

Shenzhen CTB Testing Technology Co., Ltd. Report No.: CTB210624016RFX

TEST REPORT

Product Name:	Wireless adapter
FCC ID:	2AYJK-R100PRO
Trademark:	BIGBIG WON
¹ cr ¹ cr ² cr ² cr ⁴	R100 Pro, R100 P, R100 X, R100 S, QUANTUM P, QUANTUM X, QUANTUM S, R100, R100 Ultimate, R100 NS, R100 Nano, R100
Model Number:	Mini, R100 Air, R100 Plus, ADAPEX Lite, ADAPEX S, ADAPEX X, ADAPEX P, ADAPEX Ultimate, ADAPEX Audio, ADAPEX Gaming, ADAPEX Nano, ADAPEX Mini, ADAPEX Air, ADAPEX Plus
Prepared For:	Shenzhen Warsong Technology Co., Ltd.
Address:	1301 Room, No. 268, 2nd Gushu Rd., Nanchang Community, Xixiang Sub-district, Baoan District, Shenzhen City, China
Manufacturer:	Shenzhen Warsong Technology Co., Ltd.
Address:	1301 Room, No. 268, 2nd Gushu Rd., Nanchang Community, Xixiang Sub-district, Baoan District, Shenzhen City, China
Prepared By:	Shenzhen CTB Testing Technology Co., Ltd.
Address:	Floor 1&2, Building A, No. 26 of Xinhe Road, Xinqiao Street, Baoan District, Shenzhen China
Sample Received Date:	Jun. 15, 2021
Sample tested Date:	Jun. 15, 2021 to Jun. 18, 2021
Issue Date:	Jun. 18, 2021
Report No.:	CTB210624016RFX
Test Standards	FCC Part15.247 ANSI C63.10:2013
Test Results	PASS
Remark:	This is Bluetooth radio test report.

Compiled by:

Reviewed by:

Anon 214

Arron Liu

Bin

Bin Mei

Approved by:

Rita Xiao / Director

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen CTB Testing Technology Co., Ltd. this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

TABLE OF CONTENT

T	est F	Report Declaration	Page
	1.	VERSION	4
	2.	TEST SUMMARY	5
	3.	MEASUREMENT UNCERTAINTY	
	4.	PRODUCT INFORMATION AND TEST SETUP	
	4.1	Product Information	
	4.2	Test Setup Configuration	
	4.3	Support Equipment	7
	4.4	Channel List	8
	4.5	Test Mode	8
	4.6	Test Environment	8
	5. 🔍	TEST FACILITY AND TEST INSTRUMENT USED	9
	5.1	Test Facility	
	5.2	Test Instrument Used	
	6.	AC POWER LINE CONDUCTED EMISSION	
	6.1	Block Diagram Of Test Setup	11
	6.2	Limit	
	6.3	Test procedure	
	6.4	Test Result	13
	7.	RADIATED SPURIOUS EMISSION	14
	7.1	Block Diagram Of Test Setup	14
	7.2	Limit	
	7.3	Test procedure	15
	7.4	Test Result	
	8. 🔾	BAND EDGE AND RF COUNDUCTED SPURIOUS EMISSIONS	23
	8.1	Block Diagram Of Test Setup	23
	8.2	Limit	23
	8.3	Test procedure	23
	8.4	Test Result	24
	9.	COUDUCTED PEAK OUTPUT POWER	26
	9.1	Block Diagram Of Test Setup	26
	9.2	Limit	26
	9.3	Test procedure	26
	9.4	Test Result	
	10.	6DB OCCUPIED BANDWIDTH	
	10.1	Block Diagram Of Test Setup	29
	10.2	Limit	
	10.3	Test procedure	
	10.4	Test Result	29
	11.	POWER SPECTRAL DENSITY	31
	11.1	Block Diagram Of Test Setup	
	11.2	Limit	31

11.3	Test procedure	. 31
	Test Result	
12.	ANTENNA REQUIREMENT	. 33
13.	EUT TEST SETUP PHOTOGRAPHS	. 34

(Note: N/A means not applicable)

