

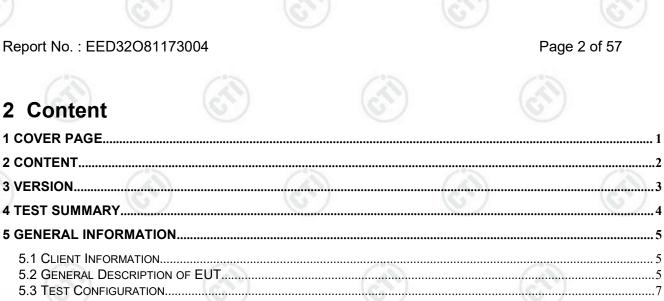
Product

TEST REPORT

Trade mark Model/Type reference Serial Number Report Number FCC ID Date of Issue Test Standards Test result New Energy Vehicle Detection Tool
SmartSafe
iSmartEV P01
N/A
EED32O81173004
2AYANEVP01
Sep. 23, 2022
47 CFR Part 15 Subpart E

PASS

Prepared for:


SHENZHEN SMARTSAFE TECH CO., LTD. 3F, Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China

Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385 Firazer. Lo Compiled by: Reviewed by: Frazer Li Tom Chen avon Date: Sep. 23, 2022 Aaron Ma Check No.: 5634020822 Report Seal

2 Content

Report No. : EED32O81173004

4 TEST SUMMARY	
5 GENERAL INFORMATION	
 5.1 CLIENT INFORMATION	5
6 EQUIPMENT LIST	
7 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	12
7.1 ANTENNA REQUIREMENT	
7.2 AC POWER LINE CONDUCTED EMISSIONS	
7.3 MAXIMUM CONDUCTED OUTPUT POWER	
7.4 6DB EMISSON BANDWIDTH 7.5 26DB EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH	
7.5 2006 EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH 7.6 MAXIMUM POWER SPECTRAL DENSITY	
7.7 FREQUENCY STABILITY.	
7.8 RADIATED EMISSION	
7.9 RADIATED EMISSION WHICH FALL IN THE RESTRICTED BANDS	
8 APPENDIX A	
PHOTOGRAPHS OF TEST SETUP	54

Version No.	Date	Description	
00	Sep. 23, 2022	Original	
(6

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

ant Current and

Page 4 of 57

Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6)	PASS	
Duty Cycle	47 CFR Part 15 Subpart E Section 15.407	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS	
26dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS	
99% Occupied bandwidth		PASS	
6dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (e)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS	
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	PASS	
Radiated Emissions	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS	
Radiated Emissions which fall in the restricted bands	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS	
Remark:		(\sim)	

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Page 5 of 57

5 General Information 5.1 Client Information

Applicant:	SHENZHEN SMARTSAFE TECH CO., LTD.		
Address of Applicant:	3F,Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China		
Manufacturer:	SHENZHEN SMARTSAFE TECH CO., LTD.		
Address of Manufacturer:3F,Building B, Qiao'an Technology Industrial Park, Guanlan, Longh New District, Shenzhen, China			
Factory :	SHENZHEN SMARTSAFE TECH CO., LTD.		
Address of Factory :	3F,Building B, Qiao'an Technology Industrial Park, Guanlan, Longhua New District, Shenzhen, China		

5.2 General Description of EUT

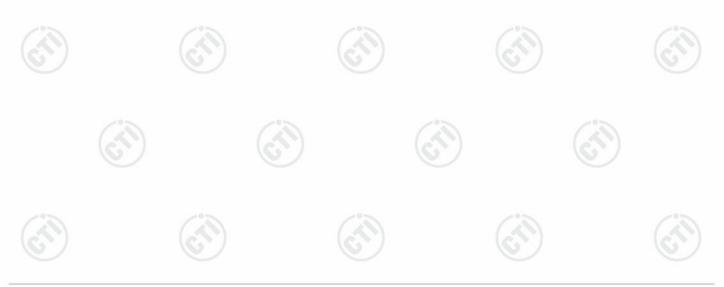
Product Name:	New Energy	Vehicle Detection Tool				
Model No.:	iSmartEV P0	iSmartEV P01				
Trade mark:	SmartSafe	SmartSafe				
Product Type:	Portable					
Type of Modulation:	IEEE 802.11ac(VHT20/VHT40/VHT80/VHT160): OFDM (BPSK, QPSK, 16QAM, 256QAM) perating Frequency U-NII-1 : 5150-5250MHz u-NII-3:5745-5825MHz internal antenna					
Operating Frequency						
Antenna Type:						
Antenna Gain:						
Power Supply:	Adapter:	model: C1902XZ/C1902XA/C1902XJ input: 100-240V~50/60Hz,0.5A Output: PD:5.0V,3.0A/9.0V,2.22A/12.0V,1.67A, MAX:20.0W				
	Battery:	DC 3.8V,9360mAh,35.568Wh				
Test voltage:	DC 3.8V					
Sample Received Date:	Aug. 19, 202	2				
Sample tested Date:	Aug. 19, 2022 to Sep. 07, 2022					

Operation Frequency each of channel:

802.11a/802.11n/802.11ac (20MHz) Frequency/Channel Operations:

	U-NII-1		U-NII-3			
	Channel	Frequency(MHz)	requency(MHz) Channel Frequen			
	36	5180	149	5745		
1	40	5200	153	5765		
	44	5220	157	5785		
	48	5240	161	5805		
	. (0	9.	165	5825		

802.11n/802.11ac (40MHz) Frequency/Channel Operations:


U-NII-1			U-NII-3
Channel Frequency(MHz) Channel Frequency		Frequency(MHz)	
38	5190	151	5755
46	5230	159	5795

802.11ac (80MHz) Frequency/Channel Operations:

	U-NII-1		U-NII-3
Channel	Frequency(MHz)	Channel	Frequency(MHz)
42	5210	155	5775

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

5.3 Test Configuration

EUT Test Software Settin	ngs:
Software:	RF test
EUT Power Grade:	Class2 (Power level is built-in set parameters and cannot be changed and selected)
Lies to st asftware to ast th	a lowest frequency, the middle frequency and the highest frequency keep

Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.

Test Mode:

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11a	6 Mbps	
802.11n(HT20)	MCS0	
802.11n(HT40)	MCS0	
802.11ac(VHT20)	MCS0	
802.11ac(VHT40)	MCS0	
802.11ac(VHT80)	MCS0	
802.11ac(VHT160)	MCS0	

5.4 Test Environment

Radiated Spurious Emission	s:				
Temperature:	22~25.0 °C		V		V
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar	-075			
Conducted Emissions:					
Temperature:	22~25.0 °C	6		0	
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar				
RF Conducted:					
Humidity:	50~55 % RH		(\mathcal{C})		6
Atmospheric Pressure:	1010mbar		\sim		\sim
	NT (Normal Temperature)		22~25.0 °C		
Temperature:	LT (Low Temperature)	13	-10 °C	~°>>	
	HT (High Temperature)	(\mathcal{A})	50.0 °C	(\mathcal{A})	
	NV (Normal Voltage)	U	DC3.80 V	U	
Working Voltage of the EUT:	LV (Low Voltage)		DC3.42 V		
	HV (High Voltage)		DC4.18V		-
) (1)	(1)		(\mathcal{A})		61

5.5 Description of Support Units

The EUT has been tested independently.

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
0		0.46dB (30MHz-1GHz)	
2	Radio Frequency	0.55dB (1GHz-18GHz)	
	\sim	3.3dB (9kHz-30MHz)	
2	Dedicted On winner emission to st	4.5dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.8dB (1GHz-18GHz)	
(\sim)		3.4dB (18GHz-40GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	4.5dB (30MHz-1GHz) 4.8dB (1GHz-18GHz) 3.4dB (18GHz-40GHz) 3.5dB (9kHz to 150kHz) 3.1dB (150kHz to 30MHz)	
	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

6 Equipment List

	RF test system									
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)					
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022					
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022					
Spectrum Analyzer	R&S	FSV40	101200	07-29-2022	07-28-2023					
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022					
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022					
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022					
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022					
Communication test set	R&S	CMW500	120765	12-22-2021	12-21-2022					
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022					
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023					
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518	6	9					

	Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Receiver	R&S	ESCI	100435	05-04-2022	05-05-2023				
Temperature/ Humidity Indicator	Defu	TH128	1						
LISN	R&S	ENV216	100098	03-01-2022	02-28-2023				
Barometer	changchun	DYM3	1188		G)				

Page 10 of 57

	3M Semi-an	echoic Chamber (2)	- Radiated distu	Irbance Test	
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938-003	10/14/2021	10/13/2022
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2023
Multi device Controller	maturo	NCD/070/10711112	(B)	(2)	·
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/17/2021	04/16/2024
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2022	06/19/2023

Page 11 of 57

		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023
Fully Anechoic Chamber	трк	FAC-3	0	01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		-
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		e
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	- 6) -
Cable line	Times	SFT205-NMSM-3.00M	394813-0001		
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	(A)	-(2)
Cable line	Times	HF160-KMKM-3.00M	393493-0001	<u> </u>	<u>e</u>

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 12 of 57

7 Radio Technical Requirements Specification

7.1 Antenna Requirement

7.1	Antenna Require	ment						
	Standard requirement:	47 CFR Part 150	C Section 15.203	~~~	100			
5	15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the ur so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.							
	EUT Antenna:	Please see Inter	nal photos	9	3			
	antenna is internal antenna VIFI BAND4: 5.58dBi	i. The best case gain	of the antenna are	5G WIFI BAND1:	3.39dBi and			
	(T)	Ċ		(rth	(A)			

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

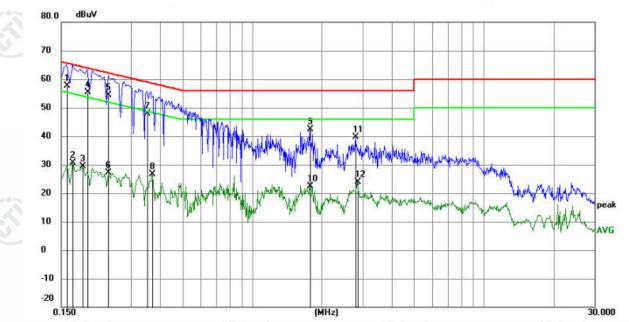
Page 13 of 57

Test Requirement:	47 CFR Part 15C Section 15.	207	
Test Method:	ANSI C63.10: 2013		
Test Frequency Range:	150kHz to 30MHz		(2)
Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	Sweep time=auto	6
Limit:		Limit (dBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarith	m of the frequency.	
Test Setup:			
	AC Mains	AE	Test Receiver
Test Procedure:	 The mains terminal distur room. The EUT was connected Impedance Stabilization N impedance. The power connected to a second LI plane in the same way multiple socket outlet strip single LISN provided the r The tabletop EUT was pl ground reference plane. A placed on the horizontal g The test was performed w the EUT shall be 0.4 m vertical ground reference reference plane. The LIS unit under test and bor mounted on top of the arc 	to AC power source Network) which provide cables of all other SN 2, which was bond as the LISN 1 for the owas used to connect rating of the LISN was aced upon a non-met And for floor-standing a ground reference plane ith a vertical ground ref from the vertical gro e plane was bonded N 1 was placed 0.8 m anded to a ground ref	e through a LISN 1 (L es a $50\Omega/50\mu$ H + 5Ω lin units of the EUT w ed to the ground reference of unit being measured multiple power cables to not exceeded. allic table 0.8m above arrangement, the EUT w efference plane. The real und reference plane. The to the horizontal group from the boundary of
	the closest points of the and associated equipmen		

ANSI C63.10: 2013 on conducted measurement.

