
Agile Lifecycle Manager
Version 1.2

Installation, Administration and User
Guide
27 April 2018

IBM

Agile Lifecycle Manager
Version 1.2

Installation, Administration and User
Guide
27 April 2018

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 167.

This edition applies to Version 1.2 of IBM Agile Lifecycle Manager (product number 5737-E91) and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2017.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Tables v

Preface vii
About this release vii

Chapter 1. Product overview 1
Benefits 1
Architecture 5
Functionality 6
Components 18
Glossary 18

Chapter 2. Planning 23
Hardware requirements 23
Software requirements 23
Deployment overview 24

Chapter 3. Installing and configuring 31
Before you install 31
Installing Agile Lifecycle Manager 32
Configuring Agile Lifecycle Manager 34
Uninstalling Agile Lifecycle Manager 37

Chapter 4. Using the UI 39
UI functionality 39
Logging into the UI 40
Managing assembly descriptors. 41
Operating assemblies 44
Managing resource managers 47
Upgrading an assembly instance 48

Chapter 5. Getting started (using the
APIs) 51
Configuration reference 51
Creating an assembly instance 53
Exploring an assembly instance. 56
Healing a component 57
Scaling a component 59
Uninstalling an assembly instance 62
Browsing assembly descriptors 63
Exploring an assembly descriptor 64
Creating a new assembly descriptor 65
Updating an assembly descriptor 65
Removing an assembly descriptor 66
Upgrading an assembly instance 67
List all onboarded resource managers. 69
Exploring an onboarded resource manager 70

Creating a new resource manager record 71
Updating a resource manager 73
Deleting a resource manager record 74
Sample assembly descriptor 75

Chapter 6. Administration 77
Monitoring system health. 77
Managing the service logs 77
Setting timeout limits for resource managers . . . 79
Enabling HTTPS support (for the Nimrod service) 79
Ensuring Log files are not owned by the root user 80
Ensuring support for accented characters 81
Authentication 82
Audit logging 86
Provided OpenLDAP LDAP server 86
Example alm-docker-compose.yml file 87

Chapter 7. Reference 93
API HTTP status codes reference 93
Lifecycle Manager API. 97

Interface architecture 98
Scenarios 99
Managing assemblies 103
Resource managers 109
Asynchronous state change events 112
Resource health events 116
Topology 117
Catalog API 121

Resource Manager API 125
Interface architecture 125
Interface interaction patterns 125
Resource manager configuration 128
Resource type configuration 129
Resource topology. 131
Resource lifecycle management 135
Resource type configuration (asynchronous) . . 138
Resource lifecycle management (asynchronous) 139
Publishing metrics. 141

Resource descriptor YAML specifications 142
Resource descriptor sections 142
Resource descriptor YAML examples 146

Assembly descriptor YAML specifications 151
Assembly descriptor sections 152
Assembly descriptor YAML examples 160

Notices 167
Trademarks 169

© Copyright IBM Corp. 2017 iii

iv Agile Lifecycle Manager: Installation, Administration and User Guide

Tables

1. Agile Lifecycle Manager packages 18
2. Agile Lifecycle Manager hardware

requirements 23
3. Agile Lifecycle Manager software requirements 23
4. Agile Lifecycle Manager microservices ports

and Swagger URLs 51
5. Agile Lifecycle Manager grant types 83
6. Summary of how Agile Lifecycle Manager uses

the HTTP 400 and 404 status codes 96
7. HTTP error response codes 98
8. Fields to be used when creating a new

assembly instance 104
9. Fields to be used when changing the state of

an existing assembly 105
10. Fields to be used when deleting an assembly 105
11. Fields to be used when healing a resource 106
12. Fields to be used when scaling components 107
13. Fields to be used when upgrading an

assembly 108
14. Create resource manager request fields 109
15. Get resource manager response fields 110
16. Update resource manager request fields 111

17. ProcessStateChangeEvent fields 113
18. ComponentStateChangeEvent fields 114
19. Integrity event fields 116
20. Load event fields 117
21. Get assembly by id fields 118
22. Get assembly by name topology fields 120
23. Response properties 122
24. Response properties 123
25. Response properties 124
26. Get Resource Manager fields 129
27. List resource types fields 130
28. Get resource type fields 131
29. List deployment location fields. 131
30. Get deployment location fields. 132
31. Search for resource instances fields 133
32. Get resource instance fields 134
33. Create resource transition request fields 136
34. Create resource transition response fields 136
35. Get resource transition status fields 137
36. Resource type configuration (asynchronous)

fields 138
37. Get resource transition status fields 140

© Copyright IBM Corp. 2017 v

vi Agile Lifecycle Manager: Installation, Administration and User Guide

Preface

This PDF document contains topics from the Knowledge Center in a printable
format.

About this release
You can find the most up-to-date information about Agile Lifecycle Manager here.
Late breaking information and known limitations are described in the release
notes.

27 April 2018
Updated installation and configuration topics:
“Installing Agile Lifecycle Manager” on page 32
“Configuring Agile Lifecycle Manager” on page 34

Added new UI topic:
“Upgrading an assembly instance” on page 48

Added a number of new Administration topics:
“Authentication” on page 82
“Audit logging” on page 86
“Provided OpenLDAP LDAP server” on page 86
“Ensuring Log files are not owned by the root user” on page 80
“Ensuring support for accented characters” on page 81
“Example alm-docker-compose.yml file” on page 87

19 January 2018
Added information on the API HTTP status code strategy deployed by
Agile Lifecycle Manager: “API HTTP status codes reference” on page 93

Updated the dataflow diagram in the Architecture section: Dataflow
diagram

22 December 2017
The IBM® Agile Lifecycle Manager v1.2 Base English eAssembly has been
refreshed. The eAssembly contains the following packages, which have
new part numbers:
v IBM Agile Lifecycle Manager v1.2 Quick Start Guide (English)
v IBM Agile Lifecycle Manager v1.2 - Linux 64bit (English)

See the Agile Lifecycle Manager v1.2 download document for the new part
numbers.

Documentation changes
The Agile Lifecycle Manager Knowledge Center, as well as the
Installation, Administration and User Guide PDF, have been
updated:
v The 'Docker Compose file structure' topic has been removed, as

this no longer applies.
v Minor documentation errata have been fixed.

The previous part numbers have been removed from the Quick
Start Guide PDF, and a new version of the QSG has been issued.

Note: The release notes have not been updated.

© Copyright IBM Corp. 2017 vii

Related information:

How to download Agile Lifecycle Manager

IBM Agile Lifecycle Manager Version 1.2 Release Notes

IBM Agile Lifecycle Manager Version 1.1 Release Notes

viii Agile Lifecycle Manager: Installation, Administration and User Guide

http://www-01.ibm.com/support/docview.wss?crawler=1&uid=swg24043978
https://www.ibm.com/support/knowledgecenter/SS8HQ3_1.2.0/alm120_rn.pdf
https://www.ibm.com/support/knowledgecenter/SS8HQ3_1.2.0/alm110_rn.pdf

Chapter 1. Product overview

IBM Agile Lifecycle Manager provides users with a toolkit to manage the lifecycle
of both virtual and physical network services. This includes the design, test,
deployment, monitoring and healing of services.

Benefits
Using Agile Lifecycle Manager you can design and integrate external resources into
virtual production environments and then automate the management of end-to-end
lifecycle processes. This approach is known as 'network function virtualization'.
This section elaborates on the benefits of this approach and the key functionality
offered by Agile Lifecycle Manager, and also provides you with case study
material.

Benefits of network function virtualization (NFV)

NFV brings a significant operational paradigm shift for service providers. Today’s
physical network appliances require highly manual processes to manage their
end-to-end lifecycle. Testing, installation, configuration, and problem management
of network appliances all revolve around manual activities that often require a
physical truck roll or a human to run each lifecycle process.

NFV’s software paradigm promises fully automated lifecycle processes for bringing
network services into production and maintaining them thereafter. Virtual network
functions (VNF) allow a much simpler set of lifecycle tasks enabling near full
automation of the creation and healing of virtual services, far more than is possible
with their physical counterparts.

There are vast business opportunities associated with NFV transformation
including new revenue streams, improved customer experience and reductions in
both operational and capital expenditure. However, a fully automated lifecycle
solution for NFV comes with additional complexities.

IBM Agile Lifecycle Manager is a comprehensive services design, testing and
automated deployment platform addressing the challenges and complexities of the
NFV paradigm. It delivers an end-to-end automated service lifecycle solution from
initial design to production, as depicted in the following figure:

© Copyright IBM Corp. 2017 1

The key differentiating features of Agile Lifecycle Manager depicted in this figure
include:
v A common way of handling resources through a unified lifecycle model
v Support for quick resources and assembly on-boarding
v Intent-driven lifecycle management
v Quality management and policy modules
v Cloud-native solution

The benefits of using Agile Lifecycle Manager to deliver NFV are illustrated in the
following figure:

Lifecycle management

To achieve NFV’s promised levels of automation, Agile Lifecycle Manager provides
a complete DevOps toolchain that manages the end-to-end lifecycle of virtual
network services, from release management of VNF software packages to the
continuous orchestration and running of VNFs and service instances.

Third party VNF software must be wrapped in a well-tested standard lifecycle
interface, and service bundles of multi-vendor VNFs must be tested for
interoperability and performance to ensure that there are no errors. This ensures
that, once in production, services and VNFs can be constantly created, configured,
updated, scaled, healed, and migrated without manual intervention.

2 Agile Lifecycle Manager: Installation, Administration and User Guide

The complete lifecycle management is shown in the following figure:

VNF and services onboarding requires a comprehensive release management
strategy, a suite of tools and a lifecycle integration framework to accommodate the
variety of third party VNF software package formats. Continuous in-life
orchestration also requires a new approach to modelling and managing the
complexity of in-life network function lifecycle management. To achieve the levels
of automation required, a much simpler and standardized approach is required to
implement all foreseen lifecycle transitions.

Advantages of an end-to-end DevOps deployment model

The advantages of adopting an end-to-end DevOps deployment model are
illustrated in the following figure:

Chapter 1. Product overview 3

Deployment scenarios

You can find a deployment example in the “Functionality” on page 6 section,
which depicts an example scenario of a video streaming service.

Case study: Heal operation using Agile Lifecycle Manager

In the following 'closed loop heal' case study, a server no longer receives IP
packets. An alarm is raised, the event is evaluated, and a Heal event is triggered
and executed by Agile Lifecycle Manager. The solution addressing this case study
is comprised of the following components (some of which are bundled as IBM
Netcool Operations Insight):
v IBM Tivoli Netcool/OMNIbus and Web GUI
v IBM Tivoli Netcool/Impact
v IBM Netcool Agile Service Manager
v IBM Agile Lifecycle Manager

Heal solution process, step-by-step

Note: This case study refers to the 'operations' and 'external OSS' actors, and their
interaction. These are defined in the deployment overview here and here.
1. Tivoli Netcool/OMNIbus (acting as external OSS) receives an alarm that a

server has stopped receiving IP packets.
2. This alarm then triggers a Tivoli Netcool/Impact policy.
3. As part of the service design and assembly onboarding, Netcool Agile Service

Manager reconciles the Agile Lifecycle Manager assemblies with OpenStack
virtual machines.

4. Tivoli Netcool/Impact (acting as operations) now has enough knowledge to
trigger an Agile Lifecycle Manager Heal request.

5. Agile Lifecycle Manager transitions the 'broken' server through the following
lifecycles:
a. STOP
b. START
c. INTEGRITY

6. Netcool Agile Service Manager gets notified by Agile Lifecycle Manager that a
lifecycle event has occurred on the 'broken' server.

7. This triggers the Netcool Agile Service Manager observer that raised the alarm
to rerun.

8. Rerunning the observer clears the Tivoli Netcool/OMNIbus alarm, confirming
that the server is receiving packets again, and 'healing' was successful.

Related information:

IBM Netcool Operations Insight

IBM Tivoli Netcool/OMNIbus and Web GUI

IBM Tivoli Netcool/Impact

IBM Netcool Agile Service Manager
Knowledge center links

4 Agile Lifecycle Manager: Installation, Administration and User Guide

https://www.ibm.com/support/knowledgecenter/en/SSTPTP
https://www.ibm.com/support/knowledgecenter/SSSHTQ/landingpage/NetcoolOMNIbus.html
https://www.ibm.com/support/knowledgecenter/SSSHYH
https://www-03preprod.ibm.com/support/knowledgecenter/SS9LQB_1.1.0/welcome_page/kc_welcome-444.html

Architecture
This topic provides an overview of the Agile Lifecycle Manager architecture.

Basic architecture

The basic Agile Lifecycle Manager architecture is depicted in the following figure:

Data flow

Agile Lifecycle Manager receives requests through its north bound API to put an
assembly instance representing a VNF or service into an intended state, such as
'active'. Agile Lifecycle Manager in turn orchestrates all external resource managers
through their northbound APIs to configure their managed resource instances
accordingly. Throughout this orchestration period Agile Lifecycle Manager and
each resource manager publish orchestration status events to a Kafka topic for each
assembly and resource instance state change.

This process is depicted in the following figure:

Resource managers are responsible for orchestrating virtual infrastructure
managers (VIM) to control cloud infrastructure compute, storage and network
resources in support of their resource instances' standard lifecycles.

Chapter 1. Product overview 5

Extending Agile Lifecycle Manager

In addition to published orchestration events, performance and quality metrics
may be published to a dedicated monitoring Kafka topic. These are consumed by
automatic scaling and healing policies configured in Agile Lifecycle Manager. Agile
Lifecycle Manager can be integrated with various external systems responsible for
monitoring different aspects of an end-to-end service. These external systems, such
as SQM or other assurance and analytics systems, can thus be extended to perform
the following types of healing using the Agile Lifecycle Manager northbound API:

Broken virtual resources
Resource instances that are not performing within acceptable levels are
identified as broken and healed by Agile Lifecycle Manager.

Infrastructure failure
The impact on resource instances by a physical infrastructure is reported
and appropriate healing or migration is performed by the Agile Lifecycle
Manager.

Service degradation
Reduced customer experience or service quality can trigger scaling events.

Functionality
Agile Lifecycle Manager provides continuous integration and deployment of
resources, intent-driven operations to automate lifecycle processes, and an open
framework.

6 Agile Lifecycle Manager: Installation, Administration and User Guide

Overview

The following figure depicts the main functional capabilities of Agile Lifecycle
Manager.

Continuous integration and deployment
Provides rapid design and onboarding of external resources into
production services.

Intent-driven operations
Enable automated management of the end-to-end service lifecycle
processes.

Resource Manager framework
Makes possible open integration of external virtual and physical resources
to be assembled with others into complete services.

These capabilities are broken down into the software functions depicted in the
following figure.

Chapter 1. Product overview 7

Continuous integration and deployment

In order to deliver an assembled end-to-end service, the assembly design function
provides a set of tools that enable the rapid description of complex bundles of
external resources and their combined operational processes.

Assembly descriptors are written in YAML and stored in the Catalog.

The following figure illustrates the assembly descriptor attributes.

Descriptors specify the deployment and operational information required to allow
the Intent Engine to instantiate a set of external resources, in the right location and

8 Agile Lifecycle Manager: Installation, Administration and User Guide

with their inter-dependencies in place. Assembly descriptors contain attributes,
versions, associated external resources and their relationships and deployment
locations.

For more information on YAML specifications, see the following topic: “Assembly
descriptor YAML specifications” on page 151

Resource Managers expose resource descriptors to Agile Lifecycle Manager. These
resource descriptors represent deployable units of software whose lifecycles can be
manipulated by Agile Lifecycle Manager. Resource Managers in turn are
responsible for exposing a lifecycle interface for each resource instance it manages
and managing any infrastructure required to support these resources instances.

The following figure shows the main entities that Agile Lifecycle Manager employs
to model external resources that are assembled into compound services. Typically,
software modules are compiled by an independent software vendor into external
functional units that can be deployed independently and assembled into an
application or service at a later stage. Each external deployable unit is considered a
resource which has its own standard lifecycle. These resources are continuously
assembled and re-assembled into logical applications or services that can span
multiple data centers. These are represented in Agile Lifecycle Manager as
assemblies.

Assemblies are composed of resources or other assemblies, and all resources and
assemblies must support the same standardized lifecycle model as depicted in the
following figure, to allow Agile Lifecycle Manager to dynamically manipulate
resources into higher order services.

Chapter 1. Product overview 9

Each resource and assembly must support a standard lifecycle, which includes the
following:

Standard lifecycle transitions
Each of the dark blue transitions in the preceding figure represents a
software executable that is intended to bring its resource or assembly
instance from one state to another.

The exception to this is the dark blue integrity transition, which provides a
basic test primitive that is called periodically or explicitly after the start
transition to ensure the resource is in an operational state.

In-life operations
In addition to standard transitions, resources can optionally provide ad-hoc
software executables that directly represent a specific resource use case, for
example adding a user.

Also, in-life operations can be provided as the implementation of one end
of a relationship.

Opinionated patterns
Set sequences of transitions are run to accommodate special scenarios such
as scaling an assembly, or healing a resource that is in a state of error.

All resources must implement each standard lifecycle transition, and also
(optionally) in-life operations. The intent engine coordinates all assembly and
resources lifecycle transitions automatically along with any opinionated patterns,
as required, and as depicted in the following figure of an example scenario. This
figure depicts a video streaming service that includes several resources assembled
into a deployment model.

10 Agile Lifecycle Manager: Installation, Administration and User Guide

In this example service, several external resources provided by different software
or infrastructure providers are assembled:

Load balancer resource
Manages the distribution of video traffic across several video streaming
instances.

Video streaming VNF resource
Streams video traffic.

Internal network resource
Internal network to connect service resources.

Public network resource
External network connecting end users to the service.

The assembly descriptor that models the end-to-end service composes resource
descriptors, which in turn describe their individual lifecycle aspects.

Each assembly and resource descriptor can model the following:

Required properties
Expected properties required by the assembly or resource.

Each can have defaults and read-only properties that allow resource
instances to provide instance specific data, such as IP addresses.

Lifecycle actions
List all the standard transitions supported.

In-life operations
List of ad-hoc operations with individual properties for each.

Chapter 1. Product overview 11

In addition to the common descriptions listed above, assemblies can also model the
following:

Composition
Group of assembly or resource children types that are included in this
assembly type.

Property dependencies
Assemblies or resources can wait for properties on other resources or
assemblies to be populated.

Relationships
Operational relationships between children assemblies or resources.

These relationships can be instigated on specific states of its endpoints and
calls in life operations to execute.

References
References to assemblies or resource instances outside this assembly can be
declared.

Assembly and resource descriptors are described in more details in the following
topic: “Assembly descriptor YAML specifications” on page 151

The Catalog:

Continuous integration and deployment depends on the Catalog to manage the
details of all types of descriptors, such as the assembly descriptors and resource
descriptors, which are stored in the Catalog. Descriptors are used by the Operation
Support System (OSS) to create new applications or services. Also, when the intent
engine is asked to instantiate an assembly, it will request the descriptor from the
Catalog.

12 Agile Lifecycle Manager: Installation, Administration and User Guide

Automated lifecycle operations

API and notifications: Agile Lifecycle Manager applications adopt the
microservices architecture so they communicate via APIs. Each microservice has a
well-defined API representing atomic functionality. The components also
communicate via notifications published to and consumed from the service bus
(Kafka). Whenever the state of an assembly (or component) changes, the system
publishes related event data onto the bus that can be consumed by other modules.

Tip: You can also use Kafka outside the Docker containers.

Agile Lifecycle Manager also interworks southbound and northbound via
well-defined APIs. (See the Reference section for more information on API
specifications.)

Intent engine: The Intent Engine is the functional entity that takes assembly and
resource descriptors from the catalog and auto-generates the processes required to
manage the complete lifecycle of a service and all of its constituent parts and their
relationships to each other.

The intent engine generates process execution plans after receiving requests
through the published API. The intent engine retrieves the assembly descriptor
from the catalog and builds a complete graph of the desired state for the entire
service and resources, resolving shared resources and placement strategies.

Chapter 1. Product overview 13

The desired graph is enriched with information about existing assembly or
resource instances and updated to reflect the changes required to move the current
service graph to the desired service graph. These changes form the basis for an
execution plan that coordinates the lifecycle of those new and existing resources
involved in the service graph.

The intent engine instructs, step by step, the Resource Manager(s) via API to
execute the plan. The intent engine stores all assembly related changes in the
topology.

The intent engine interacts with the Resource Manager via API for discovering,
configuring and manipulating resources.

The intent engine has several opinionated patterns to support the healing of
broken resources:
v A resource put into the broken state on receipt of a Heal request is progressed

through the stop, start, and integrity transitions to attempt to return it to the
active state.

v If Heal is unsuccessful, the resource is left in the state prior to the failed
transition and the Heal request returns as failed.

Topology: The Topology function stores details of assembly and resource instances.
When the intent engine initiates an action on an assembly instance the details of
the request will be stored in the topology. Any details that are part of the output
from the operation will also be stored by the intent engine. The topology stores the
history of all changes made to an assembly instance. The topology also manages
the state of a service with regards to the requests.

Resource Manager framework

The Resource Manager framework provides an open set of tools to allow VNF
vendors to wrap their software in a standardized lifecycle that can be manipulated
by Agile Lifecycle Manager. Proprietary VNF managers or general-purpose
software managers, such as Canonical's JuJu Charms, IBM's Urbancode, or
RedHat's Ansible, can be integrated to allow the virtual or physical resources they
manage to be discovered and manipulated by Agile Lifecycle Manager.

14 Agile Lifecycle Manager: Installation, Administration and User Guide

Resource Managers adhere to an API that allows Agile Lifecycle Manager and
other external systems to discover the data center topology supported by the
resource manager instance and the resource types it supports. The API also
provides the ability to manipulate and monitor the state and health of each
resource instance.

The following figure depicts Agile Lifecycle Manager's ability to manipulate
resources from many resource managers. Each resource manager manages the
lifecycle of several virtual or physical devices and the underlying virtual or
physical infrastructure.

Resource managers must abide by the following use cases and requirements:
v Multiple Resource Managers can manage resource instances on the same VIM(s)
v Resource Managers can manage one or more VIMs
v Component instances are managed by a single Resource Manager
v VNF types are registered with Resource Manager types
v Resource Manager instances are registered to work with one or more VIMs
v Instances of VNF types can be deployed to multiple VIMs by the registered

Resource Manager VIMs
v Multiple Resource Managers can manage VNF types on a single VIM

The Resource Manager framework includes the following artifacts to support the
above use cases and requirements:

Swagger API definition and specification
Rest and Kafka API semantics and messages

Chapter 1. Product overview 15

Resource descriptor specification
Descriptor specification

Resource archive format
Standard and portable packaging format for bundling software, lifecycle
and operation scripts, descriptors and resource manager configuration

API drivers
Integrations for popular software management systems

Resource Manager API: The Resource Manager API is responsible for defining the
interactions between a lifecycle manager and the resource managers used to
manage resources within virtual (or physical) infrastructures.

Mapping to industry standards

In recent years the industry has been actively generating standards for NFV. NFV
specifications are published on a regular basis by various industry forums. Those
include ATIS, Broadband Forum, ETSI NFV ISG, IETF, ONF and others. In parallel,
open source projects have been established to accelerate NFV adoption. The most
recent and notable initiative within the orchestration area is the Open Network
Automation Platform (ONAP) that is joining two projects: The Enhanced Control,
Orchestration, Management and Policy (ECOMP) and the Open Orchestrator
(Open-O). IBM closely monitors relevant forums and partners with key industry
contributing members.

ETSI has introduced a number of key concepts that provide a language for
describing an NFV environment. The following figure shows a mapping of Agile
Lifecyle Manager concepts to ETSI definitions. ETSI terminology/concepts are
shown on the left of the figure mapped to IBM's core concepts, that is, Assembly
Descriptor (AD) and Resource Descriptor (RD).

16 Agile Lifecycle Manager: Installation, Administration and User Guide

How a VNF vendor has engineered their software will determine how many
resource descriptors it presents to Agile Lifecyle Manager. For example, a native
Cloud style VNF implementation could provide many Resource Descriptors
representing micro-services that are assembled into VNF components, which are in
turn assembled into VNFs. Conversely, a VNF vendor may provide a single
resource representing a complete VNF function. These resource descriptors in any
case are re-assembled into an architecture specific to the service providers'
environment and service design, once again by layering assembly descriptors and
relationships.
Related concepts:
“Assembly descriptor YAML specifications” on page 151
This section describes the assembly descriptors that are used by Agile Lifecycle
Manager.
“Lifecycle Manager API” on page 97
The Lifecycle Manager API is responsible for interactions with the operations
available from Agile Lifecycle Manager. This section covers the definition of the
Lifecycle Manager API and the specification of the messages sent across this
interface.
Chapter 7, “Reference,” on page 93
Use the following reference information to enhance your understanding of the
Agile Lifecycle Manager APIs and YAML specifications.
Related reference:
“Asynchronous state change events” on page 112
Agile Lifecycle Manager will emit events when the state of an assembly or its
components changes. Messages that are sent asynchronously are put onto a Kafka
bus. The exact topics can be configured. These are emitted in response to Intent
Requests causing the state of the Assembly Instance, or its associated components,
to change. In the event of a failure to change state, an event will also be emitted.
Related information:

IBM overview of microservices

Chapter 1. Product overview 17

https://www.ibm.com/devops/method/content/architecture/microservices/

Components
Agile Lifecycle Manager consists of a number of services packaged as Docker
containers.

Agile Lifecycle Manager download packages

Agile Lifecycle Manager consist of the following components:

Table 1. Agile Lifecycle Manager packages

Package Details

Daytona Service responsible for the orchestration of lifecycle
requests on service instances

Galileo Service responsible for storing assembly topologies

Conductor Management service containing configuration server,
service registry, etc

Apollo Repository service for service specifications. Contains
both components from resource managers and services
created through the designer.

Ishtar North-bound public API into the Agile Lifecycle Manager

Watchtower Service responsible for managing the health and policies
of resources and assemblies

Nimrod Service supporting the Agile Lifecycle Manager Graphical
User Interface (GUI)

Glossary
Refer to the following list of terms and definitions to learn about important Agile
Lifecycle Manager concepts.

Agile Lifecycle Manager terminology

assembly
An assembly is a definition of a service and may comprise of one
“resource (or component)” on page 21, (or more than one resource),
and/or other assemblies.

It is defined in an assembly descriptor and can be instantiated as an
assembly instance.

assembly descriptor (or descriptor)
An assembly descriptor is a computer-readable definition of an assembly
implemented as a YAML file.

assembly designer (or service designer)
An actor or end user role designing services using Agile Lifecycle Manager.
An assembly designer takes informal service design artifacts defined by
service designers and translates them to a set of formal computer-readable
descriptors that model the target service.

assembly instance
Instantiation of an assembly descriptor and all the composed resources or
assemblies.

18 Agile Lifecycle Manager: Installation, Administration and User Guide

capability
Capabilities is a section of an assembly descriptor or a resource descriptor
defining what functions the resources or assemblies are implementing.

catalog (or assembly catalog)
The repository within Agile Lifecycle Manager storing published assembly
descriptors and resources descriptors.

cloud The cloud is a common term referring to accessing computer, information
technology (IT), and software applications through a network connection,
often by accessing data centers using wide area networking (WAN) or
internet connectivity.

CSAR (or archive)
Cloud service archive (CSAR) describes a format used for describing
resource packages.

CSAR specification is a part of OASIS TOSCA.

deployment location
Deployment location is a facility where resources can be deployed while
they are instantiated.

In various contexts deployment locations are referred to as data centre,
project (OpenStack), or availability zone (OpenStack).

descriptor
See “assembly descriptor (or descriptor) ” on page 18

forwarding graph
See service chain.

intent engine (or engine)
The entity responsible for generating the assembly deployment plan and
instructing, step by step, resource managers to execute the plan.

Kafka Apache Kafka is a distributed streaming platform.

Tip: Streams of records are stored in Kafka in categories called 'topics'.

See the related links for more information.

lifecycle event (or event)
Agile Lifecycle Manager published intent and status change event onto a
Kafka topic.

lifecycle state (or state)
A lifecycle state defines the state of a specific resource instance or assembly
instance.

Examples of lifecycle states include: Installed, Inactive, Active, Broken, and
Failed.

Changes from one lifecycle state to another are lifecycle transitions.

lifecycle transition (or transition)
A lifecycle transition is a process aiming to change the lifecycle state of an
assembly or resource.

Lifecycle transitions are initiated through the Agile Lifecycle Manager API,
orchestrated by Agile Lifecycle Manager and executed by the underlying
resource managers.

Examples of lifecycle transitions include: install, configure, start, stop,
integrity, and uninstall.

Chapter 1. Product overview 19

microservice
Microservices are a variant of the service-oriented architecture (SOA)
architectural style that structures an application as a collection of loosely
coupled services.

The benefit of decomposing an application into different smaller services is
that it improves modularity and makes the application easier to
understand, develop and test.

It also parallelizes development by enabling small autonomous teams to
develop, deploy and scale their respective services independently.

migration
Migration is one of the opinionated patterns aiming to migrate a deployed
NVF from a location to another.

monitoring metrics
Performance or health metrics published by resource managers and/or
resources onto a Kafka topic.

network
A type of resource.

network function virtualization (NFV)
The design and integration of external resources into virtual production
environments, which can then automate the management of end-to-end
lifecycle processes.

Also see virtual network functions.

OASIS
OASIS is a non-profit consortium that drives the development,
convergence and adoption of open standards for the global information
society.

onboarding

Onboarding is the act of adding a resource manager to Agile Lifecycle
Manager. It lets Agile Lifecycle Manager know that the resource manager
exists, and it imports the descriptors of all the resource types managed by
the resource manager. It also gathers the information about the deployment
locations that the resource manager uses.

operations
'Operations' is a section of an assembly descriptor or a resource descriptor
that defines sets of operations, which can be called to enable relationships
to be created between resources and/or assemblies.

opinionated patterns
The group of lifecycle transitions to achieve a particular task.

Examples of tasks include: heal, reconfigure, and upgrade.

policies
'Policies' is a section of an assembly descriptor or a resource descriptor
containing the set of policies that are used to manage the assembly or
resource instances.

property
'Properties' is a section of an assembly descriptor or a resource descriptor
containing the properties that belong to the resource or assembly
descriptors.

20 Agile Lifecycle Manager: Installation, Administration and User Guide

These include the full set of properties that are required to orchestrate
them through to the active state.

These can be understood as the 'context' for the management of the item
during its lifecycle.

quality monitoring
Quality Monitoring is a process to monitor the health of deployed
resources and NFV infrastructure and to test, monitor and evaluate the
end-to-end service performance.

reference
'Reference' is a section of assembly descriptor or resource descriptor.

When the Agile Lifecycle Manager has already instantiated an assembly it
is possible for another assembly to share the instance by referencing it
within the references section.

The references section can also refer to existing objects that may have been
created outside the Agile Lifecycle Manager.

relationship
'Relationships' is a section of assembly descriptor or resource descriptor.

Relationships define how the descriptors link requirements to capabilities.

A relationship has source-capabilities and target-requirements as parts of
its description.

requirement
'Requirements' is a section of an assembly descriptor or a resource
descriptor explaining what functions the resources or assemblies need
before they can work successfully.

resource (or component)
A piece of software that can be automatically deployed in a virtual
environment, and that supports key lifecycle states including install,
configure, start, stop, and uninstall.

resource descriptor
The list of resource attributes and properties written in YAML.

resource health (or component health)
Resource health is a microservice within Agile Lifecycle Manager
responsible for monitoring health-related messages and initiating
recovering actions related to deployed resources.

For example, the resource health may send a 'heal' message to the intent
engine if a certain event indicating health issues is detected.

resource instance
A resource instance represents the logical grouping of infrastructure being
managed by an external resource manager.

resource manager
The entity instructing resources.

For example, IBM UrbanCode.

resource manager record

Agile Lifecycle Manager maintains a record of each resource manager it
can use to create and manage resources. When a new resource manager

Chapter 1. Product overview 21

record is created, the resource types managed by that resource manager
instance are read into Agile Lifecycle Manager via the resource manager's
API.

resource package
Resource package is described as a CSAR archive.

This is the bundle of everything needed for a resource that is loaded into a
resource manager.

scale Scale is one of the opinionated patterns aiming to increase or decrease the
amount of deployed resources of a specific type.

service chain
Instantiated as relationships in assembly descriptors.

TOSCA
Topology and orchestration specification for cloud applications (TOSCA) is
a standard defined by OASIS.

topology (or instance inventory)
The repository storing key state information related to assembly and
resource instances and topology of the deployment locations.

virtual infrastructure manager
The entity controlling the cloud infrastructure compute, storage and
network resources.

