FCC RADIO TEST REPORT Applicant..... : MAGFAST LLC Address...... : 1 GRANDVIEW AVE Cornwall on Hudson, NY 12520 USA Manufacturer.....: Shenzhen QiAo Communication Tech Co., Ltd Address.....: Room ABCDEFGH OF 16F, Block C, Central Avenue, interchange between XiXiang Road and Baoyuan, Laodong Community, XiXiang Road, Baoan District, ShenZhen Factory.....: Dongguan IRice Electronics Development Co.,Ltd. Address..... : Building 1, No.17, Hudie 1st Road, Tianxin village, Huangjiang town, Dongguan city, Guangdong province, PRC 523763 China EUT.....: Wireless charger portable power bank Brand Name.....: : MAGFAST® Model No. : SBNP-NPK-LX-UU-PP-AW-01 FCC ID.....: 2A2Y4-EXTREME Measurement Standard...... : 47 CFR FCC Part 15, Subpart C Receipt Date of Samples.... : August 04, 2021 Date of Tested...... : August 04, 2021 to November 12, 2021 Date of Report..... : April 27, 2022 This report shows that above equipment is technically compliant with the requirements of the standards above. All test results in this report apply only to the tested sample(s). Without prior written approval of Dongguan Nore Testing Center Co., Ltd, this report shall not be reproduced except in full. Prepared by Jenny Liu / Project Engineer Iori Fan / Authorized Signatory # **Table of Contents** | 1. Summary of Test Result | 4 | |---|----| | 2. General Description of EUT | 5 | | 3. Test Channels and Modes Detail | 6 | | 4. Configuration of EUT | 7 | | 5. Modification of EUT | 7 | | 6. Description of Support Device | 7 | | 7. Test Facility and Location | 8 | | 8. Applicable Standards and References | 9 | | 9. Deviations and Abnormalities from Standard Conditions | 9 | | 10. Test Conditions | 9 | | 11. Measurement Uncertainty | 10 | | 12. Sample Calculations | 11 | | 13. Test Items and Results | 12 | | 13.1 Conducted Emissions Measurement | 12 | | 13.2 Radiated Spurious Emissions and Restricted Bands Measurement | 16 | | 13.3 20dB Bandwidth Measurement | 26 | | 13.4 Antenna Requirement | 28 | | 14. Test Equipment List | 29 | # **Revision History** | Report Number | Description | Issued Date | |----------------|---------------|-------------| | NTC2108051FV00 | Initial Issue | 2022-04-27 | # 1. Summary of Test Result | FCC Rules | Description of Test | Result | Remarks | |-------------|-----------------------------|--------|---------| | §15.207 (a) | AC Power Conducted Emission | PASS | | | §15.209 | Radiated Emissions | PASS | | | §15.215 | 20dB Bandwidth | PASS | | # 2. General Description of EUT | Product Information | | |-------------------------|--| | Product Name: | Wireless charger portable power bank | | Main Model Name: | SBNP-NPK-LX-UU-PP-AW-01 | | Additional Model Name: | N/A | | Model Difference: | N/A | | S/N: | E000-A001-0CH0-0069 | | Brand Name: | MAGFAST® | | Hardware Version: | Not Stated | | Software Version: | Not Stated | | Rating: | DC11.1V Come from Battery, | | | INPUTS: USB-C: DC 5V 3A, 9V 2A, 12V 1.5A PD Qi:5W, | | | Micro- USB: 5V 2A, MAGFAST: 5V2A, | | | OUTPUTS: USB-C: DC 5V 3A, 9V 2A, 12V 1.5A PD | | | USB-A: 5V 2.4A, Qi: 5W, 7.5W, 10W, MAGFAST: 5V 2A, 12V 500+A | | Typical Arrangement: | Tabletop | | I/O Port: | Reference manual | | Accessories Information | | | Adapter: | N/A | | Cable: | N/A | | Other: | N/A | | Additional Information | | | Note: | N/A | | Remark: | All the information above are provided by the manufacturer. More detailed feature of | | | the EUT please refers to the user manual. | | Technical Specification | | |-------------------------|--------------| | Frequency Range: | 110.5-210KHz | | Modulation Type: | FSK | | Antenna Type: | Coil antenna | # 3. Test Channels and Modes Detail | | Mode | Modulation | |----|--------------------------------|------------| | 1 | 1 wireless charging (5W) | | | 2 | 1 wireless charging (7.5W) | | | 3 | 1 wireless charging (10W) | | | 4 | 2 wireless charging (5W) | | | 5 | 2 wireless charging (7.5W) | | | 6 | 2 wireless charging (10W) | FSK | | 7 | 3 wireless charging (5W) | TOIC | | 8 | 3 wireless charging (7.5W) | | | 9 | 3 wireless charging (10W) | | | 10 | 1+2+3 wireless charging (5W) | | | 11 | 1+2+3 wireless charging (7.5W) | | | 12 | 1+2+3 wireless charging (10W) | | Remarks: The EUT has three charging base. 1 is the first wireless charging base. 2 is the second wireless charging base. 3 is the third wireless charging base. # 4. Configuration of EUT # 5. Modification of EUT No modifications are made to the EUT during all test items. # 6. Description of Support Device The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. | No. | Equipment | Brand | M/N | S/N | Cable Specification | Remarks | |-----|----------------------|------------------|--------------|-----|----------------------------|---| | 1. | Active Dummy
Load | EESON | 5/7.5/10W | N/A | | Provide by the lab | | 2. | Active Dummy
Load | EESON | 5/7.5/10/15W | N/A | | Provide by the lab | | 3. | Adapter | HW-2003
25CP0 | HBL-W19 | | DC Line: 1.15m
shielded | I/P: AC
100-240V
50-60Hz, 1.8A
O/P: DC 5V,
9V, 12V, 15V or
20V | # 7. Test Facility and Location | Test Site | | Dongguan Nore Testing Center Co., Ltd. (Dongguan NTC Co., Ltd.) | |--------------------|---|---| | Accreditations and | : | The Laboratory has been assessed and proved to be in compliance with | | Authorizations | | CNAS/CL01 | | | | Listed by CNAS, August 13, 2018 | | | | The Certificate Registration Number is L5795. | | | | The Certificate is valid until August 13, 2024 | | | | The Laboratory has been assessed and proved to be in compliance with ISO17025 | | | | Listed by A2LA, November 01, 2017 | | | | The Certificate Registration Number is 4429.01 | | | | Listed by FCC, November 06, 2017 | | | | Test Firm Registration Number is 907417 | | | | Listed by Industry Canada, June 08, 2017 | | | | The Certificate Registration Number is 46405-9743A | | | | The CAB identifier number is CN0015 | | Test Site Location | : | Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng | | | | District, Dongguan City, Guangdong Province, China | # 8. Applicable Standards and References According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards: #### **Test Standards:** 47 CFR Part 15, Subpart C ANSI C63.10-2013 #### **References Test Guidance:** N/A # 9. Deviations and Abnormalities from Standard Conditions No additions, deviations and exclusions from the standard. # 10. Test Conditions | No. | Test Item | Test Mode | Test Voltage | Tested by | Remarks | |-----|-----------------------------|-----------|-------------------------|-----------|------------| | 1. | AC Power Conducted Emission | 1-12 | AC 120V 60Hz | Sean Yuan | See note 1 | | 2. | Radiated Emissions | 1-12 | AC 120V 60Hz
DC11.1V | Sean Yuan | See note 1 | | 3. | 20dB Bandwidth | 1 | AC 120V 60Hz | Sean Yuan | See note 1 | ## Note: - 1. The testing climatic conditions for temperature, humidity, and atmospheric pressure are within: 15~35 °C, 30~70%, 86~106kPa. - 2. For the test voltage, only the worst case was recorded in this report. - 3. AC 120V/60Hz is the input voltage of the AC/DC Adapter. # 11. Measurement Uncertainty | No. | Test Item | Frequency | Uncertainty | Remarks | |------------------|--------------------------|----------------|-------------|---------| | 1. | Conducted Emission | 150KHz ~ 30MHz | ±2.52 dB | | | Radiated Emissio | | 9kHz ~ 30MHz | ±2.60 dB | | | | Radiated Emission Test | 30MHz ~ 1GHz | ±4.68 dB | | | | Tradiated Emileoiem rest | 1GHz ~ 18GHz | ±5.14 dB | | | | | 18GHz ~ 40GHz | ±5.14 dB | | | 3. | RF Conducted Test | 10Hz ~ 40GHz | ±1.06 dB | | ### Note: - 1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. - 2. The measurement uncertainly levels above are estimated and calculated according to CISPR 16-4-2. - 3. The conformity assessment statement in this report is based solely on the test results, measurement uncertainty is excluded. # 12. Sample Calculations | | Conducted Emission | | | | | | |----------------|-------------------------|---------------------|--------------------|-----------------|--------------|----------| | Freq.