G

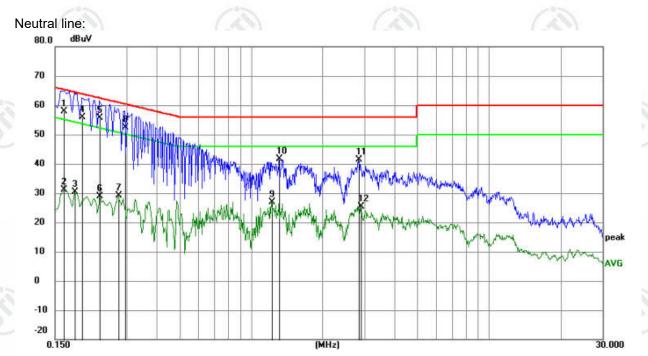
Report No. : EED32O81173004


Page 14 of 57

Test Mode:			ly the worst c	rded in the rep	port.
Test Results	s:	Pass			

Live line:

Page 15 of 57


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1590	47.73	9.87	57.60	65.52	-7.92	QP	
2	0.1680	20.83	9.87	30.70	55.06	-24.36	AVG	
3	0.1860	19.55	9.87	29.42	54.21	-24.79	AVG	
4	0.1949	45.63	9.87	55.50	63.83	-8.33	QP	
5 *	0.2400	44.55	9.95	54.50	62.10	-7.60	QP	
6	0.2400	17.18	9.95	27.13	52.10	-24.97	AVG	
7	0.3525	37.88	10.02	47.90	58.90	-11.00	QP	
8	0.3704	16.72	10.00	26.72	48.49	-21.77	AVG	
9	1.7745	32.54	9.80	42.34	56.00	-13.66	QP	
10	1.7745	12.53	9.80	22.33	46.00	-23.67	AVG	
11	2.8005	29.90	9.79	39.69	56.00	-16.31	QP	
12	2.8455	14.12	9.79	23.91	46.00	-22.09	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 16 of 57

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1635	48.03	9.87	57.90	65.28	-7.38	QP	
2		0.1635	21.15	9.87	31.02	55.28	-24.26	AVG	
3		0.1815	20.49	9.87	30.36	54.42	-24.06	AVG	
4		0.1949	45.93	9.87	55.80	63.83	-8.03	QP	
5	*	0.2310	45.77	9.93	55.70	62.41	-6.71	QP	
6		0.2310	19.01	9.93	28.94	52.41	-23.47	AVG	
7		0.2760	19.08	10.02	29.10	50.94	-21.84	AVG	
8		0.2940	42.24	10.06	52.30	60.41	-8.11	QP	
9		1.2210	17.11	9.82	26.93	46.00	-19.07	AVG	
10		1.3110	31.71	9.82	41.53	56.00	-14.47	QP	
11		2.8320	31.61	9.79	41.40	56.00	-14.60	QP	
12		2.8860	15.69	9.79	25.48	46.00	-20.52	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

7.3 Maximum Conducted Output Power

	Test Requirement:	47 CFR Part 15C S	Section 15.407 (a)	
	Test Method:	KDB789033 D02 G E	General UNII Tes	t Procedures New Rule	s v02r01 Section
9	Test Setup:	6	9		0
		Control Computer Power Supply TEMPERATURE CABI	Attenuator	RF test – System Instrument	
6		Labre			
	Test Procedure:	General UNII Test I 2. The RF output of attenuator. The pat measurement. 3. Set to the maxim continuously.	Procedures New f EUT was conne th loss was comp num power settin	nent Procedure of KDB78 Rules v02r01 Section E acted to the power meter pensated to the results fo g and enable the EUT tra ower and record the resu	, 3, a by RF cable and r each ansmit
	Limit:	6		<u> </u>	0
		Frequency band (MHz)	Limit		
		5150-5250	≤1W(30dBm) fo	or master device 🛛 🦯	2
			≤250mW(24dB	m) for client device	
		5250-5350	≤250mW(24dB	m) for client device or 11	ldBm+10logB*
		5470-5725	≤250mW(24dB	m) for client device or 11	ldBm+10logB*
105		5725-5850	≤1W(30dBm)	- 0 5	- 0.5
्र		Remark:	The maximum measured over	e 26dB emission bandwi conducted output power any interval of continuou ntation calibrated in term age.	must be us transmission
	Test Mode:	Transmitting mode	with modulation	C C	0

7.4 6dB Emisson Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.407 (e)	
(3	Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Se	ction
0	Test Setup:	RF test	3)
		Control Computer Power Supply Power TemPERATURE CABRIET Table	
S		Remark: Offset=Cable loss+ attenuation factor.	3)
	Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandw (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater the 500 kHz. 	0
(\mathcal{A})	Limit:	 4. Measure and record the results in the test report. ≥ 500 kHz 	<u>()</u>
C	Test Mode:	Transmitting mode with modulation	Ì
	Test Results:	Refer to Appendix 5G WIFI Band 1,4 of module 1	


Page 19 of 57

7.5 26dB Emission Bandwidth and 99% Occupied Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.407 (a)
13	Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D
C C	Test Setup:	
(A)		RF test System Instrument RF test System Instrument Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. Measure and record the results in the test report.
	Limit:	No restriction limits
(3)	Test Mode:	Transmitting mode with modulation
C	Test Results:	Refer to Appendix 5G WIFI Band 1,4 of module 1