For example, OpenStack.

virtual network functions (VNF)
Virtual network functions (VNF) allow a much simpler set of lifecycle tasks
enabling near full automation of the creation and healing of virtual
services, far more than is possible with their physical counterparts.

Also see network function virtualization.
Related information:

Kafka documentation (web link)

22 Agile Lifecycle Manager: Installation, Administration and User Guide

https://kafka.apache.org/documentation/

Chapter 2. Planning

This section helps you to plan your installation and use of Agile Lifecycle Manager
by listing the minimum software and hardware requirements.

Hardware requirements
This section lists the minimum hardware requirements for a deployment of Agile
Lifecycle Manager.

Your minimum hardware requirements are determined by the needs of the
components of your specific solution. The requirements listed here focus on what
you need to deploy Agile Lifecycle Manager.

Table 2. Agile Lifecycle Manager hardware requirements

Requirement Setting

CPU 16 cores

Memory 64Gb

Disk 1Tb

Software requirements
This section lists the minimum software requirements for a deployment of Agile
Lifecycle Manager.

Agile Lifecycle Manager has the following software requirements.

Table 3. Agile Lifecycle Manager software requirements

Requirement Details

Operating system Ubuntu Linux version 14.04 or higher

Git client For managing the Conductor configuration file repository

Docker Minimum server version 17.05.0-ce

You can find more information about the Docker engine
here: https://docs.docker.com/engine

Docker Compose Minimum server version 1.13.0

Database cluster Cassandra cluster

Cassandra can be run on the same environment as Agile
Lifecycle Manager, as described in Getting Started.
However, in a production environment, it is envisaged that
Cassandra will be deployed in its own (possibly clustered)
environment.

Messaging Kafka messaging solution
Note: As for Cassandra, Kafka should be deployed
separately when part of a production environment.

© Copyright IBM Corp. 2017 23

https://docs.docker.com/engine

Deployment overview
To deploy Agile Lifecycle Manager, you design your network function
virtualization (NFV) solution, then on-board the virtual network functions (VNF)
vendors you require. Then you prepare your environment, followed by the
deployment and periodic maintenance of your solution.

Actors and user roles

The exact actors in the service lifecycle management depend on your
organizational structure, but the following are a suggestion based on the Agile
Lifecycle Manager functional design. These suggestions focus on both user roles
and abstract 'actors', like external systems that provide input into the solution.

service designer
The service designer owns end-to-end service schematics, deployment
models, location rules and participating virtual network functions (VNF).

service engineer
The service engineer maps service design to resource and assembly
descriptors, building the operational requirements specification for how
VNF vendor software must behave to deliver services.

VNF vendor
The VNF software vendor must package their software into resources that
comply with service specifications.

VNF manager vendor
The VNF manager software required to host VNF.

Vendor resources must comply with the resource manager API.

operations
Operations users are responsible for managing production lifecycle of
services and resources.

external OSS
External systems that have information on the state of resource instances,
or may require information from Agile Lifecycle Manager to do their job.

Deployment sequence

The suggested deployment sequence is as follows:
1. Service design: The service designer and service engineers design the NFV

solution.
2. On-boarding: The VNF vendors, VNF manager vendors and service engineers

on-board the VNF packages.
3. Prepare environment: Operations and external OSS team members prepare the

environment for deployment of the VNF packages.
4. Deploy and maintain: Operations and external OSS deploy and maintain the

Agile Lifecycle Manager NFV solution.

See the following figure for a depiction of the suggested deployment process.

24 Agile Lifecycle Manager: Installation, Administration and User Guide

Phase One: Designing the service

The Service designer creates a service representation and deployment rules that
provide requirements for service solution and resource procurement (on-boarding)
processes. These requirements will typically be documented informally as required
by local service provider’s processes.

Service design requires the following information:

Resource composition
Service is composed of a set of logical resources chained together in a
particular scheme.

Deployment rules
Data centre topology and definition of location underpin resource
deployment rules, including:
v Operational lifecycle rules: Design and target criteria for how

operational maintenance affect overall service.
v Monitoring requirements: Expected health and performance metrics.
v Service Quality models/targets: KPI and KQI with their thresholds

describing performance parameters the service must uphold.

Chapter 2. Planning 25

Output: The output of the assembly design process is a set of descriptors that
represent the deployment and operational requirements for service design, mapped
down to resource descriptors.

Phase Two: On-boarding

VNF vendors provide their software as packaged resources loaded into external
resource managers or into their own proprietary resource managers that comply
with the Resource Manager API.

Design time tasks must be considered by the VNF vendor before the packaging
process takes place such as for example:
v Resources represent deployable units within the VNF vendors' architecture,

therefore the VNF vendor must decide which software components require their
own lifecycle. Typically, those software functions that can be deployed
individually, multiple times, or upgraded/healed individually would benefit
from having their own deployable unit with its own lifecycle that can be
controlled by Agile Lifecycle Manager.

v VNF vendors map their resources to service descriptor requirements, and also
may extend their operational lifecycle actions to accommodate any relationships
to other resources required by the service descriptors.

VNF vendors package their software into deployable resource packages. It may be
required also that resource packages are portable across multiple Resource
Managers. To this aim a standard packaging format based on TOSCA’s CSAR
package format is recommended.

Each vendor resource package should contain all the descriptors and software
required to support the Resource Manager API and to run the VNF vendor
software in the target environment managed by the Resource Manager.

The following artefacts should be provided by vendors:

Resource descriptor
Resource meta information discoverable by Agile Lifecycle Manager.

Parameters
Immutable parameters that represent the resource configuration and
instance information.

Lifecycle software
Scripts or software executables that implement each resource set of
standard lifecycle transitions.

26 Agile Lifecycle Manager: Installation, Administration and User Guide

Tip: A VNF vendor should provide (possibly separate) software or scripts
for each standard lifecycle transition for each resource it supports.

Operations software
Scripts or software executables that implement resource operation actions.

Monitoring and health metrics
Set of monitoring metrics produced by resource instance.

VNF resource software
The VNF vendor software.

Resource manager specific configuration
Resource manager specific infrastructure configuration required to run
VNF vendor software.

For example, HEAT templates and Docker files.

VNF vendors that provide their own resource manager capability or
general-purpose software resource managers must support the Resource Manager
API to integrate to and allow Agile Lifecycle Manager to manage each resource
instance’s lifecycle.

For each resource, the following facets of testing are expected:
v Standard lifecycle API behaves as expected.
v Operations involved in relationships run and do not adversely affect the running

state of the resource.
v Metrics and health are provided as expected and demonstrate health of resource

during lifecycle and operation testing.
v Performance and scalability under vendor provided resource unit load.

For independent resource managers, similar certification tests are required to prove
compliance with the general API.

Service descriptors output from the service design use case provide the basis for
end to end service testing. Vendor resource packages are integrated to service
descriptors either by producing additional assembly descriptors that map vendor
resources to service provider descriptors or by the vendor natively supporting the
provided descriptors. Multiple vendor software implement their part of the service,
at which point it is possible to run end to end service tests.

End-to-end service tests plan to cover the following test facets:
v VNF software interoperability
v Infrastructure interoperability across resource managers
v Service impacting operational behavior
v Deployment and resource policies

Phase Three: Preparing the environment

To prepare development, test or production environments to run a set of
assemblies and resources, the appropriate resource managers must be installed and
operational.

In the case where resource types can be managed by generic software resource
managers there may be a deployment model where different resource managers

Chapter 2. Planning 27

are chosen to manage the resource instance depending on its location, that is, there
may be multiple resource manager choices for a resource type.

Resource managers are added to Agile Lifecycle Manager, which discovers from
the resource managers the locations that they serve.

Tip: If the VNF resource types are tightly coupled to a proprietary resource
manager then this phase may be combined with the next one (“Phase Four:
Deploying and maintaining”).

Resource packages are loaded to the appropriate resource manager instances in the
target development, test or product environment.

Resource types are then available to be discovered through the resource manager
API and their lifecycle available for manipulation by Agile Lifecycle Manager.

All resource descriptors that implement the service and reference resource types
are published to Agile Lifecycle Manager from the resource managers. The
designer then creates an assembly made up of one or more resources published by
the resource managers.

Agile Lifecycle Manager ensures all resource types are available and compiles a
view of which resource types are available from which resource manager instance.
Agile Lifecycle Manager enriches its model of which resource can be deployed to
which location.

Configuration of related external OSS systems that listen or police Agile Lifecycle
Manager and resource managers is performed in preparation for resource and
service instances being instantiated.

Phase Four: Deploying and maintaining

External systems or human operators request Agile Lifecycle Manager to put an
available published assembly type into an active state. The set of parameters

28 Agile Lifecycle Manager: Installation, Administration and User Guide

required to bring the assembly type into the active state is presented through the
operational UI or discovered through the Agile Lifecycle Manager API.

Agile Lifecycle Manager decomposes the request into the set of resource types that
must be activated and in what location. This drives an execution plan that kicks off
a sequence of requests to the resource manager instances responsible for each
resource type. Each Agile Lifecycle Manager request publishes its intent and status
to, for example, Kafka topics for external OSS to view.

Resource managers asynchronously report the progress of each resource request on
Kafka topics, available for Agile Lifecycle Manager or other external OSS to view.

Chapter 2. Planning 29

30 Agile Lifecycle Manager: Installation, Administration and User Guide

Chapter 3. Installing and configuring

Agile Lifecycle Manager is distributed as a self-contained package delivered as a
set of Docker images and run inside Docker containers. To install Agile Lifecycle
Manager, you complete the required pre-installation tasks, then perform the
installation.

Before you install
Before installing Agile Lifecycle Manager, you perform a number of pre-installation
checks and tasks.

Set JAVA_HOME environment variable
Java needs to be installed with the JAVA_HOME environment variable
correctly set according to the official Java documentation.

Verify Docker installation
Your Ubuntu installation may install Docker 'out of the box'.

If not, follow the Docker installation instructions on the Docker website:
https://docs.docker.com/engine/installation/linux/ubuntu/

Ensure you install server version 17.05.0-ce or later. You can check the
version by running the following command:
docker version

Ensure you install server version 17.05.0-ce or later. You can check the
version by running the docker version command.

Verify Docker Compose installation
Install Docker Compose version 1.13.0 or later.

See the Docker installation instructions on the Docker website for
instructions: https://docs.docker.com/compose/install

Verify Ubuntu operating system
Ensure that your Ubuntu operating system has the latest updates applied:
sudo apt-get update -y

See “Software requirements” on page 23 for version details.

Enable Docker access
You must enable non-root access to the Docker daemon.

To create the Docker group and add your current user to that group, use
the following commands:
sudo groupadd docker
sudo usermod -aG docker $USER

You can find more information on creating and administering Docker
groups at the following location: https://docs.docker.com/engine/
installation/linux/linux-postinstall

Important: For the group changes to take effect, you must refresh your
terminal session.

© Copyright IBM Corp. 2017 31

https://docs.docker.com/engine/installation/linux/ubuntu/
https://docs.docker.com/compose/install
https://docs.docker.com/engine/installation/linux/linux-postinstall
https://docs.docker.com/engine/installation/linux/linux-postinstall

Tip: If you do not complete this step, you will either have to run the
commands as the root user, or prefix your commands with the sudo
command.

Increase Linux mmap (memory mapped) default
The Agile Lifecycle Manager Docker Compose script starts up a single
Elasticsearch node. Elasticsearch uses memory mapped (mmap) files
extensively, and the default mmap limits on Linux distributions are
generally too low and need to be increased, or Elasticsearch will fail to
bootstrap.

Edit the /etc/sysctl.conf file on your Docker host, and add the following
if it is not already present:
vm.max_map_count=262144

Reload the file using the following command:
sysctl: sudo sysctl -p

Installing Agile Lifecycle Manager
The following installation procedure deploys a basic instance of Agile Lifecycle
Manager.

Before you begin

The IBM-ALM-v1.2.0.1-Linux-64bit.tar.gz installation package is a tar.gz file
containing a self-contained Agile Lifecycle Manager that uses Docker and Docker
Compose.

The installation package contains:
v Required third-party Docker images for Cassandra, Kafka, Zookeper, Ubuntu,

and IBM Java
v All pre-built Agile Lifecycle Manager docker images
v All Agile Lifecycle Manager configuration files
v All installation scripts

After you obtain the package, you place it into your installation directory, and run
the installation from there (for example /opt/IBM/netcool).

About this task

Security features: Agile Lifecycle Manager uses a layered security model made up
of these distinct layers:

Securing data in transit
Agile Lifecycle Manager uses SSL to encrypt the information passing across
its publicly exposed interfaces. This requires suitable SSL Certificates to be
generated and then configured for Agile Lifecycle Manager to use. This
feature is enabled by default and required SSL certificates to be generated
as part of the Agile Lifecycle Manager installation process.

Securing ALM user passwords at rest
Agile Lifecycle Manager uses BCrypt encoding of user passwords. This
ensures that whenever a user password is at rest (e.g. in an LDAP
repository) it is encrypted in such a way that the original plain-text version
cannot easily be reverse engineered. The Agile Lifecycle Manager takes the
plain-text password entered by the user as part of the Agile Lifecycle

32 Agile Lifecycle Manager: Installation, Administration and User Guide

Manager logon process, encrypts it and then tests the encrypted version of
the supplied password with the encrypted version stored in the LDAP
repository. If the two strings match then the user is allowed to use Agile
Lifecycle Manager.

Authenticating incoming requests
Agile Lifecycle Manager uses the industry standard OAuth2 security
mechanism to authenticate all incoming requests into Agile Lifecycle
Manager's public interfaces. This feature is enabled by default.

You use the provided Docker Compose script, which contains bundled Kafka,
Zookeeper and Cassandra instances, to get up and running quickly.

Important: For your final production environment, Kafka, Zookeeper and
Cassandra should be hosted externally, as described in the configuration topic.

Tip: If you need to upgrade Agile Lifecycle Manager and want to preserve data,
you must use external Kafka and Cassandra instances. The new Agile Lifecycle
Manager version can then continue to use the existing Kafka and Cassandra
instances.

Procedure

Remember: The default installation directory is /opt/IBM/netcool
1. The following example creates the installation directory, if required, and then

extracts the installation archive:
mkdir -p /opt/IBM/netcool; tar -xzvf IBM-ALM-v1.2.0.1-Linux-64bit.tar.gz -C /opt/IBM/netcool

2. Install Agile Lifecycle Manager. The following command triggers the license
acceptance, before installing all required Docker images, and then starting all
required Agile Lifecycle Manager components.
/opt/IBM/netcool/alm/alm-install.sh -install

Use the following information to complete the installation:

Note: Agile Lifecycle Manager expects to use an LDAP server to check user
names and passwords. An OpenLDAP container is provided out of the box
with the Agile Lifecycle Manager installation.

Encryption Key
Used as 'Secret Encryption Key for Encryption' for the Jasypt
Encryption.

Can be any value. This key will be used to encrypt the java keystore
password. Note that Two Way Encryption(With Secret Text) needs to
be selected.

See the following site for more information: http://www.devglan.com/
online-tools/jasypt-online-encryption-decryption

java keystore password (plain) [default=password]
Keystore password for generating the SSL Certificate.

Can be any value in plain text.

java keystore password (encrypted)
Keystore password (any value) in encrypted format.

See the following site for more information: http://www.devglan.com/
online-tools/jasypt-online-encryption-decryption

Chapter 3. Installing and configuring 33

http://www.devglan.com/online-tools/jasypt-online-encryption-decryption
http://www.devglan.com/online-tools/jasypt-online-encryption-decryption
http://www.devglan.com/online-tools/jasypt-online-encryption-decryption
http://www.devglan.com/online-tools/jasypt-online-encryption-decryption

ALM Admin client secret (plain) [default=admin]
Default Admin Client secret for API access in plain text format to be
used for API calls.

Can be any value.

ALM Nimrod client secret (plain) [default=nimrod]
Nimrod Client secret.

Can be any value in plain text format.

ALM user name (plain) [default=almuser]
User name for the initial Agile Lifecycle Manager UI user.

Can be any value in plain text format.

password for almuser user (encrypted)
Password for the initial Agile Lifecycle Manager UI user, in encrypted
format.

See the following site for more information on Bcrypt:
https://www.dailycred.com/article/bcrypt-calculator

Results

Agile Lifecycle Manager is installed, and you can now proceed to the configuration
tasks.

What to do next

The following other installation actions are supported:

To print the version of the software
/opt/IBM/netcool/alm/alm-install.sh -version

To add a new OpenLDAP user for Agile Lifecycle Manager
/opt/IBM/netcool/alm/alm-install.sh -add_user

To restart Agile Lifecycle Manager components
/opt/IBM/netcool/alm/alm-install.sh -restart

To uninstall Agile Lifecycle Manager
/opt/IBM/netcool/alm/alm-install.sh -uninstall

For more information, see the following topic: “Uninstalling Agile Lifecycle
Manager” on page 37

Configuring Agile Lifecycle Manager
To configure Agile Lifecycle Manager for use, you override the default application
properties, and then configure external instances of Kafka, Cassandra and
Elasticsearch. You can also add new OpenLDAP users, modify an OpenLDAP user
password, and add new API Clients if required.

About this task

Configuration files

Agile Lifecycle Manager uses Spring Cloud to manage configuration. The
Conductor service manages the configuration files and publishes changes
to the other services. By default, the configuration files are located in the
<install dir>/var_alm/config-repo directory. This directory is initialized
as a Git repository when Agile Lifecycle Manager is first started.

34 Agile Lifecycle Manager: Installation, Administration and User Guide

https://www.dailycred.com/article/bcrypt-calculator

Remember: The default installation directory is /opt/IBM/netcool

Tip:

The Conductor service detects changes to the configuration files, should
you change these later, however, it is best if any configuration changes are
done before starting the microservices, as described here. If you do make
such changes to the configuration files later, however, they must be
committed to the Git repository so that the Conductor service can detect
them.

To manually initialize the Git repository after performing configuration
changes at a later stage, execute the following commands in the <install
dir>/var_alm/config-repo directory.
git init .
git add .
git commit -m "config files"

Configure external Kafka
Kafka is used by most of the Agile Lifecycle Manager services.

Configure external Cassandra
The Agile Lifecycle Manager Topology service is the only service that uses
Cassandra, and so you can limit the property to the Agile Lifecycle
Manager Topology configuration.

Procedure

Edit configuration files

1. Go to the <install dir>/var_alm/config-repo directory.
2. You can change default configuration settings for all services, or for each

individual service.
v To change configuration settings for all services, edit the properties in the

application.yml file.
v To change configuration settings for a specific service, edit the

<service>.yml file for that service.

Tip: If the YAML configuration file for the service does not exist, you can
create it. Use the <service>.yml naming convention, for example, the config
file for a service called daytona would be daytona.yml

3. Add the files to the Git repository.
git add <service>.yml

For example:
git add application.yml

4. Commit the files, adding a message if required:
git commit <service>.yml -m "<message>"

The configuration updates have now been applied and will be picked up by
the conductor service when Agile Lifecycle Manager is started.

Configure external Kafka

5. To configure an external Kafka cluster, you set the IP addresses for your
external Kafka and Zookeeper components in the var_alm/config-repo/
application.yml by editing the bootstrap-servers property, then commit the
file to the Git repository.

Chapter 3. Installing and configuring 35

spring:
kafka:

bootstrap-servers:
- external-kafka-ip

6. Add the files to the Git repository, then commit. The configuration updates
have now been applied and will be picked up by the conductor service when
Agile Lifecycle Manager is started.

Configure external Cassandra

7. For the Agile Lifecycle Manager Topology service, you set the IP addresses for
your external Cassandra cluster nodes in the var_alm/config-repo/
galileo.yml by editing the hostname property, then commit the file to the Git
repository.
alm:

janusConfiguration:
storage:
hostname: external-cassandra-ips

Note: The hostname should be a comma-separated list of one or more
Cassandra nodes.

8. Add the file to the Git repository, then commit.
git add galileo.yml
git commit galileo.yml

Configure external Elasticsearch

9. Set the IP addresses of your external Elasticsearch cluster nodes by editing the
following property in the var_alm/config-repo/galileo.yml file. At the
moment the Galileo service is the only service that uses Elasticsearch, so you
can limit the property to the Galileo configuration:
alm:

janusConfiguration:
index:

hostname: elasticsearch

10. Add the file to the Git repository, then commit.
Add new OpenLDAP users

11. Perform the following steps:
docker stop alm-openldap

docker rm alm-openldap

12. Remove *_almOpenldapDb and *_almOpenldapConf
docker volume ls

docker volume rm alm_almOpenldapDb

docker volume rm alm_almOpenldapConf

13. Run the alm-install.sh script with the -add_user option, for example:
./alm-install.sh -add_user

14. Run the following command:
docker-compose -f alm-docker-compose.yml up -d alm-openldap

Modify an OpenLDAP user password

15. Perform the following steps:
docker stop alm-openldap

docker rm alm-openldap

16. Remove *_almOpenldapDb and *_almOpenldapConf
docker volume ls

docker volume rm alm_almOpenldapDb

36 Agile Lifecycle Manager: Installation, Administration and User Guide

docker volume rm alm_almOpenldapConf

17. Edit the <alm_install_dir>/var_alm/ldap/initial_users.ldif file and update
the password as required.

18. Run the following command:
docker-compose -f alm-docker-compose.yml up -d alm-openldap

Add new API clients

19. You can add new clients after installation by running POST calls to the
following URL: https://localhost:8280/api/credentials Agile Lifecycle
Manager installation creates the default Client ID 'Admin', which is used to
perform API calls, with associated secret set to 'admin' by default. Your POST
calls to create new clients should have headers of Content-Type =
application/json and client_id=Admin with a message body as displayed in
the following example:
{

"clientId": "Admin2",
"clientSecret": <Admin2secret>,
"scope": [

"all"
],
"authorisedGrantTypes": [

"client_credentials",
"password",
"refresh_token"

],
"accessTokenValidity": <Xsecs>,
"refreshTokenValidity": <Ysecs>

}

Any subsequent authentication performed using the new Admin2 above will
generate an Access Token with expiry set to the 'accessTokenValidity' value
above. The same applies for the refresh token.

Results

Agile Lifecycle Manager has now been configured for use.
Related reference:
“Asynchronous state change events” on page 112
Agile Lifecycle Manager will emit events when the state of an assembly or its
components changes. Messages that are sent asynchronously are put onto a Kafka
bus. The exact topics can be configured. These are emitted in response to Intent
Requests causing the state of the Assembly Instance, or its associated components,
to change. In the event of a failure to change state, an event will also be emitted.

Uninstalling Agile Lifecycle Manager
To uninstall Agile Lifecycle Manager, you run the uninstall script, which removes
all Agile Lifecycle Manager components.

About this task

The procedure described here stops and removes all Agile Lifecycle Manager
Docker containers, and then removes the Docker images from the server.

Note: Any Docker components not associated with Agile Lifecycle Manager are
not affected, and the Docker service is not stopped.

Chapter 3. Installing and configuring 37

Procedure

To uninstall Agile Lifecycle Manager, run the following command.
/opt/IBM/netcool/alm/alm-install.sh -uninstall

Attention: Due to shared Docker networks and volumes, the uninstall process may
cause warnings, which you can ignore. To perform any cleanup of remaining
volumes and networks, you can re-run the uninstall command.

Results

The Agile Lifecycle Manager Docker containers are stopped, and the containers,
networks, volumes, and Docker images are removed.

38 Agile Lifecycle Manager: Installation, Administration and User Guide

Chapter 4. Using the UI

This section describes the Agile Lifecycle Manager User Interface, and the tasks it
allows you to perform.
Related concepts:
Chapter 5, “Getting started (using the APIs),” on page 51
Agile Lifecycle Manager provides both a graphical UI and an HTTP API allowing
the creation and administration of assemblies. This section describes a set of basic
scenarios to get started using the APIs.

UI functionality
The Agile Lifecycle Manager UI is comprised of three separate tools, a descriptor
editor, an operations console, and a resource manager controller.

Descriptor Editor (Editor view)
The Descriptor Editor allows users to access all descriptors, both
onboarded resource descriptors and assembly descriptors stored in the
Agile Lifecycle Manager catalog.

As resource descriptors are onboarded from resource managers owning
and managing the actual resources, in the Agile Lifecycle Manager
Descriptor Editor they can only be browsed and no changes can be made
to them.

For assembly descriptors Descriptor Editor provides a wide set of tools
from browsing to editing, uploading, and downloading assembly
descriptors.

With Descriptor Editor you can perform the following tasks
v Browse descriptors
v Modify existing assembly descriptors
v Create a new assembly descriptor
v Upload a new assembly descriptor (including validation)
v Download a copy of an existing assembly descriptor to the local

filesystem
v Remove assembly descriptors

Operations Console (Assemblies view)
The Operations Console allows user to operate and manage services,
modeled as assemblies, through the full lifecycle from initial provisioning
through lifetime operations all the way to their end of life.

With the Operations Console you can:
v Browse existing assembly instances
v Create new assembly instances
v Request lifecycle transitions on assembly instances
v Initiate automated healing of broken service components
v Scale In and Scale Out service components
v Uninstall Services

© Copyright IBM Corp. 2017 39

Resource Manager Controller (Resource Managers view)
The Resource Manager Controller enables users to manage connected
resource managers and onboard new resource managers to Agile Lifecycle
Manager.

Onboarding a resource manager makes Agile Lifecycle Manager aware of
the underlying resource manager and onboards the associated resource
descriptors to Agile Lifecycle Manager. Once the resource types are
onboarded the corresponding resource descriptors can be viewed on
Descriptor Editor and used as components in assembly descriptors.
Already onboared resource managers can be refreshed to update Agile
Lifecycle Manager with possible changes on resource manager
configuration, or their managed resource types.

With the Resource Manager Controller you can perform the following
operations on resource managers:
v Browse onboarded resource managers
v Refresh onboarded resource managers
v Introduce new resource managers to Agile Lifecycle Manager
v Remove obsolete resource managers from Agile Lifecycle Manager

Tip:

Calls to the Agile Lifecycle Manager API are made using either REST or RPC
mechanisms, and each call returns an HTTP status code. You can find more
detailed information on the API HTTP status code strategy here: “API HTTP status
codes reference” on page 93

Logging into the UI
The Agile Lifecycle Manager User Interface (UI) provides end users with tools for
VNF and service lifecycle management covering workflows for onboarding
resource managers and associated resource types, managing and modifying
assembly descriptors, and operating service lifecycles.

Before you begin

Your microservices must be running before you log onto the UI.

Agile Lifecyle Manager is automatically started after installation.

About this task

Remember: The default installation directory is /opt/IBM/netcool

Procedure

Log into the UI, as in the following example.
http://<your_server>:8290

Results

Agile Lifecycle Manager is now ready to use.

40 Agile Lifecycle Manager: Installation, Administration and User Guide

What to do next

Next, you can use the UI to edit or operate assemblies, or manage resource
managers.

If required, you can restart Agile Lifecycle Manager by using the following
command:
/opt/IBM/netcool/alm/alm-install.sh -restart

Related tasks:
“Configuring Agile Lifecycle Manager” on page 34
To configure Agile Lifecycle Manager for use, you override the default application
properties, and then configure external instances of Kafka, Cassandra and
Elasticsearch. You can also add new OpenLDAP users, modify an OpenLDAP user
password, and add new API Clients if required.
Related reference:
“Authentication” on page 82
The authentication mechanism in use in Agile Lifecycle Manager is OAuth2
combined with LDAP for user credential verification. Below is an explanation of
some of the concepts and how authentication should be used in Agile Lifecycle
Manager.

Managing assembly descriptors
You use the UI Editor to manage assemblies, for example editing assembly
descriptors or creating new ones, importing or exporting them, or removing them
from use.

Before you begin

To be able to edit assembly descriptors you should have opened the Agile Lifecycle
Manager user interface and selected Editor-view from the top menu bar.

About this task

You use Editor to perform the following tasks:

Open an existing assembly descriptor
You can open an existing assembly descriptor stored in the Agile Lifecycle
Manager topology to view or modify it. Multiple descriptors can be open
in parallel on separate browser windows.

Create a new assembly descriptor
You can create a new assembly descriptor by writing a valid descriptor in
the 'Editor' and saving it.

Change an assembly descriptor
You can save an open assembly descriptor to the Agile Lifecycle Manager
catalog after editing and replace the existing one in the Agile Lifecycle
Manager catalog. Before saving a consistency check is performed. You will
be prompted in case of invalid YAML format or when trying to change or
save a resource type without sufficient permissions.

Save an assembly descriptor with a new name or version
You can save an open assembly descriptor to the Agile Lifecycle Manager
catalog with a new name or version number. Before saving a consistency
check is performed. You will be prompted in case of already existing
assembly name, invalid yaml-format.

Chapter 4. Using the UI 41

Upload assembly descriptor from local file system
You can upload an assembly descriptor from the local file system as a
yaml-file. Before opening the uploaded yaml-file a consistency check is
performed to verify the correctness of the yaml-format. Error messages will
be displayed if the uploaded file is not valid yaml. Wherever possible
detailed information will be provided indicating where in the uploaded file
the problem lies.

Download assembly descriptor into local file system
You can download an open assembly descriptor to the local file system and
select the target file location.

Duplicate an assembly descriptor
You can duplicate an opened assembly descriptor. The version number of
the duplicate assembly descriptor will be auto incremented while the name
will stay the same.

Remove an assembly descriptor
You are able to remove an existing assembly descriptor from the Agile
Lifecycle Manager catalog

Procedure

Open an existing assembly descriptor

1. Find the assembly descriptor to open. All descriptors, both resources and
assemblies existing in the Agile Lifecycle Manager catalog are listed on the left
side of the Editor-view with associated action buttons.

2. Open the assembly descriptor.
Once the right descriptor is located from the descriptor list it can be opened
either to the same browser window or to a new tab. You can open a
descriptor to the present window simply by clicking the corresponding section
in the descriptor list.
The selected item will be highlighted with white background and the
descriptor yaml-content is presented on the right side of the descriptor list.
You can open a descriptor to a new browser tab by clicking the action button
associated with the descriptor.

Create a new assembly descriptor

3. Select to create a new assembly descriptor.
You can create a new assembly descriptor by clicking the New button above
the descriptor list.The Create Assembly Descriptor dialog box is opened. In
the dialog box fill in the Name, Version and Description for the new
assembly. Once these are defined click save to insert the new descriptor to the
Agile Lifecycle Manager catalog. As the result a new descriptor with the given
name is added to the descriptor list.

4. Edit the descriptor Open the new descriptor as described in Open an existing
assembly descriptor. The new descriptor is now opened on the right side of
the Editor-view and can be freely edited. By default the descriptor is created
with template structure using the name, version and description given in the
previous step and commented structure of a valid descriptor to ease the
definition.

5. Save the new assembly descriptor
When the descriptor is defined the newly edited descriptor can be saved by
clicking the Save button located in the upper right corner of the text editor.

42 Agile Lifecycle Manager: Installation, Administration and User Guide

When saving the descriptor you will be prompted about successful saving of
the descriptor or an error condition in case the YAML-format is not correctly
defined.

Change an assembly descriptor

6. Find the assembly descriptor to be changed. All descriptors are listed on the
left side of the Editor-view.

7. Edit the assembly descriptor
Make applicable changes to the descriptor by editing the YAML-descriptor
opened in the text editor.

8. Save the changed assembly descriptor
When the descriptor is defined the newly edited descriptor can be saved by
clicking the Save button located in the upper right corner of the text editor.
When saving the descriptor you will be prompted about successful saving of
the descriptor or an error condition in case the YAML-format is not correctly
defined.

Save an assembly descriptor with a new name or version

9. Open an assembly descriptor to be renamed or upgraded
10. Edit the assembly descriptor

If you want to rename the assembly descriptor, edit the assembly name in the
descriptor. (For example: “name: assembly::name::1.0” -> “name:
assembly::newname::1.0”)
If you want to upgrade the assembly to a higher version number, edit the
version number of the assembly in the descriptor. (For example: “name:
assembly::name::1.0” -> “name: assembly::name::1.1”)
You are also able to change both the name and the version.

11. Save the renamed and/or upgraded assembly descriptor
When the descriptor is defined the newly edited descriptor can be saved by
clicking the Save button located in the upper right corner of the text editor.
When saving the descriptor you will be prompted about successful saving of
the descriptor or an error condition in case the YAML-format is not correctly
defined.
The newly saved version will replace the original in the Agile Lifecycle
Manager catalog.

