Juniper

NETWORKS

JUNOS® 0OS

Junos XML Management Protocol Developer Guide

121X46-D10

Published: 2013-10-28

Copyright © 2013, Juniper Networks, Inc.

Juniper Networks, Inc.

1194 North Mathilda Avenue

Sunnyvale, California 94089

USA

408-745-2000

www.juniper.net

Juniper Networks, Junos, Steel-Belted Radius, NetScreen, and ScreenOS are registered trademarks of Juniper Networks, Inc. in the United
States and other countries. The Juniper Networks Logo, the Junos logo, and JunosE are trademarks of Juniper Networks, Inc. All other
trademarks, service marks, registered trademarks, or registered service marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change, modify,
transfer, or otherwise revise this publication without notice.

JUNOS® OS Junos XML Management Protocol Developer Guide
121X46-D10

Copyright © 2013, Juniper Networks, Inc.

All rights reserved.

Revision History
December 2013—R1 Junos OS 12.1X46-D10

The information in this document is current as of the date on the title page.
YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related limitations through the
year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use with) Juniper Networks
software. Use of such software is subject to the terms and conditions of the End User License Agreement (“EULA”) posted at
http://www.juniper.net/support/eula.html. By downloading, installing or using such software, you agree to the terms and conditions of
that EULA.

ii Copyright © 2013, Juniper Networks, Inc.

http://www.juniper.net/support/eula.html

Abbreviated Table of Contents

Part 1
Chapter1

Chapter 2

Part 2

Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8

Part 3

Chapter 9
Chapter10

Part 4

/1Y o Yo 10 I o113 70 | o = XV

Overview

Introduction to the Junos XML Management Protocol and Junos XML
) 3

Using Junos XML Management Protocol and Junos XML Tag Elements. .. 11

Using the Junos XML Management Protocol

Controlling the Junos XML Management Protocol Session............. 27
Requesting Information. ...t i i it e 65
Changing Configuration Information i, 13
Committing a Configuration........... .. it i i i 151
Summary of Junos XML Protocol TagElements...................... 167
Summary of AttributesinJunos XML Tagscviviiiiiinnnnnnnnn 195

Writing Junos XML Protocol Client Applications

Writing Junos XML Protocol Perl Client Applications.................. 213
Writing Junos XML Protocol C Client Applications.................... 243
Index

g o = 255
Index of StatementsandCommands.............ccoiiiiiiiiiinnnnns 267

Copyright © 2013, Juniper Networks, Inc. iii

Junos XML Management Protocol Developer Guide

iv Copyright © 2013, Juniper Networks, Inc.

Table of Contents

1Y o Yo 11 | N o1 F3C T T = XV
Junos OS Documentation and Release Notes XV
ObJECtIVES . . e XV
AUIENCE . . Xvi
Supported Platforms XVi
UsSINg the INdeXES e e XVii
Documentation Conventions XVii
Documentation Feedback xviii
Requesting Technical Support e XiX

Self-Help Online Toolsand Resources XiX
OpeningaCase With JTAC e XX
Part 1 Overview
Chapter1 Introduction to the Junos XML Management Protocol and Junos XML

Y 3

XML and Junos OSo 3

Junos XML API and Junos XML Management Protocol Overview 5

XML OVEIVIEW . . ot e e e e 6
Tag Elements 6
AttribUTeS . . . 7
NaMESPACES . . o ittt e e 7
Document Type Definition 8

Advantages of Using the Junos XML Management Protocol and Junos XML
APl 8
Parsing Device Output 8
Displaying Device OUtpUL 9

Overview of a Junos XML Protocol Session. 9

Chapter 2 Using Junos XML Management Protocol and Junos XML Tag Elements. .. 11

XML and Junos XML Management Protocol Conventions Overview 1
Request and Response Tag Elements. 12
Child Tag Elements of a Request Tag Element. 13
Child Tag Elements of a Response Tag Element 13
Spaces, Newline Characters, and Other White Space 13
XML ComMmIENtS . . o 14
XML Processing Instructions 14

Copyright © 2013, Juniper Networks, Inc. \

Junos XML Management Protocol Developer Guide

Predefined Entity References 14
Mapping Commands to Junos XML Tag Elements. 16
Mapping for Command Options with Variable Values 16
Mapping for Fixed-Form Command Options, .. 17
Mapping Configuration Statements to Junos XML Tag Elements.............. 17
Mapping for Hierarchy Levels and Container Statements. 17
Mapping for Objects That Have an Identifier........... 18
Mapping for Single-Value and Fixed-Form Leaf Statements............. 19
Mapping for Leaf Statements with Multiple Values 20
Mapping for Multiple Optionson One orMore Lines. 21
Mapping for Comments About Configuration Statements............... 22
Using the Same Configuration Tag Elements in Requests and Responses. 23
Part 2 Using the Junos XML Management Protocol
Chapter 3 Controlling the Junos XML Management Protocol Session............. 27
Client Application’s Role in a Junos XML Protocol Session. 27
Establishing a Junos XML Management Protocol Session. 28
Supported Access Protocols 29
Prerequisites for Establishing a Connection 29
Prerequisites for All Access Protocols. 29
Prerequisites for Clear-Text Connections 31
Prerequisites for SSH Connections 32
Prerequisites for Outbound SSH Connections 33
Prerequisites for SSL Connections 37
Prerequisites for Telnet Connections 39
Connecting to the Junos XML Protocol Server. 39
Connecting to the Junos XML Protocol Server from the Client

Application e 39
Connecting to the Junos XML Protocol Server fromthe CLI.......... 40
Starting the Junos XML Protocol Session, 40
Emitting the InitializationPland Tag. 41

Parsing the Initialization Pl and Tag from the Junos XML Protocol
S VBr oo e 43
Verifying Software Compatibility 45
Supported Software Versions 45
Authenticating with the Junos XML Protocol Server. 45
Submitting an Authentication Request L. 46
Interpreting the Authentication Response 47
Exchanging Information with the Junos XML Protocol Server. 48
Sending a Request to the Junos XML Protocol Server. 48
Request Classes 48
Including Attributes in the Opening <rpc>Tagcovvvvn. .. 50
Parsing the Junos XML Protocol Server Response 51
xmlns:junos Attribute 51
Junos XML Protocol Server Response Classesovvivv... 51
Using a Standard API to Parse Response Tag Elements. 53
Handling an Error or Warningttt e 53
Halting a Request 54

Vi Copyright © 2013, Juniper Networks, Inc.

Table of Contents

Locking and Unlocking the Candidate Configuration or Creating a Private

(@] o) 55
Locking the Candidate Configuration. 56
Unlocking the Candidate Configuration............ 57
Terminating Another Junos XML Protocol Session 57
Creating a Private Copy of the Configuration. 58
Ending a Junos XML Protocol Session and Closing the Connection. 59
Displaying CLI Outputas XML TagElements. 60
Displayingthe RPC TagsforaCommand.t 60
Example of a Junos XML Protocol Session. 61
Exchanging Initialization Plsand Tag Elements. 61
Sending an Operational Request 61
Locking the Configuration. 62
Changing the Configuration 62
Committing the Configuration i 63
Unlocking the Configuration. e 63
Closing the Junos XML Protocol Session., 64
Chapter 4 Requesting Information........... .. it e e 65
Overview of the Request Procedure e 66
Requesting Operational Information 66
Specifying the Output Format for Operational Information Requests in a Junos
XML Protocol Session 68
Requesting Configuration Information 70
Specifying the Source and Output Format of Configuration Information....... 72
Requesting Information from the Committed or Candidate
Configuration 72
Requesting Output as Formatted ASCII Text or Junos XML Tag
Elements ... 74
Requesting an Indicator for Identifiers. 76
Requesting a Change Indicator for Configuration Elements.............. 78
Displaying Commit-Script-Style XML Data 81
Specifying the Output Format for Configuration Groups and Interface
RaANEES . .o e 82
Specifying Whether Configuration Groups and Interface Ranges Are
Displayed Separately 83
Displaying the Source Group for Inherited Configuration Elements 84
Examples: Specifying Output Format for Configuration Groups.. 86
Displaying the Source Interface Range for Inherited Configuration
Elements ... 89
Comparing Configuration Changes with a Prior Version. 90
Specifying the Scope of Configuration Informationto Return................ 91
Requesting the Complete Configuration.......... 92
Requesting a Hierarchy Level or Container Object Without an Identifier. ... 93
Reqguesting All Configuration Objects of a Specified Type 94
Requesting a Specified Number of Configuration Objects 95
Requesting IdentifiersOnlyo 97
Requesting One Configuration Object 99
Requesting a Subset of Objects by Using Regular Expressions. 101

Copyright © 2013, Juniper Networks, Inc. Vii

Junos XML Management Protocol Developer Guide

Chapter 5

Chapter 6

Requesting Multiple Configuration Elements Simultaneously 104
Requesting an XML Schema for the Configuration Hierarchy 105
Creating the junos.xsd File e 106
Example: Requestingan XML Schema. 107
Requesting a Previous (Rollback) Configuration 108
Comparing Two Previous (Rollback) Configurations. 110
Requesting the Rescue Configuration i m
Changing Configuration Informationcciiiiiiinnn.. 13
Overview of Configuration Changes e 13
Specifying the Source and Format of New ConfigurationData............... 15
Providing Configuration DatainaFile............ 15
Providing Configuration Data as a Data Stream 16
Defining the Configuration Data Format 17
Replacing the Entire Configuration. 19
Replacing the ConfigurationwithNewData.......................... 19
Rolling Back to a Previous or Rescue Configuration. 120
Creating, Modifying, or Deleting Configuration Elements. 120
Merging Configuration Elements. i 122
Replacing Configuration Elements 125
Creating New Configuration Elements 127
Replacing Configuration Elements Only If They Have Changed 128
Deleting Configuration Elements 129
Deleting a Hierarchy Level or ContainerObject. 129
Deleting a Configuration Object That Has an Identifier............. 130
Deleting a Single-Value or Fixed-Form Option from a Configuration
ObjeCt . 132
Deleting Values from a Multivalue Option of a Configuration Object. . . 133
Reordering Elements in Configuration Objects 135
Renaming a Configuration Object i 138
Protecting or Unprotecting a ConfigurationObject. 140
Changing a Configuration Element’s ActivationState. 142
Deactivating a Newly Created Element 143
Deactivating or Reactivating an Existing Element..................... 144
Changing a Configuration Element’s Activation State Simultaneously with Other
Changes . .. 145
Replacing an Element and Setting Its ActivationState.. 145
Using Junos XML Tag Elements for the Replacement Element....... 146
Using Formatted ASCII Text for the Replacement Element.......... 146
Reordering an Element and Setting Its ActivationState.. 147
Renaming an Object and Setting Its ActivationState.. 147
Example: Replacing an Object and Deactivating It.................... 148
Committing a Configuration..........ccov it iii it it it e neens 151
Verifying a Configuration Before Committing It 151
Committing the Candidate Configuration............ 152
Committing a Private Copy of the Configuration.......................... 153
Committing a Configuration at a Specified Time 154
Committing the Candidate Configuration Only After Confirmation........... 155

viii

Copyright © 2013, Juniper Networks, Inc.

Table of Contents

Committing and Synchronizing a Configuration on Redundant Control

Planes 158
Synchronizing the Configuration on Both Routing Engines. 159
Example: Synchronizing the Configuration on Both Routing Engines . . 160

Forcing a Synchronized Commit Operation. 161
Example: Forcing a Synchronization 162
Synchronizing Configurations Simultaneously with Other Operations.. 162
Verifying the Configuration on Both Routing Engines 162
Scheduling Synchronization for a Specified Time. 163
Synchronizing Configurations but Requiring Confirmation........... 163

Logging a Message About Synchronized Configurations............ 164

Logging a Message About a Commit Operation............. 164
Chapter 7 Summary of Junos XML Protocol TagElements...................... 167
<ADOIt/ > 167
<abort-acknowledgement/> 167
<authentication-response> e 168
<challenge> 168
<checksum-information> 169
<close-configuration/> 170
<commit-configuration> 170
<COMMIt-TESULES > . . .o 174
<database-status> 175
<database-status-information> 176
<ENA-SESSION/ > 176
<get-checksum-information> 177
<get-configuration> 177
<JUNOSCIIE > L 180
<KIll-SESSION> . .. e 181
<load-configuration> 182
<load-configuration-results> e 185
<lock-configuration/> 186
<open-configuration™> 186
(=7 {0] 187
<request-eNd-SESSION/ > . .. 188
<request-login> ... 188
<IOULING-EBNBINE > . .. 189
I > e et e e e 189
SIPC-TEPLY > o o o 190
<unlock-configuration/> e 191
XML > 191
D0 (] . = 0] 191
XM WA NN > o o o oottt e e e e et e 193
Chapter 8 Summary of Attributes iNnJUNOS XML Tags vvii it iiiiieennenns 195
ACHIVE . 195
COUNT L o 196
delete 196
INACTIVE .. 197
ST o 198

Copyright © 2013, Juniper Networks, Inc. ix

Junos XML Management Protocol Developer Guide

Part 3
Chapter 9

JUNOSICNANEEd ... 199
junos:changed-localtime 200
JUNOS:ChaNged-SECONAS . .ot vttt 200
junos:commit-localtime 200
JUNOS:COMMIt-SECONAS oot e e e e 201
JUNOS COMIMIt=USEr . . ettt e e e e e e e 201
JUNOS BIOUD v v e e e e e e e e e e e e e 202
junos:interface-range 202
JUNOS KBY e 203
JUNOS: POSITION . o o e 204
junositotal ... 204
MAtCNINE . 205
PrOTECT . .o e 206
=T U] £ 206
=T =T T 207
FEPlACE . .o 208
Start 209
UNPIOTECT L. 209
XIS 210

Writing Junos XML Protocol Client Applications

Writing Junos XML Protocol Perl Client Applications.................. 213
Overview of the Junos::Device Perl Module and Sample Scripts. 213
Downloading the Junos XML Protocol Perl Client and Prerequisites Package . . . 214
Installing the Junos XML Protocol Perl Client and Prerequisites Package 215
Verifying Installation and Versionof Perl 215
Extracting the Junos XML Protocol Perl Client and Sample Scripts. 216

Extracting and Installing the Junos XML Protocol Perl Client Prerequisites
Package 216
Installing the Junos XML Protocol Perl Client. 218
Tutorial: Writing Perl Client Applications. 218
Import Perl Modules and Declare Constants 219
Connect to the Junos XML Protocol Server 219
Satisfying Protocol Prerequisites 220
Group Requests e 220

Obtain and Record Parameters Required by the JUNOS::Device

ObjeCt . 220
Obtaining Application-Specific Parameters. 223
Converting Disallowed Characters 224
Establishing the Connection. 226
Submitting a Request to the Junos XML Protocol Server. 226
Providing Method Options or Attributes 227
Submitting a Request 229
Example: Getting an Inventory of Hardware Components 230
Example: Loading Configuration Statements 231

Copyright © 2013, Juniper Networks, Inc.

Table of Contents

Parsing and Formatting the Response from the Junos XML Protocol

B VT L o 235
Parsing and Formatting an Operational Response 235
Parsing and Outputting ConfigurationData 237
Closing the Connection to the Junos XML Protocol Server. 241
Mapping CLI Commandsto PerlMethods 241
Chapter 10 Writing Junos XML Protocol C Client Applications.................... 243
Establishing a Junos XML Protocol Session. 243
Accessing and Editing Device Configurations. 244
Part 4 Index
INOEX . 255
Index of Statementsand Commands. i 267

Copyright © 2013, Juniper Networks, Inc. Xi

Junos XML Management Protocol Developer Guide

xii Copyright © 2013, Juniper Networks, Inc.

List of Tables

Part1
Chapter 2

Part 2
Chapter 3

Chapter 4

About ThisGUIdeo i i et e s a e a e a e nennnnns XV
Table 1: NOtiCE ICONS . . . e XVii
Table 2: Text and Syntax Conventions i XVii
Overview

Using Junos XML Management Protocol and Junos XML Tag Elements... 11

Table 3: Predefined Entity Reference Substitutions for Tag Content Values. 15
Table 4: Predefined Entity Reference Substitutions for Attribute Values. 15

Using the Junos XML Management Protocol

Controlling the Junos XML Management Protocol Session............. 27
Table 5: Supported Access Protocols and Authentication Mechanisms. 29
Table 6: Junos XML Protocol version 1.0 Pland OpeningTagoovv v vt .. 45
Requesting Information. ...ttt i i it e i 65
Table 7: Regular Expression Operators for the matching Attribute. 102

Copyright © 2013, Juniper Networks, Inc. xiii

Junos XML Management Protocol Developer Guide

Xiv Copyright © 2013, Juniper Networks, Inc.

About This Guide

This preface provides the following guidelines for using the JUNOS® OS Junos XML
Management Protocol Developer Guide:

« Junos OS Documentation and Release Notes on page xv
« Objectives on page xv

« Audience on page xvi

« Supported Platforms on page xvi

« Using the Indexes on page xvii

« Documentation Conventions on page xvii

- Documentation Feedback on page xviii

« Requesting Technical Support on page xix

Junos OS Documentation and Release Notes

Objectives

For a list of related Junos OS documentation, see
http://www.juniper.net/techpubs/software/junos/.

If the information in the latest release notes differs from the information in the
documentation, follow the Junos OS Release Notes.

To obtain the most current version of all Juniper Networks” technical documentation,
see the product documentation page on the Juniper Networks website at
http://www.juniper.net/techpubs/.

Juniper Networks supports a technical book program to publish books by Juniper Networks
engineers and subject matter experts with book publishers around the world. These
books go beyond the technical documentation to explore the nuances of network
architecture, deployment, and administration using the Junos operating system (Junos
0S) and Juniper Networks devices. In addition, the Juniper Networks Technical Library,
published in conjunction with O'Reilly Media, explores improving network security,
reliability, and availability using Junos OS configuration techniques. All the books are for
sale at technical bookstores and book outlets around the world. The current list can be
viewed at http://www.juniper.net/books.

This guide describes how to use the Junos Extensible Markup Language (XML)
management protocol and the Junos XML application programming interface (API) to

Copyright © 2013, Juniper Networks, Inc. XV

http://www.juniper.net/techpubs/software/junos/
http://www.juniper.net/techpubs/
http://www.juniper.net/books

Junos XML Management Protocol Developer Guide

Audience

configure or request information from the Junos XML protocol server on a device running
Junos OS.

e NOTE: For additional information about the Junos OS—either corrections to
orinformation that might have been omitted from this guide—see the software
release notes at http://www.juniper.net/ .

This guide is designed for network administrators who are configuring and monitoring a
Juniper Networks M Series, MX Series, T Series, EX Series, or J Series router or switch.

This guide is designed for Juniper Networks customers who want to write custom
applications for configuring or monitoring a Juniper Networks device that runs the Junos
OS. It assumes that you are familiar with basic terminology and concepts of XML, with
XML-parsing utilities such as the Document Object Model (DOM) or Simple API for XML
(SAX), and with the Junos OS command-line interface (CLI).

To use this guide, you need a broad understanding of networks in general, the Internet
in particular, networking principles, and network configuration. You must also be familiar
with one or more of the following Internet routing protocols:

. Border Gateway Protocol (BGP)

- Distance Vector Multicast Routing Protocol (DVMRP)

. Intermediate System-to-Intermediate System (1S-1S)

« Internet Control Message Protocol (ICMP) device discovery
« Internet Group Management Protocol (IGMP)

« Multiprotocol Label Switching (MPLS)

« Open Shortest Path First (OSPF)

« Protocol-Independent Multicast (PIM)

« Resource Reservation Protocol (RSVP)

« Routing Information Protocol (RIP)

. Simple Network Management Protocol (SNMP)

Personnel operating the equipment must be trained and competent; must not conduct

themselves in a careless, willfully negligent, or hostile manner; and must abide by the
instructions provided by the documentation.

Supported Platforms

For the features described in this manual, Junos OS currently supports the following
platforms:

. JSeries

XVi

Copyright © 2013, Juniper Networks, Inc.

http://www.juniper.net/

About This Guide

« SRX Series

Using the Indexes

This reference contains two indexes: a standard index with topic entries, and an index of
tags and attributes.

Documentation Conventions

Table 1 on page xvii defines notice icons used in this guide.

Table 1: Notice Icons

[ofe]y} Meaning Description

o Informational note Indicates important features or instructions.
g Caution Indicates a situation that might result in loss of data or hardware damage.
a Warning Alerts you to the risk of personal injury or death.
% Laser warning Alerts you to the risk of personal injury from a laser.

Table 2 on page xvii defines the text and syntax conventions used in this guide.

Table 2: Text and Syntax Conventions

Convention Description Examples

Bold text like this Represents text that you type. To enter configuration mode, type the
configure command:

user@host> configure

Fixed-width text like this Represents output that appears on the user@host> show chassis alarms

terminal screen. R
No alarms currently active

Italic text like this « Introduces or emphasizes important « Apolicy term is a named structure
new terms. that defines match conditions and

« Identifies guide names. actions.

« Identifies RFC and Internet draft titles. ¢ JUnos OS CLJ User Guide
« RFC1997 BGP Communities Attribute

Copyright © 2013, Juniper Networks, Inc. Xvii

Junos XML Management Protocol Developer Guide

Table 2: Text and Syntax Conventions (continued)

Convention Description Examples
Italic text like this Represents variables (options for which Configure the machine’s domain name:
you substitute a value) in commands or
configuration statements. [edit]
root@# set system domain-name
domain-name
Text like this Represents names of configuration « To configure a stub area, include the

< > (angle brackets)

statements, commandes, files, and
directories; configuration hierarchy levels;
or labels on routing platform
components.

Encloses optional keywords or variables.

stub statement at the [edit protocols
ospf area area-id] hierarchy level.

« Theconsole portislabeled CONSOLE.

stub <default-metric metric>;

| (pipe symbol)

Indicates a choice between the mutually
exclusive keywords or variables on either
side of the symbol. The set of choices is
often enclosed in parentheses for clarity.

broadcast | multicast

(string1 | string2 | string3)

(pound sign)

Indicates a comment specified on the
same line as the configuration statement
to which it applies.

rsvp { # Required for dynamic MPLS only

[1 (square brackets)

Indention and braces ({})

Encloses a variable for which you can
substitute one or more values.

Identifies a level in the configuration
hierarchy.

; (semicolon)

Identifies a leaf statement at a
configuration hierarchy level.

community name members [
community-ids]

[edit]
routing-options {
static {
route default {
nexthop address;
retain;
1
1
}

GUI Conventions

Bold text like this

> (bold right angle bracket)

Represents graphical user interface (GUI)
items you click or select.

Separates levels in a hierarchy of menu
selections.

« Inthe Logical Interfaces box, select
All Interfaces.

« To cancel the configuration, click
Cancel.

In the configuration editor hierarchy,
select Protocols>Ospf.

Documentation Feedback

We encourage you to provide feedback, comments, and suggestions so that we can
improve the documentation. You can send your comments to
techpubs-comments@juniper.net, or fill out the documentation feedback form at

Xviii

Copyright © 2013, Juniper Networks, Inc.

mailto:techpubs-comments@juniper.net

About This Guide

https://www.juniper.net/cgi-bin/docbugreport/ . If you are using e-mail, be sure to include
the following information with your comments:

« Document or topic name
« URL or page number

. Software release version (if applicable)

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance
Center (JTAC). If you are a customer with an active J-Care or JNASC support contract,
or are covered under warranty, and need post-sales technical support, you can access
our tools and resources online or open a case with JTAC.

« JTAC policies—For a complete understanding of our JTAC procedures and policies,
review the JTAC User Guide located at
http://www.juniper.net/us/en/local/pdf/resource-guides/7100059-en.pdf .

« Product warranties—For product warranty information, visit
http://www.juniper.net/support/warranty/ .

« JTAC hours of operation—The JTAC centers have resources available 24 hours a day,
7 days a week, 365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online
self-service portal called the Customer Support Center (CSC) that provides you with the
following features:

« Find CSC offerings: http://www.juniper.net/customers/support/

« Search for known bugs: http://www2.juniper.net/kb/

« Find product documentation: http://www.juniper.net/techpubs/

. Find solutions and answer questions using our Knowledge Base: http://kb.juniper.net/

. Download the latest versions of software and review release notes:
http://www.juniper.net/customers/csc/software/

« Search technical bulletins for relevant hardware and software notifications:
https://www.juniper.net/alerts/

. Join and participate in the Juniper Networks Community Forum:
http://www.juniper.net/company/communities/

« Open a case online in the CSC Case Management tool: http://www.juniper.net/cm/

To verify service entitlement by product serial number, use our Serial Number Entitlement
(SNE) Tool: https://tools.juniper.net/SerialNumberEntitlementSearch/

Copyright © 2013, Juniper Networks, Inc. Xix

https://www.juniper.net/cgi-bin/docbugreport/
http://www.juniper.net/us/en/local/pdf/resource-guides/7100059-en.pdf
http://www.juniper.net/support/warranty/
http://www.juniper.net/customers/support/
http://www2.juniper.net/kb/
http://www.juniper.net/techpubs/
http://kb.juniper.net/
http://www.juniper.net/customers/csc/software/
https://www.juniper.net/alerts/
http://www.juniper.net/company/communities/
http://www.juniper.net/cm/
https://tools.juniper.net/SerialNumberEntitlementSearch/

Junos XML Management Protocol Developer Guide

Opening a Case with JTAC

You can open a case with JTAC on the Web or by telephone.

« Use the Case Management tool in the CSC at http://www.juniper.net/cm/.

. Call1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, see
http://www.juniper.net/support/requesting-support.ntml.

XX

Copyright © 2013, Juniper Networks, Inc.

http://www.juniper.net/cm/
http://www.juniper.net/support/requesting-support.html

PART 1

Overview

« Introduction to the Junos XML Management Protocol and Junos XML API on page 3

« Using Junos XML Management Protocol and Junos XML Tag Elements on page 11

Copyright © 2013, Juniper Networks, Inc.

Junos XML Management Protocol Developer Guide

2 Copyright © 2013, Juniper Networks, Inc.

CHAPTERI1

INntroduction to the Junos XML
Management Protocol and Junos XML API

This chapter discusses the following

« XML and Junos OS on page 3
« Junos XML API and Junos XML Management Protocol Overview on page 5
« XML QOverview on page 6

» Advantages of Using the Junos XML Management Protocol and Junos XML
APl on page 8

« Overview of a Junos XML Protocol Session on page 9

XML and Junos OS

Supported Platforms EX Series, LN Series, M Series, MX Series, PTX Series, SRX Series, T Series

Extensible Markup Language (XML) is a standard for representing and communicating
information. It is a metalanguage for defining customized tags that are applied to a data
set ordocument to describe the function of individual elements and codify the hierarchical
relationships between them. Junos OS natively supports XML for the operation and
configuration of devices running Junos OS.

The Junos OS command-lineinterface (CLI) and the Junos OS infrastructure communicate
using XML. When you issue an operational mode command in the CLI, the CLI converts
the command into XML format for processing. After processing, Junos OS returns the
output in the form of an XML document, which the CLI converts back into a readable
format for display. Remote client applications also use XML-based data encoding for
operational and configuration requests on devices running Junos OS.

The Junos XML APl is an XML representation of Junos configuration statements and
operational mode commands. It defines an XML equivalent for all statements in the
Junos configuration hierarchy and many of the commands that you issue in CLI operational
mode. Each operational mode command with a Junos XML counterpart maps to a request
tag element and, if necessary, a response tag element.

You can view the XML-formatted output of any operational mode command by issuing
the command in the CLI and adding the | display xml option. The following example

Copyright © 2013, Juniper Networks, Inc. 3

http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/ex-series/product/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/ln1000-series/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/m-series/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/mx-series/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/ptx-series/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/srx-series/product/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/t-series/index.html

Junos XML Management Protocol Developer Guide

shows the text-fomatted and XML-formatted output for the show chassis alarms
operational mode command:

user@host> show chassis alarms
No alarms currently active

user@host> show chassis alarms | display xml
<rpc-reply xmIns:junos="http://xml._juniper.net/junos/10.4B1/junos">
<alarm-information xmlns="http://xml_juniper.net/junos/10.4B1/junos-alarm">
<alarm-summary>
<no-active-alarms/>
</alarm-summary>
</alarm-information>
<cli>
<banner></banner>
</cli>
</rpc-reply>

You can view the Junos XML API representation of any operational mode command by
issuing the command in the CLI and adding the | display xml rpc option. The following
example shows the Junos XML API tag element for the show chassis alarms command.

user@host> show chassis alarms | display xml rpc
<rpc-reply xmlns:junos="http://xml._juniper.net/junos/10.4B1/junos">
<rpC>
<get-alarm-information>
</get-alarm-information>
</rpc>
<cli>
<banner></banner>
</cli>
</rpc-reply>

As shown in the previous example, the | display xml rpc option displays the command’s
corresponding Junos XML APl request tag element that is sent to Junos OS for processing
whenever the command is issued. In contrast, the | display xml option displays the actual
output of the processed command in XML format.

When you issue the show chassis alarms operational mode command, the CLI converts
the command into its equivalent Junos XML API request tag <get-alarm-information>
and sends the XML request to the Junos infrastructure for processing. Junos OS processes
the request and returns the <alarm-information> response tag element to the CLI. The
CLI then converts the XML output into the “No alarms currently active” message that is
displayed to the user.

Junos automation scripts use XML to communicate with the host device. Junos OS
provides XML-formatted input to a script. The script processes the input source tree and
then returns XML-formatted output to Junos OS. The script type determines the XML
input document that is sent to the script as well as the output document that is returned
to Junos OS for processing. Commit script input consists of an XML representation of the
post-inheritance candidate configuration file. Event scripts receive an XML document
containing the description of the triggering event. All script input documents contain a
common node-set with information pertaining to the Junos OS environment.

4 Copyright © 2013, Juniper Networks, Inc.

Chapter 1: Introduction to the Junos XML Management Protocol and Junos XML API

Related
Documentation

« Junos XML API Configuration Developer Reference

« Junos XML API Operational Developer Reference

Junos XML APl and Junos XML Management Protocol Overview

Supported Platforms

Related
Documentation

EX Series, LN Series, M Series, MX Series, PTX Series, SRX Series, T Series

The Junos XML Management Protocol is an XML-based protocol that client applications
use to request and change configuration information on routing, switching, and security
platforms running Junos OS. It uses an XML-based data encoding for the configuration
data and remote procedure calls. The protocol defines basic operations that are equivalent
to configuration mode commands in the Junos OS command-line interface (CLI).
Applications use the protocol operations to display, edit, and commit configuration
statements (among other operations), just as administrators use CLI configuration mode
commands such as show, set, and commit to perform those operations.

The Junos XML APl is an XML representation of Junos configuration statements and
operational mode commands. Junos XML configuration tag elements are the content to
which the Junos XML protocol operations apply. Junos XML operational tag elements
are equivalentin function to operational mode commands in the CLI, which administrators
use to retrieve status information for a device.

Client applications request information and change the configuration on a device by
encoding the request with tag elements from the Junos XML management protocol and
Junos XML APl and sending it to the Junos XML protocol server on the device. The Junos
XML protocol server is integrated into Junos OS and does not appear as a separate entry
in process listings. The Junos XML protocol server directs the request to the appropriate
software modules within the device, encodes the response in Junos XML and Junos XML
protocol tag elements, and returns the result to the client application. For example, to
request information about the status of a device’s interfaces, a client application sends
the Junos XML API <get-interface-information> request tag element . The Junos XML
protocol server gathers the information from the interface process and returns it in the
Junos XML API <interface-information> response tag element.

You can use the Junos XML management protocol and Junos XML API to configure devices
running Junos OS or request information about the device configuration or operation.
You can write client applications to interact with the Junos XML protocol server, and you
can also utilize the Junos XML protocol to build custom end-user interfaces for
configuration and information retrieval and display, such as a Web browser-based
interface.

. Advantages of Using the Junos XML Management Protocol and Junos XML APl on
page 8

« XML and Junos OS on page 3

« XML Overview on page 6

Copyright © 2013, Juniper Networks, Inc. 5

http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/ex-series/product/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/ln1000-series/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/m-series/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/mx-series/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/ptx-series/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/srx-series/product/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/t-series/index.html

Junos XML Management Protocol Developer Guide

XML Overview

Supported Platforms

Tag Elements

EX Series, LN Series, M Series, MX Series, PTX Series, SRX Series, T Series

Extensible Markup Language (XML) is a language for defining a set of markers, called
tags, that are applied to a data set or document to describe the function of individual
elements and codify the hierarchical relationships between them. Tags look much like
Hypertext Markup Language (HTML) tags, but XML is actually a metalanguage used to
define tags that best suit the kind of data being marked.

For more details about XML, see A Technical Introduction to XML at
http://www.xml.com/pub/a/98/10/guide0.html and the additional reference material at
the http://www.xml.com site.

The official XML specification from the World Wide Web Consortium (W3C), Extensible
Markup Language (XML) 1.0, is available at http://www.w3.0org/TR/REC-xml .

The following sections discuss general aspects of XML:

. Tag Elements on page 6
« Attributes on page 7
« Namespaces on page 7

« Document Type Definition on page 8

XML has three types of tags: opening tags, closing tags, and empty tags. XML tag names
are enclosed in angle brackets and are case sensitive. Items in an XML-compliant
document or data set are always enclosed in paired opening and closing tags, and the
tags must be properly nested. That is, you must close the tags in the same order in which
you opened them. XML is stricter in this respect than HTML, which sometimes uses only
opening tags. The following examples show paired opening and closing tags enclosing
a value. The closing tags are indicated by the forward slash at the start of the tag name.

<interface-state>enabled</interface-state>
<input-bytes>25378</input-bytes>

The term tag element refers to a three-part set: opening tag, contents, and closing tag.
The content can be an alphanumeric character string as in the preceding examples, or
can itself be a container tag element, which contains other tag elements. For simplicity,
the term tag is often used interchangeably with tag element or element.

If a tag element is empty—has no contents—it can be represented either as paired opening
and closing tags with nothing between them, or as a single tag with a forward slash after
the tag name. For example, the notation <snmp-trap-flag/> is equivalent to
<snmp-trap-flag></snmp-trap-flag>.

As the preceding examples show, angle brackets enclose the name of the tag element.
This is an XML convention, and the brackets are a required part of the complete tag
element name. They are not to be confused with the angle brackets used in the
documentation to indicate optional parts of Junos OS CLI command strings.

Copyright © 2013, Juniper Networks, Inc.

http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/ex-series/product/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/ln1000-series/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/m-series/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/mx-series/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/ptx-series/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/srx-series/product/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/t-series/index.html
http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com
http://www.w3.org/TR/REC-xml

Chapter 1: Introduction to the Junos XML Management Protocol and Junos XML API

Attributes

Namespaces

Junos XML and Junos XML protocol tag elements obey the XML convention that the tag
element name indicates the kind of information enclosed by the tags. For example, the
name of the Junos XML <interface-state> tag element indicates that it contains a
description of the current status of an interface on the device, whereas the name of the
<input-bytes> tag elementindicates that its contents specify the number of bytes received.

When discussing tag elements in text, this documentation conventionally uses just the
opening tag to represent the complete tag element (opening tag, contents, and closing
tag). For example, the documentation refers to the <input-bytes> tag to indicate the
entire <input-bytes>number-of-bytes</input-bytes> tag element.

XML elements can contain associated properties in the form of attributes, which specify
additional information about an element. Attributes appear in the opening tag of an
element and consist of an attribute name and value pair. The attribute syntax consists
of the attribute name followed by an equals sign and then the attribute value enclosed
in quotation marks. An XML element can have multiple attributes. Multiple attributes are
separated by spaces and can appear in any order.

In the following example, the configuration tag element has two attributes,
junos:changed-seconds and junos:changed-localtime.

<configuration junos:changed-seconds="1279908006"
junos:changed-localtime="2010-07-23 11:00:06 PDT" >

The value of the junos:changed-seconds attribute is "1279908006", and the value of the
junos:changed-localtime attribute is "2010-07-23 11:00:06 PDT".

Namespaces allow an XML document to contain the same tag, attribute, or function
names for different purposes and avoid name conflicts. For example, many namespaces
may define a print function, and each may exhibit a different functionality. To use the
functionality defined in one specific namespace, you must associate that function with
the namespace that defines the desired functionality.

To refer to a tag, attribute, or function from a defined namespace, you must first provide
the namespace Uniform Resource Identifier (URI) in your style sheet declaration . You
then qualify a tag, attribute, or function from the namespace with the URI. Since a URI
is often lengthy, generally a shorter prefix is mapped to the URI.

In the following example the jcs prefix is mapped to the namespace identified by the URI
http://xml.juniper.net/junos/commit-scripts/1.0, which defines extension functions used
in commit, op, and event scripts. The jes prefix is then prepended to the output function,
which is defined in that namespace.

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:jcs="http://xml.juniper.net/junos/commit-scripts/1.0" >

<xsl:value-of select="jcs:output('The VPN is up.')"/>
</xsl: stylesheet>

Copyright © 2013, Juniper Networks, Inc. 7

Junos XML Management Protocol Developer Guide

During processing, the prefix is expanded into the URI reference. Although there may be
multiple namespaces that define an output element or function, the use of jcs:output
explicitly defines which output function is used. You can choose any prefix to refer to the
contentsinanamespace, but there must be an existing declaration in the XML document
that binds the prefix to the associated URI.

Document Type Definition

Related
Documentation

An XML-tagged document or data set is structured, because a set of rules specifies the
ordering and interrelationships of the items in it. The rules define the contexts in which
each tagged item can—and in some cases must—occur. A file called a document type
definition, or DTD, lists every tag element that can appear in the document or data set,
defines the parent-child relationships between the tags, and specifies other tag
characteristics. The same DTD can apply to many XML documents or data sets.

« Junos XML API and Junos XML Management Protocol Overview on page 5

« XML and Junos OS on page 3

Advantages of Using the Junos XML Management Protocol and Junos XML API

Supported Platforms

EX Series, LN Series, M Series, MX Series, PTX Series, SRX Series, T Series

The Junos XML management protocol and Junos XML API fully document all options for
every supported Junos operational request, all statements in the Junos configuration
hierarchy, and basic operations that are equivalent to configuration mode commands.
The tag names clearly indicate the function of an element in an operational or
configuration request or a configuration statement.

The combination of meaningful tag names and the structural rules in a DTD makes it
easy to understand the content and structure of an XML-tagged data set or document.
Junos XML and Junos XML protocol tag elements make it straightforward for client
applications that request information from a device to parse the output and find specific
information.

Parsing Device Output

The following example illustrates how the Junos XML API makes it easier to parse device
output and extract the needed information. The example compares formatted ASCIl and
XML-tagged versions of output from a device running Junos OS.

The formatted ASCII follows:

Physical interface: fxp0, Enabled, Physical link is Up
Interface index: 4, SNMP ifIndex: 3

The corresponding XML-tagged version is:

<interface>
<name>fxp0O</name>
<admin-status>enabled</admin-status>
<operational-status>up</operational-status>
<index>4</index>
<snmp-index>3</snmp-index>

Copyright © 2013, Juniper Networks, Inc.

http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/ex-series/product/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/ln1000-series/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/m-series/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/mx-series/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/ptx-series/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/srx-series/product/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/t-series/index.html

Chapter 1: Introduction to the Junos XML Management Protocol and Junos XML API

</interface>

When a client application needs to extract a specific value from formatted ASCI| output,
it must rely on the value’s location, expressed either absolutely or with respect to labels
or values in adjacent fields. Suppose that the client application wants to extract the
interface index. It can use a regular-expression matching utility to locate specific strings,
but one difficulty is that the number of digits in the interface index is not necessarily
predictable. The client application cannot simply read a certain number of characters
after the Interface index: label, but must instead extract everything between the label
and the subsequent label SNMP ifindex and also account for the included comma.

A problem arises if the format or ordering of text output changes in a later version of the
Junos OS. For example, if a Logical index field is added following the interface index
number, the new formatted ASCII might appear as follows:

Physical interface: fxpO, Enabled, Physical link is Up
Interface index: 4, Logical index: 12, SNMP ifIndex: 3

An application that extracts the interface index number delimited by the Interface index:
and SNMP ifindex: labels now obtains anincorrect result. The application must be updated
manually to search for the Logical index: label as the new delimiter.

In contrast, the structured nature of XML-tagged output enables a client application to
retrieve the interface index by extracting everything within the opening <index> tag and
closing </index> tag. The application does not have to rely on an element’s position in
the output string, so the Junos XML protocol server can emit the child tag elements in
any order within the <interface> tag element. Adding a new <logical-index> tag element
in a future release does not affect an application’s ability to locate the <index> tag
element and extract its contents.

Displaying Device Output

XML-tagged output is also easier to transform into different display formats than
formatted ASCII output. For instance, you might want to display different amounts of
detail about a given device component at different times. When a device returns formatted
ASCII output, you have to write special routines and data structures in your display
program to extract and show the appropriate information for a given detail level. In
contrast, the inherent structure of XML output is an ideal basis for a display program’s
own structures. It is also easy to use the same extraction routine for several levels of
detail, simply ignoring the tag elements you do not need when creating a less detailed
display.

Related . Junos XML API and Junos XML Management Protocol Overview on page 5

D .
ocumentation « XML Qverview on page 6

Overview of a Junos XML Protocol Session

Supported Platforms EX Series, M Series, MX Series, PTX Series, SRX Series, T Series

Communication between the Junos XML protocol server and a client applicationis session
based. The two parties explicitly establish a connection before exchanging data and

Copyright © 2013, Juniper Networks, Inc. 9

http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/ex-series/product/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/m-series/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/mx-series/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/ptx-series/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/srx-series/product/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/t-series/index.html

Junos XML Management Protocol Developer Guide

close the connection when they are finished. Each request from the client application
and each response from the Junos XML protocol server constitutes a well-formed XML
document, because the tag streams obey the structural rules defined in the Junos XML
protocol and Junos XML DTDs for the kind of information they encode. Client applications
must produce a well-formed XML document for each request by emitting tag elements
in the required order and only in the legal contexts.

The following list outlines the basic structure of a Junos XML protocol session.

1. Theclient application establishes a connection to the Junos XML protocol server and
opens the Junos XML protocol session.

2. TheJunos XML protocol server and client application exchange initialization
information, which is used to determine if they are using compatible versions of the
Junos OS and the Junos XML management protocol.

3. Theclient application sends one or more requests to the Junos XML protocol server
and parses its responses.

4. The client application closes the Junos XML protocol session and the connection to
the Junos XML protocol server.

10 Copyright © 2013, Juniper Networks, Inc.

CHAPTER 2

Using Junos XML Management Protocol
and Junos XML Tag Elements

This chapter describes the syntactic and notational conventions used by the Junos XML
protocol server and client applications, including the mappings between statements and
commands in the Junos OS command-line interface (CLI) and the tag elements in the
Junos Extensible Markup Language (XML) application programming interface (API).

For more information about the syntax of CLI commands and configuration statements,
see the CL/ User Guide. For information about specific configuration statements, see the
Junos OS configuration guides. For information about specific operational mode
commands, see the Junos OS command references.

This chapter discusses the following topics:

« XML and Junos XML Management Protocol Conventions Overview on page 11
« Mapping Commands to Junos XML Tag Elements on page 16
- Mapping Configuration Statements to Junos XML Tag Elements on page 17

« Using the Same Configuration Tag Elements in Requests and Responses on page 23

XML and Junos XML Management Protocol Conventions Overview

A client application must comply with XML and Junos XML management protocol
conventions. Each request from the client application must be a well-formed XML
document; that is, it must obey the structural rules defined in the Junos XML protocol
and Junos XML document type definitions (DTDs) for the kind of information encoded
in the request. The client application must emit tag elements in the required order and
only in legal contexts. Compliant applications are easier to maintain in the event of
changes to the Junos OS or Junos XML management protocol.

Similarly, each response from the Junos XML protocol server constitutes a well-formed
XML document (the Junos XML protocol server obeys XML and Junos XML management
protocol conventions).

The following sections describe Junos XML management protocol conventions:

« Request and Response Tag Elements on page 12

« Child Tag Elements of a Request Tag Element on page 13

Copyright © 2013, Juniper Networks, Inc. n

Junos XML Management Protocol Developer Guide

« Child Tag Elements of a Response Tag Element on page 13

« Spaces, Newline Characters, and Other White Space on page 13
« XML Comments on page 14

« XML Processing Instructions on page 14

« Predefined Entity References on page 14

Request and Response Tag Elements

A request tag element is one generated by a client application to request information
about a device’s current status or configuration, or to change the configuration. A request
tag element corresponds to a CLI operational or configuration commmand. It can occur
only within an <rpc> tag element. For information about the <rpc> tag element, see
“Sending a Request to the Junos XML Protocol Server” on page 48.

A response tag element represents the Junos XML protocol server’s reply to a request
tag element and occurs only within an <rpc-reply> tag element. For information about
the <rpc-reply> tag element, see “Parsing the Junos XML Protocol Server Response” on
page 51.

The following example represents an exchange in which a client application emits the
<get-interface-information> request tag element with the <extensive/> flag and the
Junos XML protocol server returns the <interface-information> response tag element.

Client Application Junos XML Protocol Server
<rpc>

<get-interface-information>
<extensive/>
</get-interface-information>
</rpc>
<rpc-reply xmins:junos="URL">
<interface-information xmins="URL">
<l- - children of <interface-information> - ->
</interface-information>
</rpc-reply>

T1100

0 NOTE: This example, like all others in this guide, shows each tag element on
a separate line, in the tag streams emitted by both the client application and
Junos XML protocol server. In practice, a client application does not need to
include newline characters between tag elements, because the server
automatically discards such white space. For further discussion, see “Spaces,
Newline Characters, and Other White Space” on page 13.

For information about the attributes in the opening rpc-reply tag, see “Parsing the Junos
XML Protocol Server Response” on page 51. For information about the xmlns attribute
in the opening <interface-information> tag, see “Requesting Operational Information”
on page 66.

12 Copyright © 2013, Juniper Networks, Inc.

Chapter 2: Using Junos XML Management Protocol and Junos XML Tag Elements

Child Tag Elements of a Request Tag Element

Some request tag elements contain child tag elements. For configuration requests, each
child tag element represents a configuration element (hierarchy level or configuration
object). For operational requests, each child tag element represents one of the options
you provide on the command line when issuing the equivalent CLI command.

Some requests have mandatory child tag elements. To make a request successfully, a
client application must emit the mandatory tag elements within the request tag element’s
opening and closing tags. If any of the children are themselves container tag elements,
the opening tag for each must occur before any of the tag elements it contains, and the
closing tag must occur before the opening tag for another tag element at its hierarchy
level.

In most cases, the client application can emit children that occur at the same level within
a container tag element in any order. The important exception is a configuration element
that has an identifier tag element, which distinguishes the configuration element from
other elements of its type. The identifier tag element must be the first child tag element
in the container tag element. Most frequently, the identifier tag element specifies the
name of the configuration element and is called <name>.

Child Tag Elements of a Response Tag Element

The child tag elements of a response tag element represent the individual data items
returned by the Junos XML protocol server for a particular request. The children can be
either individual tag elements (empty tags or tag element triples) or container tag
elements that enclose their own child tag elements. For some container tag elements,
the Junos XML protocol server returns the children in alphabetical order. For

other elements, the children appear in the order in which they were created in

the configuration.

The set of child tag elements that can occur in a response or within a container tag
element is subject to change in later releases of the Junos XML API. Client applications
must not rely on the presence or absence of a particular tag element in the Junos XML
protocol server’s output, nor on the ordering of child tag elements within a response tag
element. For the most robust operation, include logic in the client application that handles
the absence of expected tag elements or the presence of unexpected ones as gracefully
as possible.

Spaces, Newline Characters, and Other White Space

As dictated by the XML specification, the Junos XML protocol server ignores white space
(spaces, tabs, newline characters, and other characters that represent white space) that
occurs between tag elements in the tag stream generated by a client application. Client
applications can, but do not need to, include white space between tag elements. However,
they must not insert white space within an opening or closing tag. If they include white
space in the contents of a tag element that they are submitting as a change to the
candidate configuration, the Junos XML protocol server preserves the white space in the
configuration database.

Copyright © 2013, Juniper Networks, Inc. 13

Junos XML Management Protocol Developer Guide

XML Comments

Inits responses, the Junos XML protocol server includes white space between tag elements
to enhance the readability of responses that are saved to a file: it uses newline characters
to put each tag element on its own line, and spaces to indent child tag elements to the
right compared to their parents. A client application canignore or discard the white space,
particularly if it does not store responses for later review by human users. However, it
must not depend on the presence or absence of white space in any particular location
when parsing the tag stream.

For more information about white space in XML documents, see the XML specification
from the World Wide Web Consortium (W3C), Extensible Markup Language (XML) 1.0,
at http://www.w3.org/TR/REC-xml/ .

Client applications and the Junos XML protocol server can insert XML comments at any
point between tag elementsin the tag stream they generate, but not within tag elements.
Client applications must handle comments in output from the Junos XML protocol server
gracefully but must not depend on their content. Client applications also cannot use
comments to convey information to the Junos XML protocol server, because the server
automatically discards any comments it receives.

XML comments are enclosed within the strings <!--and -->, and cannot contain the string
- - (two hyphens). For more details about comments, see the XML specification at
http://www.w3.org/TR/REC-xml/ .

The following is an example of an XML comment:

<!--This is a comment. Please ignore it. -->

XML Processing Instructions

An XML processing instruction (PI) contains information relevant to a particular protocol
and has the following form:

<?PIl-name attributes?>

Some Pls emitted during a Junos XML protocol session include information that a client
application needs for correct operation. A prominent example is the < ?xml?> tag element,
which the client application and Junos XML protocol server each emit at the beginning
of every Junos XML protocol session to specify which version of XML and which character
encoding scheme they are using. For more information, see “Emitting the <?xml?> PI”
on page 41 and “Parsing the Junos XML Protocol Server’'s <?xml?> PI” on page 43.

The Junos XML protocol server can also emit Pls that the client application does not need
to interpret (for example, Pls intended for the CLI). If the client application does not
understand a PI, it must treat the PI like a commment instead of exiting or generating an
error message.

Predefined Entity References

By XML convention, there are two contexts in which certain characters cannot appear in
their regular form:

Copyright © 2013, Juniper Networks, Inc.

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/

Chapter 2: Using Junos XML Management Protocol and Junos XML Tag Elements

- Inthe string that appears between opening and closing tags (the contents of the tag
element)

« Inthe string value assigned to an attribute of an opening tag

When including a disallowed character in either context, client applications must
substitute the equivalent predefined entity reference, which is a string of characters that
represents the disallowed character. Because the Junos XML protocol server uses the
same predefined entity references in its response tag elements, the client application
must be able to convert them to actual characters when processing response tag
elements.

Table 3 on page 15 summarizes the mapping between disallowed characters and
predefined entity references for strings that appear between the opening and closing
tags of a tag element.

Table 3: Predefined Entity Reference Substitutions for Tag Content Values

Predefined Entity

Disallowed Character Reference
& (ampersand) &

> (greater-than sign) >

< (less-than sign) <

Table 4 on page 15 summarizes the mapping between disallowed characters and
predefined entity references for attribute values.

Table 4: Predefined Entity Reference Substitutions for Attribute Values

Predefined Entity
Disallowed Character Reference
& (ampersand) &
' (apostrophe) '
>> (greater-than sign) >
< (less-than sign) <
" (quotation mark) "

As an example, suppose that the following string is the value contained by the <condition>
tag element:

if (a<b && b>c) return "Peer’s not responding"

The <condition> tag element looks like this (it appears on two lines for legibility only):

<condition>if (a<b && b>c) return "Peer’s not \

Copyright © 2013, Juniper Networks, Inc. 15

Junos XML Management Protocol Developer Guide

responding"</condition>

Similarly, if the value for the <example> tag element’s heading attribute is
Peer’s "age" <> 40, the opening tag looks like this:

<example heading="Peer's "age" <> 40" >

Mapping Commands to Junos XML Tag Elements

The Junos XML API defines tag-element equivalents for many commands in CLI
operational mode. For example, the <get-interface-information> tag element corresponds
to the show interfaces command.

Information about the available command equivalents in the current release of the Junos
OS can be found in the Junos XML API Operational Developer Reference. For the mapping
between commands and Junos XML tag elements, see the Junos XML API Operational
Developer Reference “Mapping Between Operational Tag Elements, Perl Methods, and
CLI Commands” chapter. For detailed information about a specific operation, see the
Junos XML API Operational Developer Reference “Summary of Operational Request Tags”
chapter.

The following sections describe the tag elements that map to command options:

« Mapping for Command Options with Variable Values on page 16

« Mapping for Fixed-Form Command Options on page 17

Mapping for Command Options with Variable Values

Many CLI commands have options that identify the object that the command affects or
reports about, distinguishing the object from other objects of the same type. In some
cases, the CLI does not precede the identifier with a fixed-form keyword, but XML
convention requires that the Junos XML API define a tag element for every option. To
learn the names for each identifier (and any other child tag elements) for an operational
request tag element, consult the tag element’s entry in the appropriate DTD or in the
Junos XML API Operational Developer Reference.

The following example shows the Junos XML tag elements for two CLI operational
commands that have variable-form options. In the show interfaces command, t3-5/1/0:0
is the name of the interface. In the show bgp neighbor command, 10.168.1.222 is the IP
address for the BGP peer of interest.

CLI Command JUNOS XML Tags
show interfaces t3-5/1/0:0 <rpc>
<get-interface-information>
<interface-name>t3-5/1/0:0</interface-name>
</get-interface-information>
</rpc>
show bgp neighbor 10.168.1.122 <rpc>
<get-bgp-neighbor-information>
<neighbor-address>10.168.1.122</neighbor-address>
</get-bgp-neighbor-information>
</rpc>

T1500

16 Copyright © 2013, Juniper Networks, Inc.

Chapter 2: Using Junos XML Management Protocol and Junos XML Tag Elements

Mapping for Fixed-Form Command Options

Some CLI commands include options that have a fixed form, such as the brief and detail
strings, which specify the amount of detail to include in the output. The Junos XML API
usually maps such an option to an empty tag whose name matches the option name.

The following example shows the Junos XML tag elements for the show isis adjacency
command, which has a fixed-form option called detail.

CLI Command JUNOS XML Tags
show isis adjacency detail <rpc>
<get-isis-adjacency-information>
<detail/>
</get-isis-adjacency-information>
</rpc>

T1501

Mapping Configuration Statements to Junos XML Tag Elements

The Junos XML API defines a tag element for every container and leaf statement in the
configuration hierarchy. At the top levels of the configuration hierarchy, there is almost
always a one-to-one mapping between tag elements and statements, and most tag
names match the configuration statement name. At deeper levels of the hierarchy, the
mapping is sometimes less direct, because some CLI notational conventions do not map
directly to XML-compliant tagging syntax.

e NOTE: Forsome configuration statements, the notation used when you type
the statement at the CLI configuration-mode prompt differs from the notation
used in a configuration file. The same Junos XML tag element maps to both
notational styles.

The following sections describe the mapping between configuration statements and
Junos XML tag elements:

« Mapping for Hierarchy Levels and Container Statements on page 17

« Mapping for Objects That Have an |dentifier on page 18

« Mapping for Single-Value and Fixed-Form Leaf Statements on page 19

- Mapping for Leaf Statements with Multiple Values on page 20

« Mapping for Multiple Options on One or More Lines on page 21

« Mapping for Comments About Configuration Statements on page 22

Mapping for Hierarchy Levels and Container Statements

The <configuration> tag element is the top-level Junos XML container tag element for
configuration statements. It corresponds to the [edit] hierarchy level in CLI configuration
mode. Most statements at the next few levels of the configuration hierarchy are container
statements. The Junos XML container tag element that corresponds to a container
statement almost always has the same name as the statement.

Copyright © 2013, Juniper Networks, Inc. 17

Junos XML Management Protocol Developer Guide

The following example shows the Junos XML tag elements for two statements at the
top level of the configuration hierarchy. Note that a closing brace in a CLI configuration
statement corresponds to a closing Junos XML tag.

CLI Configuration Statements JUNOS XML Tags
<configuration>

system { <system>
login { <login>
...child statements... <!- - tags for child statements - ->
} </login>
} </system>
protocols { <protocols>
ospf { <ospf>
...child statements... <l- - tags for child statements - ->
} </ospf>
} </protocols>

T1502

</configuration>

Mapping for Objects That Have an Identifier

At some hierarchy levels, the same kind of configuration object can occur multiple times.
Each instance of the object has a unique identifier to distinguish it from the other instances.
In the CLI notation, the parent statement for such an object consists of a keyword and
identifier of the following form:

keyword identifier {
... configuration statements for individual characteristics ...

}

keyword is a fixed string that indicates the type of object being defined, and identifier is
the unique name for this instance of the type. In the Junos XML API, the tag element
corresponding to the keyword is a container tag element for child tag elements that
represent the object’s characteristics. The container tag element’s name generally
matches the keyword string.

The Junos XML API differs from the CLI in its treatment of the identifier. Because the
Junos XML APl does not allow container tag elements to contain both other tag elements
and untagged character data such as an identifier name, the identifier must be enclosed
in a tag element of its own. Most frequently, identifier tag elements for configuration
objects are called <name>. Some objects have multiple identifiers, which usually have
names other than <name>. To verify the name of each identifier tag element for a
configuration object, consult the entry for the object in the Junos XML API Configuration
Developer Reference.

0 NOTE: The Junos OS reserves the prefix junos- for the identifiers of
configuration groups defined within the junos-defaults configuration group.
User-defined identifiers cannot start with the string junos-.

|dentifier tag elements also constitute an exception to the general XML convention that
tag elements at the same level of hierarchy can appear in any order; the identifier tag
element always occurs first within the container tag element.

Copyright © 2013, Juniper Networks, Inc.

Chapter 2: Using Junos XML Management Protocol and Junos XML Tag Elements

The configuration for most objects that have identifiers includes additional leaf
statements, which represent other characteristics of the object. For example, each BGP
group configured at the [edit protocols bgp group] hierarchy level has an associated name
(the identifier) and can have leaf statements for other characteristics such as type, peer
autonomous system (AS) number, and neighbor address. For information about the
Junos XML mapping for leaf statements, see “Mapping for Single-Value and Fixed-Form
Leaf Statements” on page 19, “Mapping for Leaf Statements with Multiple Values” on
page 20, and “Mapping for Multiple Options on One or More Lines” on page 21.

The following example shows the Junos XML tag elements for configuration statements
that define two BGP groups called G1 and G2. Notice that the Junos XML <name> tag
element that encloses the identifier of each group (and the identifier of the neighbor
within a group) does not have a counterpart in the CLI statements. For complete
information about changing routing platform configuration, see

“Changing Configuration Information” on page 113.

CLI Configuration Statements JUNOS XML Tags

<configuration>

protocols { <protocols>
bgp { <bgp>
group G1 { <group>
<name>G1l</name>
type external; <type>external</type>
peer-as 56; <peer-as>56</peer-as>
neighbor 10.0.0.1; <neighbor>
<name>10.0.0.1</name>
</neighbor>
} </group>
group G2 { <group>
<name>G2</name>
type external; <type>external</type>
peer-as 57; <peer-as>57</peer-as>
neighbor 10.0.10.1; <neighbor>
<name>10.0.10.1</name>
</neighbor>
} </group>
} </bgp>
} </protocols>

</configuration>

T1503

Mapping for Single-Value and Fixed-Form Leaf Statements

A leaf statement is a CLI configuration statement that does not contain any other
statements. Most leaf statements define a value for one characteristic of a configuration
object and have the following form:

keyword value;

In general, the name of the Junos XML tag element corresponding to a leaf statement is
the same as the keyword string. The string between the opening and closing Junos XML
tags is the same as the value string.

The following example shows the Junos XML tag elements for two leaf statements that
have a keyword and a value: the message statement at the [edit system login] hierarchy
level and the preference statement at the [edit protocols ospf] hierarchy level.

