | | Select the Update flash from backup config (sync flash) option
from the displayed menu. | | | If you are prompted to continue with the update, press ${\tt y}.$ | - 4. Ensure that the environmental variables are set as expected: - a. Take the node to the LOADER prompt. - b. Check the environment variable settings with the printenv command. - C. If an environment variable is not set as expected, modify it with the setenv environment-variable-name changed-value command. - d. Save your changes using the savenev command. - 5. The next depends on your system configuration: - If your system has onboard keymanager, NSE or NVE configured, go to Restore OKM, NSE, and NVE as needed - If your system does not have onboard keymanager, NSE or NVE configured, complete the steps in this section. - 6. From the LOADER prompt, enter the boot ontap command. | *If you see | Then* | |----------------------|--| | The login prompt | Go to the next Step. | | Waiting for giveback | a. Log into the partner node.b. Confirm the target node is ready for giveback with the storage failover show command. | 7. Connect the console cable to the partner node. - 8. Give back the node using the storage failover giveback -fromnode local command. - 9. At the cluster prompt, check the logical interfaces with the net int -is-home false command. If any interfaces are listed as "false", revert those interfaces back to their home port using the net intrevert command. - 10. Move the console cable to the repaired node and run the version -v command to check the ONTAP versions. - 11. Restore automatic giveback if you disabled it by using the storage failover modify -node local -auto-giveback true command. ### Option 2: Controller is in a two-node MetroCluster You must boot the ONTAP image from the USB drive and verify the environmental variables. This procedure applies to systems in a two-node MetroCluster configuration. #### **Steps** - From the LOADER prompt, boot the recovery image from the USB flash drive: boot_recovery The image is downloaded from the USB flash drive. - 2. When prompted, either enter the name of the image or accept the default image displayed inside the brackets on your screen. - 3. After the image is
installed, start the restoration process: - a. Press n when prompted to restore the backup configuration. - b. Press y when prompted to reboot to start using the newly installed software. You should be prepared to interrupt the boot process when prompted. - 4. As the system boots, press Ctrl-C after you see the Press Ctrl-C for Boot Menu message., and when the Boot Menu is displayed select option 6. - 5. Verify that the environmental variables are set as expected. - a. Take the node to the LOADER prompt. - b. Check the environment variable settings with the printenv command. - c. If an environment variable is not set as expected, modify it with the setenv environment-variable-name changed-value command. - d. Save your changes using the savenev command. - e. Reboot the node. ## Switch back aggregates in a two-node MetroCluster configuration - AFF A400 After you have completed the FRU replacement in a two-node MetroCluster configuration, you can perform the MetroCluster switchback operation. This returns the configuration to its normal operating state, with the sync-source storage virtual machines (SVMs) on the formerly impaired site now active and serving data from the local disk pools. This task only applies to two-node MetroCluster configurations. #### Steps 1. Verify that all nodes are in the enabled state: metrocluster node show - 2. Verify that resynchronization is complete on all SVMs: metrocluster vserver show - 3. Verify that any automatic LIF migrations being performed by the healing operations were completed successfully: metrocluster check lif show - 4. Perform the switchback by using the metrocluster switchback command from any node in the surviving cluster. - 5. Verify that the switchback operation has completed: metrocluster show The switchback operation is still running when a cluster is in the waiting-for-switchback state: The switchback operation is complete when the clusters are in the normal state.: If a switchback is taking a long time to finish, you can check on the status of in-progress baselines by using the metrocluster config-replication resync-status show command. 6. Reestablish any SnapMirror or SnapVault configurations. ## Restore OKM, NSE, and NVE as needed - AFF A400 Once environment variables are checked, you must complete steps specific to systems that have Onboard Key Manager (OKM), NetApp Storage Encryption (NSE) or NetApp Volume Encryption (NVE) enabled. - Determine which section you should use to restore your OKM, NSE, or NVE configurations: If NSE or NVE are enabled along with Onboard Key Manager you must restore settings you captured at the beginning of this procedure. - If NSE or NVE are enabled and Onboard Key Manager is enabled, go to Restore NVE or NSE when Onboard Key Manager is enabled. - If NSE or NVE are enabled for ONTAP 9.6, go to Restore NSE/NVE on systems running ONTAP 9.6 and later. #### Restore NVE or NSE when Onboard Key Manager is enabled #### **Steps** - 1. Connect the console cable to the target node. - 2. Use the boot ontap command at the LOADER prompt to boot the node. - 3. Check the console output: | If the console displays | Then | |-------------------------|--| | The LOADER prompt | Boot the node to the boot menu: boot_ontap menu | | Waiting for giveback | a. Enter Ctrl-C at the prompt b. At the message: Do you wish to halt this node rather than wait [y/n]?, enter: y c. At the LOADER prompt, enter the boot_ontap menu command. | - 4. At the Boot Menu, enter the hidden command, recover_onboard_keymanager and reply y at the prompt - 5. Enter the passphrase for the onboard key manager you obtained from the customer at the beginning of this procedure. 6. When prompted to enter the backup data, paste the backup data you captured at the beginning of this procedure, when asked. Paste the output of security key-manager backup show OR security key-manager onboard show-backup command The data is output from either security key-manager backup show or security key-manager onboard show-backup command. Example of backup data: 7. At the Boot Menu select the option for Normal Boot. The system boots to Waiting for giveback... prompt. - 8. Move the console cable to the partner node and login as "admin". - 9. Confirm the target node is ready for giveback with the storage failover show command. - 10. Giveback only the CFO aggregates with the storage failover giveback -fromnode local -only-cfo-aggregates true command. - If the command fails because of a failed disk, physically disengage the failed disk, but leave the disk in the slot until a replacement is received. - If the command fails because of an open CIFS sessions, check with customer how to close out CIFS sessions. Terminating CIFS can cause loss of data. - If the command fails because the partner "not ready", wait 5 minutes for the NVMEMs to synchronize. - If the command fails because of an NDMP, SnapMirror, or SnapVault process, disable the process. See the appropriate Documentation Center for more information. - 11. Once the giveback completes, check the failover and giveback status with the storage failover show and `storage failover show-giveback` commands. Only the CFO aggregates (root aggregate and CFO style data aggregates) will be shown. - 12. Move the console cable to the target node. - a. If you are running ONTAP 9.6 or later, run the security key-manager onboard sync: - b. Run the security key-manager onboard sync command and then enter the passphrase when prompted. - c. Enter the security key-manager key query command to see a detailed view of all keys stored in the onboard key manager and verify that the Restored column = yes/true for all authentication keys. If the Restored column = anything other than yes/true, contact Customer Support. - d. Wait 10 minutes for the key to synchronize across the cluster. - 13. Move the console cable to the partner node. - 14. Give back the target node using the storage failover giveback -fromnode local command. - 15. Check the giveback status, 3 minutes after it reports complete, using the storage failover show command. If giveback is not complete after 20 minutes, contact Customer Support. 16. At the clustershell prompt, enter the net int show -is-home false command to list the logical interfaces that are not on their home node and port. If any interfaces are listed as false, revert those interfaces back to their home port using the net intrevert command. - 17. Move the console cable to the target node and run the version -v command to check the ONTAP versions. - 18. Restore automatic giveback if you disabled it by using the storage failover modify -node local -auto-giveback true command. #### Restore NSE/NVE on systems running ONTAP 9.6 and later #### Steps - 1. Connect the console cable to the target node. - 2. Use the boot ontap command at the LOADER prompt to boot the node. - 3. Check the console output: | If the console displays | Then | |-------------------------|--| | The login prompt | Go to Step 7. | | Waiting for giveback | a. Log into the partner node.b. Confirm the target node is ready for giveback with the storage failover show command. | 4. Move the console cable to the partner node and give back the target node storage using the storage failover giveback -fromnode local -only-cfo-aggregates true local command. - If the command fails because of a failed disk, physically disengage the failed disk, but leave the disk in the slot until a replacement is received. - If the command fails because of an open CIFS sessions, check with customer how to close out CIFS sessions. Terminating CIFS can cause loss of data. - If the command fails because the partner "not ready", wait 5 minutes for the NVMEMs to synchronize. - If the command fails because of an NDMP, SnapMirror, or SnapVault process, disable the process. See the appropriate Documentation Center for more information. - 5. Wait 3 minutes and check the failover status with the storage failover show command. - 6. At the clustershell prompt, enter the net int show -is-home false command to list the logical interfaces that are not on their home node and port. If any interfaces are listed as false, revert those interfaces back to their home port using the net intrevert command. - 7. Move the console cable to the target node and run the version -v command to check the ONTAP versions - 8. Restore automatic giveback if you disabled it by using the storage failover modify -node local -auto-giveback true command. - 9. Use the storage encryption disk show at the clustershell prompt, to review the output. - 10. Use the security key-manager key query command to display the key IDs of the authentication keys that are stored on the key management servers. - If the Restored column = yes/true, you are done and can proceed to complete the replacement process. - o If the Key Manager type = external and the Restored column = anything other than yes/true, use the security key-manager external restore command to restore the key IDs of the authentication keys. If the command fails, contact Customer Support. • If the Key Manager type = onboard and the Restored column = anything other than yes/true, use the security key-manager onboard sync command to re-sync the Key Manager type. Use the security key-manager key query command to verify that the Restored column = yes/true for all authentication keys. - 11. Connect the console cable to the partner node. - 12. Give back the node using the storage failover giveback -fromnode local command. - 13. Restore automatic giveback if you disabled it by using the storage failover
modify -node local -auto-giveback true command. # Return the failed part to NetApp - AFF A400 After you replace the part, you can return the failed part to NetApp, as described in the RMA instructions shipped with the kit. Contact technical support at NetApp Support, 888-463-8277 (North America), 00-800-44-638277 (Europe), or +800-800-80-800 (Asia/Pacific) if you need the RMA number or additional help with the replacement procedure. # **Chassis** ## Replace the chassis - AFF A400 To replace the chassis, you must move the fans and controller modules from the impaired chassis to the new chassis of the same model as the impaired chassis. All other components in the system must be functioning properly; if not, you must contact technical support. - You can use this procedure with all versions of ONTAP supported by your system. - This procedure is disruptive. For a two-node cluster, you will have a complete service outage and a partial outage in a multinode cluster. #### Shut down the controllers - AFF A400 ## Option 1: Shut down the controllers when replacing a chassis You must shut down the node or nodes in the chassis prior to moving them to the new chassis. #### About this task - If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy node shows false for eligibility and health, you must correct the issue before shutting down the impaired node; see the Administration overview with the CLI. - If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number of hours downh The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h #### Steps 1. If your system has two controller modules, disable the HA pair. | If your system is running clustered ONTAP with | Then | |--|--| | Two nodes in the cluster | cluster ha modify -configured false storage failover modify -node node0 -enabled false | | More than two nodes in the cluster | storage failover modify -node node0 -enabled false | 2. Halt the node, pressing y when you are prompted to confirm the halt: system node halt -node node name The confirmation message looks like the following: Warning: This operation will cause node "node-name" to be marked as unhealthy. Unhealthy nodes do not participate in quorum voting. If the node goes out of service and one more node goes out of service there will be a data serving failure for the entire cluster. This will cause a client disruption. Use "cluster show" to verify cluster state. If possible bring other nodes online to improve the resiliency of this cluster. Do you want to continue? $\{y|n\}$: You must perform a clean system shutdown before replacing the chassis to avoid losing unwritten data in the nonvolatile memory (NVMEM/NVRAM). Depending on your system, if the NVMEM/NVRAM LED is flashing, there is content in the NVMEM/NVRAM that has not been saved to disk. You need to reboot the node and start from the beginning of this procedure. If repeated attempts to cleanly shut down the node fail, be aware that you might lose any data that was not saved to disk. 3. Where applicable, halt the second node to avoid a possible quorum error message in an HA pair configuration: system node halt -node second_node_name -ignore-quorum-warnings true -skip-lif-migration-before-shutdown true Answer y when prompted. ## Option 2: Shut down a node in a two-node MetroCluster configuration To shut down the impaired node, you must determine the status of the node and, if necessary, switch over the node so that the healthy node continues to serve data from the impaired node storage. #### About this task - If you are using NetApp Storage Encryption, you must have reset the MSID using the instructions in the "Return a FIPS drive or SED to unprotected mode" section of NetApp Encryption overview with the CLI. - You must leave the power supplies turned on at the end of this procedure to provide power to the healthy node. #### Steps - 1. Check the MetroCluster status to determine whether the impaired node has automatically switched over to the healthy node: metrocluster show - 2. Depending on whether an automatic switchover has occurred, proceed according to the following table: | If the impaired node | Then | |---|--| | Has automatically switched over | Proceed to the next step. | | Has not automatically switched over | Perform a planned switchover operation from the healthy node: metrocluster switchover | | Has not automatically switched over, you attempted switchover with the metrocluster switchover command, and the switchover was vetoed | Review the veto messages and, if possible, resolve the issue and try again. If you are unable to resolve the issue, contact technical support. | 3. Resynchronize the data aggregates by running the metrocluster heal -phase aggregates command from the surviving cluster. ``` controller_A_1::> metrocluster heal -phase aggregates [Job 130] Job succeeded: Heal Aggregates is successful. ``` If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation. 4. Verify that the operation has been completed by using the metrocluster operation show command. ``` controller_A_1::> metrocluster operation show Operation: heal-aggregates State: successful Start Time: 7/25/2016 18:45:55 End Time: 7/25/2016 18:45:56 Errors: - ``` 5. Check the state of the aggregates by using the storage aggregate show command. ``` controller_A_1::> storage aggregate show Aggregate Size Available Used% State #Vols Nodes RAID Status ------ ... aggr_b2 227.1GB 227.1GB 0% online 0 mcc1-a2 raid_dp, mirrored, normal... ``` 6. Heal the root aggregates by using the metrocluster heal -phase root-aggregates command. ``` mcc1A::> metrocluster heal -phase root-aggregates [Job 137] Job succeeded: Heal Root Aggregates is successful ``` If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation. 7. Verify that the heal operation is complete by using the metrocluster operation show command on the destination cluster: ``` mcclA::> metrocluster operation show Operation: heal-root-aggregates State: successful Start Time: 7/29/2016 20:54:41 End Time: 7/29/2016 20:54:42 Errors: - ``` 8. On the impaired controller module, disconnect the power supplies. ## Move and replace hardware - AFF A400 Move the fans, hard drives, and controller module or modules from the impaired chassis to the new chassis, and swap out the impaired chassis from the equipment rack or system cabinet with the new chassis of the same model as the impaired chassis. #### Step 1: Remove the controller modules To replace the chassis, you must remove the controller modules from the old chassis. - 1. If you are not already grounded, properly ground yourself. - 2. Release the power cable retainers, and then unplug the cables from the power supplies. - Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFPs (if needed) from the controller module, keeping track of where the cables were connected. Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized. - 4. Remove and set aside the cable management devices from the left and right sides of the controller module. - 5. Press down on both of the locking latches, and then rotate both latches downward at the same time. The controller module moves slightly out of the chassis. 6. Slide the controller module out of the chassis. Make sure that you support the bottom of the controller module as you slide it out of the chassis. 7. Set the controller module aside in a safe place, and repeat these steps for the other controller module in the chassis. #### Step 2: Move the fans To move the fan modules to the replacement chassis when replacing the chassis, you must perform a specific sequence of tasks. - 1. If you are not already grounded, properly ground yourself. - 2. Remove the bezel (if necessary) with two hands, by grasping the openings on each side of the bezel, and then pulling it toward you until the bezel releases from the ball studs on the chassis frame. - 3. Press down the release latch on the fan module cam handle, and then rotate the cam handle downward. The fan module moves a little bit away from the chassis. 4. Pull the fan module straight out from the chassis, making sure that you support it with your free hand so that it does not swing out of the chassis. The fan modules are short. Always support the bottom of the fan module with your free hand so that it does not suddenly drop free from the chassis and injure you. - 5. Set the fan module aside. - 6. Repeat the preceding steps for any remaining fan modules. - 7. Insert the fan module into the replacement chassis by aligning it with the opening, and then sliding it into the chassis. - 8. Push firmly on the fan module cam handle so that it is seated all the way into the chassis. The cam handle raises slightly when the fan module is completely seated. 9. Swing the cam handle up to its closed position, making sure that the cam handle release latch clicks into the locked position.