1. VERSION

Report No.	Issue Date	Description	Approved	
CTB210618013RFX	Jun. 18, 2021	Original	Valid	

2. TEST SUMMARY

The Product has been tested according to the following specifications:

C Test Item C C	Test Requirement	Test method	Result	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Band edge and RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)/15.205(a)	ANSI C63.10-2013	PASS PASS PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013		
Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013		
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Item	Uncertainty
Occupancy bandwidth	54.3kHz
Conducted output power Above 1G	0.9dB
Conducted output power below 1G	0.9dB
Power Spectral Density, Conduction	0.9dB
Conduction spurious emissions	2.0dB
Out of band emission	2.0dB
3m camber Radiated spurious emission(30MHz-1GHz)	4.6dB
3m chamber Radiated spurious emission(1GHz-18GHz)	5.1dB
3m chamber Radiated spurious emission(18GHz-40GHz)	3.4dB
humidity uncertainty	5.5%
Temperature uncertainty	0.63 ℃
frequency	1×10-7
Conducted Emission (150KHz-30MHz)	3.2 dB
Radiated Emission(30MHz ~ 1000MHz)	4.8 dB
Radiated Emission(1GHz ~6GHz)	4.9 dB

R100 Pro, R100 P, R100 X, R100 S, QUANTUM P, QUANTUM X, QUANTUM S, R100, R100 Ultimate, R100 NS, R100 Nano, R100

Mini, R100 Air, R100 Plus, ADAPEX Lite, ADAPEX S, ADAPEX X,

4. PRODUCT INFORMATION AND TEST SETUP

4.1 Product Information

Model(s):

	ADAPEX P, ADAPEX Ultimate, ADAPEX Audio, ADAPEX Gaming, ADAPEX Nano, ADAPEX Mini, ADAPEX Air, ADAPEX Plus
Model Description:	All the model are the same circuit and RF module, only for model name. Test sample model: R100 Pro
Bluetooth Version:	Bluetooth 5.0
Hardware Version:	V1.0
Software Version:	V1.0 V1.0 V1.0 V1.0 V1.0 V1.0 V1.0 V1.0
Operation Frequency:	Bluetooth: 2402-2480MHz
Max. RF output power:	Bluetooth: -3.43dBm
<u></u>	

Max. RF output power: Type of Modulation: Antenna installation: Antenna Gain: Ratings: Bluetooth: 2402-2480MHz Bluetooth: -3.43dBm Bluetooth: GFSK Ceramic Antenna Bluetooth: 1dBi DC 5V charging from PC

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

4.3 Support Equipment

\$	Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
2	0					5' 0'
8		\$ \$ \$ \$ \$	\$ \$	\$ \$ \$	P P P	A 6

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

CH No.	Frequency (MHz)	CH No.	Frequency (MHz)	CH No.	Frequency (MHz)	CH No.	Frequency (MHz)
0	2402		2404	2	2406	3	2408
4	2410	5	2412	6	2414	C 7	2416
8	2418	9	2420	10	2422	11	2424
12	2426	13	2428	14	2430	15	2432
16	2434	17	2436	S 18 S	2438	19	2440
20	2442	21	2444	22	2446	23	2448
24	2450	25	2452	26	2454	27	2456
28	2458	29	2460	30	2462	31	2464
32	2466	33	2468	34	2470	35	2472
36	2474	37	2476	38	2478	39	2480

4.5 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting (GFSK)	2402MHz	2440MHz	2480MHz

4.6 Test Environment

Humidity(%):	55
Atmospheric Pressure(kPa):	101.1
Normal Voltage(DC):	3.7V
Normal Temperature(°C)	25
Low Temperature(°C)	
High Temperature(°C)	40