Upload assembly descriptor from local file system

An assembly descriptor is imported into the Agile Lifecycle Manager catalog by
uploading a YAML file from the local file system. As part of the upload process
certain consistency checks will be made and only if these pass will the new
assembly descriptor appear in the Agile Lifecycle Manager catalog.
12. Start the assembly descriptor upload procedure

You start the process of uploading an assembly descriptor from the local file
system by clicking the Upload button above the descriptor list.

13. Select the assembly descriptor file
An Upload Assembly Descriptor dialog box is opened. In the dialog box
either drag and drop the file to the assigned target area or click the target area
to open a file explorer to select the assembly descriptor file.
The file being uploaded must have been saved as an YAML-file with the
corresponding extension (.yml, .yaml).

14. Upload the assembly descriptor file

Chapter 4. Using the UI 43

After the file is selected click Save in the bottom of the dialog box to upload
the assembly descriptor into the Agile Lifecycle Manager catalog.
You will be informed of the status of the upload. When the upload is
successful, a new descriptor item will appear in the descriptor list in the
Editor. If the upload fails the consistency checks, error messages will be
displayed indicating the source of the problem.

Download assembly descriptor to the local file system

15. Start the assembly descriptor download process
Find and open the assembly descriptor you wish to download in the editor as
described in Open an existing assembly descriptor.

16. Download the assembly descriptor
When the descriptor is selected it can be downloaded by clicking the
Download action button associated with the descriptor in the descriptor list.
The downloaded assembly descriptor will be saved as a plain-text YAML file.
A handle to access the downloaded descriptor is shown in the bottom left
corner of the editor. The downloaded descriptor file can be accessed or
opened in a local application by clicking the handle.

Duplicate an assembly descriptor

17. Select the assembly to be duplicated All descriptors, both resources and
assemblies, existing in the Agile Lifecycle Manager catalog are listed on the
left side of the Editor-view with associated action buttons.

18. Duplicate the selected assembly descriptor
When the descriptor is selected it can be duplicated by clicking the Duplicate
action button associated to the descriptor in the descriptor list.

Remove an assembly descriptor

19. Select the assembly to be removed. All descriptors, both resources and
assemblies, existing in the Agile Lifecycle Manager catalog are listed on the
left side of the Editor-view with associated action buttons.

20. Remove the assembly
When the descriptor is selected and opened it can be removed from the Agile
Lifecycle Manager catalog by clicking the Remove action button in the upper
right corner of the text editor.

Operating assemblies
You use the UI Assemblies tool to create new assembly instances, or view existing
ones and monitor any related activity. You can also use it to request lifecycle
transitions or opinionated patterns on an assembly.

Before you begin

To be able to edit assembly descriptors you should have opened the Agile Lifecycle
Manager user interface and selected Assemblies view from the top menu bar.

About this task

You use the Assembly view to perform the following tasks:

View existing assembly instances
You can view the existing assembly instances managed by Agile Lifecycle
Manager and the associated status.

Create a new assembly instance
You can request a creation of a new instance of an assembly.

44 Agile Lifecycle Manager: Installation, Administration and User Guide

Request an assembly lifecycle transition
You can request an intent on an existing assembly instance to transition to
a new lifecycle state.

Request an opinionated pattern
You can request an opinionated pattern to be performed on an existing
assembly instance. This include requests for Scale, Heal, Update, or
Upgrade an assembly. Agile Lifecycle Manager will automatically resolve
the required individual lifecycle transitions to achieve the requested target
status and execute them subsequently.

Monitor process activity
You can monitor the process activity related to existing assembly instances
including the progress of the lifecycle transition and opinionated pattern
requests you have initiated.

Procedure

View an existing assembly instances

1. Browse the existing assembly instances Existing assembly instance can be seen
on the starting page of the Assemblies view. Each assembly instance is
represented by a card on the main page. Each card shows the Assembly name,
Descriptor name, and the last action performed on the assembly. Action can be
either a lifecycle state transition or a pattern like heal or scale.

Create a new assembly instance

2. Select to create a new assembly instance.
A new assembly instance can be created by clicking the Add symbol on the
top menu bar. Once the symbol is clicked a dialog is opened to fill in
necessary details to perform the transaction.

3. Fill in assembly and transaction details. In the opened dialog you need to give
following details:
v Name for the new assembly instance. The defined name will be used as a

unique, within Agile Lifecycle Manager, identifier of the assembly.
v Descriptor, the descriptor is selected from a list of available descriptors that

corresponds to the available descriptors existing in Agile Lifecycle Manager
catalog.

v The Target State for the lifecycle transition performed during the creation
process. Available states include: Installed, Inactive, and Active. Agile
Lifecycle Manager will resolve the necessary unitary transitions required to
create and move the new assembly to the desired target state. For example
if 'Active' is selected, Agile Lifecycle Manager will install the assembly and
related components, configure, start, and perform integrity test on them.

Click Next to move to the next phase of the definition process.
4. Enter the properties.

In the opened dialog you need to give values to all properties defined in the
selected descriptor. Some of the properties might have preset values defined
in the descriptor. These values can be overridden by changing the
corresponding value. All empty values must be given a value to create the
assembly instance.
Once the required details are filled in, click Next to move to the next phase of
the definition process.

5. Verify and accept the changes.

Chapter 4. Using the UI 45

The final state of the definition presents you the assembly details and defined
property values for verification.
Once the information is verified to be correct click Complete to initiate the
assembly creation process.
As a result the assembly is created and moved to the target state. New
assembly instance can be seen as a new card on the starting page of the
Assemblies view.
At any point of the process you can cancel the operation by clicking Cancel,
or return to previous step by clicking Previous.

Request a lifecycle transition on an assembly

6. Select the target assembly instance
You can select the target assembly by searching the assembly instance from
the starting page of the Assemblies view and clicking the corresponding card.
As the result a new page is opened showing details of the selected assembly.
The view contains three parts:
v Top bar presenting assembly status and lifecycle transition controls.
v Process containment section showing action history of the related processes

or assembly’s component structure depending on the process containment
selection.

v Relationships section visualizing relations of the selected component.
7. Initiate a lifecycle transition on the selected assembly.

Lifecycle transitions can be requested on the selected assembly instance by
selecting a new target state for the assembly from the top bar. Only allowed
states can be selected from the drop-down list.
After a desired target state has been selected from the drop-down list click
Apply next to the state selection to initiate the transition.
All unitary actions performed and their status are visualized in the process
section of the current page. Once the transition is completed the state of the
assembly is changed and shown also on the starting page.

Request an opinionated pattern on an assembly

8. Select the target assembly instance You can select the target assembly by
searching the assembly instance from the starting page of the Assemblies view
and clicking the corresponding card.

9. Find the target component.
You can browse the component structure of the selected assembly by selecting
Containment view from the process containment section. Once Containment is
selected the section presents the hierarchical component structure of the
assembly. By default only the root level is shown. You can extend the view to
show lower level components by clicking the component box in the view.
Different patterns can be applied to different types of components. The
component type is shown as a symbol next to each component. Also the
applicable patterns depend on the type of the component.
The target component can be selected from the hierarchy by laying over the
mouse cursor on the corresponding item in the view.

10. Initiate an opinionated pattern on a component.
Once the cursor is over a component that has applicable patterns available, a
spanner symbol appears next to the component name. Available patterns can
be seen by clicking the symbol.
A new dialog box is opened giving options to cancel the operation of initiate
any of the available patterns on the selected component. A pattern can be
initiated by clicking the corresponding button in the dialog box.

46 Agile Lifecycle Manager: Installation, Administration and User Guide

Running a pattern will result to a sequence of actions run on the assembly.
The flow of the unitary operations run on different components can be viewed
by selecting the Process view from the process containment section.

Monitor process activity

11. Select the target assembly instance You can select the target assembly by
searching the assembly instance from the starting page of the Assemblies view
and clicking the corresponding card.

12. Browse the process activity related to the selected assembly instance.
You can browse the history of process activity related to the selected assembly
by selecting the Process view from the process containment section. Once
Process is selected the section presents the history of actions run on the
components of the assembly.
The process view is updated continuously according to preformed operations,
for example when you initiate a lifecycle transition on the assembly or
opinionated pattern on any of the related components.

Managing resource managers
You use the UI Resource Managers view to browse, refresh or remove existing
resource managers, or add new ones.

Before you begin

To be able to edit assembly descriptors you should have opened the Agile Lifecycle
Manager user interface and selected the Resource Manager view from the top
menu bar.

About this task

You use Editor to perform the following tasks:

Add a new resource manager
You can introduce a new resource manager to Agile Lifecycle Manager and
onboard the resource types managed by the resource manager.

Browse existing resource managers
You can browse the information related to existing resource managers.

Refresh a resource manager
You can refresh a resource manager to Agile Lifecycle Manager and refresh
the information about resource types managed by the resource manager.

Remove a resource manager
You can remove an existing resource manager from Agile Lifecycle
Manager. After removing a resource manager, Agile Lifecycle Manager is
not able to manage any associated resource types.

Procedure

Add a new resource manager

1. Select to add a new resource manager.
You can add a new resource manager by clicking the Add new RM button on
top of the list showing the existing resource managers.

2. Fill in the resource manager details.
To define the new resource manager you need to type in the name, type, and
URL of the new resource manager.

Chapter 4. Using the UI 47

v Name is the unique resource manager name used as the identification of the
resource manager.

v Type is an Agile Lifecycle Manager internal attribute to categorize and
separate different types of resource managers from each other.

v URL defines the actual location of the resource manager where it is
deployed.

Once the required information is filled in click the Add new RM button to
initiate the onboarding process. As the result of successful onboarding a new
resource manager is added to the list of shown resource managers.

Browse existing resource managers

3. View the list of existing resource managers.
Existing resource managers and associated key attributes are shown on the
front page when opening the Resource Managers view. Each resource manager
record is associated with the following set of action buttons on the right side of
the resource manager details section:
v Refresh
v Remove
v View details

4. See the details of associated deployment locations.
You can view the associated deployment locations where a resource manager is
able to instantiate resources by clicking the View details action button
associated with the resource manager.

Refresh a resource manager

5. You can refresh an existing resource manager and associated resource type
descriptors by clicking the Refresh action button associated with the resource
manager.

Remove a resource manager

6. You can remove an existing resource manager by clicking the Remove action
button associated with the resource manager.

Upgrading an assembly instance
You can upgrade an instance to a new type, or change its property values, or both.
This topic describes the assembly instance upgrade scenarios and limitations.

Before you begin

The assembly to be upgraded should be instantiated in the Agile Lifecycle
Manager topology and must be in the 'active' state.

About this task

You upgrade an assembly instance by changing an active assembly instance from
its current type and set of properties to a new type and/or new property values.
The type of a component instance is determined by
[assembly|resource]::<type name>::<version>

The following assembly upgrade scenarios are supported.
v If the name of a property in the original and new type are the same, then they

are assumed to be the same and can be mapped from the original to new
properties.

48 Agile Lifecycle Manager: Installation, Administration and User Guide

v If a property value is changed in a component, then the component will be
re-installed with the new value.

v If there is a new relationship between components of the new assembly type, the
relationship is created. This may mean that a component must be transitioned to
the correct states to create the new relationship.

v If a relationship between components is removed from the upgraded assembly,
the relationship is deleted.

v If a property value of a relationship changes, then the relationship is deleted and
re-created. This may mean that a component must be transitioned to the correct
states to create the new relationship.

v If a component identified by name and type is not in the new assembly, it is
uninstalled.

v If a component identified by name and type is not in the original assembly, it is
created and transitioned to the active state.

v If an assembly's properties are changed, only the resources impacted are
changed, resources that are not impacted remain unchanged. That is, if after an
upgrade a resource has the same name, type and property values, then it will
not be transitioned during the upgrade, but rather remain in the active state,
unless a transition was triggered by a relationship change.

v If a component's descriptor changes in any way, it is expected that the type will
have changed, that is, that there is a new type name and/or version, and the
component will be re-installed.

v If a reference to an external component is removed from the assembly, then any
relationships referring to it will be deleted.

v If a reference to an external component is added to the assembly, then any
relationships referring to it will be created.

v The size of a cluster before an upgrade is maintained after the upgrade.
[Question: what about the cluster sizing properties]

v

Assembly Upgrade limitations
Changing cluster property values to 'initial-quantity', 'minimum-nodes',
'maximum-nodes' or 'scaling-increment' is not supported.

Changes to policy and metric property values is not supported.

Chapter 4. Using the UI 49

50 Agile Lifecycle Manager: Installation, Administration and User Guide

Chapter 5. Getting started (using the APIs)

Agile Lifecycle Manager provides both a graphical UI and an HTTP API allowing
the creation and administration of assemblies. This section describes a set of basic
scenarios to get started using the APIs.
Related concepts:
Chapter 4, “Using the UI,” on page 39
This section describes the Agile Lifecycle Manager User Interface, and the tasks it
allows you to perform.
“Lifecycle Manager API” on page 97
The Lifecycle Manager API is responsible for interactions with the operations
available from Agile Lifecycle Manager. This section covers the definition of the
Lifecycle Manager API and the specification of the messages sent across this
interface.
“Assembly descriptor YAML specifications” on page 151
This section describes the assembly descriptors that are used by Agile Lifecycle
Manager.
Related reference:
“Resource managers” on page 109
This topic describes the Resource Managers API specifications for the lifecycle
management API. See the “Resource Manager API” on page 125 section for
resource manager API specifications.

Configuration reference
This topic provides you with an overview of the Agile Lifecycle Manager services
settings you need to know when configuring the solution for your own
environment, such as port numbers, Swagger URLs, and API details.

API HTTP calls

Calls to the Agile Lifecycle Manager API are made using either REST or RPC
mechanisms, and each call returns an HTTP status code. You can find more
detailed information on the API HTTP status code strategy here: “API HTTP status
codes reference” on page 93

Microservices ports and Swagger URLs

The following table shows the default ports and Swagger URLs for the Agile
Lifecycle Manager microservices.

Table 4. Agile Lifecycle Manager microservices ports and Swagger URLs

Service Port Swagger URL Notes

Daytona 8281 http://docker-
host:8281/swagger-
ui.html

Port must not be
exposed through
firewall

© Copyright IBM Corp. 2017 51

http://docker-host:8281/swagger-ui.html
http://docker-host:8281/swagger-ui.html
http://docker-host:8281/swagger-ui.html

Table 4. Agile Lifecycle Manager microservices ports and Swagger URLs (continued)

Service Port Swagger URL Notes

Ishtar 8280 http://docker-
host:8280/swagger-
ui.html

Port must be exposed
through firewall
Note: Ishtar Swagger
also gives access to
the public APIs of
Galileo (from a
drop-down list on
the Swagger UI).

Nimrod 8290 http://docker-
host:8290/

Note: The entry
point if the UI is
started.

The port must be
exposed through the
firewall.

Service REST API

The Service REST API endpoints are available at the following URLs, and may be
used as directed during a product support request:

Runtime metrics
http://docker-host:port/management/metrics

Configuration properties
http://docker-host:port/management/env

Kafka

To use Kafka outside the Docker containers, you set the environment variable
KAFKA_ADVERTISED_HOST_NAME to the IP address of your Docker host, and then use
that IP address when referencing Kafka in your scripts and software. The following
Kafka topics are exposed by Agile Lifecycle Manager.

alm__processStateChange
Process state change events

alm__stateChange
State change events

alm__integrity
Resource integrity metric messages aimed at Watchtower.

alm__load
Resource integrity metric messages aimed at Watchtower.

alm__descriptorChange
Indicates that a resource manager has updated its resource descriptors.

Note: There are two underscores (__) in the Kafka topics.

Runtime directories

At runtime, Agile Lifecycle Manager uses the following directories.

var_alm/config-repo
Agile Lifecycle Manager Conductor configuration directory (Git repository)

52 Agile Lifecycle Manager: Installation, Administration and User Guide

http://docker-host:8280/swagger-ui.html
http://docker-host:8280/swagger-ui.html
http://docker-host:8280/swagger-ui.html
http://docker-host:8290/
http://docker-host:8290/
http://docker-host:port/management/metrics
http://docker-host:port/management/env

var_alm/logs
Log files for all the services

var_alm/cassandra
Host-mounted Cassandra volume

Related reference:
“Asynchronous state change events” on page 112
Agile Lifecycle Manager will emit events when the state of an assembly or its
components changes. Messages that are sent asynchronously are put onto a Kafka
bus. The exact topics can be configured. These are emitted in response to Intent
Requests causing the state of the Assembly Instance, or its associated components,
to change. In the event of a failure to change state, an event will also be emitted.

Creating an assembly instance
You create a new assembly instance when you need to deploy a new service
described in an assembly descriptor.

Before you begin

Agile Lifecycle Manager must be installed, with all included resources and test
assemblies deployed to the catalog.

About this task

A new instance of an assembly is created by using the API for Daytona
(Orchestrator) service. You can find more detailed information on the Daytona API,
its methods, and associated attributes in the “Lifecycle Manager API” on page 97
reference section.

This task installs a new instance of a t_bta assembly called test_1, and then
configures and starts it.

This example uses the basic test assembly assembly::t_bta::1.0. This assembly is
composed of two resources named A and B, both of type
resource::t_simple::1.0. It references three external resource instances, two
networks of type resource::openstack_neutron_network::1.0 and one image of
type resource::openstack_glance_image::1.0. It has one relationship from A to B
that is created when A and B are active. Resource B is in a cluster which on
installation includes a single instance of B.

Procedure
1. Identify the assembly properties requiring a value when creating a new

assembly instance. To do so, explore the corresponding assembly descriptor (in
this example assembly::t_bta::1.0). Retrieve the descriptor from the Agile
Lifecycle Manager catalog by running the following query on the Apollo API:
GET /api/catalog/descriptors/assembly::t_bta::1.0

The response to this query displays the descriptor. A sample extract is shown
here. A full assembly descriptor sample can be viewed in the following topic:
“Sample assembly descriptor” on page 75
name: assembly::t_bta::1.0
description: Assembly comprised of "components\\t_simple.yml"
properties:

data:
default: "data"

Chapter 5. Getting started (using the APIs) 53

type: string
description: ’parameter passed’

output:
description: an example output parameter
type: string
read-only: true

deploymentLocation:
type: string
description: name of openstack project to deploy network
default: admin@local

...

The purpose of the 'properties' section in the API request is to give values to
required assembly properties. The 'properties' section in the API request must
set the value of any properties from the 'properties' section of the assembly
descriptor that don’t have a default value. You can override any default values.
In the following example steps the default value of 'deploymentLocation' is
changed.

2. Initiate a createAssembly event from the Daytona API. Use the swagger-url for
the Daytona service to create a new assembly instance using the following
POST command:
POST /api/intent/createAssembly
{

"assemblyName": "test_1",
"descriptorName": "assembly::t_bta::1.0",
"intendedState": "Inactive",
properties":{

"deploymentLocation":"admin@local"}
}

In this case, the test_1 assembly instance (assemblyName) does not exist, and so
Agile Lifecycle Manager will attempt to install, configure and then start this
new instance.

Note: Use the 'properties' section to define any assembly properties that are as
yet undefined, or to override any already defined default values. In this
example a value of admin@local is set for the deploymentLocation property.

3. If test_1 has been successfully created, Agile Lifecycle Manager will return a
Response Code 201, as in this example:
Response code 201

{
"location": "http://10.220.217.161:8280/api/processes/

5a65ce87-4637-401e-868b-e20ec254fd35",
"date": "Mon, 11 Sep 2017 11:54:20 GMT",
"server": "ALM Ishtar/1.1.0-SNAPSHOT",
"transfer-encoding": "chunked",
"x-application-context": "ishtar:prod,swagger:8280",
"content-type": null

}

The process identifier in this response is 5a65ce87-4637-401e-868b-
e20ec254fd35. As soon as the new assembly instance is created, it can be
referred to by name. that is, test_1.

4. To check progress of this request, copy the process identifier from the response
into the eventId parameter of the following GET command (GET
/api/topology/assemblies{id}):
GET /api/topology/assemblies/5a65ce87-4637-401e-868b-e20ec254fd35

54 Agile Lifecycle Manager: Installation, Administration and User Guide

The processState in the following sample response indicates that the request
has completed, while intendedState indicates that it is as yet inactive.
{

"processId": "5a65ce87-4637-401e-868b-e20ec254fd35",
"assemblyId": " ef4ea879-e313-4e3b-ad11-6a0a7e7544eb",
"assemblyName": "test_1",
"assemblyDescriptorName": "assembly::t_bta::1.0",
"intentType": "CreateAssembly",
"intent": {
"assemblyName": "test_1",
"descriptorName": "assembly::t_bta::1.0",
"intendedState": "Inactive"

},
"processState": "Completed",
"processStartedAt": "2017-09-14T07:34:55.569Z",
"processFinishedAt": "2017-09-14T07:34:58.806Z"

}

Note: If the request had not completed it would have been in the InProgress
state. If there had been an issue, it would have been in the Failed state, in
which case there would have been a requestStateReason property with text
describing the failure.

5. Initiate a Start event from the Daytona API to start the new assembly instance,
that is, move it from an inactive to an active state. To start the new assembly
instance, use the swagger-url for the Daytona service, using the following POST
command:
POST /api/intent/changeAssemblyState
{

"assemblyName": "test_1",
"intendedState": "Active"

}

Agile Lifecycle Manager executes Configure and then Start transitions, which
move the state to 'active'.

6. To verify the status of the assembly instance, check it again:
GET /api/topology/assemblies/5a65ce87-4637-401e-868b-e20ec254fd35

The 'intendedState' in the sample response indicates that the Start event has
completed successfully.
{

"processId": "5a65ce87-4637-401e-868b-e20ec254fd35",
"assemblyId": " ef4ea879-e313-4e3b-ad11-6a0a7e7544eb",
"assemblyName": "test_1",
"assemblyDescriptorName": "assembly::t_bta::1.0",
"intentType": "CreateAssembly",
"intent": {
"assemblyName": "test_1",
"descriptorName": "assembly::t_bta::1.0",
"intendedState": "Active",

...

Results

A new assembly instance with the name 'test_1' exists in an 'Active' state, and
configured according to the rules defined in assembly descriptor
'assembly::t_bta::1.0'.

Chapter 5. Getting started (using the APIs) 55

Exploring an assembly instance
This topic describes how to use Agile Lifecycle Manager to see the assembly
structure, and (optionally) the associated history of lifecycle transitions of a
previously created assembly, in this case test_1.

Before you begin

You must create the example assembly instance called test_1, which is described
in “Creating an assembly instance” on page 53.

About this task

To see the assembly structure and the history of lifecycle transitions, you explore
the topology of the assembly instance by using the API for Galileo (the gateway
service). The Galileo API, its methods and associated attributes are explained in
more detail in the “Lifecycle Manager API” on page 97 reference section.

Procedure
1. Identify the name of the assembly instance from its assemblyName field, in this

case test_1.
2. Query the assembly topology through the Galileo API using the following GET

command:
GET /api/topology/assemblies?numEvents=<event numbers>&name=<assembly instance name>

To see only the structure of the assembly, set the value of numEvents to zero (0).
If you set it to a value greater than zero, the specified number of Assembly
Lifecycle Request events that have occurred on the assembly and their
associated State Change Events is displayed, starting with the latest.
The following example depicts the GET request to obtain the topology of test_1,
with no event history.
GET /api/topology/assemblies?numEvents=0&name=test_1

This query results in the following response:
{

"type": "Assembly",
"id": "ef4ea879-e313-4e3b-ad11-6a0a7e7544eb",
"name": "test_1",
"state": "Active",
"descriptorName": "assembly::t_bta::1.0",
"properties": [
{

"name": "numOfServers",
"value": "1"

},
{

"name": "data",
"value": "data"

},
{

"name": "deploymentLocation",
"value": "admin@local"

},
{

"name": "resourceManager",
"value": "test-rm"

}
],
"createdAt": "2017-09-12T06:38:43.365+0000",
"lastModifiedAt": "2017-09-12T06:38:45.514+0000",

56 Agile Lifecycle Manager: Installation, Administration and User Guide

"children": [
{

"type": "Component",
"id": "c903c6db-9a79-4248-b62b-fd11ec01efe0",
"name": "test_1__A",
"externalId": "72857624-ccb4-4cf2-8ebf-0ab05e67a5a5",
"state": "Active",
"descriptorName": "resource::t_simple::1.0",
"properties": [

{
"name": "data",
"value": "data"

...
]

}

This sample response displays the identity, status and structure of the assembly
instance. The assembly instance has two child instances, test_1__A and
test_1__B__1. The names are generated from the assembly name test_1 and
the resource name from the t_bta descriptor. Resource B is in a scaling group,
and each member of a scaling group is numbered. The relationship between the
two resources can also be seen, as well as the references to resources used from
the deploymentLocation property.

Healing a component
A heal request targets a component (a resource that is 'broken') and attempts to
return it to an 'Active' state.

Before you begin
v You must create the example assembly instance with an assemblyName of

test_1, as described in “Creating an assembly instance” on page 53.
v To heal the component of an assembly, the assembly to which the component

belongs must be in an Active state.

About this task
v Agile Lifecycle Manager accepts the request to heal without performing any

checks first.
v Heal is a pattern that calls 'Stop', 'Start', and then 'Integrity' on the component.
v If 'Integrity' is successful, then the heal is successful.
v The assembly containing the broken component must be in the 'active' state to

call heal.
v The request to heal includes the ID of the component in the assembly instance to

be healed.

Procedure
1. To obtain the ID of the component in the assembly instance to be healed, you

can query the assembly topology through the Galileo API using the following
GET command:

Note: You identify the component to be healed by the following combination:
The name or ID of the assembly, plus the name or ID of the component.
GET /api/topology/assemblies?numEvents=0&name=test_1

This query will return assembly topology information including the id in the
children section, as depicted in the following sample extract:

Chapter 5. Getting started (using the APIs) 57

...
"children": [
{

"type": "Component",
"id": "c903c6db-9a79-4248-b62b-fd11ec01efe0",
"name": "test_1__A",
...

2. To initiate a heal pattern from the Daytona API, run the following POST
command from the swagger-url of the Daytona service. You can use the name
or ID as identifier. In the following examples, the ID or name obtained in the
previous step can be used to define the componentId value, which targets the
component to be healed. Any of the following examples will initiate a heal
pattern.

Assembly name and component name
POST /api/intent/healAssembly
{
"assemblyName": "test_1",
"brokenComponentName": " test_1__A"

}

Assembly name and component ID
POST /api/intent/healAssembly
{
"assemblyName": "test_1",
"brokenComponentId": "c903c6db-9a79-4248-b62b-fd11ec01efe0"

}

Assembly ID and component name
POST /api/intent/healAssembly
{
"assemblyId": "ef4ea879-e313-4e3b-ad11-6a0a7e7544eb",
"brokenComponentName": "test_1__A"

}

Assembly ID and component ID
POST /api/intent/healAssembly
{
"assemblyId": "ef4ea879-e313-4e3b-ad11-6a0a7e7544eb",
"brokenComponentId": "c903c6db-9a79-4248-b62b-fd11ec01efe0"

}

Agile Lifecycle Manager initiates the heal pattern, which cycles through 'Stop',
'Start', and 'Integrity'.

3. To check the status of the previously 'broken' component after healing, you
query the assembly topology through the Galileo API using the following GET
command, with numEvents set to 5 in order to see the sequence of heal events
that occurred.
GET /api/topology/assemblies?numEvents=5&name=test_1

Results

If the healing has been successful, the depicted state transitions will move from
'Broken' to 'Inactive' to 'Active'. A state of 'Active' connotes a healthy, in this case
healed, component, as depicted in the following example.

Example
{

"eventId": "d557dfcb-609b-40d3-9f87-c9cc8568ccc1",
"rootAssemblyInstanceId": "acbd4cb1-1ec2-41f6-a2c7-693653291e5a",
"rootAssemblyInstanceName": "test_1",
"resourceInstanceId": "a4e6a96a-db96-4ef6-ac59-4e87c7efb5d2",

58 Agile Lifecycle Manager: Installation, Administration and User Guide

"resourceInstanceName": "test_1__A",
"resourceManager": "test-rm",
"deploymentLocation": "admin@local",
"externalId": "6d427f14-34a5-48f9-9575-2ec0b9ede2df",
"eventCreatedAt": "2017-08-23T11:16:16.637Z",
"previousState": "Broken",
"newState": "Inactive",
"successful": true,
"changeStartedAt": "2017-08-23T11:16:16.546Z",
"changeFinishedAt": "2017-08-23T11:16:16.637Z",
"eventType": "StateChangeEvent"

}

{
"eventId": "1786a172-7027-4223-943e-edc5673ad5bc",
"rootAssemblyInstanceId": "acbd4cb1-1ec2-41f6-a2c7-693653291e5a",
"rootAssemblyInstanceName": "test_1",
"resourceInstanceId": "a4e6a96a-db96-4ef6-ac59-4e87c7efb5d2",
"resourceInstanceName": "test_1__A",
"resourceManager": "test-rm",
"deploymentLocation": "admin@local",
"externalId": "6d427f14-34a5-48f9-9575-2ec0b9ede2df",
"eventCreatedAt": "2017-08-23T11:16:16.867Z",
"previousState": "Inactive",
"newState": "Active",
"successful": true,
"changeStartedAt": "2017-08-23T11:16:16.678Z",
"changeFinishedAt": "2017-08-23T11:16:16.867Z",
"eventType": "StateChangeEvent"

}

{
"eventId": "70061a12-d42f-42c4-8c70-8ca9391ce37f",
"eventCreatedAt": "2017-08-23T11:16:16.327Z",
"assemblyInstanceId": "acbd4cb1-1ec2-41f6-a2c7-693653291e5a",
"assemblyInstanceName": "test_1",
"assemblyDescriptorName": "assembly::t_bta::1.0",
"action": "Heal",
"requestState": "Completed",
"requestStartedAt": "2017-08-23T11:16:16.327Z",
"requestFinishedAt": "2017-08-23T11:16:17.066Z",
"properties": {
"data": "data",
"deploymentLocation": "admin@local",
"numOfServers": "1",
"resourceManager": "test-rm"

},
"eventType": "AssemblyLifecycleRequest"

}

Scaling a component
Scaling the component of an assembly is a pattern that will either add or remove a
component instance from a scaling group (including all relationships).

Before you begin
v You must create the example assembly instance called test_1, which is described

in “Creating an assembly instance” on page 53.
v The assembly to which the component belongs must be instantiated in the Agile

Lifecycle Manager topology, and be in the 'Active state'.
v A cluster definition for the component itself must exist in the assembly

descriptor, in which the minimum and maximum size of the scaling group and
the default increment when scaling out or in are also defined.

Chapter 5. Getting started (using the APIs) 59

You can find more detailed information on how to define clusters in assembly
descriptors in the “Assembly descriptor YAML specifications” on page 151
reference section.

About this task

Assembly descriptors are in the Agile Lifecycle Manager catalog, which you can
view using the process described in following topic: “Exploring an assembly
descriptor” on page 64 For this task you use component B, which is part of the
t_bta assembly (assembly::t_bta::1.0).

The cluster definition for component B is depicted in the following sample:
...
composition:

A:
type: resource::t_simple::1.0
quantity: ’1’

...
B:
type: resource::t_simple::1.0
cluster:

initial-quantity: ’${numOfServers}’
minimum-nodes: 1
maximum-nodes: 4
scaling-increment: 1

properties:
...

Procedure
1. To identify the name of the component of the test_1 assembly to be scaled,

you can query the assembly topology through the Galileo API using the
following GET command:
GET /api/topology/assemblies?numEvents=0&name=test_1

This query will return assembly topology information including the
descriptorName, as depicted in the following sample:
"type": "Assembly"

"id": "bf649336-c8c5-49d9-9f4e-60567fe54135",
"name": "test_1",
"state": "Active",
"descriptorName": "assembly::t_bta::1.0",
"properties": [
{

...

2. Retrieve the descriptor from the Agile Lifecycle Manager catalog by running
the following query on the Apollo API using the descriptorName obtained in
the previous step:
GET /api/catalog/descriptors/assembly::t_bta::1.0

The scaling group definition for B is shown in the following sample.
...
composition:

A:
type: resource::t_simple::1.0
quantity: ’1’

...
B:
type: resource::t_simple::1.0
cluster:

initial-quantity: ’${numOfServers}’

60 Agile Lifecycle Manager: Installation, Administration and User Guide

minimum-nodes: 1
maximum-nodes: 4
scaling-increment: 1

properties:
...

Here one instance of B is created when an instance of the assembly is created.
By scaling Out or In, the amount of B instances can be changed between one
and four. As the increment is defined as one, each scale out or scale in pattern
will increase or decrease the amount of B instances by one.