The fan LED should be green after the fan is seated and has spun up to operational speed. 10. Repeat these steps for the remaining fan modules. #### Step 3: Replace a chassis from within the equipment rack or system cabinet You must remove the existing chassis from the equipment rack or system cabinet before you can install the replacement chassis. - 1. Remove the screws from the chassis mount points. - 2. With two people, slide the old chassis off the rack rails in a system cabinet or equipment rack, and then set it aside. - 3. If you are not already grounded, properly ground yourself. - 4. Using two people, install the replacement chassis into the equipment rack or system cabinet by guiding the chassis onto the rack rails in a system cabinet or equipment rack. - 5. Slide the chassis all the way into the equipment rack or system cabinet. - 6. Secure the front of the chassis to the equipment rack or system cabinet, using the screws you removed from the old chassis. 7. If you have not already done so, install the bezel. #### Step 4: Install the controller modules After you install the controller modules into the new chassis, you need to boot it to a state where you can run the diagnostic test. For HA pairs with two controller modules in the same chassis, the sequence in which you install the controller module is especially important because it attempts to reboot as soon as you completely seat it in the chassis. 1. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system. Do not completely insert the controller module in the chassis until instructed to do so. - 2. Recable the console to the controller module, and then reconnect the management port. - 3. Complete the installation of the controller module: - a. Plug the power cord into the power supply, reinstall the power cable locking collar, and then connect the power supply to the power source. - b. Using the locking latches, firmly push the controller module into the chassis until the locking latches begin to rise. Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors. c. Fully seat the controller module in the chassis by rotating the locking latches upward, tilting them so that they clear the locking pins, gently push the controller all the way in, and then lower the locking latches into the locked position. The controller module begins to boot as soon as it is fully seated in the chassis. Be prepared to interrupt the boot process. - d. If you have not already done so, reinstall the cable management device. - e. Interrupt the normal boot process and boot to LOADER by pressing Ctrl-C. If your system stops at the boot menu, select the option to boot to LOADER. - f. At the LOADER prompt, enter bye to reinitialize the PCle cards and other components. - g. Interrupt the boot process and boot to the LOADER prompt by pressing Ctrl-C. If your system stops at the boot menu, select the option to boot to LOADER. 4. Repeat the preceding steps to install the second controller into the new chassis. ## Complete the restoration and replacement process - AFF A400 You must verify the HA state of the chassis, run diagnostics, and return the failed part to NetApp, as described in the RMA instructions shipped with the kit. #### Step 1: Verify and set the HA state of the chassis You must verify the HA state of the chassis, and, if necessary, update the state to match your system configuration. 1. In Maintenance mode, from either controller module, display the HA state of the local controller module and chassis: ha-config show The HA state should be the same for all components. - If the displayed system state for the chassis does not match your system configuration: - a. Set the HA state for the chassis: ha-config modify chassis HA-state The value for *HA-state* can be one of the following: - ha - mcc - mcc-2n - mccip - non-ha - b. Confirm that the setting has changed: ha-config show - 3. If you have not already done so, recable the rest of your system. - 4. Reinstall the bezel on the front of the system. #### Step 2: Run diagnostics After you have replaced a component in your system, you should run diagnostic tests on that component. Your system must be at the LOADER prompt to start diagnostics. All commands in the diagnostic procedures are issued from the node where the component is being replaced. If the node to be serviced is not at the LOADER prompt, reboot the node: system node halt -node node name After you issue the command, you should wait until the system stops at the LOADER prompt. - 2. At the LOADER prompt, access the special drivers specifically designed for system-level diagnostics to function properly: boot diags - 3. Select **Scan System** from the displayed menu to enable running the diagnostics tests. - 4. Select **Test system** from the displayed menu to run diagnostics tests. - 5. Select the test or series of tests from the various sub-menus. - 6. Proceed based on the result of the preceding step: - If the test failed, correct the failure, and then rerun the test. - If the test reported no failures, select Reboot from the menu to reboot the system. #### Step 3: Switch back aggregates in a two-node MetroCluster configuration After you have completed the FRU replacement in a two-node MetroCluster configuration, you can perform the MetroCluster switchback operation. This returns the configuration to its normal operating state, with the sync-source storage virtual machines (SVMs) on the formerly impaired site now active and serving data from the local disk pools. This task only applies to two-node MetroCluster configurations. #### Steps 1. Verify that all nodes are in the enabled state: metrocluster node show - 2. Verify that resynchronization is complete on all SVMs: metrocluster vserver show - 3. Verify that any automatic LIF migrations being performed by the healing operations were completed successfully: metrocluster check lif show - 4. Perform the switchback by using the metrocluster switchback command from any node in the surviving cluster. - 5. Verify that the switchback operation has completed: metrocluster show The switchback operation is still running when a cluster is in the waiting-for-switchback state: The switchback operation is complete when the clusters are in the normal state.: If a switchback is taking a long time to finish, you can check on the status of in-progress baselines by using the metrocluster config-replication resync-status show command. 6. Reestablish any SnapMirror or SnapVault configurations. #### Step 4: Return the failed part to NetApp After you replace the part, you can return the failed part to NetApp, as described in the RMA instructions shipped with the kit. Contact technical support at NetApp Support, 888-463-8277 (North America), 00-800-44-638277 (Europe), or +800-800-80-800 (Asia/Pacific) if you need the RMA number or additional help with the replacement procedure. # Controller module ## Replace the controller module - AFF A400 You must review the prerequisites for the replacement procedure and select the correct one for your version of the ONTAP operating system. - All drive shelves must be working properly. - If your system is in a MetroCluster configuration, you must review the section Choosing the correct recovery procedure to determine whether you should use this procedure. If this is the procedure you should use, note that the controller replacement procedure for a node in a four or eight node MetroCluster configuration is the same as that in an HA pair. No MetroCluster-specific steps are required because the failure is restricted to an HA pair and storage failover commands can be used to provide nondisruptive operation during the replacement. - You must replace the failed component with a replacement FRU component you received from your provider. - You must be replacing a controller module with a controller module of the same model type. You cannot upgrade your system by just replacing the controller module. - You cannot change any drives or drive shelves as part of this procedure. - In this procedure, the boot device is moved from the impaired node to the *replacement* node so that the *replacement* node will boot up in the same version of ONTAP as the old controller module. - It is important that you apply the commands in these steps on the correct systems: - The *impaired* node is the node that is being replaced. - The *replacement node* is the new node that is replacing the impaired node. - The *healthy* node is the surviving node. - You must always capture the node's console output to a text file. This provides you a record of the procedure so that you can troubleshoot any issues that you might encounter during the replacement process. ## Shut down the impaired controller - AFF A400 You can shut down or take over the impaired controller using different procedures, depending on the storage system hardware configuration. #### **Option 1: Most systems** To shut down the impaired node, you must determine the status of the node and, if necessary, take over the node so that the healthy node continues to serve data from the impaired node storage. If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy node shows false for eligibility and health, you must correct the issue before shutting down the impaired node; see the Administration overview with the CLI. #### Steps 1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT= number of hours down h The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h - 2. If the impaired node is part of an HA pair, disable automatic giveback from the console of the healthy node:
storage failover modify -node local -auto-giveback false - 3. Take the impaired node to the LOADER prompt: | If the impaired node is displaying | Then | |--|--| | The LOADER prompt | Go to Remove controller module | | Waiting for giveback | Press Ctrl-C, and then respond y. | | System prompt or password prompt (enter system password) | Take over or halt the impaired node from the healthy node: storage failover takeover -ofnode impaired_node_name + When the impaired node shows Waiting for giveback, press Ctrl-C, and then respond y. | #### Option 2: Controller is in a MetroCluster Do not use this procedure if your system is in a two-node MetroCluster configuration. To shut down the impaired node, you must determine the status of the node and, if necessary, take over the node so that the healthy node continues to serve data from the impaired node storage. - If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy node shows false for eligibility and health, you must correct the issue before shutting down the impaired node; see the Administration overview with the CLI. - If you have a MetroCluster configuration, you must have confirmed that the MetroCluster Configuration State is configured and that the nodes are in an enabled and normal state (metrocluster node show). #### Steps - 1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number of hours downh - The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h - 2. Disable automatic giveback from the console of the healthy node: storage failover modify -node local -auto-giveback false - 3. Take the impaired node to the LOADER prompt: | If the impaired node is displaying | Then | |--|---| | The LOADER prompt | Go to Remove controller module | | Waiting for giveback | Press Ctrl-C, and then respond ${\bf y}$ when prompted. | | System prompt or password prompt (enter system password) | Take over or halt the impaired node from the healthy node: storage failover takeover -ofnode impaired_node_name | | | + When the impaired node shows Waiting for giveback, press Ctrl-C, and then respond ${\bf y}.$ | | | + | #### Option 3: Controller is in a two-node MetroCluster To shut down the impaired node, you must determine the status of the node and, if necessary, switch over the node so that the healthy node continues to serve data from the impaired node storage. #### About this task - If you are using NetApp Storage Encryption, you must have reset the MSID using the instructions in the "Return a FIPS drive or SED to unprotected mode" section of NetApp Encryption overview with the CLI. - You must leave the power supplies turned on at the end of this procedure to provide power to the healthy node. #### Steps - 1. Check the MetroCluster status to determine whether the impaired node has automatically switched over to the healthy node: metrocluster show - 2. Depending on whether an automatic switchover has occurred, proceed according to the following table: | If the impaired node | Then | |---|--| | Has automatically switched over | Proceed to the next step. | | Has not automatically switched over | Perform a planned switchover operation from the healthy node: metrocluster switchover | | Has not automatically switched over, you attempted switchover with the metrocluster switchover command, and the switchover was vetoed | Review the veto messages and, if possible, resolve the issue and try again. If you are unable to resolve the issue, contact technical support. | 3. Resynchronize the data aggregates by running the metrocluster heal -phase aggregates command from the surviving cluster. ``` controller_A_1::> metrocluster heal -phase aggregates [Job 130] Job succeeded: Heal Aggregates is successful. ``` If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation. 4. Verify that the operation has been completed by using the metrocluster operation show command. ``` controller_A_1::> metrocluster operation show Operation: heal-aggregates State: successful Start Time: 7/25/2016 18:45:55 End Time: 7/25/2016 18:45:56 Errors: - ``` 5. Check the state of the aggregates by using the storage aggregate show command. ``` controller_A_1::> storage aggregate show Aggregate Size Available Used% State #Vols Nodes RAID Status ------ ... aggr_b2 227.1GB 227.1GB 0% online 0 mcc1-a2 raid_dp, mirrored, normal... ``` 6. Heal the root aggregates by using the metrocluster heal -phase root-aggregates command. ``` mcc1A::> metrocluster heal -phase root-aggregates [Job 137] Job succeeded: Heal Root Aggregates is successful ``` If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation. 7. Verify that the heal operation is complete by using the metrocluster operation show command on the destination cluster: ``` mcc1A::> metrocluster operation show Operation: heal-root-aggregates State: successful Start Time: 7/29/2016 20:54:41 End Time: 7/29/2016 20:54:42 Errors: - ``` 8. On the impaired controller module, disconnect the power supplies. ## Replace controller module - AFF A400 To replace the controller module hardware, you must remove the impaired node, move FRU components to the replacement controller module, install the replacement controller module in the chassis, and then boot the system to Maintenance mode. #### Step 1: Remove the controller module To access components inside the controller module, you must remove the controller module from the chassis. You can use the following, illustration, or the written steps to remove the controller module from the chassis. ## Removing the controller module - 1. If you are not already grounded, properly ground yourself. - 2. Release the power cable retainers, and then unplug the cables from the power supplies. - Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFPs (if needed) from the controller module, keeping track of where the cables were connected. Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized. - 4. Remove the cable management device from the controller module and set it aside. - 5. Press down on both of the locking latches, and then rotate both latches downward at the same time. The controller module moves slightly out of the chassis. 6. Slide the controller module out of the chassis. Make sure that you support the bottom of the controller module as you slide it out of the chassis. - 7. Place the controller module on a stable, flat surface. - 8. On the replacement controller module, open the air duct and remove the empty risers from the controller module using the animation, illustration, or the written steps: Removing the empty risers from the replacement controller module - a. Press the locking tabs on the sides of the air duct in toward the middle of the controller module. - b. Slide the air duct toward the back of the controller module, and then rotate it upward to its completely open position. - c. Rotate the riser locking latch on the left side of riser 1 up and toward air duct, lift the riser up, and then set it aside. - d. Repeat the previous step for the remaining risers. ## Step 2: Move the power supplies You must move the power supply from the impaired controller module to the replacement controller module when you replace a controller module. You can use the following animation, illustration, or the written steps to move the power supplies to the replacement controller module. # Moving the power supplies 1. Remove the power supply: - a. Rotate the cam handle so that it can be used to pull the power supply out of the chassis. - b. Press the blue locking tab to release the power supply from the chassis. - c. Using both hands, pull the power supply out of the chassis, and then set it aside. - 2. Move the power supply to the new controller module, and then install it. - 3. Using both hands, support and align the edges of the power supply with the opening in the controller module, and then gently push the power supply into the controller module until the locking tab clicks into place. The power supplies will only properly engage with the internal connector and lock in place one way. To avoid damaging the internal connector, do not use excessive force when sliding the power supply into the system. 4. Repeat the preceding steps for any remaining power supplies. # **Step 3: Move the NVDIMM battery** To move the NVDIMM battery from the impaired controller module to the replacement controller module, you must perform a specific sequence of steps. You can use the following animation, illustration, or the written steps to move the NVDIMM battery from the impaired controller module to the replacement controller module.