5. TEST FACILITY AND TEST INSTRUMENT USED

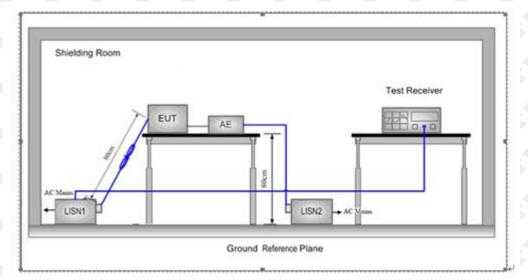
5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Floor 1&2, Building A, No. 26 of Xinhe Road, Xinqiao Street, Baoan District, Shenzhen China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

5.2 Test Instrument Used

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated unti
1	Spectrum Analyzer	Agilent	N9020A	MY52090073	Sep. 28, 2020	Sep. 28, 2021
2	Power Sensor	Agilent	U2021XA	MY56120032	Sep. 28, 2020	Sep. 28, 2021
3	Power Sensor	Agilent	U2021XA	MY56120034	Sep. 28, 2020	Sep. 28, 2021
4	Communication test set	R&S	CMW500	108058	Sep. 28, 2020	Sep. 28, 2021
5	Spectrum Analyzer	R&S	FSP40	100550	Sep. 28, 2020	Sep. 28, 2021
6	Signal Generator	Agilent	N5181A	MY49060920	Sep. 28, 2020	Sep. 28, 2021
7	Signal Generator	Agilent	N5182A	MY47420195	Sep. 28, 2020	Sep. 28, 2021
8	Communication test set	Agilent	E5515C	MY50102567	Oct. 10, 2020	Oct. 10, 2021
9	band rejection filter	Shenxiang	MSF2400-24 83.5MS-1154	20181015001	Sep. 28, 2020	Sep. 28, 2021
10	band rejection filter	Shenxiang	MSF5150-58 50MS-1155	20181015001	Sep. 28, 2020	Sep. 28, 2021
11	band rejection filter	Xingbo	XBLBQ-DZA 120	190821-1-1	Sep. 28, 2020	Sep. 28, 2021
12	BT&WI-FI Automatic test software	Micowave	MTS8310	Ver. 2.0.0.0	* c5 * c5*	cral cra
13	Rohde & Schwarz SFU Broadcast Test System	R&S	SFU	101017	Sep. 28, 2020	Sep. 28, 2021
14	Temperature humidity chamber	Hongjing	TH-80CH	DG-15174	Sep. 28, 2020	Sep. 28, 2021
15	234G Automatic test software	Micowave	MTS8200	Ver. 2.0.0.0	8 5 P 5 8	50150
16	966 chamber	C.R.T.	966 Room	966	Nov. 9, 2019	Nov. 08, 2022
17	Receiver	R&S	ESPI	100362	Sep. 28, 2020	Sep. 28, 2021

Shenzhen CTB Testing Technology Co., Ltd. Report No.: CTB210624016RFX


18 Amplifier HP 8447E 2945A02747 Sep. 28, 2020 Sep. 28, 2021 19 Amplifier Agilent 8449B 3008A01838 Sep. 28, 2020 Sep. 28, 2021 TRILOG Schwarzbeck Broadband **VULB 9168** 00869 Nov. 02, 2020 Nov. 01, 2021 20 Antenna 21 Schwarzbeck BBHA9120D 1911 Nov. 02, 2020 Nov. 01, 2021 Horn Antenna 22 Software EZ-EMC **FA-03A2 RE** Fala 23 ZN30401 17014 Sep. 28, 2020 Sep. 28, 2021 3-Loop Antenna Daze 1 loop antenna ZHINAN ZN30900A Sep. 28, 2020 Sep. 28, 2021 24 25 Horn antenna A/H/System SAS-574 588 Sep. 28, 2020 Sep. 28, 2021 AEROFLEX S/N/ 097 26 Amplifier Sep. 28, 2020 Sep. 28, 2021 1