7.6 Maximum Power Spectral Density

	Test Requirement:	47 CFR Part 15C S	Section 15.407 (a))						
15	Test Method:	KDB789033 D02 G	eneral UNII Test	Procedures New Rul	es v02r01 Section F					
Ś	Test Setup:	(6	S~)	(25)	(St.)					
		Control Computer Computer Poter Supply TEMPERATURE CAB	Attenuator	RF test System Instrument						
<u>୍</u>		Remark: Offset=Ca								
	Test Procedure:	bandwidth. 1. Set F Auto, Detector = R 2. Allow the sweep	RBW = 510 kHz/1 MS. s to continue until	receiver span to view MHz, VBW \geq 3*RBW the trace stabilizes.	/, Sweep time =					
	Limit:		U		\bigcirc					
		Frequency band (MHz)	Limit							
1		5150-5250	≤17dBm in 1MF	Iz for master device						
5		(((((((((((((((((((≤11dBm in 1MF	Iz for client device	67					
~		5250-5350	≤11dBm in 1MF	Iz for client device	\bigcirc					
		5470-5725	≤11dBm in 1MF	Iz for client device						
		5725-5850	≤30dBm in 500	kHz						
		Remark:	a conducted en	power spectral density hission by direct conn nstrument to the equi	ection of a					
	Test Mode:	Transmitting mode with modulation								
~~~	Test Results:	Refer to Appendix	5G WIFI Band 1,4	1 of module 1	23					
<u>()</u>	67)	Ć	5)	6	67)					







Page 21 of 57

# 7.7 Frequency Stability

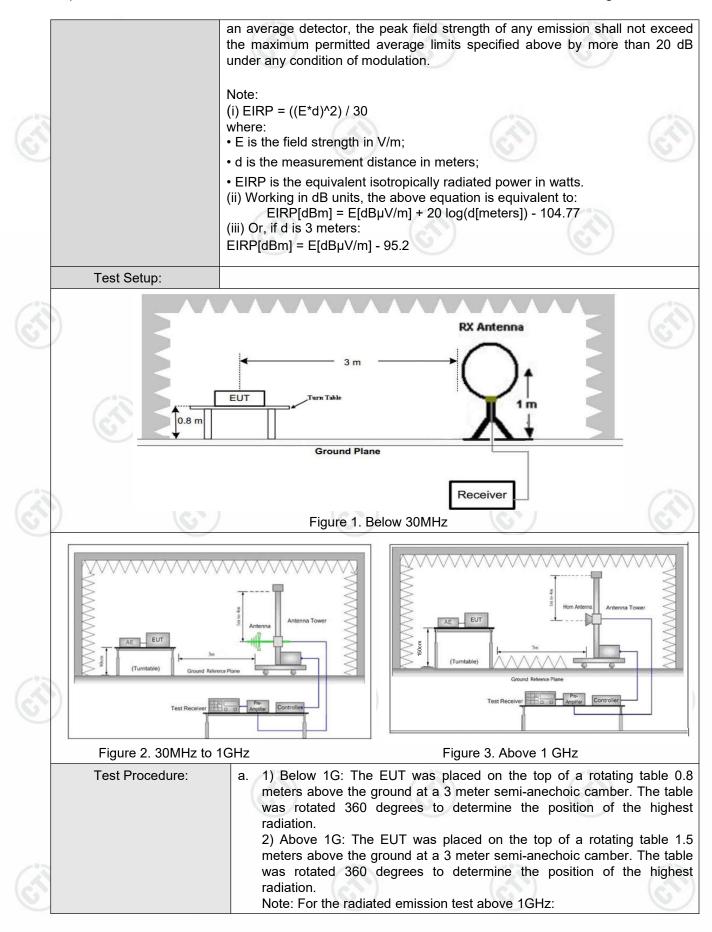
Test Requirement:	47 CFR Part 15C Section 15.407 (g	1)							
Test Method:	ANSI C63.10: 2013	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12						
Test Setup:	(25)	(20)							
	Control Computer Power Supply TEMPERATURE CABRIET Table	RF test — System Instrument	0						
	Remark: Offset=Cable loss+ attenu		$\bigcirc$						
Test Procedure:	<ol> <li>The EUT was placed inside the e by nominal AC/DC voltage.</li> <li>Turn the EUT on and couple its of 3. Turn the EUT off and set the charspecified. d. Allow sufficient time (a of the chamber to stabilize.</li> <li>Repeat step 2 and 3 with the terr temperature.</li> <li>The test chamber was allowed to of 30 minutes. The supply voltage v 115% and the frequency record.</li> </ol>	output to a spectrum mber to the highest pproximately 30 min operature chamber so o stabilize at +20 de vas then adjusted o	n analyzer. temperature n) for the temperature set to the lowest gree C for a minimum n the EUT from 85% to						
Limit:	frequency over a temperature val normal supply voltage, and for a val	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.							
Test Mode:	Transmitting mode with modulation								
Test Results:	Refer to Appendix 5G WIFI Band 1	4 of module 1	6						





## 7.8 Radiated Emission

	Test Requirement:	47 CFR Part 15C Sec	tion 1	5.209 and 1	5.407 (b)			
	Test Method:	ANSI C63.10 2013						
	Test Site:	Measurement Distanc	e: 3n	n (Semi-Aneo	choic Cha	mbe	r)	
9	Receiver Setup:	Frequency	)	Detector	RB	W	VBW	Remark
		0.009MHz-0.090MH	Ηz	Peak	10kl	Hz	30kHz	Peak
		0.009MHz-0.090MH	Ηz	Average	10kl	Hz	30kHz	Average
		0.090MHz-0.110MH	Ηz	Quasi-pea	k 10kl	Hz	30kHz	Quasi-peak
		0.110MHz-0.490MH	Ηz	Peak	10kl	Ηz	30kHz	Peak
		0.110MHz-0.490MH	Ηz	Average	10kl	Hz	30kHz	Average
		0.490MHz -30MH	z	Quasi-pea	k 10kl	Hz	30kHz	Quasi-peak
23		30MHz-1GHz	0	Quasi-pea	k 100 k	κHz	300kHz	Quasi-peak
5		Above 1GHz	9	Peak	1MH	Ηz	3MHz	Peak
~		Above IGHZ	_	Peak	1MH	Ηz	10kHz	Average
	Limit:	Frequency		ld strength rovolt/meter)	Limit (dBuV/m	) F	Remark	Measuremen distance (m)
		0.009MHz-0.490MHz	24	00/F(kHz)	-		6	300
		0.490MHz-1.705MHz	24	000/F(kHz)	-		-	30
		1.705MHz-30MHz		30	-		-	30
2		30MHz-88MHz	10	100	40.0	Qu	iasi-peak	3
		88MHz-216MHz	7	150	43.5	Qu	iasi-peak	3
		216MHz-960MHz		200	46.0	Qu	iasi-peak	3
		960MHz-1GHz		500	54.0	Qu	iasi-peak	3
		Above 1GHz		500	54.0	A	verage	3
		<ul> <li>*(1) For transmitters outside of the 5.15- dBm/MHz.</li> <li>(2) For transmitters op of the 5.15-5.35 GHz I (3) For transmitters of outside of the 5.47-5 dBm/MHz.</li> <li>(4) For transmitters op (i) All emissions shall above or below the be above or below the be edge increasing linear the band edge, and f linearly to a level of 27 Remark: The emissi</li> </ul>	5.35 berati operation operation be line and end ly to from 7 dBn	GHz band ng in the 5.2 shall not exc ating in the 5 GHz band ng in the 5.7 nited to a leve edge increas edge, and fi a level of 15 5 MHz abov n/MHz at the	shall no 5-5.35 GF ceed an e. 5.47-5.72 shall no 25-5.85 G vel of -27 ing linear rom 25 M 5.6 dBm/N ve or belo band edg	t ex Hz ba i.r.p. 25 C ot ex Hz b dBn ly to IHz a AHz ow t Je.	and: All em of -27 dB GHz band: xceed an pand: n/MHz at 7 10 dBm/N above or b at 5 MHz he band e	e.i.r.p. of -2 missions outside m/MHz. All emissions e.i.r.p. of -2 5 MHz or more MHz at 25 MH below the band above or below edge increasing
		measurements emploin frequency bands 9-9 emission limits in the	oying 0kHz	a CISPR z, 110-490k	quasi-pe Hz and	ak abo∖	detector e /e 1000 l	except for the MHz. Radiated








# Ì

Page 23 of 57



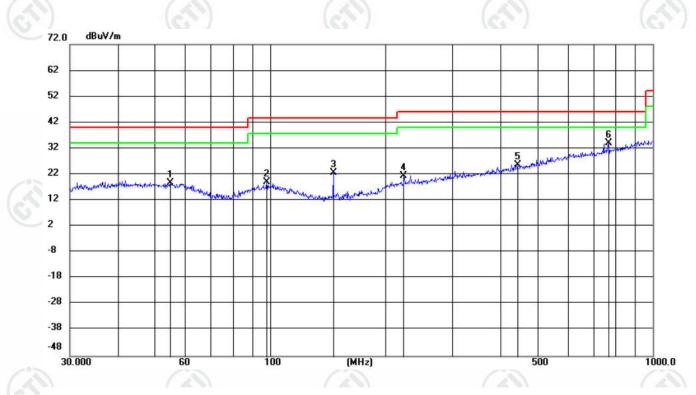






## Page 24 of 57

<ul> <li>of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.</li> <li>b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li> <li>f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.</li> <li>g. Test the EUT in the lowest channel, the middle channel and the highest channel</li> <li>h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.</li> <li>i. Repeat above procedures until all frequencies mea</li></ul>	Test Results:	Pass
