
1

Intel® Pentium® Processor
Statistical Analysis of Floating Point Flaw: Intel

White Paper

Original article date created: July 08, 2004

Document Consolidation date: July 31, 2015

2

Legal Disclaimer

You may not use or facilitate the use of this document in connection with any infringement or other

legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive,

royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed

herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by

this document.

Intel technologies’ features and benefits depend on system configuration and may require enabled

hardware, software or service activation. Learn more at Intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data

or systems or any damages resulting from such losses.

The products described may contain design defects or errors known as errata which may cause the

product to deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising

from course of performance, course of dealing, or usage in trade.

Intel technologies’ features and benefits depend on system configuration and may require enabled

hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

All information provided here is subject to change without notice. Contact your Intel representative to

obtain the latest Intel product specifications and roadmaps.

Copies of documents which have an order number and are referenced in this document may be

obtained by calling 1-800-548-4725 or visit www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries. *Other

names and brands may be claimed as the property of others.

© 2015 Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

3

Contents
Section 1: Abstract .. 4

Section 2: Introduction ... 4

Section 3: Description of the Flaw .. 4

Section 4: Pentium® Processor Divide Algorithm ... 5

4.1 SRT Algorithm.. 6

4.1.1 Quotient Selection ... 7

4.1.2 Region of Uncertainty .. 7

4.2 The Underlying Cause ... 9

4.3 Instructions Affected ... 12

Section 5: Evaluation Framework to Gauge Impact on User .. 12

5.1 Statistical Characterization Methodology for Frequency of Occurrence ... 13

5.2 Metric for Evaluating Frequency of Occurrence ... 13

5.3 Reference Failure Rates .. 14

Section 6: Analysis of Impact on Applications .. 15

6.1 Taxonomy of Applications ... 16

6.2 Impact on Commercial PC applications .. 16

6.2.1 Spreadsheets .. 16

6.3 Impact on Technical Applications ... 18

6.3.1 Impact on Engineering and Scientific Applications .. 18

6.3.2 Impact on Financial applications .. 25

6.4 Impact on Server Applications .. 28

Section 7: Conclusions .. 28

Section 8: Acknowledgments .. 28

Section 9: References .. 29

Appendix A .. 29

FAQ for Floating Point Flaw (FDIV) ... 33

4

Section 1: Abstract

A subtle flaw in the hardware divide unit of the Pentium® Processor was discovered by

Intel. Subsequently, a characterization of its impact to the end-user application base was

conducted. The flaw is rare and data-dependent, and causes a reduction in precision of the

divide instruction and certain other operations in certain cases.

The significance of the flaw depends upon (a) the rate of use of specific FP instructions in

the Pentium processor, (b) the data fed to them, (c) the way in which the results of these

instructions are propagated into further computation in the application; and (d) the way in
which the final results of the application are interpreted.

The thorough and detailed characterization of the flaw and the subsequent investigations of

its impact on applications through elaborate surveys, analyses and empirical observation

lead us to the overall conclusion that the flaw is of no concern to the vast majority of users

of Pentium processor based systems. A few users of applications in the

scientific/engineering and financial engineering fields who require unusual precision and

invoke millions of divides per day may need to employ either an updated Pentium processor

without the flaw or a software workaround.

Section 2: Introduction

This document describes a subtle flaw inside the Floating Point Unit on certain steppings of

the Pentium® processor, and characterizes the significance of this flaw for end-users of

applications that are likely to be run on a computer based on the Pentium processor. The

flaw in the Pentium processor causes a slight reduction in precision for certain operations in
very rare cases.

Intel discovered this flaw as part of its ongoing product development and testing work. So

far seven trillion computer cycles worth of testing has been conducted on the Pentium

processor as part of this ongoing program. Subsequent to the discovery of the flaw, a

detailed investigation was conducted to characterize both the flaw as well as its impact on
the end-user base. This document summarizes the outcome of the investigation.

The overall document has 9 sections. This section 2 is an introduction. Section 3 gives a

high level summary of the flaw as it manifests itself inside the processor. Section 4 explains

in detail how the divide algorithm is implemented and what led to the slight flaw in early

steppings. Section 5 describes the general statistical evaluation framework suitable to

analyze the frequency of occurrence and the significance of the flaw on the end-user

application base. Section 6 analyzes the impact of the flaw on this software base. Section 7

presents the conclusions of the characterization study. Section 8 and Section 9 contain

Acknowledgments and Bibliography of References.

Section 3: Description of the Flaw

The flaw as it manifests itself in the CPU is now described. The following characterization

statements can be made:

1. On certain input data, the Floating Point Divide Instructions on the Pentium® processor
produce inaccurate results.

2. The problem can occur in all three operating precisions (single, double, extended) for the

divide instruction. Empirical studies involving over 1 trillion data cases indicate that far

5

fewer failures are found in single precision than in double or extended precision. The

remainder function, and those transcendental functions which rely on the divide instruction,

also exhibit reduced precision. For the remainder and transcendental instructions, which
operate only in extended precision, the problem can only occur in extended precision.

3. The incidence of the problem is independent of the processor rounding modes.

4. Encountering the problem is highly dependent upon the input data. Only certain input

data will trigger the problem. It is not straightforward to describe the exact set of input

operands on which the problem can get triggered. Hence it is necessary to describe the

incidence of occurrence in terms of a probability distribution statistic. Characterization

based on two independent methods consistently yields a probability that 1 in 9 billion

randomly fed divide or remainder instructions will produce inaccurate results. The fraction
of the total input number space that is prone to failure is 1.14 x 10 to the -10th power.

[The first characterization method is analytical and mathematical, and is based upon a

Markov chain analysis of the iterative implementation algorithm. The second method is

empirical, relying upon running billions of random input samples through the instructions

under test. Over 1 trillion data points were run for the second method. Both methods
correlate well.]

5. The degree of the inaccuracy of the result delivered depends upon the input data and

upon the instruction involved.

On the divide instruction, the worst case inaccuracy occurs in the 12th bit position to the

right of the binary point of the significand of the result, or in the 4th significant decimal

digit. Statistical measurements using over a trillion test points indicate that the inaccuracy

is equally likely to manifest itself in bit positions 12 through 52 to the right of the binary

point. The likelihood of encountering an inaccuracy in any one bit position is then 1 in every
360 billion randomly fed divides.

