
Program Product

SC33-0006-0

OS
PL/I Optimizing Compiler
Programmer's Guide

Program Numbers 5734-PL 1
5734-LM4
5734-LM5

(These program products are available
as composite package 5734-PL3)

This edition applies to Release 20.1 of IBM System/360
Operating System and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.
Changes will continually be made to the information herein;
before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/360
and System/370 Bibliography SRL Newsletter, Order
No. GN20-0360, for the editions that are applicable and
current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM United Kingdom Laboratories Ltd.,
Programming Publications, Hursley Park, Winchester,
Hampshire, England. Comments become the property of IBM.

©Copyright International Business Machines Corporation 1971

Preface

rhis publication is a guide to the use of
the PL/I Optimizing Compiler (program No.
5734-PL1) in a batch environment of the IBM
Operating System. It explains how to use
the compiler to execute PL/I programs and
describes the operating system features
that may be required by a PL/I programmer.
It does not describe the language
implemented by the compiler, nor does it
explain how to use the compiler in an
operating system with the Time Sharing
Jption (TSO); these are the functions of
the manuals listed under "Associated
Publications," below.

For execution of a PL/I program, the
optimizing compiler employs subroutines
from the OS PL/I Resident Library (Program
No. 5734-LM4) and the OS PL/I Transient
Library (Program No. 5734-LMS), and this
programmer's guide assumes the availability
of these program products.

The first three chapters cover basic
topics, and are intended primarily for
casual (non-specialist) programmers or for
newcomers to IBM System/360 or IBM
System/370. The reader is assumed to have
only an elementary grasp of PL/I and the
basic concepts of data processing. These
chapters introduce the reader to the
operating system, and explain how to run a
PL/I program and how to define a data set.

The rest of the manual contains more
detailed information on the optimizing
compiler, and provides general guidance and
reference information on operating system
features that are likely to be required by
the PL/I applications programmer. Most of
this information is equally relevant to the
use of the compiler in a batch or TSO
environment.

Chapter 4 describes the optimizing
compiler, the data sets it requires, its
optional facilities, and the listings it
produces. Chapter S contains similar
information for the linkage editor and
loader, one of which is needed in addition
to the compiler to prepare a PL/I program
for execution.

Chapters 6 through 9 are concerned with
the various types of data sets that can be
created and accessed by a PL/I program, and
explain how to define these data sets.

Chapter 10 describes the standard
cataloged procedures provided by IBM for
the optimizing compiler, and explains how
to modify them.

Chapter 11 deals with the facilities
available for debugging PL/I programs.

Chapter 12 explains how to link programs
written in PL/I with those written in
assembler language. (The optimizing
compiler implements language designed to
facilitate communication between prograrr.s
written in PL/I and those written in
FORTRAN and COBOL; these facilities are
described in the language reference manual
listed under "Associated Publications,"
below.)

Chapters 13 and 14 are concerned with
the use of built-in subroutines included in
the resident library to provide direct
interface between PL/I programs and the
operating system sort and
checkpoint/restart facilities.

A series of appendixes supply sundry
reference information.

ASSOCIATED PUBLICATIONS

The language implemented by the optimizing
compiler is described in the following
publication:

OS PL/I Optimizing~nd Chec~~!
Compilers: Language Reference Manual,
Order No. SC33-0009

For information on how to use the
compiler in a TSO environment refer to:

OS Time Sharing opti.Q!ll PL/I~imi~ing
£Qmpiler, Order No. SC33-0029

The diagnostic messages issued by the
compiler and the transient library are
listed in the following publication,
together with explanations, where
necessary, and suggested prograrrmer
response:

OS PL/I Optimizing Compilerl~g§§~gg§,
Order No. SC33-0027

3

The following publications are referred to
in this programmer's guide. They contain
additional details about particular topics
discussed in this manual.

4

os ~L/I_QEtimizing C2!!!12ileEl.
~xecu~i2~~i£, Order No. SC33-0025

OS Introduction,
Order No. GC28-6534

Os JoE.-£ontrol_Lan~ User's Guide,
Order No. GC28-6703

Os Linkage EditoLand Loader,
Order No. GC28-6538

OS System Programmer's Guide,
Order No. GC28-6550

OS Utilities, Order No. GC28-6586

Q§~2rt/Merge, Crder No. SC28-6543

QS supervisor and Data Manag~~~1_~~f£2
Instructions, Order No. GC28-6647

QS Programmer's Guide to Deb~gi~g,
Order No. GC28-6670

AVAILABILITY OF PUBIICATICNS

The availability of a publication is
indicated by its ~se_~§Y, the first letter
in the order nurrber. The use keys are

G - General: available to users of IBM
systems, products, and services without
charge, in quantities to meet their
normal requirements; can also be
purchased by anycne through IEM cranch
offices.

S - Sell: can be purchased by anycne
through IBM branch offices.

CHAPTER 1: INTRODUCTION
The Optimizing compiler
The Operating System • •

Time Sharing Option
Jobs and Job steps • •
Job Control Language •
Executing a PL/I Program •

• • 11
• • • • 11
• • • • 11
• • • • 11
· • • • 11
· • • • 12
• • • • 13

CHAPTER 2: HOW TO RUN A PL/I PROGRAM • 14

CHAPTER 3: HOW TO CREATE AND ACCESS A
DATA SET . · • • • 16
Using a Data Set . . . • • • • . 16
How to Create a Data Set • • • • • • • . 16

Type of output Device (UNIT=) 17
Volume S8rial Number (VOLUME=SER=) 17
Name of Data Set (DSNAME=) . • •• 18
Record Type (DCB=) . . • • • • •• 18
Auxiliary Storage Required (SPACE=) • 18
Dispositon of Data Set (DISP=) 19

How to Access a Data Set . • • • •• 19
Type of Input Device (UNIT=) • • • • • 19
Volume Serial Number (VOLUME=SER=) 19
Name of Data Set (DSNAME=) . • •• 20
Record Type (DCB=) . • . • . • •• 20
Auxiliary Storage Required (SPACE=) • 20
Disposition of Data Set (DISP=) 20

special-purpose Parameters . .•• • 20
Standard Files • . • • • 20
Examples . • . • • • . • • 21

CHAPTER 4: THE COMPILER •••• 23
Description of the Compiler • • • • 23
Job Control Statements for Compilation . 26

EXEC Statement • • • • . • . • • 27
DD Statements for the Standard Data
Sets . • • . • • • . • •• ••• . 27
Example of Compiler JCL • • • • 28

Optional Facilities • • • • 28
Options in EXEC Statement 29
Options in PROCESS Statement • • • • • 31
Compiler Options • • • 31

Compiler Listing • • • • • • • • • 39
Heading Information • • • • • • • • • 39
Options used for the Compilation • 40
Preprocessor Input . 40
Source Program • • • • • • • • • 40
statement Nesting Level • • • •• 40
Attribute and Cross-reference Table • 40
Aggregate Length Table • • 41
storage Requirements • • • . 41
Statement Offset Addresses • 42
External Symbol Dictionary • 42
Static Internal storage Map • • • • • 43
Object Listing • • 43
Messages • • • • • . • • • • • 44
Return code • • • • • 44

Batched Compilation 44
Job Control Language for Batched
Processing . • • •• •••• 45

Compile-time Processing (Preprocessing) 47
Invoking the Preprocessor • • • • • • 47

Contents

The %INCLUDE Statement • • • • •
Dynamic Invocation of the compiler

OPTION List
DDNAME List

49
• 50
• 50

50
Page Number • • • 51

CHAPTER 5: THE LINKAGE EDITOR AND THE
LOADER • 52
Choice of Program
Module structure •
Linkage Editor • •

• • • 52
• • • • • • • 53

• • • • • • 54
Linkage Editor Processing • 54

Job Control Language for the Linkage
Editor • • • • • • • • • • • • 55

EXEC Statement • . • • • • • • 55
DD Statements for the Standard Data
sets • . • • • • . • • • • • • • . 56
Example of Linkage Editor JCL . 58

Optional Facilities • • • . • • • 58
Listing Produced by the Linkage Editor . 60
Diagnostic Messages and Control
Statements . • • • • • • • • •

Diagnostic Message Directory
Module Map • • • • • • • • • • •
Cross-reference Table
Return Code • • • • • •

Additional Processing

• 60
• 61
· 61
• 61
• 61
· 62
• 62 Format of Control Statements

Module Name • • • • • •
Additional Input Sources ••

• • • • • 62
• • • 63

Overlay structures • •
Link editing Fetchable

• 64
Load Modules • 66

Loader • • • • • • . • • • • • • 67
Loader Processing • • • • • • 67

Job Control Language
EXEC statement • .

for the Loader • • 68

DD Statements for the Standard Data
Sets • • • • • • • • • • • • • •
Examples of Loader JCL • • • • •

Optional Facilities of the Loader
Listing Produced by the Loader • • •

Module Map • • • • • • • • • • •
Explanatory and Diagncstic Messages

CHAPTER 6: DATA SETS AND FILES

• 68

• 6"9
• 70
• 71

• • 72
• 73
• 73

• 74
Data sets • • • • • • • 74

Data Set Names
Blocks and Records
Record Formats • •
Data Set Organization
Labels • • • • • • • •
Data Definition (DD) Statement •
Naming the Data Set • • • • • •
Describing the Device and Volume
Disposition of the Data Set
Data Set Characteristics • • • •

Operating System Data Management •
Buffers • • • • • • • • • •
Access r·lethods • • • • • •

74
• 75

76
• • 78

• • • 78
• 79
• 79
• 80
• 80

• • • 80
• 81

81
81
82 Data Control Block •

Opening a File •
Closing a File • •

• • • • • 83
• 84

5

Record Formats for Auxiliary
Card Reader and Punch
Paper Tape Reader

storage • • 84
• • 84

84
84
85

Printer ••••• • •
Magnetic Tape • • . •
Direct-access Devices • • • • 85

CHAPTER 7: DEFINING DATA SETS FOR
STREAM FILES . • • • . • • • • • 86
Creating a Data Set • • • • 86

Essential Information 86
Example • . • • • • • • • 87

Accessing a Data Set • • • • • • 87
Essential Information • • • • 89
Magnetic Tape without Standard Labels 89
Record Format 89
Example • • 89

PRINT Files • • 90
Record Format • • • • 90
Example 91
Page Size, Line Size, and Tabulating
Positions • • • • 92

Standard Files • • • • • • . • • 93

CHAPTER 8: DEFINING DATA SETS FOR
RECORD FILES . • • • 94
CONSECUTIVE Data Sets • • •• •• • 94

Creating a CONSECUTIVE Data Set 94
Accessing a CONSECUTIVE Data Set • 94
Example of CONSECUTIVE Data Sets • 97
Punching Cards and Printing • • 98

INDEXED Data sets • • • • • .100
Indexes ••••••••••••••• 100
Creating an INDEXED Data Set. • .102
Accessing an INDEXED Data set •• 107
Reorganizing an INDEXED Data Set ••• 107
Examples of INDEXED Data Sets •• 108

REGIONAL Data Sets • • • • • • • .110
Creating a REGIONAL Data Set. • .110
Accessing a REGIONAL Data Set •••• 112
Examples of REGIONAL Data Sets •• 113
Teleprocessing . • • • • • • • • .123
Message Processing Program (MPP) ••• 123
Ho~ to Run an MPP ••• 123

CHAPrER 9: LIBRARIES OF DATA SETS ••• 125
Types of Library •••••••••••• 125
How to Use a Library . • • • • • • • • .125

By the Linkage Editor or Loader ••• 125
By the Operating system •• 125
By Your Program •• 126

creating a Library. • • • • • .126
Space Parameter • • • • • • .126

Creating a Library Member •••• 127
Examples. • . • • • • .128
Library Structure •• 130

CHAPTER 10: CATALOGED PROCEDURES ••• 132
Invoking a cataloged Procedure. .132
Modifying Cataloged Procedures ••••• 134

Temporary Modification •••••••• 134
Permanent Modification • • • • • • • .135

IBM-supplied Cataloged Procedures ••• 135
Compile Only (PLIXC) . • • • • • . • • .137
Compile and Link-edit (PLIXCL) ••••• 138
Compile, Link-edit, and Execute
(PLIXCLG)•••••.• • .139
Link-edit and Execute (PLIXLG) ••••• 140

6

Compile, Load-and-execute (PLIXCG) ••• 141
Load-and-execute (PLIXG) • • •• • .142

CHAPTER 11: PROGRAM CHECKOUT ••• 143
Conversational Program Checkout .143
Compile-time Checkout .143
Linkage Editor Checkout ••• 144
Execution-time Checkout ••• 144
Statement Numbers and Tracing •• 146
Dynamic Checking Facilities .146
Control of Exceptional Conditions .147
On-codes • • • •••••• 147
Dumps ••••••••• 148
Return Codes • • ••• 149

CHAPTER 12: LINKING PL/I AND
ASSEMBLER-LANGUAGE MODULES • •
The PL/I Environment • • • • •

••••• 151

Establishing the PL/I Environrrent
PLICALLA and PLICALIB • • • •

• .151
• .151
• .151

The Dynamic Storage Area (DSA) and
Save Area •• • • • • • • • • • • •• 152

Calling Assembler Routines from PL/I •• 152
Invoking a Non-recursive or
Non-reentrant Assembler Routine .152
Invoking a Recursive or Reentrant
Assembler Routine •••.•••••• 153
Use of Register 12 •••••••••• 153

Calling PL/I Procedures from Assemtler
Language •••.•••••••••••• 154

Establishing the PL/I Environment for
Multiple Invocations ••••••••. 154
Establishing the PL/I Environrrent
Separately for Each Invocation •••• 157

overriding and Restoring PilI
Error-handling • • . • •
Arguments and Parameters

• •• 159
.160

Passing Arguments from an
Assembler-language Routine •••••• 160
Receiving Parameters in an
Assembler-language Routine. • •• 160
Types of Argurr.ents and Parameters •• 160
Use of Locator/Descriptors. .160
PL/I Language Facilities for
Assembler Interface ..••• .161

CHAPTER 13: PL/I SORT • • • • • • .163
Entry Names
Procedures Invoked ty Way of Sort
User Exits • • • • • . • • •
Data Sets Used ty Sort/Merge

Invoking Sort/Merge from PL/I
Examples of Using PL/I Sort

Sorting Records Directly from One

• •• 163

.163
• •• 164

.165
• • .167

Data Set to Another (PLISRTA) •• 167
User Exit E15 (PLISRTE) ••••••• 168
Using User Exit E35 to Handle Sorted
Records (PLISRTC) •••••••••• 169
Passing Records to be Sorted, and
Receiving Sorted Records (PLISRTD) •• 169

CHAPTER 14: CHECKPOINT/RESTART •••• 171
Writing a Checkpoint Record •••• 171
Checkr::oint :Cata Set . . • • . • • .171
Performing a Restart • • • • • • .172

Automatic Restart After a System
Failure ••••••••••••••• 172

Automatic Restart from Within the
Program • . . • • • • • .172
Deferred Restart. • • • .172
Modifying Checkpoint/Restart Activity 173

APPENDIX A: DCB SUBPARAMETERS •.••• 175
DCB Parameter ..••••••••••• 175
Using Existing DCB Information •.••• 175

Information in Similar Data Sets ••• 175
Information in an Earlier Data Set •• 175

overriding Existing DCB Information •• 175
Subparameters of the DCB Parameter ••• 176

APPENDIX B: COMPATIBILITY WITH THE
PL/I (F) COMPILER •••.••••••• 181

APPENDIX C: REQUIREMENTS FOR PROBLEM
DETERMINATION AND APAR SUBMISSICN

APPENDIX D:
and 195

IBM SYSTEM/360 MODELS 91

APPENDIX E: SHARED LIBRARY CATALCGEC
PROCEDURES • • • • • •

Using Standard IEM Cataloged
Procedures • • • • • •

APPENDIX F: PROGRAMMING EXAMPLE.

INDEX

.187

.191

.193

•• 194

.195

• .226

7

Figures

Figure 1.1. A. JOB statement • • • • • • 12
Figure 2.1. How to run a PL/I program. 15
Figure 3.1. Creating a CONSECUTIVE
data set: essential parameters of DD
statement ••••••••••••••• 17
Figure 3.2. Accessing a CONSECUTIVE
data set: essential parameters of DD
statement ••• • • • • • • • • • • • • 19
Figure 3.3. Creating a CONSECUTIVE
data set • • • • • • • • • • • • • • • • 21
Figure 3.4. A.ccessing a CONSECUTIVE
data set • • • • • • • • • • • • • • • • 22
Figure 4.1. Simplified flow diagram
of the compiler • • • • • • •
Figure 4.2. Compiler standard data
sets
Figure 4.3. Typical job control

• • 24

26

statements for compiling a PL/I program 28
Figure 4.4. compiler options,
abbreviations, and defaults 32
Figure 4.5. Compiler listings and
associated options • • • • • • • • • • • 39
Figure 4.6. Standard entries in the
ESD • • • • • • • • • • • • • • • • • • 43
Figure 4.7. Example of batched
compilation • • • • • • • • • •
Figure 4.8. Execution of program

• • 46

compiled in figure 4.7 ••••••••• 47
Figure 4.9. Osing the preprocessor to
create a member of a source program
library • • • • • • • • • •• •• • 49
Figure 4.10. Including source
statements from a library • • • • 50
Figure 5.1. Basic linkage editor
processing • • • • • . • • • . • •
Figure 5.2. Linkage editor standard
data sets ••• • . • • • • • • •
Figure 5.3. Typical job control
statements for link editing a PL/I
program • • • • • • • • • • • • •
Figure 5.4. Linkage editor listings

55

56

58

and associated options • • . . • • • • • 60
Figure 5.5. Processing of additional
data sources • • • • . • • • . 63
Figure 5.6. Overl~y structure and its
tree • • • • . • • • . • . • • • 65
Figure 5.7. Creating and executing the
overlay structure of figure 5.6 66
Figure 5.8. Basic loader processing •• 67
Figure 5.9. Loader processing,
link-pack area and SYSLIB resolution • • 68
Figure 5.10. Loader standard data sets 69
Figure 5.11. Job control language for
load-and-go • • •• • • • • • • • • 70
Figure 5.12. Object and load modules
in load-and-go • • • • • • • • • • •
Figure 6.1. A. hierarchy of indexes
Figure 6.2. Fixed-length records
Figure 6.3. Variable-length records.
Figure 6.4. Access methods for
record-oriented transmission • • • •

8

71
74

• 76
• 77

82

Figure 6.5. How the operating system
completes the DCB ••••• • • • • • • 83
Figure 7.1. Creating a data set:
essential parameters of DD statement • • 87
Figure 7.2. creating a data set with
stream-oriented transmission • • • • • • 88
Figure 7.3. Accessing a data set:
essential parameters of DD statement • • 88
Figure 7.4. Accessing a data set with
stream-oriented transmission • 90
Figure 7.5. Creating a data set using
a PRINT file • • • • • • • • • • • • • • 92
Figure 7.6~ Tabulating structure
PLITABS • • • • • • • • • • • • • • 93
Figure 8.1. Creating a CONSECUTIVE
data set: essential parameters of DD
statement • • • • • • . • • 95
Figure 8.2. DCB subparameters for
CONSECUTIVE data sets • • • • • • 95
Figure 8.3. Accessing a CCNSECUTIVE
data set: essential parameters of DD
statement • • • • • • • • • • • • • • • 96
Figure 8.4. Creating and accessing a
CONSECUTIVE data set • • •• • • • • 97
Figure 8.5. ANS printer and card punch
control codes • • • • • • • • • • • • • 98
Figure 8.6. 1~03 printer control codes 98
Figure 8.7. 2540 Card Read Punch
control characters • • • • • • • • 99
Figure 8.8. Printing with
record-oriented transmission • • 99
Figure 8.9. Index structure of an
INDEXED data set • • • • • • .100
Figure 8.10. Adding records to an
INDEXED data set • • • • • • .101
Figure 8.11. Creating an INDEXED data
set: essential parameters of DD
statement ••••••••••••••• 102
Figure 8.12. DCB subparameters for an
INDEXED data set • • • • • • • • .104
Figure 8.13. Record formats in an
INDEXED data set •••••••••••• 105
Figure 8.14. Record format
information for an INDEXED data set •• 106
Figure 8.15. Accessing an INDEXED
data set: essential parameters of DD
statement • • • • • • • • • • • • • • :107
Figure 8.16. Creating an INDEXED data
set ••••••••••••.••••• 108
Figure 8.17. Updating an INDEXED data
set109
Figure 8.18. Creating a REGIONAL data
set: essential parameters of DD
statement ••••••••••••••• 111
Figure 8.19. DCB subparameters for a
REGIONAL data set ••••••••••• 112
Figure 8.20. Accessing a REGIONAL
data set: essential parameters of DD
statement ••••••••••••••• 113
Figure 8.21. Creating a REGIONAL(l)
data set •••••••••••••••• 115

Figure 8.22. Updating a REGIONAL(l)
data set .••••.•.•••••••. 116
Figure 8.23. creating a REGIONAL(2)
data set •..••••• ••••..• • 117
Figure 8.24. Updating a REGIONAL(2)
data set directly • • • . • • • • .118
Figure 8.25. Updating a REGIONAL(2)
data set sequentially • . • • • • • • .119
Figure 8.26. Creating a REGIONAL(3)
data set ...•••.••••••••• 120
Figure 8.27. Updating a REGIONAL(3)
data set directly • • • • • • • .121
Figure 8.28. Updating a REGIONAL(3)
data set sequentially ••••••• 122
Figure 8.29. PL/I message processing
program ••.••••••••.•• 124
Figure 9.1. creating new libraries
for compiled object modules ••• 128
Figure 9.2. Placing a load module to
existing libraries ••••••••••• 129
Figure 9.3. creating a library member
in a PL/I program ••••••••••• 129
Figure 9.4. Updating a library member .130
Figure 9.5. structure of a library •• 131
Figure 11.1. Return codes from
execution of a PL/I program • • • • •.• 149

Figure 12.1 Invoking a non-recursive
or non-reentrant assembler routine .152
Figure 12.2. Invoking a recursive or
reentrant assembler routine •••••• 153
Figure 12.3. Invoking PL/I procedures
from an assembler-language
routine. 155,156
Figure 12.4. Use of PLICALLA •• 158
Figure 12.5. Use of PLICALLB •• 158
Figure 12.6 Inserting a PL/I entry
point address in PLIMAIN •.•••••. 158
Figure 12.7 Establishing PLIMAIN as
an entry in the assembler-language
routine • • • • • • • • • • • •• .159
Figure 12.8. Method of overriding and
restoring PL/I error-handling .159
Figure 13.1. Invoking sort/merge via
entry point PLISRTA •••••.•••• 167
Figure 13.2. Invoking sort/merge via
entry point PLISTRB • • • . • • • • • .168
Figure 13.3. Invoking sort/merge via
entry point PLISTRC •••••••••• 169
Figure 13.4. Invoking sort/merge via
entry point PLISTRD •••••••••• 170
Figure C.l. Summary of requirerrents
for APAR submission •••••••••• 187

9

10

The Optimizing Compiler

The PL/I Cptimizing Compiler is a
processing ~rogram that translates PL/I
source programs, diagnosing errors as it
does so, into IBM System/360 machine
instructions. These machine instructions
make up an object ~rogram. (See later in
this chapter for a description of how an
object program is ~repared for execution.)

The compiler is designed to produce
efficient object ~rograms either with or
without o~timization. This optimization,
which is optional, can be specified by the
programmer ty means of a compiler option.

If optimization is specified, the
machine instructions generated will be
optimized if necessary, to produce a very
efficient object program.

If optimization is not specified,
compilation time will be reduced.

The optimizing compiler also can be used
conversationally. It can be invoked from a
remote terminal to compile and execute a
PL/I source program, and return the results
to the terminal or to a printer.

The optimizing compiler requires a
minimum of SOK bytes of main storage when
used with MFT and a minimum of 52K when
used with MVT. In either case it will work
more efficiently with larger amounts of
main storage.

The Operating System

The optimizing compiler must be executed
through the IBM Operating System. This
operating system is used with both
system/360 and System/370.

The operating system relieves the
programmer of routine and time-consuming
tasks by controlling the allocation of
storage space and input/output devices.
The throughput of the system is increased
because the operating system can process a
stream of jobs without intervention by the
operator.

The operating system comprises a control
program and a number of processing
programs. The control program supervises
the execution of all processing programs,

Chapter 1: Introduction

and provides services that are required by
the ~rocessing Frograms during their
execution. The Frecessing Frograrrs include
such programs as compilers, the linkage
editor and the leader (see later in this
chapter). The operating systerr is
described in the Futlication f§
Introduction.

The oFtirrizing ccrrFiler can te used with
two operating system contrcl pregrarrs:

MF~ (Multipregrarrrring with a Fixed
number of Tasks) Ferroits uf to fifteen
jobs to te processed cencurrently, each
job occufying a sefarate area of main
storage termed a partitiQQ.

MVT (Multiprogramming with a Variatle
number of Tasks) permits up to fifteen
jobs to be processed concurrently, each
job occufying a sefarate area of main
storage termed a region.

TIME SHARING OPTION

An optional facility of the MVT operating
system is the Time Sharing Option (TSO).
One or more regions can be allocated to ~SO
and several users can have concurrent
access to the system. Each user enters his
jobs from a remote terminal and can receive
the results at the terminal. (~o contrast
it with this "conversational" mode of
operation, the more conventional method of
submitting jobs through the system of era tor
is called batch operation.)

This programmer's guide forms a complete
guide to the use of the optimizing comfiler
in a batch environment. It also provides
essential background and reference
information for the TSO user; however,
instructions on how to use ~So and how to
use the optimizing compiler with TSC are
contained in the publications 1§~1~fmin~1
User's Guide and TSO: P~/I Q~irrizi~g
Compiler.

JOBS AND JOB STEPS

In a batch environment, the order of
processing jobs is determined by a
user-defined job class and/or priority,
although this order might not be the order
in which they are entered. Consequently
jobs should be independent of each ether.

Chapter 1: Introduction 11

A j2~ comprises one or more job steps,
each of which involves the execution of a
program. Since job steps are always
processed one-by-one in the order in which
they appear, they can be interdependent.
For example, the output from one job step
can be used as the input to a later one,
and the processing of a job step can be
made dependent on the successful completion
of a previous job step.

JOB CONTROL L~NGUAGE

Job control language (JCL) is the means by
which a programmer defines his jobs and job
steps to the operating system; it allows
the programmer to describe the work he
wants the operating system to do, and to
specify the input/output facilities he
requires.

Chapter 2, "How to Run a PL/I Program,"
illustrates the use of JCL statements that
are essential for the PL/I programmer.
These statements are:

JOB statement, which identifies the
start of a job.

EXEC statement, which identifies a job
step and, in particular, specifies the
program to be executed, either directly
or by means of a cataloged procedure
(see later in this chapter).

Name of
job

Accounting
information

Programmer's
name

//EXAMPLE JOB (2345,Alii)~J.BLOGGS

A I ~ I I I I II II
J tolllR II 'I I II

DD (data definition) statement, which
defines the input/output facilities
required by the program executed in the
job step.

/* (delimiter) statement, which
separates data in the input stream from
the job control statements that follow
this data.

JOB, EXEC, and DD statements have the same
format, and figure 1.1 shows an exarr.ple of
a JOB statement on a punched card. These
three statements are identified by // in
columns 1 and 2. Each statement can
contain four fields -- name, operation,
operand, and comments -- that are separated
by one or more blanks. The name field
always starts in column 3.

A full description of job control
language is given in the publications OS
Job Control Language User's Guide and 2§
Job Control Language Reference.

Cataloged Procedures

Regularly-used sets of job control
statements can be prepared once, given a
name, stored in a system library and the
name entered into the catalog for that
library. Such a set of statements is
termed a cataloged Frocedure. A cataloged
procedure comprises one or more job steps
(though it is not a jot, because it must
not contain a JOB statement). It is

II 10 Z n :j r, n n n G D ~': I 11 {~ 0 \1 DIG :} IJ :~~} nl ~~ n ~ r G r: q :~ f: r.: r: \; D C f.~ ~1 \~ ,.~ ~~: \,: r: i; ,-1 ::~; q tl n iJ lj n n n n G n n !'~ (.! .:: :,1 n n
1 2 3 4 ~ & 7 8 9 10 11 12 U 14 1516 17 18 13 ~o 212123241526 271l2S 3031 jl J3 l4 Jj 3517 Jill 404' 42 0·14 1'.4, ·il 4d ~g:n :, ,1,35: 55 5; 57 5S \160 61 52 53 54" f6 67 66 69 7071 72 n 74 75 76 iJ ;e iq ,)
al 11 Ii I 1 J III 1 1 1 -i 1 I 1 I; I I'; l IA 1 1 ~l ; I J l ;iii :; ; 1 1 : " : II A 1 Ii l : 1 J ; ii 1 i i' ; 1: ; ii, '

B :', Z;'? K Ii I? S ? ~ ? ?:' ?? I ??? I·'? K : '. :'; ::. 5 ???':')? B 2':':') K ;> " ;:. i' Z S :' :.' ' '/ :' :'

C l}I~~ L ~J~IJ • ;~J3IJI' 133~ L :lJ~l T ~j 313~ C J~~ :~3 L Jl]l~ T ~~31~
,i .:, 0 1:·/ '! ,i.\ M ·1 '~ll" ljl ,\'11·)\ >! 0 ,1: ,;.; ,) ': M ·.1) ,\,:.; U 'I' ,) , ".' ,) 0 'i .,'; :,.; M ;,~ ·ii U·:·~·; ,i

:) " IE:,: :, I ~. :' NI:;:;'1 Ii V :.11·;:, :; ~, E :.l :.<:':::1 N :,,:i~,;: V::'~':':: '. ~,,:, E:,:::.l ':, '~.. N ',):.' :,' V ~.:. ::'
:. '.: :::. F ~; t' lOt, ~;;;;. W i;~.:; IF:: (, S :, 0 [; ;;:j '.' W ti L ;; :,;: ii F h :' .. : :: '1;; 0 :1 \: .. ; ,:: W ;;

i i } II • "i 7 i J 'f ~i P 7 Ii') 1 Xi') 'J 'j 'I '/ IIG! "} .I:!} p; i ; I;' X] J 7 ! i' i:l G ii! 'i ,. I P -; Ii Ii X

fi ~ I). :; ! :! " 'i :: :1:3 R :'::: 'i ~: fl Z s)\:. ':,: S~· I :1): :: ':1 R :i 'l :\ :: 'i Z '3 ';, :1 :': ., ~\ I :1 :,:: '.I R :!'i:;':1 Z
, : : 4 J 6 7 e 9 10 11 12 '3 '·1 15 16 11 '8 19 iO 21 22 :3 24 ~5 10 2J :'6 29 ~~ ~: ~l Jj 34 ~5 36 31 2e ~~ 40 ~~ ~2 43 1 ~ 1) 46 H 4a49 ~o 51 52 53 51 5J 5l: ~I ~3 ~~ €C iil.t2 63 I); [5 rc 57 SJ C3 j') IT n 13 74 ;J 75 17 7R 73 eU

1BM: WTC S8SCl

Figure 1.1. ~ JOB statement

12

included in a job by specifying its name in
an EXEC statement instead of the name of a
program.

Several IBM-su~plied cataloged
procedures are available for use with the
optimizing compiler. Chapter 10 describes
these procedures and how to use them.

EXECUTING A PL/I PROGRAM

The process of executing a PL/I program
requires a minimum of two job steps.

A compilation job step is always
required. In this step the optimizing
compiler translates the PL/I source program
into a set of machine instructions called
an QQjgct_mo~~lg. This object module does
not include all the machine instructions
required to represent the source program.
In many instances the compiler merely
inserts references to subroutines that are
stored in the OS PL/I Resident Library.

To include the required subroutines from
the resident library, the object module
must be processed by one of two processing
programs, the linkage editor and the
loader. Subroutines from the resident
library may contain references to other
subroutines stored in the OS PL/I Transient
Library. The subroutines from the
transient library do not become a permanent
part of the compiled program; they are
loaded 'into main storage when needed during
execution of the PL/I program, and the
storage they occupy is released when they
are no longer needed.

When using the linkage editor, twe
further job steps are required after
compilation. In the first of these ste~s,
the linkage editor cenverts the otject
module into a form suitable for executien
and includes subroutines, referred to ey
the compiler, from the resident library.
The program in this form is called a load
module. In the final joe step, this load
module is loaded into main storage and
executed.

When using the loader, only one more job
step is required after compilation. The
loader processes the oeject module,
includes the appropriate library
subroutines, and executes the resultant
executable program immediately.

Both the linkage editor and the leader
can combine separately produced oeject
modules and previously processed lead
modules. However, they differ in ene
im~ortant respect: the linkage editor
produces a load module, which it always
places in a library, where it can te
permanently stored and called whenever it
is required; the loader creates only
temporary executable programs in rrain
storage where they are executed
immediately.

The linkage editor also has several
facilities that are net provided ey the
loader; for example, it can divide a
program that is too large for the space
available in main storage so that it can be
loaded and executed segment by segment.

The loader is intended frimarily for use
when testing programs and for processing
programs that will te executed only ence.

Chapter 1: Introduction 13

Chapter 2: How to Run a PL/I Program

The job control statements shown in figure
2.1 are sufficient to compile and execute a
PL/I program that comprises only one
external procedure.

This program uses only punched-card
input and printed output. For other forms
of input/output refer to chapter 3. The
listing produced includes only the standard
~efault items. Many other items can be
included by specifying the appropriate
compiler options in the EXEC statement.
The compiler listing and all the compiler
options are described in chapter 4. The
linkage editor listing and the linkage
editor options are aescribed in chapter 5.
Appendix F is a sample PL/I program that

14

includes most of the listing items
discussed in these two chapters.

The example in figure 2.1 uses the
cataloged procedure PLIXCLG. Several other
cataloged procedures are supplied ty IEM
for use with the optimizing compiler (fer
example, for compilation only). The use of
these other cataloged procedures is
described in chapter 4.

An alternative method of specifying
compiler options is by use of the PROCESS
statement, which is descrited in chapter 4.
An example of a PROCESS statement is:

* PROCESS MACRO,OPT(TIME)i

JOB statement

EXAMPLE is the name of the job. You can use any name
that does not have more than eight alphameric or national
characters; the first character must not be numeric. The
job name identifies the job within the operating system; it
is essential. The parameters required in the JOB statement
depend on the conventions established for your installation.

EXEC statement

PLIXCLG is the name I)f a cataloged procedure supplied by
IBM. When the operating system meets this name, it replaces
the EXEC statement with a set of JC L statements that have
been written previously and cataloged in a system library.
The cataloged procedure contains three procedure steps:

PLI The compiler processes the PL/I program and translates
it into a set of machine instructions called an object
module.

LKED The linkage editor produces a load module from the
object module produced by the compiler.

GO The load module produced by the linkage editor is
loaded into main storage and executed.

DD statement

This statement indicates that the statements to be processed
in procedure step PLI follow immediately in the card deck.
SYSI N is the name that the compiler uses to refer to the
device on which it expects to find this data. (In this case,
the device is the card reader, and the data is the PL/I program.)

Delimiter statement

This statement indicates the end of the data (that is, the
PL/I program).

DD statement

This statement indicates that the data to be processed by the
program (in procedure step GO) follows immediately in the
card deck.

Delimiter statement

This statement indicates the end of the data.

Figure 2.1. How to run a PL/I program

I PL/I source statements ll----'"""'"
IIEXAMPLE JOB (6487,N14),JONES,MSGLEVEL=1
IISTEP1 EXEC PLlXCLG
IIPLI.SYSI N DD *

EX001: PROCEDURE OPTIONS(MAIN);
DECLARE (A,B,C) FIXED DECIMAL(3);
ON ENDFILE(SYSIN) GO TO FINISH;

NEXT: GET FILE(SYSIN) DATA(A,B);
C=A+B;
PUT FILE(SYSPRINT)SKIP DATA(A,B,C);
GO TO NEXT;

FINISH: END;

1*
IIGO.SYSIN DD *

A=131B=75;
A=2 B=907;
A=~14 B=14;
A=341B=429;
A=245 B=102;

r

Data to be processed
by the PL/I program

..

Chapter 2: How to Run a PL/I Prcgraro 15

Chapter 3: How to Create and Access a Data Set

A data set is any collection of data in
auxiliary storage that can be created or
accessed by a program. It can be punched
onto cards or a reel of paper tape; or it
can be recorded on magnetic tape or on a
direct-access device such as a magnetic
disk or drum. A printed listing can also
be a data set, but it cannot be read by a
program.

Data sets that are created or accessed
by PL/I programs must have one of the
following types of organization:

CONSECUTIVE

INDEXED

REGIONAL

Teleprocessing

The items of data in a CONSECUTIVE data
set are recorded in the order in which you
present them, and can be accessed only in
the order in which they were presented or,
in the case of magnetic tape, in the
reverse order. The items of data in
INDEXED and REGIONAL data sets are arranged
according to "keys" that you supply when
you create the data sets. Teleprocessing
data sets are organized as consecutive
groups of data items.

This chapter explains how to create and
access CONSECUTIVE data sets stored on
magnetic tape or on a direct-access device.
It is intended to provide an introduction
to the subject of data management, and to
meet the needs of those programmers who do
not require the full input/output
facilities of PL/I and the operating
system. Chapters 6 through 9 contain a
full explanation of the relationship
between the data management facilities
provided by PL/I and those provided by the
operating system, and they explain how to
create and access all the types of data
sets referred to above.

Using a Data Set

To create or access a data set, you must
not only include the appropriate input and
output statements in your PL/I program, but
you must also supply certain information to
the operating system in a DD statement. A
DD statement defines a data set and
specifies how it will be handled. The

16

information contained in a DD statement
enables the operating system to allocate
the necessary auxiliary storage devices,
and allows the compiler to use the data
management routines of the operating system
to transmit data between main storage and
auxiliary storage.

The language reference manual for this
compiler describes the input and output
statements that you will need to use in
your PL/I program. Essentially, you must
declare a file (explicitly or contextually)
and open it (explicitly or implicitly)
before you can begin to transmit data. A
file is the rreans provided in PI/I for
accessing a data set, and is related to a
particular data set only while the file is
open; when you close the file, the data set
is no longer available to your program.
This arrangement allows you to use the same
file to access different data sets at
different times, and to use different files
to access the same data set.

You must provide a DD statement for each
data set that you will use in each job
step. If you use the same data set in more
than one job step, each job step that
refers to this data set must include a DD
statement for the data set.

If you are using a cataloged procedure,
such as PLIXCLG (described in chapters 2
and 10), the DD statement for any data set
processed by your program must be
associated with the aFFropriate step of the
procedure by qualifying the name of the DD
statement with the name of the procedure
step. For example:

//GO.RESULTS DD

would indicate a DD statement named RESULTS
in procedure step GO, as in the example in
figure 3.4. The name of the DD statement
is known as its "ddname".

How to Create a Data Set

When you create a data set, you should
specify the following information to the
operating system:

Information
g~uif~.9---

Type of output
device to which the
data set will be
transmitted.

serial number of the
volume (tape reel,
disk pack, etc.)
that will contain
the data set.

Name of the data
set.

Type of records in
the data set.

Amount of auxiliary
storage required for
the data set
(direct-access
devices only).

Disposition of the
data set on entry
to, and at the end
of the job step.

Parameter of
!2~statement

UNIT=

VOLUME=SER=
(or VOL=SER=)

DSNAME= (or DSN=)

DCB= (see appendix A)

SPACE=

DISP=

To give this information in the DD
statement, use the parameters listed above.
The following paragraphs discuss their use
in creating a CONSECUTIVE data set, figure
3.1 summarizes this discussion, figure 3.3

is an example of creating this type of data
set, and the subparameters of the DCB
parameter are described in appendix A. The
job control language reference publication
explains how to code a DD statement.

TYPE OF OUTPUT DEVICE (UNIT=)

You must always indicate the type of output
device (for example, magnetic tape or disk
drive, card punch, or printer) on which you
want to create your data set. Usually the
s~mplest way to do this is to use the UNIT
parameter, although for a printer or a card
punch it is often more convenient to use
one of the special forms of DD statement
discussed under "Special-purpose
Parameters," later in this chapter.

In the UNIT parameter, you can specify
either the type number of the unit (for
example, 2311 for a disk drive) or the name
of a group of devices (for example, SYSDA
for any direct-access device). The group
names are established for a systerr during
system generation.

VOLUME SERIAL NUMBER (VOLUME=SER=)

A unit of auxiliary storage such as a reel
of magnetic tape or a magnetic disk pack is

r---------------------T---,
I I Parameters of DD Statement I

I storage Device ~---------------------T---------------------T---------------------~
I I When required I What you must state I Parameters I

~---------------------+---------------------+---------------------+---------------------~
I I I output device I UNIT= or SYSCUT= I

I All I Always ~---------------------+---------------------~
I I I Block size1 I DCB=(BLKSIZE= •••) I

~---------------------+---------------------+------------~--------+---------------------~ I Direct access on~y I Always , Auxiliary storage I SPACE= I
I I I space required' I
~---------------------+---------------------+---------------------+---------------------~
I I Data set to be used I I I
, I by another job step I Disposition , DISP= ,
, , but only required , , I
, , by this job, , ,

, Direct access and ~---------------------+---------------------+---------------------~
, standard labeled ,Data set to be kept , Disposition , DISP= ,
I magnetic tape I after end of job ~---------------------+---------------------~
I I , Name of data set I DSN= I
, ~---------------------+---------------------+---------------------~
I I Data set to be on I Volume serial number' .VOL=SER= I
I I particular volume I I I
~---------------------~---------------------~---------------------~---------------------~
11 Alternatively, you can specify the block size in your PL/I program by using the I
I ENVIRONMENT attribute. I L ___ J

Figure 3.1. creating a CONSECUTIVE data set: essential parameters of DD statement

Chapter 3: How to Create and Access a Data Set 17

termed a volume; a volume can contain one
or more data sets, and a data set can
extend to more than one volume. A volume
is identified by a serial number that is
recorded within it (and usually printed on
the label attached to it). Although a deck
of cards, a printed listing, and a reel of
paper tape can be considered to be volumes,
they do not have serial numbers.

Specify a volume serial number only if
you want to place the data set in a
particular volume. If you omit the VOLUME
parameter, the operating system will print
in your program listing the serial number
of the volume in which it placed the data
set.

The VOLUME parameter has several
subparameters. To specify a volume serial
number, you need only the SER (serial
number) subparameter (for example,
VOLUME=SER=12345).

NAME OF DATA SET (DSNAME=)

You must name a new data set if you want to
keep it for future jobs. If the data set
is temporary (required only for the job in
which it is created), you can still name
it, but you need not; if you omit the
OSNAME parameter, the operating system will
assume that the data set is temporary, and
will give it a temporary name.
Alternatively, you can specify your own
temporary name by prefixing it with the
characters &&, for example:

OSNAME=&&TEMP

this is especially useful if you want to
use the temporary data set in more than one
step of your job. The cataloged procedures
supplied with the optimizing compiler
contain examples of such use.

RECORD TYPE (DCB=)

You can give record-type information either
in your PL/I program (in the ENVIRONMENT
attribute or LINESIZE option) or in a DD
statement. This discussion refers only to
the DO statement, and does not apply if you
decide to give the information in your
program; refer to the language reference
manual for this compiler for a description
of the ENVIRONMENT attribute and the
LINESIZE option.

The type of record in a data set is
defined by its format, its physical length
(block size), and the length of the

18

sUbsections (logical record length) which
together can be considered to make up a
physical record.

The records in a data set must have one
of the following formats:

F fixed length

V variable length (D- or V-format)

U undefined length

F-, D-, and V-format records can ce
blocked (FB, DB, or VB) or unblocked (F, D,
or V); V-format records can be spanned. (A
spanned record is a record whose length can
exceed the size of a block. If this
occurs, the record is divided into segments
and accommodated in two or more consecutive
blocks.) Inmost cases, you must specify a
block size. If you do not specify a record
length, unblocked records of length equal
to the block size are assumed. If you are
using a PRINT file to produce printed
output, you do not need to specify a block
size in your DD statement or in your PL/I
program; in the acsence of other
information, the compiler supplies a
default line size of 120 characters.

To give record-type information in a CD
statement, use the RECFM (record forrnat),
BLKSIZE (block size), and LRECL (logical
record length) subparameters of the DCB
parameter. The DCB parameter passes
information to the operating system for
inclusion in the data control block, a
table maintained by the data management
routines of the operating system for each
data set in a job step; it contains a
description of the data set and how it will
be used. If your DCE parameter includes
more than one subparameter, you must
enclose the list in parentheses. For
example:

OCB=(RECFM=FB,BLKSIZE=1000,LRECL=50)

AUXILIARY STORAGE REQUIRED (SPACE=)

When creating a data set on a direct-access
device, you must always specify the amount
of auxiliary storage that the data set will
need. Use the SPACE parameter to specify
the number of cylinders, tracks, or clocks
that the data set will need. If you intend
to extend the data set in a later jcb or
job step, ensure that your original space
allocation is sufficient for future needs;
you cannot make a further allocation later.
If the SPACE parameter appears in a LD
statement for a non-direct-access device,
it is ignored.

DISPOSITON OF DATA SET (DISP=)

To keep a data set for use in a later job
step or job, you must use the DISP
parameter to specify how you want it to be
handled. You can pass it to another job
step, keep it for use in a later job, or
enter its name in the system catalog. If
you want to keep the data set, but do not
want to include its name in the system
catalog, the operating system will request
the operator to demount the volume in which
it resides and keep it for you. If you
omit the DISP parameter, the operating
system will assume that the data set is
temporary and will delete it at the end of
the job step.

The DISP parameter can contain two
positional subparameters. The first
specifies whether the data set is new or
already exists, and the second specifies
what is to be done with it at the end of
the job step. If you omit the first, you
must indicate its absence by a comma. For
example:

DISP= (, CATLG)

specifies that the data set is to be
cataloged at the end of the job step. The
omission of the first subparameter means
that the data set is assumed by default to
be new.

How to Access a Data Set

To access (that is, read or update) an
existing data set, your DD statement should
include information similar to that given

when the data set is created. However, for
data sets on labeled magnetic tape or on
direct-access devices, you can omit several
parameters because the information they
contain is recorded with the data set by
the operating system when the data set is
created; figure 3.2 summarizes the
essential information and figure 3.4 is an
example of accessing this type of data set.
The subparameters of the DCB parameter are
described in appendix A, and the jeb
control language reference publication
explains how to code a DD stateRent.

Except in the special case of data in
the input stream (described under
"Special-purpose Parameters," later in this
chapter), you must always include the name
of the data set (DSNAME) and its
disposition (DISP).

TYPE OF INPUT DEVICE (UNIT=)

You can omit the UNIT parameter if the data
set is cataloged or if it is created with
DISP=(NEW,PASS) in a previous job step of
the same job. Otherwise, it must always
appear. (PASS specifies that the data set
is to be passed for use by a subsequent job
step in the same job).

VOLUME SERIAL NUMBER (VCLUME=SER=)

You can omit the VOLUME parameter if the
data set is cataloged or if it is created
with DISP=(,PASS) in a previous job step of
the same job. Otherwise it must always
appear.

r---,
I Parameters of DD Statement I
~-----------------------------------T-------------------------T-------------------------~ I When required I What you must state I Parameters I
~-----------------------------------+-------------------------+-------------------------~
I IName of data set I DSN= I
I Always ~-------------------------+-------------------------~
I IDisposition of data set I DISP= I
r-----------------T-----------------+-------------------------+-------------------------~
I IAII devices IInput device I UNIT= I
IIf data set not ~-----------------+-------------------------+-------------------------~
I cataloged IMagnetic tape andlVolume serial number I VOL=SER= I
I Idirect access I I I
~-----------------~-----------------+-------------------------+-------------------------~ I For punched cards, paper tape, or IBlock size 1 I DCE=(BLKSIZE= •••) I
I unlabeled magnetic tape I I I
~-----------------------------------~-------------------------~-------------------------~
11 Alternatively, you can specify the block size in your PL/I program by using the I
I ENVIRONt·1ENT attribute. I l ___ J

Figure 3.2. Accessing a CONSECUTIVE data set: essential parameters of DD statement

Chapter 3: How to Create and Access a Data Set 19

NAME OF DATA SET (DSNAME=)

The DSNAME parameter can either refer back
to the DD statement that defined the data
set in a previous job step, or it can give
the actual name of the data set. (You
~ould have to use the former method to
refer to an unnamed temporary data set.)

RECORD TYPE (DCB=)

You can omit the DCB parameter if the
record information is specified in your
PL/I program, using the ENVIRONMENT
attribute, or if you are accessing a data
set on a direct-access device or standard
labeled magnetic tape. Otherwise you must
specify the DCB parameter for punched
cards, paper tape, or unlabeled magnetic
tape.

AUXILIARY STORAGE REQUIRED (SPACE=)

You cannot add to, or otherwise modify, the
space allocation made for a data set when
it is created. Accordingly, the SPACE
parameter is never required in a DD
statement for an existing data set.

DISPOSITION OF DATA SET (DISP=)

Except for unit record devices (such as
card readers), you must always include the
DISP parameter to indicate to the operating
system that the.data set exists. Code
DISP=SHR if you want to read the data set,
DISP=OLD if you want to read andlor
over~rite it, or DISP=MOD if you want to
add records to the end of it.

Special-purpose Parameters

Three parameters of the DD statement have
special significance because you can use a
very simple form of DD statement; they are:

SYSOUT=

*
DATA

SYSOUT= is particularly useful for printed
or punched-card output, and * and DATA
allo~ you to include data in the input
stream.

20

System Output (SYSOUT=)

A system output device is any unit (tut
usually a printer or a card punch) that is
used in corr.mon by all jobs. The computer
operator allocates all the system cutput
devices to specific classes according to
the type of device. The usual conventicn
is for class A to refer to a printer and
class B to a card punch; the IB~-supplied
cataloged procedures assume that this
convention is followed.

To route your output through a system
output device, use the SYSOUT par~rreter in
your DD statement. For example, to punch
cards, use the DD statement:

IIGO.PUNCH DD SYSOUT=B

Data in the Input stream (* and DAl~l

A convenient way to introduce data to your
program is to include it in the input
stream with your job control statements.
Data in the input stream must, like job
control statements, be in the form of
80-byte records (usually punched cards),
and must be immediately preceded by a DD
statement with the single parameter * in
its operand field, fer example:

IIGO.SYSIN DD *
To indicate the end of the data, you may

optionally include a delimiter job control
statement (/*). If you omit the 1*
delimiter# the end of the data is
determined by the next job control
statement (commencing II in the first two
columns) in the input stream.

If your data includes records that start
with II in the first two columns use the
parameter DATA, for example:

//GO.SYSIN DD DATA

In this case, you must always indicate
the end of the data by the job control
delimiter statement (/*).

Standard Files

PL/I includes two standard files, SYSIN for
input and SYSPRINT for output. If your
program includes a GET statement without
the FILE or S'IRING option, the compiler
uses the file name SYSINi if it includes a
PUT statement without the FILE option, the

·compiler uses the name SYSPRINT.

If you use one of the IBM-supplied
cataloged procedures to execute your
program, you will not need to include a 00
statement for SYSPRINT; procedure step GO
always inclu~es the statement:

//SYSPRINT 00 SYSOUT=A

The block size is normally supplied by
the compiler; you need not specify it
yourself, unless you want blocked output.

If your program uses SYSIN, either
explicitly or implicitly, you must always
include a corresponding DO statement.

Examples

Two examples of simple applications for
CONSECUTIVE data sets are shown in figures
3.3 and 3.4; both use the cataloged
procedure PLIXCLG supplied by IBM.

//OPT3#3 JOB
//STEP1 EXEC PLIXCLG
//PLI.SYSIN 00 *

CREATE: PROC OPTIONS(MAIN);

DCL PUNCH FILE STREAM OUTPUT,

The first program evaluates the familiar
expression for the roots of a quadratic
equation and stores the results in a data
set on a disk pack and cn funched cards.
The last 00 statement (//GO.DISK •••)
sfecifies that the newly created data set
is to be given the name ROOTS and is to be
stored in a volume with serial number D186
on a 2311 Disk Storage Drive. It sfecifies
that fixed-length records, 40 bytes in
length, are to be grouped together in
blocks, each 400 bytes long. It specifies
that the data set is new and that it is to
be keft on the volurre at the end of the job
step; and it specifies that one track of
the disk storage drive is to be allocated
to the data set with one additional track
to be used if more sface is required.

The second program accesses the data set
on the disk pack created in the first
program and frints the results.

DISK FILE RECORD OUTPUT SEQUENTIAL,
1 RECORD,

2(A,B,C,X1,X2) FLOAT OEC(6) COMPLEX;

ON ENDFILE(SYSIN) GO TO FINISH;

OPEN FILE(PUNCH), FILE(DISK)i
NEXT: GET FILE(SYSIN) LIST(A,B,C};

X1=(-B+SQRT(B**2-4*A*C»/(2*A);
X2=(-B-SQRT(B**2-4*A*C»/(2*A)i
PUT FILE(PUNCH) EOIT(RECORD) (C(E(16,9»)i
WRITE FILE(DISK) FROM(RECORD)i
GO TO NEXT;

FINISH: CLOSE FILE(PUNCH), FILE(DISK)i
END CREATE;

/*
//GO.PUNCH 00 SYSOUT=B
//GO.DISK DO OSN=ROOTS,UNIT=2311,VOL=SER=D186,DISP=(NEW,KEEP),
// SPACE=(TRK,(1,1»,DCB=(RECFM=FB,BLKSIZE=400,LRECL=40)
//GO.SYSIN DO *
5 12 4
4 -10 ,4
5 16 2
4 -12 10
5 12 9
29 -20 4
/*

Figure 3.3. Creating a CONSECUTIVE data set

Chapter 3: How to Create and Access a Data Set 21

//OPT3#4 JOB
//STEPl EXEC PLIXCLG
//PLI.SYSIN DD *

ACCESS: PROC OPTIONS(MAIN);

DCL RESULTS FILE RECORD INPUT SEQUENTIAL,
1 RECORD,

2(A,B,C,Xl,X2) FLOAT DEC(6) COMPLEX;

ON ENDFILE(RESULTS) GO TO FINISH;

PUT FILE(SYSPRINT) EDIT('A','B','C','Xl','X2')
(X(7),3(A,X(23»,A,X(22),A);

OPEN FILE(RESULTS);
NEXT: READ FILE(RESULTS) INTO(RECORD);

PUT FILE(SYSPRINT) SKIP EDIT(RECORD) (C(F(12,2»);
GO TO NEXT;

FINISH: CLOSE FILE(RESULTS);
END ACCESS;

/*
//GO.RESULTS DO DSN=ROOTS,UNIT=2311,VOL=SER=D186,DISP=(OLD,KEEP)

Figure 3.4. Accessing a CONSECUTIVE data set

22

This chapter describes the optimizing
compiler and the job control statements
required to invoke it and defines the data
sets it uses. It describes the compiler
options, the listing produced by the
compiler, batched compilation, and the
preprocessor, all of which are introduced
briefly below.

The optimizing compiler translates the
PL/I statements of the source program into
machine instructions. A set of machine
instructions such as is produced for an
external PL/I procedure by the compiler is
termed an object module. If several sets
of PL/I statements, each set corresponding
to an external procedure and separated by
appropriate control statements, are
present, the compiler can create two or
more object modules in a single job step.

However, the compiler does not generate
all the machine instructions required to
represent the source program. Instead, for
frequently used sets of instructions such
as those that allocate main storage or
those that transmit data between main
storage and auxiliary storage, it inserts
into the object module references to
standard subroutines. These subroutines
are stored in either the OS PL/I Resident
Library or in the os PL/I Transient
Library.

An object module produced by the
compiler is not ready for execution until
the appropriate subroutines from the
resi1ent library have been included; this
is the task of either one of two processing
programs, the linkage editor and the
loader, described in chapter 5. An object
module that has been processed by the
linkage editor is referred to as a load
module, an object module that has been
processed by the loader is referred to as
an executable EfQgf~~.

Subroutines from the transient library
do not form a permanent part of the load
module or executable program. Instead,
they are loaded as required during
execution, and the storage they occupy is
released when they are no longer needed.

While it is processing a PL/I program,
the compiler produces a listing that
contains information about the program and
the object module derived from it, together
with messages relating to errors or other
conditions detected during compilation.
Much of this information is optional, and
is supplied either by default or by

Chapter 4: The Compiler

specifying appropriate 2pti2n§ when the
compiler is invoked.

The compiler also includes a
~ocessor (or compile-time processor)
that enables you to modify source
statements or insert additional source
statements before compilation corr.mences.

compiler options, discussed under
"Optional Facilities," later in this
chapter, can be used for purposes ether
than to specify the information to ce
listed. For example, the preprocessor can
be used independently to process source
programs that are to be compiled later, or
the compiler can be used merely to check
the syntax of the statements of the source
program. Also, continuation of precessing
through syntax checking and compilation can
be made conditional on successful
preprocessing.

Description of the Compiler

The compiler consists of a number of load
modules, referred to as Fhases, each of
which can be loaded individually into main
storage for execution. A simplified flow
diagram is shown in figure 4.1. The first
phase to be loaded is a residen~~2~trcl
phase, which remains in main storage
throughout compilation. This phase
consists of a number of service routines
that provide facilities required during
execution of the remaining. phases. One of
these routines communicates with the
supervisor program of the operating system
for the sequential loading of the rerraining
phases, which are referred to as Efocessigg
phases.

The resident control phase also causes a
transient control phase to te loaded, the
function of which is to initialize the
operating environment in accordance with
options specified by the prograrrmer.

Each processing phase performs a single
function or a set of related functions.
Some of these phases must be loaded and
executed for every compilation; the
requirement for other phases depends cn the
content of the source program or on the
optional facilities selected. Apart frorr
the phases that provide diagnostic
information, each phase is executed cnce
only.

Chapter 4: The Compiler 23

48-
CHARACTER
SET
PROCESSOR

BCD or CHARSET(48)

60-CHARACTE R-SET
TEXT VIA SYSUT1

SOURCE TEXT
(FROM SYSIN)

EBCDIC or
CHARSET(60)

SYNTAX
ANALYSIS
STAGE

DICTIONARY
BUILD
STAGE

TRANSLATION
STAGES

FINAL
ASSEMBLY
STAGE

OBJECT MODULE
(TO SYSLIN OR SYSPUNCH)

Figure 4.1. Simplified flow diagram of the compiler

24

COMPILE
TIME PRE
PROCESSOR

PROCESSED SOURCE
TEXT VIA SYSUT1

Input to the compiler is known
throughout all stages of the compilation
process as ~§~~. Initially, this text
comprises the PL/I statements of the source
program. At the end of compilation, it
comprises the machine instructions
sUbstituted by the compiler for the source
text, together with the inserted references
to resident library subroutines for use by
the linkage editor or by the loader.

The source text must be in the form of a
data set defined by a DD statement with the
name SYSINi frequently, this data set is a
deck of punched cards. The source text is
passed to the syntax-analysis stage either
directly or after processing by one of the
follo~ing preprocessor phases:

1. If the source text is in the PL/I
48-character set or in BCD, the
48-character-set preprocessor
translates it into the 60-character
set. To use the 48-character-set
processor, specify the CHARSET(48) or
CHARSET(BCO) options.

2. If the source text contains
preprocessor statements, the
preprocessor executes these statements
in order to modify the source text or
to introduce additional statements.
Also, if the source text is in the
PL/I 48-character set or in BCD (as
specified by the CHARSET(48) or
CHAR SET (BCD) options), the
preprocessor automatically translates
it into the 60-character set. To use
the preprocessor, specify the MACRO
compiler option.

Both preprocessor phases store the
translated source text in the data set
defined by the DD statement with the name
SYSUT1.

The syntax-analysis stage takes its
input either from this data set or from the
data set defined by the DD statement with
the name SYSIN. This stage analyzes the
syntax of the PL/I statements and removes
any comments and non-significant blank
characters.

After syntax analysis, the
dictionary-build stage creates a dictionary
containing entries for all identifiers in
the source text. The compiler uses this
dictionary to communicate descriptions of
the elements of the source text and the
object module between phases. The
dictionary-build stage of the compiler
replaces all identifiers and attribute
declarations in the source text with
references to dictionary entries.

Further processing of the text involves
several compiler stages, known as
translation stages, which:

1. Translate the text from the PL/I
syntactic form into an internal
syntactic form.

2. Rearrange the text to facilitate
further translation (for exarrple, by
replacing array assignments with
do-loops that contain element
assignments).

3. Map arrays and structures to ensure
correct boundary alignment.

4. Translate the text into a series of
fixed-length tables, each with a
format that can ee used to define
machine instructions.

5. Allocate main storage for static
variables and generate inline ccde to
allow storage tc ee allocated
automatically during execution. (In
certain cases resident library
subroutines may also be called tc
allocate storage during executicn.)

The final-assembly stage translates the
text tables into machine instructions, and
creates the external symbol dictionary
(ESD) and relocation dicticnary (RL~)
required by the linkage editor and by the
loader.

The external symbol dictionary includes
the names of subroutines that are referred
to in the object module but are not part of
the module and that are to be included by
the linkage editor or ey the loaderi these
names, which are termed external
references, include the names of all the
PL/I resident library subroutines that will
be required when the oeject module is
executed. (These resident library
subroutines may, in their turn, contain
external references to cther resident
library subroutines required for
execution).

The relocation dictionary contains
information that enables absolute stcrage
addresses to be assigned to locations
within the load module when it is lcaded
for execution.

The external symeol dictionary and the
relocation dictionary are described in
chapter 5, which also explains how the
linkage editor and the loader use them.

Chapter 4: The Compiler 25

Job Control Statements for Compilation The IBM-supplied cataloged procedures
that include a compilation procedure step
are as follows:

Although you will probably use cataloged
procedures rather than supply all the job
control statements required for a job step
that invokes the compiler, you should be
familiar with these statements so that you
can make the best use of the compiler, and
if necessary, override the statements of
the cataloged procedures.

PLIXC compile only.

PLIXCL Compile and link-edit.

PLIXCLG compile, link-edit, and execute.

PLIXCG Compile, load and execute.

r----------T----------------T---------T---------T-------------T------------------·------, I Standard I contents of I Possiblel Record I Record I Buffers I
I ddname I data set I device I format 1 size I------------T------------I
I I 1 classes 1 (RECFM) I (LRECL) 1 Numter I Reserved 1
I I I I I I allocated I area (bytes) I
I 1 I 1 1 I by default I I
~----------+----------------+---------+---------+-------------+------------+--.---------~

SYSIN (or Input to the SYSSQ F,FB,V, <101(100) I 2 200
SYSCIN) compiler VB,y I

SYSLIN

SYSPONCH

SYSOT1

SYSPRINT

SYSLIB

Object module

Preprocessor
output,
compiler output

Temporary
workfile

Listing,
including
messages

Source
statements for

SYSSQ

SYSSQ
SYSCP

SYSDA

SYSSQ

SYSDA

f,FB

f,FB

V,VA,VB

f,FB

80(80)

80(80)

I
1
I
I
I
I
I

1291 or 25711

125(125)

<101(100)

I
1
I
I
I
1
I
I

preprocessor I I

2 160

2 160

2 258

~----------~----------------~---------~---------~-------------~------------~------------~

1. The possible device classes are:

SYSSQ Magnetic-tape or direct-access device.

SYSDA Direct-access device.

SYSCP card-punch device.

2. Any block size can be specified except for SYSLIB and SYSOT1. Block size
for SYSLIB must be less than or equal to 2.5K bytes; that for SYSU~l is
always provided by the compiler.

3. If the record format is not specified in a DD staterrent, the default value
(underlined) is provided by the compiler.

4. The compiler will attempt to obtain source input from SYSCIN if a CD
statement for this data set is provided. Otherwise it will obtain its
input from SYSIN.

5. The numbers in parentheses in the "Record size" column are the defaults. L ___ J

Figure 4.2. Compiler standard data' sets

26

The following paragraphs describe the
essential job control statements for
compilation. The IBM-supplied cataloged
procedures are described in chapter 10 and
include examples of these statements.

EXEC STATEMENT

The basic EXEC statement is:

//stepname EXEC PGM=IELOAA

The PARM parameter of the EXEC statement
can be used to specify one or more of the
optional facilities provided by the
compiler. These facilities are described
under "Optional Facilities," later in this
chapter.