Item	Conducted emissions Test							
27	Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
28	AMN	ROHDE&S CHWARZ	ESH3-Z5	100318	Sep. 28, 2020	Sep. 28, 2021		
29	Pulse limiter	ROHDE&S CHWARZ	ESH3Z2	357881052	Sep. 28, 2020	Sep. 28, 2021		
30	EMI TEST RECEIVER	ROHDE&S CHWARZ	ESCS30	834115/006	Sep. 28, 2020	Sep. 28, 2021		
31	Coaxial cable	ZDECL	Z302S	18091804	Sep. 28, 2020	Sep. 28, 2021		
32	ISN	TESEQ	NTFM8158	183	Sep. 28, 2020	Sep. 28, 2021		
33	EMI TEST RECEIVER	ROHDE&S CHWARZ	ESCI	100428/003	Sep. 28, 2020	Sep. 28, 2021		
34	Software	Fala	EZ-EMC	EMC-CON 3A1.1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		

6. AC POWER LINE CONDUCTED EMISSION

6.1 Block Diagram Of Test Setup

6.2 Limit

Fraguanay	Maximum RF Line Voltage (dBµV)					
Frequency (MHz)	CLAS	SS A	CLASS B			
(11112)	Q.P.	Ave.	Q.P.	Ave.		
0.15 - 0.50	79	66	66-56*	56-46*		
0.50 - 5.00	73	60	56	46		
5.00 - 30.0	73	60	60	50		

* Decreasing linearly with the logarithm of the frequency

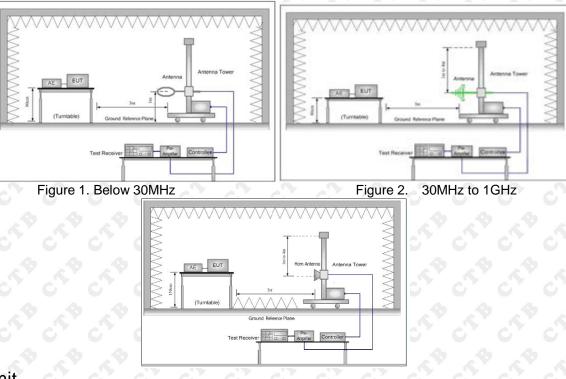
6.3 Test procedure

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu$ H + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0,4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0,8 m from the boundary of the unit under test and bonded to a ground reference

plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0,8 m from the LISN 2.

- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
- All modes were tested at AC 120V and 240V, only the worst result of AC 120V 60Hz was reported.
- 7) If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

6.4 Test Result


N/A

Note: the EUT is powered by PC, so it's not applicable.

7. RADIATED SPURIOUS EMISSION

7.1 Block Diagram Of Test Setup

7.2 Limit

Spurious Emissions:

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	5 5	4 - 4	300
0.490MHz-1.705MHz	24000/F(kHz)	5-0	6	30
1.705MHz-30MHz	30	¢. ¢	\$:\$	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

7.3 Test procedure

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

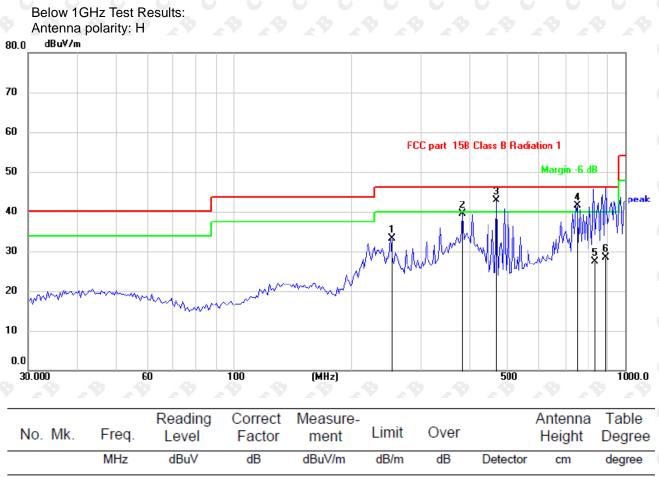
f.If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

g.Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).