Copyright © 2013, Juniper Networks, Inc. 19

Junos XML Management Protocol Developer Guide

CLI Configuration Statements

system {
login {
message "Authorized users only";
...other statements under login...
}
}
protocols {
ospf {
preference 15;
...cther statements under ospf...
}
}

Some leaf statements consist of a fixed-form keyword only, without an associated

JUNOS XML Tags
<configuration>
<system>
<login>
<message>Authorized users only</message>
<l- - tags for other child statements - ->
</login>
</system>
<protocols>
<ospf>
<preference>15</preference>
<!- - tags for other child statements - ->
</ospf>
</protocols>
</configuration>

T1504

variable-form value. The Junos XML API represents such statements with an empty tag.
The following example shows the Junos XML tag elements for the disable statement at
the [edit forwarding-options sampling] hierarchy level.

CLI Configuration Statement JUNOS XML Tags

<configuration>

forwarding-options {
sampling {
disable;

...other statements under sampling .

}
}

</configuration>

Mapping for Leaf Statements with Multiple Values

Some Junos leaf statements accept multiple values, which can be either user-defined
or drawn from a set of predefined values. CLI notation uses square brackets to enclose

<forwarding-options>
<sampling>
<disable/>

.. <l-- tags for other child statements - ->

</sampling>
</forwarding-options>

T1505

all values in a single statement, as in the following:

statement [valuel value2 value3 ...];

The Junos XML APl instead encloses each value in its own tag element. The following

example shows the Junos XML tag elements for a CLI statement with multiple
user-defined values. The import statement imports two routing policies defined elsewhere

in the configuration. For complete information about changing routing platform

configuration, see “Changing Configuration Information” on page 113.

CLI Configuration Statements JUNOS XML Tags
<configuration>

protocols {

bgp {
group 23 {

import [policyl policy2];

</configuration>

<protocols>
<bgp>
<group>
<name>23</name>
<import>policyl</import>
<import>policy2</import>
</group>
</bgp>
</protocols>

T1506

20

Copyright © 2013, Juniper Networks, Inc.

Chapter 2: Using Junos XML Management Protocol and Junos XML Tag Elements

The following example shows the Junos XML tag elements for a CLI statement with
multiple predefined values. The permissions statement grants three predefined
permissions to members of the user-accounts login class.

CLI Configuration Statements JUNOS XML Tags
<configuration>
system { <system>
login { <login>
class user-accounts { <class>
<nhame>user-accounts</name>
permissions [configure admin control [; <permissions>configure</permissions>

<permissions>admin</permissions>
<permissions>control</permissions>
} </class>
} </login>
} </system>
</configuration>

T1507

Mapping for Multiple Options on One or More Lines

For some Junos configuration objects, the standard CLI syntax places multiple options
on asingle line, usually for greater legibility and conciseness. In most such cases, the first
option identifies the object and does not have a keyword, but later options are paired
keywords and values. The Junos XML API encloses each option in its own tag element.
Because the first option has no keyword in the CLI statement, the Junos XML API assigns
a name to its tag element.

The following example shows the Junos XML tag elements for a CLI configuration
statement with multiple options on a single line. The Junos XML API defines a tag element
for both options and assigns a name to the tag element for the first option (10.0.0.1),
which has no CLI keyword.

CLI Configuration Statements JUNOS XML Tags
<configuration>
system { <system>
backup-router 10.0.01 destination 10.0.0.2; <backup-router>

<address>10.0.0.1</address>
<destination>10.0.0.2</destination>
</backup-router>
} </system>
</configuration>

T1508

The syntax for some configuration objects includes more than one multioption line. Again,
the Junos XML API defines a separate tag element for each option. The following example
shows Junos XML tag elements for a traceoptions statement at the [edit protocols isis]
hierarchy level. The statement has three child statements, each with multiple options.

Copyright © 2013, Juniper Networks, Inc. 21

Junos XML Management Protocol Developer Guide

CLI Configuration Statements

protocols {
isis {
traceoptions {
file trace-file size 3m files 10 world-readable;

JUNOS XML Tags
<configuration>
<protocols>
<isis>
<traceoptions>
<file>

<filename>trace-file</filename>
<size>3m</size>
<files>10</files>
<world-readable/>
</file>
flag route detail; <flag>
<name>route</name>
<detail/>
</flag>
flag state receive; <flag>
<name>state</name>
<receive/>
</flag>
} </traceoptions>
} </isis>
} </protocols>
</configuration>

T1509

Mapping for Comments About Configuration Statements

A Junos configuration can include comments that describe statements in the configuration.
In CLI configuration mode, the annotate command specifies the comment to associate
with a statement at the current hierarchy level. You can also use a text editor to insert
comments directly into a configuration file. For more information, see the CL/ User Guide.

The Junos XML API encloses comments about configuration statements in the
<junos:comment> tag element. (These comments are different from the comments that
are enclosed in the strings <!-- and --> and are automatically discarded by the protocol
server.)

In the Junos XML API, the <junos:comment> tag element immediately precedes the tag
element for the associated configuration statement. (If the tag element for the associated
statement is omitted, the comment is not recorded in the configuration database.) The
comment text string can include one of the two delimiters that indicate a comment in
the configuration database: either the # character before the comment or the paired
strings /* before the comment and */ after it. If the client application does not include
the delimiter, the protocol server adds the appropriate one when it adds the comment
to the configuration. The protocol server also preserves any white space included in the
comment.

The following example shows the Junos XML tag elements that associate comments
with two statements in a sample configuration statement. The first comment illustrates
how including newline characters in the contents of the <junos:comment> tag element
(/* New backbone area */) results in the comment appearing on its own line in the
configuration file. There are no newline characters in the contents of the second
<junos:comment> tag element, so in the configuration file the comment directly follows
the associated statement on the same line.

22 Copyright © 2013, Juniper Networks, Inc.

Chapter 2: Using Junos XML Management Protocol and Junos XML Tag Elements

CLI Configuration Statements JUNOS XML Tags
<configuration>
protocols { <protocols>
ospf { <ospf>
<junos:comment>
/* New backbone area */
/* New backbone area */ </junos:comment>
area 0.0.0.0 { <area>
<name>0.0.0.0</name>
<junos:comment> # From jnprl to jnpr2</junos:comment>
interface so0-0/0/0 { # From jnprl to jnpr2 <interface>
<name>s0-0/0/0</name>
hello-interval 5; <hello-interval>5</hello-interval>
} </interface>
} </area>
} </ospf>
} </protocols>
</configuration>

T1510

Using the Same Configuration Tag Elements in Requests and Responses

The Junos XML protocol server encloses its response to each configuration request in
<rpc-reply> and <configuration> tag elements. Enclosing each configuration response
within a <configuration> tag element contrasts with how the server encloses each different
operational response in a tag element named for that type of response—for example,
the <chassis-inventory> tag element for chassis information or the <interface-information>
tag element for interface information.

The Junos XML tag elements within the <configuration> tag element represent
configuration hierarchy levels, configuration objects, and object characteristics, always
ordered from higher to deeper levels of the hierarchy. When a client application loads a
configuration, it can emit the same tag elements in the same order as the Junos XML
protocol server uses when returning configuration information. This consistent
representation makes handling configuration information more straightforward. For
instance, the client application can request the current configuration, store the Junos
XML protocol server’s response to a local memory buffer, make changes or apply
transformations to the buffered data, and submit the altered configuration as a change
to the candidate configuration. Because the altered configuration is based on the Junos
XML protocol server’s response, it is certain to be syntactically correct. For more
information about changing routing platform configuration, see

“Changing Configuration Information” on page 113.

Similarly, when a client application requests information about a configuration element
(hierarchy level or configuration object), it uses the same tag elements that the Junos
XML protocol server will returnin response. To represent the element, the client application
sends a complete stream of tag elements from the top of the configuration hierarchy
(represented by the <configuration> tag element) down to the requested element. The
innermost tag element, which represents the level or object, is either empty or includes
the identifier tag element only. The Junos XML protocol server’s response includes the
same stream of parent tag elements, but the tag element for the requested configuration
element contains all the tag elements that represent the element’s characteristics or
child levels. For more information, see “Requesting Configuration Information” on page 70.

Copyright © 2013, Juniper Networks, Inc. 23

Junos XML Management Protocol Developer Guide

The tag streams emitted by the Junos XML protocol server and by a client application
can differ in the use of white space, as described in “XML and Junos XML Management
Protocol Conventions Overview” on page 11.

24 Copyright © 2013, Juniper Networks, Inc.

PART 2

Using the Junos XML Management
Protocol

« Controlling the Junos XML Management Protocol Session on page 27
« Requesting Information on page 65

« Changing Configuration Information on page 113

« Committing a Configuration on page 151

« Summary of Junos XML Protocol Tag Elements on page 167

« Summary of Attributes in Junos XML Tags on page 195

Copyright © 2013, Juniper Networks, Inc.

25

Junos XML Management Protocol Developer Guide

26 Copyright © 2013, Juniper Networks, Inc.

CHAPTER 3

Controlling the Junos XML Management
Protocol Session

This chapter explains how to start and terminate a session with the Junos XML protocol
server, and describes the Extensible Markup Language (XML) tag elements from the
Junos XML management protocol that client applications and the Junos XML protocol
server use to coordinate information exchange during the session. It discusses the
following topics:

Client Application’s Role in a Junos XML Protocol Session on page 27
Establishing a Junos XML Management Protocol Session on page 28
Exchanging Information with the Junos XML Protocol Server on page 48

Locking and Unlocking the Candidate Configuration or Creating a Private
Copy on page 55

Ending a Junos XML Protocol Session and Closing the Connection on page 59
Displaying CLI Output as XML Tag Elements on page 60
Displaying the RPC Tags for a Command on page 60

Example of a Junos XML Protocol Session on page 61

Client Application’s Role in a Junos XML Protocol Session

To create a session and communicate with the Junos XML protocol server, a client
application performs the following procedures, which are described in the
indicated sections:

1.

Establishes a connection to the Junos XML protocol server on the routing platform,
as described in “Connecting to the Junos XML Protocol Server” on page 39.

Opens aJunos XML protocol session, as described in “Starting the Junos XML Protocol
Session” on page 40.

(Optional) Locks the candidate configuration or creates a private copy, as described
in “Exchanging Information with the Junos XML Protocol Server” on page 48. Locking
the configuration prevents other users or applications from changing it at the same
time. Creating a private copy of the configuration enables the application to make
changes without affecting the candidate or active configuration until the copy

is committed.

Copyright © 2013, Juniper Networks, Inc. 27

Junos XML Management Protocol Developer Guide

4. Requests operational or configuration information, or changes configuration
information, as described in “Requesting Information” on page 65 and
“Changing Configuration Information” on page 113.

5. (Optional) Verifies the syntactic correctness of a configuration before attempting to
commitit,asdescribedin “Verifying a Configuration Before Committing It” on page 151.

6. Commits changes made to the configuration, as described in
“Committing a Configuration” on page 151.

7. Unlocks the candidate configuration if it is locked, as described in “Unlocking the
Candidate Configuration” on page 57.

8. Ends the Junos XML protocol session and closes the connection to the device, as
described in “Ending a Junos XML Protocol Session and Closing the Connection” on
page 59.

Establishing a Junos XML Management Protocol Session

The Junos XML protocol server communicates with client applications within the context
of a Junos XML protocol session. The server and client explicitly establish a connection
and session before exchanging data and close the session and connection when they
are finished.

The streams of Junos XML protocol tag elements and Junos XML tag elements emitted
by the Junos XML protocol server and the client application must each constitute
well-formed XML by obeying the structural rules defined in the document type definition
(DTD) for the kind of information they are exchanging. The client application must emit
tag elements in the required order and only in the allowed contexts.

Client applications access the Junos XML protocol server using one of the protocols listed
in “Supported Access Protocols” on page 29. To authenticate with the Junos XML protocol
server, they use either a Junos XML protocol-specific mechanism or the access protocol’s
standard authentication mechanism, depending on the protocol. After authentication,
the Junos XML protocol server uses the Junos login usernames and classes already
configured on the device to determine whether a client application is authorized to make
each request.

For information about establishing a connection and a Junos XML protocol session, see
the following sections:

» Supported Access Protocols on page 29

« Prerequisites for Establishing a Connection on page 29

« Connecting to the Junos XML Protocol Server on page 39

« Starting the Junos XML Protocol Session on page 40

« Authenticating with the Junos XML Protocol Server on page 45

For an example of a complete Junos XML protocol session, see “Example of a Junos XML
Protocol Session” on page 61.

28

Copyright © 2013, Juniper Networks, Inc.

Chapter 3: Controlling the Junos XML Management Protocol Session

Supported Access Protocols

To connect to the Junos XML protocol server, client applications can use the access
protocols and associated authentication mechanisms listed in Table 5 on page 29.

Table 5: Supported Access Protocols and Authentication Mechanisms

Authentication

Access Protocol Mechanism
clear-text, a Junos XML protocol-specific access Junos XML
protocol for sending unencrypted text over a protocol-specific

Transmission Control Protocol (TCP) connection

SSH Standard SSH
Outbound SSH Outbound SSH
Secure Sockets Layer (SSL) Junos XML

protocol-specific

Telnet Standard Telnet

The SSH and SSL protocols are preferred because they encrypt security information
(such as passwords) before transmitting it across the network. Outbound SSH allows
you to create an encrypted connection to the device in situations where you cannot
connect to the device using standard SSH. The clear-text and Telnet protocols do not
encrypt information.

For information about the prerequisites for each access protocol, see “Prerequisites for
Establishing a Connection” on page 29. For authentication instructions, see “Authenticating
with the Junos XML Protocol Server” on page 45.

Prerequisites for Establishing a Connection

To enable a client application to establish a connection to the Junos XML protocol server,
you must satisfy the requirements discussed in the following sections:

« Prerequisites for All Access Protocols on page 29

« Prerequisites for Clear-Text Connections on page 31

« Prerequisites for SSH Connections on page 32

« Prerequisites for Outbound SSH Connections on page 33

« Prerequisites for SSL Connections on page 37

« Prerequisites for Telnet Connections on page 39

Prerequisites for All Access Protocols

A client application must be able to log in to each device on which it establishes a
connection with the Junos XML protocol server. The following instructions explain how
to create a Junos login account for the application; for detailed information, see the

Copyright © 2013, Juniper Networks, Inc. 29

Junos XML Management Protocol Developer Guide

chapter about configuring user access in the Junos OS System Basics Configuration Guide.
Alternatively, you can skip this section and enable authentication through RADIUS or
TACACS+; for instructions, see the chapter about system authentication in the Junos OS
System Basics Configuration Guide.

To determine whether a login account exists on a device running Junos OS, enter the CLI
configuration mode on the device and issue the following commands:

[edit]

user@host# edit system login

[edit system login]

user@host# show user account-name

If the appropriate account does not exist, perform the following steps:

1. Include the user statement at the [edit system login] hierarchy level and specify a
username. Also include the class statement at the [edit system login user username]
hierarchy level, and specify a login class that has the permissions required for all
actions to be performed by the application. You can also include the optional full-name
and uid statements. Optionally, include the full-name and uid statements.

[edit system login]
user@host# set user account-name class class-name

e NOTE: For detailed information about creating user accounts, see the
chapter about configuring user access in the Junos OS System Basics
Configuration Guide.

2. Create a text-based password for the account by including either the
plain-text-password or encrypted-password statement at the [edit system login user
account-name authentication] hierarchy level.

[edit system login]
user@host# edit user account-name authentication

0 NOTE: A text-based password is not strictly necessary if the account is
used to access the Junos XML protocol server through SSH with
public/private key pairs for authentication, but we recommend that you
create one anyway. The key pair alone is sufficient if the account is used
only for SSH access, but a password is required if the account is also used
for any other type of access (for login on the console, for example). The
password is also used—the SSH server prompts for it—if key-based
authentication is configured but fails. For information about creating a
public/private key pair, see “Prerequisites for SSH Connections” on page 32.

To enter a password as text, issue the following command. You are prompted for the
password, which is encrypted before being stored.

[edit system login user account-name authentication]
user@host# set plain-text-password
New password: password

30 Copyright © 2013, Juniper Networks, Inc.

Chapter 3: Controlling the Junos XML Management Protocol Session

Retype new password: password

To store a password that you have previously created and hashed using Message
Digest 5 (MD5) or Secure Hash Algorithm 1 (SHA-1), issue the following command:

[edit system login user account-name authentication]
user@host# set encrypted-password "password"

3. Issue the commit command.

[edit system login user account-name authentication]
user@host# top

[edit]

user@host# commit

4. Repeat the preceding steps on each device where the client application establishes
Junos XML protocol sessions.

5. Enable the client application to access the password and provide it when the Junos
XML protocol server prompts for it. There are several possible methods, including the
following:

. Code the application to prompt the user for a password at startup and to store the
password temporarily in a secure manner.

. Store the password in encrypted form in a secure local-disk location or secured
database and code the application to access it.

Prerequisites for Clear-Text Connections

A client application that uses the Junos XML protocol-specific clear-text access protocol
sends unencrypted text directly over a TCP connection without using any additional
protocol (such as SSH, SSL, or Telnet).

0 NOTE: Devices running the Junos-FIPS software do not accept Junos XML
protocol clear-text connections. We recommend that you do not use the
clear-text protocol in a Common Criteria environment. For more information,
see the Secure Configuration Guide for Common Criteria and Junos-FIPS.

To enable client applications to use the clear-text protocol to connect to the Junos XML
protocol server, perform the following steps:

1. Verify that the application can access the TCP software. On most operating systems,
TCP is accessible in the standard distribution. Do this on each computer where the
application runs.

2. Satisfy the prerequisites discussed in “Prerequisites for All Access Protocols” on
page 29.

3. Configure the device running Junos OS to accept clear-text connections from client
applications on port 3221 by including the xnm-clear-text statement at the [edit system
services] hierarchy level:

[edit]
user@host# set system services xnm-clear-text

Copyright © 2013, Juniper Networks, Inc. 31

Junos XML Management Protocol Developer Guide

By default, the Junos XML protocol server supports up to 75 simultaneous clear-text
sessions and 150 connection attempts per minute. Optionally, you can include either
or both the connection-limit statement to limit the number of concurrent sessions
and the rate-limit statement to limit the number of connection attempts. Both
statements accept a value from 1 through 250.

[edit]

user@host# set system services xnm-clear-text connection-limit limit

user@host# set system services xnm-clear-text rate-limit limit

For more information about the xnm-clear-text statement, see the Junos OS System
Basics Configuration Guide.

Commit the configuration:

[edit]
user@host# commit

Repeat Step 2 through Step 4 on each device where the client application establishes
Junos XML protocol sessions.

Prerequisites for SSH Connections

To enable a client application to use the SSH protocol to connect to the Junos XML
protocol server, perform the following steps:

1.

Enable the application to access the SSH software.

If the application uses the Junos XML protocol Perl module provided by Juniper
Networks, no action is necessary. As part of the installation procedure for the Perl
module, you install a prerequisites package that includes the necessary SSH software.
Forinstructions, see “Downloading the Junos XML Protocol Perl Client and Prerequisites
Package” on page 214.

If the application does not use the Junos XML protocol Perl module, obtain the SSH
software and install it on the computer where the application runs. For information
about obtaining and installing SSH software, see http://www.ssh.com/ and
http://www.openssh.com/ .

Satisfy the prerequisites discussed in “Prerequisites for All Access Protocols” on
page 29.

(Optional) If you want to use key-based SSH authentication for the application, create
a public/private key pair and associate it with the Junos OS login account you created
in “Prerequisites for All Access Protocols” on page 29. Perform the following steps:

a. Working on the computer where the client application runs, issue the ssh-keygen
command in a standard command shell (not the Junos OS CLI). By providing the
appropriate arguments, you encode the public key with either RSA (supported by
SSH versions 1and 2) or the Digital Signature Algorithm (DSA), supported by SSH
version 2. For more information, see the man page provided by your SSH vendor
for the ssh-keygen command. The Junos OS uses SSH version 2 by default but also
supports version 1.

% ssh-keygen options

32

Copyright © 2013, Juniper Networks, Inc.

http://www.ssh.com/
http://www.openssh.com/

Chapter 3: Controlling the Junos XML Management Protocol Session

b. Enable the application to access the public and private keys. One method is to run
the ssh-agent program on the computer where the application runs.

c. Onthedevice running Junos OS that needs to accept SSH connections from Junos
XML protocol client applications, associate the public key with the Junos login
account by including the load-key-file statement at the [edit system login user
account-name authentication] hierarchy level. First, move to that hierarchy level:

[edit]
user@host# edit system login user account-name authentication

Issue the following command to copy the contents of the specified file onto the
device running Junos OS:

[edit system login user account-name authentication]
user@host# set load-key-file URL

URL is the path to the file that contains one or more public keys. The ssh-keygen
command by default stores each public key in a file in the .ssh subdirectory of the
user home directory; the filename depends on the encoding (DSA or RSA) and
SSH version. For information about specifying URLSs, see the CL/ User Guide.

Alternatively, you can include one or both of the ssh-dsa and ssh-rsa statements
at the [edit system login user account-name authentication] hierarchy level. We
recommend using the load-key-file statement, however, because it eliminates the
need to type or cut and paste the public key on the command line. For more
information about the ssh-dsa and ssh-rsa statements, see the Junos OS System
Basics Configuration Guide.

4, Configure the device running Junos OS to accept SSH connections by including the
ssh statement at the [edit system services] hierarchy level. This statement enables SSH
access for all users and applications, not just Junos XML protocol client applications.

[edit system login user account-name authentication]
user@host# top

[edit]

user@host# set system services ssh

5. Commit the configuration:

[edit]
user@host# commit

6. Repeat Step1oneach computer where the application runs,and Step 2 through Step 5
on each device to which the application connects.

Prerequisites for Outbound SSH Connections

The outbound SSH feature allows the initiation of an SSH session between devices
running Junos OS and Network and System Management servers where client-initiated
TCP/IP connections are blocked (for example, when the device is behind a firewall). To
configure outbound SSH, you add an outbound-ssh configuration statement to the device.
Once configured and committed, the device running Junos OS will begin to initiate
outbound SSH sessions with the configured management clients. Once the outbound
SSH session is initialized and the connection is established, the management server

Copyright © 2013, Juniper Networks, Inc. 33

Junos XML Management Protocol Developer Guide

initiates the SSH sequence as the client and the device running Junos OS, acting as the
server, authenticates the client.

Setting up outbound SSH involves:

« Configuring the device running Junos OS for outbound SSH

« Configuring the management server for outbound SSH.
To configure the device for outbound SSH:

1. Satisfy the prerequisites discussed in “Prerequisites for All Access Protocols” on
page 29.

N

. In the [edit system services ssh] hierarchy level, set the SSH protocol to v2:

[edit system services ssh]
set protocol-version v2

3. Generate/obtain a public/private key pair for the device running Junos OS. This key
pair will be used to encrypt the data transferred across the SSH connection. For more
information on generating key pairs, see the Junos OS System Basics Configuration
Guide.

4. If the public key will be installed on the application management system manually,
transfer the public key to the NSM server.

5. Add the following outbound-ssh statement at the [edit system services] hierarchy
level:

[edit system services]
outbound-ssh client {
application-id {
device-id device-id,
secret secret;
keep-alive {
retry number;
timeout number;
1
reconnect-strategy (sticky | in-order) ;
services netconf;
address {
port destination-port;
retry number;
timeout number;
1
1
}

The attributes are as follows:

. application-id—(Required) Identifies the outbound-ssh configuration stanza on the
device. Each outbound-ssh stanza represents a single outbound SSH connection.
This attribute is not sent to the client.

. device-id—(Required) Identifies the device to the client during the initiation sequence.

34 Copyright © 2013, Juniper Networks, Inc.

Chapter 3: Controlling the Junos XML Management Protocol Session

« secret secret—(Optional) Public SSH host key of the device running the Junos OS.
If this statement is added to the outbound-ssh configuration hierarchy, the device
running Junos OS will pass its public key to the configuration management server
during the initialization of the outbound SSH service. This is the recommended
method of maintaining a current copy of the router's public key on the configuration
management server.

- keep-alive—(Optional) Specify that keepalive messages be sent from the device
running Junos OS to the configuration management server. To configure the
keepalive message, you must set both the timeout and retry attributes.

- retry number—Number of keepalive messages the device running Junos OS sends
without receiving a response from the configuration management server before
the current SSH connection is terminated. The default is three tries.

- timeoutseconds—Amount of time, in seconds, that the server waits for data before
sending a keepalive signal. The default is 15 seconds.

- reconnect-strategy (sticky | in-order)—(Optional) Method that the device running
Junos OS uses to reestablish a disconnected outbound SSH connection. Two
methods are available:

- sticky—The device attempts to reconnect to the configuration management
server to which it was last connected. If the connection is unavailable, the device
attempts to establish a connection with the next configuration management
server on the list and so forth until a connection is established.

- in-order—The device attempts to establish an outbound SSH session based on
the configuration management server address list. The device attempts to
establish a session with the first server on the list. If this connection is not available,
the device attempts to establish a session with the next server, and so on down
the list until a connection is established.

When reconnecting to a client, the device running Junos OS attempts to reconnect
to the client based on the retry and timeout values for each of the clients listed in
the configuration management server list..

. services—(Required) Specifies the services available for the session. Currently,
NETCONEF is the only service available.

- address—(Required) The host name or the IPv4 address of the configuration
management server. You can list multiple clients by adding each client's IP address
or host name along with the connection parameters listed below.

- port destination-port—Outbound SSH port for the client. The default is port 22.

- retrynumber— Number of times the device running Junos OS attempts to establish
an outbound SSH connection before gving up. The default is three tries.

- timeout seconds—Amount of time, in seconds, that the device running Junos OS
attempts to establish an outbound SSH connection before giving up. The default
is 15 seconds.

6. Commit the configuration:

Copyright © 2013, Juniper Networks, Inc. 35

Junos XML Management Protocol Developer Guide

[edit]
user@host# commit

To set up the configuration management server:

Satisfy the prerequisites discussed in “Prerequisites for All Access Protocols” on
page 29.

2. Enable the application to access the SSH software.

. If the application uses the Junos XML protocol Perl module provided by Juniper

Networks, no action is necessary. As part of the installation procedure for the Perl
module, you install a prerequisites package that includes the necessary

SSH software. For instructions, see “Downloading the Junos XML Protocol Perl
Client and Prerequisites Package” on page 214.

If the application does not use the Junos XML protocol Perl module, obtain the SSH
software and install it on the computer where the application runs. For information
about obtaining and installing SSH software, see http://www.ssh.com/ and
http://www.openssh.com/ .

3. (Optional) Manually install the device's public key for use with the SSH connection.

4. Configure the client system to receive and process initialization broadcast requests.
The intialization requests use the following syntax:

. If the secret attribute is configured, the device running Junos OS will send its public

SSH key along with the intialization sequence (recommended method). When the
key has been received, the client needs to determine what to do with the device’s
public key. We recommend that you replace any current public SSH key for the
device with the new key. This ensures that the client always has the current key
available for authentication.

MSG-ID: DEVICE-CONN-INFO\r\n

MSG-VER: VI\r\n

DEVICE-ID: <device-id>\r\n

HOST-KEY: <pub-host-key>\r\n

HMAC: <HMAC (pub-SSH-host-key, <secret>)>\r\n

If the secret attribute is not configured, the device does not send its public SSH key
along with the initialization sequence. You need to manually install the current
public SSH key for the device.

MSG-ID: DEVICE-CONN-INFO\r\n
MSG-VER: VI\r\n
DEVICE-ID: <device-id>\r\n

36

Copyright © 2013, Juniper Networks, Inc.

http://www.ssh.com/
http://www.openssh.com/

Chapter 3: Controlling the Junos XML Management Protocol Session

Prerequisites for SSL Connections

To enable a client application to use the SSL protocol to connect to the Junos XML
protocol server, perform the following steps:

1. Enable the application to access the SSL software.

If the application uses the Junos XML protocol Perl module provided by Juniper
Networks, no action is necessary. As part of the installation procedure for the Perl
module, you install a prerequisites package that includes the necessary SSL software.
Forinstructions, see “Downloading the Junos XML Protocol Perl Client and Prerequisites
Package” on page 214.

If the application does not use the Junos XML protocol Perl module, obtain the SSL
software and install it on the computer where the application runs. For information
about obtaining and installing the SSL software, see http://www.openssl.org/ .

2. Satisfy the prerequisites discussed in “Prerequisites for All Access Protocols” on
page 29.

3. Use one of the following two methods to obtain an authentication certificate in
privacy-enhanced mail (PEM) format:

- Request a certificate from a certificate authority; these agencies usually charge a
fee.

- Working on the computer where the client application runs, issue the following
openssl command in a standard command shell (not the Junos OS CLI). The
command generates a self-signed certificate and an unencrypted 1024-bit RSA
private key, and writes them to the file called certificate-file.pem in the working
directory. The command appears here on two lines only for legibility:

% openssl req -x509 -nodes -newkey rsa:1024 \
-keyout certificate-file.pem -out certificate-file.pem

4. Import the certificate onto the device running Junos OS by including the local statement
at the [edit security certificates] hierarchy level and the load-key-file statement at the
[edit security certificates local certificate-name] hierarchy level.

[edit]
user@host# edit security certificates local certificate-name

[edit security certificates local certificate-name]
user@host# set load-key-file URL-or-path

certificate-name is a name you choose to identify the certificate uniquely (for example,
junos-xml-protocol-ssl-client-hostname, where hostname is the computer where the
client application runs).

URL-or-path specifies the file that contains the paired certificate and private key (if
you issued the openssl command in Step 3, the certificate-name.pem file). Specify
either the URL to its location on the client computer or a pathname on the local disk
(if you have already used another method to copy the certificate file to the device’s
local disk). For more information about specifying URLs and pathnames, see the CL/
User Guide.

Copyright © 2013, Juniper Networks, Inc. 37

http://www.openssl.org/

Junos XML Management Protocol Developer Guide

e NOTE: The CLI expects the private key in the URL-or-path file to be
unencrypted. If the key is encrypted, the CLI prompts you for the
passphrase associated with it, decrypts it, and stores the unencrypted
version.

The set-load-key-file URL-or-path command copies the contents of the
certificate file into the configuration. When you view the configuration,
the CLI displays the string of characters that constitute the private key
and certificate, marking them as SECRET-DATA. The load-key-file keyword
is not recorded in the configuration.

5. Configure the device running Junos OS to accept SSL connections from Junos XML
protocol client applications on port 3220 by including the xnm-ssl statement at the
[edit system services] hierarchy level.

[edit security certificates local certificate-name]

user@host# top

[edit]

user@host# set system services xnm-ssl local-certificate certificate-name

certificate-name is the unigue name you assigned to the certificate in Step 4.

By default, the Junos XML protocol server supports up to 75 simultaneous SSL sessions
and 150 connection attempts per minute. Optionally, you can include either or both
the connection-limit statement to limit the number of concurrent sessions and the
rate-limit statement to limit connection attempts. Both statements accept a value
from 1through 250.

[edit]
user@host# set system services xnm-ssl connection-limit limit
user@host# set system services xnm-ssl rate-limit limit

For more information about the xnm-ssl statement, see the Junos OS System Basics
Configuration Guide.

6. Commit the configuration:

[edit]
user@host# commit

7. Repeat Step 1oneach computer where the client application runs, and Step 2 through
Step 6 on each device to which the client application connects.

38 Copyright © 2013, Juniper Networks, Inc.

Chapter 3: Controlling the Junos XML Management Protocol Session

Prerequisites for Telnet Connections

Toenable aclient application to use the Telnet protocol to access the Junos XML protocol
server, perform the steps described in this section.

Devices running the Junos-FIPS software do not accept Telnet connections. We
recommend that you do not use the Telnet protocol in a Commmon Criteria environment.
For more information, see the Secure Configuration Guide for Common Criteria and
Junos-FIPS.

1. Verify that the application can access the Telnet software. On most operating systems,
Telnet is accessible in the standard distribution.

2. Satisfy the prerequisites discussed in “Prerequisites for All Access Protocols” on
page 29.

3. Configure the device running Junos OS to accept Telnet connections by including the
telnet statement at the [edit system services] hierarchy level. This statement
enables Telnet access for all users and applications, not just Junos XML protocol
client applications.

[edit]
user@host# set system services telnet

4. Repeat Step 1 on each computer where the application runs, and Step 2 and Step 3
on each device to which the application connects.

Connecting to the Junos XML Protocol Server

« Connecting to the Junos XML Protocol Server from the Client Application on page 39

« Connecting to the Junos XML Protocol Server from the CLI on page 40

Connecting to the Junos XML Protocol Server from the Client Application

For a client application to connect to the Junos XML protocol server and open a session,
you must first satisfy the prerequisites described in “Prerequisites for Establishing a
Connection” on page 29.

When the prerequisites are satisfied, an application written in Perl can most efficiently
establish a connection and open a session by using the Junos XML protocol Perl module
provided by Juniper Networks. For more information, see

“Writing Junos XML Protocol Perl Client Applications” on page 213.

A client application that does not use the Junos XML protocol Perl module connects to
the Junos XML protocol server by opening a socket or other communications channel to
the Junos XML protocol server device, invoking one of the remote-connection routines
appropriate for the programming language and access protocol that the application
uses.

What the client application does next depends on which access protocol it is using:

« If using the clear-text or SSL protocol, the client application performs the following
steps:

Copyright © 2013, Juniper Networks, Inc. 39

Junos XML Management Protocol Developer Guide

1. Emits the initialization Pl and tag, as described in “Emitting the Initialization Pl and
Tag” on page 41.

2. Authenticates with the Junos XML protocol server, as described in “Authenticating
with the Junos XML Protocol Server” on page 45.

« If using the SSH or Telnet protocol, the client application performs the following steps:

1. Uses the protocol’s built-in authentication mechanism to authenticate.

2. Issuesthejunoscript command to request that the Junos XML protocol server convert
the connection into a Junos XML protocol session. For a C programming language
example, see “Writing Junos XML Protocol C Client Applications” on page 243.

3. Emits the initialization Pl and tag, as described in “Emitting the Initialization Pl and
Tag” on page 41.

Connecting to the Junos XML Protocol Server from the CLI

The Junos XML management protocol and Junos XML API are primarily intended for use
by client applications; however, for testing purposes you can establish an interactive
Junos XML protocol session and type commands in a shell window. To connect to the
Junos XML protocol server from the CLI operational mode, issue the junoscript interactive
command (the interactive option causes the Junos XML protocol server to echo what

you type):
user@host> junoscript interactive

To begin a Junos XML protocol session over the connection, emit the initialization Pl and
tag that are described in “Emitting the Initialization Pl and Tag” on page 41. You can then
type sequences of tag elements that represent operational and configuration operations,
which are described in “Requesting Information” on page 65,

“Changing Configuration Information” on page 113, and

“Committing a Configuration” on page 151. To eliminate typing errors, save complete tag
element sequences in a file and use a cut-and-paste utility to copy the sequences to the
shell window.

0 NOTE: When you close the connection to the Junos XML protocol server (for
example, by emitting the <request-end-session/> and </junoscript> tags),
the routing platform completely closes your connection instead of returning
you to the CLI operational mode prompt. For more information about ending
aJunos XML protocol session, see “Ending a Junos XML Protocol Session and
Closing the Connection” on page 59.

Starting the Junos XML Protocol Session

Each Junos XML protocol session begins with a handshake in which the Junos XML
protocol server and the client application specify the version of XML and the version of
the Junos XML management protocol they are using. Each party parses the version

40

Copyright © 2013, Juniper Networks, Inc.

Chapter 3: Controlling the Junos XML Management Protocol Session

information emitted by the other, using it to determine whether they can communicate
successfully. The following sections describe how to start a Junos XML protocol session:
« Emitting the Initialization Pl and Tag on page 41

« Parsing the Initialization Pl and Tag from the Junos XML Protocol Server on page 43

« Verifying Software Compatibility on page 45

« Supported Software Versions on page 45

Emitting the Initialization Pl and Tag

When the Junos XML protocol session begins, the client application emits an <?xml?>
Pl and an opening <junoscript> tag, as described in the following sections:

« Emitting the <?xml?> Pl on page 41
- Emitting the Opening <junoscript> Tag on page 42
Emitting the <?xml?> Pl

The client application begins by emitting an <?xml?> PI.

0 NOTE: Inthe following example (and in all examples in this document of tag
elements emitted by a client application), bold font is used to highlight the
part of the tag sequence that is discussed in the text.

<?xml version="version" encoding="encoding"?>

The attributes are as follows. For a list of the attribute values that are acceptable in the
current version of the Junos XML management protocol, see “Supported Software
Versions” on page 45.

« version—The version of XML with which tag elements emitted by the client application
comply

. encoding—The standardized character set that the client application uses and can
understand

In the following example of a client application’s <?xml?> PI, the version="1.0" attribute
indicates that the application is emitting tag elements that comply with the XML 1.0
specification. The encoding="us-ascii" attribute indicates that the client application is
using the 7-bit ASCII character set standardized by the American National Standards
Institute (ANSI). For more information about ANSI standards, see http:/www.ansi.org/

<?xml version="1.0" encoding="us-ascii"?>

e NOTE: If the application fails to emit the <?xml?> Pl before emitting the
opening <junoscript> tag, the Junos XML protocol server emits an error
message and immediately closes the session and connection. For more
information, see “Emitting the Opening <junoscript> Tag” on page 42.

Copyright © 2013, Juniper Networks, Inc. 41

http://www.ansi.org/

Junos XML Management Protocol Developer Guide

Emitting the Opening <junoscript> Tag

The client application then emits its opening <junoscript> tag, which has the following
syntax (and appears here on two lines only for legibility):

<junoscript version="version" hostname="hostname" junos:key="key"
release="release-code" >

The attributes are as follows. For a list of the attribute values that are acceptable in the
current version of the Junos XML management protocol, see “Supported Software
Versions” on page 45.

« version—(Required) Specifies the version of the Junos XML management protocol that
the client application is using.

« hostname—(Optional) Names the machine on which the client application is running.
The information is used only when diagnosing problems. The Junos XML protocol does
not include support for establishing trusted-host relationships or otherwise altering
Junos XML protocol server behavior depending on the client hostname.

« junos:key—(Optional) Requests that the Junos XML protocol server indicate whether
achild configuration element is anidentifier for its parent element. The only acceptable
value is key. For more information, see “Requesting an Indicator for Identifiers” on
page /6.

. release—(Optional) Identifies the Junos OS Release (and by implication, the Junos
XML API) for which the client application is designed. The value of this attribute
indicates that the client application can interoperate successfully with a Junos XML
protocol server that also supports that version of the Junos XML API. In other words,
it indicates that the client application emits request tag elements from that APl and
knows how to parse response tag elements from it. If the application does not include
this attribute, the Junos XML protocol server emits tag elements from the Junos XML
API that it supports. For more information, see “Verifying Software Compatibility” on
page 45.

For the value of the release attribute, use the standard notation for Junos OS version
numbers. For example, the value 12.1R1 represents the initial version of Junos OS
Release 12.1.

In the following example of a client application’s opening <junoscript> tag, the
version="1.0" attribute indicates that it is using Junos XML protocol version 1.0. The
hostname="client1" attribute indicates that the client application is running on the machine
called clientl. The release="12.1R1" attribute indicates that the switch, router, or security
device is running the initial version of Junos OS Release 12.1.

<junoscript version="1.0" hostname="client1" release="12.1R1" >

42 Copyright © 2013, Juniper Networks, Inc.

Chapter 3: Controlling the Junos XML Management Protocol Session

0 NOTE: If the application fails to emit the <?xml?> Pl before emitting the
opening <junoscript> tag, the Junos XML protocol server emits an error
message similar to the following and immediately closes the session and
connection:

<rpc-reply>
<xnm:error xmlns="http:/xml.juniper.net/xnm/1.1/xnm" \
xmlns:xnm="http://xml.juniper.net/xnm/1.1/xnm" >
<message>
communication error while exchanging credentials
</message>
</xnm:error>
</rpc-reply>
<l--session end at YYYY-MM-DD hh:mm:ss TZ -->
</junoscript>

For more information about the <xnm:error> tag, see “Handling an Error or
Warning” on page 53.

Parsing the Initialization Pl and Tag from the Junos XML Protocol Server

When the Junos XML protocol session begins, the Junos XML protocol server emits an
<?xml?> Pl and an opening <junoscript> tag, as described in the following sections:
» Parsing the Junos XML Protocol Server’s <?xml?> Pl on page 43

« Parsing the Junos XML Protocol Server’s Opening <junoscript> Tag on page 44

Parsing the Junos XML Protocol Server’s <?xml?> Pl

The syntax for the <?xml?> Pl is as follows:

<?xml version="version" encoding="encoding"? >

The attributes are as follows. For a list of the attribute values that are acceptable in the
current version of the Junos XML management protocol, see “Supported Software
Versions” on page 45.

« version—The version of XML with which tag elements emitted by the Junos XML protocol
server comply

. encoding—The standardized character set that the Junos XML protocol server uses
and can understand

In the following example of a Junos XML protocol server’s <?xml? > PI, the version="1.0"
attribute indicates that the server is emitting tag elements that comply with the XML 1.0
specification. The encoding="us-ascii" attribute indicates that the serveris using the 7-bit
ASCII character set standardized by ANSI. For more information about ANSI standards,

see http://www.ansi.org/ .

<?xml version="1.0" encoding="us-ascii"?>

Copyright © 2013, Juniper Networks, Inc. 43

http://www.ansi.org/

Junos XML Management Protocol Developer Guide

Parsing the Junos XML Protocol Server’s Opening <junoscript> Tag

After emitting the <?xml?>Pl, the server then emits its opening <junoscript> tag, which
has the following form (the tag appears on multiple lines only for legibility):

<junoscript xmlns="namespace-URL" xmlns:junos="namespace-URL" \
schemalocation="namespace-URL" os="JUNOS" \
release="release-code" hostname="hostname" version="version" >

The attributes are as follows:

« hostname—The name of the device on which the Junos XML protocol server is running.

« os—The operating system of the device on which the Junos XML protocol server is
running. The value is always JUNOS.

- release—The identifier for the version of the Junos OS from which the Junos XML
protocol server is derived and that it is designed to understand. It is presumably in use
on the device where the Junos XML protocol server is running. The value of the release
attribute uses the standard notation for Juniper Networks software version numbers.
For example, the value 12.1R1 represents the initial version of Junos OS Release 12.1.

« schemalocation—The XML namespace for the XML Schema-language representation
of the Junos configuration hierarchy.

. version—The version of the Junos XML management protocol that the Junos XML
protocol server is using.

. xmlns—The XML namespace for the tag elements enclosed by the <junoscript> tag
element that do not have a prefix on their names (that is, the default namespace for
Junos XML tag elements). The value is a URL of the form
http://xml.juniper.net/xnm/version/xnm, where version is a string such as 1.1.

« xmlns:junos—The XML namespace for the tag elements enclosed by the <junoscript>
tag element that have the junos: prefix on their names. The value is a URL of the form
http://xml.juniper.net/junos/release-code/junos, where release-code is the standard
string that represents a release of the Junos OS. For example, the value 12.1R1represents
the initial version of Junos OS Release 12.1.

In the following example of a Junos XML protocol server’s opening <junoscript> tag, the
version attribute indicates that the server is using Junos XML protocol version 1.0, and
the hostname attribute indicates that the router’s name is big-device. The os and release
attributes indicate that the device is running the initial version of Junos OS Release 12.1.
The xmlns attribute indicate that the default namespace for Junos XML tag elements is
http://xml.juniper.net/xnm/1.1/xnm . The xmlns:junos attribute indicates that the
namespace for tag elements that have the junos: prefix is
http://xml.juniper.net/junos/12.1R1/junos . The tag appears on multiple lines only for
legibility.

<junoscript xmlns="http://xml.juniper.net/xnm/1.1/xnm"\
xmlns:junos="http://xml.juniper.net/junos/12.1R1/junos" \
schemalocation="http:/xml.juniper.net/junos/12.1R1/junos" os="JUNOS" \
release="12.1R1.8" hostname="big-device" version="1.0">

44 Copyright © 2013, Juniper Networks, Inc.

Chapter 3: Controlling the Junos XML Management Protocol Session

Verifying Software Compatibility

Exchanging <?xml?> and <junoscript> tag elements enables a client application and the
Junos XML protocol server to determine if they are running different versions of the
software used during a Junos XML protocol session. Different versions are sometimes
incompatible, and by Junos XML protocol convention the party running the later version
of software determines how to handle any incompatibility. For fully automated
performance, include code in the client application that determines if its version of
softwareis later than that of the Junos XML protocol server. Decide which of the following
options is appropriate when the application’s version is more recent, and implement the
corresponding response:

« Ignore differences in Junos version, and do not alter the client application’s behavior
to accommodate the Junos XML protocol server. A difference in Junos versions does
not necessarily make the server and client incompatible, so this is often a valid approach.

. Alter standard behavior to be compatible with the Junos XML protocol server. If the
client application is running a later version of the Junos OS, for example, it can choose
to emit only tag elements that represent the software features available in the Junos
XML protocol server’s version of the Junos OS.

« End the Junos XML protocol session and terminate the connection. This is appropriate
if you decide that it is not practical to accommodate the Junos XML protocol server’s
version of software. For instructions, see “Ending a Junos XML Protocol Session and
Closing the Connection” on page 59.

Supported Software Versions

Table 6 on page 45 specifies the Pl or opening tag and attribute used to convey version
information during Junos XML protocol session initialization in version 1.0 of the Junos
XML management protocol.

Table 6: Junos XML Protocol version 1.0 Pl and Opening Tag

Software and Versions Pl or Tag Attribute

XML 1.0 <?xml?> version="1.0"

ANSI-standardized 7-bit ASCII <?xml?> encoding="us-ascii"

character set

Junos XML protocol 1.0 <junoscript> version="1.0"

Junos OS Release <junoscript> release="m.nZb"
For example:

release="10.3R1"

Authenticating with the Junos XML Protocol Server

A client application that uses the clear-text or SSL protocol must now authenticate with
the Junos XML protocol server. (Applications that use the SSH or Telnet protocol use

Copyright © 2013, Juniper Networks, Inc. 45

Junos XML Management Protocol Developer Guide

the protocol’s built-in authentication mechanism before emitting initialization tag
elements, as described in “Connecting to the Junos XML Protocol Server” on page 39.)

See the following sections:

« Submitting an Authentication Request on page 46

« Interpreting the Authentication Response on page 47

Submitting an Authentication Request

Theclient application begins the authentication process by emitting an <rpc> tag element
enclosing the <request-login> tag element. In the <request-login> tag element, it encloses
the <username> tag element to specify the Junos OS account (username) under which
to establish the connection. The account must already be configured on the Junos XML
protocol server device, as described in “Prerequisites for All Access Protocols” on page 29.
You can choose whether or not the application provides the account password as part
of the initial tag sequence.

Providing the Password with the Username

To provide the password along with the username, the application emits the following
tag sequence:

<rpc>
<request-login>
<username>username</username>
<challenge-response>password</challenge-response>
</request-login>
</rpc>

This tag sequence is appropriate if the application automates access to routing, switching,
or security platform information and does not interact with users, or obtains the password
from a user before beginning the authentication process.

Providing Only the Username

To omit the password and specify only the username, the application emits the following
tag sequence:

<rpc>
<request-login>
<username>username</username>
</request-login>
</rpc>

This tag sequence is appropriate if the application does not obtain the password until
the authentication process has already begun. In this case, the Junos XML protocol server
returns the <challenge> tag element within an <rpc-reply> tag element to request the
password associated with the username. The tag element encloses the Password: string,
which the client application can forward to the screen as a prompt for a user. The
echo="no" attribute in the opening <challenge> tag specifies that the password string
typed by the user does not echo on the screen. The tag sequence is as follows:

<rpc-reply xmlns:junos="URL" >
<challenge echo="no">Password:</challenge>
</rpc-reply>

46 Copyright © 2013, Juniper Networks, Inc.

Chapter 3: Controlling the Junos XML Management Protocol Session

The client application obtains the password and emits the following tag sequence to
forward it to the Junos XML protocol server:

<rpc>
<request-login>
<username>username</username>
<challenge-response>password</challenge-response>
</request-login>
</rpc>

Interpreting the Authentication Response

After it receives the username and password, the Junos XML protocol server emits the
<authentication-response> tag element to indicate whether the authentication attempt
is successful.

Server Response When Authentication Succeeds

If the password is correct, the authentication attempt succeeds and the Junos XML
protocol server emits the following tag sequence:

<rpc-reply xmlns:junos="URL" >
<authentication-response>
<status>success</status>
<message>username</message>
<login-name>remote-username</login-name>
</authentication-response>
</rpc-reply>

The <message> tag element contains the Junos username under which the connection
is established.

The <login-name> tag element contains the username that the client application provided
to an authentication utility such as RADIUS or TACACS+. This tag element appears only
if the username differs from the username contained in the <message> tag element.

The Junos XML protocol session begins, as described in “Starting the Junos XML Protocol
Session” on page 40.

Server Response When Authentication Fails

If the password is not correct or the <request-login> tag element is otherwise malformed,
the authentication attempt fails and the Junos XML protocol server emits the following
tag sequence:

<rpc-reply xmlns:junos="URL" >
<authentication-response>
<status>fail</status>
<message >error-message</message>
</authentication-response>
</rpc-reply>

The error-message string in the <message> tag element explains why the authentication
attempt failed. The Junos XML protocol server emits the <challenge> tag element up to
two more times before rejecting the authentication attempt and closing the connection.

Copyright © 2013, Juniper Networks, Inc. 47

Junos XML Management Protocol Developer Guide

Exchanging Information with the Junos XML Protocol Server

The session continues when the client application sends a request to the Junos XML
protocol server. The Junos XML protocol server does not emit any tag elements after
session initialization except inresponse to the client application’s requests. The following
sections describe the exchange of tagged data:

« Sending a Request to the Junos XML Protocol Server on page 48

« Parsing the Junos XML Protocol Server Response on page 51

+ Handling an Error or Warning on page 53

« Halting a Request on page 54

Sending a Request to the Junos XML Protocol Server

To initiate a request to the Junos XML protocol server, a client application emits the
opening <rpc> tag, followed by one or more tag elements that represent the particular
request, and the closing </rpc> tag, in that order:

<rpc>
<l--tag elements representing a request-->
</rpc>

The application encloses each request in a separate pair of opening <rpc> and closing
</rpc> tags. The <rpc> tag element can occur only within the <junoscript> tag element.
For an example of emitting an <rpc> tag element in the context of a complete Junos XML
protocol session, see “Example of a Junos XML Protocol Session” on page 61.

The Junos XML protocol server ignores any newline characters, spaces, or other white
space characters that occur between tag elements in the tag stream, but does preserve
white space within tag elements. For more information, see “XML and Junos XML
Management Protocol Conventions Overview” on page 11.

See the following sections for further information:

« Request Classes on page 48

« Including Attributes in the Opening <rpc> Tag on page 50

Request Classes

A client application can make three classes of requests:

« Operational Requests on page 49
« Configuration Information Requests on page 49

» Configuration Change Requests on page 50

48 Copyright © 2013, Juniper Networks, Inc.

Chapter 3: Controlling the Junos XML Management Protocol Session

o NOTE: Although operational and configuration requests conceptually belong
to separate classes, a Junos XML protocol session does not have distinct
modes that correspond to CLI operational and configuration modes. Each
request tag element is enclosed within its own <rpc> tag element, so a client
application can freely alternate operational and configuration requests.

Operational Requests

Operational requests are requests for information about the status of a device running
Junos OS. Operational requests correspond to the CLI operational mode commands
listed in the Junos OS command references. The Junos XML API defines a request tag
element for many CLI commands. For example, the <get-interface-information> tag
element corresponds to the show interfaces command, and the <get-chassis-inventory>
tag element requests the same information as the show chassis hardware command.

The following sample request is for detailed information about the interface ge-2/3/0:

<rpc>
<get-interface-information>
<interface-name>ge-2/3/0</interface-name>
<detail/>
</get-interface-information>
</rpc>

For more information, see “Requesting Operational Information” on page 66. For
information about the Junos XML request tag elements available in the current Junos OS
Release, see the Junos XML API Operational Developer Reference.

Configuration Information Requests

Configuration information requests are requests for information about the device’s
candidate configuration, a private configuration, or the committed configuration (the
one currently in active use on the switching, routing, or security platform). The candidate
and committed configurations diverge when there are uncommitted changes to the
candidate configuration.

The Junos XML protocol defines the <get-configuration> operation for retrieving
configuration information. The Junos XML API defines a tag element for every container
and leaf statement in the configuration hierarchy.

The following example shows how to request information about the [edit system login]
hierarchy level in the candidate configuration:

<rpc>
<get-configuration>
<configuration>
<system>
<login/>
</system>
</configuration>
</get-configuration>
</rpc>

Copyright © 2013, Juniper Networks, Inc. 49

Junos XML Management Protocol Developer Guide

For more information, see “Requesting Configuration Information” on page 70. For a
summary of Junos XML configuration tag elements, see the Junos XML API Configuration
Developer Reference.

Configuration Change Requests

Configuration change requests are requests to change the candidate configuration, or to
commit those changes to put them into active use on the device running Junos OS. The
Junos XML protocol defines the <load-configuration> operation for changing configuration
information. The Junos XML API defines a tag element for every CLI configuration
statement described in the Junos OS configuration guides.

The following example shows how to create a new Junos OS user account called admin
at the [edit system login] hierarchy level in the candidate configuration:

<rpc>
<load-configuration>
<configuration>
<system>
<login>
<user>
<name>admin</name>
<full-name>Administrator</full-name>
<class>superuser</class>
</user>
</login>
</system>
</configuration>
</load-configuration>
</rpc>

For more information, see “Changing Configuration Information” on page 113 and
“Committing a Configuration” on page 151. For a summary of Junos XML configuration
tag elements, see the Junos XML API Configuration Developer Reference.

Including Attributes in the Opening <rpc> Tag

Optionally, a client application can include one or more attributes of the form
attribute-name="value" in the opening <rpc> tag for each request. The Junos XML protocol
server echoes each attribute, unchanged, in the opening <rpc-reply> tag in which it
encloses its response. A client application can use this feature to associate requests and
responses by including an attribute in each opening <rpc> request tag that assigns a
unique identifier. The Junos XML protocol server echoes the attribute in its opening
<rpc-reply> tag, making it easy to map the response to the initiating request. The client
application can freely define attribute names, except as described in the following note.

e NOTE: The xmlns:junos attribute name is reserved. The Junos XML protocol
server sets the attribute to an appropriate value on the opening <rpc-reply>
tag, so client applications must not emit it on the opening <rpc> tag. For more
information, see “xmlns:junos Attribute” on page 51.

50

Copyright © 2013, Juniper Networks, Inc.

Chapter 3: Controlling the Junos XML Management Protocol Session

Parsing the Junos XML Protocol Server Response

The Junos XML protocol server encloses its response to each client request in a separate
pair of opening <rpc-reply> and closing </rpc-reply> tags. Each response constitutes a
well-formed XML document.

<rpc-reply xmlns:junos="URL" >
<!-- tag elements representing a response -->
</rpc-reply>

The xmlns:junos attribute in the opening <rpc-reply> tag defines the default namespace
for the enclosed tag elements that have the junos: prefix in their names, as discussed
further in “xmlns:junos Attribute” on page 51. The <rpc-reply> tag element occurs only
within the <junoscript> tag element. Client applications must include code for parsing
the stream of response tag elements coming from the Junos XML protocol server, either
processing them as they arrive or storing them until the response is complete. See the
following sections for further information:

» xmlns:junos Attribute on page 51

« Junos XML Protocol Server Response Classes on page 51

« Using a Standard API to Parse Response Tag Elements on page 53

For an example of parsing the <rpc-reply> tag element in the context of a complete Junos

XML protocol session, see “Example of a Junos XML Protocol Session” on page 61.

xmlns:junos Attribute

The Junos XML protocol server includes the xmlns:junos attribute in the opening
<rpc-reply> tag to define the XML namespace for the enclosed Junos XML tag elements
that have the junos: prefix on their names. The namespace is a URL of the form
http://xml.juniper.net/junos/release-code/junos, where release-code is the standard string
that represents the release of the Junos OS running on the Junos XML protocol server
machine.

In the following example, the namespace corresponds to the initial version of Junos OS
Release 12.1:

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/12.1R1/junos" >

Junos XML Protocol Server Response Classes

The Junos XML protocol server returns three classes of responses:

« Operational Responses on page 51
« Configuration Information Responses on page 52

« Configuration Change Responses on page 53

Operational Responses

Operational responses are responses to requests for information about the status of a
switching, routing, or security platform. They correspond to the output from CLI operational
commands as described in the Junos OS command references.

Copyright © 2013, Juniper Networks, Inc. 51

Junos XML Management Protocol Developer Guide

The Junos XML API defines response tag elements for all defined operational request
tag elements. For example, the Junos XML protocol server returns the information
requested by the <get-interface-information> tag element in a response tag element called
<interface-information>, and returns the information requested by the
<get-chassis-inventory> tag elementin aresponse tag element called <chassis-inventory>.
Operational responses also can be returned in formatted ASCII, which is enclosed in an
output tag element. For more information about formatting operational responses see
“Specifying the Output Format for Operational Information Requests in a Junos XML
Protocol Session” on page 68.

The following sample response includes information about the interface ge-2/3/0. The
namespace indicated by the xmlns attribute contains interface information for the initial
version of Junos OS Release 12.1.

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/12.1R1/junos" >
<interface-information xmlns="http://xml.juniper.net/junos/12.1R1/junos-interface" >
<physical-interface>
<name>ge-2/3/0</name>
<!-- other data tag elements for the ge-2/3/0 interface -?7?->
</physical-interface>
</interface-information>
</rpc-reply>

For more information about the xmlns attribute and contents of operational response
tag elements, see “Requesting Operational Information” on page 66. For a summary of
operational response tag elements, see the Junos XML API Operational Developer
Reference.

Configuration Information Responses

Configuration information responses are responses to requests for information about the
device’s current configuration. The Junos XML API defines a tag element for every container
and leaf statement in the configuration hierarchy.

The following sample response includes the information at the [edit system login]
hierarchy level in the configuration hierarchy. For brevity, the sample shows only one user
defined at this level.

<rpc-reply xmlns:junos="URL" >
<configuration>
<system>
<login>
<user>
<name>admin</name>
<full-name>Administrator</full-name>
<!-- other data tag elements for the admin user -->
</user>
</login>
</system>
</configuration>
</rpc-reply>

Copyright © 2013, Juniper Networks, Inc.

Chapter 3: Controlling the Junos XML Management Protocol Session

Configuration Change Responses

Configuration change responses are responses to requests that change the state or
contents of the device configuration. For commit operations, the Junos XML protocol
server encloses an explicit indicator of success or failure within the <commit-results>
tag element:

<rpc-reply xmlns:junos="URL" >
<commit-results>
<!-- tag elements for information about the commit -->
</commit-results>
</rpc-reply>

For other operations, the Junos XML protocol server indicates success by returning an
opening <rpc-reply> and closing </rpc-reply> tag with nothing between them, instead
of emitting an explicit success indicator:

<rpc-reply xmlns:junos="URL" >
</rpc-reply>

For more information, see “Changing Configuration Information” on page 113 and
“Committing a Configuration” on page 151. For a summary of the available configuration
tag elements, see the Junos XML API Configuration Developer Reference.

Using a Standard API to Parse Response Tag Elements

Client applications can handle incoming XML tag elements by feeding them to a parser
that implements a standard API such as the Document Object Model (DOM) or Simple
API for XML (SAX). Describing how to implement and use a parser is beyond the scope
of this document.