Moving the NVDIMM battery #### 1. Open the air duct: - a. Press the locking tabs on the sides of the air duct in toward the middle of the controller module. - b. Slide the air duct toward the back of the controller module, and then rotate it upward to its completely open position. - 2. Locate the NVDIMM battery in the controller module. - 3. Locate the battery plug and squeeze the clip on the face of the battery plug to release the plug from the socket, and then unplug the battery cable from the socket. - 4. Grasp the battery and press the blue locking tab marked PUSH, and then lift the battery out of the holder and controller module. - 5. Move the battery to the replacement controller module. - 6. Align the battery module with the opening for the battery, and then gently push the battery into slot until it locks into place. Do not plug the battery cable back into the motherboard until instructed to do so. # Step 4: Move the boot media You must locate the boot media, and then follow the directions to remove it from the impaired controller module and insert it into the replacement controller module. You can use the following animation, illustration, or the written steps to move the boot media from the impaired controller module to the replacement controller module. ### Moving the boot media - 1. Locate and remove the boot media from the controller module: - a. Press the blue button at the end of the boot media until the lip on the boot media clears the blue button. - b. Rotate the boot media up and gently pull the boot media out of the socket. - 2. Move the boot media to the new controller module, align the edges of the boot media with the socket housing, and then gently push it into the socket. - 3. Check the boot media to make sure that it is seated squarely and completely in the socket. If necessary, remove the boot media and reseat it into the socket. - 4. Lock the boot media in place: - a. Rotate the boot media down toward the motherboard. - b. Press the blue locking button so that it is in the open position. - c. Placing your fingers at the end of the boot media by the blue button, firmly push down on the boot media end to engage the blue locking button. #### Step 5: Move the PCIe risers and mezzanine card As part of the controller replacement process, you must move the PCIe risers and mezzanine card from the impaired controller module to the replacement controller module. You can use the following animations, illustrations, or the written steps to move the PCIe risers and mezzanine card from the impaired controller module to the replacement controller module. Moving PCle riser 1 and 2 (left and middle risers): ### Moving PCI risers 1 and 2 Moving the mezzanine card and riser 3 (right riser): ### Moving the mezzanine card and riser 3 - 1. Move PCIe risers one and two from the impaired controller module to the replacement controller module: - a. Remove any SFP or QSFP modules that might be in the PCle cards. - b. Rotate the riser locking latch on the left side of the riser up and toward air duct. The riser raises up slightly from the controller module. - c. Lift the riser up, and then move it to the replacement controller module. - d. Align the riser with the pins to the side of the riser socket, lower the riser down on the pins, push the riser squarely into the socket on the motherboard, and then rotate the latch down flush with the sheet metal on the riser. - e. Repeat this step for riser number 2. - 2. Remove riser number 3, remove the mezzanine card, and install both into the replacement controller #### module: - a. Remove any SFP or QSFP modules that might be in the PCle cards. - b. Rotate the riser locking latch on the left side of the riser up and toward air duct. The riser raises up slightly from the controller module. - c. Lift the riser up, and then set it aside on a stable, flat surface. - d. Loosen the thumbscrews on the mezzanine card, and gently lift the card directly out of the socket, and then move it to the replacement controller module. - e. Install the mezzanine in the replacement controller and secure it with the thumbscrews. - f. Install the third riser in the replacement controller module. # Step 6: Move the DIMMs You need to locate the DIMMs, and then move them from the impaired controller module to the replacement controller module. You must have the new controller module ready so that you can move the DIMMs directly from the impaired controller module to the corresponding slots in the replacement controller module. You can use the following animation, illustration, or the written steps to move the DIMMs from the impaired controller module to the replacement controller module. Moving the DIMMs - 1. Locate the DIMMs on your controller module. - 2. Note the orientation of the DIMM in the socket so that you can insert the DIMM in the replacement controller module in the proper orientation. - 3. Verify that the NVDIMM battery is not plugged into the new controller module. - 4. Move the DIMMs from the impaired controller module to the replacement controller module: - (<u>i</u>) Make sure that you install the each DIMM into the same slot it occupied in the impaired controller module. a. Eject the DIMM from its slot by slowly pushing apart the DIMM ejector tabs on either side of the DIMM, and then slide the DIMM out of the slot. Carefully hold the DIMM by the edges to avoid pressure on the components on the DIMM circuit board. - b. Locate the corresponding DIMM slot on the replacement controller module. - c. Make sure that the DIMM ejector tabs on the DIMM socket are in the open position, and then insert the DIMM squarely into the socket. The DIMMs fit tightly in the socket, but should go in easily. If not, realign the DIMM with the socket and reinsert it. - d. Visually inspect the DIMM to verify that it is evenly aligned and fully inserted into the socket. - e. Repeat these substeps for the remaining DIMMs. - 5. Plug the NVDIMM battery into the motherboard. Make sure that the plug locks down onto the controller module. ### Step 7: Install the controller module After all of the components have been moved from the impaired controller module to the replacement controller module, you must install the replacement controller module into the chassis, and then boot it to Maintenance mode. You can use the following animation, illustration, or the written steps to install the replacement controller module in the chassis. Installing the controller module - 1. If you have not already done so, close the air duct. - 2. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system. - (i) Do not completely insert the controller module in the chassis until instructed to do so. 3. Cable the management and console ports only, so that you can access the system to perform the tasks in the following sections. You will connect the rest of the cables to the controller module later in this procedure. - 4. Complete the installation of the controller module: - a. Plug the power cord into the power supply, reinstall the power cable locking collar, and then connect the power supply to the power source. - b. Using the locking latches, firmly push the controller module into the chassis until the locking latches begin to rise. Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors. c. Fully seat the controller module in the chassis by rotating the locking latches upward, tilting them so that they clear the locking pins, gently push the controller all the way in, and then lower the locking latches into the locked position. The controller module begins to boot as soon as it is fully seated in the chassis. Be prepared to interrupt the boot process. - d. If you have not already done so, reinstall the cable management device. - e. Interrupt the normal boot process and boot to LOADER by pressing Ctrl-C. - (1) If your system stops at the boot menu, select the option to boot to LOADER. - f. At the LOADER prompt, enter bye to reinitialize the PCle cards and other components. - g. Interrupt the boot process and boot to the LOADER prompt by pressing Ctrl-C. If your system stops at the boot menu, select the option to boot to LOADER. # Restore and verify the system configuration - AFF A400 After completing the hardware replacement and booting to Maintenance mode, you verify the low-level system configuration of the replacement controller and reconfigure system settings as necessary. # Step 1: Set and verify system time after replacing the controller You should check the time and date on the replacement controller module against the healthy controller module in an HA pair, or against a reliable time server in a stand-alone configuration. If the time and date do not match, you must reset them on the replacement controller module to prevent possible outages on clients due to time differences. #### About this task It is important that you apply the commands in the steps on the correct systems: - The *replacement* node is the new node that replaced the impaired node as part of this procedure. - The *healthy* node is the HA partner of the *replacement* node. #### **Steps** - 1. If the *replacement* node is not at the LOADER prompt, halt the system to the LOADER prompt. - 2. On the healthy node, check the system time: show date The date and time are given in GMT. 3. At the LOADER prompt, check the date and time on the replacement node: show date The date and time are given in GMT. - 4. If necessary, set the date in GMT on the replacement node: set date mm/dd/yyyy - 5. If necessary, set the time in GMT on the replacement node: set time hh:mm:ss - 6. At the LOADER prompt, confirm the date and time on the replacement node: show date The date and time are given in GMT. # Step 2: Verify and set the HA state of the controller module You must verify the HA state of the controller module and, if necessary, update
the state to match your system configuration. 1. In Maintenance mode from the new controller module, verify that all components display the same HA state: ha-config show The HA state should be the same for all components. 2. If the displayed system state of the controller module does not match your system configuration, set the HA state for the controller module: ha-config modify controller ha-state The value for HA-state can be one of the following: - ° ha - ° mcc - ° mcc-2n - ° mccip - ° non-ha - 3. If the displayed system state of the controller module does not match your system configuration, set the HA state for the controller module: ha-config modify controller ha-state - 4. Confirm that the setting has changed: ha-config show #### Step 3: Run diagnostics After you have replaced a component in your system, you should run diagnostic tests on that component. Your system must be at the LOADER prompt to start diagnostics. All commands in the diagnostic procedures are issued from the node where the component is being replaced. 1. If the node to be serviced is not at the LOADER prompt, reboot the node: system node halt -node After you issue the command, you should wait until the system stops at the LOADER prompt. - At the LOADER prompt, access the special drivers specifically designed for system-level diagnostics to function properly: boot diags - 3. Select Scan System from the displayed menu to enable running the diagnostics tests. - 4. Select **Test system** from the displayed menu to run diagnostics tests. - 5. Select the test or series of tests from the various sub-menus. - 6. Proceed based on the result of the preceding step: - If the test failed, correct the failure, and then rerun the test. - If the test reported no failures, select Reboot from the menu to reboot the system. During the boot process, you might see the following prompts: - A prompt warning of a system ID mismatch and asking to override the system ID. - A prompt warning that when entering Maintenance mode in an HA configuration you must ensure that the healthy node remains down. You can safely respond y to these prompts. # Recable the system and reassign disks - AFF A400 Continue the replacement procedure by recabling the storage and confirming disk reassignment. #### Step 1: Recable the system After running diagnostics, you must recable the controller module's storage and network connections. #### Steps - 1. Recable the system. - 2. Verify that the cabling is correct by using Active IQ Config Advisor. - a. Download and install Config Advisor. - b. Enter the information for the target system, and then click Collect Data. - c. Click the Cabling tab, and then examine the output. Make sure that all disk shelves are displayed and all disks appear in the output, correcting any cabling issues you find. - d. Check other cabling by clicking the appropriate tab, and then examining the output from Config Advisor. ### Step 2: Reassign disks If the storage system is in an HA pair, the system ID of the new controller module is automatically assigned to the disks when the giveback occurs at the end of the procedure. You must confirm the system ID change when you boot the *replacement* node and then verify that the change was implemented. This procedure applies only to systems running ONTAP in an HA pair. 1. If the *replacement* node is in Maintenance mode (showing the *> prompt, exit Maintenance mode and go to the LOADER prompt: halt - 2. From the LOADER prompt on the *replacement* node, boot the node, entering y if you are prompted to override the system ID due to a system ID mismatch:boot ontap - 3. Wait until the Waiting for giveback... message is displayed on the *replacement* node console and then, from the healthy node, verify that the new partner system ID has been automatically assigned: storage failover show In the command output, you should see a message that the system ID has changed on the impaired node, showing the correct old and new IDs. In the following example, node2 has undergone replacement and has a new system ID of 151759706. | node1> `storage | e failover show` | Takeover | | |-------------------------|------------------|----------|----------------------| | Node | Partner | Possible | State Description | | | | | | | | | | | | node1 | node2 | false | System ID changed on | | partner (Old: | | | | | | | | 151759755, New: | | 151759706), In takeover | | | | | node2 | node1 | _ | Waiting for giveback | | (HA mailboxes) | | | | | | | | | - 4. From the healthy node, verify that any coredumps are saved: - a. Change to the advanced privilege level: set -privilege advanced You can respond Y when prompted to continue into advanced mode. The advanced mode prompt appears (*>). - b. Save any coredumps: system node run -node local-node-name partner savecore - c. Wait for the `savecore` command to complete before issuing the giveback. You can enter the following command to monitor the progress of the savecore command: system node run -node *local-node-name* partner savecore -s - d. Return to the admin privilege level: set -privilege admin - 5. Give back the node: - a. From the healthy node, give back the replaced node's storage: storage failover giveback -ofnode replacement node name The *replacement* node takes back its storage and completes booting. If you are prompted to override the system ID due to a system ID mismatch, you should enter y. If the giveback is vetoed, you can consider overriding the vetoes. Find the High-Availability Configuration content for your version of ONTAP 9 b. After the giveback has been completed, confirm that the HA pair is healthy and that takeover is possible: storage failover show The output from the storage failover show command should not include the System ID changed on partner message. 6. Verify that the disks were assigned correctly: storage disk show -ownership The disks belonging to the *replacement* node should show the new system ID. In the following example, the disks owned by node1 now show the new system ID, 1873775277: 7. If the system is in a MetroCluster configuration, monitor the status of the node: metrocluster node show The MetroCluster configuration takes a few minutes after the replacement to return to a normal state, at which time each node will show a configured state, with DR Mirroring enabled and a mode of normal. The metrocluster node show -fields node-systemid command output displays the old system ID until the MetroCluster configuration returns to a normal state. 