Agile Lifecycle Manager
Version 1.3

Installation, Administration and User
Guide

14 December 2018

<||I

Agile Lifecycle Manager
Version 1.3

Installation, Administration and User
Guide

14 December 2018

..ll

Note
FBefore using this information and the product it supports, read the information in ['Notices” on page 163]

This edition applies to Version 1.2 of IBM® Agile Lifecycle Manager (product number 5737-E91) and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2018.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
TablesV

Preface Vi
About this releasevii

.
=Y

Chapter 1. Product overview .
Benefits .

Architecture

Functionality . .
IBM Cloud Private components
Glossary

\O 0o O\ U1 —

Chapter2. Planning25

Hardware requirements25
Software requirements.25
IBM Cloud Private deployment overview25

Chapter 3. Installation 27

Installing and configuring on ICP27
Before you install ICP)27
Preparing your cluster. . . . 28
Loading the Agile Lifecycle Manager archrve 1nt0
ce 29
Provision storage for Ag1le L1fecycle Manager on
ICP30
Installing Agile Lifecycle Manager on ICP]|
Uninstalling Agile Lifecycle Manager (ICP). . . 33

Chapter 4. Usingthe Ul 35

UI functionality35
Logging into the ICPUT36
Managing assembly descriptors.37
Operating assemblies40
Managing resource managers43
Upgrading an assembly instance44

Chapter 5. Getting started (usmg the

APIS) a7
Configuration reference T V4
Creating an assembly instance49
Exploring an assembly instance.52
Healing a component53
Scaling a component N 1)
Uninstalling an assembly 1nstance58
Browsing assembly descriptors.59
Exploring an assembly descriptor60
Creating a new assembly descriptor61
Updating an assembly descriptor61
Removing an assembly descriptor62

© Copyright IBM Corp. 2018

Upgrading an assembly instance

List all onboarded resource managers.
Exploring an onboarded resource manager .
Creating a new resource manager record
Updating a resource manager

Deleting a resource manager record

Sample assembly descriptor .

Chapter 6. Administration

Monitoring system health.

Managing the service logs .o
Setting timeout limits for resource managers
Enabling HTTPS support (for the Nimrod service)
Ensuring Log files are not owned by the root user
Ensuring support for accented characters
Authentication

Audit logging .

Provided OpenLDAP LDAP server

Example alm-docker-compose.yml file

Chapter 7. Reference
API HTTP status codes reference .
Lifecycle Manager API.
Interface architecture
Scenarios . . .
Managing assemblres .
Resource managers
Asynchronous state change events
Resource health events
Topology .
Catalog API .
Resource Manager API .
Interface architecture .
Interface interaction patterns
Resource manager configuration .
Resource type configuration
Resource topology .
Resource lifecycle management .
Resource type configuration (asynchronous)
Resource lifecycle management (asynchronous)
Publishing metrics. .
Resource descriptor YAML specrﬁcatrons .
Resource descriptor sections .
Resource descriptor YAML examples
Assembly descriptor YAML specifications .
Assembly descriptor sections .
Assembly descriptor YAML examples

Notices .
Trademarks .

. 63
. 65
. 66
. 67
. 69
. 70
.71

. 73
.73
.73
.75

75
76

.77
. 78
. 82
. 82
. 83

. 89
. 89
. 93
. 94
. 95

.. 99

. 105

. 108

. 112

. 113

. 117

. 121

. 121

. 121

. 124

. 125

. 127

. 131

. 134

135

. 137
. 138
. 138
. 142
. 147
. 148
. 156

. 163
. 165

iii

iv Agile Lifecycle Manager: Installation, Administration and User Guide

Tables

1. Core Agile Lifecycle Manager components for 16. Create resource manager request fields 105

ce .. .18 17. Get resource manager response fields 106

2. StatefulSet ob]ects for Agrle erecycle Manager 18. Update resource manager request fields 107

onICP 18 19. ProcessStateChangeEvent fields 109

3. IBM Cloud Private Aglle Llfecycle Manager 20. ComponentStateChangeEvent fields 110

hardware requirements. . . .25 21. Integrity event fields 112

4. IBM Cloud Private Agile L1fecyc1e Manager 22. Load event fields113

software requirements 25 23. Get assembly by id fieldso 114

5. Steps to prepare an Agile L1fecycle Manager 24. Get assembly by name topology f1e1ds 116

cluster on ICP. 28 25. Response properties 118

6. Agile Lifecycle Manager microservices ports 26. Response properties119

and Swagger URLs B V4 27. Response properties120

7. Agile Lifecycle Manager grant types NS 28. Get Resource Manager fields 125

8. Summary of how Agile Lifecycle Manager uses 29. List resource types fields. 126

the HTTP 400 and 404 status codes92 30. Get resource type fields127

9. HTTP error response codes9% 31. List deployment location fields. 127

10. Fields to be used when creating a new 32. Get deployment location fields. 128

assembly instance 100 33. Search for resource instances fields 129

11. Fields to be used when Changlng the state of 34. Get resource instance fields. 130

an existing assembly 101 35. Create resource transition request fields 132

12. Fields to be used when deleting an assembly 101 36. Create resource transition response fields 132

13. Fields to be used when healing a resource 102 37. Get resource transition status fields 133
14. Fields to be used when scaling components 103 38. Resource type configuration (asynchronous)

15. Fields to be used when upgradlng an fields 134

assembly 104 39. Get resource transrtron status frelds 136

© Copyright IBM Corp. 2018 v

vi Agile Lifecycle Manager: Installation, Administration and User Guide

Preface

This PDF document contains topics from the Knowledge Center in a printable
format.

About this release
Agile Lifecycle Manager (Version 1.3) can now be deployed on IBM Cloud Private.

The IBM Agile Lifecycle Manager Installation, Administration and User Guide has
been updated to version 1.3.:

ICP components
The ICP version of Agile Lifecycle Manager consists of a number of
services packaged as Helm charts.

Requirements
Hardware and software requirements differ from those of the on-premise
version.

Deployment
Agile Lifecycle Manager components and services run within containers,
and communication between these containers is managed and orchestrated
using IBM Cloud Private running on a Kubernetes cluster.

Installation
The installation process for Agile Lifecycle Manager 1.3 on ICP differs from
the on-premise version.

Logging into the ICP UI
You log onto the Agile Lifecycle Manager ICP UI using the a logon URL
constructed from the master node hostname and port number.

Related information:

(= [How to download Agile Lifecycle Manager|

[[BM Agile Lifecycle Manager Version 1.3 Release Notes|

© Copyright IBM Corp. 2018 vii

http://www-01.ibm.com/support/docview.wss?crawler=1&uid=swg20787559
https://www.ibm.com/support/knowledgecenter/SS8HQ3_1.3.0/alm130_rn.pdf

viii Agile Lifecycle Manager: Installation, Administration and User Guide

Chapter 1. Product overview

IBM Agile Lifecycle Manager provides users with a toolkit to manage the lifecycle
of both virtual and physical network services. This includes the design, test,
deployment, monitoring and healing of services.

Attention:

Agile Lifecycle Manager is now also available as an IBM Cloud Private (ICP)
version. The ICP deployment and configuration of Agile Lifecycle Manager differs
significantly from the on-premise version. See the [CP deployment|topic for an
overview, and the .

Benefits

Using Agile Lifecycle Manager you can design and integrate external resources into
virtual production environments and then automate the management of end-to-end
lifecycle processes. This approach is known as network function virtualization'.
This section elaborates on the benefits of this approach and the key functionality
offered by Agile Lifecycle Manager, and also provides you with case study
material.

Benefits of network function virtualization (NFV)

NFV brings a significant operational paradigm shift for service providers. Today’s
physical network appliances require highly manual processes to manage their
end-to-end lifecycle. Testing, installation, configuration, and problem management
of network appliances all revolve around manual activities that often require a
physical truck roll or a human to run each lifecycle process.

NFV’s software paradigm promises fully automated lifecycle processes for bringing
network services into production and maintaining them thereafter. Virtual network
functions (VNF) allow a much simpler set of lifecycle tasks enabling near full
automation of the creation and healing of virtual services, far more than is possible
with their physical counterparts.

There are vast business opportunities associated with NFV transformation
including new revenue streams, improved customer experience and reductions in
both operational and capital expenditure. However, a fully automated lifecycle
solution for NFV comes with additional complexities.

IBM Agile Lifecycle Manager is a comprehensive services design, testing and
automated deployment platform addressing the challenges and complexities of the
NFV paradigm. It delivers an end-to-end automated service lifecycle solution from
initial design to production, as depicted in the following figure:

© Copyright IBM Corp. 2018 1

Standard Ifecycle model to Reduced automation errors

-
smseEa e sutematically manage WNF
e "% andSorvices through well tested lifecycles

- g aendce azsamtiy anc... () Rapid time to on-board new
s design taals w capldly build
"g-gl wFLd&Me :ale';g:s I VNF software and Services
- i
fustomatic gencration of | i
Wacycle sxacubion plans be Reduced complexity increasas
being Services and WNFs to levels of automation
desired state
iy S SV and Automated healing, scaling
i), v Infrastructure health tools
with sutomated resolution and upgrade

Claud mative platform, buslt
from the group up an Cloud
frameworks and best practice

Carrier grade availability and
performance

]

The key differentiating features of Agile Lifecycle Manager depicted in this figure
include:

* A common way of handling resources through a unified lifecycle model
* Support for quick resources and assembly on-boarding

* Intent-driven lifecycle management

* Quality management and policy modules

* Cloud-native solution

The benefits of using Agile Lifecycle Manager to deliver NFV are illustrated in the
following figure:

software based netwark function and service Iifecycle tasks can be Expected Service Pravider bensfits
highly automated

RN ¥

Saricn e ook e
ety
v e WA L

Autcrratically hial, upgrade and migrate YHF
and Serdces.
significantly reducing manual cperations costs.
Pberving Roden's Tygical coats ~308 ol Sarvioe
deser to (%

Faducing onbaseding and 18sting lime of WNFs
and ferdces from years to wesks.

Linsarly scaling the inbrodaction of niche
sendres bo Erpet new e growti

+ Dyramically aptimising utilsation of
infrastructure, reducing infrastructure costs

virtual Miswerk B D
Fulitiois n

Cptimised nfrastractere oudnmer sxperience i continuoushy delhened,
shared Hatdwane E E E

+ Dyramically scaling and moving WHFS 1o ensure

Indrastrectuns
Higher margin on services allow Service Providers

to test the market with niche services

Lifecycle management

To achieve NFV’s promised levels of automation, Agile Lifecycle Manager provides
a complete DevOps toolchain that manages the end-to-end lifecycle of virtual
network services, from release management of VNF software packages to the
continuous orchestration and running of VNFs and service instances.

Third party VNF software must be wrapped in a well-tested standard lifecycle
interface, and service bundles of multi-vendor VNFs must be tested for
interoperability and performance to ensure that there are no errors. This ensures
that, once in production, services and VNFs can be constantly created, configured,
updated, scaled, healed, and migrated without manual intervention.

2 Agile Lifecycle Manager: Installation, Administration and User Guide

The complete lifecycle management is shown in the following figure:

Continuous Integration & Automated
Deployment Operations

Verify Service

Maonitaring,
Policy & Test

Cloud Native

asoude|q

Difference
Orchestration

VNF Software
Components

VNF and services onboarding requires a comprehensive release management
strategy, a suite of tools and a lifecycle integration framework to accommodate the
variety of third party VINF software package formats. Continuous in-life
orchestration also requires a new approach to modelling and managing the
complexity of in-life network function lifecycle management. To achieve the levels
of automation required, a much simpler and standardized approach is required to
implement all foreseen lifecycle transitions.

Advantages of an end-to-end DevOps deployment model

The advantages of adopting an end-to-end DevOps deployment model are
illustrated in the following figure:

u BrYyICe LITecycle :
Orchestration 3 NFV DevOps Toolchain
Clowed orchestration and fulfilment tools Full operational lifecycle awtomation of Servces and End 10 end DevOps taol chain froem initial onbaarding
provision network applications inta life WINFs delivers additional Flecycle automation to operational ifecyle management

20% El%

0% 100% 0% 100% 0% 100%

Chapter 1. Product overview 3

Deployment scenarios

You can find a deployment example in the [“Functionality” on page 6| section,
which depicts an example scenario of a[video streaming service|

Case study: Heal operation using Agile Lifecycle Manager

In the following 'closed loop heal' case study, a server no longer receives IP
packets. An alarm is raised, the event is evaluated, and a Heal event is triggered
and executed by Agile Lifecycle Manager. The solution addressing this case study
is comprised of the following components (some of which are bundled as IBM
Netcool Operations Insight):

¢ IBM Tivoli Netcool/OMNIbus and Web GUI
 IBM Tivoli Netcool/Impact

* IBM Netcool Agile Service Manager

+ IBM Agile Lifecycle Manager

Heal solution process, step-by-step

Note: This case study refers to the 'operations' and 'external OSS' actors, and their
interaction. These are defined in the deployment overview here| and

1. Tivoli Netcool/OMNIbus (acting as external OSS) receives an alarm that a
server has stopped receiving IP packets.

2. This alarm then triggers a Tivoli Netcool/Impact policy.

3. As part of the service design and assembly onboarding, Netcool Agile Service
Manager reconciles the Agile Lifecycle Manager assemblies with OpenStack
virtual machines.

4. Tivoli Netcool/Impact (acting as operations) now has enough knowledge to
trigger an Agile Lifecycle Manager Heal request.

5. Agile Lifecycle Manager transitions the 'broken' server through the following

lifecycles:
a. STOP
b. START

c. INTEGRITY

6. Netcool Agile Service Manager gets notified by Agile Lifecycle Manager that a
lifecycle event has occurred on the 'broken' server.

7. This triggers the Netcool Agile Service Manager observer that raised the alarm
to rerun.

8. Rerunning the observer clears the Tivoli Netcool/OMNIbus alarm, confirming
that the server is receiving packets again, and 'healing’ was successful.

Related information:

[[[BM Netcool Operations Insight|
[[[BM Tivoli Netcool/OMNIbus and Web GUI|

[# [[BM Tivoli Netcool /Impact]

[[[BM Netcool Agile Service Manager]
Knowledge center links

4 Agile Lifecycle Manager: Installation, Administration and User Guide

https://www.ibm.com/support/knowledgecenter/en/SSTPTP
https://www.ibm.com/support/knowledgecenter/SSSHTQ/landingpage/NetcoolOMNIbus.html
https://www.ibm.com/support/knowledgecenter/SSSHYH
https://www-03preprod.ibm.com/support/knowledgecenter/SS9LQB_1.1.0/welcome_page/kc_welcome-444.html

Architecture

This topic provides an overview of the Agile Lifecycle Manager architecture.
Basic architecture

The basic Agile Lifecycle Manager architecture is depicted in the following figure:

Agile
Lifecycle Ishtar
Manager
A
Sl =
Manager

Data flow

Agile Lifecycle Manager receives requests through its north bound API to put an
assembly instance representing a VNF or service into an intended state, such as
'active'. Agile Lifecycle Manager in turn orchestrates all external resource managers
through their northbound APIs to configure their managed resource instances
accordingly. Throughout this orchestration period Agile Lifecycle Manager and
each resource manager publish orchestration status events to a Kafka topic for each
assembly and resource instance state change.

This process is depicted in the following figure:

Aiirmbby LBecych Reqoeits & Slabui

External
Assurance/Policyy/...
Systems

i
Jrra——
Events

External Resource Managers -._- o g 4 :-a,_ B Orchesaration
mmm O B Dg eooo-eeeeespeeeseeeeed
oy JUJU :I s b b
Metrics
: E
i i i I
- i L
mit e --- T
a1 [L3 R [
IR “-\\‘ Instance | -
i ¥ v Lifecycle | x
e i e Probe
----------- VIM |
Cloud targets Cloud targets

Resource managers are responsible for orchestrating virtual infrastructure
managers (VIM) to control cloud infrastructure compute, storage and network
resources in support of their resource instances' standard lifecycles.

Chapter 1. Product overview 5

Extending Agile Lifecycle Manager

In addition to published orchestration events, performance and quality metrics
may be published to a dedicated monitoring Kafka topic. These are consumed by
automatic scaling and healing policies configured in Agile Lifecycle Manager. Agile
Lifecycle Manager can be integrated with various external systems responsible for
monitoring different aspects of an end-to-end service. These external systems, such
as SOM or other assurance and analytics systems, can thus be extended to perform
the following types of healing using the Agile Lifecycle Manager northbound API:

.

g Pradictive Cognitive
E Impact Resalution
&= (="
= |-=—: ALM

=

\"'\'L'. [
C
‘ E = VDU/VME Infrastructure Service Triage Compfexiry
‘ Broken Failure Degradation

2 B

Broken virtual resources
Resource instances that are not performing within acceptable levels are
identified as broken and healed by Agile Lifecycle Manager.

Infrastructure failure
The impact on resource instances by a physical infrastructure is reported

and appropriate healing or migration is performed by the Agile Lifecycle
Manager.

Service degradation
Reduced customer experience or service quality can trigger scaling events.

Functionality
Agile Lifecycle Manager provides continuous integration and deployment of

resources, intent-driven operations to automate lifecycle processes, and an open
framework.

6 Agile Lifecycle Manager: Installation, Administration and User Guide

Overview

The following figure depicts the main functional capabilities of Agile Lifecycle

Manager.

T

Service Designer &
Product Manager

ALM

Continuous Integration & Deployment

WNF Engineer

Automated dev, test and production
deployment

Resource Manager Framework

—_
W
~

Operations

Intent driven Operations

Automated continuous operational

lifecycle cases

Open framework to rapidly onboard Cloud native, physical

and legacy resources

VMNF

ok

Cloud based networks

Continuous integration and deployment

Software Define Networks

Traditional Networks

Provides rapid design and onboarding of external resources into

production services.

Intent-driven operations

Enable automated management of the end-to-end service lifecycle

processes.

Resource Manager framework

Makes possible open integration of external virtual and physical resources

to be assembled with others into complete services.

These capabilities are broken down into the software functions depicted in the

following figure.

Chapter 1. Product overview

7

? VNF & Service i BT @ &
/% Designer y - P 0SS & BSS

ALM

Continuous Integration & Deployment Automation Lifecycle Operations
Assembly APls B
Design Motifications
P
Bl O
r,—i*?-'{g
Intent
Engine
==
===
=

Resource Manager Framework

’ L) ¢ A i
// External Resource, ;' External Resource’, ;' External Resource,
ks £

¥

i Managers : i Managers b b Managers ;.

] “ .
A [{\ £ LY [
A i " - 5 [
‘ ‘ . ['\. '
\ ¢ 9 [a #
y Fi ' [LY il
f 5 ’]

Cloud Infrastructure SDN Controller 0S5 Topology Virtual Probes
and Testing

Continuous integration and deployment
In order to deliver an assembled end-to-end service, the assembly design function

provides a set of tools that enable the rapid description of complex bundles of
external resources and their combined operational processes.

Assembly descriptors are written in YAML and stored in the

The following figure illustrates the assembly descriptor attributes.

N0 WE W8

Resource Manager 1 |

— —
6 =gy /ssemblyDescription + Assembly containment
(i J B & P e
x + Dynamic binding to shared resources

« Orchestrationt

Z & * Scaling triggers
‘.“é i’@ i‘é | | + Upgrade Strategies
Resource Manager ?ﬁ LT ﬁ + Service chaining

Data Centre 1 Data Centra 2 Data Centre 3 Data Centre 4 Data Centre X

Descriptors specify the deployment and operational information required to allow
the Intent Engine to instantiate a set of external resources, in the right location and

8 Agile Lifecycle Manager: Installation, Administration and User Guide

with their inter-dependencies in place. Assembly descriptors contain attributes,
versions, associated external resources and their relationships and deployment
locations.

For more information on YAML specifications, see the following topic: [“Assembly
[descriptor YAML specifications” on page 147]

Resource Managers expose resource descriptors to Agile Lifecycle Manager. These
resource descriptors represent deployable units of software whose lifecycles can be
manipulated by Agile Lifecycle Manager. Resource Managers in turn are
responsible for exposing a lifecycle interface for each resource instance it manages
and managing any infrastructure required to support these resources instances.

The following figure shows the main entities that Agile Lifecycle Manager employs
to model external resources that are assembled into compound services. Typically,
software modules are compiled by an independent software vendor into external
functional units that can be deployed independently and assembled into an
application or service at a later stage. Each external deployable unit is considered a
resource which has its own standard lifecycle. These resources are continuously
assembled and re-assembled into logical applications or services that can span
multiple data centers. These are represented in Agile Lifecycle Manager as
assemblies.

Continuously Assermnbled :

Assembl
Network Application | W
Deployable Deployable
TR Metwark |~ Resource
Function Unit Fungtioan Linit
Metwork Metwrork Metwork Metwark
Funclion Function Funciaon Function gl SR '.l'l.l':'ldx'l'-"‘p.:-\.'.l-\.
Software Module | Software Module Software Module Software Module sftwpre
Vendor 1 Vendor 2

Assemblies are composed of resources or other assemblies, and all resources and
assemblies must support the same standardized lifecycle model as depicted in the
following figure, to allow Agile Lifecycle Manager to dynamically manipulate
resources into higher order services.

Chapter 1. Product overview 9

==

: integrity

uninstall

Broken

Each resource and assembly must support a standard lifecycle, which includes the
following:

Standard lifecycle transitions
Each of the dark blue transitions in the preceding figure represents a
software executable that is intended to bring its resource or assembly
instance from one state to another.

The exception to this is the dark blue integrity transition, which provides a
basic test primitive that is called periodically or explicitly after the start
transition to ensure the resource is in an operational state.

In-life operations
In addition to standard transitions, resources can optionally provide ad-hoc
software executables that directly represent a specific resource use case, for
example adding a user.

Also, in-life operations can be provided as the implementation of one end
of a relationship.

Opinionated patterns
Set sequences of transitions are run to accommodate special scenarios such
as scaling an assembly, or healing a resource that is in a state of error.

All resources must implement each standard lifecycle transition, and also
(optionally) in-life operations. The intent engine coordinates all assembly and
resources lifecycle transitions automatically along with any opinionated patterns,
as required, and as depicted in the following figure of an example scenario. This
figure depicts a video streaming service that includes several resources assembled
into a deployment model.

10 Agile Lifecycle Manager: Installation, Administration and User Guide

Public Internal

>
Network i Network “
g
i Virtual Video i
Load ; Streaming VNF i
Balancer |]

Streaming Video Service

In this example service, several external resources provided by different software

or infrastructure providers are assembled:

Load balancer resource
Manages the distribution of video traffic across several video streaming
instances.

Video streaming VNF resource
Streams video traffic.

Internal network resource
Internal network to connect service resources.

Public network resource

External network connecting end users to the service.

The assembly descriptor that models the end-to-end service composes resource
descriptors, which in turn describe their individual lifecycle aspects.

Each assembly and resource descriptor can model the following;:

Required properties
Expected properties required by the assembly or resource.

Each can have defaults and read-only properties that allow resource
instances to provide instance specific data, such as IP addresses.

Lifecycle actions
List all the standard transitions supported.

In-life operations
List of ad-hoc operations with individual properties for each.

Chapter 1. Product overview

11

relationship

i

internalip | *

Tascoroa:

balarees: ¢
1.0

relationshig

relationship
hittp_streamer

reference

relationship

In addition to the common descriptions listed above, assemblies can also model the
following:

Composition
Group of assembly or resource children types that are included in this
assembly type.

Property dependencies
Assemblies or resources can wait for properties on other resources or
assemblies to be populated.

Relationships
Operational relationships between children assemblies or resources.

These relationships can be instigated on specific states of its endpoints and
calls in life operations to execute.

References

References to assemblies or resource instances outside this assembly can be
declared.

Assembly and resource descriptors are described in more details in the following
topic: [“Assembly descriptor YAML specifications” on page 147

The Catalog:

Continuous integration and deployment depends on the Catalog to manage the
details of all types of descriptors, such as the assembly descriptors and resource
descriptors, which are stored in the Catalog. Descriptors are used by the Operation
Support System (OSS) to create new applications or services. Also, when the intent
engine is asked to instantiate an assembly, it will request the descriptor from the
Catalog.

12 Agile Lifecycle Manager: Installation, Administration and User Guide

Automated lifecycle operations

API and notifications: Agile Lifecycle Manager applications adopt the
microservices architecture so they communicate via APIs. Each microservice has a
well-defined API representing atomic functionality. The components also
communicate via notifications published to and consumed from the service bus
(Kafka). Whenever the state of an assembly (or component) changes, the system
publishes related event data onto the bus that can be consumed by other modules.

Tip: You can also use Kafka foutside the Docker containers}

Agile Lifecycle Manager also interworks southbound and northbound via
well-defined APIs. (See the section for more information on API
specifications.)

Intent engine: The Intent Engine is the functional entity that takes assembly and
resource descriptors from the catalog and auto-generates the processes required to
manage the complete lifecycle of a service and all of its constituent parts and their
relationships to each other.

Desired Assembly Graph

Catalog S

pe——) 0.0 16 §
?'. = P} ae ;
6 ee o = ol

specifications of assemblies 7
and resource packages

~ Assemblyand
Resource Topology

i | L Jo0o 8]

Semd))]
Current state and E E

shared resources

The intent engine generates process execution plans after receiving requests
through the published API. The intent engine retrieves the assembly descriptor
from the catalog and builds a complete graph of the desired state for the entire
service and resources, resolving shared resources and placement strategies.

Chapter 1. Product overview 13

Desired Assembly Graph Current Assembly Graph

The desired graph is enriched with information about existing assembly or
resource instances and updated to reflect the changes required to move the current
service graph to the desired service graph. These changes form the basis for an
execution plan that coordinates the lifecycle of those new and existing resources
involved in the service graph.

The intent engine instructs, step by step, the Resource Manager(s) via API to
execute the plan. The intent engine stores all assembly related changes in the

topology.

The intent engine interacts with the Resource Manager via API for discovering,
configuring and manipulating resources.

The intent engine has several opinionated patterns to support the healing of
broken resources:

* A resource put into the broken state on receipt of a Heal request is progressed
through the stop, start, and integrity transitions to attempt to return it to the
active state.

* If Heal is unsuccessful, the resource is left in the state prior to the failed
transition and the Heal request returns as failed.

Topology: The Topology function stores details of assembly and resource instances.
When the intent engine initiates an action on an assembly instance the details of
the request will be stored in the topology. Any details that are part of the output
from the operation will also be stored by the intent engine. The topology stores the
history of all changes made to an assembly instance. The topology also manages
the state of a service with regards to the requests.

Resource Manager framework

The Resource Manager framework provides an open set of tools to allow VNF
vendors to wrap their software in a standardized lifecycle that can be manipulated
by Agile Lifecycle Manager. Proprietary VNF managers or general-purpose
software managers, such as Canonical's JuJu Charms, IBM's Urbancode, or
RedHat's Ansible, can be integrated to allow the virtual or physical resources they
manage to be discovered and manipulated by Agile Lifecycle Manager.

14 Agile Lifecycle Manager: Installation, Administration and User Guide

ALM

Assembly
Descriptor (AD)

Rasourcs Manager AP

Resource Manager

Reanurce Package Rewasrce Lifecyle Rescurce Parkage Pasounce Llecyls

Feiouios
Gerscriptar (50}

Riwource

Dascripter {RD)

/ wirtual Machine W ,/ virmeal Machina \-,
J \
"

"\._ - -
LY

ol

|
2 oy
Iy

Service Provider VIb

Resource Managers adhere to an API that allows Agile Lifecycle Manager and
other external systems to discover the data center topology supported by the
resource manager instance and the resource types it supports. The API also
provides the ability to manipulate and monitor the state and health of each
resource instance.

The following figure depicts Agile Lifecycle Manager's ability to manipulate
resources from many resource managers. Each resource manager manages the
lifecycle of several virtual or physical devices and the underlying virtual or
physical infrastructure.

Fazute Doreer REsaurne
Resaurce fessuroe Remarce Resaurce
v & Resawrce: Tepeiegy & Rewarce] 5
Iratance Mgret | frmtance Stain Iemance Mgmr | Instance S
iy] r i]thu sarce My SR FILE

Repositary Resource Manager Resource Manager
Onboaed Aesowres -
; ; ; 3 s CH Menagenent Bundle
i Depkoy e
- L
M H -, I '.ll:-:.u
Mg i v ¢ Uleack L ¥ * ¥
. W — = = = =
Lo Wik | Wi == VIR R ooy
Cloud targets Clowd targets Lloud targets

Resource managers must abide by the following use cases and requirements:

* Multiple Resource Managers can manage resource instances on the same VIM(s)
* Resource Managers can manage one or more VIMs

* Component instances are managed by a single Resource Manager

* VNF types are registered with Resource Manager types

* Resource Manager instances are registered to work with one or more VIMs

* Instances of VNF types can be deployed to multiple VIMs by the registered
Resource Manager VIMs

* Multiple Resource Managers can manage VNF types on a single VIM

The Resource Manager framework includes the following artifacts to support the
above use cases and requirements:

Swagger API definition and specification
Rest and Kafka API semantics and messages

Chapter 1. Product overview 15

Resource descriptor specification
Descriptor specification

Resource archive format
Standard and portable packaging format for bundling software, lifecycle
and operation scripts, descriptors and resource manager configuration

API drivers
Integrations for popular software management systems

Resource Manager API: The Resource Manager API is responsible for defining the
interactions between a lifecycle manager and the resource managers used to
manage resources within virtual (or physical) infrastructures.

Mapping to industry standards

In recent years the industry has been actively generating standards for NFV. NFV
specifications are published on a regular basis by various industry forums. Those
include ATIS, Broadband Forum, ETSI NFV ISG, IETF, ONF and others. In parallel,
open source projects have been established to accelerate NFV adoption. The most
recent and notable initiative within the orchestration area is the Open Network
Automation Platform (ONAP) that is joining two projects: The Enhanced Control,
Orchestration, Management and Policy (ECOMP) and the Open Orchestrator
(Open-O). IBM closely monitors relevant forums and partners with key industry
contributing members.

[= "
L] I
Os-Nfvo :
et 0S5/8SS - NFV Orchostrator (NFVD) — |
1 i I
! T] I
! H : ! : ! i !
i] 1 e —— Or:Vnfm - - i
] : | : ' s " 18
i [1 e 7 I
' : 1 NS VNF =l NFV NFVI :
I '!' : Camlog Catalog | Instances | | Resources 1
: | - o '
1 : i ' 1
i ! i : !
i b I VeEn-Vnfm ' :
1 :] |
: EMS — VINF Manager :
i T : | (VNFM) H
i ;
i = I | vent.vafm T :
i VNF Vifm-Vi :
1 1
! 1 + !
. Vn-Nf ! ; Or-Vi]
1 1 Virtualised H
L : : : NEA Infrastructure |)
n NFVI ' Manager ! 1
i VIM 1
| ki NFV-MANO |
L L T e L
= Execution reference points |- - Other reference points =—jem Main NFV reference points

ETSI has introduced a number of key concepts that provide a language for
describing an NFV environment. The following figure shows a mapping of Agile
Lifecyle Manager concepts to ETSI definitions. ETSI terminology/concepts are
shown on the left of the figure mapped to IBM's core concepts, that is, Assembly
Descriptor (AD) and Resource Descriptor (RD).

16 Agile Lifecycle Manager: Installation, Administration and User Guide

Service Bundle I AD |

[

Service Fragmeant AD AD
] o]
AD

VNF Cluster AD AD

VNF RD

VNF Component | RD | ‘ RD | ‘ RD ‘

How a VNF vendor has engineered their software will determine how many
resource descriptors it presents to Agile Lifecyle Manager. For example, a native
Cloud style VNF implementation could provide many Resource Descriptors
representing micro-services that are assembled into VNF components, which are in
turn assembled into VNFs. Conversely, a VNF vendor may provide a single
resource representing a complete VNF function. These resource descriptors in any
case are re-assembled into an architecture specific to the service providers'
environment and service design, once again by layering assembly descriptors and
relationships.

Related concepts:

[“Assembly descriptor YAML specifications” on page 147
This section describes the assembly descriptors that are used by Agile Lifecycle
Manager.

[“Lifecycle Manager API” on page 93|

The Lifecycle Manager API is responsible for interactions with the operations
available from Agile Lifecycle Manager. This section covers the definition of the
Lifecycle Manager API and the specification of the messages sent across this
interface.

[Chapter 7, “Reference,” on page 89|
Use the following reference information to enhance your understanding of the
Agile Lifecycle Manager APIs and YAML specifications.

Related reference:

[“Asynchronous state change events” on page 108|

Agile Lifecycle Manager will emit events when the state of an assembly or its
components changes. Messages that are sent asynchronously are put onto a Kafka
bus. The exact topics can be configured. These are emitted in response to Intent
Requests causing the state of the Assembly Instance, or its associated components,
to change. In the event of a failure to change state, an event will also be emitted.

Related information:

[# [IBM overview of microservices|

Chapter 1. Product overview 17

https://www.ibm.com/devops/method/content/architecture/microservices/

IBM Cloud Private components

The ICP version of Agile Lifecycle Manager consists of a number of services

packaged as Helm charts.