DD STATEMENTS FOR THE STANDARD DATA SETS

The compiler requires several standard data
sets, the number depending on the optional
facilities specified. You must define
these data sets in DD statements with the
standard ddnames which are shown, together
with other characteristics of the data
sets, in figure 4.2. The DD statements
SYSIN, SYSUT1, and SYSPRINT are always
required.

You can store any of the standard data
sets on a direct-access device, in which
case, you must include the SPACE parameter
in the DD statement that defines the data
set to specify the amount of auxiliary
storage required. The amount of auxiliary
storage allocated in the IBM-supplied
cataloged procedures should suffice for
most applications.

Input to the compiler must be a data set
defined by a DD statement with the name
SYSIN or SYSCIN; this data set must have
CONSECUTIVE organization. The input must
be one or more external PL/I procedures; if
you want to compile more than one external
procedure in a single job or job step,
precede each procedure, except possibly the
first, with a PROCESS statement (described
under "Batched Compilation," later in this
chapter).

Eighty-column punched cards are commonly
used as the input medium for PL/I source
programs. However, the input data set may
be on a direct-access device, magnetic

tape, or paper tape. The input data set
may contain either fixed-length records,
blocked or unblocked, variable-length
records, or undefined-length records; the
maximum record size is 100 bytes. The
compiler always reserves 200 bytes of main
storage (100 bytes each) for two buffers
for this data set; however, you may specify
a block size of more than 100 bytes,
provided that sufficient main storage is
available to the compiler. (See the
discussion of the SIZE option under
"Optional Facilities," later in this
chapter.)

output (that is, one or more object
modules) from the compiler can be stored in
either the data set defined by the DD
statement with the name SYSLIN (if yeu
specify the OEJECT compiler option) or in
the data set defined by the DD staterrent .
with the name SYSPUNCH (if you specify the
DECK compiler option). You may specify
both options in one program, when the
output will be stored in both data sets.

The object module is always in the ferm
of aO-byte fixed-length records, blocked or
unblocked. The compiler always reserves
two buffers of 80 bytes each; however, you
may specify a block size of more than ao
bytes, provided that sufficient main
storage is available to the compiler. (See
the discussion of the SIZE option under
"Optional Facilities," later in this
chapter.) The data set defined by the CD
statement with the name SYSPUNCH is also
used to store the output from the
preprocessor if you specify the MDECK
compiler option.

Temporary Workfile (SYSUT1)

The compiler always requires a data set for
use as a temperary workfile. It is defined
by a DD statement with the name SYSUT1, and
is known as the spill file. It must always
be on a direct-access device. The spill
file is used as a logical extension to main
storage and is always used by the cempiler
and by the preprocessor to contain text and
dictionary information.

Dedicated Data sets: If a job being run
under MVT has several job steps, and each
job step requires a data set for use as a
temporary workfile, the result is a
considerable overhead in time and space.
To reduce this as far as possible, yeu can
use dedicated data sets. These are data

Chapter 4: The Compiler 27

sets that are created by the operating
system when the job is selected for
processing. They can be used by each job
step that requires a temporary workfile.
Dedicated data sets are normally allocated
by the initiator and deleted when it
terminates. More information on using
dedicated data sets is given in chapter 10.

The compiler generates a listing that
includes all the source statements that it
processed, information relating to the
object module, and, when necessary,
messages. Most of the information included
in the listing is optional, and you can
specify those parts that you require by
including the appropriate compiler options.
The information that, may appear, and the
associated compiler options, are described
under nCompiler Listing,n later in this
chapter.

You must define the data set in which
you wish the compiler to store its listing
in a DD statement with the name SYSPRINT.
This data set must have CONSECUTIVE
organization. Although the listing is
usually printed, it can be stored on any
magnetic-tape or direct-access device. For
printed output, the following statement
will suffice if your installation follows
the convention that output class A refers
to a printer:

//SYSPRINT DD SYSOUT=A

The compiler always reserves 258 bytes
of main storage (129 bytes each) for two
buffers for this data set; however, you may
specify a block size of more than 129
bytes, provided that sufficient main
storage is available to the compiler. (see
the discussion of the SIZE option under
nOptional Facilities,n later in this
chapter.)

JOB

Source Stateff;ent LitrarY-1§YSLI~l

If you use the preprocessor %INCLUDE
statement to introduce source statements
into the PL/I program from a library, you
can either define the library in a DD
statement with the name SYSLIB, or yeu can
choose your own ddname (or ddnames) and
specify a ddname in each %INCLUDE
statement. (See "Compile-time Processing,"
later in this chapter.)

EXAMPLE OF COMPILER JCL

A typical sequence of job control
statements for compiling a PL/I program is
shown in figure 4.3. 1he DECK and NOOBJECT
compiler options, described below, have
been specified to obtain an object module
as a card deck only. Jot control
statements for link editing an object
module in the form of a card deck are shown
in chapter 5.

Optional Facilities

The compiler provides a number of cptional
facilities that can be obtained either by
default, by specifying the options in the
PARM parameter of the EXEC statement that
invokes the compiler, by specifying the
options in a PROCESS statement, or ty a
combination of all three.

For each compilation, the IB~ or
installation default for an option will
apply, unless overridden by specifying the
option either in the PARM parameter of an
EXEC statement, or in a PReCESS statement.

An option specified in the PARM
parameter overrides the default value, and
an option specified in a PROCESS statement

//COMP
//STEPl
//SYSPUNCH
//SYSUTl
//SYSPRINT
//SYSIN

EXEC PGM=IELOAA,PARM='DECK,NOOBJECT'
SYSOUT=B

/*

DD UNIT=SYSDA,SPACE=(291,(60,60)"CONTIG)
DD SYSOUT=A
DD *

(insert here the PL/I program to be compiled)

Figure 4.3. Typical job control statements for compiling a PL/I program

28

overrides both that specified in the PARM
parameter and the default value.

All the compiler options, their
abbreviated forms, and their defaults (as
supplied by IBM) are shown in figure 4.4.
An installation can modify or delete the
defaults according to local requirements;
check for any modified defaults at your
installation. Oeleted options can be
reinstated for a compilation by means of
the CONTROL option.

OPTIONS IN EXEC STATEMENT

To specify options in the EXEC statement,
code PARM= followed by the list of options,
in any order (except that CONTROL, if used,
must be first) separating the options with
commas and enclosing the list within single
quotation marks, for example:

//STEP1 EXEC PGM=IELOAA, PARM=' OBJECT, LIST'

Any option that has quotation marks, for
example MARGINI('c'), must have the
quotation marks duplicated. The length of
the option list must not exceed 256
characters, including the separating commas
(note that only the first 100 characters
are printed out on the listing). However,
many of the options have an abbreviated
form that you can use to save space. If
you need to continue the statement onto
another line, you must enclose the list of
options in parentheses (instead of in
quotation marks) enclose the options list
on each line in quotation marks, and ensure
that the last comma on each line except the
last is outside of the quotation marks. An
example covering all the above points is as
follows:

//STEP1 EXEC PGM=IELOAA,PARM=('AG,A,BIC10),
C,ESO,FCI),FLOW(10,1)',

// 'M,MI("X"),NEST,STG,X')

If you are using a cataloged procedure,
and wish to specify options explicitly~ you
must include the PARM parameter in the EXEC
statement that invokes it, qualifying the
keyword PARM with the name of the procedure
step that invokes the compiler, for
example:

//STEP1 EXEC PLIXCLG,PARM.PLI='A,LIST,ESO'

PARM Parameter in GO Step

The PARM field of the EXEC statement for
the GO step comprises two parts separated
by a slash. The first part is passed to

the library initializat~on subroutine, and
only the second part is passed to the rrain
procedure. If only the second part
appears, it must be preceded by the slash,
for example:

//GO EXEC PGM=OPT,PARM='/ARGUMENT'

The first part can be used for specifying
execution-time options and these rrust
precede the slash, for example:

//GO EXEC PGM=OPT,PARM='ISASIZE(10K),
// REPORT/ARGUMENT'

The execution-time Dptions are as
follows:

ISASIZE specifies the amount of rrain
storage initially acquired by the
PL/I program at execution tirre.
This storage is known as the
initial storage area (ISA). The
option has the format:

ISASIZE[([x] [,y] [,z])]

where "x" is the initial storage
allocation for the major task,

where nyu is the initial storage
allocation for each subtask
within the total storage
available to the compiler. This
value can be used in a
multitasking program to prevent a
new storage request (with its
accompanying time overhead) each
time a bleck is entered during
the execution of the subtasks.
If you specify enough storage_for
a whole subtask, these additienal
requests are not made,

and where HZ" is the reaximum
number of subtasks that will be
active at anyone time.

All storage values must be in
bytes or K bytes. If "x" is
omitted and nyu or "z" is
specified, or if nyu is emitted
and "z" is specified, then the
separating commas must be used to
indicate that a value is missing.
The default values for this
option are ISASIZE(,O,20), and
the option keyword may be
abbreviated to ISA.

The ISA is used for the dynarric
allocation of the main storage
required by PL/I blocks as they
are entered and by controlled and
based variables as they are
allocated. If the ISA is large
enough to contain these blocks
PL/I storage handling will net

Chapter 4: The Corrpiler 29

acquire any more storage from the
system.

If ISASIZE is not specified, a
default value is calculated as
follows:

(m - n)/2

where "m" is the region or
partition size, and "nn is the
load module length. This value
is rounded up to a 2K boundary.

Note that if this is too large,
that is, most variables in STATIC
and few controlled and based
allocations, there will be a
considerable amount of wasted
main storage in the ISA. If it
is too small, then dynamic main
storage requirements will be less
efficiently met by individual
requests to the system.

The execution-time option REPORT
is available to enable the
programmer to determine exactly
what his storage requirements
are, apart from I/O requirements.

REPORT specifies that a report of
certain program management
activity is to be printed. The
report will be automatically
output to the dump data set on
program termination. This
includes, for example, the amount
of storage that was specified in
the ISASIZE option, the length of
the initial storage area, and the
amount of PL/I storage required.
This option may be abbreviated to
R.

NOREPORT specifies that a report is not
required. This option may be
abbreviated to NR.

STAE specifies that when an ABEND
occurs, the STAE macro
instruction attemps to raise the
PL/I ERROR condition. This is
also the default for this option.

NOSTAE sPecifies that on program
initialization, a STAE macro
instruction is not to be issued.

SPIE specifies that when a program
interrupt occurs, the SPIE macro
instruction attempts to enter the
PL/I error handler. This is also
the default for this option.

NOSPIE specifies that on program
initialization, a SPIE macro
instruction is not to be issued.

30

The execution-time options are discussed
in greater detail in the publication os
PL/I Optimizing Compiler: Execution Lcgic.

Execution-time storage Reguirem~nts

At execution time there are three separate
areas of main storage.

The first area is the load module. Its
length can be obtained from the linkage
editor output listing.

The second area is the initial sterage
area (ISA). Its length can be specified by
the ISASIZE execution-time option cr
supplied by default. If supplied by
default, it will be approximately half cf
the main storage available after the load
module has been loaded. The ISA will
include:

Dynamic block requirements. These
lengths can be cbtained from the table
produced by the STORAGE compiler
option.

Variable data areas, that is,
varying-length strings and arrays,
whose bounds or dimensions are net
known at compile time. The programmer
must calculate these lengths himself.

Controlled and based variables. These
lengths should be known to the
programmer.

The third area consists of the rerrainder
of main storage. It is retained by the
system and is made available on specific
main storage requests for overflow from the
ISA and for I/O requirements, that is, file
control blocks, buffers, system I/C modules
and also for PL/I transient library modules
(that is, storage overflow, program
initialization, and I/O transmission
modules).

The storage requirements in this third
area can only be calculated with
difficulty. The simplest way is tc use the
storage Management Facilities (SMF) as
described in the publication os
Introduction to determine the-total main
storage requirements for the job. This
figure is only meaningful if an accurate
figure for the ISA has been supplied.

The length of the ISA can greatly affect
the performance of the program. If it is
too large there will be wasted storage in
the ISA which might result in insufficient
main storage being available for I/C
requirements and transient library rrcdules
requirements.

If it is too small then dynamic main
storage requirements will be met by
specific requests to the system (that is,
from the third area of main storage)
resulting in slow execution. The
programmer's total ISA requirements can be
determined either by calculation or by
using the REPORT execution-time option.

This can most easily be done in one of
two ways:

1. If sufficient main storage is
available, specify an ISASIZE larger
than will be required. The report
will then give the amount of this ISA
used and this figure will be the
optimum ISASIZE.

2. If there is a shortage of main storage
specify an ISASIZE of 1, which will
ensure that the program will run if at
all possible and the report will still
give the amount of main storage which
should be allocated to the ISA.

Note that for optimum efficiency, the
ISA should contain all dynamic main storage
requirements. If however, certain blocks
are entered only occasionally, or
controlled or based variables allocated
only briefly, these variables could well ce
permitted to remain outside the ISA. So
long as these allocations do not clash with
a larger I/O requirement the program may
run in a smaller main storage area.

OPTIONS IN PROCESS STATEMENT

To specify options in the PROCESS
statement, code as follows:

* PROCESS options;

where "options" is a list of compiler
options. The list of options must be
terminated with a semicolon and should not
extend beyond the default right-hand source
margin. The asterisk must appear in the
first byte of the record (card column 1),
and the keyword PROCESS may follow in the
next byte (column) or after any number of
blanks. Option keywords must be separated
by a comma and/or at least one blank.

Blanks are permitted before and after
any non-blank delimiter in the list, with

the exception of strings within quotation
marks, for example MARGINI('.'), in which
optional blanks should not be inserted.

The number of characters is limited only
by the length of the record. If you do not
wish to specify any o~tions, code:

* PROCESS;

Should it be necessary to continue the
PROCESS statement onto the next card or
record, terminate the first part of the
list after any delirriter, up to the default
right-hand margin, and continue on the next
card or record. O~tion keywords or keyword
arguments may be split, if required, when
continuing onto the next record, provided
that the keyword or argument string
terminates in the right-hand source margin,
and the remainder of the string starts in
column 1 of the next record. A PReCESS
statement may be continued in several
statements, or a new PROCESS statement
started.

COMPILER OPTIONS

The compiler options are of the following
types:

1. Simple pairs of keywords: a positive
form (for example, LIST) that requests
a facility, and an alternative
negative form (fer example, NOLIST)
that rejects that facility.

2. Keywords that permit you to provide a
value-list that qualifies the o~tion
(for example, NCCOMPILE(E».

3. A combination ef 1 and 2 acove.

The following paragraphs descrice the
options in alphabetic order. For these
o~tions that specify that the compiler is
to list information, only a brief
description is included; the generated
listing is described under "Compiler
Listing," later in this chapter.

Figure 4.4 lists all the compiler
options with their abbreviated forms and
their standard default values.

Chapter 4: The Corn~iler 31

r-----------------------------------T-------------------------T-------------------------,
I Compiler Option I Abbreviated Name I IBM Default I
~-----------------------------------+-------------------------+-------------------------~

AGGREGATE I NOAGGREGATE
ATTRIBUTES I NOATTRIBUTES
CHARSET([48160] [EBCDICIBCD])
COMPILEINOCOMPILE[(WIEIS)]
CONTROL('password')
DECKINCDECK
DUMP
ESDI NOESD
FLAG [(I I W I E IS)]
FLOW(n,m) I NOFLOW
GONUMBERINOGONUMBER
GOSTMTINCGSTMT
IMPRECISE I NOIMPRECISE
INSOURCEINOINSOURCE
LINECOUNT(n)
LISTINOLIST
LMESSAGEISMESSAGE
lwlACRO I NOMACRO
MAPINOMAP

AGINAG
AINA
CS ([48160] [EB I B])
C I NC I [(WI E IS])

DIND

F[(IIWIEIS)]

GNINGN
GSINGS
IMPINIMP
ISINIS
LC(n)

LMSGISMSG
MINM

MARGINI('c') I NOMARGINI MIC'c ') INMI
MARGINS(m,n[,c]) MAR(m,n[,c])
MDECKINOMDECK MDINMD
NAMEC'name ') N(' name ')

NOAGGREGATE
NCAT'IRIBU'IES
CHARSET(60 EBCDIC)
NOCOMPILE(S)

NODECK

NCESD
FLAG (1)1.
NOFLOW
NCGCNUMBER
NOGOSTM'I
NCIMPRECISE
IN SOURCE
LINECOUNT(SS)
NOLIST
LMESSAGE for batch 2
NOMACRO
NOMAF
NOMARGINI
MARGINS(2,72)
NOMDECK

NESTINONEST NCNEST
NUMBER I NON UMBER NUMINNUM NONUMBER
OBJECT I NOOBJECT OBJINOBJ OBJECT
OFFSET I NOOFFSET OFINOF NOOFFSET
OPTIMIZE(TIMEIOI2) I NOOPTIMIZE OPT(TIMEIOI2) INOPT NCOF'IIMIZE
OPTIONS I NOOPTIONS OPINOP OPTIONS
SEQUENCE(m,n) SEQ(m,n) (see description)
SIZE(YYYYYYYYIYYYYYKIMAX) SZ(YYYYYYYYIYYYYYKIMAX) SIZE(MAX)
SOURCE I NOSOURCE SINS SOURCE
STMTINOSTMT STMT
STORAGE I NOSTORAGE STGINSTG NCSTORAGE
SYNTAXINOSYNTAX[(WIEIS)] SYNINOSYN[(WIEIS)] NOSYNTAX(S)
TERMINAL[(opt-list)] I NOTERMINAL TERM[(opt-list)]INTERM NOTERMINAL
XREFINOXREF XINX NOXREF

~-----------------------------------~-------------------------~-------------------------~
I 1.FLAG(W) for TSO 2SMESSAGE for TSO. I L ___ J

Figure 4.4. Compiler options, abbreviations, and defaults

AGGREGATE Option

The AGGREGATE option specifies that the
compiler is to include in the compiler
listing an aggregate length table, giving
the lengths of all arrays and major
structures in the source program.

ATTRIBUTES Option

The ATTRIBUTES option specifies that the
compiler is to include in the compiler
listing a table of source-program
identifiers and their attributes. If both
ATTRIBUTES and XREF apply, the two tables
are combined.

32

CHARSET option

The CHARSET option specifies the character
set and data code that you have used to
create the source program. The compiler
will accept source programs written in the
60-character set or the 48-character set,
and in the Extended Binary Coded Decimal
Interchange Code (EBCDIC) or Binary Coded
Decimal (BCD).

60- or 48-character Set: If the source
program is written in the 60-character set,
specify CHARSET(60)i if it is written in
the 48-character set, specify CHARSET(48).
The language reference manual for this
compiler lists both of these character
sets. (The compiler will accept source
programs written in either character set if

CHARSET(48) is specified, however, if the
reserved keywords, for example, CAT or LE
are used as identifiers, errors may occur.)

BCD or EBCDIC: If the source program is
written in BCD, specify CHARSET(BCD); if it
is written in EBCDIC, specify
CHARSET(EBCDIC). The language reference
manual for this compiler lists the EBCDIC
representation of both the 48-character set
and the 60-character set.

If both arguments (48 or 60, EBCDIC or
BCD) are specified, they may be in any
order and should be separated by a blank or
by a comma.

The COMPILE option specifies that the
compiler is to compile the source program
unless an unrecoverable error was detected
during preprocessing or syntax checking.
The NOCOMPILE option without an argument
causes processing to stop unconditionally
after syntax checking. with an argument,
continuation depends on the severity of
errors detected so far, as follows:

NOCOMPILE(W) No compilation if a warning,
error, severe error, or
unrecoverable error is
detected.

NOCOMPILE(E) No compilation if error,
severe error, or unrecoverable
error is detected.

NOCOMPILE(S) No compilation if a severe
error or unrecoverable error
is detected.

The CONTROL option specifies that any
compiler options deleted for your
installation are to be available for this
compilation. You must still specify the
appropriate keywords to use the options.
The CONTROL option must be specified with a
password that is established for each
installation; use of an incorrect password
will cause processing to be terminated.
The CONTROL option, if used, must be
specified first in the list of options. It
has the format:

CONTROLC'password')

where "password" is a character string~ not
exceeding eight characters.

DECK Option

The DECK option specifies that the ccm~iler
is to produce an object module in the form
of 80-column card images and store it in
the data set defined by the DD staterrent
with the name SYSPUNCH. Columns 73-76 of
each card contain a code to identify the
object module; this code comprises the
first four characters of the first label in
the external procedure represented by the
object module. Columns 77-80 contain a
4-digit decimal number: the first card is
numbered 0001, the second 0002, and sc on.

DUMP Option

The DUMP option s~ecifies that the compiler
is to produce a formatted dump of rrain
storage if the compilation terminates
abnormally (usually due to an 1/0 error or
co~piler error). This dum~ is written on
the data set associated with SYSPRIN~.

The ESD option specifies that the external
symbol dictionary (ESD) is to be listed in
the compiler listing.

FLAG Option

The FLAG option specifies the m1n1rrurr
severity of error that requires a message
to be listed in the compiler listing. ~he
format of the FLAG option is:

FLAG(I)

FLAG(W)

FLAG (E)

FLAG(S)

List all messages.

List all except inforrratory
messages. If you specify
FLAG, FLAG(W) is assurred.

List all except warning and
informatory messages.

List only severe error and
unrecoverable error
messages.

The FLOW option specifies that the compiler
is to list the transfers of control most
recently executed in the program prior to

Chapter 4: The Com~iler 33

the occurrence of an interrupt that results
in an execution-time message. The format
of the FLOW option is:

FLOW(n,m)

where nnW is the maximum number of
entries to be included in the
lists. It should not exceed
32768.

"m" is the maximum number of
procedures for which the lists
are to be generated. It
should not exceed 32768.

The list will start at the latest
information and continue, in reverse order
of execution, to the point where either
limit is exceeded.

GONUMBER Opt!'Q~

The GONUMBER option specifies that the
compiler is to produce additional
information that will allow line numbers
from the source program to be included in
execution-time messages. Alternatively,
these line numbers can be derived by using
the offset address, which is always
included in execution-time messages, and
the table produced by the OFFSET option.
(The NUMBER option must also apply.)

Use of the GONUMBER option implies
NUMBER and NOSTMT.

The GOSTMT option specifies that the
compiler is to produce additional
information that will allow statement
numbers from the source program to be
included in execution-time messages.
Alternatively, these statement numbers can
be derived by using the offset address~
which is always included in execution-time
messages, and the table produced by the
OFFSET option. (The STMT option must also
apply.)

Use of the GOSTMT option implies STMT
and NONUMBER.

The IMPRECISE option specifies that the
compiler is to include extra text.in the
object module to localize imprecise

34

interrupts when executing the prograrr with
an IBM Systerr./360 Model 91 or 195 (see
appendix D). This extra text ~nsures that
if interrupts occur, the correct on-units
will be entered~ and that the correct line
or statement numbers will appear in
execution-time messages.

INSOURCE Option

The INSOURCE option specifies that the
compiler is to include a listing of the
source program (including preprocessor
statements) in the compiler listing. This
option is applicable only when the
preprocessor is used, therefore the MACRO
option must also apply.

LINECOUNT OEj:ion

The LINECOUNT option specifies the number
of lines to be included in each page of the
compiler listing, including heading lines
and blank lines. The format of the
LINECOUNT option is:

LINECOUNT(n)

where nnW is the number of lines. It
must be in the range 1 through
32767, but only headings are
generated if you specify less
than 7.

LIST Option

The LIST option specifies that the ccmpiler
is to include a listing of the object
module (in a form similar to IBM Systerr/360
assembler language instructions) in the
compiler listing.

LMESSAGE Option

The LMESSAGE and SMESSAGE options specify
that the compiler is to produce messages in
a long form (specify LMESSAGE) or in a
short form (specify SMESSAGE). Short
messages can have advantages in a TSC
environment due to the comparatively slow
printing speed of a terminal.

MACRO Option

The MACRO option specifies that the source
program is to be processed by the
preprocessor.

MAP Option

The MAP option specifies that the compiler
is to produce tables showing the
organization of the static storage for the
object module. These tables consist of a
static internal storage map and the static
external control sections. The MAP option
is normally used with the LIST option.

MARGINI option

The MARGINI option specifies that the
compiler is to include a specified
character in the column preceding the
left-hand margin, and in the column
following the right-hand margin of the
listings resulting from the INSOURCE and
SOURCE options. Any text in the source
input which precedes the left-hand margin
will be shifted left one column, and any
text that follows the right-hand margin
will be shifted right one column. Thus
text outside the source margins can be
easily detected.

The MARGIN I option has the format:

MARGINI (. c')

where "c~ is the character to be printed
as the margin indicator.

The MARGINS option specifies the extent of
the part of each input line or record that
contains PL/I statements. The compiler
will not process data that is outside these
limits (but it will include it in the
source listings).

The option can also specify the position
of an American National Standard (ANS)
printer control character to format the
listing produced if the SOURCE option
applies. This is an alternative to using
%PAGE and %SKIP statements (described in
the language reference manual for this
compiler). If you do not use either
method, the input records will be listed
without any intervening blank lines. The
format of the MARGINS option is:

MARGINS(m,n[,c])

where "m" is the column number of the
left-hand margin. It should
not exceed 104.

"n" is the column number of the
right-hand margin. It should
be greater than m, but not
greater than 104.

"c" is the column number of the
ANS printer control character.
It should not exceed 104 and
should be outside the values
specified for m and n. Only
the following control
characters can be used:

(blank) Skip one line before printing.

o Skip two lines before printing.

Skip three lines before printing.

+ Skip no lines before printing.

1 Start new page.

MDECK option

The MDECK option specifies that the
preprocessor is to produce a copy of its
output (see MACRO option) and store it in
the data set defined by the DD stateRent
with the name SYSPUNCH. The last four
bytes of each record in SYSUT1 are nct
copied, thus this option allows you to
retain the output from the preprocessor as
a deck of 80-column punched cards.

NAME Optio!!

The NAME option specifies that the ccmpiler
is to place a linkage editor NAME statement
as the last statement of the object module.
When processed by the linkage editor, this
NAME statement indicates that primary input
is complete and causes the specified name
to be assigned to the load module created
from the preceding input (since the last
NAME statement).

It is required if you want the linkage
editor to create more than one load rrodule
from the object modules produced by batched
compilation (see later in this chapter).

If you do not use this option, the
linkage editor will use the member name
specified in the DD statement defining the
load module data set. You can also use the

Chapter 4: The Compiler 35

NAME option to cause the linkage editor to
substitute a new load module for an
existing load module with the same name in
the library. The format of the NAME option
is:

NAME('name')

where "name" has from one through eight
characters, and begins with
an alphabetic character.
The linkage editor NAME
statement is described in
chapter 5.

The NEST option specifies that the listing
resulting from the SOURCE option will
indicate, for each statement, the
begin-block level and the do-group level.

NUMBER Option

The NUMBER option specifies that the
numbers specified in the sequence fields in
the source input records are to be used to
derive the statement numbers in the
listings resulting from the AGGREGATE,
ATTRIBUTES, LIST, OFFSET, SOURCE and XREF
options.

The position of the sequence field can
be specified in the SEQUENCE option.
Alternatively the following default
positions are assumed:

• First 8 columns for undefined-length or
variable-length source input records.
In this case, 8 is added to the values
used in the MARGINS option.

• Last 8 columns for fixed-length source
input records.

These defaults are the positions used
for line-numbers generated by TSOi thus it
is not necessary to specify the SEQUENCE
option, or change the MARGINS defaults,
when using line numbers generated by TSO.
Note that the preprocessor output has
fixed-length records irrespective of the
original primary input. Any sequence
numbers in the primary input are
repositioned in columns 73-80 •.

The line number is calculated from the
five right-hand characters of the sequence
number (or the number specified, if less
than five). These characters are converted
to decimal digits if necessary. Each time
a line-number is found which is not greater

36

than the preceding one, 100000 is adoeo to
this and all following line numbers.

If there is more than one staterr.ent on a
line, a suffix is used to identify the
actual statement in the messages. For
example, the second statement beginning on
the line numbered 40 will be identified by
the number 40.2. The maximum value for
this suffix is 31. Thus the thirty-first
and subsequent staterr.ents on a line have
the same number.

OBJECT Opti£B

The OBJECT option specifies that the
compiler is to store the object module that
it creates in the data set defined by the
DD statement with the name SYSLIN.

OFFSET option

The OFFSET option specifies that the
compiler is to print a table of statement
or line numbers for each procedure with
their offset addresses relative to the
primary entry point of the procedure. This
information is of use in identifying the
statement being executed when an error
occurs and a listing of the object module
(obtained by using the LIST option) is
available. If GOSTMT applies, staterr.ent
numbers, as well as offset addresses, will
be included in execution~time messages. If
GONUMBER applies, line numbers, as well as
offset addresses, will be included in
execution-time messages •

OPTIMIZE Option

The OPTIMIZE option specifies the type of
optimization required:

NOOPTIMIZE

OPTIMIZE
(TIME)

specifies fast compilation
speed, but inhibits
optimization for faster
execution and reduced main
storage requirements.

specifies that the
compiler is to optirr.ize the
machine instructions
generated to produce a very
efficient object prograrr.. A
secondary effect of this
type of optimization can be
a reduction in the amount of
main storage required for
the object module. The use

OPTIMIZE(O)

OPTIMIZE(2)

of OPTIMIZE(TIME) could
result in a substantial
increase in compile time
over NOOPTIMIZE.

is the equivalent of
NOOPTIMIZE.

is the equivalent of
OPTIMIZE(TIME).

The language reference manual for this
compiler includes a full discussion of
optimization.

The OPTIONS option specifies that the
compiler is to include in the compiler
listing, a list showing the compiler
options, to be used during this
compilation. This list includes all those
applied by default, those specified in the
PARM parameter of an EXEC statement, and
those specified in a PROCESS statement.

The SEQUENCE option specifies the extent of
the part of each input line or record that
contains a sequence number. This number is
included in the source listings produced by
the INSOURCE and SOURCE option. Also, if
the NUMBER option applies, line numbers
will be derived from these sequence numbers
and will be included in the source listings
in place of statement numbers. No attempt
is made to sort the input lines or records
into the specified sequence. The SEQUENCE
option has the format:

SEQUENCE(m,n)

where nmn specifies the column number of
the left-hand margin.

nnn specifies the column number of
the right-hand margin.

The extent specified should not overlap
with the source program (as specified in
the MARGINS option).

There is no NOSEQUENCE option and no
default. If SEQUENCE is not specified but
the NUMBER option applies, the position of
the sequence number is assumed (see nNUMBER
Optionn).

SIZE Option

This option can be used to limit the amount
of main storage used by the compiler. This
is of value, for examfle, when dynamically
invoking the compiler, to ensure that sface
is left for other furfoses. The SIZE
option can be expressed in three ferrrs:

SIZE(yyyyyyyy) specifies the yyyyyyyy
bytes of main storage are
to be requested. Leading
zeros are not required.

SIZE (yyyyyK) sfecifies that yyyyyK bytes
of main storage are to be
requested (lK=1024).
Leading zeros are not
required.

SIZE(MAX) specifies that the compiler
is to obtain as much rr-ain
storage as it can.

The IBM default, and the most usual
value to be used, is SIZE(MAX), which
permits the compiler to use as much main
storage in the partition or region as it
can.

When a limit is specified, the amcunt of
main storage used by the compiler defends
on how the operating system has been
generated, and the method used for stcrage
allocation. The compiler assumes that
buffers, data management routines, and
processing phases take up a fixed amcunt of
main storage, but this amount can vary
unknown to the compiler.

Under MFT the compiler will oferate in a
partition of SOK bytes or more of main
storage, using its default values fer file
sfecifications. Under MVT a region cf S2K
bytes or more is required.

After the corr-piler has loaded its
initial phases and opened all files, it
attempts to allocate sface for working
storage.

If SIZE(MAX) is Sfecified it obtains all
space remaining in the region or partition
(after allowance for subsequent data
management storage areas). If a limit is
sfecified then this amount is requested.
If the amount available is less than
specified, but is more than the minimum
workspace required, compilation preceeds.
If insufficient storage is available,
compilation is terminated. This latter
situation should arise only if the region
or partition is too small, that is, less
than SOK, or if too much sface for buffers
has been requested. The value cannot
exceed the main storage available for the

Chapter 4: The Compiler 37

job step and cannot be changed after
processing has begun.

This means, that in a batched
compilation, the value established when the
compiler is invoked cannot be changed for
later programs in the batch. Thus it is
ignorEd if specified in a PROCESS
statement.

In a TSO environment, an additional 10K
to 30K bytes must be allowed for TSO. The
actual size required for TSO depends on
which routines are placed in the link-pack
area (a common main storage pool available
to all regions).

SMESSAGE option

See LMESSAGE option.

The SOURCE option specifies that the
compiler is to include in the compiler
listing a listing of the source program.
The source program listed is either the
original source input or, if the MACRO
option applies, the output from the
preprocessor.

STMT Option

The STMT option specifies that statements
in the source program are to be counted,
and that this "statement number" is used to
identify statements in the compiler
listings resulting from the AGGREGATE,
ATTRIBUTES, LIST, OFFSET, SOURCE, and XREF
options. If NOSTMT is specified, NUMBER is
implied. STMT is implied by NONUMBER or
GOSTMT.

The STORAGE option specifies that the
compiler is to include in the compiler
listing a table giving the main storage
requirements for the object module.

38

SYNTAX Option

The SYNTAX option specifies that the
compiler is to continue into syntax
checking after initialization (or after
preprocessing if the MACRO option applies)
unless an unrecoverable error is detected.
The NOSYNTAX option without an argument
causes processing to stop unconditicn~lly
after initialization (or preprocessing).
With an argument, continuation depends en
the severity of errors detected so far, as
follows:

NOSYNTAX(W)

NOSYNTAX(E)

NOSYNTAX(S)

No syntax checking if a
warning, error, severe
error, or unrecoverable
error is detected.

No syntax checking if an
error, severe error, or
unrecoverable error is
detected.

No syntax checking if a
severe error or
unrecoverable error is
detected.

If the SOURCE option applies, the compiler
will generate a source listing even if
syntax checking is not performed.

The use of this option can prevent
wasted runs when debugging a PL/I prcgrarr.
that uses the preprocessor.

The TERMINAL option is applicatle only in a
TSO environment. It specifies that some or
all of the compiler listing produced during
compilation is to be printed at the
terminal. If TERMINAL is specified without
an argument, diagnostic and inforrratcry
messages are printed at the terminal. You
can add an argument, which takes the forrr.
of an option list, to specify other parts
of the compiler listing that are tc be
printed at the terminal.

The listing at the terminal is
independent of that written on SYSPRIN~.
However, if SYSPRIN~ is associated with the
terminal, only one copy of each option
requested will be printed even if it is
requested in the TERMINAL option and also
as an independent option. The following
option keywords, their negative forms, or
their abbreviated forms, can be specified
in the option list:

AGGREGATE, ATTRIBUTES, ESD, INSCURCE,
LIST, MAP, OPTIONS, SOURCE, STORAGE,
and XREF.

The other options that relate to the
listing (that is, FLAG, GONUMBER, GOSTMT,
LINECDUNT, LMESSAGE/SMESSAGE, MARGINI,
NEST, and NUMBER) will be the same as for
the SYSPRINT listing.

The XREF option specifies that the compiler
is to include in the compiler listing a
list of all identifiers used in the PL/I
program together with the numbers of the
statements in which they are declared or
referenced. The only exception is that
label references on END statements are not
included. If both ATTRIBUTES and XREF
apply, the two tables are combined.

Compiler Listing

During compilation, the compiler generates
a listing, most of which is optional, that
contains information about the source
program, the compilation, and the object
module. It places this listing in the data
set defined by the DD statement with the
name SYSPRINT (usually output to a
printer). In a TSO environment, you can
also request a listing at your terminal
(using the TERMINAL option). The following
description of the listing refers to its
appearance on a printed page.

An example of the listing produced for a
typical PL/I program is given in appendix
F.

Figure 4.5 specifies the components that
can be included in the compiler listing,
and the order in which they appear. The

rest of this section then describes these
in detail.

Of course, if compilation terminates
before reaching a particular stage of
processing, the corresponding listings will
not appear.

System information will appear before
and after the listings for each job step if
these items use the same output class as
the processing programs. The output class
for system information is specified in the
MSGCLASS parameter of the JOB staterrent.
The level of information produced is
specified in the MSGLEVEL parameter.

The listing comprises a small arrount of
standard information that always appears,
together with those items of optional
information specified or supplied by
default. ,The listing at the terminal
contains only the optional informaticn that
has been requested in the TERMINAL option.

HEADING INFORMATION

The first page of the listing is identified
by the name of the compiler, the compiler
version number, the time compilation
commenced (if the system has the tirrer
feature), and the date; this page, and
subsequent pages are numbered.

The listing either ends with a staterrent
that no errors or warning conditions were
detected during the compilation, or with
one or more messages. The format of the
messages is described under "Messages,"
later in this chapter. If the machine has
the timer feature, the listing also ends
with a statement of the CPU time taken for
the compilation and the elapsed time during

r--T--, I Listings I Options required I
~--+--~

options used for the compilation OPTIONS
Preprocessor input MACRO and INSOURCE
Source program SOURCE
Statement nesting level NEST
Attribute table ATTRIBUTES
Cross-reference table XREF
Aggregate length table AGGREGATE
Storage requirements STORAGE
statement offset addresses SOURCE, OFFSET, NOSTMT
External symbol dictionary ESD
Static internal storage map MAP
Object listing LIST
Messages FLAG __ ~ __ J

Figure 4.5. Compiler listings and associated options

Chapter 4: The Corrpiler 39

the compilation; these times will differ
only in a multiprogramming environment.

The following paragraphs describe the
optional parts of the listing in the order
in which they appear.

OPTIONS USED ~OR THE COMPILATION

If the option OPTIONS applies, a complete
list of the options used for the
compilation, including the default options,
appears on the first page.

PREPROCESSOR INPUT

If both the options MACRO and IN SOURCE
apply, the input to the preprocessor is
listed, one record per line, each line
numbered sequentially at the left.

If the preprocessor detects an error, or
the possibility of an error, it prints a
message on the page or pages following the
input listing. The format of these
messages is exactly as described for the
compiler messages described under
"Messages," later in this chapter.

SOURCE PROGRAM

If the option SOURCE applies, the input to
the compiler is listed, one record per
line; if the input records contain printer
control characters or %SKIP or %PAGE
statements, the lines will be spaced
accordingly.

If the option NUMBER applies, and the
source program contains line numbers, these
numbers are printed to the left of each
line.

If the option STMT applies, the
statements in the source program are
numbered sequentially by the compiler, and
the number of the first statement in the
line appears to the left of each line in
which a statement begins. When an END
statement closes more than one group or
block, all the implied END statements are
included in the count, fo~ example:

40

1 P:
2 X:
3

4
5

PROC;
BEGIN;
IF A=B

THEN A=l;
ELSE DO;

A=O;

6 C=B;
7 END X;
9 .D=E;

10 END;

If the source statements are generated by
the preprocessor, columns 73-80 contain the
following information:

Column

73-77

78,79

80

Information

Input line number from which
the source statement is
generated. This nurrber
corresponds to the line numcer
in the preprocessor input
listing.

Two-digit number giving the
maxirrum depth of replacement by
the preprocessor for this line.
If no replacement occurs, the
columns are blank.

"E" signifying that an error
has occurred while replacement
is being attempted. If no
error has occurred, the column
is blank.

S'I'ATEMEN'I NES'IING LEVEL

If the option NEST applies, the clock level
and the do-level are printed to the right
of the statement or line numcer under the
headings LEV and NT respectively, for
example:

S'I'MT LEV NT

1 A:PROC OPTICNS(~AIN);
2 1 B:PROC(L);
3 2 DO 1=1 to 10;
4 2 1 [;0 J=l '1'0 10;
5 2 2 X(I,J)=N;
6 2 2 END;
7 2 1 BEGIN;
8 3 1 X=Y;
9 3 1 END;

10 2 1 END B;
11 1 END A;

ATTRIBUTE AND CROSS-REFERENCE 'I'ABLE

If the option ATTRIBUTES applies, the
compiler prints an attribute table
containing a list of the identifiers in the
source program together with their declared
and default attributes. In this context,
the attributes include any relevant

options, such as REFER, and also
descriptive comments, such as:

/*STRUCTURE*/

If the option XREF applies, the compiler
prints a cross-reference table containing a
list of the identifiers in the source
program together with the numbers of the
statements or lines in which they appear.
If both ATTRIBUTES and XREF apply, the two
tables are combined.

Attribute Table

If an identifier is declared explicitly,
the number of the DECLARE statement is
listed. An undeclared variable is
indicated by asterisks. The statement
numbers of statement labels and entry
labels are also given.

The attributes INTERNAL and REAL are
never included; they can be assumed unless
the respective conflicting attributes,
EXTERNAL and COMPLEX, appear.

For a file identifier, the attribute
FILE always appears, and the attribute
EXTERNAL appears if it applies; otherwise,
only explicitly declared attributes are
listed.

For an array, the dimension attribute is
printed first; the bounds are printed as in
the array declaration, but expressions are
replaced by asterisks.

For a character string or a bit string,
the length, preceded by the word BIT or
CHARACTER, is printed as in the
declaration, but an expression is replaced
by an asterisk.

If the cross-reference table is combined
with the attribute table, the numbers of
the statements or lines in which an
identifier appears follow the list of
attributes for the identifier. The number
of a statement in which an
implicitly-pointer qualified based variable
appears will be included not only in the
list of statement numbers for that
variable, but also in the list of statement
numbers for the pointer associated with it
implicitly.

AGGREGATE LENGTH TAELE

If the option AGGREGATE applies, the
compiler prints an aggregate length table,
together with the sum of the lengths of
aggregates whose lengths do not vary. In
general, each entry consists of an
aggregate identifier preceded by a
statement or line number and followed ty
the length of the aggregate in bytes.

The statement or line number identifies
either the DECLARE statement for the
aggregate, or, for a controlled aggregate,
an ALLOCATE statement for the aggregate.
An entry appears for each ALLOCATE
statement involving a controlled aggregate,
as such statements can have the effect of
changing the length of the aggregate during
execution. Allocation of a tased aggregate
does not have this effect, and only cne
entry, which is that corresponding to the
DECLARE statement, appears.

The length of an aggregate may net be
known during coropilation, either tecause
the aggregate contains elements having
adjustable lengths er dimensions, or
because the aggregate is dynamically
defined. In these cases, the word
"adjustable" or "defined" appears in the
"length in bytes" celumn.

An entry for a COBOL mapped structure,
that is, for a structure into which a COBOL
record is read or from which a COBeL record
is written, or for a structure passed te or
from a COBOL program, has the word "COEOL"
appended. Such an entry will appear only
if the compiler determines that the COEOL
and PL/I mapping for the structure is
different, and creation of a temporary
structure mapped according to COBOL rules
is not suppressed by one of the options
NOMAP, NOMAPIN, and NOMAPOUT.

An entry for a FORTRAN mapped array,
that is, an array passed to or froIT a
FORTRAN program, has the word "FORTRAN"
appended.

If a COBOL or FORTRAN entry does appear
it is additional to the entry for the PL/I
mapped version of the structure.

STORAGE REQUIREMENTS

If the option STORAGE applies, the ccmpiler
lists the following information under the
heading "Storage Requirements" on the page
following the end of the aggregate length
table:

Chapter 4: The Corrpiler 41

1. The storage area in bytes for each
procedure.

2. The storage area in bytes for each
begin'block.

3. The storage area in bytes for each
on-unit.

4. The length of the program control
section. The program control section
is the part of the object module that
contains the executable part of the
program.

5. The length of the static internal
control section. This control section
contains all storage for variables
declared STATIC INTERNAL.

STATEMENT OFFSET ADDRESSES

If the option OFFSET applies, the compiler
lists, for each primary entry point, the
offsets at which statements occur. This
information is found, under the heading
"Table of Offsets and Statement Numbers,"
following the end of the storage
requirements table.

EXTERNAL SYMBOL DICTIONARY

If the option ESD applies, the compiler
lists the contents of the external symbol
dictionary (ESD).

The ESD is a table containing all the
external symbols that appear in the object
module. (The machine instructions in the
object module are grouped together in what
are termed control sections; an external
symbol is a name that can be referred to in
a control section other than the one in
which it is defined.) The contents of an
ESD appear under the following headings:

SYMBOL - An 8-character field that
identifies the external symbol.

TYPE Two characters from the
following list to identify the
type of entry:

42

SD Section definition: the
name of a control section
within the object module.

CM Common area: a type of
control section that
contains no data or
executable instructions.

ER External reference: an
external symbol that is not
defined in the object
module.

WX weak external reference: an
external symbol that is not
defined in this module and
that is not to be resolved
unless an ER entry is
encountered for the same
reference.

PR Pseudo-register: a field in
a communications area, the
task communications area
(TCA), used by the corrpiler
and by the library
subroutines for handling
files and controlled
variables.

LD Label definition: the name
of an entry point to the
external procedure other
than that used as the narre
of the program control
section.

ID Four-digit hexadecimal nurrber:
all entries in the ESD, except
LD-type entries, are nurrbered
sequentially, commencing froIT
0001.

ADDR Hexadecimal representation of
the address of the external
symbol.

LENGTH - The hex~decimal length in bytes
of the control section (SO, CM,
and PR entries only).

ESD Entries

The external symbol dictionary always
starts with the following standard entries;
the entries for an external procedure with
the label NAME are shown in figure 4.6.

1. SD-type entry for PLIS'IAR'I. 'Ihis
control section transfers control to
the initialization routine IEMEFIR.
~hen initialization is complete,
control passes to the address stored
in the control section PLIMAIN.
(Initialization is required only once
during the execution of a FL/I
program, even if it calls another
external procedure; in such a case,
control passes directly to the entry
point named in the CALL statement, and
not to the address contained in
PLIMAIN.)

2. SO-type entry for the program control
section (the control section that
contains the executable instructions
of the object module). This name is
the first label of the external
procedure, padded on the left with
asterisks to seven characters if
necessary, and extended on the right
with the character 1.

3. SO-type entry for the static internal
control section (which contains main
storage for all variables declared
STATIC INTERNAL). This name is the
first label of the external procedure,
padded on the left with asterisks to
seven characters if necessary, and
extended on the right with the
character 2.

4. ER-type entry for IBMBPIRA, the entry
point of the PL/I resident library
subroutine that handles program
initialization and termination.

r---,
EXTERNAL SYMBOL DICTIONARY

SYMBOL TYPE 10 ADDR
PLISTART SO 0001 000000
***NAME1 SO 0002 000000
***NAME2 SO 0003 000000
PLITABS WX 0004 000000
IBMBPIRA ER 0005 000000
IBMBPIRD ER 0006 000000
IBMBPIRC ER 0007 000000
PLICALLA LO 000006
PLICALLB LO OOOOOA

LENGTH
000034
000100
000100

IPLIMAIN SO 0008 000000 000004 L __ _

Figure 4.6. Standard entries in the ESO

The remaining entries in the external
symbol dictionary vary, but generally
include the following:

1. sD-type entry for the 4-byte control
section PLIMAIN, which contains the
address of the primary entry point to
the external procedure. This control
section is present only if the
procedure statement includes the
option MAIN.

2. Weak external reference to PLITABS, a
library subroutine that contains the
standard or locally-defined tab
setting for stream-oriented output.

3. LO-type entries for all names of entry
paints to the external procedure.

4. A PR-type entry for each block in
compilation.

5. ER-type entries for all the licrary
subroutines and external procedures
called by the source program. This
list includes the names of resident
library subroutines called directly by
compiled code (first-level
subroutines), and the names of other
resident library subroutines that are
called by the first-level sucroutines.

6. CM-type entries for non-string element
variables declared S'I'A'IIC EX'IERNAL
without the INITIAL attribute.

7. SD-type entries for all other STATIC
EXTERNAL variables and for external
file narr:es.

8. PR-type entries for all file names.
For external file names, the name cf
the pseudo-register is the same as the
file name: for internal file narres,
the corr.piler generates names as for
the display pseudo-registers.

9. PR-type entries for all controlled
variables. For external variables,
the name of the variable is used for
the pseudo-register name; for internal
variables, the compiler generates
names.

S'lATIC INTERNAL STORAGE MAP

If the option MAP applies, the compiler
generates a listing of the contents of the
static internal control section; this
listing is termed the stati£ int~~!
storage map.

OBJECT LIS'lING

If the option LIST applies, the corrpiler
generates a listing of the machine
instructions of the object module,
including any compiler-generated
subroutines, in a form similar to IBM
System/360 assembler language.

Both the static internal storage map and
the object listing contain information that
cannot be fully understood without a
knowledge of the structure of the object
module. This is beyond the scope of this
manual~ but a full description of the
object module, the static internal storage
map, and the object listing can be found in
OS PL/I Optimizing Compiler: Execution
Logic.

Chapter 4: The compiler 43

MESSAGES

If the preprocessor or the compiler detects
an error, or the possibility of an error,
they generate messages. Messages generated
by the preprocessor appear in the listing
immediately after the listing of the
statements processed by the preprocessor.
Messages generated by the compiler appear
at the end of the listing. All messages
are graded according to their severity, as
follows:

An informatory (I) message calls
attention to a possible inefficiency in
the program or gives other information
generated by the compiler that may be
of interest to the programmer.

A ~arning (W) message calls attention
to a possible error, although the
statement to which it refers is
syntactically valid.

An error (E) message describes an error
detected by the compiler for which the
compiler has applied a "fix-up" with
confidence. The resulting program will
execute and will probably give correct
results.

A severe error (S) message specifies an
error detected by the compiler for
which the compiler cannot apply a
"fix-up" with confidence. The
resulting program will execute but will
not give correct results.

An unrecoverable error (U) message
describes an error that forces
termination of the compilation.

The compiler lists only those messages
with a severity equal to or greater than
that specified by the FLAG option, as
follows:

Informatory
Warning
Error
Severe Error
Unrecoverable Error

Qption

FLAG (I)
FLAG(W)
FLAG (E)
FLAG(S)
Always listed

Each message is identified by an
8-character code of the form IELnnnnI,
~here:

1. The first three characters "IEL"
identify the message as coming from
the optimizing compiler.

2. The next four characters are a 4-digit
message number.

44

3. The last character "I" is an operating
system code for the operator
indicating that the message is for
information only.

The text of each message, an
explanation, and any recommended prcgrarr~rr~er
response, are given in the messages
publication for this compiler.

RETURN CODE

For every compilation job or job stef, the
compiler generates a return code that
indicates to the operating system the
degree of success or failure it achieved.
This code appears in the "end of stef"
message that follows the listing of the job
control statements and job scheduler
messages for each stef. Its meaning is as
follows:

Return
Code

0000

0004

0008

0012

0016

Meaning

No error detected;
compilation completed;
successful execution
anticifated •

Possitle error (warning)
detected: compilation
comfleted; successful
execution probable.

Error detected; compilation
completed; successful
execution probable.

Severe error detected;
compilation may have teen
completed; successful
execution improbable.

Unreccveratle error
detected; compilation
terminated atnormally;
successful execution
imfos s itle.

Batched Compilation

Batched compilation allows the compiler to
compile more than one external PL/I
procedure in a single job step. The
compiler creates an object module for each
external procedure and stores it
sequentially either in the data set defined
by the DD statement with the name SYSPUNCH,
or in the data set defined by the DD
statement with the name SYSLIN. Batched
compilation can increase compiler

throughput by reducing operating system and
compiler initialization overheads.

To specify batched compilation, include
a compiler PROCESS statement as the first
statement of each external procedure except
possibly the first. The PROCESS statements
identify the start of each external
procedure and allow compiler options to be
specified individually for each
compilation. The first procedure may
require a PROCESS statement of its own,
because the options in the PARM parameter
of the EXEC statement apply to all
procedures in the batch, and may conflict
with the requirements of subsequent
procedures.

The method of coding a PROCESS statement
and the options that may be included are
described under "Optional Facilities,"
earlier in this chapter. The options apply
to the compilation of the source statements
between one PROCESS statement and the next
PROCESS statement. If you omit any of the
options, those specified in the EXEC
statement, or default values apply; apart
from the SIZE option, discussed below,
there is no carryover from the EXEC
statement or any preceding PROCESS
statement.

The return code generated by a batched
compilation is the highest code that would
be returned if the procedures were compiled
separately.

In a batched compilation, the SIZE
specified in the first procedure of a batch
(by a PROCESS or EXEC statement, or by
default) is used throughout. If SIZE is
specified in subsequent procedures of the
batch, it is diagnosed and ignored. The
compiler does not reorganize its storage
between procedures of a batch.

NAME Option

The NAME option specifies that the compiler
is to place a linkage editor NAME statement
as the last statement of the object module.
The use of this option in the PARM
parameter of the EXEC statement, or in a
PROCESS statement determines how the object
modules produced by a batched compilation
will be handled by the linkage editor.
When the batch of object modules is link
edited, the linkage editor combines all the
object modules between one NAME statement
and the preceding NAME statement into a

single load rrodule; it takes the name of
the load module from the NAME staterrent
that follows the last otject module that is
to be included. For example:

// EXEC PLIXC,PARM.PLI='NAME("A"),LIST '

ALPHA: PROC OPTIONS(MAIN);

END ALPHA;
* PROCESS;

BETA: PROC;

END BETA;
* PROCESS NAME('B');

GAMMA: PROC;

END GAMMA;

Compilation of the PL/I procedures ALPHA,
BETA, and GAMMA, would result in the
following object modules and NAME
statements:

Object rr.odule fcr ALPHA
NAME A (R)

Object rrodule for BETA
Object module for GAMMA

NAME B (R)

From this sequence of object modules and
control statements, the linkage editor
would produce two load modules, one narred A
containing the object .module for the
external PL/I procedure ALPHA, and the
other named E containing the object modules
for the external PL/I procedures BETA and
GAMMA.

You should not s~ecify the option NAME
if you intend to process the object rrodules
with the loader. The loader processes all
object modules into a single load rrodule;
if there is more than one name, the loader
recognizes the first one only and ignores
the others.

JOB CONTROL LANGUAGE FOR BATCHED PROCESSING

The only special consideration relating to
JCL for batched processing refers to the
data set defined by the DD statement with
the name SYSLIN. If you include the option
OBJECT, ensure that this DD statement
contains the parameter DISP=(MOD,KEEP) or
DISP=(MOD,PASS). (The IBM-supplied
cataloged procedures s~ecify

Chapter 4: The Compiler 45

DISP=(MOD,PASS).) If you do not specify
DISP=MOD, successive object modules will
overwrite the preceding modules.

Simple batched compilation using an
IBM-supplied cataloged procedure (PLIXCL)

is shown in figure 4.7; four external PL/I
procedures are compiled in a batch and are
link edited to form three load modules.

The EXEC statement contains the ccmpiler
options specified explicitly for both
procedure steps, PLI and LKED, of the
cataloged procedure.

The procedure step, PLI, invokes the
compiler to batch-compile the four external

//OPT4ff7 JOB
//STEP1 EXEC
//PLI.SYSIN

PLIXCL,PARM.PLI='NAME(·~PGM1")'

DO *
/*THIS PROGRAM CALCULATES A SERIES OF SQUARE-ROOT VALUES

AND PRINTS OUT THE VALUES*/

FIRST: PROC OPTIONS(MAIN);
DO 1=1250 TO 1500 BY 50;

DO J=10, 15, 20;
K=SQRT(I/J);
PUT SKIP(2) DATA;
END;

END;
END FIRST;

* PROCESS NAME('PGM2');

/*THIS PROGRAM CALCULATES THE VALUE OF AN ARRAY EXPRESSION
FOR ALL ELEMENTS OF THE SOURCE ARRAYS, AND PRINTS THE
RESULTS*/

SECOND: PROC OPTIONS(MAIN);

DCL A(5) INIT(1,2,4,8,16)4
B(5) INIT(3,5,7,9,11),
C(5,5);

DO 1=1 TO 5;
DO J=l TO 5;

C(I,J)=12*A(I)/B(J);
END;

END;
PUT EDIT(A) (X(7),F(7,2»;
PUT SKIP EDIT(B)(X(7),F(7,2»;
PUT SKIP EDIT(C)(5(X(7),F(7,2),SKIP»;

END SECOND;

* PROCESS NAME('PGM3');

/*THIS PROGRAM CALCULATES THE VALUE OF AN EXPRESSION USING
INPUT DATA, AND PRINTS THE RESULT*/

THIRD: PROC OPTIONS(MAIN);

ON ENDFILE(SYSIN) GO TO FINISH;

NEXT: GET DATA(A,B);
C=A+8*B**2/3;
PUT SKIP DATA;
GO TO NEXT;

FINISH: END THIRD;
1*

Figure 4.7. Example of batched compilation

46

procedures FIRST, SECOND, PRINT, and THIRD.
All compiler options except SIZE, either
specified in the PARM.PLI parameter or
assumed by default, apply to all the four
compilations except where overridden by
PROCESS statements. The SIZE option
applies to all the compilations in the
batch. The NAME option in the EXEC
statement specifies that the object module
compiled from procedure FIRST will be
processed by the linkage editor into a load
module named PGM1, which will contain no
other procedures.

The first PROCESS statement includes the
ESD option, which specifies a listing of
the external symbol dictionary for the
object module compiled from procedure
SECOND.

The second PROCESS statement includes
the NAME option, which causes the compiler
to insert a linkage editor NAME statement
as the last statement of the object module
compiled from the procedure PRINT; since
this option does not appear in the
preceding PROCESS statement, the object
modules for procedures SECOND and PRINT
will be combined into a single load module
(named PGM2) by the linkage editor.

The third process statement includes the
NAME and FLAG options. The NAME option
causes the compiler to insert a
linkage-editor NAME statement as the last
statement of the object module compiled
from the procedure THIRD; this object
module is link-edited into a single load
module named PGM3. The FLAG option
specifies that only error, severe error,
and unrecoverable error messages are to be
listed by the compiler. .

The second procedure step, LKED, invokes
the linkage editor to combine the object
modules, according to the names specified
in the PROCESS statements, into the three
load modules PGM1, PGM2, and PGM3, and to

//OPT4#8 JOB
//STEPX EXEC PGM=PGMl
I/STEPLIB DD DSN=L.LIBRARY,DISP=SHR

store them in the private library PUBPGM,
from which they can later be called for
execution. The DD statement with the
qualified name LKED.SYSLMOD overrides the
corresponding DD statement in the cataloged
procedure to provide information on this
private library.

How these load modules are executed is
shown in figure 4.8; PUEPGM is naffied again
in the DD statement with the name JCELIE; a
library defined by a DD statement with this
name serves as an extension of the system
library for the duration of the job in
which the statement appears. The linkage
editor and systeffi libraries are described
in chapters 5 and 9, respectively.

Compile-time Processing (Preprocessing)

The preprocessing facilities of the
compiler are described in the language
reference manual for this compiler. You
can include in a PL/I program statelcents
that, when executed by the preprocessor
stage of the compiler, modify the source
program or cause additional source
statements to be included from a library.
The following discussion supplements the
information contained in the language
reference manual by providing sorre
illustrations of the use of the
preprocessor and explaining how to
establish and use source statement
libraries.

INVOKING THE PREPROCESSOR

The preprocessor stage of the· compiler is
executed if you specify the compiler cption
MACRO. The compiler and the preprocessor
use the data set defined by the DD

// DO DSN=PUBPGM,UNIT=2311,VOL=SER=D186,DISP=OLD
//SYSPRINT DD SYSOUT=A
//STEPXX EXEC PGM=PGM2
//STEPLIB DD DSN=L.LIBRARY,DISP=SHR
// DD DSN=PUBPGM,UNIT=2311,VOL=SER=D186,DISP=OLD
//SYSPRINT DD SYSOUT=A
//STEPXXX EXEC PGM=PGM3
//STEPLIB DD DSN=L.LIBRARY,DISP=SHR
// DD DSN=PUBPGM,UNIT=2311,VOL=SER=D186,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
A=27 B=42; A=53 B=17;
1*

Figure 4.8. Execution of program compiled in figure 4.7

Chapter 4: The Corrpiler 47

statement with the name SYSUT1 during
processing. They also use this data set to
store the preprocessed source program until
compilation begins. The IBM-supplied
cataloged procedures for compilation all
include a DD statement with the name
SYSUT1.

The term MACRO owes its origin to the
similarity of some applications of the
pr~processor to the macro language
available with such processors as the IBM
system/360 Assembler. Such a macro
language allows you to write a single
instruction in a program to represent a
sequence of instructions that have
previously been defined.

The format of the preprocessor is output
as follows:

Column 1 Printer control character,
if any, transferred from
the position specified in
the MARGINS option.

Columns 2-72 Source program. If the
original source program
used more than 71 columns,
then additional lines are
included for any lines that
need continuation. If the
original source program
used less than 71 columns,
then extra blanks are added
on the right.

Columns 73-80 Sequence number,
right-aligned. If either
SEQUENCE or NUMBER apply,
this is taken from the

48

sequence number field.
otherwise, it is a
preprocessor generated
numcer, in the range 1

. through 99999. This
sequence number will be
used in the listing
produced by the INSCUFCE
and SOURCE options, and in
any preprocessor diagnostic
messages.

Column 81 blank

Columns 82,83 Two-digit number giving the
maximum depth of
replacement by the
preprocessor for this line.
If no replacement eccurs,
the columns are blank.

Column 84 "E" signifying that an
error has occurred while
replacement is being
attempted. If no error has
occurred, the column is
blank.

Three other compiler options, MDECK,
INSOUFCE, and SYNTAX, are meaningful only
when you also specify the MACRO optien.
All are described earlier in this chapter.

A simple exarrple of the use of the
preprocessor to produce a source deck fer a
precedure SUEFUN is shewn in figure 4.9;
according to the value assigned to the
preprocessor variable USE, the source
statements will represent either a
subroutine or a function.

IIOPT4ft9 JOB
IISTEPl EXEC PLIXC,PARM.PLI='MACRO,NOSYNTAX,MDECK'
IIPLI.SYSPUNCH DD DSNAME=NEWLIB(SUBPROC),DISP=(NEW,CATLG),UNIT=2311,
II VOL=SER=D186,SPACE=(CYL,(1,1,1»
IIPLI.SYSIN DD *

SUBFUN: PROC(CITY)i

DCL IN FILE RECORD,
1 DATA,

2 NAME CHAR(lO),
2 POP FIXED(7),

CITY CHAR(lO)i

%DCL USE CHARi
%USE='SUB' 1* FOR FUNCTION, SUBSTITUTE %USE='FUN' *Ii

NEXT: READ FILE(IN) INTO(DATA);
IF NAME=CITY THEN DOi
%IF USE='FUN' %THEN %GOTO Ll;
NO=POPi END:
%GO TO L2:

%Ll:: RETURN(POP)i ENDi
%L2:: ELSE GO TO NEXT;

END SUBFUNi

Figure 4.9. Using the preprocessor to create a member of a source program library

THE %INCLUDE STATEMENT

The language reference manual for this
compiler describes how to use the %INCLUDE
statement to incorporate source statements
from a library into a PL/I program. (A
librar~ is a type of data set that can be
used for the storage of other data sets,
termed members.) A set of source
statements that you may wish to insert into
a PL/I program by means of a %INCLUDE
statement must exist as a data set (member)
within a library. Creating a library and
placing members in this library, are
described in chapter 9.

The %INCLUDE statement includes one or
more pairs of identifiers. Each pair of
identifiers specifies the name of a DO
statement that defines a library and, in
parentheses, the name of a member of the
library. For example, the statement:

%INCLUDE DD1(INVERT),DD2(LOOPX)

specifies that the source statements in
member INVERT of the library defined by the
DD statement with the name DD1, and those
in member LOOPX of the library defined by

the DD statement with the name DD2, are to
be inserted consecutively into the source
program generated by the preprocesscr. The
ccmpilation job ste~ must include
appropriate DD statements.

If you omit the ddname from any pair of
identifiers in a %INCLUCE statement, the
preprocessor assumes the ddname SYSLIE. In
such a case, you must include a DD
statement with the name SYSLIB. (The
IBM-supplied cataloged procedures do not
include a DD statement with this narre in
the compilation procedure step.)

The use of a %INCLUDE statement to
include the source statements for SUB FUN in
the procedure TEST is shown in figure 4.10.
The library NEWLIB is defined in the DD
statement with the qualified name
PLI.SYSLIB, which is added to the
statements of the cataloged procedure
PLIXCLG for this jot. Since the source
statement library is defined by a DD
statement with the name SYSLIB, the
%INCLUDE statement need not include a
ddname.