6. The problem does not occur on the specific use of the divide instruction to compute the
reciprocal of the input operand in single precision.

The cause of the problem traces itself to a few missing entries in a lookup table used in the

hardware implementation algorithm for the divide operation. Since this divide operation is

used by the Divide, Remaindering, and certain Transcendental Instructions, an inaccuracy

introduced in the operation manifests itself as an inaccuracy in the results generated by

these instructions.

Section 4: Pentium® Processor Divide Algorithm

The Pentium processor is Intel's next generation of compatible microprocessors following

the Intel486™ CPU family. The primary goal was to combine compiler and hardware

technology to maximize performance while preserving software compatibility. More

specifically the floating point performance goal was to achieve up to a 5x speedup of

floating point vector code and a 3x speedup of scalar code when compared to an Intel486

processor of identical clock frequency [1]. In part, this meant providing a higher

performance floating point divider.

The Intel486™ processor used the classic non-restoring "shift and subtract" division

algorithm for its floating point divide operation. This inherently allowed only one quotient bit

6

to be generated per clock. To improve the floating point divide performance on the Pentium

processor, a radix 4 SRT algorithm was chosen. This algorithm, as implemented, allows the

divide hardware to generate 2 bits of quotient per clock thus approximately doubling the
divide performance.

4.1 SRT Algorithm

To help better understand the flaw, we have attached a brief introduction to the SRT
division technique.

The SRT divide algorithm can basically be described in steps as:

1. Sample the most significant digits of the divisor and dividend.

2. Use the samples as indexes into a lookup table to get a guess of the next quotient digits.
(in this case the quotient guess can be -2, -1, 0, +1, +2).

3. Multiply the divisor by the quotient guess and subtract it from dividend (Note that this is

an addition if the quotient guess was negative).

4. Save the quotient digits in the least significant digits of a quotient register.

5. Shift the remainder left by 2 and shift the quotient registers left by 2 (i.e. radix 4)

6. Sample the most significant digits of the new shifted partial remainder.

7. Go to step 2 unless you have generated enough significant quotient digits.

8. Generate the binary quotient by assembling the values in the quotient register.

9. If the last partial remainder was negative then adjust the quotient by subtracting the

value.

For a complete treatment on the subject of SRT division refer to the paper written by Daniel

E. Atkins [2].

Mathematically, the SRT algorithm can be represented with the equations shown in (EQ 1)

and (EQ 2) below. The first equation shows the first step of the algorithm where P0, the

initial partial remainder, is the dividend. The second equation indicates the recursive nature

of the algorithm. Here, to generate the next partial remainder (Pj+1) one must multiply the

quotient guess (qj+1) by the divisor (d) and subtract that quantity from the shifted partial

remainder of the previous iteration (rPj). Where (r) is the radix of the operation (in this

case 4). The number of iterations is determined by the number of significant digits required

in the quotient remembering that the first iteration only produces one significant digit.

7

Note that when the radix is equal to the operative base, this recursive equation yields one

digit of quotient per iteration. For higher radix division a multi-digit quotient can be

generated each iteration. In the case of the Pentium processor, radix 4 division is performed

on binary numbers yielding 2 binary quotient digits per iteration. This relationship holds true

if the following restriction (for convergence) is placed on the remainder:

The quantity n/(r-1) is referred to as the measure of redundancy (MoR) and in the Pentium

processor divide implementation evaluates to 2/(4-1)=2/3. This value will be used from

here on.

4.1.1 Quotient Selection

Since a non-restoring division is used and the result is stored in "redundant" form, the

guessed quotient need only meet the above remainder criteria. By manipulating the above

equations, MIN and MAX equations that bound the next partial remainder for a given divisor
and quotient digit are produced.

Plotting these equations generates a plot of the Partial-Remainder and Divisor (commonly

known as the "P-D" plot), that is used in the quotient selection process. The positive half of

this plot is shown in Figure 4-1. The shaded regions in this plot indicate the region of

overlapping quotient choices, where either of the digits indicated may be chosen.

4.1.2 Region of Uncertainty

Since the divisor and the shifted partial remainder are truncated there is some uncertainty

in the generation of the quotient bits. One must take this uncertainty into account when

selecting quotient digits, that is, a quotient digit can only be selected if the region of

uncertainty for the given Partial- remainder/Divisor pair lies entirely within a quotient region

8

delineated by the equations above. This is where the overlapping nature of these regions
comes in handy.

For the uncertainty in the Divisor which is chopped after the 4th bit to the right of the

binary point (i.e. maintaining 4 bits to the right of the binary point).

For the Partial Remainder, the estimate comes from the 7 most significant bits of the

redundant form (carry-save) "shifted partial remainder" (4 bits to the left and 3 bits to the

right of the binary point) thus:

Figure 4-2 illustrates a simple binary example of the same iterative equation for radix 4

SRT. Note the way that Qpos and Qneg are used to store positive and negative weighted

quotients, how the final quotient is derived from the two, and which bits are sampled as
indexes into the lookup table (the shaded regions in the partial remainders).

Figure 4-2: Simple Binary Example of Iterative SRT Divide

9

4.2 The Underlying Cause

After the quantized P-D plot (lookup table) was numerically generated as in Figure 4-1 , a

script was written to download the entries into a hardware PLA (Programmable Lookup

Array). An error was made in this script that resulted in a few lookup entries (belonging to

the positive plane of the P-D plot) being omitted from the PLA. The 5 critical entries are

shown in Figure 4-3 as the shaded regions. As a result of the omission, a divisor/remainder

pair that hits these entries during the lookup phase of the SRT algorithm will incorrectly

read a quotient digit value of 0 instead of +2. Subsequently, the iterative algorithm will
return a quotient result with reduced precision.

As can be seen from the P-D plot, the only situations in which there is a probability of

seeing this flaw is when the binary divisor has the following bit patterns in the most

significant bits: 1.0001, 1.0100, 1.0111, 1.1010, and 1.1101. Empirically, it has been

observed that these bit patterns need to be followed by a long string of 1's to further boost

the probability of incurring the inaccuracy due to the flaw. Note also, that since the divide

hardware operates only on the mantissa the exponents of the operands have no effect on
whether this flaw is observed or not.