(MHz) | Reading Level
(dBuV) | Correct Factor (dB) | Measurement (dBuV) | Limit
(dBuV) | Over
(dB) | Detector | | 0.1500 | 30.40 | 10.60 | 41.00 | 66.00 | -25.00 | QP | Where, Freq. = Emission frequency in MHz Reading Level = Analyzer/Receiver reading Corrector Factor = Insertion loss of LISN + Cable Loss + RF Switching Unit attenuation Measurement = Reading + Corrector Factor Limit = Limit stated in standard Margin = Measurement - Limit Detector = Reading for Quasi-Peak / Average / Peak | Radiated Spurious Emissions and Restricted Bands | | | | | | | |--|------|-------|-------|-------|--------|----------| | Freq. Reading Level Correct Factor Measurement Limit Over (dBuV) (dB/m) (dBuV/m) (dBuV/m) Detector | | | | | | Detector | | 60.0700 | 30.0 | -18.0 | 12.00 | 40.00 | -28.00 | QP | Where, Freq. = Emission frequency in MHz Reading Level = Analyzer/Receiver reading Corrector Factor = Antenna Factor + Cable Loss - Pre-amplifier Measurement = Reading + Corrector Factor Limit = Limit stated in standard Over = Margin, which calculated by Measurement - Limit Detector = Reading for Quasi-Peak / Average / Peak Note: For all conducted test items, the spectrum analyzer offset or transducer is derived from RF cable loss and attenuator factor. The offset or transducer is equal to the RF cable loss plus attenuator factor. # 13. Test Items and Results # 13.1 Conducted Emissions Measurement # LIMIT According to the requirements of FCC PART 15.207, the limits are as follows: | Frequency (MHz) | Quasi-peak | Average | | | |-----------------|------------|----------|--|--| | 0.15 to 0.5 | 66 to 56 | 56 to 46 | | | | 0.5 to 5 | 56 | 46 | | | | 5 to 30 | 60 | 50 | | | Note: 1. If the limits for the average detector are met when using the quasi-peak detector, then the limits for the measurements with the average detector are considered to be met. - 2. The lower limit shall apply at the transition frequencies. - 3. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5MHz. # **BLOCK DIAGRAM OF TEST SETUP** # **TEST PROCEDURES** - a. The EUT was placed on a wooden table 0.8m height from the metal ground plan and 0.4m from the conducting wall of the shielding room and it was kept at 0.8m from any other grounded conducting surface. - b. All I/O cables and support devices were positioned as per ANSI C63.10. - c. Connect mains power port of the EUT to a line impedance stabilization network (LISN). - d. Connect all support devices to the other LISN and AAN, if needed. - e. Scan the frequency range from 150KHz to 30MHz at both sides of AC line for maximum conducted interference checking and record the test data. # **TEST RESULTS** **PASS** Please refer to the following pages of the worst case. 10 11 12 5.2579 5.2579 23.99 9.09 10.71 10.71 34.70 19.80 60.00 50.00 -25.30 -30.20 QP AVG | M/N: SBNP-NPK-LX-UU-PP-AW-01 | Testing Voltage: AC 120V / 60Hz | | | |--------------------------------|---------------------------------|--|--| | Phase: L1 | Detector: QP & AVG | | | | Test Mode: 10 (the worst case) | | | | | M/N: SBNP-NPK-LX-UU-PP-AW-01 | Testing Voltage: AC 120V / 60Hz | | | |--------------------------------|---------------------------------|--|--| | Phase: N | Detector: QP & AVG | | | | Test Mode: 10 (the worst case) | | | | | No. Mk. | Freq. | Reading
Level | Factor | Measure-