Chapter 4: The Compiler 49

//OPT4#10 JOB
//STEP1 EXEC
//PLI.SYSLIB
//PLI.SYSIN

PLIXCLG, PARM. PLI= , MACRO, OBJECT'
DD DSNAME=NEWLIB,DISP=OLD

DO *
TEST: PROC OPTIONS(MAIN)i

DCL NAME CHAR(10),
NO FIXED(7):

ON ENDFILE(SYSIN) GO TO FINISH:

AGAIN: GET FILE(SYSIN) LIST(NAME):
CALL SUBFUN(NAME):
PUT DATA(NAME,NO):
GO TO AGAIN:

~INCLUDE SUBPROC:
FINISH: END TEST:

/*
//GO.IN DD DSNAME=POPLIST,DISP=OLD
//GO.SYSIN DD *
'ABERDEEN'
'DONCASTER'
/*

Figure 4.10. Including source statements from a library

Dynamic Invocation of the Compiler

You can invoke the optimizing compiler from
an assembler language program by using one
of the macro instructions ATTACH, CALL~
LINK, or XCTL. The following information
supplements the description of these macro
instructions given in the manual OS/360
Sup~~visor and Dat~_Management Macro
Instructions.

To invoke the compiler specify IELOAA as
the entry point name.

You can pass three address parameters to
the compiler:

• The address of a compiler option list.

• The address of a list of ddnames for
the data sets used by the compiler.

• The address of a page number that is to
be used for the first page of the
compiler listing on SYSPRINT.

These addresses must be in adjacent
fullwords, aligned on a fullword boundary_
Register 1 must point to the first address
in the list, and the first (left-hand) bit
of the last address must be set to 1, to
indicate the end of the list.

Note: If you want to pass parameters in an
XCTL macro instruction, you must use the
execute (E) form of the macro instruction.
Remember also that the XCTL macro
instruction indicates to the control
program that the load module containing the
XCTL macro instruction is completed. Thus

50

the parameters must be established in a
portion of main storage outside the load
module containing the XCTL macro
instruction, in case the load module is
deleted before the compiler can use the
parameters.

The format of the three parameters for
all the macro instructions is described
below.

OPTION LIST

The option list must begin on a halfword
boundary. The first two bytes contain a
binary count of the number of bytes in the
list (excluding the count field). The
remainder of the list can comprise any of
the compiler option keywords, separated by
one or more blanks, a comma, or both of
these.

DDNAME LIST

The ddname list must begin on a halfword
boundary. The first two bytes contain a
binary count of the number of bytes in the
list (excluding the count field). Each
entry in the list must occupy an 8-byte
field: the sequence of entries is as
follows:

1
2
3
4
5
6
7
8
9
10
11
12
13

Standard ddname

SYSLIN
not applicable
not applicable
SYSLIB
SYSIN
SYSPRINT
SYSPUNCH
SYSUT1
not applicable
not applicable
not applicable
not applicable
'SYSCIN

If a ddname is shorter than eight bytes,
fill the field with blanks on the right.
If you omit an entry, fill its field with
binary zeros; however you may entirely omit
entries at the end of the list.

PAGE NUMBER

The page number is contained in a 6-byte
field beginning on a halfword boundary.
~he first halfword must contain the binary
value 4 (the length of the remainder of the
field). The last four bytes contain the
page number in binary form.

The compiler will add 1 to the last ~age
number used in the corn~iler listing and put
this value in the page-number field befere
returning control to the invoking routine.
Thus, if the compiler is reinvoked, ~age
numbering will be continuous.

Chapter 4: The Corn~iler 51

Chapter 5: The Linkage Editor and the Loader

This chapter describes two processing
programs of the operating system, the
!ink~gg ed!~2f and the loader. It explains
the basic differences between them,
describes the processing done by them, the
JCL required to invoke them and, for the
linkage editor, the additional processing
it can do. Both processing programs are
fully described in as: Linkage Editor and
Loader.

The object module produced by the
compiler from a PL/I program always
requires further processing before it can
be executed. This further processing, the
resolution of external references inserted
by the compiler, is performed either by the
linkage editor or by the loader, both of
which convert an object module into an
executable program, which in the case of
the linkage editor, is termed a load
module.

The linkage editor and the loader
require the same type of input, perform the
same basic processing, and produce a
similar type of output. The basic
differences between the two programs lie in
the subsequent form and handling of this
output.

The linkage editor converts an object
module into a load module, and stores it in
a program library in auxiliary storage.
The load module becomes a permanent member
of that library and can be retrieved at any
time for execution in either the job that
created it, or in any other job.

The loader, on the other hand, processes
the object module, loads the processed
output directly into main storage, and
executes it immediately. The loader is
essentially a one-shot program checkout
facility; once the load module has been
executed, it cannot be used again without
reinvoking the loader. To keep a load
module for later execution, or to provide
an overlay structure, you must use the
linkage editor.

When using the linkage editor, three job
steps are required -- compilation, link
editing, and execution. When using the
loader, only two job steps are required
compilation and execution.

52

Choice of Program

If your installation includes both
programs, the choice of program will depend.
on whether or not you want to retain a
permanent copy of the load module, and on
whether you want to use one of the
facilities provided only by the linkage
editor. All object modules acceptable to
the linkage editor are acceptable to the
loader; all load modules produced by the
linkage editor, except those produced with
the NE (not editable) attribute1 , are also
acceptable to the loader. The differences
between the two programs are sUITffiarized
below.

Linkage Editor

• The linkage editor converts an object
module into a load module and stores it
in a partitioned data set (prograffi
library) in auxiliary storage.

• The linkage editor can produce one or
more load modules in a single step (for
example, output from batch
compilation).

• The linkage editor can accept input
from other sources as well as from its
primary input source and froffi the
automatic call library (SYSLIB).

• The linkage editor can provide an
overlay structure for a prograffi.

Loader

• The loader converts an object module
into an executatle program in main
storage, and executes it imffiediately.

• The loader can produce only one load
module in a single job step no matter
how many object modules are produced

1The NE attribute is given to a load module
that has no external symbol dictionary
(ESD); a load module without an ESD cannot
be processed again, either by the linkage
editor or by the loader.

(for example, the output from a batch
compilation).

• The loader can accept input from its
primary input source and from the
automatic call library (SYSLIB).

Performance Considerations

If you use the loader, you will gain the
advantage of a considerable saving in both
time and auxiliary storage when running
your PL/I program. Although the execution
time will be unchanged, both the scheduling
time and the processing time will be
reduced, and much less auxiliary storage
will be needed. These savings are achieved
as follows:

Scheduling Time: Scheduling time for the
loader is much less than that for link
editing and execution because the loader
needs only one job step.

Processing Time: The time taken to process
an object module by the loader is
approximately half that taken by the
linkage editor to process the same module.
This is achieved by the elimination of
certain input/output operations required by
the linkage editor, and by a reduction in
module access time by the use of chained
scheduling and improved buffering in the
loader program.

Auxi!iaEY-StQrag~: The amount of auxiliary
storage required by the loader when your
job is compiled, loaded, and executed as a
single job step, is much less than that
required by the linkage editor because two
of the standard data sets used by the
linkage editor are not needed. If the
loader input is to consist of existing load
modules the auxiliary storage required for
these ~an be reduced by storing them with
unresolved external references. These
external references are resolved by the
loader.

Module Structure

Object and load modules have very similar
structures; they differ only in that a load
module that has been processed by the
linkage editor contains certain descriptive
information required by the operating
system; in particular, the module is marked
as nexecutablen or nnot executable n • A
module comprises the following information:

• Text (TXT)

• External symbol dictionary (ESD)

• Relocation dictionary (RLD)

• END instruction

The text of an object or load module
consists of the machine instructions that
represent the PL/I statements of the source
program. These instructions are grouped
together in what are termed control
sections; a centrol section is the smallest
group of machine instructions that can be
processed by the linkage editor. An object
module produced by the optimizing ccrr~iler
includes the following control sections:

• Program control section: contains the
executable instructions of the object
module.

• static internal control section:
contains storage for all variables
declared STATIC INTERNAL and for
constants and static system blocks.

• Control sections termed comrron areas:
one common area is created for each
EXTERNAL file name and for each
non-string element variable declared
STATIC EXTERNAL without the INITIAL
attribute.

• PLISTART: execution of aPL/I ~rogram
always starts with this control
section, which ~asses control to the
appropriate initialization subroutine;
when initialization is complete,
control passes to the address stored in
the control section PLIMAIN.

• Control sections for all PL/I library
subroutines to be included with the
program.

External Symbol Dictionary

The external symbol dictionary (ESD) is a
table containing all the ~~~ll21-§y~bol§
that appear in the object module. An
external symbol is a name that can be
referred to in a control section other than
the one in which it is defined.

The names of the control sections are
themselves external symbols, as are the
names of variables declared with the
EXTERNAL attribute and entry names in the
external procedure of a PL/I program.
References to external symbols defined

Chapter 5: The Linkage Editor and the Leader 53

elsewhere are also considered to be
external symbols; they are known as
external references. Such external
references in an object module always
include the names of the subroutines from
either the OS PL/I Resident Library or the
as PL/I Transient Library that will be
required for execution. They may also
include calls to your own subroutines that
are not part of the PL/I subroutine
library, nor already included within the
object module. The linkage editor or
loader locates all the subroutines referred
to, and includes them in the load module,
or executable program respectively.

Relocation Dictionary

At execution time, the machine instuctions
in a load module use the following two
methods of addressing locations in main
storage:

1. Names used only within a control
section have addresses relative to the
starting point of the control section.

2. other names (external names) have
absolute addresses so that any control
section can refer to them.

The relocation dictionary (RLD) contains
information that enables absolute addresses
to be assigned to locations within the load
module when it is loaded into main storage
for execution. These addresses cannot be
determined earlier because the starting
address is not known until the module is
loaded. The relocation dictionaries from
all the input modules are combined into a
single relocation dictionary when a load
module is produced.

END Instruction

This specifies the compiler-generated
control section PLISTART as the entry point
for the object module.

Linkage Editor

The linkage editor is an operating system
processing program that produces load
modules. It always stores the load modules
in a library, from which the job scheduler
can call them for execution.

The input to the linkage editor can
include object modules, load modules, and

54

control statements that specify how the
input is to be processed. The output from
the linkage editor comprises one or rrore
load modules.

In addition to its primary function of
converting object modules into load
modules, the linkage editor can also re
used to:

• Combine previously link-edited lead
modules

• Modify existing load modules

• Construct an overlay structure

A load module constructed as an overlay
structure can be executed in an area of
main storage that i~ not large enough to
contain the entire module at one time. 'Ihe
linkage editor divides the load module into
segments that can be loaded and executed in
turn.

LINKAGE EDITOR PROCESSING

A PL/I program, compiled by the optirrizing
compiler, cannot be executed until the
appropriate library subroutines have been
included. These subroutines are included
in two ways:

1. By inclusion in the load module during
link editing.

2. By dynamic call during execution.

The first method is used for most of the
PL/I resident library subroutines; the
following paragraphs describe how the
linkage editor locates them. The second is
used for the PL/I transient library
subroutines, for example those concerned
with input and output (including those used
for opening and closing files), and those
that generate execution-time messages.

In basic processing, as shown in figure
5.1, the linkage editor accepts frorr its
primary input seurce a data set defined by
the DD statement with the name SYSLIN. For
a PL/I program, this input is the object
module produced by the compiler. The
linkage editor uses the external symbel
dictionary in this object module to
determine whether the module includes any
external references fer which there are no
corresponding external symbols in the
module: it attempts to resolve such
references by a method termed autorratic
library call.

SYSLIN
(primary input)

r----------------,
1 1
1 PL/I object 1
1 module 1-------,
1 1 1 SYSLMOD (load L ________________ J 1 module library)

1 r----------------, r----------------, L ______ >1 1 1 1
1 linkage 1---------->1 load module 1
I editor 1 1 1

r------>1 1 1 1 1 L ________________ J L ________________ J

r----------------,
1 1

1
1

1
1

PL/I library 1 1
(SYS1.PLILIB) I-------J

1 1 L ________________ J

SYSLIB
(call library)

Figure 5.1. Basic linkage editor processing

External symbol resolution by automatic
library call involves a search of the data
set defined by the nn statement with the
name SYSLIBi for a PL/I program, this will
be the PL/I resident library. The linkage
editor locates the subroutines in which the
external symbols are defined (if such
subroutines exist), and includes them in
the load module.

The linkage editor always places its
output (that is, the load module) in the
data set defined by the nn statement with
the name SYSLMOD.

Any linkage editor processing additional
to the basic processing described above
must be specified by linkage editor control
statements placed in the primary input.
These control statements are described in
"Additional processing," later in this
chapter.

Main Storag§-Regui~~nts

The F-Ievel linkage editor has three
different versions requiring differing
amounts of main storage: 44K, 88K, and
128K bytes. The F-Ievel linkage editor is
described in the linkage editor and loader
publication. .

Job Control Language for the Linkage Editor

Although you will probably use cataloged
procedures rather than supply all the job

control language (JCL) required for a job
step that invokes the linkage editor, you
should be familiar with these JCL
statements so that you can make the best
use of the linkage editor and, if
necessary, override the statements of the
cataloged procedures.

The IBM-supplied cataloged procedures
that include a link-edit procedure step
are:

PLIXCL Compile and link edit

PLIXCLG Compile, link edit, and execute

PLIXLG Link edit and execute

The following paragraphs describe the
essential JCL statements for link editing.
The IBM-supplied cataloged procedures are
described in chapter 10 and include
examples of these statements.

EXEC STATEMENT

The name of the linkage editor is of the
form IEWLFxxx, where "xxx" indicates the
amount of main storage required for its
execution, as follows:

r----------T------------------------------,
1 ~ 1 ~~t of 1
I 1 main storag.§ I
r----------+------------------------------~
I 440 I 44K I
I 880 I 88K I
I 128 I 128K 1 L __________ ~ ______________________________ J

Chapter 5: The Linkage Editor and the Leader 55

r-------------T------------------------------T--, I ddname I contents I Possible device classes1 I
~-------------+------------------------------+--~

I
SYSLIN Primary input data, normally I UNIT=SYSSQ or input job stream

the compiler output I (specified by DD *)
I

SYSLMOD Load module I UNIT=SYSDA
I

SYSUTl Temporary workspace I UNIT=SYSDA
I

SYSPRINT Listing, including messages I UNIT=SYSSQ (or SYSOUT=)
I

SYSLIB Automatic call library
(normally the PL/I

I UNIT=SYSDA
I

resident library) I
~-------------~------------------------------~--~
I I
I 1SYSSQ Magnetic tape or direct~access device I
I SYSDA Direct access device I L ___ -----------___________________________________ J

Figure 5.2. Linkage editor standard data sets

The aliases IEWL or LINKEDIT are often
used for the linkage editor and normally
refer to the version at your installation
with the largest design level. You should

find out what versions are available at
your installation.

The basic EXEC statement is:

//stepname EXEC PGM=IEWL

By using the PARM parameter of the EXEC
statement, you can select one or more of
the optional facilities provided by the
linkage editor; these facilities are
described in "Optional Facilities," later
in this chapter.

DD STATEMENTS FOR THE STANDARD DATA SETS

The linkage editor always requires four
standard data sets. You must define these
data sets in DD statements ~ith the ddnames
SYSLIN, SYSLMOD, SYSUT1, and SYSPRINT.

A fifth data set, defined by a DD
statement with the name SYSLIB, is
necessary if you want to use automatic
library call. The five data set names~
together with other characteristics of the
data sets, are shown in figure 5.2.

Primary Input_(SYSLIN)

Primary input to the linkage editor must be
a standard data set defined by a DD
statement with the name SYSLINi this data

56

set must have consecutive organization.
The input must comprise one or rrore cbject
modules and/or linkage editor control
statements; a load module cannot be ~art of

the primary input, although it can be
introduced by the control statereent
INCLUDE. For a PL/I ~rogram, the ~rimary
input is usually a data set containing an
object module produced ty the compiler.
This data set may be on magnetic ta~e cr on
a direct-acdess device, or you can include
it in the input job stream. In all cases,
the input must be in the form of 80-tyte
F-format records.

The IBM-supplied cataloged procedure
PLIXLG includes the DD statement:

//SYSLIN DD DDNAME=SYSIN

which specifies that the primary input data
set may be defined in a DD statement with
the name SYSIN. If you use this cataloged
procedure, specify this DD statement by
using the qualified ddname LKED.SYSIN. For
example, to link edit and execute an object
module placed in the input stream, you can
use the following statements:

//LEGO JOB
/ /S'IPEl EXEC PLIXLG
//LKED.SYSIN CD *

/*

(insert here the object module tc be
link edited and executed)

If object modules with identically named
control sections appear in the primary
input, the linkage editor processes only
the first afpearance of that control
section.

You can include load modules or object
modules from one or more libraries in the
primary input by using a linkage editor
INCLODE statEment as described in
"Additional Processing," later in this
chapter.

Output (that is, one or more load modules)
from the linkage editor is always stored in
a data set defined by the DD statement with
the name SYSLMOD, unless you specify
otherwise. This data set is usually called
a library; libraries are fully described in
chapter 9.

The IBM-supplied cataloged procedures
include the following DO statement:

IISYSLMOD DD DSNAME=&&GOSET(GO),
II ONIT=SYSDA,
II DISP=(MOD,PASS),
II SPACE=(1024,(50,20,l),RLSE»

which defines a temporary library named
&&GOSET and assigns the member name GO to
the load module produced by the linkage
editor. To retain the load module after
execution of the job, replace this DO
statement with one that defines a permanent
library. For example, assume that you have
a permanent library called OSLIB on 2311
disk pack serial number 371; to name the
load module MODi and place it in this
library, code:

IILKED.SYSLMOD DD DSNAME=OSLIB(MOD1),
II ONIT=2311,VOL=SER=371,DISP=OLD

The size of a load module must not
exceed 512K bytes for programs executed
under MFTi a much larger load module is
allowed for MVT. The SPACE parameter in
the DD statement with the name SYSLMOD used
in the IBM-supplied cataloged procedures
allows for an initial allocation of 50K
bytes and, if necessary, 15 further
allocations of 20K bytes (a total of 350K
bytes); this should suffice for most
applications.

Temporary Workspace (SYSUT1)

The linkage editor requires a data set for
use as temporary workspace. It is defined

by a DD statement with the name SYSU~l.
~his data set must be on a direct-access
device. The following statement contains
the essential parameters:

IISYSUTl DD UNIT=SYSDA,
II SPACE=(1024, (200,20»

You should normally never need to alter
the DO statement with the name SYSU~l in an
IBM-SUPflied cataloged procedure, except to
increase the SPACE allocation when
processing very large frograms.

If your installation sUfforts dedicated
workfiles, these can be used to previde
temporary workspace for the link-edit job
step, as described in chapter 10.

Automatic Call 1ibrary (SYSLIB)

Unless you specify otherwise, the linkage
editor will always attempt to resolve
external references by automatic library
call (see "Linkage Editor Processing,"
earlier in this chapter). To enable it to
do this, you must define the data set or
data sets to be searched in a DD staterr.ent
with the name SYSLIE. (TO define second
and subsequent data sets, include
additional, unnamed, CD statements
immediately after the DD statement SYSLIE;
the data sets so defined will be treated as
a single continuous data set for the
duration of the job step.)

For a PL/I program, the DD statement
SYSLIE will normally define the PL/I
resident library. The subroutines of the
resident library are stored in two data
sets, SYS1.PLIBASE (the base library) and
SYS1.PLITASK (the multitasking library).
The base library contains all the resident
library subroutines required by a
non-multitasking program. The multitasking
library contains subroutines that are
peculiar to multitasking, together with
multitasking variants of some of the base
library subroutines.

For link editing a non-multitasking
program, specify only the base library in
the SYSLIB DO statement. The following DD
statement will usually suffice:

IISYSLIB DD DSN=SYS1.PLIBASE,DISP=CLD

For link edit-ing a multitasking program,
specify both the multitasking library and
the base library_ When attempting to
resolve an external reference, the linkage
editor will first search the multitasking
library; if it cannot find the required
subroutine, it will then search the base
library_ To ensure that the search is

Chapter 5: The Linkage Editor and the Leader 57

carried out in the correct sequence, the DD
statements defining the two sections of the
library must be in the correct sequence:
multitasking library first, base library
second. The following DD statements will
usually suffice:

//SYSLIB DD DSNAME=SYS1.PLITASK,DISP=OLD
// DD DSNAME=SYS1.PLIBASE,DISP=OLD

The linkage editor generates a listing that
includes reference tables relating to the
load modules that it produces and also~
when necessary, messages. The information
that may appear is described under "Listing
Produced by the Linkage Editor," later in
this chapter.

You must define the data set on which
you wish the linkage editor to store its
listing in a DD statement with the name
SYSPRINT. This data set must have
consecutive organization. Although the
listing is usually printed, it can be
stored on any magnetic-tape or
direct-access device. For printed output,
the following statement will suffice:

//SYSPRINT DD SYSOUT=A

EXAMPLE OF LINKAGE EDITOR JCL

A typical sequence of job control
statements for link editing an object
module is shown in figure 5.3. The DD
statement SYSLIN indicates that the object
module will follow immediately in the input
stream; for example, it might be an object
deck created by invoking the optimizing
compiler with the DECK option, as described

JOB
EXEC PGlvl= IEWL

in chapter 4. The DD statement with the
name SYSLMOD specifies that the linkage
editor is to name the load module LKEX, and
that it is to place it in a new library
named MODLIB; the keyword NEW in the DISP
parameter indicates to the operating system
that this DD statement specifies the
creation of a library.

Optional Facilities

The linkage editor provides a number of
optional facilities that are selected ty
including the appropriate keywords froIT. the
following list in the PARM parameter of the
EXEC statement that invokes it:

LIST
MAP or XREF
LET or XCAL
NCAL
SIZE

Code PARM= followed by the list of opticns,
separating the opticns with commas and
enclosing the list within single quotation
marks, for example:

//STEPA EXEC PGM=IEWL,PARM='LIST,MAP'

If you are using a cataloged procedure,
you must include the PARM parameter in the
EXEC statement that invokes the procedure
and qualify the keyword PARM with the narre
of the procedure step that invokes the
linkage editor, for example:

//STEPA EXEC PLIXCLG,PARM.LKED='LIST,XREF'

The linkage editor options are of two
types:

1. Simple keywords, for example, LIS~,
that specifies a facility. LET, LIST,
MAP, NCAL, XCAL, and XREF are of this
type.

//LINK
//STEPl
//SYSLMOD
//
//SYSUTl
//SYSPRINT
//SYSLIB
//SYSLIN

DD DSNAME=MODLIBCLKEX),UNIT=2311,VOL=SER=D186

/*

SPACE=(CYL, (10,10,1»,DISP=(NEW,KEEP)
DD UNIT=SYSDA,SPACE=C1024, (200,20»
DD SYSOUT=A
DD DSNAME=SYS1.PL1BASE,DISP=OLD
DD *

Cinsert here the object module to be link-edited)

Figure 5.3. Typical job control statements for link editing a PL/I program

58

2. Keywords that permit you to assign a
value to a function (for example,
SIZE=lOK) ..

The linkage editor options, in alphabetic
order, are as follows.

The LET option specifies that the linkage
editor is to mark the load module as
"executable" even if slight errors or
abnormal conditions have been found during
link editing provided these do not exceed
severity 2.

LIST option

The LIST option specifies that all linkage
editor control statements processed should
be listed in the data set defined by the DD
statement with the name SYSPRINT.

MAP option

The MAP option specifies that the linkage
editor is to produce a map of the load
module showing the relative locations and
lengths of all control sections in the load
module.

NCAL option

The NCAL option specifies that no external
references are to be resolved by automatic
library call. However, the load module is
marked "executable" provided that there are
no errors.

You can use the NCAL option to conserve
auxiliary storage in private libraries,
since, by preventing the resolution of
external references during link editing,
you can store load modules without the
relevant library subroutines; the DD
statement with the name SYSLIB is not
required. Before executing these load
modules, you must link edit them again to
resolve the external references, but the
load module created need exist only while
it is being executed. You can use this
technique to combine separately compiled
PL/I procedures into a single load module.

SIZE Option

The SIZE option specifies the amount of
main storage, in bytes, to be allocated to
the linkage editor. The format of the SIZE
option is:

SIZE= (m[, n])

where "m" is the amount of main storage
in bytes or K tytes (where
K=1024) to be allocated to the
linkage editor; it must
include "n" and it must te
greater than "n."

and "n" which is optional, is the
amount of main storage (in
bytes or K bytes) to be
allocated to the load module
buffer.

The following tatle gives values for "m"
and "n" for the three versions of the
F-Ievel linkage editor:

r--------T------------T-----------T-------,
IVersion Im(minimum) I g I ~ I
I I I (Min) (~ax) I (Min) I
~--------+------------+-----------+-------~
I I I I I
I 44K I 44K I 6K lOOK I 38K I
I 88K I 88K I 6K lOOK I 44K I
I l28K I l28K I 6K lOOK I 66K l l ________ ~ ____________ ~ ___________ ~ _______ J

If you specify SIZE incorrectly, er if
you omit it, default values set at system
generation are used. If you sPecify SIZE
greater than the region or partiticn size,
the maxirrum amount of rrain storage will te
used.

XCAL Option

The XCAL option specifies that the linkage
editor will roark the load module as
"executable" even if slight errors er
abnormal conditions, including improper
branches between control sections, have
been found during link editing. XCAL,
which implies LET, applies only te an
overlay structure.

XREF Option

The XREF option specifies that the linkage
editor is to print a map of the load medule
and a cross-reference list of all the
external references in each contrel
section. XREF implies MAP.

Chapter 5: The Linkage Editor and the Loader 59

Listing Produced by the Linkage Editor

The linkage editor generates a listing,
most of which ~s optional, that contains
information about the link-editing process
and the load module that it produces. It
places this listing in the data set defined
by the DD statement with the name SYSPRINT
(usually output to a printer). The
following description of the listing refers
to its appearance on a printed page.

The listing comprises a small amount of
standard information that always appears,
together with those items of optional
information specified in the PARM parameter
of the EXEC statement that invokes the
linkage editor, or that are applied by
default. The optional components of the
listing and the corresponding linkage
editor options are as shown in figure 5.4.

r------------------------T----------------,
I Listin~ IOptions Required I
~------------------------+----------------i
\ \ \
\ Control statements \ LIST \
I processed by the \ \
I linkage editor \ I
\ \ \
\ Map of the load module \ MAP or XREF \
\ \ \
\ Cross-reference table \ XREF I L ________________________ ~ ________________ J

Figure 5.4. Linkage editor listings and
associated options

The first page of the listing is
identified by the linkage editor version
and level number followed by a list of the
linkage editor options used.

The following paragraphs describe the
optional components of the listing in the
order in which they appear.

An example of the listing produced for a
typical PL/I program is given in appendix
F.

Diagnostic Messages and Control Statements

The linkage editor generates messages,
describing errors or conditions, detected
during link editing, that may lead to
error. These messages are listed
immediately after the heading information
on page 1 of the linkage editor listing.
They are listed again at the end of the
linkage editor listing under the heading
~Diagnostic Message Directory" which is
described later in this chapter.

60

If you have specified the option LIST,
the names of all control statements
processed by the linkage editor are listed
immediately preceding the messages, and are
identified by the 7-character code IEWOOOO.

Each message is identified by a similar
7-character code of the form IEwnnnx,
where:

• The first three characters "lEw"
identify the message as coming from the
linkage editor.

• The next three characters are a 3-digit
message number.

• The last character "x" is a severity
code whose meaning is as follows:

o

1

2

3

4

A condition that will not cause an
error during execution. The load
module is marked as "executable".

A condition that may cause an error
during execution. The load module
is marked as "executable".

An error that could make execution
impossible. The load module is
marked as "not executable" unless
you have specified the option LET.

An error that will make execution
impossible. The load module is
marked as "not executable".

An error that makes recovery
impossible. Linkage editor
processing is terminated, and no
output other than messages is
produced.

At the end of the listing, iIrmediately
preceding the "Diagnostic Message
Directory" (described later in this
chapter), the linkage editor places a
statement of the disposition of the load
module. The disposition statements, with
one exception, are self-explanatory; the
exception is:

****modulename DOES NOT EXIST BUT HAS
BEEN ADDED TO DATA SET

This appears when the NAME statement has
been used to add a new module to the data
set defined by the DD statement with the
name SYSLMOD. The use of the NAME
statement is described under "Module Name,"
later in this chapter. If you name a new
module by including its name in the DSNAME
parameter of the DD statement with the name
SYSLMOD, the linkage editor assumes that
you want to replace an existing module
(even if the data set is new).

DIAGNOSTIC MESSAGE DIRECTORY

When processing of a load module has been
completed, the linkage editor lists in full
all the messages whose numbers appear in
the preceding list. The text of each
message, an explanation, and any
recommended programmer response, are given
in the linkage editor and loader
publication.

The warning message IEW0461, together
~ith a return code of 0004, frequently
appears in the linkage editor listing for a
PL/I program. It refers to external
references that have not been resolved
because NCAL is specified. The references
occur in PL/I library subroutines that are
link edited with your program as a result
of automatic library call. Some library
subroutines may, in turn, call other
library subroutines. For those secondary
subroutines that are required, the compiler
generates another external symbol
dictionary containing alternative names for
the subroutines. These new references can
be resolved, and the required subroutines
placed in the new load module. If the
secondary subroutines in turn call other
subroutines, the process is repeated.

MODULE MAP

The linkage editor listing includes a
module map only if you specify the options
MAP or XREF. The map lists all the control
sections in the load module and all the
entry point names in each control section.
The control sections are listed in order of
appearance in the load module; alongside
each control section name is its address
relative to the start of the load module
(address 0) and its length in bytes. The
entry points within the load module appear
on the printed listing below and to the
right of the control sections in which they
are defined; each entry point name is
accompanied by its address relative to the
start of the load module.

Each control section that is included by
automatic library call is indicated by an
asterisk. For an overlay structure, the
control sections are arranged by segment in
the order in ~hich they are specified.

After the control sections, the module
map lists the pseudo-registers established
by the compiler. Pseudo-registers are
fields in a communications area, the task
communications area (TCA), used by PL/I
library subroutines and compiled code
during execution of a PL/I program. The
main storage occupied by the TCA is not

allocated until the start of execution of a
PL/I program; it does not form part of the
load module. The addresses given in the
list of pseudo-registers are relative to
the start of the TCA.

At the end of the module map, the
linkage editor supplies the following
information:

The total length of the
pseudo-registers.

The relative address of the instruction
with which execution of the load mcdule
will commence (ENTRY ADDRESS).

The total length of the load module.
For an overlay structure, the length is
that of the longest path.

All the addresses and lengths given in the
module map and associated inforrration are
in hexadecimal.

CROSS-REFERENCE TABLE

The linkage editor listing includes a
"Cross-reference Table" only if you specify
the option XREF. This option produces a
listing that comprises all the inforrration
described under "Module Map," atove,
together with a cross-reference table of
external references. The table gives the
location of each reference within the load
module, the symtol to which the reference
refers, and the name of the control section
in which the symbol is defined.

For an overlay structure, a
cross-reference table is provided fcr each
segment. It includes the number of the
segment in which each symbol is defined.

Unresolved symbols are identified in the
cross-reference table ty the entries
$UNRESOLVED or $NEVER-CALL. An unresolved
weak external reference (WXTRN) is
identified by the entry $UNRESOLVED(W).

RETURN CODE

For every linkage editor job or job step,
the linkage editor generates a return code
that indicates to the operating system the
degree of success or failure it achieved.
This code appears in the "end of step"
message and is derived ty multiplying the
highest severity code (see "Diagnostic
Messages and Control Statements," earlier
in this chapter) by four, as follows:

Chapter 5: The Linkage Editor and the Loader 61

Return Code

0000

0004

oooa

0012

0016

No messages issued; link
editing completed without
error; successful execution
anticipated.

Warning messages only
issued; linK editing
completed; successful
execution probable.

Error messages only issued;
link editing completed;
execution may fail.

Severe error messages
issued; link editing may
have been completed, but
with errors; successful
execution improbable.

Unrecoverable error message
issued; link editing
terminated abnormally;
successful execution
impossible.

The return code 0004 almost invariably
appears after a PL/I program has been link
edited because some external references
will not have been resolved. (Refer to
"Diagnostic Message Directory," earlier in
this chapter.)

Additional Processing

Basic processing by the linkage editor
produces a single load module from the data
that it reads from its primary input, but
it has several other facilities that you
can call upon by using linkage editor '
control statements. The use of those
statements of particular relevance to a
PL/I program is described below. All the
linkage editor control statements are fully
described in the linkage editor and loader
publication.

FORMAT OF CONTROL STATEMENTS

A linkage editor control statement is an
aD-byte record that contains two fields.
The operation field specifies the operation
required of the linkage editor; it must be
preceded and followed by at least one blank
character. The operand field names the
control sections, data sets, or modules
that are to be processed, and it may
contain symbols to indicate the manner of
processing; the field consists of one or
more parameters separated by commas. Some

62

control statements may have multiple
operand fields separated by commas.

The pOSition of a control statement in
the linkage editor input depends on its
function.

In the following descriptions of the
control statements, items within brackets
[] are optional.

MODULE NAME

A load module must have a name so that the
linkage editor and the operating system can
identify it. A name comprises up to eight
characters, the first of which must be
alphabetic.

You can name a load module in one of two
ways:

1. If you are producing a single load
module from a single link-edit job
step, it is sufficient to include its
name as a member name in the DSNAME
parameter of the DD statement with the
name SYSLMOD.

2. If you are producing two or mere load
modules from a single link-edit jot
step, you will need to use the NAME
statement. (The optimizing compiler
can supply the NAME statements when
you use batch compilation as descrited
in chapter 4.)

The format of the NAME statement is:

NAME name [(R)]

where "name" is any name of up to seven
characters; the first character must te
alphabetic. The NAME statement serves two
functions:

• It identifies a load module. The name
specified will be given to the lead
module. "(R)", if present, specifies
that the load module is to replace an
existing load module of the same name
in the data set defined by the ~~
statement with the name SYSLMOD •

• It acts as a delimiter between input
for different load rrodules in one
link-edit step.

The NAME statement must appear in the
primary input to the linkage editor (the
standard data set defined cy the DD
statement SYSLIN); if it appears elsewhere,
the linkage editor ignores it. The
statement must follow irrmediately ~!!§~ the
last object module that will forro part of

the load module it names (or after the
INCLUDE control statement that specifies
the last object module).

You can use the ALIAS statement to give a
load module an alternative name; a load
module can have as many as sixteen aliases
in addition to the name given to it in a DD
statement with the name SYSLMOD, or by a
NAME statement.

The format of the ALIAS statement is:

ALIAS name

~here "name" is any name of up to eight
characters; the first character must be
alphabetic. You can include more than one
name in an ALIAS statement, separating the
names by commas, for example:

ALIAS FEE,FIE,FOE,FUM

An ALIAS statement can be placed before,
bet~een, or after object modules and
control statements that are being processed
to form a load module, but it must precede
the NAME statement that specifies the
primary name of the load module.

To execute a load module, you can
include an alias instead of the primary
name in the PGM parameter of an EXEC
statement.

Aliases can be used for external entry
pOints in a PL/I procedure. Hence a CALL
statement or a function reference to any of
the external entry names will cause the
linkage editor to include the module
containing the alias entry names without
the need to use the INCLUDE statement for
this module.

ADDITIONAL INPUT SOURCES

The linkage editor can accept input from
sources other than the primary input
defined in the DD statement with the name
SYSLIN. For example, automatic library
call enables the linkage editor to include
modules from a data set (a library) defined
by the DD statement with the name SYSLIB.
You can name these additional input sources
by means of the INCLUDE statement, and you
can direct the automatic library call
mechanism to alternative libraries by means
of the LIBRARY statement.

INCLUDE Statement

The INCLUDE statement causes the linkage
editor to process the rr.odule or modules
indicated. After the included modules have
been processed, the linkage editor
continues with the next item in the prirrary
input. If an included sequential data set
also contains an INCLUDE statement, that
statement is processed as if it were the
last item in the data set, as shown in
figure 5.5.

r---,
I

Primary Input sequential Library I

D1a;;:set Da~~=set Me~~r

end --- ---

I
not
processed

;~~ ~~~ end l _________________ ~ ______________________ _

Figure 5.5. Processing of additional data
sources

The format of the INCLUDE statement is:

INCLUDE ddname[(rr.errtername)]

where "ddname" is the name of a DD
statement that defines either a sequential
data set or a library that contains the
modules and control statements to te
processed. If the DD statement defines a
library, replace "membername" with the
names of the modules to be processed,
separated by commas. Yeu can specify more
than one ddname, each of which may be
followed by any numter of member names in a
single INCLUDE statement. For example:

INCLUDE Dl(MEM1,MEM2),D2(MODA,MODE)

specifies the inclusion of the memters MEMl
and MEM2 from the library defined by the DD
statement with the name Dl, and the members
MODA and MODB from the library defined by
the DD statement with the name D2.

LIBRARY Statement

The basic function of the LIBRARY statement
is to name call libraries in addition to
those named in the DD statement SYSLIB.
The format of the LIBRARY statement is:

Chapter 5: The Linkage Editor and the Loader 63

LIBRARY ddname(membername)

where "ddname" is the name of a DD
statement that defines the additional call
library, and "membername" is the name of
the module to be examined by the automatic
call mechanism. More than one module can
be specified; separate the module names
with commas.

OVERLAY STRUCTURES

A load module constructed as an overlay
structure can be executed in an area of
main storage that is not large enough to
contain the entire module at one time. The
linkage editor divides the load module into'
segments that can be loaded and executed in
turn. To construct an ov~rlay structure,
you must use linkage editor control
statements to specify the relationship
between the segments. One segment, termed
the foot 2~~~~~ must remain in main
storage throughout the execution of the
program.

Before preparing the linkage editor control
statements, you must design the overlay
structure for your program. A tr~ is a
graphic representation of an overlay
structure that shows which segments occupy
main storage at different times. The
design of .trees is discussed in the linkage
editor and loader publication, but for the
purposes of this chapter, figure 5.6
contains a simple example. The program
comprises six procedures, A, B" C, D, E,
and F. Procedure B calls procedure C
which, in turn, calls procedures D and E.
(Only procedure A requires the option
MAIN.)

The main procedure (A) must be in main
storage throughout the execution of the
program. Since the execution of procedure
B will be completed before procedure F is
called, the two procedures can occupy the
same storage; this is depicted by the lines
representing the two procedures in figure
5.6 starting from the common point (node)
X. Procedure B must remain in storage
while procedures C, D, and E are executed,
but procedures D and E can occupy the same
storage; thus the lines representing
procedures D and E start from the node x.

The degree of segmentation that can b~
achieved can be clearly seen from the
figure. Since procedure A must always be
present, it must be included in the root

64

segment. Procedures F, D and E can
usefully be placed in individual seg~ents,
as can procedures Band C be placed
together; there is nothing to be gained by
separating procedures E and C, 'since they
must be present together at some tine
during execution.

Control Statements

Two linkage editor control statements,
OVERLAY and INSERT, control the
relationship of the segments in the cverlay
structure. The OVERLAY statement specifies
the start of a segment and the INSER~
statement specifies the positions of
control sections in a segment. You roust
include the attritute OVLY in the FARM
parameter of the EXEC statement that
invokes the linkage editor, otherwise the
linkage editor will ignore the contrcl
stateroents.

The format of the OVERLAY stateroent is:

OVERLAY symtol

where "symbol" is the node at which the
segment starts (for example, X in figure
5.6). You must specify the start cf every
segment, except the root segment, in an
OVERLAY statement.

The format of the INSERT statement is:

INSERT control-section-name

where "control-section-name" is the name of
the control section (that is, procedure)
that is to be placed in the segrrent. More
than one control section can be specified,
separate the names with commas. The INSERT
statements that name the control sections
in the root segment must precede the first
OVERLAY statement.

Creating an Overlay-Structu~~

The most efficient method of defining an
overlay structure, and the simplest for a
PL/I program, is to group all the OVERLAY
and INSERT statements together and place
them in the linkage editor input (SYSLIN)
after the object modules that form the
program. The linkag~ editor initially
places all these object modules in the root
segment, and then moves those control
sections that are referred to in INSERT
statements into other segments.

This method has the advantage that you
can use batched compilation to process all

r----------------------,
IA: PROC OPTIONS (MAINf;I
I I
I CALL B; I
I 1
I CALL F; I
I I
I END A; I L ______________________ J

r----------------------,
IB: PROC; I
I I
I CALL C; I
I I
I END B; I L ______________________ J

r----------------------,
IC: PROC; I
I I
I CALL D; I

1
1
1
1 Procedure A
1
1
1

r-------------~------------,
1 X 1
1 1
1 1

I I Procedure B 1 1 Procedure F
I CALL E; I ·1 I
I I -+- I
1 END C; 1 I I L ______________________ J

1
1

r----------------------, Procedure C I
ID: PROC; 1 I
I I r-------------~-------------,
I I I Y I
I END D; I 1 I L ______________________ J

I Procedure D I Procedure E
I I

r----------------------, I I
IE: PROC; I I I
I I
I I
I END Ei I L ______________________ J

r----------------------,
IF: PROC; I
1 I
I I
I END Fti I L ______________________ J

Figure 5.6. Overlay structure and its tree

the procedures in one job step and place
the object modules in a temporary data set;
this data set must have consecutive
organization. You can then place the
linkage editor control statements in the
input stream, concatenating them with the
data set that contains the object modules.
(Do not use the NAME compiler option to
name the object modules; if you do, the
NAME statements inserted by the compiler
will cause the linkage editor to attempt to
create separate load modules rather than a
single overluy structure.>

The use of the IBM-supplied catalcged
procedure PLIXCLG te create and execute the
overlay structure.of figure 5.6, is shewn
in figure 5.7.

An alternative approach instead of
batched compilation is to compile the
procedures independently and store therr as
object modules in a private library. You
can then use an INCLUDE statement te place
them in the input to the linkage editor
(SYSLIN).

Chapter 5: The Linkage Editor and the Leader 65

//OPT5#1
//STEPl

JOB
EXEC PLIXCLG,
PARM. LKED=' OVLY'

//PLI.SYSIN DO *
(insert here source statements for
procedure A)

* PROCESS;

(insert here source statements for
procedure B)

* PROCESS;

(insert here source statements for
proced ure C)

* PROCESS;

(insert here source statements for
procedure D)

* PROCESS;

(insert here source statements for
procedure E)

* PROCESS;

(insert here source statements for
procedure F)

/*
//LKED.SYSIN DO *

OVERLAY X
INSERT B,C
OVERLAY Y
INSERT D
OVERLAY Y
INSERT E
OVERLAY X
INSERT F

/*

Figure 5.1. Creating and executing the
overlay structure of figure
5.6

If an INSERT statement contains the name
of an external procedure, the linkage
editor will move only the related program
control section that has the same name.
All other control sections established by
the compiler, and all the PL/I library
SUbroutines" will remain in the root
segment.

It is important that the PL/I library
subroutines be in the root segment, since
the optimizing compiler does not support
exclusive calls (calls between segments
that do not lie in the same path). For
example, in figure 5.6, procedures in the
segment containing 0 could call procedures
in the segments containing A, B, C, and D,
but not in the segments containing E or F.
Procedures in the segments containing B or

66

C could call procedures in the segments
containing A, B, C~ D, and E, but not in
the segment containing F. A procedure.in
the segment containing B may not call a
procedure in the segment containing A if
this latter procedure calls a procedure in
the segment containing F.

However, certain library subroutines may
not be required by all segments, in which
case you can move them into a lower
segment. To do this, compile the
procedures using the compiler option ESD,
and examine the resulting external symbol
dictionary. For example, if in figure 5.6
a library subroutine is called only cy the
segment containing E, you can move it into
that segment by placing an INSERT
statement, specifying the subroutine name,
immediately after the statement INSERT E.

Similarly, you can move control sections
from the root segment to lower segments.
For example, to move the static internal
c9ntrol section for procedure F into the
segment containing F, place the statement
INSERT ******FA after the staterrent INSERT
F. Values assigned to static data items
are not retained when a segment is
overlaid. Do not move static data from the
root segment unless it comprises only:

Values set by the INITIAL attribute and
then unchanged (that is, read-only
data).

Values that need not be retained
between different loadings of the
segment.

LINK EDITING FETCHABLE LOAD MODULES

The PL/I FETCH and REI.·EASE statements
permit the dynamic loading of separate load
modules which can be subsequently invoked
from the PL/I object program.

Fetchable (or dynamically-loaded)
modules should be link edited into a load
module library which is sucsequently made
available for the job step by means of a
JCBLIB or STEPLIB DD statement. When link
editing a fetchable module into a load
module library, specify the linkage editor
option LET and supply a linkage editor
ENTRY statement that defines the initial
point to the fetched module. This entry
pOint will be an entry constant associated
with a PROCEDURE or ENTRY statement' in a
PL/I procedure, or the equivalent in CCECL,
FORTRAN, or assembler-language routines.

The name or any alias by which the
fetchable load rrodule is identified in the
load module library must appear in a FE~CH

or RELEASE 'statement within the scope of
the invoking procedure.

Loader

The loader is an operating system
processing program that produces and
executes load modules. It always stores
the load modules directly in main storage
where they are executed immediately.

The input to the loader can include
single object modules or load modules~
several object modules or load modules, or
a mixture of both. The output from the
loader always comprises an executable
program that is loaded into main storage
from where it will be executed.

Unlike the linkage editor you cannot use
any control statements with the loader. If
any linkage editor control statements are
used, they will be ignored, and their
presence in the input stream will not be
treated as an error. Your job will
continue to be processed, a message will be
generated and, if you have included a DD
statement with the name SYSLOUT, this
message and the name of the control
statement will be printed on your listing.

The loader compensates for the absence
of the facilities provided by control
statements by allowing the concatenation of
both object and load modules in the data
set defined by the OD statement with the
name SYSLIN4 and by allowing an entry point

SYSLIN
(primary input)

r----------------,
I , I
IPL/I object AI
land/or BI-------,
Iload modules CI I
I I 1

to be specified by means of the EP option,
as described in "Optional Facilities,"
later in this chapter.

LOADER PROCESSING

A PL/I program cannot be executed until the
appropriate PL/I library subroutines have
been included. All library subroutines are
included during loading. In basic
processing, as shown in figure 5.8, the
loader accepts data from its primary input
source, a data set defined by the DD
statement with the name SYSLIN. For a PL/I
program, this data is the object module
produced by the comEiler. The loader uses
the external symbol dictionary in this
object module to determine whether the
module includes any external references for
which there are no corresponding external
symbols in the module: it attempts to
resolve such references by a method termed
automatic library call as described in
"Linkage Editor Processing," earlier in
this chapter.

The loader locates the subroutines in
which the external symbols are defined (if
such subroutines exist) and includes them
in the load module. If all external
references are resolved satisfactorily the
load module is executed.

The loader will always search the
link-pack area before searching the PL/I
resident library, as shown in figure 5.9.
The link-pack area is an area of main

L ________________ J 1 r----------------, r----------------,
I 1 I I AI
L ________ >1 1 1 BI

1 loader I 1 CI
1 1----------------->1 main storage DI

r-------->1 1 1 EI SYSLIB 1 ,L ________________ J 1 F 1
(call library) 1 I GI

r----------------, I 1 I I 1 I L ________________ J

IPL/I resident 01 I
I library EI 1
I (SYS1.PLILIB) FI-------J
1 GI
I 1 L ________________ J

Figure 5.8. Basic loader processing

Chapter 5: The Linkage Editor and the Loader 67

SYSLIN
(primary input)

r----------------,
1 I Main
IPL/I object AI storage
land/or load B1--------, r----------,
I modules CI I I I A
I I I I I
L ________________ J I r--.... ------------, I I B--,

I I 1------------------>1 I I
L _______ > I I I I C-, I

I I I I II
I loader I r--------------+----------+->H<J I
I I I I I I

SYSLIB
(call library)

r-------> 1 I 1 I I C<-J
1 1 1 I 1 1 1 r----------------, 1 L _______________ J I I I E<-J

I I I I I I 1
I PL/I resident D 1 I I I 1 F<-J
I library EI--------J I ~------~---i I
I (SYS1.PLILIB) FI I I 1 G<-J
I H~--------------------------------------~ Ilink-pack I
I I I area 1 L ________________ J L ______ ----J

Figure 5.9. Loader processing, link-pack area and SYSLIB resolution

storage in which frequently used load
modules are stored permanently. If there
is more than one copy of an object module
in the data set defined by the DD statement
with the name SYSLIN, the loader will load
the first and ignore the rest.

Main Storage Requirements

The m~n~mum main storage requirements for
the loader are shown in the following
table:

r-----------------------------T--------~--,
I storage required for: I Amount (min) 1
I I in bytes I
~-----------------------------+-----------i
ILoader program 1 10K I
IData management access I 4K I
I routines I I
IBuffers and tables used by 1 3K I
I loader 1 1
IPL/I program to be executed 1 variable 1 L _____________________________ ~ ___ ~ _______ J

This amounts to at least 17K bytes for
the loader and its associated routines and
data areas plus the main storage required
for the program that is to be executed. If
the loader program and the data management
access routines were stored in the
link-pack area, the amount of main storage
required would be 3K bytes for the loader
data area plus that required by the program
that is to be executed.

68

Job Control Language for the Loader

Although you will probably use cataloged
procedures rather than supply all the job
control language (JCL) required for a job
step that invokes the loader~ you shculd be
familiar with these JCL statements so that
you can make the best use of the loader
and, if necessary, override statements of
the cataloged procedures.

The IBM-supplied cataloged procedures
that include a loader procedure step are as
follows: '

PLIXCG Compile, load-and-execute

PLIXG Load-and-execute

The following paragraphs describe the
essential JCL statements for the lc'ader.
The IBM-supplied cataloged procedures are
described in chapter 10 and include
examples of these statements.

EXEC STATEMENT

The name of the loader is IEWLDRGO. It
also has the alias LOADER, which is used in
the IBM-supplied cataloged procedures, and
will be used to refer to the loader program
in the rest of this chapter. The basic
EXEC statement is:

//stepname EXEC PGM=LOADER

r----------T---T----------------------------,
I ddname I Contents of Data Set I Possible Device Classes1 I

~----------+---+----------------------------~
I SYSLIN I Primary input (normally the output from the I SYSSQ or the input job I
I I compiler) I stream (specified by DD *) I

~----------+---+----------------------------~
I SYSLOUT I Loader messages and module map listing I SYSSQ, SYSDA, or SYSGUT=A I

~----------+---+----------------------------~
I SYSPRINT I PL/I execution-time messages and problem I SYSSQ, SYSDA, or SYSOU~=A I

I I output listing I I

~----------+---+----------------------------~
I SYSLIB I Automatic call library I SYSDA I

~----------~---~----------------------------~
11 SYSSQ Magnetic tape or direct-access device I
I SYSDA Direct-access device I
I SYSOUT=A Normal printed output class for system output I L ___ J

Figure 5.10. Loader standard data sets

By using the PARM parameter of the EXEC
statement, you can select one or more of
the optional facilities provided by the
loader; these are described under "Optional
Facilities," later in this chapter.

DD STATEMENTS FOR THE STANDARD DATA SETS

The loader always requires one standard
data set; that defined by the DD statement
with the name SYSLIN. Three other standard
data sets are optional and if you use them
you must define them in DD statements with
the names SYSLOUT, SYSPRINT, and SYSLIB.
The four data sets, their names, and other
characteristics of the data sets, are shown
in figure 5.10.

The data sets defined by the DD
statements with the names SYSLIN, SYSLIB,
and SYSLOUT are those specified at system
generation for your installation. Other
ddnames may have been specified at your
installation; if they have, your JCL
statements must use them in place of those
given above. In a similar manner the
IBM-supplied cataloged procedures PLIXCG
and PLIXG use names as shown above; your
systems programmer will have to modify
these procedures if the names at your
installation are different.

Prim~ry In~t (SYSLIN)

Primary input to the loader must be a
standard data set defined by a DD statement
with the name SYSLIN; this data set must
have consecutive organization. The input
can comprise one or more object modules,
one or more load modules, or a mixture of
object modules and load modules.

For a PL/I program the primary input is
usually a data set containing an object
module produced by the compiler. This data
set may be on magnetic tape or on a
direct-access device, or you can include it
in the input job stream. In all cases the
input must be in the form of aD-byte
F-format records.

The IBM-supplied cataloged procedure
PLIXCG includes the DD statement:

IISYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)

which specifies that the data set &&LOADSET
is temporary. If you want to modify this
statement you must refer to it by the
qualified ddname GO.SYSLIN.

The IBM-supplied cataloged procedure
PLIXG does not include a DD statement for
the input data set; you must always supply
one, specifying the characteristics of your
input data set using the qualified ddname
GO.SYSLIN.

Automatic call Library (SYSLIB)

Unless you specify otherwise, the loader
will normally attempt to resolve external
references by automatic library call. The
automatic call library (SYSLIB), and how to
specify it, is described in the linkage
editor section earlier in this chapter.

Listing (SYSLOUT)

The loadeL generutes a listing that
includes a module map (if you have
specified the MAP option) and, if errors
have been detected during processing,

Chapter 5: The Linkage Editor and the Leader 69

messages referring to these. The
information that may appear is described in
-Listing Produced by the Loader,- later in
this chapter.

You must define the data set in which
you want this listing to be stored by a DD
statement with the name SYSLOUT and it must
have consecutive organization. Although
the listing is usually printed it can be
stored on any magnetic-tape or
direct-access device. For printed output
the following DD statement will suffice:

//SYSLOUT DD SYSOUT=A

Listing (SYSPRINT)

As well as the information listed in the
data set defined by the DD statement with
the name SYSLOUT certain information
pro~uced by the loader is always stored in
the data set defined by the DD statement
with the name SYSPRINT. This data set,
which must have consecutive organization,
holds messages that refer to errors that
have occurred during execution of your
program~ as well as the results produced by
your program. The information that may
appear is described in "Listing Produced by
the Loader," later in this chapter. For
printed output the following DD statement
will suffice:

//SYSPRINT DD SYSOUT=A

EXAMPLES OF LOADER JCL

A sequence of job control language for the
loader is shown in figure 5.11. A PL/I
program has been compiled in a job step
with the step name PLI; the resultant

//LOAD JOB

EXEC PGM=LOADER

object module has been placed in the data
set defined by the DD statement with the
name SYSLIN. Because this module is to be
loaded and executed in the same joc as the
compile step, this DD statement can use the
backward reference, indicated by the
asterisk, as shown. If the compile and
load-and-go steps were in different jocs,
the DD statement would have to specify a
permanent data set, cataloged or
uncataloged.

The IBM-supplied cataloged procedure
PLIXCG includes a DD statement with the
name SYSLIN in both the compile and
load-and-go frocedure steps; you do not
need to specify this statement unless you
want to modify it. The IBM-supplied
cataloged procedure PLIXG does not include
a DD statement with the name SYSLIN; you
must supply one, using the qualified narre
GO.SYSLIN.

Typical job control language statements
for the loader are shown in figure 5.12.
The examfle illustrates how to include, in
the input stream, both an object rrcdule for
input to the loader, and data to ce used by
your program during execution.

The DD statement with the narre SYSLIN
and the two fcllowing unnamed DD statements
define three data sets that are to be
concatenated into one data set to te used
as input to the loader. The first data set
is named OBJMOD and contains an object
module. This data set could be the output
of the optimizing compiler that has just
processed your PL/I frogram. The second
data set is named MCDLIB(MCD55) containing
a load module that has teen given the name
MOD55 and stored in the library called
MODLIB. The third data set is an otject
module defined by the DD statement with the
name IN. This DD statement appears further
on and has the asterisk notation that
indicates that the data set defined ty this
statement follows in the input strearr.

//STEP1
//SYSLIN
//SYSLIB
//SYSLOUT
//SYSPRINT

DD DSN=*.PLI.SYSLIN,DISP=(OLD,DELETE)
DO DSN=SYS1.PLILIB,DISP=SHR
DD SYSOUT=A
DO SYSOUT=A

Figure 5.11. Job control language for load-and-go

70

//LOAD JOB

EXEC PGM=LOADER //STEPl
//SYSLIN
//

DO DSN=OBJECT,UNIT=SYSSQ,VOL=SER=30104,DISP=(OLD,KEEP)
DO DSN=MODLIB(MOD55),OISP=SHR

//
//SYSLIB
//
//SYSLOUT
//SYSPRINT
//IN

DO DDNAME=IN
DO DSN=SYS1.PLILIB,DISP=SHR
DO OSN=PRIVLIB,OISP=SHR
DO SYSOUT=A
DO SYSOUT=A
DO *

(insert here the object module to be loaded)

/*
//SYSIN DO *

(insert here the execution data, if any)

Figure 5.12. Object and load modules in load-and-go

The DD statement with the name SYSLIB
and the unnamed DO statement immediately
following it define two data sets that are
to be concatenated so that they can be
searched for unresolved external references
by automatic library call. The first data
set is the PL/I resident library
(SYS1.PLILIB) and the second is a private
library called PRIVLIB.

Optional Facilities of the Loader

The loader provides a number of optional
facilities that are selected by including
the appropriate keywords from the following
list in the PARM parameter of the EXEC
statement that invokes it:

CALL
EP
LET
MAP
PRINT
RES
SIZE

Code the PARM parameter as follows:

PARM = '[optionlist] [/pgmparm] ,

where no~tion list" is a list of leader
options, and "pgrnparrn" is a parameter to be
passed to the main procedure of the Fl/I
program to be executed. In the examples
given below, the program parameter is
referred to as PP.

If both loader options and a program
parameter occur in the FARM parameter, the
loader options are given first and are
separated from the pregram paramet~r ty a
slash. If there a~e loader options but no
program parameter, the slash is omitted,
but if there are only program pararreters
the slash must be coded. If there is more
than one option, the o~tion keywords are
separated by commas.

The PARM field can have one of three
formats:

1. If the special characters / or = are
used, the field must be enclosed in
single quotes, for example:

PARM=' MAP, EP= FIRS'I/PP ,
=' MAP, EP=FIRS'I'

PARM='/PP'

2. If these characters are not included,
and there is more than one leader
option, the options must te enclosed
in parentheses, for example:

Chapter 5: The Linkage Editor and the Loader 71

PARM=(MAP,LET)

3. If these characters are not included,
and there is only one loader option,
neither quotes nor parentheses are
required, for example:

PARM=MAP

To overwrite the PARM parameter options
specified in a cataloged procedure, you
must refer to the PARM parameter by the
qualified name PARM.procstepname, for
example: PARM.GO.

The loader options are of two types:

1. Simple pairs of keywords: a positive
form (for example, CALL) that requests
a facility, and an alternative
negative form (for example NOCALL)
that rejects that facility. CALL~
LET, MAP, PRINT, and RES are of this
type.

2. Keywords that permit you to assign a
value to a function (for example~
SIZE=10K). EP and SIZE are of this
ty~e.

The loader options, in alphabetic order,
are as follows.

The CALL option specifies that the loader
will attempt to resolve external references
by automatic library call. To preserve
compatibility with the linkage editor, the
negative form of this option can be
specified as NCAL as well as by NOCALL.

The EP option specifies the entry point
name of the program that is to be executed.
The format of the EP option is:

EP=name

where "name" is an external name. If all
input modules are load modules you must
specify EP=PLISTART.

LET Option

The LET option specifies that the loader
will try to execute the problem program
even if a severity 2 error has been found.

72

MAP Option

The MAP option specifies that the loader is
to print a map of the load modul~ giving
the relative locations and lengths of
control sections in the module. Ycu must
specify the data set defined by the DD
statement with the name SYSLOUT to have
this map printed. The module map is
described in "Listing Pro~uced by the
Loader," later in this chapter.

The PRINT option specifies that the data
set defined by the DD statement with the
name SYSLOUT is to be used for messages,
the module map, and other loader
information.

The RES option specifies that the loader
will attempt to resolve external references
by a search of the link-pack area of main
storage. This search will be made after
the primary input to the loader has teen
processed but before the data set defined
by the DD statement with the name SYSLIB is
opened.

SIZE Option

The SIZE option specifies the amount of
main storage, in bytes, to be allocated to
the loader. The format of the SIZE option
is:

SIZE=yyyyyy specifies that yyyyyy bytes of
main storage are to be
allocated to the loader.

SIZE=yyyK specifies that yyyK bytes of
main storage are to be
allocated to the loader
(lK=1024).

The values can be enclosed, optionally,
in parentheses.

Listing Produced by the Loader

The loader can provide a listing on the
SYSLOUT data set; the SYSPRINT data set is
used by the problem program. The contents
of each is:

SYSLOUT

SYSPRINT

Contents

Loader explanatory messages and
diagnostic messages, and
optionally, a module map.

PL/I execution-time messages,
and problem program output.

The SYSLOUT listing is described here; the
SYSPRINT listing is described in chapter 4.

The items in the SYSLOUT listing appear
in the following sequence.

1. statement identifying the loader.

2. Module map (if specified).

3. Explanatory, error, or warning
messages.

4. Diagnostic messages.

MODULE MAP

If the MAP option is specified, a module
map is printed in the SYSLOUT listing. The
map lists all the control sections in the
load module and all the entry point names
(other than the first) in each control
section. The information for each
reference is:

1. The control section or entry pOint
name.

2. An asterisk, if the control section is
included by automatic library call.

3. An identifier, as follows:

SD Section definition: the name of
the control section.

LR Label reference: identifying an
entry point in the control section
other than the primary entry
point,

CM Common area: an external file, or
a non-string element variable

declared STATIC EXTERNAL without
the INITIAL attribute.

4. Absolute address of the control
section or entry foint.

Each reference is printed left tc right
across the page and starts at a preset
position. This gives the impression that
the references are arranged in columns, but
the correct way to read the map is line by
line, across the page, not down each
column.

The module map is followed by a sirrilar
listing of the pseudo-registers. The
identifier used here is PR, and the address
is the offset from the teginning of the
pseudo-register vector (PRV). The total
length of the PRV is given at the end.

The total length of the module to be
executed, and the absolute address of its
primary entry point, are given after the
explanatory messages and before the
diagnostic messages.

EXPLANATORY AND DIAGNOSTIC MESSAGES

The loader generates messages describing
errors or conditions, detected during
processing by the loader, that may lead to
error. The format of these messages is
given in "Diagnostic Messages and Control
Statements" in the linkage editor section
earlier in this chapter.

When the module to be executed has been
processed, the loader prints out in full
all the messages referred to above. The
text of each message, an explanation, and
any recommended programmer response, are
given in the linkage editor and loader
publication.

The warning message IEW1001 almost
always appears in the listing. The
explanation for this is the same as that
for IEW0461, described under "Diagnostic
Message Directory," in the linkage editor
section earlier in this chapter.

Chapter 5: The Linkage Editor and the Loader 73

Chapter 6: Data Sets and Files

This chapter describes briefly the nature
and organization of data sets, the data
management, services provided by the
operating system, and th~ record formats
acceptable for auxiliary storage devices.
The way in which a data set is associated
with a PL/I file is fully described in the
language referEnce manual for this
compiler. Methods of creating and
accessing data sets in PL/I are given in
chapters 7 and 8.

Data Sets

In IBM system/360 Operating system, a data
set is any collection of data that can be
created by a program and accessed by the
same or another program. A data set may be
a deck of punched cards; it may be a series
of items recorded on magnetic tape or paper
tape; or it may be recorded on a
direct-access device such asa magnetic
disk or drum. A printed listing produced
by a program is a data set, but it cannot
be accessed by a program.

A data set resides on one or more
volumes. A volume is a standard physical
unit of auxiliary storage (for example. a
reel of magnetic tape or a disk pack) that
can be written on or read by an
input/output device; a serial number
identifies Each volume (other than a
punched-card or paper-tape volume or a
magnetic-tape volume either without labels
or with nonstandard labels).

A magnetic-tape or direct-access volume
can contain more than one data set;
conversely, a single data set can span two
or more magnetic-tape or direct-access
volumes.

DATA SET NAMES

A data set on a direct-access device must
have a name so that the operating system
can' refer to it. If you do not supply a
name, the operating system will supply a
temporary one. A data set on a
magnetic-tape device must have a name if
the tape has standard labels (see "Labels,"
later in this chapter.) A name consists of
up to eight characters, the first of which
must be alphabetic. Data sets on punched
cards, paper tape, unlabeled magnetic tape,

74

or nonstandard unlateled magnetic tape do
not have names.