<ul> <li>of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.</li> <li>b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li> <li>f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.</li> <li>g. Test the EUT in the lowest channel, the middle channel and the highest channel</li> <li>h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.</li> </ul>	Test Mode:	Transmitting mode with modulation
<ul> <li>of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.</li> <li>b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li> <li>f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.</li> <li>g. Test the EUT in the lowest channel, the middle channel and the highest channel</li> </ul>		for Transmitting mode, and found the X axis positioning which it is the worst case.
<ul> <li>of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.</li> <li>b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li> <li>f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB</li> </ul>	S.	g. Test the EUT in the lowest channel, the middle channel and the highest channel
<ul> <li>of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.</li> <li>b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>e. The test-receiver system was set to Peak Detect Function and Specified</li> </ul>	~*>	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or
<ul> <li>of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.</li> <li>b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360</li> </ul>		e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
<ul> <li>of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.</li> <li>b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> </ul>	^{ری}	and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360
<ul> <li>of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.</li> <li>b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna</li> </ul>		ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from		antenna, which was mounted on the top of a variable-height antenna
	Ĩ	Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.








## Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 6Mbps for 802.11 a was recorded in the report.



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	54.8348	4.96	13.93	18.89	40.00	-21.11	QP	200	129	
2	98.1418	5.11	13.80	18.91	43.50	-24.59	QP	100	30	
3	146.3734	12.89	9.74	22.63	43.50	-20.87	QP	200	356	
4	223.7333	6.94	14.60	21.54	46.00	-24.46	QP	100	171	
5	443.2942	5.36	20.32	25.68	46.00	-20.32	QP	200	356	
6 *	766.0571	8.20	25.83	34.03	46.00	-11.97	QP	200	356	














Page 26 of 57



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		52.2078	5.93	14.11	20.04	40.00	-19.96	QP	100	356	
2		101.2885	4.85	13.87	18.72	43.50	-24.78	QP	200	4	
3		223.7333	7.53	14.60	22.13	46.00	-23.87	QP	200	49	
4	3	404.6665	4.81	19.49	24.30	46.00	-21.70	QP	200	59	
5		519.0649	5.18	22.01	27.19	46.00	-18.81	QP	100	46	
6	*	766.0571	7.87	25.83	33.70	46.00	-12.30	QP	100	356	





#### **Transmitter Emission above 1GHz**

Remark: Through Pre-scan, for 20MHz Occupied Bandwidth, 802.11 a mode was the worst case; for 40MHz Occupied Bandwidth, 802.11 n(HT40) mode was the worst case; only the worst case was recorded in the report.

					10.0		( in the second s			
M	ode:			802.11 a Tran	smitting		Chann	el:	5180MHz	
N	0	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1	256.3256	1.01	40.57	41.58	68.20	26.62	PASS	Horizontal	PK
2	2 1	988.4488	4.57	39.48	44.05	68.20	24.15	PASS	Horizontal	PK
3	3 2	688.6689	5.50	38.82	44.32	68.20	23.88	PASS	Horizontal	PK
4	l 7	573.5787	-10.73	53.40	42.67	68.20	25.53	PASS	Horizontal	PK
5	5 10	0233.6617	-6.77	53.11	46.34	68.20	21.86	PASS	Horizontal	PK
6	5 14	4411.2456	0.48	49.15	49.63	68.20	18.57	PASS	Horizontal	PK
7	7 1	333.3333	1.25	42.59	43.84	68.20	24.36	PASS	Vertical	PK
6	3 1	945.5446	4.39	40.20	44.59	68.20	23.61	PASS	Vertical	PK
g	) 2	925.7426	6.36	38.90	45.26	68.20	22.94	PASS	Vertical	PK
1	0 8	982.3991	-8.55	55.29	46.74	68.20	21.46	PASS	Vertical	PK
1	1 13	3652.7826	-1.69	50.67	48.98	68.20	19.22	PASS	Vertical	PK
1	2 16	6974.7237	2.92	49.81	52.73	68.20	15.47	PASS	Vertical	PK

	Mode:	:	80	)2.11 a Tran	smitting		Channe	el:	5200MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
-	1	1404.2904	1.45	40.05	41.50	68.20	26.70	PASS	Horizontal	PK
	2	2042.3542	4.80	39.04	43.84	68.20	24.36	PASS	Horizontal	PK
	3	3168.8669	6.92	39.26	46.18	68.20	22.02	PASS	Horizontal	PK
	4	9028.4014	-8.47	52.85	44.38	68.20	23.82	PASS	Horizontal	PK
	5	11954.7227	-5.11	52.54	47.43	68.20	20.77	PASS	Horizontal	PK
	6	14398.5949	0.62	49.35	49.97	68.20	18.23	PASS	Horizontal	PK
	7	1269.5270	1.05	40.29	41.34	68.20	26.86	PASS	Vertical	PK
-0	8	1977.9978	4.53	40.11	44.64	68.20	23.56	PASS	Vertical	PK
	9	3084.1584	6.78	38.69	45.47	68.20	22.73	PASS	Vertical	PK
2	10	8992.7496	-8.46	56.82	48.36	68.20	19.84	PASS	Vertical	PK
	11	12500.4250	-4.27	52.38	48.11	68.20	20.09	PASS	Vertical	PK
	12	14357.1929	0.18	50.75	50.93	68.20	17.27	PASS	Vertical	PK