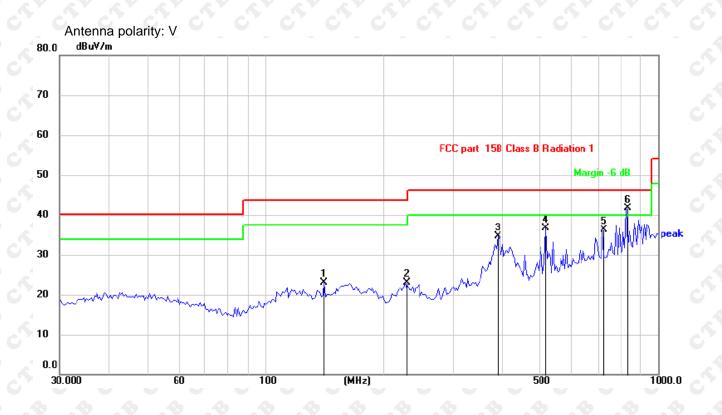
h.Test the EUT in the lowest channel ,the middle channel ,the Highest channel

j.Repeat above procedures until all frequencies measured was complete.


j. Full battery is usedduring test

Receiver set:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30KHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30KHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30KHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30KHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30KHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300KHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
ADOVE IGHZ	Peak	1MHz	10Hz	Average


7.4 Test Result

1	252.5051	41.38	-8.02	33.36	46.00	-12.64	QP		
2	384.6055	44.56	-4.98	39.58	46.00	-6.42	QP		
3 *	470.5232	45.93	-3.00	42.93	46.00	-3.07	QP		
4 !	748.7943	38.05	3.39	41.44	46.00	-4.56	QP		
5	831.8574	22.74	4.77	27.51	46.00	-18.49	QP	100	0
6	891.4709	22.35	6.20	28.55	46.00	-17.45	QP	100	360

Remark: Factor = Cable lose + Antenna factor - Pre-amplifier; Margin = Measurement – Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	14	1.5777	30.45	-7.28	23.17	43.50	-20.33	QP
2	22	7.2918	31.91	-8.76	23.15	43.50	-20.35	QP
3	39	1.4082	39.56	-4.84	34.72	46.00	-11.28	QP
4	51	8.1556	38.38	-1.75	36.63	46.00	-9.37	QP
5	72	2.9924	33.16	3.08	36.24	46.00	-9.76	QP
6	* 83	1.8574	36.89	4.77	41.66	46.00	-4.34	QP

Remark: Factor = Cable lose + Antenna factor - Pre-amplifier; Margin = Measurement - Limit

Above 1 GHz Test Results:

CH Low (2402MHz) Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2402	110.21	-5.84	104.37	N/A	N/A	peak
2402	93.34	-5.84	87.50	N/A	N/A	AVG
4804	58.82	-3.64	55.18	74	-18.82	peak
4804	49.98	-3.64	46.34	54	-7.66	AVG
7206	58.80	-0.95	57.85	74	-16.15	peak
7206	49.77	-0.95	48.82	54	-5.18	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

requency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2402	110.04	-5.84	104.20	N/A	N/A	peak
2402	92.33	-5.84	86.49	N/A	N/A	AVG
4804	59.05	-3.64	55.41	74	-18.59	peak
4804	49.94	-3.64	46.30	54	-7.70	AVG
7206	59.37	-0.95	58.42	74	-15.58	peak
7206	48.48	-0.95	47.53	54	-6.47	AVG

CH Middle (2440MHz) Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2440	107.25	-5.71	101.54	N/A	N/A	peak
2440	92.38	-5.71	86.67	N/A	N/A	AVG
4880	54.24	-3.51	50.73	74	-23.27	peak
4880	46.41	-3.51	42.90	54	-11.10	AVG
7320	57.85	-0.82	57.03	74	-16.97	peak
7320	47.31	-0.82	46.49	54	-7.51	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2440	106.97	-5.71	101.26	N/A	N/A	peak
2440	92.03	-5.71	86.32	N/A	N/A	AVG
4880	54.96	-3.51	51.45	74	-22.55	peak
4880	45.81	-3.51	42.30	54	-11.70	AVG
7320	56.88	-0.82	56.06	74	-17.94	peak
7320	47.69	-0.82	46.87	54	-7.13	AVG