Routines in the DOM accept incoming XML and build a tag hierarchy in the client
application’s memory. There are also DOM routines for manipulating an existing hierarchy.
DOM implementations are available for several programming languages, including C,
C++, Perl, and Java. For detailed information, see the Document Object Model (DOM)
Level 1 Specification from the World Wide Web Consortium (W3C) at
http://www.w3.0org/TR/REC-DOM-Level-1/ . Additional information is available from the
Comprehensive Perl Archive Network (CPAN) at
http://search.cpan.org/~tjmather/XML-DOM/lib/XML/DOM.pm .

One potential drawback with DOM is that it always builds a hierarchy of tag elements,
which can become very large. If a client application needs to handle only one subhierarchy
at a time, it can use a parser that implements SAX instead. SAX accepts XML and feeds
the tag elements directly to the client application, which must build its own tag hierarchy.
For more information, see the official SAX website at http://sax.sourceforge.net/ .

Handling an Error or Warning

If the Junos XML protocol server encounters an error condition, it emits an <xnm:error>
tag element, which encloses child tag elements that describe the nature of the error.
Client applications must be prepared to receive and handle an <xnm:error> tag element
at any time. The information in any response tag elements already received and related
to the current request might be incomplete. The client application can include logic for
deciding whether to discard or retain the information.

Copyright © 2013, Juniper Networks, Inc. 53

http://www.w3.org/TR/REC-DOM-Level-1/
http://search.cpan.org/~tjmather/XML-DOM/lib/XML/DOM.pm
http://sax.sourceforge.net/

Junos XML Management Protocol Developer Guide

Halting a Request

The syntax of the <xnm:error> tag element is as follows. The opening tag appears on
multiple lines only for legibility:

<xnm:error xmlns="http://xml.juniper.net/xnm/1.1/xnm" \
xmlns:xnm="http://xml.juniper.net/xnm/1.1/xnm" >
<!-- tag elements describing the error -->

</xnm:error>

The attributes are as follows:

« xmlns—The XML namespace for the tag elements enclosed by the <xnm:error> tag
element that do not have a prefix in their names (that is, the default namespace for
Junos XML tag elements). The value is a URL of the form
http://xml.juniper.net/xnm/version/xnm, where version is a string such as 1.1.

« xmlns:xnm—The XML namespace for the <xnm:error> tag element and for the enclosed
tag elements that have the xnm: prefix in their names. The value is a URL of the form
http://xml.juniper.net/xnm/version/xnm, where version is a string such as 1.1.

The set of child tag elements enclosed in the <xnm:error> tag element depends on the
operation that server was performing when the error occurred. An error can occur while
the server is performing any of the following operations, and the server can send a different
combination of child tag elements in each case:

« Processing an operational request submitted by a client application (discussed in
“Requesting Information” on page 65)

« Opening, locking, committing, or closing a configuration as requested by a client
application (discussed in “Exchanging Information with the Junos XML Protocol Server”
onpage 48, “Committing a Configuration” on page 151, and “Ending a Junos XML Protocol
Session and Closing the Connection” on page 59)

« Parsing configuration data submitted by a client application in a <load-configuration>
tag element (discussed in “Changing Configuration Information” on page 113)

If the Junos XML protocol server encounters a less serious problem, it can emit an
<xnm:warning> tag element instead. The usual response for the client application in this
case is to log the warning or pass it to the user, but to continue parsing the server’s
response.

For a description of the child tag elements that can appear within an <xnm:error> or
<xnm:warning> tag element to specify the nature of the problem, see “<xnm:error>" on
page 191 and “<xnm:warning>" on page 193.

To request that the Junos XML protocol server stop processing the current request, a
client application emits the <abort/> tag directly after the closing </rpc> tag for the
operation to be halted:

<rpc>

<!-- tag elements for the request -->
</rpc>
<abort/>

54

Copyright © 2013, Juniper Networks, Inc.

Chapter 3: Controlling the Junos XML Management Protocol Session

The Junos XML protocol server responds with the <abort-acknowledgement/> tag:

<rpc-reply xmlns:junos="URL" >
<abort-acknowledgement/>
</rpc-reply>
Depending on the operation being performed, response tag elements already sent by
the Junos XML protocol server for the halted request are possibly invalid. The application
can include logic for deciding whether to discard or retain them as appropriate.

For more information, see “<abort/>" on page 167 and “<abort-acknowledgement/>" on
page 167.

Locking and Unlocking the Candidate Configuration or Creating a Private Copy

When a client application is requesting or changing configuration information, it can use
one of three methods to access the configuration:

. Lock the candidate configuration, which prevents other users or applications from
changing the configuration until the application releases the lock (equivalent to the
CLI configure exclusive command).

. Create a private copy of the candidate configuration, which enables the application
to view or change configuration data without affecting the candidate or active
configuration until the private copy is committed (equivalent to the CLI configure private
command).

. Change the candidate configuration without locking it. We do not recommend this
method, because of the potential for conflicts with changes made by other applications
or users that are editing the configuration at the same time.

Ifan applicationis simply requesting configuration information and not changing it, locking
the configuration or creating a private copy is not required. However, it is appropriate to
lock the configuration if it is important that the information being returned not change
during the session. The information from a private copy is guaranteed not to change, but
can diverge from the candidate configuration if other users or applications are changing
the candidate.

Therestrictions on, and interactions between, operations on the locked regular candidate
configuration and a private copy are the same as for the CLI configure exclusive and
configure private commands. For more information, see “Committing a Private Copy of
the Configuration” on page 153 and the CL/ User Guide.

For more information about locking and unlocking the candidate configuration or creating
a private copy, see the following sections:

» Locking the Candidate Configuration on page 56

« Unlocking the Candidate Configuration on page 57

« Terminating Another Junos XML Protocol Session on page 57

« Creating a Private Copy of the Configuration on page 58

Copyright © 2013, Juniper Networks, Inc. 55

Junos XML Management Protocol Developer Guide

Locking the Candidate Configuration

To lock the candidate configuration, a client application emits the <lock-configuration/>
tag within an <rpc> tag element:

<rpc>
<lock-configuration/>
</rpc>

Emitting this tag prevents other users or applications from changing the candidate
configuration until the lock is released (equivalent to the CLI configure exclusive
command). Locking the configuration is recommmended, particularly on devices where
multiple users are authorized to change the configuration. A commit operation applies
to all changes in the candidate configuration, not just those made by the user or
application that requests the commit. Allowing multiple users or applications to make
changes simultaneously can lead to unexpected results.

When the Junos XML protocol server locks the configuration, it returns an opening
<rpc-reply> and closing </rpc-reply> tag with nothing between them:

<rpc-reply xmlns:junos="URL" >
</rpc-reply>

If the Junos XML protocol server cannot lock the configuration, the <rpc-reply> tag element
instead encloses an <xnm:error> tag element explaining the reason for the failure. Reasons
for the failure can include the following:

« Another user or application has already locked the candidate configuration. The error
message reports the login identity of the user or application.

. The candidate configuration already includes changes that have not yet been
committed. To commit the changes, see “Committing a Configuration” on page 151. To
roll back to a previous version of the configuration (and lose the uncommitted changes),
see “Rolling Back to a Previous or Rescue Configuration” on page 120.

Only one application can hold the lock on the candidate configuration at a time. Other
users and applications can read the candidate configuration while it is locked, or can
change their private copies. The lock persists until either the Junos XML protocol session
ends or the client application unlocks the configuration by emitting the
<unlock-configuration/> tag, as described in “Unlocking the Candidate Configuration”
on page 57.

If the candidate configuration is not committed before the client application unlocks it,
or if the Junos XML protocol session ends for any reason before the changes are
committed, the changes are automatically discarded. The candidate and committed
configurations remain unchanged.

56 Copyright © 2013, Juniper Networks, Inc.

Chapter 3: Controlling the Junos XML Management Protocol Session

Unlocking the Candidate Configuration

As long as a client application holds a lock on the candidate configuration, other
applications and users cannot change the candidate. To unlock the candidate
configuration, the client application includes the <unlock-configuration/> tagin an <rpc>
tag element:

<rpc>
<unlock-configuration/>
</rpc>

To confirm that it has successfully unlocked the configuration, the Junos XML protocol
server returns an opening <rpc-reply> and closing </rpc-reply> tag with nothing between
them:

<rpc-reply xmlns:junos="URL" >
</rpc-reply>

If the Junos XML protocol server cannot unlock the configuration, the <rpc-reply> tag
elementinstead encloses an <xnm:error> tag element explaining the reason for the failure.

Terminating Another Junos XML Protocol Session

Aclient application’s attempt to lock the candidate configuration can fail because another
user or application already holds the lock, as mentioned in “Locking the Candidate
Configuration” on page 56. In this case, the Junos XML protocol server returns an error
message that includes the username and process ID (PID) for the entity that holds the
existing lock:

<rpc-reply xmlns="URN" xmlns:junos="URL" >
<xnm:error>
<message>
configuration database locked by:
user terminal (pid PID) on since YYYY-MM-DD hh:mm:ss TZ, idle hh:mm:ss
exclusive [edit]
</message>
</xnm:error>
</rpc-reply>

If the client application has the Junos maintenance permission, it can end the session
that holds the lock by emitting the <kill-session> and <session-id> tag elementsin an
<rpc> tag element. The <session-id> tag element specifies the PID obtained from the
error message:

<rpc>
<kill-session>
<session-id>PID</session-id>
</kill-session>
</rpc>

The Junos XML protocol server confirms that it has terminated the other session by
returning the <ok/> tag in the <rpc-reply> tag element:

<rpc-reply xmlns="URN" xmlns:junos="URL" >
<ok/>
</rpc-reply>

Copyright © 2013, Juniper Networks, Inc. 57

Junos XML Management Protocol Developer Guide

We recommend that the applicationinclude logic for determining whether it is appropriate
to terminate another session, based on factors such as the identity of the user or
application that holds the lock, or the length of idle time.

When a session is terminated, the Junos XML protocol server that is servicing the session
rolls back all uncommitted changes that have been made during the session. If a confirmed
commit is pending (changes have been committed but not yet confirmed), the Junos
XML protocol server restores the configuration to its state before the confirmed commit
instruction was issued. (For information about the confirmed commit operation, see
“Committing the Candidate Configuration Only After Confirmation” on page 155.)

Creating a Private Copy of the Configuration

To create a private copy of the candidate configuration, a client application emits the
<private/> tag enclosed in <rpc> and <open-configuration> tag elements:

<rpc>
<open-configuration>
<private/>
</open-configuration>
</rpc>

The client application can then perform the same operations on the private copy as on
the regular candidate configuration, as described in
“Changing Configuration Information” on page 113.

After making changes to the private copy, the client application can commit the changes
to the active configuration on the device running Junos OS by emitting the
<commit-configuration> tag element, as for the regular candidate configuration. However,
there are some restrictions on the commit operation for a private copy. For more
information, see “Committing a Private Copy of the Configuration” on page 153.

To discard the private copy without committing it, a client application emits the
<close-configuration/> tag enclosed in an <rpc> tag element:

<rpc>
<close-configuration/>
</rpc>

Any changes to the private copy are lost. Changes to the private copy are also lost if the
Junos XML protocol session ends for any reason before the changes are committed. It is
not possible to save changes to a private copy other than by emitting the
<commit-configuration> tag element.

The following example shows how to create a private copy of the configuration. The
Junos XML protocol server includes a reminder in its confirmation response that changes
are discarded from a private copy if they are not committed before the session ends.

58 Copyright © 2013, Juniper Networks, Inc.

Chapter 3: Controlling the Junos XML Management Protocol Session

Client Application Junos XML Protocol Server
<rpc>
<open-configuration>
<private/>
</open-configuration>
</rpc>
<rpc-reply xmins:junos="URL">
<xnm:warning xmins="http://xml.juniper.net/xnm/1.1/xnm" \
xmins:xnm="http://xml.juniper.net/xnm/1.1/xnm">
<message>uncommitted changes will be discarded on exit</message>
</xnm:warning>
</rpc-reply>

T1172

Ending a Junos XML Protocol Session and Closing the Connection

When a client application is finished making requests, it ends the Junos XML protocol
session by emitting the <request-end-session/> tag within an <rpc> tag element:

<rpc>
<request-end-session/>
</rpc>

In response, the Junos XML protocol server emits the <end-session/> tag enclosed in an
<rpc-reply> tag element and a closing </junoscript> tag:

<rpc-reply xmlns:junos="URL" >
<end-session/>
</rpc-reply>
</junoscript>
The client application waits to receive this reply before emitting its closing </junoscript>
tag:

</junoscript>

For an example of the exchange of closing tags, see “Closing the Junos XML Protocol
Session” on page 64.

The client application can then close the SSH, SSL, or other connection to the Junos XML
protocol server machine. Client applications written in Perl can close the Junos XML
protocol session and connection by using the Junos XML protocol Perl module described
in “Writing Junos XML Protocol Perl Client Applications” on page 213. For more information,
see that chapter.

Client applications that do not use the Junos XML protocol Perl module use the routine
provided for closing a connection in the standard library for their programming language.

Copyright © 2013, Juniper Networks, Inc. 59

Junos XML Management Protocol Developer Guide

Displaying CLI Output as XML Tag Elements

To display the output from a CLI command as Junos XML protocol tag elements and
Junos XML tag elements instead of as the default formatted ASCII text, pipe the output
from the command to the display xml command. The tag elements that describe Junos
OS configuration or operational data belong to the Junos XML API, which defines the
Junos content that can be retrieved and manipulated by the Junos XML management
protocol operations.

The following example shows the output from the show chassis hardware command
issued on an M20 router that is running the initial version of Junos OS Release 12.1 (the
opening <chassis-inventory> tag appears on two lines only for legibility):

user@host> show chassis hardware | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/12.1R1/junos" >
<chassis-inventory \
xmlns="http://xml.juniper.net/junos/12.1R1/junos-chassis" >
<chassis junos:style="inventory" >
<name>Chassis</name>
<serial-number>00118</serial-number>
<description>M20</description>
<chassis-module>
<name>Backplane</name>
<version>REV 06</version>
<part-number>710-001517</part-number>
<serial-number>AB5911</serial-number>
</chassis-module>
<chassis-module>
<name>Power Supply A</name>
<!-- other child tags of <chassis-module> -->
</chassis-module>
<!-- other child tags of <chassis> -->
</chassis>
</chassis-inventory>
</rpc-reply>

Displaying the RPC Tags for a Command

Todisplay the remote procedure call (RPC) XML tags for an operational mode command,
enter display xml rpc after the pipe symbol (|).

The following example displays the RPC tags for the show route command:

user@host> show route | display xml rpc
<rpc-reply xmIns:junos="http://xml._juniper.net/junos/10.110/junos">
<rpc>
<get-route-information>
</get-route-information>
</rpc>
<cli>
<banner></banner>
</cli>
</rpc-reply>

60

Copyright © 2013, Juniper Networks, Inc.

Chapter 3: Controlling the Junos XML Management Protocol Session

Example of a Junos XML Protocol Session

This section describes the sequence of tag elements in a sample Junos XML protocol
session. The client application begins by establishing a connection to a Junos XML protocol
server. See the following sections:

« Exchanging Initialization Pls and Tag Elements on page 61
« Sending an Operational Request on page 61

« Locking the Configuration on page 62

« Changing the Configuration on page 62

« Committing the Configuration on page 63

« Unlocking the Configuration on page 63

« Closing the Junos XML Protocol Session on page 64

Exchanging Initialization Pls and Tag Elements

After the client application establishes a connection to a Junos XML protocol server, the
two exchange initialization Pls and tag elements, as shown in the following example.
Note that the Junos XML protocol server’s opening <junoscript> tag appears on multiple
lines for legibility only. Neither the Junos XML protocol server nor client applications insert
a newline character into the list of attributes. Also, in an actual exchange, the
JUNOS-release variable is replaced by a value such as 12.1R1 for the initial version of Junos
OS Release 12.1. For a detailed discussion of the <?xml?> Pl and opening <junoscript>
tag, see “Starting the Junos XML Protocol Session” on page 40.

Client Application Junos XML Protocol Server

<?xml version="1.0" encoding="us-ascii"?> <?xml version="1.0" encoding="us-ascii"?>

<junoscript version="1.0" release=" JUNOS-release <junoscript version="1.0" hostname="router1" \
0s="JUNOS" release="JUNOS-release
xmins="URLxmIns:junos="URL"\
xmins:xnm="URL">

T1173

Sending an Operational Request

The client application now emits the <get-chassis-inventory> tag element to request
information about the device’s chassis hardware. The Junos XML protocol server returns
the requested information in the <chassis-inventory> tag element.

Copyright © 2013, Juniper Networks, Inc. 61

Junos XML Management Protocol Developer Guide

Client Application Junos XML Protocol Server
<rpc>
<get-chassis-inventory>
<detail/>
</get-chassis-inventory>
</rpc>
<rpc-reply xmins:junos="URL">
<chassis-inventory xmins="URL">
<chassis>
<name>Chassis</name>
<serial-number>1122</serial-number>
<description>M320</description>
<chassis-module>
<name>Midplane</name>
<I- -other child tags for the Midplane- ->
</chassis-module>
<l- -tags for other chassis modules- ->
</chassis>
</chassis-inventory>
</rpc-reply>

T1102

Locking the Configuration

The client application then prepares to create a new privilege class called network-mgmt
at the [edit system login class] hierarchy level. It begins by using the <lock-configuration/>
tag to prevent any other users or applications from altering the candidate configuration
at the same time. To confirm that the candidate configuration is locked, the Junos XML
protocol server returns an <rpc-reply> and an </rpc-reply> tag with nothing between
them.

Client Application Junos XML Protocol Server
<rpc>
<lock-configuration/>
</rpc>
<rpc-reply xmins:junos="URL'>
</rpc-reply>

T1103

Changing the Configuration

The client application emits the tag elements that add the new network-mgmt privilege
class to the candidate configuration. The Junos XML protocol server returns the
<load-configuration-results> tag element to enclose a tag element that reports the
outcome of the load operation. (Understanding the meaning of these tag elementsis
not necessary for the purposes of this example, but for information about them, see
“Changing Configuration Information” on page 113.)

62 Copyright © 2013, Juniper Networks, Inc.

Chapter 3: Controlling the Junos XML Management Protocol Session

Client Application Junos XML Protocol Server
<rpc>
<load-configuration>
<configuration>
<system>
<login>
<class>
<name>network-mgmt</name>
<permissions>configure</permissions>
<permissions>snmp</permissions>
<permissions>system</permissions>
</class>
</login>
</system>
</configuration>
</load-configuration>
</rpc>
<rpc-reply xmins:junos="URL'>
<load-configuration-results>
<load-success/>
</load-configuration-results>
</rpc-reply>

Committing the Configuration

The client application commits the candidate configuration. The Junos XML protocol
server returns the <commit-results > tag element to enclose tag elements that report the
outcome of the commit operation (for information about these tag elements, see
“Committing a Configuration” on page 151).

Client Application Junos XML Protocol Server
<rpc>
<commit-configuration/>
</rpc>
<rpc-reply xmins:junos="URL">
<commit-results>
<routing-engine>
<name>reO</name>
<commit-success/>
</routing-engine>
</commit-results>
</rpc-reply>

T1105

Unlocking the Configuration

The client application unlocks (and by implication closes) the candidate configuration.
As when it opens the configuration, the Junos XML protocol server confirms successful
closure of the configuration only by returning an opening <rpc-reply> and closing
</rpc-reply> tag with nothing between them.

Copyright © 2013, Juniper Networks, Inc. 63

Junos XML Management Protocol Developer Guide

Client Application Junos XML Protocol Server

<rpc>
<unlock-configuration/>
</rpc>
<rpc-reply xmins:junos="URL'> Q
</rpc-reply> =
Closing the Junos XML Protocol Session
The client application closes the Junos XML protocol session.
Client Application Junos XML Protocol Server
<rpc>
<request-end-session/>
</rpc>
<rpc-reply xmins:junos="URL">
<end-session/>
</rpc-reply>
</junoscript> 8
</junoscript> r

64 Copyright © 2013, Juniper Networks, Inc.

CHAPTER 4

Requesting Information

This chapter explains how to use the Junos XML management protocol and Junos XML
API to request information about the status and the current configuration of a routing,
switching, or security platform running Junos OS.

The tag elements for operational requests are defined in the Junos XML APl and
correspond to Junos OS command-line interface (CLI) operational commands, which
are described in the Junos OS command references. There is a request tag element for
many commands in the CLI show family of commands.

Thetagelement for configuration requestsis the Junos XML protocol <get-configuration>
tag element. It corresponds to the CLI configuration mode show command, which is
described in the CLI User Guide. The Junos XML tag elements that make up the content
of both the client application’s requests and the Junos XML protocol server’s responses
correspond to CLI configuration statements, which are described in the Junos OS
configuration guides.

In addition to information about the current configuration, client applications can request
other configuration-related information, including an XML schema representation of the
configuration hierarchy, information about previously committed (rollback) configurations,
or information about the rescue configuration.

This chapter discusses the following topics:

« Overview of the Request Procedure on page 66
« Requesting Operational Information on page 66

« Specifying the Output Format for Operational Information Requests in a Junos XML
Protocol Session on page 68

« Requesting Configuration Information on page 70

« Specifying the Source and Output Format of Configuration Information on page 72
« Specifying the Scope of Configuration Information to Return on page 91

« Requesting an XML Schema for the Configuration Hierarchy on page 105

« Requesting a Previous (Rollback) Configuration on page 108

« Comparing Two Previous (Rollback) Configurations on page 110

« Requesting the Rescue Configuration on page 111

Copyright © 2013, Juniper Networks, Inc. 65

Junos XML Management Protocol Developer Guide

Overview of the Request Procedure

To request information from the Junos XML protocol server, a client application performs
the procedures described in the indicated sections:

1. Establishes a connection to the Junos XML protocol server on the routing, switching,
or security platform, as described in “Connecting to the Junos XML Protocol Server”
on page 39.

2. OpensalJunos XML protocol session, as described in “Starting the Junos XML Protocol
Session” on page 40.

3. If making configuration requests, optionally locks the candidate configuration or
creates a private copy, as described in “Locking the Candidate Configuration” on
page 56 and “Creating a Private Copy of the Configuration” on page 58.

4. Makes any number of requests one at a time, freely intermingling operational and
configuration requests. See “Requesting Operational Information” on page 66 and
“Requesting Configuration Information” on page 70.

The application can also intermix requests with configuration changes, which are
described in “Changing Configuration Information” on page 113.

5. Accepts the tag stream emitted by the Junos XML protocol server in response to each
request and extracts its content, as described in “Parsing the Junos XML Protocol
Server Response” on page 51.

6. Unlocks the candidate configuration if it is locked, as described in “Unlocking the
Candidate Configuration” on page 57. Other users and applications cannot change
the configuration while it remains locked.

7. Ends the Junos XML protocol session and closes the connection to the device, as
described in “Ending a Junos XML Protocol Session and Closing the Connection” on
page 59.

Requesting Operational Information

To request information about the current status of a device running Junos OS, a client
application emits the specific tag element from the Junos XML API that returns the desired
information. For example, the <get-interface-information> tag element corresponds to
the show interfaces command, the <get-chassis-inventory> tag element requests the
same information as the show chassis hardware command, and the
<get-system-inventory> tag element requests the same information as the show software
information command.

For complete information about the operational request tag elements available in the
current Junos OS release, see “Mapping Between Operational Tag Elements, Perl Methods,
and CLI Commands” and “Summary of Operational Request Tag Elements” in the Junos
XML API Operational Developer Reference.

66

Copyright © 2013, Juniper Networks, Inc.

Chapter 4: Requesting Information

The application encloses the request tag element in an <rpc> tag element. The syntax
depends on whether the corresponding CLI command has any options:

<rpc>
<!-- |If the command does not have options -->
<operational-request/>

<!- - If the command has options -->
<operational-request >
<!-- tag elements representing the options -->
</operational-request>
</rpc>

The client application can specify the formatting of the information returned by the Junos
XML protocol server. By setting an optional attribute in the opening operational request
tag, a client application can specify the format of the response as either XML-tagged
format, which is the default, or formatted ASCII text.

If the client application requests the output in formatted ASCII text, the Junos XML
protocol server encloses its response in an <output> tag element, which is enclosed in
an <rpc-reply> tag element.

<rpc-reply xmlns:junos="URL" >
<output>
operational-response
</output>
</rpc-reply>
If the client application requests the output in XML-tagged format, the Junos XML protocol
server encloses its response in the specific response tag element that corresponds to
the request tag element, enclosed in an <rpc-reply> tag element.

<rpc-reply xmlns:junos="URL" >
<operational-response xmlns="URL-for-DTD" >
<l-- Junos XML tag elements for the requested information -->
</operational-response >
</rpc-reply>

For XML-tagged format, the opening tag for each operational response includes the
xmlns attribute to define the XML namespace for the enclosed tag elements that do not
have a prefix (such as junos:) in their names. The namespace indicates which Junos XML
document type definition (DTD) defines the set of tag elements in the response. The
Junos XML API defines separate DTDs for operational responses from different software
modules. For instance, the DTD for interface information is called junos-interface.dtd and
the DTD for chassis information is called junos-chassis.dtd. The division into separate
DTDs and XML namespaces means that a tag element with the same name can have
distinct functions depending on which DTD it is defined in.

The namespace is a URL of the following form:

http://xml.juniper.net/junos/release-code/junos-category

release-code is the standard string that represents the release of the Junos OS running
on the Junos XML protocol server device.

category specifies the DTD.

Copyright © 2013, Juniper Networks, Inc. 67

Junos XML Management Protocol Developer Guide

The Junos XML API Operational Developer Reference includes the text of the Junos XML
DTDs for operational responses.

Specifying the Output Format for Operational Information Requests in a Junos XML
Protocol Session

Supported Platforms

XML Format

EX Series, M Series, MX Series, SRX Series, T Series

In a Junos XML protocol session, to request information about a routing, switching, or
security platform running Junos OS, a client application encloses a Junos XML request
tag element in an <rpc> tag element. By setting the optional format attribute in the
opening operational request tag, the client application can specify the formatting of the
output returned by the Junos XML protocol server. Information can be returned as
XML-tagged format or formatted ASCII text. The basic syntax is as follows:

<rpc>
<operational-request [format="(xml | text | ascii)"]>
<!-- tag elements for options -->
</operational-request>
</rpc>

By default, the Junos XML protocol server returns operational information in XML-tagged
format. If the value of the format attribute is set to xml, or if the format attribute is omitted,
the server returns the response in XML. The following example requests information for
the ge-0/3/0 interface. The format attribute is omitted.

<rpc>
<get-interface-information>
<brief/>
<interface-name>ge-0/3/0</interface-name>
</get-interface-information>
</rpc>

The Junos XML protocol server returns the information in XML-tagged format, which is
identical to the output displayed in the CLI when you include the | display xml option after
the operational mode command.

<rpc-reply xmIns:junos="http://xml_juniper.net/junos/11.4R1/junos">
<interface-information
xmIns="http://xml._juniper.net/junos/11.4R1/junos-interface” junos:style="brief'>

<physical-interface>
<name>ge-0/3/0</name>
<admin-status junos:format="Enabled">up</admin-status>
<oper-status>down</oper-status>
<link-level-type>Ethernet</link-level-type>
<mtu>1514</mtu>
<source-filtering>disabled</source-filtering>
<speed>1000mbps</speed>
<bpdu-error>none</bpdu-error>
<I2pt-error>none</I2pt-error>
<loopback>disabled</loopback>
<if-flow-control>enabled</if-flow-control>
<if-auto-negotiation>enabled</if-auto-negotiation>
<if-remote-fault>online</if-remote-fault>
<if-device-flags>

68

Copyright © 2013, Juniper Networks, Inc.

http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/ex-series/product/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/m-series/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/mx-series/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/srx-series/product/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/t-series/index.html

Chapter 4: Requesting Information

<ifdf-present/>
<ifdf-running/>
<ifdf-down/>
</if-device-flags>
<if-config-flags>
<iff-hardware-down/>
<iff-snmp-traps/>
<internal-flags>0x4000</internal-flags>
</if-config-flags>
<if-media-flags>
<ifmf-none/>
</if-media-flags>
</physical-interface>
</interface-information>
</rpc-reply>

ASCIl Format Torequestthat the Junos XML protocol server return operational information as formatted
ASCI| text instead of tagging it with Junos XML tag elements, the client application
includes the format="text" or format="ascii" attribute in the opening request tag. The
client application encloses the request in an <rpc> tag element.

<rpc>
<get-interface-information [format="(text | ascii)"]>
<brief/>
<interface-name>ge-0/3/0</interface-name>
</get-interface-information>
</rpc>

When the client application includes the format="text" or format="ascii" attribute in the
request tag, the Junos XML protocol server formats the reply as ASCII text and encloses
it in an <output> tag element. The format="text" and format="ascii" attributes produce
identical output.

<rpc-reply xmlIns:junos="http://xml_juniper.net/junos/11.4R1/junos">

<output>

Physical interface: ge-0/3/0, Enabled, Physical link is Down
Link-level type: Ethernet, MTU: 1514, Speed: 1000mbps, Loopback: Disabled,
Source filtering: Disabled, Flow control: Enabled, Auto-negotiation: Enabled,
Remote fault: Online

Device flags : Present Running Down
Interface flags: Hardware-Down SNMP-Traps Internal: 0x4000
Link flags - None

</output>

</rpc-reply>

The following example shows the equivalent operational mode command executed in
the CLI:

user@host> show interfaces ge-0/3/0 brief
Physical interface: ge-0/3/0, Enabled, Physical link is Down

Link-level type: Ethernet, MTU: 1514, Speed: 1000mbps, Loopback: Disabled,
Source filtering: Disabled,

Flow control: Enabled, Auto-negotiation: Enabled, Remote fault: Online

Device flags : Present Running Down
Interface flags: Hardware-Down SNMP-Traps Internal: 0x4000
Link flags : None

Copyright © 2013, Juniper Networks, Inc. 69

Junos XML Management Protocol Developer Guide

The formatted ASCII text returned by the Junos XML protocol server is identical to the
CLI output except in cases where the output includes disallowed characters such as '<!
(less-than sign), '>' (greater-than sign), and '&' (ampersand). The Junos XML protocol
server substitutes these characters with the equivalent predefined entity reference of
'‘<', '>', and '&' respectively.

If the Junos XML API does not define a response tag element for the type of output
requested by a client application, the Junos XML protocol server returns the reply as
formatted ASCII text enclosed in an <output> tag element even if XML-tagged output
is requested.

For information about the <output> tag element, see the Junos XML API Operational
Developer Reference.

0 NOTE: The content and formatting of data within an <output> tag element
are subject to change, so client applications must not depend on them.

Requesting Configuration Information

Torequest information about a configuration on a routing, switching, or security platform,
aclient application encloses the <get-configuration> tag element in an <rpc> tag element.
By setting optional attributes, the client application can specify the source and formatting
of the configuration information returned by the Junos XML protocol server. By including
the appropriate optional child tag elements, the application can request the entire
configuration or specific portions of the configuration. The basic syntax is as follows:

<rpc>
<I-- If requesting the complete configuration -->
<get-configuration [optional attributes]/>

<!--If requesting part of the configuration -->
<get-configuration [optional attributes]>
<configuration>
<1-- tag elements representing the data to return -->
</configuration>
</get-configuration>
</rpc>

e NOTE: If the client application locks the candidate configuration before
making requests, it needs to unlock it after making its read requests. Other
users and applications cannot change the configuration while it remains
locked. For more information, see “Exchanging Information with the Junos
XML Protocol Server” on page 48.

70

Copyright © 2013, Juniper Networks, Inc.

Chapter 4: Requesting Information

The Junos XML protocol server enclosesits reply in an <rpc-reply> tag element. It includes
attributes with the junos: prefix in the opening <configuration> tag to indicate when the
configuration was last changed or committed and who committed it (the attributes
appear on multiple lines in the syntax statement only for legibility). For more information
about them, see “Requesting Information from the Committed or Candidate Configuration”
on page 72:

<rpc-reply xmlns:junos="URL" >
<!--If the application requests Junos XML tag elements -->
<configuration junos:(changed | commit)-seconds="seconds" \
junos:(changed | commit)-localtime="YYYY-MM-DD hh:mm:ss TZ" \
[junos:commit-user="username"]>
<!-- Junos XML tag elements representing configuration elements -->
</configuration>

<1--If the application requests formatted ASCII text -->
<configuration-text>
<!-- formatted ASCII configuration statements -->
</configuration-text>
</rpc-reply>

If a Junos XML tag element is returned within an <undocumented> tag element, the
corresponding configuration element is not documented in the Junos OS configuration
guides or officially supported by Juniper Networks. Most often, the enclosed element is
used for debugging only by support personnel. In a smaller number of cases, the element
is no longer supported or has been moved to another area of the configuration hierarchy,
but appears in the current location for backward compatibility.

For reference pages for the <configuration>, <configuration-text>, and <undocumented>
tag elements, see the Junos XML API Operational Developer Reference.

Applications can also request other configuration-related information, including an XML
schema representation of the configuration hierarchy or information about previously
committed configurations. For more information, see the following sections:

« Requesting an XML Schema for the Configuration Hierarchy on page 105
« Requesting a Previous (Rollback) Configuration on page 108
« Comparing Two Previous (Rollback) Configurations on page 110

« Requesting the Rescue Configuration on page 111

The following sections describe how a client application specifies the source, format,
and amount of information returned by the Junos XML protocol server:

« Specifying the Source and Output Format of Configuration Information on page 72

« Specifying the Scope of Configuration Information to Return on page 91

Copyright © 2013, Juniper Networks, Inc. 7

Junos XML Management Protocol Developer Guide

Specifying the Source and Output Format of Configuration Information

By including optional attributes when requesting configuration information, a client
application can specify the source and formatting of the output returned by the Junos
XML protocol server, as described in the following sections:

« Requesting Information from the Committed or Candidate Configuration on page 72

« Requesting Output as Formatted ASCII Text or Junos XML Tag Elements on page 74

« Requesting an Indicator for Identifiers on page 76

« Requesting a Change Indicator for Configuration Elements on page 78

« Displaying Commit-Script-Style XML Data on page 81

« Specifying the Output Format for Configuration Groups and Interface Ranges on page 82

« Comparing Configuration Changes with a Prior Version on page 90

Requesting Information from the Committed or Candidate Configuration

To request information from the candidate configuration, the application either includes
the database="candidate" attribute or omits the attribute completely (information from
the candidate configuration is the default):

<rpc>
<get-configuration/>

<I--OR-->

<get-configuration>
<!-- tag elements for the configuration elements to return -->
</get-configuration>
</rpc>

To request information from the active configuration—the one most recently committed
on the device—a client application includes the database="committed" attribute in the
<get-configuration/> tag or opening <get-configuration> tag:

<rpc>
<get-configuration database="committed"/>

<1--OR -->

<get-configuration database="committed" >
<!-- tag elements for the configuration elements to return -->
</get-configuration>
</rpc>

Forinformation about the tag elements to enclose in the <get-configuration> tag element,
see “Specifying the Scope of Configuration Information to Return” on page 91.

The Junos XML protocol server encloses its response in the <rpc-reply> tag element and
either the <configuration> tag element (for Junos XML-tagged output) or
<configuration-text> tag element (for formatted ASCIl output).

72 Copyright © 2013, Juniper Networks, Inc.

Chapter 4: Requesting Information

When returning information from the candidate configuration as Junos XML tag elements,
the Junos XML protocol server includes attributes in the opening <configuration> tag that
indicate when the configuration last changed (they appear on multiple lines here only
for legibility):

<rpc-reply xmlns:junos="URL" >
<configuration junos:changed-seconds="seconds" \
junos:changed-localtime="YYYY-MM-DD hh:mm:ss TZ" >
<!-- Junos XML tag elements representing configuration elements -->
</configuration>
</rpc-reply>

junos:changed-localtime represents the time of the last change as the date and time in
the device’s local time zone.

junos:changed-seconds represents the time of the last change as the number of seconds
since midnight on 1January 1970.

When returning information from the active configuration as Junos XML tag elements,
the Junos XML protocol server includes attributes in the opening <configuration> tag that
indicate when the configuration was committed (they appear on multiple lines here only
for legibility):

<rpc-reply xmlns:junos="URL" >
<configuration junos:commit-seconds="seconds" \
junos:commit-localtime="YYYY-MM-DD hh:mm:ss TZ" \
junos:commit-user="username" >
<!-- Junos XML tag elements representing configuration elements -->
</configuration>
</rpc-reply>

junos:commit-localtime represents the commit time as the date and time in the device’s
local time zone.

junos:commit-seconds represents the commit time as the number of seconds since
midnight on 1 January 1970.

junos:commit-user specifies the Junos OS username of the user who requested the commit
operation.

The database attribute in the application’s request can be combined with one or more
of the following attributes in the <get-configuration/> tag or opening <get-configuration>
tag:

. changed, which is described in “Requesting a Change Indicator for Configuration
Elements” on page 78

« commit-scripts, which is described in “Displaying Commit-Script-Style XML Data” on
page 81

« compare, whichisdescribedin “Comparing Configuration Changes with a Prior Version”
on page 90

Copyright © 2013, Juniper Networks, Inc. 73

Junos XML Management Protocol Developer Guide

. format, which is described in “Requesting Output as Formatted ASCI| Text or Junos
XML Tag Elements” on page 74

- inherit and optionally groups and interface-ranges, which are described in “Specifying
the Output Format for Configuration Groups and Interface Ranges” on page 82

The application can also include the database attribute after requesting an indicator for
identifiers (as described in “Requesting an Indicator for [dentifiers” on page 76).

The following example shows how to request the entire committed configuration. In
actual output, the Junos-version variable is replaced by a value such as 12.1R1 for the initial
version of Junos OS Release 12.1.

Client Application Junos XML Protocol Server
<rpc>

<get-configuration database="committed"/>
</rpc>

<rpc-reply xmins:junos="URL'>
<configuration \
junos:commit-seconds="seconds' \
junos:commit-localtime="timestamp" \
junos:commit-user="username'>
<version>Junos-version</version>
<system>
<host-name>big-router</host-name>
<!- -other children of <system>- ->
</system>
<!- -other children of <configuration>- ->
</configuration>
</rpc-reply>

T1185

Requesting Output as Formatted ASCII Text or Junos XML Tag Elements

To request that the Junos XML protocol server return configuration information in Junos
XML-tagged output, the client application either includes the format="xml" attribute in
the <get-configuration/> tag or opening <get-configuration> tag or omits the attribute
completely. The Junos XML protocol server returns Junos XML-tagged output by default,
except when the compare attribute is included.

<rpc>
<get-configuration/>

<1--OR -->

<get-configuration>
<!-- tag elements for the configuration elements to return -->
</get-configuration>
</rpc>

To request that the Junos XML protocol server return configuration information as
formatted ASCII text instead of tagging it with Junos XML tag elements, the client
applicationincludes the format="text" attribute in the <get-configuration/> tag or opening
<get-configuration> tag. It encloses the request in an <rpc> tag element:

<rpc>
<get-configuration format="text"/>

Copyright © 2013, Juniper Networks, Inc.

Chapter 4: Requesting Information

<I--OR-->

<get-configuration format="text">
<!-- tag elements for the configuration elements to return -->
</get-configuration>
</rpc>

Forinformation about the tag elements to enclose in the <get-configuration> tag element,
see “Specifying the Scope of Configuration Information to Return” on page 91.

0 NOTE: Regardless of which output format they request, client applications
use Junos XML tag elements to represent the configuration element to display.
The format attribute controls the format of the Junos XML protocol server’s
output only.

When the application requests Junos XML tag elements, the Junos XML protocol server
encloses its output in <rpc-reply> and <configuration> tag elements. For information
about the attributes in the opening <configuration> tag, see “Requesting Information
from the Committed or Candidate Configuration” on page 72.

<rpc-reply xmlns:junos="URL" >
<configuration attributes >
<l-- Junos XML tag elements representing configuration elements -->
</configuration>
</rpc-reply>

When the application requests formatted ASCII output, the Junos XML protocol server
formats its response in the same way that the CLI show configuration command displays
configuration data—it uses the newline character, tabs, braces, and square brackets to
indicate the hierarchical relationships between configuration statements. The server
encloses formatted ASCII configuration statements in <rpc-reply> and
<configuration-text> tag elements:

<rpc-reply xmlns:junos="URL" >
<configuration-text>
<!-- formatted ASCII configuration statements -->
</configuration-text>
</rpc-reply>

The format attribute can be combined with one or more of the following other attributes
in the <get-configuration/> tag or opening <get-configuration> tag:

. database, which is described in “Requesting Information from the Committed or
Candidate Configuration” on page 72

« inherit and optionally groups and interface-ranges, which are described in “Specifying
the Output Format for Configuration Groups and Interface Ranges” on page 82

It does not make sense to combine the format="text" attribute with the changed attribute
(described in “Requesting a Change Indicator for Configuration Elements” on page 78)
or to include it after requesting an indicator for identifiers (described in “Requesting an
Indicator for Identifiers” on page 76). The change and identifier indicators appear only in
Junos XML-tagged output, whichis the default output format. The commit scripts attribute
returns Junos XML-tagged output by default, evenif the format="text" attributeisincluded,

Copyright © 2013, Juniper Networks, Inc. 75

Junos XML Management Protocol Developer Guide

since this is the format that is input to commit script. The format="xml" attribute cannot
be used with the compare attribute, which produces only formatted ASCII output.

An application can request Junos-XML tagged output or formatted ASCII text for the
entire configuration or any portion of it. For instructions on specifying the amount of data
to return, see “Specifying the Scope of Configuration Information to Return” on page 91.

The following example shows how to request formatted ASCII output from the
[edit policy-options] hierarchy level in the candidate configuration.

Client Application Junos XML Protocol Server
<rpc>
<get-configuration format="text">
<configuration>
<policy-options/>
</configuration>
</get-configuration>
</rpc>
<rpc-reply xmins:junos="URL">
<configuration-text>
policy-options {
policy-statement load-balancing-policy {
from {
route-filter 192.168.10/24 orlonger;
route-filter 10.114/16 orlonger;
}
then {
load-balance per-packet;
}
1
1

</configuration-text>
</rpc-reply>

T1121

Requesting an Indicator for Identifiers

To request that the Junos XML protocol server indicate whether a child configuration
element is an identifier for its parent element, a client application includes the
junos:key="key" attribute in the opening <junoscript> tag for the Junos XML protocol
session, which appears here on two lines for legibility only:

<junoscript version="version" hostname="hostname" junos:key="key"
release="release-code" >

For more information about the <junoscript> tag, see “Emitting the Opening <junoscript>
Tag” on page 42.

When the identifier indicator is requested, the Junos XML protocol server includes the
junos:key="key" attribute in the opening tag for each identifier. As always, the Junos XML
protocol server encloses its response in <rpc-reply> and <configuration> tag elements.
For information about the attributes in the opening <configuration> tag, see “Requesting
Information from the Committed or Candidate Configuration” on page 72. In the following,
the identifier tag element is called <name>:

<rpc-reply xmlns:junos="URL" >
<configuration attributes >
<!-- opening tag for each parent of the object -->

76

Copyright © 2013, Juniper Networks, Inc.

Chapter 4: Requesting Information

<!-- For each configuration object with an identifier -->
<object>
<name junos:key="key" >identifier</name>
<l-- additional children of object -->
</object>
<!--closing tag for each parent of the object -->

</configuration>
</rpc-reply>

The client application can include one or more of the following other attributes in the
<get-configuration/> tag or opening <get-configuration> tag when the junos:key attribute
is included in the opening <junoscript> tag:

. changed, which is described in “Requesting a Change Indicator for Configuration
Elements” on page 78

« commit-scripts, which is described in “Displaying Commit-Script-Style XML Data” on
page 81

. database, which is described in “Requesting Information from the Committed or
Candidate Configuration” on page 72

- inherit and optionally groups and interface-ranges, which are described in “Specifying
the Output Format for Configuration Groups and Interface Ranges” on page 82

When requesting an indicator for identifiers, it does not make sense to include the
format="text" attribute in the <get-configuration> tag element (as described in
“Requesting Output as Formatted ASCII Text or Junos XML Tag Elements” on page 74).
The junos:key="key" attribute appears only in Junos XML-tagged output, which is the
default output format. The compare attribute produces only text output, so when this
attribute is included in the <get-configuration> tag, the junos:key="key" attribute does
not appear in the output.

The following example shows how indicators for identifiers appear on configuration
elements at the [edit interfaces] hierarchy level in the candidate configuration when the
junos:key="key" attribute isincluded in the opening <junoscript> tag emitted by the client
application for the session. The two opening <junoscript> tags appear on multiple lines
for legibility only. Neither client applications nor the Junos XML protocol server insert
newline characters within tags. Also, for brevity the output includes just one interface,
the loopback interface loO.

Copyright © 2013, Juniper Networks, Inc. 77

Junos XML Management Protocol Developer Guide

Client Application Junos XML Protocol Server

<?xml version="1.0" encoding="us-ascii"?> <?xml version="1.0" encoding="us-ascii"?>

<junoscript version="1.0" \ <junoscript version="1.0" hostname="router1" \
junos:key="key" \ o0s="JUNOS" release="JUNOS-release
release="JUNOS-release xmins="URLxmIns:junos="URL" \

xmins:xnm="URL">
<rpc>
<get-configuration>
<configuration>

<interfaces/>
</configuration>
</get-configuration>
</rpc>

<rpc-reply xmins:junos="URL">
<configuration junos:changed-seconds="econds' \
junos:changed-localtime="timestamp">
<interfaces>
<!- -tag elements for other interfaces- ->
<interface>
<name junos:key="key">lo0</name>
<unit>
<name junos:key="key">0</name>
<family>
<inet>
<address>
<name junos:key="key">127.0.0.1/32</name>
</address>
</inet>
</family>
</unit>
</interface>
<!- -tag elements for other interfaces- ->
</interfaces>
</configuration>
</rpc-reply>

T1187

Requesting a Change Indicator for Configuration Elements

To request that the Junos XML protocol server indicate which configuration elements
have changed since the last commit, a client application includes the changed="changed"
attribute in the <get-configuration/> tag or opening <get-configuration> tag. It encloses
the request in an <rpc> tag element:

<rpc>
<get-configuration changed="changed"/>

<I--OR-->

<get-configuration changed="changed" >
<l-- tag elements for the configuration elements to return -->
</get-configuration>
</rpc>

Forinformation about the tag elements to enclose in the <get-configuration> tag element,
see “Specifying the Scope of Configuration Information to Return” on page 91.

The Junos XML protocol server indicates which elements have changed by including the
junos:changed="changed" attribute in the opening tag of every parent tag element in the
path to the changed configuration element. If the changed configuration element is
represented by a single (empty) tag, the junos:changed="changed" attribute appears in
the tag. If the changed element is represented by a container tag element, the

78

Copyright © 2013, Juniper Networks, Inc.

Chapter 4: Requesting Information

junos:changed="changed" attribute appears in the opening container tag and also in the
opening tag for each child tag element enclosed in the container tag element.

The Junos XML protocol server encloses its response in <rpc-reply> and <configuration>
tag elements. Forinformation about the standard attributes in the opening <configuration>
tag, see “Requesting Information from the Committed or Candidate Configuration” on
page 72.

<rpc-reply xmlns:junos="URL" >
<configuration standard-attributes junos:changed="changed" >
<!-- opening-tag-for-each-parent-level junos:.changed="changed" -->

<!-- For each changed element, EITHER -->
<element junos:changed="changed"/>

<1--OR -->

<element junos:changed="changed" >
<first-child-of-element junos:changed="changed" >
<second-child-of-element junos:.changed="changed" >
<!-- additional children of element -->

</element>

<!-- closing-tag-for-each-parent-level -->
</configuration>
</rpc-reply>

e NOTE: When a commit operation succeeds, the Junos XML protocol server
removes the junos:changed="changed" attribute from all tag elements.
However, if warnings are generated during the commit, the attribute is not
removed. In this case, the junos:changed="changed" attribute appears on tag
elements that changed before the commit as well as those that changed
after the commit.

An example of a commit-time warning is the message explaining that a
configuration element will not actually apply until the device is rebooted.
The warning appears in the tag string that the Junos XML protocol server
returns to confirm the success of the commit, enclosed in an <xnm:warning>
tag element.

To remove the junos:changed="changed" attribute from elements that
changed before the commit, the client application must take any action
necessary to eliminate the cause of the warning, and commit the configuration
again.

The changed attribute can be combined with one or more of the following other attributes
in the <get-configuration/> tag or opening <get-configuration> tag:

. database, which is described in “Requesting Information from the Committed or
Candidate Configuration” on page 72. Request change indicators in either the candidate
or active configuration:

Copyright © 2013, Juniper Networks, Inc. 79

Junos XML Management Protocol Developer Guide

- When the database="candidate" attribute is included or the database attribute is
omitted, the output is from the candidate configuration. Elements added to the
candidate configuration after the last commit operation are marked with the
junos:changed="changed" attribute.

- When the database="committed" attribute is included, the output is from the active
configuration. Elements added to the active configuration by the most recent commit
are marked with the junos:changed="changed" attribute.

« inherit and optionally groups and interface-ranges, which are described in “Specifying
the Output Format for Configuration Groups and Interface Ranges” on page 82.

It does not make sense to combine the changed attribute with the format="text" attribute
or with the compare attribute, which produces only text output. The
junos:changed="changed" attribute appears only in Junos XML-tagged output, which is
the default output format. When the commit-scripts="view" attribute is included in the
<get-configuration> tag, the junos:changed="changed" attribute is automatically included
in the output, and you do not need to explicitly include this attribute in the
<get-configuration> request.

The application can also include the changed attribute after requesting an indicator for
identifiers (as described in “Requesting an Indicator for Identifiers” on page 76).

The following example shows how to request change indicators for configuration elements
at the [edit system syslog] hierarchy level in the candidate configuration. The output
indicates that a log file called interactive-commands has been configured since the last
commit.

80

Copyright © 2013, Juniper Networks, Inc.

Chapter 4: Requesting Information

Client Application Junos XML Protocol Server
<rpc>
<get-configuration changed="changed">
<configuration>
<system>
<syslog/>
</system>
</configuration>
</get-configuration>
</rpc>
<rpc-reply xmins:junos="URL">
<configuration junos:changed-seconds="Seconds' \
junos:changed-localtime="timestamp" junos:changed="changed">
<system junos:changed="changed">
<syslog junos:changed="changed">
<file>
<name>messages</name>
<contents>
<name>any</name>
<info/>
</contents>
<ffile>
<file junos:changed="changed">
<name junos:changed="changed">interactive-commands</name>
<contents>
<name junos:changed="changed">interactive-commands</name>
<notice junos:changed="changed"/>
</contents>
</file>
</syslog>
</system>
</configuration>
</rpc-reply>

T1186

Displaying Commit-Script-Style XML Data

To view the device's current configuration in Extensible Markup Language (XML) using
the command-line interface's (CLI) operational mode, you issue the show configuration
| display xml command. To view your configuration in commit-script-style XML, you use
the show configuration | display commit-scripts view command. This command displays
the configuration in the format that would be input to a commit script.

To request that the Junos XML protocol server display the configuration as
commit-script-style XML data, a client application includes the commit-scripts="view"
attribute in the <get-configuration/> tag or opening <get-configuration> tag. It encloses
the request in an <rpc> tag element:

<rpc>
<get-configuration commit-scripts="view"/>

<I--OR-->

<get-configuration commit-scripts="view" >
<!-- tag elements for the configuration elements to return -->
</get-configuration>
</rpc>

Copyright © 2013, Juniper Networks, Inc. 81

Junos XML Management Protocol Developer Guide

The commit-scripts, attribute can be combined with one or more of the following other
attributes in the <get-configuration/> tag or opening <get-configuration> tag:

. database, which is described in “Requesting Information from the Committed or
Candidate Configuration” on page 72.

« interface-ranges, whichis describedin “Specifying the Output Format for Configuration
Groups and Interface Ranges” on page 82.

You do not need to include the changed or the inherit attributes with the
commit-scripts="view" attribute. The commit-scripts-style XML view includes the
junos:changed="changed" attribute in the XML tags, and it displays the output with
inheritance. That is, the output displays tag elements inherited from user-defined groups
or interface ranges within the inheriting tag elements, and the XML tags already include
the junos:group attribute. To explicitly display the junos:interface-range attribute in the
commit-scripts-style view, you must include the interface-ranges="interface-ranges"
attribute in the <get-configuration> tag.

Specifying the Output Format for Configuration Groups and Interface Ranges

The <groups> tag element corresponds to the [edit groups] configuration hierarchy. It
encloses tag elements representing configuration groups, each of which contains a set
of configuration statements that are appropriate at multiple locations in the hierarchy.
Use the apply-groups configuration statement or <apply-groups> tag element to insert
a configuration group at the appropriate location, achieving the same effect as directly
inserting the statements defined in the group. The section of configuration hierarchy to
which a configuration group is applied is said to inherit the group’s statements.

In addition to the groups defined at the [edit groups] hierarchy level, the Junos OS
predefines a group called junos-defaults. This group includes configuration statements
judged appropriate for basic operations on any routing, switching, or security platform.
By default, the statements in this group do not appear in the output of CLI commands
that display the configuration, nor in the output returned by the Junos XML protocol server
for the <get-configuration> tag element. For more information about user-defined
configuration groups and the junos-defaults group, see the CL/ User Guide.

The <interface-range> tag element corresponds to the [edit interfaces interface-range]
configuration hierarchy. When you configure an interface range, you specify a set of
identical interfaces as an interface group, to which you can apply a common configuration
to the entire set of interfaces. If an interface is a member of an interface range, it inherits
the configuration statements set for that range.

The following sections explain how to specify the output format for configuration elements
that are defined in configuration groups or interface ranges:

« Specifying Whether Configuration Groups and Interface Ranges Are Displayed
Separately on page 83

« Displaying the Source Group for Inherited Configuration Elements on page 84

« Examples: Specifying Output Format for Configuration Groups on page 86

« Displaying the Source Interface Range for Inherited Configuration Elements on page 89

82

Copyright © 2013, Juniper Networks, Inc.

Chapter 4: Requesting Information

Specifying Whether Configuration Groups and Interface Ranges Are Displayed
Separately

By default, the Junos XML protocol server displays the tag element for each user-defined
configuration group as a child of the <groups> tag element, instead of displaying them
as children of the elements to which they are applied. Similarly, the server displays the
tag elements for each user-defined interface range as a child of the <interface-range>
tag element, instead of displaying them as children of the interface elements that are
members of the interface range. This display mode parallels the default behavior of the
CLI configuration mode show command, which displays the [edit groups] and

[edit interfaces interface-range] hierarchies as separate hierarchies in the configuration.

To request that the Junos XML protocol server not display the <groups>, <apply-groups>,
or <interface-range> tag elements separately, but instead enclose tag elements inherited
from user-defined groups or interface ranges within the inheriting tag elements, a client
application includes the inherit="inherit" attribute in the <get-configuration/> tag or
opening <get-configuration> tag. It encloses the request in an <rpc> tag element:

<rpc>
<get-configuration inherit="inherit"/>

<I--OR-->

<get-configuration inherit="inherit" >
<!-- tag elements for the configuration elements to return -->
</get-configuration>
</rpc>

To request that the Junos XML protocol server include tag elements that are inherited
from the junos-defaults group as well as user-defined configuration groups and
interface-ranges, the client application includes the inherit="defaults" attribute in the
<get-configuration/> tag or opening <get-configuration> tag:

<rpc>
<get-configuration inherit="defaults"/>

<1--OR -->

<get-configuration inherit="defaults" >
<!-- tag elements for the configuration elements to return -->
</get-configuration>
</rpc>

Forinformation about the tag elements to enclose in the <get-configuration> tag element,

see “Specifying the Scope of Configuration Information to Return” on page 91.

When the client includes the inherit="inherit" attribute, the output includes the same
information as the output from the following CLI configuration mode command, and
does not include configuration elements inherited from the junos-defaults group:

user@host# show | display inheritance | except ##

When the client includes the inherit="defaults" attribute, the output includes the same
information as the output from the following CLI configuration mode command:

Copyright © 2013, Juniper Networks, Inc. 83

Junos XML Management Protocol Developer Guide

user@host# show | display inheritance defaults | except ##

In both cases, the Junos XML protocol server encloses its output in the <rpc-reply> tag
element and either the <configuration> tag element (for Junos XML-tagged output) or
<configuration-text> tag element (for formatted ASCII output). For information about
the attributes in the opening <configuration> tag, see “Requesting Information from the
Committed or Candidate Configuration” on page 72.

<rpc-reply xmlns:junos="URL" >
<I--EITHER -->
<configuration attributes >
<!-- Junos XML tag elements representing configuration elements -->
</configuration>

<I--OR-->

<configuration-text>
<!-- formatted ASCII configuration statements -->
</configuration-text>
</rpc-reply>

The inherit attribute can be combined with one or more of the following attributes in the
<get-configuration/> tag or opening <get-configuration> tag:

. changed, which is described in “Requesting a Change Indicator for Configuration
Elements” on page 78

. database, which is described in “Requesting Information from the Committed or
Candidate Configuration” on page 72

« format, which is described in “Requesting Output as Formatted ASCII Text or Junos
XML Tag Elements” on page 74

« groups, Which is described in “Displaying the Source Group for Inherited Configuration
Elements” on page 84

« interface-ranges, which is described in “Displaying the Source Interface Range for
Inherited Configuration Elements” on page 89

The application can also include the inherit attribute after requesting an indicator for
identifiers (as described in “Requesting an Indicator for Identifiers” on page 76).

Displaying the Source Group for Inherited Configuration Elements

To request that the Junos XML protocol server indicate the configuration group from
which configuration elements are inherited, a client application combines the
groups="groups" attribute with the inherit attribute in the <get-configuration/> tag or
opening <get-configuration> tag. It encloses the request in an <rpc> tag element:

<rpc>
<get-configuration inherit="(defaults | inherit)" groups="groups"/>

<!--OR-->
<get-configuration inherit="(defaults | inherit)" groups="groups" >

<l-- tag elements for the configuration elements to return -->
</get-configuration>

84 Copyright © 2013, Juniper Networks, Inc.

Chapter 4: Requesting Information

</rpc>

Forinformation about the tag elements to enclose in the <get-configuration> tag element,
see “Specifying the Scope of Configuration Information to Return” on page 91.

When the groups="groups" attribute is combined with the inherit="inherit" attribute, the
output includes the same information as the output from the following CLI configuration
mode command, and does not include configuration elements inherited from the
junos-defaults group:

user@host# show | display inheritance | display xml groups

When the groups="groups" attribute is combined with the inherit="defaults" attribute,
the output includes the same information as the output from the following CLI
configuration mode command:

user@host# show | display inheritance defaults

Theinherit and groups attributes can be combined with one or more of the following other
attributes in the <get-configuration/> tag or opening <get-configuration> tag:

. changed, which is described in “Requesting a Change Indicator for Configuration
Elements” on page 78.

. database, which is described in “Requesting Information from the Committed or
Candidate Configuration” on page 72.

« format, which is described in “Requesting Output as Formatted ASCI| Text or Junos
XML Tag Elements” on page 74. The application can request either Junos XML-tagged
or formatted ASCII output:

. If the output is tagged with Junos XML tag elements (the format="xml" attribute is
included or the format attribute is omitted), the Junos XML protocol server includes
the junos:group="source-group" attribute in the opening tags of configuration elements
that are inherited from configuration groups and encloses its response in
<configuration> and <rpc-reply> tag elements. For information about the attributes
in the opening <configuration> tag, see “Requesting Information from the Committed
or Candidate Configuration” on page 72.