You can place the name of a data set,
with information identifying the vclume cn
which it resides, in a catalog that exists
on the volume containing the operating
system. Such a data set is termed a
cataloged dataset. To catalog a data set
use the CATLG subparameter of the DISP
parameter of the DD statement. To retrieve
a cataloged data set, you do not need to
give the volume serial number or identify
the type of device; you need only specify
the name of the data set and its
disposition. The operating system searches

'the catalog for information associated with
the name and uses this information to
request the operator to mount the volu~e
containing your data set.

If you have a set of related data sets,
you can increase the efficiency of the
search for a particular data set by
establishing a hierarchy of indexes in the
catalog. For example, consider an
installation that groups its data sets
under four headings: ENGRNG, SCIENCE,
ACCNTS, and INVNTRY, as shown iri figure
6.1. In turn, each of these groups is
subdivided; for example, the SCIENCE group
has subgroups called PHYSICS, CHEM, MATH,
and BIOLOGY. The MATH subgroup itself
contains three subgroups: ALGEBRA,
CALCULUS, and BOOL.

I
I

r--------T-------~-------T--------,
I I I I
I I I I

ENGRNG SCIENCE ACCNTS INVNTRY
I
I
I

r----~--T--~----T-------,
I I I I
I I I I

PHYSICS CHEM MATH BIOLOGY
I
I
I

r----~------T---------,
I I I
I I I

ALGEBRA CALCULUS BOOL

Figure 6.1. A hierarchy of indexes

To find the data set BaaL, the.nanes cf
all the indexes of which it is part must be
specified, beginning with the largest grcup

SCIENCE, foilowed by the subgroup name MATH
and finally the data set name BaaL. The
names are separated by periods. The
complete identification needed to find the
data set BaaL is

SCIENCE.MATH.BOOL

such an identifier is termed a qualified
~. The maximum length of a qualified
name is 44 characters, including the
separating periods; each component name has
a maximum length of eight characters. (Do
not use names that begin with the letters
SYSi if the name is qualified do not use P
as the nineteenth character. The names
assigned by the operating system to unnamed
temporary data sets are of this form, with
P as the nineteenth character, and these
data sets are deleted when the utility
program IEHPROGM is used with a SCRATCH
statement that includes the keywords VTOC
and SYS.)

Some data sets are updated periodically,
or are logically part of a group of data
sets, each of which is related to the other
in time. You can relate such data sets to
each other in what is termed a generation
data_~f2~E. Each data set in a generation
data group has the same name qualified by a
unique parenthesized generation number (for
example, STOCK(O), STOCK(-i), STOCK(-2».
The most recently cataloged data set is
generation 0, and the preceding generations
are -1, -2, and so on. You specify the
number of generations to be saved when you
establish the generation data group.

For example, consider a generation data
group that contains a series of data sets
used for weather reporting and forecasting;
the name of the data sets is WEATHER. The
generations for the group (assuming that
three generations are to be saved) are:

WEATHER (0)
WEATHER(-i)
WEATHER (-2)

When WEATHER is updated, the new data
set is specified to the operating system as
WEATHER(+l). When it catalogs the new data
set, the operating system changes the name
to WEATHER(O), changes the former
WEATHER(O) to WEATHER(-i), the former
WEATHER(-i) to WEATHER(-2), and deletes the
former WEATHER(-2).

To find out how to create a generation
data group, refer to the job control
language and utilities publications.

BLOCKS AND RECORDS

The items of data in a data set are
arranged in blocks se~arated by interclock
gaps (IBG)1..

A block is the unit of data transIT,i tted
to and from a data set. Each block
contains one record, part of a record, or
several records. A block could also
contain a prefix field of up to 99 cytes in
length depending on the code (ASCII or
EECDIC) in'which the data is recorded.
These codes are discussed in "Data Codes,"
below. Specify the clock size in the
BLKSIZE parameter of the DD statement or in
the BLKSIZE o~tion of the ENVIRONMENT
attribute.

A record is the unit of data transmitted
to and from a program. When writing a PL/I
program, you need consider only the records
that you are reading or writing; but when
you describe the data sets that your
program will create or access, you must be
aware of the relationship between blocks
and records.

If a block contains two or more records,
the records are said to be blocked.
Blocking conserves storage space in a
volume because it reduces the number of
in~ut/output operations required to process
a data set. Records are blocked and
deblocked automatically cy the data
management routines.

Data Codes: The normal code in which data
is recorded in System/360 is the Extended
Binary Coded Decimal Interchange Code

. (EBCDIC) although source input can
o~tionally be coded in BCD (Binary Coded
Decimal). However, for magnetic tape only,
System/360 will accept data recorded in the
American Standard Code for Information
Interchange (ASCII). Use the ASCII and
BUFOFF options of the ENVIRONMENT attritute
if you are reading or writing data sets
recorded in ASCII.

A prefix field up to 99 tytes in length
may be present at the beginning of each
block in an ASCII data set. The use of
this field is controlled by the BUFOFF
option. For a full description of the
options used for ASCII data sets see the
language reference rranual for this
compiler.

1 Although the term "interrecord ga~" is
widely used in operating system manuals, it
is not used here; it has been replaced by
the more accurate term "intertlock gap."

Chapter 6: Data sets and Files 75

RECORD FORMATS

The records in a data'set must have one of
the following formats:

F fixed length

v variable length (D- or V-format)

U undefined length

All formats can be blocked if required,
but only fixed- and variable-length records
are, deblocked automatically by the system;
undefined length records must be deblocked
by your program.

fix~9-I~gth Records (F-format Records)

You c~n specify the following formats for
fixed-length records:

F Fixed-length, unblocked
FB Fixed-length, blocked
FS Fixed-length, unblocked, standard
F~~J Fixed-length, blocked, standard

In a data set with fixed-length records,
as shown in figure 6.2, all records have
the same length. If the records are
blocked, each block contains an equal
number of fixed-length records (although
the last block may be truncated if there
are insufficient records to fill it). If
the records are unblocked, each record
constitutes a block.

Unblocked records (F-format):

r--------, r--------, r--------, r--
I Record IIBGI Record IIBGI Record IIBGI L ________ J L ________ J' L ________ J L __

Blocked records (FB-format):

r------------Block--------.---,

r----------------------------, r--------
I Record Record Record I IBGI Record L ____________________________ J L _______ _

Figure 6.2. Fixed-length records

Because it can base blocking. and
deblocking on a constant record length~ the
operating system can process fixed-length
records faster than variable-length
records. The use of ftstandard ft (FS-format
and FBS-format) records further optimizes
the sequential processing of a data set on
a direct-access device. A standard format
data set must contain fixed-length records
and must have no embedded empty tracks or
short blocks (apart from the last block).

J ..

16

with a standard format data set, the
operating system can predict whether the
next block of data will be on a new track
and, if necessary, can select a new
read/write head in anticipation of the
transmission of that block. A PL/I program
never places embedded short blocks in a
data set with fixed-length records. A data
set containing fixed-length records can be
processed as a standard data set even if it
is not created as such, providing it
contains no embedded short blocks or errpty
tracks.

Variable-len~h Records (D- or V-format
Records)

You can specify the following forrrats for
variable-length records:

V Variable-length, unblocked
VB Variable-length, blocked
VS Variable-length, unblocked, spanned
VBS Variable-length, blocked, spanned
D Variable-length, unblocked, ASCII
DB Variable-length, blocked, ASCII

V-format permits both variable-length
records and variable-length blocks. The
first four bytes of each record and of each
block contain control information for use
by the operating system (including the
length in bytes of the record or block).
Because of these control fields,
variable-length records cannot be read
backwards. Illustrations of
variable-length records are shown in figure
6.3.

V-format signifies unblocked
variable-length records. Each record is
treated as a block containing only one
record, the first four bytes of the block
contain block control information, and the
next four contain record control
information.

VB-format signifies blocked
variable-length records. Each block
contains as many complete records as it can
accommodate. The first four bytes of the
block contain block control information,
and the first four bytes of each T€cord
contain record control information.

Spanned Records: A spanned record is a
variable-length record in which the length
of the record can exceed the size of a
block. If this occurs, the record is
divided into segments and accommodated in
two or more consecutive blocks by.
specifying the record format as either VS
or VBS. Segmentation and reassembly are
handled automatically. The use of spanned
records allows you to select a block size,

V format:

Record 2

VB-format:

I LC_1~I_C_2~1 ____ R_e_c_or_d_1 ____ LIC_2~1 _____ R_ec_o_rd __ 2 __ ~IIBGIC1IC21 Record 3

VS-format:

VBS-format:

Record 1
(entire)

Record 2
(first segment)

spanned record

Record 2
(last segment)

IBG

spanned record·

Record 1
(entire)

C1: Block control information

Record 2
(first segment)

C2: Record or segment control information

Figure 6.3. Variable-length records

independently of record length, that will
combine optimum use of auxiliary storage
with maximum efficiency of transmission.

VS-format is similar to V-format. Each
block contains only one record or segment
of a record. The first four bytes of the
block contain block control information,
and the next four contain record or segment
control information (including an
indication of whether the record is
complete or is a first, intermediate, or
last segment).

With REGIONAL(3) organization, the use
of VS-format removes the limitations on
block size imposed by the physical
characteristics of the direct-access
device. If the record length exceeds the
size of a track, or if there is no room
left on the current track for the record,
the record will be spanned over one or more
tracks.

Record 2
(last segment)

Record 3

VBS-format differs from VS-forrnat in
that each block contains as many complete
records or segments as it can accorr~cdate;
each block is, therefore, approximately the
same size (although there can be a
variation of up to four bytes, since each
segment must contain at least one byte of
data).

ASCII Records: For data sets that are
recorded in ASCII use D-format as follows:

D-format records are similar to V-format
except that the data they contain is
recorded in ASCII.

DB-format records are similar to
VB~format except that the data they contain
is recorded in ASCII.

Chapter 6: Data Sets and Files 77

Undefined-length Records (U-format Records)

U-format permits the processing of records
that do not conform to F- and V-formats.
The operating system and the compiler treat
each block as a record; your program must
perform any required blocking or
deblocking.

DATA SET ORGANIZATION

The data management routines of the
operating system can handle five types of
data set, which differ in the way data is
stored within them and in the permitted
means of access to the data. The three
main types of data set and the
corresponding keywords describing their
PL/I organization1 are as follows:

PL/I Organization

Sequential CONSECUTIVE

Indexed sequential INDEXED

Direct REGIONAL

The fourth type, teleprocessing, is
recognized by the compiler by the file
attribute TRANSIENT.

The fifth type, partitioned, has no
corresponding PL/I organization.

In a segu~tial (or CONSECUTIVE) data
set, records are placed in physical
sequence. Given one record, the location
of the next record is determined by its
physical position in the data set.
sequential organization is used for all
magnetic tapes, and may be selected for
direct-access devices. Paper tape, punched
cards, and printed output are sequentially
organized.

An inde~~~egu~ntial (or INDEXED) data
set must reside on a direct-access volume.
Records are arranged in collating sequence,
according to a key that is associated with
every record. An index or set of indexes
maintained by the operating system gives
the location of certain principal records.
This permits direct retrieval, replacement,
addition, and deletion of records, as well
as sequential processing.'

1 Do not confuse the terms "sequential" and
"direct" with the PL/I file attributes
SEQUENTIAL and DIRECT. The attributes
refer to how the file is to be processed,
and not to the way the corresponding data
set is organized.

78

A direct (or REGIONAL) data set must
reside on a direct-access volume. The
records within' the data set can be
organized in three ways: REGIONAL(l) ,
REGIONAL(2), and REGIONAL(3); in each case,
the data set is divided into regions, each
of which contains one or more records. A
key that specifies the region number and,
for REGIONAL(2) and REGIONAL(3), identifies
the record, permits direct access to any
record; sequential processing is also
possible.

A teleprocessing data set (associated
with a TRANSIENT file in a PL/I program)
must reside in main storage. Records are
placed in physical sequence; a key embedded
in the record provides direct access to any
record.

In a partitioned data set, independent
groups of sequentially organized data, each
called a member, reside on a direct-access
volume. The data set includes a directory
that lists the location of each rr.errber.
Partitioned data sets are often called
libraries. The compiler includes no
special facilities for creating and
accessing partitioned data sets; however,
this is not necessary since each merober can
be processed as a CONSECUTIVE data set ty a
PL/I program, and there is ready access to
the operating system facilities for
partitioned data sets through job control
language. The use of partitioned data sets
as libraries is described in chapter 9.

LABELS

The operating system uses labels tc
identify magnetic-tape and direct-access
volumes and the data sets they contain, and
to store data set attritutes (for example,
record length and block size). The
attribute information must originally come
from a DD statement or from your prcgrarn.
Once the label is written you need net
specify the information again.

Magnetic-tape volumes can have standard
or nonstandard labels, or they can be
unlabeled. Standard lacels have two parts:
the initial volume label, and header and
trailer labels. The initial volume label
identifies a volume and its owner; the
header and trailer latels precede and
follow each data set on the volurr.e. Header
labels contain system information,
device-dependent information (for exarr.ple,
recording technique), and data set
characteristics. Trailer labels are alrrest
identical with header labels, and are used
when magnetic tape is read backwards.

Direct-access volumes have standard
labels. Each volume is identified by a
volume label, which is stored at a standard
location on the volume. This label
contains a volume serial number and the
address of a volume table of contents
(VTOC). The table of contents, in turn,
contains a label, termed a data set control
block (DSCB), for each data set stored on
the volume.

DATA DEFINITION (DO) STATEMENT

A data definition (DD) statement is a job
control statement that defines a data set
to the operating system, and is a request
to the operating system for the allocation
of input/output resources. Each job step
must incluqe a DD statement for each data
set that is processed by the step.

Chapter 1 describes the format of job
control statements. The operand field of
the DO statement can contain keyword
parameters that describe the location of
the aata set (for example, volume serial
number and identification of the unit on
which the volume will be mounted) and the
attributes of the data itself (for example,
record format).

The DD statement enables you to write
PL/I source programs that are independent
of the data sets and input/output devices
they will use. You can modify the
parameters of a data set or process
different data sets without recompiling
your program; for example, you can cause a
program that originally read punched cards
to accept input from magnetic tape merely
by changing the DD statement.

The name that appears in the name field of
the DO statement (ddname) identifies the
statement so that other job control
statements and the PL/I program can refer
to it. A ddname must be unique within a
job step; if two DD statements in one job
step have the same name, the second
statement is ignored. Except when
specifying the concatenation of two or more
data sets, a DO statement must always have
a name.

For input only you can concatenate two
or more sequential or partitioned data sets
(that is, link them so that they are
processed as one continuous data set) by
omitting the ddname from all but the first
of the DD statements that describe them.

For example, the following DD statements
cause the data sets LIST1, LIST2, and LIST3
to be treated as a single data set for the
duration of the job step in which the
statements appear:

//GO.LIST DD DSNAME=LIST1,DISP=OLD
// DD DSNAME=LIST2,DISP=OLD
// DD DSNAME=LIST3,DISP=OLD

When read from a PL/I prograrr the
concatenated data sets need not te on the
same volume, but the volumes must be on the
same type of device, and the data sets must
have similar characteristics (for example,
block size and record format). You cannot
process concatenated data sets backwards.

Parameters of DD Statement

The operand field of the DD statement
contains keyword parameters that yeu can
use to give the following information:

1. The name of the data set (DSNAME
parameter).

2. Description of the device and volume
that contain the data set (UNIT,
VOLUME, SPACE, LABEL, and SYSCUT
parameters).

3. Disposition of the data set tefore and
after execution of the job step (LISP
parameter).

4. Data set characteristics (DeE
parameter).

The following paragraphs summarize the
functions of these groups of pararreters.
For full details of all the parameters,
refer to the jot control language
publications.

NAMING THE DATA SET

The DSNAME parameter specifies the name of
a newly defined data set or refers to the
name of an existing data set (for example,
DSNAME=ROOTS). You need not specify the
DSNAME parameter for a temporary data set
(one that exists only for the duraticn cf
the job in which it is created); the
operating system will give it a terrpcrary
name.

Chapter 6: Lata Sets and Files 79

DESCRIBING THE DEVICE AND VOLUME

The UNIT parameter specifies the type of
input/output device to be allocated for the
data set. You can specify the type by
giving the actual unit address, the type
number of the unit (for example, UNIT=2400
for the 2400 series Nine-track Magnetic
Tape Drive), or by naming a group of units
established at system generation (for
example, UNIT=SYSDA for any direct-access
device).

The VOLUME parameter identifies the
volume on which the data set resides (for
example, VOLUME=SER=1234S). It can also
include instructions for mounting and
demounting volumes.

The SPACE parameter specifies the amount
of auxiliary storage required to
accommodate a data set on a direct-access
device (for example, SPACE=(CYL,10)
specifies that 10 cylinders are to be
allocated).

The LABEL parameter specifies the type
and contents of the data set labels for
magnetic tape (for example, LABEL=4
indicates that the data set is the fourth
data set on the volume).

The SYSOUT parameter allows you to route
an output data set through a system output
device (for example, SYSOUT=A). A system
output device is any unit (but usually a
printer or a card punch) that is used in
common by all jobs. The computer operator
allocates all the system output devices to
specific classes according to device type
and function. The usual convention is for
class A to refer to a printer and class B
to a card punch; the IBM-supplied cataloged
procedures assume that this convention is
followed. If you use the SYSOUT parameter,
the only other information you may have to
supply about the data set is the block
size, which you can specify either in the
DCB parameter of the DD statement or in
your PL/I program.

DISPOSITION OF THE DATA SET

The DISP parameter indicates whether a data
set exists or is new, and specifies what is
to be done with it at the end of the job
step (for example, DISP=(NEW,KEEP)
specifies that a data set is to be created
and that it is to be kept on the volume of
the end of the jop step). At the end of a
job step, you can delete a data set, pass
it to the next step in the same job, enter
its name in the system catalog or have it
removed from the catalog, or you can keep

80

the data set for future use without
cataloging it.

The LEAVE and REREAD options of the
ENVIRONMENT attribute allow you to use the
DISP parameter to control the action taken
when the end of a magnetic-tape volurre is
reached or when a magnetic-tape data set is
closed. For a description of these oFtions
refer to the language reference manual for
this compiler.

DATA SET CHARACTERISTICS

The DCB (data control block) paraReter of
the DD statement allows you to describe the
characteristics of the data in a data set,
and the way it will be processed, at
execution time. Whereas the other
parameters of the DD statement deal chiefly
with the identity, location, and disFosal
of the data set, the DCB parameter
specifies information required for the
processing of the records themselves. The
subparameters of the DCB parameter are
described in appendix A. For DCB use, see
"Data Control Block," later in this
chapter.

The DCB parameter contains subparameters
that describe:

1. The organization of the data set and
how it will be accessed (CYLCFL,
DSORG, LIMCT, NCP, NTM, and OP'ICD
subparameters).

2. Device dependent informat~on such as
the recording technique for rragnetic
tape or the line sF acing for a printer
(CODE, DEN, MODE" PRTSP, S'I'ACK, and
TRTCH subparameters).

3. The record format (BLKSIZE, KEYLEN,
LRECL, RECFM, and RKP subparameters).

4. The number of buffers that are to be
used (BUFNO subparameter).

5. The printer or card punch control
characters (if any) that will be
inserted in the first byte of each
record (RECFM subparameter).

You can sFecify ELKSIZE, BUFNO, LRECL,
KEYLEN, NCP, RECFM, RKP, and TRKOFL (or
their equivalents) in the ENVIRCNMENT
attribute of a file declaration in your
PL/I program instead of in the DCB
parameter.

You cannot use the DCB parameter to
override information already established
for the data set in your PL/I program (by
the file attributes declared and the other

attributes that are implied by them). DCB
subparameters that attempt to change
information already supplied are ignored.
An example of the DCB parameter is:

DCB=(RECFM=FB,BLKSIZE=400,LRECL=40)

which specifies that fixed-length records,
40 bytes in length, are to be grouped
together in a block 400 bytes long.

Operating System Data Management

An object module produced by the optimizing
compiler uses the data management routines
of the operating system to control the
storage and retrieval of data. The
compiler translates each input and output
statement in a PL/I program into a set of
machine instructions that result in the
issuing of assembler language macro
instructions that request the data
management routines to perform the required
input or output operations. (These macro
instructions are described in the
supervisor and data management macro
instructions publication.)

The macro instructions are either issued
directly by compiled code or by appropriate
subroutines from the transient library. In
the latter case, the compiled code includes
a branch to an interface subroutine in the
resident library that initiates the flow of
control through other required library
subroutines.

The data management routines control the
organization of data sets, as well as the
storage and retrieval of the records they
contain. They create and maintain data set
labels, indexes, and catalogs; they
transmit data between main storage and
auxiliary storage; they use the system
catalog to locate data sets; and they
request the operator to mount and demount
volumes as required.

BUFFERS

The data management routines can provide
areas of main storage, termed buffers. in
which data can be collected before it is
transmitted to auxiliary storage, or into
which it can be read before it is made
available to a program. The use of buffers
permits the blocking and deblocking of
records, and may allow the data management
routines to increase the efficiency of
transmission of data by. anticipating the
needs of a program. Anticipatory buffering
requires at least two buffers: while the

program is frocessing the data in one
buffer, the next block of data can be read
into another. Anticifatory buffering can
only be used for data sets being accessed
sequentially.

The oferating system can further
increase the efficiency of transmission in
a frog ram that involves many input/output
operations by using chained scheduling._ In
chained scheduling, a series of read or
write oferations are chained together and
treated as a single operation. For chained
scheduling to be effective, at least three
buffers are necessary. For more
information on chained scheduling see the
data management services publication.

The data ~anagement routines have two
ways of making data that has been read into
a buffer available to a program. In the
~ mode, the data is actually transferred
from the buffer into the area of rrain
storage occufied by the program. In the
locate mode, the program can process the
data while it is still in the buffer; the
data management routines pass the address
of the buffer to the program to enable it
to locate the data. Similarly a program
can move outfut data into the buffer or it
can build the data in the buffer itself.

ACCESS METHODS

Data management has two access techniques
for transmitting data between main storage
and auxiliary storage:

The queued access techniq~~ deals with
individual records, which it blocks and
deblocks automatically. Records are
retrieved and written by means of macro
instructions. The first time a macro
instruction is issued to retrieve a record,
the data management routines place a block
of records in an input buffer and pass the
first record to the frog ram that issued the
instruction (that is, they deblock the
records): each succeeding retrieval passes
another record to the program. When the
input buffer is empty, it is automatically
refilled with another block. Similarly,
another macro instruction places records in
an output buffer and, when the buffer is
full, writes out the records. Since the
queued access technique brings records into
main storage before they are requested, it
can be used only for records that have been
stored sequentially.

The basic access technig~ uses ether
macro instructions for input and output.
These instructions move blocks, not
records. When a macro instruction is
issued to retrieve a block, the data

Chapter 6: Data Sets and Files 81

management routines pass a block of data to
the program that issued the instruction;
they do not deblock the records.
Similarly, another macro instruction
transmits a block to auxiliary storage.

The combination of data set
organization, as described earlier in this
chapter, and an access technique is termed
an access method. The access methods used
by the compiler are:

QSAM:

QISAM:

BSAM:

BISAM:

BDAM:

Queued sequential access method:
this combines the queued access
technique with sequential
organization.

Queued indexed sequential access
method: this combines the queued
access technique with indexed
sequential organization.

Basic sequential access method:
this combines the basic access
technique with sequential
organization.

Basic indexed sequential access
method: this combines the basic
access technique with sequential
organization.

Basic direct access method: this
combines the basic access
technique with direct
organization.

TCAM: Telecommunications access method:
this combines the queued access
technique with telecommunications
organization.

The PL/I library subroutines use QSAM
for stream~oriented transmission and all of
the above methods for record-oriented
transmission, as shown in figure 6.4. 'Ibey
implement PL/I GET and PUT statements by
transferring the appropriate number of
characters from or to the buffers~ and use
GET and PUT macro instructions in the
locate mode to fill or empty the buffers.
(For paper tape, however, the library
subroutines use the move mode to permit
translation of the transmitted characters
before passing them to the PL/I program.)

DATA CONTROL BLOCK

A data control block (DCB) is an area of
main storage that contains information
about a data set and the volume that
contains it. The data management routines
refer to this information when they are
processing a data set; no data set can te
processed unless there exists a
corresponding DCB. For a PL/I program, a
PL/I library subroutine creates a DCE for
the associated data set when a file is
opened.

r-----------------T---T-----------------,
I Data Set I File Attributes I Access I
I Organization I I Methods I
~-----------------+----------------T-----------------T----------------+-----------------~
I I I INPUT I BUFFERED I QSAM I

I CONSECUTIVE I SEQUENTIAL I OUTPUT ~----------------+-----------------~
I I I UPDATE I UNBUFFERED I BSAM I

r-----------------+----------------+-----------------+----------------+-----------------~
I I I INPUT I BUFFERED I I
I ; SEQUENTIAL I OUTPUT I or I QISAM I
I INDEXED I I UPDATE I UNBUFFERED I I

I ~----------------+-----~-----------+----------------+----------------~~
I I DIRECT I INPUT I I BISAM I
I I I UPDATE I I I

r-----------------+----------------+-----------------+----------------+-----------------~
I I I INPUT I I BSAM I
I I SEQUENTIAL I UPDATE I BUFFERED I I

I I ~-----------------~ or ~-----------------~
I I I OUTPUT I UNBUFFERED I BSAM I

I REGIONAL r----------------+-----------------+----------------+-----------------~
I I I INPUT I I I
I I DIRECT I OUTPUT I I BDAM I
I I I UPDATE I I I

r-----------------+----------------+----~------------+----------------+-----------------~
I TELEPROCESSING I TRANSIENT I INPUT I BUFFERED I TCAM I

I I I OUTPUT I I I L _________________ ~ ________________ ~ _________________ ~ ________________ ~ _________________ J

Figure ~.4. Access methods for record-oriented transmission

82

A data control block contains two types
of information: data set characteristics
and processing requirements. The
characteristics include record format,
record length, block size, and data set
organization. The processing information
may specify the number of buffers to be
used, and it may include device-dependent
information (for example, printer line
spacing or magnetic-tape recording
density>, and special processing options
that are available for some data-set
organizations.

The information in the DCB comes from
three sources:

1. The file attributes declared
implicitly or explicitly in the PL/I
program.

2. The data definition (DO) statement for
the data set.

3. If the data set exists, the data set
labels.

OPENING A FILE

The execution of a PL/I OPEN statement
associates a file with a data set. This
requires the merging of the information

describing the file and the data set. If
any conflict is detected between file
attributes and data set characteristics the
UNDEFINEDFILE condition will be raised.

Subroutines of the PL/I library create a
skeleton data control block for the data
set, and use the file attributes from the
DECLARE and OPEN statements, and any
attributes implied by the declared
attributes~ to complete the data control
block as far as possible, as shown in
figure 6.5. They then issue an OPEN macro
instruction, which calls the data
management routines to check that the
correct volume is mounted and to complete
the data control block. The data
management routines examine the data
control block to see what information is
still needed and then look for this
information, first in the DO statement, and
finally, if the data set exists and has
standard labels, in the data set labels.
For new data sets, the data management
routines begin to create the labels (if
they are required) and to fill them with
information from the data control bleck.

Neither the DO statement nor the data
set label can override information provided
by the PL/I program; nor can the data set
label override information provided by the
DO statement.

PL/I PROGRAM DCL MASTER FI LE ENV(FB BLKSIZE(400),
RECSIZE(40));

OPEN FI LE(MASTE R);

DO STATEMENT //MASTER DO UNIT=2400
VOLUME=SE R= 1791,
DSNAME=LlST,
DCB=(BUFNO=3, ______ -+_...:~

RECFM=F,
BLKSIZE=400,
LRECL=100)

DATA SET LABEL Record format=F
Record length= 1 00
Blocking factor=4
Recording density=1600

Note: Information from the PL/I program overrides that from the DO statement and the data'set label.
I nformation from the DO statement overrides that from the data set label.

Figure 6.5. How the operating system completes the DCB

DATA CONTROL BLOCK

Record format FB

Block size. 400

Record length 40

Device type 2400

Number of buffers 3

Recording density 1600

Chapter 6: Data Sets and Files 83

When the DCB fields have been filled in
from these sources, control returns to the
PL/I library subroutines. If any fields
have still not been filled in, the PL/I
OPEN subroutine provides default
information for some of them; for example,
if LRECL has not been specified, it is now
provided from the value given for BLKSIZE.

CLOSING A FILE

The execution of a PL/I CLOSE statement
dissociates a file from the data set with
which it was associated. The PL/I library
subroutines first issue a CLOSE macro
instruction and, when control returns from
the data management routines, release the
data control block that was created when
the file was opened. The data management
routines complete the writing of labels for
new data sets and update the labels of
8xisting data sets.

Record Formats for Auxiliary Storage

The following paragraphs state the record
formats acceptable for various types of
auxiliary storage devices, and summarize
the salient operational features of these
devices.

CARD READER AND PUNCH

Both the card reader and card punch accept
F-format, V-format, and U-format records;
the control bytes of V-format records are
not punched. Any attempt to block records
is ignored.

Each punched card corresponds to one
record; you should therefore restrict the
maximum record length to 80 bytes (EBCDIC
mode) or 160 bytes (column-binary mode).
To select the mode, use the MODE
subparameter of the DCB parameter of the DD
statement; if you omit this subparameter,
EBCDIC is assumed. (The column-binary mode
increases the packing density of
information on a card, punching two bytes
in each column. Only six bits of each byte
are punched; on input, the two high-order
bits of each byte are set to zero; on
output, the two high-order bits are lost.)
The Card Read Punch 2540 has five stackers
into which cards are fed after reading or
punching. Two stackers accept only cards
that have been read, and two others accept
only those that have been punched; the
fifth (center) stacker can accept either

84

cards that have been read or those that
have been punched. The two stackers in
each pair are numbered 1 and 2 and the
center stacker is numbered 3, as shown in
figure 6.6.

r---------READ----------,

I
I
I

I 1 121 3 I 2 I 1 I L _______ ~ _______ ~ _______ ~ _______ ~ _______ J

L---------PUNCH---------J

Figure 6.6. Card read punch 2540: stacker
numbers

The Card Read Punch 2520 has two
stackers, into which cards can be read or
punched. The Card Reader 2501 has only one
stacker.

Cards are normally fed into the
appropriate stacker 1 after reading or
punching. You can use the STACK
subparameter of the DCB parameter of the DD
statement to select an alternative stacker
for reading or punching. For punching
only, you can select the stacker
dynamically by inserting an ANS or
system/360 code in the first byte of each
record; you must indicate which code you
are using in the RECFM subparameter of the
DD statement or in the ENVIRONMENT o~tien.
The centrol character is not punched.

PAPER TAPE READER

The paper tape reader accepts F-forrrat and
U-format records; each U-format record is
followed by an end-of-record character.
Use the CODE subparameter of the DCE
parameter of the DD statement to request
translation of data from one of the six
standard paper-tape codes to System/360
internal representation (EBCDIC). Any
character found to have a parity error is
not transmitted.

PRINTER

The printer accepts F-format, V-format, and
U-format records; the control bytes of
V-format records are not printed. Each
line of print corresponds to one record;
you should therefore restrict your record
length to the length of one printed line.
Any attempt to block records is ignored.

You can use the PRTSP subparameter of
the DCB parameter of the DD statement to
request the line spacing of your output, or
you can control the spacing dynamically by
inserting an ANS or system/360 code in the
first byte of each record; you must
indicate which code you are using in the
RECFM subparameter of the DD statement or
in the ENVIRONMENT option. The control
character is not printed. If you do not
specify the line spacing, single spacing
(no blanks between lines) is assumed.

MAGNETIC TAPE

Magnetic-tape devices accept D-format~
F-format, V-format, and U-format records
for both 9-track and 7-track magnetic tape
with the one exception that 7-track
magnetic tape will not accept V-format
records unless the data conversion feature
is available. (The data in the control
bytes of V-format records is in binary
form; in the absence of the data conversion
feature, only six of the eight bits in each
byte are transmitted to 7-track tape.)

Nine-track magnetic tape is standard in
IBM system/360, but some 2400 series
magnetic-tape drives incorporate features
that facilitate reading and writing 7-track
tape. The translation feature changes
character data from EBCDIC (the 8-bit code
used in system/360) to BCD (the 6-bit code
used on 7-track tape) or vice-versa. The
data conversion feature treats all data as
if it were in the form of a bit string,
breaking the string into groups of eight
bits for reading into main storage, or into
groups of six bits for writing on 7-track
tape; the use of this feature precludes
reading the tape backwards. To use
translation or data conversion, include the
TRTCH (tape recording technique)
subparameter in the DCB parameter of the DD
statement.

The maximum recording density available
depends on the model numb~r of the tape
drive; single-density tape drive units have
a maximum recording density of 800 bytes
per inch, and dual-density tape drive units
have a maximum of 1600 bytes per inch. For
9-track tapes, a single-density drive
offers only the gOO bytes per inch density;
the standard density for a dual-density
drive is 1600 bytes per inch, but you can
use the subparameter DEN (density) of the
DD statement to specify 800 bytes per inch.
For 7-track tape, the standard recording
density for both types of drive unit is 200
bytes per inch; you can use the DEN
subparameter of the DCB parameter of the DD

statement to select alternatives of 556 or
800 bytes per inch.

~ When a data check occurs on a
magnetic-tape device with short length
records (12 bytes on a read and 18 tytes on
a write), these records will be treated as
noise.

DIRECT-ACCESS DEVICES

Direct-access devices accept F-format,
V-format, and U-format records.

The storage space on these devices is
divided into conceptual cylinders and
tracks. A cylinder is usually the amount
of space that can be accessed without
movement of the access mechanism, and a
track is that part of a cylinder that is
accessed by a single read/write head. For
example, a 2311 disk pack has ten recording
surfaces, each of which has 200 concentric
tracks; thus, it contains 200 cylinders,
each of which contains ten tracks.

When you create a data set on a
direct-access device, you must always
indicate to the operating system how much
auxiliary storage the data set will
require. Use the SPACE parameter of the DD
statement to allocate space in terms of
blocks, tracks, or cylinders. If you
request space in terms of tracks or
cylinders, bear in rrind that space in a
data set on a direct-access device is
occupied not only by tlocks of data, but by
control information inserted by the
operating system; if you use small tlocks,
the control information can result in a
considerable space overhead. The following
reference cards contain tables that will
enable you to determine the amount of space
you will require:

2301 Drum Storage Unit, Order
No. GX20-1717

2302 Disk storage Drive, Order
No. GX20-1706

2303 Drum Storage Unit, Order
No. GX20-1718

2311 Disk Storage Drive, Order
No. GX20-1705

2314 Storage Facility, Order
No. GX20-1710.

2321 Data Cell Drive, Order
No. GX20-1704

Chapter 6: Data Sets and Files 85

Chapter 7: Defining Data Sets for Stream Files

This chapter describes how to define data
sets for use with PL/I files that have the
STREAM attribute. It explains how to
create and access data sets with
CONSECUTIVE organization. The essential
parameters of the DO statements used in
creating and accessing these data sets are
summarized in tables, and several examples
of PL/I programs (complete with JCL) are
included to illustrate the text.

Data sets with the STREAM attribute are
processed by stream-oriented transmission,
which allows the PL/I program to ignore
block and record ,boundaries and treat a
data set as a continuous stream of data
items in character form.

For output, the data management
subroutines of the PL/I library convert the
data items from the program variables into
character form if necessary, and build the
stream of characters into records for
transmission to the data set.

For input, the library subroutines take
records from the data set and separate them
into the data items requested by the
program, converting them into the
appropriate form for assignment to the
program variables.

Because stream-oriented transmission
always treats the data in a data set as a
continuous stream, it can be used only to
process data sets with CONSECUTIVE
organization.

Creating a Data Set

Any data set created using stream-oriented
transmission must have CONSECUTIVE
organization, but it is not necessary to
specify .this in the ENVIRONMENT attribute,
since it is the default organization.

Your program deals only with data items,
and not with records and blocks as they
will exist in therdata set. Accordingly,
you need not concern yourself with the
actual structure of the data set beyond
specifying a block size (which is always
necessary), unless you propose to use
record-oriented transmission to access the
data set at a later date.

To create a data set, you must give the
operating system certain information either
in your PL/I program or in the DD statement

86

that defines the data set. The following
paragraphs indicate the essential
information, and discuss some of the
optional information you may supply; the
ENVIRONMENT attribute and the LINESIZE
option are discussed fully in the language
reference manual for this compiler.

ESSENTIAL INFORMATION

You must supply the follOwing information,
summarized in figure 7.1, when creating a
data set:

1. Device that will write or punch your
data set (UNIT, SYSOUT, or VCLUNE
parameter of DD statement).

2. Block size: you can specify the block
size either in your PL/I program
(ENVIRONMENT attricute or LINESIZE
option) or in the DD staterrent
(BLKSIZE subparameter). If you do not
specify a record length, unblecked
records are assumed and the record
length is determined from the block
size. If you do net specify a record
format, U-format is assumed (except
for PRINT files when V-format is
assumed: see npRINT Files," later in
this chapter).

If you want to keep a magnetic-tape or
direct-access data set (that is, yeu do not
want the operating system to delete it at
the end of your job), the DD staterrent rntist
name the data set and indicate how it is to .
be disposed of (DSNAME and DISP
parameters). The DISP parameter alone will
suffice if you want to use the data set in
a later step but will not need it after the
end of your job.

When creating a data set on a
direct-access device, you must specify the
amount of space required for it (SPACE
parameter of DO statement).

If you want your data set stored en a
particular magnetic-tape or direct-access
device, you must indicate the volurre serial
number in the DD statement (SER or REF
subparameter of VOLUME parameter). If you
do not supply a serial numcer for a
magnetic-tape data set that you want to
keep, the operating system will allocate
one, inform the operator, and print the
number on your program listing.

r---------------------T---, I I Parameters of DO statement I
I storage Device ~---------------------T---------------------T---------------------~
I I When required I What you must state I Parameters I

~---------------------+---------------------+---------------------+---------------------~
I I I Output device I UNIT= or SYSOU~= or I
I All I Always I I VOLUME=REF"= I
I I ~---------------------+---------------------~ I I I Block size1 I DCB= (BLKSIZE= •••) I
~---------------------+---------------------+---------------------+---------------------~
I Direct access only I Always I storage space I SPACE= I

I I I required I I
~---------------------+---------------------+---------------------+---------------------~
I Magnetic tape only I Data set not first I Sequence number I LABEL= I
I I in volume and for I I I
I I magnetic tapes that I I I
I I do not have I I I
I I standard labels I I I

~---------------------+---------------------+---------------------+---------------------~
I I Data set to be used I I I
I I by another job step I Disposition I DISP~ I
I I but is not required I I I
I I after end of job I I I

I Direct access and ~---------------------+---------------------+---------------------~
I standard labeled I Data set to be kept I Disposition I DISP= I
I magnetic tape I after end of job ~-----------------~---+-----~---------------~
I I I Name of data set I DSNAME= I

I ~-----------------~---+---------------------+---------------------~ I I Data set to be on I Volume serial number I VOLUME=SER= or I
I I particular volume I I VOLUME=REF= I

~---------------------~---------------------~---------------------~---------------------~
11 Alternatively, you can specify the block size in your PL/Iprogram by using either I
I the ENVIRONMENT attribute or the LINESIZE option. I L ___ J

Figure 7.1. Creating a data set: essential parameters of DD statement

If your data set is to follow another
data set on a magnetic-tape volume, you
must use the LABEL parameter of the DD
statement to indicate its sequence number
on the tape.

EXAMPLE

The use of stream-oriented transmission to
create a data set on a 2311 disk drive is
shown in figure 7.2. The data read from
the input stream by the standard file SYSIN
includes a field VREC that contains five
unnamed 7-character subfields; the field
NUM defines the number of these subfields
that contain information. The output file
WORK transmits to the data set the whole of
the field FREC and only those subfields of
VREC that contain information. The data
set has U-format unblocked records with a
maximum block size of 400 bytes (defined in
the statement that declares the file WORK).
All blocks except the last will contain
exactly 400 bytes.

Accessing a Data Set

A data set accessed using stream-oriented
transmission need not have been created by
stream-oriented transmission, but it must
have CONSECUTIVE organization, and all the
data in it must be in character form. You
can open the associated file for input, and
read the records the data set contains; or
you can open the file for output, and
extend the data set ty adding records at
the end.

To access a data set, you must identify
it to the operating system in a DD
statement. The following paragraphs, which
are summarized in figure 7.3, indicate the
essential information you must include in
the DD statement, and discuss some of the
optional information you may supply. The·
discussions do not apply to data sets in
the input stream, which are dealt with in
chapter 6.

Chapter 7: Defining Data Sets for stream Files 87

//OPT7#2 JOB
//STEP1 EXEC PLIXCLG
//PLI.SYSIN DD *

PEOPLE: PRoe OPTIONS(MAIN);

DCL WORK FILE STREAM OUTPUT ENV(U),
1 REC,

2 FREC,
3 NAME CHAR(19),
3 NUM CHAR(l),
3 PAD CHAR(2S),

2 VREC CHAR(35),
IN CHAR(80) DEF REC;

ON ENDFILE(SYSIN) GO TO FINISH;

OPEN FILE(WORK) LINESIZE(400);
MORE: GET FILE(SYSIN) EDIT(IN) (A(80»;

PUT FILE(WORK) EDIT(IN) (A(45+7*NUM»i
GO TO MORE;

FINISH: CLOSE FILE(WORK);
END PEOPLE;

/*
//GO.WORK DD DSN=PEOPLE,UNIT=2311, SPACE= (CYL, (2,1»"DISP=(NEW,KEEP),
// VOL=SER=D186
//GO.SYSIN DD *
R.C.ANDERSON
B.F.BENNETT
R.E.COLE
J.F.COOPER
A.J.CORNELL
E.F.FERRIS
/*

o 202848
2 771239
5 698635
5 418915
3 237837
4 158636

DOCTOR
PLUMBER
COOK
LAWYER
BARBER
CARPENTER

VICTOR HAZEL
ELLEN VICTOR JOAN ANN eTTO
FRANK CAROL DONALD NORMAN BRENDA
ALBERT ERIC JANET
GERALD ANNA MARY HAROLD

Figure 7.2. creating a data set with stream-oriented transmission

r---~---, I Parameters of DD Statement I
r-----------------------------------T-------------------------T----------------------~--~ I When required I What you must state I Parameters I
t-----------------------------------+---------~---------------+-------------------------i
I IName of data set I DSNAME= I
I Always t-------------------------+-------------------------~
I IDisposition of data set I DISP= I
t-----------------T-----------------+-------------------------+-------------------------i
I IAII devices IInput device I UNIT= or VOLUME=REF= I
IIf data set not ~-----------------+-------------------------+-------------------------~
I cataloged I Standard labeled I I I
I Imagnetic tape andlVolume serial number I VOLUME=SER= I
I Idirect access I I I
t-----------------~-----------------+-------------------------+-------------------------i
IMagnetic tape: if data set not ISequence number I LABEL= I
Ifirst in volume or which does not I I I
Ihave standard labels I I I
t-----------------------------------+-------------------------+-------------------------~ IIf data set does not have standard IBlock size~ I DCB=(ELKSIZE= •••) I
Ilabels I I I
~-----------------------------------~-------------------------~-------------------------~
I~Alternatively, you can specify the block size in your PL/I program ty using either I
I the ENVIRONMENT attribute or the LINESIZE option. I L ______________________________________ --___ J

Figure 7.3. Accessing a data set: essential parameters of DD statement

88

ESSENTIAL INFORMATION

If the data set is cataloged, you need
supply only the following information in
the DD statement:

1. The name of the data set (DSNAME
parameter). The operating system will
locate the information describing the
data set in the system catalog, and,
if necessary, will request the
operator to mount the volume
containing it.

2. Confirmation that the data set exists
(DISP parameter). If you open the
data set for output with the intention
of extending it by adding records at
the end, code DISP=MOD; otherwise~ to
open the data set for output will
result in its being overwritten.

If the data set is not cataloged,-you
must, in addition, specify the device that
will read the data set and, for
magnetic-tape and direct-access devices,
give the serial number of the volume that
contains the data set (UNIT and VOLUME
parameters).

If the data set is on paper tape or
punched cards, you must specify the block
size either in your PL/I program
(ENVIRONMENT attribute) or in the DD
statement (BLKSIZE subparameter).

If the data set foliows another data set
on a magnetic-tape volume, you must use the
LABEL parameter of the DD statement to
indicate its sequence number on the tape.

MAGNETIC TAPE WITHOUT STANDARD LABELS

If a magnetic-tape data set has nonstandard
labels or is unlabeled, you must specify
the block size either in your PL/I program
(ENVIRONMENT attribute) or in the DO
statement (BLKSIZE subparameter). The
DSNAME parameter is not essential if the
data set is not cataloged.

PL/I data management includes no
facilities for processing nonstandard

labels, which, to the operating system,
appear as data sets preceding or following
your data set. You can either process the
labels as independent data sets or use the
LABEL parameter of the DD statement to
bypass them; to bypass the labels code
LABEL= (2 , NL) or LABEL= (, BLF) •

RECORD FORMA'I

When using stream-oriented transmission to
access a data set you do not need to know
the record format of the data set (except
when you must specify a block size); each
GET statement transfers a discrete nurrber
of characters to your program from the data
stream.

If yeu do give record format
information, it must be compatible with the
actual structure of the data set. Fer
exarrple, if a data set is created with
F-format records, a record size of 600
bytes, and a block size of 3600 bytes, you
can access the records as if they are
U-format with a maximum block size of 3600
bytes; but if you specify a block size ef
3500 bytes, your data will ce truncated.

EXAMPLE

The program in figure 7.4 reads the data
set created by the program in figure 7.2
and uses the standard file SYSPRIN~ to list
the data it contains. (SYSFRINT is
discussed later in this chapter.) Each set
of data is read, by the GET statement, into
two variable~: FREC, which always contains
45 characters; and VREC, which always
contains 35 characters. At each execution
of the GET statement, VREC consists of the
number of characters generated cy the
expression 7*NUM, together with sufficient
blanks to bring the total number of
characters to 35. The DISP parameter of
the DD statement could read simply
DISP=OLD; if the second term is orr.itted, an
existing data set will not be deleted.

Chapter 7: Defining Data Sets for Stream Files 89

IIOPT7#4 JOB
IISTEPl EXEC PLIXCLG
IIPLI.SYSIN DO *

PEOPLE: PROC OPTIONS(MAIN):

DCL WORK FILE STREAM INPUT,
·1 REC,

2 FREC,
3 NAME CHAR(19),
3 NUt1 CHAR(1),
3 SERNO CHAR(7),
3 PROF CHAR(18),

2 VREC CHAR(3S),
IN CHAR(80) DEF REC:

ON ENOFILE(WORK) GO TO FINISH:

OPEN FILE(WORK):
MORE: GET FILE(WORK) EDITCIN,VREC) (A(4S),A(7*NUM»:

PUT FILE(SYSPRINT) SKIP EOIT(IN)(A):
GO TO MORE:

FINISH: CLOSE FILE(WORK):
END PEOPLE:

1*
IIGO.WORK DO DSN=PEOPLE,UNIT=23ll,VOL=SER=0186,DISP=(OLO,KEEP)

Figure 7.4. Accessing a data set with stream-oriented transmission

PRINT Files

Both the operating system and the PL/I
language include features that facilitate
the formatting of printed output. The
operating system allows you to use the
first byte of each record for a printer
control code; the control codes, which are
not printed, cause the printer to skip to a
new line or page. Tables of printer
control codes are given in figures 8.5 and
8.6. In a PL/I program, the use of a PRINT
file provides a convenient means of
controlling the layout of printed output in
stream-oriented transmission: the compiler
automatically inserts printer control codes
in response to the PAGE, SKIP, and LINE
options and format items.

You can apply the PRINT attribute to any
STREAM OUTPUT file, even if you do not
intend to print the associated data set
directly. When a PRINT file is associated
with a magnetic-tape or direct-access data
set, the printer control codes have no
effect on the layout of the data set, but
appear as part of the data in the records.

The compiler reserves the first byte of
each record transmitted by a PRINT file for
an ANS printer control code, and inserts
the appropriate codes automatically. A
PRINT file uses only the following five
printer control codes:

90

b (blank)
o
+
1

Action

Space 1 line before ~rinting
Space 2 lines before printing
Space 3 lines before printing
No space befdre printing
Start new page

The compiler handles the PAGE, SKIP, and
LINE options or format items by padding the
remainder of the current record with blanks
and inserting the appropriate control code
in the next record. If SKIP or LINE
specifies more than a three line space, the
compiler inserts sufficient blank records
with appropriate control codes to
accomplish the required spacing. In the
absence of a printer c~ntrol option or .
format item, when a record is full the
compiler inserts a blank code (single line
space) in the first byte of the next
record.

RECORD FORMAT'

You can limit the length of the printed
line produced by a PRINT file either by
specifying a record length in your PL/I
program (ENVIRONMENT attribute), in a CD
statement, or by giving a line size in an
OPEN statement (LINESIZE option). The
record length must include the extra byte
for the printer control code, that is, it
must be one byte larger than the length of
the printed line (five bytes larger for
V-format records). The value you specify

in the LINESIZE option refers to the number
of characters in the printed line; the
compiler adds the printer control bytes.

The blocking of records has no affect on
the appearance of the output produced by a
PRINT file, but it does result in more
efficient use of auxiliary storage when the
file is associated with a data set on a
magnetic-tape or direct-access device. If
you use the LINESIZE option, ensure that
your line size is compatible with your
block size: for F-format records, block
size must be an exact multiple of (line
size + 1); for V-format records, block size
must be at least nine bytes greater than
line size.

Although you can vary the line size for
a PRINT file during execution by closing
the file and opening it again with a new
line size, you must do so with caution if
you are using the PRINT file to create a
data set on a magnetic-tape or
direct-access device: you cannot change
the record format established for the data
set when the file is first opened. If the
line size specified in an OPEN statement
conflicts with the record format already
established, the UNDEFINEDFILE condition
~ill be raised; to prevent this, either
specify V-format records with a block size
at least nine bytes greater than the
maximum line size you intend to use, or
ensure that the first OPEN statement
specifies the maximum line size. (Output
destined for the printer may be stored
temporarily on a direct-access device~
unless you specify a printer by using
UNIT=, even if you intend it to be fed
directly to the printer.)

Since PRINT files have a default line
size of 120 characters, you need not give
any record format information for them. In
the absence of other information, the
compiler assumes V-format records; the
complete default information is:

BLKSIZE=129

LRECL=125

RECFM=VB

EXAMPLE

Figure 7.5 illustrates the use of a PRINT
file and the printing options of the
stream-oriented transmission statements to
format a table and write it onto magnetic
tape for printing on a later occasion. The
table comprises the natural sines ef the
angles from 0 0 to 359 0 54· in steps of 6·.

The statements in the END PAGE on-unit
insert a page number at the bottom of each
page, and set up the headings for the
following page. After the last line of the
table has been written, the statement:

PUT FILE(TABLE) LINE(54)

causes the ENDPAGE condition to be raised
to ensure that a number appears at the foot
of the last page; the preceding statement
sets the flag FINISH to prevent a further
set of headings from being written.

The DD statement defining the data set
created by this program includes ne
record-format information; the compiler
infers the following from the file
declaration and the line size specified in
the statement that opens the file TABLE:

Record format VB (the default fer a
PRINT file)

Record size = 98 (line size + one tyte
for printer control
character + four bytes fer
record centrol field)

Block size = 494 (5 x record length +
four bytes for block centrel
field)

The program in figure 8.8 uses
record-oriented transmission to print the
table created by the program in figure 7.5.

Chapter 7: Defining Data Sets for Stream Files 91

//OPT7#5 JOB
//STEPl EXEC PLIXCLG
//PLI.SYSIN DD *

SINE: PROC OPTIONS(MAIN);

DCL TABLE FILE STREAM OUTPUT PRINT,
TITLE CHAR(13) INIT('NATURAL SINES'),

HEADINGS CHAR (90) INIT (' 0
24 30 36 42 48

PGNO FIXED DEC(2) INIT(l)~
FINISH BIT(l) INIT('O'B),
VALUES(0:359,O:9)FLOAT DEC(6);

ON ENDPAGE,TABLE) BEGIN;

6
54'),

12 18

PUT FILE(TABLE) EDIT('PAGE'~PGNO)(LINE(55),COL(87),A,F(3»;
IF FINISH='O'B THEN DO;
PGNO=PGNO+l;
PUT FILE(TABLE) EDIT (TITLE I I' (CONT"D) ',HEADINGS)

(PAGE,A,SKIP(3),A);
PUT FILE(TABLE) SKIP(2);
END;
END;

DO 1=0 to 359;
DO J=O TO 9;

VALUES(I,J)=I+J/l0;
END;

END;
VALUES=SIND(VALUES);
OPEN FILE(TABLE) PAGESIZE(52) LINESIZE(93)i
PUT FILE(TABLE) EDIT (TITLE, HEADINGS) (PAGE,A,SKIP(3),A);
DO 1=0 TO 71;

PUT FILE(TABLE) SKIP(2);
DO J=O TO 4;

K=5*I+J;
PUT FILE(TABLE) EDIT(K,VALUES(K,*»(F(3),10 F(~,4»;
END;

/*

END;
FINISH='l'B;
PUT FILE(TABLE) LINE(S4);
CLOSE FILE(TABLE)i
END SINEi

//GO.TABLE DD DSN=SINES,UNIT=2311,DISP=(NEW,CATLG),VOL=SER=D186,
// SPACE=(CYL,(l,l»

Figure 7.5. Creating a data set using a PRINT file

PAGE SIZE~ LINE SIZE, AND TABULATING
POSITIONS

For a PRINT file, default values for the
page size, line size, and the tabulating
positions (used by list-directed and
data-directed output only) are contained in
a module named IBMBSTAB, stored as a member
of the system library SYS1.LINKLIB. This
module is loaded into main storage at start
of execution. It applies to all PRINT
files used in the PL/I program unless a

. static external structure PLITABS is
present in the program.

These default values can be overridden
by declaring a structure named PLITABS,

92

with the STATIC EXTERNAL attributes, in the
PL/I program. If such a structure is
included, it will be used in place of
IBMBSTAB.

The default value 60 for page size and
120 for line size can be overridden for
individual files by using the PAGESIZE and
LINESIZE options in the OPEN statement, so
PLITABS is needed only if you wish to
change the default tabulating positicns,
which are: 25, 49, 73, 97, and 121 •

The structure must be declared as shown
in figure 7.6.

DECLARE 1 PLITABS STATIC EXTERNAL,
(2 NOFFSET INIT(14), /* OFFSET TO NUMBER OF TABS */
2 NPAGESIZE INIT(page size),
2 NLINESIZE INITCline size),
2 NPAGELENGTH INITCpage length),
2 NFILLl INITCO), /* RESERVED */
2 NFILL2 INITCO), /* RESERVED */
2 NFILL3 INITCO), /* RESERVED */
2 NUMBER_OF_TABS INIT(number-of-tab-positions),
2 NTAB1 INITCfirst-tab-position),
2 NTAB2 INIT(second-tab-position),
2 NTAB3 INIT(third-tab-position»FIXED BIN(15,0);

Figure 7.6. Tabulating structure PLITABS

Insert the appropriate values for page
size, line size, page length, the number of
tab positions, and the actual positions of
the tabs. A maximum of 255 tab positions
can be specified.

Standard Files

PL/I includes two standard files, SYSIN for
input and SYSPRINT for output. If your
program includes a GET statement that does
not include the FILE option, the compiler
inserts the file name SYSINi if it includes
a PUT statement without the FILE option,
the compiler inserts the name SYSPRINT.

If you do not declare SYSPRINT, the
compiler will give the file the attribute
PRINT in addition to the normal default
attributes; the complete file declaration
will be:

SYSPRINT FILE STREAM OUTPUT PRINT EXTERNAL

Since SYSPRINT is a PRINT file, the
compiler also supplies a default line size
of 120 characters and a V-format record.
You need give only a minimum of information
in the corresponding DD statement; if your
installation uses the usual convention that
the system output device of class A is a
printer, the following is sufficient:

//SYSPRINT DD SYSOUT=A

If you use one of the IBM-supplied
cataloged procedures to execute your
program, even this DD statement is not
required, since it is included in the GC
procedure step.

You can override the attributes given to
SYSPRINT by the compiler by explicitly
declaring or opening the file. If you do
so, bear in mind that this file is also
used by the error-handling routines of the
compiler, and that any change you rrake in
the format of the output from SYSPRINT will
also apply to the format of executicn-time
error messages. When an error rressage is
printed, eight tlanks are inserted at the
start of each line except the first;
consequently, if you specify a line size of
less than 72 characters, the messages will
not be output to SYSPRINT.

The compiler does not supply any special
attributes for the standard input file
SYSINi if you do not declare it, it
receives only the normal default
attributes. The data set associated with
SYSIN is usually in the input stream; if it
is not in the input stream, you must supply
full DD information.

Chapter 7: Defining Data Sets for Stream Files 93

Chapter 8: Defining Data Sets for Record Files

This chapter describes how to define data
sets for use with PL/I files that have the
RECORD attribute. It explains how to
create and access data sets for the three
types of organization: CONSECUTIVE,
INDEXED, and REGIONAL recognized by PL/I,
and how to create and access data sets for
teleprocessing. The essential parameters
of the DO statements used in creating and
accessing these data sets are summarized in
tables, and several examples of PL/I
programs (complete with JCL) are included
to illustrate the text.

Data sets with the RECORD attribute are
processed by record-oriented transmission
in which data is transmitted to and from
auxiliary storage exactly as it appears in
the program variables; no data conversion
takes place. A record in a data set
corresponds to a variable in the program.

CONSECUTIVE Data Sets

A data set with CONSECUTIVE organization
can exist on any type of auxiliary storage
device. Records are stored sequentially in
the order in which you write them.

CREATING A CONSECUTIVE DATA SET

When you create a CONSECUTIVE data set you
must specify:

1. Device that will write or punch your
data set (UNIT, SYSOUT, or VOLUME
parameter of DO statement).

2. Block size: you can specify the block
size either in your PL/I program
(ENVIRONMENT attribute) or in the DO
statement (BLKSIZE subparameter). If
you do not specify a record length,
unblocked records are assumed and the
record length is determined from the
block size. If you do not specify a
record format, U-format is assumed.

If you want to keep a magnetic-tape or
direct-access data set (that is, you do not
want the operating system to delete it at
the end of your job), the DO statement must
name the data set and indicate how it is to

94

be disposed of (DSNAME and DISP
parameters). The DISP parameter alone will
suffice if you want to use the data set in
a later step but will not need it after the
end of your job.

When creating a data set on a
direct-access device, you must specify the
amount of space required for it <SPACE
parameter of DD statement).

If you want your data set stored on a
particular magnetic-tape or direct-access
device, you must indicate the volume serial
number in the DD statement (SER or REF
subparameter of VOLUME parameter).

If you do not supply a serial numter for
a magnetic-tape data set that you want to
keep, the operating system will allocate
one, inform the operator, and print the
number on your program listing.

If your data set is to follow another
data set on a magnetic-tape volume, you
must use the LABEL Farameter of the DD
statement to indicate its sequence number
on the tape. The essential information for
creating a CONSECUTIVE data set is
summarized in figure 8.1.

The DCB'subparameters of the DD
statement that apply to CONSECUTIVE data
sets are listed in figure 8.2; they are
described in appendix A. You can specify
record format (RECFM), block size
(BLKSIZE), record size (LRECL), and numter
of buffers (BUFNC) in the ENVIRONMENT
attribute of the DECLARE statement in your
PL/I program instead of in a DD statement.

ACCESSING A CONSECUTIVE DATA SET

You can access a CONSECUTIVE dataset in
three ways. You can open the associated
file for input, and read the records the
data set contains; you can open the ~ile
for output, and extend the data set by
adding records at the end; or you can open
the file for update, and read and rewrite
each record in turn. (The operating system
does not permit updating a CONSECUTIVE data
set on magnetic tape; you must read the
data set and write the updated records into,
a new data set.)

r-----------------T---, I Storage Device I Parameters of DD statement I
I ~-------------------------T-------------------------T-----------------~
I I When required I What you must state I Parameters I

~-----------------f-------------------------+-------------------------f-----------------~ I All I Always I Output device I UNIT= or I
I I I I SYSOUT= or I
I I I I VCLUME=REF'= I
I I ~-------------------------+--~--------------~ I I I Block size1 I DCB=(BLKSIZE= ••• I
~-----------------f-------------------------+-------------------------f-----------------~ I Direct access I Always I Storage space required I SPACE= I
I only I I I I
~-----------------+-------------------------+-------------------------+-----------------~
I Magnetic tape I Data set not first in I Sequence number I LABEL= I
I only I volume and for magnetic I I I
I I tapes that do not have I I I
I I standard labels I I I

~-----------------+-------------------------+-------------------------+-----------------~
I Direct access I Data set to be used by I Disposition I DISP= I
I and standard I another job step but notl I I
I labeled ma~neticl required at end of job I I I

I tape ~-------------------------+-------------------------+-----------------~ I I Data set to be kept I Disposition I DISP= I
I I after end of job ~-------------------------+-----------------~
I I I Name of data set I DSNAME= I
I ~-------------------------+-------------------------+-----------------~ I I Data set to be on I Volume serial number I VCLUME=SER= I
I I particular device I I or I
I I I I VOLUME=REF= I
t-----------------~-------------------------~---------_-________ -_____ i _________________ ~

1 1 Alternatively, you can specify the block size in your PL/I program ty using the /
I ENVIRONMENT attribute. / l _____________________________________ - __ ------~J

Figure 8.1. creating a CONSECUTIVE data set: essential parameters of DD statement

r------------T----------------------------,
/subparameterl specifies /
~------------+----------------------------~

BLKSIZE Maximum number of bytes perl
block I

BUFNO Number of data management I
buffers I

CODE Paper tape: code in which I
the tape is punched I

DEN Magnetic tape: tape I
recording density /

LRECL Maximum number of bytes perl
record I

MODE Card reader or punch: mode I
or operation (column binary I
or EBCDIC) I

OPT CD Optional data-management I
services and data-set /
attributes /

PRTSP Printer line spacing (0,1,1
2, or 3) /

RECFM Record format and I
characteristics I

TRTCH Magnetic tape: tape I
recording technique for I
7-track tape I ____________ ~ ____________________ ---_____ J

Figure 8.2. DCB subparameters for
CONSECUTIVE data sets

To access a data set, you must identify
it to the operating system in a DD
statement. The following paragraphs, which
are summarized in figure 8.3, indicate the
essential information you must include in
the DD statement, and discuss some of the
optional information you may supply. The
discussions do not apply to data sets in
the input stream r which are dealt with in
chapter 6.

Chapter 8: Defining Data Sets for Record Files 95

r---,
I Parameters of DD statement I

r-----------------------------------T-------------------------T-------------------------~
I When required I What you must state I Parameters I
t-----------------------------------t-------------------------+-------------------------~
I IName of data set I DSNAME= I
I Always ~-------------------------+-------------------------~
I IDisposition of data set I DISP= I
r-----------------T-----------------t-------------------------+-------------------------~
I IAII devices IInp~t device I UNIT= or VOLUME=REF= I
IIf ~ata set not t-----------------+-------------------------t-------------------------~
I cataloged Istandard labeled I I I
I Imagnetic tape andlVolume serial number I VCLUME=SER= I
I Idirect access I I I
r-----------------~-----------------t-------------------------+-------------------------~
IMagnetic tape: if data set not Isequence number I LABEL= I
Ifirst in volume or which does not I I I
Ihave standard labels I I I
t-----------------------------------f-------------------------+------~------------------~
IIf data set does not have standard IBlock size~ I DCB=(BLKSIZE= •••) I
I labels I I I
t-----------------------------------~-------------------------~------------~------------~ 11 Alternatively, you can specify the block size in your PL/I program by using either I
I the ENVIRONMENT attribute or the LINESIZE option. I
L _________________ ~-----------------------------------__________________________________ J

Figure 8.3. Accessing a CONSECUTIVE data set: essential parameters of DD statement

Essential Information

If the data set is cataloged, you need
supply only the following information in
the DD statement:

1. The name of the data set (DSNAME
parameter). The operating system will
locate the information describing the
data set in the system catalog, and,
if necessary, will request the
operator to mount the volume
containing it.

2. Confirmation that the data set exists
(DISP parameter). If you open the
data set for output with the intention
of extending it by adding records at
the end, code DISP=MOD; otherwise~ to
open the data set for output will
result in its being overwritten.