8. If the node is in a MetroCluster configuration, depending on the MetroCluster state, verify that the DR home ID field shows the original owner of the disk if the original owner is a node on the disaster site. This is required if both of the following are true: - The MetroCluster configuration is in a switchover state. - The *replacement* node is the current owner of the disks on the disaster site. Disk ownership changes during HA takeover and MetroCluster switchover in a four-node MetroCluster configuration 9. If your system is in a MetroCluster configuration, verify that each node is configured: metrocluster node show - fields configuration-state node1 siteA::> metrocluster node show -fields configuration-state dr-group-id cluster node configuration-state _____ 1 node1 siteA node1mcc-001 configured configured 1 node1 siteA node1mcc-002 configured 1 node1 siteB node1mcc-003 1 node1 siteB node1mcc-004 configured 4 entries were displayed. - 10. Verify that the expected volumes are present for each node: vol show -node node-name - 11. If you disabled automatic takeover on reboot, enable it from the healthy node: storage failover modify -node replacement-node-name -onreboot true # Complete system restoration - AFF A400 To restore your system to full operation, you must restore the NetApp Storage Encryption configuration (if necessary), and install licenses for the new controller, and return the failed part to NetApp, as described in the RMA instructions shipped with the kit. ### Step 1: Install licenses for the replacement node in ONTAP You must install new licenses for the *replacement* node if the impaired node was using ONTAP features that require a standard (node-locked) license. For features with standard licenses, each node in the cluster should have its own key for the feature. #### About this task Until you install license keys, features requiring standard licenses continue to be available to the *replacement* node. However, if the impaired node was the only node in the cluster with a license for the feature, no configuration changes to the feature are allowed. Also, using unlicensed features on the node might put you out of compliance with your license agreement, so you should install the replacement license key or keys on the *replacement* node as soon as possible. #### Before you begin The licenses keys must be in the 28-character format. You have a 90-day grace period in which to install the license keys. After the grace period, all old licenses are invalidated. After a valid license key is installed, you have 24 hours to install all of the keys before the grace period ends. #### Steps 1. If you need new license keys, obtain replacement license keys on the NetApp Support Site in the My Support section under Software licenses. The new license keys that you require are automatically generated and sent to the email address on file. If you fail to receive the email with the license keys within 30 days, you should contact technical support. - 2. Install each license key: system license add -license-code license-key, license-key... - 3. Remove the old licenses, if desired: - a. Check for unused licenses: license clean-up -unused -simulate - b. If the list looks correct, remove the unused licenses: license clean-up -unused #### Step 2: Restore Storage and Volume Encryption functionality After replacing the controller module or NVRAM module for a storage system that you previously configured to use Storage or Volume
Encryption, you must perform additional steps to provide uninterrupted Encryption functionality. You can skip this task on storage systems that do not have Storage or Volume Encryption enabled. #### Step - 1. Restore Storage or Volume Encryption functionality by using the appropriate procedure in NetApp Encryption overview with the CLI. - 2. Use one of the following procedures, depending on whether you are using onboard or external key management: - Restore onboard key management encryption keys - · Restore external key management encryption keys #### Step 3: Verify LIFs and registering the serial number Before returning the *replacement* node to service, you should verify that the LIFs are on their home ports, and register the serial number of the *replacement* node if AutoSupport is enabled, and reset automatic giveback. #### **Steps** 1. Verify that the logical interfaces are reporting to their home server and ports: network interface show -is-home false If any LIFs are listed as false, revert them to their home ports: network interface revert - 2. Register the system serial number with NetApp Support. - If AutoSupport is enabled, send an AutoSupport message to register the serial number. - If AutoSupport is not enabled, call NetApp Support to register the serial number. - 3. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true # Step 4: Switch back aggregates in a two-node MetroCluster configuration After you have completed the FRU replacement in a two-node MetroCluster configuration, you can perform the MetroCluster switchback operation. This returns the configuration to its normal operating state, with the sync-source storage virtual machines (SVMs) on the formerly impaired site now active and serving data from the local disk pools. This task only applies to two-node MetroCluster configurations. #### **Steps** 1. Verify that all nodes are in the enabled state: metrocluster node show - 2. Verify that resynchronization is complete on all SVMs: metrocluster vserver show - 3. Verify that any automatic LIF migrations being performed by the healing operations were completed successfully: metrocluster check lif show - Perform the switchback by using the metrocluster switchback command from any node in the surviving cluster. - 5. Verify that the switchback operation has completed: metrocluster show The switchback operation is still running when a cluster is in the waiting-for-switchback state: The switchback operation is complete when the clusters are in the normal state.: If a switchback is taking a long time to finish, you can check on the status of in-progress baselines by using the metrocluster config-replication resync-status show command. 6. Reestablish any SnapMirror or SnapVault configurations. #### Step 5: Return the failed part to NetApp After you replace the part, you can return the failed part to NetApp, as described in the RMA instructions shipped with the kit. Contact technical support at NetApp Support, 888-463-8277 (North America), 00-800-44-638277 (Europe), or +800-800-80-800 (Asia/Pacific) if you need the RMA number or additional help with the replacement procedure. # Replace a DIMM - AFF A400 You must replace a DIMM in the controller module when your system registers an increasing number of correctable error correction codes (ECC); failure to do so causes a system panic. All other components in the system must be functioning properly; if not, you must contact technical support. You must replace the failed component with a replacement FRU component you received from your provider. # Step 1: Shut down the impaired controller You can shut down or take over the impaired controller using different procedures, depending on the storage system hardware configuration. #### **Option 1: Most configurations** To shut down the impaired node, you must determine the status of the node and, if necessary, take over the node so that the healthy node continues to serve data from the impaired node storage. #### About this task If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy node shows false for eligibility and health, you must correct the issue before shutting down the impaired node; see the Administration overview with the CLI. #### **Steps** 1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number of hours downh ``` The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h ``` - 2. Disable automatic giveback from the console of the healthy node: storage failover modify -node local -auto-giveback false - 3. Take the impaired node to the LOADER prompt: | If the impaired node is displaying | Then | |--|---| | The LOADER prompt | Go to Remove controller module. | | Waiting for giveback | Press Ctrl-C, and then respond \underline{y} when prompted. | | System prompt or password prompt (enter system password) | Take over or halt the impaired node from the healthy node: storage failover takeover -ofnode impaired_node_name | | | + When the impaired node shows Waiting for giveback, press Ctrl- C, and then respond $\ensuremath{\mathbf{y}}.$ | | | + | ### Option 2: Controller is in a MetroCluster Do not use this procedure if your system is in a two-node MetroCluster configuration. To shut down the impaired node, you must determine the status of the node and, if necessary, take over the node so that the healthy node continues to serve data from the impaired node storage. - If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy node shows false for eligibility and health, you must correct the issue before shutting down the impaired node; see the Administration overview with the CLI. - If you have a MetroCluster configuration, you must have confirmed that the MetroCluster Configuration State is configured and that the nodes are in an enabled and normal state (metrocluster node show). #### **Steps** 1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number of hours downh The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h - 2. Disable automatic giveback from the console of the healthy node: storage failover modify -node local -auto-giveback false - 3. Take the impaired node to the LOADER prompt: | If the impaired node is displaying | Then | |------------------------------------|---| | The LOADER prompt | Go to Remove controller module | | Waiting for giveback | Press Ctrl-C, and then respond ${\bf y}$ when prompted. | | If the impaired node is displaying | Then | |--|--| | System prompt or password prompt (enter system password) | Take over or halt the impaired node from the healthy node: storage failover takeover -ofnode impaired_node_name + When the impaired node shows Waiting for giveback, press Ctrl-C, and then respond y. | ## Option 3: Controller is in a two-node MetroCluster To shut down the impaired node, you must determine the status of the node and, if necessary, switch over the node so that the healthy node continues to serve data from the impaired node storage. #### About this task - If you are using NetApp Storage Encryption, you must have reset the MSID using the instructions in the "Return a FIPS drive or SED to unprotected mode" section of NetApp Encryption overview with the CLI. - You must leave the power supplies turned on at the end of this procedure to provide power to the healthy node. #### Steps - 1. Check the MetroCluster status to determine whether the impaired node has automatically switched over to the healthy node: metrocluster show - 2. Depending on whether an automatic switchover has occurred, proceed according to the following table: | If the impaired node | Then | |---|--| | Has automatically switched over | Proceed to the next step. | | Has not automatically switched over | Perform a planned switchover operation from the healthy node: metrocluster switchover | | Has not automatically switched over, you attempted switchover with the metrocluster switchover command, and the switchover was vetoed | Review the veto messages and, if possible, resolve the issue and try again. If you are unable to resolve the issue, contact technical support. | 3. Resynchronize the data aggregates by running the metrocluster heal -phase aggregates command from the surviving cluster. ``` controller_A_1::> metrocluster heal -phase aggregates [Job 130] Job succeeded: Heal Aggregates is successful. ``` If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation. 4. Verify that the operation has been completed by using the metrocluster operation show command. ``` controller_A_1::> metrocluster operation show
Operation: heal-aggregates State: successful Start Time: 7/25/2016 18:45:55 End Time: 7/25/2016 18:45:56 Errors: - ``` 5. Check the state of the aggregates by using the storage aggregate show command. 6. Heal the root aggregates by using the metrocluster heal -phase root-aggregates command. ``` mcc1A::> metrocluster heal -phase root-aggregates [Job 137] Job succeeded: Heal Root Aggregates is successful ``` If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation. 7. Verify that the heal operation is complete by using the metrocluster operation show command on the destination cluster: ``` mcclA::> metrocluster operation show Operation: heal-root-aggregates State: successful Start Time: 7/29/2016 20:54:41 End Time: 7/29/2016 20:54:42 Errors: - ``` 8. On the impaired controller module, disconnect the power supplies. # Step 2: Remove the controller module To access components inside the controller module, you must remove the controller module from the chassis. You can use the following animation, illustration, or the written steps to remove the controller module from the chassis. ### Removing the controller module - 1. If you are not already grounded, properly ground yourself. - 2. Release the power cable retainers, and then unplug the cables from the power supplies. - Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFPs (if needed) from the controller module, keeping track of where the cables were connected. Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized. - 4. Remove the cable management device from the controller module and set it aside. - 5. Press down on both of the locking latches, and then rotate both latches downward at the same time. The controller module moves slightly out of the chassis. 6. Slide the controller module out of the chassis. Make sure that you support the bottom of the controller module as you slide it out of the chassis. 7. Place the controller module on a stable, flat surface. # Step 3: Replace system DIMMs Replacing a system DIMM involves identifying the target DIMM through the associated error message, locating the target DIMM using the FRU map on the air duct or the lit LED on the motherboard, and then replacing the DIMM. You can use the following animation, illustration, or the written steps to replace a system DIMM. The animation and illustration show empty slots for sockets without DIMMs. These empty sockets are populated with blanks. ### Replacing a system DIMM The DIMMs are located in sockets 2, 4, 13, and 15. The NVDIMM is located in slot 11. 1. Open the air duct: - a. Press the locking tabs on the sides of the air duct in toward the middle of the controller module. - b. Slide the air duct toward the back of the controller module, and then rotate it upward to its completely open position. - 2. Locate the DIMMs on your controller module. - 3. Note the orientation of the DIMM in the socket so that you can insert the replacement DIMM in the proper orientation. - 4. Eject the DIMM from its socket by slowly pushing apart the two DIMM ejector tabs on either side of the DIMM, and then slide the DIMM out of the socket. Carefully hold the DIMM by the edges to avoid pressure on the components on the DIMM circuit board. 5. Remove the replacement DIMM from the antistatic shipping bag, hold the DIMM by the corners, and align it to the slot. The notch among the pins on the DIMM should line up with the tab in the socket. Make sure that the DIMM ejector tabs on the connector are in the open position, and then insert the DIMM squarely into the slot. The DIMM fits tightly in the slot, but should go in easily. If not, realign the DIMM with the slot and reinsert it. Visually inspect the DIMM to verify that it is evenly aligned and fully inserted into the slot. - 7. Push carefully, but firmly, on the top edge of the DIMM until the ejector tabs snap into place over the notches at the ends of the DIMM. - 8. Close the air duct. # Step 4: Install the controller module After you have replaced the component in the controller module, you must reinstall the controller module into the chassis, and then boot it to Maintenance mode. You can use the following animation, illustration, or the written steps to install the controller module in the chassis. Installing the controller module - 1. If you have not already done so, close the air duct. - 2. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system. - Do not completely insert the controller module in the chassis until instructed to do so. - 3. Cable the management and console ports only, so that you can access the system to perform the tasks in the following sections. - You will connect the rest of the cables to the controller module later in this procedure. - 4. Complete the installation of the controller module: - a. Plug the power cord into the power supply, reinstall the power cable locking collar, and then connect the power supply to the power source. - b. Using the locking latches, firmly push the controller module into the chassis until the locking latches begin to rise. - (i) Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors. c. Fully seat the controller module in the chassis by rotating the locking latches upward, tilting them so that they clear the locking pins, gently push the controller all the way in, and then lower the locking latches into the locked position. The controller module begins to boot as soon as it is fully seated in the chassis. Be prepared to interrupt the boot process. - d. If you have not already done so, reinstall the cable management device. - e. Interrupt the normal boot process and boot to LOADER by pressing Ctrl-C. If your system stops at the boot menu, select the option to boot to LOADER. - f. At the LOADER prompt, enter bye to reinitialize the PCIe cards and other components. - g. Interrupt the boot process and boot to the LOADER prompt by pressing Ctrl-C. If your system stops at the boot menu, select the option to boot to LOADER. # Step 5: Run diagnostics After you have replaced a system DIMM in your system, you should run diagnostic tests on that component. Your system must be at the LOADER prompt to start diagnostics. All commands in the diagnostic procedures are issued from the node where the component is being replaced. 