<rpc-reply xmlns:junos="URL" >
<configuration attributes>
<!-- For each inherited element -->
<!-- opening-tags-for-parents-of-the-element -->
<inherited-element junos:group="source-group" >
<inherited-child-of-inherited-element junos:group="source-group" >
<!--inherited-children-of-child junos:group="source-group" -->
</inherited-child-of-inherited-element >
</inherited-element >
<!-- closing-tags-for-parents-of-the-element -->
</configuration>
</rpc-reply>

. If the output is formatted ASCII text (the format="text" attribute is included), the
Junos XML protocol server encloses its response in <configuration-text> and
<rpc-reply> tag elements, and inserts three commented lines immediately above
each inherited element, as in the following:

<rpc-reply xmlns:junos="URL" >

Copyright © 2013, Juniper Networks, Inc. 85

Junos XML Management Protocol Developer Guide

<configuration-text>
*/ For each inherited element */
/* parent levels for the element */
H#Hi#t
'inherited-element' was inherited from group 'source-group'
##
inherited-element {
##
'inherited-child' was inherited from group 'source-group'
##
inherited-child {
... child statements of inherited-child ...
}
1
/* closing braces for parent levels for the element */
</configuration-text>
</rpc-reply>

- interface-ranges, which is described in “Displaying the Source Interface Range for
Inherited Configuration Elements” on page 89

The application can also include the inherit and groups attributes after requesting an
indicator for identifiers (as described in “Requesting an Indicator for Identifiers” on
page 76).

Examples: Specifying Output Format for Configuration Groups

The following sample configuration hierarchy defines a configuration group called
interface-group. The apply-groups statement applies the statements in the group at the
[edit interfaces] hierarchy level:

[edit]
groups {
interface-group {
interfaces {
so-1/1/14{
encapsulation ppp;
}
1
1
1
apply-groups interface-group;
interfaces {
fxpO {
unit 0 {
family inet {
address 192.168.4.207/24;
1
}
1
1

When the inherit attribute is not included in the <get-configuration/> tag, the output
includes the <groups> and <apply-groups> tag elements as separate items. The <groups>
tag element encloses the tag elements defined in the interface-group configuration group.
The placement of the <apply-groups> tag element directly above the <interfaces> tag

86

Copyright © 2013, Juniper Networks, Inc.

Chapter 4: Requesting Information

element indicates that the [edit interfaces] hierarchy inherits the statements defined in
the interface-group configuration group.

Client Application Junos XML Protocol Server
<rpc>
<get-configuration/>
</rpc>
<rpc-reply xmins:junos="URL'>
<configuration junos:changed-seconds="seconds' \
junos:changed-localtime="timestamp">
<groups>
<name>interface-group</name>
<interfaces>
<interface>
<name>so-1/1/1</name>
<encapsulation>ppp</encapsulation>
</interface>
</interfaces>
</groups>
<apply-groups>interface-group</apply-groups>
<interfaces>
<interface>
<name>fxpO</name>
<unit>
<name>0</name>
<family>
<inet>
<address>
<name>192.168.4.207/24</name>
</address>
</inet>
</family>
</unit>
</interface>
</interfaces>
</configuration>
</rpc-reply>

T1188

When the inherit attribute is included in the <get-configuration/> tag, the <interfaces>
tag element encloses the tag elements defined in the interface-group configuration group.
The <groups> and <apply-groups> tag elements are not displayed.

Copyright © 2013, Juniper Networks, Inc. 87

Junos XML Management Protocol Developer Guide

Client Application Junos XML Protocol Server
<rpc>
<get-configuration inherit="inherit"/>
</rpc>
<rpc-reply xmins:junos="URL'>
<configuration junos:changed-seconds="seconds' \
junos:changed-localtime="timestamp">
<interfaces>
<interface>
<name>fxpO</name>
<unit>
<name>0</name>
<family>
<inet>
<address>
<name>192.168.4.207/24</name>
</address>
</inet>
</family>
</unit>
</interface>
<interface>
<name>so-1/1/1</name>
<encapsulation>ppp</encapsulation>
</interface>
</interfaces>
</configuration>
</rpc-reply>

T1189

When the groups="groups" attribute is combined with the inherit attribute in the

<get-configuration/> tag, the <interfaces> tag element encloses the tag elements defined

in the interface-group configuration group, which are marked with the
junos:group="interface-group" attribute.

Client Application Junos XML Protocol Server
<rpc>
<get-configuration inherit="inherit" groups="groups"/>
</rpc>
<rpc-reply xmins:junos="URL">
<configuration junos:changed-seconds=5econds' \
junos:changed-localtime="timestamp">
<interfaces>
<interface>
<name>fxpO</name>
<unit>
<name>0</name>
<family>
<inet>
<address>
<name>192.168.4.207/24</name>
</address>
</inet>
</family>
</unit>
</interface>
<interface junos:group="interface-group">
<name junos:group="interface-group">so-1/1/1</name>
<encapsulation junos:group="interface-group">ppp</encapsulation>
</interface>
</interfaces>
</configuration>
</rpc-reply>

T1190

Copyright © 2013, Juniper Networks, Inc.

Chapter 4: Requesting Information

Displaying the Source Interface Range for Inherited Configuration Elements

To request that the Junos XML protocol server indicate the interface range from which
configuration elements are inherited, a client application combines the
interface-ranges="interface-ranges" attribute with the inherit attribute in the
<get-configuration/> tag or opening <get-configuration> tag. It encloses the request in
an <rpc> tag element:

<rpc>
<get-configuration inherit="inherit" interface-ranges="interface-ranges"/>

<I--OR-->

<get-configuration inherit="inherit" interface-ranges="interface-ranges" >
<l-- tag elements for the configuration elements to return -->
</get-configuration>
</rpc>

Forinformation about the tag elements to enclose in the <get-configuration> tag element,
see “Specifying the Scope of Configuration Information to Return” on page 91.

When the interface-ranges="interface-ranges" attribute is combined with the
inherit="inherit" attribute, the output includes the same information as the output from
the following CLI configuration mode command:

user@host# show | display inheritance | display xml interface-ranges

The inherit and interface-ranges attributes can be combined with one or more of the
following other attributes in the <get-configuration/> tag or opening
<get-configuration> tag:

« changed, which is described in “Requesting a Change Indicator for Configuration
Elements” on page 78.

. database, which is described in “Requesting Information from the Committed or
Candidate Configuration” on page 72.

. format, which is described in “Requesting Output as Formatted ASCII Text or Junos
XML Tag Elements” on page 74. The application can request either Junos XML-tagged
or formatted ASCII output:

. If the output is tagged with Junos XML tag elements (the format="xml" attribute is
included or the format attribute is omitted), the Junos XML protocol server includes
the junos:interface-range="source-interface-range" attribute in the opening tags of
configuration elements that are inherited from an interface range and encloses its
response in <configuration> and <rpc-reply> tag elements. For information about
the attributes in the opening <configuration> tag, see “Requesting Information from
the Committed or Candidate Configuration” on page 72.

<rpc-reply xmlns:junos="URL" >
<configuration attributes>
<interfaces>
<!-- For each inherited element -->
<interface junos:interface-range="source-interface-range" >
<inherited-element junos:interface-range="source-interface-range" >

Copyright © 2013, Juniper Networks, Inc. 89

Junos XML Management Protocol Developer Guide

<inherited-child-of-inherited-element
junos:interface-range="source-interface-range" >
<!--inherited-children-of-child
junos:interface-range="source-interface-range" -->
</inherited-child-of-inherited-element >
</inherited-element >
</interface>
</interfaces>
</configuration>
</rpc-reply>

. If the output is formatted ASCII text (the format="text" attribute is included), the
Junos XML protocol server encloses its response in <configuration-text> and
<rpc-reply> tag elements:

<rpc-reply xmlns:junos="URL" >
<configuration-text>
interfaces {
<!-- For each inherited element -->
interface-name {
inherited-element {
inherited-child {
... Child statements of inherited-child ...
1
1
1
}

</configuration-text>
</rpc-reply>

« groups, which is described in “Displaying the Source Group for Inherited Configuration
Elements” on page 84

The application can alsoinclude the inherit and interface-ranges attributes after requesting
an indicator for identifiers (as described in “Requesting an Indicator for Identifiers” on
page 76).

Comparing Configuration Changes with a Prior Version

Inthe CLI, whenyou want to compare the active or candidate configuration to a previously
committed configuration, you use the compare command. In operational mode, you
compare the active configuration to a prior version using the show configuration | compare
rollback rollback-number commmand. In configuration mode, you compare the candidate
configuration to a previously committed configuration using the show | compare rollback
rollback-number command.

The compare rollback rollback-number command compares the selected configuration
with a previously committed configuration and displays the differences between the two.
The rollback-number for the most recently saved configuration is 0, and the oldest saved
configuration is 49.

90 Copyright © 2013, Juniper Networks, Inc.

Chapter 4: Requesting Information

Torequest that the Junos XML protocol server display the differences between the active
or candidate configuration and a previously committed configuration, a client application
includes the compare and rollback attributes in the <get-configuration/> tag or opening
<get-configuration> tag. It encloses the request in an <rpc> tag element:

<rpc>
<get-configuration compare="rollback" rollback="[0-49]" format="text"/>

<!--OR -->

<get-configuration compare="rollback" rollback="[0-49]" format="text">
<!-- tag elements for the configuration elements to return -->
</get-configuration>
</rpc>

The client application can include the database attribute to specify whether to compare
the active or candidate configuration to the previously committed configuration. If the
database attribute is omitted, the candidate configuration is used. If the
rollback="rollback-number" attribute is not included, rollback configuration number O is
used for comparison.

By default, the <get-configuration> operation returns Junos XML-tagged output. However,
when the compare attribute is included, the <get-configuration> operation returns the
output formatted as ASCII text even if the format="text" attribute is not present. If the
client application attempts to include the format="xml" attribute when the
compare="rollback" attribute is present, the protocol server will return an <xnm:error>
element indicating an error.

The comparison output is enclosed in the <configuration-information> and
<configuration-output> tags. The output uses the following conventions to specify the
differences between configurations:

. Statements that are only in the active or candidate configuration are prefixed with a
plus sign (+).

« Statements that are only in the comparison file are prefixed with a minus sign (-).

« Statements that are unchanged are prefixed with a single blank space ().

Specifying the Scope of Configuration Information to Return

By including the appropriate optional child tag elements in the <get-configuration> tag
element, a client application can request the entire configuration or specific portions of
the configuration, as described in the following sections:

« Requesting the Complete Configuration on page 92

« Requesting a Hierarchy Level or Container Object Without an Identifier on page 93

« Requesting All Configuration Objects of a Specified Type on page 94

» Requesting a Specified Number of Configuration Objects on page 95

« Requesting Identifiers Only on page 97

« Requesting One Configuration Object on page 99

Copyright © 2013, Juniper Networks, Inc. 91

Junos XML Management Protocol Developer Guide

« Requesting a Subset of Objects by Using Regular Expressions on page 101

» Requesting Multiple Configuration Elements Simultaneously on page 104

Requesting the Complete Configuration

Torequest the entire configuration, a client application encloses the <get-configuration/>
tagin an <rpc> tag element:

<rpc>
<get-configuration/>
</rpc>

When the application requests Junos XML-tagged output (the default), the Junos XML
protocol server returns the requested configuration in <configuration> and <rpc-reply>
tag elements. For information about the attributes in the opening <configuration> tag,
see “Requesting Information from the Committed or Candidate Configuration” on page 72.

<rpc-reply xmlns:junos="URL" >
<configuration attributes >
<!-- Junos XML tag elements for all configuration elements -->
</configuration>
</rpc-reply>

To specify the source of the output (candidate or active configuration) and request
special formatting of the output (for example, formatted ASCII text or an indicator for
identifiers), the application can include attributes in the <get-configuration/> tag, its
opening <junoscript> tag, or both. For more information, see “Specifying the Source and
Output Format of Configuration Information” on page 72.

The following example shows how to request the complete candidate configuration
tagged with Junos XML tag elements (the default). In actual output, the JUNOS-version
variable is replaced by a value such as 12.1R1 for the initial version of Junos OS Release
12.1.

Client Application Junos XML Protocol Server
<rpc>
<get-configuration/>
</rpc>
<rpc-reply xmins:junos="URL">
<configuration junos:changed-seconds="%econds' \
junos:changed-localtime="timestamp">
<version>JUNOS-versica'version>
<system>
<host-name>big-router</host-name>
<!- - other children of <system>- ->
</system>
<l- -other children of <configuration>- ->
</configuration>
</rpc-reply>

T1191

92

Copyright © 2013, Juniper Networks, Inc.

Chapter 4: Requesting Information

Requesting a Hierarchy Level or Container Object Without an Identifier

To request complete information about all child configuration elements at a hierarchy
level or in a container object that does not have an identifier, a client application emits
a <get-configuration> tag element that encloses the tag elements representing all levels
in the configuration hierarchy from the root (represented by the <configuration> tag
element) down to the level’s immediate parent level. An empty tag represents the
requested level. The entire request is enclosed in an <rpc> tag element.

<rpc>
<get-configuration>
<configuration>
<!-- opening tags for each parent of the level -->
<requested-level/>
<!I-- closing tags for each parent of the level -->
</configuration>
</get-configuration>
</rpc>

When the application requests Junos XML-tagged output (the default), the Junos XML
protocol server returns the requested section of the configuration in <configuration> and
<rpc-reply> tag elements. For information about the attributes in the opening
<configuration> tag, see “Requesting Information from the Committed or Candidate
Configuration” on page 72.

<rpc-reply xmlns:junos="URL" >
<configuration attributes>
<!-- opening tags for each parent of the level -->
<hierarchy-level >
<!-- child tag elements of the level -->
</hierarchy-level>
<!--closing tags for each parent of the level -->
</configuration>
</rpc-reply>

To specify the source of the output (candidate or active configuration) and request
special formatting of the output (for example, formatted ASCII text or an indicator for
identifiers), the application can include attributes in the opening <get-configuration> tag,
its opening <junoscript> tag, or both. For more information, see “Specifying the Source
and Output Format of Configuration Information” on page 72.

The application can also request additional configuration elements of the same or other
types by including the appropriate tag elements in the same <get-configuration> tag
element. For more information, see “Requesting Multiple Configuration Elements
Simultaneously” on page 104.

The following example shows how to request the contents of the [edit system login]
hierarchy level in the candidate configuration. The output is tagged with Junos XML tag
elements (the default).

Copyright © 2013, Juniper Networks, Inc. 93

Junos XML Management Protocol Developer Guide

Client Application Junos XML Protocol Server
<rpc>
<get-configuration>
<configuration>
<system>
<login/>
</system>
</configuration>
</get-configuration>
</rpc>
<rpc-reply xmins:junos=URL">
<configuration junos:changed-seconds="seconds' \
junos:changed-localtime="timestamp">
<system>
<login>
<user>
<name>barbara</name>
<full-name>Barbara Anderson</full-name>
<l- -other child tags for this user- ->
</user>
<!- -other children of <login>- ->
</login>
</system>
</configuration>
</rpc-reply>

T1192

Requesting All Configuration Objects of a Specified Type

To request complete information about all configuration objects of a specified type in a
hierarchy level, a client application emits a <get-configuration> tag element that encloses
the tag elements representing all levels of the configuration hierarchy from the root
(represented by the <configuration> tag element) down to the immediate parent level
for the object type. An empty tag represents the requested object type. The entire request
is enclosed in an <rpc> tag element.

This type of request is useful when the object’s parent hierarchy level has child objects
of multiple types and the application is requesting just one of the types. If the requested
object is the only possible child type, then this type of request yields the same output as
a request for the complete parent hierarchy (described in “Requesting a Hierarchy Level
or Container Object Without an Identifier” on page 93).

<rpc>
<get-configuration>
<configuration>
<!-- opening tags for each parent of the object type -->
<object-type/ >
<!--closing tags for each parent of the object type -->
</configuration>
</get-configuration>
</rpc>

When the application requests Junos XML-tagged output (the default), the Junos XML
protocol server returns the requested objects in <configuration> and <rpc-reply> tag

elements. For information about the attributes in the opening <configuration> tag, see
“Requesting Information from the Committed or Candidate Configuration” on page 72.

<rpc-reply xmlns:junos="URL" >

94

Copyright © 2013, Juniper Networks, Inc.

Chapter 4: Requesting Information

<configuration attributes >
<!-- opening tags for each parent of the object type -->
<first-object>
<!-- child tag elements for the first object -->
</first-object>
<second-object>
<!-- child tag elements for the second object -->
</second-object>
<!-- additional instances of the object -->
<!--closing tags for each parent of the object type -->
</configuration>
</rpc-reply>

To specify the source of the output (candidate or active configuration) and request
special formatting of the output (for example, formatted ASCII text or an indicator for
identifiers), the application can include attributes in the opening <get-configuration> tag,
its opening <junoscript> tag, or both. For more information, see “Specifying the Source
and Output Format of Configuration Information” on page 72.

The application can also request additional configuration elements of the same or other
types by including the appropriate tag elements in the same <get-configuration> tag
element. For more information, see “Requesting Multiple Configuration Elements
Simultaneously” on page 104.

Requesting a Specified Number of Configuration Objects

To request information about a specific number of configuration objects of a specific
type, a client application emits the <get-configuration> tag element and encloses the
tag elements that represent all levels of the configuration hierarchy from the root
(represented by the <configuration> tag element) down to the immediate parent level
for the object type. An empty tag represents the requested object type, and the following
attributes are included in it:

. count, to specify the number of objects to return

« start, to specify the index number of the first object to return (1 for the first object, 2 for
the second, and so on)

(If the application is requesting only the first object in the hierarchy, it includes the
count="1" attribute and omits the start attribute.) The application encloses the entire
request in an <rpc> tag element:

<rpc>
<get-configuration>
<configuration>
<!-- opening tags for each parent of the object -->
<object-type count="count" start="index"/>
<!--closing tags for each parent of the object -->
</configuration>
</get-configuration>
</rpc>

Copyright © 2013, Juniper Networks, Inc. 95

Junos XML Management Protocol Developer Guide

When the application requests Junos XML-tagged output (the default), the Junos XML
protocol server returns the requested objects in <configuration> and <rpc-reply> tag
elements, starting with the object specified by the start attribute and

running consecutively. In the opening container tag for each object, it includes

two attributes:

« junos:position, to specify the object’s numerical index

« junos:total, to report the total number of such objects that exist in the hierarchy

In the following, the identifier tag element is called <name>. (For information about the
attributes in the opening <configuration> tag, see “Requesting Information from the
Committed or Candidate Configuration” on page 72.)

<rpc-reply xmlns:junos="URL" >
<configuration attributes >
<!-- opening tags for each parent of the object type -->
<first-object junos:position="indexI" junos:total="total" >
<name >identifier-for-first-object</name>
<!-- other child tag elements of the first object -->
</first-object>
<second-object junos:position="index2" junos:total="total" >
<name >identifier-for-second-object</name>
<1-- other child tag elements of the second object -->
</second-object>
<!-- additional objects -->
<!--closing tags for each parent of the object type -->
</configuration>
</rpc-reply>

The junos:position and junos:total attributes do not appear if the client requests formatted
ASCII output by including the format="text" attribute in the <get-configuration> tag
element (as described in “Requesting Output as Formatted ASCI| Text or Junos XML Tag
Elements” on page 74).

To specify the source of the output (candidate or active configuration) and request
special formatting of the output (for example, formatted ASCII text or an indicator for
identifiers), the application can include attributes in the opening <get-configuration> tag,
its opening <junoscript> tag, or both. For more information, see “Specifying the Source
and Output Format of Configuration Information” on page 72.

The application can also request additional configuration elements of the same or other
types by including the appropriate tag elements in the same <get-configuration> tag
element. For more information, see “Requesting Multiple Configuration Elements
Simultaneously” on page 104.

The following example shows how to request the third and fourth Junos user accounts
at the [edit system login] hierarchy level. The output is from the candidate configuration
and is tagged with Junos XML tag elements (the default).

96 Copyright © 2013, Juniper Networks, Inc.

Chapter 4: Requesting Information

Client Application Junos XML Protocol Server
<rpc>
<get-configuration>
<configuration>
<system>
<login>
<user count="2" start="3"/>
</login>
</system>
</configuration>
</get-configuration>
</rpc>
<rpc-reply xmins:junos="URL'>
<configuration junos:changed-seconds="seconds' \
junos:changed-localtime="timestamp">
<system>
<login>
<user junos:position="3" junos:total="22">
<name>barbara</name>
<uid>1423</uid>
<class>operator</class>
</user>
<user junos:position="4" junos:total="22">
<name>carlo</name>
<uid>1426</uid>
<class>operator</class>
</user>
</login>
</system>
</configuration>
</rpc-reply>

T1193

Requesting Identifiers Only

To request just the identifier tag element for configuration objects of a specified type in
a hierarchy, a client application emits a <get-configuration> tag element that encloses
the tag elements representing all levels of the configuration hierarchy from the root
(represented by the <configuration> tag element) down to the immediate parent level
for the object type. An empty tag represents the requested object type, and the
recurse="false" attribute is included. The entire request is enclosed in an <rpc> tag
element.

To request the identifier for all objects of a specified type, the client application includes
only the recurse="false" attribute:

<rpc>
<get-configuration>
<configuration>
<!-- opening tags for each parent of the object type -->
<object-type recurse="false"/>
<!--closing tags for each parent of the object type -->
</configuration>
</get-configuration>
</rpc>

Copyright © 2013, Juniper Networks, Inc. 97

Junos XML Management Protocol Developer Guide

To request the identifier for a specified number of objects, the client application combines
the recurse="false" attribute with the count and start attributes discussed in “Requesting
a Specified Number of Configuration Objects” on page 95:

<rpc>
<get-configuration>
<configuration>
<!-- opening tags for each parent of the object type -->
<object-type recurse="false" count="count" start="index"/>
<!--closing tags for each parent of the object type -->
</configuration>
</get-configuration>
</rpc>

When the application requests Junos XML-tagged output (the default), the Junos XML
protocol server returns the requested objects in <configuration> and <rpc-reply> tag
elements. If the application has requested a specified number of objects, the junos:position
and junos:total attributes are included in the opening tag for each object, as described
in “Requesting a Specified Number of Configuration Objects” on page 95. In the following,
the identifier tag element is called <name>. (For information about the attributes in the
opening <configuration> tag, see “Requesting Information from the Committed or
Candidate Configuration” on page 72.)

<rpc-reply xmlns:junos="URL" >
<configuration attributes>
<!-- opening tags for each parent of the object type -->
<first-object [junos:position="index1" junos:total="total"]>
<name>identifier-for-first-object</name>
</first-object>
<second-object [junos:position="index2" junos:total="total"]>
<name >identifier-for-second-object</name>
</second-object>
<!-- additional instances of the object -->
<!--closing tags for each parent of the object type -->
</configuration>
</rpc-reply>

The junos:position and junos:total attributes do not appear if the client requests formatted
ASCII output by including the format="text" attribute in the <get-configuration> tag
element (as described in “Requesting Output as Formatted ASCI| Text or Junos XML Tag
Elements” on page 74).

To specify the source of the output (candidate or active configuration) and request
special formatting of the output (for example, formatted ASCII text or an indicator for
identifiers), the application can include attributes in the opening <get-configuration> tag,
its opening <junoscript> tag, or both. For more information, see “Specifying the Source
and Output Format of Configuration Information” on page 72.

The application can also request additional configuration elements of the same or other
types by including the appropriate tag elements in the same <get-configuration> tag
element. For more information, see “Requesting Multiple Configuration Elements
Simultaneously” on page 104.

98

Copyright © 2013, Juniper Networks, Inc.

Chapter 4: Requesting Information

The following example shows how to request the identifier for each interface configured
at the [edit interfaces] hierarchy level. The output is from the candidate configuration
and is tagged with Junos XML tag elements (the default).

Client Application Junos XML Protocol Server
<rpc>
<get-configuration>
<configuration>
<interfaces>
<interface recurse="false"/>
</interfaces>
</configuration>
</get-configuration>
</rpc>
<rpc-reply xmins:junos="URL'>
<configuration junos:changed-seconds="seconds' \
junos:changed-localtime="timestamp">
<interfaces>
<interface>
<name>fe-0/0/0</name>
</interface>
<interface>
<name>fxp0</name>
</interface>
<interface>
<name>lo0</name>
</interface>
</interfaces>
</configuration>
</rpc-reply>

T1194

Requesting One Configuration Object

To request information about a single configuration object, a client application emits the
<get-configuration> tag element and encloses the tag elements that represent the entire
statement path down to the object, starting with the <configuration> tag element. To
represent the requested object, the application emits only the container tag element and
identifier tag elements (each complete with the identifier value) for the object. It does
not emit tag elements that represent other object characteristics. It encloses the entire
request in an <rpc> tag element. In the following, the identifier tag element is called
name:

<rpc>
<get-configuration>
<configuration>
<!-- opening tags for each parent of the object -->
<object>
<name>identifier</name>
</object>
<!--closing tags for each parent of the object -->
</configuration>
</get-configuration>
</rpc>

Copyright © 2013, Juniper Networks, Inc. 99

Junos XML Management Protocol Developer Guide

When the client application requests Junos XML-tagged output (the default), the Junos
XML protocol server returns the requested object in <configuration> and <rpc-reply> tag
elements. For information about the attributes in the opening <configuration> tag, see
“Requesting Information from the Committed or Candidate Configuration” on page 72.

<rpc-reply xmlns:junos="URL" >
<configuration attributes >
<!-- opening tags for each parent of the object -->
<object>
<1-- child tag elements of the object -->
</object>
<!--closing tags for each parent of the object -->
</configuration>
</rpc-reply>

To specify the source of the output (candidate or active configuration) and request
special formatting of the output (for example, formatted ASCII text or an indicator for
identifiers), the application can include attributes in the opening <get-configuration> tag,
its opening <junoscript> tag, or both. For more information, see “Specifying the Source
and Output Format of Configuration Information” on page 72.

The application can also request additional configuration elements of the same or other
types by including the appropriate tag elements in the same <get-configuration> tag
element. For more information, see “Requesting Multiple Configuration Elements
Simultaneously” on page 104.

The following example shows how to request the contents of one multicasting scope
called local, which is at the [edit routing-options multicast] hierarchy level. To specify the
desired object, the client application emits the <name>local</name> identifier tag
element as the innermost tag element. The output is from the candidate configuration
and is tagged with Junos XML tag elements (the default).

100

Copyright © 2013, Juniper Networks, Inc.

Chapter 4: Requesting Information

Client Application Junos XML Protocol Server
<rpc>
<get-configuration>
<configuration>
<routing-options>
<multicast>
<scope>
<name>local</name>
</scope>
</multicast>
</routing-options>
</configuration>
</get-configuration>
</rpc>
<rpc-reply xmins:junos="URL'>
<configuration junos:changed-seconds="seconds' \
junos:changed-localtime="timestamp">
<routing-options>
<multicast>
<scope>
<name>local</name>
<prefix>239.255.0.0/16</prefix>
<interface>ip-f/p/O</interface>
</scope>
</multicast>
</routing-options>
</configuration>
</rpc-reply>

T1195

Requesting a Subset of Objects by Using Regular Expressions

To request information about only those instances of a configuration object type that
have a specified set of characters in their identifier names, a client application includes
the matching attribute with a regular expression that matches the identifier name. For
example, the application can request information about just the SONET/SDH interfaces
at the [edit interfaces] hierarchy level by specifying the characters so- at the start of the
regular expression.

Using the matching attribute enables the application to represent the objects to return
in a form similar to the XML Path Language (XPath) representation, which is described
in XML Path Language (XPath) Version 1.0, available from the World Wide Web Consortium
(W3C) at http://www.w3.org/TR/xpath . In an XPath representation, an object and its
parent levels are an ordered series of tag element names separated by forward slashes.
The angle brackets around tag element names are omitted, and the opening tag is used
to represent the entire tag element. For example, the following XPath:

configuration/system/radius-server/name

is equivalent to the following tagged representation:

<configuration>
<system>
<radius-server>
<name/>
</radius-server>
</system>
</configuration>

Copyright © 2013, Juniper Networks, Inc. 101

http://www.w3.org/TR/xpath

Junos XML Management Protocol Developer Guide

The applicationincludes the matching attribute in the empty tag that represents a parent
level for the object type. As with all requests for configuration information, the client
emits a <get-configuration> tag element that encloses the tag elements representing
all levels of the configuration hierarchy from the root (represented by the <configuration>
tag element) down to the level at which the matching attribute is included. The entire
request is enclosed in an <rpc> tag element:

<rpc>
<get-configuration>
<configuration>
<!-- opening tags for each parent of the level -->
<level matching="matching-expression"/>
<!--closing tags for each parent of the level -->
</configuration>
</get-configuration>
</rpc>

In the value for the matching attribute, each level in the XPath-like representation can
be either a full level name or a regular expression that matches the identifier name of
one or more instances of an object type:

object-type[name='regular-expression']"

The regular expression uses the notation defined in POSIX Standard 1003.2 for extended
(modern) UNIX regular expressions. Explaining regular expression syntax is beyond the
scope of this document, but Table 7 on page 102 specifies which character or characters
are matched by some of the regular expression operators that can be used in the
expression. In the descriptions, the term term refers to either a single alphanumeric
character or a set of characters enclosed in square brackets, parentheses, or braces.

e NOTE: The matching attribute is not case-sensitive.

Table 7: Regular Expression Operators for the matching Attribute

Operator Matches

. (period) One instance of any character except the space.

* (asterisk) Zero or more instances of the immediately preceding term.

+ (plus sign) One or more instances of the immediately preceding term.

? (question mark) Zero or one instance of the immediately preceding term.

| (pipe) One of the terms that appear on either side of the pipe operator.

" (caret) The start of a line, when the caret appears outside square brackets.

One instance of any character that does not follow it within square
brackets, when the caret is the first character inside square brackets.

102

Copyright © 2013, Juniper Networks, Inc.

Chapter 4: Requesting Information

Table 7: Regular Expression Operators for the matching Attribute

(continued)

$ (dollar sign) The end of a line.

[1 (paired square One instance of one of the enclosed alphanumeric characters. To
brackets) indicate a range of characters, use a hyphen (-) to separate the

beginning and ending characters of the range. For example, [a-z0-9]
matches any letter or number.

() (paired parentheses) Oneinstance of the evaluated value of the enclosed term. Parentheses
are used to indicate the order of evaluation in the regular expression.

When the application requests Junos XML-tagged output (the default), the Junos XML
protocol server returns the requested object in <configuration> and <rpc-reply> tag

elements. For information about the attributes in the opening <configuration> tag, see
“Requesting Information from the Committed or Candidate Configuration” on page 72.

<rpc-reply xmlns:junos="URL" >
<configuration attributes>
<!-- opening tags for each parent of the parent level -->
<parent-level>
<first-matching-object>
<1-- child tag elements for the first object -->
</first-matching-object>
<second-matching-object>
<!-- child tag elements for the second object -->
</second-matching-object>
<!-- additional instances of the object -->
</parent-level>
<!--closing tags for each parent of the object type -->
</configuration>
</rpc-reply>

The application can combine one or more of the count, start, and recurse attributes along
with the matching attribute, to limit the set of possible matches to a specific range of
objects, to request only identifiers, or both. For more information about those attributes,
see “Requesting a Specified Number of Configuration Objects” on page 95 and “Requesting
Identifiers Only” on page 97.

To specify the source of the output (candidate or active configuration) and request
special formatting of the output (for example, formatted ASCII text or an indicator for
identifiers), the application can include attributes in the opening <get-configuration> tag,
its opening <junoscript> tag, or both. For more information, see “Specifying the Source
and Output Format of Configuration Information” on page 72.

The application can request additional configuration elements of the same or other types
in the same <get-configuration> tag element by including the appropriate tag elements.
For more information, see “Requesting Multiple Configuration Elements Simultaneously”
on page 104.

Copyright © 2013, Juniper Networks, Inc. 103

Junos XML Management Protocol Developer Guide

The following example shows how to request just the identifier for the first two
SONET/SDH interfaces configured at the [edit interfaces] hierarchy level.

Client Application Junos XML Protocol Server
<rpc>
<get-configuration>
<configuration>
<interfaces matching="interface[name="'so-.*"]" count="2" recurse="false">
</configuration>
</get-configuration>
</rpc>
<rpc-reply xmins:junos="URL">
<configuration junos:changed-seconds="%econds' \
junos:changed-localtime="timestamp">
<interfaces>
<interface junos:position="41" junos:total="65">
<name>s0-0/0/0</name>
</interface>
<interface junos:position="42" junos:total="65">
<name>s0-0/0/1</name>
</interface>
<interfaces>
</configuration>
</rpc-reply>

T1196

Requesting Multiple Configuration Elements Simultaneously

Within a <get-configuration> tag element, a client application can request multiple
configuration elements of the same type or different types. The request includes only
one <configuration> tag element (the Junos XML protocol server returns an error if there
is more than one).

If two requested objects have the same parent hierarchy level, the client can eitherinclude
both requests within one parent tag element, or repeat the parent tag element for each
request. As an example, at the [edit system] hierarchy level the client can request the
list of configured services and the identifier tag element for RADIUS servers in either of
the following two ways:

<!-- both requests in one parent tag element -->
<rpc>
<get-configuration>
<configuration>
<system>
<services/>
<radius-server>
<name/>
</radius-server>
</system>
</configuration>
</get-configuration>
</rpc>

<!-- separate parent tag element for each request -->
<rpc>
<get-configuration>
<configuration>

104 Copyright © 2013, Juniper Networks, Inc.

Chapter 4: Requesting Information

<system>
<services/>
</system>
<system>
<radius-server>
<name/>
</radius-server>
</system>
</configuration>
</get-configuration>
</rpc>

The client can combine requests for any of the types of information discussed in the
following sections:

« Requesting a Hierarchy Level or Container Object Without an Identifier on page 93
« Requesting All Configuration Objects of a Specified Type on page 94

« Requesting a Specified Number of Configuration Objects on page 95

« Requesting Identifiers Only on page 97

« Requesting One Configuration Object on page 99

« Requesting a Subset of Objects by Using Regular Expressions on page 101

Requesting an XML Schema for the Configuration Hierarchy

Torequest an XML Schema-language representation of the entire configuration hierarchy,
a client application emits the Junos XML <get-xnm-information> tag element and its
<type>, and <namespace> child tag elements with the indicated values in an <rpc> tag
element:

<rpc>
<get-xnm-information>
<type>xml-schema</type>
<namespace>junos-configuration</namespace>
</get-xnm-information>
</rpc>

The Junos XML protocol server encloses the XML schema in <rpc-reply> and <xsd:schema>
tag elements:

<rpc-reply xmlns:junos="URL" >
<xsd:schema>
<!-- tag elements for the Junos schema -->
</xsd:schema>
</rpc-reply>

The schema represents all configuration elements available in the version of the Junos
OS that is running on a device. (To determine the Junos OS version, emit the
<get-software-information> operational request tag, which is documented in the Junos
XML API Operational Developer Reference.)

Client applications can use the schema to validate the configuration on a device, or simply
to learn which configuration statements are available in the version of the Junos OS

Copyright © 2013, Juniper Networks, Inc. 105

Junos XML Management Protocol Developer Guide

running on the device. The schema does not indicate which elements are actually
configured, or even that an element can be configured on that type of device (some
configuration statements are available only on certain device types). To request the set
of currently configured elements and their settings, emit the <get-configuration> tag
element instead, as described in “Requesting Configuration Information” on page 70.

Explaining the structure and notational conventions of the XML Schema languasge is
beyond the scope of this document. For information, see XML Schema Part O: Primer,
available from the World Wide Web Consortium (W3C) at
http://www.w3.org/TR/xmlschema-0/. The primer provides a basic introduction and lists
the formal specifications where you can find detailed information.

For further information, see the following sections:

« Creating the junos.xsd File on page 106
« Example: Requesting an XML Schema on page 107

Creating the junos.xsd File

Most of the tag elements defined in the schema returned in the <xsd:schema> tag belong
to the default namespace for Junos OS configuration elements. However, at least one
tag, <junos:comment>, belongs to a different namespace:
http://xml.juniper.net/junos/Junos-version/junos. By XML convention, a schema describes
only one namespace, so schema validators need to import information about any
additional namespaces before they can process the schema.

Starting with Junos OS Release 6.4, the <xsd:import> tag element is enclosed in the
<xsd:schema> tag element and references the file junos.xsd, which contains the required
information about the junos namespace. For example, the following <xsd:import> tag
element specifies the file for Junos OS Release 12.1R1 (and appears on two lines for
legibility only):

<xsd:import schemalLocation="junos.xsd" \
namespace="http://xml.juniper.net/junos/12.1R1/junos"/>

To enable the schema validator to interpret the <xsd:import> tag element, you must
manually create a file called junos.xsd in the directory where you place the .xsd file that
contains the complete Junos configuration schema. Include the following text in the file.
Do not use line breaks in the list of attributes in the opening <xsd:schema> tag. Line breaks
appear in the following example for legibility only. For the Junos-version variable, substitute
the release number of the Junos OS running on the device (for example, 12.1R1 for the
first release of Junos OS 12.1).

<?xml version="1.0" encoding="us-ascii"?>
<xsd:schema elementFormDefault="qualified" \
attributeFormDefault="unqualified" \
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" \
targetNamespace="http://xml.juniper.net/junos/Junos-version/junos" >
<xsd:element name="comment" type="xsd:string"/>
</xsd:schema>

106 Copyright © 2013, Juniper Networks, Inc.

http://www.w3.org/TR/xmlschema-0/

Chapter 4: Requesting Information

o NOTE: Schema validators might not be able to process the schema if they
cannot locate or open the junos.xsd file.

Whenever you change the version of Junos OS running on the device,
remember to update the Junos-version variable in the junos.xsd file to match.

Example: Requesting an XML Schema

The following examples show how to request the Junos configuration schema. In the
Junos XML protocol server’s response, the first <xsd:element> statement defines the
<undocumented> Junos XML tag element, which can be enclosed in most other container
tag elements defined in the schema (container tag elements are defined as
<xsd:complexType>).

The attributes in the opening tags of the Junos XML protocol server’s response appear
on multiple lines for legibility only. The Junos XML protocol server does not insert newline
characters within tags or tag elements. Also, in actual output the JUNOS-version variable
is replaced by a value such as 12.1R1 for the initial version of Junos OS Release 12.1.

Client Application Junos XML Protocol Server
<rpc>
<get-xnm-information>
<type>xml-schema</type>
<namespace>junos-configuration</namespace>
</get-xnm-information>
</rpc>
<rpc-reply xmins:junos="URL'>
<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema" \
elementFormDefault="qualified">
<xsd:import schemalocation="junos.xsd" \
namespace="http://xml.juniper.net/junos/ Junos-versiofjunos"/>
<xsd:element name="undocumented">
<xsd:complexType>
<xsd:sequence>
<xsd:any nhamespace="##any" processContents="skip"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:complexType name="hostname">
<xsd:simpleContent>
<xsd:extension base="xsd:string"/>
</xsd:simpleContent>
</xsd:complexType>

T1177

Another <xsd:element> statement near the beginning of the schema defines the Junos
XML <configuration> tag element. It encloses the <xsd:element> statement that defines
the <system> tag element, which corresponds to the [edit system] hierarchy level. The
statements corresponding to other hierarchy levels are omitted for brevity.

Copyright © 2013, Juniper Networks, Inc. 107

Junos XML Management Protocol Developer Guide

Client Application Junos XML Protocol Server

</xsd:element>
<xsd:element name="configuration">
<xsd:complexType>
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="undocumented"/>
<xsd:element ref="comment"/>
<xsd:element name="system" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="undocumented"/>
<xsd:element ref="comment"/>
<l- -child elements of <system> - ->
</xsd:choice >
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<!- -definitions for other hierarchy levels - ->
</xsd:choice >
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>
</rpc-reply>

T1178

Requesting a Previous (Rollback) Configuration

To request a previously committed (rollback) configuration, a client application emits
the Junos XML <get-rollback-information> tag element and its child <rollback> tag
elementinan <rpc> tag element. This operation is equivalent to the show system rollback
operational mode command. The <rollback> tag element specifies the index number of
the previous configuration to display; its value can be from 0 (zero, for the most recently
committed configuration) through 49.

To request Junos XML-tagged output, the application either includes the <format> tag
element with the value xml or omits the <format> tag element (Junos XML tag elements
are the default):

<rpc>
<get-rollback-information>
<rollback>index-number< /rollback >
</get-rollback-information>
</rpc>

The Junos XML protocol server encloses its response in <rpc-reply>,
<rollback-information>, and <configuration> tag elements. The <load-success/> tag is
aside effect of the implementation and does not affect the results. Forinformation about
the attributes in the opening <configuration> tag, see “Requesting Information from the
Committed or Candidate Configuration” on page 72.

<rpc-reply xmlns:junos="URL" >
<rollback-information>
<load-success/>
<configuration attributes >
<!-- tag elements representing the complete previous configuration -->
</configuration>

Copyright © 2013, Juniper Networks, Inc.

Chapter 4: Requesting Information

</rollback-information>
</rpc-reply>

To request formatted ASCII output, the application includes the <format> tag element
with the value text:

<rpc>
<get-rollback-information>
<rollback>index-number< /rollback >
<format>text</format>
</get-rollback-information>
</rpc>

The Junos XML protocol server encloses its response in <rpc-reply>,
<rollback-information>, <configuration-information>, and <configuration-output> tag
elements. For more information about how ASCII output is formatted, see “Requesting
Output as Formatted ASCII Text or Junos XML Tag Elements” on page 74.

<rpc-reply xmlns:junos="URL" >
<rollback-information>
<load-success/>
<configuration-information>
<configuration-output>
<l-- formatted ASCII text for the complete previous configuration -->
</configuration-output>
</configuration-information>
</rollback-information>
</rpc-reply>

The following example shows how to request Junos XML-tagged output for the rollback
configuration that has an index of 2. In actual output, the JUNOS-version variable is
replaced by a value such as 12.1R1 for the initial version of Junos OS Release 12.1.

Client Application Junos XML Protocol Server
<rpc>
<get-rollback-infomation>
<rollback>2</rollback>
</get-rollback-information>
</r pc>
<rpc-reply xmins:junos="URL">
<rollback-information>
<load-success/>
<configuration junos:changed-seconds="seconds' \
junos:changed-localtime="timestamp">
<version>JUNOS-vaion</ver sion>
<system>
<host-name>big-router</host-name>
<!- -other children of <system>- ->
</system>
<!- -other children of <configuration> - ->
</configuration>
</rollback-infor mation>
</r pc-reply>

T1197

Copyright © 2013, Juniper Networks, Inc. 109

Junos XML Management Protocol Developer Guide

Comparing Two Previous (Rollback) Configurations

To compare the contents of two previously committed (rollback) configurations, a client
application emits the Junos XML <get-rollback-information> tag element and its child
<rollback> and <compare> tag elements in an <rpc> tag element. This operation is
equivalent to the show system rollback operational mode command with the compare
option. The <rollback> tag element specifies the index number of the configuration that
is the basis for comparison. The <compare> tag element specifies the index number of
the configuration to compare with the base configuration. Valid values in both tag
elements range from 0 (zero, for the most recently committed configuration) through
49:

<rpc>
<get-rollback-information>
<rollback>index-number< /rollback >
<compare>index-number</compare>
</get-rollback-information>
</rpc>

0 NOTE: The output corresponds more logically to the chronological order of
changes if the older configuration (the one with the higher index number) is
the base configuration. Its index number is enclosed in the <rollback> tag
element, and the index of the more recent configuration is enclosed in the
<compare> tag element.

The Junos XML protocol server encloses its response in <rpc-reply>,
<rollback-information>, <configuration-information>, and <configuration-output> tag
elements. The <load-success/> tag is a side effect of the implementation and does not
affect the results.

<rpc-reply xmlns:junos="URL" >
<rollback-information>
<load-success/>
<configuration-information>
<configuration-output>
<l-- formatted ASCII text representing the changes -->
</configuration-output>
</configuration-information>
</rollback-information>
</rpc-reply>

The information in the <configuration-output> tag element is formatted ASCII text and
includes a banner line (such as [edit interfaces]) for each hierarchy level at which the
two configurations differ. Each line between banner lines begins with either a plus sign
(+) or a minus sign (-=). The plus sign indicates that adding the statement to the base
configuration results in the second configuration, whereas a minus sign means that
removing the statement from the base configuration results in the second configuration.

The following example shows how to request a comparison of the rollback configurations
that have indexes of 20 and 4.

1o

Copyright © 2013, Juniper Networks, Inc.

Chapter 4: Requesting Information

Client Application Junos XML Protocol Server
<rpc>
<get-rollback-infomation>
<rollback>20</rollback>
<compare>4</compare>
</get-rollback-information>
</r pc>
<rpc-reply xmins:junos="URL'>
<rollback-information>
<load-success/>
<configuration-information>
<configuration-output>

[edit interfaces]

- ge-0/2/0{
stacked-vlan-tagging;
- mac 00.01.02.03.04.05;
- gigether-options {

- loopback;

- }

-]

[edit]

+ services {

+ 12tp {

+ tunnel-group 12 {
+ local-gateway;
+ }

+ }

+]

</configuration-output>
</configuration-information>
</rollback-infor mation>
</r pc-reply>

T1170

Requesting the Rescue Configuration

To request the rescue configuration, a client application emits the Junos XML
<get-rescue-information> tag elementin an <rpc> tag element. This operation is equivalent
to the show system configuration rescue operational mode command.

The rescue configuration is a configuration saved in case it is necessary to restore a valid,
nondefault configuration. (To create a rescue configuration, use the Junos XML
<request-save-rescue-configuration> tag element or the request system configuration
rescue save CL| operational mode command. For more information, see the Junos XML
API Operational Developer Reference or the Junos OS Operational Mode Commands.)

To request Junos XML-tagged output, the application either includes the <format> tag
element with the value xml or omits the <format> tag element (Junos XML tag elements
are the default):

<rpc>
<get-rescue-information/>
</rpc>

Copyright © 2013, Juniper Networks, Inc. m

Junos XML Management Protocol Developer Guide

The Junos XML protocol server encloses its response in <rpc-reply>, <rescue-information>,
and <configuration> tag elements. The <load-success/> tag is a side effect of the
implementation and does not affect the results. For information about the attributes in
the opening <configuration> tag, see “Requesting Information from the Committed or
Candidate Configuration” on page 72.

<rpc-reply xmlns:junos="URL" >
<rescue-information>
<load-success/>
<configuration attributes >
<!-- tag elements representing the rescue configuration -->
</configuration>
</rescue-information>
</rpc-reply>

To request formatted ASCII output, the application includes the <format> tag element
with the value text:

<rpc>
<get-rescue-information>
<format>text</format>
</get-rescue-information>
</rpc>

The Junos XML protocol server encloses its response in <rpc-reply >, <rescue-information>,
<configuration-information>, and <configuration-output> tag elements. For more
information about how ASCII output is formatted, see “Requesting Output as Formatted
ASCII Text or Junos XML Tag Elements” on page 74.

<rpc-reply xmlns:junos="URL" >
<rescue-information>
<load-success/>
<configuration-information>
<configuration-output>
<!-- formatted ASCII text representing the rescue configuration -->
</configuration-output>
</configuration-information>
</rescue-information>
</rpc-reply>

12

Copyright © 2013, Juniper Networks, Inc.

CHAPTER S5

Changing Configuration Information

This chapter explains how to use the Junos XML management protocol along with Junos
XML or command-line interface (CLI) configuration statements to change the
configuration on a routing, switching, or security platform configuration. The Junos XML
protocol <load-configuration> tag element and its attributes correspond to configuration
mode commands in the Junos OS CLI, which are described in the CL/ User Guide. The
Junos XML tag elements described here correspond to configuration statements, which
are described in the Junos OS configuration guides.

This chapter discusses the following topics:

« Overview of Configuration Changes on page 113

« Specifying the Source and Format of New Configuration Data on page 115
« Replacing the Entire Configuration on page 119

« Creating, Modifying, or Deleting Configuration Elements on page 120

« Reordering Elements in Configuration Objects on page 135

« Renaming a Configuration Object on page 138

« Protecting or Unprotecting a Configuration Object on page 140

« Changing a Configuration Element’s Activation State on page 142

« Changing a Configuration Element’s Activation State Simultaneously with Other
Changes on page 145

Overview of Configuration Changes

To change configuration information, the client application performs the procedures
described in the indicated sections:

1. Establishes a connection to the Junos XML protocol server on the routing, switching,
or security platform, as described in “Connecting to the Junos XML Protocol Server”
on page 39.

2. OpensalJunos XML protocol session, as described in “Starting the Junos XML Protocol
Session” on page 40.

3. (Optional) Locks the candidate configuration or creates a private copy, as described
in “Locking the Candidate Configuration” on page 56 and “Creating a Private Copy of
the Configuration” on page 58. Locking the configuration prevents other users or

Copyright © 2013, Juniper Networks, Inc. n3

Junos XML Management Protocol Developer Guide

applications from changing it at the same time. Creating a private copy enables the
application to make changes without affecting the candidate or active configuration
until the copy is committed.

4. Encloses the <load-configuration> tag element in an <rpc> tag element. By including
various attributes in the <load-configuration/> tag or opening <load-configuration>
tag, the application can provide the configuration data either in a file or as a directly
loaded tag stream, and as Junos XML tag elements, formatted ASCII text, or a set of
Junos OS configuration mode commands. The client application can specify that the
configuration data completely replace the existing configuration, or the application
can specify the manner in which the Junos XML protocol server loads the data into
the existing candidate or copy. The basic syntax is as follows:

<rpc>
<!--If providing configuration data in a file -->
<load-configuration url="file" [optional attributes] />

<!--If providing configuration data in a data stream -->
<load-configuration [optional attributes] >
<!-- configuration data -->
</load-configuration>
</rpc>

5. Accepts the tag stream emitted by the Junos XML protocol server in response to each
request and extracts its content, as described in “Parsing the Junos XML Protocol
Server Response” on page 51.

The Junos XML protocol server confirms that it incorporated the configuration data
by returning the <load-configuration-results> tag element and <load-success/> tag
in the <rpc-reply> tag element:

<rpc-reply xmlns:junos="URL" >
<load-configuration-results>
<load-success/>
</load-configuration-results >
</rpc-reply>

If the load operation fails, the <load-configuration-results> tag element instead
encloses the <load-error-count> tag element, which indicates the number of errors
that occurred. In this case, the application or an administrator must eliminate the
errors before committing the configuration.

<rpc-reply xmlns:junos="URL" >
<load-configuration-results>
<load-error-count>count</load-error-count>
</load-configuration-results>
</rpc-reply>

6. (Optional) Verifies the syntactic correctness of a configuration before attempting to
commitit,asdescribedin “Verifying a Configuration Before Committing It” on page 151.

7. Commits changes made to the configuration, as described in
“Committing a Configuration” on page 151.

N4 Copyright © 2013, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

8. Unlocks the candidate configuration if it is locked, as described in “Unlocking the
Candidate Configuration” on page 57. Other users and applications cannot change
the configuration while it remains locked.

9. Ends the Junos XML protocol session and closes the connection to the device, as
described in “Ending a Junos XML Protocol Session and Closing the Connection” on
page 59.

Specifying the Source and Format of New Configuration Data

A client application can provide new configuration data eitherin a file or as a data stream,
and as Junos XML tag elements, formatted ASCII text, or a set of Junos OS configuration
mode commands. See the following sections:

« Providing Configuration Data in a File on page 115
« Providing Configuration Data as a Data Stream on page 116

« Defining the Configuration Data Format on page 117

Providing Configuration Data in a File

To provide new configuration data in a file, a client application encloses the
<load-configuration/> tag with the url attribute in an <rpc> tag element.

If the data is Junos XML tag elements, either include the format="xml" attribute or omit
the format attribute, which defaults to XML.

<rpc>
<load-configuration url="file-location"/ >
</rpc>

If the data is formatted ASCI| text, include the format="text" attribute.

<rpc>
<load-configuration url="file-location" format="text"/>
</rpc>

If the data is a set of configuration mode commands, include the action="set" and
format="text" attributes.

<rpc>
<load-configuration url="file-location" action="set" format="text"/>
</rpc>

Before loading the file, the client application or an administrator saves the configuration
data as the contents of the file. Enclose Junos XML tag elements in a <configuration>
tag element. Formatted ASCII text and sets of configuration mode commands are not
enclosed in <configuration-text> or <configuration-set> tag elements in the file. For
information about the syntax for the data in the file, see “Defining the Configuration Data
Format” on page 117.

The value of the url attribute can be a local file path, an FTP location, or a Hypertext
Transfer Protocol (HTTP) URL:

« Alocal filename can have one of the following forms:

Copyright © 2013, Juniper Networks, Inc. 15

Junos XML Management Protocol Developer Guide

- /path/filename—File on a mounted file system, either on the local flash disk or on
hard disk.

- a:filename or a:path/filename—File on the local drive. The default pathis /7 (the
root-level directory). The removable media can be in MS-DOS or UNIX (UFS) format.

« Afilename on an FTP server has the following form:
ftp://username:password @hostname/path/filename
« Afilename on an HTTP server has the following form:

http://username:password@hostname/path/filename

In each case, the default value for the path variable is the home directory for the username.
To specify an absolute path, the application starts the path with the characters %?2F; for
example, ftp://username:password@hostname/%2Fpath/filename.

The url attribute can be combined with one or more of the following attributes in the
<load-configuration/> tag:

. format, which is described in “Defining the Configuration Data Format” on page 117.

« action, which is described in “Replacing the Entire Configuration” on page 119 and the
subsections of “Creating, Modifying, or Deleting Configuration Elements” on page 120.

The following example shows how to incorporate Junos XML-tagged configuration data
stored in the file /var/configs/user-accounts on the FTP server called
cfg-server.mycompany.com. The opening <load-configuration> tag appears on two lines
for legibility only.

Client Application Junos XML Protocol Server
<rpc>
<load-configuration \
url="ftp://admin:AdminPwd @ cfg-server.mycompany.com/var/configs/user-accounts"/>
</rpc>
<rpc-reply xmins:junos="URL">
<load-configuration-results>
<load-success/>
</load-configuration-results>
</rpc-reply>

T1179

Providing Configuration Data as a Data Stream

To provide new configuration data as a data stream, a client application encloses the
<load-configuration> tag element in an <rpc> tag element.

To define the configuration elements to change as Junos XML tag elements, the
application emits the tag elements representing all levels of the configuration hierarchy
from the root (represented by the <configuration> tag element) down to each element
to change.

<rpc>
<load-configuration>
<configuration>
<1-- tag elements representing the configuration data -->
</configuration>
</load-configuration>

16 Copyright © 2013, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

</rpc>

To define the configuration elements to change as formatted ASCII text, the application
encloses them in a <configuration-text> tag element and includes the format="text"
attribute in the opening <load-configuration> tag.

<rpc>
<load-configuration format="text" >
<configuration-text>
/* formatted ASCII configuration data */
</configuration-text>
</load-configuration>
</rpc>

To define the configuration elements to change as a set of Junos OS configuration mode
commands, the application encloses them in a <configuration-set> tag element and
includes the action="set" and format="text" attributes in the opening
<load-configuration> tag.

<rpc>
<load-configuration action="set" format="text">
<configuration-set>
/* configuration mode commands */
</configuration-set>
</load-configuration>
</rpc>

For information about the syntax for Junos XML tag elements, formatted ASCII text, and
configuration mode commands see “Defining the Configuration Data Format” on page 117.

Defining the Configuration Data Format

As discussed in “Providing Configuration Data in a File” on page 115 and “Providing
Configuration Data as a Data Stream” on page 116, a client application can provide new
configuration data to the Junos XML protocol server either in a file or as a data stream
emitted during the Junos XML protocol session. In both cases, it can use Junos XML tag
elements, formatted ASCII text, or sets of configuration mode commands to define the
new configuration data.

If the application uses Junos XML tag elements, it includes the tag elements representing
all levels of the configuration hierarchy from the root (the <configuration> tag element)
down to each new or changed element. The notation is the same as that used to request
configurationinformation, andis described indetail in “Overview of Configuration Changes”
on page 113.

<configuration>
<!-- tag elements representing the configuration data -->
</configuration>

If the application provides the new data as formatted ASCII text, it uses the standard
Junos OS CLI notation to indicate the hierarchical relationships between configuration
statements—the newline character, tabs and other white space, braces, and square
brackets. For each new or changed element, the complete statement path is specified,
starting with the top-level statement that appears directly under the [edit] hierarchy
level.

Copyright © 2013, Juniper Networks, Inc. n7

Junos XML Management Protocol Developer Guide

When ASCI| text is provided as a data stream, it is enclosed in the <configuration-text>
tag element:

<configuration-text>
/* formatted ASCII configuration statements */
</configuration-text>

When ASClI text is provided in a previously saved file, the <configuration-text> tag element
is not included in the file.

When providing new data as ASCII text, the application also includes the format="text"
attribute in the <load-configuration/> tag or opening <load-configuration> tag.

<rpc>
<load-configuration url="file-location" format="text"/>
</rpc>

<rpc>
<load-configuration format="text" >
<configuration-text>
/* formatted ASCII configuration data */
</configuration-text>
</load-configuration>
</rpc>

Starting with Junos OS Release 11.4, you can provide the data as a set of configuration
mode commands. Junos OS executes these configuration instructions line by line. For
each element, you can specify the complete statement path in the command, or you can
use navigation commands, such as edit and up, to move around the configuration hierarchy
as you would in CLI configuration mode.

When a set of configuration mode commands is provided as a data stream, it is enclosed
in the <configuration-set> tag element.

<configuration-set>
/* configuration mode commands */
</configuration-set>

When a set of configuration mode commands is provided in a previously saved file, the
<configuration-set> tag element is not included in the file.

When providing new data as a set of configuration mode commands, the application
also includes the action="set" and format="text" attributes in the <load-configuration/>
tag or opening <load-configuration> tag.

<rpc>
<load-configuration url="file-location" action="set" format="text"/>
</rpc>

<rpc>
<load-configuration action="set" format="text">
<configuration-set>
/* configuration mode commands to load */
</configuration-set>
</load-configuration>
</rpc>

18

Copyright © 2013, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

The format attribute can be combined with one or more of the following attributes:

« url, which is discussed in “Providing Configuration Data in a File” on page 115.

« action, which is discussed in “Replacing the Configuration with New Data” on page 119
and the subsections of “Creating, Modifying, or Deleting Configuration Elements” on
page 120.

For reference pages for the <configuration>, <configuration-text>, and <configuration-set>
tag elements, see the Junos XML API Operational Developer Reference.

Replacing the Entire Configuration

A client application can completely replace the current candidate configuration or a
private copy of it, either with new data or by rolling back to a previous configuration. See
the following sections:

« Replacing the Configuration with New Data on page 119
« Rolling Back to a Previous or Rescue Configuration on page 120

For instructions about modifying individual configuration elements, see “Creating,
Modifying, or Deleting Configuration Elements” on page 120.

Replacing the Configuration with New Data

To discard the entire candidate configuration or private copy and replace it with new
configuration data, a client application includes the action="override" attribute in the
<load-configuration/> tag or opening <load-configuration> tag:

<rpc>
<!--For a file -->
<load-configuration action="override" url="file" [format="text"]/>

<!-- For a data stream -->
<load-configuration action="override" [format="text"]>
<!-- configuration data -->
</load-configuration>
</rpc>

For more information about the url and format attributes and the syntax for the new
configuration data, see “Specifying the Source and Format of New Configuration Data”
on page 115.

The following example shows how to specify that the contents of the file /tmp/new.conf
replace the entire candidate configuration. The file contains Junos XML tag elements
(the default), so the format attribute is omitted.

Copyright © 2013, Juniper Networks, Inc. 19

Junos XML Management Protocol Developer Guide

Client Application Junos XML Protocol Server
<rpc>

<load-configuration action="override" url="/tmp/new.conf"/>
</rpc>

<rpc-reply xmins:junos="URL">
<load-configuration-results>
<load-success/>
</load-configuration-results>
</rpc-reply>

Rolling Back to a Previous or Rescue Configuration

The routing, switching, or security platform stores a copy of the most recently committed
configuration and up to 49 additional previous configurations. To replace the candidate
configuration or private copy with a previously committed configuration, a client
applicationincludes the rollback="index" attribute in the <load-configuration/> tag, where
index is the numerical index of the appropriate previous configuration. The index for the
most recently committed configuration is O (zero), and the index for the oldest possible
previous configuration is 49.