Page 28 of 57

				(1)		1.1		1	112	
Ν	/lode:		80	)2.11 a Tran	smitting		Channe	el:	5745MHz	
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
- 0	1	1437.8438	1.86	40.35	42.21	68.20	25.99	PASS	Horizontal	PK
	2	2466.9967	5.25	39.47	44.72	68.20	23.48	PASS	Horizontal	PK
-	3	3054.4554	7.41	38.86	46.27	68.20	21.93	PASS	Horizontal	PK
	4	8982.6322	-8.55	53.37	44.82	68.20	23.38	PASS	Horizontal	PK
	5	11814.8877	-6.09	52.81	46.72	68.20	21.48	PASS	Horizontal	PK
	6	14310.5540	-0.33	49.91	49.58	68.20	18.62	PASS	Horizontal	PK
	7	1279.9780	1.53	40.85	42.38	68.20	25.82	PASS	Vertical	PK
	8	2008.2508	5.13	39.89	45.02	68.20	23.18	PASS	Vertical	PK
	9	2707.9208	6.15	39.13	45.28	68.20	22.92	PASS	Vertical	PK
-0	10	8994.8997	-8.44	57.05	48.61	68.20	19.59	PASS	Vertical	PK
4	11	12434.3956	-4.10	51.77	47.67	68.20	20.53	PASS	Vertical	PK
3	12	16494.9330	0.37	50.53	50.90	68.20	17.30	PASS	Vertical	PK

	Mode	:	80	02.11 a Tran	smitting		Channe	el:	5785MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1512.6513	2.02	39.81	41.83	68.20	26.37	PASS	Horizontal	PK
	2	2706.8207	6.14	39.72	45.86	68.20	22.34	PASS	Horizontal	PK
-6	3	3809.6810	9.40	37.04	46.44	68.20	21.76	PASS	Horizontal	PK
1	4	9172.7782	-7.98	52.79	44.81	68.20	23.39	PASS	Horizontal	PK
2	5	11778.8519	-6.11	54.82	48.71	68.20	19.49	PASS	Horizontal	PK
	6	16937.3292	2.76	52.07	54.83	68.20	13.37	PASS	Horizontal	PK
	7	1436.1936	1.86	40.75	42.61	68.20	25.59	PASS	Vertical	PK
	8	2522.5523	5.50	39.77	45.27	68.20	22.93	PASS	Vertical	PK
	9	3476.8977	8.32	37.98	46.30	68.20	21.90	PASS	Vertical	PK
	10	8995.6664	-8.44	56.98	48.54	68.20	19.66	PASS	Vertical	PK
	11	11063.5042	-6.20	52.70	46.50	68.20	21.70	PASS	Vertical	PK
	12	13079.2053	-3.20	51.93	48.73	68.20	19.47	PASS	Vertical	PK







Page 29 of 57

				(10)		11		1	112	
	Mode:			802.11 a Tran	smitting		Channe	el:	5825MHz	
	NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
-	1	1330.0330	1.69	41.50	43.19	68.20	25.01	PASS	Horizontal	PK
3	2	2063.2563	5.43	39.03	44.46	68.20	23.74	PASS	Horizontal	PK
~	3	3193.0693	7.81	38.48	46.29	68.20	21.91	PASS	Horizontal	PK
	4	8946.5964	-8.87	52.49	43.62	68.20	24.58	PASS	Horizontal	PK
	5	12501.1001	-4.27	52.22	47.95	68.20	20.25	PASS	Horizontal	PK
	6	16941.1627	2.78	50.99	53.77	68.20	14.43	PASS	Horizontal	PK
	7	1331.1331	1.70	42.35	44.05	68.20	24.15	PASS	Vertical	PK
	8	1993.9494	5.06	40.38	45.44	68.20	22.76	PASS	Vertical	PK
	9	3199.1199	7.82	40.25	48.07	68.20	20.13	PASS	Vertical	PK
20	10	8986.4658	-8.52	57.85	49.33	68.20	18.87	PASS	Vertical	PK
A	11	11772.7182	-6.09	53.45	47.36	68.20	20.84	PASS	Vertical	PK
Q	12	13662.6775	-1.70	51.45	49.75	68.20	18.45	PASS	Vertical	PK

	Mode	:		802.11 n(HT4	0) Transmitti	ng	Channe	el:	5190MHz	
	NO	Freq. [MHz]	Facto [dB]		Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1	1384.4884	1.40	39.66	41.06	68.20	27.14	PASS	Horizontal	PK
	2	2542.3542	5.16	38.94	44.10	68.20	24.10	PASS	Horizontal	PK
(4	3	3234.8735	7.12	38.35	45.47	68.20	22.73	PASS	Horizontal	PK
6	4	9624.7062	-7.39	54.41	47.02	68.20	21.18	PASS	Horizontal	PK
	5	12440.0470	-4.11	52.32	48.21	68.20	19.99	PASS	Horizontal	PK
	6	16453.7477	0.09	51.62	51.71	68.20	16.49	PASS	Horizontal	PK
	7	1512.1012	1.69	40.10	41.79	68.20	26.41	PASS	Vertical	PK
	8	2537.4037	5.17	38.56	43.73	68.20	24.47	PASS	Vertical	PK
	9	3809.1309	8.58	37.69	46.27	68.20	21.93	PASS	Vertical	PK
	10	8988.1494	-8.50	56.11	47.61	68.20	20.59	PASS	Vertical	PK
	11	13722.3611	-1.89	51.68	49.79	68.20	18.41	PASS	Vertical	PK
0	12	16974.7237	2.92	50.40	53.32	68.20	14.88	PASS	Vertical	PK
C.	$\sim$ )		63	-)	67	)	(6)			6.

















## Page 30 of 57

				(1)	(	1.1		1	112	
	Mode	:		802.11 n(HT4	0) Transmitti	ing	Channe	el:	5230MHz	
	NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	1313.5314	1.19	40.27	41.46	68.20	26.74	PASS	Horizontal	PK
ć	2	2173.2673	4.23	38.82	43.05	68.20	25.15	PASS	Horizontal	PK
~	3	3323.9824	7.43	37.97	45.40	68.20	22.80	PASS	Horizontal	PK
	4	8395.8698	-10.67	7 53.43	42.76	68.20	25.44	PASS	Horizontal	PK
	5	10303.8152	-6.25	52.10	45.85	68.20	22.35	PASS	Horizontal	PK
	6	12394.0447	-4.10	52.12	48.02	68.20	20.18	PASS	Horizontal	PK
	7	1329.4829	1.24	42.03	43.27	68.20	24.93	PASS	Vertical	PK
	8	1928.4928	4.31	40.55	44.86	68.20	23.34	PASS	Vertical	PK
	9	3802.5303	8.56	36.85	45.41	68.20	22.79	PASS	Vertical	PK
-	10	7468.3484	-11.3	5 57.64	46.29	68.20	21.91	PASS	Vertical	PK
	11	8996.7748	-8.43	57.21	48.78	68.20	19.42	PASS	Vertical	PK
Q	12	13747.6624	-2.07	51.57	49.50	68.20	18.70	PASS	Vertical	PK

Mode:			802.11 n(HT4	0) Transmitti	ng	Channe	el:	5755MHz		
NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1441.6942	1.86	39.65	41.51	68.20	26.69	PASS	Horizontal	PK	
2	2447.7448	5.14	39.48	44.62	68.20	23.58	PASS	Horizontal	PK	
3	3509.3509	8.30	36.81	45.11	68.20	23.09	PASS	Horizontal	PK	
4	9233.3489	-7.67	52.79	45.12	68.20	23.08	PASS	Horizontal	PK	
5	12442.0628	-4.12	52.05	47.93	68.20	20.27	PASS	Horizontal	PK	
6	14380.3254	0.43	49.31	49.74	68.20	18.46	PASS	Horizontal	PK	
7	1436.7437	1.86	40.34	42.20	68.20	26.00	PASS	Vertical	PK	
8	2277.7778	4.56	39.46	44.02	68.20	24.18	PASS	Vertical	PK	
9	3953.2453	10.06	36.92	46.98	68.20	21.22	PASS	Vertical	PK	
10	8993.3662	-8.46	56.72	48.26	68.20	19.94	PASS	Vertical	PK	