1. If the node to be serviced is not at the LOADER prompt, reboot the node: system node halt -node node name After you issue the command, you should wait until the system stops at the LOADER prompt. - 2. At the LOADER prompt, access the special drivers specifically designed for system-level diagnostics to function properly: boot diags - 3. Select **Scan System** from the displayed menu to enable running the diagnostics tests. - 4. Select **Test Memory** from the displayed menu. - 5. Select an option from the displayed sub-menu and run the test. - 6. Proceed based on the result of the preceding step: - If the test failed, correct the failure, and then rerun the test. - If the test reported no failures, select Reboot from the menu to reboot the system. # Step 6: Restore the controller module to operation after running diagnostics After completing diagnostics, you must recable the system, give back the controller module, and then reenable automatic giveback. - 1. Recable the system, as needed. - If you removed the media converters (QSFPs or SFPs), remember to reinstall them if you are using fiber optic cables. - 2. Return the node to normal operation by giving back its storage: storage failover giveback -ofnode impaired node name - 3. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true # Step 7: Switch back aggregates in a two-node MetroCluster configuration After you have completed the FRU replacement in a two-node MetroCluster configuration, you can perform the MetroCluster switchback operation. This returns the configuration to its normal operating state, with the sync-source storage virtual machines (SVMs) on the formerly impaired site now active and serving data from the local disk pools. This task only applies to two-node MetroCluster configurations. #### Steps 1. Verify that all nodes are in the enabled state: metrocluster node show - 2. Verify that resynchronization is complete on all SVMs: metrocluster vserver show - 3. Verify that any automatic LIF migrations being performed by the healing operations were completed successfully: metrocluster check lif show - 4. Perform the switchback by using the metrocluster switchback command from any node in the surviving cluster. - 5. Verify that the switchback operation has completed: metrocluster show The switchback operation is still running when a cluster is in the waiting-for-switchback state: The switchback operation is complete when the clusters are in the normal state.: If a switchback is taking a long time to finish, you can check on the status of in-progress baselines by using the metrocluster config-replication resync-status show command. 6. Reestablish any SnapMirror or SnapVault configurations. # Step 8: Return the failed part to NetApp After you replace the part, you can return the failed part to NetApp, as described in the RMA instructions shipped with the kit. Contact technical support at NetApp Support, 888-463-8277 (North America), 00-800-44-638277 (Europe), or +800-800-80-800 (Asia/Pacific) if you need the RMA number or additional help with the replacement procedure. # Hot-swap a fan module - AFF A400 To swap out a fan module without interrupting service, you must perform a specific sequence of tasks. You must replace
the fan module within two minutes of removing it from the chassis. System airflow is disrupted and the controller module or modules shut down after two minutes to avoid overheating. You can use the following animation, illustration, or the written steps to hot-swap a fan module. Replacing a fan - 1. If you are not already grounded, properly ground yourself. - 2. Remove the bezel (if necessary) with two hands, by grasping the openings on each side of the bezel, and then pulling it toward you until the bezel releases from the ball studs on the chassis frame. - 3. Identify the fan module that you must replace by checking the console error messages and looking at the Attention LED on each fan module. - 4. Press down the release latch on the fan module cam handle, and then rotate the cam handle downward. The fan module moves a little bit away from the chassis. 5. Pull the fan module straight out from the chassis, making sure that you support it with your free hand so that it does not swing out of the chassis. The fan modules are short. Always support the bottom of the fan module with your free hand so that it does not suddenly drop free from the chassis and injure you. - 6. Set the fan module aside. - 7. Insert the replacement fan module into the chassis by aligning it with the opening, and then sliding it into the chassis. - 8. Push firmly on the fan module cam handle so that it is seated all the way into the chassis. The cam handle raises slightly when the fan module is completely seated. 9. Swing the cam handle up to its closed position, making sure that the cam handle release latch clicks into the locked position. The Attention LED should not be lit after the fan is seated and has spun up to operational speed. - 10. Align the bezel with the ball studs, and then gently push the bezel onto the ball studs. - 11. After you replace the part, you can return the failed part to NetApp, as described in the RMA instructions shipped with the kit. Contact technical support at NetApp Support, 888-463-8277 (North America), 00-800-44-638277 (Europe), or +800-800-800 (Asia/Pacific) if you need the RMA number or additional help with the replacement procedure. # Replace the NVDIMM battery - AFF A400 To replace the NVDIMM battery, you must remove the controller module, remove the battery, replace the battery, and then reinstall the controller module. All other components in the system must be functioning properly; if not, you must contact technical support. # Step 1: Shut down the impaired controller You can shut down or take over the impaired controller using different procedures, depending on the storage system hardware configuration. ## **Option 1: Most configurations** To shut down the impaired node, you must determine the status of the node and, if necessary, take over the node so that the healthy node continues to serve data from the impaired node storage. #### About this task If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy node shows false for eligibility and health, you must correct the issue before shutting down the impaired node; see the Administration overview with the CLI. #### **Steps** 1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number_of_hours_downh The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h - 2. Disable automatic giveback from the console of the healthy node: storage failover modify -node local -auto-giveback false - 3. Take the impaired node to the LOADER prompt: | If the impaired node is displaying | Then | |--|---| | The LOADER prompt | Go to Remove controller module. | | Waiting for giveback | Press Ctrl-C, and then respond ${\bf y}$ when prompted. | | System prompt or password prompt (enter system password) | Take over or halt the impaired node from the healthy node: storage failover takeover -ofnode impaired_node_name | | | + When the impaired node shows Waiting for giveback, press Ctrl-C, and then respond ${\bf y}.$ | | | + | ### Option 2: Controller is in a MetroCluster Do not use this procedure if your system is in a two-node MetroCluster configuration. To shut down the impaired node, you must determine the status of the node and, if necessary, take over the node so that the healthy node continues to serve data from the impaired node storage. - If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy node shows false for eligibility and health, you must correct the issue before shutting down the impaired node; see the Administration overview with the CLI. - If you have a MetroCluster configuration, you must have confirmed that the MetroCluster Configuration State is configured and that the nodes are in an enabled and normal state (metrocluster node show). #### **Steps** 1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number of hours downh The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h - 2. Disable automatic giveback from the console of the healthy node: storage failover modify -node local -auto-giveback false - 3. Take the impaired node to the LOADER prompt: | If the impaired node is displaying | Then | |------------------------------------|---| | The LOADER prompt | Go to Remove controller module | | Waiting for giveback | Press Ctrl-C, and then respond ${\bf y}$ when prompted. | | If the impaired node is displaying | Then | |--|---| | System prompt or password prompt (enter system password) | Take over or halt the impaired node from the healthy node: storage failover takeover -ofnode impaired_node_name | | | + When the impaired node shows Waiting for giveback, press Ctrl-C, and then respond y. + | ## Option 3: Controller is in a two-node MetroCluster To shut down the impaired node, you must determine the status of the node and, if necessary, switch over the node so that the healthy node continues to serve data from the impaired node storage. #### About this task - If you are using NetApp Storage Encryption, you must have reset the MSID using the instructions in the "Return a FIPS drive or SED to unprotected mode" section of NetApp Encryption overview with the CLI. - You must leave the power supplies turned on at the end of this procedure to provide power to the healthy node. ### Steps - 1. Check the MetroCluster status to determine whether the impaired node has automatically switched over to the healthy node: metrocluster show - 2. Depending on whether an automatic switchover has occurred, proceed according to the following table: | If the impaired node | Then | |---|--| | Has automatically switched over | Proceed to the next step. | | Has not automatically switched over | Perform a planned switchover operation from the healthy node: metrocluster switchover | | Has not automatically switched over, you attempted switchover with the metrocluster switchover command, and the switchover was vetoed | Review the veto messages and, if possible, resolve the issue and try again. If you are unable to resolve the issue, contact technical support. | 3. Resynchronize the data aggregates by running the metrocluster heal -phase aggregates command from the surviving cluster. ``` controller_A_1::> metrocluster heal -phase aggregates [Job 130] Job succeeded: Heal Aggregates is successful. ``` If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation. 4. Verify that the operation has been completed by using the metrocluster operation show command. ``` controller_A_1::> metrocluster operation show Operation: heal-aggregates State: successful Start Time: 7/25/2016 18:45:55 End Time: 7/25/2016 18:45:56 Errors: - ``` 5. Check the state of the aggregates by using the storage aggregate show command. 6. Heal the root aggregates by using the metrocluster heal -phase root-aggregates command. ``` mcc1A::> metrocluster heal -phase root-aggregates [Job 137] Job succeeded: Heal Root Aggregates is successful ``` If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation. 7. Verify that the heal operation is complete by using the metrocluster operation show command on the destination cluster: ``` mcc1A::> metrocluster operation show Operation: heal-root-aggregates State: successful Start Time: 7/29/2016 20:54:41 End Time: 7/29/2016 20:54:42 Errors: - ``` 8. On the impaired controller module, disconnect the power supplies. # Step 2: Remove the controller module To access components inside the controller module, you must remove the controller module from the chassis. You can use the following animations, illustration, or the
written steps to remove the controller module from the chassis. ### Removing the controller module - 1. If you are not already grounded, properly ground yourself. - 2. Release the power cable retainers, and then unplug the cables from the power supplies. - 3. Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFPs (if needed) from the controller module, keeping track of where the cables were connected. Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized. - 4. Remove the cable management device from the controller module and set it aside. - 5. Press down on both of the locking latches, and then rotate both latches downward at the same time. The controller module moves slightly out of the chassis. 6. Slide the controller module out of the chassis. Make sure that you support the bottom of the controller module as you slide it out of the chassis. 7. Place the controller module on a stable, flat surface. # Step 3: Replace the NVDIMM battery To replace the NVDIMM battery, you must remove the failed battery from the controller module and install the replacement battery into the controller module. See the FRU map inside the controller module to locate the NVDIMM battery. The NVDIMM LED blinks while destaging contents when you halt the system. After the destage is complete, the LED turns off. You can use the following animation, illustration, or the written steps to replace the NVDIMM battery. # Replacing the NVDIMM battery #### 1. Open the air duct: - a. Press the locking tabs on the sides of the air duct in toward the middle of the controller module. - b. Slide the air duct toward the back of the controller module, and then rotate it upward to its completely open position. - 2. Locate the NVDIMM battery in the controller module. - 3. Locate the battery plug and squeeze the clip on the face of the battery plug to release the plug from the socket, and then unplug the battery cable from the socket. - 4. Grasp the battery and press the blue locking tab marked PUSH, and then lift the battery out of the holder and controller module. - 5. Remove the replacement battery from its package. - 6. Align the battery module with the opening for the battery, and then gently push the battery into slot until it locks into place. - 7. Plug the battery plug back into the controller module, and then close the air duct. # Step 4: Install the controller module After you have replaced the component in the controller module, you must reinstall the controller module into the chassis, and then boot it to Maintenance mode. You can use the following animation, illustration, or the written steps to install the controller module in the chassis. Installing the controller module - 1. If you have not already done so, close the air duct. - 2. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system. - (i) Do not completely insert the controller module in the chassis until instructed to do so. 3. Cable the management and console ports only, so that you can access the system to perform the tasks in the following sections. You will connect the rest of the cables to the controller module later in this procedure. - 4. Complete the installation of the controller module: - a. Plug the power cord into the power supply, reinstall the power cable locking collar, and then connect the power supply to the power source. - b. Using the locking latches, firmly push the controller module into the chassis until the locking latches begin to rise. Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors. c. Fully seat the controller module in the chassis by rotating the locking latches upward, tilting them so that they clear the locking pins, gently push the controller all the way in, and then lower the locking latches into the locked position. The controller module begins to boot as soon as it is fully seated in the chassis. Be prepared to interrupt the boot process. - d. If you have not already done so, reinstall the cable management device. - e. Interrupt the normal boot process and boot to LOADER by pressing Ctrl-C. - (<u>i</u>) If your system stops at the boot menu, select the option to boot to LOADER. - f. At the LOADER prompt, enter bye to reinitialize the PCIe cards and other components. - g. Interrupt the boot process and boot to the LOADER prompt by pressing Ctrl-C. If your system stops at the boot menu, select the option to boot to LOADER. ### Step 5: Run diagnostics After you have replaced a component in your system, you should run diagnostic tests on that component. Your system must be at the LOADER prompt to start diagnostics. All commands in the diagnostic procedures are issued from the node where the component is being replaced. If the node to be serviced is not at the LOADER prompt, reboot the node: system node halt -node node_name After you issue the command, you should wait until the system stops at the LOADER prompt. - 2. At the LOADER prompt, access the special drivers specifically designed for system-level diagnostics to function properly: boot diags - 3. Select **Scan System** from the displayed menu to enable running the diagnostics tests. - Select Test Memory from the displayed menu to run diagnostics tests. - 5. Proceed based on the result of the preceding step: - If the scan show problems, correct the issue, and then rerun the scan. - If the scan reported no failures, select Reboot from the menu to reboot the system. ### Step 6: Restore the controller module to operation after running diagnostics After completing diagnostics, you must recable the system, give back the controller module, and then reenable automatic giveback. 