If the data set is not cataloged, you
must, in addition, specify the device that
will read the data set and, for
magnetic-tape and direct-access devices,
give the serial number of the volume that
contains the data set (UNIT and VOLUME
parameters).

If the data set is on paper tape or
punched cards, you must specify the block
size either in your PL/I program
(ENVIRONMENT attribute) or in the DD
statement (BLKSIZE subparameter).

If the data set follows another data set
on a magnetic-tape volume, you must use the

96

LABEL parameter of the DD statement to
indicate its sequence number on the tape.

Magnetic Tape Without Standard Labels

If a magnetic-tape data set has nonstandard
labels or is unlabeled, you must specify
the block size either in your PL/I program
(ENVIRONMENT attribute) or in the DD
statement (BLKSIZE subparameter). The
DSNAME parameter is not essential if the
data set is not catalog~d.

PL/I data management includes no
facilities for processing nonstandard
labels which to the operating system appear
as data sets preceding or following your
data set. You can either process the
labels as independent data sets or use the
LABEL parameter of the DD statement to
bypass them; to bypass the labels cede
LABEL=(2,NL) or LABEL=(,BLP).

Record Format

If you give record-format information, it
must be compatible with the actual
structure of the data set. For example, if
a data set is created with F-format
records, a record size of 600 bytes, and a
block size of 3600 bytes, you can access
the records as if they are U-format with a
maximum block size of 3600 bytes; but if

you specify a block size of 3500 bytes,
your data will be truncated.

EXAMPLE OF CONSECUTIVE DATA SETS

Creating and accessing CONSECUTIVE data
sets on magnetic tape are illustrated in
the program of figure 8.4. The program
merges the contents of two existing data
sets, OSl and DS2, and writes them onto a
new data set, DS3; each of the original
data sets contains is-byte fixed-length

//OPT8#4 JOB
//STEPl EXEC PLIXCLG
//PLI.SYSIN DD *

MERGE: PROC OPTIONS(MAIN);

records arranged in EBCDIC collating
sequence. The two input files, INi and
IN2, have the default attribute BUFFERED,
and locate mode is used to read reccrds
from the associated data sets into the
respective -buffers. The output file, OUT,
is not buffered, allowing move mode to be
used to write the output records directly
from the input buffers.

DCL (INi,IN2,OUT) FILE RECORD SEQUENTIAL,
(ITEMl BASED(A),ITEM2 BASED(B» CHAR(80);

ON ENDFILE(INi) BEGIN;
ON ENDFILE(IN2) GO TO FINISH;

NEXT2: WRITE FILE(OUT} FROM(ITEM2);
READ FILE~IN2) SET(B);
GO TO NEXT2;
END;

ON ENDFILE(IN2) BEGIN;
ON ENDFILE(IN1) GO TO FINISH;

NEXT1: WRITE FILE(OUT) FROM(ITEMi);
READ FILE(INi) SET(A);
GO TO NEXT1;
END;

OPEN FILE(IN1) INPUT,
FILE(IN2) INPUT,
FILE (OUT) OUTPUT;

READ FILE(INi) SET(A);
READ FILE(IN2) SET(B);

NEXT: IF ITEMi>ITEM2 THEN DO;
WRITE FILE(OUT) FROM(ITEM2);
READ FILE(IN2) SET(B);
GO TO NEXT;
END;

ELSE DO;
WRITE FILE(OUT) FROM(ITEM1);
READ FILE(IN1) SET(A);
GO TO NEXT;
END;

FINISH: CLOSE FILE(IN1),FILE(IN2)~FILE(OUT);
END MERGE;

/*
//GO.OUT DD
//

DSN=DS3,UNIT=2311,DCB=(RECFM=FB,BLKSIZE=400,LRECL=80),
DISP=(NEW,KEEP),VOL=SER=D186,SPACE=(CYL,(1,1»

//GO.INl DD *
(insert here data to be included in the input stream)

//GO.IN2 DO *
(insert here data to be included in the input stream)

/*

Figure 8.4. Creating and accessing a CONSECUTIVE data set

Chapter 8: Defining Data sets for Record Files 97

PUNCHING CARDS AND PRINTING

You cannot use a PRINT file for
record-oriented transmission, and
record-oriented transmission statements
cannot include the printing options (PAGE,
SKIP, etc). You can still exercise some
control over the layout of printed output
by including a printer control code as the
first byte of each of your output records;
you can also use similar control codes to
select the stacker to which cards punched
by your program are fed.

The operating system recognizes two
types of code for printer and card punch
commands, ANS code and machine code. You
must indicate which code you are using,
either in your PL/I program (ENVIRONMENT
attribute), or in the DD statement (RECFM
subparameter). If you specify one of these
codes, but transmit your data to a device
other than a printer or a card punch, the
operating system will transmit the control
bytes as part of your records. If you use
an invalid control code, "space 1 line" or
"stacker 1" will be assumed.

The ANS control codes, which are listed
in figure 8.5, cause the specified action
to occur before the associated record is
printed or punched.

r------T----------------------------------, I Code I Action I
~------+----------------------------------~ £ Space 1 line before printing

(blank code)
o Space 2 lines before printing

Space 3 lines before printing
+ Suppress space before printing
1 Skip to channel 1
2 Skip to channel 2
3 Skip to channel 3
4 Skip to channel 4
5 Skip to channel 5
6 Skip tc channel 6
7 Skip to channel 7
8 Skip to channel 8
9 Skip to channel 9
A Skip to channel 10
B Skip to channel 11
C Skip to channel 12
V Select stacker 1
W Select stacker 2

~------~----------------------------------~ I The channel numbers refer to the printer I
I carriage control tape. (See IB~1403 I
I Printer component cescription.) I L _________________________ -----___________ J

Figure 8.5. ANS printer and card punch
control codes

The machine control codes differ
according to the type of device. The codes
for the 1403 Printer are listed in figure
8.6, and figure 8.7 gives those for the
2540 Card Read Punch.

r-----------------------T--------------------------------------T------------------------, I Print and then act I Action I Act immediately I
I I I (no printing) I
~-----------------------~ ~------------------------~ I Code byte I I Code byte I
~-----------------------+--------------------------------------+------------------------~ I 00000001 Print only (no space)
I 00001001 Space 1 line 00001011
I 00010001 Space 2 lines 00010011
I 00011001 Space 3 lines 00011011
I 10001001 Skip to channel 1 10001011
I 10010001 Skip to channel 2 10010011
I 10011001 Skip to channel 3 10011011
I 10100001 Skip to channel 4 10100011
I 10101001 Skip to channel 5 10101011
I 10110001 Skip to channel 6 10110011
I 10111001 Skip to channel 7 10111011
I 11000001 Skip to channel 8 11000011
I 11001001 Skip to channel 9 11001011
I 11010001 Skip to channel 10 11010011
I 11011001 Skip to channel 11 11011011
I 11100001 Skip to channel 12 11100011
~-----------------------~--------------------------------------~------------------------~
IThe channel numbers refer to the printer carriage control tape. (See IB~_14Ql_~!!nter I
IComEQnent Dg~£!ipt!on.) I L ___________ --------------------------____________________________________ -----_________ J

Figure 8.6. 1403 printer control codes

98

There are two types of command for the
printer, one causing the action to occur
after the record has been transmitted, and
the other producing immediate action but
transmitting no data (you must include the
second type of command in a blank record).

r--------------T--------------------------,
I Code byte I Action I
~--------------+--------------------------~ I 00000001 I Select stacker 1 I
I 01000001 I select stacker 2 I
I 10000001 I Select stacker 3 I L ______________ ~ ____________ ------_.------J
Figure 8.7. 2540 Card Read Punch control

characters

The essential requirements for producing
printed output or punched cards are exactly
the same as those for creating any other
CONSECUTIVE data set (described above).
For a printer, if you do not use one of the
control codes, all data will be printed
sequentially, with no spaces between
records; each block will be interpreted as
the start of a new line. When you specify

//OPT8#8 JOB
//STEP1 EXEC PLIXCLG
//PLI.SYSIN DD *

PRT: PROC OPTIONS(MAIN);

a block size for a frinter or card punch,
and are using one of the control cedes,
include the control bytes in your block
size; for example, if you want to print
lines of 100 characters, specify a block
size of 101.

Example

The program in figure 8.8 uses
record-oriented transmission to read and
print the contents cf the data set SINES,
created by the PRINT file in figure 7.5.
Since the data set SINES is cataloged, only
two parameters are required in the DD
statement that defines it. The output file
PRINTER is declared with the ENVIRONMENT
option CTLASA, specifying that the first
byte of each record will be interpreted as
an ANS printer contrel code. The
information given in the ENVIRONMENT
attribute could alternatively have been
given in the DD statement, ~s follows:

DCB=(RECFM=VA,BLKSIZE=102)

DCL TABLE FILE RECORD INPUT SEQUENTIAL,
PRINTER FILE RECORD OUTPUT SEQL ENV(V BLKSIZE(102) CTLASA),
LINE CHAR(94) VAR;

ON ENDFILE(TABLE) GO TO FINISH;

OPEN FILE(TABLE),FILE(PRINTER);
NEXT: READ FILE(TABLE) INTO(LINE);

WRITE FILE(PRINTER) FROM(LINE);
GO TO NEXT;

FINISH: CLOSE FILE (TABLE) ,FILE(PRINTER) i
END PRTi

/*
//GO.TABLE DO DSNAME=SINES,DISP=OLD
//GO.PRINTER DD SYSOUT=A

Figure 8.8. Printing with record-oriented transmission

Chapter 8: Defining Data Sets for Record Files 99

INDEXED Data Sets

A data set with INDEXED organization can
exist only on a direct-access device. Each
record in thE data set is identified by a
key that is recorded with the record. A
key is a string of not more than 255
characters. all the keys in a data set must
have the same length. The records in the
data set are arranged according to the
collating sequence of their keys. Once an
INDEXED data set has been created, the keys'
facilitate the direct retrieval, addition,

'and deletion of records.

INDEXES

To provide faster access to the records in
the data set, the operating system creates
and maintains a system of indexes to the
records in the data set. The lowest level
of index is the track index. There is a
track index for each cylinder in the data
set. it occupies the first track (or
tracks) of the cylinder, and lists the keys
of the last records on each track in the
cylinder. A search can then be directed to
the first track that has a key that is
higher than or equal to the key of the
required record.

Cylinder index

200 300 375 450

500 600 700 900

1000 1200 1500 2000 ,

Cylinder 1 .. 100 100 200 200
Track • index

Data Data Data Data Prime
10 20 40 100 data

Data Data Data Data Prime
150 175 190 200 data

Overflow

--
--
--

If the data set occupies more than one
cylinder, the operating system develcps a
higher level index called a cylindef_ing§~.
Each entry in the cylinder index identifies
the key of the last record in the cylinder.
To increase the speed of searching the
cylinder index, you can request in a DD
statement that the operating syste~ develop
a roaster index for a specified numcer of
cylinders; you can have up to three levels
of master index. figure 8.9 illustrates the
index structure. The part of the data set
that contains the cylinder and master
indexes is termed the index_~~.

When an INDEXED data set is created, all
the records are written in what is called
the Efime data area. If more records are
added later, the operating system does not
rearrange the entire data set; it inserts
each new record in the apprepriate position
and moves up' the other records on the same
track. Any records forced off the track by
the insertion of a new record are placed in
an overflow area. The overflow area can
consist either of a number of tracks set
aside in each cylinder for the overflow
records from that cylinder (£ylind~!
overflow area), or a separate area fer all
overflow records (indeEendent overflow
~~). Figure 8.10 shows how records are
added to an INDEXED data set.

Master index

I 450 900 2000 I
u

Cylinder 11 Cylinder 12

1
1500 ...

1
2000

Figure 8.9. Index structure of an INDEXED data set

100

Normal entry

100

10

150

40

10

101

100

26

10

101

100

Track
1

Track
1

Track
1

Track
1

Track
1

Overflow entry

100

20

175

100

20

150

200

100

20

150

200

Track
1

Track 3
record 1

Track
2

Track 3
record 3

Track
2

200

40

190

190

25

175

190

25

175

40

Figure 8.10. Adding records to an INDEXED data set

Track
2

Track
2

Track
2

Track 3
record 1

200

100

200

200

40

190

200

26

190

199

Track 3
record 2

Track 3
record 4

Track 3
record 2

Track
Index

Prime
data

Overflow

Track
index

Prime
data

Overflow

Track
index

Prime
Data

Overflow

Chapter 8: Defining Data Sets for· Record Files 101

Each entry in the track index consists
of tliiO parts:

1. The normal entry, which points to the
last record on the track.

2. The overflow entry, which contains the
key of the first record transferred to
the overflow area and also points to
the last record transferred from the
track to the overflow area.

If there are no overflow records from
the track, both index entries pOint to the
last record on the track. An additional
field is added to each record that is
placed in the overflow area. It points to
the previous record transferred from the
same track; the first record from each
track is linked to the corresponding
overflow entry in the track index.

CREATING AN INDEXED DATA SET

When you create an INDEXED data set, your
program must write the records in the data
set sequentially in the order of ascending
key values; the associated file must be
opened for SEQbENTIAL OUTPUT.

You can use a single DD statement to
define the whole of the data set (index
area, prime area, and overflow area), or

you can use two or three statements to
define the areas independently. If you use
two DO statements, you can define either
the index area and the prime area tcgether,
or the prime area and the overflow area
together.

If you want the whole of the data set to
be on a single volume, there is no
advantage to be gained by using mo~e than
one DO statement except to define an
independent overflow area (see "Overflow
Area," later in this chapter). But, if you
use separate DO statements to define the
index and/or overflow area on volumes
separate from that which contains the prime
area, you will increase the speed of direct
access to the records in the data set by
reducing the number of access mechanism
movements required.

When you use two or three DO statements
to define an INDEXED data set, the
statements must appear in the order: index
area: prime area: overflow area. ~he C~
statement must have a name (ddname), but
the name fields of a second or third ~D
statement must be blank. The DD statements
for the prime and overflow areas must
specify the same type of unit (UNIT
parameter). You must include all the DCB
information for the data set in the first
DO statement: DCB=DSORG=IS will suffice in
the other statements.

r---, I Parameters of DD statement I
~-----------------------------------T-------------------------T-------------------------~ I When required I What you must state \ Parameters \
~---~-------------------------------+-----------~-------------+------------~---~--------~
I \output device I UNIT= or VOLUME=REF= \

\ t-------------------------+-------------------------~ I IStorage space required \ SPACE= I
I Always t-------------------------+-------------------------~
I I Data control block I I
I I information: refer to I DCB= I
I Ifigure 8.12., ,
~-----------------------------------+-------------------------+-------------------------~
, IName of data set and , ,
IMore than one DD statement 'area (index, prime, , DSNAME= ,
, loverflow)' ,

~--------------------~--~-----------+-------------------------+-------------------------~
I Data set to be used in another job , , I
Istep but not required after end of IDisposition \ DISP= ,
1 job I \ ,
~-----------------------------------+-------------------------+-------------------------~
IData set to be kept after end of \ Disposition \ DISP= ,
ljob t-------------------------+-------------------------~
, IName of data set I DSNAME= I

~-----------------------------------+-------------------------+-------------------------~
IData set to be on particular IVolume serial number I VCLUME=SER= or ,
lvolume I 1 VOLUME=REF= I L ___________________________________ ~ _______________________ --~ _________________________ J

Figure 8.11. Creating an INDEXED data set: essential parameters cf DD statement

102

An INDEXED data set consisting of
fixed-length records can be extended by
adding records sequentially at the end"
until the original space allocated for the
prime data is filled. The corresponding
file must be openea for sequential output
and you must include DISP=MOD in the DD
statement.

Essential Information

To create an INDEXED data set, you must
give the operating system certain
information either in your PL/I program or
in the DD statement that defines the data
set. The following paragraphs indicate the
essential information, and discuss some of
the optional information you may supply;
the ENVIRONMENT attribute and the LINESIZE
option are discussed fully in the language
reference manual for this compiler.

You must supply the following
information when creating an INDEXED data
set:

1. Device that will write or punch your
data set (UNIT or VOLUME parameter of
DD statement).

2. Block size: you can specify the block
size either in your PL/I program
(ENVIRONMENT attribute or LINESIZE
option) or in the DD statement
(BLKSIZE subparameter). If you do not
specify a record length, unblocked
records are assumed and the record
length is determined from the block
size.

If you want to keep a direct-access data
set (that is, you do not want the operating
system to delete it at the end of your
job), the DD statement must name the data
set and indicate how it is to be disposed
of (DSNAME and DISP parameters). The DISP
parameter alone will suffice if you want to

use the data set in a later step but will
not need it after the end of your job.

If you want your data set stored cn a
particular direct-access device, you must
indicate the volume serial number in the DD
statement (SER or REF subparameter of
VOLUME parameter). If you do not sUfply a
serial number for a data set that you want
to keep, the operating system will allocate
one, inform the operator, and print the
number on your program listing. All the
essential parameters required in a DD
statement for the creation of an IN~EXE~
data set are summarized in figure 8.11, and
figure 8.12 lists the DCB subpararoeters
needed.

Appendix A contains a description of the
DCB subparameters.

You cannot place an INDEXED data set on
a system outfut (SYSCUT) device.

You must request sface for the prime
data area in the SPACE parameter. Yeur
request must be in units of cylinders
unless you place the data set in a sfecific
position on the volume (by specifying a
track number in the SPACE farameter). In
the latter case, the number of tracks yeu
specify must be equivalent to an integral
number of cylinders, and the first track
must be the first track of a cylinder other
than the first cylinder in the volurre. You
can also use the SPACE farameter to specify
the amount of space to be used for the
cylinder and master indexes (unless you use
a separate DD statement for this purfese).
If you do not specify the space for the
indexes, the operating system will use part
of the independent overflow area; if there
is no independent overflow area, it will
use part of the prirue data area.

In the DCB parameter, you must always
sfecify the data set organization
(DSORG=IS), and in the first (or only) DD
statement you must also specify the length
of the key (KEYLEN).

Chapter 8: Defining Data Sets for Record Files 103

r---,
I DCB Subpararoeters I

~---------------------------T--------------------------------------T--------------------~
I When required I To specify I Subparameters I
~---------------------------+--------------------------------------+--------------------~
I IRecord format 1 IRECFM=F, FE, FES, I
I I IV, VB, or VBS I
I ~--------------------------------------+--------------------~
I IBlock size1 IBLKSIZE= I
IThese are always required ~--------------------------------------+--------------------~
I IData set organization IDSORG=IS I

I ~--------------------------------------+--------------------~
I I Key length I KEYLEN= I
~---------------------------+--------------------------------------+--------------------~
I ICylinder overflow area and I I
I Inumber of tracks per cylinder for IOFTCD=Y and CYLOFL= I
IInclude at least one of loverflow records I I
Ithese if overflow is ~--------------------------------------+---~----------------~
Irequired IIndependent overflow area IOFTCD=I I

~---------------------------+--------------------------------------+.-------------------~
IRecord length 1 ILRECL= I

~--------------------------------------+--------------------~ IEmbedded key (relative key position) IRKP= I

~--------------------------------------+--------------------~
These are optional IMaster index ,IOPTCD=M I

~--------------------------------------+--------------------~
IAutomatic processing of dummy records IOFTCD=L I

~--------------------------------------+--------------------~
INumber of data management buffers 1 I BUFNO= I

~--------------------------------------+--------------------~
INumber of tracks in cylinder index INTM= I
Ifor each master index entry I I

~---------------------------~--------------------------------------~--------------------~ 11 Alternatively, can be specified in ENVIRONMENT attribute. I L ___ J

Not~: Full DeB information must appear in the first, or only, DD statement. Subsequent
statements require only DSORG=IS.

Figure 8.12. DCB subparameters for an INDEXED data set

Name of Data Set

If you use only one DD statement to define
your data set, you need not name the data
set unless you intend to access it in
another job. But, if you include two or
three DD statements, you must specify a
data set name, even for a temporary data
set.

The DSNAME parameter in a DD statement
that defines an INDEXED data set not only
gives the data set a name, but it also
identifies the area of the data set to
which the DD statement refers:

DSNAME=name(INDEX)

DSNAME=name(PRIME)

DSNAME=name(OVFLOW)

If the data set is temporary, prefix its
name with &&. If you use one DD statement
to define the prime and index or prime and
overflow area, code DSNAME=name(PRIME): if

104

you use one DD statement, code
DSNAME=name(PRIME), or simply DSNAME=narre.

Record Format and Keys

An INDEXED data set can contain either
fixed- or variable-length records, blocked
or unblocked. You must always specify the
record format either in your PL/I program
(ENVIRONMENT attribute) or in the DD
statement (RECFM subparameter).

The key associated with each record can
be contiguous with or embedded within the
data in the record: you can save storage
space in the data set if you use blocked
records with embedded keys.

If the records are unblocked" the key of
each record is recorded in the data set in
front of the record even if it is also
embedded within the record, as shown in (a)
and (b) of figure 8.13. If blocked records
do not have embedded keys, the key of each

record is recorded within the block in
front of the record, and the key of the
last record in the block is also recorded
in front of the block, as shown in (c) of
figure 8.13. When blocked records have
embedded keys, the individual keys are not
recorded separately in front of each record
in the block; the key of the last record in

(a) Unblocked records, non-embedded keys

I Key I Data I Key I Data I Key I Data

(b) Unblocked records, embedded keys
Data

I Key I I Key I I Key I
l same key J

(c) Blocked records, non-embedded keys

Data I Key 1 Data 1 Key I

t same key t
Data

(d) Blocked records, embedded keys
Data Data

I Key 1 1 Key I

t same key

(e) Unblocked variable length records, R KP>4
Data

L same key

(f) Blocked variable length records, R KP>4
Data

t same key

(g) Unblocked variable length records, R KP=4
Data

I Key I B 1 I R 11 Key I
t same key t

(h) Blocked variable length records, RKP=4
Data

I Key I B 1 I R 11 Key I
+ same key

Data

I Key I

the block is recorded in front of the
block~ as shown in (d) of figure 8.13.

If you use blocked records with
non-embedded keys, the record size that you
specify must include the length of the key,
and the block size rr.ust be a multifle of
this combined length. Otherwise, record

Data

Data

I Key I
t

Figure 8.13. Record formats in an INDEXED data set

Chapter 8: Defining Data sets for Record Files 105

length and block size refer only to the
data in the record. Record format
information is shown in figure 8.14.

r-----------T---------T---------T---------,
I I RKP I LRECL I BLKSIZE I
~-----~-----+---------+---------+---------~
I INot zero I R I R * B I
I Blocked ~---------+---------+---------~
I records Izero or \ R + K I B*(R+K) I
I I omitted I I I
~-----------+---------+---------+---------~
I INot zero \ R I R I
I Unblocked ~---------+---------+---------~
\ records Izero or \ R \ R I
I \ omitted \ I I
~-----------~---------~---------~---------~
IR = Size of data in record
I
IK = Length of keys (as specified in
\ KEYLEN subparameter)
I
IB
\

Blocking factor

IExample: For blocked records,
non-embedded keys, 100 bytes of
data per record, 10 records per
block~ key l~ngth = 20:

I
I
I
\ LRECL=120,BLKSIZE=1200,RECFM=FB L ___ J

Figure 8.14. Record format information for
an INDEXED data set

If you use records with embedded keys,
you must include the DCB subparameter RKP
to indicate the position of the key within
the record. For fixed-length records the
value specified in the RKP subparameter is
one less than the byte number of the first
character of the key; that is, if RKP=l,
the key starts in the second byte of the
record. The value assumed if you omit this
subparameter is RKP=O, which specifies that
the key is not embedded in the record but
is separate from it.

For variable-length records, the value
specified in the RKP subparameter must be
the relative position of the key within the
record plus four. The extra four bytes
take into account the 4-byte control field
used with variable-length records. For
this reason you must never specify RKP less
than four. When deleting records you must
always specify RKP equal to or greater than
five, since the first byte of the data is
used to indicate deletion.

For unblocked records, the key, even if
embedded, is always recorded in a position
preceding the actual data. Consequently,
the RKP subparameter need not be specified
for unblocked records.

106

Overflow Area

If you intend to add records to the data
set on a futUre occasion, you must request
either a cylinder overflow area or an
independent overflow area, or both.

For a cylinder overflow area, include
the DeB subparameter OPTCD=Y and use the
subparameter CYLOFL to specify the nurober
of tracks in each cylinder to be reserved
~or overflow records. A cylinder overflow
area has the advantage of a short search
time for overflow records, but the a~ount
of space available fer overflow records is
limited, and much of the space may be
unused if the overflow records are net
evenly distributed throughout the data set.

For an independent overflow area, use
the DCB subparameter OPTCD=I to indicate
that overflow records are to be placed in
an area reserved for overflow records from
all cylinders, and include a separate DL
statement to define the overflow area. The
use of an independent area has the
advantage of reducing the amount of unused
space for overflow records, but entails an
increased search time for overflow records.

It is good practice to request cylinder
overflow areas large enough to contain a
reasonable number of additional records and
an independent overflow area to be used as
the cylinder overflow areas are filled.

If the prime data area is not filled
during creation, you cannot use the unused
portion for overflow records, nor for any
records subsequently added during direct
access (although you can fill the unfilled
portion of the last track used). You can
reserve space for later use within the
prime data area by writing "dummy" records
during creation: see "Dummy Records,"
later in this chapter.

Master Index

If you want the operating system to create
a master index for you, include the DCB
subparameter OPTCD=M, and indicate in the
NTM subparameter the number of tracks in
the cylinder index you wish to be referred
to by each entry in the master index. The
operating system will automatically create
up to three levels of master index, the
first two levels addressing tracks in the
next lower level of the master index.

Dummy Records

You cannot change the specification of an
INDEXED data set after you have created it.
Therefore, you must foresee your future
needs where the size and location of the
index, prime, and overflow areas are
concerned, and you must decide whether you
~ant the operating system to identify and
skip dummy (deleted) records.

If you code OPTCD=L, the operating
system will identify any record that is
named in a DELETE statement by placing the
bit string (S)'l'B in the first byte.
Subsequently, during SEQUENTIAL processing
of the data set, such records will be
ignored; if they are forced off a track
when the data set is being updated, they
will not be placed in the overflow area.
Do not specify OPTCD=L when using blocked
records with non-embedded keys; if you do,
the string (S)'l'B will overwrite the key
of the "deleted" record.

You can include a dummy record in an
INDEXED data set by setting the first byte
of data to (S)'l'B and writing the record
in the usual way.

ACCESSING AN INDEXED DATA SET

You can open an INDEXED data set for
sequential or direct access, and for input
or update in each case. sequential input
allows you to read the records in ascending
key sequence, and in sequential update you
can read and rewrite each record in turn;
during sequential access, if OPTCD=L is
specified when the data set is created,
dummy records are ignored. Using direct
input, you can read records using the READ
statement, and in direct update you can
read or delete existing records or add new
ones.

To access an INDEXED data set, you must
define it in one, two or three DD
statements; the DO statements must
correspond with those used when the data
set is created. The following paragra~hs
indicate the essential information you must
include in each DD statement, ana figure
S.15 summarizes this information.

If the data set is cataloged, you need
supply only the following information in
each DD statement:

1. The name of the data set (DSNAME
parameter). The operating system will
locate the information that des crites
the data set in the system catalog
and, if necessary, will request the
operator to mount the voluffie that
contains it.

2. Confirmation that the data set exists
(DISP parameter).

If the data set is not cataloged, you
must, in addition, specify the device that
will process the data set and give the
serial number of the volume that contains
it (UNIT and VOLUME parameters).

REORGANIZING AN INDEXED DATA SE'l

It is necessary to reorganize an INDEXED
data set periodically because the addition
of records to the data set results in an
increasing number of records in the
overflow area. Therefore, even if the
overflow area does not eventually tecome
full, the average time required for the
direct retrieval of a record will increase.
The frequency of reorganization depends cn
how often the data set is updated, on how
much storage is available in the data set,
and on your timing requirements.

Reorganizing the data set also
eliminates records that are marked as
"deleted," but are still present within the
data set.

r---,
I Parameters of DD Statement I

r-----------------------------------T-------------------------T-------------------------~
I When required I What you must state I Parameters I
r-----------------------------------+-------------------------+--------~----------------~
I IName of data set I DSNAME= I
IAl~ays t-------------------------+-------------------------~
I I Disposition of data set I DISP= I
r-----------------------------------+-----~-------------------+---~---------------------~
I IInput device I UNIT= or VOLUME=REF= I
IIf data set not cataloged t-------------------------+-------------------------~
I IVolume serial number I VOLUME=SER= I
L ___________________________________ ~ ___________ ------__ ~-----~-------------------------J

Figure S.lS. Accessing an INDEXED data set: essential parameters of DC staterrent

Chapter S: Defining Data sets for Record Files 107

There are two ways to reorganize an INDEXED
data set:

1. Read the data set into an area of main
storage or onto a temporary
CONSECUTIVE data set, and then
recreate it in the original area of
auxiliary storage.

2. Read the data set sequentially and
write it into a new area of auxiliary
storagei you can then release the
original auxiliary storage.

//OPT8ff16 JOB
//STEPl EXEC PLIXCLG
//PLI.SYSIN DD *

TELNOS: PROC OPTIONS(MAIN)i

EXAMPLES OF INDEXED DATA SETS

The creation of a simple INDEXED data set
is illustrated in figure 8.16. The data
set contains a telephone directory, using
the subscribers' names as keys to the
telephone numbers.

DCL DIREC FILE RECORD SEQUENTIAL KEYED ENV(INDEXED),
CARD CHAR(80),
NAME CHAR(20) DEF CARD POS(l),
NUMBER CHAR(3) DEF CARD POS(21),
IOFIELD CHAR (3) ;

ON ENDFILE(SYSIN) GO TO FINISH;

OPEN FILE(DIREC) OUTPUT;
NEXTIN: GET FILE(SYSIN) EDIT (CARD) (A(80»;

IOFIELD=NUMBERi
WRITE FILE(DIREC) FROM (IOFIELD) KEYFROM(NAME)i
GO TO NEXTINi

FINISH: CLOSE FILE(DIREC)i
END TELNOSi

/*
//GO.DIREC DD DSNAME=TELNO(INDEX),UNIT=2311,SPACE=(CYL,1),
// DCB=(RECFM=F,BLKSIZE=3,DSORG=IS,KEYLEN=20,OPTCD=LIY,CYLOFL=2),
// DISP=(NEW,KEEP),VOLUME=SER=D186
// DD DSNAME=TELNO(PRIME),UNIT=2311,SPACE=(CYL,4),DCB=DSORG=IS,
// DISP=(NEW,KEEP),VOLUME=SER=D186
// DD DSNAME=TELNO(OVFLOW),UNIT=2311,SPACE=(CYL,4),
// DCB=DSORG=IS,DISP=(NEW,KEEP),VOL=SER=D186
//GO.SYSIN DD *
ACTION,G.
BAKER,R.
BRAMLEY,O.H.
CHEESEMAN,D.
CORY,G.
ELLIOTT,D.
FIGGINS,S.
HARVEY,C.D.W.
HASTINGS,G.M.
KENDALL,J.G.
LANCASTER,W.R.
MILES,R.
NEWMAN,M.W.
PITT,W.H.
ROLF,D.E.
SHEERS,C.D.
SUTCLIFFE,M.
TAYLOR,G.C.
WILTON,L.W.
WINSTONE,E.M.
/*

162
152
248
141
336
875
413
205
391
294
624
233
450
515
114
241
472
407
404
307

Figure 8.16. Creating an INDEXED data set

108

A: Add a new record The program in figure 8.17 updates this
data set and prints out its new contents.
The input data includes the following codes
to indicate the operations required:

C: Change an existing record
D: Delete an existing record

//OPT8#17 JOB
//STEPl EXEC PLIXCLG
//PLI.SYSIN DD *

DIRUPDT:PROC OPTIONS(MAIN);

DCL DIREC FILE RECORD KEYED ENV(INDEXED),
ONCODE BUILTIN,
NUMBER CHAR(3),
NAME CHAR(20),
CODE CHAR(2);

ON ENDFILE(SYSIN) GO TO PRINT;

ON KEY(DIREC) BEGIN;
IF ONCODE=51 THEN PUT FILE(SYSPRINT) SKIP EDIT

('NOT FOUND:',NAME) (A(15) ,A);
IF ONCODE=52 THEN PUT FILE(SYSPRINT) SKIP EDIT

('DUPLICATE:',NAME) (AC15),A);
END;

OPEN FILE(DIREC) DIRECT UPDATE;
NEXT: GET FILE(SYSIN) EDIT(NAME,NUMBER,CODE} CA(20),AC3},X(56},A(1»;

IF CODE='A' THEN WRITE FILE(DIREC) FROM (NUMBER) KEYFROM(NAME);
ELSE IF CODE='C' THEN REWRITE FILE(DIREC) FROMCNUMBER}

KEY(NAME};
ELSE IF CODE='D' THEN DELETE FILE(DIREC) KEYCNAME);
ELSE PUT FILE(SYSPRINT) SKIP EDITC'INVALID CODE: ',NAME)

CA (15) ,A) ;
GO TO NEXT;

PRINT: CLOSE FILE(DIREC);
PUT FILE(SYSPRINT) PAGE;
OPEN FILE(DIREC) SEQUENTIAL INPUT;

ON ENDFILE(DIREC) GO TO FINISH;

NEXTIN: READ FILE(DIREC) INTOCNUMBER) KEYTOCNAME);
PUT FILE(SYSPRINT) SKIP EDITCNAME,NUMBER) CAl;
GO TO NEXTIN;

FINISH: CLOSE FILECDIREC)i
END DIRUPDT;

/*
//GO.DIREC DD DSN=TELNO(INDEX),UNIT=2311,VOL=SER=D186,DISP=COLD,KEEP)
// DD DSN=TELNO(PRIME),UNIT=2311,VOL=SER=D186,DISP=COLD,KEEP)
// DD DSN=TELNO(OVFLOW),UNIT=2311,VOL=SER=D186,DISP=COLC,KEEP)
//GO.SYSIN DD *
NEWMAN,M.W.
GOODFELLOW,D.T.
MILES,R.
HARVEY,C.D.W.
BARTLETT,S.G.
CORY,G.
READ,K.M.
PITT,W.H.
ROLF,D.F.
ELLIOTT,D.
HASTINGS,G.M.
BRAMLEY,O.H.
/*

516
889

209
183

001

291

439

Figure 8.17. Updating an INDEXED data set

C
A
D
A
A
D
A

D
C
D
C

Chapter 8: Defining Data sets for Record Files 109

REGIONAL Data Sets

A data set with REGIONAL organization can
exist only on a direct-access device. A
REGIONAL data set is divided into regions
that are numbered consecutively from zero.
The following paragraphs briefly describe
the three types of REGIO~AL organization.

REGIONAL(l): In this organization a region
is a record. Each record in the data set
is identified by its region number, an
unsigned decimal integer not exceeding
16777215. Region numbers start from 0 at
the beginning of the data set. There are
no recorded keys.

REGIONAL(2): This organization is similar
to REGIONAL(1), but differs, in that a key
is recorded with each record. The recorded
key is a string of not more than 255
characters. For files with the DIRECT
attribute, a record is written in the first
vacant space on the track that contains the
region number specified in the WRITE
statement; for retrieval, the search for a
record begins on the track that contains
the region number specified in the READ
statement, and may continue through the
data set until the record has been found.
For files that are created sequentially,
the record is written in the region
specified.

REGIONAL(3): This organization is similar
to REGIONAL(2), but differs in that each
region corresponds to one track of the
direct-access device and is not a record
position. Depending on the record length,
a region can contain one or more records.

The major advantage of REGIONAL
organization over other types of data set
organization is that it allows you to
control the relative placement of records;
by judicious programming, you can optimize
record access in terms of device
capabilities and the requirements of
particular applications. REGIONAL(1)
organization is most suited to applications
where there will be no duplicate region
numbers, and where most of the regions will
be filled (reducing wasted space in the
data set). REGIONAL(2) and REGIONAL(3) are
more appropriate where records are
identified by numbers that are thinly
distributed over a wide range. You can
include in your program an algorithm that
derives the region number from the number
that identifies a record in such a manner
as to optimize the use of space within the
data set; duplicate region numbers may
occur but, unless they are on the same
track, their only effect might be to
lengthen the search time for records with
duplicate region numbers.

110

REGIONAL (1) and REGICNAL(2) data sets
can contain only F-format unblocked
records, but a REGICNAL(3) data set can
have unblocked records of all three
formats, F, V, and U. The examples at the
end of this section illustrate typical
applications of all three types of REGIONAL
organization.

CREATING A REGIONAL DATA SE'I

You can use either sequential or
direct-access to create a REGIONAL data
set.

In sequential creaticn, you must ~resent
records in order of ascending region
numbers; for REGIONAL(l) and REGIONAL(2)
the region nurober for each record must
exceed that of the preceding record since
each region can contain only one record.
In all cases, dummy records (identified by
(8)'l'B in the first tyte) are placed
automatically in regions whose nurrbers are
skipped.

For direct creaticn, one of the FL/I
library subroutines formats the whcle cf
the data set when yeu o~en the
corresponding file. For REGIONAL(l) and
(2), and for REGICNAL(3) with F-format
records, formatting involves filling the
data set with durrmy reccrds; for
REGIONAL (3) with U-format or V-format
records, a record, called the capacit~
record is written at the start of each
track to indicate an empty track. During
creation, you can present reco~ds in any
order.

Essential Inforwatien

To create a REGIONAL data set, you rrust
give the operating system certain
information either in your PL/I prograrr or
in the DD staterrent that defines the data
set. The following paragraphs indicate the
essential information, and discuss some of
the optional information you may sU~Fly;
the ENVIRONMENT attribute and the LINESIZE
option are discussed fully in the language
reference manual for this compiler.

You must supply the following
information when creating a REGICNAL data
set:

1. Device that will write or punch your
data set (UNIT or VOLUME parameter of
DD statement).

2. Block size: you can specify the block
size either in your PL/I program
(ENVIRONMENT attribute or LINESIZE
option) or in the DO statement
(BLKSIZE subparameter). If you do not
specify a record length, unblocked
records are assumed and the record
length is determined from the block
size.

If you want to keep a data set (that is,
you do not want the operating system to
delete it at the end of your job), the DO
statement must name the data set and
indicate how it is to be disposed of
(DSNAME and DISP parameters). The DISP
paramEter alone will suffice if you want to
use the data set in a later step but will
not need it after the end of your job.

If you want your data set stored on a
particular direct-access device, you must
indicate the volume serial number in the DO
statement (SER or REF subparameter of
VOLUME parameter). If you do not sUfply a
serial number for a data set that you want
to keep, the operating system will allocate
one, inform the of era tor, and print the
number on your program listing. All the
essential parameters required in a DD
statement for the creation of a REGIONAL
data set are summarized in figure 8.18, and
figure 8.19 lists the DCB subpararreters
needed. Appendix A contains a description
of the DCB subparameters.

You cannot place a REGIONAL data set on
a system output (SYSOUT) device.

(---,
I Parameters of DO statement I
~-----------------------------------T-------------------------T-------------------------~
I When required I What you must state I Parameters I
~-----------------------------------+-------------------------+-------------------------~
I loutput device I UNIT= or VOLUME=REF= I
I ~--~----------------------+-------------------------~
I IStorage space required I SPACE= I
IAI~ays ~-------------------------+-------------------------~
I I Data control block I I
I I information: refer I DCB= I
I Ito figure 8.19 I I
~-----------------------------------+-------------------------+-------------------------~
I Data set to be used in another job I I I
Istep but not required in another I Disposition I DISP= I
I job I I I
~-----------------------------------+-------------------------+-------------------------~
IData set to be kept after end of I Disposition I DISP= I
Ijob ~-------------------------+-------------------------~
I IName of data set I DSNAME= I
~-----------------------------------+-------------------------+-------~-----------------~
IData set to be on particular IVolume serial number I VOLUME=SER= or I
I volume I I VOLUME=REF'= I L ___________________________________ ~ ______ -----------________ ~ ___________________ ------J

Figure 8.18. Creating a REGIONAL data set: essential parameters of DO statement

Chapter 8: Defining Data Sets for Record Files 111

r---, I DCB Subparameters I
~---------------------------------T-------------------------T---------------------------~
I When required I To specify I Subpararreters I

r---------------------------------+-------------------------+---------------------------~
I Record format 1 I RECFM=F I

I I or I
I I RECFM=V2 REGIONAL(3) only I

I I or I
I I RECFM=U REGIONAL(3) only I

These are always required ~--------------------~----+---------------------------~
I Block size1 I BLKSIZE= I

~-------------------------+---------------------------~
I Data set organization I DSORG=CA I

t---~---------------------+---------------------------~
I Key length (REGIONAL(2) I KEYLEN= I
I and (3) only) I I

t---------------------------------+-------------------------+---------------------------~
I I Limited search for a I I
I I record or space to add I LIMCT= I
I I a record (REGIONAL(2) I I
I These are optional I and (3) only) I I

I t-------------------------+---------------------------~ I I Number of data I BUFNO= I
I I management buffers 1 I I
~---------------------------------~-------------------------~---------------~-----------~ I 1 Alternatively, can be specified in ENVIRONMENT attribute. I
I 2 RECFM=VS must be specified in the ENVIRONMENT attribute for sequential input or I
I update. I L ___ ---------_____________ J

Figure 8.19. DCB subparameters for a REGIONAL data set

In the DCB parameter, you must always
specify the data set organization as direct
by coding DSORG=DA. For REGIONAL(2) and
REGIONAL(3), you must also specify the
length of the recorded key (KEYLEN): refer
to the language reference manual for this
compiler for a description of how the
recorded key is derived from the source key
supplied in the KEYFROM option.

For REGIONAL(2) and REGIONAL(3), if you
want to restrict the search for space to
add a new record, or the search for an
existing record, to a limited number of
tracks beyond the track that contains the
specified region, use the LIMCT
subparameter of the DCB parameter. If you
omit this parameter, the search will
continue to the end of the data set, and
then from the beginning of the data set
back to the starting point in the data set.

ACCESSING A REGIONAL DATA SET

You can open an existing REGIONAL data set
for sequential or direct access, and for
input or update in each case. Using
sequential input with a REGIONAL(l) data
set you can read all the records in
ascending region number sequence, and in
sequential update you can read and may

112

rewrite each record in turn. Sequential
access of a REGIONAL(2) or REGICNAL(3) data·
set will give you the records in the order
in which they appear in the data set, which
is not necessarily region number order.
Using direct input, you can read any record
by supplying its region number and, for
REGIONAL(2) and REGIONAL (3) , its recorded
key; in direct update, you can read or
delete existing records or add new ones.
The operating system ignores dummy records
in a REGIONAL(2) or REGIONAL(3) data set;
but a program that processes a REGIONAL(l)
data set must be prepared to recognize
dummy records.

To access a REGIONAL data set, you must
identify it to the operating system in a DD
statement. The following paragraphs
indicate the minimum information you must
include in the DD statement; this
information is summarized in figure 8.20.

If the data set is cataloged, yeu need
supply only the following information in
your DD statement:

1. The name of the data set (DSNAME
parameter). The operating system will
locate the information that describes
the data set in the system catalog
and, if necessary, will request the
operator to mount the voluroe.that
contains it.

r------------------~-----~-----.~--------------------------------.-----~-----------------,
I Parameters of DD statement I
r-----------------------------------T-------------------------T-------------------------~
I When required I What you must state I Parameters I
t------------~----------------------+-------------------------+-------------------------~
IAlways IName of data set I DSNAME= I
I r-------------------------+-~-----------------------~
I IDisposition of data set I DISP= I
r-----------------------------------+-------------------------+-~-----------------------~
IIf data set not cataloged IInput device I UNIT= or I
I I' I VOLUME=REF= I
I r-------------------------+-------------------------~
I IVolume serial number I VOLUME=SER= I
L ____________________________ ~------~-----------------_--__ ---~-------------------------J

Figure 8.20. Accessing a REGIONAL data set: essential parameters of DD staterr.ent

2. Confirmation that the data set exists
(DISP parameter).

If the data set is not cataloged, you
must, in addition, specify the device that
will read the data set and give the serial
number of the volume that contains the data
set (UNIT and VOLUME parameters).

EXAMPLES OF REGIONAL DATA SETS

REGIONAL (1) Data Sets

creating a REGIONAL(l) data set is
illustrated in figure. 8.21.

The program uses the same data as that
in figure 8.16, but interprets it in a
different way: the data set is effectively
a list of telephone numbers with the names
of the subscribers to whom they are
allocated. The telephone numbers
correspond with the region numbers in the
data set, the data in each occupied region
being a subscriber's name. The SPACE
parameter of the DD statement requests
space for 1000 twenty-byte records (that
is, for 1000 regions); since space is never
allocated in units of less than one track
and one 2311 track can accommodate 45
twenty-byte records, there will in fact be
1035 regions. Note tha~ there are no
recorded keys in a REGIONAL(l) data set.

Updating a REGIONAL(l) data set is
illustrated in figure 8.22. The data read
by the program is identical with that used
in figure 8.17, and the codes are
interpreted in the same way. Like the
program in figure 8.17, this program
updates the data set and lists its
contents. Before each new or updated
record is written the existing record in
the region is tested to ensure that it is a
dummy; this is necessary because a WRITE
statement can overwrite an existing record

in a REGIONAL(l) data set even if it is not
a dummy. Similarly, during the sequential
reading and printing of the contents of the
data set, each record is tested and dummy
records are not printed.

REGIQNAL(2) Data Sets

The use of REGIONAL(2) data sets is
illustrated in figure 8.23, figure 8.24,
and figure 8.25. The programs in these
figures perform the same functions as those
given for REGIONAL(3), with which they can
usefully be compared.

The programs depict a library processing
scheme, in which loans of books are
recorded and reminders are issued fer
overdue books. Two data sets, STCCK2 and
LOANS2, are involved. STOCK2 contains
descriptions of the tooks in the library,
and uses the 4-digit book reference numbers
as recorded keys; a simple algorithm is
used to derive the region numbers frcm the
reference numbers. (It is assumed that
there are about 1000 books, each with a
number in the range 1000-9999.) LCANS2
contains records of books that are en loan;
each record comprises two dates, the date
of issue and the date of the last rerr.inder.
Each reader is identified by a 3-digit
reference number, which is used as a region
number in LOANS2; the reader and book
numbers are concatenated to form the
recorded keys.

In figure 8.23, the data sets STCCK2 and
LOANS2 are created. The file LOANS, which
is used to create the data set LOANS2 is
opened for direct output merely to fermat
the data set; the file is closed
immediately without any records being
written onto the data set. It is assumed
that the number of tooks on loan will not
exceed 100; therefore the SPACE pararr.eter
in the DD statement that defines LOANS2
requests 100 blocks of 19 bytes (12 bytes

Chapter 8: Defining Data Sets for Record Files 113

of data and a 7-byte key: see figure
8.24). Direct creation is also used for
the data set STOCK2 because, even if the
input data is presented in ascending
reference number order, identical region
numbers might be derived from successive
reference numbers.

Updating of the data set LOAN2 is
illustrated in figure 8.24. Each item of
input data, read from a punched card,
comprises a book number, a reader number,
and a code to indicate whether it refers to
a new issue (I), a returned book (R), or.a
renewal (A). The position of the reader
number on the card allows the 8-character

,region number to be derived directly by
overlay defining. The DATE built-in
function is used to obtain the current
date. This date is written in both the
issue date and reminder date portions of a
new record or an updated record.

The program in figure 8.25 uses a
sequential update file (LOANS) to process
the records in the data set LOANS2, and a
direct input file (STOCK) to obtain the
book description from the data set STOCK2
for use in a reminder note. Each record
from LOAN2 is tested to se~ whether the
last reminder was issued more than a month
ago; if necessary, a reminder note is
issued and the current date is written in
the reminder date field of the reco~d.

REGIONAL(3) Data Sets

The use of REGIONAL(3) data sets,
illustrated in figure 8.26, figure 8.27,

114

and figure 8.28, is similar to the
REGIONAL (2) figures, acove; only the
important differences are discussed here.

To conserve space in the data set
STOCK3, U-format records are used. In each
record, the author's name and the title of
the book are concatenated in a single
character string, and the lengths of the
two parts of the string are written as ~art
of the record. The average record
(including the recorded key) is assurr.ed to
be 60 bytes; therefore the average number
of records per track (that is, ~er region)
is 25, and there will be 40 regions.

In figure 8.26, the data set S'IOCK3 is
created sequentially; duplicate region
numbers are acceptable since each region
can contain more than one record.

In figure 8.27, the region number for
the data set LOANS3 is obtained simply cy
testing the reader number; there are only
three regions, since a 2311 track can hold
36 nineteen-byte records.

The only notable difference between
figure 8.28 and the corresponding
REGIONAL(2) figure is in the additional
processing required for the anlysis of the
records read from the data set STOCK3. 'Ihe
records are read into a varying-length
character string and a based structure is
overlaid on the string so that the data in
the record can be extracted.

//OPT8#21 JOB
//STEPl EXEC PLIXCLG
//PLI.SYSIN DD *

CRR1: PROC OPTIONS(MAIN);

DCL NOS FILE RECORD OUTPUT DIRECT KEYED ENV(REGIONAL(l»,
CARD CBAR(80),
NAME CHAR(20) DEF CARD POS(l),
NUMBER CHAR(3) DEF CARD POS(21),
IOFIELD CHAR(20);

ON ENOFILE (SYSIN) GO TO FINISH;

OPEN FILE(NOS);
NEXT: GET FILE(SYSIN) EOIT(CARO) (A(80»i

IOFIELO=NAME;
WRITE FILE(NOS) FROM (IOFIELD) KEYFROM(NUMBER)i
GO TO NEXT;

FINISH: CLOSE FILE(NOS)i
END eRR1;

/*
//GO.NOS
//

DO OSN=NOSA,UNIT=2311,SPACE=(CYL,10),DCB=(RECFM=F,
BLKSIZE=20,DSORG=DA),OISP=(NEW,KEEP),VOL=SER=D186

DO * //GO.SYSIN
ACTION,G.
BAKER,R.
BRAMLEY,O.H.
CHEESNAME,L.
CORY,G.
ELLIOTT,D.
FIGGINS,E.S.
BARVEY,C.D.W.
BASTINGS,G.M.
KENOALL,J.G.
LANCASTER,W.R.
MILES,R.
NEWMAN,M.W.
PITT,W.H.
ROLF.D.E.
SBEERS,C.D.
SUTCLIFFE,M.
TAYLOR,G.C.
WILTON,L.W.
WINSTONE,E.M.
/*

162
152
248
141
336
875
413
205
391
294
624
233
450
515
114
241
472
407
404
307

Figure 8.21. Creating a REGIONAL(l) data set

Chapter 8: Defining cata Sets for Record Files 115

//OPT8#22 JOB
//STEPl EXEC PLIXCLG
//PLI.SYSIN DD *

ACR1: PROC OPTIONS(MAIN);

DCL NOS FILE RECORD KEYED ENV(REGIONAL(l»,
NAME CHAR (20) ,
(NEWNO,OLDNO) CHAR(3),
CODE CHAR(l),
IOFIELD CHAR(20),
BYTEl CHAR(l) DEF IOFIELD POS(l);

ON ENDFILE(SYSIN) GO TO PRINT;

OPEN FILE(NOS) DIRECT UPDATE;
NEXT: GET FILE(SYSIN) EDIT (NAME,NEWNO,OLDNO,CODE)

(A(20),2 A(3) ,X(53) ,A(l»;
IF CODE='A' THEN GO TO RITE;

ELSE IF CODE='C' THEN DO;
DELETE FILE(NOS) KEY(OLDNO);
GO TO RITE;
END;

ELSE IF CODE='D' THEN DELETE FILE(NOS) KEY(OLDNO);
ELSE PUT FILE(SYSPRINT) SKIP

EDIT('INVALID CODE: ',NAME) (A(15),A);
GO TO NEXT;

RITE: READ FILE(NOS) KEY(NEWNO) INTO(IOFIELD);
IF UNSPEC(BYTE1)=(8)'1'B THEN WRITE FILE(NOS) KEYFROM(NEWNC)

FROM(NAME);
ELSE PUT FILE(SYSPRINT) SKIP EDIT('DUPLICATE:',NAME) (A(15),A);
GO TO NEXT;

PRINT: CLOSE FILE(NOS);
PUT FILE(SYSPRINT) PAGE;
OPEN FILE(NOS) SEQUENTIAL INPUT;

ON ENDFILE(NOS) GO TO FINISH;

NEXTIN: READ FILE(NOS) INTO(IOFIELD) KEYTO(NEWNO);
IF UNSPEC(BYTE1)=(8)'1~B THEN GO TO NEXTIN;
ELSE PUT FILE(SYSPRINT) SKIP EDIT (NEWNO, IOFIELD) (A(5),A);
GO TO NEXTIN;

FINISH: CLOSE FILE(NOS);
END ACR1;

/*
//GO.NOS DO DSN=NOSA,UNIT=2311,VOL=SER=D186,DISP=(OLD,KEEP)
//GO.SYSIN DD *
NEWMAN,M.W
GOODFELLOW,D.T.
MILES,R.
HARVEY,C.D.W.
BARTLETT,S.G.
CORY,G.
READ,K.M.
PITT,W.H.
ROLF,D.F.
ELLIOTT,D.
HASTINGS,G.M.
BRAMLEY,O.H.
/*

516450
889

233
209
183

336
001

515
114

472875
391

439248

Figure 8.22. Updating a REGIONAL(!) data set

116

C
A
o
A
A
D
A

D
C
D
C

//OPT8#23 JOB
//STEPl EXEC PLIXCLG
//PLI.SYSIN DD *

CRR2: PROC OPTIONS(MAIN);

DCL STOCK FILE RECORD KEYED ENV(REGIONAL(2»,
NUMBER CHAR(4),
1 BOOK,

2 AUTHOR CHAR(2S),
2 TITLE CHAR(SO),
2 QTY FIXED DEC(3),

INTER FIXED DEC(S),
REGION CHAR(8);

ON ENDFILE(SYSIN) GO TO FINISH;

OPEN FILE(STOCK) DIRECT OUTPUT:
NEXT: GET FILE(SYSIN) LIST(NUMBER,BOOK);

INTER=(NUMBER-l000)/9; /*INTERMEDIATE FIXED DECIMAL ITEM */
REGION=INTER; /* USED TO ENSURE CORRECT PRECISION */
WRITE FILE(STOCK) FROM (BOOK) KEYFROM(NUMBERIIREGION):
GO TO NEXT;

FINISH: CLOSE FILE(STOCK);
END CRR2:

/*
//GO.STOCK DD DSN=STOCK2,UNIT=2311,SPACE=(CYL,S),DCB=(RECFM=F,
// BLKSIZE=77,DSORG=DA,KEYLEN=4),DISP=(NEW,CATLG),
// VOLUME=SER=D186
//GO.SYSIN DD *
'1015' 'W.SHAKESPEARE' 'MUCH ADO ABOUT NOTHING' 1
'1214' 'L.CARROLL' 'THE HUNTING OF THE SNARK' 1
'3079' 'G.FLAUBERT' 'MADAME BOVARY' 1
'3083' 'V.M.HUGO' 'LES MISERABLES' 2
'3085' 'J.K.JEROME' 'THREE MEN IN A BOAT' 2
'4295' ·W.LANGLAND' 'THE BOOK CONCERNING PIERS THE PLOWMAN' 1
'5999' 'O.KHAYYAM' 'THE RUBAIYAT OF OMAR KHAYYAM' 3
'6591' 'F.RABELAIS' 'THE HEROIC DEEDS OF GARGANTUA AND PANTAGRUEL' 1
'8362' 'H.D.THOREAU' 'WALDEN, OR LIFE IN THE WOODS' 1
'9765' 'H.G.WELLS' 'THE TIME MACHINE' 3
/*

Figure 8.23. Creating a REGIONAL(2) data set

Chapter 8: Defining Data Sets for Record Files 117

//OPT8#24 JOB
//STEPl EXEC PLIXCLG
//PLI.SYSIN DD *

DUR2: PROC OPTIONS(MAIN)i
DCL 1 RECORD,

NEXT:

2 (ISSUE, REMINDER) CHAR(6),
SYSIN FILE RECORD INPUT SEQUENTIAL,
LOANS FILE RECORD' UPDATE DIRECT KEYED ENV(REGIONAL(2»,
CARD CHAR(80),
DATE BUILTIN,
BOOK CHAR(4) DEF CARD POS(l),
READER CHAR(3) DEF CARD POS(10),
CODE CHAR(l) DEF CARD POS(20),
REGION CHAR(8) DEE CARD POS(5);

ON ENDFILE(SYSIN) GO TO FINISH;

OPEN FILE(SYSIN),FILE(LOANS);
ISSUE,REMINDER=DATE;
READ FILE(SYSIN) INTO(CARD);
IF CODE='I' THEN WRITE FILE(LOANS) FROM (RECORD)

KEYFROM(READERIIBOOKIIREGION);
ELSE IF CODE='R' THEN DELETE FILE(LOANS)

KEY (READER I IBOOKI IREGION);
ELSE IF CODE='A' THEN REWRITE FILE(LOANS) FROM (RECORD)

KEY (READER I IBOOKI IREGION);
ELSE PUT FILE(SYSPRINT) SKIP LIST

('INVALID CODE:-,BOOK,READER);
GO TO NEXT;

FINISH: CLOSE FILE(SYSIN),FILE(LOANS);
END DUR2i

/*
//GO.LOANS DD DSN=LOADS2,DISP=OLD
//GO.SYSIN DD *
3085 095 X
5999 003 A
3083 091 R
3083 049 I
/*

Figure 8.24. Updating a REGIONAL(2) data set directly

118

//OPTS#25 JOB
//STEP1 EXEC PLIXCLG
//PLI.SYSIN DO *

SUR2: PROC OPTIONS(MAIN);

DCL LOANS FILE RECORD SEQUENTIAL UPDATE KEYED ENV(REGICNAL(2»,
STOCK FILE RECORD DIRECT INPUT KEYED ENV(REGIONALC2»,
(TODAY,LASMTH) CHAR(6),
YEAR PIC '99' DEF LASMTH~
MONTH PIC '99' DEF LASMTH POS(3),
1 RECORD,

2 (ISSUE, REMINDER) CHAR (6),
DATE BUILTIN,
LOANKEY CHAR(7),
READER CHAR(3) DEF LOANKEY POS(l),
BKNO CHAR(4) DEF LOANKEY POS(4),
INTER FIXED DEC(5),
REGION CHAR(S),
1 BOOK,

2 AUTHOR CHAR(25),
2 TITLE CHAR(50),
2 QTY FIXED DEC(3);

TODAY,LASMTH=DATE;
IF MONTH='Ol' THEN DO;

MONTH='12'i
YEAR=YEAR-l;
END;

ELSE MONTH=MONTH-1;
OPEN FILE(LOANS),FILECSTOCK);

ON ENDFILECLOANS) GO TO FINISH;

NEXT~ READ FILECLOANS) INTO (RECORD) KEYTOCLOANKEY);
IF REMINDER<LASMTH THEN DO;

REMINDER=TODAY;
REWRITE FILECLOANS) FROMCRECORD);
INTER=CBKNO-1000)/9; /* INTERMEDIATE FIXED DECIMAL ITEM */
REGION=INTERi /* USED TO ENSURE CORRECT PRECISION */
READ FILE(STOCK) INTOCBOOK) KEY (BKNOI IREGION);
PUT FILE{SYSPRINT) SKIP(4) EDITCREADER,AUTHOR,TITLE)
CA,SKIP(2»;
END;

GO TO NEXT;
FINISH: CLOSE FILECLOANS),FILECSTOCK);

END SUR2;
/*
//GO.LOANS DD DSN=LOADS2,DISP=OLD
//GO.STOCK DD DSN=STOCK2,DISP=OLD

Figure 8.25. Updating a REGIONAL(2) data set sequentially

Chapter 8: Defining Lata Sets fer Record Files 119

//OPT8#2f? JOB
//STEP1 EXEC PLIXCLG
//PLI.SYSIN DD *

CRR3: PROC OPTIONS(MAIN);

DCL STOCK FILE RECORD KEYED ENV(REGIONAL(3»,
1 CARD,

2 NUMBER CHAR(4),
2 AUTHOR CHAR(25) VAR,
2 TITLE CHAR(50) VAR,
2 QTY1 FIXED DEC(3),

CL1,L2,X) FIXED DEC(3),
1 BOOK CTL,

2 (L3,L4) FIXED DEC(3),
2 QTY2 FIXED DEC(3),
2 DESCN CHARCX) VAR,

INTER FIXED DEC(5),
REGION CHAR(8);

ON ENDFILE(SYSIN) GO TO FINISH;

NEXT:

FINISH:

/*

OPEN FILECSTOCK) SEQUENTIAL
GET FILE(SYSIN) LIST(CARD);
L1=LENGTH(AUTHOR);
L2=LENGTH(TITLE);
X=L1+L2;
ALLOCATE BOOK;
L3=L1;
L4=L2;
QTY2=QTY1;
DESCN=AUTHORIITITLE;
INTER=(NUMBER-1000)/225;
REGION=INTER;
WRITE FILE(STOCK) FROM(BOOK)
FREE BOOK;
GO TO NEXT;
CLOSE FILE(STOCK);
END CRR3;'

OUTPUT;

/* INTERMEDIATE FIXED DECIMAL */
/* ITEM USED TO ENSURE CORRECT PRECISICN
KEYFROM(NUMBERIIREGION);

//GO.STOCK DD DSN=STOCK3,UNIT=2311,SPACE=(CYL, (20,5»,DCB=(RECFM=U,
// BLKSIZE=110,DSORG=DA,KEYLEN=4),DISP=(,CATLG),VOL=SER=D186
//GO.SYSIN DD *
'1015' 'W.SHAKESPEARE' 'MUCH ADO ABOUT NOTHING' 1
'1214' 'L.CARROLL' 'THE HUNTING OF THE SNARK' 1
'3079' 'G. FLAUBERT , 'MADAME BOVARY' 1
'3083' 'V.M.HUGO' 'LES MISERABLES' 2
'3085' 'J.K.JEROME' 'THREE MEN IN A BOAT' 2
'4295' 'W. LANGLAND , 'THE BOOK CONCERNING PIERS THE PLOWMAN' 1
'5999' 'O.KHAYYAM' 'THE RUBAIYAT OF OMAR KHAYYAM' 3
'6591' 'F.RABELAIS' 'THE HEROIC DEEDS OF GARGANTUA AND PANTAGRUEL' 1
'8362' 'H.D.THOREAU' 'WALDEN, OR LIFE IN THE WOODS' 1
'9765' 'B.G.WELLS' 'THE TIME MACHINE~ 3
/*

Figure 8.26. Creating a REGIONAL(3) data set

120

*/

//OPTS#27 JOB
//STEP1 EXEC PLIXCLG
//PLI.SYSIN DO *

DUR3: PROC OPTIONS(MAIN);

NEXT:

DCL 1 RECORD,
2 (ISSUE, REMINDER) CHAR(6),

SYSIN FILE RECORD INPUT SEQUENTIAL,
LOANS FILE RECORD UPDA~E DIRECT KEYED ENVCREGIONAL(3»,
CARD CHAR(SO),
BOOK CHAR(4) DEF CARD POS(l),
READER CHAR(3) DEF CARD POS(10),
CODE CHAR(l) DEF CARD POS(20),
DATE BUILTIN,
REGION CHAR(8);

ON ENDFILE(SYSIN) GO TO FINISH;

OPEN FILE(SYSIN),FILE(LOANS);
ISSUE,REMINDER=DATEi
READ FILE(SYSIN) INTO(CARD);
IF READER<'034' THEN REGION=·OOOOOOOO';
ELSE IF READER<'067' THEN REGION='OOOOOOOl';

ELSE REGION='00000002';
IF CODE='I' THEN WRITE FILE(LOANS) FROM (RECORD)

KEYFROMCREADERIIBOOKIIREGION);
ELSE IF CODE='R' THEN DELETE FILE(LOANS)

KEY (READER I I BOOK I IREGION);
ELSE IF CODE='A' THEN REWRITE FILE(LOANS) FROM (RECORD)

KEY(READERIIBOOKIIREGION);
ELSE PUT FILE(SYSPRINT) SKIP LIST

('INVALID CODE',BOOK,READER);
GO TO NEXT;

FINISH: CLOSE FILE(SYSIN),FILE(LOANS);
END DUR3;

/*
//GO.LOANS DD DSN=LOANS3,DISP=OLD
//GO.SYSIN DD *
3085 095 X
5999 003 A
3083 091 R
3083 049 I
/*

Figure 8.27. Updating a REGIONAL(3) data set directly

Chapter 8: Defining Data Sets for Record Files 121

//OPT8ff28 JOB
//STEP1 EXEC PLIXCLG
//PLI.SYSIN DO *

SUR3: PROC OPTIONS(MAIN);

NEXT:

DCL LOANS FILE RECORD SEQUENTIAL UPDATE KEYED ENV(REGIONAL(3»,
STOCK FILE RECORD DIRECT INPUT KEYED ENV(REGIONAL(3»,
(TODAY,LASMTH) CHAR(6),
YEAR PIC '99' DEF LASMTH~
MONTH PIC '99' DEF LASMTH POS(3),
1 RECORD,

2 (ISSUE,REMINDER) CHAR(6),
LOANKEY CBAR(7),
READER CHAR(3) DEF LOANKEY POS(l),
BKNO CHAR(4) DEF LOANKEY POS(4),
INTER FIXED DEC(5),
DATE BUILTIN,
REGION CHAR(S),
1 BOOK,

2 (Ll,L2) FIXED DEC(3),
2 QTY FIXED DEC(3),
2 DESCN CHAR(75)VAR,

AUTHOR CHAR(25) VAR,
TITLE CHAR(50) VAR;

TODAY,LASMTH=DATE;
IF MONTH='Ol' THEN DO;

MONTH='12':
YEAR=YEAR-1;
END:

ELSE MONTH=MONTH~l;
OPEN FILE(LOANS),FILE(STOCK);

ON ENDFILE(LOANS) GO TO FINISH;

READ FILE(LOANS) INTO (RECORD) KEYTO(LOANKEY);
IF REMINDER<LASMTH THEN DO;

REMINDER=TODAY:
REWRITE FILE(LOANS) FROM(RECORD):
INTER=(BKNO":'1000)/225; /* IN'IERMEDIATE FIXED DECIMAL *1

REGION=INTERi I*ITEM USED TO ENSURE CORRECT PRECISION */
READ FILE(STOCK) INTO (BOOK) KEY(BKNOlIREGION):
AUTHOR=SUBSTR(DESCN,1,L1):
TITLE=SUBSTR(DESCN,L1+1,L2):
PUT FILE(SYSPRINT) SKIP(4) EDIT (READER,AUTHOR,TITLE)

(A,SKIP(2»;
END:

GO TO NEXT:
FINISH: CLOSE FILE(LOANS),FILE(STOCK);

END SUR3;
/*
/IGO.LOANS DD DSN=LOANS3,DISP=OLD
//GO.STOCK DD DSN=STOCK3,DISP=OLD

Figure 8.28. Updating a REGIONAL'(3) data set sequentially

122

TELEPROCESSING

Teleprocessing in PL/I is provided by an
extension of record-oriented transmission
with the addition of the TRANSIENT file
attribute and of the PENDING condition.
The compiler provides a link between PL/I
message processing programs (MPPs) and the
Telecommunications Access Method (TCAM) of
the operating system.