Agile Lifecycle Manager download packages

The IBM Cloud Private version of Agile Lifecycle Manager consist of the following

components:

Table 1. Core Agile Lifecycle Manager components for ICP

Package Details

Daytona Service responsible for the orchestration of lifecycle
requests on service instances

Galileo Service responsible for storing assembly topologies

Conductor Management service containing configuration server,
service registry, etc

Apollo Repository service for service specifications. Contains
both components from resource managers and services
created through the designer.

Ishtar North-bound public API into the Agile Lifecycle Manager

Watchtower Service responsible for managing the health and policies
of resources and assemblies

Nimrod Service supporting the Agile Lifecycle Manager Graphical
User Interface (GUI)

Relay A secure internal proxy server to resolve inter-domain
API calls.

Talledega A service that stores Daytona process information.

Table 2. StatefulSet objects for Agile Lifecycle Manager on ICP

Package Details

Cassandra A distributed and robust database that is scalable while
maintaining high performance.

ElasticSearch A distributed search and analytics engine that is scalable
and reliable.

Kafka A message bus that efficiently consolidates data from
multiple sources.

Zookeeper A robust, distributed and scalable synchronization
service.

18 Agile Lifecycle Manager: Installation, Administration and User Guide

Glossary

Refer to the following list of terms and definitions to learn about important Agile
Lifecycle Manager concepts.

Agile Lifecycle Manager terminology

assembly
An assembly is a definition of a service and may comprise of one
[“resource (or component)” on page 22 (or more than one resource),
and/or other assemblies.

It is defined in an assembly descriptor and can be instantiated as an
assembly instance.

assembly descriptor (or descriptor)
An assembly descriptor is a computer-readable definition of an assembly
implemented as a YAML file.

assembly designer (or service designer)
An actor or end user role designing services using Agile Lifecycle Manager.
An assembly designer takes informal service design artifacts defined by
service designers and translates them to a set of formal computer-readable
descriptors that model the target service.

assembly instance
Instantiation of an assembly descriptor and all the composed resources or
assemblies.

capability
Capabilities is a section of an assembly descriptor or a resource descriptor
defining what functions the resources or assemblies are implementing.

catalog (or assembly catalog)
The repository within Agile Lifecycle Manager storing published assembly
descriptors and resources descriptors.

cloud The cloud is a common term referring to accessing computer, information
technology (IT), and software applications through a network connection,
often by accessing data centers using wide area networking (WAN) or
internet connectivity.

CSAR (or archive)
Cloud service archive (CSAR) describes a format used for describing
resource packages.

CSAR specification is a part of OASIS TOSCA.

deployment location
Deployment location is a facility where resources can be deployed while
they are instantiated.

In various contexts deployment locations are referred to as data centre,
project (OpenStack), or availability zone (OpenStack).

descriptor
See [“assembly descriptor (or descriptor) ”|

forwarding graph
Scehervice i)

Chapter 1. Product overview 19

intent engine (or engine)
The entity responsible for generating the assembly deployment plan and
instructing, step by step, resource managers to execute the plan.

Kafka Apache Kafka is a distributed streaming platform.

Tip: Streams of records are stored in Kafka in categories called 'topics'.
See the related links for more information.

lifecycle event (or event)
Agile Lifecycle Manager published intent and status change event onto a
Kafka topic.

lifecycle state (or state)
A lifecycle state defines the state of a specific resource instance or assembly
instance.

Examples of lifecycle states include: Installed, Inactive, Active, Broken, and
Failed.

Changes from one lifecycle state to another are lifecycle transitions.

lifecycle transition (or transition)
A lifecycle transition is a process aiming to change the lifecycle state of an
assembly or resource.

Lifecycle transitions are initiated through the Agile Lifecycle Manager API,
orchestrated by Agile Lifecycle Manager and executed by the underlying
resource managers.

Examples of lifecycle transitions include: install, configure, start, stop,
integrity, and uninstall.

microservice
Microservices are a variant of the service-oriented architecture (SOA)
architectural style that structures an application as a collection of loosely
coupled services.

The benefit of decomposing an application into different smaller services is
that it improves modularity and makes the application easier to
understand, develop and test.

It also parallelizes development by enabling small autonomous teams to
develop, deploy and scale their respective services independently.

migration
Migration is one of the jopinionated patterns|aiming to migrate a deployed
NVF from a location to another.

monitoring metrics
Performance or health metrics published by resource managers and/or

resources onto a [Kafka topic

network
A type of resource.

network function virtualization (NFV)
The design and integration of external resources into virtual production
environments, which can then automate the management of end-to-end
lifecycle processes.

Also see [virtual network functions|

20 Agile Lifecycle Manager: Installation, Administration and User Guide

OASIS
OASIS is a non-profit consortium that drives the development,
convergence and adoption of open standards for the global information
society.

onboarding

Onboarding is the act of adding a resource manager to Agile Lifecycle
Manager. It lets Agile Lifecycle Manager know that the resource manager
exists, and it imports the descriptors of all the resource types managed by
the resource manager. It also gathers the information about the deployment
locations that the resource manager uses.

operations
'Operations' is a section of an assembly descriptor or a resource descriptor
that defines sets of operations, which can be called to enable relationships
to be created between resources and/or assemblies.

opinionated patterns
The group of lifecycle transitions to achieve a particular task.

Examples of tasks include: heal, reconfigure, and upgrade.

policies
"Policies' is a section of an assembly descriptor or a resource descriptor
containing the set of policies that are used to manage the assembly or
resource instances.

property
"Properties' is a section of an assembly descriptor or a resource descriptor
containing the properties that belong to the resource or assembly

descriptors.

These include the full set of properties that are required to orchestrate
them through to the active state.

These can be understood as the 'context' for the management of the item
during its lifecycle.

quality monitoring
Quality Monitoring is a process to monitor the health of deployed

resources and NFV infrastructure and to test, monitor and evaluate the
end-to-end service performance.

reference
‘Reference' is a section of assembly descriptor or resource descriptor.

When the Agile Lifecycle Manager has already instantiated an assembly it
is possible for another assembly to share the instance by referencing it
within the references section.

The references section can also refer to existing objects that may have been
created outside the Agile Lifecycle Manager.

relationship
‘Relationships' is a section of assembly descriptor or resource descriptor.

Relationships define how the descriptors link requirements to capabilities.

A relationship has source-capabilities and target-requirements as parts of
its description.

Chapter 1. Product overview 21

requirement
'Requirements' is a section of an assembly descriptor or a resource
descriptor explaining what functions the resources or assemblies need
before they can work successfully.

resource (or component)
A piece of software that can be automatically deployed in a virtual
environment, and that supports key lifecycle states including install,
configure, start, stop, and uninstall.

resource descriptor
The list of resource attributes and properties written in YAML.

resource health (or component health)
Resource health is a microservice within Agile Lifecycle Manager
responsible for monitoring health-related messages and initiating
recovering actions related to deployed resources.

For example, the resource health may send a 'heal' message to the intent
engine if a certain event indicating health issues is detected.

resource instance
A resource instance represents the logical grouping of infrastructure being
managed by an external resource manager.

resource manager
The entity instructing resources.

For example, IBM UrbanCode.
resource manager record

Agile Lifecycle Manager maintains a record of each resource manager it
can use to create and manage resources. When a new resource manager
record is created, the resource types managed by that resource manager
instance are read into Agile Lifecycle Manager via the resource manager's
APIL.

resource package
Resource package is described as a CSAR archive.

This is the bundle of everything needed for a resource that is loaded into a
resource manager.

scale Scale is one of the opinionated patterns aiming to increase or decrease the
amount of deployed resources of a specific type.

service chain
Instantiated as relationships in assembly descriptors.

TOSCA
Topology and orchestration specification for cloud applications (TOSCA) is
a standard defined by OASIS.

topology (or instance inventory)
The repository storing key state information related to assembly and
resource instances and topology of the deployment locations.

virtual infrastructure manager
The entity controlling the cloud infrastructure compute, storage and
network resources.

For example, OpenStack.

22 Agile Lifecycle Manager: Installation, Administration and User Guide

virtual network functions (VNF)
Virtual network functions (VNF) allow a much simpler set of lifecycle tasks
enabling near full automation of the creation and healing of virtual
services, far more than is possible with their physical counterparts.

Also see network function virtualization|

Related information:

[# [Kafka documentation (web link)|

Chapter 1. Product overview 23

https://kafka.apache.org/documentation/

24 Agile Lifecycle Manager: Installation, Administration and User Guide

Chapter 2. Planning

This section helps you to plan your installation and use of Agile Lifecycle Manager
by listing the minimum software and hardware requirements for both on-premise
and IBM Cloud Private versions of Agile Lifecycle Manager.

Hardware requirements
This section lists the minimum hardware requirements for a deployment of Agile

Lifecycle Manager.

Your minimum hardware requirements are determined by the needs of the
components of your specific solution. The requirements listed here focus on what
you need to deploy Agile Lifecycle Manager.

Table 3. IBM Cloud Private Agile Lifecycle Manager hardware requirements

Requirement Setting
CPU 16 cores
Memory 32Gb
Disk 1Tb

Software requirements
This section lists the minimum software requirements for a deployment of Agile
Lifecycle Manager.
The IBM Cloud Private version of Agile Lifecycle Manager has the following
software requirements.

Table 4. IBM Cloud Private Agile Lifecycle Manager software requirements

Requirement Details

Operating system IBM Cloud Private Version 3.1.0 or later
Database cluster Cassandra cluster

Messaging Kafka messaging solution

IBM Cloud Private deployment overview

You can install Agile Lifecycle Manager within a private cloud, using IBM Cloud
Private. This topic describes the default container architecture of an ICP
deployment.

Agile Lifecycle Manager components and services run within containers, and
communication between these containers is managed and orchestrated using IBM
Cloud Private running on a Kubernetes cluster.

IBM Cloud Private (ICP)
The IBM Cloud Private system on which the Kubernetes cluster is

deployed.

© Copyright IBM Corp. 2018 25

Managing the cluster
The cluster is made up of a minimum number of virtual machines
deployed as a master node (which include management, proxy and boot
functions), and three worker nodes within the cluster (on which
Kubernetes pods and containers, known as workloads, are deployed).

The components of Agile Lifecycle Manager are automatically deployed as
pods running within the cluster.

You connect to the master node using the IBM Cloud Private GUI or the
Kubernetes command line interface.

You connect to Agile Lifecycle Manager using a Web browser. The Agile
Lifecycle Manager URL consists of the master node hostname and the port
number.

Tip: You can create namespaces within your cluster. This enables you to
have multiple independent installations within the cluster, each running in
a separate namespace.

Storage
A persistent volume provides storage on demand to the various containers
in the cluster.

The shared storage must be implemented using local storage.

26 Agile Lifecycle Manager: Installation, Administration and User Guide

Chapter 3. Installation

Agile Lifecycle Manager is now also available as an IBM Cloud Private (ICP)
version. The ICP deployment and configuration of Agile Lifecycle Manager differs
significantly from the on-premise version.

Installing and configuring on ICP

Agile Lifecycle Manager is distributed as a self-contained package delivered as a
Helm chart. To install Agile Lifecycle Manager, you complete the required
pre-installation tasks, then perform the installation.

Before you install (ICP)

Before installing Agile Lifecycle Manager on ICP, you perform a number of
pre-installation checks and tasks.

Set up Kubernetes hardware architecture
Ensure that the Kubernetes hardware architecture on which IBM Cloud
Private is installed is amd64.

Configure ports
Ensure all required ports are available for ICP installation.

See the following Knowledge Center page for more information:
https: / /www.ibm.com /support/knowledgecenter/en/SSBS6K_3.1.0/|
supported_system_config /required_ports.html|

Install IBM Cloud Private
Install IBM Cloud Private Version 3.1.0 or later.

Set the Enable sub-chart resource requests field to false in the IBM Cloud
Private GUI during installation.

See the IBM Cloud Private Version 3.1.0 Knowledge Center:
https: / /www.ibm.com /support/knowledgecenter/en/SSBS6K_3.1.0/|
kc_welcome_containers.html|

Set up virtual machines
Ensure you have four virtual machines in your Kubernetes cluster:

* three worker nodes
* one master/management/proxy/boot node

Each node requires the minimum of 16 CPUs and 32 GB of memory.

Install client utilities
Ensure you have the Kubernetes and Helm client utilities installed on your
master node.

© Copyright IBM Corp. 2018 27

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.0/supported_system_config/required_ports.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.0/supported_system_config/required_ports.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.0/kc_welcome_containers.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.0/kc_welcome_containers.html

Preparing your cluster

Perform these steps to prepare an Agile Lifecycle Manager cluster on IBM Cloud

Private.

About this task

Follow the prerequisite steps outlined in the table to prepare a cluster for Agile

Lifecycle Manager installation.

Table 5. Steps to prepare an Agile Lifecycle Manager cluster on ICP. This table outlines the steps to prepare an IBM
Cloud Private cluster for Agile Lifecycle Manager installation.

installation.

Optional: If you want multiple independent
installations within the cluster, then create custom
namespaces within your cluster. Run each
installation in a separate namespace.

Note: Additional diskspace and worker nodes are
required to support multiple installations.

Item |Action More information
1 To support the cluster, provision at least four virtual |For generic ICP requirements, see the following
machines: Knowledge Center topic: |https:/ /www.ibm.com /|
+ 1 master/management/proxy/boot node support/ knowledgecenfer /SSBS6K_3.1.0/|
« 3 worker nodes supported_system_config/hardware_reqgs.html|
2 Download and install ICP. For the download, see the IBM Support Download
Document:
For the installation, see the following section in the
IBM Cloud Private Knowledge Center:
https:/ /www.ibm.com/support/knowledgecenter /|
en/SSBS6K_3.1.0/installing /installing html|
3 Install and configure the Kubernetes command line | See |https: / /www.ibm.com /support /|
interface kubect1 to enable command-line access to knowledgecenter/SSBS6K_3.1.0/manage_cluster/|
the cluster. cfc_cli.htm|
4 Install the ICP command line interface to enable See |https:/ /www.ibm.com/support/|
command-line management of the cluster. knowledgecenter /SSBS6K_3.1.0/manage_cluster/|
install_cli.htm“
5 Familiarize yourself with the command-line You can find more information at the following
interfaces that you will need to perform the locations:
installation and communicate with the cluster. « Helm CLI commands: [Helm documentation]
e ICP CLI commands: |iCP Version 3.1.0|
[documentation: CLI command reference]
¢ Kubernetes CLI commands: |Eubernetes|
|[documentation: Overview|
6 Use the default namespace in the cluster for your See |https:/ /www.ibm.com/support/|

knowledgecenter/SSBS6K_3.1.0/user_management/|

create_project.html|

What to do next

Load the Agile Lifecycle Manager archive into ICP.

28 Agile Lifecycle Manager: Installation, Administration and User Guide

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.0/supported_system_config/hardware_reqs.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.0/supported_system_config/hardware_reqs.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.0/supported_system_config/hardware_reqs.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.0/installing/installing.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.0/installing/installing.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.0/manage_cluster/cfc_cli.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.0/manage_cluster/cfc_cli.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.0/manage_cluster/cfc_cli.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.0/manage_cluster/install_cli.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.0/manage_cluster/install_cli.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.0/manage_cluster/install_cli.html
https://docs.helm.sh/helm/#helm
https://docs.helm.sh/helm/#helm
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.0/manage_cluster/cli_commands.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.0/manage_cluster/cli_commands.html
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.0/user_management/create_project.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.0/user_management/create_project.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.0/user_management/create_project.html

Loading the Agile Lifecycle Manager archive into ICP

Run these commands to load the archive into ICP.

Before you begin

Before you perform this task make sure you have met the following prerequisites:

instructions.

You must have downloaded the eAssembly from [[BM Passport Advantage} For
more information, see the IBM Support Download Document.

If you loaded any previous versions, then you must uninstall that version,
including all images and Helm charts before loading the current archive into
ICP. To do this, follow the [“Uninstalling Agile Lifecycle Manager (ICP)” on page|

Procedure

1.

Log into the cluster master node on ICP.
a. Issue the following command:
bx pr Togin --skip-ssl-validation -a https://IP-address:8443

Where IP-address is the IP address of the master node.

b. When prompted, specify the username and password for the master node.
By default these are as follows:

¢ Username: admin
e Password: admin

2. Configure your cluster.

bx pr cluster-config cluster-name

Where cluster-name is the name of your cluster, as configured in
[your cluster” on page 28 By default, the cluster name is mycluster.

Point the Kubernetes command line client kubect1 at your cluster using the
following command. Use this command syntax if you are installing in the
default namespace, which is called default:

kubectl config set-context cluster-name

Where cluster-name is the name of your cluster, as configured in
[your cluster” on page 28 By default, the cluster name is mycluster

Note: If you are installing in a custom namespace, then you must also specify
the name of the custom namespace, using the following syntax:

kubectl config set-context cluster-name --namespace custom-namespace

Where custom-namespace is the name of your custom namespace, as configured
in [“Preparing your cluster” on page 28}

Log into the Docker repository.
docker login cluster-name.icp:8500

Where cluster-name is the name of your cluster, as configured in
[your cluster” on page 28, By default, the cluster name is mycluster

When prompted, specify the username and password. By default these are as
follows:

¢ Username: admin
e Password: admin

Chapter 3. Installation 29

https://www-01.ibm.com/software/passportadvantage/pao_customer.html

5. Unset the proxy connection. The proxy connection enables you to connect to
the Internet using a proxy server. You must unset this for ICP to be able to
work.

unset http_proxy
unset HTTP_PROXY

6. Load the Agile Lifecycle Manager archive into ICP.
bx pr Toad-ppa-archive --archive <alm_partnumber>.tar.gz

This command can take up to an hour to. The exact amount of time depends
on your system resources.

Note: If you are installing in a cluster with a non-standard name or in a
custom namespace, then you must also specify the non-standard cluster name
and name of the custom namespace, using the following syntax. The square
brackets must not be included; they are shown only to indicate that these
parameters are optional:

bx pr load-ppa-archive --archive <alm_partnumber>.tar.gz [--cluster cluster-name]
[--namespace custom-namespace]

Where the following parameters only need to be specified if you are using a
non-default cluster or namespace:

* cluster-name is the name of your cluster, as configured in [“Preparing your|
[cluster” on page 28 By default, the cluster name is mycluster.

* custom-namespace is the name of your custom namespace, as configured in
[“Preparing your cluster” on page 28.

Provision storage for Agile Lifecycle Manager on ICP

The following procedure describes how to provision the storage required by Agile
Lifecycle Manager on IBM Cloud Private.

About this task

To provision storage, you prepare your worker nodes, create a PersistentVolume
yaml file, apply the PersistentVolume configuration, and then check the status of
the PersistentVolume.

Restriction: As dynamic provisioning is not supported, you use local storage
volumes for the Agile Lifecycle Manager StatefulSet applications.

nodeAffinity
The nodeAffinity configuration defines which worker node the storage is
available on.

path The path configuration must be created before the volume can be used.

capacity
The capacity configuration needs to meet or exceed the storage
requirements.

claimRef
The claimRef configuration needs to match the Agile Lifecycle Manager
volume claims created.

Ensure that the namespace and release names are considered.

30 Agile Lifecycle Manager: Installation, Administration and User Guide

Procedure

1. Create the storage paths on the worker nodes. Run the following script on each
of your worker nodes to create the required directories:

for svc in cassandra kafka elasticsearch zookeeper ; do
for num in 0 1 2; do
mkdir -p /opt/ibm/alm/backup/$svc-$num;
mkdir -p /opt/ibm/alm/data/$svc-$num;
mkdir -p /opt/ibm/alm/logs/$svc-$num;
done;
done

2. Create a yaml file to define the PersistentVolume values. Change the following
values:

WORKER1
Change this value to the IP address of the first worker node.

WORKER2
Change to the IP address of the second worker node.

WORKER3
Change to the IP address of the third worker node.

RELEASENAME
Change this value to the release name to be used when installing the
Agile Lifecycle Manager chart.

NAMESPACE
Change this value to the namespace into which Agile Lifecycle
Manager is installed.

Example configuration file:
3. Apply the PersistentVolume configuration settings, as in the following example:
$ kubectl apply -f my-alm-pv-config.yaml

Where my-alm-pv-config is the name given to the configuration file created
previously.

4. Check the availability of the storage volumes using the following script:
$ kubectl get pv -1 release=alm

Where alm is the value previously defined for RELEASENAME. The system
output will be similar to the following:

NAME CAPACITY ACCESS MODES ~ RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
alm-data-cassandra-0 50Gi RWO Retain Available default/data-alm-cassandra-0 Tocal-storage 17h
alm-data-elasticsearch-0 75Gi RWO Retain Available default/data-alm-elasticsearch-0 Tlocal-storage 17h
alm-data-kafka-0 1561 RWO Retain Available default/data-alm-kafka-0 Tocal-storage 17h
alm-data-zookeeper-0 561 RWO Retain Available default/data-alm-zookeeper-0 Tocal-storage 17h

What to do next

You now install Agile Lifecycle Manager on ICP.

Installing Agile Lifecycle Manager on ICP

This topic describes how to install Agile Lifecycle Manager into IBM Cloud Private.
Before you begin
Ensure that your IBM Cloud Private cluster has Internet access.

If you are installing into a non-default namespace, ensure that the user you are
deploying with has adequate privileges to perform the installation.

Chapter 3. Installation 31

Note: If you are installing into a default namespace, your user profile will
automatically have the correct privileges to perform the installation.

About this task

The following procedure describes how to edit the installation configuration file,
and then how to install Agile Lifecycle Manager from the command line.

Procedure

1. Add the internal ICP Helm repository to the Helm configuration. This process
is described in the following topic of the IBM Cloud Private Knowledge Center:
https:/ /www.ibm.com /support/knowledgecenter/en/SSBS6K_3.1.0/|
app_center/ add_int_helm_repo_to_cli.html|

2. Define the Agile Lifecycle Manager installation configuration file, for example,
alm-config.yaml. Example yaml file:
global:

image:
repository: mycluster.icp:8500/default # adjust if you importALM into
a different namespace
ingress:
api:
enabled: true
admin:
enabled: false
domain: ""
t1sSecret: ""
persistence:
enabled: true
useDynamicProvisioning: true
storageClassName:
storageSize:
cassandradata: 50Gi
kafkadata: 15Gi
zookeeperdata: 5Gi
elasticdata: 75Gi
environmentSize: "size0"

3. Deploy the Agile Lifecycle Manager installation from the command line. The
following installation script example assumes an IBM Cloud Private Helm
repository named icp-repo and a configuration file called alm-config.yaml.

helm install icp-repo/ibm-netcool-alm-prod --name alm --values alm-config.yaml --tls
4. Verify that the installation is up and running.

Example

kubectl get pod -1 release=alm

Where alm is the Helm release name for Agile Lifecycle Manager. The system
should return information indicating that the pods have a status of Running.

Example
helm Tist --tls

This command returns a list of Helm deployments.

What to do next

You login to the Agile Lifecycle Manager ICP installation using a URL of the
following format:

https://hostname_of master_node:port_number/ibm/console

32 Agile Lifecycle Manager: Installation, Administration and User Guide

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.0/app_center/add_int_helm_repo_to_cli.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.0/app_center/add_int_helm_repo_to_cli.html

Where:

* hostname_of master_node is the hostname or IP address of the master node of
the Operations Management on IBM Cloud Private cluster.

* port_number is the port number of the application to which you want to log
onto.

Uninstalling Agile Lifecycle Manager (ICP)
Uninstall Agile Lifecycle Manager by performing the following steps.

About this task

This procedure uninstalls the deployed version of Agile Lifecycle Manager, but
does not remove the load images or charts.

Note: When you uninstall a release, any unused docker images that were used as
part of the installation remain on the master node and on a local repository on one

or more worker nodes. From time to time, Kubernetes removes unused images as
part of its garbage collection process. For more information, see [Configuring

[kubelet Garbage Collection|

Procedure

1. Run the following Helm command to determine which releases of Agile
Lifecycle Manager are installed.

helm 1s --tls

2. Delete each release identified in the previous step by running the following
Helm command against each release name in turn.

helm delete --purge --tls release_name

Where release_name is the name of one of the releases identified in the
previous step.

3. Repeat the previous step until all of the releases are deleted.
4. Clean up storage:

Example

kubectl delete pvc -1 release=alm

Where alm is the Helm release name for Agile Lifecycle Manager.

5. Clean up remaining cron job objects and their related pods. After Agile
Lifecycle Manager has been uninstalled, orphaned job objects and related pods
may remain on the system. Remove these as in the following example:

kubectl delete job -1 release=alm --cascade

Where alm is the Helm release name for Agile Lifecycle Manager.

Chapter 3. Installation 33

https://kubernetes.io/docs/concepts/cluster-administration/kubelet-garbage-collection/
https://kubernetes.io/docs/concepts/cluster-administration/kubelet-garbage-collection/

34 Agile Lifecycle Manager: Installation, Administration and User Guide

Chapter 4. Using the Ul

This section describes the Agile Lifecycle Manager User Interface, and the tasks it
allows you to perform.

Related concepts:

[Chapter 5, “Getting started (using the APIs),” on page 47|

Agile Lifecycle Manager provides both a graphical UI and an HTTP API allowing
the creation and administration of assemblies. This section describes a set of basic
scenarios to get started using the APIs.

Ul functionality

The Agile Lifecycle Manager Ul is comprised of three separate tools, a descriptor
editor, an operations console, and a resource manager controller.

Descriptor Editor (Editor view)
The Descriptor Editor allows users to access all descriptors, both
onboarded resource descriptors and assembly descriptors stored in the
Agile Lifecycle Manager catalog.

As resource descriptors are onboarded from resource managers owning
and managing the actual resources, in the Agile Lifecycle Manager
Descriptor Editor they can only be browsed and no changes can be made
to them.

For assembly descriptors Descriptor Editor provides a wide set of tools
from browsing to editing, uploading, and downloading assembly
descriptors.

With Descriptor Editor you can perform the following tasks

* Browse descriptors

* Modify existing assembly descriptors

* Create a new assembly descriptor

* Upload a new assembly descriptor (including validation)

* Download a copy of an existing assembly descriptor to the local
filesystem

* Remove assembly descriptors
Operations Console (Assemblies view)
The Operations Console allows user to operate and manage services,
modeled as assemblies, through the full lifecycle from initial provisioning
through lifetime operations all the way to their end of life.
With the Operations Console you can:
* Browse existing assembly instances
* Create new assembly instances
* Request lifecycle transitions on assembly instances
* Initiate automated healing of broken service components
* Scale In and Scale Out service components
* Uninstall Services

© Copyright IBM Corp. 2018 35

Resource Manager Controller (Resource Managers view)
The Resource Manager Controller enables users to manage connected
resource managers and onboard new resource managers to Agile Lifecycle
Manager.

Onboarding a resource manager makes Agile Lifecycle Manager aware of
the underlying resource manager and onboards the associated resource
descriptors to Agile Lifecycle Manager. Once the resource types are
onboarded the corresponding resource descriptors can be viewed on
Descriptor Editor and used as components in assembly descriptors.
Already onboared resource managers can be refreshed to update Agile
Lifecycle Manager with possible changes on resource manager
configuration, or their managed resource types.

With the Resource Manager Controller you can perform the following
operations on resource managers:

* Browse onboarded resource managers

* Refresh onboarded resource managers

* Introduce new resource managers to Agile Lifecycle Manager

* Remove obsolete resource managers from Agile Lifecycle Manager
Tip:

Calls to the Agile Lifecycle Manager API are made using either REST or RPC
mechanisms, and each call returns an HTTP status code. You can find more
detailed information on the API HTTP status code strategy here: [“API HTTP status|
[codes reference” on page 89|

Logging into the ICP Ul

You discover the Agile Lifecycle Manager ICP logon URL from the master node
hostname and port number.

Before you begin

Ensure that the hostname in your URL resolves to an IP address. You can do this
by querying a DNS server on your network, or by configuring the /etc/hosts file
on your client machine. For example, in the example URL provided below, ensure
that the hostname netcool.master2l.mycluster.icp resolves to an IP address.

Procedure
1. Retrieve the hostnames.
kubect1 get ingress

A Kubernetes ingress is a collection of rules that can be configured to give
services externally-reachable URLs. Run the kubectl get ingress command to
retrieve the hostname allocated by the Kubernetes Ingress controller to satisfy
each Ingress. By default this command retrieves data similar to the following:
NAME HOSTS ADDRESS PORTS AGE
master2l-almgui alm.master2l.mycluster.icp IP_address 80, 443 1d

2. Ensure that the hostname in your URL resolves to an IP address. You can do
this using one of the following methods:
* Configure your /etc/hosts file with the hostname and IP address in the

output of the previous step.

* Query a DNS server on your network.

36 Agile Lifecycle Manager: Installation, Administration and User Guide

3. Construct the URL using the data in the HOSTS column. You can then copy and
paste this URL directly into your browser.

https://hostname/ibm/console

Where hostname is the name of the Agile Lifecycle Manager host that you want
to log into. The hostname is made up of three elements:

* Component name; for example: alm.
* Release name; for example: master21.
* Cluster name; for example: mycluster.icp.

The resultant URL would be:
https://alm.master2l.mycluster.icp/ibm/console

Note: Your hostname will differ from this example.

Managing assembly descriptors

You use the UI Editor to manage assemblies, for example editing assembly
descriptors or creating new ones, importing or exporting them, or removing them
from use.

Before you begin

To be able to edit assembly descriptors you should have opened the Agile Lifecycle
Manager user interface and selected Editor-view from the top menu bar.

About this task

You use Editor to perform the following tasks:

Open an existing assembly descriptor
You can open an existing assembly descriptor stored in the Agile Lifecycle
Manager topology to view or modify it. Multiple descriptors can be open
in parallel on separate browser windows.

Create a new assembly descriptor
You can create a new assembly descriptor by writing a valid descriptor in
the 'Editor' and saving it.

Change an assembly descriptor
You can save an open assembly descriptor to the Agile Lifecycle Manager
catalog after editing and replace the existing one in the Agile Lifecycle
Manager catalog. Before saving a consistency check is performed. You will
be prompted in case of invalid YAML format or when trying to change or
save a resource type without sufficient permissions.

Save an assembly descriptor with a new name or version
You can save an open assembly descriptor to the Agile Lifecycle Manager
catalog with a new name or version number. Before saving a consistency
check is performed. You will be prompted in case of already existing
assembly name, invalid yaml-format.

Upload assembly descriptor from local file system
You can upload an assembly descriptor from the local file system as a
yaml-file. Before opening the uploaded yaml-file a consistency check is
performed to verify the correctness of the yaml-format. Error messages will

Chapter 4. Using the Ul 37

be displayed if the uploaded file is not valid yaml. Wherever possible
detailed information will be provided indicating where in the uploaded file
the problem lies.

Download assembly descriptor into local file system
You can download an open assembly descriptor to the local file system and
select the target file location.

Duplicate an assembly descriptor
You can duplicate an opened assembly descriptor. The version number of
the duplicate assembly descriptor will be auto incremented while the name
will stay the same.

Remove an assembly descriptor
You are able to remove an existing assembly descriptor from the Agile
Lifecycle Manager catalog

Procedure

Open an existing assembly descriptor

1. Find the assembly descriptor to open. All descriptors, both resources and
assemblies existing in the Agile Lifecycle Manager catalog are listed on the left
side of the Editor-view with associated action buttons.

2. Open the assembly descriptor.

Once the right descriptor is located from the descriptor list it can be opened
either to the same browser window or to a new tab. You can open a
descriptor to the present window simply by clicking the corresponding section
in the descriptor list.

The selected item will be highlighted with white background and the
descriptor yaml-content is presented on the right side of the descriptor list.

You can open a descriptor to a new browser tab by clicking the action button
associated with the descriptor.
Create a new assembly descriptor

3. Select to create a new assembly descriptor.

You can create a new assembly descriptor by clicking the New button above
the descriptor list.The Create Assembly Descriptor dialog box is opened. In
the dialog box fill in the Name, Version and Description for the new
assembly. Once these are defined click save to insert the new descriptor to the
Agile Lifecycle Manager catalog. As the result a new descriptor with the given
name is added to the descriptor list.

4. Edit the descriptor Open the new descriptor as described in [Open an existing]|
[assembly descriptor] The new descriptor is now opened on the right side of
the Editor-view and can be freely edited. By default the descriptor is created
with template structure using the name, version and description given in the
previous step and commented structure of a valid descriptor to ease the
definition.

5. Save the new assembly descriptor

When the descriptor is defined the newly edited descriptor can be saved by
clicking the Save button located in the upper right corner of the text editor.
When saving the descriptor you will be prompted about successful saving of
the descriptor or an error condition in case the YAML-format is not correctly
defined.

Change an assembly descriptor

38 Agile Lifecycle Manager: Installation, Administration and User Guide

6. Find the assembly descriptor to be changed. All descriptors are listed on the
left side of the Editor-view.

7. Edit the assembly descriptor
Make applicable changes to the descriptor by editing the YAML-descriptor
opened in the text editor.

8. Save the changed assembly descriptor

When the descriptor is defined the newly edited descriptor can be saved by
clicking the Save button located in the upper right corner of the text editor.

When saving the descriptor you will be prompted about successful saving of
the descriptor or an error condition in case the YAML-format is not correctly
defined.