ment | Limit | Over | | | | |---------|---------|------------------|--------|------------------|-------|--------|----------|---------|--| | | MHz | dBu∀ | dB | dBu∀ | dBu∀ | dB | Detector | Comment | | | 1 | 0.1620 | 36.60 | 10.60 | 47.20 | 65.36 | -18.16 | QP | | | | 2 | 0.1620 | 19.90 | 10.60 | 30.50 | 55.36 | -24.86 | AVG | | | | 3 | 0.4259 | 29.88 | 10.62 | 40.50 | 57.33 | -16.83 | QP | | | | 4 | 0.4259 | 13.38 | 10.62 | 24.00 | 47.33 | -23.33 | AVG | | | | 5 * | 0.4900 | 34.17 | 10.63 | 44.80 | 56.17 | -11.37 | QP | | | | 6 | 0.4900 | 20.37 | 10.63 | 31.00 | 46.17 | -15.17 | AVG | | | | 7 | 1.0740 | 28.50 | 10.70 | 39.20 | 56.00 | -16.80 | QP | | | | 8 | 1.0740 | 12.20 | 10.70 | 22.90 | 46.00 | -23.10 | AVG | | | | 9 | 2.3060 | 27.10 | 10.70 | 37.80 | 56.00 | -18.20 | QP | | | | 10 | 2.3060 | 9.90 | 10.70 | 20.60 | 46.00 | -25.40 | AVG | | | | 11 | 11.1936 | 28.27 | 10.73 | 39.00 | 60.00 | -21.00 | QP | | | | 12 | 11.1936 | 10.47 | 10.73 | 21.20 | 50.00 | -28.80 | AVG | | | | | | | | | | | | | | # 13.2 Radiated Spurious Emissions and Restricted Bands Measurement #### LIMIT | Frequency range | Distance Meters | Field Strengths Limit (15.209) | | | | |-----------------|-----------------|--|--|--|--| | MHz | Distance Weters | μV/m | | | | | 0.009 ~ 0.490 | 300 | 2400/ | =(kHz) | | | | 0.490 ~ 1.705 | 30 | 24000/ | F(kHz) | | | | 1.705 ~ 30 | 30 | 3 | 0 | | | | 30 ~ 88 | 3 | 10 | 00 | | | | 88 ~ 216 | 3 | 150 | | | | | 216 ~ 960 | 3 | 200 | | | | | Above 960 | 3 | 500 | | | | | Frequency range | Distance Meters | Field Strengths Limit (15.249) | | | | | MHz | | mV/m
(Field strength of
fundamental) | μV/m
(Field strength of
Harmonics) | | | | 902 ~ 928 | 3 | 50 | 500 | | | | 2400 ~ 2483.5 | 3 | 50 | 500 | | | | 5725 ~ 5875 | 3 | 50 | 500 | | | | 24000 ~ 2425000 | 3 | 250 2500 | | | | Remark: - (1) Emission level (dB) μ V = 20 log Emission level μ V/m - (2) The smaller limit shall apply at the cross point between two frequency bands. - (3) As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation. - (4) The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower. - (5) §15.249(d) specifies that emissions which fall in the restricted bands, as defined in §15.205 comply with radiated emission limits specified in §15.209. # **BLOCK DIAGRAM OF TEST SETUP** ### For Radiated Emission below 30MHz # For Radiated Emission 30-1000MHz # For Radiated Emission Above 1000MHz. ### **TEST PROCEDURES** - a. Below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic chamber room. - b. For the radiated emission test above 1GHz: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. - c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - d. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode. - f. A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test. g. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and packet type. The worst case was found when the EUT was positioned on X axis for radiated emission. During the radiated emission test, the spectrum analyzer was set with the following configurations: | Frequency Band | Detector | Resolution Bandwidth | Video Bandwidth | |------------------|----------|----------------------|-----------------| | 9KHz to 90KHz | AVG | 300 Hz | 1 KHz | | 91KHz to 109KHz | QP | 300 Hz | 1 KHz | | 110KHz to 490KHz | AVG | 300 Hz/ 9 KHz | 1 KHz / 30 KHz | | 150KHz to 30MHz | QP | 10KHz | 30 KHz | | 30MHz to 1000MHz | QP | 120 KHz | 300 KHz | | Above 1000MHz | Peak | 1 MHz | 3 MHz | | Above 1000MHZ | Average | 1 MHz | 10 Hz | # **TEST RESULTS** **PASS** Please refer to the following pages of the worst case. | M/N: SBNP-NPK-LX-UU-PP-AW-01 | Testing Voltage: AC 120V 60Hz | | | |--------------------------------|-------------------------------|--|--| | Polarization: Horizontal | Detector: Peak | | | | Test Mode: 10 (the worst case) | Distance: 3m | | | # **Radiated Emission Measurement** | No. Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | | |---------|--------|------------------|-------------------|------------------|--------|--------|----------|---------|--| | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | | 1 | 0.0270 | 35.47 | 20.49 | 55.96 | 118.91 | -62.95 | peak | | | | 2 | 0.0343 | 28.81 | 20.52 | 49.33 | 116.83 | -67.50 | peak | | | | 3 | 0.0459 | 31.43 | 20.59 | 52.02 | 114.31 | -62.29 | peak | | | | 4 | 0.0636 | 28.57 | 20.53 | 49.10 | 111.49 | -62.39 | peak | | | | 5 | 0.0916 | 25.26 | 20.54 | 45.80 | 108.33 | -62.53 | peak | | | | 6 * | 0.1278 | 67.54 | 20.53 | 88.07 | 105.44 | -17.37 | peak | | | | | | | | | | | | | | | M/N: SBNP-NPK-LX-UU-PP-AW-01 | Testing Voltage: AC 120V 60Hz | | | |--------------------------------|-------------------------------|--|--| | Polarization: Horizontal | Detector: Peak | | | | Test Mode: 10 (the worst case) | Distance: 3m | | | #### Radiated Emission Measurement Date: 2021/8/12 Time: 1:41:00 107.0 dBuV/m 97 87 77 FCC_15.209_Spurious_3m 67 57 47 37 27 17 7 -3 0.1500 0.500 30.000 0.800 (MHz) 5.000 Reading Correct Measure-No. Mk. Freq. Limit Over Level Factor ment MHz dBuV dB/m dBuV/m dBuV/m dB Detector Comment 0.2548 45.03 20.50 65.53 99.46 -33.93 peak 0.3832 50.23 20.46 95.93 -25.24 70.69 peak 71.52 -10.31 3 0.6372 40.78 20.43 61.21 peak -14.53 4 0.8944 33.64 20.40 54.04 68.57 peak 5 1.1473 29.80 20.40 50.20 66.41 -16.21peak 2.6783 22.00 20.40 42.40 -27.10 6 69.50 peak | M/N: SBNP-NPK-LX-UU-PP-AW-01 | Testing Voltage: AC 120V 60Hz | | | |--------------------------------|-------------------------------|--|--| | Polarization: Vertical | Detector: Peak | | | | Test Mode: 10 (the worst case) | Distance: 3m | | | # **Radiated Emission Measurement** Date: 2021/8/12 Time: 1:27:46 137.0 dBuV/m 127 117 107 97 87 77 67 57 47 37 27 17 0.0090 (MHz) 0.150 | No. Mk. | Freq. | Level | Factor | ment | Limit | Over | | | | |---------|--------|-------|--------|--------|--------|--------|----------|---------|--| | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | | 1 | 0.0090 | 44.35 | 17.66 | 62.01 | 128.42 | -66.41 | peak | | | | 2 | 0.0156 | 40.83 | 20.05 | 60.88 | 123.66 | -62.78 | peak | | | | 3 | 0.0270 | 44.18 | 20.49 | 64.67 | 118.91 | -54.24 | peak | | | | 4 | 0.0450 | 38.60 | 20.59 | 59.19 | 114.48 | -55.29 | peak | | | | 5 | 0.0636 | 34.50 | 20.53 | 55.03 | 111.49 | -56.46 | peak | | | | 6 * | 0.1274 | 65.95 | 20.53 | 86.48 | 105.47 | -18.99 | peak | | | | M/N: SBNP-NPK-LX-UU-PP-AW-01 | Testing Voltage: AC 120V 60Hz | | | |--------------------------------|-------------------------------|--|--| | Polarization: Vertical | Detector: Peak | | | | Test Mode: 10 (the worst case) | Distance: 3m | | | # **Radiated Emission Measurement** Date: 2021/8/12 Time: 1:34:12 117.0 dBuV/m 107 97 87 77 FCC_15.209_Spurious_3m 67 57 47 37 27 17 7 0.1500 0.500 (MHz) 5.000 30.000 0.800 Reading Correct Measure-No. Mk. Freq. Limit Over Level Factor ment | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | |-----|--------|-------|-------|--------|--------|--------|----------|---------| | 1 | 0.1524 | 33.67 | 20.52 | 54.19 | 103.89 | -49.70 | peak | | | 2 | 0.6753 | 33.46 | 20.43 | 53.89 | 71.01 | -17.12 | peak | | | 3 | 0.9431 | 35.42 | 20.40 | 55.82 | 68.11 | -12.29 | peak | | | 4 | 1.3379 | 37.54 | 20.40 | 57.94 | 65.08 | -7.14 | peak | | | 5 * | 1.4333 | 37.11 | 20.40 | 57.51 | 64.48 | -6.97 | peak | | | 6 | 2.6641 | 33.55 | 20.40 | 53.95 | 69.50 | -15.55 | peak | | | | | | | | | | | | | M/N: SBNP-NPK-LX-UU-PP-AW-01 | Testing Voltage: AC 120V 60Hz | |--------------------------------|-------------------------------| | Polarization: Horizontal | Detector: QP | | Test Mode: 12 (the worst case) | Distance: 3m | # **Radiated Emission Measurement** | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | | 1 | | 65.8900 | 38.85 | -7.90 | 30.95 | 40.00 | -9.05 | QP | | | | 2 | | 120.2100 | 40.35 | -9.45 | 30.90 | 43.50 | -12.60 | QP | | | | 3 | | 169.6799 | 39.77 | -10.02 | 29.75 | 43.50 | -13.75 | QP | | | | 4 | | 280.2600 | 41.97 | -5.87 | 36.10 | 46.00 | -9.90 | QP | | | | 5 | * | 360.7700 | 42.10 | -4.00 | 38.10 | 46.00 | -7.90 | QP | | | | 6 | | 457.7700 | 32.14 | -2.42 | 29.72 | 46.00 | -16.28 | QP | | | | M/N: SBNP-NPK-LX-UU-PP-AW-01 | Testing Voltage: AC 120V 60Hz | |--------------------------------|-------------------------------| | Polarization: Vertical | Detector: QP | | Test Mode: 12 (the worst case) | Distance: 3m | # **Radiated Emission Measurement** | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------|--| | | | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | | | 1 | * | 54.2500 | 43.33 | -7.64 | 35.69 | 40.00 | -4.31 | QP | | | | 2 | | 125.0600 | 36.68 | -11.23 | 25.45 | 43.50 | -18.05 | QP | | | | 3 | | 256.9800 | 35.01 | -7.22 | 27.79 | 46.00 | -18.21 | QP | | | | 4 | | 359.8000 | 34.71 | -5.01 | 29.70 | 46.00 | -16.30 | QP | | | | 5 | | 471.3500 | 29.66 | -3.20 | 26.46 | 46.00 | -19.54 | QP | | | | 6 | | 864.2000 | 26.12 | 4.90 | 31.02 | 46.00 | -14.98 | QP | | | # 13.3 20dB Bandwidth Measurement ### LIMIT There is no limit. # **BLOCK DIAGRAM OF TEST SETUP** | EUT | Attenuator | | Spectrum Analyzer | |-----|------------|--|-------------------| |-----|------------|--|-------------------| #### **TEST PROCEDURES** The 20dB bandwidth of the emission was contained within the frequency band designated which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over excepted variations in temperature and supply voltage were considered, FCC Rule 15.215: The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RBW was chosen so that the display was a result of the tested channel modulation. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. Use the spectrum 20dB down delta function to measure the bandwidth. ### **TEST RESULTS** **PASS** Please refer to the following table. # 13.4 Antenna Requirement #### STANDARD APPLICABLE According to of FCC part 15C section 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. Systems operating in the 2400-2483.5MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi. #### ANTENNA CONNECTED CONSTRUCTION The antenna is Coil antenna that no antenna other than furnished by the responsible party shall be used with the device. Therefore, the antenna is consider meet the requirement. # 14. Test Equipment List | Item | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | Cal.