A TCAM message control program (MCP)
handles messages originating from and
destined for a number of remote terminals,
each of which is identified by a terminal
name carried with the message. These
messages are transmitted to and from your
PL/I message processing program by means of
queues in main storage. (These queues are
supported by corresponding queues on a
direct-access device in auxiliary storage.
Your PL/I program has access only to the
main storage queues by means of a single
buffer for each file.)

The exact message format (specified to
the compiler by means of the ENVIRONMENT
attribute) depends on the MPP. A message
may be a complete unit, or may consist of a
number of ~ecords so that it can be split
up for processing. You must have this
message format information to enable you to
write the message processing program. Full
information on how to write an MPP is given
in the language reference manual for this
compiler. A full account of TCAM procedure
is given in the os: TCAM Message Processing
Program Services and OS: TCAM Message
Control Program publications.

MESSAGE PROCESSING PROGRAM (MPP)

This program receives the terminal message
as input and produces output according to
the data in the message. You can code this
program in PL/I.

An MPP is not mandatory at
teleprocessing installations, as for
example, an MCP is. If the messages you
transmit do not require processing, because
they are only switched between terminals,
an MPP is not required. However, you can
pass data to a problem program and you can
receive the output with a minimum of delay,

and most installations are likely to have a
set of processing programs available for
these purposes. These programs are stored
as load modules, either in main storage or
in a library in auxiliary storage.

HOW TO RUN AN MPP

An example of an MPP and the job control
language required to run it is shOwn in
figure 8.29. The EXEC statement invokes
the cataloged procedure PLIXCL to compile
and link edit the PL/I message processing
program. The appropriate TCAM modules are
included in the program by the linkage
editor. The load module produced is stored
in the partitioned data set SYS1.MSGLIE
under the member name MPPROC.

MPP is declared as a teleprocessing file
that can process messages up to 100 bytes
long. Similarly OUTMSG is declared as a
teleprocessing file that can receive
messages up to 500 bytes long.

The READ statement gets a record (that
is, a message) from the queue. The
terminal identifier is inserted into the
KEYTO character string. The record is
placed in the INDATA variatle for
processing. The appropriate READ SE~
statement could also have been used here.

The WRITE statement puts the data in
OUTDATA into the destination queue; the
terminal identifier is taken from the
character string in TKEY. An appropriate
LOCATE statement could also have been used.

Once the load module has been stored cn
a direct-access device it can be restored
for execution at any time. The job control
statements to perform this might be:

// JOB
//JOBLIB DD DSNAME=SYS1.MSGLIB,DISP=SHR
// EXEC PGM=MFFRCC
//DDl DD QNAME=MPP •••
//SYSPRINT DD SYSOUT=A

The JOBLIE DD statement is required to
make SYS1.MSGLIE available so that the
operating syste~ can find the program
MFPROC. The DD statement with the name DDl
associates the PL/I file with the main
storage queue name (MPP).

Chapter 8: Defining Data Sets for Record Files 123

II JOB
II EXEC PLIXCL
IIPLI.SYSIN DD *

MPROC: PROC OPTIONS(MAIN);
DeL MPP FILE RECORD KEYED TRANSIENT ENV(TP(M)RECSIZE(100»,
OUTMSG FILE RECORD KEYED TRANSIENT ENV(TP(M)RECSIZE(SOO»,
INDATA CHAR(100),
OUTDATA CHAR(SOO),
TKEY CHAR(6)i

OPEN FILE(MPP) INPUT, FILE (OUTMSG) OUTPUT;

READ FILE(MPP) KEYTO(TKEY) INTO(INDATA)i

WRITE FILE(OUTMSG) KEYFORM(TKEY) FROM(OUTDATA)i

£NDTP: CLOSE FILE(MPP),FILE(OUTMSG)i
END MPPROCi

1*
IILKED.SYSLIB DD DSNAME=SYS1.PL1LIB,DISP=SHR
IILKED.SYSLMOD DD DSNAME=SYS1.MSGLIB(MPPROC), •••

Figure 8.29. PL/I message processing program

124

Within the IBM operating system, the terms
"partitioned data set" and "library" are
used synonymously to signify a type of data
set that can be used for the storage of
other data sets (usually programs in the
form of source, object or load modules). A
library must be stored on direct-access
storage and be wholly contained in one
volume. It contains independent,
consecutively-organized, data sets, called
members. Each member has a unique name,
not more than eight characters long, which
is stored in a directory that is part of
the library. All the members of one
library must have the same data
characteristics because only one data set
label is maintained.

Members can be created individually
until there is insufficient space left for
a new entry in the directory, or until
there is insufficient space for the member
itself. Members can be accessed
individually by specifying the member name.

DD statements or ALLOCATE commands are
used to create and access members.

Members can be deleted by means of the
IBM utility program IEHPROGM. This deletes
the member name from the directory so that
the member can no longer be accessed; but
the space occupied by the member itself
cannot be used again unless the library is
recreated using, f6r example, the IBM
utility program IEBCOPY. An attempt to
delete a member by using the DISP parameter
of a DD statement will cause the whole data
set to be deleted.

Types of Library

The following types of library may be used
with a PL/I program:

1. The system program library
SYS1.LINKLIB. This can contain all
system processing.programs such as
compilers and the linkage editor.

2. Private program libraries. These
usuallv cont.,in n~pr-wr;++~n nrnn,..",mc::_
It is often convenient to create-a
temporary private library to store the
load module output from the linkage
editor until it is executed by a later
job step in the same job. The library
will be deleted at the end of the job.
Private libraries are also used for

Chapter 9: Libraries of Data Sets

automatic library call by the linkage
editor and the loader.

3. The system procedure library,
SYS1.PROCLIB. This contains the job
control procedures that have been
cataloged for your installation.

How to Use a Library

The libraries described above can be used
in the following ways.

BY THE LINKAGE EDITOR CR LCADER

The output from the linkage editor is
usually placed on a private program
library.

The automatic call library used as input
to the linkage editor or loader (see
chapter 5) can be SYS1.LINKLIB, a private
program library, or a subroutine library.

In each case, the processing of
directory entries is performed by the
operating systerr.

When you are adding a member to a
library, you must specify the merrber nane
as follows:

1. when a single module is produced as
output from the linkage editor, the
member name can be specified as part
of the data set name (see later in
this chapter).

2. When more than one module is produced
as output from the linkage editor, the
member name for the first module can
be specified. as part of the data set
name or in the NAME option or NAME
control statement.' The member narr.es
for the subsequent modules must be
specified in the NAME option er the
NAME contrel statement.

BY THE OPERATING SYSTEM

When you request the execution of a load
module in an EXEC statement or CALL
command, the operating system must be able

Chapter 9: Libraries of Data sets 125

to retrieve the load module from a library.
For a CALL command, this library is
specified explicitly or implicitly in the
command. For an EXEC statement, the
following rules apply.

The operating system will assume the
load module is a member of SYS1.LINKLIB,
and will search in the directory for that
library for the name you have specified,
unless you have also specified that the
load module is in a private library, in one
of the following ways.

If the load module has been added to the
private library in a previous step of the
job (usually a link-edit step) and the
member name was specified as part of the
data set name, then you can refer, in the
EXEC statement, to the DD statement
defining the library instead of specifying
the load module name. The library must
have been given the disposition PASS.

If the load module exists on the private
library before the job starts, then you
have several ways of defining the library.

You can define the library in a DD
statement, with the ddname JOBLIB,
immediately after the JOB statement. This
library will be used-in place of
SYS1.LINKLIB for all the steps of the job.
If any load module is not found on the
private library, the system will then look
for it on SYS1.LINKLIB.

You can define the library in a DD
statement with the ddname STEPLIB, at any
point in the job control procedure. The
private library will be used in place of
SYS1.LINKLIB, or any library specified in a
JOBLIB DD statement, for the job step in
which it appears (though it can also be
"passed" to subsequent job steps in the
normal way). If any load module is not
found on the private library, the system
will look for it on the library specified
in the JOBLIB DD statement (if used) or on
SYS1.LINKLIB. The STEPLIB DD statement can
be used in a cataloged procedure.

Alternatively, if you specify
SYS1.LINKLIB in the JOBLIB or STEPLIB DD
statements, and then concatenate the
private library to it, the private library
will be used only if a load module cannot
be first found on SYS1.LINKLIB.

BY YOUR PROGRAM

Libraries can be used directly by a PL/I
program.

126

If you are adding a new member to a
library, its directory entry will be made
by the operating system when the associated
file is closed, using the member name
specified as part of the data set na~e.

If you are accessing a member of a
library, its directory entry can be found
by the operating system from the member
name that you specify as part of the data
set name.

More than one member of the same library
can be processed by the same PL/I program,
but only one such output file can be open
at anyone time. Different members are
accessed by giving the member name in a DD
statement.

Creating a Library

To create a library include in your job
step a DD state~ent containing the
following information:

Information
Required

Type of device that will
process the library

Serial number of the volume
that will contain the library

Name of the li~rary

Amount of space required
for the library

Disposition of the library

UNIT=

VOLUME=SER

DSNAME=

SPACE=

DISP=

The information required is similar to
that for a consecutively-organized data set
(see chapter 8) except for the SPACE
parameter.

SPACE PARAMETER

The SPACE parameter in a DD statement that
defines a library must always be of the
form:

SPACE=(units,(quantity,
increment,directory»

Although you can omit the third terrr.
(increment), indicating its absence by a
comma, the last term, specifying the nurrber
of directory blocks to be allocated, must
always be present.

The amount of auxiliary storage required
for a library depends on the number and
sizes of the members to be stored in it and
on how often members will be added or
replaced. (Space occupied by deleted
members is not released.) The number of
directory blocks required depends on the
number of members and the number of
aliases. Although you can specify an
incremental quantity in the SPACE p~rameter
that will allow the operating system to
obtain more space for the data set if
necessary, both at the time of creation and
when new members are added, the number of
directory blocks is fixed at the time of
creation and cannot be increased.

If the data set is likely to be large or
you expect to do a lot of updating~ it
might be best to allocate a full volume.
otherwise, make your estimate as accurate
as. possible to avoid wasting space or time
recreating the data set.

The number of directory entries that a
256-byte directory block can contain
depends on the amount of user data included
in the entries. The maximum length of an
entry is 74 bytes, but the entries produced
by the linkage editor vary in length
between 34 bytes and 52 bytes, which is
equivalent to between four and seven
entries per block.

For example, the DD statement:

//PDS DD UNlT=2311,VOLUME=SER=3412,
// DSNAME=ALIB,
// SPACE=(CYL,(50,,10»,
// DlSP=(,CATLG)

requests the job scheduler to allocate 50
cylinders of the 2311 disk pack with serial
number 3412 for a new partitioned data set
named ALIB, and to enter this name in the
system catalog. The last term of the SPACE
parameter requests that part of the space
allocated to the data set be reserved for
ten directory blocks.

Creating a Library Member

The members of a library must have
identical characteristics oth~rwise you may
subsequently have difficulty retrieving
them. This is necessary because the volume
table of contents (VTOC) will contain enly
one data set control block (DSCB) for the
library and not one for each member. When
using a PL/l program to create a member,
the operating system creates the directory
entry; you cannot place information in the
user data field.

When creating a library and a member at
the same time, the DD statement must
include all the parameters listed under the
heading "Creating a Library," earlier in
this chapter (although you can omit the
DISP parameter if the data set is to be
temporary). The DSNAME parameter must
include the member name in ~arentheses.
For example, DSNAME=ALlE(MEM1) names the
member MEM1 in the data set ALlB. If the
member is placed in the library by the
linkage editor, you can use the linkage
editor NAME statement or the NAME compiler
option instead of including the member name
in the DSNAME parameter. You must also
describe the characteristics of the member
(record format, etc.) either in the DCB
parameter or in your PL/l program; these
characteristics will also apply to other
members added to the data set.

When creating a member to be added to an
existing library, yeu will not need the
SPACE parameter; the original space
allocation applies to the whole of the
library and not to an individual member.
Furthermore, you will not need to describe
the characteristics of the member, since
these are already recorded in the DSCB for
the library.

To add two or more members to a library
in one job step, you must include a DD
statement for each member, and you must
close one file that refers to the library
before you open another.

Chapter 9: Libraries of Data Sets 127

Examples

The use of the cataloged procedure PLIXC to
compile a simple PL/I program and place the
object module in a new library named EXLIB
is shown in figure 9.1. The DD statement
that defines the new library and names the

IIOPT9ft1 JOB
IISTEP1 EXEC PLIXC

object module overrides the DD statement
SYSLIN in the cataloged procedure. (The
PL/I program is a function procedure that,
given two values in the form of the
character string produced by the TIME
built-in function, returns the difference
in milliseconds.)

IIPLI.SYSLIN DD DSNAME=EXLIB(ELAPSE),UNIT=2311,VOL=SER=D186,
II SPACE=(CYL,(10,,2»,DISP=(NEW.KEEP)
IIPLI.SYSIN DD *

ELAPSE:PROC(TIME1,TIME2);

1*

DeL (TIME1,TIME2) CHAR(9),
H1 PIC '99' DEF TIME1,
M1 PIC '99' DEF TIME1 POS(3),
MS1 PIC '99999' DEF TIME1 POS(5),
H2 PIC '99' DEF TIME2,
M2 PIC '99' DEF TIME2 POS(3),
MS2 PIC '99999' DEF TIME2 POses),
ETIME FIXED DEC(?);

IF H2<H1 THEN H2=H2+24i
ETIME=«H2*60+M2)*600000+MS2)-«H1*60+Ml)*600000+MS1);
RETURN(ETIME)i
END ELAPSE;

Figure 9.1. Creating new libraries for compiled object modules

128

//OPT9#2 JOB
//STEPl EXEC
//PLI.SYSIN DO

PLIXCL

* OPTIONS(MAIN)i

/*

MNAME: PROC

DCL LINK FILE RECORD SEQUENTIAL INPUT,
1 DIRBLK,

2,COUNT BIT(16),
2 ENTRIES(2S4) CHAR(l),

1 ENTRY BASED(A),
2 NAME CHAR(8),
2 TTR CHAR(3),
2 INDIC,

3 ALIAS BIT(l),
3 TTRS BIT(2),
3 USERCT BIT(S),

(LEN,PTR) FIXED BIN(31)i

ON ENDFILE(LINK) GO TO FINISHi

OPEN FILE(LINK)i
NEXTBLK: READ FILE(LINK) INTO(DIRBLK)i

LEN=COUNTi
PTR=li

NEXTENT: A=ADDR(ENTRIES(PTR»i
PUT FILE(SYSPRINT) SKIP LIST(NAME)i
PTR=PTR+12+2*USERCTi
IF PTR+2>LEN THEN GO TO NEXTBLKi
GO TO NEXTENTi

FINISH: CLOSE FILE(LINK)i
END MNAMEi

//LKED.SYSLMOD DD DSN=PUBPGM(DIRLIST),DISP=OLD,VOL=SER=D186,UNIT=2311

Figure 9.2. Placing a load module to existing libraries

//OPT9#3 JOB
//STEPl EXEC PLIXCLG
//PLI.SYSIN DD *

NMEM: PROC OPTIONS(MAIN)i

DCL OUT FILE RECORD SEQUENTIAL OUTPUT,
IOFIELD CHAR(80) BASED(A);

ON ENDFILE(IN) GO TO FINISH;

NEXT: READ FILE(IN) SET(A)i
WRITE FILE(OUT) FROM(IOFIELD)i
GO TO NEXTi

FINISH: END NMEMi
/*
//GO.OUT DD DSN=ALIB(NMEM),UNIT=2311,VOL=SER=D186,
// DISP=(NEW,CATLG),SPACE=(CYL,(10,1,1»,
// DCB=(RECFM=FB,BLKSIZE=400,LRECL=80)
//GO.IN DD *

(insert here data to be included in the input stream)
/*

Figure 9.3. Creating a library member in a PL/I program

The use of the cataloged procedure
PLIXCL to compile and link edit a PL/I
program and place the load module in the
existing library nFLM n is shown in figure
9.2. (The PL/I program lists the names of
the members of a library.)

To use a PL/I program to add or delete
one or more records within a merrber cf a
library, you must rewrite the entire member
in another part of the library; this is
rarely an economic froposition, 'since the
space originally occupied by the member

Chapter 9: Libraries of Data Sets 129

//OPT9n4 JOB
//STEPl EXEC PLIXCLG
//PLI.SYSIN DO *

UPDTM: PROC OPTIONS(MAIN);

DCL (OLD, NEW) FILE RECORD SEQUENTIAL,
DATA CHAR(SO);

ON ENDFILE(OLD) GO TO FINISH;

OPEN FILE(OLD) INPUT, FILE (NEW) OUTPUT TITLE('OLD');
NEXT: READ FILE(OLD) INTO(DATA);

IF DATA=' , THEN GO TO NEXT;
WRITE FILE(NEW) FROM(DATA);
PUT FILE(SYSPRINT) SKIP LIST(DATA);
GO TO NEXT;

FINISH: CLOSE FILE(OLD),FILE(NEW);
END UPDTM;

/*
//GO.OLD DO DSNAME=ALIB(NMEM)~DISP=OLD

Figure 9.4. Updating a library member

cannot be used again. You must use two
files in your PL/I program, but both can be
associated with the same DD statement. The
program shown in figure 9.4 updates the
member created by the program in figure
9.3; it copies all the records of the
original member except those that contain
only blanks.

Library Structure

The structure of a library is illustrated
in figure 9.5. The directory of a library
is a series of records (entries) at the
beginning of the data set; there is at
least one directory entry for each member.
Each entry contains a member name, the
relative address of the member within the
library, and a variable amount of user
data. The entries are arranged in
ascending alphameric order of member names.

A directory entry can contain up to 62
bytes of user data (information inserted by
the program that created the member). An
entry that refers to a member (load module)
written by the linkage editor includes user

130

data in a standard format, described in the
manual System Control Blocks.

If you use a PL/I program to create a
member, the operating system creates the
directory entry for you and you cannot
write any user data. However, you can use
assembler language macro instructions to
create a member and write your own user
data; the method is described in the manual
Supervisor and Data Management Services.

Directory entries are stored in
fixed-length blocks of 256 bytes, each
containing a 2-byte count field specifying
the number of active bytes in a block, and
as many complete entries as will fit intc
the remaining 254 bytes. The directory is
in effect a sequential data set that
contains fixed-length unblocked records,
and can be read as such.

The program illustrated in figure 9.2
demonstrates a method of extracting
information from directory entries. The
program lists the names of all the members
of a library; the library must be defined,
when the program is executed, in a DD
statement with the name LINK.

bit o

o name
1 alias

I
Note: I
pointers contain relative l..
addresses of locations
within member. "'-

byte 0 7

2 3

number of ptrs in
user data field

"'-
"'-

.....
......

.......
.......

I

8 9 10 I

rei block

4 5 6

number of halfwords in user
data field (inc pointers)

11 12

7

I
I

)

byte 11 of
directory entry

61

track no. relative
member name

to start of d.s.
no. on optional variable user data (max 62 bytes)
track

I
contents of a directory entry

...... -...... - -...... --...... --- -...... - -- -- ---I
256 byte directory block -I-----------I~~I

Directory entry Directory entry Directory entry Directory entry
for member A for member B for member C for member K

space from
member C deleted members

member B . member K

member K (cont'd)

member K (cont'd) member A

member A (cont'd) available area

Figure 9.5. structure of a library

Chapter 9: Licraries cf Data Sets 131

Chapter 10: Cataloged Procedures

This chapter describes the standard
cataloged procedures supplied by IBM for
use with the os PL/I Optimizing Compiler,
explains how to invoke them, and how to
make temporary or permanent modifications
to them.

A cataloged procedure is a set of job
control statements stored in a system
library, the procedure library
(SYS1.PROCLIB). It comprises one or more
EXEC statements, each of which may be
followed by one or more DD statements. You
can retrieve the statements by naming the
cataloged procedure in the PROC parameter
of an EXEC statement in the input stream.
When the operating system processes this
EXEC statement, it replaces it in the input
stream with the statements of the cataloged
procedure.

The use of cataloged procedures saves
time and reduces errors in coding
frequently used sets of job control
statements. If the statements in a
cataloged procedure do not match your
requirements exactly, you can easily modify
them or add new statements for the duration
of a job. It is recommended that each
installation review these procedures and
modify them to obtain the most efficient
use of the facilities available and to
allow for installation conventions; refer
to "Permanent Modification," later in this
chapter.

Invoking a Cataloged Procedure

To invoke a cataloged procedure, specify
its name in the PROC parameter of an EXEC
statement. For example, to use the
cataloged procedure PLIXC, you could
include the following statement in the
appropriate position among your other job
control statements in the input stream:

Ilstepname EXEC PROC=PLIXC

You need not code the keyword PROC; if the
first operand in the EXEC statement does
not begin PGM= or PROC=, the job scheduler
interprets it as the name ofa cataloged
procedure. The following statement is
equivalent to that given above:

Ilstepname EXEC PLIXC

When the operating system meets the name
of a cataloged procedure in an EXEC

132

statement, it extracts the stateffients of
the cataloged procedure from the procedure
library and substitutes them for the EXEC
statement in the input job stream. If you
include the parameter MSGLEVEL=l in your
JOB statement, the operating system will
include the original EXEC staterrent in its
listing, and will add the statements of the
cataloged procedure. In the listing,
cataloged procedure statements are
identified by XX or XI as the first two
characters; XI signifies a statement that
has been modified for the current
invocation of the cataloged procedure.

An EXEC statement identifies a job steE,
which can require either the execution of a
program or the invocation of a catalcged
procedure. A cataloged procedure includes
one or more EXEC statements, which identify
procedure steps. However, an EXEC
statement in a cataloged procedure cannot
invoke another cataloged procedure; it rrust
request the execution of a program.

It may be necessary for you to modify
the statements of a cataloged procedure for
the duration of the job step in which it is
invoked, either by adding DD staterrents or
by overriding one or more parameters in the
EXEC or DD statements. For example,
cataloged procedures that invoke the
compiler require the addition of a DD
statement with the name SYSIN to define the
data set containing the source staterrents.
Also, whenever you use more than one
standard link-edit procedure step in a job,
you must modify all but the first cataloged
procedure that you invoke if you want to
execute more than one of the load modules.

Multiple Invocation of Cataloged P~g£~Q~~2

You can invoke different cataloged
procedures, or invoke the same cataloged
procedure several times, in the sarr.e job.
No special problems are likely to arise
unless more than one of these catalcged
procedures involves a link-edit procedure
step, in which case you must take the
following precautions to ensure that all
your load modules can be executed.

The linkage editor always places a load
module that it creates in the standard data
set defined by the DD statement with the
name SYSLMOD. In the absence of a linkage
editor NAME statement (or the NAME compiler
option), it uses the member name specified

in the DSNAME parameter as the name of the
module. In the standard cataloged
procedures, the DD statement with the name
SYSLMOD always specifies a temporary
library named &&GOSET, and gives the load
module the member name GO.

Consider what will happen if, for
example, you use the cataloged procedure
PLIXCLG twice in a job to compile, link
edit, and execute two PL/I programs, and do
not name each of the two load modules that
~ill be created by the linkage editor. The
linkage editor will name the first load
module GO, as specified in the first DD
statement with the name SYSLMOD. It will
not be able to use the same name for the
second load module since the first load
module still exists in the library &&GOSET;
it will allocate a temporary name to the
second load module Ca name that is not
available to your program). Step GO of the
cataloged procedure requests the operating
system to initiate execution of the load
module named in the first DD statement with
the name SYSLMOD in the step LKED, that is,
to execute the module named GO from the .
library &&GOSET. Consequently, the first
load module will be executed twice and the
second not at all.

To prevent this, use one of the
following methods:

• Delete the library &&GOSET at the end
of the step GO of the first invocation
of the cataloged procedure by adding a
DD statement of the form:

//GO.SYSLMOD DD DSN=&&GOSET,
PISP=(OLD,DELETE)

• Modify the DD statement with the name
SYSLMOD in the second and subsequent
invocations of the cataloged procedure
so as to vary the names of the load
modules. For example:

//LKED.SYSLMOD DD DSN=&&GOSETCG01)

and so on.

• Use the NAME compiler option to give a
different name to each load module and
change your job control statements to
specify the execution of the load
modules ~ith these names.

uea1ca~ea ua~a ~e~~

Many of the processing programs in the
operating system, including the optimizing
compiler and the linkage editor, use
temporary workfiles. To avoid allocating
data sets for these workfiles each time

they are required, an installation using
the MVT operating system can dedicate one
or more data sets for temporary workfiles,
and these remain permanently allocated.

The standard cataloged procedures allow
you to assign dedicated data sets to the
optimizing compiler and linkage editcr.
The DD state~ents fer workfiles have the
ddname SYSUT1. In these DD statements, the
DSNAME parameter is coded:

DSNAME=&&ddnarce

where "ddnarre" is the ddname of that DD
statement. Your installation must have
assigned these names to the dedicated data
sets, otherwise you must override the DD
statement in the cataloged procedure in
order to specify the names used ty your
installation.

If the system cannot assign the
dedicated data set to your job ste~, it
creates a temporary data set instead. Fer
full details of dedicated data sets see the
QS sY§Eem PrQ9ra~mer'§~~ide.

Multitasking Usin~al2g§2-Pr2cedures

When you use a cataloged procedure to link
edit a multitasking program, you must
ensure that the load module includes the
multitasking versions of the PL/I resident
library subroutines. To enatle you to
select the appropriate library, the
cataloged procedures that invoke the
linkage editor and the loader include a
symbolic parameter (&LKLBDSN) in the DSNAME
parameter of the DD statement SYSLIE, which
defines the data set to be used as the
automatic call library. This data set is
described in chapter 5. The default value
of this symbolic parameter is SYS1.PLIBASE,
which is the name of the non-multitasking
("base") library.

To ensure that the multitasking library
(SYS1.PLITAS~) is searched before the base
library, include the ~arameter
LKLBDSN='SYS1.PLITASK' in the EXEC
statement that invokes the cataloged
procedure; for example:

//STEPA EXEC PLIXCLG,LKLBDSN='SYS1.PLITASK '

The DD statement SYSLIB is always
- - _. - - - - -

IU.1..1.UW~U in 1:.U~ ::i1:.cU1UdLU (.;d1,;.d.1.UI::JI::U

procedures by another, unnamed, DD
statement that includes the parameter
DSNAME=SYS1.PLIEASE. The effect of this
statement is to concatenate the base
library with the multitasking library, if
the latter is used; the base library can
then be searched for any subroutine common

Chapter 10: Cataloged Procedures 13~

to multitasking and non-multitasking and
therefore not included in the multitasking
library. When the non-multitasking library
is selected, the second DD statement has no
effect.

The use of the symbolic parameter
&LKLBDSN means that for non-multitasking
programs, SYS1.PLIBASE is concatenated with
itself. This has no effect other than a
very small increase in job scheduling time,
but does avoid the need for different
cataloged procedures for link editing
multitasking and non-multitasking programs.

Modifying Cataloged Procedures

You can modify a cataloged procedure
temporarily by including parameters in the
EXEC statement that invokes the cataloged
procedure or by placing additional DD
statements after the EXEC statement.
Temporary modifications apply only for the
duration of the procedure step in which the
procedure is invoked and only to that
procedure stepi they do not affect the
master copy of the cataloged procedure
stored in the procedure library.

Alternatively, you can modify a
cataloged procedure permanently by
rewriting the job control statements that
are stored in the procedure library.
Permanent modification should be made only
by system programmers responsible for
maintaining the procedure library. Some of
the considerations that may influence their
decisions to modify the standard cataloged
procedures are discussed below.

TEMPORARY MODIFICATION

Temporary modifications can apply to EXEC
or DD statements in a cataloged procedure.
To change a parameter of an EXEC statement,
you must include a corresponding parameter
in the EXEC statement that invokes the
cataloged procedurei to change one or more
parameters of a DD statement, you must
include a corresponding DD statement after
the EXEC statement that invokes the
cataloged procedure. Although you may not
add a new EXEC statement to a cataloged
procedure, you can always include
additional DD statements.

134

EXEC Statement

If a parameter of an EXEC statement that
invokes a cataloged procedure has an
unqualified name, the parameter applies to
all the EXEC statements in the cataloged
procedure. ~he effect on the cataloged
procedure depends on the parameters, as
follows:

• PARM applies to the first procedure
step and nullifies any other PARM
parameters.

• COND and ACCT apply to all the
procedure steps.

• TIME and REGION apply to all the
procedure steps and override existing
values.

For example, the statement:

//stepname EXEC PLIXCLG,PARM='SIZE(MAX)',
REGION=144K

invokes the cataloged procedure PLIXCLG,
substitutes the opticn SIZE(MAX) fer OBJECT
and NO DECK in the EXEC statement for
procedure step PLI, and nullifies the FARM
parameter in the EXEC statement for
procedure step LKEDi it also specifies a
region size of 144K for all three procedure
steps.

To change the value of a parameter in
only one EXEC statement of a cataloged
procedure, or to add a new parameter to cne
EXEC statement, you must identify the EXEC
statement by qualifying the name of the
parameter with the name of the procedure
step. For example, to alter the region
size for procedure step PLI only in the
preceding example, code:

//stepname EXEC PROC=FLIXCLG,
PARM='SIZE(MAX)',REGION.PLI=144K

A new parameter specified in the
invoking EXEC statement overrides
completely the corresponding parameter in
the procedure EXEC statement.

You can nullify all the options
'specified by a parameter by coding the
keyword and equal sign without a value.
For example, to suppress the bulk cf the
linkage editor listing when invoking the
cataloged procedure PLIXCLG, code:

//stepname EXEC PLIXCLG,PARM.LKED=

DO statement

To add a DO statement to a cataloged
procedure, or to modify one or more
parameters of an existing DD statement~ you
must include, in the appropriate position
in the input stream, a DD statement with a
name of the form "procstepname.ddname". If
"ddname" is the name of a DD statement
already present in the procedure step
identified by "procstepname," the
parameters in the new DD statement override
the corresponding parameters in the
existing DD statement; otherwise, the new
OD statement is added to the procedure
step. For example, the statement:

//PLI.SYSIN DD *
adds a DD statement to the procedure step
PLI of cataloged procedure PLIXC and the
effect of the statement:

//PLI.SYSPRINT DD SYSOUT=C

is to modify the existing DD statement
SYSPRINT (causing the compiler listing to
be transmitted to the system output device
of class C).

Overriding DD statements must follow the
EXEC statement that invokes the cataloged
procedure in the same order as the
corresponding DD statements of the
cataloged procedure. DO statements that
are being added must follow the overriding
DD statements for the procedure step in
which they are to appear.

To override a parameter of a DD
statement, code either a revised form of
the parameter or a replacement parameter
that performs a similar function (for
example, SPLIT for SPACE). To nullify a
parameter, code the keyword and equal sign
without a value. You can override DCB
subparameters by coding only those you wish
to modify; that is, the DCB parameter in an
overriding DO statement does not
necessarily override the entire DCB
parameter of the corresponding statement in
the cataloged procedures.

PERMANENT MODIFICATION

To make permanent modifications to a
cata~ogeo proceoure, or to aaa a new
cataloged procedure, use the system utility
program IEBUPDTE, which is describ~d in the
utilities publication. The following
paragraphs discuss some of the factors you
should have in mind when considering
whether to modify the standard cataloged
procedures for your installation. For

further information on writing installation
cataloged procedures see the syste~
programmer's guide.

In general, installation conventions
will dictate the options that you include
in the PARM, UNIT, and SPACE parameters of
the cataloged procedures, and also the
blocking factors for output data sets.

If your installation uses the MVT
control program of the operating systerr,
you may need to modify some or all of the
REGION parameters.

The minimum region size for compilation
should be at least 8K bytes larger than the
largest value that will be specified in the
SIZE compiler option, excluding SIZE(MAX).

In cataloged procedures that invoke the
linkage editor, a region size of lOOK is
specified for the link-edit procedure step.

You can reduce this region size if you
are using the 44K F-Ievel linkage editor.
In general, the region size should te at
least 8K bytes larger than the design size
for the particular version of the linkage
editor being used. You must alter the
region size if you are using the 128K
F-Ievel linkage editor.

Under MVT, the operating systerr requires
up to 52K bytes of main storage within a
region when initiating or terminating a job
step. If you specify a region size of less
than 52K bytes, completion of a jot may te
held up until 52K bytes are available.

The minimum region size used ty MVT is
dependent on the installation, and is
defined at system generation. There is
nothing to be gained in reducing the region
size below this value.

If your installation uses MFT only, you
can delete the REGICN parameter from all
cataloged procedures, otherwise it will be
ignored.

IBM-supplied Cataloged Procedures

The standard PL/I cataloged procedures
supplied for use with the optimizing
cOItpiler are:

PLIXC Compile only

PLIXCL Compile and link edit

PLIXCLG compile, link edit, and execute

PLIXLG Link edit and execute

Chapter 10: Cataloged Procedures 135

PLIXCG Compile, load-and-execute

PLIXG Load-and-execute

The individual statements of the
cataloged procedures are not fully
described, since all the parameters are
discussed elsewhere in this publication.
These cataloged procedures do not include a
DD statement for the input data set; you
must always provide one. The following
example illustrates the JCL statements you
might use to invoke the cataloged procedure
PLIXCLG to compile, link edit, and execute,
a PL/I program:

//COLEGO JOB
//STEP1 EXEC PLIXCLG
//PLI.SYSIN DD *

/*

136

(insert here PL/I program to be
compiled)

No IBM-supplied cataloged procedure is
provided to produce an object module cn
punched cards. You can temporarily modify
any of the cataloged procedures that have a
compile step to produce a punched card
output, for example:

//stepname EXEC PLIXCLG,
PARM.PLI=·OEJEC~,DECK~

//PLI.SYSPUNCH DD SYSQUT=B
//PLI.SYSIN CD •••

Compile Only (PLIXC)

This cataloged procedure comprises only one
procedure step, in which the options
specified for the compilation are OBJECT
and NODECK. (IELOAA is the symbolic name
of the compiler.) In common with the other
cataloged procedures that include a
compilation procedure step, PLIXC does not
include a DD statement for the input data
set; you must always supply an appropriate
statement with the qualified ddname
PLI.SYSIN.

The OBJECT option causes the compiler to
place the object module, in a form suitable
for input to the linkage editor, in the
standard data set defined by the DD
statement with the name SYSLIN. This
statement defines a temporary data set
named &&LOADSET on a magnetic-tape or

PROC

direct-access device; if you want to retain
the object module after the end of your
job, you must substitute a permanent narre
for &&LOADSET (that is, a name that does
not commence &&) and specify KEEP in the
affrofriate DISP fararneter for the last
procedure step in which the data set is
used.

The term MOD in the DISP pararr.eter
allows the compiler to flace more than one
object module in the data set, and PASS
ensures that the data set will te available
to a later procedure step froviding a
corresponding DO statement is included
there.

The SPACE parameter allows an initial
allocation of 250 eighty-tyte records and,
if necessary, 15 further allocations cf 100
records (a total of 1750 records, which
should suffice for most applications).

//PLIXC
//PLI
//SYSPRINT
//SYSLIN
//
//SYSUTl
//

EXEC PGM=IELOAA,PARM=~OBJECT,NOOECK',REGION=100K
DO SYSOUT=A
DO DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSSQ,

SPACE=(80,(250,100»
DD DSN=&&SYSUT1,UNIT=SYSDA,SPACE=(1024, (60,60)"CONTIG),

DCB=BLKSIZE=1024

Chapter 10: Cataloged Procedures 137

Compile and Link-edit (PLIXCL)

This cataloged procedure comprises two
procedure steps: PLI, which is identical
with cataloged procedure PLIXC, and LKED,
which invokes the linkage editor (symbolic
name IEWL) to link edit the object module
produced in the first procedure step.

Input data for the compilation procedure
step requires the qualified ddname
PLI.SYSIN. The COND parameter in the EXEC
statement LKED specifies that this
procedure step should be bypassed if the
return code produced by the compiler is
greater than 9 (that is, if a severe or
unrecoverable error occurs during
compilation) •

The DD statement with the name SYSLIB
specifies the PL/I resident library, from
which the linkage editor will obtain
appropriate modules for inclusion in the

PROC LKLBDSN='SYS1.PLIBASE'

load module. The linkage editor always
places the load modules it creates in the
standard data set defined ty the DD
statement with the name SYSLMOD. This
statement in the cataloged procedure
specifies a new temporary library &&GOSET,
in which the load module will be placed and
given the member name GO (unless you
specify the NAME compiler option for the
compiler procedure step). In specifying a
temporary library, the cataloged procedure
assumes that you will execute the load
module in the same job; if you ~ant to
retain the module, you rr.ust substitute your
own statement for the DD statement with the
name SYSLMOD.

The last statement, DDNAME=SYSIN,
illustrates how to concatenate a data set
defined by a DD statement with the name
SYSIN with the primary input (SYSLIN) to
the linkage editor. You could place
linkage editor control statements in the
input stream by this means, as described in
chapter 5.

//PLIXCL
//PLI
//SYSPRINT
//SYSLIN
//
//SYSUT1
//

EXEC PGM=IELOAA,PARM='OBJECT,NODECK',REGION=lOOK
DD SYSOUT=A

//LKED
//SYSLIB
//
//SYSLMOD
//
//SYSUTl
//
//SYSPRINT
//SYSLIN
//

138

DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSSQ,
SPACE=(80,(250,lOO»

DD DSN=&&SYSUT1,UNIT=SYSDA,SPACE=(1024, (60,60)"CONTIG),
DCB=BLKSIZE=1024

EXEC PGM=IEWL,PARM='XREF~LIST',COND=(9,LT,PLI),REGION=100K
DD DSN=&LKLBDSN,DISP=SHR
DD DSN=SYS1.PLIBASE,DISP=SHR
DD DSN=&&GOSET(GO),DISP=(MOD,PASS),UNIT=SYSDA,

SPACE=(1024, (50,20,1)~RLSE)
DD DSN=&&SYSUT1,UNIT=SYSDA,SPACE=(1024,(200,20»,

DCB=BLKSIZE=1024
DO SYSOUT=A
DD DSN=&&LOADSET,DISP=(OLD,DELETE)
DD DDNAME=SYSIN

Compile, Link-edit, and Execute (PLIXCLG) third procedure step will be executed only
if no severe or unrecoverable errors occur
in the preceding procedure steps.

This cataloged procedure comprises three
procedure steps, PLI and LKED, which are
identical with the two procedure steps of
PLIXCL, and GO, in which the load module
created in the step LKED is executed. The

Input data for the compilation procedure
step should be specified in a DD statement
with the name PLI.SYSIN, and for the
execution procedure step in a DD statement
with the name GO.SYSIN.

//PLIXCLG
//PLI
//SYSPRINT
//SYSLIN
//
//SYSUT1
//
//LKED
//SYSLIB
//
//SYSLMOD
//
//SYSUT1
//
//SYSPRINT
//SYSLIN
//
//GO
//
//SYSPRINT

PROC LKLBDSN='SYS1.PLIBASE'
EXEC PGM=IELOAA,PARM='OBJECT,NODECK',REGION=100K
DD SYSOUT=A
DD OSN=&&LOADSET,OISP=(MOD,PASS),UNIT=SYSSQ,

SPACE=(SO,(2S0,100»
DD DSN=&&SYSUT1,UNIT=SYSDA,SPACE=(1024,(300,60)"CONTIG),

DCB=BLKSIZE=1024
EXEC PGM=IEWL,PARM='XREF,LIST',COND=(9,LT,PLI),REGION=100K
DD DSN=&LKLBDSN,DISP=SHR
DO DSN=SYS1.PLIBASE,DISP=SHR
DD DSN=&&GOSET(GO),DISP=(MOD,PASS),UNIT=SYSDA,

SPACE=(1024, (SO,20,l),RLSE)
DD DSN=&&SYSUT1,UNIT=SYSDA,SPACE=(1024,(200,20»,

DCB=BLKSIZE=1024
DD SYSOUT=A
DD DSN=&&LOADSET,DISP=(OLD,DELETE)
DD DDNAME=SYSIN
EXEC PGM=*.LKED.SYSLMOD,COND=«9,LT,PLI),(9,LT,LKED»,

REGION=100K
DO SYSOUT=A

Chapter 10: cataloged Frocedures 139

Link-edit and Execute (PLIXLG)

This cataloged procedure comprises two
procedure steps, LKED and GO, which are
similar to the procedure steps of the same
names in PLIXCLG.

In the procedure step LKED, the DD
statement with the name SYSLIN does not

PROC LKLBDSN=·SYS1.PLIBASE'

define a data set, but merely refers the
operating system to the DD statement SYSIN,
which you must supply with the qualified
ddname LKED.SYSIN. ~his DD statement
defines the data set from which the linkage
editor will obtain its primary input.
Execution of the prccedure step GO is
conditional on successful execution cf the
procedure step LKED only.

IIPLIXLG
IILKED
IISYSLIB
II
';/SYSLMOD
II
IISYSUT1
II
IISYSPRINT
IISYSLIN
IIGO
IISYSPRINT

EXEC PGM=IEWL,PARM='XREF~LIST',REGION=100K
DD DSN=tLKLBDSN,DISP=SHR

140

DD DSN=SYS1.PLIBASE,DISP=SHR
DD DSN=ttGOSET(GO) DISP=(MOD,PASS),UNIT=SYSSQ,

SPACE=(1024, (SO,20,1),RLSE)
DD DSN=t&SYSUT1,UNIT=SYSDA,SPACE=(1024~(200,20»,

DCB=BLKSIZE=1024
DD SYSOUT=A
DD DNAME=SYSIN
EXEC PGM=*.LKED.SYSLMOD,COND=(9,LT,LKED),REGION=100K
DD SYSOUT=A

Compile, Load-and-execute (PLIXCG)

This cataloged procedure achieves the same
results as PLIXCLG but uses the loader
instead of the linkage editor. However,
instead of using three procedure steps
(compile, link edit, and execute), it has
only two (compile, and load-and-execute).
In the second procedure step, the loader
program.is executed; this program processes
the object module produced by the compiler
and executes the resultant executable
program immediately. Input data for the

PROC LKLBDSN='SYS1.PLIBASE'

compilation procedure step requires the
qualified ddname PLI.SYSIN.

The REGION parameter of the EXEC
statement GO specifies lOOK bytes. since
the loader requires about 17K bytes of rrain
storage, there are about 83K bytes for your
program; if this is likely to be
insufficient, you must modify the REGICN
parameter. The use of the loader imposes
certain restrictions on your PL/I prograrr;
before using this cataloged procedure,
refer to chapter 5, which explains how to
use the loader.

I/PLIXCG
I/PLI
I/SYSPRINT
I/SYSLIN
1/
I/SYSUT1
1/

EXEC PGM=IELOAA,PARM='OBJECT,NODECK',REGION=100K
DD SYSOUT=A

IIGO
1/
I/SYSLIB
1/
I/SYSLIN
I/SYSLOUT
I/SYSPRINT

DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSSQ,
SPACE=(80,(250,100»

DD DSN=&&SYSUT1,UNIT=SYSDA,SPACE=(1024, (60,60)"CONTIG),
DCB=BLKSIZE=1024

EXEC PGM=LOADER,PARM='MAP,PRINT',REGION=100K,
COND=(9,LT,PLI)

DD DSN=&LKLBDSN,DISP=SHR
DD DSN=SYS1.PLIBASE,DISP=SHR
DD DSN=&&LOADSET,DISP=(OLD,DELETE)
DO SYSOUT=A
DD SYSOUT=A

Chapter 10: Cataloged Procedures 141

Load-and-execute (PLIXG)

This cataloged procedure achieves the same
results as PLIXLG but uses the loader
instead of the linkage editor. However,
instead of using two procedure steps (link
edit and execute), it has only one. In
this procedure step, the loader program is
executed. This program processes and
executes an object module placed in the
data set defined by a DD statement with the
name SYSLIN; you must supply this statement
with the qualified name GO.SYSLIN.

//PLIXG PROC LKLBDSN='SYS1.PLIBASE'

The REGION parameter of the EXEC
statement GO specifies 96K bytes. Since
the loader requires atout 17K bytes of main
storage, there are about 83K bytes for your
program; if this is likely to be
insufficient, you must modify the REGION
parameter. The use of the loader imposes
certain restrictions on your PL/I program;
before using this cataloged procedure,
refer to chapter 5, which explains how to
use the loader.

//GO EXEC PGM=LOADER,PARM='MAP,PRINT',REGION=lOOK
//SYSLIB DD DSN=&LKLBDSN,DISP=SHR
// DD OSN=SYS1.PLIBASE,DISP=SHR
//SYSLOUTDO SYSOUT=A
//SYSPRINT DO SYSOUT=A

142

Program checkout is the a~plication of
diagnostic and test processes to a program.
You should give adequate attention to
program checkout during the development of
a program so that:

1. A program becomes fully operational
after the fewest possible test runs,
thereby minimizing the time and cost
of program development.

2. A program is proved to have fulfilled
all the design objectives before it is
released for production work.

3. A program has complete and clear
documentation to enable both operators
and program maintenance personnel to
use and maintain the program without
assistance from the original
programmer.

The data used for the checkout of a program
should be selected to test all parts of the
program. Whilst the data should be
sufficiently comprehensive to provide a
thorough test of the program, it is easier
and more practical to monitor the behaviour
of the program if the volume of data is
kept to a minimum.

Conversational Program Checkout

The optimizing compiler can be used in
conversational mode when writing and
testing programs at a terminal. The
conversational features are available to
users where the TSO (Time Sharing Option)
facilities of the operating system are
present. The conversational facilities
enable you to enter a PL/I program from a
terminal, through which you will receive
diagnostic messages for the compilation.
You can also communicate with the program
during execution using PL/I files
associated with the terminal. Thus a PL/I
program can be checked out during its
construction, thereby saving a sUbstantial
amount of elapsed time that can occur
between test comnilrltion ;::lnn p~p~ll;-i nn 'Y'l1nc:

in batched processing.

The PL/I program is entered and
processed using the PLIC, EDIT, and other
commands and features described in the
publication as TSO: PL/I Optimizing
Compiler.

Chapter 11: Program Checkout

Compile-time Checkout

At compile time, both the preprocesscr and
the compiler can produce diagnostic
messages and listings according to the
compiler o~tions selected for a particular
compilation. The listings and the
associated compiler o~tions are discussed
in chapter 4. The diagnostic messages
produced by the optimizing compiler are
identified by a number prefixed "IEL".
These diagnostic messages are availatle in
both a long form and a short forrr. ~he
long rr.essages are designed to be as
self-explanatory as possible. The shcrt
messages are designed for reproduction at a
terminal when the compiler is being used in
a TSO environment. The short messages are
obtained by specifying the SMESSAGE
ccmpiler o~tion. Each message is
reproduced in the publication: ~Eb~l
Optimizing Compiler Message.§. ~his
publication includes explanatory nctes,
examples, and any acticn to be taken.

Always check the compilation listing for
occurrences of these messages to deterrr.ine
whether the syntax of the ~rogram is
correct. Messages of greater severity than
warning (that is, error, severe error, and
unrecoverable error) should be acted u~cn
if the message does not indicate that the
compiler has been able to "fix" the errcr
correctly. You should appreciate that the
compiler, in making an assumption as to the
intended meaning of any erroneous statement
in the source program, can introduce a
further, perhaps more severe, error which
in turn can produce yet another error, and
so on. When this occurs, the result is
that the compiler produces a number of
diagnostic messages which are all caused
either directly or indirectly by the one
error.

Other useful diagnostic aids produced by
the compiler are the attribute table and
cross-reference table. The attribute
table, specified by the ATTRIBUTES option,
is useful for checking that prograrr
identifiers, especially those whose
attributes are contextually and implicitly
declared, have the correct attributes. The
f""YrlQQ_yo4=oyon,..o ~":a"""'1~ ~ _,...,...."'''"',.... .. ,....~ \... •• ..L.. _

- - -- - -- - - - --- - - -- - -:1- -- - - - -~ _64_
XREF option, and indicates, for each
program variable, the number of each
statement that refers to the variable.

To prevent unnecessary waste of time and
resources during the early stages of
developing,programs, use the NOOPTIMIZE,

Chapter 11: Program Checkout 143

NOSYNTAX, and NOCOMPILE options. These
options, when specified, will suppress
optimization, subsequent compilation, link
editing, and execution should the
appropriate error conditions be detected.

The NOSYNTAX option specified with the
severity level "W", "E", or "S" will cause
compilation of the output from the PL/I
preprocessor, if used, to be suppressed
prior to the syntax-checking stage ,should
the preprocessor issue diagnostic messages
at or above the severity level specified in
the option.

The NOCOMPILE option specified with the
severity level "W", "E", or "S" will cause
compilation to be suppressed after the
syntax-checking stage if syntax checking or
preprocessing causes the compiler to ~ssue
diagnostic messages at or above the
severity level specified in the option.

Linkage Editor Checkout

When using the linkage editor, check
particularly that any required overlay
structuring and incorporation of additional
object and load modules have been performed
correctly. Diagnostic messages produced by
the linkage editor are prefixed "lEW".
These messages are fully documented in the
publication: Q§ Lin~~~ Editor and Loader.

When checking the processing performed
by the linkage editor, refer to the module
map produced by the linkage editor showing
the structure of the load module. The
module map names the modules that have been
incorporated into the program. The
compiler produces an external symbol
dictionary (ESD) listing if requested by
the ESD option. ~he ESD listing indicates
the external names that the linkage editor
is to resolve in order to create a load
module. The linkage editor is described in
chapter 5.

Execution-time Checkout

At execution time, errors can occur in a
number of different operations associated
with running a program. For instance, an
error in the use of a job control statement
can cause a job to fail. Most errors that
can be detected are indicated by a
diagnostic message. The diagnostic
messages for errors detected at execution
time are also listed in the messages
publication for this compiler and
identified by the prefix "IBM". The
messages are always printed on the SYSPRINT

144

file. They will also te reproduced on a
terminal if the compiler is being used in
conversational Rode.

A failure in the execution of a PL/I
program could be caused by one of the
following:

1. Logical errors in source programs.

2. Invalid use of PL/I.

3. Unforeseen errors.

4. Operating error.

5. Invalid input data.

6. Unidentified program failure.

7. A compiler or litrary subroutine
failure.

8. system failure.

Logical Errors in Source Prograrrs

Logical errors in source programs can often
be difficult to detect. Such errors can
sometimes cause a compiler or litrary
failure to be suspected. The more commen
errors are the failure to convert correctly
from arithmetic data, incorrect arithmetic
operations and string manipulation
operations, and failure to match data lists
with their format lists.

It is possible that a misunderstanding, of
the language, or the failure to provide the
correct environment for using PL/I, results
in an apparent failure of a PL/I program.
For example, the use of uninitialized
variables, the use of controlled variables
that have not been allocated, reading
records into incorrect structures, the
misuse of array subscripts, the misuse of
pointer variables, conversion errors,
incorrect arithmetic operations, and
incorrect string manipulation operations
can cause this type of failure.

Unforeseen Errors

If an error is detected during execution of
a PL/I program in which no on-unit is
provided to terminate execution or attempt
recovery, the job will te terminated

abnormally. However, the status of a
program executed in a batch-processing
environment, at the pOint where the error
occurred, can be recorded by the use of an
ERROR on-unit that contains the statements:

ON ERROR BEGIN;
ON ERROR SYSTEM;
PUT DATA;
END;

The statement ON ERROR SYSTEM; contained in
the on-unit ensures that further errors
caused by attempting to transmit
uninitialized variables do not result in a
permanent loop.

Operating Error

A job could fail because of an operating
error, such as running a job twice so that
a data set becomes overwritten or
erroneously deleted. Other operating
errors include getting card decks into the
wrong order and the failure to give
operators correct instructions for running
a job.

Invalid Input Data

A program should contain checks to ensure
that any incorrect input data is detected
before it can cause the program to fail.

Use the copy option of the GET statement
if you wish to check values obtained by
stream-oriented input. The values will be
listed on the file named in the COpy
option. If no file name is given, SYSPRINT
is assumed.

Unidentified Program Failure

In most circumstances, an unidentified
program failure should not occur when using
the optimizing compiler. Exceptions to
this could include the following:

1. When the program is executed in
conjunction with non-PL/I modules,
such as FORTRAN or COBOL.

2. When the program obtains, by means of
record-oriented transmission,
incorrect values for use in label~
entry: locator; and file variables.

3. Errors in job control statements,
particularly in defining data sets.

If execution of a program terminates
abnormally without an accompanying PL/I
execution-time diagnostic message, it is
probable that the error that caused the
failure· also inhibited the production of a
message. In this situation, it is still
possible to check the PL/I source program
for errors that could result in overwriting
areas of the main storage region that
contain executacle instructions,
particularly the communications region,
which contains the address tables for the
execution-time error-handling routine.
These errors may also ce present in modules
compiled by the checkout compiler with
NODIAGNOSE and COMPATIBLE and executed in
conjunction with the modules produced by
the optimizing compiler. The types of PL/I
program that might cause the main storage
to be overwritten erroneously are:

1. Assignment of a value to a
non-existent array element. Fer
example:

DeL ARRAY(10);

DO I = 1 TO 100;
ARRAY(I) = VALUE;

To detect this type of error in a
module compiled cy the optimizing
compiler, enable the SUBSCRIPTRANGE
condition. For each attempt to access
an element outside the declared range
of subscript values, the
SUBSCRIPTRANGE condition will be
raised. If there is no on-unit for
this condition, a diagnostic message
will be printed and the ERRCR
condition raised. This facility,
although expensive in execution time
and storage space, is a valuable
program-checkout aid.

2. The use of incorrect locator values
for locator (pointer and offset)
variables. This type of error is
possible if a locator value is
obtained by means of record-oriented
transmission. Check that locater
values created in a program,
transmitted to a data set, and
subsequently retrieved for use in
another program, are valid fer use in 1' ________ ..:1 __________ _

'-"','-""''''~''''''"''" 1::" '-"'::1-""" 1.

An error could also be caused ty
attempting to free a non-based
variable. This could be caused cy
freeing a based variable when its
qualifying pointer value has teen
changed. For example:

Chapter 11: Program Checkcut 145

DCL A STATIC,B BASED (P)i
ALLOCATE Bi
P = ADDRCA)i
FREE Bi

3. The use of incorrect values for label,
entry, and file variables. Errors
similar to those described above for
locator values are possible for label,
entry, and file values that are
transmitted and subsequently
retrieved.

4. The use of the SUBSTR pseudovariable
to assign a string to a position
beyond the maximum length of the
target string. For example:

DCL X CHAR(3);
1=3;
SUBSTR(X,2,I) = 'ABC'i

The STRINGRANGE condition can be used
to detect this type of error in a
module compiled by the optimizing
compiler.

Comeiler or Library Subroutine Failure

If you are absolutely convinced that the
failure is caused by a compiler failure or
a library subroutine failure, you should
notify your management, who will initiate
the appropriate action to correct the
error. This could mean calling in IBM
personnel for programming support to
rectify the problem. Before calling IBM
for programming support, refer to the
instructions for providing the correct
information to be used in diagnosing the
problem. These instructions are given in
appendix C, "Requirements for Problem
Determination and APAR Submission."
Meanwhile, you can attempt to find an
alternative way to perform the operation
that is causing the trouble. A bypass is
often feasible, since the PL/I language
frequently provides an alternative method
of performing a given operation.

System Failure

System failures include machine
malfunctions and operating system errors.
These failures should be identified to the
operator by a system message.

146

Statement Numbers and Tracing

The compiler FLOW o~tion provides a
valuable program-checkout aid. The
FLOWCn,m) option creates a table of the
numbers of the last "n" branch-out and
branch-in statements, and the last "rr"
procedures and on-units to be entered. CA
"branch-out" statement is a statement that
transfers control to a statement other than
that which immediately follows it~ such as
a GOTO statement. A branch-in statement is
a statement that receives control from a
statement other than that which immediately
precedes it, such as a PROCEDURE, ENTRY, or
any other labeled statement.) The figure
you choose for "n" should be large enough
to provide a usable trace of the flow of
control through the program.
Alternatively, if you do not specify the
FLOW option explicitly, defaults for the
FLOW option will be used.

The trace table can be obtained by any
of the methods described below.

The trace i's printed whenever an on-unit
with the SNAP option or a PUT ALL statement
is encountered. It gives both the
statement numbers and the names of the
containing procedures or on-units. For
example, an ERROR on-unit that results in
both the listing of the program variables
and the statement number trace can be
included in a PL/I program as follows:

ON ERROR SNAP BEGIN;
ON ERROR SYSTEM;
PUT DATA;
ENDi

A flow trace can be specified as ~art of
the output from the PL/I dump facility
PLIDUMP, discussed later in this cha~ter.

Dynamic Checking Facilities

It is possible for a syntactically-correct
~rogram to produce incorrect results
without raising any PL/I error conditions.
This can be attributed to the use of
incorrect logic in the PL/I source ~rogram
or to invalid input data. Detection of
such errors from the resultant output Cif
any) c~n be a difficult task. It is
sometimes helpful to have a record of each
of the values assigned to a variable,
particularly label, entry, loop control,
and array subscript variables. This can be
obtained by using the CHECK prefix o~tion.
Note that, unless care is exercised, the
indiscriminate use of the facilities
described below will result in a flood of
unwanted and unusable printout.

A CHECK prefix option can specify
program variables in a list. Whenever a
variable that has been included in a
check-list is assigned a new value, the
CHECK condition is raised. The standard
system action for the CHECK condition is to
print the name and new value of the
variable that caused the CHECK condition to
be raised. An example of a CHECK prefix
options list is:

(CHECK(A,B,C,L»:/* CHECKOUT PREFIX LIST */
TEST: PROCEDURE OPTIONS(MAIN);

DECLA.RE A etc.,

If the CHECK condition is to be raised for
all the variables used in a program, the
CHECK prefix option can be more simply
specified without a list of items. For
example:

(CHECK): TEST: PROCEDURE;

Control of Exceptional Conditions

During execution of a PL/I object program,
a number of exceptional conditions can be
raised, either as a result of
program-defined action, or as a result of
exceeding a hardware limitation. PL/I
contains facilities for detecting such
conditions. These facilities can be used
to determine the circumstances of an
unexpected interrupt, perform a recovery
operation, and permit the program to
continue to run. Alternatively, the
facilities can be used to detect conditions
raised during normal processing, and
initiate program-defined actions for the
condition. Note that some of the PL/I
conditions are enabled by default, some
cannot be disabled, and others have to be
enabled explicitly in the program. Refer
to the language reference manual for this
compiler for a full description of each
condition.

Note that the SIGNAL statement can be
used to raise any of the PL/I conditions.
such use permits anyon-units in the
program to be tested during debugging.

The standard system action for the ERROR
condition for which there is no on-unit,
is. in hatched nrocessina. ~n r~isp ~hp

FINISH condition, and in-conversational
processing, to give control to the
terminal. The FINISH condition is also
raised for the following:

1. When a SIGNAL FINISH statement is
executed.

2. When a PL/I program completes
execution normally.

3. On completion of an ERROR on-unit that
does not return control to the PL/I
program by means of a GOTO statement.

4. When a STOP statement is executed or
when an EXIT statement is executed in
a major task.

The standard system action for the FINISH
condition in batched processing is to
terminate the task, and, in conversational
processing, to give control to the
terminal.

Use of the PL/I Preprocessor in Progf~
Checkout

During program checkout, it is often
necessary to use a number of the FL/I
conditions (and the on-units associated
with them) and subsequently to remove them
from the program when it is found to be
satisfactory. The PL/I preprocessor can be
used to include a standard set of
program-checkout statements from the source
statement library. When the program is
fully operational, the %INCLUDE statement
can be removed, and the resultant object
program compiled for execution.

A standard set of PL/I program checkout
statements would include both the enabling
of any conditions that are disacled cy
default and the provision of the
appropriate on-units. The %INCLUDE
statement that causes the inclusion of the
set of program checkout s~atements would
usually be placed after anyon-units that
must remain in the program permanently in
order to cancel their effect during program
checkout.

On-codes

On-codes can indicate more precisely what
type of error has occurred where a
condition can be raised by more than one
prrnr. Fnr pv~rr.nlp_ Thp ~~pnp ~nnn;T;nn

can be raised by-a number of different
errors, each of which is identified cyan
on-code. You can obtain the on-code by
using the condition built-in function
ONCODE in the on-unit. The on-codes are
described in the language reference manual
for this compiler.

Chapter 11: Program Checkout 147

Dumps

Should the checks given above fail to
reveal the cause of the error, it may be
necessary to obtain a printout, or dump, of
the main storage region used by the
program. A dump can display the contents
of all buffers associated with PL/I files,
the PL/I file attributes for each file open
when the dump is taken, and a trace of the
block invocdtions that occurred during
execution before the dump was taken.

A hexadecimal dump can also be obtained
to determine the machine instructions and
data present in main storage when the
failure occurred. The use of a hexadecimal
storage dump requires a knowledge of
assembler language programming and an
understanding of object program
organization.

Refer to the execution logic manual for
this compiler for information about the
organization of the object programs
produced by the optimizing compiler, and
how to interpret a storage dump.

To obtain a formatted PL/I dump, you
must invoke the PL/I resident library dump
module by calling PLIDUMP. Note that a DD
statement with the ddname PLIDUMP must be
supplied to define the data set for the
dump.