Save an assembly descriptor with a new name or version

9. Open an assembly descriptor to be renamed or upgraded
10. Edit the assembly descriptor

If you want to rename the assembly descriptor, edit the assembly name in the
descriptor. (For example: "name: assembly::name::1.0" -> "name:
assembly::newname::1.0")

If you want to upgrade the assembly to a higher version number, edit the
version number of the assembly in the descriptor. (For example: "name:
assembly::name::1.0" -> "name: assembly::name::1.1")
You are also able to change both the name and the version.

11. Save the renamed and/or upgraded assembly descriptor

When the descriptor is defined the newly edited descriptor can be saved by
clicking the Save button located in the upper right corner of the text editor.

When saving the descriptor you will be prompted about successful saving of
the descriptor or an error condition in case the YAML-format is not correctly
defined.

The newly saved version will replace the original in the Agile Lifecycle

Manager catalog.
Upload assembly descriptor from local file system

An assembly descriptor is imported into the Agile Lifecycle Manager catalog by
uploading a YAML file from the local file system. As part of the upload process
certain consistency checks will be made and only if these pass will the new
assembly descriptor appear in the Agile Lifecycle Manager catalog.

12. Start the assembly descriptor upload procedure

You start the process of uploading an assembly descriptor from the local file
system by clicking the Upload button above the descriptor list.

13. Select the assembly descriptor file

An Upload Assembly Descriptor dialog box is opened. In the dialog box
either drag and drop the file to the assigned target area or click the target area
to open a file explorer to select the assembly descriptor file.
The file being uploaded must have been saved as an YAML-file with the
corresponding extension (.yml, .yaml).

14. Upload the assembly descriptor file
After the file is selected click Save in the bottom of the dialog box to upload
the assembly descriptor into the Agile Lifecycle Manager catalog.

You will be informed of the status of the upload. When the upload is
successful, a new descriptor item will appear in the descriptor list in the
Editor. If the upload fails the consistency checks, error messages will be

Chapter 4. Using the Ul 39

displayed indicating the source of the problem.
Download assembly descriptor to the local file system

15. Start the assembly descriptor download process

Find and open the assembly descriptor you wish to download in the editor as
described in [Open an existing assembly descriptor]

16. Download the assembly descriptor

When the descriptor is selected it can be downloaded by clicking the
Download action button associated with the descriptor in the descriptor list.

The downloaded assembly descriptor will be saved as a plain-text YAML file.

A handle to access the downloaded descriptor is shown in the bottom left
corner of the editor. The downloaded descriptor file can be accessed or
opened in a local application by clicking the handle.

Duplicate an assembly descriptor

17. Select the assembly to be duplicated All descriptors, both resources and
assemblies, existing in the Agile Lifecycle Manager catalog are listed on the
left side of the Editor-view with associated action buttons.

18. Duplicate the selected assembly descriptor

When the descriptor is selected it can be duplicated by clicking the Duplicate
action button associated to the descriptor in the descriptor list.
Remove an assembly descriptor

19. Select the assembly to be removed. All descriptors, both resources and
assemblies, existing in the Agile Lifecycle Manager catalog are listed on the
left side of the Editor-view with associated action buttons.

20. Remove the assembly

When the descriptor is selected and opened it can be removed from the Agile
Lifecycle Manager catalog by clicking the Remove action button in the upper
right corner of the text editor.

Operating assemblies

You use the UI Assemblies tool to create new assembly instances, or view existing
ones and monitor any related activity. You can also use it to request lifecycle
transitions or opinionated patterns on an assembly.

Before you begin

To be able to edit assembly descriptors you should have opened the Agile Lifecycle
Manager user interface and selected Assemblies view from the top menu bar.

About this task

You use the Assembly view to perform the following tasks:

View existing assembly instances
You can view the existing assembly instances managed by Agile Lifecycle
Manager and the associated status.

Create a new assembly instance
You can request a creation of a new instance of an assembly.

Request an assembly lifecycle transition
You can request an intent on an existing assembly instance to transition to
a new lifecycle state.

40 Agile Lifecycle Manager: Installation, Administration and User Guide

Request an opinionated pattern

You can request an opinionated pattern to be performed on an existing
assembly instance. This include requests for Scale, Heal, Update, or
Upgrade an assembly. Agile Lifecycle Manager will automatically resolve
the required individual lifecycle transitions to achieve the requested target
status and execute them subsequently.

Monitor process activity

You can monitor the process activity related to existing assembly instances
including the progress of the lifecycle transition and opinionated pattern
requests you have initiated.

Procedure

View an existing assembly instances

1.

Browse the existing assembly instances Existing assembly instance can be seen
on the starting page of the Assemblies view. Each assembly instance is
represented by a card on the main page. Each card shows the Assembly name,
Descriptor name, and the last action performed on the assembly. Action can be
either a lifecycle state transition or a pattern like heal or scale.

Create a new assembly instance

2. Select to create a new assembly instance.

A new assembly instance can be created by clicking the Add symbol on the
top menu bar. Once the symbol is clicked a dialog is opened to fill in
necessary details to perform the transaction.

Fill in assembly and transaction details. In the opened dialog you need to give
following details:

* Name for the new assembly instance. The defined name will be used as a
unique, within Agile Lifecycle Manager, identifier of the assembly.

* Descriptor, the descriptor is selected from a list of available descriptors that
corresponds to the available descriptors existing in Agile Lifecycle Manager
catalog.

* The Target State for the lifecycle transition performed during the creation
process. Available states include: Installed, Inactive, and Active. Agile
Lifecycle Manager will resolve the necessary unitary transitions required to
create and move the new assembly to the desired target state. For example
if 'Active' is selected, Agile Lifecycle Manager will install the assembly and
related components, configure, start, and perform integrity test on them.

Click Next to move to the next phase of the definition process.

Enter the properties.

In the opened dialog you need to give values to all properties defined in the
selected descriptor. Some of the properties might have preset values defined
in the descriptor. These values can be overridden by changing the
corresponding value. All empty values must be given a value to create the
assembly instance.

Once the required details are filled in, click Next to move to the next phase of
the definition process.

Verify and accept the changes.

The final state of the definition presents you the assembly details and defined
property values for verification.

Once the information is verified to be correct click Complete to initiate the
assembly creation process.

Chapter 4. Using the Ul 41

As a result the assembly is created and moved to the target state. New
assembly instance can be seen as a new card on the starting page of the
Assemblies view.

At any point of the process you can cancel the operation by clicking Cancel,
or return to previous step by clicking Previous.
Request a lifecycle transition on an assembly

6. Select the target assembly instance

You can select the target assembly by searching the assembly instance from
the starting page of the Assemblies view and clicking the corresponding card.

As the result a new page is opened showing details of the selected assembly.
The view contains three parts:

* Top bar presenting assembly status and lifecycle transition controls.

* Process containment section showing action history of the related processes
or assembly’s component structure depending on the process containment
selection.

* Relationships section visualizing relations of the selected component.
7. Initiate a lifecycle transition on the selected assembly.

Lifecycle transitions can be requested on the selected assembly instance by
selecting a new target state for the assembly from the top bar. Only allowed
states can be selected from the drop-down list.

After a desired target state has been selected from the drop-down list click
Apply next to the state selection to initiate the transition.

All unitary actions performed and their status are visualized in the process
section of the current page. Once the transition is completed the state of the
assembly is changed and shown also on the starting page.

Request an opinionated pattern on an assembly

8. Select the target assembly instance You can select the target assembly by
searching the assembly instance from the starting page of the Assemblies view
and clicking the corresponding card.

9. Find the target component.

You can browse the component structure of the selected assembly by selecting
Containment view from the process containment section. Once Containment is
selected the section presents the hierarchical component structure of the
assembly. By default only the root level is shown. You can extend the view to
show lower level components by clicking the component box in the view.

Different patterns can be applied to different types of components. The
component type is shown as a symbol next to each component. Also the
applicable patterns depend on the type of the component.

The target component can be selected from the hierarchy by laying over the
mouse cursor on the corresponding item in the view.

10. Initiate an opinionated pattern on a component.

Once the cursor is over a component that has applicable patterns available, a
spanner symbol appears next to the component name. Available patterns can
be seen by clicking the symbol.

A new dialog box is opened giving options to cancel the operation of initiate
any of the available patterns on the selected component. A pattern can be
initiated by clicking the corresponding button in the dialog box.

Running a pattern will result to a sequence of actions run on the assembly.
The flow of the unitary operations run on different components can be viewed
by selecting the Process view from the process containment section.

Monitor process activity

42 Agile Lifecycle Manager: Installation, Administration and User Guide

11. Select the target assembly instance You can select the target assembly by
searching the assembly instance from the starting page of the Assemblies view
and clicking the corresponding card.

12. Browse the process activity related to the selected assembly instance.

You can browse the history of process activity related to the selected assembly
by selecting the Process view from the process containment section. Once
Process is selected the section presents the history of actions run on the
components of the assembly.

The process view is updated continuously according to preformed operations,
for example when you initiate a lifecycle transition on the assembly or
opinionated pattern on any of the related components.

Managing resource managers

You use the UI Resource Managers view to browse, refresh or remove existing
resource managers, or add new ones.

Before you begin

To be able to edit assembly descriptors you should have opened the Agile Lifecycle
Manager user interface and selected the Resource Manager view from the top
menu bar.

About this task

You use Editor to perform the following tasks:

Add a new resource manager
You can introduce a new resource manager to Agile Lifecycle Manager and
onboard the resource types managed by the resource manager.

Browse existing resource managers
You can browse the information related to existing resource managers.

Refresh a resource manager
You can refresh a resource manager to Agile Lifecycle Manager and refresh
the information about resource types managed by the resource manager.

Remove a resource manager
You can remove an existing resource manager from Agile Lifecycle
Manager. After removing a resource manager, Agile Lifecycle Manager is
not able to manage any associated resource types.

Procedure

Add a new resource manager
1. Select to add a new resource manager.

You can add a new resource manager by clicking the Add new RM button on
top of the list showing the existing resource managers.

2. Fill in the resource manager details.

To define the new resource manager you need to type in the name, type, and
URL of the new resource manager.

* Name is the unique resource manager name used as the identification of the
resource manager.

* Type is an Agile Lifecycle Manager internal attribute to categorize and
separate different types of resource managers from each other.

Chapter 4. Using the Ul 43

* URL defines the actual location of the resource manager where it is
deployed.
Once the required information is filled in click the Add new RM button to
initiate the onboarding process. As the result of successful onboarding a new
resource manager is added to the list of shown resource managers.
Browse existing resource managers

3. View the list of existing resource managers.

Existing resource managers and associated key attributes are shown on the
front page when opening the Resource Managers view. Each resource manager
record is associated with the following set of action buttons on the right side of
the resource manager details section:

* Refresh
* Remove
* View details
4. See the details of associated deployment locations.
You can view the associated deployment locations where a resource manager is
able to instantiate resources by clicking the View details action button

associated with the resource manager.
Refresh a resource manager

5. You can refresh an existing resource manager and associated resource type
descriptors by clicking the Refresh action button associated with the resource
manager.

Remove a resource manager

6. You can remove an existing resource manager by clicking the Remove action
button associated with the resource manager.

Upgrading an assembly instance

You can upgrade an instance to a new type, or change its property values, or both.
This topic describes the assembly instance upgrade scenarios and limitations.

Before you begin

The assembly to be upgraded should be instantiated in the Agile Lifecycle
Manager topology and must be in the 'active' state.

About this task

You upgrade an assembly instance by changing an active assembly instance from
its current type and set of properties to a new type and/or new property values.
The type of a component instance is determined by

[assembly|resource] : :<type name>::<version>

The following assembly upgrade scenarios are supported.

* If the name of a property in the original and new type are the same, then they
are assumed to be the same and can be mapped from the original to new
properties.

* If a property value is changed in a component, then the component will be
re-installed with the new value.

* If there is a new relationship between components of the new assembly type, the
relationship is created. This may mean that a component must be transitioned to
the correct states to create the new relationship.

44 Agile Lifecycle Manager: Installation, Administration and User Guide

If a relationship between components is removed from the upgraded assembly,
the relationship is deleted.

If a property value of a relationship changes, then the relationship is deleted and
re-created. This may mean that a component must be transitioned to the correct
states to create the new relationship.

If a component identified by name and type is not in the new assembly, it is
uninstalled.

If a component identified by name and type is not in the original assembly, it is
created and transitioned to the active state.

If an assembly's properties are changed, only the resources impacted are
changed, resources that are not impacted remain unchanged. That is, if after an
upgrade a resource has the same name, type and property values, then it will
not be transitioned during the upgrade, but rather remain in the active state,
unless a transition was triggered by a relationship change.

If a component's descriptor changes in any way, it is expected that the type will
have changed, that is, that there is a new type name and/or version, and the
component will be re-installed.

If a reference to an external component is removed from the assembly, then any
relationships referring to it will be deleted.

If a reference to an external component is added to the assembly, then any
relationships referring to it will be created.

The size of a cluster before an upgrade is maintained after the upgrade.
[Question: what about the cluster sizing properties]

Assembly Upgrade limitations

Changing cluster property values to 'initial-quantity’, 'minimum-nodes’,
‘maximum-nodes' or 'scaling-increment' is not supported.

Changes to policy and metric property values is not supported.

Chapter 4. Using the Ul 45

46 Agile Lifecycle Manager: Installation, Administration and User Guide

Chapter 5. Getting started (using the APIs)

Agile Lifecycle Manager provides both a graphical UI and an HTTP API allowing
the creation and administration of assemblies. This section describes a set of basic
scenarios to get started using the APIs.

Related concepts:

[Chapter 4, “Using the UI,” on page 35|

This section describes the Agile Lifecycle Manager User Interface, and the tasks it
allows you to perform.

[“Lifecycle Manager API” on page 93|

The Lifecycle Manager API is responsible for interactions with the operations
available from Agile Lifecycle Manager. This section covers the definition of the
Lifecycle Manager API and the specification of the messages sent across this
interface.

[“Assembly descriptor YAML specifications” on page 147
This section describes the assembly descriptors that are used by Agile Lifecycle
Manager.

Related reference:

[‘Resource managers” on page 105|

This topic describes the Resource Managers API specifications for the lifecycle
management API. See the [‘Resource Manager API” on page 121 section for
resource manager API specifications.

Configuration reference

This topic provides you with an overview of the Agile Lifecycle Manager services
settings you need to know when configuring the solution for your own
environment, such as port numbers, Swagger URLs, and API details.

API HTTP calls

Calls to the Agile Lifecycle Manager API are made using either REST or RPC
mechanisms, and each call returns an HTTP status code. You can find more
detailed information on the API HTTP status code strategy here: [API HTTP status|
fcodes reference” on page 89|

Microservices ports and Swagger URLs

The following table shows the default ports and Swagger URLs for the Agile
Lifecycle Manager microservices.

Table 6. Agile Lifecycle Manager microservices ports and Swagger URLs

Service Port Swagger URL Notes
Daytona 8281 http://docker] Port must not be

host:8281/swagger- exposed through

ui.html| firewall

© Copyright IBM Corp. 2018 47

http://docker-host:8281/swagger-ui.html
http://docker-host:8281/swagger-ui.html
http://docker-host:8281/swagger-ui.html

Table 6. Agile Lifecycle Manager microservices ports and Swagger URLs (continued)

Service Port Swagger URL Notes

Ishtar 8280 http:/ /docker-| Port must be exposed
host:8280/swagger- through firewall
ui.htm“ Note: Ishtar Swagger

also gives access to
the public APIs of
Galileo (from a
drop-down list on
the Swagger UI).

Nimrod 8290 http://docker- Note: The entry
host:8290/ point if the Ul is

started.

The port must be
exposed through the
firewall.

Service REST API
The Service REST API endpoints are available at the following URLs, and may be
used as directed during a product support request:

Runtime metrics
[http:/ / docker-host:port/management / metrics|

Configuration properties
[http: / /docker-host:port/management /env|

Kafka

To use Kafka outside the Docker containers, you set the environment variable
KAFKA_ADVERTISED_HOST_NAME to the IP address of your Docker host, and then use
that IP address when referencing Kafka in your scripts and software. The following
Kafka topics are exposed by Agile Lifecycle Manager.

alm__processStateChange
Process state change events

alm__stateChange
State change events

alm__integrity
Resource integrity metric messages aimed at Watchtower.

alm__load
Resource integrity metric messages aimed at Watchtower.

alm__descriptorChange
Indicates that a resource manager has updated its resource descriptors.

Note: There are two underscores (__) in the Kafka topics.
Runtime directories

At runtime, Agile Lifecycle Manager uses the following directories.

var_alm/config-repo
Agile Lifecycle Manager Conductor configuration directory (Git repository)

48 Agile Lifecycle Manager: Installation, Administration and User Guide

http://docker-host:8280/swagger-ui.html
http://docker-host:8280/swagger-ui.html
http://docker-host:8280/swagger-ui.html
http://docker-host:8290/
http://docker-host:8290/
http://docker-host:port/management/metrics
http://docker-host:port/management/env

var_alm/logs
Log files for all the services

var_alm/cassandra
Host-mounted Cassandra volume

Related reference:

[“Asynchronous state change events” on page 108|

Agile Lifecycle Manager will emit events when the state of an assembly or its
components changes. Messages that are sent asynchronously are put onto a Kafka
bus. The exact topics can be configured. These are emitted in response to Intent
Requests causing the state of the Assembly Instance, or its associated components,
to change. In the event of a failure to change state, an event will also be emitted.

Creating an assembly instance

You create a new assembly instance when you need to deploy a new service
described in an assembly descriptor.

Before you begin

Agile Lifecycle Manager must be installed, with all included resources and test
assemblies deployed to the catalog.

About this task

A new instance of an assembly is created by using the API for Daytona
(Orchestrator) service. You can find more detailed information on the Daytona API,
its methods, and associated attributes in the [“Lifecycle Manager API” on page 93|
reference section.

This task installs a new instance of a t_bta assembly called test_1, and then
configures and starts it.

This example uses the basic test assembly assembly::t_bta::1.0. This assembly is
composed of two resources named A and B, both of type
resource::t_simple::1.0. It references three external resource instances, two
networks of type resource::openstack_neutron_network::1.0 and one image of
type resource::openstack_glance_image::1.0. It has one relationship from A to B
that is created when A and B are active. Resource B is in a cluster which on
installation includes a single instance of B.

Procedure

1. Identify the assembly properties requiring a value when creating a new
assembly instance. To do so, explore the corresponding assembly descriptor (in
this example assembly::t_bta::1.0). Retrieve the descriptor from the Agile
Lifecycle Manager catalog by running the following query on the Apollo API:

GET /api/catalog/descriptors/assembly::t_bta::1.0

The response to this query displays the descriptor. A sample extract is shown
here. A full assembly descriptor sample can be viewed in the following topic:
[‘Sample assembly descriptor” on page 71|

name: assembly::t bta::1.0
description: Assembly comprised of "components\\t_simple.yml"
properties:
data:
default: "data"

Chapter 5. Getting started (using the APIs) 49

type: string
description: 'parameter passed'
output:
description: an example output parameter
type: string
read-only: true
deploymentLocation:
type: string
description: name of openstack project to deploy network
default: admin@local

The purpose of the 'properties' section in the API request is to give values to
required assembly properties. The 'properties’ section in the API request must
set the value of any properties from the 'properties' section of the assembly
descriptor that don’t have a default value. You can override any default values.
In the following example steps the default value of 'deploymentLocation' is
changed.

2. Initiate a createAssembly event from the Daytona API. Use the swagger-url for
the Daytona service to create a new assembly instance using the following
POST command:

POST /api/intent/createAssembly

"assemblyName": "test_1",
"descriptorName": "assembly::t bta::1.0",
"intendedState": "Inactive",
properties":{
"deploymentLocation":"admin@local"}

}

In this case, the test_1 assembly instance (assemblyName) does not exist, and so
Agile Lifecycle Manager will attempt to install, configure and then start this
new instance.

Note: Use the 'properties' section to define any assembly properties that are as
yet undefined, or to override any already defined default values. In this
example a value of admin@local is set for the deploymentLocation property.

3. If test_1 has been successfully created, Agile Lifecycle Manager will return a
Response Code 201, as in this example:

Response code 201

{
"location": "http://10.220.217.161:8280/api/processes/
5a65ce87-4637-401e-868b-e20ec254fd35",
"date": "Mon, 11 Sep 2017 11:54:20 GMT",
"server": "ALM Ishtar/1.1.0-SNAPSHOT",
"transfer-encoding": "chunked",
"x-application-context": "ishtar:prod,swagger:8280",
"content-type": null

}

The process identifier in this response is 5a65ce87-4637-401e-868b-
e20ec254fd35. As soon as the new assembly instance is created, it can be
referred to by name. that is, test_1.

4. To check progress of this request, copy the process identifier from the response
into the eventId parameter of the following GET command (GET
/api/topology/assemblies{id}):

GET /api/topology/assemblies/5a65ce87-4637-401e-868b-e20ec254fd35

50 Agile Lifecycle Manager: Installation, Administration and User Guide

The processState in the following sample response indicates that the request
has completed, while intendedState indicates that it is as yet inactive.

{
"processId": "5ab65ce87-4637-401e-868b-e20ec254fd35",

"assemblyId": " ef4ea879-e313-4e3b-adll-6a0a7e7544eb",
"assemblyName": "test 1",
"assemblyDescriptorName": "assembly::t bta::1.0",
"intentType": "CreateAssembly",
"intent": {
"assemblyName": "test 1",
"descriptorName": "assembly::t bta::1.0",
"intendedState": "Inactive"

b

"processState": "Completed",
"processStartedAt": "2017-09-14T07:34:55.569Z",
"processFinishedAt": "2017-09-14T07:34:58.806Z"

}

Note: If the request had not completed it would have been in the InProgress
state. If there had been an issue, it would have been in the Failed state, in
which case there would have been a requestStateReason property with text
describing the failure.

5. Initiate a Start event from the Daytona API to start the new assembly instance,
that is, move it from an inactive to an active state. To start the new assembly
instance, use the swagger-url for the Daytona service, using the following POST
command:

POST /api/intent/changeAssemblyState
{

"assemblyName": "test 1",
"intendedState": "Active"

}

Agile Lifecycle Manager executes Configure and then Start transitions, which
move the state to 'active'.

6. To verify the status of the assembly instance, check it again:
GET /api/topology/assemblies/5a65ce87-4637-401e-868b-e20ec254fd35

The 'intendedState' in the sample response indicates that the Start event has
completed successfully.

{
"processId": "5a65ce87-4637-401e-868b-e20ec254fd35",

"assemblyId": " ef4ea879-e313-4e3b-adll-6a0a7e7544eb",
"assemblyName": "test 1",
"assemblyDescriptorName": "assembly::t bta::1.0",
"intentType": "CreateAssembly",
"intent": {
"assemblyName": "test 1",
"descriptorName": "assembly::t bta::1.0",
"intendedState": "Active",

Results
A new assembly instance with the name 'test_1' exists in an 'Active' state, and

configured according to the rules defined in assembly descriptor
‘assembly::t_bta::1.0'.

Chapter 5. Getting started (using the APIs) 51

Exploring an assembly instance

This topic describes how to use Agile Lifecycle Manager to see the assembly
structure, and (optionally) the associated history of lifecycle transitions of a
previously created assembly, in this case test_1.

Before you begin

You must create the example assembly instance called test_1, which is described
in [“Creating an assembly instance” on page 49|

About this task

To see the assembly structure and the history of lifecycle transitions, you explore
the topology of the assembly instance by using the API for Galileo (the gateway
service). The Galileo API, its methods and associated attributes are explained in

more detail in the [“Lifecycle Manager API” on page 93| reference section.

Procedure
1. Identify the name of the assembly instance from its assemblyName field, in this
case test_l.

2. Query the assembly topology through the Galileo API using the following GET
command:

GET /api/topology/assemblies?numEvents=<event numbers>&name=<assembly instance name>

To see only the structure of the assembly, set the value of numEvents to zero (0).
If you set it to a value greater than zero, the specified number of Assembly
Lifecycle Request events that have occurred on the assembly and their
associated State Change Events is displayed, starting with the latest.

The following example depicts the GET request to obtain the topology of test_1,
with no event history.

GET /api/topology/assemblies?numEvents=0&name=test_1
This query results in the following response:

{
"type": "Assembly",
"id": "efd4eaB879-e313-4e3b-adll-6aba7e7544eb",
"name": "test_ 1",
"state": "Active",
"descriptorName": "assembly::t bta::1.0",
"properties": [
{
"name": "numOfServers",
Ilva'lueII: Illll

"name": "data",
"value": "data"

"name": "deploymentLocation",
"value": "admin@local"

"name": "resourceManager",
"value": "test-rm"

}
1,
"createdAt": "2017-09-12T06:38:43.365+0000",
"TastModifiedAt": "2017-09-12T06:38:45.514+0000",

52 Agile Lifecycle Manager: Installation, Administration and User Guide

"children": [

{
"type": "Component",
"id": "c903c6db-9a79-4248-b62b-fdllecOlefed",
"name": "test_1 A",
"externalld": "72857624-ccb4-4cf2-8ebf-0ab05e67a5a5",
"state": "Active",
"descriptorName": "resource::t simple::1.0",
"properties": [

"name": "data",
"value": "data"

]
}
This sample response displays the identity, status and structure of the assembly
instance. The assembly instance has two child instances, test_1__A and
test_1_B_ 1. The names are generated from the assembly name test_1 and
the resource name from the t_bta descriptor. Resource B is in a scaling group,
and each member of a scaling group is numbered. The relationship between the
two resources can also be seen, as well as the references to resources used from
the deploymentLocation property.

Healing a component

A heal request targets a component (a resource that is 'broken’) and attempts to
return it to an 'Active’ state.

Before you begin

You must create the example assembly instance with an assemblyName of
test_1, as described in [“Creating an assembly instance” on page 49|

To heal the component of an assembly, the assembly to which the component
belongs must be in an Active state.

About this task

Agile Lifecycle Manager accepts the request to heal without performing any
checks first.

Heal is a pattern that calls 'Stop’, 'Start’, and then 'Integrity' on the component.
If 'Integrity’ is successful, then the heal is successful.

The assembly containing the broken component must be in the 'active’ state to
call heal.

The request to heal includes the ID of the component in the assembly instance to
be healed.

Procedure

1.

To obtain the ID of the component in the assembly instance to be healed, you
can query the assembly topology through the Galileo API using the following
GET command:

Note: You identify the component to be healed by the following combination:
The name or ID of the assembly, plus the name or ID of the component.

GET /api/topology/assemblies?numEvents=0&name=test_1

This query will return assembly topology information including the id in the
children section, as depicted in the following sample extract:

Chapter 5. Getting started (using the APIs) 53

"children": [
{
"type": "Component",
"id": "c903c6db-9a79-4248-b62b-fdllecOlefe0",
"name": "test_1_ A",

2. To initiate a heal pattern from the Daytona API, run the following POST
command from the swagger-url of the Daytona service. You can use the name
or ID as identifier. In the following examples, the ID or name obtained in the
previous step can be used to define the componentld value, which targets the
component to be healed. Any of the following examples will initiate a heal
pattern.

Assembly name and component name
POST /api/intent/healAssembly
{
"assemblyName": "test_ 1",
"brokenComponentName": " test_1_ A"

}

Assembly name and component ID
POST /api/intent/healAssembly
{

"assemblyName": "test_1",
"brokenComponentId": "c903c6db-9a79-4248-b62b-fdllecOlefed"
}

Assembly ID and component name
POST /api/intent/healAssembly
{
"assemblyId": "efdea879-e313-4e3b-adll-6a0a7e7544eb",
"brokenComponentName": "test_1_ A"

}

Assembly ID and component ID
POST /api/intent/healAssembly
{
"assemblyId": "ef4ea879-e313-4e3b-adll-6a0a7e7544eb",
"brokenComponentId": "c903c6db-9a79-4248-b62b-fdllecOlefed"

}

Agile Lifecycle Manager initiates the heal pattern, which cycles through 'Stop',
‘Start', and 'Integrity".

3. To check the status of the previously 'broken' component after healing, you
query the assembly topology through the Galileo API using the following GET
command, with numEvents set to 5 in order to see the sequence of heal events
that occurred.

GET /api/topology/assemblies?numEvents=5&name=test_1
Results

If the healing has been successful, the depicted state transitions will move from
‘Broken' to 'Inactive' to 'Active’. A state of 'Active' connotes a healthy, in this case
healed, component, as depicted in the following example.

Example

{
"eventId": "d557dfcb-609b-40d3-9f87-c9cc8568cccl”,
"rootAssemblyInstanceld": "achd4chl-lec2-41f6-a2c7-693653291eb5a",
"rootAssemblyInstanceName": "test_1",
"resourcelnstanceld": "a4e6a96a-db96-4ef6-ac59-4e87c7efbbd2",

54 Agile Lifecycle Manager: Installation, Administration and User Guide

"resourcelnstanceName": "test 1_ A",
"resourceManager": "test-rm",
"deploymentLocation": "admin@local",
"externalld": "6d427f14-34a5-48f9-9575-2ecOb9ede2df",
"eventCreatedAt": "2017-08-23T11:16:16.637Z",
"previousState": "Broken",

"newState": "Inactive",

"successful": true,

"changeStartedAt": "2017-08-23T11:16:16.5462",
"changeFinishedAt": "2017-08-23T11:16:16.637Z",
"eventType": "StateChangeEvent"

"eventId": "1786a172-7027-4223-943e-edc5673ad5bc",
"rootAssemblyInstanceld": "acbd4cbl-lec2-41f6-a2c7-693653291e5a",
"rootAssemblyInstanceName": "test 1",

"resourcelnstanceld": "ade6a96a-db96-4ef6-ac59-4e87c7efbsd2",
"resourcelnstanceName": "test 1_ A",

"resourceManager": "test-rm",

"deploymentLocation": "admin@local",

"externalld": "6d427f14-34a5-48f9-9575-2ecOb9ede2df",
"eventCreatedAt": "2017-08-23T11:16:16.867Z",
"previousState": "Inactive",

"newState": "Active",

"successful": true,

"changeStartedAt": "2017-08-23T11:16:16.678Z",
"changeFinishedAt": "2017-08-23T11:16:16.867Z",

"eventType": "StateChangeEvent"

"eventId": "70061al2-d42f-42c4-8c70-8ca9391ce37f",
"eventCreatedAt": "2017-08-23T11:16:16.327Z",
"assemblyInstanceld": "acbd4cbhl-lec2-41f6-a2c7-693653291e5a",
"assemblyInstanceName": "test 1",
"assemblyDescriptorName": "assembly::t bta::1.0",
"action": "Heal",
"requestState": "Completed",
"requestStartedAt": "2017-08-23T11:16:16.327Z",
"requestFinishedAt": "2017-08-23T11:16:17.066Z",
"properties": {

"data": "data",

"depToymentLocation": "admin@local",

"numOfServers": "1",

"resourceManager": "test-rm"
’s
"eventType": "AssemblylLifecycleRequest"

Scaling a component

Scaling the component of an assembly is a pattern that will either add or remove a
component instance from a scaling group (including all relationships).

Before you begin

* You must create the example assembly instance called test_1, which is described
in [“Creating an assembly instance” on page 49|

* The assembly to which the component belongs must be instantiated in the Agile
Lifecycle Manager topology, and be in the 'Active state'.

* A cluster definition for the component itself must exist in the assembly
descriptor, in which the minimum and maximum size of the scaling group and
the default increment when scaling out or in are also defined.

Chapter 5. Getting started (using the APIs) 55

You can find more detailed information on how to define clusters in assembly
descriptors in the [“Assembly descriptor YAML specifications” on page 147
reference section.

About this task

Assembly descriptors are in the Agile Lifecycle Manager catalog, which you can
view using the process described in following topic: [“Exploring an assemblyl
[descriptor” on page 60| For this task you use component B, which is part of the
t_bta assembly (assembly::t_bta::1.0).

The cluster definition for component B is depicted in the following sample:

composition:
A:
type: resource::t_simple::1.0
quantity: '1'
B:
type: resource::t _simple::1.0
cluster:
initial-quantity: '${numOfServers}'
minimum-nodes: 1
maximum-nodes: 4
scaling-increment: 1
properties:

Procedure

1. To identify the name of the component of the test_1 assembly to be scaled,
you can query the assembly topology through the Galileo API using the
following GET command:

GET /api/topology/assemblies?numEvents=0&name=test_1

This query will return assembly topology information including the
descriptorName, as depicted in the following sample:
"type": "Assembly"

"id": "bf649336-c8c5-49d9-9f4e-60567fe54135",

"name": "test_1",

"state": "Active",

"descriptorName": "assembly::t_bta::1.0",

"properties": [

{

2. Retrieve the descriptor from the Agile Lifecycle Manager catalog by running
the following query on the Apollo API using the descriptorName obtained in
the previous step:

GET /api/catalog/descriptors/assembly::t_bta::1.0
The scaling group definition for B is shown in the following sample.

composition:
A:
type: resource::t_simple::1.0
quantity: '1'
B:
type: resource::t_simple::1.0
cluster:
initial-quantity: '${numOfServers}'

56 Agile Lifecycle Manager: Installation, Administration and User Guide

minimum-nodes: 1

maximum-nodes: 4

scaling-increment: 1
properties:

Here one instance of B is created when an instance of the assembly is created.
By scaling Out or In, the amount of B instances can be changed between one
and four. As the increment is defined as one, each scale out or scale in pattern
will increase or decrease the amount of B instances by one.