3. To scaleOut, that is to add another instance of resource B to test_1, use the
swagger-url for the Daytona service, using the following POST command: You
can use either the assemblyName or assemblyId to initiate the 'Scale Out'
pattern.
POST /api/intent/scaleOutAssembly
{

"assemblyName": "test_1",
"clusterName": "B"

}

Or:
POST /api/intent/scaleOutAssembly
{

"assemblyId": "ef4ea879-e313-4e3b-ad11-6a0a7e7544eb",
"clusterName": "B"

}

The clusterName identifies the group of resources to be scaled (B), increasing
the amount of B instances by one unless the maximum scaling group size (in
this case four) has been reached.

4. To scaleIn, that is to reduce the instances of resource B, use the following POST
command: You can use either the assemblyName or assemblyId to initiate the
'Scale In' pattern.
POST /api/intent/scaleInAssembly
{

"assemblyName": "test_1",
"clusterName": "B"

}

Or:
POST /api/intent/scaleInAssembly
{

"assemblyId": "ef4ea879-e313-4e3b-ad11-6a0a7e7544eb",
"clusterName": "B"

}

Here the group of B resources are decreased by one, unless the minimum
scaling group size (in this case one) has been reached.

5. To check the status of the assembly after scaling, query the assembly topology
using the following GET command, with numEvents set to 5 in order to see the
sequence of scaling events.
GET /api/topology/assemblies?numEvents=5&name=test_1

The assembly topology will depict all the instances of component B and the
relationships towards the new resource instances.

Chapter 5. Getting started (using the APIs) 61

Results

When viewing the topology after running ScaleOut, a new instance of B will be
depicted called test_1__B__2, as well as a new relationship between it and the
existing test_1__A instance.

Uninstalling an assembly instance
To uninstall an existing assembly instance from the Agile Lifecycle Manager
topology, and the corresponding resources from the applicable resource managers,
you use the swagger-url for the Daytona service.

Before you begin

Before you can uninstall an assembly instance, you must identify it.

For this example uninstall scenario, you must first create the example assembly
instance called test_1, which is described in “Creating an assembly instance” on
page 53.

About this task

You can find more detailed information on the Daytona API, its methods, and
associated attributes in the “Lifecycle Manager API” on page 97 reference section.

Procedure
1. Identify the name of the assembly instance from its assemblyName field, in this

case test_1.
2. To uninstall the assembly instance, run the following POST command from the

swagger-url of the Daytona service: You can use either the assemblyName or
assemblyId to uninstall an assembly instance.
POST /api/intent/deleteAssembly
{
"assemblyName":"test_1"
}

Or:
POST /api/intent/deleteAssembly
{
"assemblyId":"ef4ea879-e313-4e3b-ad11-6a0a7e7544eb"
}

A successful uninstall will result in a system response similar to the following
example:
{ "x-application-context": "ishtar:prod,swagger:8280", "date": "Mon, 27 Nov 2017 15:54:03 GMT",
"location": "http://9.20.65.179:8280/api/swagger/daytona/api/processes/86524eed-532e-47ad-aa8a-
1d8e9ab0aae3",
"transfer-encoding": "chunked", "server": "ALM Ishtar/1.1.2.181", "content-type": null}

Results

The uninstall process results in the removal of the test_1 assembly instance, as well
as any corresponding resources from the applicable resource managers.

62 Agile Lifecycle Manager: Installation, Administration and User Guide

What to do next

You can double-check that the assembly instance has been successfully uninstalled
by querying the assembly topology by name, using the following GET command:
GET /api/topology/assemblies?numEvents=0&name=test_1

If the uninstall process was successful, a response code of 404 (NOT FOUND) will be
returned, indicating that the assembly instance has been removed from Agile
Lifecycle Manager.

Browsing assembly descriptors
This task allows you to browse all descriptors existing in the Agile Lifecycle
Manager catalog. The descriptors include both the onboarded resource descriptors
and assembly descriptors created in Agile Lifecycle Manager.

Before you begin

Agile Lifecycle Manager must be installed, with any included resources and test
assemblies deployed to the catalog.

Remember: Resources must exist (for example, must have been onboarded) before
you can browse descriptors.

Procedure

Query the existing descriptors in the Agile Lifecycle Manager catalog. The list of
resource and assembly descriptors in the Agile Lifecycle Manager catalog can be
viewed by running the following query on the Apollo API:
GET /api/catalog/descriptors

The response to this query lists the names, descriptions and references to all
existing descriptors in the catalog, as depicted in the following sample response:
[
{
"name": "resource::t_simple::1.0",
"description": "resource for t_simple",
"links": [
{
"rel": "self",
"href": "http://10.220.217.175:8280/api/catalog/descriptors/resource::t_simple::1.0"

}
]

},
...

...
{
"name": "assembly::t_bta::1.0",
"description": "Basic Test Assembly",
"links": [
{
"rel": "self",
"href": "http://10.220.217.175:8280/api/catalog/descriptors/assembly::t_bta::1.0"

}
]

}
]

Chapter 5. Getting started (using the APIs) 63

Results

You now have reference information about the resource and assembly descriptors
that are in the Agile Lifecycle Manager catalog.

Exploring an assembly descriptor
This task allows you to investigate the full contents of a specific resource or
assembly descriptor in the Agile Lifecycle Manager catalog.

Before you begin

To explore an assembly descriptor, it must have been created in Agile Lifecycle
Manager, or created in the Agile Lifecycle Manager catalog during the onboarding
of a resource descriptor.

Procedure

Retrieve the descriptor from the Agile Lifecycle Manager catalog by running the
following query on the Apollo API: The assembly descriptor explored in this
example is assembly::example::1.0
GET /api/catalog/descriptors/assembly::t_bta::1.0

The response to this query displays the descriptor. A sample extract is shown here.
The full assembly descriptor of this assembly can be viewed in the following topic:
“Sample assembly descriptor” on page 75
name: assembly::t_bta::1.0
description: Basic Test Assembly
properties:

data:
default: "data"
type: string
description: ’parameter passed’

...
composition:

A:
type: resource::t_simple::1.0

...

B:
type: resource::t_simple::1.0

...
references:

internal-network:
...
relationships:

third-relationship:
source-capabilities:
- A.capability-3
target-requirements:
- B.requirement-3

...

Results

This task allows you to view a specific resource or assembly descriptor in the Agile
Lifecycle Manager catalog.

64 Agile Lifecycle Manager: Installation, Administration and User Guide

Creating a new assembly descriptor
This task creates a new assembly descriptor and inserts it in the Agile Lifecycle
Manager topology.

Before you begin

Agile Lifecycle Manager must be installed, with all included resources and test
assemblies deployed to the catalog.

About this task

An example assembly named assembly::example::1.0 is used in this task.

Procedure
1. Insert a new assembly descriptor into the Agile Lifecycle Manager catalog by

running the following request on the Apollo API. The content of the assembly
descriptor must be in YAML format. The full assembly descriptor of this
assembly is in the following topic: “Sample assembly descriptor” on page 75
POST /api/catalog/descriptors

{
DESCRIPTOR OF THE NEW ASSEMBLY IN YAML FORMAT
}

2. Verify that the new descriptor exists in the Agile Lifecycle Manager catalog.
The list of resource and assembly descriptors in the Agile Lifecycle Manager
catalog can be viewed by running the following query on the Apollo API:
GET /api/catalog/descriptors

The response to this query lists the new descriptor.

Results

After completing this task, the newly created assembly descriptor exists in the
Agile Lifecycle Manager topology and can be instantiated and managed by Agile
Lifecycle Manager.

Updating an assembly descriptor
This task updates an existing assembly descriptor in the Agile Lifecycle Manager
catalog.

Before you begin

An assembly descriptor must exist in the Agile Lifecycle Manager catalog.

About this task

This task changes an existing descriptor in the Agile Lifecycle Manager catalog
without changing the version number of the descriptor.

Tip: This procedure is mainly intended for service designers who want to change
a descriptor during the development process.

Chapter 5. Getting started (using the APIs) 65

Procedure
1. Change the assembly descriptor as required.
2. Replace the previous assembly descriptor version in the Agile Lifecycle

Manager catalog by running the following request on the Apollo API. The
assembly descriptor replaced is this example is assembly::example::1.0. The
full assembly descriptor of this assembly is in the following topic: “Sample
assembly descriptor” on page 75 The content of the assembly descriptor must
be in YAML format.
PUT /api/catalog/descriptors/assembly::example::1.0

{
CHANGED DESCRIPTOR OF AN EXISTING ASSEMBLY IN YAML FORMAT
}

3. Verify that the descriptor updates have been made. Retrieve the descriptor from
the Agile Lifecycle Manager catalog by running the following query on the
Apollo API:
GET /api/catalog/descriptors/assembly::example::1.0

The response to this query displays the updated descriptor.

Results

After completing this task the assembly::example::1.0 descriptor in the Agile
Lifecycle Manager catalog is updated according to the YAML given as input in step
2.

Removing an assembly descriptor
This task removes an existing assembly descriptor from the Agile Lifecycle
Manager catalog.

Before you begin

An assembly descriptor must exist in the Agile Lifecycle Manager catalog before
you can remove it.

About this task

After removing a descriptor from the Agile Lifecycle Manager catalog it is not
possible to create new instances of it. All existing instances of the assembly will
remain and are not deleted. However, it is recommended that you not remove an
assembly descriptor while there are existing instances of it in the Agile Lifecycle
Manager topology.

Tip: Assembly instances can be deleted by running the “Uninstalling an assembly
instance” on page 62 task.

Procedure
1. Remove an assembly descriptor from the Agile Lifecycle Manager catalog by

running the following request on the Apollo API. The assembly descriptor
deleted in this example is assembly::example::1.0
DELETE /api/catalog/descriptors/assembly::example::1.0

2. Verify that the descriptor has been deleted. Attempt to retrieve the descriptor
from the Agile Lifecycle Manager catalog by running the following query on
the Apollo API:

66 Agile Lifecycle Manager: Installation, Administration and User Guide

GET /api/catalog/descriptors

The response to this query should not list the descriptor anymore.

Results

After completing this task the descriptor has been removed from the Agile
Lifecycle Manager catalog and can no longed be viewed or managed by Agile
Lifecycle Manager.

Upgrading an assembly instance
Once an assembly has been created it can be upgraded. An assembly instance can
be upgraded to a new type, or have changed property values, or both new type
and property values. This topic describes how to upgrade an assembly instance,
with examples of how to change types and add a component.

Before you begin

The assembly to be upgraded should be instantiated in the ALM topology and
must be in the 'active' state.

For the following example, you must have created the example assembly instance
called test_1, as described in “Creating an assembly instance” on page 53.

About this task

This task upgrades a property of the 'test_1' assembly instance of the type
't_single::1.0' to the type 't_single::1.1', which also has an additional component
named 'B'.

Supported assembly upgrade scenarios

Definition of an assembly upgrade
Change an active assembly instance from its current type and set of
properties to a new type and/or new property values.

The 'type' of a component instance is determined by
[assembly|resource]::<type name>::<version>

If the name of a property in the original and new type are the same, then
they are assumed to be the same and can be mapped from the original to
new properties.

If a property value is changed in a component, then the component will be
re-installed with the new value.

If there is a new relationship between components of the new assembly
type, the relationship is created. This may mean that a component must be
transitioned to the correct states to create the new relationship.

If a relationship between components is removed from the upgraded
assembly, the relationship is deleted.

If a property value of a relationship changes, then the relationship is
deleted and re-created. This may mean that a component must be
transitioned to the correct states to create the new relationship.

If a component, identified by name and type is not in the new assembly it
is uninstalled.

Chapter 5. Getting started (using the APIs) 67

If a component, identified by name and type is not in the original
assembly it is created and transitioned to the active state.

If an assembly’s properties are changed, only the resources impacted are
changed, resources that are not impacted and are unchanged. That is, if
after an upgrade, a resource has the same name, type and property values,
then it will not be transitioned during the upgrade; it will remain in the
active state, unless a transition was triggered by a relationship change.

If a component's descriptor changes in any way, it is expected that the type
will have changed (that is, there is a new type name and or version) and
the component will be re-installed.

If a reference to an external component is removed from the assembly then
any relationships referring to it will be deleted.

If a reference to an external component is added to the assembly then any
relationships referring to it will be created.

The size of a cluster before an upgrade is maintained after the upgrade.

The current limitations on an Assembly Upgrade are:
v Changing cluster property values to 'initial-quantity', 'minimum-nodes',

'maximum-nodes' or 'scaling-increment' is not currently supported by
the Assembly Upgrade pattern.

v Changes to policy and metric property values is not supported by the
Assembly Upgrade pattern.

Procedure
1. Obtain a copy of t_simple::1.0 by browsing the catalog. Run the following

query on the Apollo API to find it:
GET /api/catalog/descriptors

2. Change the version to t_simple::1.1
3. Add a new resource 'B' to the composition table by copying resource A and

changing it as depicted in the following example:
B:

type: resource::t_simple::1.1
quantity: ’1’
properties:

referenced-internal-network:
value: ${internal-network.id}

reference-public-network:
value: ${public-network.id}

image:
value: ${xenial-image.id}

key_name:
value: "ACCANTO_TEST_KEY"

data:
value: ${data}

output:
value: "B_output"

deploymentLocation:
value: ${deploymentLocation}

resourceManager:
value: ${resourceManager}

4. Create a new assembly descriptor in the Agile Lifecycle Manager catalog called
assembly::t_single::1.1 by running the following request on the Apollo API.
POST /api/catalog/descriptors/assembly::t_single::1.1

5. Query the assembly topology for the assembly instance 'test_1' by using the
following API request on the Ishtar service.

68 Agile Lifecycle Manager: Installation, Administration and User Guide

GET /api/topology/assemblies?numEvents=0&name=test_1

The assembly type for test_1 will be assembly::t_single::1.0, and there will
not be a component of type 'B'.

6. Upgrade of assembly instance.
POST /api/intent/upgradeAssembly
{

"assemblyName": "test_1",
"descriptorName": "assembly::t_single::1.1"

}

7. Verify the updated assembly instance 'test_1' by using the following API
request on the Ishtar service.
GET /api/topology/assemblies?numEvents=0&name=test_1

The assembly type for test_1 will be assembly::t_single::1.1, and there will
be a new component of type 'B'.

List all onboarded resource managers
Use this task to see all resource managers that have been onboarded to Agile
Lifecycle Manager.

Before you begin

Agile Lifecycle Manager must be installed, with all included resources and test
assemblies deployed to the catalog.

One or more resource managers must have been onboarded.

Remember:

Onboarding is the act of adding a resource manager to Agile Lifecycle Manager. It
lets Agile Lifecycle Manager know that the resource manager exists, and it imports
the descriptors of all the resource types managed by the resource manager. It also
gathers the information about the deployment locations that the resource manager
uses.

About this task

Agile Lifecycle Manager maintains a record of each resource manager it can use to
create and manage resources. When a new resource manager record is created, the
resource types managed by that resource manager instance are read into Agile
Lifecycle Manager via the resource manager's API.

Procedure

Query the list of onboarded resource managers by running the following query on
the Ishtar API:
GET /api/resource-managers

The response to the query returns the name, type and url of each resource
manager present.

Chapter 5. Getting started (using the APIs) 69

What to do next

You now know which resource managers have been onboarded, and can use their
identifiers to access them.

Exploring an onboarded resource manager
You can explore the status of any onboarded resource managers using the API for
Ishtar (Gateway).

Before you begin

To confirm a resource manager has been onboarded, you need to know the name
that was used to create it in Agile Lifecycle Manager, in this case 'test-rm'.

Remember:

Onboarding is the act of adding a resource manager to Agile Lifecycle Manager. It
lets Agile Lifecycle Manager know that the resource manager exists, and it imports
the descriptors of all the resource types managed by the resource manager. It also
gathers the information about the deployment locations that the resource manager
uses.

About this task

Agile Lifecycle Manager uses resource managers to deploy new resource instances
and execute transitions and operations on them. A resource manager manages
instances of resource types in a number of resource locations where resource
instances can be created.

Agile Lifecycle Manager maintains a record of each resource manager it can use to
create and manage resources. When a new resource manager record is created, the
resource types managed by that resource manager instance are read into Agile
Lifecycle Manager via the resource manager's API.

In Agile Lifecycle Manager, the resource types are stored in var_alm/catalog/
resources as descriptor files (see the “Assembly descriptor YAML specifications”
on page 151 topic for more details). The deployment locations that a resource
manager instance can deploy resources into are also onboarded. Each deployment
location is considered local to a resource manager.

You can find more detailed information on the Ishtar API, its methods, and
associated attributes in the “Lifecycle Manager API” on page 97 reference section.

Procedure
1. Ensure you have the correct resource manager name. The name of the resource

manager is defined when the resource manager record is created, as described
in “Creating a new resource manager record” on page 71.

2. Use the following GET command on the Ishstar API to confirm that a resource
manager has been onboarded:
GET /api/resource-managers/<your-rm>

If the resource manager exists, the following response will be displayed.

70 Agile Lifecycle Manager: Installation, Administration and User Guide

{
"name": "<your-rm>",
"type": "default",
"url": "http://<your-rm>:8295/api/resource-manager"

}

As <your-rm> is the name of a resource manager instance, the response body
comprises the instance name and the type of the resource manager (in this case
default). The type of the resource manager is local to Agile Lifecycle Manager
to allow the user to describe resource manager instances that are of the same
type.
The url property contains the URL of the resource manager that is used by
Agile Lifecycle Manager to make requests to the resource manager instance.
The hostname:port (<your-rm>:8295) must be reachable from the Agile Lifecycle
Manager host. If using the Swagger API, the {id} parameter in the URL is set
to the 'name' value (<your-rm>).

Tip: If the resource manager has not been onboarded, then the response code
to the GET will be 404 – NOT FOUND

What to do next

To perform another check of successful onboarding, you can look in
var_alm/catalog/resources and check that any resource descriptors that the new
resource manager supports have been onboarded. To view descriptors, follow the
steps described in “Browsing assembly descriptors” on page 63.

Creating a new resource manager record
You create a new resource manager record in Agile Lifecycle Manager in order to
make the system aware of the resource manager, and enable it to access the
resources it manages.

Before you begin

This assumes a resource manager has been installed, configured and is ready to be
used by Agile Lifecycle Manager at a given URL, which in this example is
http://<rm-ip-address>:<rm-api-port>/api/resource-manager

Remember: A resource manager record, which is created in this task, is not the
same as an actual resource manager.

Agile Lifecycle Manager maintains a record of each resource manager it can use to
create and manage resources. When a new resource manager record is created, the
resource types managed by that resource manager instance are read into Agile
Lifecycle Manager via the resource manager's API.

About this task

To create a new record of a resource manager in order to make Agile Lifecycle
Manager aware of its existence, you must give it a unique name, in this example
'ucd'.

Tip: 'Type' is a name local to Agile Lifecycle Manager and can be used to describe
the type of resource manager.

Chapter 5. Getting started (using the APIs) 71

You can find more detailed information on the Ishtar API, its methods, and
associated attributes in the “Lifecycle Manager API” on page 97 reference section.

Procedure
1. To create a new resource manager record, use the following POST command on

the Ishstar API:
POST /api/resource-managers
{

"name": "ucd",
"type": "ucd",
"url": "http://<rm-ip-address>:<rm-api-port>/api/resource-manager"

}

If the response code to the POST is 201 – Created, then the record has been
created within Agile Lifecycle Manager. If the response code is anything other,
then a problem has been encountered.

2. Use the following GET command on the Ishtar API to confirm the status of the
new 'ucd' resource manager record.
GET /api/resource-managers/ucd

If the record has been created, the following response will be displayed:
{

"name": "ucd",
"type": "ucd",
"url": "http://<rm-ip-address>:<rm-api-port>/api/resource-manager"

}

In addition, the response body of the request returns information on the
onboarded resource types and possible deployment locations, as depicted in the
following example:
{

"resourceManagerOperation": "ADD",
"deploymentLocations": {
"test@local2": {

"operation": "ADD",
"success": true

},
"admin@local": {

"operation": "ADD",
"success": true

},
"admin@local2": {

"operation": "ADD",
"success": true

}
},
"resourceTypes": {
"resource::<your-rm>::1.0": {

"operation": "ADD",
...

Results

A new resource manager record has been created in Agile Lifecycle Manager,
which is now aware of the resource manager it references, and is able to access the
resources it manages.

72 Agile Lifecycle Manager: Installation, Administration and User Guide

What to do next

If you attempt to create another record with the same name, a 409 error code will
be returned.

You can obtain more information on the newly created resource manager by
following the steps in “Exploring an onboarded resource manager” on page 70.

Updating a resource manager
Once a record for a resource manager instance has been created, you can perform
an update to re-onboard the resource types.

Before you begin

The resource manager must have been onboarded before you can update it.

About this task

You can find more detailed information on the Ishtar API, its methods, and
associated attributes in the “Lifecycle Manager API” on page 97 reference section.

Tip: If a resource descriptor with the same name already exists, it is not
overridden. If a resource descriptor has been updated, but has the same name, it
should be manually deleted from the catalog before trying to onboard the new
version.

Procedure
1. To update an existing resource manager instance, use the following PUT

command on the Ishstar API. The following example updates the record for
'<your-rm>' by checking the original onboarding location of the resource
manager for new or updated resources. If using the swagger API, the {id}
parameter in the URL is set to the name value, in this case '<your-rm>'.
PUT /api/resource-managers/test-rm
{

"name": "<your-rm>",
"type": "<your-rm>",
"url": "http://<your-rm>:8295/api/resource-manager"

}

2. Use the following GET command on the Ishstar API to check the status of the
resource manager following the update:
GET /api/resource-managers/<your-rm>

In addition, the response body of the request returns information on the
onboarded resource types and possible deployment locations, as depicted in the
following example:
{

"resourceManagerOperation": "ADD",
"deploymentLocations": {
"test@local2": {

"operation": "ADD",
"success": true

},
"admin@local": {

"operation": "ADD",
"success": true

},
"admin@local2": {

Chapter 5. Getting started (using the APIs) 73

"operation": "ADD",
"success": true

}
},
"resourceTypes": {
"resource::<your-rm>::1.0": {

"operation": "ADD",
...

Results

The resources for the updated resource manager are updated in the Agile Lifecycle
Manager catalog.

Deleting a resource manager record
You can delete the record of a resource manager instance within Agile Lifecycle
Manager.

Before you begin

The resource manager must have been onboarded before you can delete it.

About this task

After you delete the record of a resource manager instance, resources can no longer
be created by that resource manager, and any resources already created can no
longer be managed by that resource manager.

Note: The deployment locations for the resource manager are deleted. However,
the resource descriptors in var_alm/calalog/resources are not deleted, and must
be managed manually. See the following topic for more information on removing
resource descriptors: “Removing an assembly descriptor” on page 66

Procedure

To delete a resource manager record, use the following DELETE command on the
Ishstar API. The following example deletes the record for <your-rm>. If using the
swagger API, the {id} parameter in the URL is set to the name value, in this case
'<your-rm>'.
DELETE /api/resource-managers/<your-rm>

Successful deletion of <your-rm> is indicated by a 204 response code (Resource
Manager was deleted).

What to do next

You can double-check that the <your-rm> has been deleted by running the GET
command. If the response code to the GET is 404 – NOT FOUND, then the DELETE
action was successful.

74 Agile Lifecycle Manager: Installation, Administration and User Guide

Sample assembly descriptor
This reference topic contains the full assembly descriptor of the example assembly
(assembly::example::1.0) used in the Getting Started section.

assembly::example::1.0 sample descriptor
name: assembly::example::1.0
description: Assembly comprised of "components\\t_simple.yml"
properties:

data:
default: "data"
type: string
description: ’parameter passed’

output:
description: an example output parameter
type: string
read-only: true

deploymentLocation:
type: string
description: name of openstack project to deploy network
default: admin@local

resourceManager:
type: string
description: name of the resource manager
default:test-rm

composition:
A:
type: resource::t_simple::1.0
quantity: ’1’
properties:

referenced-internal-network:
value: ${internal-network.id}

reference-public-network:
value: ${public-network.id}

image:
value: ${xenial-image.id}

key_name:
value: "ACCANTO_TEST_KEY"

data:
value: ${data}

output:
value: ${output}

deploymentLocation:
value: ${deploymentLocation}

resourceManager:
value: ${resourceManager}

references:
internal-network:
type: resource::openstack_neutron_network::1.0
properties:

deploymentLocation:
value: ${deploymentLocation}

resourceManager:
value: ${resourceManager}

name:
type: string
value: VIDEO

public-network:
type: resource::openstack_neutron_network::1.0
properties:

deploymentLocation:
value: ${deploymentLocation}

resourceManager:
value: ${resourceManager}

name:
type: string

Chapter 5. Getting started (using the APIs) 75

value: public
xenial-image:
type: resource::openstack_glance_image::1.0
properties:

deploymentLocation:
value: ${deploymentLocation}

resourceManager:
value: ${resourceManager}

name:
type: string
value: xenial

76 Agile Lifecycle Manager: Installation, Administration and User Guide

Chapter 6. Administration

Use the following topics to understand administration tasks, such as viewing
system logs, or adjusting global timeout limits for resource managers.

Monitoring system health
Docker containers have built-in health monitoring, which you can use to check if a
service is still available.

Performing a health check

See the service REST API endpoints.

Managing the service logs
You can view logs for all Agile Lifecycle Manager services. You can also change the
default logging behavior, such as the number of days logs are stored before they
are deleted, the maximum storage space allocated, and the logging levels.

Before you begin

By default, logging rotates every day, keeping at most seven days with a maximum
limit of 1GB of files. This means that with the five services that currently comprise
Agile Lifecycle Manager at least 5GB of space must be available. If you increase
the limit, ensure you have sufficient storage space available for your logs.

About this task

Logs are found in the <install dir>/var_alm/logs directory where <install dir>
is the directory where Agile Lifecycle Manager is installed.

Remember: The default installation directory is /opt/IBM/netcool

Log files are named according to the Agile Lifecycle Manager component name,
plus the date. New logs are created daily at midnight.

The supported logging levels are:
v TRACE
v DEBUG
v INFO
v WARN
v ERROR

To change the number of days logs are capped, or the maximum size of logs, the
logging configuration must be updated. This can be done for all services, or per
service.

Procedure

Change logging options for all services

© Copyright IBM Corp. 2017 77

1. To change the logging options for all services, edit the var_alm/config-repo/
application.yml file as in the following example.

Tip: An example line is in the application.yml file and is commented out.
When you uncomment it, it should look like the following sample:
logging:

config: /var/alm/logback-spring.yml

2. Commit the change to Git.
3. Rename the example logback-sprint.yml file in the var_alm/examples directory,

and move it to the var_alm directory.
4. Change the values for maxHistory and totalSizeCap in the renamed

logback-sprint.yml file as in the following example:
<!-- This part can be changed -->

<!-- keep 7 days’ worth of history capped at 1GB total size -->
<maxHistory>7</maxHistory>
<totalSizeCap>1GB</totalSizeCap>

</rollingPolicy>
<!-- End of part that can be changed -->

Change logging options for a specific service

5. Change the relevant yaml file in the config-repo directory to add a logging
entry pointing to the log file.

Note: The log file path is as used in the container, which is /var/alm and not
/var_alm/.

6. Include the logback-spring.yml for the micro service in the log directory under
/var_alm/ so that it will be mounted within the container.

Change log levels

7. To change log levels, you POST to the management/loggers URL at runtime. The
following example changes the log level for the Daytona service to DEBUG:
POST http://<docker-host>:8281/management/loggers/com.accantosystems
{
"configuredLevel": "DEBUG"

}

v TRACE
v DEBUG
v INFO
v WARN
v ERROR

Any data recorded at a log level above INFO, such as DEBUG or TRACE, does
not appear in the console output, but only in the log file; that is in
var_alm/log/*.

8. To check the result of your POST, perform a GET, as in the following example:
GET http://<docker-host>:8281/management/loggers/com.accantosystems
{

"configuredLevel": "DEBUG",
"effectiveLevel": "DEBUG"

}

The configuredLevel must be provided when changing the log level, and in
this example is the new logging level to be set, while effectiveLevel is the
current active logging level.

78 Agile Lifecycle Manager: Installation, Administration and User Guide

Setting timeout limits for resource managers
A request to a resource manager from Agile Lifecycle Manager times out if the
request does not complete within the set timeout period. You can adjust the default
limits for this period.

About this task

Timeout limits are a protection mechanism to prevent Agile Lifecycle Manager
intents from hanging indefinitely. Timeout is measured by Agile Lifecycle Manager
from the moment it receives a successful response from a resource manager.

The default timeout is 900 seconds (that is, 15 minutes). The timeout can be set in
the following file by adding default-timeout-duration to the resource-manager
section:
<distribution dir>/var_alm/config_repo/daytona.yml

To view or edit the daytona.yml file, use an appropriate text editor.

Procedure
1. Edit the daytona.yml file, as in the following example. In this example, the

default timeout value is changed to 16 minutes (960 seconds).
alm:

daytona:
resource-manager:

default-timeout-duration: 960

2. Commit the configuration changes. In the <distribution dir>/var_alm/
config_repo directory:
git add daytona.yml
git commit -m "changed global resource manager request timeout"

3. Restart Daytona. In the <distribution dir> directory:
docker-compose -f alm-docker-compose.yml restart daytona

Results

The default timeout limits for resource managers has been changed.

Enabling HTTPS support (for the Nimrod service)
The Nimrod service is accessed through HTTP by default. This topic describes how
you can enable HTTPS support instead.

About this task

Procedure
1. Create a keystore and self-signed certificate using the Java keytool. In the

following example, the command is run from the <distribution_dir>/var_alm
directory inside the installation directory:
keytool -genkey -alias alm -storetype PKCS12 -keyalg RSA -keysize 2048
-keystore keystore.p12 -validity 3650

2. Add the following properties to the nimrod.yml file in the<distribution_dir>/
var_alm/config-repo directory. The password must match the one used in the
previous step.

Chapter 6. Administration 79

server:
ssl:
keyStore: file:/var/alm/keystore.p12
keyStorePassword: pass1234
keyStoreType: PKCS12
keyAlias: alm

3. Commit the changes to the config-repo and restart the Nimrod service, as in
the following example:
git add nimrod.yml
git commit -m "enabling https support"

4. In the <distribution dir>, restart Nimrod:
docker-compose -f alm-docker-compose.yml restart nimrod

Results

Nimrod will now be accessible via HTTPS instead of HTTP.

Note: You may receive a warning about not being able to verify the certificate.

Ensuring Log files are not owned by the root user
When Agile Lifecycle Manager containers write to host-mounted Docker volumes
(such as var_alm/logs) on a Linux host the files will, by default, be owned by root.
To avoid this, it is possible to use a Docker-mandated approach that utilizes Linux
uid remapping to map container uids and gids (user and group ids) to host uids
and gids in a predictable manner.

About this task

Although this procedure will work on any Linux system with equivalent
commands, the following steps assume an Ubuntu system is being used.

Procedure
1. Add the following to your /etc/docker/daemon.json file. Create the file if it

does not exist:
{

"userns-remap": "USER"
}

Where USER is a user on your host system that will be configured to have
access to any files written by the Docker containers. This configures the Docker
daemon to apply uid and gid re-mapping between Docker containers and the
host system.

2. Restart your Docker daemon:
sudo /etc/init.d/docker restart

3. Add the following to the /etc/subuid file:
USER:[USER uid]:1
USER:165536:65536

Substituting your chosen user for 'USER' and the uid of 'USER' for [USER uid].
This will map uid 0 (root) in your containers on to uid [USER uid] on the host
(this means that files written by the microservices running inside the containers
as root will be owned by USER), and uids 1 and upwards in your containers to
the range starting at 165536. These uids on your host will be accessible by
USER. You may choose whichever value you like here, as long as it does not
overlap with other ranges in the same file.

80 Agile Lifecycle Manager: Installation, Administration and User Guide

4. Add the following to the /etc/subuid file:
USER:165536:65536

Substitute your chosen user for 'USER'. The start range value (165536) must be
the same as in the previous step.

Tip:

If you want the root group inside the containers to map onto a specific group
on your host, add the following instead:
USER:[gid of group]:1
USER:165536:65536

You can find the official Docker documentation at the following site:
https://docs.docker.com/engine/security/userns-remap/

Ensuring support for accented characters
To support accented characters correctly, it is imperative that the Java JVM being
used to run Agile Lifecycle Manager is configured to support multi-byte characters.