10

Figure 4-1: Theoretical P-D Plot

11

Figure 4-3: Missing Terms in P-D Plot

12

4.3 Instructions Affected

Since it is the divider hardware that exhibits the flaw, instructions that will exhibit the flaw

include:

FDIV

FDIVP

FDIVR

FDIVRP

FIDIV

FIDIVR

FPREM

FPREM1

The following transcendental instructions use the divide hardware within their computation
but empirical testing of billions of cases have not shown any error:

FPTAN

FPATAN

FYL2X

FYL2XP1

Section 5: Evaluation Framework to Gauge Impact on User

The significance of the flaw to an end-user clearly depends upon:

1. The frequency of occurrence of the reduced precision divide within the application. If the

flaw is unlikely to be seen during the practical lifetime of the computer, it is of no
significance to the user.

2. The (propagated) impact to the end-user when the problem manifests itself.

The frequency of occurrence of the reduced precision divide depends upon the rate of use of

the specific FP instructions in the Pentium CPU by the user, and upon the data fed to these

instructions. If and when the problem manifests itself, the impact on the end-user depends

upon the way in which the results of these instructions (along with any inaccuracies) are

propagated into further computation in the application, and upon the way in which the final

results of the application are interpreted by the end-user.

The evaluation methodology thus involved first estimating the frequency of occurrence of

the reduced precision divide for random input data, and then analyzing each potential

13

occurrence and its environment to gauge its end-impact. The subsequent sections describe

the statistical method followed to characterize the frequency of occurrence, propose a

metric for comparison, and present reference information to calibrate the significance of a
given rate of occurrence.

5.1 Statistical Characterization Methodology for Frequency of Occurrence

This section describes the general statistical evaluation methodology suitable to analyze the

frequency of occurrence of the reduced precision divide in applications. Given that it is

intractable to describe the exact set of input operands on which the problem can get

triggered, and given that the incidence of the problem is best described as a statistical

probability, the method suitable for characterizing the frequency of this problem in an end-

user application finds a close parallel to the conventional framework used for evaluating

reliability of a computer system given an assortment of hard and soft failure modes.

For any given failure mechanism, conventional reliability methods define the FIT rate (or

Failures In Time) in terms of the number of device failures produced by the mechanism in

every 10E9 hours of device operation. The Mean Time Before Failure or MTBF is simply the
inverse of the FIT rate.

When examining the reliability of the overall computer system, one focuses upon the failure

mechanisms with the highest FIT rates, since these will make the dominant contribution to

a system failure in the field. For example, system failures can occur due to a wide variety of
reasons, such as:

1. Human errors in installation

2. Power supply failures

3. Packaging and system interconnect defects

4. CPU failures

5. Memory failures

6. Disk drive failures

7. Keyboard failures, and

8. Failure mechanisms from other devices.

These failure mechanisms span a wide range of FIT rates, and it is typically the mechanism

with the highest FIT rate that is most significant from the point of view of frequency of
failures.

5.2 Metric for Evaluating Frequency of Occurrence

A modified form of the conventional definition of the FIT rate has been found to be a

convenient metric for evaluating the frequency of occurrence.

Consider the following analysis:

14

In effect, the analysis involves calculating the effective FIT rate due to this failure

mechanism in the context of the given application. As can be seen from the above analysis,

the mean time before an inaccuracy is encountered is simply the time taken for the user to

exercise the application with 9 billion independent divide operations. Alternatively,

characterizing the various applications in terms of how many independent operations of

interest (e.g. divide instructions) are run per unit time (say days) will provide an effective

metric for the frequency of occurrence of the reduced precision divide, assuming totally

random input data to the instructions.

Based on the FIT rate for this failure mode alone, a calculation is performed on the MTBF

due to this failure mode. This MTBF is then compared against the MTBF due to other failure

modes, and against the lifetime of the part, to give the user a perspective against which to

judge the rarity of the error due to the flaw.

5.3 Reference Failure Rates

Table 5-1 below summarizes a few failure mechanisms and FIT rates typical in a commercial

PC system based on the Pentium processor. Also included in the table is a sample FIT rate

for a typical PC user running spreadsheet calculations involving 1,000 independent divides

per day on a Pentium processor that exhibits the flaw. As can be seen from this table, the

FIT rate due to the flaw bears little significance for such a user because the mean time

before encountering an inaccuracy far exceeds both the time before other failure
mechanisms begin to play, as well as the practical lifetime of the PC.

15

Table 5-1 Typical System Failure Rates

Section 6: Analysis of Impact on Applications
As discussed in the previous section, given a certain appreciable frequency of occurrence of

the reduced precision divide, the impact on the end-user depends upon the way in which

the results of these instructions (along with any inaccuracies) are propagated into further

computation in the application, and upon the way in which the final results of the application
are interpreted by the end-user.

In order to truly understand the importance of the flaw, an elaborate characterization effort

was undertaken. The effort had a twofold thrust: first, to estimate the frequency of

occurrence of the reduced precision divide, and second, to estimate how the reduction in

precision gets propagated to the end result, and to determine how it gets used.

The methodology used for this purpose involved data sources both internal and external to

Intel. Internally, characterization was performed in a verification laboratory on key

applications that had been ported to the laboratory environment. Additionally, test suites

provided by the application vendor for verification of the functionality of the test suite on

that platform were procured, and were used for a pilot measurement. Externally, opinions

were taken from eminent application and algorithm experts in the industry as well as from
power users of the key applications.

16

6.1 Taxonomy of Applications

The application base was categorized into the following groups:

1. Commercial PC applications on desktop/mobile platform running on MS-DOS,

Microsoft*Windows*, or OS/2*. This class includes basic spreadsheet users for personal

finance or basic accounting.

2. Technical applications. This includes a broad range of applications including engineering

and scientific, advanced multimedia, educational, and financial applications. Thus, this class
includes power users of spreadsheets such as financial analysts and financial engineers.

Applications in this category could be purely integer-based, or could involve floating point

instructions for either numerical computation or for visualization. This class spans the wide

range of applications running on MS-DOS, Windows, OS/2 or UNIX* operating systems.