Interval | |------|--------------------------------|---|-----------|-------------------|---------------|------------------| | 1. | Test Receiver | Rohde & Schwarz | ESCI7 | 100837 | Mar. 13, 2021 | 1 Year | | 2. | Antenna | Schwarzbeck | VULB9162 | 9162-010 | Mar. 23, 2021 | 1 Year | | 3. | Spectrum Analyzer | Rohde & Schwarz | FSU26 | 200409/026 | Mar. 13, 2021 | 1 Year | | 4. | Spectrum Analyzer | Keysight | N9020A | MY54200831 | Mar. 13, 2021 | 1 Year | | 5. | Spectrum Analyzer | Rohde & Schwarz | FSV40 | 101094 | Mar. 13, 2021 | 1 Year | | 6. | Horn Antenna | Schwarzbeck | BBHA9170 | 9170-172 | Mar. 22, 2021 | 2 Year | | 7. | Power Sensor | DARE | RPR3006W | 15I00041SNO
64 | Mar. 13, 2021 | 1 Year | | 8. | Communication
Tester | Rohde & Schwarz | CMW500 | 149004 | Mar. 13, 2021 | 1 Year | | 9. | Horn Antenna | COM-Power | AH-118 | 071078 | Mar. 23, 2021 | 1 Year | | 10. | Pre-Amplifier | HP | HP 8449B | 3008A00964 | Mar. 13, 2021 | 1 Year | | 11. | Pre-Amplifier | HP | HP 8447D | 1145A00203 | Mar. 13, 2021 | 1 Year | | 12. | Loop Antenna | Schwarzbeck | FMZB 1513 | 1513-272 | Mar. 23, 2021 | 1 Year | | 13. | Test Receiver | Rohde & Schwarz | ESCI | 101152 | Mar. 14, 2021 | 1 Year | | 14. | L.I.S.N | Rohde & Schwarz | ENV 216 | 101317 | Mar. 13, 2021 | 1 Year | | 15. | L.I.S.N | Rohde & Schwarz | ESH2-Z5 | 893606/014 | Mar. 13, 2021 | 1 Year | | 16. | RF Switching Unit | Compliance
Direction Systems
Inc. | RSU-M2 | 38311 | Mar.13, 2021 | 1 Year | | 17. | Temperature & Humidity Chamber | REMAFEE | SYHR225L | N/A | Mar. 13, 2021 | 1 Year | | 18. | DC Source | Maynuo | MY8811 | N/A | Mar. 13, 2021 | 1 Year | | 19. | Temporary antenna connector | TESCOM | SS402 | N/A | N/A | N/A | | 20. | Chamber | SAEMC | 9*7*7m | N/A | Apr. 21, 2021 | 2 Year | | 21. | Test Software | EZ | EZ_EMC | N/A | N/A | N/A | Note: For photographs of EUT and measurement, please refer to appendix in separate documents.