CH High (2480MHz) Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detecto
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2480	107.75	-5.65	102.10	N/A	N/A	peak
2480	92.46	-5.65	86.81	N/A	N/A	AVG
4960	56.12	-3.43	52.69	74	-21.31	peak
4960	46.85	-3.43	43.42	54	-10.58	AVG
7440	57.29	-0.75	56.54	74	-17.46	peak
7440	46.70	-0.75	45.95	54	-8.05	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:	
C' K'	$\sim N$
- A.Y. /	

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	ວີ ວິ
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2480	107.00	-5.65	101.35	N/A	N/A	peak
2480	92.67	-5.65	87.02	N/A	N/A	AVG
4960	54.78	-3.43	51.35	74	-22.65	peak
4960	46.70	-3.43	43.27	54	-10.73	AVG
7440	55.85	-0.75	55.10	74	-18.90	peak
7440	45.72	-0.75	44.97	54	-9.03	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz •

(2). All modes of GFSK were test at Low, Middle, and High channel, only the worst result of GFSK DH5 Low Channel was reported for below 1GHz test.

(3). For BT above 1GHz test all modes of GFSK were test at Low, Middle, and High channel, only the worst result of GFSK DH5 was reported.

(4). By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.

(5). Radiated emission test from 9kHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9kHz to 30MHz and not recorded in this report.

Restricted bands around fundamental frequency (Radiated)

Operation Mode: TX CH Low (2402MHz) Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	53.10	-5.81	47.29	74	-26.71	peak
2310	010	-5.81		54	S' / S'	AVG
2390	54.22	-5.84	48.38	74	-25.62	peak
2390		-5.84		54		AVG
2400	52.87	-5.84	47.03	74	-26.97	peak
2400		-5.84		54		AVG

Vertical:

C

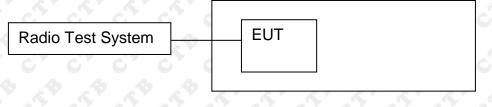
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	56.56	-5.81	50.75	74	-23.25	peak
2310		-5.81	A AP A	54		AVG
2390	55.16	-5.84	49.32	74	-24.68	peak
2390		-5.84		54		AVG
2400	55.87	-5.84	50.03	74	-23.97	peak
2400	o /o	-5.84		54		AVG

Operation Mode: TX CH High (2480MHz) Horizontal (Worst case)

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data atar Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	54.28	-5.65	48.63	74	-25.37	peak
2483.50	6 6	-5.65		54	010	AVG
2500.00	54.84	-5.65	49.19	74	-24.81	peak
2500.00	\$ P 4	-5.65		54		AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:


Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Tur	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
2483.50	55.09	-5.65	49.44	74	-24.56	peak	
2483.50	0'10	-5.65	6', 6'	54	0',0	AVG	
2500.00	55.05	-5.65	49.40	74	-24.60	peak	
2500.00	6 1 A	-5.65		54	4	AVG	

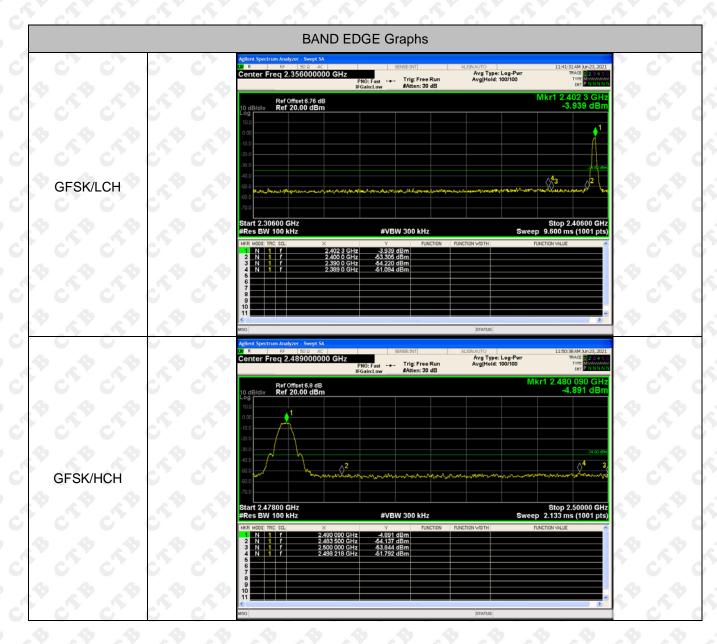
Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