<rpc>
<load-configuration rollback="index" >
</rpc>

To replace the configuration with the rescue configuration, include the rescue="rescue"

attribute in the <load-configuration/> tag.

<rpc>
<load-configuration rescue="rescue"/>
</rpc>

For more information about rollback and rescue configurations, see the CL/ User Guide.

Creating, Modifying, or Deleting Configuration Elements

In addition to replacing the entire configuration (as described in “Replacing the Entire
Configuration” on page 119), a client application can create, modify, or delete one or more
configuration elements (hierarchy levels and configuration objects) in the candidate
configuration or a private copy.

To use Junos XML tag elements to represent an element, the application includes the
tag elements representing all levels in the configuration hierarchy from the root
(represented by the <configuration> tag element) down to the element’s container tag
element. Which attributes and child tag elements are included depends on the operation
being performed on the element. The syntax applies both to the contents of a file and
to a data stream. In the following, the identifier tag element is called <name>:

<configuration>
<!-- opening tag for each parent of the element -->
<container-tag [operation-attribute="value"]>
<name>identifier</name> <!-- if the element has an identifier -->
<!-- other child tag elements --> <!-- if appropriate for the operation -->
</container-tag>
<!--closing tag for each parent of the element -->
</configuration>

120

Copyright © 2013, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

To use formatted ASCII text to represent an element, the application includes the
complete statement path, starting with a statement that can appear directly under the
[edit] hierarchy level. The attributes and child statements to include depend on the
operation being performed on the element. The set of statements is enclosed in a
<configuration-text> tag element when the application provides a data stream. When
saving statements to a file for later loading, omit the <configuration-text> tag element.

<configuration-text>
/* statements for parent levels of the element */
operation-to-perform: # if appropriate
element identifier { # if the element has an identifier
/* child statements */ # if appropriate for the operation

}
/* closing braces for parent levels for the element */
</configuration-text>

When loading formatted ASCII text, the application includes the format="text" attribute
in the <load-configuration/> tag or opening <load-configuration> tag.

To use a set of configuration mode commands to create, modify, or delete an element,
the application includes commands as they would be typed in configuration mode in the
CLI. The configuration instructions are executed in the order provided. You can specify
the complete statement path in the command, or you can use CLI navigation commands
such as edit and up, to move around the configuration hierarchy.

The set of commands is enclosed in a <configuration-set> tag element when the
application provides a data stream. When saving statements to a file for later loading,
omit the <configuration-set> tag element.

<configuration-set>
/* configuration mode commands */
</configuration-set>

When loading a set of configuration mode commands, the application includes the
action="set" and format="text" attributes in the <load-configuration/> tag or opening
<load-configuration> tag.

For more information about the source and formatting for configuration elements, see
“Specifying the Source and Format of New Configuration Data” on page 115.

For information about the operations a client application can perform on configuration
elements, see the following sections:

« Merging Configuration Elements on page 122

« Replacing Configuration Elements on page 125

« Creating New Configuration Elements on page 127

« Replacing Configuration Elements Only If They Have Changed on page 128

« Deleting Configuration Elements on page 129

Copyright © 2013, Juniper Networks, Inc. 121

Junos XML Management Protocol Developer Guide

Merging Configuration Elements

By default, the Junos XML protocol server merges loaded configuration data into the
candidate configuration according to the following rules. (The rules also apply to a private
copy of the configuration, but for simplicity the following discussion refers to the candidate
configuration only.)

« A configuration element (hierarchy level or configuration object) that exists in the
candidate but not in the loaded configuration remains unchanged.

« Aconfiguration element that exists in the loaded configuration but not in the candidate
is added to the candidate.

« If a configuration element exists in both configurations, the semantics are as follows:

- If achild statement of the configuration element (represented by a child tag element)
exists in the candidate but not in the loaded configuration, it remains unchanged.

- If a child statement exists in the loaded configuration but not in the candidate, it is
added to the candidate.

- Ifachild statement exists in both configurations, the value in the loaded configuration
replaces the value in the candidate.

Merge mode is the default mode for new configuration elements, so the application
simply emits the <load-configuration> tag element in an <rpc> tag element:

<rpc>
<!--For a file -->
<load-configuration url="file" [format="text"]/>

<!-- For a data stream -->
<load-configuration [format="text"]>
<!-- configuration data -->
</load-configuration>
</rpc>

For more information about the url and format attributes, see “Specifying the Source and
Format of New Configuration Data” on page 115.

To explicitly specify merge mode, the application can include the action="merge" attribute
in the <load-configuration/> tag or opening <load-configuration> tag, as shown in the
examples at the end of this section.

If using Junos XML tag elements to represent the element to merge into the configuration,
the application includes the basic tag elements described in “Creating, Modifying, or
Deleting Configuration Elements” on page 120. It does not include any attributes in the
element’s container tag. If adding or changing the value of a child element, the application
includes the tag elements for it. If a child remains unchanged, it does not need to be
included in the loaded configuration. In the following, the identifier tag element is called
<name>:

<configuration>
<!-- opening tag for each parent of the element -->
<container-tag>

122 Copyright © 2013, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

<name>identifier</name> <!-- if the element has an identifier -->
<1-- tag elements for other children, if any -->
</container-tag>
<!-- closing tag for each parent of the element -->
</configuration>

If using formatted ASCII text, the application includes the statement path described in
“Creating, Modifying, or Deleting Configuration Elements” on page 120. It does not include
a preceding operator, but does include the element’s identifier if it has one. If adding or
changing the value of a child element, the application includes the tag elements for it. If
a child remains unchanged, it does not need to be included in the loaded configuration.

<configuration-text>
/* statements for parent levels of the element */
element identifier {
/* child statements if any */
}
/* closing braces for parent levels for the element */
</configuration-text>

If using configuration mode commands to merge new elements, the application includes
the action="set" attribute in the <load-configuration/> tag or opening <load-configuration>
tag, as shown in the examples at the end of this section. The application includes the set
command, the statement path to the element, and the element’s identifier if it has one.
If adding or changing the value of a child element, the application includes the child
elements or statements in the command. If a child remains unchanged, it does not need
to be included.

<configuration-set>
set statement-path-to-element element identifier child-elements-or-statements

</configuration-set>

The following example shows how to merge in a new interface called so-3/0/0 at the
[editinterfaces] hierarchy level in the candidate configuration. The informationis provided
as Junos XML tag elements (the default).

Copyright © 2013, Juniper Networks, Inc. 123

Junos XML Management Protocol Developer Guide

Client Application Junos XML Protocol Server
<rpc>
<load-configuration action="merge">
<configuration>
<interfaces>
<interface>
<name>so-3/0/0</name>
<unit>
<family>
<inet>
<address>
<name>10.0.0.1/8</name>
</address>
</inet>
</family>
</unit>
</interface>
</interfaces>
</configuration>
</load-configuration>
</rpc>
<rpc-reply xmins:junos="URL'>
<load-configuration-results>
<load-success/>
</load-configuration-results>
</rpc-reply>

—
™
-
-
—

The following example shows how to use formatted ASCI| text to define the same
new interface.

Client Application Junos XML Protocol Server
<rpc>
<load-configuration action="merge" format="text">
<configuration-text>
interfaces {
s0-3/0/0 {
unit 0 {
family inet {
address 10.0.0.1/8;
}
}
}
}

</configuration-text>
</load-configuration>
</rpc>

<rpc-reply xmins:junos="URL'>

<load-configuration-results>
<load-success/>

</load-configuration-results>

</rpc-reply>

T1132

The following example shows how to use configuration mode commands to define the
same new interface.

124 Copyright © 2013, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

Client Application Junos XML Protocol Server
<rpc>
<load-configuration action="set" format="text">
<configuration-set>
set interfaces s0-3/0/0 unit O family inet address 10.0.0.1/8
</configuration-set>
</load-configuration>
</rpc>
<rpc-reply xmins:junos="URL'>
<load-configuration-results>
<load-success/>
</load-configuration-results>
</rpc-reply>

T1148

Replacing Configuration Elements

To replace individual configuration elements (hierarchy levels or configuration objects),
aclient application emits the <load-configuration> tag element with the action="replace"
attribute in an <rpc> tag element:

<rpc>
<!--For a file -->
<load-configuration action="replace" url="file" [format="text"]/>

<l-- For a data stream -->
<load-configuration action="replace" [format="text"]>
<!-- configuration data -->
</load-configuration>
</rpc>

For more information about the url and format attributes, see “Providing Configuration
Data in a File” on page 115.

To use Junos XML tag elements to define the replacement, the application includes the
basic tag elements described in “Creating, Modifying, or Deleting Configuration Elements”
on page 120. Within the container tag, it includes the same child tag elements as fora new
element: each of the replacement’s identifier tag elements (if it has them) and all child
tag elements being defined for the replacement element. In the following, the identifier
tag element is called <name>. The application also includes the replace= “replace”
attribute in the opening container tag:

<configuration>
<!-- opening tag for each parent of the element -->
<container-tag replace="replace" >
<name>identifier</name>
<!-- tag elements for other children, if any -->
</container-tag>
<!--closing tag for each parent of the element -->
</configuration>

Copyright © 2013, Juniper Networks, Inc. 125

Junos XML Management Protocol Developer Guide

To use formatted ASCII text to represent the element, the application includes the
complete statement path described in “Creating, Modifying, or Deleting Configuration
Elements” on page 120. As for a new element, it includes each of the replacement’s
identifiers (if it has them) and all child statements (with values if appropriate) that it is
defining for the replacement. It places the replace: statement above the element’s
container statement.

<configuration-text>
/* statements for parent levels of the element */
replace:
element identifier {
/* child statements if any */
1
/* closing braces for parent levels for the element */
</configuration-text>

The following example shows how to grant new permissions for the object named operator
at the [edit system login class] hierarchy level. The information is provided in Junos
XML-tagged format (the default).

Client Application Junos XML Protocol Server
<rpc>
<load-configuration action="replace">
<configuration>
<system>
<login>
<class replace="replace">
<name>operator</name>
<permissions>configure</permissions>
<permissions>admin-control</permissions>
</class>
</login>
</system>
</configuration>
</load-configuration>
</rpc>
<rpc-reply xmins:junos="URL">
<load-configuration-results>
<load-success/>
</load-configuration-results> 3
</rpc-reply> r

T

The following example shows how to use formatted ASCII text to make the same change.

126 Copyright © 2013, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

Client Application Junos XML Protocol Server
<rpc>
<load-configuration action="replace" format="text">
<configuration-text>
system {
login {
replace:
class operator {
permissions [configure admin-control J;
}
}
}

</configuration-text>
</load-configuration>
</rpc>

<rpc-reply xmins:junos="URL">

<load-configuration-results>
<load-success/>

</load-configuration-results>

</rpc-reply>

T1136

Creating New Configuration Elements

To create new configuration elements (hierarchy levels or configuration objects), a client
applicationincludes the basic tag elements, formatted ASCII statements, or configuration
mode commands described in “Creating, Modifying, or Deleting Configuration Elements”
on page 120.

For Junos XML tag elements and formatted ASCII text, new elements can be created in
either merge mode or replace mode, which are described in “Merging Configuration
Elements” on page 122 and “Replacing Configuration Elements” on page 125. In replace
mode, the applicationincludes the action="replace" attribute in the <load-configuration/>
tag or opening <load-configuration> tag.

To use Junos XML tag elements to represent the element, the application includes each
of the element’s identifier tag elements (if it has them) and all child tag elements being
defined for the element. In the following, the identifier tag element is called <name>. The
application does not need to include any attributes in the opening container tag for the
new element:

<configuration>
<!-- opening tag for each parent of the element -->
<container-tag>
<name>identifier</name>
<!-- tag elements for other children, if any -->
</container-tag>
<!--closing tag for each parent of the element -->
</configuration>

To use formatted ASCII text to represent the element, the application includes each of
the element’s identifiers (if it has them) and all child statements (with values if
appropriate) that it is defining for the element. It does not need to include an operator
before the new element:

<configuration-text>
/* statements for parent levels of the element */

Copyright © 2013, Juniper Networks, Inc. 127

Junos XML Management Protocol Developer Guide

element identifier {
/* child statements if any */
1
/* closing braces for parent levels for the element */
</configuration-text>

To use configuration mode commands to create new elements, the application includes
the action="set" attribute in the <load-configuration/> tag or opening <load-configuration>
tag. The application includes the set command as it would be executed in the CLI. The
command includes the statement path to the element, the element’s identifier if it has
one, and all child statements (with values if appropriate) that it is defining for the element.

<configuration-set>
set statement-path-to-element element identifier child-elements
</configuration-set>

Replacing Configuration Elements Only If They Have Changed

To replace configuration elements (hierarchy levels and configuration objects) only if
they differ in the loaded configuration and the candidate configuration or private copy,
the application emits the <load-configuration> tag element with the action="update"
attribute in an <rpc> tag element:

<rpc>
<!I--For a file -->
<load-configuration action="update" url="file" [format="text"]/>

<!-- For a data stream -->
<load-configuration action="update" [format="text"]>
<!-- configuration data -->
</load-configuration>
</rpc>

For more information about the url and format attributes, see “Specifying the Source and
Format of New Configuration Data” on page 115.

This operation is equivalent to the Junos OS CLI load update configuration mode
command. The Junos configuration management software compares the two
configurations. Each configuration element that is different in the loaded configuration
replaces its corresponding element in the existing configuration. Elements that are the
same in both configurations, or exist only in the existing configuration, remain unchanged.
When the configuration is later committed, only system processes that are affected by
the changed configuration elements parse the new configuration.

To represent the replacement elements, the application uses the same syntax as for
new elements, as described in “Creating New Configuration Elements” on page 127. In the
following, the identifier tag element is called <name>:

<configuration>
<!-- opening tag for each parent of the element -->
<container-tag>
<name>identifier</name>
<!-- tag elements for other children, if any -->
</container-tag>
<!--closing tag for each parent of the element -->
</configuration>

128

Copyright © 2013, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

OR

<configuration-text>
/* statements for parent levels of the element */
element identifier {
/* child statements if any */

1
/* closing braces for parent levels for the element */
</configuration-text>

The following example shows how to update the candidate configuration with the
contents of the file /tmp/new.conf (which resides on the device). The file contains a
complete configuration represented as Junos XML tag elements (the default), so the
format attribute is omitted.

Client Application Junos XML Protocol Server
<rpc>

<load-configuration action="update" url="/tmp/new.conf"/>
</rpc>

<rpc-reply xmins:junos="URL">
<load-configuration-results>
<load-success/>
</load-configuration-results>
</rpc-reply>

T1134

Deleting Configuration Elements

To delete configuration elements (hierarchy levels or configuration objects) from the
candidate configuration or private copy, a client application emits the basic tag elements
describedin “Creating, Modifying, or Deleting Configuration Elements” on page 120. When
using Junos XML tag elements to represent the elements to delete, the client application
includes the delete="delete" attribute in the opening tag for each element. When using
configuration mode commands to delete elements, the client application uses the delete
command and specifies the path to the element. When using formatted ASCII text, the
client application precedes each element to delete with the delete: operator. The
placement of the attribute or operator depends on the type of element being deleted,
as described in the following sections:

« Deleting a Hierarchy Level or Container Object on page 129
« Deleting a Configuration Object That Has an Identifier on page 130
» Deleting a Single-Value or Fixed-Form Option from a Configuration Object on page 132

« Deleting Values from a Multivalue Option of a Configuration Object on page 133

Deleting a Hierarchy Level or Container Object

To delete a hierarchy level and all of its children (or a container object that has children
but no identifier), a client application includes the basic tag elements or configuration
statements for its parent levels, as described in “Creating, Modifying, or Deleting
Configuration Elements” on page 120.

Copyright © 2013, Juniper Networks, Inc. 129

Junos XML Management Protocol Developer Guide

If using Junos XML tag elements, the application includes the delete="delete" attribute
in the empty tag that represents the level or container object:

<configuration>
<!-- opening tag for each parent level -->
<level-or-object delete="delete"/>
<!--closing tag for each parent level -->
</configuration>

If using formatted ASCII text, the application places the delete: statement above the
level to be removed, which is followed by a semicolon (even though in the existing
configuration it is followed by curly braces that enclose its child statements):

<configuration-text>
/* statements for parent levels */
delete:
object-or-level;
/* closing braces for parent levels */
</configuration-text>

If using configuration mode commands, the application specifies the delete command
and the statement path to the hierarchy level to be removed.

<configuration-set>
delete statement-path-to-hierarchy
</configuration-set>

The following example shows how to remove the [edit protocols ospf] hierarchy level
from the candidate configuration using Junos XML tag elements:

Client Application Junos XML Protocol Server
<rpc>
<load-configuration>
<configuration>
<protocols>
<ospf delete="delete"/>
</protocols>
</configuration>
</load-configuration>
</r pc>
<rpc-reply xmins:junos="URL">
<load-configuration-results>
<load-success/>
</load-configuration-results>
</r pc-reply>

T1137

Deleting a Configuration Object That Has an Identifier

To delete a configuration object that has an identifier, a client application includes the
basic tag elements or configuration statements for its parent levels, as described in
“Creating, Modifying, or Deleting Configuration Elements” on page 120.

130 Copyright © 2013, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

If using Junos XML tag elements, the application includes the delete="delete" attribute
in the opening tag for the object. In the container tag element for the object, it encloses
only the identifier tag element, not tag elements that represent any other characteristics
of the object. In the following, the identifier tag element is called <name>:

<configuration>
<!-- opening tag for each parent of the object -->
<object delete="delete" >
<name>identifier</name>
</object>
<!--closing tag for each parent of the object -->
</configuration>

0 NOTE: The delete attribute appears in the opening container tag, not in the
identifier tag element. The presence of the identifier tag element results in
the removal of the specified object, not in the removal of the entire hierarchy
level represented by the container tag element.

If using formatted ASCII text, the application places the delete: statement above the
object and its identifier:

<configuration-text>
/* statements for parent levels of the object */
delete:
object identifier;
/* closing braces for parent levels of the object */
</configuration-text>

If using configuration mode commands, the application specifies the delete command,
the statement path to the object, and the object and its identifier.

<configuration-set>
delete statement-path-to-object object identifier
</configuration-set>

The following example uses Junos XML tag elements to remove the user object barbara
from the [edit system login user] hierarchy level in the candidate configuration.

Copyright © 2013, Juniper Networks, Inc. 131

Junos XML Management Protocol Developer Guide

Client Application Junos XML Protocol Server
<rpc>
<load-configuration>
<configuration>
<system>
<login>
<user delete="delete">
<name>barbara</name>
</user>
</login>
</system>
</configuration>
</load-configuration>
</rpc>
<rpc-reply xmins:junos="URL'>
<load-configuration-results>
<load-success/>
</load-configuration-results>
</rpc-reply>

T1138

Deleting a Single-Value or Fixed-Form Option from a Configuration Object

To delete from a configuration object either a fixed-form option or an option that takes
just one value, a client application includes the basic tag elements or configuration
statements for its parent levels, as described in “Creating, Modifying, or Deleting
Configuration Elements” on page 120. (For information about deleting an option that can
take multiple values, see “Deleting Values from a Multivalue Option of a Configuration
Object” on page 133.)

If using Junos XML tag elements, the application includes the delete="delete" attribute
in the empty tag for each option. It does not include tag elements for children that are
to remain in the configuration. In the following, the identifier tag element for the object
is called <name>:

<configuration>
<l-- opening tag for each parent of the object -->
<object>
<name>jdentifier</name> <!-- if the object has an identifier -->
<optionl delete="delete"/>
<option2 delete="delete"/>
<1-- tag elements for other options to delete -->
</object>
<!--closing tag for each parent of the object -->
</configuration>

If using formatted ASCII text, the application places the delete: statement above
each option:

<configuration-text>
/* statements for parent levels of the object */
object identifier;
delete:
optionl;
delete:
option2;
/* closing braces for parent levels of the object */

Copyright © 2013, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

</configuration-text>

If using configuration mode commands, the application specifies the delete command,
the statement path to the option, and the option to be removed. You can specify the full
path to the option statement or navigate to the hierarchy level of the object and delete
the option statement from that location. Use a separate command to delete each option.

<configuration-set>
delete statement-path-to-object object identifier optionl
delete statement-path-to-object object identifier option2
</configuration-set>

<configuration-set>
edit statement-path-to-object object identifier
delete option]
delete option2

</configuration-set>

The following example shows how to remove the fixed-form disable option at the
[edit forwarding-options sampling] hierarchy level using Junos XML tag elements.

Client Application Junos XML Protocol Server
<rpc>
<load-configuration>
<configuration>
<forwarding-options>
<sampling>
<disable delete="delete"/>
</sampling>
</forw arding-options>
</configuration>
</load-configuration>
</r pc>
<rpc-reply xmins:junos="URL">
<load-configuration-results>
<load-success/>
</load-configuration-results>
</r pc-reply>

T1140

Deleting Values from a Multivalue Option of a Configuration Object

As described in “Mapping Configuration Statements to Junos XML Tag Elements” on
page 17, some Junos configuration objects are leaf statements that have multiple values.
In the formatted ASCII CLI representation, the values are enclosed in square brackets
following the name of the object:

object [valuel value2 value3 ...];

The Junos XML representation does not use a parent tag for the object, but instead uses
a separate instance of the object tag element for each value. In the following, the identifier
tag element is called <name>:

<parent-object>
<name>identifier</name>
<object>valuel</object>
<object>value2</object>
<object>value3</object>

</parent-object>

Copyright © 2013, Juniper Networks, Inc. 133

Junos XML Management Protocol Developer Guide

To remove one or more values for such an object, a client application includes the basic
tag elements or configuration statements for its parent levels, as described in “Creating,
Modifying, or Deleting Configuration Elements” on page 120. If using Junos XML tag
elements, the application includes the delete="delete" attribute in the opening tag for
each value. It does not include tag elements that represent values to be retained. In the
following, the identifier tag element for the parent object is called <name>:

<configuration>
<!-- opening tag for each parent of the parent object -->
<parent-object>
<name>identifier</name>
<object delete="delete" >valuel</object>
<object delete="delete" >value2</object>
</parent-object>
<l--closing tag for each parent of the parent object -->
</configuration>

If using formatted ASCII text, the application repeats the parent statement for each value
and places the delete: statement above each paired statement and value:

<configuration-text>
/* statements for parent levels of the parent object */
parent-object identifier;
delete:
object valuel,
delete:
object value2;
/* closing braces for parent levels of the parent object */
</configuration-text>

If using configuration mode commands, the application specifies the delete command,
the statement path to each value, and the value to be removed. You can specify the full
path to the value or navigate to the hierarchy level of the object and delete the value
from that location. Use a separate command to delete each value.

<configuration-set>
delete statement-path-to-parent-object parent-object identifier object valuel
delete statement-path-to-parent-object parent-object identifier object value2
</configuration-set>

<configuration-set>
edit statement-path-to-parent-object parent-object identifier object
delete valuel
delete value2

</configuration-set>

The following example shows how to remove two of the permissions granted to the
user-accounts login class.

134 Copyright © 2013, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

Client Application Junos XML Protocol Server
<rpc>
<load-configuration>
<configuration>
<system>
<login>
<class>
<name>user-accounts</name>
<permissions delete="delete">configure</permissions>
<permissions delete="delete">control</permissions>
</class>
</login>
</system>
</configuration>
</load-configuration>
</rpc>
<rpc-reply xmins:junos="URL">
<load-configuration-results>
<load-success/>
</load-configuration-results>
</rpc-reply>

T1139

Reordering Elements in Configuration Objects

For most configuration objects, the order in which the object or its children are created
is not significant, because the Junos configuration management software stores and
displays configuration objects in predetermined positions in the configuration hierarchy.
However, some configuration objects—such as routing policies and firewall filters—consist
of elements that must be processed and analyzed sequentially in order to produce the
intended routing behavior. When a client application uses the Junos XML management
protocol to add a new element to an ordered set, the element is appended to the existing
list of elements. The client application can then reorder the elements, if appropriate.

To change the order of configuration elements in an ordered set, a client application
includes the tag elements described in “Creating, Modifying, or Deleting Configuration
Elements” on page 120. If using Junos XML tag elements, the application emits the container
tag element that represents the ordered set, and encloses the tag element for each
identifier of the configuration element that is moving. In the following, the identifier tag
element is called <name>. In the opening container tag, it includes the insert="before"
or insert="after" attribute to indicate the new position of the moving element relative to
another reference element in the set. To identify the reference element, it includes each
of the reference element’s identifiers as an attribute in the opening container tag for the
ordered set.

In the following, the elements in the set have one identifier, called <name>:

<configuration>
<!-- opening tag for each parent of the set -->
<ordered-set insert="(before | after)" name="referent-value" >
<name >identifier-for-moving-object</name>
</ordered-set>
<!--closing tag for each parent of the set -->
</configuration>

Copyright © 2013, Juniper Networks, Inc. 135

Junos XML Management Protocol Developer Guide

In the following, each element in the set has two identifiers. The opening tag appears on
two lines for legibility only:

<configuration>
<!-- opening tag for each parent of the set -->
<ordered-set insert="(before | after)" identifier1="referent-value" \
identifier2="referent-value" >
<identifier1>value-for-moving-object</identifier]>
<identifier2>value-for-moving-object</identifier2 >
</ordered-set>
<!--closing tag for each parent of the set -->
</configuration>

The insert attribute can be combined with the inactive or active attribute to deactivate
or reactivate the configuration element as it is reordered. For more information, see
“Changing a Configuration Element’s Activation State Simultaneously with Other Changes”
on page 145.

The reordering operation is not available when formatted ASCI| text is used to represent
the configuration data.

If using configuration mode commands, the application specifies the insert command
equivalent to the CLI configuration mode command.

<configuration-set>
insert statement-path-to-object identifier-for-moving-object (before | after)
referent-value
</configuration-set>

The following example shows how to move a firewall filter called older-filter, defined at
the [edit firewall filter] hierarchy level, and place it after another filter called newer-filter
using Junos XML tag elements. This operationis equivalent to the following configuration
mode command:

[edit]
user@host# insert firewall family inet filter older-filter after filter newer-filter

136 Copyright © 2013, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

Client Application Junos XML Protocol Server
<rpc>
<load-configuration>
<configuration>
<firewall>
<family>
<inet>
<filter insert="after" name="newer-filter">
<names>older-filter</name>
</filter>
</inet>
</family>
<ffirewall>
</configuration>
</load-configuration>
</rpc>
<rpc-reply xmins:junos="URL'>
<load-configuration-results>
<load-success/>
</load-configuration-results>
</rpc-reply>

T1141

The following example shows how to move a firewall filter called older-filter, defined at
the [edit firewall filter] hierarchy level, and place it after another filter called newer-filter
using configuration mode commands:

<rpc>
<load-configuration action="set" format="text">
<configuration-set>
insert firewall family inet filter older-filter after filter newer-filter
</configuration-set>
</load-configuration>
</rpc>

The following example shows how to move an OSPF virtual link defined at the

[edit protocols ospf area area] hierarchy level. The link with identifiers

neighbor-id 192.168.0.3 and transit-area 1.1.1.1 moves before the link with identifiers
neighbor-id192.168.0.5 and transit-area 1.1.1.2. This operation is equivalent to the following
configuration mode command (which appears on two lines for legibility only):

[edit protocols ospf area area]
user@host# insert virtual-link neighbor-id 192.168.0.3 transit-area 1.1.1.1\
before virtual-link neighbor-id 192.168.0.5 transit-area 1.1.1.2

Copyright © 2013, Juniper Networks, Inc. 137

Junos XML Management Protocol Developer Guide

Client Application Junos XML Protocol Server
<rpc>
<load-configuration>
<configuration>
<protocols>
<ospf>
<area>
<filter insert="before" neighbor-id="192.168.0.5" transit-area="1.1.1.2">
<neighbor-id>192.168.0.3</neighbor-id>
<transit-area>1.1.1.1</transit-area>
<ffilter>
</area>
</ospf>
</protocols>
</configuration>
</load-configuration>
</rpc>
<rpc-reply xmins:junos="URL'>
<load-configuration-results>
<load-success/>
</load-configuration-results>
</rpc-reply>

T1180

Renaming a Configuration Object

To change the name of one or more of a configuration object’s identifiers, a client
application includes the tag elements described in “Creating, Modifying, or Deleting
Configuration Elements” on page 120. When using Junos XML tag elements, the client
application includes the rename="rename" attribute and an attribute named after the
identifier keyword in the object’s opening tag. The value of the attribute is the new identifier
value. The application includes the identifier tag element to specify the current name. In
the following, the identifier tag element is called <name>:

<configuration>
<!-- opening tag for each parent of the object -->
<object rename="rename" name="new-name" >
<name>current-name</name>
</object>
<!--closing tag for each parent of the object -->
</configuration>

If the object has multiple identifiers, for each one the applicationincludes both an attribute
in the opening tag and an identifier tag element. If one or more of the identifiers is not
changing, the attribute value for it is set to its current name. The opening tag appears on
two lines for legibility only:

<configuration>
<!-- opening tag for each parent of the object -->
<object rename="rename" changing-identifier="new-name" \
unchanging-identifier="current-name" >
<changing-identifier>current-name</changing-identifier>
<unchanging-identifier>current-name</unchanging-identifier>
</object>
<!--closing tag for each parent of the object -->
</configuration>

The renaming operation is not available when formatted ASCII text is used to represent
the configuration data.

138 Copyright © 2013, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

If using configuration mode commands to rename an object, the application specifies
the rename command equivalent to the CLI configuration mode command. If the object
has multiple identifiers, the application includes a separate rename command for each
identifier.

<configuration-set>
rename statement-path-to-object object current-name to object new-name
</configuration-set>

For Junos XML tag elements the rename attribute can be combined with the inactive or
active attribute to deactivate or reactivate the configuration element as it is renamed.
For more information, see “Changing a Configuration Element’s Activation State
Simultaneously with Other Changes” on page 145.

The following example shows how to change the name of a firewall filter from
access-control to new-access-control using Junos XML tag elements. This operation is
equivalent to the following configuration mode command:

[edit firewall family inet]
user@host# rename filter access-control to filter new-access-control

Client Application Junos XML Protocol Server
<rpc>
<load-configuration>
<configuration>
<firewall>
<family>
<inet>
<filter rename="rename" name="new-access-control">
<name>access-control</name>
<ffilter>
</inet>
</family>
</firewall>
</configuration>
</load-configuration>
</rpc>
<rpc-reply xmins:junos="URL">
<load-configuration-results>
<load-success/>
</load-configuration-results>
</rpc-reply> r
The following example shows how to change the name of a firewall filter from
access-control to new-access-control using configuration mode commands:

<rpc>
<load-configuration action="set" format="text">
<configuration-set>
rename firewall family inet filter access-control to filter new-access-control
</configuration-set>
</load-configuration>
</rpc>

Copyright © 2013, Juniper Networks, Inc. 139

Junos XML Management Protocol Developer Guide

The following example shows how to change the identifiers for an OSPF virtual link
(defined at the [edit protocols ospf areaarea] hierarchy level) from neighbor-id 192.168.0.3
and transit-area 1.1.1.1 to neighbor-id 192.168.0.7 and transit-area 1.1.1.5. This operation is
equivalent to the following configuration mode command (which appears on two lines
for legibility only):

[edit protocols ospf area area]
user@host# rename filter virtual-link neighbor-id 192.168.0.3 transit-area \
1.1.1.1 to virtual-link neighbor-id 192.168.0.7 transit-area 1.1.1.5

Client Application Junos XML Protocol Server
<rpc>
<load-configuration>
<configuration>
<protocols>
<ospf>
<area>
<filter rename="rename" neighbor-id="192.168.0.7" transit-area="1.1.1.5">
<neighbor-id>192.168.0.3</neighbor-id>
<transit-area>1.1.1.1</transit-area>
</filter>
</area>
</ospf>
</protocols>
</configuration>
</load-configuration>
</rpc>
<rpc-reply xmins:junos="URL">
<load-configuration-results>
<load-success/>
</load-configuration-results>
</rpc-reply>

T1181

Protecting or Unprotecting a Configuration Object

Supported Platforms

EX Series, J Series, M Series, MX Series, QFX Series, SRX Series, T Series

The protect attribute prevents changes to a configuration element or statement. You
cannot alter a protected element either manually through the CLI or automatically using
commit scripts or remote procedure calls. If you attempt to make configuration changes
to a protected statement or within a protected hierarchy, the Junos OS issues a warning,
and the configuration change fails.

If a configuration hierarchy or statement is protected, users cannot perform the following
activities:

. Deleting or modifying the hierarchy or a statement or identifier within the protected
hierarchy (Deletion of an unprotected hierarchy that contains protected elements
deletes all unprotected child elements and preserves all protected child elements.)

« Inserting a new configuration statement or an identifier within the protected hierarchy

« Renaming the protected statement or a statement or identifier within the protected
hierarchy

« Copying a configuration into the protected hierarchy

140

Copyright © 2013, Juniper Networks, Inc.

http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/ex-series/product/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/junos-jseries/product/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/m-series/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/mx-series/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/qfx-series/product/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/srx-series/product/index.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/information-products/pathway-pages/t-series/index.html

Chapter 5: Changing Configuration Information

- Activating or deactivating the protected statements or statements within the protected
hierarchy

. Annotating the protected statement or hierarchy, or statements within the protected
hierarchy

If you protect a configuration statement or hierarchy that does not exist, Junos OS first
creates the configuration element and then protects it. If you unprotect a statement or
element that is not protected, no action is taken.

You can identify protected elements when you display the configuration. If you display
the configuration in text format, protected elements are preceded by protect:. If you
display the configuration in XML format using the | display xml option, the opening tag
of the protected element contains the protect="protect" attribute.

e NOTE: A user or client application must have permission to modify the
configuration in order to protect or unprotect configuration objects.

To protect a configuration element from changes or unprotect a previously protected
element, a client application includes the tag elements described in “Creating, Modifying,
or Deleting Configuration Elements” on page 120. If using Junos XML tag elements, the
client application includes the protect="protect" or unprotect="unprotect" attribute in
the object’s opening tag. The application includes any necessary identifier tag element.
In the following sample RPC, the identifier tag element is called <name>:

<configuration>
<!-- opening tag for each parent of the object -->
<object (protect="protect” | unprotect="unprotect")>
<name>identifier</name>
</object>
<!--closing tag for each parent of the object -->
</configuration>

If using formatted ASCII text to protect or unprotect an object, the application precedes
the element with the protect: or unprotect: operator as appropriate. If you are protecting
a hierarchy level and no additional child elements under that hierarchy, add a semicolon
after the element statement.

<configuration-text>
/* statements for parent levels */

/* For an object with an identifier */
(protect: | unprotect:)
object identifier {
/* Child configuration statements */

}

/* For a hierarchy level or object without an identifier */
(protect: | unprotect:)
element {
/* Child configuration statements */

}

/* closing braces for parent levels */

Copyright © 2013, Juniper Networks, Inc. 141

Junos XML Management Protocol Developer Guide

</configuration-text>

If using configuration mode commands to protect an object, the application specifies
the protect or unprotect command equivalent to the CLI configuration mode command.
You can protect both hierarchies and individual statements.

<configuration-set>

(protect | unprotect) statement-path-to-hierarchy

(protect | unprotect) statement-path-to-object object identifier
</configuration-set>

The following example protects the [edit access] hierarchy level of the configuration
using Junos XML tag elements:

<rpc>
<load-configuration>
<configuration>
<access protect="protect"/>
</configuration>
</load-configuration>
</rpc>

Once protected, any attempt to modify the [edit access] hierarchy level produces a
warning. The following RPC attempts to delete the [edit access] hierarchy level. Because
that hierarchy level is protected, the RPC returns a warning that the hierarchy is protected,
and the configuration change fails.

<rpc>
<load-configuration>
<configuration>
<access delete="delete'"/>
</configuration>
</load-configuration>
</rpc>

<xnm:warning xmlns="http://xml.juniper.net/xnm/1.1/xnm"
xmlns:xnm="http://xmLjuniper.net/xnm/1.1/xnm" >
<message>
[access] is protected, 'access' cannot be deleted
</message>
</xnm:warning>

Related . Example: Protecting the Junos OS Configuration from Modification or Deletion
Documentation

Changing a Configuration Element’s Activation State

When a configuration element (hierarchy level or configuration object) is deactivated, it
remains in the candidate configuration or private copy, but when the configuration is
later committed, the element does not affect the functioning of the routing platform. A
client application can deactivate an element immediately as it creates it, or can deactivate
an existing element. It can also reactivate an existing deactivated element so that when
the configuration is committed, the element again has an effect on routing platform
functioning.

142 Copyright © 2013, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

See the following sections:

« Deactivating a Newly Created Element on page 143

« Deactivating or Reactivating an Existing Element on page 144

Deactivating a Newly Created Element

To define an element and immediately deactivate it, a client application includes the
basic tag elements or configuration statements for its parent levels, as described in
“Creating, Modifying, or Deleting Configuration Elements” on page 120.

If using Junos XML tag elements to define the new element, the application includes the
inactive="inactive" attribute in the opening tag for the element. It includes tag elements
for all children being defined for the element. In the following, the identifier tag element
is called <name>:

<configuration>
<!-- opening tag for each parent of the element -->
<element inactive="inactive" >
<name>identifier</name> <!-- if the element has an identifier -->
<!-- tag elements for each child of the element -->
</element>
<!--closing tag for each parent of the element -->
</configuration>

If using formatted ASCII text to define the new element, the application precedes the
element with the inactive: operator. It includes all child statements that it is defining for
all children of the element:

<configuration-text>
/* statements for parent levels */

/* For an object with an identifier */
inactive:
object identifier {
/* Child configuration statements */

}

/* For a hierarchy level or object without an identifier */
inactive:
element {
/* Child configuration statements */

}

/* closing braces for parent levels */
</configuration-text>

If using configuration mode commands to create an inactive element, the application
first creates the element with the set command and then uses the deactivate command
equivalent to the CLI configuration mode command.

<configuration-set>
set statement-path-to-object object identifier
deactivate statement-path-to-object object identifier
</configuration-set>

Copyright © 2013, Juniper Networks, Inc. 143

Junos XML Management Protocol Developer Guide

Deactivating or Reactivating an Existing Element

To deactivate an existing element, or reactivate a previously deactivated one, a client
application includes the basic tag elements or configuration statements for its parent
levels, as described in “Creating, Modifying, or Deleting Configuration Elements” on
page 120.

If using Junos XML tag elements to represent a configuration object that has an identifier,
the applicationincludes the inactive="inactive" or active="active" attribute in the object’s
opening container tag and also emits the identifier tag element and value. In the following,
the identifier tag element is called <name>. To represent a hierarchy level or container
object that has children but not an identifier, the application uses an empty tag:

<configuration>
<!-- opening tag for each parent of the element -->
<!- - For an object with an identifier -->
<object (inactive="inactive” | active="active")>
<name>identifier</name>
</object>

<I-- For a hierarchy level or object without an identifier -->
<level-or-container (inactive="inactive” | active="active")/>
<!--closing tag for each parent of the element -->
</configuration>

If using formatted ASCII text to represent the element, the application precedes the
element with the inactive: or active: operator. The name of a hierarchy level or container
object is followed by a semicolon (even though in the existing configuration it is followed
by curly braces that enclose its child statements):

<configuration-text>
/* statements for parent levels */

/* For an object with an identifier */
(inactive | active):
object identifier,

/* For a hierarchy level or object without an identifier */
(inactive | active):
object-or-level;

/* closing braces for parent levels */
</configuration-text>

If using configuration mode commands to activate or deactivate an object, the application
specifies the activate or deactivate command equivalent to the CLI configuration mode
command.

<configuration-set>
/* For an object with an identifier */
activate statement-path-to-object object identifier
deactivate statement-path-to-object object identifier

/* For a hierarchy level or object without an identifier */
activate statement-path-to-object-or-level object-or-level
deactivate statement-path-to-object-or-level object-or-level

144 Copyright © 2013, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

</configuration-set>

The following example shows how to deactivate the isis hierarchy level at the
[edit protocols] hierarchy level in the candidate configuration using Junos XML tag
elements.

Client Application Junos XML Protocol Server
<rpc>
<load-configuration>
<configuration>
<protocols>
<isis inactive="inactive"/>
</protocols>
</configuration>
</load-configuration>
</rpc>
<rpc-reply xmins:junos="URL'>
<load-configuration-results>
<load-success/>
</load-configuration-results>
</rpc-reply>

T1145

Changing a Configuration Element’s Activation State Simultaneously
with Other Changes

A client application can deactivate or reactivate an element at the same time it performs
other operations on it (except deletion), by combining the appropriate attributes or
operators with the inactive or active attribute or operator. For basic information about
activating or deactivating an element, see “Changing a Configuration Element’s Activation
State” on page 142.

To define the element to deactivate or activate, a client application includes the basic
tag elements or configuration statements for its parent levels, as described in “Creating,
Modifying, or Deleting Configuration Elements” on page 120. When using Junos XML tag
elements to represent the element, the application includes the inactive="inactive" or
active="active" attribute along with the appropriate other attribute in the
<load-configuration/> tag or opening <load-configuration> tag. When using formatted
ASCII text, the application combines the inactive or active operator with the other operator.

For instructions, see the following sections:

« Replacing an Element and Setting Its Activation State on page 145
« Reordering an Element and Setting Its Activation State on page 147
« Renaming an Object and Setting Its Activation State on page 147

« Example: Replacing an Object and Deactivating It on page 148

Replacing an Element and Setting Its Activation State

Toreplace (completely reconfigure) an element and simultaneously deactivate or activate
it, a client application includes the tag elements or statements that represent all of the
element’s characteristics (for complete information about the syntax for defining
elements, see “Replacing Configuration Elements” on page 125). The client application

Copyright © 2013, Juniper Networks, Inc. 145

Junos XML Management Protocol Developer Guide

uses the attributes and operators discussed in the following sections to indicate which
element is being replaced and activated or deactivated:

» Using Junos XML Tag Elements for the Replacement Element on page 146

« Using Formatted ASCII Text for the Replacement Element on page 146

Using Junos XML Tag Elements for the Replacement Element

If using Junos XML tag elements to represent the element, a client application includes
the action="replace" attribute in the <load-configuration> tag element:

<rpc>
<!--For a file -->
<load-configuration action="replace" url="file"/>

<!-- For a data stream -->
<load-configuration action="replace" >
<!-- Junos XML tag elements -->
</load-configuration>
</rpc>

In the opening tag for the replacement element, the application includes two
attributes—the replace="replace" attribute and either the inactive="inactive" or
active="active" attribute. It includes tag elements for all children being defined for the
element. In the following, the identifier tag element is called <name>:

<configuration>
<!-- opening tag for each parent of the element -->
<element replace="replace" (inactive="inactive” | active="active")>
<name>identifier</name> <!-- if the element has an identifier -->
<!-- tag elements for each child of the element -->
</element>
<!--closing tag for each parent of the element -->
</configuration>

Using Formatted ASCII Text for the Replacement Element

If using formatted ASCII text to represent the element, a client application includes
the action="replace" and format="text" attributes in the <load-configuration/> tag or
opening <load-configuration> tag:

<rpc>
<!--For a file -->
<load-configuration action="replace" format="text" url="file"/>

<!-- For a data stream -->
<load-configuration action="replace" format="text" >
<!-- formatted ASCII configuration statements -->
</load-configuration>
</rpc>

The application places the inactive: or active: operator on the line above the new element
and the replace: operator directly before the new element. It includes all child statements
that it is defining for all children of the element:

<configuration-text>
/* statements for parent levels */

146 Copyright © 2013, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

/* For an object with an identifier */
(inactive | active):
replace: object identifier {

/* Child configuration statements */

}

/* For a hierarchy level or object without an identifier */
(inactive | active):
replace: element {
/* Child configuration statements */

}

/* closing braces for parent levels */
</configuration-text>

Reordering an Element and Setting Its Activation State

To reorder an element in an ordered list and simultaneously deactivate or activate it, the
application combines the insert attribute and identifier attribute for the reference element
with the inactive or active attribute. In the following, the identifier tag element for the

moving element is called <name>. The opening tag appears on two lines for legibility
only:

<configuration>
<!-- opening tag for each parent of the set -->
<ordered-set insert="(before | after)" reference-identifier="value" \
(inactive="inactive" | active="active")>
<name >identifier-for-moving-object</name>
</ordered-set >
<!--closing tag for each parent of the set -->
</configuration>

The reordering operation is not available when formatted ASCII text is used to represent
the configuration data. For complete information about reordering elements, see
“Reordering Elements in Configuration Objects” on page 135.

Renaming an Object and Setting Its Activation State

To rename an object (change the value of one or more of its identifiers) and
simultaneously deactivate or activate it, the application combines the rename attribute
and identifier attribute for the new name with the inactive or active attribute.

If the object has one identifier (here called <name>), the syntaxis as follows (the opening
tag appears on two lines for legibility only):

<configuration>
<!-- opening tag for each parent of the object -->
<object rename="rename" name="new-name" \
(inactive="inactive” | active="active")>
<name>current-name</name>
</object>
<!--closing tag for each parent of the object -->
</configuration>

Copyright © 2013, Juniper Networks, Inc. 147

Junos XML Management Protocol Developer Guide

If the object has multiple identifiers and only one is changing, the syntax is as follows
(the opening tag appears on multiple lines for legibility only):

<configuration>
<!-- opening tag for each parent of the object -->
<object rename="rename"changing-identifier="new-name" \
unchanging-identifier="current-name" \
(inactive="inactive” | active="active")>
<changing-identifier>current-name</changing-identifier>
<unchanging-identifier>current-name</unchanging-identifier>
</object>
<!--closing tag for each parent of the object -->
</configuration>

The renaming operation is not available when formatted ASCII text is used to represent
the configuration data. For complete information about renaming elements, see
“Renaming a Configuration Object” on page 138.

Example: Replacing an Object and Deactivating It

The following example shows how to replace the information at the [edit protocols bgp]
hierarchy level in the candidate configuration for the group called G3, and also deactivate
the group so that it is not used in the actual configuration when the candidate is
committed:

Client Application Junos XML Protocol Server
<rpc>
<load-configuration action="replace">
<configuration>
<protocols>
<bgp>
<group replace="replace" inactive="inactive">
<name>G3</name>
<type>external</type>
<peer-as>58</peer-as>
<neighbor>
<name>10.0.20.1</name>
</neighbor>
</group>
</bgp>
</protocols>
</configuration>
</load-configuration>
</rpc>
<rpc-reply xmins:junos="URL'>
<load-configuration-results>
<load-success/>
</load-configuration-results>
</rpc-reply>

©
<
—
-
-

The following example shows how to use formatted ASCII text to make the same changes:

148 Copyright © 2013, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

Client Application Junos XML Protocol Server
<rpc>
<load-configuration action="replace" format="text">
<configuration-text>
protocols {
bgp {
replace:
inactive: group G3 {
type external;
peer-as 58;
neighbor 10.0.20.1;
}
}
}

</configuration-text>
</load-configuration>
</rpc>

<rpc-reply xmins:junos="URL">

<load-configuration-results>
<load-success/>

</load-configuration-results>

</rpc-reply>

T1147

Copyright © 2013, Juniper Networks, Inc. 149

Junos XML Management Protocol Developer Guide

150 Copyright © 2013, Juniper Networks, Inc.

CHAPTER 6

Committing a Configuration

This chapter explains how to commit a configuration so that it becomes the active
configuration on the routing, switching, or security platform. For more detailed information
about commit operations, including a discussion of the interaction among different
variants of the operation, see the CL/ User Guide.

« Verifying a Configuration Before Committing It on page 151

« Committing the Candidate Configuration on page 152

« Committing a Private Copy of the Configuration on page 153

- Committing a Configuration at a Specified Time on page 154

. Committing the Candidate Configuration Only After Confirmation on page 155

« Committing and Synchronizing a Configuration on Redundant Control Planes on page 158

« Logging a Message About a Commit Operation on page 164

Verifying a Configuration Before Committing It

During the process of committing the candidate configuration or a private copy, the Junos
XML protocol server confirms that it is syntactically correct. If the syntax check fails, the
server does not commit the candidate. To avoid the potential complications of such a
failure, it often makes sense to confirm the candidate’s correctness before actually
committing it. The client application encloses the empty <check/> tagin
<commit-configuration> and <rpc> tag elements:

<rpc>
<commit-configuration>
<check/>
</commit-configuration>
</rpc>

The Junos XML protocol server encloses its response in <rpc-reply>, <commit-results>,
and <routing-engine> tag elements. If the syntax check succeeds, the <routing-engine>
tag element encloses the <commit-check-success/> tag and the <name> tag element,
which reports the name of the Routing Engine on which the check succeeded (re0 on
routing platforms that use a single Routing Engine, and either re0 or rel on routing
platforms that can have two Routing Engines):

<rpc-reply xmlns:junos="URL" >
<commit-results>
<routing-engine>
<name>(re0 | rel)</name>

Copyright © 2013, Juniper Networks, Inc. 151

Junos XML Management Protocol Developer Guide

<commit-check-success/ >
</routing-engine>
</commit-results>
</rpc-reply>

If the syntax check fails, an <xnm:error> tag element encloses tag elements that describe
the error.

The <check/> tag can be combined with the <synchronize/> tag, which is described in
“Verifying the Configuration on Both Routing Engines” on page 162.

Committing the Candidate Configuration

To commit the candidate configuration, a client application encloses the empty
<commit-configuration/> tag in an <rpc> tag element:

<rpc>
<commit-configuration/>
</rpc>

We recommend that the application lock the candidate configuration before changing
it and emit the <commit-configuration/> tag while the configuration is still locked. Doing
so avoids inadvertent commit of changes made by other users or applications. After
committing the configuration, the application must unlock it for other users and
applications to be able to make changes. For instructions, see “Exchanging Information
with the Junos XML Protocol Server” on page 48 and

“Changing Configuration Information” on page 113.

The Junos XML protocol server reports the results of the commit operation in <rpc-reply >,
<commit-results>, and <routing-engine> tag elements. If the commit operation succeeds,
the <routing-engine> tag element encloses the <commit-success/> tag and the <name>
tag element, which reports the name of the Routing Engine on which the commit operation
succeeded (re0 on devices that use a single Routing Engine, and either re0 or rel on
devices that can have two Routing Engines):

<rpc-reply xmlns:junos="URL" >
<commit-results>
<routing-engine>
<name>(re0 | rel)</name>
<commit-success/>
</routing-engine>
</commit-results>
</rpc-reply>

If the commit operation fails, an <xnm:error> tag element encloses tag elements that
describe the error. The most common causes of failure are semantic or syntactic errors
in the candidate configuration.

152 Copyright © 2013, Juniper Networks, Inc.

Chapter 6: Committing a Configuration

Committing a Private Copy of the Configuration

To commit a private copy of the configuration so that it becomes the active configuration
on the routing, switching, or security platform, a client application encloses the

empty <commit-configuration/> tag in an <rpc> tag element (just as for the

candidate configuration):

<rpc>
<commit-configuration/>
</rpc>

The Junos XML protocol server creates a copy of the current regular candidate
configuration, merges in the changes made to the private copy, and commits the combined
candidate to make it the active configuration on the device. The server reports the results
of the commit operation in <rpc-reply> and <commit-results> tag elements.

If the private copy does not include any changes, the server emits the <commit-results>
and </commit-results> tags with nothing between them:

<rpc-reply xmlns:junos="URL" >
<commit-results>
</commit-results>
</rpc-reply>

If the private copy includes changes and the commit operation succeeds, the server emits
the <load-success/> tag when it merges the changes in the private copy into the candidate
configuration. The subsequent <routing-engine> tag element encloses the
<commit-success/> tag and the <name> tag element, which reports the name of the
Routing Engine on which the commit operation succeeded (reO on devices that use a
single Routing Engine, and either re0 or re1 on devices that can have two Routing Engines):

<rpc-reply xmlns:junos="URL" >
<commit-results>
<load-success/>
<routing-engine>
<name>(re0 | rel)</name>
<commit-success/>
</routing-engine>
</commit-results>
</rpc-reply>

If the private copy includes changes that conflict with the regular candidate configuration,
the commit fails. The <load-error-count> tag element reports the number of errors and
an <xnm:error> tag element encloses tag elements that describe the error.

There are restrictions on committing a private copy. For example, the commit fails if the
regular candidate configuration is locked by another user or application, or if it includes
uncommitted changes made since the private copy was created. For more information,
see the CL/ User Guide.

Most of the variants of the commit operation are available for a private copy. The variants
are described in subsequent sections in this chapter:

« Scheduling the commit for a later time, as described in “Committing a Configuration
at a Specified Time” on page 154.

Copyright © 2013, Juniper Networks, Inc. 153

Junos XML Management Protocol Developer Guide

« Synchronizing the configuration on both Routing Engines, as described in “Committing

and Synchronizing a Configuration on Redundant Control Planes” on page 158.

« Logging a commit-time message, as described in “Logging a Message About a Commit

Operation” on page 164.

e NOTE: The confirmed-commit operation is not available for a private copy.
For information about using that operation for the regular candidate
configuration, see “Committing the Candidate Configuration Only After
Confirmation” on page 155.

Committing a Configuration at a Specified Time

To commit a configuration at a specified time in the future, a client application encloses
the <at-time> tag element in <commit-configuration> and <rpc> tag elements:

<rpc>
<commit-configuration>
<at-time>time</at-time>
</commit-configuration>
</rpc>

To indicate when to perform the commit operation, the application includes one of three
types of values in the <at-time> tag element:

« The string reboot, to commit the configuration the next time the device reboots.

« Atime value of the form hh:mm[:ss] (hours, minutes, and optionally seconds), to
commit the configuration at the specified time, which must be after the time at which
the application emits the <commit-configuration> tag element, but before 11:59:59 PM
on the current day. For example, if the <at-time> tag element encloses the value 02:00
(2:00 AM) and the application emits the <commit-configuration> tag element at 2:10
AM, the commit will never take place, because the scheduled time has already passed
for that day.

Use 24-hour time; for example, 04:30:00 means 4:30:00 AM and 20:00 means 8:00
PM. The time is interpreted relative to the clock and time zone settings on the device..

. Adate and time value of the form yyyy-mm-dd hh:mm{[:ss] (year, month, date, hours,
minutes, and optionally seconds), to commit the configuration at the specified day
and time, which must be after the <commit-configuration> tag element is emitted. Use
24-hour time. For example, 2006-08-2115:30:00 means 3:30 PM on August 21, 2006.
The time is interpreted relative to the clock and time zone settings on the device.

0 NOTE: The specified time must be more than 1 minute later than the current
time on the device.

154

Copyright © 2013, Juniper Networks, Inc.

Chapter 6: Committing a Configuration

The Junos XML protocol server immediately checks the configuration for syntactic
correctness and returns <rpc-reply>, <commit-results>, and <routing-engine> tag
elements. If the syntax check succeeds, the <routing-engine> tag element encloses the
<commit-check-success/> tag and the <name> tag element, which reports the name of
the Routing Engine on which the check succeeded (re0 on devices that use a single
Routing Engine, and either re0 or rel on devices that can have two Routing Engines). It
also encloses an <output> tag element that reports the time at which the commit will
occur:

<rpc-reply xmlns:junos="URL" >
<commit-results>
<routing-engine>
<name>(re0 | rel)</name>
<commit-check-success/>
<output>commit at will be executed at timestamp</output>
</routing-engine>
</commit-results>
</rpc-reply>

The configuration is scheduled for commit at the specified time. The Junos XML protocol
server does not emit additional tag elements when it performs the actual
commit operation.

If the configuration is not syntactically correct, an <xnm:error> tag element encloses tag
elements that describe the error. The commit operation is not scheduled.

The <at-time> tag element can be combined with the <synchronize/> tag, the <log/>
tag element, or both. For more information, see “Committing and Synchronizing a
Configuration on Redundant Control Planes” on page 158 and “Logging a Message About
a Commit Operation” on page 164.

The following example shows how to schedule a commit operation for 10:00 PM on the
current day.

Client Application Junos XML Protocol Server
<rpc>
<commit-configuration>
<at-time>22:00</at-time>
</commit-configuration>
</rpc>
<rpc-reply xmins:junos="URL'>
<commit-results>
<routing-engine>
<name>rel</name>
<commit-check-success/>
<output>commit at will be executed at date 22:00:00 timezone</output>
</routing-engine>
</commit-results>
</rpc-reply>

T1182

Committing the Candidate Configuration Only After Confirmation

To commit the candidate configuration but require an explicit confirmation for the commit
to become permanent, a client application encloses the empty <confirmed/> tagin
<commit-configuration> and <rpc> tag elements:

<rpc>

Copyright © 2013, Juniper Networks, Inc. 155

Junos XML Management Protocol Developer Guide

<commit-configuration>
<confirmed/>
</commit-configuration>
</rpc>

If the commit is not confirmed within a certain amount of time (600 seconds [10 minutes]
by default), the Junos XML protocol server automatically retrieves and commits (rolls
back to) the previously committed configuration. To specify a different number of minutes
for the rollback deadline, the application encloses a positive integer value in the
<confirm-timeout> tag element:

<rpc>
<commit-configuration>
<confirmed/>
<confirm-timeout>rollback-delay< /confirm-timeout>
</commit-configuration>
</rpc>

e NOTE: You cannot perform this commit operation on a private copy of
the configuration.

In either case, the Junos XML protocol server confirms that it committed the candidate
configuration temporarily by returning the <ok/> tag in the <rpc-reply> tag element:

<rpc-reply xmlns:junos="URL">
<ok/>
</rpc-reply>

If the Junos XML protocol server cannot commit the candidate, the <rpc-reply> tag
element instead encloses an <xnm:error> tag element explaining the reason for the
failure. The most common causes are semantic or syntactic errors in the candidate
configuration.

The confirmed commit operation is useful for verifying that a configuration change works
correctly and does not prevent management access to the device. If the change prevents
access or causes other errors, the automatic rollback to the previous configuration restores
access after the rollback deadline passes.

In response to a confirmed commit operation, the Junos XML protocol server returns
<rpc-reply>, <commit-results>, and <routing-engine> tag elements. If the commit
operation succeeds, the <routing-engine> tag element encloses the <commit-success/>
tag and the <name> tag element, which reports the name of the Routing Engine on which
the commit operation succeeded (re0 on devices that use a single Routing Engine, and
either re0 or rel on devices that can have two Routing Engines):

<rpc-reply xmlns:junos="URL" >
<commit-results>
<routing-engine>
<name>(re0 | rel)</name>
<commit-success/>
</routing-engine>
</commit-results>
</rpc-reply>

156 Copyright © 2013, Juniper Networks, Inc.

Chapter 6: Committing a Configuration

If the Junos XML protocol server cannot commit the candidate, the <rpc-reply> tag
element instead encloses an <xnm:error> tag element explaining the reason for the
failure. The most common causes are semantic or syntactic errors in the candidate
configuration.

To delay the rollback to a time later than the current rollback deadline, the application
emits the <confirmed/> tag in a <commit-configuration> tag element again before the
deadline passes. It can include the <confirm-timeout> tag element to specify how long
to delay the next rollback; omit that tag element to delay the rollback by the default of
10 minutes. The client application can delay the rollback indefinitely by emitting the
<confirmed/> tag repeatedly in this way.

To cancel the rollback completely (and commit a configuration permanently), the client
application emits one of the following tag sequences before the rollback deadline passes:

« The empty <commit-configuration/> tag enclosedin an <rpc> tag element. Therollback
is canceled and the candidate configuration is committed immediately, as described
in “Committing the Candidate Configuration” on page 152. If the candidate configuration
is still the same as the temporarily committed configuration, this effectively recommits
the temporarily committed configuration:

<rpc>
<commit-configuration/>
</rpc>

« The <synchronize/> tag enclosed in <commit-configuration> and <rpc> tag elements:

<rpc>
<commit-configuration>
<synchronize/>
</commit-configuration>
</rpc>

The rollback is canceled and the candidate configuration is checked and committed
immediately on both Routing Engines, as described in “Committing and Synchronizing
a Configuration on Redundant Control Planes” on page 158. If a confirmed commit
operation has been performed on both Routing Engines, then emitting the
<synchronize/> tag cancels the rollback on both.