3. Server and transaction processing applications.

6.2 Impact on Commercial PC applications

A large majority of PC applications do not invoke the floating point unit. This includes

applications such as word processing, text editing and e-mail. In the commercial PC

domain, the majority of applications that do use floating point do not invoke an appreciable

number of divides and hence do not introduce significant failures that will pose a data-

integrity problem during the useful life of the part. Table 6-1illustrates the outcome of the

analyses and characterization on a few key applications. Of specific concern were the

spreadsheet applications, where numerical calculation is often supported via use of the

floating-point unit. Towards this concern, a more elaborate study focused on spreadsheets.
This study is addressed in the next subsection.

6.2.1 Spreadsheets
The study on spreadsheets included a survey of acknowledged numeric experts in the

industry. The results of the survey were partially confirmed by statistical characterization in

the internal verification laboratory at Intel. The results from the survey are now

summarized.

Table 6-1 COMMERCIAL PC APPLICATIONS ONDOS/WINDOWS/OS/2

17

The most common use of a spreadsheet is as a computational database that collects

information of some kind, e.g. information on expense reports, budgets or miscellaneous

data on a process, an experiment or personnel in a firm. Only a small fraction of all

spreadsheet users are actually "heavy" users, users who intensely invoke the computational

engine to generate numerical information. Most other users either use spreadsheets to

display this kind of information and make minor modifications and edits, or perform a few

calculations.

Once entered into the spreadsheet with a certain number of significant digits, most data is

converted to some internal representation, and most numeric computation is floating point-

based. Spreadsheets like Excel* and QuattroPro* compute in double precision floating point,

while Lotus-123* computes in extended precision. While intermediate values are stored with

the full precision, results are displayed as dictated by the user. About 40% of the results in

general are displayed with only two decimal digits after the point (e.g. for currency display),

another 40% are displayed as integers (after rounding), and only the remaining 20% of the

numbers are displayed in scientific format or in floating point format with more than two
digits after the decimal point.

About 95% of the numeric formulae invoked contain one or two operators, typically an add

or a multiply or, rarely, a divide. Occasionally, the Mod function (that remainders by one to

get the fractional portion of the number) is used. The remaining 4% of the formulae used

include functions such as IRR (Internal Rate of Return, which solves an Nth order polynomial

equation), Power, Interest Rates, Standard Deviation and square Root. Transcendental

functions are invoked very rarely. Equation solvers are also used rarely, and could invoke
the divide function to implement Newton's formula.

For most accounting applications of the spreadsheet, typical input data may have up to

about 7-8 decimal digits to the left of the decimal point, and about 2-3 digits to the right of

the point, so that the information is known to about 11 significant digits. The most common

use of divides is for computation of ratios. Often these ratios are applied once or a couple of

times to data, and often towards the end of the computation, so that results from the divide

have reduced opportunity to propagate. Since ratios are often used for calculating

percentages, the ratio requires about 4 decimal digits (2 to the right and 2 to the left of the
decimal point).

For the rest of the basic spreadsheet users, most data that is input to spreadsheets has

fewer than three significant digits to the right of the decimal point. A lot of the numbers

have only a few significant digits to the left of the point and are thus only known to four or

five digits. Also frequent are power-of-two fractions.

In terms of numbers of operations, fewer than 10% of the instructions executed in a typical

spread sheet run floating point instruction. Most of the numerical operations are geared

toward the display engine. Displaying a spreadsheet of 1 page with 600 cells and 2 floating

point operations (one of which may be a divide) per cell would require 1,200 FP operations.

On the computational side, a typical recalculation could contains 5,000 adds and subtracts,

a few multiplies and a very few divides. Divides are used for date calculations, to divide by

365. It is very unlikely that a basic spreadsheet user would invoke any more than500-1,000

independent divides per day. It is worth noting that scrolling through several pages

repeatedly would result in recalculation with the same values and would not introduce any

additional independent divide operations and therefore no additional errors.

18

Given that even by conservative estimates, an average PC user invoking 1,000 divides per

day would see a FIT rate of once in 27,000 years due to this failure mechanism, and given

the information on the way the data is interpreted, displayed and used, we conclude that

the rate of a significant failure would be much smaller than once every 27,000 years. By the

analysis from the previous sections, the common user will not see this effect during the
practical lifetime of the part.

For individual users who invoke a greater number of independent divides per day (than

1,000), the rate of encountering a reduced precision result will simply be increased
proportionately.

The treatment of the advanced use of spreadsheets for financial engineering is handled in
the section on technical applications.

6.3 Impact on Technical Applications

In the following two subsections, we examine first engineering and scientific applications,

followed by applications in the financial world.

6.3.1 Impact on Engineering and Scientific Applications
A broad array of applications are run by scientists and engineers on modern workstations.

Table 6-2 shows one taxonomy of technical applications based on the discipline. This table

gives the algorithm employed in the particular application, an example of such an

application, an indication of its reliance on divides, the normal condition of the problem (an

indication of the likelihood that an error will propagate through the calculation [see below])
and the frequency with which Pentium processors are likely to be used in the application.

19

Table 6-2 Taxonomy of Workstation Applications

20

The straight-forward calculation of frequency of occurrence of a divide inaccuracy based on

the number of divides/day on a Pentium processor based platform indicates that users will

experience inaccuracy due to the flaw from time to time in the course of floating point

intensive work. Based on this result it is necessary to investigate the likely impact of a

divide returning a reduced precision result. Figure 6-1 shows a simple framework for

evaluating the frequency of outcomes fora Pentium processor based platform used for

divide-intensive work. The symbols used in Figure 6-1 are explained in Table 6-3 .

Figure 6-1: Outcome Frequencies Algorithm

Table 6-3: Description of Symbols Used in Outcome Frequencies Algorithm

The number of divides performed in any given period of time is of course dependent on the

size and frequencies of the analyses performed on the Pentium processor based platform. It

is difficult to select a representative example because the percentage of divides can vary

dramatically. For example, in Gaussian Elimination on dense matrices the operation count

varies as N3 where N is the matrix order, while the number of divides is proportional to N.

Thus smaller matrices have a much higher proportion of divides and will encounter more

divides per unit time, even though the precision of the divides in the larger matrix

calculations is more critical. The sparsity pattern also plays a large role as sparse matrix

computations encounter divides as a larger percentage of the total operations than do dense

matrices. For the purposes of estimation we assume a divide rate of K = 120 million/day.