8. BAND EDGE AND RF COUNDUCTED SPURIOUS EMISSIONS

8.1 Block Diagram Of Test Setup

8.2 Limit

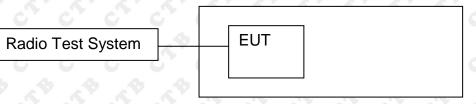
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


8.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;


2. Set the spectrum analyzer: Blow 30MHz: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold Above 30MHz: RBW = 100KHz, VBW = 300KHz, Sweep = auto Detector function = peak, Trace = max hold

8.4 Test Result



Report

9. COUDUCTED OUTPUT POWER

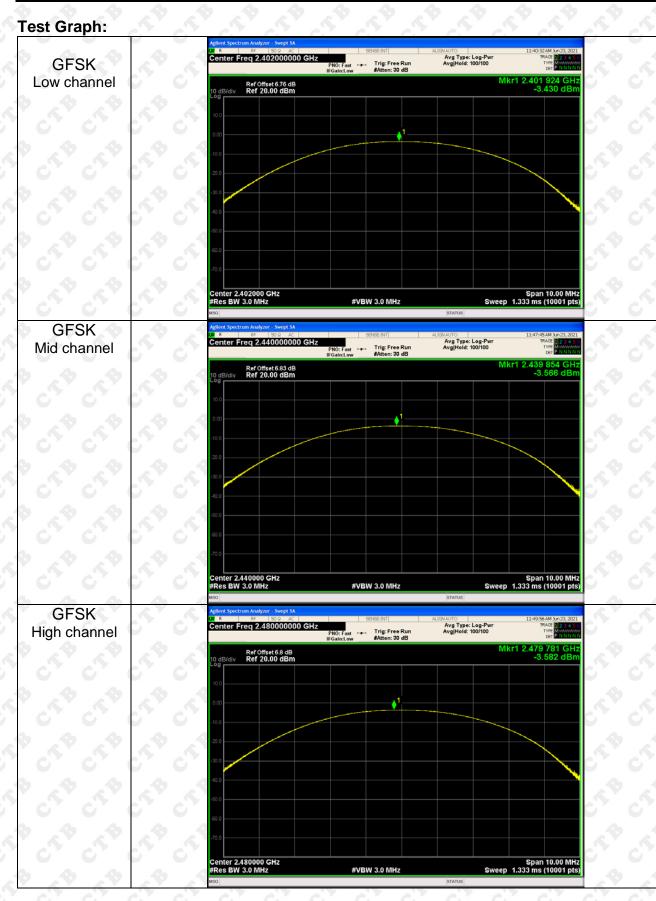
9.1 Block Diagram Of Test Setup

9.2 Limit

	FCC Part15 (15.247), Subpart C						
	Section	Test Item	Limit	Frequency Range (MHz)	Result		
8	15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS		

9.3 Test procedure

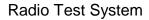
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.


2. Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Channel power measurement. Sweep = auto; Detector Function = RMS.