To scaleOut, that is to add another instance of resource B to test_1, use the
swagger-url for the Daytona service, using the following POST command: You
can use either the assemblyName or assemblyld to initiate the 'Scale Out'
pattern.

POST /api/intent/scaleQutAssembly
{

"assemblyName": "test 1",
"clusterName": "B"

}

Or:

POST /api/intent/scaleOutAssembly

{
"assemblyId": "ef4eaB879-e313-4e3b-adll-6a0a7e7544eb",
"clusterName": "B"

}

The clusterName identifies the group of resources to be scaled (B), increasing
the amount of B instances by one unless the maximum scaling group size (in
this case four) has been reached.

To scaleln, that is to reduce the instances of resource B, use the following POST
command: You can use either the assemblyName or assemblyld to initiate the
‘Scale In' pattern.

POST /api/intent/scaleInAssembly
{

"assemblyName": "test 1",
"clusterName": "B"

}

Or:

POST /api/intent/scalelnAssembly

{
"assemblyId": "ef4ea879-e313-4e3b-adll-6aba7e7544eb",
"clusterName": "B"

}

Here the group of B resources are decreased by one, unless the minimum
scaling group size (in this case one) has been reached.

To check the status of the assembly after scaling, query the assembly topology
using the following GET command, with numEvents set to 5 in order to see the
sequence of scaling events.

GET /api/topology/assemblies?numEvents=5&name=test 1

The assembly topology will depict all the instances of component B and the
relationships towards the new resource instances.

Chapter 5. Getting started (using the APIs) 57

Results

When viewing the topology after running ScaleOut, a new instance of B will be
depicted called test_1_ B_ 2, as well as a new relationship between it and the
existing test_1__ A instance.

Uninstalling an assembly instance

To uninstall an existing assembly instance from the Agile Lifecycle Manager
topology, and the corresponding resources from the applicable resource managers,
you use the swagger-url for the Daytona service.

Before you begin
Before you can uninstall an assembly instance, you must identify it.

For this example uninstall scenario, you must first create the example assembly
instance called test_1, which is described in [“Creating an assembly instance” on|

About this task

You can find more detailed information on the Daytona API, its methods, and
associated attributes in the [“Lifecycle Manager API” on page 93| reference section.

Procedure
1. Identify the name of the assembly instance from its assemblyName field, in this
case test_l.

2. To uninstall the assembly instance, run the following POST command from the
swagger-url of the Daytona service: You can use either the assemblyName or
assemblyld to uninstall an assembly instance.

POST /api/intent/deleteAssembly

"assemblyName":"test 1"

}

Or:
POST /api/intent/deleteAssembly

{
"assemblyId":"ef4ea879-e313-4e3b-adll-6a0a7e7544eb"
}

A successful uninstall will result in a system response similar to the following
example:

{ "x-application-context": "ishtar:prod,swagger:8280", "date": "Mon, 27 Nov 2017 15:54:03 GMT",
"Tocation": "http://9.20.65.179:8280/api/swagger/daytona/api/processes/86524eed-532e-47ad-aa8a-
1d8e9%abOaae3",

"transfer-encoding": "chunked", "server": "ALM Ishtar/1.1.2.181", '“content-type": null}

Results

The uninstall process results in the removal of the test_1 assembly instance, as well
as any corresponding resources from the applicable resource managers.

58 Agile Lifecycle Manager: Installation, Administration and User Guide

What to do next

You can double-check that the assembly instance has been successfully uninstalled
by querying the assembly topology by name, using the following GET command:

GET /api/topology/assemblies?numEvents=0&name=test 1

If the uninstall process was successful, a response code of 404 (NOT FOUND) will be
returned, indicating that the assembly instance has been removed from Agile
Lifecycle Manager.

Browsing assembly descriptors

This task allows you to browse all descriptors existing in the Agile Lifecycle
Manager catalog. The descriptors include both the onboarded resource descriptors
and assembly descriptors created in Agile Lifecycle Manager.

Before you begin

Agile Lifecycle Manager must be installed, with any included resources and test
assemblies deployed to the catalog.

Remember: Resources must exist (for example, must have been onboarded) before
you can browse descriptors.

Procedure

Query the existing descriptors in the Agile Lifecycle Manager catalog. The list of
resource and assembly descriptors in the Agile Lifecycle Manager catalog can be
viewed by running the following query on the Apollo API:

GET /api/catalog/descriptors

The response to this query lists the names, descriptions and references to all
existing descriptors in the catalog, as depicted in the following sample response:

[
{
"name": "resource::t_simple::1.0",
"description": "resource for t_simple",
"Tinks": [
{
"rel": "self",
"href": "http://10.220.217.175:8280/api/catalog/descriptors/resource::t_simple::1.0"
}
]
1,
{
"name": "assembly::t bta::1.0",
"description": "Basic Test Assembly",
"lTinks": [
{
"rel": "self",
"href": "http://10.220.217.175:8280/api/catalog/descriptors/assembly::t bta::1.0"
}
1
}
1

Chapter 5. Getting started (using the APIs) 59

Results

You now have reference information about the resource and assembly descriptors
that are in the Agile Lifecycle Manager catalog.

Exploring an assembly descriptor

This task allows you to investigate the full contents of a specific resource or
assembly descriptor in the Agile Lifecycle Manager catalog.

Before you begin

To explore an assembly descriptor, it must have been created in Agile Lifecycle
Manager, or created in the Agile Lifecycle Manager catalog during the onboarding
of a resource descriptor.

Procedure

Retrieve the descriptor from the Agile Lifecycle Manager catalog by running the
following query on the Apollo API: The assembly descriptor explored in this
example is assembly::example::1.0

GET /api/catalog/descriptors/assembly::t_bta::1.0

The response to this query displays the descriptor. A sample extract is shown here.
The full assembly descriptor of this assembly can be viewed in the following topic:
[“Sample assembly descriptor” on page 71|

name: assembly::t bta::1.0
description: Basic Test Assembly
properties:
data:
default: "data"
type: string
description: 'parameter passed'

composition:

A:
type: resource::t_simple::1.0
B:
type: resource::t _simple::1.0
references:

internal-network:

relationships:
third-relationship:
source-capabilities:
- A.capability-3
target-requirements:
- B.requirement-3

Results

This task allows you to view a specific resource or assembly descriptor in the Agile
Lifecycle Manager catalog.

60 Agile Lifecycle Manager: Installation, Administration and User Guide

Creating a new assembly descriptor

This task creates a new assembly descriptor and inserts it in the Agile Lifecycle
Manager topology.

Before you begin

Agile Lifecycle Manager must be installed, with all included resources and test
assemblies deployed to the catalog.

About this task
An example assembly named assembly::example::1.0 is used in this task.

Procedure

1. Insert a new assembly descriptor into the Agile Lifecycle Manager catalog by
running the following request on the Apollo API. The content of the assembly
descriptor must be in YAML format. The full assembly descriptor of this
assembly is in the following topic: [‘Sample assembly descriptor” on page 71|

POST /api/catalog/descriptors

{
DESCRIPTOR OF THE NEW ASSEMBLY IN YAML FORMAT
}

2. Verify that the new descriptor exists in the Agile Lifecycle Manager catalog.
The list of resource and assembly descriptors in the Agile Lifecycle Manager
catalog can be viewed by running the following query on the Apollo APL

GET /api/catalog/descriptors
The response to this query lists the new descriptor.
Results
After completing this task, the newly created assembly descriptor exists in the

Agile Lifecycle Manager topology and can be instantiated and managed by Agile
Lifecycle Manager.

Updating an assembly descriptor

This task updates an existing assembly descriptor in the Agile Lifecycle Manager
catalog.

Before you begin
An assembly descriptor must exist in the Agile Lifecycle Manager catalog.

About this task

This task changes an existing descriptor in the Agile Lifecycle Manager catalog
without changing the version number of the descriptor.

Tip: This procedure is mainly intended for service designers who want to change
a descriptor during the development process.

Chapter 5. Getting started (using the APIs) 61

Procedure

1. Change the assembly descriptor as required.

2. Replace the previous assembly descriptor version in the Agile Lifecycle
Manager catalog by running the following request on the Apollo API. The
assembly descriptor replaced is this example is assembly::example::1.0. The
full assembly descriptor of this assembly is in the following topic:
[assembly descriptor” on page 71| The content of the assembly descriptor must
be in YAML format.

PUT /api/catalog/descriptors/assembly::example::1.0

{
CHANGED DESCRIPTOR OF AN EXISTING ASSEMBLY IN YAML FORMAT
}

3. Verify that the descriptor updates have been made. Retrieve the descriptor from
the Agile Lifecycle Manager catalog by running the following query on the
Apollo API:

GET /api/catalog/descriptors/assembly::example::1.0
The response to this query displays the updated descriptor.
Results
After completing this task the assembly::example::1.0 descriptor in the Agile

Lifecycle Manager catalog is updated according to the YAML given as input in step
2.

Removing an assembly descriptor

This task removes an existing assembly descriptor from the Agile Lifecycle
Manager catalog.

Before you begin

An assembly descriptor must exist in the Agile Lifecycle Manager catalog before
you can remove it.

About this task

After removing a descriptor from the Agile Lifecycle Manager catalog it is not
possible to create new instances of it. All existing instances of the assembly will
remain and are not deleted. However, it is recommended that you not remove an
assembly descriptor while there are existing instances of it in the Agile Lifecycle
Manager topology.

Tip: Assembly instances can be deleted by running the [“Uninstalling an assemblyl|
[instance” on page 58| task.

Procedure

1. Remove an assembly descriptor from the Agile Lifecycle Manager catalog by
running the following request on the Apollo API. The assembly descriptor
deleted in this example is assembly::example::1.0
DELETE /api/catalog/descriptors/assembly::example::1.0

2. Verity that the descriptor has been deleted. Attempt to retrieve the descriptor
from the Agile Lifecycle Manager catalog by running the following query on
the Apollo API:

62 Agile Lifecycle Manager: Installation, Administration and User Guide

GET /api/catalog/descriptors

The response to this query should not list the descriptor anymore.
Results
After completing this task the descriptor has been removed from the Agile

Lifecycle Manager catalog and can no longed be viewed or managed by Agile
Lifecycle Manager.

Upgrading an assembly instance

Once an assembly has been created it can be upgraded. An assembly instance can
be upgraded to a new type, or have changed property values, or both new type
and property values. This topic describes how to upgrade an assembly instance,
with examples of how to change types and add a component.

Before you begin

The assembly to be upgraded should be instantiated in the ALM topology and
must be in the 'active' state.

For the following example, you must have created the example assembly instance
called test_1, as described in [“Creating an assembly instance” on page 49|

About this task

This task upgrades a property of the 'test_1' assembly instance of the type
't_single::1.0' to the type 't_single::1.1', which also has an additional component
named 'B'.

Supported assembly upgrade scenarios

Definition of an assembly upgrade
Change an active assembly instance from its current type and set of
properties to a new type and/or new property values.

The 'type' of a component instance is determined by
[assembly|resource] : :<type name>::<version>

If the name of a property in the original and new type are the same, then
they are assumed to be the same and can be mapped from the original to
new properties.

If a property value is changed in a component, then the component will be
re-installed with the new value.

If there is a new relationship between components of the new assembly
type, the relationship is created. This may mean that a component must be
transitioned to the correct states to create the new relationship.

If a relationship between components is removed from the upgraded
assembly, the relationship is deleted.

If a property value of a relationship changes, then the relationship is
deleted and re-created. This may mean that a component must be
transitioned to the correct states to create the new relationship.

If a component, identified by name and type is not in the new assembly it
is uninstalled.

Chapter 5. Getting started (using the APIs) 63

If a component, identified by name and type is not in the original
assembly it is created and transitioned to the active state.

If an assembly’s properties are changed, only the resources impacted are
changed, resources that are not impacted and are unchanged. That is, if
after an upgrade, a resource has the same name, type and property values,
then it will not be transitioned during the upgrade; it will remain in the
active state, unless a transition was triggered by a relationship change.

If a component's descriptor changes in any way, it is expected that the type
will have changed (that is, there is a new type name and or version) and
the component will be re-installed.

If a reference to an external component is removed from the assembly then
any relationships referring to it will be deleted.

If a reference to an external component is added to the assembly then any
relationships referring to it will be created.

The size of a cluster before an upgrade is maintained after the upgrade.

The current limitations on an Assembly Upgrade are:

+ Changing cluster property values to 'initial-quantity’, 'minimum-nodes’,
‘maximum-nodes' or 'scaling-increment' is not currently supported by
the Assembly Upgrade pattern.

* Changes to policy and metric property values is not supported by the
Assembly Upgrade pattern.

Procedure

1. Obtain a copy of t_simple::1.0 by browsing the catalog. Run the following
query on the Apollo API to find it:

GET /api/catalog/descriptors
2. Change the version to t_simple::1.1

3. Add a new resource 'B' to the composition table by copying resource A and
changing it as depicted in the following example:

B:
type: resource::t_simple::1.1
quantity: '1'
properties:
referenced-internal-network:
value: ${internal-network.id}
reference-public-network:
value: ${public-network.id}
image:
value: ${xenial-image.id}
key_name:
value: "ACCANTO_TEST KEY"
data:
value: ${data}
output:
value: "B output"
deploymentLocation:
value: ${deploymentLocation}
resourceManager:
value: ${resourceManager}

4. Create a new assembly descriptor in the Agile Lifecycle Manager catalog called
assembly::t_single::1.1 by running the following request on the Apollo APL

POST /api/catalog/descriptors/assembly::t single::1.1

5. Query the assembly topology for the assembly instance 'test_1' by using the
following API request on the Ishtar service.

64 Agile Lifecycle Manager: Installation, Administration and User Guide

GET /api/topology/assemblies?numEvents=0&name=test 1

The assembly type for test_1 will be assembly::t_single::1.0, and there will
not be a component of type 'B'.

6. Upgrade of assembly instance.

POST /api/intent/upgradeAssembly
{
"assemblyName": "test 1",
"descriptorName": "assembly::t _single::1.1"
}
7. Verify the updated assembly instance 'test_1' by using the following API
request on the Ishtar service.

GET /api/topology/assemblies?numEvents=0&name=test 1

The assembly type for test_1 will be assembly::t_single::1.1, and there will
be a new component of type 'B'.

List all onboarded resource managers

Use this task to see all resource managers that have been onboarded to Agile
Lifecycle Manager.

Before you begin

Agile Lifecycle Manager must be installed, with all included resources and test
assemblies deployed to the catalog.

One or more resource managers must have been onboarded.
Remember:

Onboarding is the act of adding a resource manager to Agile Lifecycle Manager. It
lets Agile Lifecycle Manager know that the resource manager exists, and it imports
the descriptors of all the resource types managed by the resource manager. It also
gathers the information about the deployment locations that the resource manager
uses.

About this task

Agile Lifecycle Manager maintains a record of each resource manager it can use to
create and manage resources. When a new resource manager record is created, the
resource types managed by that resource manager instance are read into Agile
Lifecycle Manager via the resource manager's APL

Procedure

Query the list of onboarded resource managers by running the following query on
the Ishtar API:

GET /api/resource-managers

The response to the query returns the name, type and url of each resource
manager present.

Chapter 5. Getting started (using the APIs) 65

What to do next

You now know which resource managers have been onboarded, and can use their
identifiers to access them.

Exploring an onboarded resource manager

You can explore the status of any onboarded resource managers using the API for
Ishtar (Gateway).

Before you begin

To confirm a resource manager has been onboarded, you need to know the name
that was used to create it in Agile Lifecycle Manager, in this case 'test-rm'.

Remember:

Onboarding is the act of adding a resource manager to Agile Lifecycle Manager. It
lets Agile Lifecycle Manager know that the resource manager exists, and it imports
the descriptors of all the resource types managed by the resource manager. It also
gathers the information about the deployment locations that the resource manager
uses.

About this task

Agile Lifecycle Manager uses resource managers to deploy new resource instances
and execute transitions and operations on them. A resource manager manages
instances of resource types in a number of resource locations where resource
instances can be created.

Agile Lifecycle Manager maintains a record of each resource manager it can use to
create and manage resources. When a new resource manager record is created, the
resource types managed by that resource manager instance are read into Agile
Lifecycle Manager via the resource manager's APL

In Agile Lifecycle Manager, the resource types are stored in var_alm/catalog/
resources as descriptor files (see the [“Assembly descriptor YAML specifications”]
topic for more details). The deployment locations that a resource
manager instance can deploy resources into are also onboarded. Each deployment
location is considered local to a resource manager.

You can find more detailed information on the Ishtar API, its methods, and
associated attributes in the [“Lifecycle Manager API” on page 93| reference section.

Procedure

1. Ensure you have the correct resource manager name. The name of the resource
manager is defined when the resource manager record is created, as described
in [“Creating a new resource manager record” on page 67

2. Use the following GET command on the Ishstar API to confirm that a resource
manager has been onboarded:

GET /api/resource-managers/<your-rm>

If the resource manager exists, the following response will be displayed.

66 Agile Lifecycle Manager: Installation, Administration and User Guide

{ "name": "<your-rm>",

"type": "default",
} "url": "http://<your-rm>:8295/api/resource-manager"
As <your-rm> is the name of a resource manager instance, the response body
comprises the instance name and the type of the resource manager (in this case
default). The type of the resource manager is local to Agile Lifecycle Manager
to allow the user to describe resource manager instances that are of the same
type.
The url property contains the URL of the resource manager that is used by
Agile Lifecycle Manager to make requests to the resource manager instance.
The hostname:port (<your-rm>:8295) must be reachable from the Agile Lifecycle
Manager host. If using the Swagger API, the {id} parameter in the URL is set
to the 'name' value (<your-rm>).

Tip: If the resource manager has not been onboarded, then the response code
to the GET will be 404 — NOT FOUND

What to do next

To perform another check of successful onboarding, you can look in
var_alm/catalog/resources and check that any resource descriptors that the new
resource manager supports have been onboarded. To view descriptors, follow the
steps described in [“Browsing assembly descriptors” on page 59|

Creating a new resource manager record

You create a new resource manager record in Agile Lifecycle Manager in order to
make the system aware of the resource manager, and enable it to access the
resources it manages.

Before you begin

This assumes a resource manager has been installed, configured and is ready to be
used by Agile Lifecycle Manager at a given URL, which in this example is
http://<rm-ip-address>:<rm-api-port>/api/resource-manager

Remember: A resource manager record, which is created in this task, is not the
same as an actual resource manager.

Agile Lifecycle Manager maintains a record of each resource manager it can use to
create and manage resources. When a new resource manager record is created, the
resource types managed by that resource manager instance are read into Agile
Lifecycle Manager via the resource manager's APL

About this task
To create a new record of a resource manager in order to make Agile Lifecycle
Manager aware of its existence, you must give it a unique name, in this example

'ucd'.

Tip: '"Type' is a name local to Agile Lifecycle Manager and can be used to describe
the type of resource manager.

Chapter 5. Getting started (using the APIs) 67

You can find more detailed information on the Ishtar API, its methods, and
associated attributes in the [“Lifecycle Manager API” on page 93| reference section.

Procedure

1. To create a new resource manager record, use the following POST command on
the Ishstar API:

POST /api/resource-managers

"name": "ucd",
Iltypell: Ilucdll,
"url": "http://<rm-ip-address>:<rm-api-port>/api/resource-manager"

}

If the response code to the POST is 201 — Created, then the record has been
created within Agile Lifecycle Manager. If the response code is anything other,
then a problem has been encountered.

2. Use the following GET command on the Ishtar API to confirm the status of the
new 'ucd' resource manager record.

GET /api/resource-managers/ucd

If the record has been created, the following response will be displayed:

{
IlnameII: Ilucdll’
Iltypell: Ilucdll’
"url": "http://<rm-ip-address>:<rm-api-port>/api/resource-manager"

}

In addition, the response body of the request returns information on the
onboarded resource types and possible deployment locations, as depicted in the
following example:

{
"resourceManagerOperation": "ADD",
"deploymentLocations":

"test@local2": {

"operation": "ADD",
"success": true

1

"admin@local": {

"operation": "ADD",
"success": true

'

"admin@local2": {
"operation": "ADD",
"success": true

}

}s
"resourceTypes": {

"resource: :<your-rm>::1.0": {

"operation": "ADD",

Results
A new resource manager record has been created in Agile Lifecycle Manager,

which is now aware of the resource manager it references, and is able to access the
resources it manages.

68 Agile Lifecycle Manager: Installation, Administration and User Guide

What to do next

If you attempt to create another record with the same name, a 409 error code will
be returned.

You can obtain more information on the newly created resource manager by
following the steps in [“Exploring an onboarded resource manager” on page 66

Updating a resource manager

Once a record for a resource manager instance has been created, you can perform
an update to re-onboard the resource types.

Before you begin
The resource manager must have been onboarded before you can update it.

About this task

You can find more detailed information on the Ishtar API, its methods, and
associated attributes in the [“Lifecycle Manager API” on page 93| reference section.

Tip: If a resource descriptor with the same name already exists, it is not
overridden. If a resource descriptor has been updated, but has the same name, it
should be manually deleted from the catalog before trying to onboard the new
version.

Procedure

1. To update an existing resource manager instance, use the following PUT
command on the Ishstar APIL. The following example updates the record for
'<your-rm>" by checking the original onboarding location of the resource
manager for new or updated resources. If using the swagger API, the {id}
parameter in the URL is set to the name value, in this case '<your-rm>'".

PUT /api/resource-managers/test-rm

{

"name": "<your-rm>",
"type": "<}/Our—rﬂ7>",
"url": "http://<your-rm>:8295/api/resource-manager"

}

2. Use the following GET command on the Ishstar API to check the status of the
resource manager following the update:

GET /api/resource-managers/<your-rm>

In addition, the response body of the request returns information on the
onboarded resource types and possible deployment locations, as depicted in the
following example:

{
"resourceManagerOperation": "ADD",
"deploymentLocations": {
"test@local2": {
"operation": "ADD",
"success": true
'
"admin@local": {
"operation": "ADD",
"success": true
}s
"admin@local2": {

Chapter 5. Getting started (using the APIs) 69

"operation": "ADD",
"success": true
}
'
"resourceTypes": {
"resource::<your-rm>::1.0": {
"operation": "ADD",

Results

The resources for the updated resource manager are updated in the Agile Lifecycle
Manager catalog.

Deleting a resource manager record

You can delete the record of a resource manager instance within Agile Lifecycle
Manager.

Before you begin

The resource manager must have been onboarded before you can delete it.
About this task

After you delete the record of a resource manager instance, resources can no longer
be created by that resource manager, and any resources already created can no
longer be managed by that resource manager.

Note: The deployment locations for the resource manager are deleted. However,
the resource descriptors in var_alm/calalog/resources are not deleted, and must
be managed manually. See the following topic for more information on removing
resource descriptors: [“Removing an assembly descriptor” on page 62|

Procedure

To delete a resource manager record, use the following DELETE command on the
Ishstar APIL. The following example deletes the record for <your-rm>. If using the
swagger API, the {id} parameter in the URL is set to the name value, in this case
'<your-rm>'.

DELETE /api/resource-managers/<your-rm>

Successful deletion of <your-rm> is indicated by a 204 response code (Resource
Manager was deleted).

What to do next
You can double-check that the <your-rm> has been deleted by running the GET

command. If the response code to the GET is 404 — NOT FOUND, then the DELETE
action was successful.

70 Agile Lifecycle Manager: Installation, Administration and User Guide

Sample assembly descriptor

This reference topic contains the full assembly descriptor of the example assembly
(assembly::example::1.0) used in the Getting Started section.

assembly::example::1.0 sample descriptor

name: assembly::example::1.0
description: Assembly comprised of "components\\t_simple.yml"
properties:
data:
default: "data"
type: string
description: 'parameter passed'
output:
description: an example output parameter
type: string
read-only: true
deploymentLocation:
type: string
description: name of openstack project to deploy network
default: admin@local
resourceManager:
type: string
description: name of the resource manager
default:test-rm
composition:

A:
type: resource::t_simple::1.0
quantity: '1'
properties:
referenced-internal-network:
value: ${internal-network.id}
reference-public-network:
value: ${public-network.id}
image:
value: ${xenial-image.id}
key name:
value: "ACCANTO_TEST KEY"
data:
value: ${data}
output:
value: ${output}
deploymentLocation:
value: ${deploymentLocation}
resourceManager:
value: ${resourceManager}
references:

internal-network:
type: resource::openstack_neutron_network::1.0
properties:
deploymentLocation:
value: ${deploymentLocation}

resourceManager:
value: ${resourceManager}
name:

type: string
value: VIDEO
public-network:
type: resource::openstack_neutron_network::1.0
properties:
deploymentLocation:
value: ${deploymentLocation}
resourceManager:
value: ${resourceManager}
name:
type: string

Chapter 5. Getting started (using the APIs) 71

value: public
xenial-image:
type: resource::openstack_glance image::1.0
properties:
deploymentLocation:
value: ${deploymentLocation}
resourceManager:
value: ${resourceManager}
name:
type: string
value: xenial

72 Agile Lifecycle Manager: Installation, Administration and User Guide

Chapter 6. Administration

Use the following topics to understand administration tasks, such as viewing
system logs, or adjusting global timeout limits for resource managers.

Monitoring system health

Docker containers have built-in health monitoring, which you can use to check if a
service is still available.

Performing a health check

See the [service REST API endpoints|

Managing the service logs

You can view logs for all Agile Lifecycle Manager services. You can also change the
default logging behavior, such as the number of days logs are stored before they
are deleted, the maximum storage space allocated, and the logging levels.

Before you begin

By default, logging rotates every day, keeping at most seven days with a maximum
limit of 1GB of files. This means that with the five services that currently comprise
Agile Lifecycle Manager at least 5GB of space must be available. If you increase
the limit, ensure you have sufficient storage space available for your logs.

About this task

Logs are found in the <install dir>/var_alm/logs directory where <install dir>
is the directory where Agile Lifecycle Manager is installed.

Remember: The default installation directory is /opt/IBM/netcool

Log files are named according to the Agile Lifecycle Manager component name,
plus the date. New logs are created daily at midnight.

The supported logging levels are:
* TRACE

« DEBUG

* INFO

* WARN

* ERROR

To change the number of days logs are capped, or the maximum size of logs, the
logging configuration must be updated. This can be done for all services, or per
service.

Procedure

Change logging options for all services

© Copyright IBM Corp. 2018 73

1. To change the logging options for all services, edit the var_alm/config-repo/
application.yml file as in the following example.

Tip: An example line is in the application.yml file and is commented out.
When you uncomment it, it should look like the following sample:

logging:
config: /var/alm/logback-spring.yml

2. Commit the change to Git.

3. Rename the example logback-sprint.yml file in the var_alm/examples directory,
and move it to the var_alm directory.

4. Change the values for maxHistory and totalSizeCap in the renamed
logback-sprint.yml file as in the following example:

<l-- This part can be changed -->
<l-- keep 7 days' worth of history capped at 1GB total size -->
<maxHistory>7</maxHistory>
<totalSizeCap>1GB</totalSizeCap>
</rollingPolicy>
<!-- End of part that can be changed -->

Change logging options for a specific service

5. Change the relevant yaml file in the config-repo directory to add a logging
entry pointing to the log file.

Note: The log file path is as used in the container, which is /var/alm and not
/var_alm/.

6. Include the logback-spring.yml for the micro service in the log directory under
/var_alm/ so that it will be mounted within the container.
Change log levels

7. To change log levels, you POST to the management/loggers URL at runtime. The
following example changes the log level for the Daytona service to DEBUG:

POST http://<docker-host>:8281/management/loggers/com.accantosystems

"configuredLevel": "DEBUG"

* TRACE
* DEBUG
+ INFO
+ WARN
* ERROR
Any data recorded at a log level above INFO, such as DEBUG or TRACE, does
not appear in the console output, but only in the log file; that is in
var_alm/log/*.
8. To check the result of your POST, perform a GET, as in the following example:

GET http://<docker-host>:8281/management/loggers/com.accantosystems

{
"configuredLevel": "DEBUG",
"effectivelLevel": "DEBUG"

}

The configuredLevel must be provided when changing the log level, and in
this example is the new logging level to be set, while effectivelevel is the
current active logging level.

74 Agile Lifecycle Manager: Installation, Administration and User Guide

Setting timeout limits for resource managers

A request to a resource manager from Agile Lifecycle Manager times out if the
request does not complete within the set timeout period. You can adjust the default
limits for this period.

About this task

Timeout limits are a protection mechanism to prevent Agile Lifecycle Manager
intents from hanging indefinitely. Timeout is measured by Agile Lifecycle Manager
from the moment it receives a successful response from a resource manager.

The default timeout is 900 seconds (that is, 15 minutes). The timeout can be set in
the following file by adding default-timeout-duration to the resource-manager
section:

<distribution dir>/var_alm/config_repo/daytona.yml
To view or edit the daytona.yml file, use an appropriate text editor.

Procedure
1. Edit the daytona.yml file, as in the following example. In this example, the
default timeout value is changed to 16 minutes (960 seconds).

alm:
daytona:
resource-manager:
default-timeout-duration: 960

2. Commit the configuration changes. In the <distribution dir>/var_alm/
config_repo directory:

git add daytona.yml
git commit -m "changed global resource manager request timeout"

3. Restart Daytona. In the <distribution dir> directory:
docker-compose -f alm-docker-compose.yml restart daytona

Results

The default timeout limits for resource managers has been changed.

Enabling HTTPS support (for the Nimrod service)

The Nimrod service is accessed through HTTP by default. This topic describes how
you can enable HTTPS support instead.

About this task

Procedure

1. Create a keystore and self-signed certificate using the Java keytool. In the
following example, the command is run from the <distribution_dir>/var_alm
directory inside the installation directory:
keytool -genkey -alias alm -storetype PKCS12 -keyalg RSA -keysize 2048
-keystore keystore.pl2 -validity 3650

2. Add the following properties to the nimrod.yml file in the<distribution_dir>/
var_alm/config-repo directory. The password must match the one used in the
previous step.

Chapter 6. Administration 75

server:
ssl:
keyStore: file:/var/alm/keystore.pl2
keyStorePassword: passl234
keyStoreType: PKCS12
keyAlias: alm

3. Commit the changes to the config-repo and restart the Nimrod service, as in
the following example:

git add nimrod.yml
git commit -m "enabling https support"

4. In the <distribution dir>, restart Nimrod:
docker-compose -f alm-docker-compose.yml restart nimrod

Results
Nimrod will now be accessible via HTTPS instead of HTTP.

Note: You may receive a warning about not being able to verify the certificate.

Ensuring Log files are not owned by the root user

When Agile Lifecycle Manager containers write to host-mounted Docker volumes
(such as var_alm/logs) on a Linux host the files will, by default, be owned by root.
To avoid this, it is possible to use a Docker-mandated approach that utilizes Linux
uid remapping to map container uids and gids (user and group ids) to host uids
and gids in a predictable manner.

About this task

Although this procedure will work on any Linux system with equivalent
commands, the following steps assume an Ubuntu system is being used.

Procedure

1. Add the following to your /etc/docker/daemon.json file. Create the file if it
does not exist:

{

"userns-remap": "USER"

}

Where USER is a user on your host system that will be configured to have
access to any files written by the Docker containers. This configures the Docker
daemon to apply uid and gid re-mapping between Docker containers and the
host system.

2. Restart your Docker daemon:
sudo /etc/init.d/docker restart
3. Add the following to the /etc/subuid file:

USER: [USER uid]:1

USER:165536:65536

Substituting your chosen user for 'USER' and the uid of 'USER' for [USER uid].
This will map uid 0 (root) in your containers on to uid [USER uid] on the host
(this means that files written by the microservices running inside the containers
as root will be owned by USER), and uids 1 and upwards in your containers to
the range starting at 165536. These uids on your host will be accessible by
USER. You may choose whichever value you like here, as long as it does not
overlap with other ranges in the same file.

76 Agile Lifecycle Manager: Installation, Administration and User Guide

4. Add the following to the /etc/subuid file:

USER:165536:65536

Substitute your chosen user for 'USER'. The start range value (165536) must be

the same as in the previous step.

Tip:

If you want the root group inside the containers to map onto a specific group

on your host, add the following instead:

USER:[gid of group]:1
USER:165536:65536

You can find the official Docker documentation at the following site:

[https:/ /docs.docker.com/engine /security /userns-remap /|

Ensuring support for accented characters

To support accented characters correctly, it is imperative that the Java JVM being

used to run Agile Lifecycle Manager is configured to support multi-byte characters.

Procedure

1.