Procedure
1. You configure the Java JVM being used to run Agile Lifecycle Manager to

support multi-byte characters via the 'environment' section of the Docker
compose alm-docker-compose.yml file as in the following example: The key
settings are highlighted in bold text.
...
environment:
- spring.cloud.config.server.git.uri=file://var/alm/config-repo
- eureka.instance.hostname=conductor
- LOG_FOLDER=/var/alm/logs
- spring.main.banner-mode=off
- LANG=C.UTF-8

...

2. To check your JVM language settings you can use this command:
docker exec daytona locale

If the system output response is anything other than the values below then
your Java JVM is incorrectly configured:
LANG=C.UTF-8
LC_CTYPE="C.UTF-8"
LC_NUMERIC="C.UTF-8"
LC_TIME="C.UTF-8"
LC_COLLATE="C.UTF-8"
LC_MONETARY="C.UTF-8"
LC_MESSAGES="C.UTF-8"
LC_PAPER="C.UTF-8"
LC_NAME="C.UTF-8"
LC_ADDRESS="C.UTF-8"
LC_TELEPHONE="C.UTF-8"
LC_MEASUREMENT="C.UTF-8"
LC_IDENTIFICATION="C.UTF-8"

Chapter 6. Administration 81

https://docs.docker.com/engine/security/userns-remap/

Authentication
The authentication mechanism in use in Agile Lifecycle Manager is OAuth2
combined with LDAP for user credential verification. Below is an explanation of
some of the concepts and how authentication should be used in Agile Lifecycle
Manager.

Client credentials

The resources of Agile Lifecycle Manager are protected by an authentication layer
in place on the Gateway, Ishtar. In order to gain access to any of these protected
resources, an authorisation process must take place. As a minimum, this would
require providing some valid client credentials (client Id and secret) which would
normally be deemed as sufficient security for any calling system into Agile
Lifecycle Manager. Additionally, it is possible to require further user credentials
(username and password), which would be administered on a per-user basis and
should exist in the configured LDAP database. The Agile Lifecycle Manager UI
(Nimrod) would be protected as such, where the Nimrod service itself provides the
client credentials and the end user provides the additional user credentials.

The level of authorisation required is dictated by the Grant Type which must be
specified when creating client credentials.

Bearer token

The OAuth2 mechanism makes use of Bearer tokens for authorisation. Once a
client authenticates they are provided with a bearer token which can be used to
authorise any subsequent interactions up until this token expires. It may then be
possible to refresh this Bearer token (using an additional refresh token) to regain
access after expiry of the Bearer token without needing to resupply all user
credentials.

OAuth2 token lifetime configuration

When creating client credentials, there are 2 configurable values with these system
defaults that control the lifetime of the OAuth2 tokens:
accessTokenValidity: 1200 #20 minutes
refreshTokenValidity: 30600 #8.5 hours

The unit for these values is seconds: 20 x 60 = 1200.

With these values, the behaviour will be that after 20 minutes, the system will
refresh the Bearer token with a new one. At this point LDAP is checked to verify
the user is still active. This happens every 20 minutes for 8.5 hours, after which the
user will be forced to re-enter login credentials.

These default values are specified in the Ishtar configuration YAML file:
alm:

ishtar:
security:

defaultAccessTokenValidity: 1200 #20 minutes
defaultRefreshTokenValidity: 30600 #8.5 hours

Note: Changing these values will only affect the creation of new clients using the
bootstrap process and will not affect any existing clients in the system. Intended
usage of the system for changing these timeout values would be that client

82 Agile Lifecycle Manager: Installation, Administration and User Guide

credentials (including these values) would be modified using the Client Credentials
REST API as described in the following section:“Creating further client credentials”
on page 84

Grant types

The following grant types are supported in Agile Lifecycle Manager:

Table 5. Agile Lifecycle Manager grant types

Grant type Description

client_credentials Authorisation requires only a valid Client Id
and Secret. Recommended for calling
systems.

password Authorisation requires a valid Client Id and
Secret and additionally valid User
Credentials. Recommended for a UI
providing human interaction.

refresh_token This grant type can be used in addition to
the password grant type and indicates that a
caller or user can re-authenticate themselves
using a Refresh Token without having to
re-provide any user credentials.

Bootstrapping client credentials

In order to use the system, including to generate client credentials, there will need
to exist some client credentials to authenticate against. There is a bootstrap process
which can be used to initially load any clients into the system.

By default, when Ishtar initialises, it looks for a file with the path of:
/var/alm/bootstrap/client-credentials-bootstrap.yml.

This path can be overridden in the application config by specifying a filepath
under the property alm.ishtar.security.clientCredentialsBootstrapFile. The
contents of the file should look similar to the following example:
clientCredentials:

- clientId: DefaultClient
clientSecret: DefaultClient
grantTypes: client_credentials

- clientId: DefaultClient2
grantTypes: password, refresh_token

This would generate the client DefaultClient with the specified password and the
grant type of client_credentials, and a client called DefaultClient2 with a
system generated password and the grant type of password and refresh_token.

The generated password for DefaultClient2 will be output into the startup logs
for Ishtar once only when the user is first generated. The clients will be created
with default expiry times for the bearer and refresh tokens.

This file (if existing) will be processed on startup of Ishtar and the clients created.
The file will then be deleted automatically. If the file specifies a client ID for an
existing client then the startup of Ishtar will fail (this is a deliberate mechanism to
avoid overwriting existing clients).

Chapter 6. Administration 83

Creating further client credentials

In order to generate Client Credentials, a REST endpoint is provided on Ishtar.
This endpoint is protected, so authentication is required to access it (an initial
client must be boot-strapped into the system).
POST http://<docker-host>:8280/api/credentials

It expects a JSON payload in the following format:
{

"clientId": "AlmClient",
"clientSecret": "BE6fJ02mJuhz37GA",
"scope": [

"all"
],
"authorisedGrantTypes": [

"password",
"refresh_token"

],
"accessTokenValidity": 300,
"refreshTokenValidity": 500

}

This means that the user’s credentials will be checked against the LDAP server
every 300 seconds (5 minutes) and the will be forced to logon every 10 minutes.

Care should be taken when choosing the values for the token lifetimes as they
cannot be changed easily via the LDAP server. Particular care should be taken
when choosing the value of the refreshTokenValidity value as forcing a user to
logon every 10 minutes could lead to service complaints.

Note: Agile Lifecycle Manager doesn’t yet support different types of scope. It is
recommended for now that a scope of all is specified. Similarly, it is possible to
update existing clients using a similar request to the following endpoint:
PUT http://<docker-host>:8280/api/credentials/<client-id>

Authorizing

Once client credentials are setup, it is possible to authorise using them. This
example demonstrates how to authenticate given a client with a grant type of
'client_credentials'. To acquire a certificate, the client must post to the auth
endpoint below:
POST http://<docker-host>:8280/oauth/token

The request must contain the client credentials in the header. This is concatenation
of the id:secret, Base64 encoded, prefixed with 'Basic' under a header key of
'Authorization' (this is a standard OAuth2 mechanism).

The request body should be x-www-form-urlencoded and include this key/value:
grant_type=client_credentials

This will return a response similar to this:
{

"access_token": "fdf8e754-1abe-42ae-b064-7969b05788ca",
"token_type": "bearer",
"expires_in": 1199,
"scope": "all"

}

84 Agile Lifecycle Manager: Installation, Administration and User Guide

User credentials in LDAP

If the client has a grant type of 'password', then an additional authentication step of
verifying user credentials will take place. These credentials are expected to belong
in LDAP. An out-of-the box installation of Open LDAP is provided which Agile
Lifecycle Manager is configured to point to.

Agile Lifecycle Manager can be configured to use an existing LDAP database. This
would involve modifying the following config in the var_alm\config-repo\
ishtar.yml file:
alm:

ishtar:
security:

ldap:
url: ldap://alm-openldap:389
base: dc=alm,dc=com
managerDn: cn=admin,${alm.ishtar.security.ldap.base}
managerPassword: almadmin
userSearchBase: ou=people
userSearchFilter: uid={0}
passwordAttribute: userPassword

Tip: Agile Lifecycle Manager provides a mechanism for initially loading users into
the OpenLDAP database on initial creation, but beyond this provides no
mechanism for managing users. There are many available LDAP clients which can
be used for such purposes. One such client is the free Windows software LDAP
Admin. See the following site for more information: http://www.ldapadmin.org/

See “Provided OpenLDAP LDAP server” on page 86 for the details of the
configuration to be used with any LDAP client software to allow it to connect to
the default OpenLDAP server that comes as standard with Agile Lifecycle
Manager.

Secret and Password Encryption

By default, any client secrets stored in Agile Lifecycle Manager will be encoded
with the BCrypt algorithm before they are stored in the local database. This is
handled seamlessly and has no apparent difference to any calling systems.

Additionally, BCrypt encoding is the default option for LDAP passwords. In this
case this is more apparent, as there is an expectation that any passwords stored in
LDAP are encoded with BCrypt.

Alternatively, it is possible to use Agile Lifecycle Manager with an LDAP database
that stores passwords in plain text, by changing the following application property
in the var_alm\config-repo\ishtar.yml file:
alm.ishtar.security.ldap.passwordEncoding: PLAIN

Chapter 6. Administration 85

http://www.ldapadmin.org/

Audit logging
The Agile Lifecycle Manager Gateway (Ishtar) maintains an audit log of all
authentication attempts and all API requests that come through it. By default, these
logs are stored as files and kept in the {LOG_FOLDER}/security-audit directory
directory.

Configuring the audit log

Audit Logging of both authentication and API requests are enabled by default.

It can be disabled by setting the audit properties in the /var_alm/config-repo/
ishtar.yml file.

Disabling only the logging of all the API requests is possible using the
includeHttpRequests property:
alm:

ishtar:
security:

audit:
Set to 'false' to disable ALL audit logs
enabled: true
Set to 'false' to disable only audit logs of API requests
includeHttpRequests: true

Audit log format

The format of the audit log is configured using an alternative Appender called
SECURITY_AUDIT in the Logback xml configuration file. By default, it is
configured in Ishtar using the following settings:
<appender name="SECURITY_AUDIT" class="ch.qos.logback.core.rolling.RollingFileAppender">

<rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy">
<!-- Daily Rollover or when file reaches 1GB -->

<fileNamePattern>${LOG_FOLDER:-.}/security-audit/${eureka.instance.instanceId:
-#project.artifactId#}-security-audit.%d{yyyy-MM-dd}.%i.log.gz</fileNamePattern>

<maxFileSize>1GB</maxFileSize>
</rollingPolicy>
<encoder>

<charset>utf-8</charset>
<pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} ${LOG_LEVEL_PATTERN:-%5p}

--- %m%n${LOG_EXCEPTION_CONVERSION_WORD:-%wEx}</pattern>
</encoder>

</appender>

Provided OpenLDAP LDAP server
The Docker Agile Lifecycle Manager package includes an OpenLDAP container
and is the default LDAP server used for user management.

When running Agile Lifecycle Manager for the first time there are no users in the
provided LDAP server. Initial users may be added by modifying the
/var_alm/ldap/initial_users.ldif file.

Note: This file is only used to create users on the first start-up of the OpenLDAP
container. To re-use this file the persistence volume of the container must be
removed before the next start-up.

A user entry must take the format of:

86 Agile Lifecycle Manager: Installation, Administration and User Guide

dn: uid=Admin,ou=people,{{ LDAP_BASE_DN }}
changetype: add
objectClass: person
objectClass: uidObject
cn: Admin
sn: Admin
uid: Admin
userPassword: $2a$10$MzDrvf/9rsuzDRDkpvb1M.yfv0Vc2O.p3LUegU8AszlRwaBnIQ03W

The Agile Lifecycle Manager installation includes a script (generate-ldap-user.sh)
to help generate the correct entries. To create further users any LDAP client can be
used, or the LDAP protocol may be used directly.

One such LDAP client is the free Windows software LDAP Admin. See the
following site for more information: http://www.ldapadmin.org

Use the following example to configure an LDAP client for anyone using the
out-of-the-box Agile Lifecycle Manager OpenLDAP service with the default Agile
Lifecycle Manager configuration:
Host: <docker-ip>
Port: 389
Base: dc=alm,dc=com
Username: cn=admin,dc=alm,dc=com
Password: almadmin

Example alm-docker-compose.yml file
This topic contains an example Docker compose file (alm-docker-compose.yml) for
reference only.

Important: Use the following example Docker compose file for reference purposes
only.
version: ’3’
services:
alm-cassandra:

container_name: "alm-cassandra"
image: cassandra:3.10
ports:
- "9042:9042"
- "9160:9160"

networks:
- alm

volumes:
- cassandradata1:/var/lib/cassandra/data

restart: always
environment:
important: broadcast address must be set to the Docker hostname
- CASSANDRA_BROADCAST_ADDRESS=alm-cassandra
- CASSANDRA_CLUSTER_NAME=alm-cassandra-cluster
- CASSANDRA_SEEDS=alm-cassandra
- CASSANDRA_REMOTE_CONNECTION=true
- CASSANDRA_START_RPC=true

zookeeper:
container_name: "zookeeper"
image: wurstmeister/zookeeper
restart: always
networks:
- alm

ports:
- "2181:2181"

kafka:
container_name: "kafka"
image: wurstmeister/kafka:latest
restart: always
networks:
- alm

ports:
- "9092:9092"

Chapter 6. Administration 87

http://www.ldapadmin.org

⌂
environment:
KAFKA_HOST_NAME: kafka
KAFKA_PORT: 9092
KAFKA_ADVERTISED_HOST_NAME: ${KAFKA_ADVERTISED_HOST_NAME:-kafka}
KAFKA_ADVERTISED_PORT: 9092
KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181
KAFKA_CREATE_TOPICS: "alm__health:1:1:compact,

alm__descriptorChange:1:1:compact,alm__processStateChange:1:1,alm__stateChange:1:1,alm__taskUpdate:1:1"
conductor:
container_name: "conductor"
hostname: "conductor"
build:
context: ./conductor
dockerfile: Dockerfile
args:
JDK_IMAGE: ${JDK_IMAGE:-openjdk}
JDK_VERSION: ${JDK_VERSION:-8u121-jre}

restart: always
networks:
- alm

volumes:
- "./var_alm:/var/alm"

ports:
- "8761:8761"
environment:
- spring.cloud.config.server.git.uri=file://var/alm/config-repo
- eureka.instance.hostname=conductor
- LOG_FOLDER=/var/alm/logs
- spring.main.banner-mode=off
- LANG=C.UTF-8

watchtower:
container_name: "watchtower"
hostname: "watchtower"
build:
context: ./watchtower
dockerfile: Dockerfile
args:
JDK_IMAGE: ${JDK_IMAGE:-openjdk}
JDK_VERSION: ${JDK_VERSION:-8u121-jre}

restart: always
networks:
- alm

volumes:
- "./var_alm:/var/alm"

⌂
depends_on:
- kafka
- zookeeper

links:
- kafka
- zookeeper

ports:
- "8284:8284"

environment:
- spring.cloud.config.uri=http://admin:admin@conductor:8761/config
- spring.cloud.config.failFast=true
- eureka.client.serviceUrl.defaultZone=http://admin:admin@conductor:8761/eureka/
this is needed so that Watchtower registers the correct hostname/IP

address to the Conductor/Eureka
- eureka.instance.ipAddress=watchtower
- LOG_FOLDER=/var/alm/logs
- LANG=C.UTF-8

relay:
container_name: "relay"
hostname: "relay"
build:
context: ./relay
dockerfile: Dockerfile
args:
JDK_IMAGE: ${JDK_IMAGE:-openjdk}
JDK_VERSION: ${JDK_VERSION:-8u121-jre}

restart: always
volumes:
- "./var_alm:/var/alm"

networks:
- alm

depends_on:
- kafka

88 Agile Lifecycle Manager: Installation, Administration and User Guide

links:
- kafka

ports:
- "8285:8285"

⌂
environment:
- spring.cloud.config.uri=http://admin:admin@conductor:8761/config
- spring.cloud.config.failFast=true
- eureka.client.serviceUrl.defaultZone=http://admin:admin@conductor:8761/eureka/
this is needed so that Relay registers the correct hostname/IP

address to the Conductor/Eureka
- eureka.instance.ipAddress=relay
- LOG_FOLDER=/var/alm/logs
- spring.main.banner-mode=off
- LANG=C.UTF-8

simple-rm:
container_name: "simple-rm"
hostname: "simple-rm"
build:
context: ./simple-rm
dockerfile: Dockerfile
args:
JDK_IMAGE: ${JDK_IMAGE:-openjdk}
JDK_VERSION: ${JDK_VERSION:-8u121-jre}

restart: always
volumes:
- "./var_alm:/var/alm"
- "./simple-rm-data:/data/simple-rm"
- simplermstorage:/data/simple-rm-storage

networks:
- alm

depends_on:
- kafka
- relay
- ishtar

links:
- kafka
- relay
- ishtar

environment:
these should not be modified
- alm.simplerm.config.name=test-rm
- LOG_FOLDER=/var/alm/logs
- alm.simplerm.directory=/data/simple-rm/test-rm
#used in commands.sh
- alm_simplerm_directory=/data/simple-rm/test-rm
- alm.simplerm.storage=/data/simple-rm-storage
- spring.main.banner-mode=off
- LANG=C.UTF-8

⌂
ports:
- "8295:8295"

simple-rm-register:
container_name: "simple-rm-register"
build:
context: ./simple-rm-register
dockerfile: Dockerfile

networks:
- alm

volumes:
- "./var_alm:/var/alm"
- "./simple-rm-data:/data/simple-rm"

depends_on:
- ishtar
- simple-rm

links:
- ishtar
- simple-rm

environment:
- LANG=C.UTF-8

apollo:
container_name: "apollo"
hostname: "apollo"
build:
context: ./apollo
dockerfile: Dockerfile
args:
JDK_IMAGE: ${JDK_IMAGE:-openjdk}
JDK_VERSION: ${JDK_VERSION:-8u121-jre}

restart: always

Chapter 6. Administration 89

networks:
- alm

ports:
- "8282:8282"
depends_on:
- "conductor"
- "kafka"
- "alm-cassandra"

volumes:
- "./var_alm:/var/alm"

⌂
environment:
- spring.cloud.config.uri=http://admin:admin@conductor:8761/config
- spring.cloud.config.failFast=true
- eureka.client.serviceUrl.defaultZone=http://admin:admin@conductor:8761/eureka/
this is needed so that Apollo registers the correct hostname/IP

address to the Conductor/Eureka
- eureka.instance.ipAddress=apollo
- LOG_FOLDER=/var/alm/logs
- spring.main.banner-mode=off
- LANG=C.UTF-8

galileo:
container_name: "galileo"
hostname: "galileo"
build:
context: ./galileo
dockerfile: Dockerfile
args:
JDK_IMAGE: ${JDK_IMAGE:-openjdk}
JDK_VERSION: ${JDK_VERSION:-8u121-jre}

restart: always
networks:
- alm

volumes:
- "./var_alm:/var/alm"

environment:
- spring.cloud.config.uri=http://admin:admin@conductor:8761/config
- spring.cloud.config.failFast=true
- eureka.client.serviceUrl.defaultZone=http://admin:admin@conductor:8761/eureka/
this is needed so that Galileo registers the correct hostname/IP

address to the Conductor/Eureka
- eureka.instance.ipAddress=galileo
- LOG_FOLDER=/var/alm/logs
- spring.main.banner-mode=off
- LANG=C.UTF-8
ports:
- "8283:8283"
depends_on:
- "conductor"
- "alm-cassandra"

⌂
daytona:
container_name: "daytona"
hostname: "daytona"
build:
context: ./daytona
dockerfile: Dockerfile
args:
JDK_IMAGE: ${JDK_IMAGE:-openjdk}
JDK_VERSION: ${JDK_VERSION:-8u121-jre}

restart: always
networks:
- alm

volumes:
- "./var_alm:/var/alm"

ports:
- "8281:8281"
depends_on:
- "conductor"
- "simple-rm"

environment:
- spring.cloud.config.uri=http://admin:admin@conductor:8761/config
- spring.cloud.config.failFast=true
- eureka.client.serviceUrl.defaultZone=http://admin:admin@conductor:8761/eureka/
this is needed so that Daytona registers the correct hostname/IP

address to the Conductor/Eureka
- eureka.instance.ipAddress=daytona
- LOG_FOLDER=/var/alm/logs
- spring.main.banner-mode=off
- LANG=C.UTF-8

90 Agile Lifecycle Manager: Installation, Administration and User Guide

ishtar:
container_name: "ishtar"
hostname: "ishtar"
build:
context: ./ishtar
dockerfile: Dockerfile
args:
JDK_IMAGE: ${JDK_IMAGE:-openjdk}
JDK_VERSION: ${JDK_VERSION:-8u121-jre}

restart: always
networks:
- alm

volumes:
- "./var_alm:/var/alm"

⌂
depends_on:
- conductor

environment:
- spring.cloud.config.uri=http://admin:admin@conductor:8761/config
- spring.cloud.config.failFast=true
- eureka.client.serviceUrl.defaultZone=http://admin:admin@conductor:8761/eureka/
this is needed so that Ishtar registers the correct hostname/IP

address to the Conductor/Eureka
- eureka.instance.ipAddress=ishtar
- LOG_FOLDER=/var/alm/logs
- spring.main.banner-mode=off
- LANG=C.UTF-8
ports:
- "8280:8280"

nimrod:
container_name: "nimrod"
hostname: "nimrod"
build:
context: ./nimrod
dockerfile: Dockerfile
args:
JDK_IMAGE: ${JDK_IMAGE:-openjdk}
JDK_VERSION: ${JDK_VERSION:-8u121-jre}

networks:
- alm

volumes:
- "./var_alm:/var/alm"

ports:
- "8290:8290"
depends_on:
- galileo
- apollo

environment:
- spring.cloud.config.uri=http://admin:admin@conductor:8761/config
- spring.cloud.config.failFast=true
- eureka.client.serviceUrl.defaultZone=http://admin:admin@conductor:8761/eureka/
this is needed so that Nimrod registers the correct hostname/IP

address to the Conductor/Eureka
- eureka.instance.ipAddress=nimrod
- LOG_FOLDER=/var/alm/logs
- spring.main.banner-mode=off
- LANG=C.UTF-8

⌂
volumes:
cassandradata1:
driver: local

simplermstorage:
driver: local

networks:
alm:
driver: bridge

Chapter 6. Administration 91

92 Agile Lifecycle Manager: Installation, Administration and User Guide

Chapter 7. Reference

Use the following reference information to enhance your understanding of the
Agile Lifecycle Manager APIs and YAML specifications.

Restriction: Code samples provided in this section may contain references to test
data and other example text not relevant to your own scenario.

API HTTP status codes reference
Agile Lifecycle Manager provides both a graphical UI and an HTTP API allowing
the creation and administration of assemblies. HTTP status codes strategy and
response messages are described here.

REST and RPC mechanisms

Agile Lifecycle Manager consists of micro-services that use HTTP as the transport
mechanism for requests and responses. A combination of REST interfaces and RPC
interfaces are used.

RPC Used to submits intents to Agile Lifecycle Manager

REST Used by all other interfaces

Note: Due to the use of combined RTC and REST interfaces, the RTC IETF4 RFC
7231 specifications as documented at the following site are not strictly adhered to:
https://tools.ietf.org/html/rfc7231

Supported methods

Each API service endpoint can implement a different set of HTTP request methods.
The following methods are supported within Agile Lifecycle Manager:

GET The GET method requests a representation of the specified resource.
Requests using GET only retrieve data and have no other effect.

PUT The PUT method requests that the enclosed entity be stored under the
supplied URI. If the URI refers to an existing resource, it is modified; if the
URI does not point to an existing resource, then the request will be
rejected.

POST The POST method requests that the server accept the entity enclosed in the
request as a new instance of the resource identified by the URI.

DELETE
The DELETE method simply removes the specified resource (if it exists).

Note: The Agile Lifecycle Manager API does not support API versioning, but
remains backwards-compatible as far as possible.

Response calls

Every call to the Agile Lifecycle Manager API returns an HTTP status code.

If the request was unsuccessful, a JSON5 or YAML6 formatted response will be
returned in the response body. The response return format depends on the format

© Copyright IBM Corp. 2017 93

https://tools.ietf.org/html/rfc7231

the of the original API intention. For example if an API supports YAML and you
requested YAML, then the response call will be YAML. Mostly, responses will be
JSON.

If the Agile Lifecycle Manager request was successful, then an HTTP 2xx status
code will be returned. Different API calls will potentially return HTTP 2xx status
codes. The details of the status codes returned can be found in the individual
micro-service Swagger documentation or API guides.

If the request was unsuccessful, then for all but HTTP 404 errors the response will
be in one of two forms, either generated by Agile Lifecycle Manager, or by some
other process (rarely).

Errors generated by Agile Lifecycle Manager
These errors are generated when Agile Lifecycle Manager detects an error
associated with an API request, and returns output containing information
about the error.

More than one set of error details may be included. These will show the
errors generated by components internal to Agile Lifecycle Manager and
passed back through the layers of requests that were made.

Note: If you contact IBM support, include all the information contained in
these Agile Lifecycle Manager error reports.

Response field Meaning

url The Service endpoint that was requested.

localizedMessage The translated or localized error message
that can be presented back to the end user
making the request.

details Further details on the issue presented in a
structured format.

This is an optional field so will not always
be present. It is intended to give further
technical details on the source of the error,
and so may not be relevant to the user
making the request.

Often it contains internal error information
from the Agile Lifecycle Manager
components that have handled or detected
the error. When available this information
should be included in any support requests.

Example of a simple error response:
{

"url": /api/resource-manager/923227664489862,
"localizedMessage": "A FATAL ALM Driver error has occurred: Unknown Resource Manager 923227664489862",
"details": {}

}

Example of a complex error response:
{

"url": /api/resource-manager/configuration/923227664489862,
"localizedMessage": "A FATAL ALM Driver error has occurred: Unknown Resource Manager 923227664489862",
"details": {

"responseHttpStatus": 500,
"errorStatus": "FATAL",
"responseData": { "url": "http://galileo:8283/api/topology/resource-managers/923227664489862";,
"localizedMessage": "Unknown Resource Manager 923227664489862",

94 Agile Lifecycle Manager: Installation, Administration and User Guide

"details": {}
}

}
}

Errors not generated by Agile Lifecycle Manager
On rare occasions an error may occur for which no Agile Lifecycle
Manager error code exists, resulting in a generic response containing the
following fields:

Response field Meaning

timestamp The date and time to error occurred

status The HTTP status code returned

error A textual description of the HTTP status
code returned

exception The internal exception type that was raised

message The actual error reported

path If it was an API call or web service request
that failed, then this field will identify what
was being requested

Example:
{

"timestamp": "2017-08-10T15:28:19.586+0000",
"status": 500,
"error": "Internal Server Error",
"exception": "org.springframework.web.client.ResourceAccessException",
"message": "I/O error on GET request for \"http://9.20.64.abc:8295/api/resource-manager/configuration\":

9.20.64.abc; nested exception is java.net.UnknownHostException: 9.20.64.abc",
"path": "/api/resource-managers"

}

HTTP status code use

Within the header of the HTTP response received in reply to an HTTP request
there is a three-digit decimal status code. The first digit of the status code specifies
one of five standard classes of responses. The distinction between 4xx (client) and
5xx (server) errors makes integration easier.

1xx 1xx informational responses are not used explicitly by Agile Lifecycle
Manager.

2xx 2xx response codes indicate success. This means that the action requested
by the client was received, understood, accepted, and processed
successfully.

Different Agile Lifecycle Manager components return different HTTP 2xx
status codes dependent on the nature of the request made. To find out
which HTTP 2xx status codes will be returned, see the individual
micro-service Swagger documentation or the related API documentation.

3xx 3xx redirection responses are not used explicitly by Agile Lifecycle
Manager.

4xx 4xx errors are client-based errors. These errors usually occur when a
service exists and a successful connection has been established with an API
endpoint, but the request does not contain all of the information it requires
to 'understand' the request.

400 errors indicate an invalid request, which means either that mandatory
parameters are missing, or that syntactically invalid parameter values have
been detected (for example an expected URL being text only).

Chapter 7. Reference 95

404 errors indicate that a requested API service cannot be found, or that a
requested entity cannot be found.

More detailed 4xx status code information can be found in the following
section: “4xx status codes”

5xx 5xx errors are server-based errors. These errors usually occur when a
request was syntactically correct with all the required parameters, but
Agile Lifecycle Manager was unable to carry out the action.

The HTTP response body will contain reasons for the failure.

Tip: The most usual case will be a simple HTTP 500 status code backed up
with a JSON payload in the response body. This payload will contain a
human-readable error message summarizing the problem and a section
containing further technical details if available.

4xx status codes

These error codes are associated with client or user errors, but can also be caused
by another system sending requests to Agile Lifecycle Manager.

To understand how the different HTTP 4xx status codes are used we need to
separate the definition of a Service Endpoint from the data it is being asked to use.
The service endpoint in a request is the full path to the service required excluding
any variable parameters in the URL. For example, in the following request the
service endpoint is indicated in bold.
http:// <hostname>:<Port>/api/resource-manager/configuration/9.20.64.abc

v All POST requests will send their data in the body of the HTTP request.
v All GET and DELETE requests will send their data as variable URL parameters.
v All PUT requests will send their data as variable URL parameters and/or as

data in the body of the HTTP request.

The handling of HTTP 400 and 404 status codes varies depending on what type of
request was made. Generally, the 4xx HTTP Status codes will be produced by the
Agile Lifecycle Manager functionality concerned with validating and verifying the
incoming requests.

Table 6. Summary of how Agile Lifecycle Manager uses the HTTP 400 and 404 status
codes

Type URL invalid
URL (with
variables)* Invalid content

Entity does not
exist

REST 404 404 400 n/a

RPC 404 n/a (no URLs
pointing to
entity)

400 400

* refers to an entity that does not exists

REST requests
An HTTP 404 error will be returned if the entire requested service URL,
including any variable parameters, does not exist. This could be for one of
the following reasons:
v The service endpoint requested does not exist or is not available (check

your host name and ports).

96 Agile Lifecycle Manager: Installation, Administration and User Guide

v The requested resource, as identified by the URL variable parameters,
does not exist.

The HTTP 400 status code (Bad Request) is used by the REST-style requests
if the POST or PUT contains bad data. For example, if Agile Lifecycle
Manager is given a Descriptor that it does not recognize.

RPC requests
An HTTP 404 error will be returned if the requested service endpoint does
not exist.

An HTTP 400 error will be returned if there is incorrect content in the
request body sent to the service. endpoint.

HTTP 409 error status:
The HTTP 409 status code (Conflict) indicates that the request could not be
processed because of conflict in the request, such as the requested resource is not
in the expected state, or the result of processing the request would create a conflict
within the resource.

Examples of where an HTTP 409 status code would be used within Agile Lifecycle
Manager are:
v Data constraint violations
v Concurrent modification exceptions.
Related concepts:
“Lifecycle Manager API”
The Lifecycle Manager API is responsible for interactions with the operations
available from Agile Lifecycle Manager. This section covers the definition of the
Lifecycle Manager API and the specification of the messages sent across this
interface.
“Resource Manager API” on page 125
The Resource Manager API is responsible for defining the interactions between a
lifecycle manager and the resource managers that are used to manage resources
within virtual (or physical) infrastructures.
“Resource descriptor YAML specifications” on page 142
This section describes the descriptors that are used by Agile Lifecycle Manager.
“Assembly descriptor YAML specifications” on page 151
This section describes the assembly descriptors that are used by Agile Lifecycle
Manager.

Lifecycle Manager API
The Lifecycle Manager API is responsible for interactions with the operations
available from Agile Lifecycle Manager. This section covers the definition of the
Lifecycle Manager API and the specification of the messages sent across this
interface.
Related concepts:
Chapter 5, “Getting started (using the APIs),” on page 51
Agile Lifecycle Manager provides both a graphical UI and an HTTP API allowing
the creation and administration of assemblies. This section describes a set of basic
scenarios to get started using the APIs.

Chapter 7. Reference 97

Interface architecture
This topic describes the API interaction principles, lists the possible HTTP error
response codes, and outlines the four API sections.

API interaction principles

All of the message descriptions are in JSON format and should be submitted with
the HTTP content-type header of application/json.

All Dates will conform to the ISO-8601 standard.

API definition conventions:

A table is associated with each example that explains the fields it contains,
including the name of the field, a brief description, and whether the field is
mandatory. Whether a field is required or not is based on the context of the
examples. The underlying API definition may mark a field as optional, but in some
contexts, the fields must be supplied.

Any field names in italics are examples only.