This corresponds to Gaussian Elimination on a 2,000 by 2,000 matrix with a bandwidth of

250 at a flop rate of 30Mflops. (This example is illustrative only and is not intended to quote

performance on a specific problem.) A cross check of the data from extensive testing with

21

engineering codes indicates rates approaching, but not exceeding this value. The probability

P1 is known from the studies cited earlier in this report. It works out to 1 in 9billion or

1.11E-10.

The final stage, governed by P3, gives the number of problems expected per year for the

system. By "problem" we mean the use of an answer with less than expected precision that

has a significantly negative impact on the user. Examples would be failure of designed

parts, financial decisions leading to loss of value or erroneous navigation information. The

probability P3 is very difficult to estimate, or even to bound. Many errors that could result

from a reduced precision divide would cause a calculation to either fail entirely or produce
an answer so obviously wrong that it would never be used in practice.

Rather than wrestle with P3 we attempt to bound P2, the probability that the flaw leads to a

meaningfully inaccurate result. For this purpose we define meaningfully inaccurate as

having an accuracy of fewer that three significant digits. Since the inaccuracy in the divide

result appears in bit positions between the 12th to the right of the binary point in the

mantissa and the last bit, corresponding to inaccuracies no larger that in the 4th significant

digit, an amplification of the inaccuracy must occur for a meaningful inaccuracy to appear in

the final result. While it is easy to construct examples in which a single divide inaccuracy

can result in a final answer possessing anywhere from full accuracy to no significant digits

(The latter outcome is most easily produced by subtracting the result of a slightly inaccurate

divide from a number of close magnitude so that the correct result would contain only digits

beyond those lost to the inaccuracy), in practice most reduced precision divides are found
to be benign.

If P2 were 1.0, indicating that every divide inaccuracy produced a meaningful inaccuracy in

the result, the frequency of meaningful inaccuracy would be 1 in 75 days based on the

values of K and P1 above. In order for this frequency to fall to a level comparable to the

frequency of divide inaccuracies in spreadsheet applications P2 must be of the order of 10-
4. The remainder of this section deals with the estimation ofP2.

6.3.1.1 Estimating P2

The property of a problem (the algorithm along with its data) that relates errors in the

output to errors in the input (or errors introduced by numerical computation) is its

condition. While the condition can be expressed as a single number for many calculations

and can be used in error bounds, for the purposes of this report the condition can be

thought of expressing the quality of sensitivity to accuracy in the divide operation. It should

be noted that the error in the final answer may actually be less than the error introduced in

a particular operation in cases where that calculation ultimately turns out to be a minor

contributor to the final answer or in cases where the algorithm is self-correcting (e.g.
certain iterative schemes or neural net computing).

An experimental approach is used to estimate P2, the probability that a divide inaccuracy

will result in a meaningful inaccuracy in the final result. This approach is preferred over an

analytical one since a problem's sensitivity to error is highly dependent on the particular

data and the location at which the error is introduced. It can be seen in Table 6-2 that those

applications characterized by a large number of divides and poorly conditioned are largely

those that deal in dense or sparse matrix algebra, and in particular those involving exotic

modelling techniques (such as the use of shell elements in finite element analysis) or

eigenvalue extraction (as used in the calculation of vibration modes in structural analysis).

Since the use of Pentium processors in the solution of large dense matrix equations is

thought to be rare we concentrate on sparse matrix problems. In order to capture the most

22

demanding workloads we ran extensive tests on the QA test suites of MSC/NASTRAN™ and

ANSYS™. It should be noted that these engineering codes were provided by their vendors

for the ongoing purpose of functional and performance testing on Intel-based systems and

their use here in no way constitutes a recommendation or endorsement by the MacNeal-
Schwendler or Swanson companies.

NASTRAN and ANSYS represent the upper end of engineering analysis packages and both

are frequently run on supercomputers in the calculation of stress, vibration modes, fluid

flow, magnetic fields, and other engineering calculations characterized by finite element

models. While NASTRAN has few licenses on Intel Architecture systems and ANSYS has only

a moderate number, the workloads run on these codes represent a worst case scenario for a

Pentium processor-based system in engineering use. Those engineering codes in widespread

use on Intel Architecture systems (e.g. AutoCAD*) will not place more stress on the floating

point performance than these codes. Thus our intent in setting up this test program is to

identify any possible problems in sparse matrix computing. If problems are found we will

then look to the more plentiful applications on PCs to see if the types of analysis found to be

susceptible to problems are performed with those codes.

Given the infrequency of divide inaccuracies, and the likelihood that a single inaccuracy will

go unnoticed, it is impractical to run problems on a Pentium processor with the divide flaw

and wait for an inaccuracy to show up in the output. In fact, at no point in the testing

described here was an actual effect from the divide flaw seen. Since the object of the

experiment is to determine the effect on the output of the engineering analysis when

inaccuracies occur, we introduce inaccuracies artificially and observe the result. Even this

plan has the problem that single inaccuracies introduced at random, and with random bit

locations for the inaccuracy, will take orders of magnitude too long to produce statistically
significant results.

To get a rough estimate of the size of P2 we introduce multiple inaccuracies into single runs

of the codes and extrapolate the results to single inaccuracy on problems of comparable
complexity. The procedure is as follows:

1. Run all tests with 100% of divides at minimum precision (12 good bits to the right of the

binary point of the significand)

2. For tests exhibiting meaningful inaccuracies:

a. Determine minimum number of divides (D) and precision (precis) to generate inaccuracy

b. For each test:

p2>1/D Prob(precis)

3. Overall estimate of P2>Max (p2)

In step 2b above the Prob(precis) is the probability that the divide inaccuracy will be as bad

as that precision level. For example if a precision loss in the 13th binary bit (12th bit to the

right of the binary point of the significand) in a double precision operation is required to see
a meaningful inaccuracy in the result, Prob(13) would be about 1/40.