You configure the Java JVM being used to run Agile Lifecycle Manager to
support multi-byte characters via the 'environment' section of the Docker

compose alm-docker-compose.yml file as in the following example: The key
settings are highlighted in bold text.

environment:

- spring.cloud.config.server.git.uri=file://var/alm/config-repo

- eureka.instance.hostname=conductor
- LOG_FOLDER=/var/alm/T1ogs
- spring.main.banner-mode=off

- LANG=C.UTF-8

To check your JVM language settings you can use this command:

docker exec daytona locale

If the system output response is anything other than the values below then
your Java JVM is incorrectly configured:

LANG=C.UTF-8
LC_CTYPE="C.UTF-8"
LC_NUMERIC="C.UTF-8"
LC_TIME="C.UTF-8"
LC_COLLATE="C.UTF-8"
LC_MONETARY="C.UTF-8"
LC_MESSAGES="C.UTF-8"
LC_PAPER="C.UTF-8"
LC_NAME="C.UTF-8"
LC_ADDRESS="C.UTF-8"
LC_TELEPHONE="C.UTF-8"
LC_MEASUREMENT="C.UTF-8"

LC_IDENTIFICATION="C.UTF-8"

Chapter 6. Administration

77

https://docs.docker.com/engine/security/userns-remap/

Authentication

The authentication mechanism in use in Agile Lifecycle Manager is OAuth2
combined with LDAP for user credential verification. Below is an explanation of
some of the concepts and how authentication should be used in Agile Lifecycle
Manager.

Client credentials

The resources of Agile Lifecycle Manager are protected by an authentication layer
in place on the Gateway, Ishtar. In order to gain access to any of these protected
resources, an authorisation process must take place. As a minimum, this would
require providing some valid client credentials (client Id and secret) which would
normally be deemed as sufficient security for any calling system into Agile
Lifecycle Manager. Additionally, it is possible to require further user credentials
(username and password), which would be administered on a per-user basis and
should exist in the configured LDAP database. The Agile Lifecycle Manager Ul
(Nimrod) would be protected as such, where the Nimrod service itself provides the
client credentials and the end user provides the additional user credentials.

The level of authorisation required is dictated by the Grant Type which must be
specified when creating client credentials.

Bearer token

The OAuth2 mechanism makes use of Bearer tokens for authorisation. Once a
client authenticates they are provided with a bearer token which can be used to
authorise any subsequent interactions up until this token expires. It may then be
possible to refresh this Bearer token (using an additional refresh token) to regain
access after expiry of the Bearer token without needing to resupply all user
credentials.

OAuth2 token lifetime configuration

When creating client credentials, there are 2 configurable values with these system
defaults that control the lifetime of the OAuth2 tokens:

accessTokenValidity: 1200 #20 minutes
refreshTokenValidity: 30600 #8.5 hours

The unit for these values is seconds: 20 x 60 = 1200.

With these values, the behaviour will be that after 20 minutes, the system will
refresh the Bearer token with a new one. At this point LDAP is checked to verify
the user is still active. This happens every 20 minutes for 8.5 hours, after which the
user will be forced to re-enter login credentials.

These default values are specified in the Ishtar configuration YAML file:

alm:
ishtar:
security:
defaultAccessTokenValidity: 1200 #20 minutes
defaultRefreshTokenValidity: 30600 #8.5 hours

Note: Changing these values will only affect the creation of new clients using the
bootstrap process and will not affect any existing clients in the system. Intended
usage of the system for changing these timeout values would be that client

78 Agile Lifecycle Manager: Installation, Administration and User Guide

credentials (including these values) would be modified using the Client Credentials
REST API as described in the following section{’Creating further client credentials”|

Grant types

The following grant types are supported in Agile Lifecycle Manager:
Table 7. Agile Lifecycle Manager grant types

Grant type Description

client_credentials Authorisation requires only a valid Client Id
and Secret. Recommended for calling
systems.

password Authorisation requires a valid Client Id and

Secret and additionally valid User
Credentials. Recommended for a Ul
providing human interaction.

refresh_token This grant type can be used in addition to
the password grant type and indicates that a
caller or user can re-authenticate themselves
using a Refresh Token without having to
re-provide any user credentials.

Bootstrapping client credentials

In order to use the system, including to generate client credentials, there will need
to exist some client credentials to authenticate against. There is a bootstrap process
which can be used to initially load any clients into the system.

By default, when Ishtar initialises, it looks for a file with the path of:
/var/alm/bootstrap/client-credentials-bootstrap.yml.

This path can be overridden in the application config by specifying a filepath
under the property alm.ishtar.security.clientCredentialsBootstrapFile. The
contents of the file should look similar to the following example:
clientCredentials:
- clientId: DefaultClient
clientSecret: DefaultClient
grantTypes: client _credentials

- clientId: DefaultClient2
grantTypes: password, refresh_token

This would generate the client DefaultClient with the specified password and the
grant type of client_credentials, and a client called DefaultClient2 with a
system generated password and the grant type of password and refresh_token.

The generated password for DefaultClient2 will be output into the startup logs
for Ishtar once only when the user is first generated. The clients will be created
with default expiry times for the bearer and refresh tokens.

This file (if existing) will be processed on startup of Ishtar and the clients created.
The file will then be deleted automatically. If the file specifies a client ID for an
existing client then the startup of Ishtar will fail (this is a deliberate mechanism to
avoid overwriting existing clients).

Chapter 6. Administration 79

Creating further client credentials

In order to generate Client Credentials, a REST endpoint is provided on Ishtar.
This endpoint is protected, so authentication is required to access it (an initial
client must be boot-strapped into the system).

POST http://<docker-host>:8280/api/credentials

It expects a JSON payload in the following format:

{
"clientId": "AlmClient",
"clientSecret": "BE6TJ02mIuhz37GA",
"scope": [
Ila'l '| n
1,

"authorisedGrantTypes": [
"password",
"refresh_token"

1,

"accessTokenValidity": 300,

"refreshTokenValidity": 500
1

This means that the user’s credentials will be checked against the LDAP server
every 300 seconds (5 minutes) and the will be forced to logon every 10 minutes.

Care should be taken when choosing the values for the token lifetimes as they
cannot be changed easily via the LDAP server. Particular care should be taken
when choosing the value of the refreshTokenValidity value as forcing a user to
logon every 10 minutes could lead to service complaints.

Note: Agile Lifecycle Manager doesn’t yet support different types of scope. It is
recommended for now that a scope of all is specified. Similarly, it is possible to
update existing clients using a similar request to the following endpoint:

PUT http://<docker-host>:8280/api/credentials/<client-id>
Authorizing

Once client credentials are setup, it is possible to authorise using them. This
example demonstrates how to authenticate given a client with a grant type of
'client_credentials'. To acquire a certificate, the client must post to the auth
endpoint below:

POST http://<docker-host>:8280/o0auth/token

The request must contain the client credentials in the header. This is concatenation
of the id:secret, Base64 encoded, prefixed with 'Basic' under a header key of
'Authorization’ (this is a standard OAuth2 mechanism).

The request body should be x-www-form-urlencoded and include this key/value:
grant_type=client_credentials

This will return a response similar to this:

{
"access_token": "fdf8e754-labe-42ae-b064-7969b05788ca",
"token_type": "bearer",
"expires_in": 1199,
Ilscopell: Ila'I‘III

80 Agile Lifecycle Manager: Installation, Administration and User Guide

User credentials in LDAP

If the client has a grant type of 'password’, then an additional authentication step of
verifying user credentials will take place. These credentials are expected to belong
in LDAP. An out-of-the box installation of Open LDAP is provided which Agile
Lifecycle Manager is configured to point to.

Agile Lifecycle Manager can be configured to use an existing LDAP database. This
would involve modifying the following config in the var_alm\config-repo\
ishtar.yml file:

alm:
ishtar:
security:
ldap:

url: ldap://alm-openldap:389
base: dc=alm,dc=com
managerDn: cn=admin,${alm.ishtar.security.ldap.base}
managerPassword: almadmin
userSearchBase: ou=people
userSearchFilter: uid={0}
passwordAttribute: userPassword

Tip: Agile Lifecycle Manager provides a mechanism for initially loading users into
the OpenLDAP database on initial creation, but beyond this provides no
mechanism for managing users. There are many available LDAP clients which can
be used for such purposes. One such client is the free Windows software LDAP
Admin. See the following site for more information: |http://www.ldapadmin.org/|

See |[“Provided OpenLDAP LDAP server” on page 82| for the details of the
configuration to be used with any LDAP client software to allow it to connect to
the default OpenLDAP server that comes as standard with Agile Lifecycle
Manager.

Secret and Password Encryption

By default, any client secrets stored in Agile Lifecycle Manager will be encoded
with the BCrypt algorithm before they are stored in the local database. This is
handled seamlessly and has no apparent difference to any calling systems.

Additionally, BCrypt encoding is the default option for LDAP passwords. In this
case this is more apparent, as there is an expectation that any passwords stored in
LDAP are encoded with BCrypt.

Alternatively, it is possible to use Agile Lifecycle Manager with an LDAP database
that stores passwords in plain text, by changing the following application property
in the var_alm\config-repo\ishtar.yml file:

alm.ishtar.security.ldap.passwordEncoding: PLAIN

Chapter 6. Administration 81

http://www.ldapadmin.org/

Audit logging

The Agile Lifecycle Manager Gateway (Ishtar) maintains an audit log of all
authentication attempts and all API requests that come through it. By default, these
logs are stored as files and kept in the {LOG_FOLDER}/security-audit directory
directory.

Configuring the audit log
Audit Logging of both authentication and API requests are enabled by default.

It can be disabled by setting the audit properties in the /var_alm/config-repo/
ishtar.yml file.

Disabling only the logging of all the API requests is possible using the
includeHttpRequests property:

alm:
ishtar:
security:
audit:

Set to 'false' to disable ALL audit Togs
enabled: true
Set to 'false' to disable only audit logs of API requests
includeHttpRequests: true

Audit log format

The format of the audit log is configured using an alternative Appender called
SECURITY_AUDIT in the Logback xml configuration file. By default, it is
configured in Ishtar using the following settings:

<appender name="SECURITY_AUDIT" class="ch.qos.logback.core.rolling.Rol1ingFileAppender">
<rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRol1ingPolicy">
<!-- Daily Rollover or when file reaches 1GB -->
<fileNamePattern>${L0OG_FOLDER:-.}/security-audit/${eureka.instance.instanceld:
-#project.artifactId#}-security-audit.%d{yyyy-MM-dd}.%i.log.gz</fileNamePattern>
<maxFileSize>1GB</maxFileSize>
</rollingPolicy>
<encoder>
<charset>utf-8</charset>
<pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} ${LOG_LEVEL_PATTERN:-%5p}
--- %men${L0G_EXCEPTION_CONVERSION_WORD:-%wEx}</pattern>
</encoder>
</appender>

Provided OpenLDAP LDAP server

The Docker Agile Lifecycle Manager package includes an OpenLDAP container
and is the default LDAP server used for user management.

When running Agile Lifecycle Manager for the first time there are no users in the
provided LDAP server. Initial users may be added by modifying the
/var_alm/1dap/initial_users.1dif file.

Note: This file is only used to create users on the first start-up of the OpenLDAP
container. To re-use this file the persistence volume of the container must be

removed before the next start-up.

A user entry must take the format of:

82 Agile Lifecycle Manager: Installation, Administration and User Guide

dn: uid=Admin,ou=people,{{ LDAP_BASE DN }}

changetype: add

objectClass: person

objectClass: uidObject

cn: Admin

sn: Admin

uid: Admin

userPassword: $2a$10$MzDrvf/9rsuzDRDkpvbIM.yfvOVc20.p3LUegU8Asz1RwaBnIQO3W

The Agile Lifecycle Manager installation includes a script (generate-1dap-user.sh)
to help generate the correct entries. To create further users any LDAP client can be
used, or the LDAP protocol may be used directly.

One such LDAP client is the free Windows software LDAP Admin. See the
following site for more information: fhttp://www.ldapadmin.org|

Use the following example to configure an LDAP client for anyone using the
out-of-the-box Agile Lifecycle Manager OpenLDAP service with the default Agile
Lifecycle Manager configuration:

Host: <docker-ip>

Port: 389

Base: dc=alm,dc=com

Username: cn=admin,dc=alm,dc=com

Password: almadmin

Example alm-docker-compose.yml file

This topic contains an example Docker compose file (alm-docker-compose.yml) for
reference only.

Important: Use the following example Docker compose file for reference purposes
only.

version: '3'
services:
alm-cassandra:
container_name: "alm-cassandra"
image: cassandra:3.10
ports:
- "9042:9042"
- "9160:9160"
networks:
- alm
volumes:
- cassandradatal:/var/lib/cassandra/data
restart: always
environment:
important: broadcast address must be set to the Docker hostname
- CASSANDRA_BROADCAST_ADDRESS=alm-cassandra
- CASSANDRA_CLUSTER_NAME=alm-cassandra-cluster
- CASSANDRA_SEEDS=alm-cassandra
- CASSANDRA_REMOTE_CONNECTION=true
- CASSANDRA_START_RPC=true
zookeeper:
container_name: "zookeeper"
image: wurstmeister/zookeeper
restart: always
networks:
- alm
ports:
- "2181:2181"
kafka:
container_name: "kafka"
image: wurstmeister/kafka:latest
restart: always
networks:
- alm
ports:
- "9092:9092"

Chapter 6. Administration 83

http://www.ldapadmin.org

environment:
KAFKA_HOST_NAME: kafka
KAFKA_PORT: 9092
KAFKA_ADVERTISED_HOST_NAME: ${KAFKA_ADVERTISED_HOST_NAME:-kafka}
KAFKA_ADVERTISED_PORT: 9092
KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181
KAFKA_CREATE_TOPICS: "alm__health:1:1:compact,
alm__descriptorChange:1:1:compact,alm__processStateChange:1:1,alm__stateChange:1:1,alm__taskUpdate:1:1"
conductor:
container_name: "conductor"
hostname: "conductor"
build:
context: ./conductor
dockerfile: Dockerfile
args:
JDK_IMAGE: ${JDK_IMAGE:-openjdk}
JDK_VERSION: ${JDK_VERSION:-8ul21-jre}
restart: always
networks:
- alm
volumes:
- "./var_alm:/var/alm"
ports:
- "8761:8761"
environment:
- spring.cloud.config.server.git.uri=file://var/alm/config-repo
- eureka.instance.hostname=conductor
- LOG_FOLDER=/var/alm/1ogs
- spring.main.banner-mode=off
- LANG=C.UTF-8
watchtower:
container_name: "watchtower"
hostname: "watchtower"
build:
context: ./watchtower
dockerfile: Dockerfile
args:
JDK_IMAGE: ${JDK_IMAGE:-openjdk}
JDK_VERSION: ${JDK_VERSION:-8ul2l-jre}
restart: always
networks:
- alm
volumes:
- "./var_alm:/var/alm"

depends_on:
- kafka
- zookeeper
links:
- kafka
- zookeeper
ports:
- "8284:8284"
environment:
- spring.cloud.config.uri=http://admin:admin@conductor:8761/config
- spring.cloud.config.failFast=true
- eureka.client.serviceUrl.defaultZone=http://admin:admin@conductor:8761/eureka/
this is needed so that Watchtower registers the correct hostname/IP
address to the Conductor/Eureka
- eureka.instance.ipAddress=watchtower
- LOG_FOLDER=/var/alm/1ogs
- LANG=C.UTF-8
relay:
container_name: "relay"
hostname: "relay"
build:
context: ./relay
dockerfile: Dockerfile
args:
JDK_IMAGE: ${JDK_IMAGE:-openjdk}
JDK_VERSION: ${JDK_VERSION:-8ul2l-jre}
restart: always
volumes:
- "./var_alm:/var/alm"
networks:
- alm
depends_on:
- kafka

84 Agile Lifecycle Manager: Installation, Administration and User Guide

Tinks:

- kafka
ports:

- "8285:8285"

environment:

- spring.cloud.config.uri=http://admin:admin@conductor:8761/config

- spring.cloud.config.failFast=true

- eureka.client.serviceUrl.defaultZone=http://admin:admin@conductor:8761/eureka/

this is needed so that Relay registers the correct hostname/IP

address to the Conductor/Eureka
- eureka.instance.ipAddress=relay
- LOG_FOLDER=/var/alm/Togs
- spring.main.banner-mode=off
- LANG=C.UTF-8
simple-rm:
container_name: "simple-rm"
hostname: "simple-rm"
build:
context: ./simple-rm
dockerfile: Dockerfile
args:
JDK_IMAGE: ${JDK_IMAGE:-openjdk}
JDK_VERSION: ${JDK_VERSION:-8ul2l-jre}
restart: always
volumes:
- "./var_alm:/var/alm"
- "./simple-rm-data:/data/simple-rm"
- simplermstorage:/data/simple-rm-storage
networks:
- alm
depends_on:
- kafka
- relay
- ishtar
Tinks:
- kafka
- relay
- ishtar
environment:
these should not be modified
- alm.simplerm.config.name=test-rm
- LOG_FOLDER=/var/alm/1ogs
- alm.simplerm.directory=/data/simple-rm/test-rm
#used in commands.sh
- alm_simplerm_directory=/data/simple-rm/test-rm
- alm.simplerm.storage=/data/simple-rm-storage
- spring.main.banner-mode=off
- LANG=C.UTF-8

ports:
- "8295:8295"
simple-rm-register:
container_name: "simple-rm-register"
build:
context: ./simple-rm-register
dockerfile: Dockerfile
networks:
- alm
volumes:
- "./var_alm:/var/alm"
- "./simple-rm-data:/data/simple-rm"
depends_on:
- ishtar
- simple-rm
Tinks:
- ishtar
- simple-rm
environment:
- LANG=C.UTF-8
apollo:
container_name: "apollo"
hostname: "apollo"
build:
context: ./apollo
dockerfile: Dockerfile
args:
JDK_IMAGE: ${JDK_IMAGE:-openjdk}
JDK_VERSION: ${JDK_VERSION:-8ul2l-jre}
restart: always

Chapter 6. Administration

85

networks:

- alm
ports:

- "8282:8282"
depends_on:

- "conductor"

- "kafka"

- "alm-cassandra"
volumes:

- "./var_alm:/var/alm"

environment:
- spring.cloud.config.uri=http://admin:admin@conductor:8761/config
- spring.cloud.config.failFast=true
- eureka.client.serviceUrl.defaultZone=http://admin:admin@conductor:8761/eureka/
this is needed so that Apollo registers the correct hostname/IP
address to the Conductor/Eureka
- eureka.instance.ipAddress=apollo
- LOG_FOLDER=/var/alm/1ogs
- spring.main.banner-mode=off
- LANG=C.UTF-8
galileo:
container_name: "galileo"
hostname: "galileo"
build:
context: ./galileo
dockerfile: Dockerfile
args:
JDK_IMAGE: ${JDK_IMAGE:-openjdk}
JDK_VERSION: ${JDK_VERSION:-8ul2l-jre}
restart: always
networks:
- alm
volumes:
- "./var_alm:/var/alm"
environment:
- spring.cloud.config.uri=http://admin:admin@conductor:8761/config
- spring.cloud.config.failFast=true
- eureka.client.serviceUrl.defaultZone=http://admin:admin@conductor:8761/eureka/
this is needed so that Galileo registers the correct hostname/IP
address to the Conductor/Eureka
- eureka.instance.ipAddress=galileo
- LOG_FOLDER=/var/alm/1ogs
- spring.main.banner-mode=off
- LANG=C.UTF-8
ports:
- "8283:8283"
depends_on:
- "conductor"
- "alm-cassandra"
0
daytona:
container_name: "daytona"
hostname: "daytona"
build:
context: ./daytona
dockerfile: Dockerfile
args:
JDK_IMAGE: ${JDK_IMAGE:-openjdk}
JDK_VERSION: ${JDK_VERSION:-8ul2l-jre}
restart: always

networks:

- alm
volumes:

- "./var_alm:/var/alm"
ports:

- "8281:8281"
depends_on:

- "conductor"

- "simple-rm"

environment:
- spring.cloud.config.uri=http://admin:admin@conductor:8761/config
- spring.cloud.config.failFast=true
- eureka.client.serviceUrl.defaultZone=http://admin:admin@conductor:8761/eureka/
this is needed so that Daytona registers the correct hostname/IP
address to the Conductor/Eureka
- eureka.instance.ipAddress=daytona
- LOG_FOLDER=/var/alm/1ogs
- spring.main.banner-mode=off
- LANG=C.UTF-8

86 Agile Lifecycle Manager: Installation, Administration and User Guide

ishtar:
container_name: "ishtar"
hostname: "ishtar"
build:
context: ./ishtar
dockerfile: Dockerfile
args:
JDK_IMAGE: ${JDK_IMAGE:-openjdk}
JDK_VERSION: ${JDK_VERSION:-8ul2l-jre}
restart: always
networks:
- alm
volumes:
- "./var_alm:/var/alm"

depends_on:
- conductor
environment:
- spring.cloud.config.uri=http://admin:admin@conductor:8761/config
- spring.cloud.config.failFast=true
- eureka.client.serviceUrl.defaultZone=http://admin:admin@conductor:8761/eureka/
this is needed so that Ishtar registers the correct hostname/IP
address to the Conductor/Eureka
- eureka.instance.ipAddress=ishtar
- LOG_FOLDER=/var/alm/Togs
- spring.main.banner-mode=off
- LANG=C.UTF-8
ports:
- "8280:8280"
nimrod:
container_name: "nimrod"
hostname: "nimrod"
build:
context: ./nimrod
dockerfile: Dockerfile
args:
JDK_IMAGE: ${JDK_IMAGE:-openjdk}
JDK_VERSION: ${JDK_VERSION:-8ul21l-jre}
networks:
- alm
volumes:
- "./var_alm:/var/alm"
ports:
- "8290:8290"
depends_on:
- galileo
- apollo
environment:
- spring.cloud.config.uri=http://admin:admin@conductor:8761/config
- spring.cloud.config.failFast=true
- eureka.client.serviceUrl.defaultZone=http://admin:admin@conductor:8761/eureka/
this is needed so that Nimrod registers the correct hostname/IP
address to the Conductor/Eureka
- eureka.instance.ipAddress=nimrod
- LOG_FOLDER=/var/alm/1ogs
- spring.main.banner-mode=off
- LANG=C.UTF-8
0
volumes:
cassandradatal:
driver: Tocal
simplermstorage:
driver: Tocal
networks:
alm:
driver: bridge

Chapter 6. Administration 87

88 Agile Lifecycle Manager: Installation, Administration and User Guide

Chapter 7. Reference

Use the following reference information to enhance your understanding of the
Agile Lifecycle Manager APIs and YAML specifications.

Restriction: Code samples provided in this section may contain references to test
data and other example text not relevant to your own scenario.

API HTTP status codes reference

Agile Lifecycle Manager provides both a graphical Ul and an HTTP API allowing
the creation and administration of assemblies. HTTP status codes strategy and
response messages are described here.

REST and RPC mechanisms

Agile Lifecycle Manager consists of micro-services that use HI'TP as the transport
mechanism for requests and responses. A combination of REST interfaces and RPC
interfaces are used.

RPC Used to submits intents to Agile Lifecycle Manager
REST Used by all other interfaces
Note: Due to the use of combined RTC and REST interfaces, the RTC IETF4 RFC

7231 specifications as documented at the following site are not strictly adhered to:
[https:/ /tools.ietf.org /html/rfc7231|

Supported methods

Each API service endpoint can implement a different set of HTTP request methods.
The following methods are supported within Agile Lifecycle Manager:

GET The GET method requests a representation of the specified resource.
Requests using GET only retrieve data and have no other effect.

PUT The PUT method requests that the enclosed entity be stored under the
supplied URL If the URI refers to an existing resource, it is modified; if the
URI does not point to an existing resource, then the request will be
rejected.

POST The POST method requests that the server accept the entity enclosed in the
request as a new instance of the resource identified by the URIL

DELETE
The DELETE method simply removes the specified resource (if it exists).

Note: The Agile Lifecycle Manager API does not support API versioning, but
remains backwards-compatible as far as possible.

Response calls
Every call to the Agile Lifecycle Manager API returns an HTTP status code.

If the request was unsuccessful, a JSON5 or YAML6 formatted response will be
returned in the response body. The response return format depends on the format

© Copyright IBM Corp. 2018 89

https://tools.ietf.org/html/rfc7231

the of the original API intention. For example if an API supports YAML and you
requested YAML, then the response call will be YAML. Mostly, responses will be
JSON.

If the Agile Lifecycle Manager request was successful, then an HTTP 2xx status
code will be returned. Different API calls will potentially return HTTP 2xx status
codes. The details of the status codes returned can be found in the individual
micro-service Swagger documentation or API guides.

If the request was unsuccessful, then for all but HTTP 404 errors the response will
be in one of two forms, either generated by Agile Lifecycle Manager, or by some
other process (rarely).

Errors generated by Agile Lifecycle Manager
These errors are generated when Agile Lifecycle Manager detects an error
associated with an API request, and returns output containing information
about the error.

More than one set of error details may be included. These will show the
errors generated by components internal to Agile Lifecycle Manager and
passed back through the layers of requests that were made.

Note: If you contact IBM support, include all the information contained in
these Agile Lifecycle Manager error reports.

Response field Meaning
url The Service endpoint that was requested.
localizedMessage The translated or localized error message

that can be presented back to the end user
making the request.

details Further details on the issue presented in a
structured format.

This is an optional field so will not always
be present. It is intended to give further
technical details on the source of the error,
and so may not be relevant to the user
making the request.

Often it contains internal error information
from the Agile Lifecycle Manager
components that have handled or detected
the error. When available this information
should be included in any support requests.

Example of a simple error response:

"url": /api/resource-manager/923227664489862,
"localizedMessage": "A FATAL ALM Driver error has occurred: Unknown Resource Manager 923227664489862",
"details": {}

}

Example of a complex error response:

{
"url": /api/resource-manager/configuration/923227664489862,
"localizedMessage": "A FATAL ALM Driver error has occurred: Unknown Resource Manager 923227664489862",
"details": {
"responseHttpStatus": 500,
"errorStatus": "FATAL",
"responseData": { "url": "http://galileo:8283/api/topology/resource-managers/923227664489862";,
"localizedMessage": "Unknown Resource Manager 923227664489862",

90 Agile Lifecycle Manager: Installation, Administration and User Guide

"details": {}
}
}
}
Errors not generated by Agile Lifecycle Manager
On rare occasions an error may occur for which no Agile Lifecycle
Manager error code exists, resulting in a generic response containing the

following fields:

Response field Meaning

timestamp The date and time to error occurred

status The HTTP status code returned

error A textual description of the HTTP status
code returned

exception The internal exception type that was raised

message The actual error reported

path If it was an API call or web service request

that failed, then this field will identify what
was being requested

Example:

{

"timestamp": "2017-08-10T15:28:19.586+0000",

"status": 500,

"error": "Internal Server Error",

"exception": "org.springframework.web.client.ResourceAccessException”,

"message": "I/0 error on GET request for \"http://9.20.64.abc:8295/api/resource-manager/configuration\":
9.20.64.abc; nested exception is java.net.UnknownHostException: 9.20.64.abc",

"path": "/api/resource-managers"

HTTP status code use

Within the header of the HTTP response received in reply to an HTTP request
there is a three-digit decimal status code. The first digit of the status code specifies
one of five standard classes of responses. The distinction between 4xx (client) and
5xx (server) errors makes integration easier.

Ixx 1xx informational responses are not used explicitly by Agile Lifecycle
Manager.

2xx 2xx response codes indicate success. This means that the action requested
by the client was received, understood, accepted, and processed
successfully.

Different Agile Lifecycle Manager components return different HTTP 2xx
status codes dependent on the nature of the request made. To find out
which HTTP 2xx status codes will be returned, see the individual
micro-service Swagger documentation or the related API documentation.

3xx 3xx redirection responses are not used explicitly by Agile Lifecycle
Manager.
4xx 4xx errors are client-based errors. These errors usually occur when a

service exists and a successful connection has been established with an API
endpoint, but the request does not contain all of the information it requires
to 'understand’ the request.

400 errors indicate an invalid request, which means either that mandatory
parameters are missing, or that syntactically invalid parameter values have
been detected (for example an expected URL being text only).

Chapter 7. Reference 91

404 errors indicate that a requested API service cannot be found, or that a
requested entity cannot be found.

More detailed 4xx status code information can be found in the following
section: [“4xx status codes”]

5xx 5xx errors are server-based errors. These errors usually occur when a
request was syntactically correct with all the required parameters, but
Agile Lifecycle Manager was unable to carry out the action.

The HTTP response body will contain reasons for the failure.

Tip: The most usual case will be a simple HTTP 500 status code backed up
with a JSON payload in the response body. This payload will contain a
human-readable error message summarizing the problem and a section
containing further technical details if available.

4xx status codes

These error codes are associated with client or user errors, but can also be caused
by another system sending requests to Agile Lifecycle Manager.

To understand how the different HTTP 4xx status codes are used we need to
separate the definition of a Service Endpoint from the data it is being asked to use.
The service endpoint in a request is the full path to the service required excluding
any variable parameters in the URL. For example, in the following request the
service endpoint is indicated in bold.

http:// <hostname>:<Port>/api/resource-manager/configuration/9.20.64.abc

* All POST requests will send their data in the body of the HTTP request.

* All GET and DELETE requests will send their data as variable URL parameters.

* All PUT requests will send their data as variable URL parameters and/or as
data in the body of the HTTP request.

The handling of HTTP 400 and 404 status codes varies depending on what type of
request was made. Generally, the 4xx HTTP Status codes will be produced by the
Agile Lifecycle Manager functionality concerned with validating and verifying the
incoming requests.

Table 8. Summary of how Agile Lifecycle Manager uses the HTTP 400 and 404 status

codes
URL (with Entity does not
Type URL invalid variables)* Invalid content |exist
REST 404 404 400 n/a
RPC 404 n/a (no URLs 400 400
pointing to
entity)

* refers to an entity that does not exists

REST requests
An HTTP 404 error will be returned if the entire requested service URL,
including any variable parameters, does not exist. This could be for one of
the following reasons:
* The service endpoint requested does not exist or is not available (check
your host name and ports).

92 Agile Lifecycle Manager: Installation, Administration and User Guide

* The requested resource, as identified by the URL variable parameters,
does not exist.

The HTTP 400 status code (Bad Request) is used by the REST-style requests
if the POST or PUT contains bad data. For example, if Agile Lifecycle
Manager is given a Descriptor that it does not recognize.

RPC requests
An HTTP 404 error will be returned if the requested service endpoint does
not exist.

An HTTP 400 error will be returned if there is incorrect content in the
request body sent to the service. endpoint.

HTTP 409 error status:

The HTTP 409 status code (Conflict) indicates that the request could not be
processed because of conflict in the request, such as the requested resource is not
in the expected state, or the result of processing the request would create a conflict
within the resource.

Examples of where an HTTP 409 status code would be used within Agile Lifecycle
Manager are:

* Data constraint violations

 Concurrent modification exceptions.

Related concepts:

[“Lifecycle Manager API”|

The Lifecycle Manager API is responsible for interactions with the operations
available from Agile Lifecycle Manager. This section covers the definition of the

Lifecycle Manager API and the specification of the messages sent across this
interface.

[‘Resource Manager API” on page 121

The Resource Manager API is responsible for defining the interactions between a
lifecycle manager and the resource managers that are used to manage resources
within virtual (or physical) infrastructures.

[‘Resource descriptor YAML specifications” on page 138|
This section describes the descriptors that are used by Agile Lifecycle Manager.

[“Assembly descriptor YAML specifications” on page 147
This section describes the assembly descriptors that are used by Agile Lifecycle
Manager.

Lifecycle Manager API

The Lifecycle Manager API is responsible for interactions with the operations
available from Agile Lifecycle Manager. This section covers the definition of the
Lifecycle Manager API and the specification of the messages sent across this
interface.

Related concepts:

[Chapter 5, “Getting started (using the APIs),” on page 47|

Agile Lifecycle Manager provides both a graphical Ul and an HTTP API allowing
the creation and administration of assemblies. This section describes a set of basic
scenarios to get started using the APIs.

Chapter 7. Reference 93

Interface architecture

This topic describes the API interaction principles, lists the possible HTTP error
response codes, and outlines the four API sections.

API interaction principles

All of the message descriptions are in JSON format and should be submitted with
the HTTP content-type header of application/json.

All Dates will conform to the ISO-8601 standard.
API definition conventions:

A table is associated with each example that explains the fields it contains,
including the name of the field, a brief description, and whether the field is
mandatory. Whether a field is required or not is based on the context of the
examples. The underlying API definition may mark a field as optional, but in some
contexts, the fields must be supplied.

Any field names in italics are examples only.
Possible HTTP error response codes
The following table lists the HTTP response codes that can be returned in various

error scenarios. Any client should expect that any API call can return these codes
under exceptional circumstances.

Table 9. HTTP error response codes

Code Description

400 - Bad Request The request contained invalid information. This may be an incorrect
field, invalid value or an inconsistent state on a dependent
resource. The HTTP response body should contain a JSON message
with further details of the specific issue.

404 - Not Found The requested resource or endpoint could not be found.

409 - Conflict Agile Lifecycle Manager has been unable to process the request due
to a conflict produced by some of the information supplied. For
example, due to attempting to create two resource managers with
the same name.

500 - Internal Server |An internal error has occurred whilst fulfilling the request. The
Error HTTP response body should contain a JSON message with further
details. In some situations, it may be necessary for a system
administrator to consult the logs for further information.

502 - Bad Gateway A remote system has failed to respond correctly causing this
request to fail. The HTTP response body should contain a JSON
message with further details. In some situations, it may be
necessary for a system administrator to consult the logs for further

information.
503 - Service Agile Lifecycle Manager is unable to process this request at this
Unavailable time. The request should not be retried until the underlying

problem is resolved. The HTTP response body should contain a
JSON message with further details. In some situations, it may be
necessary for a system administrator to consult the logs for further
information.