11	11151.6768	-6.06	52.22	46.16	68.20	22.04	PASS	Vertical	PK	
12	13638.9093	-1.67	50.36	48.69	68.20	19.51	PASS	Vertical	PK	
	NO 1 2 3 4 5 6 7 8 9 10 11	NO         Freq. [MHz]           1         1441.6942           2         2447.7448           3         3509.3509           4         9233.3489           5         12442.0628           6         14380.3254           7         1436.7437           8         2277.7778           9         3953.2453           10         8993.3662           11         11151.6768	NO         Freq. [MHz]         Factor [dB]           1         1441.6942         1.86           2         2447.7448         5.14           3         3509.3509         8.30           4         9233.3489         -7.67           5         12442.0628         -4.12           6         14380.3254         0.43           7         1436.7437         1.86           8         2277.7778         4.56           9         3953.2453         10.06           10         8993.3662         -8.46           11         11151.6768         -6.06	NOFreq. [MHz]Factor [dB]Reading [dBµV]11441.69421.8639.6522447.74485.1439.4833509.35098.3036.8149233.3489-7.6752.79512442.0628-4.1252.05614380.32540.4349.3171436.74371.8640.3482277.77784.5639.4693953.245310.0636.92108993.3662-8.4656.721111151.6768-6.0652.22	NOFreq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV]11441.69421.8639.6541.5122447.74485.1439.4844.6233509.35098.3036.8145.1149233.3489-7.6752.7945.12512442.0628-4.1252.0547.93614380.32540.4349.3149.7471436.74371.8640.3442.2082277.77784.5639.4644.0293953.245310.0636.9246.98108993.3662-8.4656.7248.261111151.6768-6.0652.2246.16	NOFreq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]11441.69421.8639.6541.5168.2022447.74485.1439.4844.6268.2033509.35098.3036.8145.1168.2049233.3489-7.6752.7945.1268.20512442.0628-4.1252.0547.9368.20614380.32540.4349.3149.7468.2071436.74371.8640.3442.2068.2082277.77784.5639.4644.0268.2093953.245310.0636.9246.9868.20108993.3662-8.4656.7248.2668.201111151.6768-6.0652.2246.1668.20	NOFreq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]Margin [dB]11441.69421.8639.6541.5168.2026.6922447.74485.1439.4844.6268.2023.5833509.35098.3036.8145.1168.2023.0949233.3489-7.6752.7945.1268.2023.08512442.0628-4.1252.0547.9368.2020.27614380.32540.4349.3149.7468.2018.4671436.74371.8640.3442.2068.2026.0082277.77784.5639.4644.0268.2024.1893953.245310.0636.9246.9868.2021.22108993.3662-8.4656.7248.2668.2019.941111151.6768-6.0652.2246.1668.2022.04	NOFreq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV]Limit [dBµV/m]Margin [dB]Result11441.69421.8639.6541.5168.2026.69PASS22447.74485.1439.4844.6268.2023.58PASS33509.35098.3036.8145.1168.2023.09PASS49233.3489-7.6752.7945.1268.2023.08PASS512442.0628-4.1252.0547.9368.2020.27PASS614380.32540.4349.3149.7468.2018.46PASS71436.74371.8640.3442.2068.2024.18PASS93953.245310.0636.9246.9868.2021.22PASS108993.3662-8.4656.7248.2668.2019.94PASS1111151.6768-6.0652.2246.1668.2022.04PASS	NO         Freq. [MHz]         Factor [dB]         Reading [dBµV]         Level [dBµV/m]         Limit [dBµV/m]         Margin [dB]         Result         Polarity           1         1441.6942         1.86         39.65         41.51         68.20         26.69         PASS         Horizontal           2         2447.7448         5.14         39.48         44.62         68.20         23.58         PASS         Horizontal           3         3509.3509         8.30         36.81         45.11         68.20         23.09         PASS         Horizontal           4         9233.3489         -7.67         52.79         45.12         68.20         20.27         PASS         Horizontal           5         12442.0628         -4.12         52.05         47.93         68.20         20.27         PASS         Horizontal           6         14380.3254         0.43         49.31         49.74         68.20         18.46         PASS         Horizontal           7         1436.7437         1.86         40.34         42.20         68.20         24.18         PASS         Vertical           8         2277.7778         4.56         39.46         44.02         68.20         21.22	











Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com





# Page 31 of 57

		100		10			6	
e:	80	02.11 n(HT4	0) Transmitti	ing	Channe	el:	5795MHz	
Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1407.5908	1.83	40.49	42.32	68.20	25.88	PASS	Horizontal	PK
2097.9098	5.62	38.62	44.24	68.20	23.96	PASS	Horizontal	PK
3317.3817	8.29	37.96	46.25	68.20	21.95	PASS	Horizontal	PK
8369.2580	-10.77	52.86	42.09	68.20	26.11	PASS	Horizontal	PK
10453.1969	-6.39	51.67	45.28	68.20	22.92	PASS	Horizontal	PK
12447.4298	-4.13	52.23	48.10	68.20	20.10	PASS	Horizontal	PK
1405.9406	1.83	39.63	41.46	68.20	26.74	PASS	Vertical	PK
2552.8053	5.58	39.04	44.62	68.20	23.58	PASS	Vertical	PK
4100.6601	10.45	36.27	46.72	68.20	21.48	PASS	Vertical	PK
7489.0659	-11.30	56.47	45.17	68.20	23.03	PASS	Vertical	PK
8987.2325	-8.51	57.75	49.24	68.20	18.96	PASS	Vertical	PK
12448.1965	-4.14	51.43	47.29	68.20	20.91	PASS	Vertical	PK