23

Figures 6-2 and 6-3 show typical results for experiments run on problems which exhibit

meaningful inaccuracies when run with all divides at minimum precision. In these figures

the number of significant digits in the final result is plotted as a function of the portion of

divides artificially modified. The three different curves for each figure show results for

reducing the precision of the divide results to different levels. For each precision level the

transition from meaningful inaccuracy (number of significant digits fewer than three) to

meaningless inaccuracy (more than three digits of accuracy) is observed. Each such

transition yields an estimate for p2, the probability of meaningful inaccuracy on this problem

due to a single random divide precision reduction. We take the largest such estimate to be

the value of p2 for this problem, then estimate P2 as the maximum over all tests.

24

6.3.1.2 Experimental Results: Estimation of P2

Table 6-4 shows a representative sample of results for tests where initial screening with all

divides at minimum precision indicated the potential for meaningful inaccuracy in the final

result. For those tests the procedure outlined above in section 6.3.1.1 was followed to

determine the transition from meaningful to meaningless inaccuracy. Each test yields an
extrapolation for p2 and the maximum over all tests is our estimate of P2.

As indicated at the bottom of Table 6-4 the maximum estimate of P2calculated over all tests

run to date is 2.2e-4. A value in this range indicates that a meaningful inaccuracy due to the

flaw is expected only one time in about one thousand years on a Pentium processor based

system. This puts the probability of such an inaccuracy below that of other errors that could

affect a system over its lifetime (see Table 5-1). In this table the MTBF refers to the time

between meaningful inaccuracies in the final result.

Table 6-4: Experimental Estimation of P2

25

6.3.2 Impact on Financial applications
Financial engineering applications which use floating point division are implemented (by

both users and software distributors) in spreadsheets, in high level languages and through

use of statistical software packages. To consider the potential impacts of the flaw for the

financial engineer, we will divide the workspace into four categories. The first set is the

collection of users performing corporate or marketing analysis oriented calculations. The

next set contains the most frequent financial analytics such as present values, annuities,

depreciations and basic financial quantities. The last two sets comprise the most intensive
computation and mathematical models.

This summary classification of the financial applications and the impact of the flaw is given
in Table 6-5.

Table 6-5 Classification of financial applications

Notice that the number of users of each category is inversely proportional to the severity of

the impact. The vast majority of users are included in the first category. The last category
represents applications which have only recently been transferred to the desktop.

In the following sections we apply the characterization methodology (P1, P2) used in the
section on engineering applications to the 4 sets.

6.3.2.1 Values of P2

While we do not provide a detailed analysis of the P2 probability (the probability that the

flaw leads to a meaningful inaccuracy) for financial applications here, we will make the

26

following comments. The P2value for these applications is often either close to 1.0 or 0.0.

The former leaves the risk at P1, the latter reduces the risk to zero.

P2 is close to 0.0 when dealing with random number generators, where any random number

is as good as another, provided the basic distribution is not changed. Since the inaccuracy

happens in only 1 of nine billion divisions, there will be no change to the estimate of the
distribution.

Again, P2 is close to 0.0 on simulations which use a large number of paths and perform

expected value analysis. An error on one path will not have a significant impact on the final

answer. The number of paths are always far less than nine billion, so that more than one

error among the paths is very unlikely; and for more than two paths to have errors is

prohibitively unlikely. Finally, P2 is 0.0 when the number of significant decimal digits the
user needs is less than four.

P2 moves from near 0.0 to near 1.0 as the need for significant decimal digits reaches 15.

This is because the inaccuracy seems to be equally likely to occur at each significant digit

beyond four. For instance, if the user needs six significant digits, and an error occurs, then

(assuming double precision arithmetic), the probability that the inaccuracy was in fourth
through sixth significant decimal digits is 3/15 = 0.2.

Most other times the P2 value will be near 1.0.

6.3.2.2 MTBF estimation

CATEGORY 1

For applications from the 1st set, such as corporate financial analysis and forecasting,

marketing analysis, planning and so forth, the likelihood of encountering reduced precision

divides is low. This is because typical calculations here are dominated by comparisons and

additions. The input-output operations and the time for human conception of the results

consume more time then the processor spends performing arithmetic operations. This effect

limits the number of divisions that are computed per day to well below what is necessary to

have any appreciable probability of experiencing a meaningful inaccuracy. As an example,

consider a large budget calculation implemented as a 700x700 cell spread sheet, which is

run an average of a few times a day. This will produce less than 10,000 divisions a day (on
average); so few divisions that no error is likely to be seen for thousands of years.

CATEGORY 2

In the second set of usages, one of the most frequent calculations is discounting a value to

the present, which typically involves an expression such as (c/(1+r)^t). This discount

process is generally connected with some method of generating an associated cash flow.

The number of divisions is about one-fifth of the total operations (or less) and about equal

to the number of exponentiations. In the most extreme case, where the calculation is a

simple present value, the 60MHz Pentium processor running 24hrs per day could produce at

most 500 million divisions and exponentiations, resulting in a MTBF of 18 days. In more

realistic applications, the number of PV calculations is of order of 1000 or less within the

spreadsheet and the spreadsheet is recalculated no more than 100 times a day. This

produces at most 500,000 divides a day for a worst case MTBF of more than 50 years. This

possibility is considerably less than the chances of a system memory error, which could be
equally inaccurate.

27

CATEGORY 3

The third set is represented by the Black-Scholes and simple binomial models. Black-

Scholes solutions generally require approximations to be made for standard normal

distributions in order to run them on any desktop computer. These approximations will

increase the ratio of divide time to compute time. Divisions, exponentiation, and natural

logarithms take about one-fifth of the actual computation time. Models pricing a few

thousand options are run at most a few times per hour, representing approximately a

million divisions and transcendental computations per day. The MTBF would then be roughly

30 years. In the extreme case where a user does not look at all the results, and continually

recalculates the models, the upper bound of calculations (running 24 hours per day at full

rate) is about 1 billion divisions per day yielding an MTBF of 9 days. Again, if the accuracy

required is less than four digits, then even such maximal use will not produce a meaningful
inaccuracy.

Simple Binomial models are usually implemented with a discount computation at each node

of the model and two simple integer divisions. The number of divisions and the number of

exponentiations are of the same order of magnitude, each being about 1/5th of the total

number of operations. For an analysis of a few thousand options a day, MTBF would exceed
30 years.