Possible HTTP error response codes

The following table lists the HTTP response codes that can be returned in various
error scenarios. Any client should expect that any API call can return these codes
under exceptional circumstances.

Table 7. HTTP error response codes

Code Description

400 - Bad Request The request contained invalid information. This may be an incorrect
field, invalid value or an inconsistent state on a dependent
resource. The HTTP response body should contain a JSON message
with further details of the specific issue.

404 - Not Found The requested resource or endpoint could not be found.

409 - Conflict Agile Lifecycle Manager has been unable to process the request due
to a conflict produced by some of the information supplied. For
example, due to attempting to create two resource managers with
the same name.

500 - Internal Server
Error

An internal error has occurred whilst fulfilling the request. The
HTTP response body should contain a JSON message with further
details. In some situations, it may be necessary for a system
administrator to consult the logs for further information.

502 - Bad Gateway A remote system has failed to respond correctly causing this
request to fail. The HTTP response body should contain a JSON
message with further details. In some situations, it may be
necessary for a system administrator to consult the logs for further
information.

503 - Service
Unavailable

Agile Lifecycle Manager is unable to process this request at this
time. The request should not be retried until the underlying
problem is resolved. The HTTP response body should contain a
JSON message with further details. In some situations, it may be
necessary for a system administrator to consult the logs for further
information.

98 Agile Lifecycle Manager: Installation, Administration and User Guide

API sections

The API is divided into four sections. These provide access to the different
functionality provided by Agile Lifecycle Manager. This API is expected to be
called by External OSS systems to perform both fulfillment tasks and also some
fault management tasks.

Managing assemblies
Agile Lifecycle Manager allows the creation of assemblies. These allow
services to be created by Agile Lifecycle Manager, which will interact with
resource managers to create and manage virtual resources that need to be
provided for the service to work.

This part of the API includes two endpoints; the first allows the external
OSS system to request a transition against an assembly instance, including
a request for a new assembly instance. The second allows the external OSS
to poll Agile Lifecycle Manager to find out the state of the request.

Asynchronous events
In response to Assembly Orchestration requests, Agile Lifecycle Manager
will also place on a Kafka bus messages that describe the key events that
occur during the processing of the request and also a message to indicate
when the processing has been completed. It is recommended that the
external OSS use this mechanism to check the state of requests rather than
using the polling interface defined in the previous section.

Assembly topology
External OSS may need details of the assembly instances and of the
components that it is comprised. The topology contains a hierarchy of the
components of an assembly. A component may be either a resource or an
assembly. It is also possible to request details of the events used during the
assemblies life.

Resource manager handling
Resource Managers are responsible for managing the actual resources that
are needed for a service to work. Agile Lifecycle Manager needs to be told
which resources managers it will interface to. This process is known as
'Onboarding a Resource Manager'. The Lifecycle Manager API provides a
set of calls that allows a new resource manager instance to be onboarded
to Agile Lifecycle Manager, and also removed from Agile Lifecycle
Manager. When a resource manager is onboarded the set of resource types
and locations that they manage will be extracted using the Resource
Manager API. The API also provides an endpoint that will make Agile
Lifecycle Manager request the associated resource manager for a set of
updated resources. Any existing resources will remain unchanged when
this update occurs.

Scenarios
This section describes the lifecycle manager scenarios.

Resource manager handling

When a resource manager is onboarded, Agile Lifecycle Manager invokes a set of
calls to the resource manager detailed in Resource Manager API.

Chapter 7. Reference 99

Onboard resource manager

Delete resource manager

Get resource manager details

When a resource manager is updated, it returns the details of the resources and
locations, and Agile Lifecycle Manager will store any new details, but not remove
any existing details.

100 Agile Lifecycle Manager: Installation, Administration and User Guide

Update resource manager

Assembly creation and state transition

Heal

Note: Asynchronous events are not depicted.

Chapter 7. Reference 101

Scaling

Scale out

Note: Asynchronous events are not depicted.

Scale in

Note: Asynchronous events are not depicted.

Topology requests

102 Agile Lifecycle Manager: Installation, Administration and User Guide

Managing assemblies
This topic lists the assembly API calls, which are based on the state model for the
lifecycle manager.

API definition conventions:

A table is associated with each example that explains the fields it contains,
including the name of the field, a brief description, and whether the field is
mandatory. Whether a field is required or not is based on the context of the
examples. The underlying API definition may mark a field as optional, but in some
contexts, the fields must be supplied.

Any field names in italics are examples only.

Standard response header

Each of the API calls returns a response header in the following format when the
calls are successful.

Example response header
{
"location": "http://192.168.99.100:8280/api/processes/9d63c16e-6685-4e7b-9123-81c196f99536",
"date": "Fri, 08 Sep 2017 09:12:38 GMT",
"server": "ALM Ishtar/1.1.0-SNAPSHOT",
"transfer-encoding": "chunked",
"x-application-context": "ishtar:prod,swagger:8280",
"content-type": null

}

The 'location' URL in bold allows the caller to find out the state of the
process that has been requested.

Process controller

This call allows the requestor of an intent to check the status of the associated
process.

Request format

Aspect Value

Endpoint URL /api/processes/{id}

HTTP method GET

The URL in the response header 'location' field is the URL that the
requester must use to find the state of the process.
http://192.168.99.100:8280/api/processes/9d63c16e-6685-4e7b-9123-81c196f99536

Create assembly

Creates a new instance of an assembly based on the given descriptor and the
properties.

Request format

Aspect Value

Endpoint URL /api/intent/createAssembly

HTTP method POST

Chapter 7. Reference 103

Example requests
Create assembly instance
{

"assemblyName": "WED_102",
"descriptorName": "assembly::t_single::1.0",
"intendedState": "Active",
"properties": {

"data": "exampleValue",
"deploymentLocation": "admin@local"

}
}

Table 8. Fields to be used when creating a new assembly instance

Field Description Mandatory

assemblyName The name of the assembly instance. Must be
unique, must not start with a number,
contain a space and must not contain
double underscore character combination.

yes

descriptorName The name of the assembly descriptor as
defined at the head of the descriptor file

yes

intendedState The state the assembly instance will be
transitioned to once the assembly has been
created. Allowed values are 'Installed',
'Inactive', 'Active'.

yes

properties A set of tuples that match the required
properties for the assembly instance. The
list of actual properties is dependent upon
the assembly descriptor.

yes (if there are
required
properties within
the descriptor)

Response format

Aspect Value

Return Code 201 CREATED

Change assembly state

Request format

Aspect Value

Endpoint URL /api/intent/changeAssemblyState

HTTP method POST

Example requests
Change state of existing assembly using name
{

"assemblyName": "WED_102",
"intendedState": "Inactive"

}

Change state of existing assembly using ID
{

"assemblyId": "1c3bd18a-05e9-4f49-b510-0e4785b2f0ae",
"intendedState": "Inactive"

}

Request parameters

104 Agile Lifecycle Manager: Installation, Administration and User Guide

Table 9. Fields to be used when changing the state of an existing assembly

Field Description Mandatory

assemblyName The name of the assembly instance.
Must be unique, must not start with
a number, contain a space and must
not contain double underscore
character combination.

yes (if assemblyId is
not supplied)

assemblyId The id of the assembly instance. This
can be retrieved using the
GetAssembly calls

yes (if assemblyName
not supplied)

intendedState The state which the assembly
instance will be transitioned to once
the assembly has been created.
Allowed values are 'Installed',
'Inactive', 'Active'.

yes

Response format

Aspect Value

Return Code 201 CREATED

Delete assembly

Requests to delete an assembly instance.

Request format

Aspect Value

Endpoint URL /api/intent/deleteAssembly

HTTP method POST

Example requests
Delete assembly instance using name
{

"assemblyName": "WED_102"
}

Delete assembly instance using ID
{

"assemblyId": "1c3bd18a-05e9-4f49-b510-0e4785b2f0ae"
}

Request parameters

Table 10. Fields to be used when deleting an assembly

Field Description Mandatory

assemblyName The name of the assembly instance.
Must be unique, must not start with a
number, contain a space and must not
contain double underscore character
combination.

yes (if assemblyId is
not supplied)

assemblyId The id of the assembly instance. This
can be retrieved using the GetAssembly
calls

yes (if
assemblyName not
supplied)

Chapter 7. Reference 105

Response format

Aspect Value

Return Code 201 CREATED

Heal components

This allows an assembly instances to be healed in the event that their resources are
broken.

Request format

Aspect Value

Endpoint URL /api/intent/healAssembly

HTTP method POST

Example requests
Heal assembly component using names
{

"assemblyName": "WED_102",
"brokenComponentName": "WED_102__t_single"

}

Heal assembly component using IDs
{

"assemblyId": "5fd27c1e-403c-402b-a033-fef0940974d5",
"brokenComponentId": "15a07604-377d-4fa2-955f-2a379560c24d"

}

Heal assembly component using a mixture of names and IDs
{

"assemblyName": "WED_102",
"brokenComponentId": "15a07604-377d-4fa2-955f-2a379560c24d"

}

Request parameters

Table 11. Fields to be used when healing a resource

Field Description Mandatory

assemblyName The name of the assembly instance.
Must be unique, must not start
with a number, contain a space and
must not contain double
underscore character combination.

yes (if assemblyId is not
supplied)

assemblyId The id of the assembly instance.
This can be retrieved using the
GetAssembly calls

yes (if assemblyName not
supplied)

brokenComponentId This is the id of the component
within the assembly instance. This
can be found by using the
GetAssembly calls.

yes (if
brokenComponentName is
not used)

brokenComponentName The name of the component within
the assembly instance. It can be
found using the GetAssembly calls.

yes (if brokenComponentId
is not used)

106 Agile Lifecycle Manager: Installation, Administration and User Guide

Table 11. Fields to be used when healing a resource (continued)

Field Description Mandatory

brokenComponentMetricKeyThis is the ID of the component
within the assembly instance
(currently using the same ID as
brokenComponentId). This can be
found by using the GetAssembly
calls.

Yes (if brokenComponentId
or brokenComponentName
is not used)

Response format

Aspect Value

Return Code 201 CREATED

Scale components

This allows scalable components of an assembly to be scaled in or out.

Request format

Aspect Value

Endpoint URL /api/intent/scaleInAssembly

Endpoint URL /api/intent/scaleOutAssembly

HTTP method POST

Example request
Scale a cluster by name (depends on the endpoint as to whether it is 'In'
or 'Out'
{

"assemblyName": "WED_102",
"clusterName": "storage_cluster"

}

Scale a cluster by ID (depends on the endpoint as to whether it is 'In' or
'Out'
{

"assemblyId": "5fd27c1e-403c-402b-a033-fef0940974d5",
"clusterName": "storage_cluster"

}

Request parameters

Table 12. Fields to be used when scaling components

Field Description Mandatory

assemblyName The name of the assembly instance.
Must be unique, must not start with a
number, contain a space and must not
contain double underscore character
combination.

yes (if assemblyId is
not supplied)

assemblyId The id of the assembly instance. This
can be retrieved using the GetAssembly
calls

yes (if assemblyName
not supplied)

Chapter 7. Reference 107

Table 12. Fields to be used when scaling components (continued)

Field Description Mandatory

clusterName The name of the cluster to be scaled.
This is the name defined in the
assembly descriptor for the cluster.

yes

Response format

Aspect Value

Return Code 201 CREATED

Upgrade assembly

This upgrades an assembly, which means changing the descriptor that is associated
with an assembly instance. This may cause the state of the assembly components
to change while the upgrade is achieved.

Request format

Aspect Value

Endpoint URL /api/intent/upgradeAssembly

HTTP method POST

Example request
Upgrade a cluster by name
{

"assemblyName": "WED_102",
"descriptorName": "assembly::t_single::2.0",
"properties": {

"data": "exampleValue",
"deploymentLocation": "demo@local"

}
}

Upgrade a cluster by ID
{

"assemblyId": "5fd27c1e-403c-402b-a033-fef0940974d5",
"descriptorName": "assembly::t_single::2.0",
"properties": {

"data": "exampleValue",
"deploymentLocation": "demo@local"

}
}

Request parameters

Table 13. Fields to be used when upgrading an assembly

Field Description Mandatory

assemblyName The name of the assembly instance. Must
be unique, must not start with a number,
contain a space and must not contain
double underscore character
combination.

yes (if assemblyId is
not supplied)

assemblyId The id of the assembly instance. This can
be retrieved using the GetAssembly calls.

yes (if assemblyName
not supplied)

108 Agile Lifecycle Manager: Installation, Administration and User Guide

Table 13. Fields to be used when upgrading an assembly (continued)

Field Description Mandatory

descriptorName The name of the assembly descriptor as
defined at the head of the descriptor file.

yes

Properties A set of tuples that match the required
properties for the assembly instance. The
list of actual properties is dependent
upon the assembly descriptor.

Yes (depending upon
descriptor
requirements)

Response format

Aspect Value

Return Code 201 CREATED

Resource managers
This topic describes the Resource Managers API specifications for the lifecycle
management API. See the “Resource Manager API” on page 125 section for
resource manager API specifications.

API definition conventions:

A table is associated with each example that explains the fields it contains,
including the name of the field, a brief description, and whether the field is
mandatory. Whether a field is required or not is based on the context of the
examples. The underlying API definition may mark a field as optional, but in some
contexts, the fields must be supplied.

Any field names in italics are examples only.

Create Resource Manager

Creates a record of a Resource Manager within Agile Lifecycle Manager and begins
the onboarding process. When this request is placed Agile Lifecycle Manager will
register the resource manager, and then it will request details of all the resource
types that the resource manager is able to handle. This may take many seconds.

Request format

Aspect Value

Endpoint URL /api/resource-managers

HTTP method POST

Example requests
{

"name": "test",
"type": "test-rm",
"url": "http://localhost:8295/api/resource-manager"

}

Table 14. Create resource manager request fields

Field Description Mandatory

name The name by which the resource manager
instance is to be known by in the ALM

yes

Chapter 7. Reference 109

Table 14. Create resource manager request fields (continued)

Field Description Mandatory

type The type of resource manager that is being
onboarded. This is a string supplied by those
managing the resource managers. It is suggested
that the same value be used for all resource
managers that support the same set of resources

no

url The URL where the resource manager interface
can be found by the ALM

yes

Response format

Aspect Value

Response Code 201 CREATED

Get Resource Manager

Gets the information about a Resource Manager within Agile Lifecycle Manager.
The ID in the request is the unique name of the resource manager as defined by
the 'name' field in Create Resource Manager.

Request format

Aspect Value

Endpoint URL /api/resource-managers/{id}

HTTP method GET

Example response
{

"name": "test",
"type": "test-rm",
"url": "http://localhost:8295/api/resource-manager"

}

Table 15. Get resource manager response fields

Field Description Mandatory

name The name by which the resource manager
instance is to be known by in the ALM

yes

type The type of resource manager that is being
onboarded. This is a string supplied by those
managing the resource managers. It is suggested
that the same value be used for all resource
managers that support the same set of resources.

no

url The URL where the resource manager interface
can be found by the ALM.

yes

Response format

Aspect Value

Response Code 200 OK

110 Agile Lifecycle Manager: Installation, Administration and User Guide

Update Resource Manager

Updates a record of a Resource Manager within the Agile Lifecycle Manager and
begins the onboarding process.

Request format

Aspect Value

Endpoint URL /api/resource-managers/{id}

HTTP method PUT

Example request
{

"name": "test",
"type": "test-rm",
"url": "http://localhost:8295/api/resource-manager"

}

Table 16. Update resource manager request fields

Field Description Mandatory

name The name by which the resource manager
instance is to be known by in the ALM

yes

type The type of resource manager that is being
onboarded. This is a string supplied by those
managing the resource managers. It is
suggested that the same value be used for all
resource managers that support the same set of
resources.

no

url The URL where the resource manager interface
can be found by the ALM.

yes

Response format

Aspect Value

Response code 200 OK

Delete Resource Manager

Deletes the record of a Resource Manager within the Agile Lifecycle Manager.

Request format

Aspect Value

Endpoint URL /api/resource-managers/{id}

HTTP method DELETE

Response format

Aspect Value

Response code 200 OK

Related concepts:

Chapter 7. Reference 111

Chapter 5, “Getting started (using the APIs),” on page 51
Agile Lifecycle Manager provides both a graphical UI and an HTTP API allowing
the creation and administration of assemblies. This section describes a set of basic
scenarios to get started using the APIs.

Asynchronous state change events
Agile Lifecycle Manager will emit events when the state of an assembly or its
components changes. Messages that are sent asynchronously are put onto a Kafka
bus. The exact topics can be configured. These are emitted in response to Intent
Requests causing the state of the Assembly Instance, or its associated components,
to change. In the event of a failure to change state, an event will also be emitted.

API definition conventions:

A table is associated with each example that explains the fields it contains,
including the name of the field, a brief description, and whether the field is
mandatory. Whether a field is required or not is based on the context of the
examples. The underlying API definition may mark a field as optional, but in some
contexts, the fields must be supplied.

Any field names in italics are examples only.

ProcessStateChangeEvent

These events are associated with the process that performs the Intent request.
These are sent out at the Start of the processing and when completed or failed.

The following example shows the first message sent when an intent has been
received by Agile Lifecycle Manager. The processId will be used in all subsequent
state change events. These happen when the process changes state.

Example of an initial state change event
{

"processId": "e29b86a8-ca75-413b-921b-c4b895996c12",
"assemblyId": "e4c198d1-2dbb-4557-baae-b5891fa258cf",
"assemblyName": "example2",
"assemblyDescriptorName": "assembly::t_single::1.0",
"intentType": "CreateAssembly",
"intent": {

"assemblyName": "example2",
"descriptorName": "assembly::t_single::1.0",
"intendedState": "Active",
"properties": {

"data": "example data",
"deplomentLocation": "admin@local"

}
},
"processState": "In Progress",
"processStartedAt": "2017-09-14T13:06:17.499Z",
"eventId": "e08039e7-7efd-4b7e-86a3-9d39c48c2dd7",
"eventCreatedAt": "2017-09-14T13:06:17.499Z",
"eventType": "ProcessStateChangeEvent"

}

Example of the final message on successful completion of the Intent
{

"processId": "e29b86a8-ca75-413b-921b-c4b895996c12",
"assemblyId": "e4c198d1-2dbb-4557-baae-b5891fa258cf",
"assemblyName": "example2",
"assemblyDescriptorName": "assembly::t_single::1.0",
"intentType": "CreateAssembly",

112 Agile Lifecycle Manager: Installation, Administration and User Guide

"intent": {
"assemblyName": "example2",
"descriptorName": "assembly::t_single::1.0",
"intendedState": "Active",
"properties": {

"data": "example data",
"deplomentLocation": "admin@local"

}
},
"processState": "Completed",
"processStartedAt": "2017-09-14T13:06:17.499Z",
"processFinishedAt": "2017-09-14T13:06:19.648Z",
"eventId": "405cf14c-752e-4030-8a4e-6706e04b50f5",
"eventCreatedAt": "2017-09-14T13:06:19.649Z",
"eventType": "ProcessStateChangeEvent"

}

Example of the final message indicating Intent Failed
{

"processId": "8c922ec6-7589-4ba8-8b4e-d7841b9a9654",
"assemblyId": "42ecbe49-0069-41f5-ac38-595b090c3d65",
"assemblyName": "example3",
"assemblyDescriptorName": "assembly::t_single::1.0",
"intentType": "CreateAssembly",
"intent": {

"assemblyName": "example3",
"descriptorName": "assembly::t_single::1.0",
"intendedState": "Active",
"properties": {

"data": "Example Data",
"deplomentLocation": "admin@local"

}
},
"processState": "Failed",
"processStateReason": "Exception ...",
"processStartedAt": "2017-09-14T13:13:58.966Z",
"processFinishedAt": "2017-09-14T13:13:59.616Z",
"eventId": "11acf385-e6f9-41cf-9651-38dc3ed6a53a",
"eventCreatedAt": "2017-09-14T13:13:59.616Z",
"eventType": "ProcessStateChangeEvent"

}

Table 17. ProcessStateChangeEvent fields

Field Description Mandatory

processId The ID given to the process that was
initiated by an Intent request

yes

assemblyId The Agile Lifecycle Manager internal ID for
the assembly instance associated with the
process

yes

assemblyName The name of the assembly instance as
supplied in the Intent request

yes

intentType The name of the intent type. The values
correspond to the Intents described in the
Managing Assembly section,

yes

intent Contains details of the intent request
supplied

yes

processState The processState may contain 'In Progress',
'Completed' or 'Failed'

yes

processStartedAt The data and time the process was started yes

Chapter 7. Reference 113

Table 17. ProcessStateChangeEvent fields (continued)

Field Description Mandatory

eventId The ID of this event from the Agile
Lifecycle Manager point of view (each
message will have a unique ID)

yes

eventCreatedAt The date and time when the event
happened from the Agile Lifecycle
Manager point of view

yes

eventType Will always contain
'ProcessStateChangeEvent'

yes

ComponentStateChangeEvent

These events are sent when the root assembly changes state and when each of its
associated resources successfully transitions to a new state. In the event of a failure
of the process no events will be sent.

The following example shows a resource transitioning to the Installed state. The
previous state is null indicating the resource did not exists before.

First message sent indicating first component transitioning to the Installed State
{

"eventId": "901d4794-7734-4511-8e24-6035ee5cb22a",
"eventCreatedAt": "2017-09-14T13:06:18.37Z",
"rootAssemblyId": "e4c198d1-2dbb-4557-baae-b5891fa258cf",
"rootAssemblyName": "example2",
"resourceId": "7a03bc63-bccf-4731-b6b2-9389609d9fa5",
"resourceName": "example2__A",
"resourceManager": "test-rm",
"deploymentLocation": "admin@local",
"externalId": "06d20929-a1c0-44cf-8009-aee47bac3f99",
"previousState": null,
"newState": "Installed",
"eventType": "ComponentStateChangeEvent"

}

An event indicating the root assembly has transitions to Installed State
The following example will be sent when all resources associated with the
root assembly have successfully transitioned to the Installed State.
{

"eventId": "33a63fca-2bed-49c3-8615-56e5b35aa3bb",
"eventCreatedAt": "2017-09-14T13:06:18.572Z",
"rootAssemblyId": "e4c198d1-2dbb-4557-baae-b5891fa258cf",
"rootAssemblyName": "example2",
"previousState": null,
"newState": "Installed",
"eventType": "ComponentStateChangeEvent"

}

Table 18. ComponentStateChangeEvent fields

Field Description Mandatory

eventType The expected value is
'ComponentStateChangeEvent'

yes

eventId The internal id generated by Agile
Lifecycle Manager in response to an
orchestration event request

yes

114 Agile Lifecycle Manager: Installation, Administration and User Guide

Table 18. ComponentStateChangeEvent fields (continued)

Field Description Mandatory

eventCreatedAt The date and time that the event took
place as recorded by Agile Lifecycle
Manager

yes

rootAssemblyId The internal Agile Lifecycle Manager ID
for the assembly instance associated
with the event

yes

rootAssemblyName The name of the root assembly as
supplied in the Intent request

yes

resourceId Th ID of the resource defined by Agile
Lifecycle Manager

no (used for resources
only)

resourceName The name of the resource defined by
Agile Lifecycle Manager

no (used for resources
only)

resourceManager The name of the resource manager that
manages the resource

no (used for resources
only)

deploymentLocation The location that the resource manager
was requested to install the resource

no (used for resources
only)

externalId The ID of the resource as defined by the
resource manager

no (used for resources
only)

previousState The state that the assembly or
component was in before the state
change happened. Allowed values:
Installed, Inactive, Active. When a Heal
event has been requested Agile
Lifecycle Manager puts the component
into the Broken state. This is a
temporary state that is used to trigger
the Heal processing. This will be set to
'null' when the resource or assembly is
transitioning to the Installed State.

yes

newState The state to which the assembly or
component instance transitioned in the
event of a successful state change, or
the state that would have resulted if a
failure had not occurred. This will be
'null' when the resource or assembly is
being uninstalled.

yes

Regarding the previousState and newState fields: When Agile Lifecycle Manager
is requested to heal a component, it will indicate this with a set of state transitions
from Active to Broken, and Broken to Inactive.
Related tasks:
“Configuring Agile Lifecycle Manager” on page 34
To configure Agile Lifecycle Manager for use, you override the default application
properties, and then configure external instances of Kafka, Cassandra and
Elasticsearch. You can also add new OpenLDAP users, modify an OpenLDAP user
password, and add new API Clients if required.
Related reference:
“Functionality” on page 6
Agile Lifecycle Manager provides continuous integration and deployment of
resources, intent-driven operations to automate lifecycle processes, and an open

Chapter 7. Reference 115

framework.
“Configuration reference” on page 51
This topic provides you with an overview of the Agile Lifecycle Manager services
settings you need to know when configuring the solution for your own
environment, such as port numbers, Swagger URLs, and API details.

Resource health events
Resource health events include integrity and load metric events.

API definition conventions:

A table is associated with each example that explains the fields it contains,
including the name of the field, a brief description, and whether the field is
mandatory. Whether a field is required or not is based on the context of the
examples. The underlying API definition may mark a field as optional, but in some
contexts, the fields must be supplied.

Any field names in italics are examples only.

Integrity events

Integrity events are sent to enable a resource to indicate whether it is working or
broken.

Example integrity metric events
{

"metricKey" : "142971c5-a84b-4d34-af15-435ba8640aec",
"metricName" : "h_integrity",
"integrity" : "OK",
"message" : "Everything is working"

}

Table 19. Integrity event fields

Field Description Mandatory

metricKey The key given to the resource manager
when the resource was created as a token
to be used within these messages

yes

metricName The name of the metric as defined in the
resource descriptor

yes

integrity A value indicating if the resource
associated with the metric Key is working.
Allowed values are 'OK' for working and
'BROKEN' when healing is required.

yes

message An optional test string to include
information about the integrity of the
resource. For example, it can include an
error code.

no

Load events

Load events indicate a resources load. This may be an aggregation across many
resources as seen for example by a load balancer.

116 Agile Lifecycle Manager: Installation, Administration and User Guide

Example load metric events
{

"metricKey" : "818127b3-1904-4737-a60c-8c7bab73532d",
"metricName" : "h_load",
"load" : 76,
"message" : "Load is high"

}

Table 20. Load event fields

Field Description Mandatory

metricKey The key given to the resource manager
when the resource was created as a token
to be used within these messages

yes

metricName The name of the metric as defined in the
resource descriptor

yes

load A value between 0 and 100, indicating
the load on the resources

yes

message An optional test string to include
information about the integrity of the
resource. For example, it can include an
error code.

no

Topology
This topic lists the topology API specifications.

API definition conventions:

A table is associated with each example that explains the fields it contains,
including the name of the field, a brief description, and whether the field is
mandatory. Whether a field is required or not is based on the context of the
examples. The underlying API definition may mark a field as optional, but in some
contexts, the fields must be supplied.

Any field names in italics are examples only.

Get assembly by id

Gets the assembly with the given ID.

Request format

Aspect Value

Endpoint URL /api/topology/assemblies/{assemblyId}

HTTP method GET

Request parameters

Field Description Mandatory

id The internal id of the assembly yes

numEvents Number of historical events to show in
response. If numEvents is set to 0, only
the structure of assembly is shown. If
left blank, the default value 3 is used.

no

Chapter 7. Reference 117

Response format

Aspect Value

Response Code 200 Ok

Example response
{

"type": "Assembly",
"id": "bf649336-c8c5-49d9-9f4e-60567fe54135",
"name": "test_1",
"state": "Active",
"descriptorName": "assembly::t_bta::1.0",
"properties": [
{
"name": "data",
"value": "data"

},
...

],
"createdAt": "2017-08-02T22:28:41.906+0000",
"lastModifiedAt": "2017-08-02T22:47:46.189+0000",
"children": [
{
"type": "Component",
"id": "aa56626d-cfec-410b-afb7-7160019bdff0",
"name": "test_1__A",
...

],
"relationships": [
{
"name": "third-relationship__1",
"sourceId": "aa56626d-cfec-410b-afb7-7160019bdff0",
"targetId": "9c525d0c-18d4-404f-a5b2-8a55480660a8",
"properties": [

{
"name": "source",
"value": "test_1__A"

}
]

}
],
"references": [
{
"id": "1c269f9d-fcca-4754-946c-6f3e6179bf38",
"name": "internal-network",
"type": "resource::openstack_neutron_network::1.0",
...

},
...

]
}

Table 21. Get assembly by id fields

Field Description Mandatory

type The type of entity being returned (always
'assembly')

yes

id The internal id of the assembly yes

name The name of the assembly as provided by
the external system

yes

118 Agile Lifecycle Manager: Installation, Administration and User Guide

Table 21. Get assembly by id fields (continued)

Field Description Mandatory

state The state of the assembly. Allowed values:
Installed, Inactive, Active. This field may
be missing if the assembly has not reached
the Installed state

no

descriptorName The name of the assembly descriptor
associated with the assembly instance

yes

properties A collection of assembly level properties.
Each property will have a name and value
field.

yes

createdAt The date and time the assembly was
created

yes

lastModifiedAt The date and time the assembly was last
modified

no

children A collection of components that make up
the assembly. When the component is of
the type 'Assembly' the contents are the
same as for the top level assembly. When
the type is 'component' the entry is in fact
a resource. This will have a type, name
and id and a set of associated properties.

yes

relationships A collection of relationships associated
with the assembly instance. Each
relationship has a name and the id of the
source and target components involved in
the relationship. Relationships also have a
property section.

no

references A collection of references used by the
assembly. References can be provided to
resources by resource managers, but
cannot be created using any assembly and
other existing assembly instances.

no

Get assembly by name

Gets the assembly with the given name.

Request format

Aspect Value

Endpoint URL /api/topology/assemblies?name={name}

HTTP method GET

Request parameters

Field Description Mandatory

name The name of the assembly yes

numEvents Number of historical events to show in
response. If numEvents is set to 0, only the
structure of assembly is shown.

no

Response format

Chapter 7. Reference 119

Aspect Value

Response Code 200 Ok

Example response
{

"type": "Assembly",
"id": "bf649336-c8c5-49d9-9f4e-60567fe54135",
"name": "test_1",
"state": "Active",
"descriptorName": "assembly::t_bta::1.0",
"properties": [
{
"name": "data",
"value": "data"

},
...

],
"createdAt": "2017-08-02T22:28:41.906+0000",
"lastModifiedAt": "2017-08-02T22:47:46.189+0000",
"children": [
{
"type": "Component",
"id": "aa56626d-cfec-410b-afb7-7160019bdff0",
"name": "test_1__A",
...

],
"relationships": [
{
"name": "third-relationship__1",
"sourceId": "aa56626d-cfec-410b-afb7-7160019bdff0",
"targetId": "9c525d0c-18d4-404f-a5b2-8a55480660a8",
"properties": [

{
"name": "source",
"value": "test_1__A"

}
]

}
],
"references": [
{
"id": "1c269f9d-fcca-4754-946c-6f3e6179bf38",
"name": "internal-network",
"type": "resource::openstack_neutron_network::1.0",
...

},
...

]
}

Table 22. Get assembly by name topology fields

Field Description Mandatory

type The type of entity being returned
(always 'assembly')

yes

id The internal id of the assembly yes

name The name of the assembly as provided
by the external system

yes

state The state of the assembly. Allowed
values: Installed, Inactive, Active. This
field may be missing if the assembly has
not reached the Installed state.

no

120 Agile Lifecycle Manager: Installation, Administration and User Guide

Table 22. Get assembly by name topology fields (continued)

Field Description Mandatory

descriptorName The name of the assembly descriptor
associated with the assembly instance

yes

properties A collection of assembly level properties.
Each property will have a name and
value field.

yes

createdAt The date and time the assembly was
created

yes

lastModifiedAt The date and time the assembly was last
modified

no

children A collection of components that make up
the assembly. When the component is of
the type 'Assembly' the contents are the
same as for the top level assembly.
When the type is 'component' the entry
is in fact a resource. This will have a
type, name and id and a set of
associated properties.

yes

relationships A collection of relationships associated
with the assembly instance. Each
relationship has a name and the id of
the source and target components
involved in the relationship.
Relationships also have a property
section.

no

references A collection of references used by the
assembly. References can be provided to
resources by resource managers, but
cannot be created using any assembly
and other existing assembly instances.

no

Catalog API
Use the following catalog API details to manage the descriptors in the catalog. You
can add, list, update or delete assembly descriptors from the catalog. You can list
or delete resource descriptors, but can only add or update them through the
resource manager API.