94 Agile Lifecycle Manager: Installation, Administration and User Guide

API sections

The API is divided into four sections. These provide access to the different
functionality provided by Agile Lifecycle Manager. This API is expected to be
called by External OSS systems to perform both fulfillment tasks and also some
fault management tasks.

Managing assemblies

Agile Lifecycle Manager allows the creation of assemblies. These allow
services to be created by Agile Lifecycle Manager, which will interact with
resource managers to create and manage virtual resources that need to be
provided for the service to work.

This part of the API includes two endpoints; the first allows the external
OSS system to request a transition against an assembly instance, including
a request for a new assembly instance. The second allows the external OSS
to poll Agile Lifecycle Manager to find out the state of the request.

Asynchronous events

In response to Assembly Orchestration requests, Agile Lifecycle Manager
will also place on a Kafka bus messages that describe the key events that
occur during the processing of the request and also a message to indicate
when the processing has been completed. It is recommended that the
external OSS use this mechanism to check the state of requests rather than
using the polling interface defined in the previous section.

Assembly topology

External OSS may need details of the assembly instances and of the
components that it is comprised. The topology contains a hierarchy of the
components of an assembly. A component may be either a resource or an
assembly. It is also possible to request details of the events used during the
assemblies life.

Resource manager handling

Scenarios

Resource Managers are responsible for managing the actual resources that
are needed for a service to work. Agile Lifecycle Manager needs to be told
which resources managers it will interface to. This process is known as
'Onboarding a Resource Manager'. The Lifecycle Manager API provides a
set of calls that allows a new resource manager instance to be onboarded
to Agile Lifecycle Manager, and also removed from Agile Lifecycle
Manager. When a resource manager is onboarded the set of resource types
and locations that they manage will be extracted using the Resource
Manager APIL. The API also provides an endpoint that will make Agile
Lifecycle Manager request the associated resource manager for a set of
updated resources. Any existing resources will remain unchanged when
this update occurs.

This section describes the lifecycle manager scenarios.

Resource manager handling

When a resource manager is onboarded, Agile Lifecycle Manager invokes a set of
calls to the resource manager detailed in [Resource Manager API|

Chapter 7. Reference 95

Onboard resource manager

Resource
ﬁLM i
Manager

Create resource manager

Invake RM API

Resource and Location Details

Response

Delete resource manager

External 055 ALM

Delete resource manager

v

Response

[y

Get resource manager details

External 0SS ALM

Get Resource Manager Details

Y

Resource Manager Details

When a resource manager is updated, it returns the details of the resources and
locations, and Agile Lifecycle Manager will store any new details, but not remove
any existing details.

96 Agile Lifecycle Manager: Installation, Administration and User Guide

Update resource manager

External 05§ ALM Rescurce
Manager

Update resource manager

Response

Inveke RM AP

Mew Rescurce and Location Details

Assembly creation and state transition

External 055

Create ﬁssemhl-._r Instance

Response

Assembly Lifecycle Request Event

State Change Events

'Y

Get Orchestration Event

Orchestration Event Details

Change State of existing Assembly

Response

State Change Events

Assembly Lifecycle Request Event |

Heal

R g O
External 055 ALM : :_Jrn_u.
Manager

Heal Reguest

Response

Stop Companent

Response

Start Companent

Response

Check Integrity of Resource
L

Response

_

Note: Asynchronous events are not depicted.

Chapter 7. Reference

97

Scaling

Scale out

. Resource
External 058 ALM pedin
Manager

ScaleQut request

L
Install Resource
:
Response
-
Configure Resource
"
Response
-
Start Resource
i »
Response
I 3
Check Integrity of Resource
Response
Response -

Note: Asynchronous events are not depicted.

Scale in

Res]
External 055 ALM esource

Manager

Scaleln request

Stop Resource

Response g
= Uninstall Resouree
Response "
Response
Note: Asynchronous events are not depicted.
Topology requests
External OSS ALM

Request Assembly Topology

Assembly Topology details

98 Agile Lifecycle Manager: Installation, Administration and User Guide

Managing assemblies

This topic lists the assembly API calls, which are based on the state model for the
lifecycle manager.

API definition conventions:

A table is associated with each example that explains the fields it contains,
including the name of the field, a brief description, and whether the field is
mandatory. Whether a field is required or not is based on the context of the
examples. The underlying API definition may mark a field as optional, but in some
contexts, the fields must be supplied.

Any field names in italics are examples only.
Standard response header

Each of the API calls returns a response header in the following format when the
calls are successful.

Example response header

{
"lTocation": "http://192.168.99.100:8280/api/processes/9d63c1l6e-6685-4e7b-9123-81c19699536",

"date": "Fri, 08 Sep 2017 09:12:38 GMT",

"server": "ALM Ishtar/1.1.0-SNAPSHOT",
"transfer-encoding": "chunked",
"x-application-context": "ishtar:prod,swagger:8280",
"content-type": null

}

The 'location' URL in bold allows the caller to find out the state of the
process that has been requested.

Process controller

This call allows the requestor of an intent to check the status of the associated
process.

Request format

Aspect Value
Endpoint URL /api/processes/{id}
HTTP method GET

The URL in the response header 'location' field is the URL that the
requester must use to find the state of the process.

http://192.168.99.100:8280/api/processes/9d63cl6e-6685-4e7b-9123-81c196199536
Create assembly

Creates a new instance of an assembly based on the given descriptor and the
properties.

Request format

Aspect Value
Endpoint URL /api/intent/create Assembly
HTTP method POST

Chapter 7. Reference 99

Example requests

Create assembly instance

{

"assemblyName": "WED_102",
"descriptorName": "assembly::t_single::1.0",
"intendedState": "Active",

"properties": {

"data": "exampleValue",
"deploymentLocation": "admin@local"

}

Table 10. Fields to be used when creating a new assembly instance

Field Description Mandatory
assemblyName The name of the assembly instance. Must be | yes
unique, must not start with a number,
contain a space and must not contain
double underscore character combination.
descriptorName The name of the assembly descriptor as yes
defined at the head of the descriptor file
intendedState The state the assembly instance will be yes
transitioned to once the assembly has been
created. Allowed values are 'Installed’,
'Inactive’, 'Active'.
properties A set of tuples that match the required yes (if there are
properties for the assembly instance. The required
list of actual properties is dependent upon | properties within
the assembly descriptor. the descriptor)

Response format

Aspect

Value

Return Code

201 CREATED

Change assembly state

Request format

Aspect

Value

Endpoint URL

/api/intent/changeAssemblyState

HTTP method

POST

Example requests

Change state of existing assembly using name

{

"assemblyName": "WED_ 102",
"intendedState": "Inactive"

}

Change state of existing assembly using ID

{

"assemblyId": "1c3bd18a-05e9-4f49-b510-0e4785b2f0ae",
"intendedState": "Inactive"

}

Request parameters

100 Agile Lifecycle Manager: Installation, Administration and User Guide

Table 11. Fields to be used when changing the state of an existing assembly

Field

Description

Mandatory

assemblyName

The name of the assembly instance.
Must be unique, must not start with
a number, contain a space and must
not contain double underscore
character combination.

yes (if assemblyld is
not supplied)

assemblyld

The id of the assembly instance. This
can be retrieved using the
GetAssembly calls

yes (if assemblyName
not supplied)

intendedState

The state which the assembly
instance will be transitioned to once
the assembly has been created.
Allowed values are 'Installed’,

'Inactive’, 'Active'.

yes

Response format

Aspect

Value

Return Code

201 CREATED

Delete assembly

Requests to delete an assembly instance.

Request format

Aspect

Value

Endpoint URL

/api/intent/deleteAssembly

HTTP method

POST

Example requests

Delete assembly instance using name

{
}

"assemblyName": "WED_102"

Delete assembly instance using ID

{

"assemblyId": "1c3bd18a-05e9-4f49-b510-0e4785b2f0ae"

}

Request parameters

Table 12. Fields to be used when deleting an assembly

Field Description

Mandatory

assemblyName

The name of the assembly instance.
Must be unique, must not start with a
number, contain a space and must not
contain double underscore character
combination.

yes (if assemblyld is
not supplied)

assemblyld

The id of the assembly instance. This
can be retrieved using the GetAssembly
calls

yes (if
assemblyName not
supplied)

Chapter 7. Reference 101

Response format

Aspect Value

Return Code 201 CREATED

Heal components

This allows an assembly instances to be healed in the event that their resources are
broken.

Request format

Aspect Value
Endpoint URL /api/intent/heal Assembly
HTTP method POST

Example requests
Heal assembly component using names

{
"assemblyName": "WED_102",

"brokenComponentName": "WED_102__t single"
}

Heal assembly component using IDs

{
"assemblyId": "5fd27cle-403c-402b-a033-fef0940974d5",

"brokenComponentId": "15a07604-377d-4fa2-955f-2a379560c24d"
}

Heal assembly component using a mixture of names and IDs

{
"assemblyName": "WED 102",
"brokenComponentId": "15a07604-377d-4fa2-955f-2a379560c24d"

}
Request parameters

Table 13. Fields to be used when healing a resource

Field Description Mandatory
assemblyName The name of the assembly instance. | yes (if assemblyld is not
Must be unique, must not start supplied)

with a number, contain a space and
must not contain double
underscore character combination.

assemblyld The id of the assembly instance. yes (if assemblyName not
This can be retrieved using the supplied)
GetAssembly calls

brokenComponentld This is the id of the component yes (if
within the assembly instance. This |brokenComponentName is
can be found by using the not used)

GetAssembly calls.

brokenComponentName | The name of the component within |yes (if brokenComponentld
the assembly instance. It can be is not used)
found using the GetAssembly calls.

102 Agile Lifecycle Manager: Installation, Administration and User Guide

Table 13. Fields to be used when healing a resource (continued)

Field

Description

Mandatory

brokenComponentMetricKéhis is the ID of the component

within the assembly instance
(currently using the same ID as

Yes (if brokenComponentld
or brokenComponentName
is not used)

brokenComponentld). This can be
found by using the GetAssembly
calls.

Response format

Aspect

Value

Return Code

201 CREATED

Scale components

This allows scalable components of an assembly to be scaled in or out.

Request format

Aspect

Value

Endpoint URL

/api/intent/scaleInAssembly

Endpoint URL

/api/intent/scaleOutAssembly

HTTP method

POST

Example request

Scale a cluster by name (depends on the endpoint as to whether it is 'In’'

or 'Out'

{

"assemblyName
"clusterName"

}

": "WED 102",
: "storage cluster"

Scale a cluster by ID (depends on the endpoint as to whether it is 'In' or

'Out'
{

"assemblyId": "5fd27cle-403c-402b-a033-fef0940974d5",

"clusterName"

}

Request parameters

: "storage_cluster"

Table 14. Fields to be used when scaling components

Field

Description

Mandatory

assemblyName

The name of the assembly instance.
Must be unique, must not start with a
number, contain a space and must not
contain double underscore character
combination.

not supplied)

yes (if assemblyld is

assemblyld

The id of the assembly instance. This
can be retrieved using the GetAssembly
calls

not supplied)

yes (if assemblyName

Chapter 7. Reference

103

Table 14. Fields to be used when scaling components (continued)
Field Description Mandatory

clusterName The name of the cluster to be scaled. yes
This is the name defined in the
assembly descriptor for the cluster.

Response format

Aspect Value
Return Code 201 CREATED

Upgrade assembly

This upgrades an assembly, which means changing the descriptor that is associated
with an assembly instance. This may cause the state of the assembly components

to change while the upgrade is achieved.

Request format

Aspect Value
Endpoint URL /api/intent/upgradeAssembly
HTTP method POST

Example request
Upgrade a cluster by name

{
"assemblyName": "WED_102",

"descriptorName": "assembly::t single::2.0",
"properties": {
"data": "exampleValue",
"deploymentlLocation": "demo@local"

}

Upgrade a cluster by ID
{
"assemblyId": "5fd27cle-403c-402b-a033-fef0940974d5",
"descriptorName": "assembly::t single::2.0",
"properties": {
"data": "exampleValue",
"deploymentlLocation": "demo@local"

}
Request parameters

Table 15. Fields to be used when upgrading an assembly
Field Description Mandatory

assemblyName The name of the assembly instance. Must | yes (if assemblyld is
be unique, must not start with a number, | not supplied)
contain a space and must not contain
double underscore character
combination.

The id of the assembly instance. This can |yes (if assemblyName
be retrieved using the GetAssembly calls. | not supplied)

assemblyld

104 Agile Lifecycle Manager: Installation, Administration and User Guide

Table 15. Fields to be used when upgrading an assembly (continued)

Field Description Mandatory
descriptorName The name of the assembly descriptor as | yes
defined at the head of the descriptor file.
Properties A set of tuples that match the required | Yes (depending upon
properties for the assembly instance. The |descriptor
list of actual properties is dependent requirements)

upon the assembly descriptor.

Response format

Aspect Value
Return Code 201 CREATED

Resource managers

This topic describes the Resource Managers API specifications for the lifecycle
management API See the ["Resource Manager API” on page 121|section for
resource manager API specifications.

API definition conventions:

A table is associated with each example that explains the fields it contains,
including the name of the field, a brief description, and whether the field is
mandatory. Whether a field is required or not is based on the context of the
examples. The underlying API definition may mark a field as optional, but in some
contexts, the fields must be supplied.

Any field names in italics are examples only.
Create Resource Manager

Creates a record of a Resource Manager within Agile Lifecycle Manager and begins
the onboarding process. When this request is placed Agile Lifecycle Manager will
register the resource manager, and then it will request details of all the resource
types that the resource manager is able to handle. This may take many seconds.

Request format

Aspect Value
Endpoint URL /api/resource-managers
HTTP method POST

Example requests
{
"name": "test",
"type": "test-rm",
"url": "http://localhost:8295/api/resource-manager"

}

Table 16. Create resource manager request fields

Field Description Mandatory

name The name by which the resource manager yes
instance is to be known by in the ALM

Chapter 7. Reference 105

Table 16. Create resource manager request fields (continued)

Field

Description

Mandatory

type

The type of resource manager that is being
onboarded. This is a string supplied by those
managing the resource managers. It is suggested
that the same value be used for all resource
managers that support the same set of resources

no

url

The URL where the resource manager interface
can be found by the ALM

yes

Response format

Aspect

Value

Response Code

201 CREATED

Get Resource Manager

Gets the information about a Resource Manager within Agile Lifecycle Manager.
The ID in the request is the unique name of the resource manager as defined by

the 'name' field in [Create Resource Manager]

Request format

Aspect

Value

Endpoint URL

/api/resource-managers/{id}

HTTP method

GET

Example response

{

"name": "test",
"type": "test-rm",
"url": "http://localhost:8295/api/resource-manager"

}

Table 17. Get resource manager response fields

Field

Description

Mandatory

name

The name by which the resource manager
instance is to be known by in the ALM

yes

type

The type of resource manager that is being
onboarded. This is a string supplied by those
managing the resource managers. It is suggested
that the same value be used for all resource

managers that support the same set of resources.

no

url

The URL where the resource manager interface
can be found by the ALM.

yes

Response format

Aspect

Value

Response Code

200 OK

106 Agile Lifecycle Manager: Installation, Administration and User Guide

Update Resource Manager

Updates a record of a Resource Manager within the Agile Lifecycle Manager and

begins the onboarding process.

Request format

Aspect Value
Endpoint URL /api/resource-managers/ {id}
HTTP method PUT

Example request

{

"name": "test",
"type": "test-rm",
"url": "http://localhost:8295/api/resource-manager"

}

Table 18. Update resource manager request fields

Field

Description

Mandatory

name

The name by which the resource manager
instance is to be known by in the ALM

yes

type

The type of resource manager that is being
onboarded. This is a string supplied by those
managing the resource managers. It is
suggested that the same value be used for all
resource managers that support the same set of
resources.

no

url

The URL where the resource manager interface
can be found by the ALM.

yes

Response format

Aspect

Value

Response code

200 OK

Delete Resource Manager

Deletes the record of a Resource Manager within the Agile Lifecycle Manager.

Request format

Aspect Value

Endpoint URL /api/resource-managers/ {id}
HTTP method DELETE

Response format

Aspect Value

Response code 200 OK

Related concepts:

Chapter 7. Reference

107

[Chapter 5, “Getting started (using the APIs),” on page 47|

Agile Lifecycle Manager provides both a graphical Ul and an HTTP API allowing
the creation and administration of assemblies. This section describes a set of basic
scenarios to get started using the APIs.

Asynchronous state change events

Agile Lifecycle Manager will emit events when the state of an assembly or its
components changes. Messages that are sent asynchronously are put onto a Kafka
bus. The exact topics can be configured. These are emitted in response to Intent
Requests causing the state of the Assembly Instance, or its associated components,
to change. In the event of a failure to change state, an event will also be emitted.

API definition conventions:

A table is associated with each example that explains the fields it contains,
including the name of the field, a brief description, and whether the field is
mandatory. Whether a field is required or not is based on the context of the
examples. The underlying API definition may mark a field as optional, but in some
contexts, the fields must be supplied.

Any field names in italics are examples only.
ProcessStateChangeEvent

These events are associated with the process that performs the Intent request.
These are sent out at the Start of the processing and when completed or failed.

The following example shows the first message sent when an intent has been
received by Agile Lifecycle Manager. The processld will be used in all subsequent
state change events. These happen when the process changes state.

Example of an initial state change event
{

"processId": "e29b86a8-ca75-413b-921b-c4b895996c12",
"assemblyId": "e4c198d1-2dbb-4557-baae-b5891fa258cf",
"assemblyName": "example2",
"assemblyDescriptorName": "assembly::t_single::1.0",
"intentType": "CreateAssembly",
"intent": {

"assemblyName": "example2",

"descriptorName": "assembly::t single::1.0",

"intendedState": "Active",

"properties": {

"data": "example data",
"deplomentLocation": "admin@local"

1
1
"processState": "In Progress",
"processStartedAt": "2017-09-14T13:06:17.499Z",
"eventId": "e08039e7-7efd-4b7e-86a3-9d39c48c2dd7",
"eventCreatedAt": "2017-09-14T13:06:17.4997",
"eventType": "ProcessStateChangeEvent"

}

Example of the final message on successful completion of the Intent
{
"processId": "e29b86a8-ca75-413b-921b-c4b895996c12",
"assemblyId": "e4c198d1-2dbb-4557-baae-b5891fa258cf",
"assemblyName": "example2",
"assemblyDescriptorName": "assembly::t_single::1.0",
"intentType": "CreateAssembly",

108 Agile Lifecycle Manager: Installation, Administration and User Guide

}

"intent": {
"assemblyName": "example2",
"descriptorName": "assembly::t single::1.0",
"intendedState": "Active",
"properties": {
"data": "example data",
"deplomentLocation": "admin@local"

1
ts
"processState": "Completed",
"processStartedAt": "2017-09-14T13:06:17.499Z",
"processFinishedAt": "2017-09-14T13:06:19.648Z",
"eventId": "405cfl4c-752e-4030-8ade-6706e04b50f5",
"eventCreatedAt": "2017-09-14T13:06:19.649Z",
"eventType": "ProcessStateChangeEvent"

Example of the final message indicating Intent Failed

{

"processId": "8c922ec6-7589-4ba8-8b4e-d7841h9a9654",
"assemblyId": "42ecbe49-0069-41f5-ac38-595b090c3d65",
"assemblyName": "example3",
"assemblyDescriptorName": "assembly::t_single::1.0",
"intentType": "CreateAssembly",
"intent": {
"assemblyName": "example3",
"descriptorName": "assembly::t_single::1.0",
"intendedState": "Active",
"properties": {
"data": "Example Data",
"depTomentLocation": "admin@local"

}
by
"processState": "Failed",
"processStateReason": "Exception ...",

"processStartedAt": "2017-09-14T13:13:58.966Z",
"processFinishedAt": "2017-09-14T13:13:59.616Z",
"eventId": "1lacf385-e6f9-41cf-9651-38dc3edbab3a",
"eventCreatedAt": "2017-09-14T13:13:59.616Z",
"eventType": "ProcessStateChangeEvent"

}

Table 19. ProcessStateChangeEvent fields

Field Description Mandatory

processld The ID given to the process that was yes
initiated by an Intent request

assemblyld The Agile Lifecycle Manager internal ID for | yes
the assembly instance associated with the
process

assemblyName The name of the assembly instance as yes
supplied in the Intent request

intentType The name of the intent type. The values yes
correspond to the Intents described in the
Managing Assembly section,

intent Contains details of the intent request yes
supplied

processState The processState may contain 'In Progress', |yes
'‘Completed' or 'Failed'

processStarted At The data and time the process was started |yes

Chapter 7. Reference

109

Table 19. ProcessStateChangeEvent fields (continued)
Field Description Mandatory

eventld The ID of this event from the Agile yes
Lifecycle Manager point of view (each
message will have a unique ID)

eventCreated At The date and time when the event yes
happened from the Agile Lifecycle
Manager point of view

eventType Will always contain yes
"ProcessStateChangeEvent'

ComponentStateChangeEvent

These events are sent when the root assembly changes state and when each of its
associated resources successfully transitions to a new state. In the event of a failure
of the process no events will be sent.

The following example shows a resource transitioning to the Installed state. The
previous state is null indicating the resource did not exists before.

First message sent indicating first component transitioning to the Installed State
{

"eventId": "901d4794-7734-4511-8e24-6035ee5ch22a",
"eventCreatedAt": "2017-09-14T13:06:18.37Z",
"rootAssemblyId": "e4c198d1-2dbb-4557-baae-bh5891fa258cf",
"rootAssemblyName": "example2",
"resourceld": "7a03bc63-bccf-4731-b6b2-9389609d9fab",
"resourceName": "example2__A",
"resourceManager": "test-rm",
"depToymentLocation": "admin@local",
"externalId": "06d20929-alc0-44cf-8009-aeed47bac3f99",
"previousState": null,
"newState": "Installed",
"eventType": "ComponentStateChangeEvent"

}

An event indicating the root assembly has transitions to Installed State
The following example will be sent when all resources associated with the
root assembly have successfully transitioned to the Installed State.

{
"eventId": "33a63fca-2bed-49c3-8615-56e5b35aa3bb",

"eventCreatedAt": "2017-09-14T13:06:18.572Z",
"rootAssemblyId": "e4c198d1-2dbb-4557-baae-bh5891fa258cf",
"rootAssemblyName": "example2",

"previousState": null,

"newState": "Installed",

"eventType": "ComponentStateChangeEvent"

}
Table 20. ComponentStateChangeEvent fields

Field Description Mandatory

eventType The expected value is yes
'‘ComponentStateChangeEvent'

eventld The internal id generated by Agile yes
Lifecycle Manager in response to an
orchestration event request

110 Agile Lifecycle Manager: Installation, Administration and User Guide

Table 20. ComponentStateChangeEvent fields (continued)

Field

Description

Mandatory

eventCreated At

The date and time that the event took
place as recorded by Agile Lifecycle
Manager

yes

rootAssemblyld

The internal Agile Lifecycle Manager ID
for the assembly instance associated
with the event

yes

rootAssemblyName

The name of the root assembly as
supplied in the Intent request

yes

resourceld

Th ID of the resource defined by Agile
Lifecycle Manager

no (used for resources
only)

resourceName

The name of the resource defined by
Agile Lifecycle Manager

no (used for resources
only)

resourceManager

The name of the resource manager that
manages the resource

no (used for resources
only)

deploymentLocation

The location that the resource manager
was requested to install the resource

no (used for resources
only)

externalld

The ID of the resource as defined by the
resource manager

no (used for resources
only)

previousState

The state that the assembly or
component was in before the state
change happened. Allowed values:
Installed, Inactive, Active. When a Heal
event has been requested Agile
Lifecycle Manager puts the component
into the Broken state. This is a
temporary state that is used to trigger
the Heal processing. This will be set to
null' when the resource or assembly is
transitioning to the Installed State.

yes

newState

The state to which the assembly or
component instance transitioned in the
event of a successful state change, or
the state that would have resulted if a
failure had not occurred. This will be
null' when the resource or assembly is
being uninstalled.

yes

Regarding the previousState and newState fields: When Agile Lifecycle Manager
is requested to heal a component, it will indicate this with a set of state transitions
from Active to Broken, and Broken to Inactive.

Related tasks:

[Configuring Agile Lifecycle Manager]

To configure Agile Lifecycle Manager for use, you override the default application
properties, and then configure external instances of Kafka, Cassandra and
Elasticsearch. You can also add new OpenLDAP users, modify an OpenLDAP user
password, and add new API Clients if required.

Related reference:

[“Functionality” on page 6|
Agile Lifecycle Manager provides continuous integration and deployment of
resources, intent-driven operations to automate lifecycle processes, and an open

Chapter 7. Reference 111

framework.

[‘Configuration reference” on page 47|

This topic provides you with an overview of the Agile Lifecycle Manager services
settings you need to know when configuring the solution for your own
environment, such as port numbers, Swagger URLs, and API details.

Resource health events

Resource health events include integrity and load metric events.
API definition conventions:

A table is associated with each example that explains the fields it contains,
including the name of the field, a brief description, and whether the field is
mandatory. Whether a field is required or not is based on the context of the
examples. The underlying API definition may mark a field as optional, but in some
contexts, the fields must be supplied.

Any field names in italics are examples only.
Integrity events

Integrity events are sent to enable a resource to indicate whether it is working or
broken.

Example integrity metric events

{
"metricKey" : "142971c5-a84b-4d34-af15-435ba8640aec",

"metricName" : "h_integrity",
"integrity" : "OK",
"message" : "Everything is working"

}
Table 21. Integrity event fields

Field Description Mandatory

metricKey The key given to the resource manager yes
when the resource was created as a token
to be used within these messages

metricName The name of the metric as defined in the yes
resource descriptor

integrity A value indicating if the resource yes
associated with the metric Key is working.
Allowed values are 'OK' for working and
'BROKEN' when healing is required.

message An optional test string to include no
information about the integrity of the
resource. For example, it can include an
error code.

Load events

Load events indicate a resources load. This may be an aggregation across many
resources as seen for example by a load balancer.

112 Agile Lifecycle Manager: Installation, Administration and User Guide

Example load metric events

{
"metricKey" : "818127b3-1904-4737-a60c-8c7bab73532d",

"metricName" : "h_Toad",
"load" : 76,
"message" : "Load is high"

}
Table 22. Load event fields

Field Description Mandatory

metricKey The key given to the resource manager yes
when the resource was created as a token
to be used within these messages

metricName The name of the metric as defined in the |yes
resource descriptor

load A value between 0 and 100, indicating yes
the load on the resources

message An optional test string to include no
information about the integrity of the
resource. For example, it can include an
error code.

Topology

This topic lists the topology API specifications.

API definition conventions:

A table is associated with each example that explains the fields it contains,
including the name of the field, a brief description, and whether the field is
mandatory. Whether a field is required or not is based on the context of the
examples. The underlying API definition may mark a field as optional, but in some
contexts, the fields must be supplied.

Any field names in italics are examples only.

Get assembly by id

Gets the assembly with the given ID.

Request format

Aspect Value
Endpoint URL /api/topology/assemblies/{assemblyld}
HTTP method GET

Request parameters

Field Description Mandatory
id The internal id of the assembly yes
numEvents Number of historical events to show in |no

response. If numEvents is set to 0, only
the structure of assembly is shown. If
left blank, the default value 3 is used.

Chapter 7. Reference 113

Response format

Aspect Value

Response Code 200 Ok

Example response
{
"type": "Assembly",
"id": "bf649336-c8c5-49d9-9f4e-60567fe54135",
"name": "test_1",
"state": "Active",
"descriptorName": "assembly::t bta::1.0",
"properties": [

"name": "data",
"value": "data"

b

1,
"createdAt": "2017-08-02T22:28:41.906+0000",
"TastModifiedAt": "2017-08-02T722:47:46.189+0000",
"children": [
{

"type": "Component",

"id": "aab6626d-cfec-410b-afb7-7160019bdff0",

"name": "test 1 A",

1,
"relationships": [
{
"name": "third-relationship__1",
"sourceld": "aab56626d-cfec-410b-afb7-7160019bdff0",
"targetId": "9c525d0c-18d4-404f-a5b2-8a55480660a8",
"properties": [

"name": "source",
"value": "test_1 A"
}
]
}
1,
"references": [
{
"id": "1c269f9d-fcca-4754-946c-6f3e6179bf38",
"name": "internal-network",
"type": "resource::openstack_neutron_network::1.0",

Lo

]
}

Table 23. Get assembly by id fields

Field Description Mandatory

type The type of entity being returned (always |yes
‘assembly’)

id The internal id of the assembly yes

name The name of the assembly as provided by |yes
the external system

114 Agile Lifecycle Manager: Installation, Administration and User Guide

Table 23. Get assembly by id fields (continued)

Field Description Mandatory

state The state of the assembly. Allowed values: |no
Installed, Inactive, Active. This field may
be missing if the assembly has not reached
the Installed state

descriptorName The name of the assembly descriptor yes
associated with the assembly instance

properties A collection of assembly level properties. | yes
Each property will have a name and value
field.

created At The date and time the assembly was yes
created

lastModified At The date and time the assembly was last |no
modified

children A collection of components that make up |yes

the assembly. When the component is of
the type 'Assembly’ the contents are the
same as for the top level assembly. When
the type is 'component’ the entry is in fact
a resource. This will have a type, name
and id and a set of associated properties.

relationships A collection of relationships associated no
with the assembly instance. Each
relationship has a name and the id of the
source and target components involved in
the relationship. Relationships also have a
property section.

references A collection of references used by the no
assembly. References can be provided to
resources by resource managers, but
cannot be created using any assembly and
other existing assembly instances.

Get assembly by name

Gets the assembly with the given name.

Request format

Aspect Value
Endpoint URL /api/topology/assemblies?name={name}
HTTP method GET

Request parameters

Field Description Mandatory
name The name of the assembly yes
numEvents Number of historical events to show in no

response. If numEvents is set to 0, only the
structure of assembly is shown.

Response format

Chapter 7. Reference

115

Aspect Value

Response Code 200 Ok

Example response
{
"type": "Assembly",
"id": "bf649336-c8c5-49d9-9f4e-60567fe54135",
"name": "test 1",
"state": "Active",
"descriptorName": "assembly::t bta::1.0",
"properties": [

"name": "data",
"value": "data"

by

1,
"createdAt": "2017-08-02T22:28:41.906+0000",
"TastModifiedAt": "2017-08-02T722:47:46.189+0000",
"children": [
{

"type": "Component",

"id": "aab6626d-cfec-410b-afb7-7160019bdff0",

"name": "test_1 A",

1,
"relationships": [
{
"name": "third-relationship_ 1",
"sourceld": "aa56626d-cfec-410b-afb7-7160019bdff0",
"targetId": "9c¢525d0c-18d4-404f-a5b2-8a55480660a8",
"properties": [

"name": "source",
"value": "test_1_ A"
}
1
}
1,
"references": [
{
"id": "1c269f9d-fcca-4754-946c-6f3e6179bf38",
"name": "internal-network",
"type": "resource::openstack_neutron_network::1.0",

o

]
}

Table 24. Get assembly by name topology fields

Field Description Mandatory

type The type of entity being returned yes
(always 'assembly")

id The internal id of the assembly yes

name The name of the assembly as provided |yes

by the external system

state The state of the assembly. Allowed no
values: Installed, Inactive, Active. This
field may be missing if the assembly has
not reached the Installed state.

116 Agile Lifecycle Manager: Installation, Administration and User Guide

Table 24. Get assembly by name topology fields (continued)

Field Description Mandatory

descriptorName The name of the assembly descriptor yes
associated with the assembly instance

properties A collection of assembly level properties. |yes
Each property will have a name and
value field.

created At The date and time the assembly was yes
created

lastModified At The date and time the assembly was last |no
modified

children A collection of components that make up | yes

the assembly. When the component is of
the type 'Assembly’ the contents are the
same as for the top level assembly.
When the type is 'component' the entry
is in fact a resource. This will have a
type, name and id and a set of
associated properties.

relationships A collection of relationships associated |no
with the assembly instance. Each
relationship has a name and the id of
the source and target components
involved in the relationship.
Relationships also have a property
section.

references A collection of references used by the no
assembly. References can be provided to
resources by resource managers, but
cannot be created using any assembly
and other existing assembly instances.

Catalog API

Use the following catalog API details to manage the descriptors in the catalog. You
can add, list, update or delete assembly descriptors from the catalog. You can list
or delete resource descriptors, but can only add or update them through the
[resource manager| APL

API definition conventions:

A table is associated with each example that explains the fields it contains,
including the name of the field, a brief description, and whether the field is
mandatory. Whether a field is required or not is based on the context of the
examples. The underlying API definition may mark a field as optional, but in some
contexts, the fields must be supplied.

Any field names in italics are examples only.
Get a summary of all descriptors

The following request returns a summary of the descriptors from the Agile
Lifecycle Manager catalog.