1. Recable the system, as needed. If you removed the media converters (QSFPs or SFPs), remember to reinstall them if you are using fiber optic cables. - 2. Return the node to normal operation by giving back its storage: storage failover giveback -ofnode impaired node name - 3. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true ### Step 7: Switch back aggregates in a two-node MetroCluster configuration After you have completed the FRU replacement in a two-node MetroCluster configuration, you can perform the MetroCluster switchback operation. This returns the configuration to its normal operating state, with the sync-source storage virtual machines (SVMs) on the formerly impaired site now active and serving data from the local disk pools. This task only applies to two-node MetroCluster configurations. #### **Steps** 1. Verify that all nodes are in the enabled state: metrocluster node show - 2. Verify that resynchronization is complete on all SVMs: metrocluster vserver show - 3. Verify that any automatic LIF migrations being performed by the healing operations were completed successfully: metrocluster check lif show - 4. Perform the switchback by using the metrocluster switchback command from any node in the surviving cluster. - 5. Verify that the switchback operation has completed: metrocluster show The switchback operation is still running when a cluster is in the waiting-for-switchback state: The switchback operation is complete when the clusters are in the normal state.: If a switchback is taking a long time to finish, you can check on the status of in-progress baselines by using the metrocluster config-replication resync-status show command. 6. Reestablish any SnapMirror or SnapVault configurations. ### Step 8: Return the failed part to NetApp After you replace the part, you can return the failed part to NetApp, as described in the RMA instructions shipped with the kit. Contact technical support at NetApp Support, 888-463-8277 (North America), 00-800-44-638277 (Europe), or +800-800-80-800 (Asia/Pacific) if you need the RMA number or additional help with the replacement procedure. # Replace an NVDIMM - AFF A400 You must replace the NVDIMM in the controller module when your system registers that the flash lifetime is almost at an end or that the identified NVDIMM is not healthy in general; failure to do so causes a system panic. All other components in the system must be functioning properly; if not, you must contact technical support. You must replace the failed component with a replacement FRU component you received from your provider. ### Step 1: Shut down the impaired controller You can shut down or take over the impaired controller using different procedures, depending on the storage system hardware configuration. #### **Option 1: Most configurations** To shut down the impaired node, you must determine the status of the node and, if necessary, take over the node so that the healthy node continues to serve data from the impaired node storage. #### About this task If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy node shows false for eligibility and health, you must correct the issue before shutting down the impaired node; see the Administration overview with the CLI. #### Steps 1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number of hours downh The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h - 2. Disable automatic giveback from the console of the healthy node: storage failover modify -node local -auto-giveback false - 3. Take the impaired node to the LOADER prompt: | If the impaired node is displaying | Then | |--|---| | The LOADER
prompt | Go to Remove controller module. | | Waiting for giveback | Press Ctrl-C, and then respond \boldsymbol{y} when prompted. | | System prompt or password prompt (enter system password) | Take over or halt the impaired node from the healthy node: storage failover takeover -ofnode impaired_node_name | | | + When the impaired node shows Waiting for giveback, press Ctrl-C, and then respond ${\bf y}.$ | | | + | ### Option 2: Controller is in a MetroCluster Do not use this procedure if your system is in a two-node MetroCluster configuration. To shut down the impaired node, you must determine the status of the node and, if necessary, take over the node so that the healthy node continues to serve data from the impaired node storage. - If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy node shows false for eligibility and health, you must correct the issue before shutting down the impaired node; see the Administration overview with the CLI. - If you have a MetroCluster configuration, you must have confirmed that the MetroCluster Configuration State is configured and that the nodes are in an enabled and normal state (metrocluster node show). #### Steps 1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number of hours downh The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h - 2. Disable automatic giveback from the console of the healthy node: storage failover modify -node local -auto-giveback false - 3. Take the impaired node to the LOADER prompt: | If the impaired node is displaying | Then | |--|---| | The LOADER prompt | Go to Remove controller module | | Waiting for giveback | Press Ctrl-C, and then respond y when prompted. | | System prompt or password prompt (enter system password) | Take over or halt the impaired node from the healthy node: storage failover takeover -ofnode impaired_node_name | | | + When the impaired node shows Waiting for giveback, press Ctrl- C, and then respond ${\bf y}.$ | | | + | #### Option 3: Controller is in a two-node MetroCluster To shut down the impaired node, you must determine the status of the node and, if necessary, switch over the node so that the healthy node continues to serve data from the impaired node storage. #### About this task - If you are using NetApp Storage Encryption, you must have reset the MSID using the instructions in the "Return a FIPS drive or SED to unprotected mode" section of NetApp Encryption overview with the CLI. - You must leave the power supplies turned on at the end of this procedure to provide power to the healthy node. #### **Steps** - 1. Check the MetroCluster status to determine whether the impaired node has automatically switched over to the healthy node: metrocluster show - 2. Depending on whether an automatic switchover has occurred, proceed according to the following table: | If the impaired node | Then | |---------------------------------|---------------------------| | Has automatically switched over | Proceed to the next step. | | If the impaired node | Then | |---|--| | Has not automatically switched over | Perform a planned switchover operation from the healthy node: metrocluster switchover | | Has not automatically switched over, you attempted switchover with the metrocluster switchover command, and the switchover was vetoed | Review the veto messages and, if possible, resolve the issue and try again. If you are unable to resolve the issue, contact technical support. | 3. Resynchronize the data aggregates by running the metrocluster heal -phase aggregates command from the surviving cluster. ``` controller_A_1::> metrocluster heal -phase aggregates [Job 130] Job succeeded: Heal Aggregates is successful. ``` If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation. 4. Verify that the operation has been completed by using the metrocluster operation show command. ``` controller_A_1::> metrocluster operation show Operation: heal-aggregates State: successful Start Time: 7/25/2016 18:45:55 End Time: 7/25/2016 18:45:56 Errors: - ``` 5. Check the state of the aggregates by using the storage aggregate show command. ``` controller_A_1::> storage aggregate show Aggregate Size Available Used% State #Vols Nodes RAID Status ------ ... aggr_b2 227.1GB 227.1GB 0% online 0 mcc1-a2 raid_dp, mirrored, normal... ``` 6. Heal the root aggregates by using the metrocluster heal -phase root-aggregates command. ``` mcc1A::> metrocluster heal -phase root-aggregates [Job 137] Job succeeded: Heal Root Aggregates is successful ``` If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation. 7. Verify that the heal operation is complete by using the metrocluster operation show command on the destination cluster: ``` mcc1A::> metrocluster operation show Operation: heal-root-aggregates State: successful Start Time: 7/29/2016 20:54:41 End Time: 7/29/2016 20:54:42 Errors: - ``` 8. On the impaired controller module, disconnect the power supplies. ### Step 2: Remove the controller module To access components inside the controller module, you must remove the controller module from the chassis. You can use the following animations, illustration, or the written steps to remove the controller module from the chassis. Removing the controller module - 1. If you are not already grounded, properly ground yourself. - 2. Release the power cable retainers, and then unplug the cables from the power supplies. - 3. Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFPs (if needed) from the controller module, keeping track of where the cables were connected. Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized. - 4. Remove the cable management device from the controller module and set it aside. - 5. Press down on both of the locking latches, and then rotate both latches downward at the same time. The controller module moves slightly out of the chassis. 6. Slide the controller module out of the chassis. Make sure that you support the bottom of the controller module as you slide it out of the chassis. 7. Place the controller module on a stable, flat surface. ### Step 3: Replace the NVDIMM To replace the NVDIMM, you must locate it in the controller module using the FRU map on top of the air duct or locate the Attention LED using the FRU Map on the top of the slot 1 riser. - The NVDIMM LED blinks while destaging contents when you halt the system. After the destage is complete, the LED turns off. - Although the contents of the NVDIMM is encrypted, it is a best practice to erase the contents of the NVDIMM before replacing it. For more information, see the Statement of Volatility on the NetApp Support Site. You must log into the NetApp Support Site to display the *Statement of Volatility* for your system. You can use the following animation, illustration, or the written steps to replace the NVDIMM. The animation shows empty slots for sockets without DIMMs. These empty sockets are populated with blanks. #### Replacing the NVDIMM 1. Open the air duct and then locate the NVDIMM in slot 11 on your controller module. The NVDIMM looks significantly different than system DIMMs. 2. Eject the NVDIMM from its slot by slowly pushing apart the two NVDIMM ejector tabs on either side of the NVDIMM, and then slide the NVDIMM out of the socket and set it aside. Carefully hold the NVDIMM by the edges to avoid pressure on the components on the NVDIMM circuit board. 3. Remove the replacement NVDIMM from the antistatic shipping bag, hold the NVDIMM by the corners, and then align it to the slot. The notch among the pins on the NVDIMM should line up with the tab in the socket. - 4. Locate the slot where you are installing the NVDIMM. - 5. Insert the NVDIMM squarely into the slot. The NVDIMM fits tightly in the slot, but should go in easily. If not, realign the NVDIMM with the slot and reinsert it. Visually inspect the NVDIMM to verify that it is evenly aligned and fully inserted into the slot. - 6. Push carefully, but firmly, on the top edge of the NVDIMM until the ejector tabs snap into place over the notches at the ends of the NVDIMM. - 7. Close the air duct. ### Step 4: Install the controller module After you have replaced the component in the controller module, you must reinstall the controller module into the chassis, and then boot it to Maintenance mode. You can use the following animation, illustration, or the written steps to install the controller module in the chassis. Installing the controller module - 1. If you have not already done so, close the air duct. - 2. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system. - Do not completely insert the controller module in the chassis until instructed to do so. - 3. Cable the management and console ports only, so that you can access the system to perform the tasks in the
following sections. - You will connect the rest of the cables to the controller module later in this procedure. - 4. Complete the installation of the controller module: - a. Plug the power cord into the power supply, reinstall the power cable locking collar, and then connect the power supply to the power source. - b. Using the locking latches, firmly push the controller module into the chassis until the locking latches begin to rise. - Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors. - c. Fully seat the controller module in the chassis by rotating the locking latches upward, tilting them so that they clear the locking pins, gently push the controller all the way in, and then lower the locking latches into the locked position. The controller module begins to boot as soon as it is fully seated in the chassis. Be prepared to interrupt the boot process. - d. If you have not already done so, reinstall the cable management device. - e. Interrupt the normal boot process and boot to LOADER by pressing Ctrl-C. - If your system stops at the boot menu, select the option to boot to LOADER. - f. At the LOADER prompt, enter bye to reinitialize the PCle cards and other components. - g. Interrupt the boot process and boot to the LOADER prompt by pressing Ctrl-C. If your system stops at the boot menu, select the option to boot to LOADER. ### Step 5: Run diagnostics After you have replaced the NVDIMM in your system, you should run diagnostic tests on that component. Your system must be at the LOADER prompt to start diagnostics. All commands in the diagnostic procedures are issued from the node where the component is being replaced. 1. If the node to be serviced is not at the LOADER prompt, reboot the node: system node halt -node node name After you issue the command, you should wait until the system stops at the LOADER prompt. - At the LOADER prompt, access the special drivers specifically designed for system-level diagnostics to function properly: boot diags - 3. Select **Scan System** from the displayed menu to enable running the diagnostics tests. - 4. Select **Test Memory** from the displayed menu. - 5. Select **NVDIMM Test** from the displayed menu. - 6. Proceed based on the result of the preceding step: - If the test failed, correct the failure, and then rerun the test. - If the test reported no failures, select Reboot from the menu to reboot the system. ### Step 6: Restore the controller module to operation after running diagnostics After completing diagnostics, you must recable the system, give back the controller module, and then reenable automatic giveback. - 1. Recable the system, as needed. - If you removed the media converters (QSFPs or SFPs), remember to reinstall them if you are using fiber optic cables. - 2. Return the node to normal operation by giving back its storage: storage failover giveback -ofnode impaired node name - 3. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true ### Step 7: Switch back aggregates in a two-node MetroCluster configuration After you have completed the FRU replacement in a two-node MetroCluster configuration, you can perform the MetroCluster switchback operation. This returns the configuration to its normal operating state, with the sync-source storage virtual machines (SVMs) on the formerly impaired site now active and serving data from the local disk pools. This task only applies to two-node MetroCluster configurations. #### **Steps** 1. Verify that all nodes are in the enabled state: metrocluster node show - 2. Verify that resynchronization is complete on all SVMs: metrocluster vserver show - 3. Verify that any automatic LIF migrations being performed by the healing operations were completed successfully: metrocluster check lif show - 4. Perform the switchback by using the metrocluster switchback command from any node in the surviving cluster. - 5. Verify that the switchback operation has completed: metrocluster show The switchback operation is still running when a cluster is in the waiting-for-switchback state: The switchback operation is complete when the clusters are in the normal state.: ``` cluster_B::> metrocluster show Cluster Configuration State Mode ----- Local: cluster_B configured normal Remote: cluster_A configured normal ``` If a switchback is taking a long time to finish, you can check on the status of in-progress baselines by using the metrocluster config-replication resync-status show command. 