API definition conventions:

A table is associated with each example that explains the fields it contains,
including the name of the field, a brief description, and whether the field is
mandatory. Whether a field is required or not is based on the context of the
examples. The underlying API definition may mark a field as optional, but in some
contexts, the fields must be supplied.

Any field names in italics are examples only.

Get a summary of all descriptors

The following request returns a summary of the descriptors from the Agile
Lifecycle Manager catalog.

Request format

Chapter 7. Reference 121

Aspect Value

Endpoint URL /api/catalog/descriptors

HTTP method GET

Response format

Aspect Value

Response Code 200 Ok

Example response
[

{
"name": "resource::t_simple::1.0",
"description": "resource for t_simple",
"links": [
{

"rel": "self",
"href": "http://192.168.99.100:8280/api/ /catalog/descriptors/

resource::t_simple::1.0"
}

]
},
{
"name": "resource::h_simple::1.0",
"description": "resource for t_simple",
"links": [
{

"rel": "self",
"href": "http://192.168.99.100:8280 /api/catalog/descriptors/

resource::h_simple::1.0"
}

]
}

]

Table 23. Response properties

Field Description Mandatory

name The name of the descriptor yes

description The descriptor description yes

links A collection of links to the descriptor yes

rel Will always be set to self yes

href The URL to retrieve the descriptor
from the catalog

yes

Create assembly descriptor

The following request creates a new assembly descriptor in the Agile Lifecycle
Manager catalog.

Request format

Aspect Value

Endpoint URL /api/catalog/descriptors

Content type application/yaml

HTTP method POST

122 Agile Lifecycle Manager: Installation, Administration and User Guide

Example request
The content of the request will be an assembly descriptor in YAML format.
For more information see “Assembly descriptor YAML specifications” on
page 151.

Response format

Aspect Value

Response Code 201 Ok

Example response
{

"validationWarnings": []
}

Table 24. Response properties

Field Description Mandatory

validationWarnings Will contain a list of warnings about
the descriptor that has been created, if
empty the descriptor is valid.

yes

Delete assembly descriptor

The following request deletes an assembly descriptor from the Agile Lifecycle
Manager catalog.

Request format

Aspect Value

Endpoint URL /api/catalog/descriptors/{descriptorName}

HTTP method DELETE

The descriptor name is the full name of the descriptor, for example
assembly::t_single::1.0

You must encode this appropriately for use as a URL, for example
assembly%3A%3At_single%3A%3A1.0

Response format

Aspect Value

Response Code 204 Ok

Get assembly descriptor by name

The following request returns an existing assembly descriptor from the Agile
Lifecycle Manager catalog.

Request format

Aspect Value

Endpoint URL /api/catalog/descriptors/{descriptorName}

HTTP method GET

Chapter 7. Reference 123

The descriptor name is the full name of the descriptor, for example
assembly::t_single::1.0

You must encode this appropriately for use as a URL, for example
assembly%3A%3At_single%3A%3A1.0

Response format

Aspect Value

Response Code 201 Ok

The response body will contain the descriptor in YAML format.

Update assembly descriptor

The following request updates an existing assembly descriptor in the Agile
Lifecycle Manager catalog.

Request format

Aspect Value

Endpoint URL /api/catalog/descriptors/{descriptorName}

Content type application/yaml

HTTP method PUT

The descriptor name is the full name of the descriptor, for example
assembly::t_single::1.0

You must encode this appropriately for use as a URL, for example
assembly%3A%3At_single%3A%3A1.0

Example request
The content of the request will be an assembly descriptor in YAML format.
For more information see “Assembly descriptor YAML specifications” on
page 151.

Response format

Aspect Value

Response Code 200 Ok

Example response
{

"validationWarnings": []
}

Table 25. Response properties

Field Description Mandatory

validationWarnings Will contain a list of warnings about
the descriptor that has been created,
if empty the descriptor is valid.

yes

124 Agile Lifecycle Manager: Installation, Administration and User Guide

Resource Manager API
The Resource Manager API is responsible for defining the interactions between a
lifecycle manager and the resource managers that are used to manage resources
within virtual (or physical) infrastructures.

Interface architecture
Four groups of interface endpoints are referenced within the Resource Manager
API. These groups are responsible for the management or retrieval of different
entities from the resource managers.

High-level interface architecture

The following diagram shows the high-level functional architecture referenced in
the Resource Manager API specifications.

API interaction principles

All of the message descriptions are in JSON format and should be submitted with
the HTTP content-type header of application/json.

The REST endpoints can be secured using HTTPS, but there is no current provision
for further authentication across the interface. Future changes could add support
for HTTP basic authentication or the use of tokens (such as JWT, OAuth, etc).

All of the REST endpoints should be accessible from the same root URL, for
example http://localhost:8080/api/configuration and http://localhost:8080/api/
types

Interface interaction patterns
This topic outlines the potential interaction patterns with how Agile Lifecycle
Manager calls the Resource Manager APIs.

Resource Manager onboarding

When a new Resource Manager is being onboarded into the Agile Lifecycle
Manager, the following calls will be made.

Chapter 7. Reference 125

http://localhost:8080/api/configuration
http://localhost:8080/api/types
http://localhost:8080/api/types

Process creation

When a new transition process is being created within the Agile Lifecycle Manager
the following calls may be made to a Resource Manager.

126 Agile Lifecycle Manager: Installation, Administration and User Guide

Resource transitions (synchronous)

As part of an assembly transition, the Agile Lifecycle Manager may call out to a
Resource Manager to transition or perform an operation on a Resource. This is the
interaction pattern for this scenario when the Resource Manager does not support
asynchronous response messages.

Resource transitions (asynchronous)

As part of an assembly transition, the Agile Lifecycle Manager may call out to a
Resource Manager to transition or perform an operation on a Resource. This is the
interaction pattern for this scenario when the Resource Manager supports
asynchronous response messages.

Chapter 7. Reference 127

Resource manager configuration
This topic describes the Resource Managers configuration.

Get Resource Manager configuration

Returns high-level information about the configuration of this Resource Manager.

This endpoint is called when onboarding the Resource Manager.

The supportedFeatures section allows the resource manager to inform the ALM
that a feature is supported by the resource manager. The only value supported at
the moment is AsynchronousTransitionResponses. This informs ALM that the
resource manager will be using the asynchronous response mechanism described
here.

Request format

Aspect Value

Endpoint URL /configuration

HTTP method GET

Parameters none

Response format

Aspect Value

Return Code 200 OK

Example response
{
“name”: “default-rm::dev”,
“version”: “1.0.0”,
“supportedApiVersions”: [“1.0”],
“supportedFeatures”: {

128 Agile Lifecycle Manager: Installation, Administration and User Guide

“AsynchronousTransitionResponses”: “false”
},
“properties”: {
“responseKafkaConnectionUrl”: “zookeeper://localhost:2181”,
“responseKafkaTopicName”: “lm-responses”
}

}

Table 26. Get Resource Manager fields

Field Description Mandatory

name The name of the resource manager
instance

yes

version The version of the resource manager
instance

yes

supportedApiVersions A list API version supported – currently
on 1.0

no

supportedFeatures A list of features supported by the
resource manager

no

AsynchronousTransition
Responses

Indicates if the resource manager supports
asynchronous responses via Kafka

no

properties A set of key value pair with properties
describing key behaviour

no

responseKafkaConnectionUrl The URL for Kafka where the
asynchronous responses will be sent

no

responseKafkaTopicName The name of the topic for the
asynchronous responses

no

Resource type configuration
This topic describes the resource type configuration.

List resource types

Returns a list of all resource types managed by this Resource Manager.

Note: The descriptor is not returned in this list.
Allowable states for the resource types are:
v UNPUBLISHED
v PUBLISHED
v DELETED

Request format

Aspect Value

Endpoint URL /types

HTTP method GET

Parameters none

Response format

Aspect Value

Return Code 200 OK

Chapter 7. Reference 129

Example response
[
{

“name”: “resource::openstack-network::1.0”,
“state”: “PUBLISHED”,
“createdAt”: “2017-05-01T11:22:33Z”,
“lastModifiedAt”: “2017-05-04T12:13:14+01:00”

}
]

Table 27. List resource types fields

Field Description Mandatory

name The name of the resource type.

Must follow the naming structure defined in
the Assembly Specification document.

yes

state The state of the resource descriptor.

Currently only PUBLISHED is allowed.

yes

createdAt The date the resource type was created.

XML Date time format.

yes

lastModifiedAt The date the resource type was last changed.

XML Date time format.

yes

Get resource type

Returns information about a specific resource type, including its YAML descriptor.

Request format

Aspect Value

Endpoint URL /types/{name}

HTTP method GET

Parameters name - Unique name for the resource type
requested

Response format

Aspect Value

Return Code 200 OK

Example response
{
“name”: “resource::openstack-network::1.0”,
“descriptor”: “YAML Descriptor for this resource type”,
“state”: “PUBLISHED”,
“createdAt”: “2017-05-01T11:22:33Z”,
“lastModifiedAt”: “2017-05-04T12:13:14+01:00”
}

130 Agile Lifecycle Manager: Installation, Administration and User Guide

Table 28. Get resource type fields

Field Description Mandatory

name The name of the resource type.

Must follow the naming structure defined in
the Assembly Specification document.

yes

descriptor The resource descriptor.

A valid YAML document as a string.

yes

state The state of the resource descriptor.

Currently only PUBLISHED is allowed.

yes

createdAt The date the resource type was created.

XML Date time format.

yes

lastModifiedAt The date the resource type was last changed.

XML Date time format.

yes

Resource topology
This topic describes the resource topology.

List deployment locations

Returns a list of all deployment locations available to this Resource Manager.

Request format

Aspect Value

Endpoint URL /topology/deployment-locations

HTTP method GET

Parameters none

Response format

Aspect Value

Return Code 200 OK

Example response
[
{

“name”: “dev-cloud”,
“type”: “default-rm::Cloud”

},
{

“name”: “test-cloud”,
“type”: “default-rm::Cloud”

}
]

Table 29. List deployment location fields

Field Description Mandatory

name The name of the location managed by the
resource manager.

yes

Chapter 7. Reference 131

Table 29. List deployment location fields (continued)

Field Description Mandatory

type The type of location

Defined by the resource manager

Any valid string

yes

Get deployment location

Returns information for the specified deployment location.

Request format

Aspect Value

Endpoint URL /topology/deployment-locations/{name}

HTTP method GET

Parameters name - Unique name for the deployment
location requested

Response format

Aspect Value

Return Code 200 OK

Example response
{
“name”: “dev-cloud”,
“type”: “default-rm::Cloud”
}

Table 30. Get deployment location fields

Field Description Mandatory

name The name of the location managed by the
resource manager.

yes

type The type of location

Defined by the resource manager

Any valid string

yes

Search for resource instances

Searches for resource instances managed within the specified deployment location.

The search can be restricted by the type of the resources to be returned, or a partial
match on the name of the resources.

Request format

Aspect Value

Endpoint URL /topology/deployment-locations/{name}

HTTP method GET

132 Agile Lifecycle Manager: Installation, Administration and User Guide

Aspect Value

Parameters name - Unique name for the deployment
location

instanceType - Limits results to be of this
resource type (optional, exact matches only)
instanceName - Limits results to contain this
string in the name (optional, partial
matching)

Response format

Aspect Value

Return Code 200 OK

Example response
[
{

“resourceId”: “c675e0bd-9c6c-43ca-84bf-2c061d439c6b”,
“resourceName”: “dev-network”,
“resourceType”: “resource::openstack-network::1.0”,
“resourceManagerId”: “default-rm::dev”,
“deploymentLocation”: “dev-cloud”,
“properties”: {
“propertyName”: “propertyValue”

},
“createdAt”: “2017-05-01T12:00:00Z”,
“lastModifiedAt”: “2017-05-01T12:00:00Z”

}
]

Table 31. Search for resource instances fields

Field Description Mandatory

resourceId The id of the instance of a resource yes

resourceName The name of the resource yes

resourceType The name of the resource type yes

resourceManagerId The id of the resource manager
instance

This ID is the same attribute as
'name', which is returned in the get
configuration request response

yes

deploymentLocation The name of the deployment location
where the instance exists

yes

properties A set of key value pair with
properties describing key behaviour

no

propertyName A name of a property to be used in
the search

no

propertyValue The value associated with the
propertyName

no

createdAt The date the resource type was
created.

XML Date time format

yes

Chapter 7. Reference 133

Table 31. Search for resource instances fields (continued)

Field Description Mandatory

lastModifiedAt The date the resource type was last
changed

XML Date time format

yes

Get resource instance

Returns information for the specified resource instance.

When Agile Lifecycle Manager requests a resource manager to create a resource,
the resource manager may instantiate a number of underlying virtual resources as
part of implementing the resource. In the response the resource manager is
expected to return details of any underlying virtual resources that have been
instantiated. This should be put in the internalResourceInstances section of the
response.

Request format

Aspect Value

Endpoint URL /topology/instances/{id}

HTTP method GET

Parameters id - Unique id for the resource instance

Response format

Aspect Value

Return Code 200 OK

Example response
{
“resourceId”: “default-rm://c675e0bd-9c6c-43ca-84bf-2c061d439c6b”,
“resourceName”: “dev-network”,
“resourceType”: “resource::openstack-network::1.0”,
“resourceManagerId”: “default-rm::dev”,
“deploymentLocation”: “dev-cloud”,
“properties”: {
“propertyName”: “propertyValue”

},
“createdAt”: “2017-05-01T12:00:00Z”,
“lastModifiedAt”: “2017-05-01T12:00:00Z”,
“internalResourceInstances”: [
{

“id”: “3cb7822b-fc44-46ab-8072-9c65cd778d1f”,
“name”: “MGMT-NETWORK”,
“type”: “OpenDaylight::PrivateNetwork”
}

]
}

Table 32. Get resource instance fields

Field Description Mandatory

resourceId The id of the instance of a
resource

yes

resourceName The name of the resource yes

134 Agile Lifecycle Manager: Installation, Administration and User Guide

Table 32. Get resource instance fields (continued)

Field Description Mandatory

resourceType The name of the resource type yes

resourceManagerId The ID of the resource manager
instance

yes

deploymentLocation The name of the deployment
location where the instance exists

yes

properties A set of key value pair with
properties describing key behavior

no

propertyName A name of a property to be used
in the search

no

propertyValue The value associated with the
propertyName

no

createdAt The date the resource type was
created.

XML Date time format

yes

lastModifiedAt The date the resource type was
last changed

XML Date time format

yes

internalResourceInstances A list of resources that have been
created by the resource manager
in response to the request

no

Id The id of the internal resource no

Name The name of the internal resource no

Type The type of the internal resource

Resource lifecycle management
This topic describes the resource lifecycle management.

Create resource transition

Requests this Resource Manager performs a specific transition against a resource.

Request format

Aspect Value

Endpoint URL /lifecycle/transitions

HTTP method POST

Parameters none

Example request
{
“resourceManagerId”: “default-rm::dev”,
“deploymentLocation”: “dev-cloud”,
“resourceType”: “resource::openstack-network::1.0”,
“transitionName”: “Install”,
“resourceName”: “dev-network-c675e0bd”,
"metricKey" : "818127b3-1904-4737-a60c-8c7bab73532d"

“properties”: {

Chapter 7. Reference 135

“propertyName”: “propertyValue”
},
“context”: {}
}

Table 33. Create resource transition request fields

Field Description Mandatory

resourceManagerId The id of the resource manager instance yes

deploymentLocation The name of the deployment location
where the resource will be created

yes

resourceType The name of the resource type to be
created

yes

transitionName The name of the Transition to be enacted
against the resource

Allowed values for the transitionName
are Install, Configure, Start, Integrity,
Stop, Uninstall, as well as any operation
names supported by the resources

yes

resourceId The unique id of the resource. This field
is mandatory for all non-Install
transitions and will not be present
during 'Install' transitions, as this is
allocated by the resource manager once
it has been created.

yes

resourceName The name of the resource. yes

metric key A key provided to manage metrics. yes

properties A section that contains a set of
key/value pairs for the properties for
the resource

These will match those defined in the
resource descriptor

yes

context Context is included for future use no

Response format

Aspect Value

Return Code 202 ACCEPTED

Example response
{
“requestId”: “80fc4a66-7e92-41f8-b4bb-7cb98193f5fa”,
“requestState”: “PENDING”,
“context”: {
“AsynchronousTransitionResponses”: “false”

}
}

Table 34. Create resource transition response fields

Field Description Mandatory

requestId The id of the request defined by the
resource manager

This should be a GUID

yes

136 Agile Lifecycle Manager: Installation, Administration and User Guide

Table 34. Create resource transition response fields (continued)

Field Description Mandatory

requestState A string representing the state of the
request

Allowable states for the request state
are:

v PENDING

v IN_PROGRESS

v COMPLETED

v CANCELLED

v FAILED

yes

context Context is included for future use no

AsynchronousTransition
Responses

Indicates whether this transition will
send responses asynchronously via
Kafka

no

Get resource transition status

Returns information about the specified transition or operation request. The id
passed in is the value that the resource manager generated as the requestId in the
response of the previous call.

Request format

Aspect Value

Endpoint URL /lifecycle/transitions/{id}/status

HTTP method GET

Parameters id - Unique identifier for the resource
transition

Response format

Aspect Value

Return Code 200 OK

Example response
{
“requestId”: “80fc4a66-7e92-41f8-b4bb-7cb98193f5fa”,
“requestState”: “COMPLETED”,
“requestStateReason”: “Transition successfully completed in 324 msecs”,
“resourceId”: “e09dbfcf-bb70-42ee-8c32-bdb83a22fb5d”,
“startedAt”: “2017-05-01T12:00:00Z”,
“finishedAt”: “2017-05-01T12:00:00Z”
“context”: {
“AsynchronousTransitionResponses”: “false”

}

Table 35. Get resource transition status fields

Field Description Mandatory

requestId The id of the request defined by the
resource manager

This should be a GUID

yes

Chapter 7. Reference 137

Table 35. Get resource transition status fields (continued)

Field Description Mandatory

requestState A string representing the state of the
request

Allowable states for the request state
are:

v PENDING

v IN_PROGRESS

v COMPLETED

v CANCELLED

v FAILED

yes

requestStateReason A string giving the reason for the State
of the request

no

resourceId The id of the resource within the
context of the resource manager

This should be a GUID

yes

startedAt The time the transition was started yes

finishedAt The time the transition was completed no

context Context is included for future use no

AsynchronousTransition
Responses

Indicates whether this transition will
send responses asynchronously via
Kafka.

no

Resource type configuration (asynchronous)
Optionally, a resource manager can emit events when the definition of a resource
type changes, or a new resource type is created or deleted. This allows the resource
manager to inform Agile Lifecycle Manager that a resource description has
changed.

Note: The asynchronous resource type configuration described here is not related
to the resource manager supporting asynchronous responses, which is referenced
in the “Get Resource Manager configuration” on page 128 topic and described in
more detail in the “Resource lifecycle management (asynchronous)” on page 139
topic.

Resource type update message example
{
“name”: “resource::openstack-network::1.0”,
“descriptor”: “YAML Descriptor for this resource type”,
“state”: “PUBLISHED”,
“createdAt”: “2017-05-01T11:22:33Z”,
“lastModifiedAt”: “2017-05-04T12:13:14+01:00”
}

Table 36. Resource type configuration (asynchronous) fields

Field Description Mandatory

name The name of the resource type

Must follow the naming structure
defined in the Assembly Specification
document

yes

138 Agile Lifecycle Manager: Installation, Administration and User Guide

Table 36. Resource type configuration (asynchronous) fields (continued)

Field Description Mandatory

descriptor The resource descriptor

A valid YAML document as a string

yes

state The state of the resource descriptor

Currently only PUBLISHED is allowed

yes

createdAt The date the resource types was created

XML Date time format.

yes

lastModifiedAt The date the resource type was last
changed.

XML Date time format.

yes

Resource lifecycle management (asynchronous)
Optionally, a resource manager can choose to emit responses when transitions are
completed (either successfully or not). It is recommended that this method is used
to avoid Agile Lifecycle Manager needing to poll for the status periodically.

Resource transition response message example

The resource manager informs Agile Lifecycle Manager that this method will be
used alongside the polling interface by indicating that it supports this feature by
setting asychronousTransitionsReponses to true. If the resource manager supports
the asynchronous response mechanism, then it will also support the polling update
method.
{
“requestId”: “80fc4a66-7e92-41f8-b4bb-7cb98193f5fa”,
“resourceManagerId”: “default-rm::dev”,
“deploymentLocation”: “dev-cloud”,
“resourceType”: “resource::openstack-network::1.0”,
“transitionName”: “Install”,
“resourceInstance”: {
“resourceId”: “default-rm://c675e0bd-9c6c-43ca-84bf-2c061d439c6b”,
"metricKey": "2530c175-541e-43df-89ae-6c34bc351d9b",
“resourceName”: “dev-network”,
“resourceType”: “resource::openstack-network::1.0”,
“resourceManagerId”: “default-rm::dev”,
“deploymentLocation”: “dev-cloud”,
“properties”: {
“propertyName”: “propertyValue”

},
“createdAt”: “2017-05-01T12:00:00Z”,
“lastModifiedAt”: “2017-05-01T12:00:00Z”,
“internalResourceInstances”: [

{
“id”: “3cb7822b-fc44-46ab-8072-9c65cd778d1f”,
“name”: “MGMT-NETWORK”,
“type”: “OpenDaylight::PrivateNetwork”
}
]

},
“context”: {},
“requestState”: “COMPLETED”,

Chapter 7. Reference 139

“requestStateReason”: “Transition successfully completed in 324 msecs”,
“startedAt”: “2017-05-01T12:00:00Z”,
“finishedAt”: “2017-05-01T12:00:00Z”
}

Table 37. Get resource transition status fields

Field Description Mandatory

requestId The id of the request yes

resourceManagerId The id of the resource manager yes

deploymentLocation The name of the location associated
with the resource

yes

resourceType The type of the resource yes

transitionName The name of the transition associated
with this response

yes

resourceInstance A section that contains the details of
the resource instance

yes

resourceId The ID of the instance of a resource yes

resourceName The name of the resource type yes

resourceType The name of the resource type yes

resourceManagerId The ID of the resource manager
instance

yes

deploymentLocation The name of the deployment location
where the instance exists

yes

properties A set of key value pair with properties
describing key behavior

no

propertyName A name of a property to be used in
the search

no

propertyValue The value associated with the
propertyname

no

createdAt The date the resource type was
created

XML Date time format

yes

lastModifiedAt The date the resource type was last
changed

XML Date time format

yes

internalResourceInstances Contains details of the underlying
instances created by the resource
manager in response to the intent
request. This is a list and may contain
many sets of Id, name and type fields.

yes - the underlying
resource does not
match the information
otherwise used by the
resource manager

context Future use only no

requestState The state of the transition. yes

requestStateReason A string describing the reason for the
state of the request, for example an
error message.

yes

startedAt The time the transition was started yes

finishedAt The time the transition was completed no

140 Agile Lifecycle Manager: Installation, Administration and User Guide

Publishing metrics
Resources publish metrics via Kafka. Each of the two metrics described in this
topic, that is, integrity and load metrics, are published to a separate Kafka topic.

Integrity metrics

Integrity metrics are published to the 'alm__integrity' topic. The message contents
are:

Integrity metrics message content
{

"metricKey" : "142971c5-a84b-4d34-af15-435ba8640aec",
"metricName" : "h_integrity"
"integrity" : "OK",
"message" : "Everything is working"

}

Integrity metrics message fields

Field Description Mandatory

metricKey The key provided when the resource was
created

yes

metricName The name of the metric as defined in the
resource descriptor

no

integrity Allowed values:

OK When the resource is healthy
and passing its Integrity checks

BROKEN
When the checks fail

yes

message An optional message to add value to the
metric; useful in the event of BROKEN

no

Load metrics

Load metrics are published to the 'alm__load' topic. The message contents are:

Load metrics message content
{

"metricKey" : "818127b3-1904-4737-a60c-8c7bab73532d",
"metricName" : "h_load"
"load" : 76,
"message" : "Load is high"

}

Load metrics message fields

Field Description Mandatory

metricKey The key provided when the resource was
created

yes

metricName The name of the metric as defined in the
resource descriptor

no

load A value between 0 and 100 indicating the
level of the load a resource is
experiencing. A higher value indicates a
higher load.

yes

Chapter 7. Reference 141

Field Description Mandatory

message An optional test string to include
information about the integrity of the
resource. For example, it may include an
error code.

no

Resource descriptor YAML specifications
This section describes the descriptors that are used by Agile Lifecycle Manager.

Agile Lifecycle Manager needs to have descriptions of the building blocks of
applications that it is going to manage. The basic building blocks are described in
this 'resource descriptor' section. Sets of these resource descriptors are composed
into assembly descriptors, which are described in “Assembly descriptor YAML
specifications” on page 151.

Within the assembly will be a description of the relationships between resources
that allow configuration to be applied to the actual instances of the components
that Agile Lifecycle Manager will manage. Assemblies may also reference
assemblies and existing infrastructure items, such as network instantiated outside
of Agile Lifecycle Manager.

Naming

The resource descriptor name field will contain the following string:
resource::name::1.0

The name must start with a letter (either case), and can include letters, numbers,
underscores and hyphens. The name must not contain spaces, and the version is
fixed to 1.0 for this release. Both name and version are mandatory.

Resource descriptor sections
This sections describes the resource descriptors.

Header

The header includes the name and the description of the descriptor and associated
resource manager type. Each resource is associated with a resource manager that
has a declared type. This is shown by the field resource-manager-type. The
contents of the field must be a globally unique string.
name: resource::c_streamer::1.0
description: component package for c_streamer
resource-manager-type: urbancode.ibm.com

'properties'

This section contains the properties that belong to the resource descriptors. These
include the full set of properties that are required to orchestrate them through to
the Active state. These can be understood as the context for the management of the
item during its lifecycle.
properties:
deploymentLocation: # the name of the property
type: string
required: true
description: The name of the openstack project(tenant) to install this assembly in.

142 Agile Lifecycle Manager: Installation, Administration and User Guide

numOfStreamers:
type: string
description: the number of streamers that should be created at install time
default: 2

tenant_key_name:
type: string
required: true
description: The ssh key for the current tenant

flavor:
value: m1.small

cluster_public_ip_address:
type: string
description: the public IP address for this cluster
read-only: true
value: ’${balancer.publicIp}’

Each property name must be unique within its property section. The types of
properties can be string. Password-indicated fields will contain passwords or
sensitive data. Properties are optional unless explicitly defined as required by the
inclusion of a required: true flag.

Properties marked as read-only: true will typically have that value set by the
time the associated component instance is in the Active state. These fields must not
be marked as required: true.

Properties may be declared with a default value or a specific value or neither.
Where the value field is used it may either be an explicit value or it may reference
to another property within the description. When referencing a property in the
assemblies main property section the reference will look as follows: value:
'${max_connections}'.

Agile Lifecycle Manager will assign an internal name and identifier for each
resource instance it creates.

It also supplies the index number of a resource in a cluster. These values can be
useful to give unique names for servers, for example. To access them a property
may have its value set to ${instance.name}, ${instance.id} or ${instance.index}.
These should be placed in the value field of a property. Agile Lifecycle Manager
will then replace placeholders with the appropriate value.

Note: Assembly descriptor properties are defined in the following topic:
“'properties'” on page 152

Capabilities and requirements

These two sections allow designers to explain what functions the resources are
implementing or need before they can work successfully. These might be
expressing that networks or various types must be available for the resource
instances to work or it may be describing that a resource supports, for example,
incoming http requests.

The type is a string that expresses the capability or requirement. The values in
these strings will have to be agreed across an organization and where possible they
should be agreed by the industry. Resource capabilities should use common
industry terms. In the examples below the idea is that httpStreamOutput indicates
that the capability is using the http protocol in a stream form and in an output
direction. The OS::Neutron:Net is the resource type from OpenStack associated
with a network instantiated within neutron.

Chapter 7. Reference 143

'capabilities'
Capabilities are used to enable service designers to understand what
function a resource provides.
capabilities:

VideoStream:
type: httpStreamOutput

capabilities:
Network:
type: neutronNetwork

'requirements'
Requirements contain the list of capabilities that the resource requires in
order to work.
requirements:

VideoNetwork:
type: neutronNetwork

ManagementNetwork:
type: neutronNetwork

RemoteNFSMountPoint:
type: nfsExportMountpoint

'operations'

This section defines operations that can be called to enable relationships to be
created between resources. Operations definitions in the resource have a name and
a set or properties. Where a resource descriptor describes an operation an
enclosing assembly may expose this by referencing the lower level operation. As a
convention the name of the operation should be linked to the capability that is
being enabled through the creation of the relationship.

Resource descriptor operations
operations:

RemoveHttpStreamOutput:
description: removes the http server from being managed by the balancer
properties:

server_ip:
type: string
description: Http Server Ip Address
default: the ip address

server_port:
type: string
description: http server port number
default: ’8080’

AddHttpStreamOutput:
description: adds an http server to the balancer’s pool
properties:

max_connections:
type: string
description: Maximum connections for the balanced server
default: 3

server_ip:
type: string
description: Ip Address of the server to be balanced

server_port:
type: string
description: Port on balanced server
default: ’8080’

'lifecycle'

Resource descriptors must support the install and uninstall lifecycle transitions.
These are mandatory.

144 Agile Lifecycle Manager: Installation, Administration and User Guide

However, they may implement the other lifecycle transitions, which are:
v Configure
v Start
v Stop
v Integrity

Where the transition is not provided by the resource, Agile Lifecycle Manager is
free to change the state of the associated component instances without calling any
underlying transition.

The lifecycle section will contain a list of all the transitions that the resource
supports. In the case of the following example, no Configure transition is defined.
lifecycle:
- Install
- Uninstall
- Start
- Stop
- Integrity

A resource may be one that can only be used within a reference section of an
assembly. These resources will not have an Install or Uninstall lifecycle defined.

Resources that are used as reference resources do not have to include the lifecycle
section. Any resource without the Install and Uninstall cannot be instantiated by
Agile Lifecycle Manager, and therefore should not be included in the composition
section of an assembly.

Metrics and policies

A resource descriptor may indicate that the underlying resource will emit one or
more metrics. A metric is defined as having a name, type and an optional
publication-period.

If no publication period is given at all, a default of 60 seconds is assumed. The
publication period is in seconds.

A value of 0 means no metrics will be published. The value must be +integer.

There are two reserved types that are used by the Agile Lifecycle Manager to
monitor the health of the associated resource instances:
metric::integrity

and
metric::load

Example resource metrics: This example shows the policy associated with the
Integrity metric. Within the resource descriptor the policies section contains details
of the heal policy. This allows the smoothing interval to be defined for the
resource. Each policy has a name, the associated metric, an action (heal) and a
properties section.
metrics:

h_integrity:
type: "metric::integrity"
publication-period: "${integrity_publication_period}"

load:
type: "metric::load"

Chapter 7. Reference 145

Note: Property references are used to allow the value for the publication period to
be passed from a separate properties section in the resource.

Example policies section: In the following policy example the smoothing value is
used to prevent 'snap' changes happening due to unusual short term conditions.

Note: Properties, smoothing, threshold, and target are all policy-specific properties
that may not be required by other types of policies.
policies:

heal:
metric: "h_integrity"
type: "policy::heal"
properties:

smoothing:
value: "${number-of-intervals}"

Example of smoothing

Resource descriptor YAML examples
The examples included in this section show the c_balancer, c_streamer and the
net_video resources.