Request format

Chapter 7. Reference 117

Aspect Value

Endpoint URL /api/catalog/descriptors

HTTP method GET

Response format

Aspect Value

Response Code 200 Ok

Example response

[
{
"name": "resource::t_simple::1.0",
"description": "resource for t_simple",
"Tinks": [
{
Ilre'l II: Ilse'l fll’
"href": "http://192.168.99.100:8280/api/ /catalog/descriptors/
resource::t_simple::1.0"
}
]
’s
{
"name": "resource::h_simple::1.0",
"description": "resource for t_simple",
"Tinks": [

"rel": "self",
"href": "http://192.168.99.100:8280 /api/catalog/descriptors/

resource::h_simple::1.0"

}

]
}
]

Table 25. Response properties

Field Description Mandatory
name The name of the descriptor yes
description The descriptor description yes
links A collection of links to the descriptor |yes
rel Will always be set to self yes
href The URL to retrieve the descriptor yes

from the catalog

Create assembly descriptor

The following request creates a new assembly descriptor in the Agile Lifecycle
Manager catalog.

Request format

Aspect Value

Endpoint URL /api/catalog/descriptors
Content type application/yaml

HTTP method POST

118 Agile Lifecycle Manager: Installation, Administration and User Guide

Example request
The content of the request will be an assembly descriptor in YAML format.

For more information see |[“Assembly descriptor YAML specifications” onl
|o age 147,

Response format

Aspect Value
Response Code 201 Ok

Example response

{

"validationWarnings": []

}

Table 26. Response properties
Field Description Mandatory

validationWarnings Will contain a list of warnings about | yes
the descriptor that has been created, if
empty the descriptor is valid.

Delete assembly descriptor

The following request deletes an assembly descriptor from the Agile Lifecycle
Manager catalog.

Request format

Aspect Value
Endpoint URL /api/catalog/descriptors/{descriptorName}
HTTP method DELETE

The descriptor name is the full name of the descriptor, for example
assembly::t single::1.0

You must encode this appropriately for use as a URL, for example
assemb1y%3A%3At_single%3A%3A1.0

Response format

Aspect Value
Response Code 204 Ok

Get assembly descriptor by nhame

The following request returns an existing assembly descriptor from the Agile
Lifecycle Manager catalog.

Request format

Aspect Value
Endpoint URL /api/catalog/descriptors/{descriptorName}
HTTP method GET

Chapter 7. Reference 119

The descriptor name is the full name of the descriptor, for example
assembly::t single::1.0

You must encode this appropriately for use as a URL, for example
assembly%3A%3At_single%3A%3A1.0

Response format

Aspect Value
Response Code 201 Ok

The response body will contain the descriptor in YAML format.
Update assembly descriptor

The following request updates an existing assembly descriptor in the Agile
Lifecycle Manager catalog.

Request format

Aspect Value

Endpoint URL /api/catalog/descriptors/{descriptorName}
Content type application/yaml

HTTP method PUT

The descriptor name is the full name of the descriptor, for example
assembly::t single::1.0

You must encode this appropriately for use as a URL, for example
assembly%3A%3At single%3A%3A1.0

Example request
The content of the request will be an assembly descriptor in YAML format.
For more information see |[“Assembly descriptor YAML specifications” on|
-ae 147.

Response format

Aspect Value

Response Code 200 Ok

Example response

{

"validationWarnings": []

}
Table 27. Response properties

Field Description Mandatory

validationWarnings Will contain a list of warnings about |yes
the descriptor that has been created,
if empty the descriptor is valid.

120 Agile Lifecycle Manager: Installation, Administration and User Guide

Resource Manager API

The Resource Manager API is responsible for defining the interactions between a
lifecycle manager and the resource managers that are used to manage resources
within virtual (or physical) infrastructures.

Interface architecture

Four groups of interface endpoints are referenced within the Resource Manager
API. These groups are responsible for the management or retrieval of different
entities from the resource managers.

High-level interface architecture

The following diagram shows the high-level functional architecture referenced in
the Resource Manager API specifications.

Lifecycle Manager
- - [y

Besource instances :

manipulated @ = | | |

axynchroncusly r.pa JSIiN hpach,e Kafka | Synchrongus REST

masssges transmmitted vis — calls [JSONSHTTR)
= Eafka bus

Resource Manager APl v1.0

Manipulation
Resource Type
Configuration
Resource Topology
Discovery
Resource Manager
Configuration

Resource Instance

API interaction principles

All of the message descriptions are in JSON format and should be submitted with
the HTTP content-type header of application/json.

The REST endpoints can be secured using HTTPS, but there is no current provision
for further authentication across the interface. Future changes could add support
for HTTP basic authentication or the use of tokens (such as JWT, OAuth, etc).

All of the REST endpoints should be accessible from the same root URL, for
example |http:/ /localhost:8080/api/configuration| and fhttp:/ /localhost:8080/api/|

ltypes]

Interface interaction patterns

This topic outlines the potential interaction patterns with how Agile Lifecycle
Manager calls the Resource Manager APIs.

Resource Manager onboarding

When a new Resource Manager is being onboarded into the Agile Lifecycle
Manager, the following calls will be made.

Chapter 7. Reference 121

http://localhost:8080/api/configuration
http://localhost:8080/api/types
http://localhost:8080/api/types

sd Onboanding 7

Liteoyecle Rescuros
Manager Mansges

EstResourceMsnegerConfigurstion]) :Rescurcehanagerlonfiguration

LlsDeplaymentl ocationsf) -ListeDepl oyrmens oesticns

ListResauroeTypes)) LincResaurseTyoer

“GelResourceT yoel) ‘Rescurce Type

5

Fedormad of 8o resownse
Tree returned by the
LisResounoe Typas) oell

e e ity

Process creation

When a new transition process is being created within the Agile Lifecycle Manager
the following calls may be made to a Resource Manager.

sd Process Creation

Litesycle Rescuroe
Manager Mansger

*SearchResourcelnatances() -Lisi<Resourcelnstances

*QetRescurcalntancel) Rejcuros|niancg

IEEUSIRRTRY .. SO, -, (S

122 Agile Lifecycle Manager: Installation, Administration and User Guide

Resource transitions (synchronous)

As part of an assembly transition, the Agile Lifecycle Manager may call out to a
Resource Manager to transition or perform an operation on a Resource. This is the
interaction pattern for this scenario when the Resource Manager does not support
asynchronous response messages.

54 Resource Transitons /'

Lifesysle Redpaice
Manager Mansger

]
I
I
[
1

Corgate Translll on{TranstionReguest) ;| TransitionStatus

“Gat Tranadll on Status) TramutlonSlatus

Gt souros imsisnond) |Resourosl nyisnos

mmmmm—]

Resource transitions (asynchronous)

As part of an assembly transition, the Agile Lifecycle Manager may call out to a
Resource Manager to transition or perform an operation on a Resource. This is the
interaction pattern for this scenario when the Resource Manager supports
asynchronous response messages.

Chapter 7. Reference 123

54 Resource Transibons [Asyne) /'

Litegyzle Resouros
Manager Mansges

T
I
I
[
[

Crapie Trensilion{TranstionRegquest) ; TrensitionStatus

TransitionResponse{Transil on Response)

Resource manager configuration
This topic describes the Resource Managers configuration.

Get Resource Manager configuration
Returns high-level information about the configuration of this Resource Manager.
This endpoint is called when onboarding the Resource Manager.

The supportedFeatures section allows the resource manager to inform the ALM
that a feature is supported by the resource manager. The only value supported at
the moment is AsynchronousTransitionResponses. This informs ALM that the
resource manager will be using the asynchronous response mechanism described

Request format

Aspect Value
Endpoint URL /configuration
HTTP method GET
Parameters none

Response format

Aspect Value

Return Code 200 OK

Example response
{
"name": "default-rm::dev",
"version": "1.0.0",
"supportedApiVersions": ["1.0"],
"supportedFeatures": {

124 Agile Lifecycle Manager: Installation, Administration and User Guide

"AsynchronousTransitionResponses": "false"

by

"properties": {

"responseKafkaConnectionUr1": "zookeeper://localhost:2181",

"responseKafkaTopicName": "Tm-responses"

}
}

Table 28. Get Resource Manager fields

asynchr onous responses

Field Description Mandatory

name The name of the resource manager yes
instance

version The version of the resource manager yes
instance

supported ApiVersions A list API version supported — currently |no
on 1.0

supportedFeatures A list of features supported by the no
resource manager

AsynchronousTransition Indicates if the resource manager supports | no

Responses asynchronous responses via Kafka

properties A set of key value pair with properties no
describing key behaviour

responseKafkaConnectionUrl | The URL for Kafka where the no
asynchronous responses will be sent

responseKafkaTopicName The name of the topic for the no

Resource type configuration
This topic describes the resource type configuration.

List resource types

Returns a list of all resource types managed by this Resource Manager.

Note: The descriptor is not returned in this list.
Allowable states for the resource types are:

* UNPUBLISHED
» PUBLISHED
* DELETED

Request format

Aspect Value
Endpoint URL /types
HTTP method GET
Parameters none
Response format

Aspect Value
Return Code 200 OK

Chapter 7. Reference

125

Example response

[

{
"name": "resource::openstack-network::1.0",
"state": "PUBLISHED",
"createdAt": "2017-05-01T11:22:33Z",
"lastModifiedAt": "2017-05-04T12:13:14+01:00"

}

]
Table 29. List resource types fields
Field Description Mandatory
name The name of the resource type. yes

Must follow the naming structure defined in
the Assembly Specification document.

state The state of the resource descriptor. yes

Currently only PUBLISHED is allowed.

created At The date the resource type was created. yes

XML Date time format.

lastModified At The date the resource type was last changed. |yes

XML Date time format.

Get resource type

Returns information about a specific resource type, including its YAML descriptor.

Request format

Aspect Value

Endpoint URL /types/{name}

HTTP method GET

Parameters name - Unique name for the resource type
requested

Response format

Aspect Value

Return Code 200 OK

Example response
{
"name": "resource::openstack-network::1.0",
"descriptor": "YAML Descriptor for this resource type",
"state": "PUBLISHED",
"createdAt": "2017-05-01T11:22:33Z",
"TastModifiedAt": "2017-05-04T12:13:14+01:00"

126 Agile Lifecycle Manager: Installation, Administration and User Guide

Table 30. Get resource type fields

Field Description Mandatory

name The name of the resource type. yes
Must follow the naming structure defined in
the Assembly Specification document.

descriptor The resource descriptor. yes
A valid YAML document as a string.

state The state of the resource descriptor. yes
Currently only PUBLISHED is allowed.

created At The date the resource type was created. yes
XML Date time format.

lastModified At The date the resource type was last changed. |yes
XML Date time format.

Resource topology

This topic describes the resource topology.

List deployment locations

Returns a list of all deployment locations available to this Resource Manager.

Request format

Aspect Value

Endpoint URL /topology/deployment-locations
HTTP method GET

Parameters none

Response format

Aspect Value

Return Code 200 OK

Example response

[
{
"name": "dev-cloud",
"type": "default-rm::Cloud"
{
"name": "test-cloud",
"type": "default-rm::Cloud"
}
1
Table 31. List deployment location fields
Field Description Mandatory
name The name of the location managed by the yes

resource manager.

Chapter 7. Reference

127

Table 31. List deployment location fields (continued)

Field Description

Mandatory

type The type of location

Any valid string

Defined by the resource manager

yes

Get deployment location

Returns information for the specified deployment location.

Request format

Aspect Value

Endpoint URL /topology/deployment-locations/{name}

HTTP method GET

Parameters name - Unique name for the deployment
location requested

Response format

Aspect

Value

Return Code

200 OK

Example response

{

"name": "dev-cloud",
"type": "default-rm::Cloud"

}
Table 32. Get deployment location fields

Any valid string

Defined by the resource manager

Field Description Mandatory

name The name of the location managed by the yes
resource manager.

type The type of location yes

Search for resource instances

Searches for resource instances managed within the specified deployment location.

The search can be restricted by the type of the resources to be returned, or a partial

match on the name of the resources.

Request format

Aspect Value
Endpoint URL /topology/deployment-locations/{name}
HTTP method GET

128 Agile Lifecycle Manager: Installation, Administration and User Guide

Aspect

Value

Parameters

name - Unique name for the deployment
location

instanceType - Limits results to be of this
resource type (optional, exact matches only)
instanceName - Limits results to contain this
string in the name (optional, partial
matching)

Response format

Aspect

Value

Return Code

200 OK

Example response

{

"resourceld": "c675e0bd-9c6c-43ca-84bf-2c061d439cbb",
"resourceName": "dev-network",
"resourceType": "resource::openstack-network::1.0",
"resourceManagerId": "default-rm::dev",
"deploymentLocation": "dev-cloud",

"properties": {

"propertyName": "propertyValue"

"createdAt": "2017-05-01T12:00:00Z",

"lastModifiedAt": "2017-05-01T12:00:00Z"
}
]

Table 33. Search for resource instances fields

Field Description Mandatory

resourceld The id of the instance of a resource |yes

resourceName The name of the resource yes

resourceType The name of the resource type yes

resourceManagerld The id of the resource manager yes
instance
This ID is the same attribute as
‘name’, which is returned in the get
configuration request response

deploymentLocation The name of the deployment location | yes
where the instance exists

properties A set of key value pair with no
properties describing key behaviour

propertyName A name of a property to be used in | no
the search

propertyValue The value associated with the no
propertyName

created At The date the resource type was yes
created.

XML Date time format

Chapter 7. Reference 129

Table 33. Search for resource instances fields (continued)

Field Description Mandatory
lastModified At The date the resource type was last | yes
changed

XML Date time format

Get resource instance
Returns information for the specified resource instance.

When Agile Lifecycle Manager requests a resource manager to create a resource,
the resource manager may instantiate a number of underlying virtual resources as
part of implementing the resource. In the response the resource manager is
expected to return details of any underlying virtual resources that have been
instantiated. This should be put in the internalResourcelnstances section of the
response.

Request format

Aspect Value

Endpoint URL /topology/instances/{id}

HTTP method GET

Parameters id - Unique id for the resource instance

Response format

Aspect Value

Return Code 200 OK

Example response

{

"resourceld": "default-rm://c675e0bd-9c6c-43ca-84bf-2c061d439chbh",
"resourceName": "dev-network",

"resourceType": "resource::openstack-network::1.0",
"resourceManagerId": "default-rm::dev",

"deploymentLocation": "dev-cloud",

"properties": {

"propertyName": "propertyValue"

}s
"createdAt": "2017-05-01T12:00:00Z",
"lastModifiedAt": "2017-05-01T12:00:00Z",
"internalResourcelnstances": [

{
"id": "3cb7822b-fc44-46ab-8072-9c65cd778d1f",
"name": "MGMT-NETWORK",
"type": "OpenDaylight::PrivateNetwork"

]
}
Table 34. Get resource instance fields
Field Description Mandatory
resourceld The id of the instance of a yes
resource
resourceName The name of the resource yes

130 Agile Lifecycle Manager: Installation, Administration and User Guide

Table 34. Get resource instance fields (continued)

Field Description Mandatory
resourceType The name of the resource type yes
resourceManagerld The ID of the resource manager yes
instance
deploymentLocation The name of the deployment yes
location where the instance exists
properties A set of key value pair with no
properties describing key behavior
propertyName A name of a property to be used |no
in the search
propertyValue The value associated with the no
propertyName
created At The date the resource type was yes
created.
XML Date time format
lastModified At The date the resource type was yes
last changed
XML Date time format
internalResourcelnstances A list of resources that have been |no
created by the resource manager
in response to the request
Id The id of the internal resource no
Name The name of the internal resource |no
Type The type of the internal resource

Resource lifecycle management

This topic describes the resource lifecycle management.

Create resource transition

Requests this Resource Manager performs a specific transition against a resource.

Request format

Aspect Value

Endpoint URL /lifecycle/transitions
HTTP method POST

Parameters none

Example request

{

"resourceManagerId": "default-rm::dev",
"deploymentLocation": "dev-cloud",

"resourceType": "resource::openstack-network::1.0",
"transitionName": "Install",

"resourceName": "dev-network-c675e0bd",

"metrickKey" : "818127b3-1904-4737-a60c-8c7bab73532d"

"properties": {

Chapter 7. Reference

131

"propertyName": "propertyValue"

by

"context": {}

}

Table 35. Create resource transition request fields

Field Description Mandatory
resourceManagerld The id of the resource manager instance |yes
deploymentLocation The name of the deployment location yes
where the resource will be created
resourcelype The name of the resource type to be yes
created
transitionName The name of the Transition to be enacted | yes
against the resource
Allowed values for the transitionName
are Install, Configure, Start, Integrity,
Stop, Uninstall, as well as any operation
names supported by the resources
resourceld The unique id of the resource. This field |yes
is mandatory for all non-Install
transitions and will not be present
during 'Install' transitions, as this is
allocated by the resource manager once
it has been created.
resourceName The name of the resource. yes
metric key A key provided to manage metrics. yes
properties A section that contains a set of yes
key/value pairs for the properties for
the resource
These will match those defined in the
resource descriptor
context Context is included for future use no
Response format
Aspect Value
Return Code 202 ACCEPTED
Example response
{
"requestId": "80fc4ab6-7e92-41f8-b4bb-7ch98193f5fa",
"requestState": "PENDING",
"context": {
"AsynchronousTransitionResponses": "false"
}
}
Table 36. Create resource transition response fields
Field Description Mandatory
requestld The id of the request defined by the yes

resource manager

This should be a GUID

132 Agile Lifecycle Manager: Installation, Administration and User Guide

Table 36. Create resource transition response fields (continued)

Field Description Mandatory
requestState A string representing the state of the |yes
request

Allowable states for the request state
are:

* PENDING

* IN_PROGRESS
 COMPLETED
* CANCELLED

* FAILED
context Context is included for future use no
AsynchronousTransition Indicates whether this transition will no
Responses send responses asynchronously via

Kafka

Get resource transition status

Returns information about the specified transition or operation request. The id

passed in is the value that the resource manager generated as the requestld in the

response of the previous call.

Request format

Aspect Value

Endpoint URL /lifecycle/transitions/{id}/status

HTTP method GET

Parameters id - Unique identifier for the resource
transition

Response format

Aspect Value

Return Code 200 OK

Example response
{
"requestId": "80fc4a66-7e92-41f8-b4bb-7ch98193f5fa",
"requestState": "COMPLETED",
"requestStateReason": "Transition successfully completed in 324 msecs",
"resourceld": "e09dbfcf-bb70-42ee-8c32-bdb83a22fb5d",
"startedAt": "2017-05-01T12:00:00Z",
"finishedAt": "2017-05-01T12:00:00Z"
"context": {
"AsynchronousTransitionResponses": "false"

}

Table 37. Get resource transition status fields

Field Description Mandatory

requestld The id of the request defined by the yes
resource manager

This should be a GUID

Chapter 7. Reference

133

Table 37. Get resource transition status fields (continued)

Field Description Mandatory
requestState A string representing the state of the yes
request

Allowable states for the request state
are:

* PENDING

* IN_PROGRESS
 COMPLETED
* CANCELLED
* FAILED

requestStateReason A string giving the reason for the State |no
of the request

resourceld The id of the resource within the yes
context of the resource manager

This should be a GUID

started At The time the transition was started yes
finished At The time the transition was completed |no
context Context is included for future use no
AsynchronousTransition Indicates whether this transition will no
Responses send responses asynchronously via

Kafka.

Resource type configuration (asynchronous)

Optionally, a resource manager can emit events when the definition of a resource
type changes, or a new resource type is created or deleted. This allows the resource
manager to inform Agile Lifecycle Manager that a resource description has
changed.

Note: The asynchronous resource type configuration described here is not related
to the resource manager supporting asynchronous responses, which is referenced
in the [“Get Resource Manager configuration” on page 124| topic and described in
more detail in the [“Resource lifecycle management (asynchronous)” on page 135|

topic.

Resource type update message example
{

"'name": "resource::openstack-network::1.0",
"descriptor": "YAML Descriptor for this resource type",
"state": "PUBLISHED",

"createdAt": "2017-05-01T11:22:33Z",

"TastModifiedAt": "2017-05-04T12:13:14+01:00"

}

Table 38. Resource type configuration (asynchronous) fields

Field Description Mandatory

name The name of the resource type yes

Must follow the naming structure
defined in the Assembly Specification
document

134 Agile Lifecycle Manager: Installation, Administration and User Guide

Table 38. Resource type configuration (asynchronous) fields (continued)

Field Description Mandatory

descriptor The resource descriptor yes

A valid YAML document as a string

state The state of the resource descriptor yes

Currently only PUBLISHED is allowed

created At The date the resource types was created | yes

XML Date time format.

lastModified At The date the resource type was last yes
changed.

XML Date time format.

Resource lifecycle management (asynchronous)

Optionally, a resource manager can choose to emit responses when transitions are
completed (either successfully or not). It is recommended that this method is used
to avoid Agile Lifecycle Manager needing to poll for the status periodically.

Resource transition response message example

The resource manager informs Agile Lifecycle Manager that this method will be
used alongside the polling interface by indicating that it supports this feature by
setting asychronousTransitionsReponses to true. If the resource manager supports
the asynchronous response mechanism, then it will also support the polling update
method.

{
"requestId": "80fc4ab6-7e92-41f8-b4bb-7ch98193f5fa",

"resourceManagerId": "default-rm::dev",
"deploymentLocation": "dev-cloud",
"resourceType": "resource::openstack-network::1.0",
"transitionName": "Install",
"resourcelnstance": {
"resourceld": "default-rm://c675e0bd-9c6c-43ca-84bf-2c061d439chb",
"metricKey": "2530c175-541e-43df-89ae-6¢34bc351d9b",
"resourceName": "dev-network",
"resourceType": "resource::openstack-network::1.0",
"resourceManagerId": "default-rm::dev",
"deploymentLocation": "dev-cloud",
"properties": {
"propertyName": "propertyValue"

"createdAt": "2017-05-01T12:00:00Z",
"lTastModifiedAt": "2017-05-01T12:00:00Z",
"internalResourcelnstances": [

"id": "3cb7822b-fc44-46ab-8072-9c65cd778d1f",
"name": "MGMT-NETWORK",
"type": "OpenDaylight::PrivateNetwork"

1

1

"context": {},
"requestState": "COMPLETED",

Chapter 7. Reference 135

"requestStateReason": "Transition successfully completed in 324 msecs",
"startedAt": "2017-05-01T12:00:00Z",
"finishedAt": "2017-05-01T12:00:00Z"

}

Table 39. Get resource transition status fields

Field Description Mandatory
requestld The id of the request yes
resourceManagerld The id of the resource manager yes
deploymentLocation The name of the location associated yes
with the resource
resourceType The type of the resource yes
transitionName The name of the transition associated |yes
with this response
resourcelnstance A section that contains the details of yes
the resource instance
resourceld The ID of the instance of a resource yes
resourceName The name of the resource type yes
resourceType The name of the resource type yes
resourceManagerld The ID of the resource manager yes
instance
deploymentLocation The name of the deployment location |yes
where the instance exists
properties A set of key value pair with properties | no
describing key behavior
propertyName A name of a property to be used in no
the search
propertyValue The value associated with the no
propertyname
created At The date the resource type was yes
created
XML Date time format
lastModified At The date the resource type was last yes
changed
XML Date time format
internalResourcelnstances | Contains details of the underlying yes - the underlying
instances created by the resource resource does not
manager in response to the intent match the information
request. This is a list and may contain |otherwise used by the
many sets of Id, name and type fields. | resource manager
context Future use only no
requestState The state of the transition. yes
requestStateReason A string describing the reason for the |yes
state of the request, for example an
error message.
started At The time the transition was started yes
finished At The time the transition was completed |no

136 Agile Lifecycle Manager: Installation, Administration and User Guide

Publishing metrics

Resources publish metrics via Kafka. Each of the two metrics described in this

topic, that is, integrity and load metrics, are published to a separate Kafka topic.

Integrity metrics

Integrity metrics are published to the 'alm__integrity' topic. The message contents

are:

Integrity metrics message content

{

"metricKey"

"message" :

}

: "142971c5-a84b-4d34-af15-435ba8640aec",
"metricName" :
"integrity" :

"h_integrity"

IIOKII ,
"Everything is working"

Integrity metrics message fields

Field Description Mandatory
metricKey The key provided when the resource was |yes
created
metricName The name of the metric as defined in the |no
resource descriptor
integrity Allowed values: yes
OK When the resource is healthy
and passing its Integrity checks
BROKEN
When the checks fail
message An optional message to add value to the |no
metric; useful in the event of BROKEN

Load metrics

Load metrics are published to the 'alm__load' topic. The message contents are:

Load metrics message content

{

"metricKey" :

"metricName"
"load" : 76,
"message" :

}

"818127b3-1904-4737-a60c-8c7bab73532d",
: "h_Toad"

"Load is high"

Load metrics message fields

Field Description Mandatory
metricKey The key provided when the resource was |yes
created
metricName The name of the metric as defined in the |no
resource descriptor
load A value between 0 and 100 indicating the | yes
level of the load a resource is
experiencing. A higher value indicates a
higher load.

Chapter 7. Reference

137

Field Description Mandatory

message An optional test string to include no
information about the integrity of the
resource. For example, it may include an
error code.

Resource descriptor YAML specifications
This section describes the descriptors that are used by Agile Lifecycle Manager.

Agile Lifecycle Manager needs to have descriptions of the building blocks of
applications that it is going to manage. The basic building blocks are described in
this 'resource descriptor' section. Sets of these resource descriptors are composed
into assembly descriptors, which are described in [“Assembly descriptor YAML)
[specifications” on page 147

Within the assembly will be a description of the relationships between resources
that allow configuration to be applied to the actual instances of the components
that Agile Lifecycle Manager will manage. Assemblies may also reference
assemblies and existing infrastructure items, such as network instantiated outside
of Agile Lifecycle Manager.

Naming

The resource descriptor name field will contain the following string:
resource::name::1.0

The name must start with a letter (either case), and can include letters, numbers,
underscores and hyphens. The name must not contain spaces, and the version is
fixed to 1.0 for this release. Both name and version are mandatory.

Resource descriptor sections

This sections describes the resource descriptors.
Header

The header includes the name and the description of the descriptor and associated
resource manager type. Each resource is associated with a resource manager that
has a declared type. This is shown by the field resource-manager-type. The
contents of the field must be a globally unique string.

name: resource::c_streamer::1.0

description: component package for c_streamer
resource-manager-type: urbancode.ibm.com

‘properties’

This section contains the properties that belong to the resource descriptors. These
include the full set of properties that are required to orchestrate them through to
the Active state. These can be understood as the context for the management of the
item during its lifecycle.
properties:
deploymentLocation: # the name of the property

type: string

required: true

description: The name of the openstack project(tenant) to install this assembly in.

138 Agile Lifecycle Manager: Installation, Administration and User Guide

numOfStreamers:
type: string
description: the number of streamers that should be created at install time
default: 2
tenant_key_name:
type: string
required: true
description: The ssh key for the current tenant
flavor:
value: ml.small
cluster_public_ip_address:
type: string
description: the public IP address for this cluster
read-only: true
value: '${balancer.publiclIp}’

Each property name must be unique within its property section. The types of
properties can be string. Password-indicated fields will contain passwords or
sensitive data. Properties are optional unless explicitly defined as required by the
inclusion of a required: true flag.

Properties marked as read-only: true will typically have that value set by the
time the associated component instance is in the Active state. These fields must not
be marked as required: true.

Properties may be declared with a default value or a specific value or neither.
Where the value field is used it may either be an explicit value or it may reference
to another property within the description. When referencing a property in the
assemblies main property section the reference will look as follows: value:
'${max_connections}"'.

Agile Lifecycle Manager will assign an internal name and identifier for each
resource instance it creates.

It also supplies the index number of a resource in a cluster. These values can be
useful to give unique names for servers, for example. To access them a property
may have its value set to ${instance.name}, ${instance.id} or ${instance.index}.
These should be placed in the value field of a property. Agile Lifecycle Manager
will then replace placeholders with the appropriate value.

Note: Assembly descriptor properties are defined in the following topic:
[“properties” on page 148|

Capabilities and requirements

These two sections allow designers to explain what functions the resources are
implementing or need before they can work successfully. These might be
expressing that networks or various types must be available for the resource
instances to work or it may be describing that a resource supports, for example,
incoming http requests.

The type is a string that expresses the capability or requirement. The values in
these strings will have to be agreed across an organization and where possible they
should be agreed by the industry. Resource capabilities should use common
industry terms. In the examples below the idea is that httpStreamOutput indicates
that the capability is using the http protocol in a stream form and in an output
direction. The OS::Neutron:Net is the resource type from OpenStack associated
with a network instantiated within neutron.

Chapter 7. Reference 139

'capabilities'
Capabilities are used to enable service designers to understand what
function a resource provides.
capabilities:
VideoStream:
type: httpStreamOutput
capabilities:
Network:
type: neutronNetwork

'requirements’
Requirements contain the list of capabilities that the resource requires in
order to work.

requirements:
VideoNetwork:
type: neutronNetwork
ManagementNetwork:
type: neutronNetwork
RemoteNFSMountPoint:
type: nfsExportMountpoint

‘operations'

This section defines operations that can be called to enable relationships to be
created between resources. Operations definitions in the resource have a name and
a set or properties. Where a resource descriptor describes an operation an
enclosing assembly may expose this by referencing the lower level operation. As a
convention the name of the operation should be linked to the capability that is
being enabled through the creation of the relationship.

Resource descriptor operations

operations:
RemoveHttpStreamOutput:
description: removes the http server from being managed by the balancer
properties:
server_ip:
type: string
description: Http Server Ip Address
default: the ip address
server_port:
type: string
description: http server port number
default: '8080'

AddHttpStreamOutput:
description: adds an http server to the balancer's pool
properties:

max_connections:
type: string
description: Maximum connections for the balanced server
default: 3
server_ip:
type: string
description: Ip Address of the server to be balanced
server_port:
type: string
description: Port on balanced server
default: '8080'

'lifecycle'

Resource descriptors must support the install and uninstall lifecycle transitions.
These are mandatory.

140 Agile Lifecycle Manager: Installation, Administration and User Guide

However, they may implement the other lifecycle transitions, which are:
 Configure

* Start

» Stop

* Integrity

Where the transition is not provided by the resource, Agile Lifecycle Manager is
free to change the state of the associated component instances without calling any
underlying transition.

The lifecycle section will contain a list of all the transitions that the resource
supports. In the case of the following example, no Configure transition is defined.
lifecycle:

- Install

- Uninstall

- Start

- Stop

- Integrity

A resource may be one that can only be used within a reference section of an
assembly. These resources will not have an Install or Uninstall lifecycle defined.

Resources that are used as reference resources do not have to include the lifecycle
section. Any resource without the Install and Uninstall cannot be instantiated by
Agile Lifecycle Manager, and therefore should not be included in the composition
section of an assembly.

Metrics and policies

A resource descriptor may indicate that the underlying resource will emit one or
more metrics. A metric is defined as having a name, type and an optional
publication-period.

If no publication period is given at all, a default of 60 seconds is assumed. The
publication period is in seconds.

A value of 0 means no metrics will be published. The value must be +integer.

There are two reserved types that are used by the Agile Lifecycle Manager to
monitor the health of the associated resource instances:

metric::integrity

and
metric::load

Example resource metrics: This example shows the policy associated with the
Integrity metric. Within the resource descriptor the policies section contains details
of the heal policy. This allows the smoothing interval to be defined for the
resource. Each policy has a name, the associated metric, an action (heal) and a
properties section.
metrics:
h_integrity:
type: "metric::integrity"
publication-period: "${integrity publication_period}"
load:
type: "metric::load"

Chapter 7. Reference 141

Note: Property references are used to allow the value for the publication period to
be passed from a separate properties section in the resource.

Example policies section: In the following policy example the smoothing value is
used to prevent 'snap' changes happening due to unusual short term conditions.

Note: Properties, smoothing, threshold, and target are all policy-specific properties

that may not be required by other types of policies.

policies:
heal:
metric: "h_integrity"
type: "policy::heal"
properties:
smoothing:
value: "${number-of-intervals}"

Example of smoothing

Scale (inor out) (3 consecutive threshold breaches events)

Laad Load Load
Threshald Threshald Threshald
oK Berahed Breached dreached oK

&

]]]

oK

smoothing period =3

Only twa breaches s0 na scaling

Load Laad
Thireshodd Thresheld
ox Breached Breached 0% K aK

s AN I W S

smocthing period =3

Resource descriptor YAML examples

The examples included in this section show the c_balancer, c_streamer and the

net_video resources.