CATEGORY 4

The last category of applications focuses on the valuation of more complicated derivatives

and the use of simulation. Representative applications for this set include non-simple

binomial models, as well astrinomial and finite difference methods. Simulation analysis

usually employs Monte Carlo techniques to arrive at valuations for complex securities with

large numbers of embedded options such as CMOs (Collateralized Mortgage-backed
Obligations).

More complicated binomial models, such as those with non-stationary dividends, and other

valuation techniques such as non-recombining trees and finite difference methods can

severely increase the number of computational steps performed in a valuation. In the case

of non-simple binomial models, for example, realistic problems might have an MTBF of

three years or less. However, while finite difference problems also use significant numbers

of divides, real applications of these techniques involve extensive non-division operations in

order to implement useful algorithms. This can greatly reduce the time spent doing

divisions, resulting in very low divisions per day. These methods can also be iterative, so
that an inaccuracy on one iteration will disappear in following iterations.

When simulation analysis is used for valuation, the number of cash flows valued must be

relatively large. This is significant since the extremely large numbers of discount operations

greatly increases the rate of divisions per day. For those circumstances where continuous

use of a desktop platform is being made to solve these computationally intensive

applications, the MTBF may well be less than a week. However, this may be ameliorated by
the P2 factor as discussed above.

In conclusion, the large majority of financial users will not experience any problems from

the flaw. The problem may manifest itself significantly in those programs for valuing the

most complicated financial instruments. Even in this case, if the valuation is statistically

based, single division inaccuracies may be harmless. The user should consider the number
of divisions performed per day and the context in which the resulting quotients are used.

28

6.4 Impact on Server Applications

Server applications do not use the relevant floating point instructions. The flaw has no

impact on them.

Section 7: Conclusions

The thorough and detailed characterization of the flaw and the subsequent investigations of

its impact on applications through elaborate surveys, analyses and empirical observation
lead us to the following conclusions:

1. The significance of the flaw depends upon (a) the rate of use of specific FP

instructions in the Pentium® processor, (b) the data fed to them, (c) the way in

which the results of these instructions are propagated into further computation in the

application; and (d) the way in which the final results of the application are

interpreted.

2. The flaw is of no significance in the commercial PC market where the vast majority of

Intel processors are installed. Failure rates introduced by this flaw are swamped by

rates due to existing hard and soft failure mechanisms in PC systems. The average

PC user is likely to encounter a failure once in 27,000 years due to this flaw,

indicating that it is practically impossible for such a user to encounter a problem in

the useful lifetime of the product.

3. The flaw is of no significance for integer workstation applications, since they do not

use the Floating Point Unit.

4. The flaw is of no significance for Server applications.

5. The flaw is of no significance in the majority of the financial world, where PC users

run spreadsheets with little divide content. For these users the flaw has no effect.

6. The flaw is of potential significance for a small minority of users in the financial

world. These users are primarily involved in running highly numerical applications

involving intensive recalculations such as path-dependent derivatives valuations and

those valuations involving simulations. Depending on the circumstances, these users

should employ either an updated Pentium processor without the flaw or a software

workaround.

7. A small fraction of PCs are installed for use as engineering/scientific workstations.

Although there may be an occasional occurrence of a reduced precision divide, our

extensive experiments with a range of engineering problems covering CAD,

structural analysis, computational fluid dynamics and circuit simulation indicate that

meaningful inaccuracies in the end-result will only be seen once in about 1,000

years. Technical users running other applications requiring unusual precision and

employing millions of divides per day should employ either an updated Pentium

processor without the flaw or a software workaround.

Our overall conclusion is that the flaw in the floating point unit of the Pentium processor is

of no concern to the vast majority of users. A few users of applications in the

scientific/engineering and financial engineering fields may need to employ either an updated

processor without the flaw or a software workaround.

Section 8: Acknowledgments

Acknowledgments are due to all the engineers and computational scientists who participated

in the characterization effort. Special thanks to Joe Brandenburg (Principle Computational

Scientist, Scalable Systems Division) for reviewing the characterization of the technical

applications and for contributing to the section on financial applications, to Richard Passov

(Senior Manager, Quantitative Analysis, Corporate Treasury) for contributing to the financial

29

application section, to Luke Girard and Patrice Roussel (Senior Design Engineers,

Microprocessor Products Division) and to Dr. Peter Tang (Numerical Scientist, Argonne

National Laboratories) for analytically and experimentally characterizing the hardware

algorithm and the flaw.

Section 9: References

[1] "Architecture of the Pentium Microprocessor", by Donald Alpert and Dror Avnon, IEEE
Micro, V- 13:11-21(June 1993).

[2] "Higher-Radix Division Using Estimates of the Divisor and Partial Remainders", Daniel E.

Atkins, IEEE Transactions on Computing, C-17:925-935(1968)

Appendix A

In the process of the characterization, a list of scientific constants that might commonly be

used in floating point calculations were examined as potential divisors. These constants are

shown in Table A-1 below. Two of these constants, indicated by the shaded rows, were

identified as potentially problematic based on the analysis in Section 4.2. To verify if these

two constants were really at risk each was used as a divisor with 100 billion random
dividends with no errors found.

30

Table A-1 Engineering and Scientific Constants Analyzed.

31

Table A-2 below contains the list of combinations of the aforementioned constants that were

examined additionally for possible occurrences of an error due to the flaw. No problem was

found.

Table A-2 Constants Used in Combination

32

Table A-3 below indicates the commonly used multiples of the important constants and their

multiples that were checked. None of these multiples were found to be at risk.

Table A-3 Multiples of Common Constants

33

FAQ for Floating Point Flaw (FDIV)

What is the floating point flaw?

The Pentium® processor had a flaw in its floating point divide unit that, for rare

combinations of specific operand pairs, could have given a reduced precision result. The

floating point unit is enacted only during division and will possibly affect the accuracy of
results from the fourth to the nineteenth place past the decimal point.

How can I tell if I have a processor with the floating point flaw?

The Intel® Processor Frequency ID Utility is designed to identify which Intel processor your

PC contains. If your PC contains a Intel Pentium processor, the Intel Processor Frequency ID
Utility will test & identify the Floating-point divide flaw.

What speeds of the Pentium® processor are affected by the floating point flaw?