« The <at-time> tag element enclosed in <commit-configuration> and <rpc> tag elements:

<rpc>
<commit-configuration>
<at-time>time</at-time>
</commit-configuration>
</rpc>

The rollback is canceled and the configuration is checked immediately for syntactic
correctness, then committed at the scheduled time, as described in “Committing a
Configuration at a Specified Time” on page 154.

The <confirmed/> and <confirm-timeout> tag elements can be combined with the
<synchronize/> tag, the <log/> tag element, or both. For more information, see
“Committing and Synchronizing a Configuration on Redundant Control Planes” on page 158
and “Logging a Message About a Commit Operation” on page 164.

Copyright © 2013, Juniper Networks, Inc. 157

Junos XML Management Protocol Developer Guide

If another application uses the <kill-session/> tag element to terminate this application’s
session while a confirmed commit is pending (this application has committed changes
but not yet confirmed them), the Junos XML protocol server that is servicing this session
restores the configuration to its state before the confirmed commit instruction was issued.
For more information about session termination, see “Terminating Another Junos XML
Protocol Session” on page 57.

The following example shows how to commit the candidate configuration on Routing
Engine 1 with a rollback deadline of 20 minutes.

Client Application Junos XML Protocol Server
<rpc>
<commit-configuration>
<confirmed/>
<confirm-timeout>20</confirm-timeout>
</commit-configuration>
</rpc>
<rpc-reply xmins:junos="URL">
<commit-results>
<routing-engine>
<name>rel</name>
<commit-success/>
</routing-engine>
</commit-results>
</rpc-reply>

T1152

Committing and Synchronizing a Configuration on Redundant Control Planes

A Routing Engine resides within a control plane. For single-chassis configurations, there
is one control plane. Inredundant systems, there are two control planes, the master plane
and the backup plane. In multichassis configurations, the control plane includes all
Routing Engines with the same Routing Engine designation. For example, all master
Routing Engines reside within the master control plane, and all backup Routing Engines
reside within the backup control plane.

Committing a configuration applies a new configuration to the device Engine. In a
multichassis configuration, once a change to the configuration has been committed to
the system, this change is propagated throughout the control plane using the distribution
function.

In a redundant architecture, you can issue the synchronize command to commit the new
configuration to both the master and the slave control planes. When issued, this command
will save the current configuration to both device Engines and commit the new
configuration to both control planes. On a multichassis system, once the configuration
has been committed on both planes, the distribution function will distribute the new
configuration across both planes.

158 Copyright © 2013, Juniper Networks, Inc.

Chapter 6: Committing a Configuration

o NOTE: In a multichassis architecture with redundant control planes, there is
a difference between synchronizing the two planes and distributing the
configuration throughout each plane. Synchronization only occurs between
the Routing Engines within the same chassis. Once this synchronization is
complete, the new configuration is distributed to all other Routing Engines
within each plane as a separate distribution function.

Because synchronization happens across two separate control planes, synchronizing
configurations is only valid on redundant Routing Engine architectures. Further, re0 and
rel configuration groups must be defined on each routing, swtiching, or security platform.
For more information about configuration groups, see the CLI/ User Guide.

o NOTE: If you issue the synchronize command on a nonredundant Routing
Engine system, the Junos XML protocol server will commit the configuration
on the one control plane.

For more information about synchronizing configurations, see the following sections:

« Synchronizing the Configuration on Both Routing Engines on page 159
» Forcing a Synchronized Commit Operation on page 161

« Synchronizing Configurations Simultaneously with Other Operations on page 162

Synchronizing the Configuration on Both Routing Engines

To synchronize a configuration on a redundant Routing Engine system, a client application
needs to enclose the empty <synchronize/> tag in <commit-configuration> and <rpc>
tag elements:

<rpc>
<commit-configuration>
<synchronize/>
</commit-configuration>
</rpc>

The Junos XML protocol server verifies the configuration’s syntactic correctness on the
Routing Engine where the <synchronize/> tag is emitted (referred to as the local Routing
Engine), copies the configuration to the remote Routing Engine and verifies its syntactic
correctness there, and then commits the configuration on both Routing Engines.

The Junos XML protocol server encloses its response in <rpc-reply> and <commit-results>
tag elements. It emits a separate <routing-engine> tag element for each operation on
each Routing Engine:

« If the syntax check succeeds on a Routing Engine, the <routing-engine> tag element
encloses the <commit-check-success/> tag and the <name> tag element, whichreports
the name of the Routing Engine on which the check succeeded (re0O or rel):

<routing-engine>
<name>(re0 | rel)</name>

Copyright © 2013, Juniper Networks, Inc. 159

Junos XML Management Protocol Developer Guide

<commit-check-success/ >
</routing-engine>

If the configuration is incorrect, an <xnm:error> tag element encloses a description of
the error.

« Ifthe commit operation succeeds on a Routing Engine, the <routing-engine> tag element
encloses the <commit-success/> tag and the <name> tag element, which reports the
name of the Routing Engine on which the commit operation succeeded:

<routing-engine>
<name>(re0 | rel)</name>

<commit-success/>
</routing-engine>

If the commit operation fails, an <xnm:error> tag element encloses a description of
the error. The most common causes of failure are semantic or syntactic errors in the
configuration.

Example: Synchronizing the Configuration on Both Routing Engines

The following example shows how to commit and synchronize the candidate configuration
on both Routing Engines.

Client Application Junos XML Protocol Server
<rpc>
<commit-configuration>
<synchronize/>
</commit-configuration>
</rpc>
<rpc-reply xmins:junos="URL">
<commit-results>
<routing-engine>
<name>re0</name>
<commit-check-success/>
</routing-engine>
<routing-engine>
<name>rel1</name>
<commit-check-success/>
</routing-engine>
<routing-engine>
<name>re1</name>
<commit-success/>
</routing-engine>
<routing-engine>
<name>re0</name>
<commit-success/>
</routing-engine>
</commit-results>
</rpc-reply>

T1153

160 Copyright © 2013, Juniper Networks, Inc.

Chapter 6: Committing a Configuration

Forcing a Synchronized Commit Operation

The synchronize operation fails if the second Routing Engine's configuration is locked. If
a synchronization failure occurs, it is best to determine the cause of the failure, take
corrective action, and then synchronize the two Routing Engines again. However, when
necessary, you can use the <force-synchronize/> command to override a locked
configuration and force the synchronization.

0 NOTE: When you use a force-synchronize command, any uncommitted
changes to the configuration will be lost.

To force a synchronization, enclose the empty <synchronize/> and <force-synchronize/>
tags in the <commit-configuration> and <rpc> tag elements:

<rpc>
<commit-configuration>
<synchronize/>
<force-synchronize/ >
</commit-configuration>
</rpc>

e NOTE: In a multichassis environment, synchronization occurs between
Routing Engines on the same chassis. Once the synchronization occurs, the
configuration changes are propagated across each control plane using the
distribution function. If one or more Routing Engines are locked during the
distribution of the configuration, the distribution and thus the synchronization
will fail. You will need to clear the error in the remote chassis and run the
synchronize command again.

Copyright © 2013, Juniper Networks, Inc. 161

Junos XML Management Protocol Developer Guide

Example: Forcing a Synchronization

The following example shows how to force a synchronization across both Routing Engine
planes:

Client Application Junos XML Protocol Server

<rpc>

<commit-configuration>
<synchronize/>
<force-synchronize/>

<commit-configuration>
</rpc>

<rpc-reply xmlns:junos=
"http://xml.juniper.net/junos/9.010/junos” >
<commit-results>
<routing-engine junos:style="show-name” >
<name>re0</name>
<commit-check-success/>
</routing-engine>
<routing-engine junos:style="show-name” >
<name>rel</name>
<commit-success/ >
</routing-engine>
<routing-engine junos:style="show-name” >
<pame>re0</name>
<commit-success/ >
</routing-engine>
</commit-resuls>
</rpc-reply>

Synchronizing Configurations Simultaneously with Other Operations

The <synchronize/> tag can be combined with the other tag elements that can occur
within the <commit-configuration> tag element. The Junos XML protocol server checks,
copies, and commits the configuration, and emits the same response tag elements as
when the <synchronize/> tag is used by itself. The possible combinations are described
in the following sections.

Verifying the Configuration on Both Routing Engines

To check the syntactic correctness of a local configuration on both Routing Engines
without committing it, the application encloses the <synchronize/> and <check/> tag
elements in <commit-configuration> and <rpc> tag elements:

<rpc>
<commit-configuration>
<synchronize/>
<check/>
</commit-configuration>
</rpc>

The <force-synchronize/> tag cannot be combined with the <check/> tag elements.

162 Copyright © 2013, Juniper Networks, Inc.

Chapter 6: Committing a Configuration

For more information about verifying configurations, see “Verifying a Configuration Before
Committing It” on page 151.

Scheduling Synchronization for a Specified Time

To commit a configuration on both Routing Engines at a specified time in the future, the
application encloses the <synchronize/> and <at-time> tag elements in
<commit-configuration> and <rpc> tag elements:

<rpc>
<commit-configuration>
<synchronize/>
<at-time>time</at-time>
</commit-configuration>
</rpc>

<rpc>
<commit-configuration>
<force-synchronize/>
<at-time>time</at-time>
</commit-configuration>
</rpc>

As when the <at-time> tag element is emitted by itself, the Junos XML protocol server
verifies syntactic correctness immediately and does not emit additional tag elements
when it actually performs the commit operation on each Routing Engine. For information
about how to specify the time in the <at-time> tag element, see “Committing the
Candidate Configuration Only After Confirmation” on page 155.

Synchronizing Configurations but Requiring Confirmation

To commit the candidate configuration on both Routing Engines but require confirmation
for the commit to become permanent, the application encloses the <synchronize/>,
<confirmed/>, and (optionally) <confirm-timeout> tag elementsin
<commit-configuration> and <rpc> tag elements:

<rpc>
<commit-configuration>
<synchronize/>
<confirmed/>
[<confirm-timeout>minutes</confirm-timeout>]
</commit-configuration>
</rpc>

The same rollback deadline applies to both Routing Engines and can be extended on
both at once by again emitting the <synchronize/>, <confirmed/>, and (optionally)
<confirm-timeout> tag elements on the Routing Engine where the tag elements were
emitted the first time.

The <force-synchronize/> tag cannot be combined with the <confirmed/> and
<confirm-timeout> tag elements.

For more information about confirmed commit operations, see “Committing the Candidate
Configuration Only After Confirmation” on page 155.

Copyright © 2013, Juniper Networks, Inc. 163

Junos XML Management Protocol Developer Guide

Logging a Message About Synchronized Configurations

To synchronize configurations and record a log message when the commit succeeds on
each Routing Engine, the application encloses the <synchronize/> and <log/> tag elements
in <commit-configuration> and <rpc> tag elements:

<rpc>
<commit-configuration>
<synchronize/>
<log>message</log>
</commit-configuration>
</rpc>
<rpc>
<commit-configuration>
<force-synchronize/>
<log>message</log>
</commit-configuration>
</rpc>

The commit operation proceeds as previously described in the <synchronize/> or
<force-synchronize/> tag descriptions. The message for each Routing Engine is recorded
in the separate /var/log/commits file maintained by that Routing Engine. For more
information about logging, see “Logging a Message About a Commit Operation” on
page 164.

Logging a Message About a Commit Operation

To record a message in the /var/log/commits file when a commit operation succeeds,
aclient application encloses the <log> tag element in <commit-configuration> and <rpc>
tag elements:

<rpc>
<commit-configuration>
<log>message</log>
</commit-configuration>
</rpc>

The <log> tag element can be combined with other tag elements within the
<commit-configuration> tag element (the <at-time>, <confirmed/>, and
<confirm-timeout>, or <synchronize/> tag elements) and does not change the effect of
the operation. When the <log> tag element is emitted by itself, the associated commit
operation begins immediately.

The following example shows how to log a message as the candidate configuration is
committed.

164 Copyright © 2013, Juniper Networks, Inc.

Chapter 6: Committing a Configuration

Client Application Junos XML Protocol Server
<rpc>
<commit-configuration>
<log>Enable xnm-ssl service</log>
</commit-configuration>
</rpc>
<rpc-reply xmins:junos="URL'>
<commit-results>
<routing-engine>
<name>reO</name>
<commit-success/>
</routing-engine>
</commit-results>
</rpc-reply>

T1154

The /var/log/commits file includes an entry for each pending commit and up to 50
previous commits. To request the contents of the file, a client application encloses the
<get-commit-information/> tag in <rpc> tag elements:

<rpc>
<get-commit-information/>
</rpc>

(The equivalent operational mode CLI command is show system commit.) The Junos
XML protocol server encloses the information in <commit-information> and <rpc-reply>
tag elements. Forinformation about the child tag elements of the <commit-information>
tag element, see its entry in the Junos XML API Operational Developer Reference.

<rpc-reply xmlns:junos="URL" >
<commit-information>
<l-- tag elements representing the commit log -->
</commit-information>
</rpc-reply>

The following example shows how to request the commit log.

Copyright © 2013, Juniper Networks, Inc. 165

Junos XML Management Protocol Developer Guide

Client Junos XML Protocol Server
Application
<rpc>
<get-commit-information/>
</rpc>
<rpc-reply xmins:junos="URL">
<commit-information>
<commit-history>
<sequence-number>0</sequence-number>
<user>barbara</user>
<client>other</client>
<date-time junos:seconds="1058370173">2003-07-16 08:42:53 PDT</date-time>
<log>Enable xnm-ssl service</log>
</commit-history>
<commit-history>
<sequence-number>1</sequence-number>
<user>root</user>
<client>other</client>
<date-time junos:seconds="1058322166">2003-07-15 19:22:46 PDT</date-time>
</commit-history>
<commit-history>
<sequence-number>2</sequence-number>
<user>root</user>
<client>cli</client>
<date-time junos:seconds="1058219717">2003-07-14 14:55:17 PDT</date-time>
</commit-history>

</commit-information>
</rpc-reply>

T1183

166 Copyright © 2013, Juniper Networks, Inc.

CHAPTER?7

summary of Junos XML Protocol Tag
Elements

This chapter lists the tag elements that client applications and the Junos XML protocol
server use to control the Junos XML protocol session and to exchange configuration
information. The entries are in alphabetical order. For information about the notational
conventions used in this chapter, see Table 2 on page xvii.

<abort/>

Usage <rpc>
<!-- child tag elements -->
</rpc>
<abort/>

Description Direct the Junos XML protocol server to stop processing the request that is currently
outstanding. The server responds by returning the <abort-acknowledgment/> tag, but
might already have sent tagged data in response to the request. The client application
must discard those tag elements.

Usage Guidelines See “Halting a Request” on page 54.

Related . <abort-acknowledgement/> on page 167

Documentation
« <rpc>onpage 189

<abort-acknowledgement/>

Usage <rpc-reply xmlns:junos="URL" >
<any-child-of-rpc-reply >
<abort-acknowledgement/ >
</any-child-of-rpc-reply >
</rpc-reply>

Description Indicate that the Junos XML protocol server has received the <abort/> tag and has stopped
processing the current request. If the client application receives any tag elements related
to the request between sending the <abort/> tag and receiving this tag, it must discard
them.

Copyright © 2013, Juniper Networks, Inc. 167

Junos XML Management Protocol Developer Guide

Usage Guidelines

Related
Documentation

See “Halting a Request” on page 54.

« <rpc-reply> on page 190

« <xXnm:error> on page 191

<authentication-response>

Usage

Description

Contents

Usage Guidelines

Related
Documentation

<challenge>

<rpc-reply xmlns:junos="URL" >
<authentication-response>
<status>authentication-outcome</status>
<message>message</message>
<login-name>remote-username</login-name>
</authentication-response>
</rpc-reply>

Indicate whether an authentication attempt succeeded. The Junos XML protocol server
returns the tag element in response to the <request-login> tag element emitted by a
client application that uses the clear-text or Secure Sockets Layer (SSL) access protocol.

<login-name>—Specifies the username that the client application provided to an
authentication utility such as RADIUS or TACACS+. This tag element appears only if the
username that it contains differs from the username contained in the <message> tag
element.

<message>—Names the account under which a connection to the Junos XML protocol
server is established, if authentication succeeds. If authentication fails, explains the
reason for the failure.

<status>—Indicates whether the authentication attempt succeeded. There are two
possible values:

. fail—The attempt failed. The Junos XML protocol server also emits the <challenge>
tag element to request the password again, up to a maximum of three attempts.

. success—The attempt succeeded. An authenticated connection to the Junos XML
protocol server is established.

See “Interpreting the Authentication Response” on page 47.

. <challenge> on page 168
. <reqguest-login>on page 188

« <rpc-reply> on page 190

Usage

<rpc-reply xmlns:junos="URL" >
<challenge echo="no">Password:</challenge>

168

Copyright © 2013, Juniper Networks, Inc.

Chapter 7: Summary of Junos XML Protocol Tag Elements

</rpc-reply>

Description Request the password associated with an account during authentication with a client
application that uses the clear-text or SSL access protocol. The Junos XML protocol
server emits this tag element when the initial <request-login> tag element emitted by
the client application does not enclose a <challenge-response> tag element, and when
the password enclosed in a <challenge-response> tag element is incorrect (in the latter
case, the server also emits an <authentication-response> tag element enclosing child
tag elements that indicate the password is incorrect).

The tag element encloses the string Password: which the client application can forward
to the screen as a prompt for a user.

Attributes echo—Specifies whether the password string typed by the user appears on the screen.
The value no specifies that it does not.

Usage Guidelines See “Submitting an Authentication Request” on page 46.

Related . <authentication-response> on page 168
Documentation
. <reqguest-login> on page 188

« <rpc-reply>on page 190

<checksum-information>

Usage <rpc-reply>
<checksum-information>
<file-checksum>
<computation-method>MD5</computation-method>
<input-file>
<!-- name and path of file-->
</input-file>
</file-checksum>
</checksum-information>
</rpc-reply>

Description Enclose tag elements that include the file to check, the checksum algorithm used, and
the checksum output.

Contents <file-checksum>—Wrapper that holds the resulting <input-file>, <computation-method>,
and <checksum> attributes for a particular checksum computation.

<input-file>—Name and path of the file that the checksum algorithm was run against.

<computation-method>—Checksum algorithm used. Currently, all checksum computations
use the MD5 algorithm; thus, the only possible value is MD5.

<checksum>—Resulting value from the checksum computation.

Copyright © 2013, Juniper Networks, Inc. 169

Junos XML Management Protocol Developer Guide

Usage Guidelines See the Junos XML API Operational Developer Reference.

Related . <get-checksum-information> on page 177
Documentation

<close-configuration/>

Usage <rpc>
<close-configuration/>
</rpc>

Description Discard a candidate configuration and any changes to it.

This tag element is normally used only to discard a private copy of the candidate
configuration without committing it. The application must have previously emitted the
<open-configuration> tag element. Closing the Junos XML protocol session (by emitting
the <request-end-session/> tag, for example) has the same effect as emitting this tag
element.

Usage Guidelines See “Creating a Private Copy of the Configuration” on page 58.

Related . <open-configuration> on page 186
D mentation
ocumentatio . <request-end-session/> on page 188

« <rpc>on page 189

<commit-configuration>

Usage <rpc>
<commit-configuration/>

<commit-configuration>
<check/>
</commit-configuration>

<commit-configuration>
<log>log-message</log>
</commit-configuration>

<commit-configuration>
<at-time>time-specification</at-time>
<log>log-message</log>

</commit-configuration>

<commit-configuration>
<confirmed/>
<confirm-timeout >rollback-delay</confirm-timeout>
<log>log-message</log>

</commit-configuration>

170 Copyright © 2013, Juniper Networks, Inc.

Chapter 7: Summary of Junos XML Protocol Tag Elements

<commit-configuration>
<synchronize/>
<log>log-message</log>

</commit-configuration>

<commit-configuration>
<synchronize/>
<at-time>time-specification</at-time>
<log>log-message</log>
</commit-configuration>

<commit-configuration>
<synchronize/>
<check/>
<log>log-message</log>

</commit-configuration>

<commit-configuration>
<synchronize/>
<confirmed/>
<confirm-timeout>rollback-delay</confirm-timeout>
<log>log-message</log>

</commit-configuration>

<commit-configuration>
<synchronize/>
<force-synchronize/>
</commit-configuration>
</rpc>

Description Request that the Junos XML protocol server perform one of the variants of the commit
operation on either the regular candidate configuration or a private copy of the candidate
configuration (if the application emitted the
<open-configuration><private/></open-configuration> tag sequence before
making changes).

Some restrictions apply to the commit operation for a private copy. For example, the
commit operation fails if the regular candidate configuration is locked by another user
or application, or if it includes uncommitted changes made since the private copy was
created. For more information, see the CL/ User Guide.

Enclose the appropriate tag in the <commit-configuration> tag element to specify the
type of commit operation:

. To commit the configuration immediately, making it the active configuration on the
device, emit the empty <commit-configuration/> tag.

. To verify the syntactic correctness of the configuration without actually committing
it, enclose the <check/> tag in the <commit-configuration> tag element.

. Torecord a message in the /var/log/commits file when the associated commit operation
succeeds, define the log message string in the <log> tag element and enclose the tag
element in the <commit-configuration> tag element. The <log> tag element can be

Copyright © 2013, Juniper Networks, Inc. 17

Junos XML Management Protocol Developer Guide

combined with any other tag element. When the <log> tag element is emitted alone,
the associated commit operation begins immediately.

To commit the candidate configuration but roll back to the previous configuration after
ashort time, enclose the <confirmed/> tag in the <commit-configuration> tag element.

By default, the rollback occurs after 10 minutes; to set a different rollback delay, also
emit the optional <confirm-timeout> tag element. To delay the rollback again (past
the original rollback deadline), emit the <confirmed/> tag (enclosed in the
<commit-configuration> tag element) before the deadline passes. Include the
<confirm-timeout> tag element to specify how long to delay the next rollback, or omit
that tag element to use the default of 10 minutes. The rollback can be delayed
repeatedly in this way.

To commit the configuration immediately and permanently after emitting the
<confirmed/> tag, emit the empty <commit-configuration/> tag before the rollback
deadline passes. The Junos XML protocol server commits the candidate configuration
and cancels the rollback. If the candidate configuration is still the same as the current
committed configuration, the effect is the same as recommitting the current committed
configuration.

e NOTE: The confirmed commit operation is not available for a private copy
of the configuration.

On a device with two Routing Engines, commit the candidate configuration stored on
the local Routing Engine on both Routing Engines. Combine tag elements as indicated
in the following:

. To copy the candidate configuration stored on the local Routing Engine to the other
Routing Engine, verify the candidate’s syntactic correctness, and commit it
immediately on both Routing Engines, enclose the <synchronize/> tag in the
<commit-configuration> tag element.

- To copy the candidate configuration stored on the local Routing Engine to the other
Routing Engine, verify the candidate’s syntactic correctness, and commit it on both
Routing Engines at a defined future time, enclose the <synchronize/> or
<force-synchronize/> tag and <at-time> tag element in the <commit-configuration>
tag element. Set the value in the <at-time> tag element as previously described for
use of the <at-time> tag element alone.

- To copy the candidate configuration stored on the local Routing Engine to the other
Routing Engine and verify the candidate’s syntactic correctness on each Routing
Engine, enclose the <synchronize/> or <force-synchronize/> and <check/> tag
elements in the <commit-configuration> tag element.

. To copy the candidate configuration stored on the local Routing Engine to the other
Routing Engine, verify the candidate’s syntactic correctness, and commit it on both
Routing Engines but require confirmation, enclose the <synchronize/> tag and
<confirmed/> tag elements, and optionally the <confirm-timeout> tag element, in
the <commit-configuration> tag element. Set the value in the <confirm-timeout>

172

Copyright © 2013, Juniper Networks, Inc.

Chapter 7: Summary of Junos XML Protocol Tag Elements

tag element as previously described for use of the <confirmed/> tag and
<confirm-timeout> tag element alone.

. To force the same synchronized commit operation as invoked by the <synchronize/>
tag to succeed, even if there are open configuration sessions or uncommitted
configuration changes on the remote machine, enclose the <force-synchronize/>
tag in the <commit-configuration> tag element.

. To schedule the configuration for commit at a future time, enclose the <at-time> tag
element in the <commit-configuration> tag element. There are three valid types of
time specifiers:

- The string reboot, to commit the configuration the next time the device reboots.

. Atime value of the form hh:mm{[:ss] (hours, minutes, and, optionally, seconds), to
commit the configuration at the specified time, which must be in the future but before
11:59:59 PM on the day the <commit-configuration> tag element is emitted. Use
24-hour time for the hh value; for example, 04:30:00 means 4:30:00 AM and 20:00
means 8:00 PM. The time is interpreted with respect to the clock and time zone
settings on the device.

. Adate and time value of the form yyyy-mm-dd hh:mm[:ss] (year, month, date, hours,
minutes, and, optionally, seconds), to commit the configuration at the specified date
and time, which must be after the <commit-configuration> tag element is emitted.
Use 24-hour time for the hh value. For example, 2005-08-2115:30:00 means 3:30 PM
on August 21, 2005. The time is interpreted with respect to the clock and time zone
settings on the device.

o NOTE: The time you specify must be more than 1 minute later than the
current time on the device.

The configuration is checked immediately for syntactic correctness. If the check
succeeds, the configuration is scheduled for commit at the specified time. If the
check fails, the commit operation is not scheduled.

Contents <at-time>—Schedules the commit operation for a specified future time.

<check>—Requests verification that the configuration is syntactically correct, but does
not actually commit it.

<confirmed>—Requests a commit of the candidate configuration and a rollback to the
previous configuration after a short time, 10 minutes by default. Use the <confirm-timeout>
tag element to specify a different amount of time.

<confirm-timeout>—Specifies the number of minutes for which the configuration remains
active when the <confirmed/> tagis enclosed in the <commit-configuration> tag element.

<log>—Records a message in the file /var/log/commits when the commit
operation succeeds.

Copyright © 2013, Juniper Networks, Inc. 173

Junos XML Management Protocol Developer Guide

<commit-results>

Usage Guidelines

Related
Documentation

<synchronize>—0On dual control plane systems, requests that the candidate configuration
on one control plane be copied to the other control plane, checked for correct syntax,
and committed on both Routing Engines.

<force-synchronize>—On dual control plane systems, forces the candidate configuration
on one control plane to be copied to the other control plane.

See “Committing a Configuration” on page 151.

« <commit-results> on page 174
« <open-configuration> on page 186

« <rpc>onpage 189

Usage

Description

Contents

Usage Guidelines

Related
Documentation

<rpc-reply xmlns:junos="URL" >
<1-- for the candidate configuration -->
<commit-results>
<routing-engine>...</routing-engine>
</commit-results>

<!--for a private copy -->
<commit-results>
<load-success/>
<routing-engine>...</routing-engine>
</commit-results>

<!--for a private copy that does not include changes -->
<commit-results>
</commit-results>

</rpc-reply>

Enclose tag elements that contain information about a commit operation performed by
the Junos XML protocol server on a particular Routing Engine.

<load-success/>—Indicates that the Junos XML protocol server successfully merged
changes from the private copy into a copy of the candidate configuration, before
committing the combined candidate on the specified Routing Engine.

The <routing-engine> tag element is described separately.

See “Committing a Configuration” on page 151.

« <commit-configuration> on page 170
« <routing-engine> on page 189

« <rpc-reply> on page 190

174

Copyright © 2013, Juniper Networks, Inc.

Chapter 7: Summary of Junos XML Protocol Tag Elements

<database-status>

Usage <junoscript>
<any-child-of-junoscript>
<xnm:error>
<database-status-information>
<database-status>
<user>username</user>
<terminal>terminal</terminal>
<pid>pid</pid>
<start-time>start-time</start-time>
<idle-time>idle-time</idle-time>
<commit-at>time</commit-at>
<exclusive/>
<edit-path>edit-path</edit-path>
</database-status>
</database-status-information>
</xnm:error>
</any-child-of-junoscript>
</junoscript>

Description Describe a user or Junos XML protocol client application that is logged in to the
configuration database. For simplicity, the Contents section uses the term user to refer
to both human users and client applications, except where the information differs for
the two.

Contents <commit-at/>—Indicatesthatthe userhas scheduled a commit operation for alater time.

<edit-path>—Specifies the user’s current location in the configuration hierarchy, in the
form of the CLI configuration mode banner.

<exclusive/>—Indicates that the user or application has an exclusive lock on the
configuration database. A user enters exclusive configuration mode by issuing the
configure exclusive command in CLI operational mode. A client application obtains the
lock by emitting the <lock-configuration/> tag element.

<idle-time>—Specifies how much time has passed since the user last performed an
operation in the database.

<pid>—Specifies the process ID of the Junos management process (mgd) that is handling
the user’s login session.

<start-time>—Specifies the time when the user logged in to the configuration database,
in the format YYYY-MM-DD hh:mm:ss TZ (year, month, date, hour in 24-hour format,
minute, second, time zone).

<terminal>—Identifies the UNIX terminal assigned to the user’s connection.

<user>—Specifies the Junos OS login ID of the user whose login to the configuration
database caused the error.

Usage Guidelines See “Handling an Error or Warning” on page 53.

Copyright © 2013, Juniper Networks, Inc. 175

Junos XML Management Protocol Developer Guide

Related . <database-status-information> on page 176
Documentation
« <junoscript> on page 180

« <xnm:error> on page 191

<database-status-information>

Usage <junoscript>
<any-child-of-junoscript>
<xnm:error>
<database-status-information>
<database-status>...</database-status>
</database-status-information>
<xnm:error>
</any-child-of-junoscript>
<junoscript>

Description Describe one or more users who have an open editing session in the
configuration database.

The <database-status> tag element is explained separately.

Usage Guidelines See “Handling an Error or Warning” on page 53.

Related . <database-status>on page 175
Documentation) .
. <junoscript> on page 180

« <xnm:error> on page 191

<end-session/>

Usage <rpc-reply xmlns:junos="URL" >
<end-session/>
</rpc-reply>

Description Indicate that the Junos XML protocol server is about to end the current session for a
reason other than an error. Most often, the reason is that the client application has sent
the <request-end-session/> tag.

Usage Guidelines See “Ending a Junos XML Protocol Session and Closing the Connection” on page 59.

Related . <request-end-session/> on page 188

Documentation
« <rpc-reply> on page 190

176 Copyright © 2013, Juniper Networks, Inc.

Chapter 7: Summary of Junos XML Protocol Tag Elements

<get-checksum-information>

Usage <rpc>
<get-checksum-information>
<path>
<!-- name and path of file -->
</path>
</get--checksum-information>
</rpc>

Description Enclose all tag elements in a request generated by a client application.
Contents <path>—The name and path of the file to check.

Usage Guidelines See the Junos XML API Operational Developer Reference.

Related . <checksum-information> on page 169
Documentation

<get-configuration>

Usage <rpc>
<get-configuration
[changed="changed"]
[commit-scripts="view"]
[compare="rollback" [rollback="[0-49]"]]
[database="(candidate | committed)"]
[format="(text | xml)"]
[inherit="(defaults | inherit)"
[groups="groups"] [interface-ranges="interface-ranges"]]/>

<!-- tag elements for the configuration element to display -->
</get-configuration>
</rpc>

Description Request configuration data from the Junos XML protocol server. The attributes specify
the source and formatting of the data to display. Either the entire configuration hierarchy
or a section can be displayed:

. Todisplay the entire configuration hierarchy, emit the empty <get-configuration/> tag.

. Todisplay a configuration element (hierarchy level or configuration object), emit tag
elements within the <get-configuration> tag element to represent all levels of the
configuration hierarchy from the root (represented by the <configuration> tag element)
down to the level or object to display. To represent a hierarchy level or a configuration
object that does not have an identifier, emit it as an empty tag. To represent an object
that has one or more identifiers, emit its container tag element and identifier tag
elements only, not any tag elements that represent other characteristics.

Copyright © 2013, Juniper Networks, Inc. 177

Junos XML Management Protocol Developer Guide

Attributes

changed—Specifies that the junos:changed="changed"; attribute should appear in the
opening tag of each changed configuration element.

The attribute appears in the opening tag of every parent tag element in the path to the
changed configuration element, including the top-level opening <configuration> tag. If
the changed configuration element is represented by a single (empty) tag, the
junos:changed="changed" attribute appears in the tag. If the changed element is
represented by a container tag element, the junos:changed="changed" attribute appears
in the opening container tag and also in each child tag element enclosed in the container
tag element.

The database attribute can be combined with the changed="changed" attribute to request
either the candidate or active configuration:

. When the candidate configuration is requested (the database="changed" attribute is
included or the database attribute is omitted completely), elements added to the
candidate configuration after the last commit operation are marked with the
junos:changed="changed" attribute.

. When the active configuration is requested (the database="candidate" attribute is
included), elements added to the active configuration by the most recent commit are
marked with the junos:changed="changed" attribute.

e NOTE: When a commit operation succeeds, the Junos XML protocol server
removes the junos:changed="changed" attribute from all tag elements.
However, if warnings are generated during the commit, the attribute is not
removed. In this case, the junos:changed="changed" attribute appears in
tag elements that changed before the commit operation as well as on
those that changed after it.

An example of a commit-time warning is the message explaining that a configuration
element will not actually apply until the device is rebooted. The warning appears in the
tag string that the Junos XML protocol server returns to confirm the success of the commit,
enclosed in an <xnm:warning> tag element.

To remove the junos:changed="changed" attribute from elements that changed before
the commit, take the action necessary to eliminate the cause of the warning, and commit
the configuration again.

commit-scripts—Requests that the Junos XML protocol server display commit-script-style
XML data, which displays the configuration in the XML format that is input to a commit
script. The only acceptable value for the commit-scripts attribute is view. The output is
equivalent to the CLI output when using the | display commit-scripts view option.

compare—Requests that the Junos XML protocol server display the differences between
the active or candidate configuration and a previously committed configuration. The only
acceptable value for the compare attribute is rollback. The compare attribute is combined
with the rollback="rollback-number" to specify which previously committed configuration

178

Copyright © 2013, Juniper Networks, Inc.

Chapter 7: Summary of Junos XML Protocol Tag Elements

should be used in the comparison. If the rollback attribute is omitted, the comparison
uses rollback number O, which is the active configuration.

The database attribute can be combined with the compare="rollback" attribute to request
either the candidate or active configuration. If the database attribute is omitted, the
candidate configuration is used. When the compare attribute is used, the default format
for the output is text. If the client application attempts to include the format="xml"
attribute when the compare="rollback" attribute is present, the protocol server will return
an <xnm:error> element indicating an error.

database—Specifies the version of the configuration from which to display data. There
are two acceptable values:

. candidate—The candidate configuration
. committed—The active configuration (the one most recently committed)

format—Specifies the format in which the Junos XML protocol server returns the
configuration data. There are two acceptable values:

. text—Configuration statements are formatted as ASCII text, using the newline character,
tabs and other white space, braces, and square brackets to indicate the hierarchical
relationships between the statements. This is the format used in configuration files
stored on a device running Junos OS and displayed by the CLI show configuration
command.

. xml—Configuration statements are represented by the corresponding Junos XML tag
elements. This is the default value if the format attribute is omitted.

groups—Specifies that the junos:group="group-name" attribute appears in the opening
tag for each configuration element that is inherited from a configuration group. The
group-name variable specifies the name of the configuration group.

The groups attribute must be combined with the inherit attribute, and the one acceptable
value for it is groups.

inherit—Specifies how the Junos XML protocol server displays statements that are defined
in configuration groups and interface ranges. If the inherit attribute is omitted, the output
uses the <groups>, <apply-groups>, and <apply-groups-except> tag elements to represent
user-defined configuration groups and uses the <interface-range> tag element torepresent
user-defined interface ranges; it does not include tag elements for statements defined
in the junos-defaults group.

Copyright © 2013, Juniper Networks, Inc. 179

Junos XML Management Protocol Developer Guide

Usage Guidelines

Related
Documentation

<junoscript>

There are two acceptable values:

defaults—The output does not include the <groups>, <apply-groups>, and
<apply-groups-except> tag elements, but instead displays tag elements that are
inherited from user-defined groups and from the junos-defaults group as children of
the inheriting tag elements.

inherit—The output does not include the <groups>, <apply-groups>,
<apply-groups-except>, and <interface-range> tag elements, but instead displays tag
elements that are inherited from user-defined groups and ranges as children of the
inheriting tag elements. The output does not include tag elements for statements
defined in the junos-defaults group.

interface-ranges—Specifies that the junos:interface-ranges="source-interface-range"
attribute appears in the opening tag for each configuration element that is inherited from
an interface-range. The source-interface-range variable specifies the name of the
interface-range.

The interface-ranges attribute must be combined with the inherit attribute, and the one
acceptable value for it is interface-ranges.

See “Requesting Configuration Information” on page 70.

junos:changed on page 199
junos:group on page 202
junos:interface-range on page 202
<rpc>on page 189
<xnm:warning> on page 193

Junos XML API Configuration Developer Reference

Usage

<!-- emitted by a client application -->
<junoscript version="version" [hostname="hostname"] [junos:key="key"]
[release="release"]>
<!--all tag elements generated by the application during the session -->
</junoscript>

<!-- emitted by the Junos XML protocol server -->
<junoscript xmlns="namespace-URL" xmlns:junos="namespace-URL"
schemalLocation="namespace-URL" os="0s" release="release”
hostname="hostname" version="version" >
<!- - all tag elements generated by the Junos XML protocol server during the session -
->
</junoscript>

180

Copyright © 2013, Juniper Networks, Inc.

Chapter 7: Summary of Junos XML Protocol Tag Elements

Description Enclose all tag elements in a Junos XML protocol session (act as the root tag element
for the session). The client application and Junos XML protocol server each emit this tag
element, enclosing all other tag elements that they emit during a session inside it.

Attributes hostname—Names the machine on which the tag element’s originator is running.

junos:key—Reqguests that the Junos XML protocol server include the junos:key="key"
attribute in the opening tag of each tag element that serves as an identifier for a
configuration object.

os—Specifies the operating system of the machine named by the hostname attribute.

release—Identifies the Junos OS Release being run by the tag element’s originator.
Software modules always set this attribute, but client applications are not required to
set it.

schemalLocation—Specifies the XML namespace for the XML Schema-language
representation of the Junos configuration hierarchy.

version—(Required for a client application) Specifies the version of the Junos XML
management protocol used for the enclosed set of tag elements.

xmlns—Names the XML namespace for the tag elements enclosed by the <junoscript>
tag element that do not have a prefix on their names (that is, the default namespace for
Junos XML tag elements). The value is a URL of the form
http://xml.juniper.net/xnm/version-code/xnm, where version-code is a string such as 1.1.

xmlns:junos—Names the XML namespace for the tag elements enclosed by the
<junoscript> tag element that have the junos: prefix. The value is a URL of the form
http://xml.juniper.net/junos/release-code/junos, where release-code is the standard string
that represents a release of the Junos OS, such as 12.1R1 for the initial version of Junos
OS Release 12.1.

Usage Guidelines See “Emitting the Opening <junoscript> Tag” on page 42, “Parsing the Junos XML Protocol
Server’'s Opening <junoscript> Tag” on page 44, and “Requesting an Indicator for
Identifiers” on page 76.

Related . <rpc>onpage 189
Documentation
« <rpc-reply> on page 190

« junos:key on page 203

<kill-session>

Usage <rpc>
<kill-session>
<session-id>PID</session-id >
</kill-session>
</rpc>

Copyright © 2013, Juniper Networks, Inc. 181

Junos XML Management Protocol Developer Guide

Description Request that the Junos XML protocol server terminate another CLI or Junos XML protocol
session. The usual reason to emit this tag is that the user or application for the other
session holds a lock on the candidate configuration, preventing the client application
from locking the configuration itself.

The client application must have the Junos maintenance permission to perform this
operation.

Contents <session-id>—The PID of the entity conducting the session to terminate. The PID is
reported in the <xnm:error> tag element that the Junos XML protocol server generates
when it cannot lock a configuration as requested.

Usage Guidelines “Terminating Another Junos XML Protocol Session” on page 57

Related . <lock-configuration/> on page 186

Documentation
« <xnm:error> on page 191

<load-configuration>

Usage <rpc>
<load-configuration rescue="rescue"/>

<load-configuration rollback="index"/>

<load-configuration url="url" [action="(merge | override | replace | update)"]\
[format="(text | xml)"]/>

<load-configuration url="url" action="set" format="text"/>

<load-configuration [action="(merge | override | replace | update)"]
[format="xml"]>
<configuration>
<!-- tag elements for configuration elements to load -->
</configuration>
</load-configuration>

<load-configuration [action="(merge | override | replace | update)"]
format="text">
<configuration-text>
<!-- formatted ASCII configuration statements to load -->
</configuration-text>
</load-configuration>

<load-configuration action="set" format="text" >
<configuration-set>
<!-- configuration mode commands to load -->
</configuration-set>
</load-configuration>
</rpc>

182 Copyright © 2013, Juniper Networks, Inc.

Chapter 7: Summary of Junos XML Protocol Tag Elements

Description Request that the Junos XML protocol server load configuration data into the candidate
configuration. Provide the data to load in one of the following ways:

. Set the empty <load-configuration/> tag’s rescue attribute to the value rescue. The
rescue configuration completely replaces the candidate configuration.

. Set the empty <load-configuration/> tag’s rollback attribute to the numerical index of
a previous configuration. The routing platform stores a copy of the most recently
committed configuration and up to 49 previous configurations. The specified previous
configuration completely replaces the candidate configuration.

. Set the empty <load-configuration/> tag’s url attribute to the pathname of a file that
contains the configuration data to load. If providing the configuration data as formatted
ASCI| text, set the format attribute to text. If providing the configuration data as Junos
XML tag elements, either omit the format attribute or set the value to xml. If providing
the configuration data as a set of configuration mode commands, set the action
attribute to set, and either omit the format attribute or set the value to text.

In the following example, the url attribute identifies /tmp/add.conf as the file to load.

<load-configuration url="/tmp/add.conf"/>

. Enclose the configuration data within an opening <load-configuration> and closing
</load-configuration> tag. If providing the configuration data as formatted ASCII text,
enclose it in a <configuration-text> tag element, and set the format attribute to text.
If providing the configuration data as Junos XML tag elements, encloseitin a
<configuration> tag element, and either omit the format attribute or set the value to
xml. If providing the configuration data as a set of configuration mode commands,
enclose it in a <configuration-set> tag element, set the action attribute to set, and
either omit the format attribute or set the value to text.

Copyright © 2013, Juniper Networks, Inc. 183

Junos XML Management Protocol Developer Guide

Attributes

action—Specifies how to load the configuration data, particularly when the candidate
configuration and loaded configuration contain conflicting statements. The following
are acceptable values:

. merge—Combines the data in the loaded configuration with the candidate configuration.
If statements in the loaded configuration conflict with statements in the candidate
configuration, the loaded statements replace the candidate ones. This is the default
behavior if the action attribute is omitted.

. override—Discards the entire candidate configuration and replaces it with the loaded
configuration. When the configuration is later committed, all system processes parse
the new configuration.

. replace—Substitutes each hierarchy level or configuration object defined in the loaded
configuration for the corresponding level or object in the candidate configuration.

If providing the configuration data as formatted ASCII text (either in the file named by
the url attribute or enclosed in a <configuration-text> tag element), also place the
replace: statement on the line directly preceding the statements that represent the
hierarchy level or object to replace. For more information, see the discussion of loading
a file of configuration data in the CL/ User Guide.

If providing the configuration data as Junos XML tag elements, also set the replace
attribute to the value replace on the opening tag of the container tag element that
represents the hierarchy level or object to replace.

. set—Loads a set of Junos OS configuration mode commands. This option executes
the configuration instructions line by line as they are stored in a file named by the url
attribute or enclosed in a <configuration-set> tag element. The instructions can contain
any configuration mode command, such as set, delete, edit, or deactivate. When
providing the configuration data as a set of commands, the only acceptable value for
the format attribute is text. If the action attribute value is set, and the format attribute
is omitted, the format automatically defaults to text rather than xml. This option was
added in Junos OS Release 11.4.

. update—Compares the loaded configuration and candidate configuration. For each
hierarchy level or configuration object that is different in the two configurations, the
version in the loaded configuration replaces the version in the candidate configuration.
When the configuration is later committed, only system processes that are affected
by the changed configuration elements parse the new configuration.

format—Specifies the format used for the configuration data. There are two acceptable
values:

. text—Indicates that configuration data is formatted as ASCII text or as a set of
configuration mode commands.

ASCII text format uses the newline character, tabs and other white space, braces, and
square brackets to indicate the hierarchical relationships between the statements.
This is the format used in configuration files stored on the routing platform and is
displayed by the CLI show configuration command. Set command format consists of
a series of Junos OS configuration mode commands and is displayed by the CLI

184

Copyright © 2013, Juniper Networks, Inc.

Chapter 7: Summary of Junos XML Protocol Tag Elements

show configuration | display set command. To import a set of configuration mode
commands, you must set the action attribute to set.

. xml—Indicates that configuration statements are represented by the corresponding
Junos XML tag elements. If the format attribute is omitted, xml is the default format
for all values of the action attribute except set, which defaults to format text.

rescue—Specifies that the rescue configuration replace the current candidate
configuration. The only valid value is rescue.

rollback—Specifies the numerical index of the previous configuration to load. Valid values
are 0 (zero, for the most recently committed configuration) through one less than the
number of stored previous configurations (maximum is 49).

url—Specifies the full pathname of the file that contains the configuration data to load.
The value can be a local file path, an FTP location, or a Hypertext Transfer Protocol
(HTTP) URL:

« Alocal filename can have one of the following forms:

. /path/filename—File on a mounted file system, either on the local flash disk or on
hard disk.

. a:filename or a:path/filename—File on the local drive. The default pathis /7 (the
root-level directory). The removable media can be in MS-DOS or UNIX (UFS) format.

. Afilename on an FTP server has the following form:
ftp://username:password @hostname/path/filename

« Afilename on an HTTP server has the following form:

http://username:password@hostname/path/filename

In each case, the default value for the path variable is the home directory for the username.
To specify an absolute path, the application starts the path with the characters %2F; for
example, ftp://username:password@hostname/%2Fpath/filename.

Usage Guidelines See “Changing Configuration Information” on page 113.

Related . <load-configuration-results> on page 185
Documentation
« <rpc>on page 189
. replace on page 208

. entries for <configuration>, <configuration-text>, and <configuration-set> in the Junos
XML API Configuration Developer Reference

<load-configuration-results>

Usage <rpc-reply xmlns:junos="URL" >
<load-configuration-results>
<load-success/>

Copyright © 2013, Juniper Networks, Inc. 185

Junos XML Management Protocol Developer Guide

Description

Contents

Usage Guidelines

Related
Documentation

<load-error-count>errors</load-error-count >
</load-configuration-results>
</rpc-reply>

Enclose one of the two following tag elements, which indicate the status of a configuration
loading operation performed by the Junos XML protocol server.

<load-error-count>—Specifies the number of errors that occurred when the Junos XML
protocol server attempted to load new data into the candidate configuration. The
candidate configuration must be restored to a valid state before it is committed.

<load-success/>—Indicates that the Junos XML protocol server successfully loaded new
data into the candidate configuration.

See “Changing Configuration Information” on page 113.

. <load-configuration> on page 182

« <rpc-reply>on page 190

<lock-configuration/>

Usage

Description

Usage Guidelines

Related
Documentation

<rpc>
<lock-configuration/>
</rpc>

Request that the Junos XML protocol server open and lock the candidate configuration,
enabling the client application both to read and change it, but preventing any other users
or applications from changing it. The application must emit the <unlock-configuration/>
tag to unlock the configuration.

If the Junos XML protocol session ends or the application emits the
<unlock-configuration/> tag before the candidate configuration is committed, all changes
made to the candidate are discarded.

See “Locking the Candidate Configuration” on page 56.

« <rpc>onpage 189

« <unlock-configuration/> on page 191

<open-configuration>

Usage

<rpc>
<open-configuration>
<private/>
</open-configuration>
</rpc>

186

Copyright © 2013, Juniper Networks, Inc.

Chapter 7: Summary of Junos XML Protocol Tag Elements

Description

Usage Guidelines

Related
Documentation

<reason>

Create a private copy of the candidate configuration.

The client application can perform the same operations on the private copy as on the
regular candidate configuration, including the commit operation. There are, however,
restrictions on the commit operation. For details, see “<commit-configuration>" on
page 170.

Todiscard the private copy without committing it, emit the empty <close-configuration/>
tag. Changes to the private copy are also lost if the Junos XML protocol session ends for
any reason before the changes are committed. It is not possible to save changes to a
private copy other than by emitting the <commit-configuration/> tag.

See “Creating a Private Copy of the Configuration” on page 58.

« <close-configuration/> on page 170
. <commit-configuration> on page 170
« <lock-configuration/> on page 186

« <rpc>onpage 189

Usage

Description

Contents

Usage Guidelines

Related
Documentation

<xnm:error | xnm:warning>
<reason>
<daemon>process</daemon>
<process-not-configured/>
<process-disabled/>
<process-not-running/>
</reason>
</xnm:error | xnm:warning>

Explain why a process could not service a request.

<daemon>—Ildentifies the process.

<process-disabled>—Indicates that the process has been explicitly disabled by
an administrator.

<process-not-configured>—Indicates that the process has been disabled because it is
not configured.

<process-not-running>—Indicates that the process is not running.

See “Handling an Error or Warning” on page 53.

« <xnm:error> on page 191

. <xnm:warning> on page 193

Copyright © 2013, Juniper Networks, Inc. 187

Junos XML Management Protocol Developer Guide

<request-end-session/>

Usage

Description

Usage Guidelines

Related
Documentation

<request-login>

<rpc>
<request-end-session/>
</rpc>

Request that the Junos XML protocol server end the current session.

See “Ending a Junos XML Protocol Session and Closing the Connection” on page 59.

. <end-session/> on page 176

. <rpc>onpage 189

Usage

Description

Contents

Usage Guidelines

Related
Documentation

<rpc>
<request-login>
<username>account</username>
<challenge-response>password</challenge-response>
</request-login>
</rpc>

Request authentication by the Junos XML protocol server when using the clear-text or
SSL access protocol.

Emitting both the <username> and <challenge-response> tag elements is appropriate if
the client application automates access to device information and does not interact with
users, or obtains the password from a user before beginning the authentication process.

Emitting only the <username> tag element is appropriate if the application does not
obtain the password until the authentication process has already begun. In this case, the
Junos XML protocol server returns the <challenge> tag element to request the password
associated with the account.

<challenge-response>—Specifies the password for the account named in the <username>
tag element. Omit this tag element to have the Junos XML protocol server emit the
<challenge> tag element to request the password.

<username>—Names the account under which to authenticate with the Junos XML
protocol server. The account must already be configured on the device where the Junos
XML protocol server is running.

See “Submitting an Authentication Request” on page 46.

« <challenge> on page 168

« <rpc>onpage 189

188

Copyright © 2013, Juniper Networks, Inc.

Chapter 7: Summary of Junos XML Protocol Tag Elements

<routing-engine>

Usage

Description

Contents

Usage Guidelines

Related
Documentation

<rpc>

<rpc-reply xmlns:junos="URL" >
<commit-results>

<!-- when the candidate configuration is committed -->
<routing-engine>
<name>reX</name>
<commit-success/>
</routing-engine>

<!-- when the candidate configuration is syntactically valid -->
<routing-engine>
<name>reX</name>
<commit-check-success/ >
</routing-engine>

</commit-results>
</rpc-reply>

Enclose tag elements indicating that the Junos XML protocol server successfully fulfilled
a commit request.

<commit-check-success>—Indicates that the candidate configuration is
syntactically correct.

<commit-success>—Indicates that the Junos XML protocol server successfully committed
the candidate configuration.

<name>—Name of the Routing Engine on which the commit operation was performed.
Possible values are re0 and rel.

See “Committing a Configuration” on page 151.

. <commit-results> on page 174

« <rpc-reply> on page 190

Usage

Description

Attributes

<junoscript>
<rpc [attributes]>
<!-- tag elements in a request from a client application -->
</rpc>
</junoscript>

Enclose all tag elements in a request generated by a client application.

(Optional) One or more attributes of the form attribute-name="value". This feature can
be used to associate requests and responses if the value assigned to an attribute by the

Copyright © 2013, Juniper Networks, Inc. 189

Junos XML Management Protocol Developer Guide

Usage Guidelines

Related
Documentation

<rpc-reply>

client application is unique in each opening <rpc> tag. The Junos XML protocol server
echoes the attribute unchanged in its opening <rpc-reply> tag, making it simple to map
the response to the initiating request.

0 NOTE: The xmlns:junos attribute name is reserved. The Junos XML protocol
server sets the attribute to an appropriate value on the opening <rpc-reply>
tag, so client applications must not emit it on the opening <rpc> tag.

See “Sending a Request to the Junos XML Protocol Server” on page 48.

« <junoscript> on page 180

« <rpc-reply>on page 190

Usage

Description

Attributes

Usage Guidelines

Related
Documentation

<junoscript>
<rpc-reply xmlns:junos="namespace-URL" >
<l-- tag elements in a reply from the Junos XML protocol server -->
</rpc-reply>
</junoscript>

Enclose all tag elements in a reply from the Junos XML protocol server. The immediate
child tag element is usually one of the following:

. The tag element used to enclose data generated by the Junos XML protocol server or
a Junos OS module in response to a client application’s request.

. The <output> tag element, if the Junos XML API does not define a specific tag element
for requested information.

xmlns:junos—Names the XML namespace for the Junos XML tag elements enclosed by
the <rpc-reply> tag element that have the junos: prefix. The value is a URL of the form
http://xml.juniper.net/junos/release-code/junos, where release-code is the standard string
that represents a release of the Junos OS, such as 12.1R1 for the initial version of Junos
OS Release 12.1.

See “Parsing the Junos XML Protocol Server Response” on page 51.

« <junoscript> on page 180
. <output> in the Junos XML API Operational Developer Reference

« <rpc>onpage 189

190

Copyright © 2013, Juniper Networks, Inc.

Chapter 7: Summary of Junos XML Protocol Tag Elements

<unlock-configuration/>

Usage

Description

Usage Guidelines

Related
Documentation

<rpc>
<unlock-configuration/>
</rpc>

Request that the Junos XML protocol server unlock and close the candidate configuration.

Until the application emits this tag, other users or applications can read the configuration
but cannot change it.

See “Unlocking the Candidate Configuration” on page 57.

« <lock-configuration/> on page 186

« <rpc>onpage 189

<?xml?>
Usage <?xml version="version" encoding="encoding"? >
Description Specify the XML version and character encoding scheme for the session.
Attributes encoding—Specifies the standardized character set that the emitter uses and can interpret.

Usage Guidelines

Related
Documentation

<Xnm:error>

version—Specifies the version of XML used by the emitter.

See “Emitting the <?xml?> PI” on page 41 and “Parsing the Junos XML Protocol Server’s
<?xml?> PI” on page 43.

« <junoscript> on page 180

Usage

<junoscript>
<any-child-of-junoscript>
<xnm:error xmlns="namespace-URL" xmlns:xnm="namespace-URL" >

<parse/>
<source-daemon>module-name </source-daemon>
<filename>filename</filename>
<line-number>line-number </line-number>
<column>column-number</column>
<token>input-token-id </token>
<edit-path>edit-path</edit-path>
<statement>statement-name </statement>
<message>error-string</message >
<re-name>re-name-string</re-name>
<database-status-information>...</database-status-information>
<reason>...</reason>

Copyright © 2013, Juniper Networks, Inc. 191

Junos XML Management Protocol Developer Guide

Description

Attributes

Contents

</xnm:error>
</any-child-of-junoscript>
</junoscript>

Indicate that the Junos XML protocol server has experienced an error while processing
the client application’s request. If the server has already emitted the response tag element
for the current request, the information enclosed in the response tag element might be
incomplete. The client application must include code that discards or retains the
information, as appropriate. The child tag elements described in the Contents section
detail the nature of the error. The Junos XML protocol server does not necessarily emit
all child tag elements; it omits tag elements that are not relevant to the current request.

xmlns—Names the XML namespace for the contents of the tag element. The valueis a
URL of the form http://xmLl.juniper.net/xnm/version/xnm, where version is a string such
as 1.l

xmlns:xnm—Names the XML namespace for child tag elements that have the xnm: prefix
on their names. The value is a URL of the form http://xml.juniper.net/xnm/version/xnm,
where version is a string such as 1.1.

<column>—(Occurs only during loading of a configuration file) Identifies the element
that caused the error by specifying its position as the number of characters after the first
character in the specified line in the configuration file that was being loaded. The line
and file are specified by the accompanying <line-number> and <filename> tag elements.

<edit-path>—(Occurs only during loading of configuration data) Specifies the path to
the configuration hierarchy level at which the error occurred, in the form of the CLI
configuration mode banner.

<filename>—(Occurs only during loading of a configuration file) Names the configuration
file that was being loaded.

<line-number>—(Occurs only during loading of a configuration file) Specifies the line
number where the error occurred in the configuration file that was being loaded, which
is named by the accompanying <filename> tag element.

<message>—Describes the error in a natural-language text string.

<parse/>—Indicates that there was a syntactic error in the request submitted by the
client application.

<re-name>—Names the Routing Engine on which the error occurred.

<source-daemon>—Names the Junos OS module that was processing the request in
which the error occurred.

<statement>—(Occurs only during loading of configuration data) Identifies the
configuration statement that was being processed when the error occurred. The
accompanying <edit-path> tag element specifies the statement’s parent hierarchy level.

<token>—Names which element in the request caused the error.

192

Copyright © 2013, Juniper Networks, Inc.

Chapter 7: Summary of Junos XML Protocol Tag Elements

The other tag elements are explained separately.

Usage Guidelines See “Handling an Error or Warning” on page 53.

Related . <database-status-information> on page 176
Documentation))
« <junoscript> on page 180
. <reason> on page 187

. <xnm:warning> on page 193

<xnm:warning>

Usage <junoscript>
<any-child-of-junoscript>
<xnm:warning xmlns="namespace-URL" xmlns:xnm="namespace-URL" >
<source-daemon>module-name </source-daemon>
<filename>filename</filename>
<line-number>line-number </line-number>
<column>column-number</column>
<token>input-token-id </token>
<edit-path>edit-path</edit-path>
<statement>statement-name </statement>
<message>error-string</message >
<reason>...</reason>
</Xxnm:warning>
</any-child-of-junoscript>
</junoscript>

Description Indicate that the server has encountered a problem while processing the client
application’s request. The child tag elements described in the Contents section detail
the nature of the warning.

Attributes xmlns—Names the XML namespace for the contents of the tag element. The value is a
URL of the form http://xml.juniper.net/xnm/version/xnm, where version is a string such
asll

xmlns:xnm—Names the XML namespace for child tag elements that have the xnm: prefix
in their names. The value is a URL of the form http://xml.juniper.net/xnm/version/xnm,
where version is a string such as 1.1.

Contents <column>—(Occurs only during loading of a configuration file) Identifies the element
that caused the problem by specifying its position as the number of characters after the
first character in the specified line in the configuration file that was being loaded. The
line and file are specified by the accompanying <line-number> and <filename> tag
elements.

<edit-path>—(Occurs only during loading of configuration data) Specifies the path to
the configuration hierarchy level at which the problem occurred, in the form of the CLI
configuration mode banner.