6. Reestablish any SnapMirror or SnapVault configurations. ### Step 8: Return the failed part to NetApp After you replace the part, you can return the failed part to NetApp, as described in the RMA instructions shipped with the kit. Contact technical support at NetApp Support, 888-463-8277 (North America), 00-800-44-638277 (Europe), or +800-800-80-800 (Asia/Pacific) if you need the RMA number or additional help with the replacement procedure. # Replace a PCIe or mezzanine card - AFF A400 To replace a PCIe or mezzanine card, you must disconnect the cables and any SFP and QSFP modules from the cards, replace the failed PCIe or mezzanine card, and then recable the cards. - You can use this procedure with all versions of ONTAP supported by your system - All other components in the system must be functioning properly; if not, you must contact technical support. ### Step 1: Shut down the impaired controller You can shut down or take over the impaired controller using different procedures, depending on the storage system hardware configuration. #### **Option 1: Most configurations** To shut down the impaired node, you must determine the status of the node and, if necessary, take over the node so that the healthy node continues to serve data from the impaired node storage. #### About this task If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy node shows false for eligibility and health, you must correct the issue before shutting down the impaired node; see the Administration overview with the CLI. #### Steps - 1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number of hours downh - The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h - 2. Disable automatic giveback from the console of the healthy node: storage failover modify -node local -auto-giveback false - 3. Take the impaired node to the LOADER prompt: | If the impaired node is displaying | Then | |--|---| | The LOADER prompt | Go to Remove controller module. | | Waiting for giveback | Press Ctrl-C, and then respond \underline{y} when prompted. | | System prompt or password prompt (enter system password) | Take over or halt the impaired node from the healthy node: storage failover takeover -ofnode impaired_node_name | | | + When the impaired node shows Waiting for giveback, press Ctrl- C, and then respond $\ensuremath{\mathbf{y}}.$ | | | + | #### Option 2: Controller is in a MetroCluster Do not use this procedure if your system is in a two-node MetroCluster configuration. To shut down the impaired node, you must determine the status of the node and, if necessary, take over the node so that the healthy node continues to serve data from the impaired node storage. - If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy node shows false for eligibility and health, you must correct the issue before shutting down the impaired node; see the Administration overview with the CLI. - If you have a MetroCluster configuration, you must have confirmed that the MetroCluster Configuration State is configured and that the nodes are in an enabled and normal state (metrocluster node show). #### **Steps** 1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number of hours downh The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h - 2. Disable automatic giveback from the console of the healthy node: storage failover modify -node local -auto-giveback false - 3. Take the impaired node to the LOADER prompt: | If the impaired node is displaying | Then | |------------------------------------|---| | The LOADER prompt | Go to Remove controller module | | Waiting for giveback | Press Ctrl-C, and then respond ${\bf y}$ when prompted. | | If the impaired node is displaying | Then | |--|---| | System prompt or password prompt (enter system password) | Take over or halt the impaired node from the healthy node: storage failover takeover -ofnode impaired_node_name | | | + When the impaired node shows Waiting for giveback, press Ctrl-C, and then respond ${\bf y}.$ + | #### Option 3: Controller is in a two-node MetroCluster To shut down the impaired node, you must determine the status of the node and, if necessary, switch over the node so that the healthy node continues to serve data from the impaired node storage. #### About this task - If you are using NetApp Storage Encryption, you must have reset the MSID using the instructions in the "Return a FIPS drive or SED to unprotected mode" section of NetApp Encryption overview with the CLI. - You must leave the power supplies turned on at the end of this
procedure to provide power to the healthy node. #### Steps - 1. Check the MetroCluster status to determine whether the impaired node has automatically switched over to the healthy node: metrocluster show - 2. Depending on whether an automatic switchover has occurred, proceed according to the following table: | If the impaired node | Then | |---|--| | Has automatically switched over | Proceed to the next step. | | Has not automatically switched over | Perform a planned switchover operation from the healthy node: metrocluster switchover | | Has not automatically switched over, you attempted switchover with the metrocluster switchover command, and the switchover was vetoed | Review the veto messages and, if possible, resolve the issue and try again. If you are unable to resolve the issue, contact technical support. | 3. Resynchronize the data aggregates by running the metrocluster heal -phase aggregates command from the surviving cluster. ``` controller_A_1::> metrocluster heal -phase aggregates [Job 130] Job succeeded: Heal Aggregates is successful. ``` If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation. 4. Verify that the operation has been completed by using the metrocluster operation show command. ``` controller_A_1::> metrocluster operation show Operation: heal-aggregates State: successful Start Time: 7/25/2016 18:45:55 End Time: 7/25/2016 18:45:56 Errors: - ``` 5. Check the state of the aggregates by using the storage aggregate show command. ``` controller_A_1::> storage aggregate show Aggregate Size Available Used% State #Vols Nodes RAID Status ------ ... aggr_b2 227.1GB 227.1GB 0% online 0 mcc1-a2 raid_dp, mirrored, normal... ``` 6. Heal the root aggregates by using the metrocluster heal -phase root-aggregates command. ``` mcc1A::> metrocluster heal -phase root-aggregates [Job 137] Job succeeded: Heal Root Aggregates is successful ``` If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation. 7. Verify that the heal operation is complete by using the metrocluster operation show command on the destination cluster: ``` mcc1A::> metrocluster operation show Operation: heal-root-aggregates State: successful Start Time: 7/29/2016 20:54:41 End Time: 7/29/2016 20:54:42 Errors: - ``` 8. On the impaired controller module, disconnect the power supplies. ### Step 2: Remove the controller module To access components inside the controller module, you must remove the controller module from the chassis. You can use the following animations, illustration, or the written steps to remove the controller module from the chassis. #### Removing the controller module - 1. If you are not already grounded, properly ground yourself. - 2. Release the power cable retainers, and then unplug the cables from the power supplies. - 3. Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFPs (if needed) from the controller module, keeping track of where the cables were connected. Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized. - 4. Remove the cable management device from the controller module and set it aside. - 5. Press down on both of the locking latches, and then rotate both latches downward at the same time. The controller module moves slightly out of the chassis. 6. Slide the controller module out of the chassis. Make sure that you support the bottom of the controller module as you slide it out of the chassis. 7. Place the controller module on a stable, flat surface. ### Step 3: Replace a PCIe card To replace a PCIe card, you must locate the failed PCIe card, remove the riser that contains the card from the controller module, replace the card, and then reinstall the PCIe riser in the controller module. You can use the following animation, illustration, or the written steps to replace a PCIe card. #### Replacing a PCIe card - 1. Remove the riser containing the card to be replaced: - a. Open the air duct by pressing the locking tabs on the sides of the air duct, slide it toward the back of the controller module, and then rotate it to its completely open position. - b. Remove any SFP or QSFP modules that might be in the PCle cards. - c. Rotate the riser locking latch on the left side of the riser up and toward air duct. The riser raises up slightly from the controller module. - d. Lift the riser up straight up and set it aside on a stable flat surface, - 2. Remove the PCIe card from the riser: - a. Turn the riser so that you can access the PCIe card. - b. Press the locking bracket on the side of the PCle riser, and then rotate it to the open position. - c. For risers 2 and 3 only, swing the side panel up. - d. Remove the PCIe card from the riser by gently pushing up on the bracket and lift the card straight out of the socket. 3. Install the replacement PCle card in the riser by aligning the card with the socket, press the card into the socket and then close the side panel on the riser, if present. Be sure that you properly align the card in the slot and exert even pressure on the card when seating it in the socket. The PCIe card must be fully and evenly seated in the slot. If you are installing a card in the bottom slot and cannot see the card socket well, remove the top card so that you can see the card socket, install the card, and then reinstall the card you removed from the top slot. #### 4. Reinstall the riser: - a. Align the riser with the pins to the side of the riser socket, lower the riser down on the pins. - b. Push the riser squarely into the socket on the motherboard. - c. Rotate the latch down flush with the sheet metal on the riser. ### Step 4: Replace the mezzanine card The mezzanine card is located under riser number 3 (slots 4 and 5). You must remove that riser to access the mezzanine card, replace the mezzanine card, and then reinstall riser number 3. See the FRU map on the controller module for more information. You can use the following animation, illustration, or the written steps to replace the mezzanine card. Replacing the mezzanine card #### 1. Remove riser number 3 (slots 4 and 5): - a. Open the air duct by pressing the locking tabs on the sides of the air duct, slide it toward the back of the controller module, and then rotate it to its completely open position. - b. Remove any SFP or QSFP modules that might be in the PCIe cards. - c. Rotate the riser locking latch on the left side of the riser up and toward air duct. The riser raises up slightly from the controller module. d. Lift the riser up, and then set it aside on a stable, flat surface. #### 2. Replace the mezzanine card: - a. Remove any QSFP or SFP modules from the card. - b. Loosen the thumbscrews on the mezzanine card, and gently lift the card directly out of the socket and set it aside. - c. Align the replacement mezzanine card over the socket and the guide pins and gently push the card into the socket. - d. Tighten the thumbscrews on the mezzanine card. #### 3. Reinstall the riser: - a. Align the riser with the pins to the side of the riser socket, lower the riser down on the pins. - b. Push the riser squarely into the socket on the motherboard. c. Rotate the latch down flush with the sheet metal on the riser. ### Step 5: Install the controller module After you have replaced the component in the controller module, you must reinstall the controller module into the chassis, and then boot it to Maintenance mode. You can use the following animation, illustration, or the written steps to install the controller module in the chassis. Installing the controller module - 1. If you have not already done so, close the air duct. - 2. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system. Do not completely insert the controller module in the chassis until instructed to do so. 3. Recable the system, as needed. If you removed the media converters (QSFPs or SFPs), remember to reinstall them if you are using fiber optic cables. - 4. Complete the installation of the controller module: - a. Plug the power cord into the power supply, reinstall the power cable locking collar, and then connect the power supply to the power source. - b. Using the locking latches, firmly push the controller module into the chassis until it meets the midplane and is fully seated. The locking latches rise when the controller module is fully seated. Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors. The controller module begins to boot as soon as it is fully seated in the chassis. Be prepared to interrupt the boot process. - c. Fully seat the controller module in the chassis by rotating the locking latches upward, tilting them so that they clear the locking pins, gently push the controller all the way in, and then lower the locking latches into the locked position. - d. If you have not already done so, reinstall the cable management device. - e. Interrupt the normal boot process and boot to LOADER by pressing Ctrl-C. - (i) If your system stops at the boot menu, select the option to boot to LOADER. - f. At the LOADER prompt, enter bye to reinitialize the PCIe cards and other components and let the node reboot. - 5. Return the node to normal operation by giving back its storage:
storage failover giveback -ofnode impaired_node_name - 6. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto-giveback true ### Step 6: Restore the controller module to operation To restore the controller, you must recable the system, give back the controller module, and then reenable automatic giveback. - 1. Recable the system, as needed. - If you removed the media converters (QSFPs or SFPs), remember to reinstall them if you are using fiber optic cables. - 2. Return the node to normal operation by giving back its storage: storage failover giveback -ofnode impaired node name - 3. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true ### Step 7: Switch back aggregates in a two-node MetroCluster configuration After you have completed the FRU replacement in a two-node MetroCluster configuration, you can perform the MetroCluster switchback operation. This returns the configuration to its normal operating state, with the sync-source storage virtual machines (SVMs) on the formerly impaired site now active and serving data from the local disk pools. This task only applies to two-node MetroCluster configurations. #### **Steps** 1. Verify that all nodes are in the enabled state: metrocluster node show - 2. Verify that resynchronization is complete on all SVMs: metrocluster vserver show - 3. Verify that any automatic LIF migrations being performed by the healing operations were completed successfully: metrocluster check lif show - 4. Perform the switchback by using the metrocluster switchback command from any node in the surviving cluster. - 5. Verify that the switchback operation has completed: metrocluster show The switchback operation is still running when a cluster is in the waiting-for-switchback state: The switchback operation is complete when the clusters are in the normal state.: ``` cluster_B::> metrocluster show Cluster Configuration State Mode ----- Local: cluster_B configured normal Remote: cluster_A configured normal ``` If a switchback is taking a long time to finish, you can check on the status of in-progress baselines by using the metrocluster config-replication resync-status show command. 