If you have a 60, 66, 75, 90 or 100MHz Pentium® processor, it is possible you may be

affected with the floating point flaw. To check if you are affected, use the Intel® Processor

Frequency ID Utility. All Pentium processors at 120 MHz and above do not have this
Floating-point divide flaw.

I understand that my original Pentium® processor has a 'lifetime' replacement

policy. If I decide to opt for a replacement chip, do I still have a 'lifetime'

replacement policy on my replacement chip?

No. The lifetime replacement is 'exhausted' once the replacement is made. Your
replacement processor is then covered under a one-year warranty.

What are the ways I can replace a Pentium® processor which contains the flaw?

There are two ways to replace your chip:

 Through your system vendor:

Some system vendors have requested that they service their customers directly. In

these cases, you must contact them for replacement of your processor. The following

system vendors are doing replacements and should be contacted directly:

ALR*, AT&T*, Dell*, Epson*, Intergraph*, MegaMax*, Netframe*, Reutters*, STD*,
Sequent*, Tricord*.

If you need assistance in contacting these system vendors, please call Intel.

 Do it yourself, through Intel:

If you do not have a system from one of the vendors described above, you can

contact Intel for a new part and replace it yourself. Your replacement chip will come

with installation instructions. In addition, telephone assistance is available by calling

the technical installation assistance number described in the first section, once your
replacement chip has arrived.

What information must I provide in order to get my new part if I order from Intel?

We need the following information: Your name, phone number & shipping address;

computer manufacturer & model; and CPU speed currently in your system. We will also ask

if you have verified the flaw by using the Intel® Processor Frequency ID Utility (required to

place an order).We will ask you for a major credit card number (for security only) to insure
return of the original processor.

http://www.intel.com/support/processors/tools/frequencyid/
http://www.intel.com/support/processors/tools/frequencyid/
http://www.intel.com/support/processors/tools/frequencyid/

34

Why do you need my credit card number?

The credit card number is for security only, for those people to whom we are sending chips

directly, to insure the original chip is returned. No hold or charge will be placed on your

card, as long as the original unit is returned to Intel within 30 days of our shipping the

replacement part (all parts are shipped by courier, with a prepaid return shipping voucher
and envelope included).

Why do you need the original part back?

We are asking for parts to be returned to avoid illegal resale of the parts, and to insure the
same part doesn't end up in the replacement program a second time.

What happens if I don't return the original chip on time?

Please order a replacement chip only if you are certain you can do the replacement and

return the original chip within 30 days. If not, please wait until a later time to place your

order. In the event that the original chip is not returned to Intel, we will send a reminder

notice at 20 days, and again at 30 days if the original unit hasn't been received. We will

charge the user the current market value price of the processor, but only after every

attempt has been made to obtain the original. As of this printing, prices range from $89 to

$131 each, depending on the speed of the processor.

What should I do if I have any questions after I've made my request for a new

chip?

If the chip was ordered through your system vendor, please contact them directly. If the

chip was ordered through Intel, please contact Intel.

Can I order my replacement via the Internet?

No. At this time, we do not have an internet ordering capability for the replacement

program. If you would like to place an order, please contact Intel at one of the phone
numbers listed above.

I'm a reseller, why can't I get a replacement?

As stated in the overview section, this program is meant for End Users of working systems,

who are concerned about the impact of the flaw on their specific programs and applications.

It is the individual decision of the end user to determine if the flaw is affecting their
application accuracy.

Can I upgrade my processor through this program? I am willing to pay the

difference.

Unfortunately, this is not possible. As many systems are designed for one speed only, we

could not guarantee that your system would continue to work properly. In some cases, you

could damage your system by replacing with a different speed part than what the system

was designed for. It is for this reason that we offer a like for like replacement only.

Can I exchange my flawed Pentium® processor or get partial credit towards a

Pentium® OverDrive® processor?

The Pentium® OverDrive® processor is a completely different product that is not related in

any way to the Pentium® Processor Replacement Program. If you have a flawed Pentium®

processor, we will be happy to replace it with a corrected same-speed version. For

information on a Pentium® OverDrive® processor, please see Intel's Pentium® OverDrive®
processor Web page.

35

My 60MHz motherboard is damaged and I have to upgrade it to a 3.3volt board.

Can I exchange my flawed 60MHz processor for a 75MHz or higher processor?

No. The Pentium® Processor Replacement Program specifically states that Intel will replace

flawed processors for the lifetime of the system. If the motherboard is damaged, the

system is not operational and you do not qualify for a replacement under this program. In

addition, we will only replace the flawed processor with a same-speed corrected Pentium®

processor. We do not offer upgrades under any circumstances.

Is my replacement Pentium® processor covered under a warranty?

Yes. Your replacement processor has a one year limited warranty. You will receive a
warranty card with your replacement chip.

If I decide to do the replacement myself, what are the specific steps to do that?

Instructions are included with every replacement processor shipped. In general, however,

the user will need to open the system, ground himself/herself to avoid static electricity, lift

a lever, remove the old chip, insert the new chip, close the lever, and replace the system

chassis. We also offer telephone assistance, should you have any questions once you've
received your replacement chip.

Will I void my system warranty by changing the chip myself?

If the system vendor has authorized Intel to perform the replacement, the system warranty

will remain intact. If your system vendor is handling the replacement directly you must
work with them to ensure your warranty, if still active, remains in effect.

Do the replacement processors have more of a heat problem than my original?

The replacement solution will provide equal or greater cooling than the original. However,

Intel's thermal solution is probably different from the solution which came with your original

processor, as we are providing a generalized solution that covers 100 different variations of
speed, socket, and other thermal solutions.

What happens if I replace my CPU and my system doesn't work?

Assuming the right chip and installation procedure were used, the system should work as it
did previously. Contact Intel or your system vendor if you have any questions.

What will Intel do with the returned parts?

We have received a number of suggestions and requests for the returned chips, however

there are a couple of reasons why we can't make the processors available. First, most of the

chips will likely be mechanically damaged during the replacement process and will not

function properly. Second, regardless of how the chips are marked or what specific

applications they are intended for, there is no way we can ensure that the chips will not

again end up with an end-user where replacement might be requested. Therefore, Intel will

grind the chips to recover the gold, tungsten and aluminum used in their manufacture.