‘resource' examples

resource:net_video:1.0
The following resource creates a neutron network.

name: resource::net_video::1.0

description: resource to create an internal neutron network that includes

a subnet
resource-manager-type: urbancode.ibm.com
properties:
subnetCIDR:
type: string

description: The subnet classless inter-domain routing

default: '10.0.1.0/24'

networkName:
type: string
description: Network Name
value: VIDEO

subnetDefGwIp:
type: string
description: Default Gateway IP address
default: '10.0.1.1'

network-id:
type: string
description: the id of the network just created
read-only: true

capabilities:

142 Agile Lifecycle Manager: Installation, Administration and User Guide

Network:
type: 0S::Neutron::Net

lifecycle:
- Install
- Uninstall

resource:h_simple::1.0

The following resource is a simple component with metrics and policies.

name: "resource::h simple::1.0"
description: "resource for t_simple"
properties:

server_name:

type: "string"

value: "${instance.name}"
referenced-internal-network:

type: "string"

description: "Generated to reference a network"
reference-public-network:

type: "string"

description: "Generated to reference public network"
image:

type: "string"

description: "The Image reference"
key_name:

type: "string"

description: "SSH key"
data:

type: "string"

description: "parameter passed"

default: "data"
integrity_publication_period:

type: "string"

description: "the period that should be used to publish the

default: "60"
publication_period:
type: "string"

metrics"

description: "the period that should be used to publish the metrics"

default: "60"
number-of-intervals:
type: "string"
description: "The intervals before calling a Heal"
default: "3"
output:
type: "string"
description: "an example output parameter"
read-only: true

operations:
CreateRelationshipl:
description: "Create a new relationship"
properties:
source:

type: "string"
description: "that name of the source"
target:
type: "string"
description: "that name of the target"
CeaseRelationshipl:
description: "Cease an existing relationship"
properties:
source:
type: "string"
description: "that name of the source"
target:
type: "string"
description: "that name of the target"
CreateRelationshipr2:
description: "Create a new relationship"

Chapter 7. Reference

143

properties:
source:
type: "string"
description: "that name of the source"
target:
type: "string"
description: "that name of the target"
CeaseRelationship2:
description: "Cease an existing relationship"
properties:
source:
type: "string"
description: "that name of the source"
target:
type: "string"
description: "that name of the target"
CreateRelationship3:
description: "Create a new relationship"
properties:
source:
type: "string"
description: "that name of the source"
target:
type: "string"
description: "that name of the target"
CeaseRelationship3:
description: "Cease an existing relationship"
properties:
source:
type: "string"
description: "that name of the source"
target:
type: "string"
description: "that name of the target"
metrics:
h_integrity:
type: "metric::integrity"
publication-period: "${integrity publication_period}"
load:
type: "metric::Toad"
policies:
heal:
metric: "h_integrity"
type: "policy::heal"
properties:
smoothing:
value: "${number-of-intervals}"
lifecycle:
- "Configure"
- "Install"
- "Integrity"
- "Start"
- ||S.t0p||
- "Uninstall"
resource-manager-type: "test-rm"

resource::c_streamer::1.0

The following descriptor creates a virtual server that streams video traffic
using the http protocol.

name: resource::c_streamer::1.0
description: resource descriptor for c_streamer
resource-manager-type: urbancode.ibm.com
properties:
key name:
type: string
required: true

144 Agile Lifecycle Manager: Installation, Administration and User Guide

description: the ssh key-pair name to be used by openstack with the
associated VM instances
referenced-management-network:
type: string
required: true
description: The id of the network that will act in the role of a
management network
flavor:
type: string
required: true
description: Flavor to be used for compute instance
server_name:
type: string
required: true
description: the name of the server to be created
referenced-video-network:
type: string
description: The id of the network that will act in the role of an
internal network
availability_zone:
type: string
description: Name of availability zone in which to create the instance
default: DMZ
privatelp:
type: string
description: IpAddress of server on the internal network
read-only: true
mgmtIp:
type: string
description: IpAddress of server on the management network
read-only: true
integrity_publication_period:
type: string
description: the number of seconds between publishing integrity metric
default: 60
number-of-intervals:
type: string
description: the number of intervals for smoothing
default: 3
capabilities:
VideoStream:
type: httpStreamOutput
requirements:
VideoNetwork:
type: neutronNetwork
ManagementNetwork:
type: neutronNetwork RemoteNFSMountPoint:
type: nfsExportMountpoint
lifecycle:
- Install
- Uninstall
- Configure
- Start
- Stop
- Integrity
operations:
MountStorage:
description: An operation to enable the streamer to mount a remote NFS
mount point
properties:
remote_nfs_port:
type: string
description: Port for the NFS
default: '2049'
remote_nfs_server_ip:
type: string
description: Ip Address of remote nfs server

Chapter 7. Reference 145

remote_mount_point:
type: string
description: Location of NFS Exported Mount Point
default: /
Tocal_mount_point:
type: string
description: The location where the remote nfs mount will be
mounted in the local machine
default: /mnt
UnmountStorage:
description: An operation to unmount a remote NFS mount point
properties:
Tocal_mount_point:
type: string
description: The location where the remote nfs mount will be
mounted in the local machine
default: /mnt

resource::c_balancer::1.0

The following example load balancer server balances connections and data
streams between pools of available application servers.

name: resource::c_balancer::1.0
description: component package for a http loadbalancer
resource-manager-type: UrbanCode
cloud-target: OpenStack
properties:
key_name:
type: string
description: ssh key_name.
referenced-management-network:
type: string
description: Generated to reference a network
referenced-internal-network:
type: string
description: Generated to reference a network
referenced-public-network:
type: string
description: Generated to reference a network
flavor:
type: string
description: Flavor to be used for compute instance
server_name:
type: string
description: server name of the balancer
availability_zone:
type: string
description: Name of availability zone in which to create the instance
default: DMZ
mgmtIp:
type: string
description: IpAddress of server in management network
readOnly: true
internallp:
type: string
description: IpAddress of server on internal network
readOnly: true
publicIp:
type: string
description: Public IpAddress of server
readOnly: true
integrity_publication_period:
type: string
description: the number of seconds between publishing integrity metric
default: 60
number-of-intervals:
type: string

146 Agile Lifecycle Manager: Installation, Administration and User Guide

description: the number of intervals for smoothing
default: 3
capabilities:
HttpLoadBalancer:
type: ToadbalancerHttp
requirements:
PublicNetwork:
type: neutronNetwork
ManagementNetwork:
type: neutronNetwork
HttpServer:
type: http
lifecycle:
- Install
- Uninstall
- Start
- Stop
operations:
RemoveBalancedHttpServer:
description: removes the http server from being managed by the balancer
properties:
server_ip:
type: string
description: Http Server Ip Address
default: the ip address
server_port:
type: string
description: http server port number
default: '8080'
AddBalancedHttpServer:
description: adds an http server to the balancer's pool
properties:
max_connections:
type: string
description: Maximum connections for the balanced server
default: 3
server_ip:
type: string
description: Ip Address of the server to be balanced
server_port:
type: string
description: Port on balanced server
default: '8080'

Assembly descriptor YAML specifications

This section describes the assembly descriptors that are used by Agile Lifecycle
Manager.

Agile Lifecycle Manager needs to have descriptions of the building blocks of
applications that it is going to manage. The basic building blocks are described in
[‘Resource descriptor YAML specifications” on page 138Sets of these resource
descriptors are composed into assembly descriptors to allow designers to describe
a complete application or service that they need Agile Lifecycle Manager to
manage.

Within the assembly will be a description of the relationships between resources
that allow configuration to be applied to the actual instances of the components
that Agile Lifecycle Manager will manage. Assemblies may also reference
assemblies and existing infrastructure items, such as network instantiated outside
of Agile Lifecycle Manager.

Chapter 7. Reference 147

Naming

The assembly descriptor name field will contain the following string:

assembly::name::1.0

The name must start with a letter (either case), and can include letters and
numbers and underscores and hyphens. The name must not contain spaces, and
must end with either a letter (either case) or a number. The version is fixed to 1.0
for this release. Both name and version are mandatory.

Related concepts:
[Chapter 5, “Getting started (using the APIs),” on page 47|
Agile Lifecycle Manager provides both a graphical Ul and an HTTP API allowing

the creation and administration of assemblies. This section describes a set of basic
scenarios to get started using the APIs.

Assembly descriptor sections
This topic describes the sections that apply to the assembly descriptors.

Header

The header includes the name and the description of the descriptor.

name: assembly::Streamer_cluster::1.0
description: An Assembly for a front end cluster comprising of a loadbalancer supported
by an authorisation proxy and video streamers using a shared NFS based storage

‘properties’

Note: The properties defined here apply to the top-level property section for the
descriptor. Rules applicable to property names and the 'value' field can be applied
to all property sections

This section contains the properties that belong to assembly descriptors. These
include the full set of properties that are required to orchestrate them through to
the Active state. These can be understood as the context for the management of the
item during its lifecycle.

properties:
deploymentLocation: # the name of the property
type: string
required: true
description: The name of the openstack project(tenant) to install this assembly in.
resourceManager:
value: '${resourceManager}’
numOfStreamers:
type: string
description: the number of streamers that should be created at install time
default: 2
tenant_key name:
type: string
required: true
description: The ssh key for the current tenant
flavor:
value: ml.small
cluster_public_ip_address:
type: string
description: the public IP address for this cluster
read-only: true
value: '${balancer.publiclp}'

148 Agile Lifecycle Manager: Installation, Administration and User Guide

Each property name must be unique within its property section. The name cannot
contain the period (.) character.

Restriction: Currently, the type field is not used and all properties are assumed to
be of type string. This field will be used in the future to allow handling of
different types of data, such as dates, IP addresses, and encrypted values. To avoid
compatibility issues in the future, it is recommended that you do not use this field,
or use the default value of string.

Properties are optional unless explicitly defined as required by the inclusion of a
required: true flag. This only affects the top-level assembly and means that a
value must be present (that is, not null) for a property. This can be evaluated from
the 'value' field, a 'default’, or passed in from the intent request.

Properties marked as read-only: true will not be overridden by values mapped in
from an enclosing assembly or from the intent request. This is typically used for
properties that are calculated from or returned by the resource itself.

Properties may be declared with a default value or a specific value or neither.
Where the value field is used it may either be an explicit value or it may reference
another property within the descriptor. This will happen in assemblies where
properties given to the assembly may be used within the various other property
sections. When referencing a property in the assembly's main property section the
reference will look as follows: value: '${max_connections}'. If the reference is to a
property within the assembly's other sections the reference must include the name
of the enclosing object, such as value: '${balancer.publicIp}'. This references the
property publicIp within the balancer section of the composition section.

deploymentlLocation is a special property that is used by Agile Lifecycle Manager
to place the resultant resource in the correct location. It will only appear in an
assembly descriptor. The contents of the property will be specific to the resource
manager that handles the resource.

resourceManager is another special property that passes the name of the resource
manager instance that will be used to manage the resource.

Agile Lifecycle Manager will assign an internal name and identifier for each
resource and assembly instance it creates. These values can be useful to give
unique names for servers, etc. To access them a property may have its value set to
${instance.name} or ${instance.id}.

Important: It is essential that there is a space between the value: and the quoted
property value string. If there is no space between these two items then the value
string will be treated as a single string.

Capabilities and requirements

These two sections allow designers to explain what functions the assemblies are
implementing or need before they can work successfully. These might be
expressing that networks or various types must be available for the resource
instances to work or it may be describing that a resource supports, for example,
incoming http requests.

The type is a string that expresses the capability or requirement. The values in
these strings will have to be agreed across an organization and where possible they

should be agreed by the industry. Resource capabilities should use common

Chapter 7. Reference 149

industry terms. In the examples below the idea is that httpStreamOutput indicates
that the capability is using the http protocol in a stream form and in an output
direction. The OS::Neutron:Net is the resource type from OpenStack associated
with a network instantiated within neutron.

'capabilities’
Capabilities are used to enable service designers to understand what
function a resource or assembly provides.
capabilities:
VideoStream:
type: httpStreamOutput
capabilities:
Network:
type: neutronNetwork

'requirements'
Requirements contain the list of capabilities that the assembly requires in
order to work.
requirements:
VideoNetwork:
type: neutronNetwork
ManagementNetwork:
type: neutronNetwork
RemoteNFSMountPoint:
type: nfsExportMountpoint

'‘operations’

This section defines operations that can be called to enable relationships to be
created between assemblies. Operations definitions in the resource have a name
and a set or properties. Where a resource descriptor describes an operation the
enclosing assembly may expose this by referencing the lower level operation.
operations:

SetLBBalancer:
source-operation: balancer.AddHttpStreamOutput

Composition and references

Definition: A component is an assembly that is included within an assembly
composition section, and will be instantiated as a result of requesting a new
instance of the enclosing assembly.

Assemblies allow a designer to group a set of resources and assemblies,
collectively known as components, into an assembly to create a new
application/service. Those used within the composition section will be instantiated
and managed by Agile Lifecycle Manager.

When Agile Lifecycle Manager has already instantiated an assembly, it is possible
for another assembly to share the instance by referencing it within the references
section. The references section can also refer to existing objects that may have been
created outside Agile Lifecycle Manager. Agile Lifecycle Manager will resolve both
of these types of references from the properties supplied, and access to the
instances properties and operations is then available to the referencing assembly.

150 Agile Lifecycle Manager: Installation, Administration and User Guide

‘composition’

Assemblies gather resources and other assemblies for either a whole or part of a
solution. The composition section is used to reference components that will be
instantiated as part of the installation of the assembly.

composition:
streamer: # The name
type: resource::c_streamer::1.0
quantity: ${numOfStreamers}
properties:
#not shown for brevity

balancer:
type: resource::c_balancer::1.0
quantity: 1

properties:
#not shown for brevity
net_video:
type: resource::net_video::1.0
quantity: 1
properties:
#not shown for brevity

Each entry in this section must give a name to the item which will form the basis
for the instance name for the actual running components. It also includes a
quantity that defaults to 1. In a non-clustered environment, the 'quantity’ property
defines exactly how many instances will be created.

7

Remember: The rules governing properties are defined in [“'properties” on page

fss)

composition:

streamer:
type: resource::c_streamer::1.0
cluster:
not shown for brevity
properties:

deploymentLocation:
value: '${deploymentLocation}’

resourceManager:
value: '${resourceManager}’
flavor:

value: ml.small
server_name:

value: ${instance.name}
referenced-video-network:

value: ${net_video.network-id}
availability_zone:

value: DMZ
mgmtIp:

type: string

description: MGMT IpAddress of server

read-only: true

Clusters
It is also possible to define a cluster section for a component that indicates
that the component of the assembly may comprise of more than one
instance of the same type (node) to support capacity and or availability
requirements.

The 'initial-quantity’ is an optional property that must be between the
minimum and maximum nodes values. If not set, it defaults to
'minimum-nodes'.

Chapter 7. Reference 151

The 'minimum-nodes' setting is optional and defaults to '1' if not set. It can
be set to '0' if no instances of the component are required at initial install.

The 'maximum-nodes' setting is optional and if set it must be greater than
or equal to the 'minimum-nodes' value.

The 'scaling-increment' setting is optional and defaults to '1’; it determines
the number of instances added or removed from the cluster during scaling.
composition:
streamer:
type: resource:: c_streamer::1.0
cluster:
initial-quantity: ${numOfServers}
minimum-nodes: 1
maximum-nodes: 4
scaling-increment: 1
properties:
data:
value: ${data}
ip_address:
read-only: true

Note: The properties 'quantity’ and 'initial-quantity' are mutually exclusive.
When running in a clustered environment the 'quantity' property, if
defined, will be ignored, and the value of 'initial-quantity' used instead.

'references'

The reference section is similar to the composition section except that the items
referenced in this section must be pre-existing before Agile Lifecycle Manager will
instantiate any of the items in the assembly's composition section.

Two types of references can be resolved by Agile Lifecycle Manager:
* Existing assembly instances

* External resources that are managed directly by a resource manager

Assembly references require the full name of the assembly within the type field.
The following example shows the use of the semantic versioning to allow more
flexibility when resolving to instances of the assembly. The properties are used to
help Agile Lifecycle Manager to find the instance of the item required by the
current assembly. With items that have been created through Agile Lifecycle
Manager the referencing assembly can refer to any of the instance's properties from
the items property section. Referenced assemblies can be used by the enclosing
assembly to establish relationships.

Resource instances managed directly by a resource manager may be referenced.
These will have resource descriptors as any resource, however they will not
include the Install or uninstall lifecycle steps.

To read the references section, each item has a local name used to refer to the item
with in the assembly. The type directs Agile Lifecycle Manager to fetch the
required resource type. The properties are then used by Agile Lifecycle Manager to
narrow down to a single instance of the resource type that can be used by the
enclosing assembly. If Agile Lifecycle Manager finds more than one resource that
fits the information provided an error occurs and the assembly will not be
instantiated.

152 Agile Lifecycle Manager: Installation, Administration and User Guide

references:
storage: # reference to an existing assembly instance
type: assembly::storage cluster::"1.0
properties:
deploymentLocation:
value: '${deploymentLocation}’

resourceManager:
value: '${resourceManager}’
name:

value: '${storage-name}"
management-network: # reference to a neutron network not created by the
Agile Lifecycle Manager
type: resource::ucd_network::1.0
properties:
deploymentLocation:
value: '${deploymentLocation}'
resourceManager:
value: '${resourceManager}’
name:
value: ${management-network-name}

Once found the properties of these referenced items may be accessed using the
following method:

'${referenced-item-name.property-name}"’

balancer:
type: 'resource::c_balancer::1.0'
quantity: '1'
properties:

referenced-management-network:
value: '${management-network.id}"'

All the from the assembly instances referenced are available for use in
this manner. Resource descriptor properties are defined in the following topic:
[“'properties” on page 138|

‘relationships'

Relationships are established between two components that enable the
'requirements' of one component (known as the 'target’) to be satisfied by another
component that provides the 'capability’ (known as the 'source’).

Defining relationships
The 'source' and 'target’ of a component are defined by the following fields:
* source-capabilities
* target-requirements
In order to define a relationship between two components, the name of
each component, as defined in the 'composition’ or 'reference' section of the

descriptor, is combined with the name of the capability or requirement, as
in the following example:

source-capabilities:
- A.capability-3
target-requirements:
- B.requirement-3
source-capabilities key
A Derived from the composition section

An agreed delimiter

Chapter 7. Reference 153

capability-3
The name of the 'capability’ defined within the organization

A reference component can only be defined as a source-capability. In this
instance, only the name of the reference needs to be provided.

Within a relationship definition the 'properties’ field may refer to the
components defined under the 'source-capability' and 'target-requirements'’
fields as 'source’ and 'target' respectively, as I the following example.
propertyl:

value: ${source.name}
property2:

value: ${target.name}

Above ${source.name} and ${target.name} is used to refer to the 'source'
components (as defined in source-capabilities) 'name' property and 'target’
components (as defined in target-requirements) 'name' property
accordingly.

The 'lifecycle' section within relationships consist of two transitions: Create
and Cease. The transitions described so far allow designers to specify what
operations to perform during the Creation and Cessation (or removal) of a
relationship for a source and target component, as in the following
example.
lifecycle:

Cease:

- target.CeaseRelationship

- source.CeaseRelationship

Create:

- target.CreateRelationship

- source.CreateRelationship

The operations called depend on the components involved. The operations
are called in the order they appear in the Create or Cease sections. A
relationship may only call one operation, that is, only either a target or a
source operation. Operations are referenced as source.<operation-name> or
target.<operation-name> with <operation-name> referring to an operation
defined in the assembly or resource descriptor associated with the
component.

Establishing relationships
Relationships are created when the components to be related are in
particular states.

The 'source-state’ and 'target-state' fields are used to define the state
required to establish a relationship, as in the following example.

source-state: Active
target-state: Active

By default this means that the relationship would be created when the
source is in the Active state, and before the target has transitioned to the
Active state.

Further control when defining relationships is available via the
'source-state-modifier' and 'target-state-modifier' fields. These are used to
define whether relationships are established before (pre) or after (post) they
reach their source or target state as previously defined via source-state and
target-state definitions. For example, 'source-state-modifier’, if not present,
is by default post while 'target-state-modifier' if not present is by default

154 Agile Lifecycle Manager: Installation, Administration and User Guide

pre. Relationships are always ceased (removed) before the associated
component leaves the state defined in the source-state and target-state
fields.

relationships:
nfs_mount:

source-capabilities:

- storage.NFSMountpoint
target-requirements:

- streamer.RemoteNFSMountPoint
source-state: Active
target-state: Inactive

properties:
remote_nfs_port:
value: '2049'

remote_nfs_server_ip:
value: '${source.privatelp}

remote_mount_point:
value: '/'

Tocal_mount_point:
value: '/mnt'

lifecycle:

Create:

- source.MountStorage

Cease:

- source.UnmountStorage

Like the overall assembly and resources, relationships have a set of
that are available to the operations associated with the lifecycle
transitions of the relationship.

Placement

To deploy components to the correct location, Agile Lifecycle Manager will use two
properties called deploymentlLocation and resourceManager. The resourceManager
property will be used to find the correct resource manager that manages the
resource for the location defined in the deploymentLocation property. The
combination of these two uniquely identifies where and how a resource will be
managed.

A placement is also involved when trying to resolve the instances defined in the
references section. Before a reference can be resolved any associated placement
rules will have been applied. This will then allow Agile Lifecycle Manager to find
the appropriate instance of the reference required. The two properties will also be
needed on each reference.

Metrics and policies

A resource descriptor may indicate that the underlying resource will emit one or
more metrics. Example metrics are found in a resource descriptor (but not in the
assembly descriptor).
metrics:
1b_integrity:
type: metric::integrity
publication-period: ${integrity publication_period}
1b_load:
type: metric::load
publication-period: ${publication_period}

Load metrics can be promoted in an assembly using a similar mechanism to
operation metrics.

Chapter 7. Reference 155

metrics:
bl Toad:
source-metric: Bl.load

Within an assembly the policy section will contain details of the policies for the
underlying resources load metric and how that should be used to mange the
scaling of components. Each policy has a name, the associated metric, an action
and a set of properties that are used to handle the policy.

Example policies
The following example shows the policy associated with the load metric on
a resource. This is used to ScaleOut and Scaleln a component, as indicated
by the value in the target properties. The example also shows that the
metric produced by A.load will be used to indicate when the target B will
be scaled.
policies:
scaleStreamer:
type: policy::scale
metric: A.load
target: B
properties:
scaleOut_threshold: ${scaleOut_threshold}
scaleln_threshold: ${scaleln_threshold}
smoothing: ${scale_smoothing}

Load is expressed as a percentage and the thresholds are simple integers.
When the threshold is broken the scale event associated with the threshold
will be enacted. To prevent this happening each time the load spikes, a
smoothing value is applied. The threshold must be breached at least the
number of times indicated by the smoothing value before the action will be
enacted.

Example of smoothing
Scale (in or out) (3 consecutive threshold breaches events)

Larad Load Load
Threshald Threshald Threshaold
[=]4 Brea b Breached reached oK aK oK

| L] | | |

smocthing_period =3

Load L Only two breaches so no scaling

Thireshodd Threshoid
o Breached Breached oK [+]4 ak oK

e A N S W —

smockhing period =3

Assembly descriptor YAML examples

The examples included in this section are an assembly descriptor with policies, and
another one that creates a set of video streamers and links them to a load balancer,
which is also created.

assembly::h_bta::1.0
The following is an example of an assembly descriptor with policies.
name: assembly::h_bta::1.0

description: Basic Test Assembly
properties:

156 Agile Lifecycle Manager: Installation, Administration and User Guide

data:
default: "data"
type: string
description: 'parameter passed'
numOfServers:
description: number of servers
type: integer
default: 1
output:
description: an example output parameter
type: string
read-only: true
value: ${B.output}
deploymentLocation:
type: string
description: name of openstack project to deploy network
default: admin@local
resourceManager:
type: string
description: name of the resource manager
default: test-rm
scaleOut_threshold:
type: integer
description: threshold that the Toad metric must breach to potentially trigger
a scaleQut
default: 90
scaleln_threshold:
type: integer
description: threshold that the Toad metric must breach to potentially trigger
a scaleQut
default: 10
scale_smoothing:
type: integer
description: the number of sequential periods the Toad metric must be above
threshold to trigger action

default: 4
composition:
A:
type: resource::h_simple::1.0
quantity: '1'
properties:
referenced-internal-network:
value: ${internal-network.id}
reference-public-network:
value: ${public-network.id}
image:
value: ${xenial-image.id}
key_name:
value: "ACCANTO_TEST_KEY"
data:
value: ${data}
output:
value: "A_output"
deploymentLocation:
value: ${deploymentLocation}
resourceManager:
value: ${resourceManager}
B:

type: resource::t_simple::1.0
cluster :
initial-quantity: ${numOfServers}
minimum-nodes: 1
maximum-nodes: 4
scaling-increment: 1
properties:
referenced-internal-network:
value: ${internal-network.id}

Chapter 7. Reference 157

reference-public-network:
value: ${public-network.id}

image:

value: ${xenial-image.id}
key _name:

value: "ACCANTO_ TEST KEY"
data:

value: ${data}
output:

value: ${A.output}
deploymentLocation:

value: ${deploymentLocation}
resourceManager:

value: ${resourceManager}

policies:

scaleStreamer:
type: policy::scale
#metric: A.load
#TODO hack until dto change
metric: Toad
target: B
properties:
scaleOut_threshold: ${scaleQut_threshold}
scaleln_threshold: ${scaleln_threshold}
smoothing: ${scale_smoothing}
references:
internal-network:
type: resource::openstack_neutron_network::1.0
properties:
deploymentLocation:
value: ${deploymentLocation}
resourceManager:
value: ${resourceManager}
name:
type: string
value: VIDEO
public-network:
type: resource::openstack neutron network::1.0
properties:
deploymentLocation:
value: ${deploymentlLocation}

resourceManager:
value: ${resourceManager}
name:

type: string
value: public
xenial-image:
type: resource::openstack_glance_image::1.0
properties:
deploymentLocation:
value: ${deploymentLocation}

resourceManager:
value: ${resourceManager}
name:

type: string
value: xenial
relationships:
third-relationship:
source-capabilities:
- A.capability-3
target-requirements:
- B.requirement-3
source-state: Active
target-state: Active
properties:
source:
value: ${source.name}

158 Agile Lifecycle Manager: Installation, Administration and User Guide

target:
value: ${target.name}

lifecycle:

Cease:

- target.CeaseRelationship3

- source.CeaseRelationship3

Create:

- target.CreateRelationship3

- source.CreateRelationship3

assembly::Streamer_cluster::1.0

The following example of an assembly descriptor will create a set of video
streamers and link them to a load balancer which is also created. It requires the
name of a storage assembly to be provided so that it can share the video content
between the streamers.

name: assembly::Streamer cluster::1.0
description: An Assembly for a front end cluster comprising of a loadbalancer
supported by an authorisation proxy and video streamers using a shared NFS based
storage properties:
deploymentLocation:
type: string
required: true
description: The location as required by the resource manager.
resourceManager:
type: string
required: true
description: The name of the resource resource manager.
numOfStreamers:
type: string
description: the number of streamers that should be created at install time
default: 2
tenant_key name:
type: string
required: true
description: The ssh key for the current tenant
management-network-name:
type: uuid
required: true
description: the name of the management network in the tenant where the
assembly is to be installed
public-network-name:
type: uuid
required: true
description: the name of the public network associated with the tenant
where the assembly is to be installed
max_connections:
type: string
description: Maximum connections for the balanced server
default: '3'
cluster_public_ip_address:
type: string
description: the public IP address for this cluster
read-only: true
value: '${balancer.publicIp}’
scaleout-threshold:
type: string
description: the load value that when exceed will cause a scale out to be
invoked
default: 80
scalein-threshold:
type: string
description: the level of Toad that will cause a scale in to be invoked
default: 10
composition:

Chapter 7. Reference 159

streamer:
type: resource::c_streamer::1.0
cluster:
initial-quantity: ${numOfStreamers}
minimum-nodes: 2
maximum-nodes: 10
scaling-increment: 2

properties:
deploymentLocation:
value: '${deploymentLocation}’
resourceManager:
value: '${resourceManager}’
key_name:

value: '${tenant_key name}'
referenced-management-network:
value: '${management-network.id}"'
flavor:
value: ml.small
server_name:
value: '${instance.name}"’
referenced-video-network:
value: '${net_video.network-id}"
availability_zone:
value: DMZ
integrity_publication_period:
value: 120
number-of-intervals:
value: 4
balancer:
type: 'resource::c_balancer::1.0'
quantity: 1
properties:
deploymentLocation:
value: '${deploymentlLocation}’

resourceManager:
value: '${resourceManager}’
key_name:

value: '${tenant _key name}'
referenced-management-network:

value: '${management-network.id}"
referenced-internal-network:

value: '${net_video.network-id}"
referenced-public-network:

value: '${public-network.id}"
flavor:

value: ml.large
server_name:

value: '${instance.name}"’
availability_zone:

value: DMZ
integrity_publication_period:
value: 120
number-of-intervals:
value: 4
net_video:
type: resource::net_video::1.0
quantity: 1
properties:

deploymentLocation:

value: '${deploymentLocation}"
resourceManager:

value: '${resourceManager}’
subnetCIDR:

type: string

description: (Required)

default: '10.0.1.0/24'
networkName:

160 Agile Lifecycle Manager: Installation, Administration and User Guide

type: string
description: Network Name
default: VIDEO
subnetDefGwIp:
type: string
description: Default Gateway IP address
default: '10.0.1.1'
references:
management-network:
type: resource::urbancode-network::1.0
properties:
deploymentLocation:
value: '${deploymentLocation}’

resourceManager:
value: '${resourceManager}’
name:

value: ${management-network-name}
public-network:
type: resource::urbancode-network::1.0
properties:
deploymentLocation:
value: '${deploymentlLocation}’

resourceManager:
value: '${resourceManager}’
name:

value: ${public-network-name}
capabilities:
HttpStream:
type: httpStream
relationships:
uses-net _video:
source-capabilities:
- net_video.Network
target-requirements:
- streamer.VideoNetwork
- storage.VideoNetwork
- balancer.VideoNetwork
source-state: Active
target-state: Inactive
uses-management-network:
source-capabilities:
- management-network
target-requirements:
- streamer.ManagementNetwork
- storage.ManagementNetwork
- balancer.ManagementNetwork
source-state: Active
target-state: Inactive
balancer-uses-public-network:
source-capabilities:
- pubTic-network
target-requirements:
- balancer.PublicNetwork
source-state: Active
target-state: Inactive
balanceStreamer:
source-capabilities:
- streamer.VideoStream
target-requirements:
- balancer.HttpServer
source-state: Active
target-state: Active
properties:
max_connections:
value: '${max_connections}'
server_ip:
value: '${source.privatelp}’

Chapter 7. Reference

161

server_port:

value: '8080'
lifecycle:
Create:
- balancer.AddBalancedHttpServer
Cease:

- balancer.RemoveBalancedHttpServer

162 Agile Lifecycle Manager: Installation, Administration and User Guide

Notices

This information applies to the PDF documentation set for IBM Agile Lifecycle
Manager.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.

1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 2018 163

sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

958 /NH04

IBM Centre, St Leonards
601 Pacific Hwy

St Leonards, NSW, 2069
Australia

IBM Corporation
896471/H128B

76 Upper Ground
London

SE1 9PZ

United Kingdom

IBM Corporation
JBF1/SOM1 294

Route 100

Somers, NY, 10589-0100
United States of America

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

164 Agile Lifecycle Manager: Installation, Administration and User Guide

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

If you are viewing this information in softcopy form, the photographs and color
illustrations might not be displayed.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered

trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
((trademarks of Oracle and/or its affiliates.

dvd

COMPATIBLE

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Notices 165

166 Agile Lifecycle Manager: Installation, Administration and User Guide

Printed in USA

	Contents
	Tables
	Preface
	About this release

	Chapter 1. Product overview
	Benefits
	Architecture
	Functionality
	IBM Cloud Private components
	Glossary

	Chapter 2. Planning
	Hardware requirements
	Software requirements
	IBM Cloud Private deployment overview

	Chapter 3. Installation
	Installing and configuring on ICP
	Before you install (ICP)
	Preparing your cluster
	Loading the Agile Lifecycle Manager archive into ICP
	Provision storage for Agile Lifecycle Manager on ICP
	Installing Agile Lifecycle Manager on ICP
	Uninstalling Agile Lifecycle Manager (ICP)

	Chapter 4. Using the UI
	UI functionality
	Logging into the ICP UI
	Managing assembly descriptors
	Operating assemblies
	Managing resource managers
	Upgrading an assembly instance

	Chapter 5. Getting started (using the APIs)
	Configuration reference
	Creating an assembly instance
	Exploring an assembly instance
	Healing a component
	Scaling a component
	Uninstalling an assembly instance
	Browsing assembly descriptors
	Exploring an assembly descriptor
	Creating a new assembly descriptor
	Updating an assembly descriptor
	Removing an assembly descriptor
	Upgrading an assembly instance
	List all onboarded resource managers
	Exploring an onboarded resource manager
	Creating a new resource manager record
	Updating a resource manager
	Deleting a resource manager record
	Sample assembly descriptor

	Chapter 6. Administration
	Monitoring system health
	Managing the service logs
	Setting timeout limits for resource managers
	Enabling HTTPS support (for the Nimrod service)
	Ensuring Log files are not owned by the root user
	Ensuring support for accented characters
	Authentication
	Audit logging
	Provided OpenLDAP LDAP server
	Example alm-docker-compose.yml file

	Chapter 7. Reference
	API HTTP status codes reference
	Lifecycle Manager API
	Interface architecture
	Scenarios
	Managing assemblies
	Resource managers
	Asynchronous state change events
	Resource health events
	Topology
	Catalog API

	Resource Manager API
	Interface architecture
	Interface interaction patterns
	Resource manager configuration
	Resource type configuration
	Resource topology
	Resource lifecycle management
	Resource type configuration (asynchronous)
	Resource lifecycle management (asynchronous)
	Publishing metrics

	Resource descriptor YAML specifications
	Resource descriptor sections
	Resource descriptor YAML examples

	Assembly descriptor YAML specifications
	Assembly descriptor sections
	Assembly descriptor YAML examples

	Notices
	Trademarks