6. Reestablish any SnapMirror or SnapVault configurations. ### Step 8: Return the failed part to NetApp After you replace the part, you can return the failed part to NetApp, as described in the RMA instructions shipped with the kit. Contact technical support at NetApp Support, 888-463-8277 (North America), 00-800-44-638277 (Europe), or +800-800-80-800 (Asia/Pacific) if you need the RMA number or additional help with the replacement procedure. # Replacing a power supply - AFF A400 Replacing a power supply (PSU) involves disconnecting the target PSU from the power source, unplugging the power cable, removing the old PSU and installing the replacement PSU, and then reconnecting the replacement PSU to the power source. - The power supplies are redundant and hot-swappable. - This procedure is written for replacing one power supply at a time. It is a best practice to replace the power supply within two minutes of removing it from the chassis. The system continues to function, but ONTAP sends messages to the console about the degraded power supply until the power supply is replaced. You can use the following animation, illustration, or the written steps to replace the power supply. #### Replacing a power supply 1. If you are not already grounded, properly ground yourself. - 2. Identify the power supply you want to replace, based on console error messages or through the LEDs on the power supplies. - Disconnect the power supply: - a. Open the power cable retainer, and then unplug the power cable from the power supply. - b. Unplug the power cable from the power source. - 4. Remove the power supply: - a. Rotate the cam handle so that it can be used to pull the power supply out of the chassis. - b. Press the blue locking tab to release the power supply from the chassis. - c. Using both hands, pull the power supply out of the chassis, and then set it aside. - 5. Using both hands, support and align the edges of the power supply with the opening in the controller module, and then gently push the power supply into the controller module until the locking tab clicks into place. The power supplies will only properly engage with the internal connector and lock in place one way. To avoid damaging the internal connector, do not use excessive force when sliding the power supply into the system. - 6. Rotate the cam handle so that it is flush against the power supply. - 7. Reconnect the power supply cabling: - a. Reconnect the power cable to the power supply and the power source. - b. Secure the power cable to the power supply using the power cable retainer. Once power is restored to the power supply, the status LED should be green. 8. After you replace the part, you can return the failed part to NetApp, as described in the RMA instructions shipped with the kit. Contact technical support at NetApp Support, 888-463-8277 (North America), 00-800-44-638277 (Europe), or +800-800-80-800 (Asia/Pacific) if you need the RMA number or additional help with the replacement procedure. ## Replace the real-time clock battery - AFF A400 You replace the real-time clock (RTC) battery in the controller module so that your system's services and applications that depend on accurate time synchronization continue to function. - You can use this procedure with all versions of ONTAP supported by your system - All other components in the system must be functioning properly; if not, you must contact technical support. ### **Step 1: Shut down the impaired controller** You can shut down or take over the impaired controller using different procedures, depending on the storage system hardware configuration. #### **Option 1: Most configurations** To shut down the impaired node, you must determine the status of the node and, if necessary, take over the node so that the healthy node continues to serve data from the impaired node storage. #### About this task If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy node shows false for eligibility and health, you must correct the issue before shutting down the impaired node; see the Administration overview with the CLI. #### **Steps** 1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number of hours downh The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h - 2. Disable automatic giveback from the console of the healthy node: storage failover modify -node local -auto-giveback false - 3. Take the impaired node to the LOADER prompt: | If the impaired node is displaying | Then | |--|---| | The LOADER prompt | Go to Remove controller module. | | Waiting for giveback | Press Ctrl-C, and then respond \boldsymbol{y} when prompted. | | System prompt or password prompt (enter system password) | Take over or halt the impaired node from the healthy node: storage failover takeover -ofnode impaired_node_name | | | + When the impaired node shows Waiting for giveback, press Ctrl-C, and then respond $\ensuremath{\mathtt{y}}.$ | | | + | #### Option 2: Controller is in a MetroCluster Do not use this procedure if your system is in a two-node MetroCluster configuration. To shut down the impaired node, you must determine the status of the node and, if necessary, take over the node so that the healthy node continues to serve data from the impaired node storage. - If you have a cluster with more than two nodes, it must be in quorum. If the cluster is not in quorum or a healthy node shows false for eligibility and health, you must correct the issue before shutting down the impaired node; see the Administration overview with the CLI. - If you have a MetroCluster configuration, you must have confirmed that the MetroCluster Configuration State is configured and that the nodes are in an enabled and normal state (metrocluster node show). #### Steps 1. If AutoSupport is enabled, suppress automatic case creation by invoking an AutoSupport message: system node autosupport invoke -node * -type all -message MAINT=number of hours downh The following AutoSupport message suppresses automatic case creation for two hours: cluster1:*> system node autosupport invoke -node * -type all -message MAINT=2h - 2. Disable automatic giveback from the console of the healthy node: storage failover modify -node local -auto-giveback false - 3. Take the impaired node to the LOADER prompt: | If the impaired node is displaying | Then | |--|--| | The LOADER prompt | Go to Remove controller module | | Waiting for giveback | Press Ctrl-C, and then respond \boldsymbol{y} when prompted. | | System prompt or password prompt (enter system password) | Take over or halt the impaired node from the healthy node: storage failover takeover -ofnode impaired_node_name + When the impaired node shows Waiting for giveback, press Ctrl-C, and then respond y. | #### Option 3: Controller is in a two-node MetroCluster To shut down the impaired node, you must determine the status of the node and, if necessary, switch over the node so that the healthy node continues to serve data from the impaired node storage. #### About this task - If you are using NetApp Storage Encryption, you must have reset the MSID using the
instructions in the "Return a FIPS drive or SED to unprotected mode" section of NetApp Encryption overview with the CLI. - You must leave the power supplies turned on at the end of this procedure to provide power to the healthy node. #### Steps - 1. Check the MetroCluster status to determine whether the impaired node has automatically switched over to the healthy node: metrocluster show - 2. Depending on whether an automatic switchover has occurred, proceed according to the following table: | If the impaired node | Then | |---|--| | Has automatically switched over | Proceed to the next step. | | Has not automatically switched over | Perform a planned switchover operation from the healthy node: metrocluster switchover | | Has not automatically switched over, you attempted switchover with the metrocluster switchover command, and the switchover was vetoed | Review the veto messages and, if possible, resolve the issue and try again. If you are unable to resolve the issue, contact technical support. | 3. Resynchronize the data aggregates by running the metrocluster heal -phase aggregates command from the surviving cluster. ``` controller_A_1::> metrocluster heal -phase aggregates [Job 130] Job succeeded: Heal Aggregates is successful. ``` If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation. 4. Verify that the operation has been completed by using the metrocluster operation show command. ``` controller_A_1::> metrocluster operation show Operation: heal-aggregates State: successful Start Time: 7/25/2016 18:45:55 End Time: 7/25/2016 18:45:56 Errors: - ``` 5. Check the state of the aggregates by using the storage aggregate show command. ``` controller_A_1::> storage aggregate show Aggregate Size Available Used% State #Vols Nodes RAID Status ------ ... aggr_b2 227.1GB 227.1GB 0% online 0 mcc1-a2 raid_dp, mirrored, normal... ``` 6. Heal the root aggregates by using the metrocluster heal -phase root-aggregates command. ``` mcc1A::> metrocluster heal -phase root-aggregates [Job 137] Job succeeded: Heal Root Aggregates is successful ``` If the healing is vetoed, you have the option of reissuing the metrocluster heal command with the -override-vetoes parameter. If you use this optional parameter, the system overrides any soft vetoes that prevent the healing operation. 7. Verify that the heal operation is complete by using the metrocluster operation show command on the destination cluster: ``` mcc1A::> metrocluster operation show Operation: heal-root-aggregates State: successful Start Time: 7/29/2016 20:54:41 End Time: 7/29/2016 20:54:42 Errors: - ``` 8. On the impaired controller module, disconnect the power supplies. ### Step 2: Remove the controller module To access components inside the controller module, you must remove the controller module from the chassis. You can use the following animations, illustration, or the written steps to remove the controller module from the chassis. Removing the controller module - 1. If you are not already grounded, properly ground yourself. - 2. Release the power cable retainers, and then unplug the cables from the power supplies. - 3. Loosen the hook and loop strap binding the cables to the cable management device, and then unplug the system cables and SFPs (if needed) from the controller module, keeping track of where the cables were connected. Leave the cables in the cable management device so that when you reinstall the cable management device, the cables are organized. - 4. Remove the cable management device from the controller module and set it aside. - 5. Press down on both of the locking latches, and then rotate both latches downward at the same time. The controller module moves slightly out of the chassis. 6. Slide the controller module out of the chassis. Make sure that you support the bottom of the controller module as you slide it out of the chassis. 7. Place the controller module on a stable, flat surface. ### Step 3: Replace the RTC battery You need to locate the RTC battery inside the controller module, and then follow the specific sequence of steps. See the FRU map inside the controller module for the location of the RTC battery. You can use the following animation, illustration, or the written steps to replace the RTC battery. Replacing the RTC battery - 1. If you are not already grounded, properly ground yourself. - 2. Open the air duct: - a. Press the locking tabs on the sides of the air duct in toward the middle of the controller module. - b. Slide the air duct toward the back of the controller module, and then rotate it upward to its completely open position. - 3. Locate, remove, and then replace the RTC battery: - a. Using the FRU map, locate the RTC battery on the controller module. - b. Gently push the battery away from the holder, rotate it away from the holder, and then lift it out of the holder. Note the polarity of the battery as you remove it from the holder. The battery is marked with a plus sign and must be positioned in the holder correctly. A plus sign near the holder tells you how the battery should be positioned. - c. Remove the replacement battery from the antistatic shipping bag. - d. Note the polarity of the RTC battery, and then insert it into the holder by tilting the battery at an angle and pushing down. - 4. Visually inspect the battery to make sure that it is completely installed into the holder and that the polarity is correct. 5. Close the air duct. # Step 4: Reinstall the controller module and setting time/date after RTC battery replacement After you replace a component within the controller module, you must reinstall the controller module in the system chassis, reset the time and date on the controller, and then boot it. You can use the following animation, illustration, or the written steps to install the controller module in the chassis. Installing the controller module - 1. If you have not already done so, close the air duct or controller module cover. - 2. Align the end of the controller module with the opening in the chassis, and then gently push the controller module halfway into the system. Do not completely insert the controller module in the chassis until instructed to do so. 3. Recable the system, as needed. If you removed the media converters (QSFPs or SFPs), remember to reinstall them if you are using fiber optic cables. - 4. If the power supplies were unplugged, plug them back in and reinstall the power cable retainers. - 5. Complete the installation of the controller module: - a. Using the locking latches, firmly push the controller module into the chassis until it meets the midplane and is fully seated. The locking latches rise when the controller module is fully seated. Do not use excessive force when sliding the controller module into the chassis to avoid damaging the connectors. The controller module begins to boot as soon as it is fully seated in the chassis. Be prepared to interrupt the boot process. - b. Fully seat the controller module in the chassis by rotating the locking latches upward, tilting them so that they clear the locking pins, gently push the controller all the way in, and then lower the locking latches into the locked position. - c. If you have not already done so, reinstall the cable management device. - d. Interrupt the normal boot process and boot to LOADER by pressing Ctrl-C. If your system stops at the boot menu, select the option to boot to LOADER. - 6. Reset the time and date on the controller: - a. Check the date and time on the healthy node with the show date command. - b. At the LOADER prompt on the target node, check the time and date. - c. If necessary, modify the date with the set date mm/dd/yyyy command. - d. If necessary, set the time, in GMT, using the set time hh:mm:ss command. - e. Confirm the date and time on the target node. - At the LOADER prompt, enter bye to reinitialize the PCle cards and other components and let the node reboot. - 8. Return the node to normal operation by giving back its storage: storage failover giveback -ofnode impaired_node_name - 9. If automatic giveback was disabled, reenable it: storage failover modify -node local -auto -giveback true ### Step 5: Switch back aggregates in a two-node MetroCluster configuration After you have completed the FRU replacement in a two-node MetroCluster configuration, you can perform the MetroCluster switchback operation. This returns the configuration to its normal operating state, with the sync-source storage virtual machines (SVMs) on the formerly impaired site now active and serving data from the local disk pools. This task only applies to two-node MetroCluster configurations. #### **Steps** 1. Verify that all nodes are in the enabled state: metrocluster node show - 2. Verify that resynchronization is complete on all SVMs: metrocluster vserver show - 3. Verify that any automatic LIF migrations being performed by the healing operations were completed successfully: metrocluster check lif show - 4. Perform the switchback by using the metrocluster switchback command from any node in the surviving cluster. - 5. Verify that the switchback operation has completed: metrocluster show The switchback operation is still running when a cluster is in the waiting-for-switchback state: The switchback operation is complete when the clusters are in the normal state.: ``` cluster_B::> metrocluster show Cluster Configuration State Mode ----- Local: cluster_B configured normal Remote: cluster_A configured normal ``` If a switchback is taking a long time to finish, you can check on the status of
in-progress baselines by using the metrocluster config-replication resync-status show command. 6. Reestablish any SnapMirror or SnapVault configurations. ### Step 6: Return the failed part to NetApp After you replace the part, you can return the failed part to NetApp, as described in the RMA instructions shipped with the kit. Contact technical support at NetApp Support, 888-463-8277 (North America), 00-800-44-638277 (Europe), or +800-800-80-800 (Asia/Pacific) if you need the RMA number or additional help with the replacement procedure. #### **Copyright Information** Copyright © 2022 NetApp, Inc. All rights reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system- without prior written permission of the copyright owner. Software derived from copyrighted NetApp material is subject to the following license and disclaimer: THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp. The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications. RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987). #### **Trademark Information** NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.