Copyright © 2013, Juniper Networks, Inc. 193

Junos XML Management Protocol Developer Guide

Usage Guidelines

Related
Documentation

<filename>—(Occurs only during loading of a configuration file) Names the configuration
file that was being loaded.

<line-number>—(Occurs only during loading of a configuration file) Specifies the line
number where the problem occurred in the configuration file that was being loaded,
which is named by the accompanying <filename> tag element.

<message>—Describes the warning in a natural-language text string.

<source-daemon>—Names the Junos OS module that was processing the request in
which the warning occurred.

<statement>—(Occurs only during loading of configuration data) Identifies the
configuration statement that was being processed when the error occurred. The
accompanying <edit-path> tag element specifies the statement’s parent hierarchy level.

<token>—Names which element in the request caused the warning.

The other tag element is explained separately.

See “Handling an Error or Warning” on page 53.

« <junoscript> on page 180
. <reason> on page 187

« <xnm:error> on page 191

194

Copyright © 2013, Juniper Networks, Inc.

CHAPTER 8

summary of Attributes in Junos XML Tags

active

This chapter lists the attributes that client applications include in an opening Junos XML

tag when performing some operations on configuration elements, such as deletion,

renaming, and reordering. It also lists the attributes that the Junos XML protocol server
includes in an opening XML tag when returning certain kinds of information. The entries
are in alphabetical order. For information about the notational conventions used in this

chapter, see Table 2 on page xvii.

Usage

Description

Usage Guidelines

Related
Documentation

<rpc>
<load-configuration>
<configuration>
<!-- opening tag for each parent of the element -->
<element active="active" >
<name>ijdentifier</name> <!-- if element has an identifier -->
</element>
<!-- closing tag for each parent of the element -->
</configuration>
</load-configuration>
</rpc>

Reactivate a previously deactivated configuration element.

The active attribute can be combined with one or more of the insert, rename, or replace

attributes. To deactivate an element, include the inactive attribute instead.

See “Changing a Configuration Element’s Activation State” on page 142 and “Changing a
Configuration Element’s Activation State Simultaneously with Other Changes” on page 145.

« inactive on page 197

. insert on page 198

. <load-configuration> on page 182
. rename on page 207

. replace on page 208

. <rpc>onpage 189

Copyright © 2013, Juniper Networks, Inc.

195

Junos XML Management Protocol Developer Guide

count

Usage

Description

Usage Guidelines

Related
Documentation

<rpc>
<get-configuration>
<configuration>
<!-- opening tags for each parent of the object -->
<object-type count="count"/>
<!--closing tags for each parent of the object -->
</configuration>
</get-configuration>
</rpc>

Specify the number of configuration objects of the specified type about which to return
information. If the attribute is omitted, the Junos XML protocol server returns information
about all objects of the type.

The attribute can be combined with one or more of the matching, recurse, and
start attributes.

If the application requests Junos XML-tagged output (the default), the Junos XML protocol
server includes two attributes in the opening container tag for each returned object:

. junos:position—Specifies the object’s numerical index.

. junos:total—Reports the total number of such objects that exist in the hierarchy.

These attributes do not appear if the application requests formatted ASCII output by
including the format="text" attribute in the opening <get-configuration> tag.

See “Requesting a Specified Number of Configuration Objects” on page 95.

. <get-configuration> on page 177
. matching on page 205

« recurse on page 206

« <rpc>onpage 189

. start on page 209

delete
Usage <rpc>
<load-configuration>
<configuration>
<!-- opening tag for each parent of the element -->
<!-- For a hierarchy level or object without an identifier -->
<level-or-object delete="delete" >

<l-- For an object with an identifier (here, called <name>) -->

196 Copyright © 2013, Juniper Networks, Inc.

Chapter 8: Summary of Attributes in Junos XML Tags

<object delete="delete" >
<name>identifier</name>
</object>

<!-- For a single-value or fixed-form option of an object -->
<object>
<name>identifier</name> <!-- if the object has an identifier -->
<option delete="delete"/>
</object>

<!-- closing tag for each parent of the element -->

<!-- For a value in a multivalued option of an object -->
<!-- opening tag for each parent of the parent object -->
<parent-object>
<name>identifier</name>
<object delete="delete" >value</object>
</parent-object >
<!--closing tag for each parent of the parent object -->

</configuration>
</load-configuration>
</rpc>

Description Specify that the Junos XML protocol server remove the configuration element from the
candidate configuration. The only acceptable value for the attribute is delete.

Usage Guidelines See “Deleting Configuration Elements” on page 129.

Related . <load-configuration> on page 182

Documentation
« <rpc>on page 189

inactive

Usage <rpc>
<load-configuration>
<configuration>
<!-- opening tag for each parent of the element -->

<!--if immediately deactivating a newly created element -->
<element inactive="inactive" >
<name>identifier</name> <!-- if element has an identifier -->
<!-- tag elements for each child of the element -->
</element>

<!-- if deactivating an existing element -->
<element inactive="inactive" >
<name>identifier</name> <!-- if element has an identifier -->
</element>
<!--closing tag for each parent of the element -->
</configuration>
</load-configuration>

Copyright © 2013, Juniper Networks, Inc. 197

Junos XML Management Protocol Developer Guide

</rpc>

Description Deactivate a configuration element. The element remains in the candidate configuration
or private copy, but when the configuration is later committed, the element does not
affect the functioning of the routing, switching, or security platform.

The inactive attribute can be combined with one or more of the insert, rename, or replace
attributes, as described in “Changing a Configuration Element’s Activation State
Simultaneously with Other Changes” on page 145. To reactivate a deactivated element,
include the active attribute instead.

Usage Guidelines See “Changing a Configuration Element’s Activation State” on page 142.

Related . active on page 195
Documentation . insert on page 198
. <load-configuration> on page 182
« rename on page 207

« <rpc>onpage 189

insert

Usage <rpc>
<load-configuration>
<configuration>
<!-- opening tag for each parent of the set -->

<!--if each element in the ordered set has one identifier -->

<ordered-set insert="(before | after)" name="referent-value" >
<name>value-for-moving-object</name>

</ordered-set>

<!--if each element in the ordered set has two identifiers -->
<ordered-set insert="(before | after)" identifier1="referent-value" \
identifier2="referent-value" >
<identifier]>value-for-moving-object</identifierl>
<identifier2>value-for-moving-object</identifier2>
</ordered-set>

<!--closing tag for each parent of the set -->
</configuration>
</load-configuration>
</rpc>

Description Change the position of a configuration element in an ordered set. The new position is
specified relative to a reference element, which is specified by including an attribute
named after each of its identifier tags. In the Usage section, the identifier tag element is
called <name> when each element in the set has one identifier.

198 Copyright © 2013, Juniper Networks, Inc.

Chapter 8: Summary of Attributes in Junos XML Tags

Usage Guidelines

Related
Documentation

junos:changed

The insert attribute can be combined with either the active or inactive attribute, as
described in “Changing a Configuration Element’s Activation State Simultaneously with
Other Changes” on page 145.

See “Reordering Elements in Configuration Objects” on page 135.

. active on page 195
« inactive on page 197
. <load-configuration> on page 182

. <rpc>onpage 189

Usage

Description

Usage Guidelines

<rpc-reply xmlns:junos="URL" >
<configuration standard-attributes junos:changed="changed" >
<!-- opening-tag-for-each-parent-level junos:changed="changed" -->

<!--If the changed element is an empty tag -->
<element junos:changed="changed"/>

<!--If the changed element has child tag elements -->

<element junos:changed="changed" >
<first-child-of-element junos:changed="changed" >
<second-child-of-element junos:changed="changed" >
<!-- additional children of element - ->

</element>

<!-- closing-tag-for-each-parent-level -->
</configuration>
</rpc-reply>

Indicate that a configuration element has changed since the last commit operation. The
Junos XML protocol server includes the attribute when the client application includes
the changed attribute in the empty <get-configuration/> tag or opening
<get-configuration> tag. The attribute appears in the opening tag of every parent tag
elementin the path to the changed configuration element, including the opening top-level
<configuration> tag.

The attribute does not appear if the client requests formatted ASCII output by including
the format="text" attribute in the empty <get-configuration/> tag or opening
<get-configuration> tag.

For information about the standard attributes in the opening <configuration> tag, see
“Requesting Information from the Committed or Candidate Configuration” on page 72.

See “Requesting a Change Indicator for Configuration Elements” on page 78.

Copyright © 2013, Juniper Networks, Inc. 199

Junos XML Management Protocol Developer Guide

Related . <get-configuration> on page 177

Documentation
« <rpc-reply> on page 190

junos:changed-localtime

Usage <rpc-reply xmlns:junos="URL" >
<configuration junos:changed-seconds="seconds" \
junos:changed-localtime="YYYY-MM-DD hh:mm:ss TZ" >
<l--Junos XML tag elements for the requested configuration data -->
</configuration>
</rpc-reply>

Description (Displayed when the candidate configuration is requested) Specify the time when the
configuration was last changed as the date and time in the device’s local time zone.

Usage Guidelines See “Requesting Information from the Committed or Candidate Configuration” on page 72.

Related . <configuration> in the Junos XML API Configuration Developer Reference
Documentation
« <rpc-reply> on page 190

« junos:changed-seconds on page 200

junos:changed-seconds

Usage <rpc-reply xmlns:junos="URL" >
<configuration junos:changed-seconds="seconds" \
junos:changed-localtime="YYYY-MM-DD hh:mm:ss TZ" >
<l-- Junos XML tag elements for the requested configuration data -->
</configuration>
</rpc-reply>

Description (Displayed when the candidate configuration is requested) Specify the time when the
configuration was last changed as the number of seconds since midnight on 1January
1970.

Usage Guidelines See “Requesting Information from the Committed or Candidate Configuration” on page 72.

Related . <configuration> in the Junos XML API Configuration Developer Reference
Documentation
« <rpc-reply> on page 190

« junos:.changed-localtime on page 200

junos:commit-localtime

Usage <rpc-reply xmlns:junos="URL" >
<configuration junos:commit-seconds="seconds" \

200 Copyright © 2013, Juniper Networks, Inc.

Chapter 8: Summary of Attributes in Junos XML Tags

junos:commit-localtime="YYYY-MM-DD hh:mm:ss TZ" \
junos:commit-user="username" >
<l--Junos XML tag elements for the requested configuration data -->
</configuration>
</rpc-reply>

Description (Displayed when the active configuration is requested) Specify the time when the
configuration was committed as the date and time in the device’s local time zone.

Usage Guidelines See “Requesting Information from the Committed or Candidate Configuration” on page 72.

Related . <configuration> in the Junos XML API Configuration Developer Reference
Documentation
« <rpc-reply> on page 190
« junos:commit-user on page 201

« junos:commit-seconds on page 201

junos:commit-seconds

Usage <rpc-reply xmlns:junos="URL" >
<configuration junos:commit-seconds="seconds" \
junos:commit-localtime="YYYY-MM-DD hh:mm:ss TZ" \
junos:commit-user="username" >
<l--Junos XML tag elements for the requested configuration data -->
</configuration>
</rpc-reply>

Description (Displayed when the active configuration is requested) Specify the time when the
configuration was committed as the number of seconds since midnight on1January 1970.

Usage Guidelines See “Reqguesting Information from the Committed or Candidate Configuration” on page 72.

Related . <configuration> in the Junos XML API Configuration Developer Reference
Documentation
« <rpc-reply> on page 190
« junos.commit-user on page 201

« junos:commit-localtime on page 200

junos:commit-user

Usage <rpc-reply xmlns:junos="URL" >
<configuration junos:commit-seconds="seconds" \
junos:commit-localtime="YYYY-MM-DD hh:mm:ss TZ" \
junos:commit-user="username" >
<l-- Junos XML tag elements for the requested configuration data -->
</configuration>
</rpc-reply>

Copyright © 2013, Juniper Networks, Inc. 201

Junos XML Management Protocol Developer Guide

Description

Usage Guidelines

Related
Documentation

junos:group

(Displayed when the active configuration is requested) Specify the Junos OS username
of the user who requested the commit operation.

See “Requesting Information from the Committed or Candidate Configuration” on page 72.

. <configuration> in the Junos XML API Configuration Developer Reference
« <rpc-reply> on page 190
« junos:commit-localtime on page 200

« junos:commit-seconds on page 201

Usage

Description

Usage Guidelines

Related
Documentation

<rpc-reply xmlns:junos="URL" >
<configuration>
<!-- opening tag for each parent of the element -->
<inherited-element junos:group="source-group" >
<inherited-child-of-inherited-element junos:group="source-group" >
<!-- inherited-children-of-child junos:group="source-group" -->
</inherited-child-of-inherited-element >
</inherited-element >
<!--closing tag for each parent of the element -->
</configuration>
</rpc-reply>

Name the configuration group from which each configuration element is inherited. The
Junos XML protocol server includes the attribute when the client application includes
the groups and inherit attribute in the empty <get-configuration/> tag or opening
<get-configuration> tag.

The attribute does not appear if the client requests formatted ASCII output by including
the format="text" attribute in the empty <get-configuration/> tag or opening
<get-configuration> tag. Instead, the Junos XML protocol server provides the information
in a comment directly above each inherited element.

See “Displaying the Source Group for Inherited Configuration Elements” on page 84.

. <get-configuration> on page 177

« <rpc-reply> on page 190

junos:interface-range

Usage

<rpc-reply xmlns:junos="URL" >
<configuration attributes>
<interfaces>
<!-- For each inherited element -->
<interface junos:interface-range="source-interface-range" >

202

Copyright © 2013, Juniper Networks, Inc.

Chapter 8: Summary of Attributes in Junos XML Tags

<inherited-element junos:interface-range="source-interface-range" >
<inherited-child-of-inherited-element
junos:interface-range="source-interface-range" >
<!-- inherited-children-of-child
junos:interface-range="source-interface-range" -->
</inherited-child-of-inherited-element >
</inherited-element >
</interface>
</interfaces>
</configuration>
</rpc-reply>

Description Name the interface range from which each configuration element is inherited. The Junos
XML protocol server includes the attribute when the client application includes the
interface-ranges and inherit attributes in the empty <get-configuration/> tag or opening
<get-configuration> tag.

The attribute does not appear if the client requests formatted ASCII output by including
the format="text" attribute in the empty <get-configuration/> tag or opening
<get-configuration> tag.

Usage Guidelines See “Displaying the Source Interface Range for Inherited Configuration Elements” on
page 89.

Related . <get-configuration> on page 177

Documentation
« <rpc-reply> on page 190

junos:key

Usage <rpc-reply xmlns:junos="URL" >
<configuration>
<!-- opening tag for each parent of the object -->
<object>
<name junos:key="key" >identifier</name>
<1-- additional children of object -->
</object>
<!--closing tag for each parent of the object -->
</configuration>
</rpc-reply>

Description Indicate that a child configuration tag element is the identifier for its parent tag element.
The Junos XML protocol server includes the attribute when the client application requests
information about an object type (with the <get-configuration> tag element) and has
included the junos:key attribute in the opening <junoscript> tag for the current session.

The attribute does not appear if the client requests formatted ASCII output by including
the format="text" attribute in the empty <get-configuration/> tag or opening
<get-configuration> tag.

Copyright © 2013, Juniper Networks, Inc. 203

Junos XML Management Protocol Developer Guide

Usage Guidelines

Related
Documentation

junos:position

When requesting configuration data with Perl client applications using the
get_configuration() method, the Junos XML protocol server includes the junos:key="key"
attribute in the configuration data output when the client application sets the value of
the Junos::Device constructor argument junos_key to 1. The default value is O.

The attribute does not appear if the Perl client application requests formatted ASCII
output by including the format=>'text' attribute in the options for the get_configuration()
method.

See “Requesting an Indicator for Identifiers” on page 76.

. <get-configuration> on page 177
« <junoscript> on page 180

« <rpc>onpage 189

Usage

Description

Usage Guidelines

Related
Documentation

junos:total

<rpc-reply xmlns:junos="URL" >
<configuration>
<!-- opening tags for each parent of the object -->
<object junos:position="index" junos:total="total" >
<!--closing tags for each parent of the object -->
</configuration>
</rpc-reply>

Specify the index number of the configuration object in the list of objects of a specified
type about which information is being returned. The Junos XML protocol server includes
the attribute when the client application requests information about an object type (with
the <get-configuration> tag element) and includes the count attribute, the start attribute,
or both, in the opening tag for the object type.

The attribute does not appear if the client requests formatted ASCII output by including
the format="text" attribute in the opening <get-configuration> tag.

See “Requesting a Specified Number of Configuration Objects” on page 95.

. count on page 196

. <get-configuration> on page 177
« junos:total on page 204

« <rpc>onpage 189

. start on page 209

Usage

<rpc-reply xmlns:junos="URL" >

204

Copyright © 2013, Juniper Networks, Inc.

Chapter 8: Summary of Attributes in Junos XML Tags

Description

Usage Guidelines

Related
Documentation

<configuration>
<!-- opening tags for each parent of the object -->
<object junos:position="index" junos:total="total" >
<!-- closing tags for each parent of the object -->
</configuration>
</rpc-reply>

Specify the number of configuration objects of a specified type about which information
is being returned. The Junos XML protocol server includes the attribute when the client
application requests information about an object type (with the <get-configuration> tag
element) and includes the count attribute, the start attribute, or both, in the opening tag
for the object type.

The attribute does not appear if the client requests formatted ASCII output by including
the format="text" attribute in the opening <get-configuration> tag.

See “Requesting a Specified Number of Configuration Objects” on page 95.

. count onpage 196

. <get-configuration> on page 177
« junos:position on page 204

. <rpc>onpage 189

. start on page 209

matching
Usage <rpc>
<get-configuration>
<configuration>
<!-- opening tags for each parent of the level -->
<level matching="matching-expression"/>

<!--closing tags for each parent of the level -->

</configuration>

</get-configuration>

</rpc>
Description Request information about only those instances of a configuration object type at the

specified level in the configuration hierarchy that have the specified set of characters in
their identifier names (characters that match a regular expression). If the attribute is
omitted, the Junos XML protocol server returns the complete set of child tag elements
for the specified parent level.

The attribute can be combined with one or more of the count, recurse, and start attributes.

To represent the objects to return, the matching-expression value uses a slash-separated
list of hierarchy level and object names similar to an XML Path Language (XPath)

representation. Each level in the representation can be either a full level name or aregular
expression that matches the identifier name of one or more instances of an object type:

Copyright © 2013, Juniper Networks, Inc. 205

Junos XML Management Protocol Developer Guide

Usage Guidelines

Related
Documentation

protect

object-type[name='regular-expression']"

The regular expression uses the notation defined in POSIX Standard 1003.2 for extended
(modern) UNIX regular expressions. For details about the notation, see “Requesting a
Subset of Objects by Using Regular Expressions” on page 101.

See “Requesting a Subset of Objects by Using Regular Expressions” on page 101.

. counton page 196
. <get-configuration> on page 177
. <rpc>onpage 189

. start on page 209

Usage

Release Information

Description

Usage Guidelines

Related
Documentation

<rpc>
<load-configuration>
<configuration>
<!-- opening tag for each parent of the element -->
<element protect="protect" >
<name>identifier</name> <!-- if element has an identifier -->
</element>
<!--closing tag for each parent of the element -->
</configuration>
</load-configuration>
</rpc>

Command introduced in Junos OS Release 11.2.

Protect a configuration element from being modified or deleted. The protect attribute
can be applied to configuration hierarchies or individual configuration statements. The
protect attribute can be combined with the active and inactive attributes. To unprotect
a protected element, include the unprotect attribute instead.

See “Protecting or Unprotecting a Configuration Object” on page 140

« Example: Protecting the Junos OS Configuration from Modification or Deletion
. <load-configuration> on page 182
« <rpc>onpage 189

. unprotect on page 209

recurse
Usage <rpc>
<get-configuration>
<configuration>
206 Copyright © 2013, Juniper Networks, Inc.

Chapter 8: Summary of Attributes in Junos XML Tags

<!-- opening tags for each parent of the object -->
<object-type recurse="false"/>
<!--closing tags for each parent of the object -->
</configuration>
</get-configuration>
</rpc>

Description Request only the identifier tag element for each configuration object of a specified type
in the configuration hierarchy. If the attribute is omitted, the Junos XML protocol server
returns the complete set of child tag elements for every object. The only acceptable
value for the attribute is false.

The attribute can be combined with one or more of the count, matching, and
start attributes.

Usage Guidelines See “Requesting Identifiers Only” on page 97.

Related . countonpage 196
D mentation
ocumentatio . <get-configuration> on page 177
« <rpc>on page 189

. start on page 209

rename

Usage <rpc>
<load-configuration>
<configuration>
<!-- opening tag for each parent of the object -->

<1-- if the object has one identifier -->

<object rename="rename" name="new-name" >
<name>current-name</name>

</object>

<!--if the object has two identifiers, both changing -->
<object rename="rename" identifier1="new-name" \
identifier2=new-name" >
<identifier1>current-name</identifierl>
<identifier2>current-name</identifier2>
</object>

<!-- closing tag for each parent of the object -->
</configuration>
</load-configuration>
</rpc>

Description Change the name of one or more of a configuration object’s identifiers. In the
Usage section, the identifier tag element is called <name> when the element has one
identifier.

Copyright © 2013, Juniper Networks, Inc. 207

Junos XML Management Protocol Developer Guide

Usage Guidelines

Related
Documentation

replace

The rename attribute can be combined with either the inactive or active attribute.

See “Renaming a Configuration Object” on page 138.

. active on page 195
« inactive on page 197
« <load-configuration> on page 182

« <rpc>on page 189

Usage

Description

Usage Guidelines

Related
Documentation

<rpc>
<load-configuration action="replace" >
<configuration>
<!-- opening tag for each parent of the element -->
<container-tag replace="replace" >
<name>identifier</name>
<l-- tag elements for other children, if any -->
</container-tag>
<!--closing tag for each parent of the element -->
</configuration>
</load-configuration>
</rpc>

Specify that the configuration element completely replace the element in the candidate
configuration that has the same identifier (in the Usage section, the identifier tag element
is called <name>). If the attribute is omitted, the Junos XML protocol server merges the

element with the existing element as described in “Merging Configuration Elements” on
page 122. The only acceptable value for the attribute is replace.

The client application must also include the action="replace" attribute in the opening
<load-configuration> tag.

The replace attribute can be combined with either the active or inactive attribute, as
described in “Changing a Configuration Element’s Activation State Simultaneously with
Other Changes” on page 145.

See “Replacing Configuration Elements” on page 125.

. active on page 195
. inactive on page 197
. <load-configuration> on page 182

« <rpc>onpage 189

208

Copyright © 2013, Juniper Networks, Inc.

Chapter 8: Summary of Attributes in Junos XML Tags

start

Usage <rpc>
<get-configuration>
<configuration>
<!-- opening tags for each parent of the object -->
<object-type start="index"/>
<!--closing tags for each parent of the object -->
</configuration>
</get-configuration>
</rpc>

Description Specify the index number of the first object to return (1 for the first object, 2 for the second,
and so on) when requesting information about a configuration object of a specified type.
If the attribute is omitted, the returned set of objects starts with the first one in the
configuration hierarchy.

The attribute can be combined with one or more of the count, matching, and
recurse attributes.

If the application requests Junos XML-tagged output (the default), the Junos XML protocol
server includes two attributes in the opening container tag for each returned object:

. junos:position—Specifies the object’s numerical index.

. junos:total—Reports the total number of such objects that exist in the hierarchy.

These attributes do not appear if the client requests formatted ASCII output by including
the format="text" attribute in the opening <get-configuration> tag.

Usage Guidelines See “Requesting a Specified Number of Configuration Objects” on page 95.

Related . countonpage196
Documentation . <get-configuration> on page 177
. recurse on page 206

« <rpc>onpage 189

unprotect

Usage <rpc>
<load-configuration>
<configuration>
<!-- opening tag for each parent of the element -->
<element unprotect="unprotect" >
<name>identifier</name> <!-- if element has an identifier -->
</element>
<!--closing tag for each parent of the element -->
</configuration>
</load-configuration>

Copyright © 2013, Juniper Networks, Inc. 209

Junos XML Management Protocol Developer Guide

Release Information

Description

Usage Guidelines

Related
Documentation

xmlns

</rpc>

Command introduced in Junos OS Release 11.2.

Unprotect a previously protected configuration element. The unprotect attribute cannot
be combined with other attributes such as active, inactive, rename, or replace. If an element
is protected, a request to simultaneously unprotect and modify the element will unprotect
the element, but it will also produce a warning message that the additional modification
cannot be completed because the element is protected. You must unprotect the element
first and then make the modification.

See “Protecting or Unprotecting a Configuration Object” on page 140

« Example: Protecting the Junos OS Configuration from Modification or Deletion
« <load-configuration> on page 182
« <rpc>onpage 189

. protect on page 206

Usage

Description

Usage Guidelines

Related
Documentation

<rpc-reply xmlns:junos="URL" >
<operational-response xmlns="URL-for-DTD" >
<l-- Junos XML tag elements for the requested information -->
</operational-response>
</rpc-reply>

Define the XML namespace for the enclosed tag elements that do not have a prefix (such

as junos:) in their names. The namespace indicates which Junos XML document type
definition (DTD) defines the set of tag elements in the response.

See “Requesting Operational Information” on page 66.

« <rpc-reply> on page 190

210

Copyright © 2013, Juniper Networks, Inc.

PART 3

Writing Junos XML Protocol Client
Applications

« Writing Junos XML Protocol Perl Client Applications on page 213
« Writing Junos XML Protocol C Client Applications on page 243

Copyright © 2013, Juniper Networks, Inc. 21

Junos XML Management Protocol Developer Guide

212 Copyright © 2013, Juniper Networks, Inc.

CHAPTER9

Writing Junos XML Protocol Perl Client
Applications

Juniper Networks provides a Perl module JUNOS::Device to help you more quickly and
easily develop custom Perl scripts for configuring and monitoring switches, routers, and
security devices running Junos OS. The module implements a JUNOS::Device object that
client applications can use to communicate with the Junos XML protocol server on a
device running Junos OS. The Perl distribution includes several sample Perl scripts, which
illustrate how to use the module in scripts that perform various functions.

This chapter discusses the following topics:

« Overview of the Junos::Device Perl Module and Sample Scripts on page 213

« Downloading the Junos XML Protocol Perl Client and Prerequisites Package on page 214
« Installing the Junos XML Protocol Perl Client and Prerequisites Package on page 215

« Tutorial: Writing Perl Client Applications on page 218

« Mapping CLI Commmands to Perl Methods on page 241

Overview of the Junos::Device Perl Module and Sample Scripts

The Junos XML protocol Perl distribution uses the same directory structure for Perl
modules as the Comprehensive Perl Archive Network (http://www.cpan.org). Thisincludes
a lib directory for the JUNOS module and its supporting files, and an examples directory
for the sample scripts.

Client applications use the JUNOS::Device object to communicate with a Junos XML
protocol server. The library contains several modules, but client applications directly
invoke only the JUNOS::Device object. All of the sample scripts use this object.

The sample scripts illustrate how to perform the following functions:

« diagnose_bgp.pl—Illustrates how to write scripts to monitor device status and diagnose
problems. The sample script extracts and displays information about a device’s
unestablished Border Gateway Protocol (BGP) peers from the full set of BGP
configuration data. The script is provided in the examples/diagnose_bgp directory in
the Junos XML protocol Perl distribution.

Copyright © 2013, Juniper Networks, Inc. 213

http://www.cpan.org

Junos XML Management Protocol Developer Guide

. get_chassis_inventory.pl—Illustrates how to use a predefined query to request
information from a device. The sample script invokes the get_chassis_inventory method
with the detail option to request the same information as the Junos XML
<get-chassis-inventory><detail ></get-chassis-inventory> tag sequence and the
command-line interface (CLI) show chassis hardware detail command. The script is
provided in the examples/get_chassis_inventory directory in the Junos XML protocol
Perl distribution.

« load_configuration.pl—Illustrates how to change a device configuration by loading a
file that contains configuration data formatted with Junos XML tag elements. The
distribution includes two sample configuration files, set_login_class_bar.xml and
set_login_user_foo.xml; however, you can specify another configuration file on the
command line. The script is provided in the examples/load_configuration directory in
the Junos XML protocol Perl distribution.

The following sample scripts are used together to illustrate how to store and retrieve
data from the Junos XML API (or any XML-tagged data set) in a relational database.
Although these scripts create and manipulate MySOL tables, the data manipulation
technigues that they illustrate apply to any relational database. The scripts are provided
in the examples/RDB directory in the Perl distribution:

. get_config.pl—Illustrates how to retrieve routing platform configuration information.

« make_tables.pl—Generates a set of Structured Query Language (SQL) statements for
creating relational database tables.

- pop_tables.pl—Populates existing relational database tables with data extracted from
a specified XML file.

. unpop_tables.pl—Transforms data stored in a relational database table into XML and
writes it to a file.

For instructions on running the scripts, see the README or README.html file included in
the Perl distribution.

Downloading the Junos XML Protocol Perl Client and Prerequisites Package

To download the compressed tar archives that contain the Junos XML protocol Perl client
distribution and the prerequisites package, perform the following steps:

1. Access the Junos XML protocol download page on the Juniper Networks website at
https://www.juniper.net/support/products/junoscript/ .

2. Click the link for the appropriate software release.
3. Select the Software tab.

4. Click the links to download the client distribution and the prerequisites package that
support the appropriate access protocols. Customers in the United States and Canada
can download the packages that support all access protocols including SSH, SSL,
clear-text and Telnet protocols (the domestic package). Customers in other countries
can download the packages that support only the clear-text and Telnet protocols
(the export package).

214

Copyright © 2013, Juniper Networks, Inc.

https://www.juniper.net/support/products/junoscript/

Chapter 9: Writing Junos XML Protocol Perl Client Applications

0 NOTE: The Junos XML protocol Perl client software should be installed
and run on a regular computer with a UNIX-like operating system; it is not
meant to be installed on a Juniper Networks device.

Optionally, download the packages containing the document type definitions (DTDs)
and the XML Schema language representation of the Junos configuration hierarchy:

1. Access the download page at https:/www.juniper.net/support/products/xmlapi/ .
2. Click the link for the appropriate software release.
3. Select the Software tab.

4. Click the links to download the desired packages.

Related . Installing the Junos XML Protocol Perl Client and Prerequisites Package on page 215
Documentation

Installing the Junos XML Protocol Perl Client and Prerequisites Package

To install the Junos XML protocol Perl client and the prerequisites package, perform the
following procedures:

- Verifying Installation and Version of Perl on page 215

« Extracting the Junos XML Protocol Perl Client and Sample Scripts on page 216

« Extracting and Installing the Junos XML Protocol Perl Client Prerequisites
Package on page 216

« Installing the Junos XML Protocol Perl Client on page 218

Verifying Installation and Version of Perl

Perl must be installed on your system before you install the Junos XML protocol Perl
client prerequisites package or client software. The Junos XML protocol Perl client requires
Perl version 5.0004 or later. To confirm whether Perl is installed on your system and to
determine which version of Perl is currently running, issue the following commands:

% which perl
% perl -v

If the issued output indicates that Perl is not installed or the version is older than the
required version, you must download and install Perl version 5.0004 or later in order to
use the Junos XML protocol Perl client. The Perl source packages are located at:

http://www.cpan.org/src/.

After installing a suitable version of Perl, extract the Junos XML protocol Perl client,
extract and install the prerequisites package, and then install the Junos XML protocol
Perl client application.

Copyright © 2013, Juniper Networks, Inc. 215

https://www.juniper.net/support/products/xmlapi/
http://www.cpan.org/src/

Junos XML Management Protocol Developer Guide

Extracting the Junos XML Protocol Perl Client and Sample Scripts

To uncompress and extract the contents of the compressed tar archive that contains
the Junos XML protocol Perl client and sample scripts, perform the following steps:

1. Create the directory where you want to store the Junos XML protocol Perl client
application and sample scripts, and move the downloaded client application file into
this directory. Then make this directory the working directory:

% mkdir parent-directory
% mv junoscript-perl-release-type.tar.gz parent-directory
% cd parent-directory

2. Issue the following command to uncompress and extract the contents of the Junos
XML protocol Perl client package:

« On FreeBSD and Linux systems:
% tar zxf junoscript-perl-release-type.tar.gz
. On Solaris systems:

% gzip -dc junoscript-perl-release-type.tar.gz | tar xf
where release is the release code, for example 12.1R1.1, and type is domestic or export.

Step 2 creates a directory called junoscript-perl-release and extracts the contents of the
tar archive to it. For example, a typical filename for the compressed tar archive is
junoscript-perl-9.5R1.8-domestic.tar.gz. Extracting the contents of this archive creates
the directory junoscript-perl-9.5R1.8 directly under parent-directory and places the
application files and sample scripts into this new directory.

The junoscript-perl-release/README file contains instructions for extracting and installing
the Perl prerequisite modules, creating a Makefile, and installing and testing the
JUNOS::Device module.

Extracting and Installing the Junos XML Protocol Perl Client Prerequisites Package

The prerequisites package consists of C libraries, executables, and Perl modules. It must
be installed on the client machine in order for the Junos XML protocol Perl client and the
included examples to work correctly. To uncompress and extract the contents of the
compressed tar archive containing the prerequisite files, perform the following steps:

1. Move the downloaded prerequisites package into the
parent-directory/junoscript-perl-release/ directory that was created in “Extracting the
Junos XML Protocol Perl Client and Sample Scripts” on page 216. The compressed tar
archive containing the prerequisite files must be uncompressed, unpacked, and
installed in this directory.

2. Issuethe following command to uncompress and extract the contents of the package:
« On FreeBSD and Linux systems:
% tar zxf junoscript-perl-prereqs-release-type.tar.gz

« On Solaris systems:

216

Copyright © 2013, Juniper Networks, Inc.

Chapter 9: Writing Junos XML Protocol Perl Client Applications

% gzip -dc junoscript-perl-prereqs-release-type.tar.gz | tar xf

where release is the release code, for example 12.1R1.1, and type is domestic or export. This
command creates a directory called prereqs/ and extracts the contents of the tar archive
toit.

By default, the prerequisite Perl modules are installed in the standard directory. The
standard directory is normally /usr/local/lib/. You need root privileges to access the
standard directory. You can opt to install the modules in a private directory.

. Toinstall the required modules in the standard directory:

1. Go to thejunoscript-perl-release/ directory where you extracted the contents of the
prerequisites package.

2. Issue the following command:
% perl install-preregs.pl -used_by example -force
where the -used_by example option is invoked to install only modules used by a
specific example, and the -force option installs the module even if an older version
exists or if the make test command fails.
« Toinstall the required modules in a private directory:
1. Set the PERL5LIB, MANPATH, and PATH environment variables.

% setenv PERLS5LIB private-directory-path
% setenv MANPATH "SMANPATH/:$SPERL5LIB/../man"
% setenv PATH "SPATH/:SPERLS5LIB/../bin"

For sh, ksh, and bash shells, SPERL5LIB can be set with EXPORT
PERLS5LIB=private-directory-path

2. Go to the junoscript-perl-release directory where you extracted the contents of the
prerequisites package.
3. Issue the following command:
% perl install-preregs.pl -used_by example -install_directory SPERL5LIB -force

where the -used_by example option is invoked to install only modules used by a
specific example, and the -force option installs the module even if an older version
exists or if the make test command fails. The -install_directory SPERL5LIB option
installs the prerequisite Perl modules in the private directory that you specified in
Step 1.

Installation log files are written to junoscript-perl-release/tmp/output/. After installation,
you can view any missing dependencies by issuing the following command:

% perl required-mod.pl

This command lists the modules that still require installation.

Copyright © 2013, Juniper Networks, Inc. 217

Junos XML Management Protocol Developer Guide

Installing the Junos XML Protocol Perl Client

Related

Documentation

After installing the prerequisites package as detailed in “Extracting and Installing the
Junos XML Protocol Perl Client Prerequisites Package” on page 216, install the Junos XML
protocol Perl client software. Go to the junoscript-perl-release/ directory that was created
in “Extracting the Junos XML Protocol Perl Client and Sample Scripts” on page 216. Perform
the following steps to install the client software:

1. Create the makefile:

. Toinstall the Perl client in the standard directory (generally /usr/local/lib):
% perl Makefile.PL

Checking if your kit is complete...
Looks good
Writing Makefile for junoscript-perl

. Toinstall the Perl client in a private directory:

Make sure that the PERL5LIB, MANPATH, and PATH environment variables are set
as detailed in “Extracting and Installing the Junos XML Protocol Perl Client
Prerequisites Package” on page 216. Then create the makefile:

% perl Makefile.PL LIB=SPERL5LIB INSTALLMAN3DIR=SPERLS5LIB/../man/man3

2. Test and install the application:

% make
% make test
% make install

The Junos XML protocol Perl client application is installed and ready for use. For
information about the JUNOS::Device object and a list of valid queries, consult the man
page by invoking the man command for the JUNOS::Device object:

% man JUNOS::Device

The sample scripts reside in the junoscript-perl-release/examples/ directory. You can
review and run these examples to acquire some familiarity with the client before writing
your own applications.

. Downloading the Junos XML Protocol Perl Client and Prerequisites Package on page 214

Tutorial: Writing Perl Client Applications

This tutorial explains how to write a Perl client application that requests operational or
configuration information from the Junos XML protocol server or loads configuration
information onto a device. The following sections use the sample scripts included in the
Junos XML protocol Perl distribution as examples:

« Import Perl Modules and Declare Constants on page 219

« Connect to the Junos XML Protocol Server on page 219

« Submitting a Request to the Junos XML Protocol Server on page 226

218

Copyright © 2013, Juniper Networks, Inc.

Chapter 9: Writing Junos XML Protocol Perl Client Applications

« Parsing and Formatting the Response from the Junos XML Protocol Server on page 235

» Closing the Connection to the Junos XML Protocol Server on page 241

Import Perl Modules and Declare Constants

Include the following statements at the start of the application. The first statement
imports the functions provided by the JUNOS::Device object, which the application uses
to connect to the Junos XML protocol server on a device. The second statement provides
error checking and enforces Perl coding practices such as declaration of variables before
use.

use JUNOS: :Device;
use strict;

Include statements to import other Perl modules as appropriate for your application. For
example, several of the sample scripts import the following standard Perl modules, which
include functions that handle input from the command line:

. File::Basename—Includes functions for processing filenames.
« Getopt::Std—Includes functions for reading in keyed options from the command line.
« Term::ReadKey—Includes functions for controlling terminal modes, for example

suppressing onscreen echo of a typed string such as a password.

If the application uses constants, declare their values at this point. For example, the
sample diagnose_bgp.pl script includes the following statements to declare constants
for formatting output:

use constant OUTPUT_FORMAT => "%-20s%-8s%-8s%-11s%-14s%s\n"";
use constant OUTPUT_TITLE =>

""\N=============== BGP PROBLEM SUMMARY ===============\n\n"';
use constant OUTPUT_ENDING =>
"\n \n\n"";

The load_configuration.pl script includes the following statements to declare constants
for reporting return codes and the status of the configuration database:

use constant REPORT_SUCCESS => 1;

use constant REPORT_FAILURE => 0;

use constant STATE_CONNECTED => 1;

use constant STATE_LOCKED => 2;

use constant STATE_CONFIG_LOADED => 3;

Connect to the Junos XML Protocol Server

The following sections explain how to use the JUNOS::Device object to connect to the
Junos XML protocol server on a device running Junos OS:

« Satisfying Protocol Prerequisites on page 220

« Group Requests on page 220

» Obtain and Record Parameters Required by the JUNOS::Device Object on page 220
« Obtaining Application-Specific Parameters on page 223

Copyright © 2013, Juniper Networks, Inc. 219

Junos XML Management Protocol Developer Guide

« Converting Disallowed Characters on page 224

« Establishing the Connection on page 226

Satisfying Protocol Prerequisites

The Junos XML protocol server supports several access protocols, listed in “Supported
Access Protocols” on page 29. For each connection to the Junos XML protocol server on
adevice, the application must specify the protocolit is using. Using SSH or Secure Sockets
Layer (SSL) is recommended because they provide greater security by encrypting all
information before transmission across the network.

Before your application can run, you must satisfy the prerequisites for the protocol it
uses. For some protocols this involves activating configuration statements on the device,
creating encryption keys, or installing additional software on the device running Junos
OS or the machine where the application runs. For instructions, see “Prerequisites for
Establishing a Connection” on page 29.

Group Requests

Establishing a connection to the Junos XML protocol server on a device is one of the more
time- and resource-intensive functions performed by an application. If the application
sends multiple requests to a routing platform, it makes sense to send all of them within
the context of one connection. If your application sends the same requests to multiple
devices, you can structure the script to iterate through either the set of devices or the set
of requests. Keep in mind, however, that your application can effectively send only one
request to one Junos XML protocol server at a time. This is because the JUNOS::Device
object does not return control to the application until it receives the closing </rpc-reply >
tag that represents the end of the Junos XML protocol server’s response to the current
request.

Obtain and Record Parameters Required by the JUNOS::Device Object

The JUNOS::Device object takes the following parameters, specified as keys in a Perl
hash:

. access—(Required) The access protocol to use when communicating with the Junos
XML protocol server. Acceptable values are "telnet", "ssh", "clear-text", and "ssl". For
more information about supported access protocols, see “Supported Access Protocols”
on page 29. Before the application runs, satisfy the protocol-specific prerequisites
described in “Prerequisites for Establishing a Connection” on page 29.

« hostname—(Required) The name of the device to which to connect. For best results,
specify either a fully qualified hostname or an IP address.

« login—(Required) The username under which to establish the connection to the Junos
XML protocol server and issue requests . The username must already exist on the
specified device and have the permission bits necessary for making the requests invoked
by the application.

. password—(Required) The password for the username.

- junos_key—(Optional) When requesting configuration data using the get_configuration()
method, set the value of the parameter to 1 to include the junos:key="key” attribute in

220

Copyright © 2013, Juniper Networks, Inc.

Chapter 9: Writing Junos XML Protocol Perl Client Applications

the output of XML-formatted configuration data. The default value of the parameter
is 0. The junos:key="key” attribute indicates that a child configuration tag element is
the identifier for its parent tag element. The attribute does not appear in formatted
ASCIl output.

The sample scripts record the parameters in a Perl hash called %deviceinfo, declared
as follows:

my %deviceinfo = (
access => $access,
login => $login,
password => $password,
hostname => $hostname,
junos_key => $junos_key,

);

The sample scripts obtain the parameters from options entered on the command line
by a user. Your application can also obtain values for the parameters from a file or
database, or you can hardcode one or more of the parameters into the application code
if they are constant.

Example: Collecting Parameters Interactively

Each sample script obtains the parameters required by the JUNOS::Device object from
command-line options provided by the user who invokes the script. The script records
the optionsin a Perl hash called %opt, using the getopts function defined in the Getopt::Std
Perl module to read the options from the command line. (Scripts used in production
environments probably do not obtain parameters interactively, so this sectionisimportant
mostly for understanding the sample scripts.)

In the following example from the get_chassis_inventory.pl script, the first parameter to
the getopts function defines the acceptable options, which vary depending on the
application. A colon after the option letter indicates that it takes an argument.

The second parameter, \%opt, specifies that the values are recorded in the %opt hash.
If the user does not provide at least one option, provides an invalid option, or provides
the -h option, the script invokes the output_usage subroutine, which prints a usage
message to the screen:

my %opt;
getopts('l:p:dx:m:o:h', \%opt) || output_usage();
output_usage() if $opt{h};

The following code defines the output_usage subroutine for the get_chassis_inventory.pl
script. The contents of the my Susage definition and the Where and Options sections are
specific to the script, and differ for each application.

sub output_usage
{
my $usage = "Usage: $0 [options] <target>

Where:
<target> The hostname of the target device.

Options:

Copyright © 2013, Juniper Networks, Inc. 221

Junos XML Management Protocol Developer Guide

-l <login> Alogin name accepted by the target device.

-p <password> The password for the login name.

-m <access> Access method. It can be clear-text, ssl, ssh or telnet.
Default: telnet.

-x <format> The name of the XSL file to display the response.
Default: xsl/chassis_inventory_csv.xsl

-o <filename> File to which to write output, instead of standard output.

-d Turn on debugging.\n\n";

die $usage;

}

The get_chassis_inventory.pl script includes the following code to obtain values from the
command line for the four parameters required by the JUNOS::Device object. A detailed
discussion of the various functional units follows the complete code sample.

Get the hostname
my $hostname = shift || output_usage();

Get the access method

my $access = $opt{m} || "telnet";

use constant VALID_ACCESSES => "telnet|ssh|clear-text|ssl";
output_usage() unless (VALID_ACCESSES =~ /$access/);

Check for login name. If not provided, prompt for it
my $login="";
if ($opt{l}) {
$login = $opt{l};
lelse{
print STDERR "login: ";
$login = ReadLine O;
chomp $login;
1

Check for password. If not provided, prompt for it
my $password ="";
if ($optip}) {
$password = $opt{p};
lelse{
print STDERR "password: ";
ReadMode 'noecho';
$password = ReadLine O;
chomp $password;
ReadMode 'normal’;

222

Copyright © 2013, Juniper Networks, Inc.

Chapter 9: Writing Junos XML Protocol Perl Client Applications

print STDERR "\n";
1

In the first line of the preceding code sample, the script uses the Perl shift function to
read the hostname from the end of the command line. If the hostname is missing, the
script invokes the output_usage subroutine to print the usage message, which specifies
that a hostname is required:

my $hostname = shift || output_usage();

The script next determines which access protocol to use, setting the Saccess variable to
the value of the -m command-line option or to the value telnet if the -m option is not
provided. If the specified value does not match one of the values defined by the
VALID_ACCESSES constant, the script invokes the output_usage subroutine to print the
usage message.

my $access = $opt{m} || "telnet";
use constant VALID_ACCESSES => "telnet|ssh|clear-text|ssl";
output_usage() unless (VALID_ACCESSES =~ /$access/);

The script then determines the username, setting the Slogin variable to the value of the
-l command-line option. If the option is not provided, the script prompts for it and uses
the ReadLine function (defined in the standard Perl Term::ReadKey module) to read it
from the command line:

my $login="";
if ($opt{l}) {
$login = $opt{l};
lelse{
print STDERR "login: ";
$login = ReadLine O;
chomp $login;
1

The script finally determines the password for the username, setting the $Spassword
variable to the value of the -p command-line option. If the option is not provided, the
script prompts for it. It uses the ReadMode function (defined in the standard Perl
Term::ReadKey module) twice: first to prevent the password from echoing visibly on the
screen and then to return the shell to normal (echo) mode after it reads the password:

my $password ="";

if ($opt{p}) {
$password = $opt{p};

lelse{
print STDERR "password: ";
ReadMode 'noecho';
$password = ReadLine O;
chomp $password;
ReadMode 'normal’;
print STDERR "\n";

}

Obtaining Application-Specific Parameters

In addition to the parameters required by the JUNOS::Device object, applications might
need to define other parameters, such as the name of the file to which to write the data
returned by the Junos XML protocol server in response to a request, or the name of the

Copyright © 2013, Juniper Networks, Inc. 223

Junos XML Management Protocol Developer Guide

Extensible Stylesheet Transformation Language (XSLT) file to use for transforming the
data.

As with the parameters required by the JUNOS::Device object, your application can
hardcode the values in the application code, obtain them from a file, or obtain them
interactively. The sample scripts obtain values for these parameters from command-line
optionsin the same manner as they obtain the parameters required by the JUNOS::Device
object (discussed in “Obtain and Record Parameters Required by the JUNOS::Device
Object” on page 220). Several examples follow.

The following line enables a debugging trace if the user includes the -d command-line
option. It invokes the JUNOS::Trace::init routine defined in the JUNOS::Trace module,
which is already imported with the JUNOS::Device object.

JUNOS::Trace::init(1) if $opt{d};

The following line sets the Soutputfile variable to the value specified by the -o
command-line option. It names the local file to which the Junos XML protocol server’s
response is written. If the -o option is not provided, the variable is set to the empty string.

my $outputfile = $opt{o} || ““;

The following code from the diagnose_bgp.pl script defines which XSLT file to use to
transform the Junos XML protocol server’s response. The first line sets the $xslfile variable
to the value specified by the -x command-line option. If the option is not provided, the
script uses the text.xsl file supplied with the script, which transforms the data to ASCII
text. The if statement verifies that the specified XSLT file exists; the script terminates if
it does not.

Retrieve the XSLT file, default is parsed by perl
my $xslfile = $opt{x} || "xsl/text.xsl";
if ($xslfile && ! -f $xslfile) {

die "ERROR: XSLT file $xslfile does not exist";
}

The following code from the load_configuration.pl script defines whether to merge,
replace, update, or overwrite the new configuration data into the configuration database
(for more information about these operations, see

“Changing Configuration Information” on page 113). The first two lines set the Sload_action
variable to the value of the -a command-line option, or to the default value merge if the
option is not provided. If the specified value does not match one of the valid actions
defined in the third line, the script invokes the output_usage subroutine.

The default action for load_configuration is 'merge'

my $load_action = "merge";

$load_action = $opt{a}l if $opt{al;

use constant VALID_ACTIONS => "merge|replace|override";
output_usage() unless (VALID_ACTIONS =~ /$load_action/);

Converting Disallowed Characters

Scripts that handle configuration data usually accept and output the data either as Junos
XML tag elements or as formatted ASCII statements like those used in the Junos OS CLI.
As described in “XML and Junos XML Management Protocol Conventions Overview” on
page 11, certain characters cannot appear in their regular form in an XML document.

224

Copyright © 2013, Juniper Networks, Inc.

Chapter 9: Writing Junos XML Protocol Perl Client Applications

These characters include the apostrophe (¢), the ampersand (&), the greater-than (>
) and less-than (<) symbols, and the quotation mark ("). Because these characters
might appear in formatted ASCII configuration statements, the script must convert the
characters to the corresponding predefined entity references.

The load_configuration.pl script uses the get_escaped_text subroutine to substitute
predefined entity references for disallowed characters (the get_configuration.pl script
includes similar code). The script first defines the mappings between the disallowed
characters and predefined entity references, and sets the variable Schar_class to aregular
expression that contains all of the entity references, as follows:

my %escape_symbols = (
qq(") =>'"',
aq(>) =>'&sgt;’,

qa(<) =>"'<',

qq(') =>''',
qa(&) =>'&'

)

my $char_class = join ("|", map { "($_)" } keys Y%escape_symbols);

The following code defines the get_escaped_text subroutine for the load_configuration.pl
script. A detailed discussion of the subsections in the routine follows the complete code
sample.

sub get_escaped_text

{
my $input_file = shift;
my $input_string ="";

open(FH, $input_file) or return undef;

while(<FH>) {
my $line =$_;
$line =~ s/<configuration-text>//g;
$line =~ s/<\/configuration-text>//g;
$line =~ s/($char_class)/$escape_symbols{$1}/ge;
$input_string .= $line;
}

return "<configuration-text>$input_string</configuration-text>";

}

The first subsection of the preceding code sample reads in a file containing formatted
ASCII configuration statements:

sub get_escaped_text

i
my $input_file = shift;
my $input_string = "";

open(FH, $input_file) or return undef;

In the next subsection, the subroutine temporarily discards the lines that contain the
opening <get-configuration> and closing </get-configuration> tags, then replaces the
disallowed characters on each remaining line with predefined entity references and
appends the line to the Sinput_string variable:

Copyright © 2013, Juniper Networks, Inc. 225

Junos XML Management Protocol Developer Guide

while(<FH>) {
my $line=9$_;
$line =~ s/<configuration-text>//g;
$line =~ s/<\/configuration-text>//g;
$line =~ s/(%$char_class)/$escape_symbols{$1}/ge;
$input_string .= $line;
}

The subroutine concludes by replacing the opening <get-configuration> and closing
</get-configuration> tags, and returning the converted set of statements:

return "<configuration-text >$input_string</configuration-text>";

}

Establishing the Connection

After obtaining values for the parameters for the JUNOS::Device object (see “Obtain and
Record Parameters Required by the JUNOS::Device Object” on page 220), each sample
script records them in the %deviceinfo hash:

my %deviceinfo = (

access => $access,

login => $login,

password => $password,
hostname => $hostname,
junos_key => $junos_key,

);

The script then invokes the Junos XML protocol-specific new subroutine to create a
JUNOS::Device object and establish a connection to the specified routing, switching, or
security platform. If the connection attempt fails (as tested by the ref operator), the
script exits.

my $jnx = new JUNOS::Device(%deviceinfo);
unless (ref $jnx) {
die "ERROR: $deviceinfo{hostname}: failed to connect.\n";

Submitting a Request to the Junos XML Protocol Server

After establishing a connection to a Junos XML protocol server (see “Establishing the
Connection” on page 226), your application can submit one or more requests by invoking
the Perl methods that are supported in the version of the Junos XML protocol and Junos
XML API used by the application:

« Each version of software supports a set of methods that correspond to CLI operational
mode commands (later releases generally support more methods). For a list of the
operational methods supported in the current version, see “Mapping CLI Commands
to Perl Methods” on page 241 and the files stored in the lib/JUNOS/release directory of
the Junos XML protocol Perl distribution (release is the Junos OS version code, such as
12.1R1 for the initial version of Junos OS Release 12.1). The files have names in the format
package_methods.pl, where package is a software package.

« The set of methods that correspond to operations on configuration objects is defined
in the lib/ZJUNOS/Methods.pm file in the Junos XML protocol Perl distribution. For more
information about configuration operations, see

226

Copyright © 2013, Juniper Networks, Inc.

Chapter 9: Writing Junos XML Protocol Perl Client Applications

“Changing Configuration Information” on page 113 and
“Summary of Junos XML Protocol Tag Elements” on page 167.

See the following sections for more information:

« Providing Method Options or Attributes on page 227
« Submitting a Request on page 229
« Example: Getting an Inventory of Hardware Components on page 230

» Example: Loading Configuration Statements on page 231

Providing Method Options or Attributes

Many Perl methods have one or more options or attributes. The following list describes
the notation used to define a method’s options in the lib/JUNOS/Methods.pm and
lib/JUNOS/release/package_methods.pl files, and the notation that an application uses
when invoking the method:

« A method without options is defined as SNO_ARGS, as in the following entry for the
get_system_uptime_information method:

Method : <get-system-uptime-information>
Returns: <system-uptime-information>

Command: "show system uptime"
get_system_uptime_information => $NO_ARGS,

To invoke a method without options, follow the method name with an empty set of
parentheses as in the following example:

$jnx->get_system_uptime_information();

- A fixed-form option is defined as type STOGGLE. In the following example, the
get_software_information method takes two fixed-form options, brief and detail:

Method : <get-software-information>
Returns: <software-information>
Command: "show version"
get_software_information =>

brief => $TOGGLE,

detail => $TOGGLE,
1

To include a fixed-form option when invoking a method, set it to the value 1 (one) as
in the following example:

$inx->get_software_information(brief => 1);

- An option with a variable value is defined as type $SSTRING. In the following example,
the get_cos_drop_profile_information method takes the profile_name argument:

Method : <get-cos-drop-profile-information>
Returns: <cos-drop-profile-information>

Command: "show class-of-service drop-profile"
get_cos_drop_profile_information => {

Copyright © 2013, Juniper Networks, Inc. 227

Junos XML Management Protocol Developer Guide

profile_name => $STRING,
i3

To include a variable value when invoking a method, enclose the value in single quotes
as in the following example:

$inx->get_cos_drop_profile_information(profile_name => 'user-drop-profile');

« An attribute is defined as type SATTRIBUTE. In the following example, the
load_configuration method takes the rollback attribute:

load_configuration => {
rollback => $ATTRIBUTE
L

Toinclude a numerical attribute value wheninvoking a method, set it to the appropriate
value. The following example rolls the candidate configuration back to the previous
configuration that has an index of 2:

$inx->load_configuration(rollback => 2);

To include a string attribute value when invoking a method, enclose the value in single
quotes as in the following example:

$inx->get_configuration(format => ‘text’);

« A set of configuration statements or corresponding tag elements is defined as type
SDOM. In the following example, the get_configuration method takes a set of
configuration statements (along with two attributes):

get_configuration => {
configuration => $DOM,
format => $ATTRIBUTE,
database => $ATTRIBUTE,
5

Toinclude a set of configuration statements when invoking a method, provide a parsed
set of statements or tag elements. The following example refers to a set of Junos XML
configuration tag elements in the config-input.xml file. For further discussion, see
“Example: Loading Configuration Statements” on page 231.

my $parser = new XML::DOM::Parser;
$inx->load_configuration(

format => ‘xml,

action => ‘merge’,

configuration => $parser->parsefile(config-input.xml)

)i

A method can have a combination of fixed-form options, options with variable values,
attributes, and a set of configuration statements. For example, the
get_forwarding_table_information method has four fixed-form options and five options
with variable values:

Method : <get-forwarding-table-information>
Returns: <forwarding-table-information>
Command: "show route forwarding-table"
get_forwarding_table_information => {

detail => $TOGGLE,

extensive => $TOGGLE,

228

Copyright © 2013, Juniper Networks, Inc.

Chapter 9: Writing Junos XML Protocol Perl Client Applications

multicast => $TOGGLE,
family => $STRING,
vpn => $STRING,
summary => $TOGGLE,
matching => $STRING,
destination => $STRING,
label => $STRING,

i3

Submitting a Request

The following code is the recommended way to send a request to the Junos XML protocol
server and shows how to handle error conditions. The Sjnx variable is defined to be a
JUNOS::Device object, as discussedin “Establishing the Connection” on page 226. A detailed
discussion of the functional subsections follows the complete code sample.

my %arguments = ();

% arguments = (argumentl => valuel,
argument2 => value2,...);
argument3 => value3,

)i
my $res = $jnx-> method (%args);

unless (ref $res) {
$inx->request_end_session();
$inx->disconnect();
print "ERROR: Could not send request to $hostname\n";

}

my $err = $res->getFirstError();
if ($err) {
$inx->request_end_session();
$inx->disconnect();
print "ERROR: Error for $hostname: " . $err->{message} . "\n";

}

The first subsection of the preceding code sample creates a hash called %arguments to
define values for a method’s options or attributes. For each argument, the application
uses the notation described in “Providing Method Options or Attributes” on page 227.

my Y%arguments = ();
%arguments = (argumentl => valuel,
argument2 => value2,...);

Copyright © 2013, Juniper Networks, Inc. 229

Junos XML Management Protocol Developer Guide

argument3 => value3,

)i

The application then invokes the method, defining the Sres variable to point to the
JUNOS::Response object that the Junos XML protocol server returns in response to the
request (the object is defined in the lib/JUNOS/Response.pm file in the Junos XML protocol
Perl distribution):

my $res = $jnx-> method (%args);

If the attempt to send the request failed, the application prints an error message and
closes the connection:

unless (ref $res) {

$inx->request_end_session();

$inx->disconnect();

print "ERROR: Could not send request to $hostname\n";
1

If there was an error in the Junos XML protocol server’s response, the application prints
an error message and closes the connection. The getFirstError function is defined in
the JUNOS::Response module (lib/JUNOS/Response.pm) in the Junos XML protocol
Perl distribution.

my $err = $res->getFirstError();
if ($err) {
$inx->request_end_session();
$inx->disconnect();
print "ERROR: Error for $hostname: " . $err->{message} . "\n";

}

Example: Getting an Inventory of Hardware Components

The get_chassis_inventory.pl script retrieves and displays a detailed inventory of the
hardware componentsinstalled in a routing, switching, or security platform. It is equivalent
to issuing the show chassis hardware detail command.