PLIDUMP can be invoked with two optional
arguments. The first argument is a
character-string constant used to specify
the types of information to be included in
the dump. The second argument can be a
character-string expression or a decimal
constant with which you can identify the
output produced by PLIDUMP. The format of
the PLIDUMP statement is:

CALL PLIDUMP[('options-list'
[,user-identification])];

The options-list is a contiguous string
of characters that may include the
following:

T

NT

F

NF

148

To request a trace of active
procedures, begin blocks, on-units,
and library modules.

To suppress the output produced by T
above.

To request a complete set of
attributes for all files that are
open, and the contents of the buffers
used by the files.

To suppress the output produced by F
above.

S To request the termination of the
program after the completion of the
dump. Note: The FINISH condition is
not raised.

C To request continuation of execution
after completion of the dump.

H To request a hexadecimal dump of the
main storage partition used by the
program.

NH To suppress the hexadecimal dumF.

B If T is specified, to produce a
separate hexadecimal dump of control
blocks such as the TCA and the DSA
chain that are used in the trace
analysis. If F is specified, to
produce a separate hexadecimal dumF of

'control blocks used in the file
analysis, such as the FeB.

NB To suppress hexadecimal dumps of
control blocks.

A To request information relevant to all
tasks in a multitasking program.

E To request that an exit be made from
the current task of a multitasking
program and that execution of the
program continues after completion of
the requested dump.

o To request information relevant only
to the current task in a multitasking
program.

The defaults assumed for the above
options not specified explicitly are:

T F C A NH NB

The user-identification permits you to
specify a character-string expression or a
decimal constant to identify individual
dumps. It cannot be specified without the
preceding argument in the argument list.

Trace Information

Trace information produced by PLIDUMP
includes a trace through all the active
DSAs. (DSAs will be present for compiled
blocks, such as procedures and on-units,
and for library routines.) For on-units,
the dump gives the values of any condition
built-in functions that could be used in
the o~-unit,regardless of whether the
on-unit actually used the condition
built-in function. If a hexadecimal dump
is also requested, the trace information
will also include:

The address of each DSA (Dynamic
storage Area).

The address of the TCA (Task
Communications Area).

The contents of the registers on entry
to the PL/I error-handler module
(IBMCERR).

The PSW or the address from which the
PL/I error handler module (IBMCERR)
was invoked.

The addresses of the library module
DSAs back to the most recently-used
compiled code DSA.

DSAs and the TCA are described in the
execution logic manual for this compiler.
A table of statement numbers indicating the
flow of control through the program is
always produced.

File Information

File information produced by PLIDUMP
includes the default and declared
attributes of all open files, and the
contents of all buffers that are accessible
to the dump routine. The information is
given in BCD notation, and if hexadecimal
output is also requested, in hexadecimal
notation also. The address and contents of
the FCB are then printed.

The hexadecimal dump is a dump of the
region of main storage containing the
program. The dump is given as three
columns of printed output. The left-hand
and middle columns contain the contents of
storage in hexadecimal notation. The "third
column contains a BCD translation of the
first two columns. For hexadecimal
characters that cannot be represented by a
printable BCD character, a full stop is
printed.

Return Codes

Both the compilation and the link editing
of a PL/I program will result in a return
code being passed to indicate the severity
of any errors found. It is possible to
pass a return code from a PL/I program,
either ~or examination in a subsequent job
step if execution of that step is

conditional upon the value of the code
returned, or merely to indicate conditions
that were encountered during execution.
Conditional execution of a job step is
determined by use of the COND parameter of
the JOB or EXEC statement.

Return
Codes

0000

1-999

1000

2000

4000

4004

4008

4012

4020

Normal termination.

Return codes available for
use with PLIRETC.

Code returned if a S~CF or
EXIT statement is executed.
This value will be added to
any PLIRETC value.

Code returned if ERROR is
raised. This value will be
added to any PLIRETC value.

Code returned if an
interrupt occurs in the FL/I
error handler.

Code returned if the PRV
(pseudo register vector) is
too large.

Code returned if PL/I
program has no main
procedure.

Not enough main storage
available.

Code returned if the program
is about to enter a
permanent wait state.

4024 Code returned if a task in a
multitasking program has
terminated without use of
the PL/I termination
routines.

Figure 11.1. Return codes from execution
of a PL/I program

Return codes can be set in a PL/I
program by passing as an argument to the
CALL PLIRETC statement a code represented
as a variable with the attributes FIXED
BINARY(31,0). The range of codes used
should be restricted to 1 through 999.
Codes higher than 999 are returned if an
error causes the program to terminate. In
~nmp ~~~p~ thp return code for the croqram
will be added to any code created by use of
the CALL PLIRETC statement. In other cases
it will overwrite any code set by use of
the CALL PLIRETC statement. Moreover, when
the optimizing compiler is used in
batched-processing mode, any return code
resulting from the compilation step to

Chapter 11: Program Checkout 149

indicate a source program error will be
overwritten by any larger return code
generated by the execution step. other
error situations, listed in figure 11.1,
will also cause a program-generated return
code to be overwritten.

If a return code in the 4000-4024 range
is encountered and the cause cannot be

150

traced to a source program error, it may be
necessary to call in IBM program support
personnel. Appendix C, "Problem
Determination and APAR Submission",
describes the materials that will ce
required for examination by IBM in such
circumstances.

Chapter 12: Linking PL/I and Assembler Language Modules

This chapter describes how to create
programs that combine routines written in
PL/I and assembler language. It explains
how a PL/I program invokes an
assembler-language routine and, conversely,
how an assembler-language routine invokes a
PL/I procedure.

Before describing any of the linkages in
detail, the chapter discusses the PL/I
environment that must be preserved when
invoking an assembler-language routine from
PL/I, and which must be created when
invoking a PL/I procedure from an
assembler-language routine.

The PL/I Environment

The PL/I environment is the term used to
describe a number of control blocks created
by routines that are provided by the as
PL/I Resident and Transient Libraries to
satisfy the storage-management and
error-handling requirements of a PL/I
procedure.

When a PL/I program invokes an
assembler-language routine, the invoked
routine must ensure that the PL/I
environment is preserved. The PL/I
environment is preserved by observing the
standard IBM System/360 linkage
conventions, which include the storing of
register values in a save area, and by
ensuring that the content of register 12 is
not modified by the assembler routine if
PL/I is to handle interrupts that occur
during execution of the assembler routine.
Register 13 must be set to the address of a
new save area established by the assembler
routine.

ESTABLISHING THE PL/I ENVIRONMENT

The PL/I environment is established by the
as PL/I Resident Library routine IBMBPIR
and the as PL/I Transient Library routine
IBMBPII for a non-multitasking program and
bv IBMTPIR and IBMTPII for a multit~Rkinn
program. An assembler-language routine -
that invokes a PL/I procedure for which the
PL/I environment has not been established
can use one of two standard entry pOints to
establish the environment. The routine
IBMBPIR or IBMTPIR (with IBMPII or IBMTPII)
is entered through a control section called

PLISTART which in turn has two standard
entry points, PLICALLA and PLICALLBi these
are described later in this chapter.

Use of PLIMAIN to Invoke a PL/I Precedure

Once IBMEPIR or IBMTPIR (with IBMPII or
IBMTPII) has created the environment, it
transfers control to the PL/I procedure
whose address is contained in PLIMAIN.
Normally, after link editing, PLIMAIN will
contain the entry point address of the
first, or only, PL/I main procedure in the
program. If the assembler-language routine
is to invoke a PL/I procedure that is net
the first, or only, main PL/I procedure in
the program, it must insert in the
compiler-generated control section PLIMAIN
the address of the entry point of the
procedure it is to invoke. The example in
figure 12.6 shows how this is done.

If there is no main procedure in the
program, the assembler routine should
contain an entry point called PLIMAIN at
which is held the address of the entry
point of the PL/I routine to be invoked.
The example in figure 12.7 shows how the
appropriate address is inserted into the
location represented by the entry point
~LIMAIN. If the assembler program dees not
include an entry point called PLIMAIN in
these circumstances, a dummy module called
PLIMAIN will be included from the CS PL/I
Resident Library.

Once the PL/I environment has been
established, it can, as shown in the
example in figure 12.3, be preserved, and
any PL/I procedure can be invoked
subsequently by loading the address of its
entry point into register 15, and executing
a branch-and-link-register instruction to
it.

PLICALLA AND PLICALLB

PLICALLA: PLICALLA is used when the PL/I
pn'tT; yrmmpn+- m11C::+- h.:> .:>c::t-::> hl .; ch.:>,-'l :!:':':'::' :' :!?:!:../!
procedure that can use for its dynamic
storage as much of the available space in
storage as it requires.

PLICALLB: PLICALLB is used when the PL/I
environment must be established for a PL/I
procedure that can use for its dynamic

Chapter 12: Linking PL/I and Assembler-language Modules 151

storage only a specified amount of the
available storage. PLICALLB can optionally
specify where that storage is to begin.

Further details and examples using
PLICALLA and PLICALLB are given later in
this chapter.

THE DYNAMIC STORAGE AREA (DSA) AND SAVE
AREA

Whenever a PL/I procedure is invoked, it
requires for its own use a block of storage
known as a 9~namic storage area (DSA). A
DSA for a PL/I procedure consists of a save
area for the contents of registers, a
backchain address that points to the save
area for the previous routine, and storage
for automatic variables and miscellaneous
housekeeping items.

An assembler routine invoked from PL/I
should take the following action to
preserve the PL/I environment:

1.

2.

If the assembler routine is to use the
PL/I error-handler, it must store the
contents of all registers in the
existing PL/I DSA and establish its
own save area in which the backchain
address of the PL/I DSA must be
stored. The first byte of the save
area must be set to zero. The second
word of the save area is the backchain
address. The remainder of the save
area would only be used by a routine
invoked from the assembler routine or
by the PL/I error-handler, if used,
for saving the assembler routine's
registers.

If the assembler routine is not to use
the PL/I error-handler and does not
invoke a further function routine, the
SPIE macro must be used to reset the
interrupt handler but only those
registers that it modifies must be

stored. The SPIE macro is discussed
later in this chapter.

Calling Assembler Routines from PL/I

The following section describes:

1. How to invoke a non-recursive er
non-reentrant assembler routine.

2. How to invoke a recursive or reentrant
assembler routine.

INVOKING A NON-RECURSIVE OR NON-REENTRANT
ASSEMBLER ROUTINE

When a PL/I program invokes a non-recursive
or non-reentrant assembler-language
routine, the assembler-language routine
must follow System/360 linkage conventions
and save the registers for use by PL/I on
return from the assembler-language routine.
The register values are stored in the PL/I
DSA, the addr~ss of which is contained in
register 13 on entry to the
assembler-language routine. This address
must then be stored in the backchain word
in a save area defined by the assembler
routine itsel~. Before returning to the
PL/I routine, the assembler routine must
restore the registers to the values held
when the PL/I routine invoked the assembler
routine. The following assembler
instructions should be executed immediately
the assembler routine is invoked in order
to achieve the given objectives. The
example in figure 12.1 assumes that the
assembler routine uses register 10 as its
base register.

STM
BALR
USING
LA

14,11,12(13)
10,0

STORE PL/I REGISTERS IN PL/I DSA
ESTABLISH BASE REGISTER

ST
LA

L
LM
BR

SAVEAREA DC

*,10
4,SAVEAREA
13,SAVEAREA+4
13,SAVEAREA

13,4(13)
14,11,12(13)
14
20F'O'

STORE PL/I DSA ADDRESS IN SAVE AREA
LOAD SAVE AREA ADDRESS

ASSEMBLER
ROUTINE

RESTORE PL/I REGI
-STERS AND
RETURN TO PL/I
ALLOCATE 80 BYTE SAVE AREA

Figure 12.1 "Invoking a non-recursive or non-reentrant assembler routine

152

INVOKING A RECURSIVE OR REENTRANT ASSEMBLER
ROUTINE

A recursive or reentrant assembler routine
invoked from PL/I can use the PL/I storage
overflow routine to attempt to obtain
further storage when the storage initially
available for dynamic use by the program is
used up.

A DSA established by the assembler
routine must have its first byte set to
X'OO' if it is to handle any program
interrupts. such a DSA must be at least 80
bytes in length to accommodate both the
save area and two fullwords required by
PL/I for its housekeeping. If the PL/I
error-handler is to service any program
interrupts in the assembler-language
routine, the DSA should be at least 88
bytes in length, the first byte of which
should be set to X'80' and bytes 87 and 88
(the PL/I error-handler enable cells) set
to X'91CO'. In addition, a DSA can be as
long as is needed to store any values that
are to be preserved for use by a particular
invocation.

Termination of a recursive or reentrant
assembler-language routine will release its

DSA and cause control to be returned to the
invoking routine.

The example in figure 12.2 shows how to
create and release a DSA in a recursive or
reentrant assembler routin~.

USE OF REGISTER 12

If an assembler routine that modifies
register 12 is to be invoked by a PL/I
procedure, any program-check interru~ts
will result in an un~redictable program
failure unless the routine establishes its
own error handling for program-check
interrupts. Consequently, the routine
should be amended to use a register other
than register 12 so that the PL/I
error-handler can be used, or it can issue
a supervisor SPIE or STAE macro to
establish its own program interrupt or
abnormal termination handling facilities.
The routine must sutsequently restore PL/I
error-handling facilities before returning
to PL/I. This is discussed further in
"Overriding and Restoring PL/I
Error-handling in an Assembler-language
Routine" later in this chapter. (A routine
that changes the content of register 12

STM 14,11,12(13)
BALR 10,0

STORE CALLER'S REGISTERS IN CALLER'S DSA
ESTABLISH BASE REGISTER

*

*

*

ENOUGH

*
*
*

USING *,10
LR 4,1

LA 0,90
L 1,76(13)

ALR 0,1
CL 0,12(12)

BNH
L
BALR
EQU
ST

ST

ENOUGH
15,116(12)
14,15

* 0,76(1)

13,4(1)

SAVE ANY PARAMETER LIST ADDRESS
PASSED FROM CALLING ROUTINE
PUT THE LENGTH OF THE REQUIRED DSA IN REG 0
LOAD THE ADDRESS OF THE NEXT AVAILABLE
BYTE OF STORAGE AFTER THE CURRENT DSA
ADD ADDRESSES
COMPARE RESULT WITH ADDRESS OF LAST AVAILABLE
BYTE IN STORAGE THAT CAN BE USED

LOAD AND BRANCH TO THE PL/I STORAGE CVERFLOW
ROUTINE TO ATTEMPT TO OBTAIN MORE STORAGE

STORE THE ADDRESS OF THE NEXT AVAILAELE
BYTE IN STORAGE AFTER THE NEW DSA
STORE THE CHAIN-BACK ADDRESS OF THE PREVIOUS
DSA IN THE CURRENT DSA

MVC 72(4,1),72(13) COPY ADDRESS OF LIBRARY

LR
MVI
MVI
MVI

13,1
0(13),X'80'
86(13),X'91'
87(13),X'CO'

WORKSPACE
STORE THE ADDRESS OF THE NEW DSA IN REGISTER 13
SET FLAGS IN DSA TO
PRESERVE PL/I ERROR-HANDLING
IN THE ASSEMBLER ROUTINE

ASSEMBLER
ROUTINE

L 13,4(13) RELEASE CURRENT DSA
LM 14,11,12(13) RESTORE CALLER'S REGISTERS
BR 14

Figure 12.2. Invoking a recursive or reentrant assembler routine

Chapter 12: Linking PL/I and Assembler-language Modules 153

should also store it on entry and restore
it on return.)

Calling PL/I Procedures from Assembler
Language

The simplest way to invoke a single
external PL/I procedure from an
assembler-language routine is to give the
PL/I procedure the MAIN option and invoke
it using entry point PLICALLA. All that is
required is to load the address of PLICALLA
into register 15 and then to branch and
link to it. When PLICALLA is used in this
way, the PL/I environment is created and
control is then passed by way of PLIMAIN to
the first (or only) main PL/I procedure in
the program. Use of this technique will
cause the PL/I environment to be
established separately for each invocation.

154

ESTABLISHING THE PL/I ENVIRONMENT FOR
MULTIPLE INVOCATIONS

If the assembler routine is to invoke
either a number of PL/I routines or the
same PL/I routine repeatedly, the creation
of the PL/I environment for each invocation
will be unnecessarily inefficient. The
solution is to create the PL/I environment
once only for use by all invocations of
PL/I procedures. This can be achieved ty
invoking a main PL/I procedure which
immediately reinvokes the assemtler
routine. The assembler routine must
preserve the PL/I environment and is then
able to invoke any number of PL/I
procedures directly. The example in figure
12.3 contains an assembler-language routine
that establishes the PL/I environment once
only for multiple invocations of PL/I
procedures.

//OPT12#3 JOB
//STEP1 EXEC HASMHC,PARM.ASM='LOAD,NODECK'
//ASM.SYSLIN DO DSN=&&LOAOSET,UNIT=2314,DISP=(NEW,PASS),
// SPACE=(80,(200,100»,DCB=BLKSIZE=80
//ASM.SYSIN 00 *
MYPROG CSECT

*
*
*
*
*

*
*
*

*
*

ASSEM

*

ENOUGH

*
*

*

*
*

*
*
*

ENTRY
STM
BALR
USING
LA
ST
ST
LR

SR

ASSEM
14,12,12(13)
10,0
*,10
4,SAVEAREA
13,4(4)
4,8(13)
13,4

1,1

L 15,=V{PLICALLA)
BALR 14,15

L 13,4(13)
L 14,12 (13)
LM 1,12,24(13)
BR 14

DC C'ASSEM'
DC AL1(S)
EQU * STM 14,12,12(13)
BALR 10,0
USING *,10

LA 0,100
L 1,76(13)
ALR 0,1
CL 0,12(12)
BNH ENOUGH
L 15,116(12)
BALR 14,15
EQU * ST 0,76(1)

ST 13,4(1)
ST 1,8(13)
MVC 72(4,1),72{13)

LR 13,1
MVI 0(13) ,X'80'
MVI 86(13),X'91'
MVI 87(13),X'CO'

SR 5,5

SR 1,1

ESTABLISH SUPERVISOR REGISTERS
ESTABLISH ADDRESSABILITY

CURRENT SAVE AREA ADDRESS
STORE CHAINBACK ADDRESS
STORE CHAIN FORWARD ADDRESS
STORE CURRENT SAVE AREA ADDRESS

SET REGISTER 1 TO ZERO WHEN
A PARAMETERLESS ENTRY POINT TO
PROCEDURE THAT DOES NOT RETURN
A VALUE IS TO BE INVOKED

CALL THE PL/I PROCEDURE WHICH
-HAS OPTIONS{MAIN) AND SO SET-
-UP THE PL/I ENVIRONMENT AND-
-THEN CALL ASSEM.

ON RETURNING FROM PL/I
-RESTORE REGISTERS-
-AND
-RETURN TO THE SUPERVISOR.

THE NAME IN PL/I FORMAT

S~·ORE PL/I REGISTERS
FOR PROCEDURE "MAIN"
ESTABLISH ADDRESSABILITY
GET STORAGE FOR A NEW DSA
LENGTH REQUIRED 100 BYTES
ADDRESS OF START OF CURRENTLY
AVAILABLE STORAGE
IS THERE ENOUGH SPACE LEFT?
YES
LOAD ADDR. OF OVERFLOW ROUTINE
-AND BRANCH TO IT.

STORE ADDRESS OF START OF
REMAINING AVAILABLE STORAGE
IN NEW DSA AT OFFSET 76
SET BACK CHAIN
SET FORWARD CHAIN
COPY ADDRESS OF WORKSPACE FOR
USE BY THE PL/I LIBRARY
POINT 13 AT NEW DSA
SET FLAGS IN THE DSA TO
PRESERVE PL/I ERROR-HANDLING
IN THE ASSEMBLER ROUTINE

RS MUST BE ZERO WHEN CALLING
-AN EXTERNAL PL/I PROCEDURE.

SET REGISTER 1 TO ZERO WHEN
A PARAMETERLESS ENTRY POINT TO
PROCEDURE THAT DOES NOT RETURN
A VALUE IS TO BE INVOKED

Figure 12.3. (Part 1 of 2). Invoking PL/I procedures from an assembler-language rcutine

Chapter 12: Linking PL/I and Assemtler-language ~odules 155

*

* LOOP

*

*

* OUTLOOP

*

* ARGTLST1
ARGTLST2

DATA
RESULT
SAVEAREA

1*

L
BALR

EQU
LA
L
BALR

L
LTR
BM

LA
L
BALR
B

EQU
SR
L
BALR

L
LM
BR

DC
DC
DC
DC
DC
DC
END

15,=V(HEAD)
14,15

* 1,ARGTLST1
15,=V(PLIN)
14,15

3, RESULT
3,3
OUT LOOP

1,ARGTLST2
15,=V(PLOUT)
14,15
LOOP

* 1,1
15,=V(FOOT}
14,15

13,4(13)
14,12,12(13)
14

A(DATA)
X'SO'
AL3(RESULT)
F'123'
F'O'
18F'O'
MYPROG

IISTEP2 EXEC PLIXCLG
IIPLI.SYSCIN DD *
* PROCESS;

MANE: PROC OPTIONS(MAIN);
DCL ASSEM ENTRY;
CALL ASSEM;
END;

* PROCESS;
PLIN: PROC(I) RETURNS(FIXED BIN(31»;

DCL (I,J) FIXED BIN(31);
GET LIST(J);
RETURN(I+J);

HEAD: ENTRY;

CALL PL/I TO 'HEAD' PAGE

CALL PL/I TO READ AND ADD

TEST RESULT-
-BRANCH OUT IF IT IS NEGATIVE.

CALL PL/I TO OUTPUT RESULT

SET REGISTER 1 TO ZERO
CALL PL/I TO 'FOOT' PAGE

RETURN TO THE PL/I PROC WITH
-OPTIONS (MAIN) •

PUT LIST('THE FIRST LINE OF OUTPUT AT THE TOP OF THE PAGE')
PAGE;

PUT SKIP(2);
END;

* PROCESS;

1*

PLOUT: PROC(K);
DCL K FIXED BIN(31);
PUT LIST(K);
RETURN;

FOOT: ENTRY;
PUT LIST('END OF THE OUTPUT FOR THIS JOB') SKIP(2);
END;

//GO.SYSIN DD *
50 77 123 234 345 456 -23 -100 -123 -234

1*

Figure 12.3. (Part 2 of 2). Invoking PL/I procedures from an assembler-language routine

156

In this example, the assembler routine
MYPROG receives control initially from the
supervisor, and invokes the PL/I main
procedure MAIN using the entry point
PLICALLA to the PL/I initialization
routine. ThE PL/I procedure MAIN
immediately reinvokes the same assembler
routine at the entry point ASSEM. Note
that, in this example, this name must be an
odd number of characters to ensure that the
next instruction is halfword aligned. At
this entry point, the PL/I environment is
stored, and a new DSA, 100 bytes in length,
is created in a manner similar to that
previously given for creating a DSA in a
recursive or reentrant assembler-language
routine. If there is insufficient room for
the new DSA, the PL/I overflow routine is
invoked to attempt to obtain storage for
the DSA elsewhere in storage.

The instructions in the assembler
routine following the label ENOUGH through
to the instruction that loads the address
of the PL/I entry point HEAD are concerned
with setting up the DSA so that the correct
environment exists when the routine invokes
the external PL/I procedures PLIN and PLOUT
and the secondary entry points within them.
These instructions should always be present
in order to preserve the PL/I environment
set up by the m~in procedure for subsequent
use by any assembler-invoked PL/I
procedures.

Note that when an external PL/I
procedure is invoked, register 5 must be
set to zero, and that a PL/I procedure~
such as PLIN in this example, that returns
a value will assign the value to the last
address in the argument list, ARGTLST1.
This address is the address of the
assembler-defined storage for RESULT. The
constant X'SO' in the first byte of the
full word containing the address of RESULTS
in ARGTLSTl indicates that it is the last
full word in the argument list.

If an assembler-language routine invokes
a PL/I procedure without passing any
parameters to it ~nd without expecting any

value to be returned from it, register 1
must be set to zero. In this exaRple, the
procedure PLIN contains a RETURN
(expression) statement, but when invcked
through the parameterlEss entry point HEAD,
does not return a value to the invoking
routine. Similarly, the procedure FLCUT
contains the parameterless entry point FOOT
and does not return a value.

ESTABLISHING THE PL/I ENVIRONMENT
SEPARATELY FOR EACH INVCCATION

If it is necessary to reestablish the PL/I
environment each time a PL/I procedure is
invoked, use the entry point PLICALLA or
PLICALLB to invoke the FL/I initialization
routines. The two entry points are used as
follows:

For PLICALLA, the assemtler-language
routine must insert in register 1 the
address of the arguRent list that contains
the addresses of any arguments to be passed
to the PL/I procedure. For PLICALLE, the
assembler-language routine must insert in
register 1 the address of an argument list
that contains the following:

1. The address of the argument list
containing addresses to be passed to
PL/I, and optionally,

2. The address of the value for the
amount of storage to be made avail~ble
to the PL/I procedure and, optionally,

3. The start address of the storage to be
used by the PL/I procedure. 'Ihis
storage must be doubleword aligned.

Note that the first byte in the last
address word in each of these argument
lists must contain X'SO'. The examples in
figures 12.4 and 12.5 show the use of
PLICALLA and PLICALLE to invoke the first
(or only> main PL/I procedure in the
program.

Chapter 12: Linking PL/I and Assembler-language Modules 157

LA
L
BALR

ARGLIST DC
DC

*

DC
DC

Figure 12.4.

ALIST

*

ARGLIST

* LENGTH
AREA

LA
L
BALR

DC
DC

DC
DC
DC
DC
DC
DC

DC
DS

Figure 12.5.

LA
L
L
ST
L
BALR

ARGLIST DC
DC
DC

1,ARGLIST
15,=V(PLICALLA)
14,15

A(arg1)
A(arg2)

ADDRESS OF FIRST ARGUMENT PASSED TO PL/I
ADDRESS OF SECOND ARGUMENT PASSED TO PL/I

X'80' END OF ARGUMENT LIST FLAG
AL3(argn or return-value) ADDRESS OF LAST ARGUMENT

OR RETURNED VALUE

Use of PLICALLA

1,ALIST
15,=V(PLICALLB)
14,15

A(ARGLIST)
A (LENGTH)

X'80'
AL3(AREA)
A(arg1)
A(arg2)
X'80'
AL3(argn or

F'8192'
1024D

ADDRESS OF ARGUMENT LIST
LENGTH OF STORAGE FOR PL/I
ON DOUBLE WORD BOUNDARY

START OF PL/I STORAGE AREA
ADDRESS OF FIRST ARGUMENT
ADDRESS OF SECOND ARGUMENT

END OF ARGUMENT LIST FLAG
return-value) ADDRESS OF LAST ARGUMENT

OR RETURNED VALUE
ROUTINE'S STORAGE LIMITED TO 8K BYTES
ROUTINE·S STORAGE STARTS HERE

Use of PLICALLB

1,ARGLIST
2,=V(PLIMAIN) CHANGE ADDRESS IN PLIMAIN
3,=V(MYPROG) TO THAT OF
3,0(2) MYPROG
15,=V(PLICALLA)
14,15

A(arg1)
X'80'
AL3(arg2)

FIRST ARGUMENT PASSED TO MYPROG

LAST ARGUMENT PASSED TO MYPROG

Figure 12.6 Inserting a PL/I entry point address in PLIMAIN

If it is necessary to reestablish the
PL/I environment for each invocation of. a
PL/I procedure that is not the first (or
only) main procedure in the program, the
user of either entry point PLICALLA or
PLICALLB must insert in PLIMAIN the address
of the appropriate entry point to the
required PL/I ,procedure. The example in
figure 12.6 sets the address in PLIMAIN to
that of the external entry name MYPROG.

158

If it is necessary to reestablish the
PL/I environment for each invocation of a
PL/I procedure where there is no main PL/I
procedure in the program, the use of either
entry point PLICALLA or PLICALLB must te
accompanied by the use of an entry point
called PLlMAIN in the 'assemtler-language
routine. This entry point must contain the
address of the PL/I routine to be invoked.
Figure 12.7 shows hew this is inserted.

ENTRY PLIMAIN
LA l,ARGLIST
L 2,=A(PLIMAIN) INSERT ADDRESS IN PLIMAIN
L 3,=V(MYPROG) OF ENTRY TO
ST 3,0(2) MYPROG
L 15,=V(PLICALLA)
BALR 14,15

FIRST ARGUMENT PASSED TO MYPROG ARGLIST DC
DC
DC

PLIMAIN DS

A(arg1)
X-BO'
AL3(arg2)
F

LAST ARGUMENT PASSED TO MYPROG

Figure 12.7 Establishing PLIMAIN as an entry in the assembler-language routine

PL/I Calling Assembler Calling PL/I

The information given in the preceding
sections should be sufficient to write
programs that include a PL/I procedure that
invokes an assembler-language routine that
invokes a further PL/I procedure. Figure
12.3 contains an example of a program which
performs this type of processing.

Assembler Calling PL/I Calling Assembler

The information given in the preceding
sections should be sufficient to write
programs that include an assembler-language
routine that invokes a PL/I procedure that
in turn invokes an assembler-language
routine. Figure 12.3 contains an example
of a program which performs this type of
processing.

PROGA

Overriding and Restoring PL/I
Error Handling

An assembler-language routine invoked from
PL/I can override PL/I error-handling by
issuing its own SPIE macro to handle
program interrupts or STAE macro to handle
abnormal terminations. If the SPIE rracro
is issued, the address of the PL/I PICA
must be saved. A routine that cancels PL/I
error-handling must restore the PL/I
error-handling facilities before returning
to the PL/I program. It does this ty
issuing either a STAE macro with an operand
of zero or an execute form of the SPIE
macro restoring the saved PL/I PICA,
according to the macros used to cancel the
PL/I error-handling. The example in figure
12.B shows how these macros are used to
cancel and subsequently restore PL/I
error-handling.

CSECT
ENTRY
STM
BALR
USING
STAE
SPIE
ST

ASSEM
14,12,12(13)
10,0

ENTRY-POINT INVOKED FROM PL/I
STORE PL/I ENVIRONMENT
ESTABLISH BASE REGISTER

STAE
L
SPIE
!:.
LM
BR

SAVESPIE DS

*,10
(operands)
(operands)
1,SAVESPIE

0
1,SAVESPIE
MF=(E(l»
1 ., ,. 'n 1 ., \ ___ .' ''''',---1
14,12,12(13)
14
A

ESTABLISH NEW ABEND HANDLER
ESTABLISH INTERRUPT HANDLER
STORE OLD PICA ADDRESS

RESTORE PL/I ERROR HANDLING
RESTORE PICA ADDRESS

'nT:'lt""'rn"",n'l":'l '1":'1"'1" T T""'""""J,"I.1.,.,,rn .. "---_ -_ ... _ -
RETURN TO PL/I

Figure 12.B. Method of overriding and restoring PL/I error-handling

Chapter 12: Linking PL/I and Assemtler-language Modules 159

Arguments and Parameters

Arguments are passed between PL/I and
assembler routines in lists which contain
the addresses of the data items, not their
values.

PASSING ARGUMENTS FROM AN
ASSEMBLER-LANGUAGE ROUTINE

In order to pass one or more arguments to a
PL/I routine, register 1 must be set to the
address of a list that contains the address
of each argument involved. If the PL/I
routine executes a RETURN(expression)
statement to return a value, the last
address in the argument list must be the
address which the PL/I routine is to use
when it returns the value. The last
fullword in an argument list must have
X'SO' in its first byte.

RECEIVING PARAMETERS IN AN
ASSEMBLER-LANGUAGE ROUTINE

An assembler-language routine that is to
receive parameters from a PL/I routine will
be passed the address of a parameter list
in register 1. The parameter list contains
the addresses of the parameters; if the
assembler routine has been invoked by a
function reference in the PL/I procedure,
the last address in the parameter list will
be the address to which the
assembler-language routine must assign the
returned value. The last fullword in the
parameter list will have X'SO' in its first
byte. The internal mapping of PL/I data
types and the mechanism for addressing
elements of arrays and structures are given
in the execution logic manual for this'
compiler.

TYPES OF ARGUMENTS AND PARAMETERS

All PL/I data types (both problem data
and program control data) can be passed as
arguments to an assembler-language routine.

PrQ~lem Data: Only arithmetic element
variables are passed as arguments by
passing the addresses of their locations in
storage. All other problem data types are
passed as arguments by passing the address
of a block of storage known as a
locator/descriptor. A locator/descriptor
contains the address and other relevant
information about the data item that it

160

represents. The address of the first byte
of the data item is always present in the
first .fullword of the associated
locator/descriptor. Locator/descriptors
are employed for string, area, and
aggregate data. For a varying-length
string, the locator contains the address of
a 2-byte field that contains the current
length of the string and immediately
precedes the data part of the string in
storage. The format of locator/descri~tors
is given in the execution logic manual for
this compiler.

Unless the techniques described telow
are adopted, an assembler-language rcutine
must either cater for or create the
appropriate locator/descriptor for a
particular PL/I aggregate or string
variable.

Program Control Data: Program control data
constants are represented in storage as
control blocks, the addresses of which are
passed when used as argumsnts. The same
applies to program control variables, such
as entry and file variables, except that
the address passed is the address of a
control block that contains the address of
the currently-assigned constant, and any
additional information that is relevant to
the use of the ~rogram control constant.
The format of the control blocks for
program control data is also given in the
execution logic manual for this compiler.

USE OF LOCATOR/DESCRIPTORS

For those arguments passed to an
assembler-language routine as
locator/descriptors, obtain the address of
the first byte of the data from the first
fullword of the locator/descriptor.

For unaligned bit strings, the bit
offset is in the last three bits in the
second word of the string descriptor.

The current length of varying-length
strings is in the first two bytes addressed
from the descriptor.

The current length of an area argument
is in the second word of its
locator/descriptor.

The current extents of an adjustable
array will be found in the array
descriptor. However, a simple method cf
obtaining the current extents of an
adjustable array is to pass, in addition to
the array itself, values representing the
results of the HBOUND and LBOUND built-in
functions for each of its extents.

There are several other methods of
avoiding the use of locatorldescriptors
when passing arguments to or from a PL/I
program. Some of these are suggested
below:

1. To obtain the address of the first
element in an array or structure
without recourse to its
locatorldescriptor, pass the first
element in its subscripted or
fully-qualified form rather than an
unsubscripted or unqualified reference
to the entire array or structure. The
addresses of the remaining elements of
the array or structure can be obtained
if the characteristics of the
aggregate are known in the
assembler-language routine.

2. It is also possible in most cases to
avoid the use of locatorldescriptors
in an assembler-language routine by
ensuring that the PL/I procedure uses
a based arithmetic argument or
parameter in association with a
string, area, or aggregate. Examples
follow:

PP:PROCi
DCL A(20) FIXED,

B FIXED BASED(P),
C CHAR(20),
D FIXED BASED(Q),
X ENTRY(FIXED,FIXED);
P=ADDR(A)i
Q=ADDR(B)i

1* SET VALUES IN A AND C *1

CALL X(B,D) I*INVOKE X WITH ELEMENT
. ARITHMETIC ARGUMENTS *1

This example causes the addresses of array
A and character string C to be passed to
assembler-language routine X. The
invocation of X uses arithmetic variables B
and D, which have been effectively overlaid
on A and C. Note that varying-length
strings from PL/I contain the current
length in the first two bytes. The
technique described above ~rlnnn+. hp l1!=:pn

for passing unaligned bit strings as
arguments.

The following example shows the
treatment of two parameters in a PL/I
procedure invoked from an
assembler-language routine:

PP: PROC (X, Y);
DCL (X,Y) FIXED,

A(20) FIXED EASED(P);
B CHAR(20) BASED(Q);
P=ADDR(X);
Q=ADDR(Y);

The asserr,bler-Ianguage routine passes the
addresses of the first element in an
aggregate or of the first byte in a string;
the associated parameters can be declared
as arithmetic element variables. String or
aggregate variables can then be declared as
based variables qualified implicitly by the
pointers to which the addresses of the
parameters are subsequently assigned. This
technique will work for all types of PL/I
data except unaligned bit strings. Note
that a varying-length string should contain
the current length of the string as a
binary integer in the first two bytes
before it is passed to the FL/I routine.

PL/I LANGUAGE FACILITIES FOR ASSEMBLER
INTERFACE

Although the PL/I language does not Frovide
direct facilities for communication between
PL/I and assembler-language modules, use of
the facilities for communicating with COBOL
modules can simplify argument passing
between FL/I and assembler-language
modules. The PL/I interlanguage
communication routines associated with
these facilities can be used to avoid the
previously-described problems associated
with addressing PL/I data types. The PL/I
interlanguage communication facilities are
described in the language reference rranual
for this compiler.

A PL/I routine that invokes an
assembler-language routine can declare the
entry point to the assembler-language
routine with the options COBOL, NCMAF, and
INTER. The COBOL option ensures that the
address of the data and not that of a
locatorldescriptor of a PL/I variable is
passed; the NOMAP option ensures that no
dummy arguments are created and that the
argument is passed directly; the IN'IER
option ensures that the program interrupts
in the assembler-language routine are
handled by PL/I unless the routine modifies
the error-handling itself.

Similarly, a PL/I PROCEDURE or EN'IRY
c~~~~~~~~ ~~~~~~~ ~=== ~=
assembler-language routine can have the
options COBOL and NOMAP. The COBeL option
ensures that the address expected by the
PL/I routine for a parameter is that of the
data and not that of a locatorldescriptor
of a PL/I variable; NOMAP ensures that no
dummy argument is created and that the

Chapter 12: Linking PL/I and Assembler-language Modules 161

parameter is passed directly to the PL/I
routine.

Note that because certain types of PL/I
data have no equivalent in COBOL, a message
may be produced by the compiler when such a
data type is to be passed as an argument or
received as a parameter.

162

If you intend to use the PL/I sort
facilities, the version of OS generated for
your installation must include either a
copy of the OS type 1 sort/merge program
(Program Number 360S-SM-023) or a copy of
the os program product sort/merge program
(Program Number 5734 SM1). The PL/I
sorting facilities make use of either os
sort/merge program to arrange records
according to a predetermined sequence. The
sort/merge program includes user exit
points to enable user-written routines to
be entered at particular stages during the
sorting operation and which provide access
to records that are being sorted.

The PL/I sort facilities provide an
interface to enable the sort/merge program
to be invoked and to call PL/I procedures
through two of the user exits, E15 and E35.
This chapter describes the method of
invoking sort/merge from PL/I and the use
of the user exits E15 and E35.

storage Requirements

The minimum storage requirements for the
sort program when used in conjunction with
a PL/I program compiled by the optimizing
compiler is 12000 bytes or 26000 bytes in
an MVT environment. Additional storage
requirements exist if the sort program
handles records that are greater than 400
bytes in length and if it uses
direct-access devices for input, output, or
intermediate storage. Efficiency is
enhanced if additional main storage can be
provided.

ENTRY NAMES

A PL/I program invokes the sort program by
means of a CALL statement that names one'of
four entry pOints to a PL/I sort interface
subroutine provided by the OS PL/I Resident
Library. The CALL statement also passes
arguments that specify the requirements for
the sorting operation. The arguments
include a SPt;l1pnf"'P nr <:!n!,+-/~,:,=,;-:: ::-::::::=:::!.
statements in the form of character-string
expressions. The PL/I sort interface
subroutine has entry points for four types
of processing:

PLISRTA Invokes the sort/merge program
to retrieve records from a data

PLISRTB

PLISRTC

PLISRTD

Chapter 13: PL/I Sort

set (SORTIN) " sort them, and
write them in sorted sequence
onto another data set
(SORTOUT).

Invokes the sort/merge program
and specifies the use of user
exit E15. A PL/I procedure
invoked at user exit E15 will
supply all the records to be
sorted. The sorted records are
written directly onto the data
set SORTOUT.

Invokes the sort/merge program
and specifies the use of user
exit E35. A PL/I procedure
invoked at user exit E35 will
receive all the records from
the sort and handle any output
that is required.

Invokes the sort/merge program
and specifies the use of user
exit E15 and user exit E35.
The use of these user exits is
exactly as described for
PLISRTB and PLISRTC.

After completion of the sort, the
sort/merge program passes a return code to
the invoking program to indicate whether
the sort is successful or not. The
invoking procedure must include a variable
with the attributes FIXED BINARY(31) to
receive this return code, and the name of
the variable must always be included in the
argument list of the CALL statement that
invokes sort/merge. The return codes and
their meanings, are:

o Sort successful

16 Sort unsuccessful

PROCEDURES INVOKED BY WAY OF SORT USER
EXITS

Both external and internal PL/I procedures
can be invoked by way of sort user exits.
The use of external PL/I procedures should
t-~';;';';;u;" HV tJ.1.viJi~llI~ 00 J.ong as tne~r entry
names are declared in the main PL/I
procedure and they are link edited with the
main PL/I procedure to form a single
executable program.

All records passed to a PL/I procedure
from the sort/merge program, and all

Chapter 13: PL/I Sort 163

records passed to the sort/merge program,
must be in the form of character strings.
A PL/I procedure invoked by way of user
exit E35 must include a character-string
parameter; a PL/I procedure invoked from
user exit E15 must pass a record to the
sort/merge program by means of a RETURN
statement with a character-string
expression as its argument. Varying-length
character strings cannot be returned from
an E15 exit procedure or received as
parameters in an E35 exit procedure.
Fixed-length character strings only can be
returned by E15 exit procedures. However,
a variable-length record passed to an E35
exit procedure can be declared as an
adjustable-length character string. For
example:

E35X: PROC (VREC>;
DCL VREC CHAR(*>i

A PL/I procedure invoked by way of a
sort/merge user exit must pass a return
code to the sort program to indicate what
action should be taken when the PL/I
procedure next relinquishes control. This
is effected by invoking from within the
procedure the PL/I library interface
subroutine PLIRETC as follows:

CALL PLIRETC(n);

where "n" can have one of the following
values to specify the action required:

For procedures invoked by means of user
exit E15:

8 Do not return to this procedure.

12 Includes the record returned from
the procedure in the sort.

16 Stop the sort and return immediately
to the invoking procedure. (OS
program product sort/merge program
only.)

For procedures invoked by means of user
exit E35:

164

4 Pass the next sorted record to the
E35 procedure.

8 Do not return to this procedure.

16 Stop the sort and return immediately
to the invoking procedure. (OS
program product sort/merge program
only.)

DATA SETS USED BY SORT/MERGE

The execution step for a PL/I program that
uses PL/I sort requires job control DD
statements for some or all of the following
data sets in addition to those required by
the PL/I program.

Input Data Sets

If the sort/merge program is to read the
records to be sorted from a data set,
include a DD statement for the data set,
using the ddname SORTIN.

Work Data Sets

The sort/merge program requires at least
three magnetic-tape or direct-access data
sets for use as intermediate storage; you
can increase efficiency by specifying the
direct-access data sets on separate
direct-access devices. If the volume of
records to be sorted demands more
intermediate storage, you can specify up to
32 data sets. Provide a DD statement for
each work data set, using the ddnames
SORTWK01 to SORTWK32.

output Data Sets

If the sort/merge program is to write the
sorted records onto an output data set,
include a DD statement for the data set,
using the ddname SORTOUT.

Other Data Sets

For the sort program to execute
successfully, it must have access to the
following data sets:

SORTLIB

SYSOUT

The system sort/merge program
library.

For sort/merge program
diagnostic messages.

The following data sets are needed if the
associated facility is to be used:

SORTCKPT If the sort/merge program is to
make use of the
checkpoint/restart facility.

SYSUDUMP For dumps of main storage if
required for debugging the sort
program.

PLIDUMP For dumps of main storage if
required for debugging the PL/I
program.

Invoking Sort/Merge from PL/I

The sort/merge program is invoked from a
PL/I program by one of the CALL statements
listed below. The number of arguments
required depends on the entry name invoked.

The arguments include sort/merge program
control statements that define the
processing to be carried out and describe
the records to be sorted. (When the
sort/merge program is invoked as an
independent job step, these control
statements are submitted by way of the
SYSIN input stream.) The control
statements are described in the appropriate
sort/merge publication for the version of
the sort/merge program to be used. Note
that the MERGE statement cannot be used
when invoking the sort/merge program
through the PL/I sort interface. The
general syntax of the CALL statement for
each of the four entry points is:

CALL PLISTRA(argl,arg2,arg3,arg4);

CALL PLISTRB(argl,arg2,arg3,arg4,argS);

CALL PLISRTC(argl,arg2,arg3,arg4,arg6);

CALL PLISRTD(argl,arg2,arg3,arg4,argS,
arg6);

The arguments are:

argl

arg2

arg3

sort/merge SORT statement; this
statement may be preceded and
followed by an optional blank
character.

sort/merge RECORD statement; this
statement may be preceded and
followed by an optional blank
character.

Amount of main storage for the
sort/merge program.

arg4 Name of the variable in the
invoking procedure that is tc
receive the sort return code.

argS Entry point name of the PL/I
procedure to ce invoked from user
exit E1S.

arg6 Entry point name of the PI./I
procedure to ce invoked from user
exit E3S.

In addition to these arguments, there
are three optional arguments that can be
specified for each entry point. Th~se
optional arguments permit you to override
the sort/merge program defaults for the
following:

1. Sort/merge program ddnames

2. Sort/merge program listing options

3. Sort/merge program sorting techniques

If used, these arguments must ce
specified in the above order. If an
optional argument is not used, it need not
be specified unless another argument that
follows it in the given order is specified.
In this case, the unused argument must be
specified as a null string. Descriptions
of the individual optional arguments
follow.

Sort/Merge Program DD Names

For multiple invocations of the sort
program from a single job step, the
standard ddnames of sort data sets (SORTIN,
SORTOUT, SORTWK, and SORTCKPT) can te
changed by replacing up to the first four
characters of the ddnames with a similar
number of different characters. This is
achieved by adding an extra argument to the
CALL statements that invoke the sort
program. For the invocation of the sort
program that uses the standard ddnames, the
additional argument should represent a null
string. For the invocation of the sort
program that uses the modified ddnames, the
additional argument should be a character
string that contains the replacement
characters. Note that the first character
of the replacement string must te
alphabetic.

Chapter 13: PL/I Sort 16S

Example:

MSORT: PROC OPTIONS(MAIN);

/* INVOKE THE SORT PROGRAM FOR THE FIRST TIME */

CALL PLISRTA (' SORT FIELDS=(7,74,CH,A) "
, RECORD TYPE=F,LENGTH=(SO) ,
100000,
RETURN CODE,
") ; -

/* INVOKE THE SORT PROGRAM FOR THE SECOND TIME */

CALL PLISRTA (' SORT FIELDS=(7,74,CH,A) "
, RECORD TYPE=F,LENGTH=(SO) ,
100000,
RETURN CODE,
'TASK');

END MSORT;

In this example the first invocation of the
sort program requires DD statements with
the ddnames:

//SORTIN DD
//SORTOUT DD •••
//SORTWK01 DD •••
etc.

For the second invocation, the sort program
requires DD statements with the following
ddnames:

//TASKIN DD •••
//TASKOUT DD •••
//TASKWK01 DD •••
etc.

§ort!Merge-EfQgram Listing Options

It is possible to select one of five
options for specifying how the sort/merge
program diagnostic messages are to be
produced. The selected option can be
specified as an optional argument to the
entry point used. The optional argument
should contain one of the following
character strings:

NO No messages to be printed

AP All messages to be printed on the
printer

AC All messages to be printed on the
system console

166

CP Critical messages only to te printed
on the printer

CC critical messages only to be printed
on the system console

according to the option that is required.
An example of a CALL PLISR'IA statement that
does not modify the sort/merge ddnames tut
which does specify a sort/merge program
listing option follows:

CALL PLISTRA (' SOR'I FIELDS= (7, 74, CH, A) "
, RECORD TYPE=F,LENGTH=(SO) ,
100000,
RETURN CODE,
", ii NULL· DDNAME ARGUMENT */
'cpt);

Sort/Merge Program Sorting TechnigE~§

It is possible to select one of four
sorting techniques for use by the
sort/merge program. The techniques are
described in the sort/merge program
publication. The selected technique must
be specified in an optional argument to the
entry point used. The optional argument
should contain one of the character strings
BALN, CRCX, OSCL, or POLY according to the
technique that is required.

An example of a CALL PLISRTA statement
that neither modifies sort/merge ddnames
nor specifies a sort/merge listing option
but which does specify a sorting technique
follows:

CALL PLISRTA (' SORT FIELDS=(7,74,CH,A) "
, RECORD TYPE=F,LENGTH=(80) ,
100000,
RETURN CODE, . , -,

records from an input data set (SORTIN),
sort them, and write them directly in
sorted sequence onto an output data set
(SORTOUT). The PL/I program contains the
following elements:

/* NULL DDNAME ARGUMENT */ , , ,
/* NULL LISTING OPTION ARGUMENT /*

'POLY');
1. A declaration of the variable RETURN

CODE to receive the return code from
the sort/merge program.

Examples of Using PL/I Sort 2. A CALL statement to invoke the entry
{:oint PLISRTA.

SORTING RECORDS DIRECTLY FROM ONE DATA SET
TO ANOTHER (PLISRTA)

3. Statements to test the return code.

The example in figure 13.1 illustrates the
use of entry point PLISRTA to retrieve

The example uses the minimum of data sets;
one for input, one for output, and three
direct-access storage extents on a single
disk storage drive.

//OPT13ff1 JOB
//STEPl EXEC PLIXCLG,PARM.PLI='SIZE(130K),OBJECT'
//PLI.SYSIN DD *

EX106: PROC OPTIONS(MAIN);

DCL RETURN_CODE FIXED BIN(31,0);

CALL PLISRTA (' SORT FIELDS=(7,74,CH,A) ,
, RECORD TYPE=F,LENGTH=(80) ,
45000,
RETURN CODE);

IF RETURN CODE = 16 THEN PUT SKIP EDIT ('SORT FAILED') (A);
ELSE IF RETURN_CODE = 0 THEN PUT SKIP EDIT ('SORT COMPLE'IB')

(A) ;

ELSE PUT SKIP EDIT ('INVALID SORT RETURN CODE') (A);
END EX106;

/*

//GO.SORTIN DO *
003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
002886BOOKER R.R. ROTORUA, MILKEDGE LANE, TOBLEY
003077ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
073872HOME TAVERN, WESTLEIGH
000931FOREST, IVER, BUCKS
/*
/ /GO. SORTOUT DD SYSOUT=A, DCB= (RECFM=F" BLKSIZE=80)
//GO.SYSOUT DO SYSOUT=A
//GO.SORTLIB DD DSN=SYS1.S0RTLIB,DISP=SHR
//GO.SORTWK01 DO UNIT=2314,3PACE=(TRK,(60,20)"CONTIG)
//GO.SORTWK02 DD UNIT=2314,SPACE=(TRK~(60,20)"CONTIG)
//GO.SORTWK03 DO UNIT=2314,SPACE=(TRK,(60,20)"CONTIG)

Figure 13.1. Invoking sort/merge via entry pOint PLISRTA

Chapter 13: PL/I Sert 167

USER EXIT E15 (PLISRTB)

The example in figure 13.2 illustrates the
use of entry point PLISRTB to enable
records to be supplied to the sort by a
PL/I procedure.

Like that in the previous example, the
main procedure invokes the sort/merge
program and tests the return code when

//OPT13ft2 JOB

processing is complete. Note that records
to be sorted can only te supplied ty the
procedure invoked by way of user exit E15
(in this case, procedure E15X).

Each time procedure E15X is invoked by
the sort/merge program, E15X reads a record
from the input stream and passes it to the
sort after the appropriate return code has
been passed.

//STEPl EXEC PLIXCLG,PARM.PLI='SIZE(130K),OBJECT'
//PLI.SYSIN DD *

EX107: PROC OPTIONS(MAIN);

DCL RETURN_CODE FIXED BIN(31,O};

CALL PLISRTB (' SORT FIELDS=(7,74,CH,A) ,
, RECORD TYPE=F,LENGTH=(80)
45000,
RETURN CODE,
E15X);-

IF RETURN CODE = 16 THEN PUT SKIP EDIT ('SORT FAILED') (A);
ELSE IF RETURN CODE = 0 THEN PUT SKIP EDIT ('SORT COMPLETE') (A);

ELSE PUT SKIP EDIT ('INVALID SORT RETURN CODE') (A);

E15X: /* THIS PROCEDURE OBTAINS RECORDS FROM THE INPUT STREAM */
PROC RETURNS(CHAR(80»;

ENDE15:

END EX107;
/*,
//GO.SYSIN DD *

DCL SYSIN FILE RECORD INPUT,
INFIELD CHAR(80} INIT(' ');

ON ENDFILE(SYSIN) BEGIN:
PUT SKIP(3) EDIT ('END OF SORT PROGRAM INPUT')(A):
CALL PLIRETC(8); /* SIGNAL END OF SORT INPUT */
GOTO ENDE15;
END:

READ FILE (SYSIN) INTO (INFIELD);
CALL PLIRETC(12); /* INPUT TO SORT CONTINUES */
RETURN (INFIELD);
END E15X;

003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
002886BOOKER R.R. ROTORUA, MILKEDGE LANE, TOBLEY
003077ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
073872HOME TAVERN, WESTLEIGH
000931FOREST, IVER, BUCKS
/*
//GO.SORTOUT DD SYSOUT=A,DCB=(RECFM=F,BLKSIZE=80)
//GO.SYSOUT DD SYSOUT=A
//GO.SORTLIB DD DSN=SYS1.S0RTLIB,DISP=SHR
//GO.SORTWK01 DD UNIT=2314, SPACE= (TRK. (60,20)"CONTIG)
//GO.SORTWK02 DD UNIT=2314,SPACE=(TRK~(60,20)"CONTIG)
//GO.SORTWK03 DD UNIT=2314,SPACE=(TRK.(60,20}"CONTIG)

Figure 13.2. Invoking sort/merge via entry point PLISTRB

168

//OPT13Jt3 JOB
//STEP1 EXEC PLIXCLG,PARM.PLI='SIZE(130K),OBJECT'
//PLI.SYSIN DD *

EX10S: PROC OPTIONS(MAIN)i

DCL RETURN_CODE FIXED BIN(31,0)i

CALL PLISRTC (' SORT FIELDS=(7,74,CH,A) "
, RECORD TYPE=F,LENGTH=(SO) "
45000,
RETURN CODE,
E35X);-

IF RETURN CODE = 16 THEN PUT SKIP EDIT ('SORT FAILED') (A);
ELSE IF RETURN CODE = 0 THEN PUT SKIP EDIT ('SORT COMPLETE') (A);

ELSE PUT SKIP EDIT ('INVALID SORT RETURN CODE')(A);

E35X: /* THIS PROCEDURE OBTAINS SORTED RECORDS */
PROC (INREC);

DCL INREC CHAR(SO);
PUT SKIP EDIT (INREC) (A)i

CALL PLIRETC(4); /* REQUEST NEXT RECORD FROM SORT */
END E35X; .

END EX10S;
/*
//GO.SYSOUT DD SYSOUT=A
//GO.SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR
//GO.SORTWKOl DD UNIT=2314,SPACE=(TRK~(60,20)"CONTIG)
//GO.SORTWK02 DO UNIT=2314,SPACE=(TRK.(60,20)"CONTIG)
//GO.SORTWK03 DD UNIT=2314,SPACE=(TRK~(60,20)"CONTIG)
//GO.SORTIN DD *
003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
002996BOOKER S.W. ROTORUA, MILKEDGE LANE, TOBLEY
003077ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
073S72HOME TAVERN, WESTLEIGH
000931FOREST, IVER, BUCKS
/*

Figure 13.3. Invoking sort/merge via entry point PLISTRC

USING USER EXIT E35 TO HANDLE SORTED
RECORDS (PLISRTC)

The example in figure 13.3 illustrates the
use of entry pOint PLISRTC to enable
records to be supplied from the sort to the
PL/I procedure E35X. As in previous
examples, the main procedure invokes the
sort/merge program and tests the return
code when processing is complete. Each
time procedure E35X is invoked by the
sort/merge program, it receives a sorted
record as a parameter, prints it, and
requests the next record from the
sort/merge program by passing it the
appropriate return code.

PASSING RECORDS TO BE SORTED, AND RECEIVING
SORTED RECORDS (PLISRTD)

The example in figure 13.4 illustrates the
use of entry point PLISRTD to enable

records to be supplied to the sort froIT a
PL/I procedure and sorted records to ~e
supplied from the sort to a PL/I procedure.
As in previous examples, the main procedure
invokes the sort/merge program and tests
the return code when processing is
complete. The use of the E15 user exit is
identical to that in figure 13.2; the use
of the E35 user exit is identical tc that
in figure 13.3.

The sequence of events is as follows:

1. The PL/I program invokes the
sort/merge program.

2. The sort/merge program invokes the E15
routine for each input record until
~ne re~urn eoae ~s se~ ~o ~.

3. The sort/merge program invokes the E35
routine for each sorted record until
all the sorted records have ~een
passed or until the E35 routine
requests no more records.

Chapter 13: PL/I Sort 169

//OPT13#4 JOB
//STEP1 EXEC PLIXCLG,PARM.PLI='SIZE(130K),OBJECT'
//PLI.SYSIN DO *

EX109: PROC OPTIONS(MAIN);

DCL RETURN_CODE FIXED BIN(31,0);

CALL PLISRTD (' SORT FIELDS=(7,74~CH,A) ,
, RECORD TYPE=F,LENGTH=(80)
45000,
RETURN CODE,
E15X, -
E35X);

IF RETURN CODE = 16 THEN PUT SKIP EDIT ('SORT FAILED') (A);
ELSE IF RETURN CODE = 0 THEN PUT SKIP EDIT ('SORT COMPLETE') (A);

ELSE PUT SKIP EDIT ('INVALID SORT RETURN CODE')(A);

E15X: /* THIS PROCEDURE OBTAINS RECORDS FROM THE INPUT STREAM */
PROC RETURNS(CHAR(80»;

ENDE15:

DCL INFIELD CHAR(80) INIT(- I);

ON ENDFILE(SYSIN) BEGIN;
PUT SKIP(3) EDIT ('END OF SORT PROGRAM INPUT.

'SORTED OUTPUT SHOULD FOLLOW') (A);
CALL PLIRETC(8); /* SIGNAL END OF SORT INPUT */
GOTO ENDE15;
END;

GET FILE (SYSIN) EDIT (INFIELD) (A(80»;
PUT SKIP EDIT (INFIELD) (A);
CALL PLIRETC(12); /* INPUT TO SORT CONTINUES */
RETURN (INFIELD);
END E15X;

,E35X: /* THIS PROCEDURE OBTAINS SORTED RECORDS */
PROC (INREC);

DCL INREC CHAR(SO);
PUT SKIP EDIT (INREC) (A);

NEXT: CALL PLIRETC(4); /* REQUEST NEXT RECORD FROM SORT */
END E35X;

END EX109;
/*
//GO.SYSOUT DO SYSOUT=A
//GO.SORTLIB DO DSN=SYS1.S0RTLIB,DISP=SHR
//GO.SORTWK01 DO UNIT=2314, SPACE= (TRK. (60,20)"CONTIG)
//GO.SORTWK02 DO UNIT=2314, SPACE= (TRK, (60,20)"CONTIG)
//GO.SORTWK03 DO UNIT=2314,SPACE=(TRK~(60,20)"CONTIG)
//GO.SYSIN DO *
003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
002996BOOKER S.W. ROTORUA, MILKEDGE LANE, TOBLEY
003077ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
073872HOME TAVERN, WESTLEIGH
000931FOREST, IVER, BUCKS
/*

Figure 13.4. Invoking sort/merge via entry point PLISTRD

170

The PL/I Checkpoint/Restart feature
provides a convenient method of taking
checkpoints during the execution of a
long-running program in a batch
environment. It cannot be used in a TSO
environment.

At points specified in the program~
information about the current status of the
program is written as a record on a data
set. If the program terminates due to a
system failure, this information can be
used to restart the program close to the
point where the failure occurred, avoiding
the need to rerun the program completely.

This restart can be either automatic or
deferred. An automatic restart is one that
takes place immediately (provided the
operator authorizes it when requested by a
system message). A deferred restart is one
that is performed later as a new job.

You can request an automatic restart
from within your program without a system
failure having occurred.

PL/I Checkpoint/Restart uses the
Advanced CheckpOint/Restart Facility of the
ope~ating system. This is fully described
in the manual Advanced Checkpoint/Restart.

To use checkpoint/restart you must do
the following:

• Request, at suitable points in your
program, that a checkpoint record is
written. This is done with the
built-in subroutine PLICKPT.

• Provide a data set on which the
checkpoint record can be written.

• Also, to ensure the desired restart
activity, you may need to specify the
RD parameter in the EXEC or JOB
statement (see the manual JCL
Reference). ---

Note: You should be aware of the
restrictions affecting data sets used by
your program. These are detailed in the
manual AdY~Q~gQ_~h~g~QQint(Restart.

Writing a Checkpoint Record

Each time you want a checkpoint record to
be written, you must invoke, from your PL/I

Chapter 14: Checkpoint/Restart

program, the built-in subroutine PLICKPT.
The CALL statement has the form:

CALL PLICKPT(ddname,check-id[,code] [,org]);

"ddname" is a character string constant or
variable specifying the name of the CD
statement defining the data set that is to
be used for checkpoint records. It can be
effectively omitted by specifying a null
string, and the system will use the default
ddname SYSCHK.

"check-id" is a character string constant
or variable specifying the name that you
want to assign to the checkpoint record so
that you can identify it later, if
required. You can effectively omit
"check-id" by specifying a null string.
The system will su~ply a unique
identification and print it at the
operator's console.

"code" is a variable with the attributes
FIXED BINARY (31), which can receive a
return code from PLICKPT. The return code
has the following values:

o A checkpoint has been successfully
taken.

4 A restart has been successfully
made.

8 Unsuccessful checkpoint due to I/O
error.

12 Unsuccessful checkpoint due to
program error.

16 Successful checkpoint, but sorre
system information may have been
omitted.

"org" is a character string constant or
variable with the attributes CHARACTER(2)
whose value indicates, in operating systero
terms, the organization of the check~oint
data set. PS indicates sequential (that
is, CONSECUTIVE) organization, PO
represents partitioned organization. If
"org" is omitted, PS is assumed.

Checkpoint Data Set

A DD statement defining the data set on
which the checkpoint records are to be
placed, must be included in the job control
procedure. This data set can have either

Chapter 14: Checkpoint/Restart 171

CONSECUTIVE or partitioned organization.
Any valid ddname can be used. If you use
the ddname SYSCHK, you do not need to
specify the ddname when invoking PLICKPT.

A data set name need be specified only
if you want to keep the data set for a
deferred restart. The 1/0 device can be
any magnetic-tape or direct-access device.

If you want to obtain only the last
checkpoint record, then specify status as
NEW (or OLD if the data set already
exists). This will cause each checkpoint
record to overwrite the previous one.

If you want to retain more than one
checkpoint record, specify status as MOD.
This will cause each checkpoint record to
be added after the previous one.

If the checkpoint data set is a library,
then "check-id" is used as the member-name.
Thus a checkpoint will delete any
previously-taken checkpoint with the same
name.

For direct access storage, enough
primary space should be allocated to store
as many checkpoint records as you will
retain. You can specify an incremental
space allocation, but it will not be used.
A checkpoint record is approximately 5000
bytes longer than the area of main storage
allocated to the compiler.

No DCB information is required, but you
can include any of the following, where
applicable:

OPTCD=W, OPTCD=C, RECFM=UT, NCP=2, TRTCH=C

These subparameters are described in
appendix A.

Performing a Restart

A restart can be automatic or deferred.
Automatic restarts can be made after a
system failure or from within the program
itself. All automatic restarts need to be
authorized by the operator when requested
by the system.

AUTOMATIC RESTART AFTER A SYSTEM FAILURE

If a system failure occurs after a
checkpoint has been taken, the automatic
restart will occur at the last checkpoint
if you have specified RD=R (or omitted the
RD parameter) in the EXEC or JOB statement.

172

If a system failure occurs before any
checkpoint has been taken, then an
automatic restart, from the beginning of
the job step, can still occur if yeu have
specified RD=R in the EXEC or JOB
statement.

If a system failure occurs after a
checkpoint has been taken, then you can
still force automatic restar~ from the
beginning of the job step by specifying
RD=RNC in the EXEC or JOB statement.

AUTOMATIC RESTART FROM WITHIN THE PRCGRAM

An automatic restart can be requested at
any point in your program. The rules
applying to the restart are the same as for
a restart after a system failure. To
request the restart, you must execute the
statement:

CALL PLIREST;

To effect the restart~ the compiler
terminates the program abnormally, with a
system completion code of 4092. 'Iherefere,
to use this facility, the system completion
code 4092 must not have been deleted frem
the table of eligible codes at system
generation.