3. Keep the EUT in transmitting at lowest, middle and highest channel individually. Record the max value.

9.4 Test Result

Mode	Channel.	Maximum Output Power [dBm]	Limit[dBm]	Verdict
P SP SP	LCH	-3.43	30	PASS
GFSK	MCH	-3.566	30	PASS
ి చి చి చి	нсн	-3.582	30	PASS



10. 6DB OCCUPIED BANDWIDTH

10.1 Block Diagram Of Test Setup

10.2 Limit

	FCC Part15 (15.247) , Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS			

10.3 Test procedure

- 1. Rem1. Set RBW = 30 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

10.4 Test Result

Test Mode	Frequency	6dB Bandwidth (MHz)	Result
GFSK	Low channel	0.673	PASS
	Mid channel	0.657	PASS
రి రి రి రి	High channel	0.66	PASS

Note: All modes of operation were Pre-scan and the worst-case emissions are reported.


Test Graph:

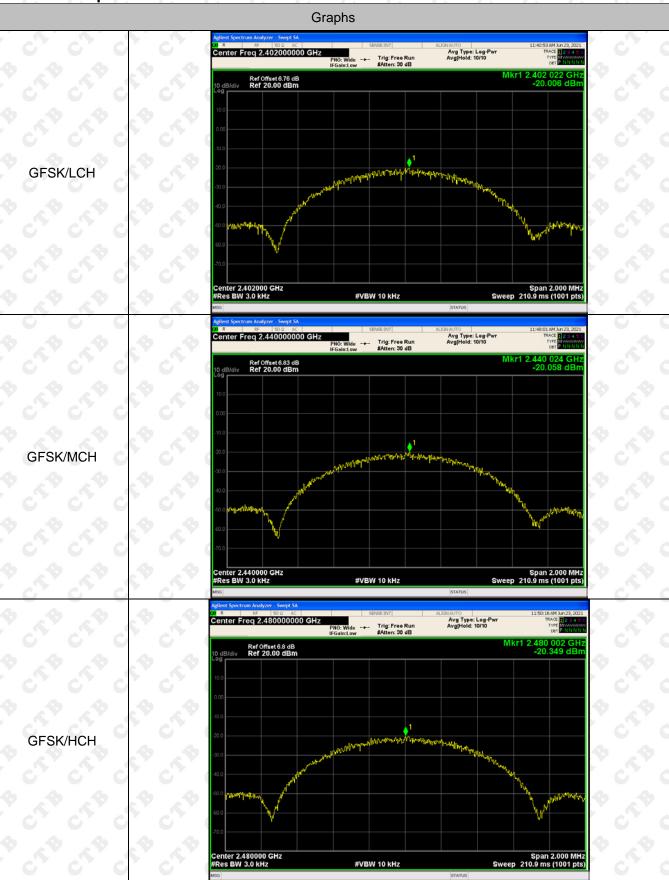
11. POWER SPECTRAL DENSITY

11.1 Block Diagram Of Test Setup

11.2 Limit

FCC Part15 (15.247), Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS		

11.3 Test procedure


- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = RMS.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

11.4 Test Result

Mode	Channel.	Power Spectral Density (dBm/3KHz)	Limit(dBm/3KHz)	Verdict
GFSK	LCH	-20.006	6 8 6	PASS
GFSK	MCH	-20.058	8	PASS
GFSK	НСН	-20.349	8	PASS

Test Graph

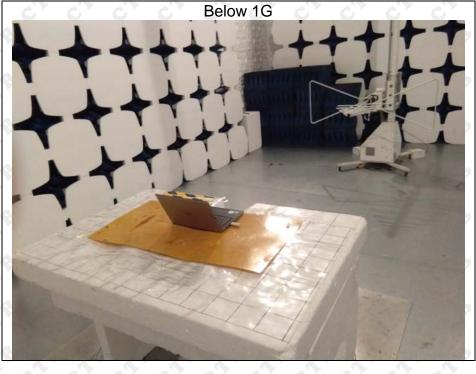
12. ANTENNA REQUIREMENT

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


EUT Antenna:

The antenna is Ceramic antenna. The best case gain of the antenna is 1dBi.

13. EUT TEST SETUP PHOTOGRAPHS

Radiated Emissions

***** END OF REPORT ****