After establishing a connection to the Junos XML protocol server, the script defines
get_chassis_inventory as the request to send and includes the detail argument:

my $query = "get_chassis_inventory";
my %aqueryargs = (detail =>1);

The script sends the query and assigns the results to the Sres variable. It performs two
tests on the results, and prints an error message if it cannot send the request or if errors
occurred when executing it. If no errors occurred, the script uses XSLT to transform the
results. For more information, see “Parsing and Formatting an Operational Response”
on page 235.

send the command and receive a XML::DOM object
my $res = $jnx->%$query(Yoqueryargs);
unless (ref $res) {
die "ERROR: $deviceinfo{hostname}: failed to execute command $query.\n";
}
Check and see if there were any errors in executing the command.
my $err = $res->getFirstError();
if ($err) {
print STDERR "ERROR: $deviceinfo{'hostname'} - ", $err->{message}, "\n";

230 Copyright © 2013, Juniper Networks, Inc.

Chapter 9: Writing Junos XML Protocol Perl Client Applications

lelse{
Now do the transformation using XSLT
... code that uses XSLT to process results ...

}

Example: Loading Configuration Statements

The load_configuration.pl script loads configuration statements onto a device. It uses the
basic structure for sending requests described in “Submitting a Request” on page 229 but
also defines a graceful_shutdown subroutine that handles errors in a slightly more
elaborate manner than that describedin “Submitting a Request” on page 229. The following
sections describe the different functions that the script performs:

« Handling Error Conditions on page 231

« Locking the Configuration on page 232

« Reading In and Parsing the Configuration Data on page 232
. Loading the Configuration Data on page 234

« Committing the Configuration on page 235

Handling Error Conditions

The graceful_shutdown subroutine in the load_configuration.pl script handles errors in a
slightly more elaborate manner than the generic structure described in “Submitting a
Request” on page 229. It employs the following additional constants:

use constant REPORT_SUCCESS =>1;

use constant REPORT_FAILURE => O;

use constant STATE_CONNECTED =>T;

use constant STATE_LOCKED => 2;

use constant STATE_CONFIG_LOADED => 3;

The first two if statements in the subroutine refer to the STATE_CONFIG_LOADED and
STATE_LOCKED conditions, which apply specifically to loading a configuration in the
load_configuration.pl script. The if statement for STATE_CONNECTED is similar to the
error checking describedin “Submitting a Request” on page 229. The eval statement used
in each case ensures that any errors that occur during execution of the enclosed function
call are trapped so that failure of the function call does not cause the script to exit.

sub graceful_shutdown

{
my ($jnx, $req, $state, $success) = @_;

if ($state >= STATE_CONFIG_LOADED) {
print "Rolling back configuration ..\n";
eval {
$jnx->load_configuration(rollback => 0);
b
1

if ($state >= STATE_LOCKED) {
print "Unlocking configuration database ...\n";
eval {
$inx->unlock_configuration();

b

Copyright © 2013, Juniper Networks, Inc. 231

Junos XML Management Protocol Developer Guide

}

if ($state >= STATE_CONNECTED) {
print "Disconnecting from the device ..\n";
eval {
$inx->request_end_session()
$jinx->disconnect();
b
1

if ($success) {

die "REQUEST $req SUCCEEDED\Nn";
lelse{
die "REQUEST $req FAILED\n";
b
}

Locking the Configuration

The main section of the load_configuration.pl script begins by establishing a connection
toaJunos XML protocol server, as described in “Establishing the Connection” on page 226.
It then invokes the lock_configuration method to lock the configuration database. In case
of error, the script invokes the graceful_shutdown subroutine described in “Handling Error
Conditions” on page 231.

print "Locking configuration database ...\n";
my $res = $jnx->lock_configuration();
my $err = $res->getFirstError();
if ($err) {

print "ERROR: $deviceinfo{hostname}: failed to lock configuration. Reason:
$err->{message}.\n";

graceful_shutdown($jnx, $xmilfile, STATE_CONNECTED, REPORT_FAILURE);
}

Reading In and Parsing the Configuration Data

In the following code sample, the load_configuration.pl script reads in and parses a file
that contains Junos XML configuration tag elements or ASCII-formatted statements. A
detailed discussion of the functional subsections follows the complete code sample.

Load the configuration from the given XML file
print "Loading configuration from $xmilfile ...\n";
if (! -f $xmlfile) {
print "ERROR: Cannot load configuration in $xmlfile\n";
graceful_shutdown($jnx, $xmlfile, STATE_LOCKED, REPORT_FAILURE);
}

my $parser = new XML::DOM::Parser;
my $doc;
if ($opt{t}) {
my $xmlstring = get_escaped_text($xmilfile);

$doc = $parser->parsestring($xmilstring) if $xmilstring;

lelse{

232

Copyright © 2013, Juniper Networks, Inc.

Chapter 9: Writing Junos XML Protocol Perl Client Applications

$doc = $parser->parsefile($xmlfile);

}

unless (ref $doc) {

print "ERROR: Cannot parse $xmilfile, check to make sure the XML data is
well-formed\n";

graceful_shutdown($jnx, $xmlfile, STATE_LOCKED, REPORT_FAILURE);

}

The first subsection of the preceding code sample verifies the existence of the file
containing configuration data. The name of the file was previously obtained from the
command line and assigned to the $Sxmilfile variable. If the file does not exist, the script
invokes the graceful_shutdown subroutine:

print "Loading configuration from $xmlfile ...\n";

if (!-f $xmlfile) {
print "ERROR: Cannot load configuration in $xmlfile\n";
graceful_shutdown($jnx, $xmilfile, STATE_LOCKED, REPORT_FAILURE);

}

If the -t command-line option was included when the load_configuration.pl script was
invoked, the file referenced by the Sxmilfile variable should contain formatted ASCII
configuration statements like those returned by the CLI configuration-mode show
command. The script invokes the get_escaped_text subroutine described in “Converting
Disallowed Characters” on page 224, assigning the result to the Sxmilstring variable. The
script invokes the parsestring function to transform the data in the file into the proper
format for loading into the configuration hierarchy, and assigns the result to the $doc
variable. The parsestring function is defined in the XML::DOM::Parser module, and the
first line in the following sample code instantiates the module as an object, setting the
Sparser variable to refer to it:

my $parser = new XML::DOM::Parser;

my $doc;
if ($opt{t}) {
my $xmlstring = get_escaped_text($xmilfile);
$doc = $parser->parsestring($xmilstring) if $xmilstring;

If the file contains Junos XML configuration tag elements instead, the script invokes the
parsefile function (also defined in the XML::DOM::Parser module) on the file:

lelse {
$doc = $parser->parsefile($xmlfile);

}

If the parser cannot transform the file, the script invokes the graceful_shutdown subroutine
described in “Handling Error Conditions” on page 231:

unless (ref $doc) {
print "ERROR: Cannot parse $xmlfile, check to make sure the XML data is
well-formed\n";

Copyright © 2013, Juniper Networks, Inc. 233

Junos XML Management Protocol Developer Guide

graceful_shutdown($jnx, $xmlfile, STATE_LOCKED, REPORT_FAILURE);
1

Loading the Configuration Data

The script now invokes the load_configuration method to load the configuration onto
thedevice. It places the statement inside an eval block to ensure that the
graceful_shutdown subroutine is invoked if the response from the Junos XML protocol
server has errors.

eval {

$res = $jnx->load_configuration(
format => $config_format,
action => $load_action,
configuration => $doc);

b

if ($3@) {
print "ERROR: Failed to load the configuration from $xmlfile. Reason: $@\n";
graceful_shutdown($jnx, $xmlfile, STATE_CONFIG_LOADED, REPORT_FAILURE);
exit(1);

1

The variables used to define the method’s three arguments were set at previous points
in the application file:

. The Sconfig_format variable was previously set to xml unless the -t command-line
option was included:

my $config_format = "xml";
$config_format = "text" if $opt{tl;

« The Sload_action variable was previously set to merge unless the -a command-line
option was included. The final two lines verify that the specified value is one of the
acceptable choices:

my $load_action = "merge";

$load_action = $opt{a} if $opt{al;

use constant VALID_ACTIONS => "merge|replace|override";
output_usage() unless ($load_action =~ /VALID_ACTIONS/);

« The Sdoc variable was set to the output from the parsestring or parsefile function
(defined in the XML::DOM::Parser module), as described in “Reading In and Parsing the
Configuration Data” on page 232.

The script performs two additional checks for errors and invokes the graceful_shutdown
subroutine in either case:

unless (ref $res) {
print "ERROR: Failed to load the configuration from $xmlfile\n";
graceful_shutdown($jnx, $xmlfile, STATE_LOCKED, REPORT_FAILURE);

}
$err = $res->getFirstError();
if ($err) {

print "ERROR: Failed to load the configuration. Reason: $err->{message}\n";

234 Copyright © 2013, Juniper Networks, Inc.

Chapter 9: Writing Junos XML Protocol Perl Client Applications

graceful_shutdown($jnx, $xmlfile, STATE_CONFIG_LOADED, REPORT_FAILURE);
1

Committing the Configuration

If there are no errors, the script invokes the commit_configuration method (defined in the
file lib/ZJUNOS/Methods.pm in the Junos XML protocol Perl distribution):

print "Committing configuration from $xmlfile ...\n";
$res = $jnx->commit_configuration();
$err = $res->getFirstError();
if ($err) {
print "ERROR: Failed to commit configuration. Reason: $err->{messagel.\n";
graceful_shutdown($jnx, $xmlfile, STATE_CONFIG_LOADED, REPORT_FAILURE);
1

Parsing and Formatting the Response from the Junos XML Protocol Server

As the last step in sending a request, the application verifies that there are no errors with
theresponse from the Junos XML protocol server (see “Submitting a Request” on page 229).
It can then write the response to a file, to the screen, or both. If the response is for an
operational query, the application usually uses XSLT to transform the output into a more
readable format, such as HTML or formatted ASCI| text. If the response consists of
configuration data, the application can store it as XML (the Junos XML tag elements
generated by default from the Junos XML protocol server) or transform it into formatted
ASCII text.

The following sections discuss parsing and formatting options:

« Parsing and Formatting an Operational Response on page 235

« Parsing and Outputting Configuration Data on page 237

Parsing and Formatting an Operational Response

The following code sample from the diagnose_bgp.pl and get_chassis_inventory.pl scripts
uses XSLT to transform an operational response from the Junos XML protocol server
into a more readable format. A detailed discussion of the functional subsections follows
the complete code sample.

Get the name of the output file
my $0UtpUtfile = $0pt{0} ” nn;

Retrieve the XSLT file
my $xslfile = $opt{x} || "xsl/text.xsl";
if ($xslfile && ! -f $xslfile) {
die "ERROR: XSLT file $xslfile does not exist";

#Get the xmilfile
my $xmlfile = "$deviceinfofhostname}.xml";
$res->printToFile($xmlfile);

my $nm = $res->translateXSLtoRelease('xmilns:lc', $xslfile, "$xslfile.tmp");

if ($nm) {
print "Transforming $xmlfile with $xslfile..\n" if $outputfile;

Copyright © 2013, Juniper Networks, Inc. 235

Junos XML Management Protocol Developer Guide

my $command = "xsltproc $nm $deviceinfo{hostname}.xml";

$command .= "> $outputfile" if $outputfile;
system($command);
print "Done\n" if $outputfile;
print "See $outputfile\n" if $outputfile;
}

else {
print STDERR "ERROR: Invalid XSL file $xslfile\n";
1

The first line of the preceding code sample illustrates how the scripts read the -o option
from the command line to obtain the name of the file into which to write the results of
the XSLT transformation:

my $outputfile = $opt{o} || "

From the -x command-line option, the scripts obtain the name of the XSLT file to use,
setting a default value if the option is not provided. The scripts exit if the specified file
does not exist. The following example is from the diagnose_bgp.pl script:

my $xslfile = $opt{x} || "xsl/text.xsl";
if ($xslfile && ! -f $xslfile) {
die "ERROR: XSLT file $xslfile does not exist";

For examples of XSLT files, see the following directories in the Junos XML protocol
Perl distribution:

« The examples/diagnose_bpg/xsl directory contains XSLT files for the diagnose_bpg.pl
script: dhtml.xsl generates dynamic HTML, html.xsl generates HTML, and text.xsl
generates ASCI| text.

. The examples/get_chassis_inventory/xsl directory contains XSLT files for the
get_chassis_inventory.pl script: chassis_inventory_csv.xsl generates a list of
comma-separated values, chassis_inventory_html.xsl generates HTML, and
chassis_inventory_xml.xsl generates XML.

The actual parsing operation begins by setting the variable $xmilfile to a filename of the
form device-name.xml and invoking the printToFile function to write the Junos XML protocol
server’s response into the file (the printToFile function is defined in the XML::DOM::Parser
module):

my $xmilfile = "$deviceinfo{hostname}.xml";
$res->printToFile($xmlfile);

The next line invokes the translateXSLtoRelease function (defined in the Junos::Response
module) to alter one of the namespace definitions in the XSLT file. This is necessary
because the XSLT 1.0 specification requires that every XSLT file define a specific value
for each default namespace used in the data being transformed. The xmlns attribute in
a Junos XML operational response tag element includes a code representing the Junos
OS version, such as 12.1R1 for the initial version of Junos OS Release 12.1. Because the
same XSLT file can be applied to operational response tag elements from devices running
different versions of the Junos OS, the XSLT file cannot predefine an xmlns namespace
value that matches all versions. The translateXSLtoRelease function alters the namespace

236

Copyright © 2013, Juniper Networks, Inc.

Chapter 9: Writing Junos XML Protocol Perl Client Applications

definitionin the XSLT file identified by the $xslfile variable to match the value in the Junos
XML protocol server’s response. It assigns the resulting XSLT file to the $nm variable.

my $nm = $res->translateXSLtoRelease('xmilns:lc', $xslfile, "$xslfile.tmp");

After verifying that the translateXSLtoRelease function succeeded, the invokes the
format_by_xslt, which builds a command string and assigns it to the Scommand variable.
The first part of the command string invokes the xsltproc command and specifies the
names of the XSLT and configuration data files ($nm and $deviceinfo{hostname}.xml):

if ($nm) {
print "Transforming $xmilfile with $xslfile...\n" if $outputfile;
my $command = "xsltproc $nm $deviceinfo{hostname}.xml";

If the Soutputfile variable is defined (the file for storing the result of the XSLT
transformation exists), the script appends a string to the Scommand variable to write
the results of the xsltproc command to the file. (If the file does not exist, the script writes
the results to standard out [stdout].) The script then invokes the system function to
execute the command string and prints status messages to stdout.

$command .= "> $outputfile" if $outputfile;
system($command);
print "Done\n" if $outputfile;
print "See $outputfile\n" if $outputfile;
1

If the translateXSLtoRelease function fails (the if (Snm) expression evaluates to “ false"),
the script prints an error:

else {
print STDERR "ERROR: Invalid XSL file $xslfile\n";

}

Parsing and Outputting Configuration Data

The get_config.pl script in the examples\RDB directory uses the outconfig subroutine to
write the configuration data obtained from the Junos XML protocol server to a file either
as Junos XML tag elements or as formatted ASCII text.

The outconfig subroutine takes four parameters. Three must have defined values: the
directory in which to store the output file, device hostname, and the XML DOM tree (the
configuration data) returned by the Junos XML protocol server. The fourth parameter
indicates whether to output the configuration as formatted ASCII text, and has a null
value if the requested output is Junos XML tag elements. In the following code sample,
the script obtains values for the four parameters and passes them to the outconfig
subroutine. A detailed discussion of each line follows the complete code sample.

my(%opt,$login,$password);

getopts('l:p:dm:hit', \%opt) || output_usage();
output_usage() if $opt{h};

my $basepath = shift || output_usage;

my $hostname = shift || output_usage;

Copyright © 2013, Juniper Networks, Inc. 237

Junos XML Management Protocol Developer Guide

my $config = getconfig($hostname, $jnx, $opt{t});

outconfig($basepath, $hostname, $config, $opt{t});

In the first lines of the preceding sample code, the get_config.pl script uses the following
statements to obtain values for the four parameters to the outconfig subroutine:

« If the user provides the -t option on the command line, the getopts subroutine records
it in the %opt hash. The value keyed to Sopt{t} is passed as the fourth parameter to
the outconfig subroutine. (For more information about reading options from the
command ling, see “Example: Collecting Parameters Interactively” on page 221.)

getopts('l:p:dm:hit’, \%opt) || output_usage();

« The following line reads the first element of the command line that is not an option
preceded by a hyphen. It assigns the value to the Sbasepath variable, defining the name
of the directory in which to store the file containing the output from the outconfig
subroutine. The variable value is passed as the first parameter to the outconfig
subroutine.

my $basepath = shift || output_usage;

« The following line reads the next element on the command line. It assigns the value
to the Shostname variable, defining the routing, switching, or security device hostname.
The variable value is passed as the second parameter to the outconfig subroutine.

my $hostname = shift || output_usage;

« The following line invokes the getconfig subroutine to obtain configuration data from
the Junos XML protocol server on the specified device, assigning the resulting XML
DOM tree to the Sconfig variable. The variable value is passed as the third parameter
to the outconfig subroutine.

my $config = getconfig($hostname, $jnx, $opt{t});

The following code sample invokes and defines the outconfig subroutine. A detailed
discussion of each functional subsection in the subroutine follows the complete code
sample.

outconfig($basepath, $hostname, $config, $opt{t});

sub outconfig($$$$) {
my $leader = shift;
my $hostname = shift;
my $config = shift;
my $text_mode = shift;
my $trailer = "xmlconfig";
my $filename = $leader."/" . $hostname . "." . $trailer;

print "# storing configuration for $hostname as $filename\n";

my $config_node;

my $top_tag = "configuration";

$top_tag .= "-text" if $text_mode;

if ($config->getTagName() eq $top_tag) {
$config_node = $config;

lelse{

238

Copyright © 2013, Juniper Networks, Inc.

Chapter 9: Writing Junos XML Protocol Perl Client Applications

print "# unknown response component ", $config->getTagName(), "\n";

}

if ($config_node && $config_nodene"") {
if (open OUTPUTFILE, ">%filename") {
if (1$text_mode) {
print OUTPUTFILE "< ?xml version=\"1.0\"?>\n";
print OUTPUTFILE $config_node->toString(), "\n";
lelse{
my $buf = $config_node->getFirstChild()->toString();
$buf =~ s/($char_class)/$escapes{$1}/ge;
print OUTPUTFILE "$buf\n";

}
close OUTPUTFILE;

1
else {
print "ERROR: could not open output file $filename\n";
1
}
else {
print "ERROR: empty configuration data for $hostname\n";
}
1

The first lines of the outconfig subroutine read in the four parameters passed in when
the subroutine is invoked, assigning each to a local variable:

outconfig($basepath, $hostname, $config, $opt{t});
sub outconfig($$$$) {

my $leader = shift;

my $hostname = shift;

my $config = shift;

my $text_mode = shift;

The subroutine constructs the name of the file to which to write the subroutine’s output
and assigns the name to the $filename variable. The filename is constructed from the
first two parameters (the directory name and hostname) and the Strailer variable, resulting
in a name of the form directory-name/hostname.xmlconfig:

my $trailer = "xmlconfig";
my $filename = $leader."/" . $hostname . "." . $trailer;

print "# storing configuration for $hostname as $filename\n";

The subroutine checks that the first tag in the XML DOM tree correctly indicates the type
of configuration data in the file. If the user included the -t option on the command line,
the first tag should be <configuration-text> because the file contains formatted ASCII
configuration statements; otherwise, the first tag should be <configuration> because the
file contains Junos XML tag elements. The subroutine sets the $Stop_tag variable to the
appropriate value depending on the value of the $text_mode variable (which takes its
value from opt{t}, passed as the fourth parameter to the subroutine). The subroutine
invokes the getTagName function (defined in the XML::DOM::Element module) to retrieve
the name of the first tag in the input file, and compares the name to the value of the
Stop_tag variable. If the comparison succeeds, the XML DOM tree is assigned to the

Copyright © 2013, Juniper Networks, Inc. 239

Junos XML Management Protocol Developer Guide

Sconfig_node variable. Otherwise, the subroutine prints an error message because the
XML DOM tree is not valid configuration data.

my $config_node;
my $top_tag = "configuration";
$top_tag .= "-text" if $text_mode;
if ($config->getTagName() eq $top_tag) {
$config_node = $config;
lelse{
print "# unknown response component ", $config->getTagName(), "\n";

}

The subroutine then uses several nested if statements. The first if statement verifies that
the XML DOM tree exists and contains data:

if ($config_node && $config_nodene "") {
... actions if XML DOM tree contains data ...

1
else {
print "ERROR: empty configuration data for $hostname\n";

}

If the XML DOM tree contains data, the subroutine verifies that the output file can be
opened for writing:

if (open OUTPUTFILE, ">%filename") {
... actions if output file is writable ...
1
else {
print "ERROR: could not open output file $filename\n";
1

If the output file can be opened for writing, the script writes the configuration data into
it. If the user requested Junos XML tag elements—the user did not include the -t option
onthe command line, so the $text_mode variable does not have a value—the script writes
the string <?xml version=1.0?> as the first line in the output file, and then invokes the
toString function (defined in the XML::DOM module) to write each Junos XML tag element
in the XML DOM tree on a line in the output file:

if (1$text_mode) {
print OUTPUTFILE "<?xml version=\"1.0\"?>\n";
print OUTPUTFILE $config_node->toString(), "\n";

If the user requested formatted ASCII text, the script invokes the getFirstChild and toString
functions (defined in the XML::DOM module) to write the content of each tag on its own
line in the output file. The script substitutes predefined entity references for disallowed
characters (which are defined in the %escapes hash), writes the output to the output
file, and closes the output file. (For information about defining the %escapes hash to
contain the set of disallowed characters, see “Converting Disallowed Characters” on
page 224.)

lelse{
my $buf = $config_node->getFirstChild()->toString();
$buf =~ s/($char_class)/$escapes{$11/ge;
print OUTPUTFILE "$buf\n";

240

Copyright © 2013, Juniper Networks, Inc.

Chapter 9: Writing Junos XML Protocol Perl Client Applications

}
close OUTPUTFILE;

Closing the Connection to the Junos XML Protocol Server

To end the Junos XML protocol session and close the connection to the device, each
sample script invokes the request_end_session and disconnect methods. Several of the
scripts do this in standalone statements:

$jnx->request_end_session();
$inx->disconnect();

The load_configuration.pl script invokes the graceful_shutdown subroutine instead (for
more information, see “Handling Error Conditions” on page 231):

graceful_shutdown($jnx, $xmilfile, STATE_LOCKED, REPORT_SUCCESS);

Mapping CLI Commands to Perl Methods

The sample scripts described in “Overview of the Junos::Device Perl Module and Sample
Scripts” on page 213 invoke only a small number of the predefined Junos XML Perl methods
available in the current version of the Junos OS. There is a Perl method for every Junos
XML request tag element. To derive the Perl method name from the request tag element
name, replace each hyphen in the tag element name with an underscore and remove
the enclosing angle brackets from the tag element name. For example, the
get_bgp_group_information Perl method corresponds to the <get-bgp-group-information>
tag element.

For a list of all of the Perl methods available in the current version of the Junos OS, see
the chapter in the Junos XML API Operational Developer Reference that maps Junos XML
request tag elements to CLI commands and Perl methods. For information about optional
and required attributes for a particular Perl method, see the entry for the corresponding
Junos XML request tag element in the chapter titled “ Summary of Operational Request
Tags” in the Junos XML API Operational Developer Reference.

Copyright © 2013, Juniper Networks, Inc. 241

Junos XML Management Protocol Developer Guide

242 Copyright © 2013, Juniper Networks, Inc.

CHAPTERT1O

Writing Junos XML Protocol C Client
Applications

In this section, we offer two examples of using C to create client applications to access
routers, switches, and security devices running Junos OS. The first example shows how
to establish a Junos XML protocol session. The second example, shows how to retrieve
and manipulate device configurations using C.

« Establishing a Junos XML Protocol Session on page 243

« Accessing and Editing Device Configurations on page 244

Establishing a Junos XML Protocol Session

The following example illustrates how a client application written in C can use the SSH
or Telnet protocol to establish a Junos XML protocol connection and session. In the line
that begins with the string execlp, the client application invokes the ssh command.
(Substitute the telnet command if appropriate.) The routing-platform argument to the
execlp routine specifies the hostname or IP address of the Junos XML protocol server
device. The junoscript argument is the command that converts the connection to a Junos
XML protocol session.

For more information about Junos XML protocol sessions, see
“Controlling the Junos XML Management Protocol Session” on page 27.

int ipipes[2], opipes[2 1;
pid_t pid;

intrc;

char buf[BUFSIZ];

if (pipe(ipipes) <0 || pipe(opipes) <0)
err(1, "pipe failed");

pid = fork();
if (pid <0)
err(1, "fork failed");

if (pid==0) {
dup2(opipes[0], STDIN_FILENO);
dup2(ipipes[1], STDOUT_FILENOQ);
dup2(ipipes[1], STDERR_FILENO);

Copyright © 2013, Juniper Networks, Inc. 243

Junos XML Management Protocol Developer Guide

close(ipipes[O 1); /* close read end of pipe */
close(ipipes[11]); /* close write end of pipe */
close(opipes[0]); /* close read end of pipe */
close(opipes[11]); /* close write end of pipe */

execlp("ssh", "ssh", "-x", routing-platform , "junoscript", NULL);
err (1, "unable to execute: ssh %s junoscript," device);

}

close(ipipes[11]); /* close write end of pipe */

close(opipes|[0]); /* close read end of pipe */

if (write(opipes| 1], initial_handshake, strlen(initial_handshake)) <0)

err(1, "writing initial handshake failed");

rc=read(ipipes[O], buf, sizeof(buf));
if (rc <0)
err(1, "read initial handshake failed");

Accessing and Editing Device Configurations

This example code shows a script that can be used to access, manipulate and commit
device configurations using C.

//--Includes--//

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/resource.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <fcntl.h>
#include <errno.h>
#include <libxml/parser.n>
#include <libxml/xpath.h>

//--Defines--//
//#define PRINT
//--Toggles printing of all data to and from js server--//

//--Global Variables and Initialization--//

int sockfd;

char *xmlns_start_ptr = NULL;

char *xmlns_end_ptr = NULL;

int sock_bytes, pim_output_len, igmp_output_len, count_a, count_x, count_y,

count_z, repl_str_len, orig_len, up_to_len, remain_len, conf_chg;

struct sockaddr_in serv_addr;

struct hostent *server;

char temp_buff[1024]; //--Temporary buffer used when --//
//--sending js configuration commands--//

char rcvbuffer[255]; //--Stores data from socket--//

char *pim_output_ptr = NULL; //--Pointer for pim_output from socket--//
//--buffer--//

char *igmp_output_ptr = NULL; //--Pointer for igmp_output from socket buffer--//

244 Copyright © 2013, Juniper Networks, Inc.

Chapter 10: Writing Junos XML Protocol C Client Applications

char small_buff[2048]; //--Buffer to support js communication--//

char jserver[16]; //--Junos XML protocol server IP address--//

int jport = 3221; //--Junos XML protocol server port --//
//--(xnm-clear-text)--//

char msource[16]; //--Multicast source of group being
//--configured under igmp--//

char minterface[16]; //--Local multicast source interface--//
//--###change in igmp_xpath_ptr as well###--//

xmlDocPtr doc; //--Pointer struct for parsing XML--//

xmlChar *pim_xpath_ptr =
(xmlChar*) "/rpc-reply/pim-join-information/join-family
/join-group[upstream-state-flags/local-source]
/multicast-group-address";
xmlChar *temp_xpath_ptr =
(xmlChar*) "/rpc-reply/igmp-group-information
/mgme-interface-groups/mgm-group
[../interface-name = '%s']/multicast-group-address";
xmlChar *igmp_xpath_ptr = NULL;
xmlNodeSetPtr nodeset;
xmlXPathObjectPtr pim_result; //--Pointer for pim result xml parsing--//
xmlXPathObjectPtrigmp_result; //--Pointer for igmp result xml parsing--//
xmlChar *keyword_ptr = NULL; //--Pointer for node text--//
char pim_result_buff[128][64]; //--Char array to store pim xPath results--//
charigmp_result_buff[128][64]; //--Char array to store igmp xPath results--//

//--js commands-//

char js_handshakel[64] = "<?xml version=\"1.0\" encoding=\"us-ascii\"?>\n";

char js_handshake2[128] = "<junoscript version=\"1.0\"
hostname=\"client1\" release=\"8.4R1\">\n";

char js_login[512] = "<rpc>\n<request-login>\n<username>lab</username>
\n<challenge-response>Lablab</challenge-response>
\n</request-login>\n</rpc>\n";

charjs_show_pim[512] = "<rpc>\n<get-pim-join-information>
\n<extensive/></get-pim-join-information></rpc>\n";

char js_show_igmp[512] = "<rpc>\n<get-igmp-group-information/>\n</rpc>\n";

char js_rmv_group[512] = "<rpc>\n<load-configuration>\n<configuration>
\n<protocols>\n<igmp>\n<interface>\n<name>%s</name>
\n<static>\n<group delete="'delete' >\n<name>%s</name>
\n</group>\n</static>\n</interface>\n</igmp>\n</protocols>
\n</configuration>\n</load-configuration>\n</rpc>\n\n\n\n\n";

charjs_add_group[512] = "<rpc>\n<load-configuration>
\n<configuration>\n<protocols>\n<igmp>
\n<interface>\n<name>%s</name>\n<static>
\n<group>\n<name>%s</name>\n<source>
\n<name>%s</name>\n</source>\n</group>\n</static>
\n</interface>\n</igmp>\n</protocols>\n</configuration>
\n</load-configuration>\n</rpc>\n";

char js_commit[64] = "<rpc>\n<commit-configuration/>\n</rpc>\n";

//--Function prototypes--//
void error(char *msg); //--Support error messaging--//
xmlDocPtr getdoc(char *buffer); //--Parses XML content and loads it into memory--//
xmlXPathObjectPtr getnodeset (xmlDocPtr doc, xmlChar *xpath);
//--Parses xml content for result node(s) from XPath search--//

//--Functions--//

Copyright © 2013, Juniper Networks, Inc. 245

Junos XML Management Protocol Developer Guide

void error(char *msg) {
perror(msg);
exit(0);

}

xmlDocPtr getdoc(char *buffer) {
xmlDocPtr doc;

doc = xmlReadMemory(buffer, strlen((char *)buffer), "temp.xml", NULL, O);
if (doc ==NULL) {
fprintf(stderr,"Document not parsed successfully. \n");
return NULL;
lelse{
#ifdef PRINT
printf("Document parsed successfully. \n");
#endif
}
return doc;

1
xmlXPathObjectPtr getnodeset (xmlDocPtr doc, xmlChar *xpath) {

xmlXPathContextPtr context;
xmlXPathObjectPtr result;

context = xmIXPathNewContext(doc);
if (context == NULL) {
printf("Error in xmlXPathNewContext\n");
return NULL;
}
result = xmlXPathEvalExpression(xpath, context);
xmlXPathFreeContext(context);
if (result == NULL) {
printf("Error in xmlXPathEvalExpression\n");
return NULL;
}
if(xmlXPathNodeSetIsEmpty(result->nodesetval)) {
xmlXPathFreeObject(result);
#ifdef PRINT
printf("No result\n");
#endif
return NULL;
}
return result;

}

//--Main--//
int main(int argc, char **argv) {

if(argc = 4) {
printf("\nUsage: %s <device Address> <Interface Name>
<Multicast Source>\n\n", argv[0]);
exit(0);
lelse{
strcpy(jserver, argv[1]);

246 Copyright © 2013, Juniper Networks, Inc.

Chapter 10: Writing Junos XML Protocol C Client Applications

strcpy(minterface, argv[2]);

strcpy(msource, argv[3]);
}
igmp_xpath_ptr = (xmlChar *)realloc((xmlChar *)igmp_xpath_ptr, 1024);
sprintf(igmp_xpath_ptr, temp_xpath_ptr, minterface);

sockfd = socket(AF_INET, SOCK_STREAM, 0);

server = gethostbyname(jserver);

bzero((char*) &serv_addr, sizeof(serv_addr));

serv_addr.sin_family = AF_INET;

bcopy((char*) server->h_addr, (char*)
&serv_addr.sin_addr.sin_addr, server->h_length);

serv_addr.sin_port = htons(jport);

//--Connect to the js server--//
if(connect(sockfd, (struct sockaddr*)&serv_addr, sizeof(serv_addr)) < 0) {
printf("Socket connect error\n");

}

if(fcntl(sockfd, F_ SETOWN, getpid()) < 0)
error("Unable to set process owner to us\n");
printf("\nConnected to %s on port %d\n", jserver, jport);

//--Read data from the initial connect--//
sock_bytes = read(sockfd, rcvbuffer, 255);
#ifdef PRINT
printf("\n%s", rcvbuffer);

#endif

//--js intialization handshake--//

sock_bytes = write(sockfd, js_handshakel, strlen(js_handshakel));
//--Send xml PI to js server--//

sock_bytes = write(sockfd, js_handshake2, strlen(js_handshake2));
//--Send xml version and encoding to js server--//

sock_bytes = read(sockfd, rcvbuffer, 255);
//--Read return data from sock buffer--//

rcvbuffer[sock_bytes] = O;

printf("XML connection to the Junos XML protocol server has been initialized\n");

#ifdef PRINT

printf("\n%s", rcvbuffer);

#endif

//--js login--//
sock_bytes = write(sockfd, js_login, strlen(js_login));
//--Send js command--//
while(strstr(small_buff, "superuser") == NULL) {
//--Continue to read from the buffer until match--//
sock_bytes = read(sockfd, rcvbuffer, 255);
rcvbuffer[sock_bytes] = O;
strcat(small_buff, rcvbuffer);
//--Copy buffer contents into pim_buffer--//

1

printf("Login completed to the Junos XML protocol server\n");
#ifdef PRINT

printf("%s\n", small_buff); //--Print the small buff contents--//
#endif

Copyright © 2013, Juniper Networks, Inc. 247

Junos XML Management Protocol Developer Guide

//regfree(®ex_struct);
bzero(small_buff, strlen(small_buff));
//--Erase small buffer contents--//

//--Begin the for loop here--//
printf("Running continuous IGMP and PIM group comparison..\n\n");
for(;;) { //--Begin infinite for loop--//

//--Get PIM join information--//
pim_output_ptr = (char *)realloc((char *)pim_output_ptr,
strlen(js_handshakel));
//--Allocate memory for xml Pl concatenation --//
//--to pim_output_ptr--//
strcpy(pim_output_ptr, js_handshakel);
//--Copy PI to pim_output_ptr--/
sock_bytes = write(sockfd, js_show_pim, strlen(js_show_pim));
//--Send show pim joins command--//
while(strstr(pim_output_ptr, "</rpc-reply>") == NULL) {
//--Continue to read from the buffer until match--//
sock_bytes = read(sockfd, rcvbuffer, 255);
//--Read from buffer--//
rcvbuffer[sock_bytes] = O;
pim_output_len = strlen((char *)pim_output_ptr);
//--Determine current string length of pim_output_ptr--/
pim_output_ptr = (char *)realloc((char *)pim_output_ptr,
strlen(rcvbuffer)+pim_output_len);
//--Reallocate memory for additional data--//
strcat(pim_output_ptr, rcvbuffer);
//--Copy data from rcvbuffer to pim_output_ptr--//
1

//--Remove the xmlns entry--//

xmlns_start_ptr = strstr(pim_output_ptr, "xmlns=\"http:");
//--Find the start of the xmlns entry--pointer --//
//--returned by strstr()--//

xmlns_end_ptr = strstr(xmlns_start_ptr, ">");
//--Find the end of the xmlns entry--pointer --//
//--returned by strstr()--//

repl_str_len = xmlns_end_ptr - xmlns_start_ptr;
//--Determine the length of the string to be replaced--//

orig_len = strlen((char *)pim_output_ptr) +T1;
//--Determine the original length of pim_output--//

up_to_len = xmlns_start_ptr - pim_output_ptr;
//--Determine the length up to the beginning --//
//--of the xmlns entry--//

remain_len = orig_len - (up_to_len + repl_str_len);
//--Determine what the remaining length is minus --//
//--what we are removing--//

memcpy(xmlns_start_ptr - 1, xmlns_start_ptr + repl_str_len, remain_len);
//--copy the remaining string to the beginning --//
//--of the replacement string--//

#ifdef PRINT

printf("\n%s\n", pim_output_ptr);

#endif

//--End of GET PIM join information--//

248 Copyright © 2013, Juniper Networks, Inc.

Chapter 10: Writing Junos XML Protocol C Client Applications

//--Get IGMP membership information--//
ismp_output_ptr = (char *)realloc((char *)igmp_output_ptr,
strlen(js_handshakel));
strcpy(igmp_output_ptr, js_handshakel);
sock_bytes = write(sockfd, js_show_igmp, strlen(js_show_igmp));
while(strstr(igmp_output_ptr, "</rpc-reply>") == NULL) {
sock_bytes = read(sockfd, rcvbuffer, 255);
rcvbuffer[sock_bytes] = O;
ismp_output_len = strlen((char *)igmp_output_ptr);
igmp_output_ptr = (char *)realloc((char *)igmp_output_ptr,
strlen(rcvbuffer)+igmp_output_len);
strcat(igmp_output_ptr, rcvbuffer);
}
#ifdef PRINT
printf(*\n%s\n", igmp_output_ptr);
#endif
//--End of GET IGMP membership information--//

//--Store xPath results for pim buffer search--//
doc = getdoc(pim_output_ptr);
//--Call getdoc() to parse XML in pim_output--//
pim_result = getnodeset (doc, pim_xpath_ptr);
//--Call getnodeset() which provides xPath result--//
if (pim_result) {
nodeset = pim_result->nodesetval;
for (count_a=0; count_a < nodeset->nodeNr; count_a++) {
//--Run through all node values found--//
keyword_ptr = xmINodeListGetString
(doc, nodeset->nodeTab[count_a]->xmlChildrenNode, 1);
strcpy(pim_result_buff[count_a], (char *)keyword_ptr);
//--Copy each node value to its own array element--//
#ifdef PRINT
printf("PIM Groups: %s\n", pim_result_buff[count_a]);
//--Print the node value--//
#endif

xmlFree(keyword_ptr); //--Free memory used by keyword_ptr--//
xmlChar *keyword_ptr = NULL;
1
xmlXPathFreeObject(pim_result);
//--Free memory used by result--//

1
xmlFreeDoc(doc); //--Free memory used by doc--//
xmlCleanupParser(); //--Clean everything else--//

//--End of xPath search--//

//--Store xPath results for igmp buffer search--//
doc = getdoc(igmp_output_ptr);
igmp_result = getnodeset (doc, igmp_xpath_ptr);
if (igmp_result) {
nodeset = igmp_result->nodesetval;
for (count_a=0; count_a < nodeset->nodeNr; count_a++) {
keyword_ptr = xmINodeListGetString
(doc, nodeset->nodeTab[count_a]->xmlChildrenNode, 1);
strcpy(igmp_result_buff[count_a], (char *)keyword_ptr);
#ifdef PRINT

Copyright © 2013, Juniper Networks, Inc. 249

Junos XML Management Protocol Developer Guide

printf("IGMP Groups: %s\n", igmp_result_buff[count_a]);
#endif

xmlFree(keyword_ptr);
xmlChar *keyword_ptr = NULL,;
1
xmlXPathFreeObject(igmp_result);
}
xmlFreeDoc(doc);
xmlCleanupParser();
//--End of xPath search--//

//--Code to compare pim groups to configured igmp static membership--//

conf_chg = 0;
count_x=0; //--Track pim groups--//
count_y=0; //--Track igmp groups--//

count_z=0; //--Track matches (if set to 1, igmp group matched pim group)--//
while(strstr(pim_result_buff[count_x], "2") = NULL) {
//--Run through igmp pim groups--//
if(strstr(igmp_result_buff[count_y], "2") == NULL) {
count_z =0;
conf_chg=1;
1
while(strstr(igmp_result_buff[count_y], "2") |= NULL) {
//--For each pim group, run through all igmp groups--//
if(strcmp(igmp_result_buff[count_y], pim_result_buff[count_x]) == 0) {
//--If igmp group matches pim group, setzto1--//
//-- (ie count_z=1;--//
//--Set z to 1if there was a match (ie - the static --//
//--membership is configured)--//
}
count_y++; //--Increment igmp result buffer--//
1
if(count_z==0){ //--If noigmp group matched the --//
//--pim group (z stayed at 0), configure--//
//--static membership--//
printf("Adding this group to igmp: %s\n", pim_result_buff[count_x]);
sprintf(temp_buff, js_add_group, minterface,
pim_result_buff[count_x], msource);
//--Copy js_add_group with pim group to temp_buff--//
#ifdef PRINT
printf("%s", temp_buff);
#endif
sock_bytes = write(sockfd, temp_buff, strlen(temp_buff));
while(strstr(small_buff, "</rpc-reply>") == NULL) {
sock_bytes = read(sockfd, rcvbuffer, 255);
rcvbuffer[sock_bytes] = O;
strcat(small_buff, rcvbuffer);
}
#ifdef PRINT
printf("%s\n", small_buff);
#endif
bzero(small_buff, strlen(small_buff));
//--Erase (copy all 0's) small buffer contents--//
bzero(temp_buff, strlen(temp_buff));
//--Erase temp_buff contents--//

250

Copyright © 2013, Juniper Networks, Inc.

Chapter 10: Writing Junos XML Protocol C Client Applications

conf_chg =1;
//--Set conf_chg value to 1 to signify that a --//
//--commit is needed--//

}
count_x++; //--increment pim result buffer--//
count_y=0; //--reset igmp result buffer to start--/
//-- at first element--//
count_z=0; //--reset group match to 0 --//
//--(config needed due to no match)--/
}
//--Code for comparing igmp static membership to pim groups--//
count_x=0;
count_y=0;
count_z=0;

while(strstr(igmp_result_buff[count_y], "2") I= NULL) {
if (strstr(pim_result_buff[count_x], "2") == NULL) {
count_z=0;
conf_chg =1;
1
while(strstr(pim_result_buff[count_x], "2") = NULL) {
if (strcmp(pim_result_buff[count_x], igmp_result_buff[count_y]) == 0) {
count_z=T1,
1
count_x++;
1
if(count_z==0) {
printf("Removing this group from igmp: %s\n", igmp_result_buff[count_y]);
sprintf(temp_buff, js_rmv_group, minterface, igmp_result_buff[count_y]);
#ifdef PRINT
printf("%s", temp_buff);
#endif
sock_bytes = write(sockfd, temp_buff, strlen(temp_buff));
while(strstr(small_buff, "</rpc-reply>") == NULL) {
sock_bytes = read(sockfd, rcvbuffer, 255);
rcvbuffer[sock_bytes] = O;
strcat(small_buff, rcvbuffer);
1
#ifdef PRINT
printf("%s\n", rcvbuffer);
#endif
bzero(small_buff, strlen(small_buff));
bzero(temp_buff, strlen(temp_buff));
conf_chg =1;
1
count_y++;
count_x=0;
count_z=0;

}

if(conf_chg ==1) {
sock_bytes = write(sockfd, js_commit, strlen(js_commit));
while(strstr(small_buff, "</rpc-reply>") == NULL) {
sock_bytes = read(sockfd, rcvbuffer, 255);
rcvbuffer[sock_bytes] = O;
strcat(small_buff, rcvbuffer);

Copyright © 2013, Juniper Networks, Inc. 251

Junos XML Management Protocol Developer Guide

}

bzero(small_buff, strlen(small_buff));
printf(*\nCommitted configuration change\n");
lelse{
#ifdef PRINT
printf("\nNo configuration changes made\n");
#endif
1
#ifdef PRINT
printf("\n%s\n", small_buff);
#endif

//--Cleanup before next round of checks--//

bzero(rcvbuffer, strlen(rcvbuffer));
//--Erase contents of rcvbuffer--//

char *xmlns_start_ptr = NULL;
//--Nullify the contents--//

char *xmlns_end_ptr = NULL;
//--Nullify the contents--//

for(count_x = 0; count_x < 129; count_x++) {

//--Erase contents of both pim_result_buff and igmp_result_buff--//
bzero(pim_result_buff[count_x], strlen(pim_result_buff[count_x]));
bzero(igmp_result_buff[count_x], strlen(igmp_result_buff[count_x]));

}
}
}

252

Copyright © 2013, Juniper Networks, Inc.

PART 4

INndex

. Index on page 255

« Index of Statements and Commands on page 267

Copyright © 2013, Juniper Networks, Inc. 253

Junos XML Management Protocol Developer Guide

254 Copyright © 2013, Juniper Networks, Inc.

INndex

Symbols
#, comments in configuration statements................. XViii
$
regular expression operator
Junos XML protocol requests........ccoceeeennee. 103
(1), in syntax descCriptions.......ceeneninensensensnesseneeniens Xviii
ES
regular expression operator
Junos XML protocol requests........ccociniennes 102
+

regular expression operator
Junos XML protocol requests.......coeveerennee. 102
. (period)
regular expression operator
Junos XML protocol requests

< >, in syntax descriptions......ceceeeeenenceseceseeeenns
<?xml?> tag (Junos XML protocol).....ceeveeeeeieienns 191
usage guidelines
CLIBNT s 41
LT RV OO SR 43
<checksum-information> (Junos XML
o]) (0Tl 1) SO 169
<checksum> attribute
<checksum-information> tag......ccccevevverereenne. 169
<computation-method> attribute
<checksum-information> tag........ceevvveeereenne. 169
<file-checksum> attribute
<checksum-information> tag.......cccocerereereneunee. 169
<input-file> attribute
<checksum-information> tag.......ccccvenenerrrrernes 169
2

regular expression operator
Junos XML protocol requests........cccoeeeeennee. 102
[1, in configuration statements

regular expression operator

| (pipe), in syntax descriptions......ccveeeveeeecereeeenne. xviii

A

abort tag (Junos XML protocol).......eeeecereeeeennee. 167
usage guidelines

abort-acknowledgement tag (Junos XML

[0 g0] o] ol]) FEN T 167
USage SUIdEliNES.....c e 54
access
protocols for Junos XML management protocol
prerequisites for all....vccneccereeseenes 29
protocols for Junos XML protocol
ClE@r-teXT s 31
SSH s 32
SSH, outbouNd.....ceeeece s 33
SO 37
TEINET et 39
action attribute (Junos XML protocol)
load-configuration tagccoeeveeveereveeseseeeeienns 182
usage guidelines
merging configuration.........cooeneninensneneens 122
overwriting configuration........ccceeenneneenee 119
replacing configuration.........cccoveereneneeniens 125

updating configuration
active attribute (Junos XML with Junos XML

PrOTOCOL) ottt 195
usage guidelines

FT<T g1 = | TN 144

when renaming element........ccoeveevveevveennn 147

when reordering element........ceevveeeveenne 147

when replacing element
ASCII, formatted, in Junos XML protocol

loading configuration as.......ccccvverneneneeeneeseeneenens 17

requesting configuration as........cccevveeeeecneccennenas 74
at-time tag (Junos XML protocol).......eneneeninnnns 170

USAEE BUIAELINES.....cieereeeeee e 154
attributes

Junos XML protocol tags See Index of Tag
Elements and Attributes for list See names
of individual attributes for usage guidelines

in the rpc tag echoed in the rpc-reply

Junos XML tags See Index of Tag Elements and
Attributes for list See names of individual
attributes for usage guidelines

Junos XML protocol requests...........cccuevuvenne. 102 o
{ 1, in configuration statements.......ccoevveeriveeienenne Xviii authentication
| (pipe) Junos XML protocol
regular expression operator OVEIVIEW...otiteiiisie ettt 39
Junos XML protocol requests........... 102 PrOCEAUIES......eeeeeeetee ettt s s tesseseseseenas 45
Copyright © 2013, Juniper Networks, Inc. 255

Junos XML Management Protocol Developer Guide

authentication-response tag (Junos XML
o]} {0 T(] 1y 1N
usage guidelines...

B
braces, in configuration statements.......cccoeeveeeveennnne Xviii
brackets
angle, in syntax descriptions........ccccovveevecsneneenne xviii
square, in configuration statements..................... xviii
C
C-language Junos XML protocol client
APPLICATIONS....e e 243
candidate (Junos XML protocol 'database’
attribute)
USAEE BUIABLINES. ..ottt sesases 72
challenge tag (Junos XML protocol).......ceu... 168,188
USAEE BUIAELINES.....ceceeeeceeeeeeree ettt 46
challenge-response tag (Junos XML protocol)........ 188
USAEE BUIAELINES.....oceeeeeectceeeeree ettt 46
changed attribute (Junos XML protocol)
get-configuration tag.....covevceeececnencsneeseneenns 177
USAEE BUIAELINES.. ..ot 78
check tag (Junos XML protocol)......cccenenerineineeneene 170

child tags See tags (XML)
clear-text (Junos XML protocol-specific access

PrOTOCOL) ettt ben 31
CLI
connecting to Junos XML protocol server
FrOMe e 40

client applications, sample JUNOS XML Protocol
Perl See Perl client applications
client applications, sample Junos XML protocol

C-laNBUAEE. ... senas 243
close-configuration tag (Junos XML protocol).......... 170

USAEE BUIAELINES.....ieeeeeerreiree e 58
column tag (Junos XML protocol)......ceeereenee. 191,193
command output

RPC, diSPLlaying.....ccccovvierriereereerreeieessesssssessssessssssesns 60
commands

Junos XML equivalents.......ceeeeneeseese s 66

Junos XML protocol See Junos XML protocol

command
mapping options to Junos XML tags
FIXEA-TOrMccee e

variable-form

comments

about configuration, Junos XML mapping............ 22

Junos XML management protocol and

XMLttt 14

comments, in configuration statements.........c....... XVii
commit tag (Junos XML protocol)

USaBE BUIAELINES. ...t 151
commit-at tag (Junos XML protocol).......ceenneenee 175

commit-check tag (Junos XML protocol)
usage guidelines

SYNtAX CRECK. ...t 151
commit-check-success tag (Junos XML
PFOTOCOL) ettt nanans 189
usage guidelines
scheduled cOmMMIt ... 154
synchronized commMit......cocveeeeveveseereenns 158
commit-configuration tag (Junos XML
PrOTOCOL) ettt 170
usage guidelines
commit of private Copy....einneeneennes 153
confirmed comMmMit.....nveneeneeereeeeenes 155
immediate commit......ccooveeecieecereeeeeen 152
logged COMMIit... e 164
scheduled cOMMIt....ccreces 154
synchronized comMmMit......ccoccveeeeecneveeeeennns 158
SYNTAX CRECK ettt 151
commit-information tag (Junos XML)......ccceevevrrennnne 164
commit-results tag (Junos XML protocol)............... 174
usage guidelines
commit of private CopY....innsneees 153
confirmed commit......vceneesceereceenes 155
immediate commMit.....ccovvervccrecceree e 152
logged COMMIt...ceeserce e 164
scheduled cOmMMit....ecceceeeeeeee 154
synchronized commitccccevveeeeececeeceeeeaes 158

syntax check
commit-scripts attribute (Junos XML protocol)

get-configuration tag......eeeveccveceeeeeeeeeee 177
USAEE SUIAELINES ...ttt 81
commit-success tag (Junos XML protocol).............. 189
usage guidelines
commit of private Copy....nnssneeens 153
confirmed commit......veneeneecereceenae 155
immediate commMit.....ccocvverviciecceree e 152
logged COMMIt...ceescece e 164
synchronized commMit......cocveeneveineveeneennn 158
committed (Junos XML protocol 'database’
attribute)
USAEE BUIAELINES.....ccveeeeteecee e 72

256

Copyright © 2013, Juniper Networks, Inc.

Index

compare attribute (Junos XML protocol)

commit-scripts-style XML (Junos XML

get-configuration tag (0] X 0Tl 1) JEE 81
usage guidelines........... comparison(Junos XML protocol)... .90
compare tag (Junos XML) entire (Junos XML protoCol).....eeveeneenns 92
comparing group data as inherited (Junos XML
CONFIBUIatioNS.....cceeccree s 90 PrOtOCOL) vttt 83
compatibility hierarchy level (Junos XML protocol)............ 93
between Junos XML protocol server and identifier indicator (Junos XML
APPUCATION. e 45 PrOTOCOL) ot
configuration identifiers (Junos XML protocol)
adding comments interface-range data as inherited (Junos
JUNOS XMLt 22 XML ProtoCoL) e 83
changing multiple elements at once (Junos XML
Junos XML protocol (overview).........e.. 13 (0]} (0Tol] 1) EE T 104
committing objects of specific type (Junos XML
confirmation required (Junos XML (o]0} ¥ To(] 1) TR
o] o]t o] | FEN T 155 overview (Junos XML protocol).... .
force-synchronizing on Routing Engines rescue (Junos XML protocol).......ereeeeenee
(Junos XML protocCol).......ccereenrereeeneeneennes 158 rollback (Junos XML protocol).....cccceeemenee
immediately (Junos XML protocol).............. 152 single object (Junos XML protocol)............... 99
logging message about (Junos XML source group for inherited statements
0] (o] o] olo]) FE TR 164 (Junos XML protoCol)....rneenieneenens 84
private copy (Junos XML protocol)]............ 153 source interface range for inherited
scheduling for later (Junos XML statements (Junos XML protocol)............. 89
o] (o] o] ele]) FSS TP 154 specified number of objects (Junos XML
synchronizing on Routing Engines (Junos (o]0 0To(o] 1) N 95
XML ProtoCoL) e 158 tags or formatted ASCII (Junos XML
comparing to Prior VErsioN.......ceeeeceeseenns 90 (070} o] el]) FEN N 74
comparing with previous using regular expressions (Junos XML
Junos XML protoCOL....cecrecrereereseessanne 110 PrOtOCOL) ettt 101
creating XML schema for. ..o 105
new elements (Junos XML protocol)........... 127 groups See configuration groups
private copy (Junos XML protocol)............... 58 interface ranges See interface ranges
deactivating statement or identifier Junos XML management protocol operations
Junos XML protoCoL.......cccceveeeieeceenen 142 (] o 1S 27
deleting loading
hierarchy level (Junos XML protocol).......... 129 as a data stream (Junos XML
multiple values from leaf (Junos XML [0 £0] (o] olo]) NN 116
o]} 0To(o] 1) TR 133 as data in a file (Junos XML protocol).......... 115
object (Junos XML protocol)......creenenee 130 as text, tags, or commands (Junos XML
overview (Junos XML protocol).......ccceeenn. 129 (0]} (0] al0]) FEN n7
single option (Junos XML protocol).............. 132 locking, with Junos XML protocol......ccccveeeueunenee. 56
discarding changes merging current and new, with Junos XML
Junos XML protocCOL......ccneceeeceeeennee 120 PrOTOCO . ittt 122
displaying modifying, with Junos XML protocol.......cccceeeunee. 113
candidate or committed (Junos XML overriding, with Junos XML protocol...........cccu...... 119
PrOTOCOL) e 72 protecting elements, with Junos XML
changed elements (Junos XML PrOTOCO . ittt 140
o] 0) (o] oo] 1) TS 78
Copyright © 2013, Juniper Networks, Inc. 257

Junos XML Management Protocol Developer Guide

reactivating statement or identifier

Junos XML protoCOL.... e 142
renaming elements, with Junos XML
0] 0] (o ol] NN 138
reordering elements, with Junos XML
0] o 1o T oo] U 135
replacing
entire (Junos XML protocol)........eeennns 119
only changed elements (Junos XML
0] £0) (0Tt]) TSSO TR
single element (Junos XML protocol)
rescue
displaying (Junos XML protocol).......cccceeuu.. m
reverting to (Junos XML protocol)................ 120
rolling back to previous, with Junos XML
0]} (o] ol] NN 120
statements See configuration statements
unlocking, with Junos XML protocol........ccceeeeunee 57
unprotecting elements, with Junos XML
PrOTOCO e ettt 140
verifying, with Junos XML protocol........ccceerveueeee 151
configuration groups
displaying
as inheritance source (Junos XML
PrOTOCOL) et 84
as inherited or separately (Junos XML
S]] (0]l]) FES T 83
configuration mode commands, in Junos XML
protocol
loading configuration as.......ccceoveveieveceneceesecenenenns n7

configuration statements
adding comments about

JUNOS XML 22
deactivating
Junos XML protoCoL.......cccceveeeieeceenen 142
mapping to Junos XML tags
COMMEBNTS ottt enees 22
hierarchy level or container tag......cccoeeveunee 17
IAENTITIEIS . 18
SV A T 0] {0 [T 18
leaf statements........eccceeceeee e, 19
multiple options on one line........cccoveeevecennnee. 21
multiple values for an option.......ccceeveeceenee 20
reactivating
Junos XML protoCOL......cecenvecseeeeeeeeenne 142
configuration tag (JuN0oS XML)....coeeverveneeieineineenieiees 17
configuration data to load.......cccceeeeveverececrnecrrennnes 17

configuration-information tag (Junos XML)
comparing configurations
displaying configuration....

configuration-output tag (Junos XML)

comparing configurations.......ceeveeeeeeseeennnnns 10
displaying configuration.......cccceeeeinneenenserneenns 108
configuration-set tag (Junos XML)
configuration data to load......cccoveneneniceincineennnns 17
configuration-text tag (Junos XML)
configuration data to load......cceeevevevecereenecrrevennnes
Junos XML protocol server response
configure-exclusive tag (Junos XML protocol).......... 175
confirm-timeout tag (Junos XML protocol)................ 170
Junos XML protocol
USAEE BUIAELINES. ..t 155
confirmed tag (Junos XML protocol).......eeeerreennee 170
Junos XML protocol
usage guidelings...... e 155
conventions
Junos XML management protocol
for client to comply With.......ocevvenceenecnenns n
text and SYNtaX...ceeee s XVii
count attribute (Junos XML with Junos XML
PFOTOCOL) ittt naes 196
USAEE BUIAELINES ...ttt snaes 95
curly braces, in configuration statements.................. XViii
CUSTOMET SUPPOIM ...ttt aenenne XiX
CONLACEING JTAC .. ettt Xix
D
daemon tag (Junos XML protocol).....eeeevenennee 187
database attribute (Junos XML protocol)
get-configuration tag.....ccorienrnenccnnesenenes 177
USAEE SUIAELINES....oieeeeeeeretreeeeiretreesee e 72
database-status tag (Junos XML protocol)................ 175
database-status-information tag (Junos XML
PrOTOCOL) ettt aes 176
defaults (Junos XML protocol 'inherit' attribute)
USAEE SUIAELINES ..ottt 83
delete attribute (Junos XML with Junos XML
[0]g0} 0T 1) TR 196
USAEE SUIAELINES.....ceveeeectreete et essaesenanens 129
devices

configuration See configuration
display xml command

USage SUIAELINES......eeeee e 60
display XML filEEr ... 60
Document Object Model See DOM
document type definition See DTD

258

Copyright © 2013, Juniper Networks, Inc.

Index

documentation

COMMENTS ONuuueiiiccceee e e XViii
DTD

(o 11 =T ST 8

separate for each Junos OS module..........cc......... 66
E
echo attribute (Junos XML protocol)

ChallENEE tag....cccoevurerereseree et 168
edit-path tag (Junos XML protocol).............. 175,191,193

encoding attribute (Junos XML protocol)
usage guidelines

CLENT s 41
LT YL TR 43
encoding attribute (Junos XML protocol))
(0 01 W 0= =TT 191
end-session tag (Junos XML protocol).......ceeeeeeeee. 176
USAEE BUIAELINES ...ttt esnans 59
entity references, predefined (Junos XML).......cccccuu.... 14
error messages
from Junos XML protocol server.......eeeecenenee. 53

examples, Junos XML
mapping of configuration statement to tag

comments in configuration........cceceeeeeerrvenennee. 22
hierarchy levels........cceneceeeeeeeeeeens 18
o 1T gLy A= U 19
leaf statement with keyword and

VALUEB oottt

leaf statement with keyword only
multiple options on multiple lines

multiple options on single line........ccoeveeunnee.
multiple predefined values for option............ 21
multiple user-defined values for

(0] 0[] o FS0S TR 20

examples, Junos XML protocol
client applications

C lANBUAEE......octeeecreeete e ssanes 243
PEI L 218
committi