	Freq. [MHz] 1407.5908 2097.9098 3317.3817 8369.2580 10453.1969 12447.4298 1405.9406 2552.8053 4100.6601 7489.0659 8987.2325	Freq. [MHz]Factor [dB]1407.59081.832097.90985.623317.38178.298369.2580-10.7710453.1969-6.3912447.4298-4.131405.94061.832552.80535.584100.660110.457489.0659-11.308987.2325-8.51	Freq. [MHz]Factor [dB]Reading [dBµV]1407.59081.8340.492097.90985.6238.623317.38178.2937.968369.2580-10.7752.8610453.1969-6.3951.6712447.4298-4.1352.231405.94061.8339.632552.80535.5839.044100.660110.4536.277489.0659-11.3056.478987.2325-8.5157.75	Freq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV]1407.59081.8340.4942.322097.90985.6238.6244.243317.38178.2937.9646.258369.2580-10.7752.8642.0910453.1969-6.3951.6745.2812447.4298-4.1352.2348.101405.94061.8339.6341.462552.80535.5839.0444.624100.660110.4536.2746.727489.0659-11.3056.4745.178987.2325-8.5157.7549.24	Freq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV]Limit [dBµV/m]1407.59081.8340.4942.3268.202097.90985.6238.6244.2468.203317.38178.2937.9646.2568.208369.2580-10.7752.8642.0968.2010453.1969-6.3951.6745.2868.2012447.4298-4.1352.2348.1068.201405.94061.8339.6341.4668.202552.80535.5839.0444.6268.204100.660110.4536.2746.7268.207489.0659-11.3056.4745.1768.208987.2325-8.5157.7549.2468.20	Freq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV]Limit [dBµV/m]Margin [dB]1407.59081.8340.4942.3268.2025.882097.90985.6238.6244.2468.2023.963317.38178.2937.9646.2568.2021.958369.2580-10.7752.8642.0968.2026.1110453.1969-6.3951.6745.2868.2022.9212447.4298-4.1352.2348.1068.2020.101405.94061.8339.6341.4668.2026.742552.80535.5839.0444.6268.2023.584100.660110.4536.2746.7268.2021.487489.0659-11.3056.4745.1768.2023.038987.2325-8.5157.7549.2468.2018.96	Freq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV]Limit [dBµV/m]Margin [dB]Result1407.59081.8340.4942.3268.2025.88PASS2097.90985.6238.6244.2468.2023.96PASS3317.38178.2937.9646.2568.2021.95PASS8369.2580-10.7752.8642.0968.2026.11PASS10453.1969-6.3951.6745.2868.2022.92PASS12447.4298-4.1352.2348.1068.2020.10PASS1405.94061.8339.6341.4668.2026.74PASS2552.80535.5839.0444.6268.2023.58PASS4100.660110.4536.2746.7268.2021.48PASS7489.0659-11.3056.4745.1768.2023.03PASS8987.2325-8.5157.7549.2468.2018.96PASS	Freq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]Margin [dB]ResultPolarity1407.59081.8340.4942.3268.2025.88PASSHorizontal2097.90985.6238.6244.2468.2023.96PASSHorizontal3317.38178.2937.9646.2568.2021.95PASSHorizontal8369.2580-10.7752.8642.0968.2026.11PASSHorizontal10453.1969-6.3951.6745.2868.2022.92PASSHorizontal12447.4298-4.1352.2348.1068.2020.10PASSHorizontal1405.94061.8339.6341.4668.2026.74PASSVertical2552.80535.5839.0444.6268.2023.58PASSVertical4100.660110.4536.2746.7268.2021.48PASSVertical7489.0659-11.3056.4745.1768.2023.03PASSVertical8987.2325-8.5157.7549.2468.2018.96PASSVertical

#### Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic

equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

2) Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

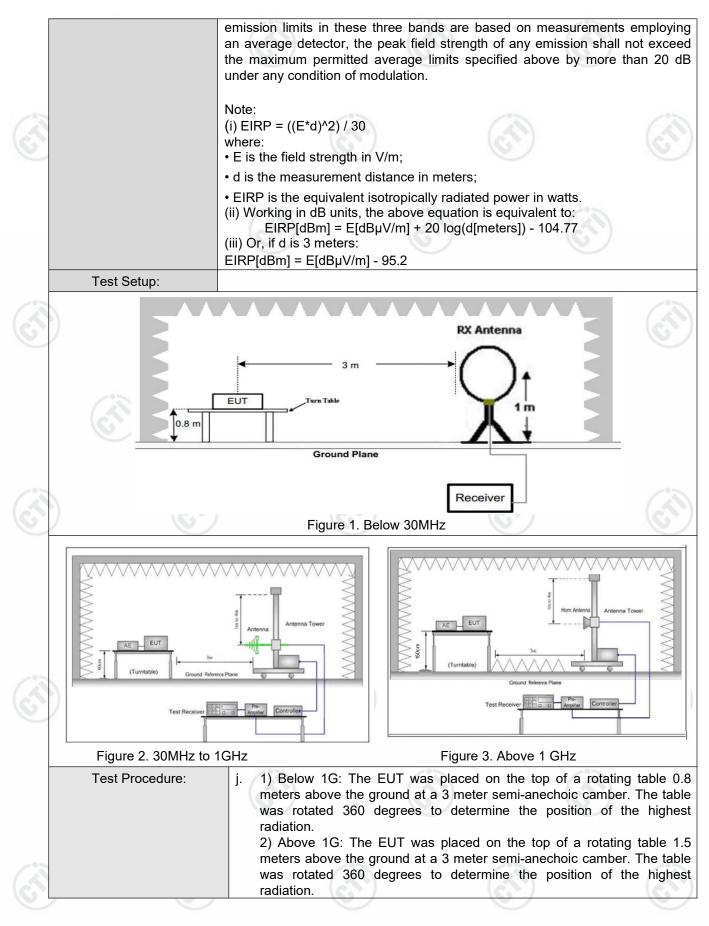




Page 32 of 57

# 7.9 Radiated Emission which fall in the restricted bands

	Test Requirement:	47 CFR Part 15C Sect	tion 15.	209 and 1	5.407 (b)			
15	Test Method:	ANSI C63.10 2013	2		10	2		(3)
	Test Site:	Measurement Distance	e: 3m (	Semi-Aneo	choic Cha	mbe	r)	(G ¹ )
	Receiver Setup:	Frequency	_	Detector	RB	N	VBW	Remark
		0.009MHz-0.090MH	Ηz	Peak	10kl	Ηz	30kHz	Peak
		0.009MHz-0.090MH	Ηz	Average	10kl	Ηz	30kHz	Average
		0.090MHz-0.110MH	Ηz	Quasi-pea	k 10kl	Ηz	30kHz	Quasi-peak
		0.110MHz-0.490MH	Ηz	Peak	10kl	Ηz	30kHz	Peak
		0.110MHz-0.490MH	Ηz	Average	10kl	Ηz	30kHz	Average
100		0.490MHz -30MHz	z	Quasi-pea	k 10kl	Ηz	30kHz	Quasi-peak
		30MHz-1GHz	0	Quasi-pea	k 100 k	κHz	300kHz	Quasi-peak
0		Above 1GHz		Peak	1MH	Ηz	3MHz	Peak
		Above IGHZ		Peak	1MF	Ηz	10kHz	Average
	Limit:	Frequency		strength /olt/meter)	Limit (dBuV/m)	R	emark	Measurement distance (m)
		0.009MHz-0.490MHz	2400	)/F(kHz)	-		-	300
		0.490MHz-1.705MHz	2400	0/F(kHz)	-		-	30
100		1.705MHz-30MHz		30			-	30
		30MHz-88MHz		100	40.0	Qu	asi-peak	3
C I		88MHz-216MHz		150	43.5	Qu	asi-peak	3
		216MHz-960MHz		200	46.0	Qu	asi-peak	3
		960MHz-1GHz		500	54.0	Qu	asi-peak	3
		Above 1GHz		500	54.0	A	verage	3
		<ul> <li>*(1) For transmitters outside of the 5.15-4 dBm/MHz.</li> <li>(2) For transmitters op of the 5.15-5.35 GHz b (3) For transmitters of outside of the 5.47-5 dBm/MHz.</li> <li>(4) For transmitters op (i) All emissions shall b above or below the ba above of ba ba</li></ul>	5.35 G berating band sh operating 5.725 ( berating be limit and ed band ed rly to a from 5	Hz band in the 5.2 nall not exc ng in the GHz band in the 5.7 ed to a lev ge increas lge, and fi level of 15 MHz abov	shall no 5-5.35 GH ceed an e. 5.47-5.72 shall no 25-5.85 G vel of -27 ing linear rom 25 M 5.6 dBm/N ve or belo	t ex Iz ba i.r.p. 25 G ot ex Hz b dBm Iy to Hz a AHz a ow th	ceed an of -27 dE GHz band ceed an o/MHz at 7 10 dBm/f above or f at 5 MHz	e.i.r.p. of -27 hissions outside 3m/MHz. All emissions e.i.r.p. of -27 75 MHz or more MHz at 25 MHz below the band above or below
(Å		Remark: The emission measurements employed frequency bands 9-9	on lim bying a	its shown a CISPR	in the quasi-pe	abov ak (	detector of	except for the