'resource' examples

resource::net_video:1.0
The following resource creates a neutron network.
name: resource::net_video::1.0
description: resource to create an internal neutron network that includes
a subnet
resource-manager-type: urbancode.ibm.com
properties:

subnetCIDR:
type: string
description: The subnet classless inter-domain routing
default: ’10.0.1.0/24’

networkName:
type: string
description: Network Name
value: VIDEO

subnetDefGwIp:
type: string
description: Default Gateway IP address
default: ’10.0.1.1’

network-id:
type: string
description: the id of the network just created
read-only: true

capabilities:

146 Agile Lifecycle Manager: Installation, Administration and User Guide

Network:
type: OS::Neutron::Net

lifecycle:
- Install
- Uninstall

resource::h_simple::1.0
The following resource is a simple component with metrics and policies.
name: "resource::h_simple::1.0"
description: "resource for t_simple"
properties:

server_name:
type: "string"
value: "${instance.name}"

referenced-internal-network:
type: "string"
description: "Generated to reference a network"

reference-public-network:
type: "string"
description: "Generated to reference public network"

image:
type: "string"
description: "The Image reference"

key_name:
type: "string"
description: "SSH key"

data:
type: "string"
description: "parameter passed"
default: "data"

integrity_publication_period:
type: "string"
description: "the period that should be used to publish the metrics"
default: "60"

publication_period:
type: "string"
description: "the period that should be used to publish the metrics"
default: "60"

number-of-intervals:
type: "string"
description: "The intervals before calling a Heal"
default: "3"

output:
type: "string"
description: "an example output parameter"
read-only: true

operations:
CreateRelationship1:

description: "Create a new relationship"
properties:
source:

type: "string"
description: "that name of the source"

target:
type: "string"
description: "that name of the target"

CeaseRelationship1:
description: "Cease an existing relationship"
properties:
source:

type: "string"
description: "that name of the source"

target:
type: "string"
description: "that name of the target"

CreateRelationshipr2:
description: "Create a new relationship"

Chapter 7. Reference 147

properties:
source:

type: "string"
description: "that name of the source"

target:
type: "string"
description: "that name of the target"

CeaseRelationship2:
description: "Cease an existing relationship"
properties:
source:

type: "string"
description: "that name of the source"

target:
type: "string"
description: "that name of the target"

CreateRelationship3:
description: "Create a new relationship"
properties:
source:

type: "string"
description: "that name of the source"

target:
type: "string"
description: "that name of the target"

CeaseRelationship3:
description: "Cease an existing relationship"
properties:
source:

type: "string"
description: "that name of the source"

target:
type: "string"
description: "that name of the target"

metrics:
h_integrity:
type: "metric::integrity"
publication-period: "${integrity_publication_period}"

load:
type: "metric::load"

policies:
heal:
metric: "h_integrity"
type: "policy::heal"
properties:
smoothing:

value: "${number-of-intervals}"
lifecycle:
- "Configure"
- "Install"
- "Integrity"
- "Start"
- "Stop"
- "Uninstall"
resource-manager-type: "test-rm"

resource::c_streamer::1.0

The following descriptor creates a virtual server that streams video traffic
using the http protocol.
name: resource::c_streamer::1.0
description: resource descriptor for c_streamer
resource-manager-type: urbancode.ibm.com
properties:

key_name:
type: string
required: true

148 Agile Lifecycle Manager: Installation, Administration and User Guide

description: the ssh key-pair name to be used by openstack with the
associated VM instances

referenced-management-network:
type: string
required: true
description: The id of the network that will act in the role of a

management network
flavor:

type: string
required: true
description: Flavor to be used for compute instance

server_name:
type: string
required: true
description: the name of the server to be created

referenced-video-network:
type: string
description: The id of the network that will act in the role of an

internal network
availability_zone:

type: string
description: Name of availability zone in which to create the instance
default: DMZ

privateIp:
type: string
description: IpAddress of server on the internal network
read-only: true

mgmtIp:
type: string
description: IpAddress of server on the management network
read-only: true

integrity_publication_period:
type: string
description: the number of seconds between publishing integrity metric
default: 60

number-of-intervals:
type: string
description: the number of intervals for smoothing
default: 3

capabilities:
VideoStream:

type: httpStreamOutput
requirements:

VideoNetwork:
type: neutronNetwork

ManagementNetwork:
type: neutronNetwork RemoteNFSMountPoint:
type: nfsExportMountpoint

lifecycle:
- Install
- Uninstall
- Configure
- Start
- Stop
- Integrity
operations:

MountStorage:
description: An operation to enable the streamer to mount a remote NFS

mount point
properties:
remote_nfs_port:

type: string
description: Port for the NFS
default: ’2049’

remote_nfs_server_ip:
type: string
description: Ip Address of remote nfs server

Chapter 7. Reference 149

remote_mount_point:
type: string
description: Location of NFS Exported Mount Point
default: /

local_mount_point:
type: string
description: The location where the remote nfs mount will be

mounted in the local machine
default: /mnt

UnmountStorage:
description: An operation to unmount a remote NFS mount point
properties:
local_mount_point:

type: string
description: The location where the remote nfs mount will be

mounted in the local machine
default: /mnt

resource::c_balancer::1.0

The following example load balancer server balances connections and data
streams between pools of available application servers.
name: resource::c_balancer::1.0
description: component package for a http loadbalancer
resource-manager-type: UrbanCode
cloud-target: OpenStack
properties:

key_name:
type: string
description: ssh key_name.

referenced-management-network:
type: string
description: Generated to reference a network

referenced-internal-network:
type: string
description: Generated to reference a network

referenced-public-network:
type: string
description: Generated to reference a network

flavor:
type: string
description: Flavor to be used for compute instance

server_name:
type: string
description: server name of the balancer

availability_zone:
type: string
description: Name of availability zone in which to create the instance
default: DMZ

mgmtIp:
type: string
description: IpAddress of server in management network
readOnly: true

internalIp:
type: string
description: IpAddress of server on internal network
readOnly: true

publicIp:
type: string
description: Public IpAddress of server
readOnly: true

integrity_publication_period:
type: string
description: the number of seconds between publishing integrity metric
default: 60

number-of-intervals:
type: string

150 Agile Lifecycle Manager: Installation, Administration and User Guide

description: the number of intervals for smoothing
default: 3

capabilities:
HttpLoadBalancer:

type: loadbalancerHttp
requirements:

PublicNetwork:
type: neutronNetwork

ManagementNetwork:
type: neutronNetwork

HttpServer:
type: http

lifecycle:
- Install
- Uninstall
- Start
- Stop
operations:

RemoveBalancedHttpServer:
description: removes the http server from being managed by the balancer
properties:
server_ip:

type: string
description: Http Server Ip Address
default: the ip address

server_port:
type: string
description: http server port number
default: ’8080’

AddBalancedHttpServer:
description: adds an http server to the balancer’s pool
properties:
max_connections:

type: string
description: Maximum connections for the balanced server
default: 3

server_ip:
type: string
description: Ip Address of the server to be balanced

server_port:
type: string
description: Port on balanced server
default: ’8080’

Assembly descriptor YAML specifications
This section describes the assembly descriptors that are used by Agile Lifecycle
Manager.

Agile Lifecycle Manager needs to have descriptions of the building blocks of
applications that it is going to manage. The basic building blocks are described in
“Resource descriptor YAML specifications” on page 142. Sets of these resource
descriptors are composed into assembly descriptors to allow designers to describe
a complete application or service that they need Agile Lifecycle Manager to
manage.

Within the assembly will be a description of the relationships between resources
that allow configuration to be applied to the actual instances of the components
that Agile Lifecycle Manager will manage. Assemblies may also reference
assemblies and existing infrastructure items, such as network instantiated outside
of Agile Lifecycle Manager.

Chapter 7. Reference 151

Naming

The assembly descriptor name field will contain the following string:
assembly::name::1.0

The name must start with a letter (either case), and can include letters and
numbers and underscores and hyphens. The name must not contain spaces, and
must end with either a letter (either case) or a number. The version is fixed to 1.0
for this release. Both name and version are mandatory.
Related concepts:
Chapter 5, “Getting started (using the APIs),” on page 51
Agile Lifecycle Manager provides both a graphical UI and an HTTP API allowing
the creation and administration of assemblies. This section describes a set of basic
scenarios to get started using the APIs.

Assembly descriptor sections
This topic describes the sections that apply to the assembly descriptors.

Header

The header includes the name and the description of the descriptor.
name: assembly::Streamer_cluster::1.0
description: An Assembly for a front end cluster comprising of a loadbalancer supported
by an authorisation proxy and video streamers using a shared NFS based storage

'properties'

Note: The properties defined here apply to the top-level property section for the
descriptor. Rules applicable to property names and the 'value' field can be applied
to all property sections

This section contains the properties that belong to assembly descriptors. These
include the full set of properties that are required to orchestrate them through to
the Active state. These can be understood as the context for the management of the
item during its lifecycle.
properties:
deploymentLocation: # the name of the property
type: string
required: true
description: The name of the openstack project(tenant) to install this assembly in.

resourceManager:
value: ’${resourceManager}’

numOfStreamers:
type: string
description: the number of streamers that should be created at install time
default: 2

tenant_key_name:
type: string
required: true
description: The ssh key for the current tenant

flavor:
value: m1.small

cluster_public_ip_address:
type: string
description: the public IP address for this cluster
read-only: true
value: ’${balancer.publicIp}’

152 Agile Lifecycle Manager: Installation, Administration and User Guide

Each property name must be unique within its property section. The name cannot
contain the period (.) character.

Restriction: Currently, the type field is not used and all properties are assumed to
be of type string. This field will be used in the future to allow handling of
different types of data, such as dates, IP addresses, and encrypted values. To avoid
compatibility issues in the future, it is recommended that you do not use this field,
or use the default value of string.

Properties are optional unless explicitly defined as required by the inclusion of a
required: true flag. This only affects the top-level assembly and means that a
value must be present (that is, not null) for a property. This can be evaluated from
the 'value' field, a 'default', or passed in from the intent request.

Properties marked as read-only: true will not be overridden by values mapped in
from an enclosing assembly or from the intent request. This is typically used for
properties that are calculated from or returned by the resource itself.

Properties may be declared with a default value or a specific value or neither.
Where the value field is used it may either be an explicit value or it may reference
another property within the descriptor. This will happen in assemblies where
properties given to the assembly may be used within the various other property
sections. When referencing a property in the assembly's main property section the
reference will look as follows: value: '${max_connections}'. If the reference is to a
property within the assembly's other sections the reference must include the name
of the enclosing object, such as value: '${balancer.publicIp}'. This references the
property publicIp within the balancer section of the composition section.

deploymentLocation is a special property that is used by Agile Lifecycle Manager
to place the resultant resource in the correct location. It will only appear in an
assembly descriptor. The contents of the property will be specific to the resource
manager that handles the resource.

resourceManager is another special property that passes the name of the resource
manager instance that will be used to manage the resource.

Agile Lifecycle Manager will assign an internal name and identifier for each
resource and assembly instance it creates. These values can be useful to give
unique names for servers, etc. To access them a property may have its value set to
${instance.name} or ${instance.id}.

Important: It is essential that there is a space between the value: and the quoted
property value string. If there is no space between these two items then the value
string will be treated as a single string.

Capabilities and requirements

These two sections allow designers to explain what functions the assemblies are
implementing or need before they can work successfully. These might be
expressing that networks or various types must be available for the resource
instances to work or it may be describing that a resource supports, for example,
incoming http requests.

The type is a string that expresses the capability or requirement. The values in
these strings will have to be agreed across an organization and where possible they
should be agreed by the industry. Resource capabilities should use common

Chapter 7. Reference 153

industry terms. In the examples below the idea is that httpStreamOutput indicates
that the capability is using the http protocol in a stream form and in an output
direction. The OS::Neutron:Net is the resource type from OpenStack associated
with a network instantiated within neutron.

'capabilities'
Capabilities are used to enable service designers to understand what
function a resource or assembly provides.
capabilities:

VideoStream:
type: httpStreamOutput

capabilities:
Network:
type: neutronNetwork

'requirements'
Requirements contain the list of capabilities that the assembly requires in
order to work.
requirements:

VideoNetwork:
type: neutronNetwork

ManagementNetwork:
type: neutronNetwork

RemoteNFSMountPoint:
type: nfsExportMountpoint

'operations'

This section defines operations that can be called to enable relationships to be
created between assemblies. Operations definitions in the resource have a name
and a set or properties. Where a resource descriptor describes an operation the
enclosing assembly may expose this by referencing the lower level operation.
operations:

SetLBBalancer:
source-operation: balancer.AddHttpStreamOutput

Composition and references

Definition: A component is an assembly that is included within an assembly
composition section, and will be instantiated as a result of requesting a new
instance of the enclosing assembly.

Assemblies allow a designer to group a set of resources and assemblies,
collectively known as components, into an assembly to create a new
application/service. Those used within the composition section will be instantiated
and managed by Agile Lifecycle Manager.

When Agile Lifecycle Manager has already instantiated an assembly, it is possible
for another assembly to share the instance by referencing it within the references
section. The references section can also refer to existing objects that may have been
created outside Agile Lifecycle Manager. Agile Lifecycle Manager will resolve both
of these types of references from the properties supplied, and access to the
instances properties and operations is then available to the referencing assembly.

154 Agile Lifecycle Manager: Installation, Administration and User Guide

'composition'

Assemblies gather resources and other assemblies for either a whole or part of a
solution. The composition section is used to reference components that will be
instantiated as part of the installation of the assembly.
composition:

streamer: # The name
type: resource::c_streamer::1.0
quantity: ${numOfStreamers}
properties:

#not shown for brevity
balancer:
type: resource::c_balancer::1.0
quantity: 1
properties:

#not shown for brevity
net_video:
type: resource::net_video::1.0
quantity: 1
properties:

#not shown for brevity

Each entry in this section must give a name to the item which will form the basis
for the instance name for the actual running components. It also includes a
quantity that defaults to 1. In a non-clustered environment, the 'quantity' property
defines exactly how many instances will be created.

Remember: The rules governing properties are defined in “'properties'” on page
152.
composition:

streamer:
type: resource::c_streamer::1.0
cluster:

not shown for brevity
properties:

deploymentLocation:
value: ’${deploymentLocation}’

resourceManager:
value: ’${resourceManager}’

flavor:
value: m1.small

server_name:
value: ${instance.name}

referenced-video-network:
value: ${net_video.network-id}

availability_zone:
value: DMZ

mgmtIp:
type: string
description: MGMT IpAddress of server
read-only: true

Clusters
It is also possible to define a cluster section for a component that indicates
that the component of the assembly may comprise of more than one
instance of the same type (node) to support capacity and or availability
requirements.

The 'initial-quantity' is an optional property that must be between the
minimum and maximum nodes values. If not set, it defaults to
'minimum-nodes'.

Chapter 7. Reference 155

The 'minimum-nodes' setting is optional and defaults to '1' if not set. It can
be set to '0' if no instances of the component are required at initial install.

The 'maximum-nodes' setting is optional and if set it must be greater than
or equal to the 'minimum-nodes' value.

The 'scaling-increment' setting is optional and defaults to '1'; it determines
the number of instances added or removed from the cluster during scaling.
composition:

streamer:
type: resource:: c_streamer::1.0
cluster:
initial-quantity: ${numOfServers}
minimum-nodes: 1
maximum-nodes: 4
scaling-increment: 1

properties:
data:

value: ${data}
ip_address:

read-only: true

Note: The properties 'quantity' and 'initial-quantity' are mutually exclusive.
When running in a clustered environment the 'quantity' property, if
defined, will be ignored, and the value of 'initial-quantity' used instead.

'references'

The reference section is similar to the composition section except that the items
referenced in this section must be pre-existing before Agile Lifecycle Manager will
instantiate any of the items in the assembly's composition section.

Two types of references can be resolved by Agile Lifecycle Manager:
v Existing assembly instances
v External resources that are managed directly by a resource manager

Assembly references require the full name of the assembly within the type field.
The following example shows the use of the semantic versioning to allow more
flexibility when resolving to instances of the assembly. The properties are used to
help Agile Lifecycle Manager to find the instance of the item required by the
current assembly. With items that have been created through Agile Lifecycle
Manager the referencing assembly can refer to any of the instance's properties from
the items property section. Referenced assemblies can be used by the enclosing
assembly to establish relationships.

Resource instances managed directly by a resource manager may be referenced.
These will have resource descriptors as any resource, however they will not
include the Install or uninstall lifecycle steps.

To read the references section, each item has a local name used to refer to the item
with in the assembly. The type directs Agile Lifecycle Manager to fetch the
required resource type. The properties are then used by Agile Lifecycle Manager to
narrow down to a single instance of the resource type that can be used by the
enclosing assembly. If Agile Lifecycle Manager finds more than one resource that
fits the information provided an error occurs and the assembly will not be
instantiated.

156 Agile Lifecycle Manager: Installation, Administration and User Guide

references:
storage: # reference to an existing assembly instance
type: assembly::storage_cluster::^1.0
properties:

deploymentLocation:
value: ’${deploymentLocation}’

resourceManager:
value: ’${resourceManager}’

name:
value: ’${storage-name}’

management-network: # reference to a neutron network not created by the
Agile Lifecycle Manager

type: resource::ucd_network::1.0
properties:

deploymentLocation:
value: ’${deploymentLocation}’

resourceManager:
value: ’${resourceManager}’

name:
value: ${management-network-name}

Once found the properties of these referenced items may be accessed using the
following method:
'${referenced-item-name.property-name}'

balancer:
type: ’resource::c_balancer::1.0’
quantity: ’1’
properties:

...
referenced-management-network:
value: ’${management-network.id}’

All the properties from the assembly instances referenced are available for use in
this manner. Resource descriptor properties are defined in the following topic:
“'properties'” on page 142

'relationships'

Relationships are established between two components that enable the
'requirements' of one component (known as the 'target') to be satisfied by another
component that provides the 'capability' (known as the 'source').

Defining relationships
The 'source' and 'target' of a component are defined by the following fields:
v source-capabilities
v target-requirements

In order to define a relationship between two components, the name of
each component, as defined in the 'composition' or 'reference' section of the
descriptor, is combined with the name of the capability or requirement, as
in the following example:
source-capabilities:

- A.capability-3
target-requirements:

- B.requirement-3

source-capabilities key

A Derived from the composition section

. An agreed delimiter

Chapter 7. Reference 157

capability-3
The name of the 'capability' defined within the organization

A reference component can only be defined as a source-capability. In this
instance, only the name of the reference needs to be provided.

Within a relationship definition the 'properties' field may refer to the
components defined under the 'source-capability' and 'target-requirements'
fields as 'source' and 'target' respectively, as I the following example.
property1:

value: ${source.name}
property2:

value: ${target.name}

Above ${source.name} and ${target.name} is used to refer to the 'source'
components (as defined in source-capabilities) 'name' property and 'target'
components (as defined in target-requirements) 'name' property
accordingly.

The 'lifecycle' section within relationships consist of two transitions: Create
and Cease. The transitions described so far allow designers to specify what
operations to perform during the Creation and Cessation (or removal) of a
relationship for a source and target component, as in the following
example.
lifecycle:

Cease:
- target.CeaseRelationship
- source.CeaseRelationship
Create:
- target.CreateRelationship
- source.CreateRelationship

The operations called depend on the components involved. The operations
are called in the order they appear in the Create or Cease sections. A
relationship may only call one operation, that is, only either a target or a
source operation. Operations are referenced as source.<operation-name> or
target.<operation-name> with <operation-name> referring to an operation
defined in the assembly or resource descriptor associated with the
component.

Establishing relationships
Relationships are created when the components to be related are in
particular states.

The 'source-state' and 'target-state' fields are used to define the state
required to establish a relationship, as in the following example.
source-state: Active

target-state: Active

By default this means that the relationship would be created when the
source is in the Active state, and before the target has transitioned to the
Active state.

Further control when defining relationships is available via the
'source-state-modifier' and 'target-state-modifier' fields. These are used to
define whether relationships are established before (pre) or after (post) they
reach their source or target state as previously defined via source-state and
target-state definitions. For example, 'source-state-modifier', if not present,
is by default post while 'target-state-modifier' if not present is by default

158 Agile Lifecycle Manager: Installation, Administration and User Guide

pre. Relationships are always ceased (removed) before the associated
component leaves the state defined in the source-state and target-state
fields.
relationships:

nfs_mount:
source-capabilities:
- storage.NFSMountpoint
target-requirements:
- streamer.RemoteNFSMountPoint
source-state: Active
target-state: Inactive
properties:
remote_nfs_port:

value: ’2049’
remote_nfs_server_ip:

value: ’${source.privateIp}’
remote_mount_point:

value: ’/’
local_mount_point:

value: ’/mnt’
lifecycle:
Create:
- source.MountStorage
Cease:
- source.UnmountStorage

Like the overall assembly and resources, relationships have a set of
properties that are available to the operations associated with the lifecycle
transitions of the relationship.

Placement

To deploy components to the correct location, Agile Lifecycle Manager will use two
properties called deploymentLocation and resourceManager. The resourceManager
property will be used to find the correct resource manager that manages the
resource for the location defined in the deploymentLocation property. The
combination of these two uniquely identifies where and how a resource will be
managed.

A placement is also involved when trying to resolve the instances defined in the
references section. Before a reference can be resolved any associated placement
rules will have been applied. This will then allow Agile Lifecycle Manager to find
the appropriate instance of the reference required. The two properties will also be
needed on each reference.

Metrics and policies

A resource descriptor may indicate that the underlying resource will emit one or
more metrics. Example metrics are found in a resource descriptor (but not in the
assembly descriptor).
metrics:

lb_integrity:
type: metric::integrity
publication-period: ${integrity_publication_period}

lb_load:
type: metric::load
publication-period: ${publication_period}

Load metrics can be promoted in an assembly using a similar mechanism to
operation metrics.

Chapter 7. Reference 159

metrics:
b1_load:

source-metric: B1.load

Within an assembly the policy section will contain details of the policies for the
underlying resources load metric and how that should be used to mange the
scaling of components. Each policy has a name, the associated metric, an action
and a set of properties that are used to handle the policy.

Example policies
The following example shows the policy associated with the load metric on
a resource. This is used to ScaleOut and ScaleIn a component, as indicated
by the value in the target properties. The example also shows that the
metric produced by A.load will be used to indicate when the target B will
be scaled.
policies:

scaleStreamer:
type: policy::scale
metric: A.load
target: B
properties:
scaleOut_threshold: ${scaleOut_threshold}
scaleIn_threshold: ${scaleIn_threshold}
smoothing: ${scale_smoothing}

Load is expressed as a percentage and the thresholds are simple integers.
When the threshold is broken the scale event associated with the threshold
will be enacted. To prevent this happening each time the load spikes, a
smoothing value is applied. The threshold must be breached at least the
number of times indicated by the smoothing value before the action will be
enacted.

Example of smoothing

Assembly descriptor YAML examples
The examples included in this section are an assembly descriptor with policies, and
another one that creates a set of video streamers and links them to a load balancer,
which is also created.

assembly::h_bta::1.0

The following is an example of an assembly descriptor with policies.
name: assembly::h_bta::1.0
description: Basic Test Assembly
properties:

160 Agile Lifecycle Manager: Installation, Administration and User Guide

data:
default: "data"
type: string
description: ’parameter passed’

numOfServers:
description: number of servers
type: integer
default: 1

output:
description: an example output parameter
type: string
read-only: true
value: ${B.output}

deploymentLocation:
type: string
description: name of openstack project to deploy network
default: admin@local

resourceManager:
type: string
description: name of the resource manager
default: test-rm

scaleOut_threshold:
type: integer
description: threshold that the load metric must breach to potentially trigger

a scaleOut
default: 90

scaleIn_threshold:
type: integer
description: threshold that the load metric must breach to potentially trigger

a scaleOut
default: 10

scale_smoothing:
type: integer
description: the number of sequential periods the load metric must be above

threshold to trigger action
default: 4

composition:
A:
type: resource::h_simple::1.0
quantity: ’1’
properties:

referenced-internal-network:
value: ${internal-network.id}

reference-public-network:
value: ${public-network.id}

image:
value: ${xenial-image.id}

key_name:
value: "ACCANTO_TEST_KEY"

data:
value: ${data}

output:
value: "A_output"

deploymentLocation:
value: ${deploymentLocation}

resourceManager:
value: ${resourceManager}

B:
type: resource::t_simple::1.0
cluster :

initial-quantity: ${numOfServers}
minimum-nodes: 1
maximum-nodes: 4
scaling-increment: 1

properties:
referenced-internal-network:
value: ${internal-network.id}

Chapter 7. Reference 161

reference-public-network:
value: ${public-network.id}

image:
value: ${xenial-image.id}

key_name:
value: "ACCANTO_TEST_KEY"

data:
value: ${data}

output:
value: ${A.output}

deploymentLocation:
value: ${deploymentLocation}

resourceManager:
value: ${resourceManager}

policies:
scaleStreamer:
type: policy::scale
#metric: A.load
#TODO hack until dto change
metric: load
target: B
properties:

scaleOut_threshold: ${scaleOut_threshold}
scaleIn_threshold: ${scaleIn_threshold}
smoothing: ${scale_smoothing}

references:
internal-network:
type: resource::openstack_neutron_network::1.0
properties:

deploymentLocation:
value: ${deploymentLocation}

resourceManager:
value: ${resourceManager}

name:
type: string
value: VIDEO

public-network:
type: resource::openstack_neutron_network::1.0
properties:

deploymentLocation:
value: ${deploymentLocation}

resourceManager:
value: ${resourceManager}

name:
type: string
value: public

xenial-image:
type: resource::openstack_glance_image::1.0
properties:

deploymentLocation:
value: ${deploymentLocation}

resourceManager:
value: ${resourceManager}

name:
type: string
value: xenial

relationships:
third-relationship:
source-capabilities:
- A.capability-3
target-requirements:
- B.requirement-3
source-state: Active
target-state: Active
properties:

source:
value: ${source.name}

162 Agile Lifecycle Manager: Installation, Administration and User Guide

target:
value: ${target.name}

lifecycle:
Cease:
- target.CeaseRelationship3
- source.CeaseRelationship3
Create:
- target.CreateRelationship3
- source.CreateRelationship3

assembly::Streamer_cluster::1.0

The following example of an assembly descriptor will create a set of video
streamers and link them to a load balancer which is also created. It requires the
name of a storage assembly to be provided so that it can share the video content
between the streamers.
name: assembly::Streamer_cluster::1.0
description: An Assembly for a front end cluster comprising of a loadbalancer
supported by an authorisation proxy and video streamers using a shared NFS based
storage properties:

deploymentLocation:
type: string
required: true
description: The location as required by the resource manager.

resourceManager:
type: string
required: true
description: The name of the resource resource manager.

numOfStreamers:
type: string
description: the number of streamers that should be created at install time
default: 2

tenant_key_name:
type: string
required: true
description: The ssh key for the current tenant

management-network-name:
type: uuid
required: true
description: the name of the management network in the tenant where the

assembly is to be installed
public-network-name:
type: uuid
required: true
description: the name of the public network associated with the tenant

where the assembly is to be installed
max_connections:
type: string
description: Maximum connections for the balanced server
default: ’3’

cluster_public_ip_address:
type: string
description: the public IP address for this cluster
read-only: true
value: ’${balancer.publicIp}’

scaleout-threshold:
type: string
description: the load value that when exceed will cause a scale out to be

invoked
default: 80

scalein-threshold:
type: string
description: the level of load that will cause a scale in to be invoked
default: 10

composition:

Chapter 7. Reference 163

streamer:
type: resource::c_streamer::1.0
cluster:

initial-quantity: ${numOfStreamers}
minimum-nodes: 2
maximum-nodes: 10
scaling-increment: 2

properties:
deploymentLocation:
value: ’${deploymentLocation}’

resourceManager:
value: ’${resourceManager}’

key_name:
value: ’${tenant_key_name}’

referenced-management-network:
value: ’${management-network.id}’

flavor:
value: m1.small

server_name:
value: ’${instance.name}’

referenced-video-network:
value: ’${net_video.network-id}’

availability_zone:
value: DMZ

integrity_publication_period:
value: 120

number-of-intervals:
value: 4

balancer:
type: ’resource::c_balancer::1.0’
quantity: 1
properties:

deploymentLocation:
value: ’${deploymentLocation}’

resourceManager:
value: ’${resourceManager}’

key_name:
value: ’${tenant_key_name}’

referenced-management-network:
value: ’${management-network.id}’

referenced-internal-network:
value: ’${net_video.network-id}’

referenced-public-network:
value: ’${public-network.id}’

flavor:
value: m1.large

server_name:
value: ’${instance.name}’

availability_zone:
value: DMZ

integrity_publication_period:
value: 120

number-of-intervals:
value: 4

net_video:
type: resource::net_video::1.0
quantity: 1
properties:

deploymentLocation:
value: ’${deploymentLocation}’

resourceManager:
value: ’${resourceManager}’

subnetCIDR:
type: string
description: (Required)
default: ’10.0.1.0/24’

networkName:

164 Agile Lifecycle Manager: Installation, Administration and User Guide

type: string
description: Network Name
default: VIDEO

subnetDefGwIp:
type: string
description: Default Gateway IP address
default: ’10.0.1.1’

references:
management-network:
type: resource::urbancode-network::1.0
properties:

deploymentLocation:
value: ’${deploymentLocation}’

resourceManager:
value: ’${resourceManager}’

name:
value: ${management-network-name}

public-network:
type: resource::urbancode-network::1.0
properties:

deploymentLocation:
value: ’${deploymentLocation}’

resourceManager:
value: ’${resourceManager}’

name:
value: ${public-network-name}

capabilities:
HttpStream:
type: httpStream

relationships:
uses-net_video:
source-capabilities:
- net_video.Network
target-requirements:
- streamer.VideoNetwork
- storage.VideoNetwork
- balancer.VideoNetwork
source-state: Active
target-state: Inactive

uses-management-network:
source-capabilities:
- management-network
target-requirements:
- streamer.ManagementNetwork
- storage.ManagementNetwork
- balancer.ManagementNetwork
source-state: Active
target-state: Inactive

balancer-uses-public-network:
source-capabilities:
- public-network
target-requirements:
- balancer.PublicNetwork
source-state: Active
target-state: Inactive

balanceStreamer:
source-capabilities:
- streamer.VideoStream
target-requirements:
- balancer.HttpServer
source-state: Active
target-state: Active
properties:

max_connections:
value: ’${max_connections}’

server_ip:
value: ’${source.privateIp}’

Chapter 7. Reference 165

server_port:
value: ’8080’

lifecycle:
Create:
- balancer.AddBalancedHttpServer
Cease:
- balancer.RemoveBalancedHttpServer

166 Agile Lifecycle Manager: Installation, Administration and User Guide

Notices

This information applies to the PDF documentation set for IBM Agile Lifecycle
Manager.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 2017 167

sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
958/NH04
IBM Centre, St Leonards
601 Pacific Hwy
St Leonards, NSW, 2069
Australia

IBM Corporation
896471/H128B
76 Upper Ground
London
SE1 9PZ
United Kingdom

IBM Corporation
JBF1/SOM1 294
Route 100
Somers, NY, 10589-0100
United States of America

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

168 Agile Lifecycle Manager: Installation, Administration and User Guide

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

If you are viewing this information in softcopy form, the photographs and color
illustrations might not be displayed.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Notices 169

170 Agile Lifecycle Manager: Installation, Administration and User Guide

IBM®

Printed in USA

	Contents
	Tables
	Preface
	About this release

	Chapter 1. Product overview
	Benefits
	Architecture
	Functionality
	Components
	Glossary

	Chapter 2. Planning
	Hardware requirements
	Software requirements
	Deployment overview

	Chapter 3. Installing and configuring
	Before you install
	Installing Agile Lifecycle Manager
	Configuring Agile Lifecycle Manager
	Uninstalling Agile Lifecycle Manager

	Chapter 4. Using the UI
	UI functionality
	Logging into the UI
	Managing assembly descriptors
	Operating assemblies
	Managing resource managers
	Upgrading an assembly instance

	Chapter 5. Getting started (using the APIs)
	Configuration reference
	Creating an assembly instance
	Exploring an assembly instance
	Healing a component
	Scaling a component
	Uninstalling an assembly instance
	Browsing assembly descriptors
	Exploring an assembly descriptor
	Creating a new assembly descriptor
	Updating an assembly descriptor
	Removing an assembly descriptor
	Upgrading an assembly instance
	List all onboarded resource managers
	Exploring an onboarded resource manager
	Creating a new resource manager record
	Updating a resource manager
	Deleting a resource manager record
	Sample assembly descriptor

	Chapter 6. Administration
	Monitoring system health
	Managing the service logs
	Setting timeout limits for resource managers
	Enabling HTTPS support (for the Nimrod service)
	Ensuring Log files are not owned by the root user
	Ensuring support for accented characters
	Authentication
	Audit logging
	Provided OpenLDAP LDAP server
	Example alm-docker-compose.yml file

	Chapter 7. Reference
	API HTTP status codes reference
	Lifecycle Manager API
	Interface architecture
	Scenarios
	Managing assemblies
	Resource managers
	Asynchronous state change events
	Resource health events
	Topology
	Catalog API

	Resource Manager API
	Interface architecture
	Interface interaction patterns
	Resource manager configuration
	Resource type configuration
	Resource topology
	Resource lifecycle management
	Resource type configuration (asynchronous)
	Resource lifecycle management (asynchronous)
	Publishing metrics

	Resource descriptor YAML specifications
	Resource descriptor sections
	Resource descriptor YAML examples

	Assembly descriptor YAML specifications
	Assembly descriptor sections
	Assembly descriptor YAML examples

	Notices
	Trademarks