# S

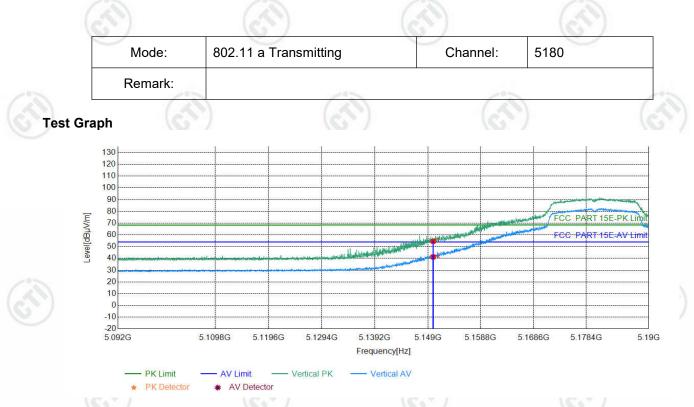
Page 33 of 57



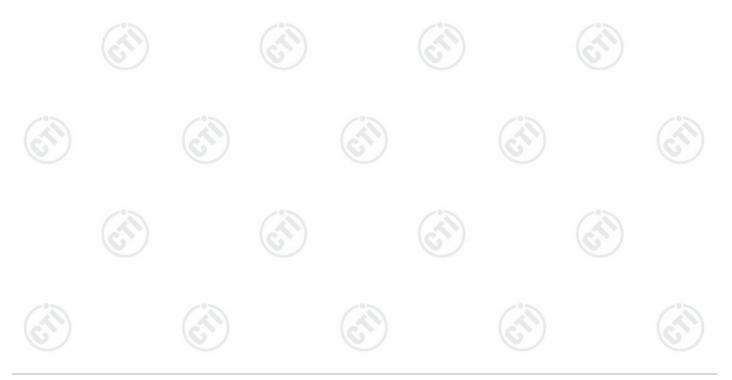




Test Mode: Test Results:	<ul> <li>average method as specified and then reported in a data sheet.</li> <li>p. Test the EUT in the lowest channel, the Highest channel</li> <li>q. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.</li> <li>r. Repeat above procedures until all frequencies measured was complete.</li> <li>Transmitting mode with modulation</li> <li>Pass</li> </ul>
Tast Mada:	<ul> <li>p. Test the EUT in the lowest channel, the Highest channel</li> <li>q. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.</li> <li>r. Repeat above procedures until all frequencies measured was complete.</li> </ul>
	<ul> <li>m. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>n. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li> <li>o. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or</li> </ul>
	<ul> <li>Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.</li> <li>k. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>I. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> </ul>




	Suspec	ted List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
C	1	5150.0000	-15.08	71.52	56.44	68.44	12.00	PASS	Horizontal	PK
	2	5150.0000	-15.08	54.94	39.86	54.00	14.14	PASS	Horizontal	AV

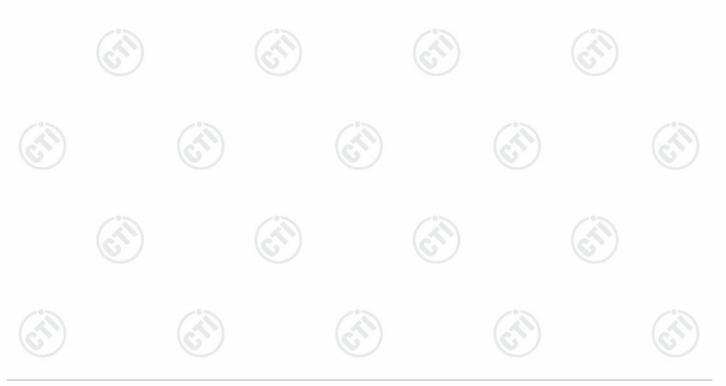





Page 36 of 57




	Suspec	cted List								
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
$(\mathcal{A})$	1	5150.0000	-15.08	69.67	54.59	68.44	13.85	PASS	Vertical	PK
No.	2	5150.0000	-15.08	56.33	41.25	54.00	12.75	PASS	Vertical	AV

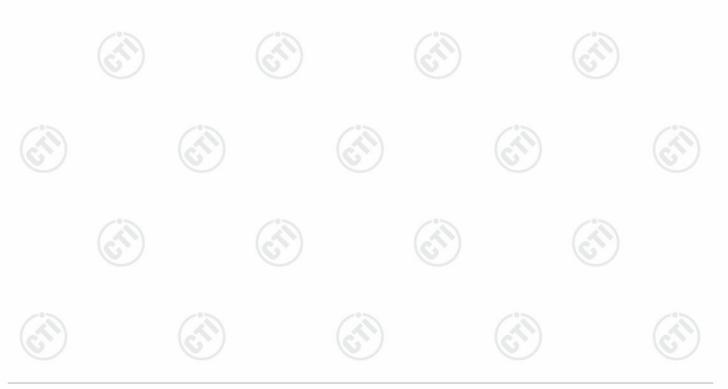





Page 37 of 57



S	uspec	ted List								
I	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5745.7604	13.85	80.93	94.78	122.20	27.42	PASS	Horizontal	PK

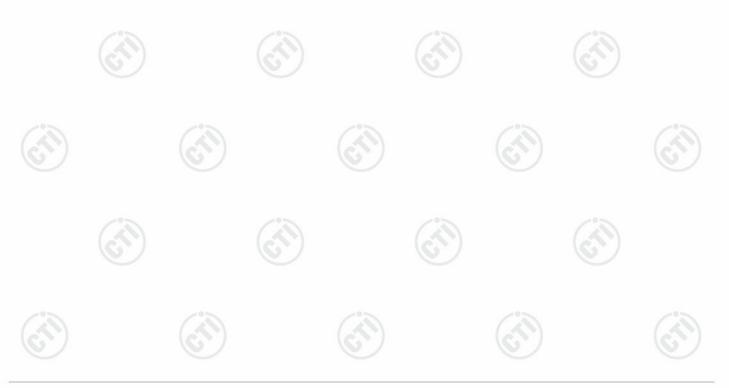





Page 38 of 57



	Suspec	ted List								
~3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5743.5093	13.84	83.43	97.27	122.20	24.93	PASS	Vertical	PK






Page 39 of 57

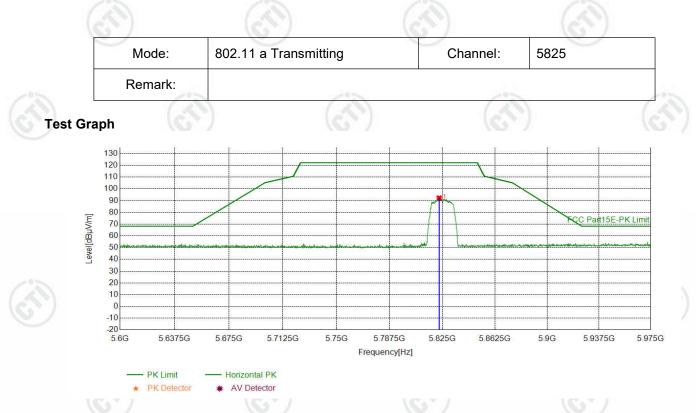


	Suspec	ted List								
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5786.4682	13.92	78.94	92.86	122.20	29.34	PASS	Horizontal	PK

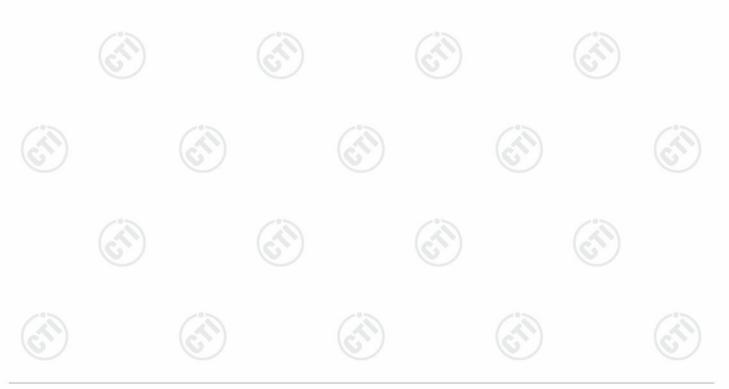





Page 40 of 57




	Suspec	ted List								
2	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5783.2791	13.91	80.28	94.19	122.20	28.01	PASS	Vertical	PK

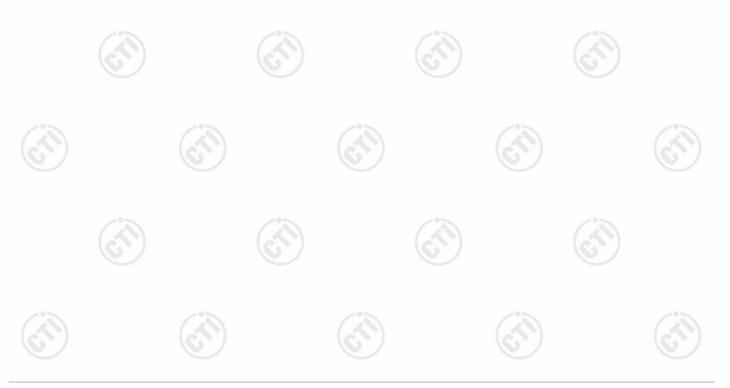





Page 41 of 57

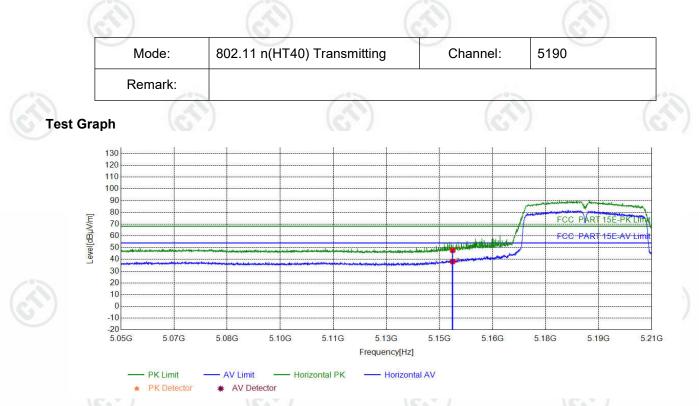


	Suspec	ted List								
~3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
$(\mathcal{S})$	1	5822.6738	14.02	78.23	92.25	122.20	29.95	PASS	Horizontal	PK

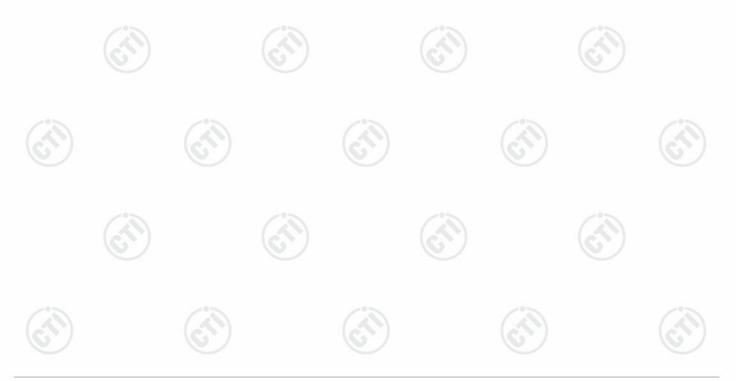





Page 42 of 57

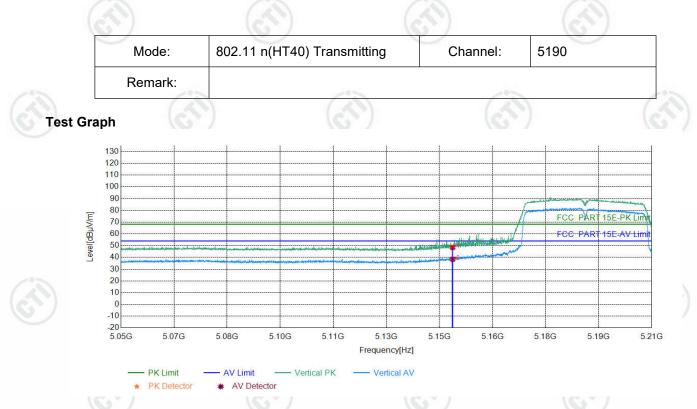



	Suspec	cted List								
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5826.0505	14.04	79.89	93.93	122.20	28.27	PASS	Vertical	PK






Page 43 of 57

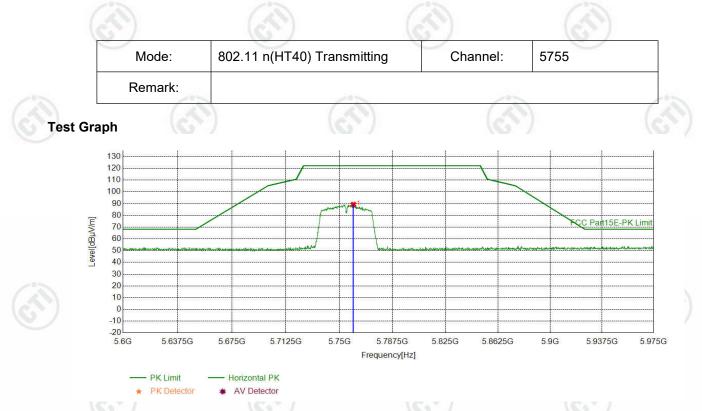



	Suspec	cted List								
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
$(\mathcal{A})$	1	5150.0000	12.36	35.34	47.70	68.20	20.50	PASS	Horizontal	PK
No.	2	5150.0000	12.36	25.82	38.18	54.00	15.82	PASS	Horizontal	AV

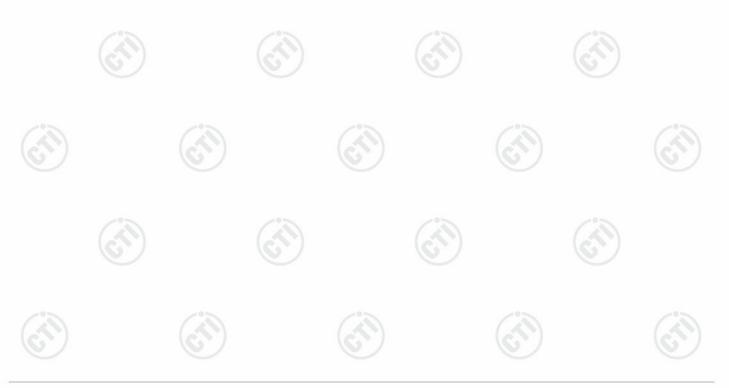




Page 44 of 57




	Suspec	cted List								
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(c)	1	5150.0000	12.36	36.07	48.43	68.20	19.77	PASS	Vertical	PK
C	2	5150.0000	12.36	26.07	38.43	54.00	15.57	PASS	Vertical	AV

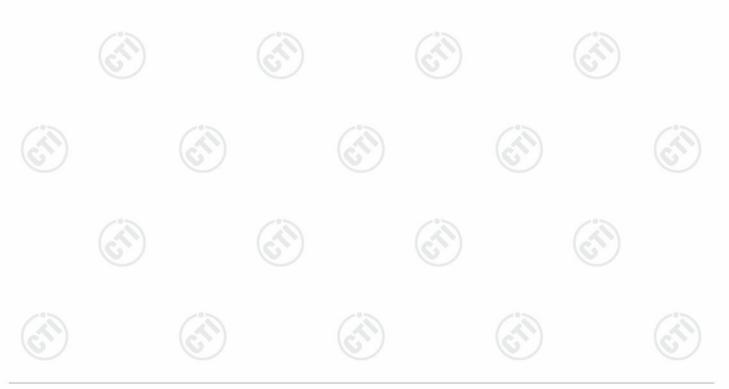





Page 45 of 57




Sus	pec	ted List								
NC	)	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1		5759.8299	13.87	75.45	89.32	122.20	32.88	PASS	Horizontal	PK

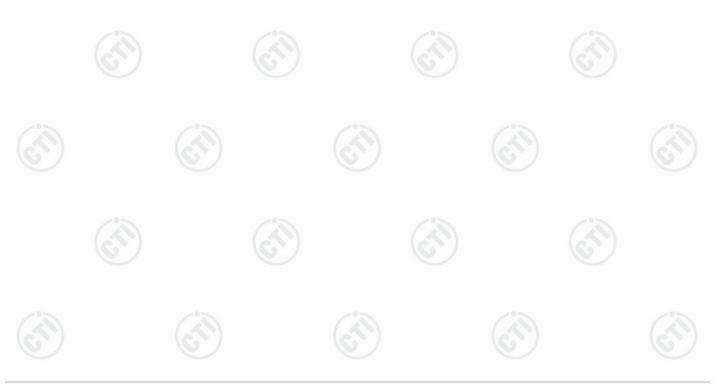





Page 46 of 57



	Suspec	ted List								
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
$(\mathcal{A})$	1	5758.3292	13.87	77.84	91.71	122.20	30.49	PASS	Vertical	PK

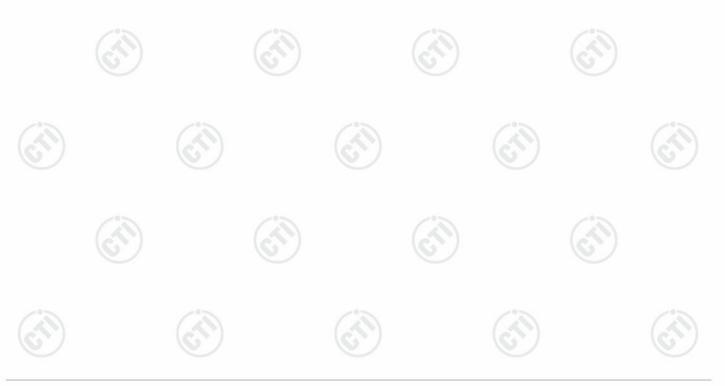





Page 47 of 57

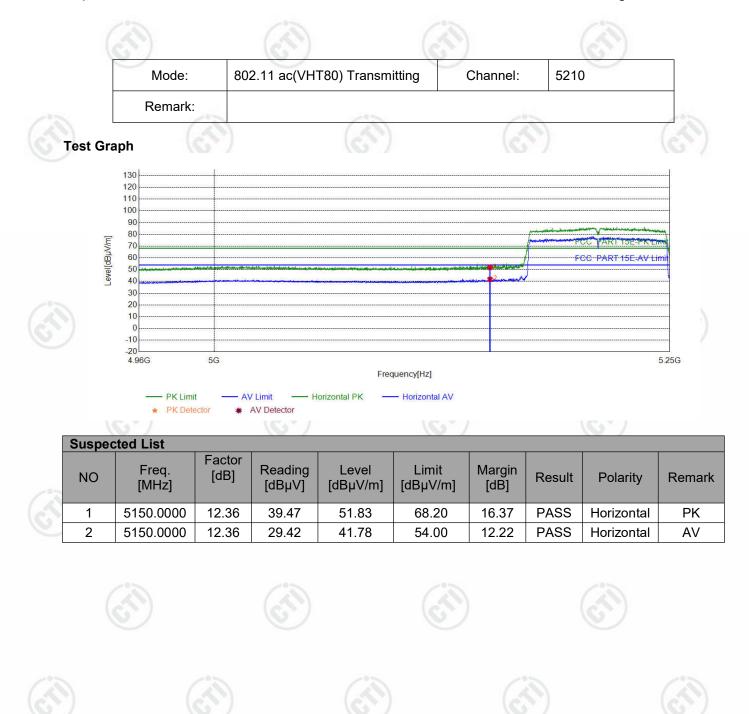


	Suspe	cted List								
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(a)	1	5797.1611	13.94	75.19	89.13	122.20	33.07	PASS	Horizontal	PK



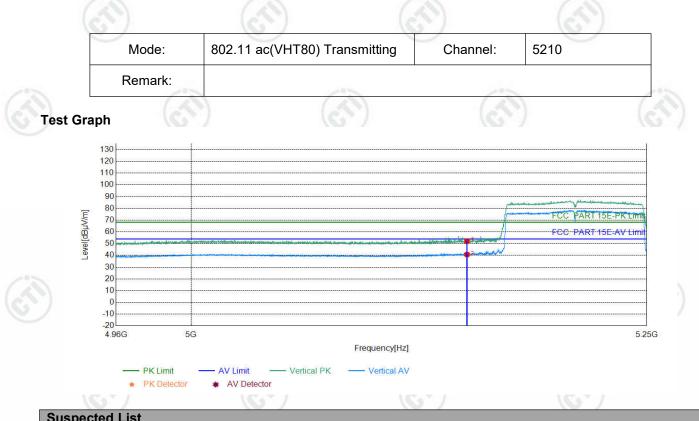



Page 48 of 57

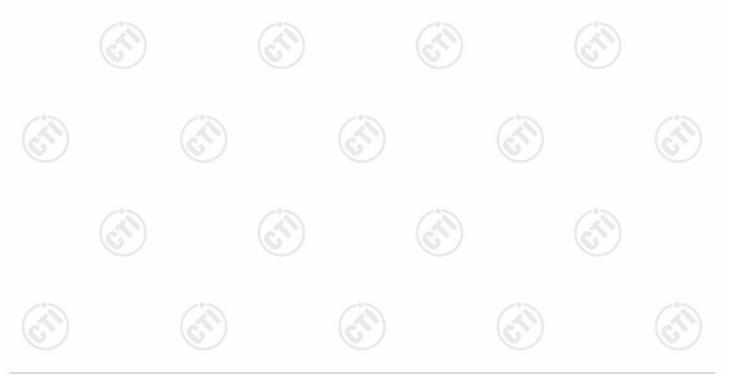



	Suspec									
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(c)	1	5791.3457	13.93	78.45	92.38	122.20	29.82	PASS	Vertical	PK
	1									



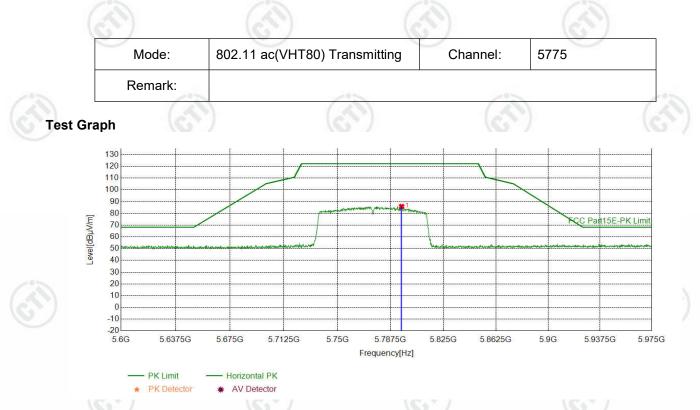



Page 49 of 57

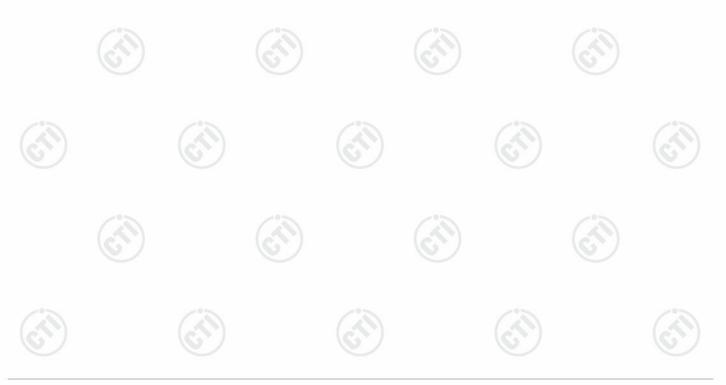





Page 50 of 57




13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
$(\sim)$	1	5150.0000	12.36	39.71	52.07	68.20	16.13	PASS	Vertical	PK
No.	2	5150.0000	12.36	28.40	40.76	54.00	13.24	PASS	Vertical	AV






Page 51 of 57



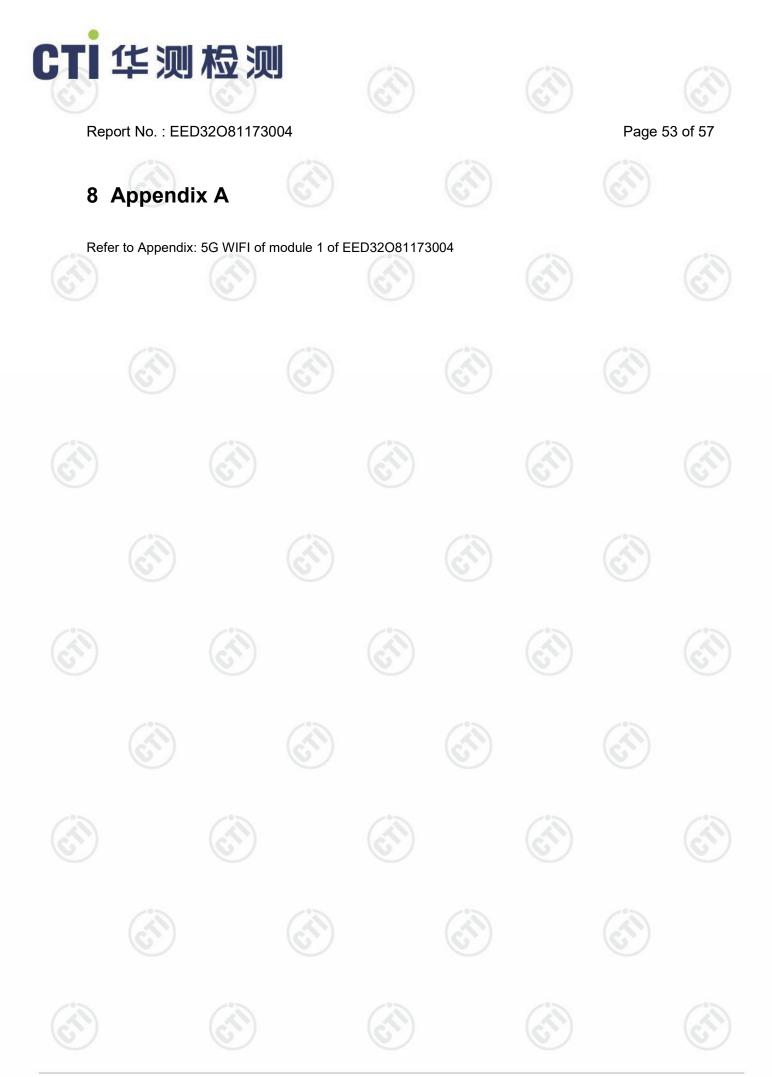
Suspec	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5795.2851	13.93	71.98	85.91	122.20	36.29	PASS	Horizontal	PK			





Page 52 of 57




## Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

2) Scan from 1GHz to 25GHz, the disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.



Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com