DEFERRED RES'I'AR'I'

To ensure that automatic restart activity
is canceled, but that the checkpoints are
still available for a deferred restart,
specify RD=NR in the EXEC or JOB statement
when the program is first executed.

If a deferred restart is subsequently
required, the program must be submitted as
a new job~ with the RESTART parameter in
the JOB statement. The RESTART parameter
specifies the job step at which the restart
is to be made and, if you want to restart
at a checkpoint, the name of the checkpoint
record. The RESTART parameter has the
form:

RESTART=(stepname[,check-id])

For a restart from" a checkpoint, you
must also provide, immediately before the
EXEC statement for the job step, a DD
statement, with the name SYSCHK, defining
the data set containing the checkpoint
record.

MODIFYING CHECKPOINT/RESTART ACTIVITY

You can cancel automatic restart activity
from any checkpoints taken in your program
by executing the statement:

CALL PLICANCi

However, if you have specified RD=R or
RD=RNC in the JOB or EXEC statement,

automatic restart can still take place from
the beginning of the job step.

Also, any checkpoints already taken will
still be available fer a deferred restart.

You can cancel any automatic restart,
and also the taking of checkpoints, even if
requested in your program, by specifying
RD=NC in the JOB or EXEC statement.

Chapter 14: Checkpoint/Restart 173

174

This appendix shows you how to code data
set information in the DCB parameter of the
DD statement and how to make use of
existing DCB information. It also contains
an alphabetic list of the subparameters
that apply to a PL/I program. These
subparameters are specified in the DCB
parameter of the DD statement. Chapter 3
shows you how to write a DD statement and
chapter 6 shows you how to use the name
(ddname) of the DD statement. For a full
description of the DD statement see the job
control language publications.

DeB Parameter

The DCB parameter enables you to add
information about your data set to the data
control block (DCB) generated when the
associated file in your PL/I program is
opened. The information to be added is
defined in one or more subparameters.
These subparameters correspond to the
operands of the DCB macro instruction and
are specified in the same way. For a full
description of macro instructions see the
supervisor and data management macro
instructions publication.

Code the DCB parameter as follows:

DCB=subparameter

or

DCB=(subparameter,subparameter)

For example:

DCB=BLKSIZE=80

DCB=(RECFM=FB,LRECL=80)

TT~;"rr 'P'V';~f.; ,.... T')("'t'Q Tr ___ L~ __
J ~---- ----::J - -- --.----•• - "' ...

You can use the DCB parameter to make use
of DCB information that already exists
either in the label of a similar data set,
or that has been specified in the DCB
parameter of an earlier DD statement.

Appendix A: DeB Subparameters

INFORMATION IN SIMILAR DATA SETS

You can copy DCB information from the label
of a similar data set ty coding:

DCB=dsname

where "dsname" is the name of the data set
containing the information you want to
copy. This data set must be cataloged, it
must be on a direct-access storage device,
and the volume containing it must be
mounted before execution of the jot step.

INFORMATION IN AN EARLIER DATA SE'l'

You can also copy the DCB information from
an earlier DD statement in a job by coding:

DCB=*.stepname.ddname

where the asterisk tells the operating
system that this is to be a backward
reference, "stepname" is the name of the
job step in which the earlier DD statement
appears, and "ddname" is the name of the
earlier DD statement. If the earlier DD
statement is in a cataloged procedure you
must include the procedure step name as
well as the job step name, for example ty
coding:

DCB=*.stepname.procstepname.ddnaroe

Overriding Existing DeB Information

If the existing DCB information does not
meet your requirements exactly you can
override any of the subparameters by
specifying the required information in a
new subparameter. For example, if an
existing DD statement named IN in a job
-..1.-.-- ______ ., __ •• .,... , ___ .'1 _

..., "'-''-1:'' ."u.'W'"" ,-VJ,·.U; ".lQ-.J ,-J..lC .LU..L..LVW~.lJ"j u\...,C

parameter:

DCB=(RECFM=FB,LRECL=80)

and you want LRECL to te 100, simply code:

DCB=(*.COMP.IN,LRECL=100)

Appendix A: DCE Subparameters 175

Subparameters of the DeB Parameter

The following is a summary of those
subparameters that can apply to your PL/I
program. The notation used in the
descriptions is as follows:

n unsigned decimal integer

indicates a choice

{} braces indicate that you must select
one line from the items enclosed

[] brackets indicate that the item
enclosed is optional.

Code capital letters and numbers exactly as
shown.

specifies the length in bytes of a block.
The maximum length is 32760 bytes.

For fixed-length records, the block size
must be an integral multiple of the record
length (LRECL)i the minimum size is 1 byte.

For variable-length (V-format and
VB-format) records, the block size must be
at least eight bytes larger than the
largest item of data that you expect to
read or write (that is, four bytes larger
than the record length specified in LRECL).
However, if the records are spanned
(VS-format and VBS-format), you can specify
block size independently of record length.
The minimum block size for variable-length
records is 18 bytes.

BUFNO=n

specifies the number of buffers to be used
in accessing the data set. The maximum
number is 255 (unless another maximum has
been determined for your installation
during system generation). For a STREAM
file or BUFFERED RECORD file, if you do not
specify the number of buffers or you
specify zero buffers, the number is assumed
to be two.

CODE=AIBICIFIIINIT

specifies the code in which paper tape is
punched. (Data is read into main storage
and then converted from that code to
EBCDIC.)

176

A ASCII (8-track)

B Burroughs (7-track)

C NCR (8-track)

F Friden (8-track)

I IBM BCD perforated-tape transmission
code (8-track)

N No conversion required (F-format
records only)

T Teletype (5-track)

If no code is specified, I is assuroed.

CYLOFL=n

specifies, for an INDEXED data set, the
number of tracks of each cylinder to be,
reserved for the records that overflow from
other tracks in that cylinder. The
theoretical maximum is 99, but the
practical limit varies with the particular
device.

There must be at least one track in each
cylinder to hold the prime data.

DEN=0111213

specifies the recording density for
magnetic tape as follows:

Bytes per inch (bpi)

DEN 7-track 9-track

o 200

1 556

2 800 800

3 1600

The density assumed if you omit this
subparameter is:

7-track:
9-track (single density):
9-track (dual density):

200 bpi
800 l:pi

1600 bpi

(The subparameter TRTCH is required for
7-track tape.)

specifies the organization of the data set
you are creating:

IS (indexed sequential): INDEXED data set

DA (direct access): REGIONAL data set

This subparameter is not required for
CONSECUTIVE data sets.

specifies the length in bytes of the
recorded key of records in INDEXED,
REGIONAL(2), and REGIONAL(3) data sets.
The maximum key length is 255 bytes.

limits th~ extent of the search for a
record or space to add a record in a
REGIONAL (2) or REGIONAL(3) data set beyond
the region number specified in the source
key.

If you do not specify a limit, the
search starts at the specified region and
continues through the whole of the data
set.

For REGIONAL(2), LIMCT specifies the
number of records to be searched. The
search starts~the beginning of the track
on which the record is situated and
continues to the end of the track
containing the last record to be searched.

For REGIONAL(3), LIMCT specifies the
number of tr~ks to be searched.

specifies the length of a record in bytes;
the maximum length is 32760 bytes for
F-format records, and 32756 bytes for
V-format records. You must specify a
record length for blocked records.

~n~ ~-£nYm~+ ~n~ ~~-Tnrm~t records. the
record length must not exceed the block
size (BLKSIZE) value; the minimum length is
1 byte.

For V-format records, give the maximum
record length including the four control
bytes required by the operating system; the

m~n~mum record length for V-format records
is 14 bytes (ten bytes of data and four
control bytes). The record length for
V-format and VB-format records ~ust be at
least four bytes less than the block size
(BLKSIZE) value: however, for VS-forrrat and
VBS-format records, it can be specified
independently of block size.

MODE=CIE

specifies the mode of operation for a card
reader or punch. E indicates EBCDIC, and C
specifies column binary. If you do not
specify the mode, E is assumed.

specifies the number of channel prcgraas
allocated to a file when it is opened: the
number of simul tan"eous input/output
operations on the file (that is, the number
of incomplete event variables) cannot
exceed the number of channel programs. The
NCP subparameter applies only to direct
access to INDEXED data sets, or sequential
access to CONSECUTIVE or REGIONAL data sets
that are unbuffered. The maximum number of
channel programs is 99 (unless another
maximum was established for your
installation at system generation): the
default value assumed if you omit the
5ubparameter is 1.

For DIRECT access to an INDEXED data
set, simultaneous input/output operations
in excess of the number of channel programs
are queued until a channel program becomes
available.

For UNBUFFERED SEQUENTIAL access to
CONSECUTIVE or REGICNAL data sets, the
ERROR condition is raised if there are too
many concurrent operations.

The NCP subparameter overrides the BUFNO
subparameter or the BUFFERS option of the
ENVIRONMENT attribute. One buffer is
allocated for each channel program.

specifies, for an INDEXED data set, the
number of tracks 1n tne cy~~naer inci~x
referred to by each master index entry, and
the number of tracks within each level of
the master index referred to by each entry
in the next higher level. The ma~imum
value for n is 99. (See also OPTCD=M later
in this chapter.)

Appendix A: DCB Subparameters 177

OPTCD=option list

lists optional data management services.
To indicate the services you require, code
the appropriate letters (see below) without
separating blanks, in place of "option
list" (for example, OPTCD=LY).

OPTCD=C requests chained scheduling, which
improves input/output performance by
reducing the time required to transmit
blocks to and from auxiliary storage
devices. In chained scheduling, the data
management routines bypass the normal
input/output scheduling routines and chain
several input/output operations together; a
series of read operations, for example, is
issued as a single chain of commands
instead of several separate commands.

Chained scheduling is most useful in
programs whose performance is input/output
limited. If you use this feature, you
should request at least three buffers or at
least three channel programs. Chained
scheduling can be used with CONSECUTIVE or
REGIONAL SEQUENTIAL data sets; it should
not be used for INPUT or UPDATE with
U-format records.

OPTCD=I requests an independent overflow
area for an INDEXED data set; you must
define this overflow area in a separate DD
statement.

OPTCD=L requests that a record in an
INDEXED data set be recognized as deleted
if its first byte contains (8)11 I B.

OPTCD=M requests the creation of a master
index in accordance with the information
given in the NTM subparameter.

OPTCD=U suppresses the raising of the
TRANSMIT condition when an invalid
character is passed to a printer with the
universal character set feature. A blank
is printed in place of the invalid
character.

OPTCD=W requests a write validity check for
a direct-access device.

OPTCD=Y requests that the data management
routines use the cylinder overflow area for
overflow records in an INDEXED data set.
The size of the overflow area is
established by CYLOFL=n.

RECFM=

178

F[B] [S]
V[B] [S]
U

[T] [AIM]

indicates the record format as follows:

F Fixed-length records

V Variable-length records

U Undefined-length records

If you do not specify a record format,
U-format is assumed, except for PRINT
files, for which V-format is the default
assumption.

The optional subfields are:

B Blocked records.

D Standard (fixed-length records only).
No blocks, except possibly the last,
will be shorter than the specified
block size.

D Spanned (variable-length records only).
If variable-length records are sFanned,
the record length specified by LRECL
can exceed the block size specified by
BLKSIZE; if necessary, the records are
segmented and the segments are placed
in consecutive blocks. If the records
are unblocked, each block contains only
one record or segment: if the records
are blocked,. each block contains as
many records or segments as it can
accommodate.

T Track overflow. Track overflow is an
operating system feature that can be
incorporated during system generation.
It allows a block to overflow from one
track of a direct-access device to
another. Track overflow is useful in
achieving greater data-packing
efficiency, and also allows the size of
a record to exceed the capacity of a
track.

Note: You cannot use track overflow for
REGIONAL(3) data sets with U-format or
V-format records or for INDEXED data sets.

A The first byte of each record contains
an ANS printer/punch control code.

M The first byte of each record contains
an IBM System/360 printer/punch control
code.

specifies for an INDEXED data set, the
position (n) of the first byte of an
embedded k~y relative to the beginning of
the record (byte 0). RKP=O implies that
the key is not embedded. (For example, if
"XYZ" is the key embedded in the record
"ABCXYZDEF", RKP=3.)

STACK=112

refers to a card reader or punch:

1 All cards read or punched are to be
fed into stacker 1.

2 All cards read or punched are to be
fed into stacker 2.

Stacker 1 is assumed if you omit this
subparameter. If you want stacker 3,
specify the ANS machine-code character in
the RECFM parameter of the DD statement,
and insert the appropriate character as the
first data byte.

TRTCH=CITIEIET

is required ~hen a data set is recorded or
is to be recorded on 7-track tape. It
specifies the recording technique to be
used as shown in the following table:

r-------T--------------T------T-----------,
I I Data I I I
I 1 Conversion 1 Parity 1 Translation I
~-------+--------------+------+-----------~
I I 1 I I
I C I Yes I Odd I No I
t-------+--------------+------+-----------~
I I I I I
I T I No I Odd I Yes I
~-------+--------------+------+-----------~
I I I I I
1 E I No I Even I No I
~-------+--------------+------+-----------~
I I I I I
1 ET I No I Even I Yes I
~-------+--------------+------+-----------~
I I I I I
Idefaultl No 1 Odd.1 No I L _______ ~ ______________ ~ ______ ~ ___________ J

Data conversion and translation: data on
9-track magnetic tape, like that in main
storage, is held in a-bit bytes, a ninth

bit being used for parity checking; data on
7-track tape is held in the form of 6-bit
characters with a parity bit. The
conversion feature of the 2400 series
magnetic-tape drives treats all data as if
it were in the form of a bit string,
breaking the string into groups of six bits
for writing on 7-track tape, or into groups
of eight bits for reading into ~ain
storage. The translation feature changes
the form in which character data is held
from a-bit EBCDIC to 6-tit BCD or vice
versa. If you specify neither conversion
nor translation, only the last six bits of
each a-bit byte are transmitted; the first
two are lost on output and are set to zero
on input.

Parity: Odd parity checking is norrr.ally
used in IBM System/360, but you should
specify even parity if you want to read a
tape that was written by a system using
even parity, or to write a tape for a
system that demands even parity.

Choice of technique: The use of a
technique other than C restricts the
character set in which data can be written
if it is subsequently to be reread and
result in the same bit configuration in
main storage. (An 8-bit code offers 256
possible configurations, but a 6-bit code
only 64.) For stream-oriented or
record-oriented transmission of character
strings or pictured data, you can use
technique C or T; you can also specify ET
if your program is written in the
48-character set. (Seven-track tape
recording systems indicate a zero bit by
the absence of magnetization of the tape.
Even parity checking does not allow the
code 000000 to be used to represent the
character zero, since an uhmagnetized band
is not acceptable on the tape. Therefore
the code that would otherwise represent a
colon (:) is used for the character zero,
precluding the use of the full PL/I
60-character set.) For record-oriented
transmission of arithmetic data, you must
specify technique C.

Appendix A: DCB Subparameters 179

180

Appendix B: Compatibility with the PL/I (F) Compiler

Some features of the PL/I Optimizing
compiler implementation are incompatible
with the PL/I (F) Compiler implementation.
The most significant incompatibilities are
listed below. In every case, the
description given is of the optimizing
compiler implementation. Programs which
were written for the (F) compiler and which
use any of these features should be
reviewed before compiling them with the
optimizing compiler to ensure that they
will return the same results.

Arrays and Structures

• The maximum number of dimensions in an
array is 15.

• The maximum depth of a structure is 15.

Built-in Functions

• Built-in functions are recognized on
the basis of context only, so that all
programmer-defined external procedures
must be declared explicitly. Built-in
functions and pseudovariables without
arguments, such as TIME and ONCHAR,
must also be declared explicitly with
the BUILTIN attribute, or contextually
~ith a null argument list, for example:
TIME ().

• For a variable to be a valid argument
to the ADDR built-in function it must
be connected and its left extremity
must not lie within bytes that contain
data belonging to other variables.

• The ALLOCATION built-in function
returns a fixed-binary value giving the
number of generations of the argument
that exist in the current task.

• The NULLO built-in function is not
im~lemented in the ootimizina comoiler.
The NULL built-in function can be used
for offset variables as well as for
pointer variables.

• The ONCOUNT built-in function can be
used in anyon-unit and gives the
number of interrupts remaining to be
processed at any stage in the execution

of the current task. In particular,
this includes event and non-event IIO
and multiple computational interrupts.
In the case of event IIO, the value of
ONCOUNT is the number of remaining
exceptional conditions to be processed
as a result of the execution of the
WAIT statement.

• When using REGIONAL(l) organization,
the value returned by the ONKEY
built-in function for a specification
error consists of the last eight bytes
of the source key, padded on the right
with blanks if necessary. This value
is returned for all IIO conditions
other than ENDFILE, or other than ERROR
raised as standard system action for an
IIO condition.

In a RECORD IIO statement with the KEY
or KEY FROM option, the CNKEY built-in
function returns a null string when the
ERROR condition is raised.

In a RECORD IIO statement referring to
a KEYED file (but with no KEY, KEYFROM,
or KEYTO option specified) the CNKEY
built-in function returns the recorded
key.

• The PROD built-in function accepts
arguments that are arrays of either
fixed-point or floating-point elements.
The value returned has the same scale
as the argument given, except for
fractional fixed-point arguments for
which the result is in floating-point.

• If the first argument of the ROUND
built-in function is a string, it is
converted to arithmetic and rounded;
the first argument must be convertible
to arithmetic. Also, a different
formula is used to determine the
precision of a fixed-point result.

• The SUBSTR built-in function returns a
non-varying string.

• The SUM built-in function accepts
arguments that are arrays of either
fixed-point or floating-point elements.
The value returned has the same scale
as the argument given.

• The arguments of the TRANSLATE built-in
function are converted to
character-strings in all cases.

• The first 16 bits of the result
returned by the UNSPEC built-in

Appendix B: Compatibility with the PL/I (F) Compiler 181

function for a varying string argument
represent the current length of the
string.

• The arguments to the function PLICKPT
are mandatory.

Conditions

• When used with arrays, the CHECK
condition is raised after assignment to
each element. The standard system
action when an assignment is made to a

'single element of an array is to print
the value of only the element assigned.

• If the SIZE, SUBSCRIPTRANGE, or
STRINGRANGE condtions occur when
disabled, standard system action is
taken.

• The STRINGRANGE condition is not raised
for SUBSTR(string, i, 0) when "in is
one greater than the length of
"string". A null string is returned.

Control Variable in DO statement

• The pseudovariables COMPLETION,
COMPLEX, PRIORITY, and STRING are not
allowed as the control variable of a DO
statement.

DEFINED Attribute

• Simple defining of strings and areas on
a larger base is allowed.

182

For example:

DECLARE A (6) CHAR (6),
B (3) CHAR (3) DEFINED Ai

This example will result in simple
defining - B(l) will refer to the first
three characters of A(l), B(2) to the
first three characters of A(2), and so
on.

If string overlay defining is required,
the user must specify POSITION (1) on

the declaration of the defined item (B
in the example above).

If the string lengths or bounds cf the
defined item cannot be contained in the
base, then string overlay defining will
be assumed, as with the PL/I (F)
Compiler.

For example:

DECLARE A (6) CHAR (6),
B (7) CHAR (3) DEFINED (A)i

In this example, string overlay
defining will be used because the
bounds of array B exceed the bounds of
array A.

• If the DEFINED attribute is used with
an array of pictures, the defined item
must match the base item exactly.

Dependent Declarations

• Only one level of dependent declaration
is allowed.

DISPLAY Statement

• The maximum length of the reply is 72
characters.

Entry Names, Parameters, and Returned
Values

• Each alternative entry expression in a
GENERIC attribute is followed by a WHEN
clause. The appearance of an entry
name alternative does not constitute a
declaration of the entry name. The
alternative selected is the first for
which each descriptor is a subset of
the attributes of the corresponding
argument in the generic reference.

• The dimension attribute is not allowed
in a generic descriptor~

• In general, an entry name in
parentheses causes a dummy variable to
be created; for the function to be
invoked, a null argument list is
required. However, an entry name
argument in parentheses, or an entry
name without arguments, will be invoked

if passed to a procedure whose
parameter descriptor for the
corresponding argument specifies an
attribute other than ENTRY.

• External entry names must always be
explicitly declared.

• Area and string extents in the RETURNS
attribute or option must be represented
by a decimal integer constant.

• The maximum depth of nesting in a
descriptor list in the ENTRY attribute
is 2.

• An aggregate expression involving
strings may not be passed as an
argument unless there is a
corresponding parameter descriptor in
~hich all string lengths are specified
as decimal integer constants.

• An internal entry constant cannot be
declared in a DECLARE statement.
REDUCIBLE and IRREDUCIBLE may be
specified on PROCEDURE and ENTRY
statements. A scalar cannot be passed
to an array parameter of an internal
entry constant if the parameter's
bounds are specified by asterisks.

ENVIRONMENT Attribute

• The optimizing compiler will recognize
and convert the previously-implemented
forms of the above options as shown
below, and will issue a message stating
that they are obsolete.

Old form

FCb)
FCb,r)
UCb)
VCb)
VCb,r)
VBSCb,r)
VSCb,r)

Converted to

F BLKSIZECb) RECSIZE(b)
F BLKSIZECb) RECSIZECr)
U BLKSIZECb) RECSIZECb)
V BLKSIZECb) RECSIZE(b-4)
V BLKSIZE(b) RECSIZECr)
VBS BLKSIZECb) RECSIZE(r)
VS BLKSIZECb) RECSIZE(r)

There are two new data set
organizations, TPCM) and TPCR),
associated with teleprocessing. TP(M)
imolies the transmission of whole
messages; TP(R) implies the
transmission of records. Both are
valid only for TRANSIENT files. These
data-set organizations are equivalent
to the options G(m) and RCr) available
in Version 5 of the PL/I CF) compiler.
The optimizing compiler will recognize
and convert as follows:

Old form

G(m)
RCr)

Error Correction

V TPCM) RECSIZECm)
V TP(R) RECSIZECr)

• The error correction logic differs from
that used by the PL/I (F) compiler.
Invalid programs that are compiled and
corrected by the (F) compiler may not
give the same results on the optimizing
compiler.

EXCLUSIVE Attribute

• The EXCLUSIVE attribute implies cnly
the RECORD attribute; DIRECT, UPCATE,
and KEYED will apply only by default.

• The EXCLUSIVE attribute can be used in
non-tasking programs, and jobs in the
system can affect each other.

Expression Evaluation

• In a concatenation operation, a BINARY
operand is converted to BIT if the
other operand is BINARY or BIT.

FIXED BINARY Expressions

• The length of FIXED BINARY constants
and intermediate results with a
precision less than 16 is 2 bytes. The
UNSPEC built-in function returns a
result whose length is 16 bits.

T.TKF. Attri hllt:P

• The LIKE attribute is not allowed in
specifying a minor structure that is
contained in a major structure cf which
some other minor structure is declared
with the LIKE attribute.

Appendix B: Compatibility with the PL/I (F) Compiler 183

Link-editing

• Programs translated by the optimizing
compiler cannot be link-edited with
object modules produced by the PL/I (F)
compiler.

Locked Records

• The locking action takes place at the
data set level.

• If an on-unit is entered as a result of
a REWRITE or DELETE statement, the
record is unlocked if the on-unit is
terminated by a GOTO statement as well
as normal completion.

• The ERROR condition is raised if a file
is closed while subtasks currently have
records in it locked.

• A record is not locked due to "key not
found" or "key outside data"
conditions.

Operating System Facilities

• The operating system facilities for
sorting, for checkpoint/restart, for
generating a return code, and for
obtaining a dump are all invoked by
means of a CALL statement with the
appropriate entry-point name; for
example CALL PLISRTA. The entry point
names, which are listed below, have the
BUILTIN attribute and need not be
declared explicitly.

184

Facilit~

Sort

Checkpoint/Restart

Return Code
Dump

Entry-point Name

PLISRTA
PLISRTB
PLISRTC
PLISRTD
PLICKPT
PLIREST
PLICANC
PLIRETC
PLIDUMP

The optimizing compiler does not
recognize the entry names used by the
PL/I (F) compiler, that is, IHESRTx,
IHESARC 1 IHEDUMx and IHECKPT. Existing
programs for the PL/I (F) compiler that
use these entry names must be amended
so that the DECLARE statements for them
are removed completely.

Pictures

• Sterling picture data is not
implemented. Therefore the following
picture characters are not allowed:

G, H, M, P, 6, 7, 8.

Preprocessor

• Text replaced by preprocessor
state~ents does not have blanks
appended to either end of the
replacement value.

• A parameter descriptor list is not
allowed in the declaration of a
preprocessor variable with the ENTRY
attribute.

• The RETURNS attribute may not te
specified in a preprocessor DECLARE
statement.

Pseudovariables

• For a varying string, the first 16 bits
of the value of the UNSFEC
pseudovariable represent the current
length of the string.

Record I/O

• If READ ••• KEY is used with a sequential
data set and no record with the
specified key exists in the data set,
the KEY condition is raised and the
file is positioned at the next record
in ascending sequence.

• If an embedded key in a record is not
identical to that specified in a
WRITE ••• KEYFROM or LOCATE statement,
the latter is moved into the record.

• READ, REWRITE, and DELETE statements
are invalid for REGIONAL DIRECT CUTFUT
files.

• There is no default record'format for
RECORD files. If the record for~at is
not specified, the UNDEFINED FILE
condition is raised.

Return Code

• The maximum return code that may be set
using PLIRETC is 999.

standard File SYSPRINT

• The name SYSPRINT is reserved as the
name of an output file used by the
compiler. This file can also be used
as the standard output file in the PL/I
program. It always has the attributes
STREAM, OUTPUT, PRINT and EXTERNAL.

The default record characteristics are:
record format = VB, record
length = 125, and block size = 129.
The default number of buffers is two.
Using the DCB parameter of the DD
statement, record format can be changed
to VBA, and record length, block size,
and the number of buffers can be
changed to any valid value.

SYSPRINT is opened and closed by the
compiler, however, the OPEN statement
can be used to specify the LINESIZE,
PAGESIZE and TITLE options for use with
the PL/I program.

• The approximate maximum number of
statements in a program is 10,000.

• A label on a DECLARE statement is
treated as if it were on a null
statement.

• ~ filAm~rk (nr pn~ n¥ ~.rinn m~r~ F~p
the STRING option) is a valid item

delimiter for list- and data-directed
input. An item thus delimited is
processed intact, and ENDFIIE (ERRCR
for string) is raised on attempting to
read a further item from the file or
string.

• After processing a GET LIST statement,
a file is positioned to the next
non-blank character or, if this is a
comma, to the character following the
comma. A GET EDIT statement following
a GET LIST on the same file must take
into.account the position of the file.

• The NAME condition (ERRCR for the
STRING option) is raised for all errors
(including out of range subscripts)
detected on the left-hand side of an
item of data-directed input.

• The COpy option causes all items to te
copied, including any skipped by the
SKIP option. A contextual declaration
of SYSPRINT is caused if no file narre
is specified for the COpy option.

• When transmitting DATA-directed output
to a PRINT file, data items less than
or equal to the line size will not te
split between lines. Data items
greater than the line size will, if
possible, be split between the equals
sign and the data value.

• Execution of a PUT statement in which
the LINE option specifies the current
line and the current column is not 1
does not cause the ENDPAGE condition to
be raised. No new current line is
established; the file is repositioned
to column 1 of the current line.

WAIT Statement

• If a WAIT staterr.ent requires the
completion of an inactive and
incomplete event variatle in a
non-tasking program, then after any I/O
event variables named in the same
statement are completed, a message is
printed and the program is terminated.
T """" mcn __ ... ~ ______ ..I- ___ .1 ____ , ------- •

--... _ --- - _-_ _ •• _, """"',t','"'~e,;;;J \.\.1

the terminal.

Appendix B: Compatibility with the PL/I (F) Compiler 185

186

Appendix C: Requirements for Problem Determination and APAR
Submission

When a member of IBM programming support
personnel is called to examine the
suspected malfunctioning of an IBM program
product, he will first determine whether or
not the malfunction really- is a problem in
the program product. If he decides that
the program product is at fault, he must
then check to see if the fault is a known
fault for which he can obtain an existing
fix-up. If the fault is not known, he must
refer the problem to the appropriate
program maintenance group within IBM for
analysis and correction. The process of
referring a problem to IBM involves
submitting a report known as an APAR

(Authorized Program Analysis Report), which
must be accompanied by material to enable
the program maintenance personnel to
analyze the problem.

To enable IBM program maintenance
personnel to analyze a Frotlem, it must be
possible to' reproduce it at the IBM ~rograrn
maintenance center. It will therefore be
essential to supply with the APAR the
source program to enable the problem to be
reproduced and analyzed. Faster resclution
of the APAR may be Fossible if some cr all
of the material listed in figure C.l is
supplied and if the source program is

r------------------------------T-------------------------T------------------------------, I Material Required I Compiler Option I When Required I
~------------------------------+-----------~-------------+------------------------------i

Original source program

Job Control statements

Operating Instructions/
Console Log

Listings:
Source listing
Cross-reference listing
Attribute table
Aggregate table
storage table
Compiler options

Compiler terminal dump

Linkage editor map

E~ecution-time dump

User subroutines

User data sets

Preprocessor input
listing

Preprocessor output

Partition/Region size

SOURCE (S)
XREF (X)
ATTRIBUTES (A)
AGGREGATE (AG)
STORAGE (STE)
OPTIONS (OP)

DUMP (DU)

MAP (linkage editor
option)

IN SOURCE (IS)

MDECK (MD)

C,E

C,E
C,E
C,E
C,E
C,E
C,E

C

E

E

E

E

P

C,E

C,E

~~Q. n~ ?~~!!~~ p~~~ ~,~

~------------------------------~-------------------------~------------------------------i I Note: "C" indicates the requirements for a compile-time error; I
I "E" indicates requirements for an execution-time error; I
I "P" indicates the requirements for a preprocessor error. I L ___ J

Figure C.l. Summary of requirements for APAR submission

Appendix C: Requirements for Problem Determination and APAR Submission 187

reduced to the smallest, least complex form
which still contains the problem.

All listings that are supplied must
relate to a particular execution of the
compiler, in the case of a suspected
compiler failure, or to the relevant link
editing and execution steps, in the case of
the failure of the PL/I program during
execution. Listings derived from separate
compilations or executions are of no value
and may, in fact, be misleading to the
programming support personnel.

Original Source Progf2m

The original PL/I source program must be
supplied in a machine-readable form such as
a deck of punched cards or a reel of
magnetic tape. The copy of the program
supplied must be identical to the listing
that is also supplied.

Usc of the Preprocessor

If the compilation incl~des preprocessing,
the source program submitted should
include, either as a card deck or on
magnetic tape, the source module obtained
by means of the compiler MDECK option.

If the problem is known to have occurred
during preprocessing, a listing of the
source program being preprocessed must be
supplied. If the preprocessing involves
the use of the %INCLUDE statement, a copy
of the PL/I source statement module(s}
included should be supplied in a
machine-readable form. If source statement
modules are not supplied in the original
submission of the APAR, the APAR will be
put into abeyance until they are supplied.

Listings of job control statements used to
run the program must be supplied. For OS
installations, any local cataloged
procedures should be shown in expanded
form, obtained by specifying MSGLEVEL=l in
the JOB statement. Where there are a large
number of job control statements, supply
these also in a machine-readable form such
as on punched cards or on magnetic tape.
This will assist the program maintenance
personnel to reproduce the problem more
quickly.

188

Operating Instructions/Console Log

In the case of an execution-time failure of
a program that processes a number of data
sets or that operates in a complicated
environment, such as a teleprocessing
application, it is essential that adequate
description of the frocessing and the
environment is given to enable it tc be
recreated. Although it may be impossible
to supply console logs and operating
procedures, a complete description of the
application, the organization of the data
sets, and adequate oferating instructions
are vital for the IBM program maintenance
personnel to reproduce the problem.

Listings

A listing of the source program is
essential. Other compiler-generated
listings, while not essential, may assist
in producing a faster resolution of the
APAR. If any of the compiler options that
must be specified in order to obtain
material for submission with an AFAR have
been deleted at system generation, they can
be restored for temporary use by ffieans of
the compiler CONTROL oftion.

Linkage Edito~

When a problem occurs at execution time, a
linkage editor map that was obtained when
the copy of the program that has failed was
link edited-is essential. The linkage
editor maf will be used in the analysis of
the storage dump that must also be obtained
when the program failed.

Execution-time DumE§

If the problem occurs during executicn cf
the PL/I program, a storage dump must be
supplied. A dump can be obtained by using
a stand-alone dump frogram. However, if
possible, a formatted PL/I dump prcduced by
the PL/I error-handling facilities should
be provided. A PL/I dump is obtained by
including the following statement in an
ERROR on-unit that will be entered when the
program fails~

CALL PLIDUMP('TFHB'}i

~lied PTFs

A list of any program temporary fixes (PTF)
and local fixes (s/zaps) applied to either
the compiler or its libraries must be
supplied. The IBM service aid program
IMAPTFLS, described in the publication Q§
Service Aids, Order No. GC28-6719, can be
used to obtain from a program library a
listing showing those members of the
library that have PTF or local fixes,
provided that when the fix was made, the
correct system status index (SSI) was
included in the library directory.
However, if a module contains more than one
temporary fix, only the last fix to be
applied will be listed by the IMAPTFLS
program.

Submitting the APAR

When submitting material for an APAR to
IBM, ensure that any magnetic tapes and
decks of punched cards that are supplied
containing source programs, job stream
data, data sets, or libraries are carefully
packed and clearly identified.

Each magnetic tape submitted should have
the following information attached and
visible:

• The APAR number assigned by IBM.

• The contents of the volume (source
program, job control statements, or
data, etc.).

• The recording mode and density.

• All relevant information about the
labels used for the volume and its data
sets.

• The record format and blocking sizes
used for each data set.

• The name of the ~rogram that created
each data set.

Each card deck sutmitted must have the
following information attached and visible:

• The APAR number assigned by IBM.

• The contents of the card deck (source
program, job control statements, or
data, etc.).

This information will ensure that a
magnetic tape or card deck will not be lest
if it becomes separated from the rest of
the APAR material, and that its contents
are readily accessed.

Appendix C: Requirements for Problem D~termination and APAR Submissicn 189

190

...
II'

Appendix D: IBM System/360 Models 91 and 195

This appendix explains how exceptions and
interrupts in Models 91 and 195 are handled
by the operating system. An exception is a
hardware occurrence (such as an overflow
error) which can cause a program interrupt.
An interrupt is a suspension of normal
program activities. There are many
possible causes of interrupts, but the
following discussion is concerned only with
interrupts resulting from hardware
exceptions.

IBM System/360 Models 91 and 195 are
high-speed processing systems in which more
than one instruction may be executed
concurrently. As a result, an exception
may be detected and an interrupt occur when
the address of the instruction which caused
the exception is no longer held in the
central processing unit. Consequently~ the
instruction causing the interrupt cannot be
precisely identified. Interrupts of this
type are termed imprecise. When an
exception occurs, the machine stops
decoding further instructions and ensures
that all instructions which were decoded
prior to the exception are executed before
honoring the exception. Execution of the
remaining decoded instructions may result
in further exceptions occurring. An
imprecise interrupt in which more than one
exception has occurred is known as a
mul~iple-exceetion_imprecise interrupt.

The optimizing compiler permits
processing of imprecise interrupts only
when the compiler option IMPRECISE ~s ~n
effect. This is useful when debugging a
program. The effect of the option is:

1. To cause the compiler to insert
special "no-operation" instructions at
certain points in the program to
localize imprecise interrupts to a
particular segment of the program~
thus ensuring that interrupt
processing results in the ac~ion
specified in the source program.
These "no-operation" instructions are
generated:

• Before an ON-statement.

• Before a REVERT statement.

• Before internal code to set the SIZE
condition.

• Before internal code to change prefix
options.

• Between statements if GOSTMT or
GO NUMBER apply.

• For a null statement. (This feature
provides the programmer with source
language control over the timing of
program interrupts;)

2. To provide facilities for:

• Detecting multiple-exception imprecise
interrupts.

• setting the value that is returned by
the ONCOUNT built-in function.

• Raising the appropriate PL/I
conditions.

The order of processing the exceptions
is as follows:

1. PL/I conditions in the order:

UNDERFLOW

FIXEDOVERFLOW or SIZE

ERROR (if system action is required
for either FIXEDOVERFLOW er
SIZE)

FINISH (if system action is required
for the previous ERROR
condition)

OVERFLOW

ERROR (if system action is required
for OVERFLOW)

FINISH (if system action is required
for the previous ERROR
condition)

ZERODIVIDE

ERROR (if system action is required
for ZERODIVIDE)

T.'1T~"TC""T'T I':.s= __ .. _..L. ____ .L.!_..... -------~---~

- _ .. ---.. ,-- -.1. - __ .~t -,.... "-':l u.- \;;.\.4

for the previous ERRCR
condition)

Note: The conditions FIXEDOVERFLOW
and SIZE cannot occur together, since
the same hardware condition raises
both of them.

Appendix D: IBM system/360 Models 91 and 195 191

2. Hardware exceptions in the order:

data

specification

addressing

protection

Conditions and exceptions are raised in
the above order until one of the following
situations occurs:

1. A GO TO statement in an on-unit is
executed. All other exceptions will
then be lost.

2. The ERROR condition is raised. If the
program is terminated as a result of
this action (that is, system action
causing the ERROR condition to be

192

raised, followed by the FINISH
condition); messages will be printed
to indicate the nature of the
unprocessed exceptions. The
exceptions themselves will not be
processed.

When an interrupt results from multiple
exceptions, only one of the PL/I conditions
is raised for each type of exception that
occurred.

When a multiple-exception imprecise
interrupt occurs, the ONCOUNT built-in
function provides a binary integer count of
the number of exception types (that have
PL/I on-conditions associated with them)
that remain to be processed. If the
ONCOUNT built-in function is used when only
a single exception has occurred, or if it
is used outside an on-unit, a count value
of zero is indicated.

Appendix E: Shared Library Cataloged Procedures

The shared library is a PL/I facility that
allows an installation to load PL/I
resident library modules into the link pack
area (LPA) so that they are available to
all PL/I programs. This reduces space
overheads.

The resident library subroutines to be
included in the shared library can be
chosen by the installation; they must
include the initialization routine, the
error-h~ndling routine, the open file
routine, and all modules addressed from the
TCA that are not identical for multitasking
and non-multitasking programs. Further
details of the shared library are given in
the publications OS PL/I Optimizing
Comeiler: Execution Logic and OS PL/I
Opt!mizing-f2mpiler: System Information.

The routines in the shared library are
held in two of three link-pack-area
modules: IBMBPSM, and either IBMBPSL or
its multitasking equivalent IBMTPSL. Each
of the link-pack modules contains a number
of library routines, and is headed by an
addressing control block known as a
transfer vector. IBMBPSM contains those
modules in the shared library that are
common to both multitasking and
non-multitasking PL/I environments.
IBMBPSL contains the non-multitasking
versions of those modules that are not
identical in multitasking and
non-multitasking PL/I environments. This
module has a multitasking counterpart~
IBMTPSL, which holds the multitasking
versions of such modules.

Two further modules are also involved in
handling the shared library. These are the
shared library addressing modules IBMBPSR
and its multitasking counterpart IBMTPSR.
One or other of these modules, each of
which has the alias PLISHRE, is link-edited
with compiled code and held in the program
region: IBMBPSR for non-multitasking
programs, or IBMTPSR for multitasking
programs. IBMBPSR and its multitasking
counterpart hold dummy entry points which
duplicate the names of all entry points of
modules within the shared library.
Kererences to sucn entry po~nts ~n comp~~ea
code are resolved to the dummy entry points
in IBMBPSR or IBMTPSR.

You can usc the shared library by using
standard IBM-supplied cataloged procedures
and overriding the link-edit and loader
procedure steps.

Execution when Using the Shared Library

Use of the shared library is specified by
the linkage editor statement INCLUDE
PLISHRE. PLISHRE is an alias for the
program region modules IBMBPSR and IEMTFSR.
The appropriate module will therefere be
loaded by the linkage editor (IEMEPSR for
non-multitasking programs; IBMTPSR fer
multitasking programs). All compiled code
external references to shared library
module entry points are then resolved to
the dummy entry points in IBMBPSR (er
IBMTPSR). Similarly WXTRNs in the program
region module are resolved if compiled cede
issues an EXTRN for the entry point.

A load module created for use with one
shared library will not execute with a
different shared litrary. You will have to
link-edit the object module again,
including the dummy transfer vector ffiodule
for the different shared library.

You must remember that the linkage
editor or loader require a large arrcunt of
main storage for external symbol dictionary
tables while processing the dummy transfer
vector module. If yeu specify SIZE=200K in
the PARM field of your EXEC statement for
the linkage editor or loader (and use a
region or partition of equivalent size),
you will get sufficient main storage for
processing with the largest possitle shared
library.

Your PL/I program may take slightly
longer to execute when using a shared
library, because all library calls have to
pass through the transfer vectors.
However, your main storage requirements for
a region will be greatly reduced if yeu
have carefully selected your shared litrary
modules to suit the operating environment.

Multitasking Considerations

The shared library has teen designed so
that multitasking does not affect it. If
PLI.TASK is specified before PLI.EASE, the
linkage editor statement INCLUDE PLISHRE
w~~~ resu~t ~n the mOdu~e IBMTPSR be1ng
loaded and linked in the program region.
When control passes to the code fellowing
the IBMBPIR entry point in IBMTPSR, a
request is made to the system to load the
multitasking shared library module IEMTPSM.
The program then runs in the usual manner,
with the multitasking modules.

Appendix E: Shared Library Cataloged Procedures 193

An installation may specify that it does
not require either the multitasking or the
non-multitasking modules in the shared
library. However both multitasking and
non-multitasking versions of the program
region module will still be created. The
module for the unwanted environment will be
a dummy. This prevents problems should an
INCLUDE PLISHRE statement be included in a
program that is intended to run in the
environment with no shared library. If
this process was not carried out, such a
statement could result in the incorrect
environment being initialized.

USING STANDARD IBM CATALOGED PROCEDURES

Standard IBM-supplied cataloged procedures
that use the linkage editor or loader (see
chapter 10) can be used to specify the
shared library. This is done by overriding
the SYSLIN DD statement in the link-edit or
load-and-go procedure steps to ensure that

194

the shared library addressing module
IBMBPSR is the first module to be included
by the linkage editor or loader and that
its entry point in the resulting lead
module has the name PLISHRE. For example,
the cataloged procedure PLIXCL requires the
following statements to make use of the
shared library.

//STEP1 EXEC PLIXCL
//LKED.SYSLIN DD *

INCLUDE PLISHRE

(add further input here)

/*

You can add other linkage-editor control
statements by placing them as indicated.
For example, to give the resulting lead
module the name MINE, add the statement:

NAME MINE(R)

between the ENTRY and /* statements.

This appendix, consisting of a PL/I sample
program, illustrates all the components of
the listings produced by the compiler and
the linkage editor. The listings
th~mselves are described in chapters 4 and
5.

The function of the program is fully
documented in both the preprocessor input
and the source listing by means of PL/I

Appendix F: Programming Example

comments. These comments consist cf lines
of text each preceded by /* and follcwed by
/. Note that the / must not appear in
columns 1 and 2 of the input record because
it will be taken as a job control delimiter
statement.

Most pages of the listings contain brief
notes explaining the contents of the pages.

Appendix F: Programming Example 195

PLII OPTIMIZIN<: COMl'llER VERSION-16/JUN/ll

OPTIONS SPECIFIED 8
M.IS.MAR(2.12.11.l0(S51.SZ(50KI,AG.A,X.lIST.STG,OF,ESD

OPT I ONS USED

AGGPEGME
niP lEU1E~
COMPILE
ESO
GOSTMT
IN SO URCE
LIST
l MESSA GE
MACI<.O
t-IAP
NEST
OBJECT
CFFSEl
OP1l0N~
SCURC E
5T"'T
STO RAGE
SYNTAX
XREF

196

NOOECK
NCFlOW
NOGONUt-ABER
NOPlAI<.GINI
NO~DECK
NC!\UMI'ER
NCCFTIIIIZE
NCI""PRECISE
N01ERMIt>Al

CHARSE1(tO,EBCCICI
FUG(II
LINECOUNT(551
MAPGIN~(2,72,11

SIZE(512001

TIME: 01025c21 OIlTE: 16 AUG ?1 PAGE

r---------------------------------------,
(Start of the compiler listing. (

8 (
1 List of options specified in the (

(PARM parameter of the EXEC (
(statement. (

~ (
~ List of options used, whether (
(obtained by default, or by being I
(specified explicitly. (L _______________________________________ J

Pl/I OPTIMIZING COMPILER 1***** PL/! SAMPLE PROGRAM. ~~***I

LlNE
1

PREPROCESSOR INPUT

1"11**** PL/l SAMPLE PROGRAM. *11***1 00000100

2 %/~********"II*.*****.**.***.*.*************************.***-****11***11"111 ~cr~02~J
3 1* *1 (0(0':' 3r,~
4 1* USES COMPILE-TIME PREPROCESSOR TO MODIFY PL/I IFI SOURCE FOR *1 O~CC'4(C
5 1* USE WITH THIS COMPILER. THE PREPROCESSOR STATEMENTS FOLLOWING ~I 0J0rn5r"
6 1* COULD BE PLACED ON A LIBRARY AND USED TC MODIFY SEVERAL SOURCE *1 tCC~0Erc
7 1* PPOGRAMS EY ~EA~S (F THE PREFF(CESSOR ~I~CLUCE STATEMENTo THEY *1 ~~~cn7(~
8 1* PERFORM THE FOLLOWING FUNCTIONS: *1 roc~oe"lJ
q 1* *1 ('"1(,-0<;(.':)

10 1* I. CONVERT CALLS TO FOLLOWING PL/I IFI IHEcoe ROUTINES TO THE *1 ,:':"C'tl~\'.'~\

11 1"11 EQUIVALENT NEW PL/I.:o ROUTINES- *1 00~~lln0
12 I~ IHECU~P/J/C/T TO FLICU~F, *1 rO(~12(C
13 1* IHESRTA/E/C/D TO FLIsnA/BIClC, *1 r,C't"'='13/)'"
14 111 IHECKFS/T TO FLICKPT, *1 "'C~140~
15 1* IHERESN/T TO PLIREST/FLICANC, *1 Q~~~15CO
16 I. IHESARC/I~ETSAC TO PLIRETC. *1 ~C~~16CO
17 1* *1 (1')r;SI7rl)
18 111 2, C~ANGE FIRST DECLA~E/OCL STATE~E~T FOUNC TO INCLUCE *1 0'0)180"
19 1* BUILTIN ATTRIBUTE FOR FOLLOWING BUILT-IN FUNCTIONSlhHICH *1 00C~19(~
20 1* 00 NOT TAKE ARGUMENTS, ANC SO ARE NCT IMFLICITlY CFCLAREC *1 O~C"2D(C
21 1* BUILTIN FOR THIS CO~FILER - AS THEY WOULD BE FOR FLII IFII- *1 ~J0021~~
22 1* DATE, TIME, ONCODE, ONCHAR, ONSOURCE, ONLOC, *1 1."11)(,:-:22('':)
23 1* ONFIlE, CNKEY, E~PTY, NULL. *1 ~DGn23~n
24 1* NOTE: THE ONCOUNT elF IS C~I1TED FRO~ THIS LIST, E IS USEC *1 ~'C'23~2
25 1* LATER TO SHOW THE EFFECT OF NOT DECLARING IT BUILTIN. *1 h~nG23~4
26 1* ANY REFERE~CES TO IbE--- ROUTINES ~UST EE FEMOVED *1 r"O~23~6
27 1* FRO~ DECLARE STATEMENTS BEFORE THE SCURCE FROGRAM IS *1 ~C"J23Ce
28 1* FREPROCESSED, OTHERWISE FAIlUPES MAY OCCUR ~HEN THE *1 rCG~231~
29 1* CONVERTED FROGRAM IS LI~K-EDITEC. *1 r',;\r.':'2312
3C 1-1; *1 (,'"Cl'"'2351
31 1* 3. CHANGE 'NULLC' TC 'NULL' - THERE IS NO NULLO BUILTIN *1 (')(1·-:-,2352
32 1* FUNCTICN F(R T~IS COMFILER; NULL MUST BE USED BOTH WITH *i C~(:2354
33 1* PCINTER ANC CFFSET VARIAELES, *1 00~"2356
34 1* *1 ('''\1)'"'241)1''1
35 I**~**-I;*"II***"II*"II**~**************~***********************************I;~aCI250~

r---------------------------------------,
ISource statements for the sample
1 program, exactly as they appear in the
linput stream. These statements form
Ithe input data for the preprocessor.
IPreprocessor statements are identified
Iby the % symbol.
1
11.
1
1
1
1

The first line of the input is
included as part of the heading
for all pages of the preprocessor
and compiler listing.

1 2. Each input record is numbered
1 sequentially.
1
1 3. If an input record has a sequence
1 number, this number is printed. l ______________________________________ _

PAGE 2

Appendix F: Frogramming Example 197

PlII CPTI~IZING COMPILER 1***** PLII S~"FlE PRCGR~M, *****1 p~GE 3

LINE
36 Del (lHEDUMF, IHEDUMJ, IHEDUMC, IHEDUMT, CEClARE, DCl, """((26"1)
37 IHECI<PT, IHECI<PS) ENTRY; k)OC:,2c"15

38 DCl (IHESRTA, IHESRTB, IHESRTC, IHESRTD, IHERES1, f''lC-'-'27~'''l
39 IHERESN, IHESARC, IHETSAC, NULLO) CHAR; (''1~'~2 8C~

40 , DCl COUNT F I XED; r':l{lC2SC~

41 COUNT = 0 1* FIRST-TI"E-IN S~ITCHo * 1 ;0001')3001')

42 , DEACTIVATE DECLARE, DCl 1'* ENSURE MOCIFIED STATEMENTS *1;F''')013100
43 '! ACTIVATE DECLARE, 1* ~RE NOT RESCANNE[DURING *1 ~1).')3 20!)
44 DCl NORESCAN 1* PREPROCESSOR REPLACEMENT. *1 ;(OC':'33C'O

198

PL/I CPTI~IZING CO~PILER 1***** PL/I SA~PLE PROGRAM c *****1

LIt-E
45 ~ DECLARE: DCL: 1* GENERATE BUILTIN DECLARESc *1 CN~'34r'
t.(; FROC HTURNS (CHAP I; {fl"~35~"
41 COUNT = COUt-T + 1 1* COUNT = 1 IF 1ST TIME IN: *1;0"~~36C0
4e I F COUNT = 1 1'/'.,,: 31r.j
49 THEN REllFN('DCL (DATE,TI~E,ONCHAP,ONSOURCE,ONCOCE,' 11 ~')t:'~38('1J
5"1 'ONLOC,ONFILE,ONKEY,EMPTY,NULLI BUILTIN, '11 C~(,:::3<;r,r>
~1 'CKPT_RETC FIXEC BIN(311,'I; ~f~C:3<;\2

~;: ELSE RETURN('DCL'I; nC"j4t;'1CC
~., ENC; ,~O(.l:41c,r,

54 IHEDU"1P: IHECU~J: IHEDUMC: IHEDUMT: 1* REPLACEC B't CALL TO *1 (\Or.,;42cn
55 PROCIICNI RETURNSICHARI 1* PLIO~MP ROUTINE, INCLUDING *1;t"C~43~~
56 DCL leN CHAR 1* ORIGINAL I[(IF ~RESENTI, *1;~~r~44r~
51 IF ION WEt- RETURN('PLIDUMP'I; ('GOC45~(j
58 ELSE RETURNI'PLIDUMP("TFCA",'" 11 I[N 11 "'I'I;r"O'~:;46("i
!:<; ENC;)'1 ":'!() 47("0

71
;2
lJ
74
15
7(;
77
78

7<;
e:,

el

IHECKFS: IHECKPT: 1* CHANGE TC PLICKPT, PLlIIFI

OJ: ,.
%
~
'J:

~

~

'f/*

~

PROC(ARGl, ARG2, ARG3, ARG41 1* DEFAULTS GENERATEC WHERE
RETUFNSIC~ARI 1* NO ARGUMENTS ORIGINALLY.

DCL (ARG1, ARG2, ARG3, ARG41 CHAR;
IF ARGl TI-'Et- ARGI "'SYSCHK''';
IF ARG2 = II H-Er-> AI<G2 ' ''''';
IF ARG3 = " Tt-EN APG3 '''PS''';
IF ARG4 = " Tt-EN ARG4 'CKPT RETC';
RETURNI'PLICKPT(I 11 AI<Gl II ',"'; 11 ARG2 11 ,

l' A R G 3 11 ',' 1 1 A R G4 I 1 'I' I ;
ENC;

IHESRTA 'PLISRTA' 1* REPLACE
IHESRTE 'PLISRTB' 1* CALLS TO
IHESRTC 'PLISRTC' 1* IHE---
IHESRTD 'FLISFTO' 1* RCUTIt-ES
IHEREST 'PUREST' 1* BY
IHERESN 'FLICANC' 1* CALLS TO
IHESARC 'PLIRETC' 1* PLI---
IHETSAC 'FUHTC' 1* RCUTINES,

THERE IS NO NULLO BUILTIt- FUNCTION FOR THIS COMPILER;
NULL ~UST EE USED INSTEADc

NULLO = '~LLL';

*1 "''"'('")474'"
*1 ::'10~'4742
*1 ;r("C4744

"(''1,':'4746
"C'i) "474E
(1t\{l;l475Q
C'"lr~4152

01!,.,J41~4

r'Or-)4756
C~C':4758

(1I'1C:'416C

*1;!l"iDJ48C1i

*1 ;1"l,D(!"'4CJ,~t'I
*1;~O':lJ5r(.('

*1;I)CQf'5H',.
*1;f'l1'I(\")52i]"'\
*1 ;(""\('':53'.:'')
*1 ;~~~~,54('f"1
*1;('\"lC~55r.:(

(CC~ 5E~C:

*1;fJr)!:~5CJ(\':

PAGE 4

Appendix F: Programming Exarrf1e 199

Pl/I OPTI~IZING CC~FIlER 1***** FlII SAMPLE FROGRAM o -Li-Li***1

Ut\E
82 ~/* E~C OF PREPROCESSOR STATE~ENTS; SOURCE STATEMENTS FCllOW HERE: *1;0~~~61cn

e::
E4

E5

El:

E?
E8
89

98
99

1(,'
]"l1

Ie 2

Ie ::
1(4
H5
Irl:
1~ ?
HIe

200

SAMPLE:
FROC OPTIONSIMAINI;

CECLARE (FDATE, PTIMEI CHI!RI61;

CECLARE CVAR CHAR(2551 VAR;

CCL BI~VI!R,

PeATE = DAlE;
PlIME = TIME;

RETCCCE FIXEC BIN(31,'I,
FBVAR FIXEC BIN;

PUT SKIP ECIT('SAMFLE PROGRAM: CATE = " PCATE, " TIME = "
FTIMEI (A(231, P'99/99/99', /!(S), P'Z9 0 99 c SS'I;

RETCOCE = OICI;

ON ERRCR
BEGIN;

CALL IHECU~F;

1* THESE STATEMENTS ILLUSTRATE FREPROCESSOR REPLACEMENT A~D USE OF
BUILTIN FUt\CTIO~Sc THEY ~IlL NEVER BE EXECUTED~

CALL IHEDUMJ(12?1;
CALL IHEDUMCIPE1CCCEI;
CALL IHEDUM1;

FBVAR = (NCCDE;
C VAR ONCHAR;
CVAR CNSOURCE;
CVAR CNLoe;
CVAR ONFIlE;
CVAR ONKEY;

tl~O';62/,)"
N)('~63(117'

(1 GC64(C

rCI("';6 l:'7r>
r(l':l~6?C'~

OOC'"l68cr,

"''"'63':'691:'"
(I~Ci7r..C'''''

r0C'-:)71~r:
(':')Qr'72 t1 (

'I'I:tJ1C'')73M ,

~1~~":75(,,,)

(,''1Jr?6t'1'')
C:)CC7?"r;

("{I~?8,,:r

*/rrf1Cc791"'1"l

C'!"'~"'8~C'

(~C:;8IQC

'f'I!:I::;82'"1':·

t>:Jt:i 83~r:
nQf\':;84~,O

rf';C'85('.!)
(',,:-;.~:~ 86'~"1

CI~)G ~87'~"1

~.CC "'B8r''}

PAGE

~

FllI (PTI~IZI~G C(~FILER I~~**~ FLII SAMPLE PROGRAM e *****1 PAGE

Ll~E
1:" 9
11~

111

II':
11=

114
115
116

117
1113

11<;
12"
121
122

123
124
12~

121':
127
1213
12 S
13 ~
131
1 = 2
l~~
134

135
1 = 6
137

1:? 13

13<;
14F

Il 1

1* THIS STATE~ENT, WHICH WILL ~EVER BE EXECUTEC, USES 'ONCOUNT' WHICH ~JOJ89CO
IS NEITHER EXPLICITLY NCR I~PlICITLV CEClARED B~ILTIN, THE EFFECT t0009CO"
IS 5~(~~ IN THE ATTRIeUTE lISTI~G tNC CIAG~QSTIC ~ESSAGESo */(0C~91CQ

FeVAR = ONCOU~T;

1* T~IS IS A CU~~Y FFCCEDURE TO ILLUSTRATE OTHER PREF~OCESSOR
REFLACEMENTS/NC~-I~PLICITL) CECLtRED RUILTIN FU~~TICNSe

A:

8 :

IT hILL NEVER eE EXECLTEC:

PROC;

CCl AVAR AREA EASECIFVtR),
OVAR OFFSETIAVA~),
A ENHY RETUFNSICHARI801l,
SIZE FIXED BINI31,O);

AVf,R E~Fl);

PVAR = NUll;
CVAR = NULLC;

CAll
CALL
CALL
CAll
CAll
CALL
CAll
CALL
CAlL

IHESRTIlI'ARGl', 'ARG2', SIZE, RETCODEI; 1* S
IHESRTEI'f,FG1', 'AFG2', SIZE, FETeCCE, AI; 1* Q
IHESRTCI'ARGl', 'ARG2', SYlE, PETCCCE, el; 1*
II-ESRTCI'ARE}', 'tRG2', SIZE, RETCOCE, f" EI; 1* T
IHECKFS('ARGl', 'ARG2', 'FS', RETCODEI; I~ CI-ECKPOIf\T
IHECKFT; 1* CHECKPOINT *1
IHEREST; 1* FCRCE RESTRT

1* (H'CEL CKPT
1* SET RETUR~ CODE(T~SKINGI

!I-ERES~ ;
!HETS~CIRETCOCEI;

FRCC RETUF~SICHtR'8CII; E~C; CtJM'-1Y EXIT
FPOCECURES
FCR SCRT; PRCCIRECORCI; CCL PECORC CH~R(e~l; Er-J C;

END DU~M'I';

OO~)921'\')

~(j~293C,)

r,)C~94Cl'"
C'!)C"l95t::O

*/(ll)" ~96C'J

f'Cr.J97r:r.
rCOg8r/)

(,'(':)9<;('(1

::'IOl)l"'O!)O
>coe Hl""~"
rl()Ol':JIC(l

'C'O 1') 2(1',

"C"1W30 t)
('!"OlIJ4(!1"

* I'v,'.) 1~ 5("
* Ire' l r , (;~,f)
* I~,rv') 1(' 70':'
*/'::(,', 1~ eC>rJ
*1"'(H~l(\C;n(\

<I ',0 I1I'CI)
*/(d,)C" l1 }l"t'l
'In")\) 112(l!'\
*IC"0113f'lC

*/t::'CC 1141;1)
*/<"if'f'1145!"l
* 1[.0(: 11 5'cJQ

(10011600

CALL IHEStFCIRETCCCEI; 1* SET R~TUF~ COCEI~(~TASKINGI */(0011eOO
PUT SKIP lISTl'EhD SAMFLE FRCGRAM'I; OCCl190~

Ef'\C SAMPLE; C::l"1200('l

Appendix F: Programming Example 201

FllI CPTI~I7I~G CC~PIlER 1****. Pl/I SA~FlE PROGRA~ *****1 PAGE

1 2 (;)
FQPRO(E~SC:OP DIAGNOSTIC MESSAGES

EI< OR Ie ~ MESSAGE DESCRIFTION

SEVERE A~C ERI<CI< [IAGNOSTIC ~ESSA(ES

I El(,21 71 E 97 MISS ING lEFT FAI<ENTHESIS FROM AR GUMENT LI ST FOR PROCEDURE 'IHEDUMP'o PROCEDURE INVOKED WITHOUT
Afl(UMENTS o

I ElO217I E H2 MISSING lEFT U HNTHES IS FI<OM ARGUMEI\T LI ST HI< FF<OCEDUPE 'iHEDUMT'o PROCEDURE INVOKED WITHOUT
APGUIIENTSc

IElC217I E 1?1 tJISSING lEFT Ft I<ENTHES IS FROM ARGUMENT lI5T FCI< FFOCEDURE '1HECKPl'o PRCCEDURE INVOKED WITHOUT
ARGUMENT Se

~tP~ING CI~G~CSTIC ~ESSAGES

I El() 1E 41 W 97 TOO FEW ARGUMENIS TO FUNCTION 'I~ECU~P'o NUll STRINGS PASSED AS MISSING ARGUMENTSo

1 EU; 1841 W 102 TOO FEW APGUMENT5 TO FUNCTION 'IHECU~T'o NUll 5TRINGS PASSED AS MISSI~G ARGUMENTSo

IEU'1E4I W 131 TOO FEW ARGUMENTS TO FUNCTION 'IHECKPT'c NUll ~TRINGS PASSED AS MISSING ARGUMENTSe

E~C OF PREFFCCESSOfl DIAGNOSTIC MESSAGES

202

r---------------------------------------,
IDiagnostic messages generated by the
Ipreprocessor. All messages generated
Iby the optimizing compiler (including
Ithe preprocessor) are documented in
Ithe publication os Optimizing Compiler:
IMessages.

l,f,\ "ERROR ID" This identifies the
~ message as originating from the
I optimizing compiler (IEL), and
I gives the message number.

82 "L" This is the severity level of
the message.

83 . . "LINE" This gives the number of
the line in which the error

I occurred. L _______________________________________ J

7

FLII CPTI~IZING CC~PILER 1 * .. PLII SAfJPLE PROGRAt'o * .. *1

4

6
7

11
12
13

14
15
If:
17
H'
1q

2
2
2

2
2
2

SClJRCE LISTING

1"**** PL II S~MHE FROGRAMe "'****1
S~"'PLE:

PROC OPTICNS("'AI~I;

DCL (CATE,TIME,QNCHAR,ONSOURCE,ONCCCE,ONLOC,CNFILE,CNKEY,EMPTY,
~ULLI BUILTIN, CKFT_RETC FIXED BIN(311, (PDATE, PTIME) CHAR(6';

CCL CVAR CHAR(2::1 VAR;

CCL BINVAR,
RETceCE FIXED BIN(31,OI,
FBVAR FIXEC BIN;

FCATE = DATE;
PTIME = 1 I~E;
PUT SKIP ECIT('SAMFlE PRCGRAM: DATE = ',PetTE, ',TI"E = "

PTIMEI (A(231, P'99/99/99', ~(S), P'Z9 oc;cc99'1;
RETCOCE = CH11;

ON EFROR
eEGIN;

CALL FL ICUMP;

1* THESE STATEMENTS ILLUSTFATE PREFROCESSOR REPLACEME~T AND USE OF
BUILTIN FU~CTIONSo THEY ~ILL NEVER BE EXECUTEC e *1

CALL FLIOU~P('TFCA','127'1;
CALL FLIOUMP('TFCA','RETCOOE'I;
CALL FLIOUt-'P;

FBVAR = ONCODE;
CVAR ONCH~R;

eVAR ONSOURCE;
C VAR ONloe;
CV~R ONFILE;
C\iAR ONf<E't;

r---------------------------------------,
ISource listing. This is the output
Ifrom the preprocessor and the input to
Ithe compiler. All the preprocessor
Istatements have been executed and all
Ipreprocessor comments have been'
Ideleted.

ffil : Statement nesting levels.

Line numbers brought forward from
the preprocessor input.

18
1

1

:

~ Maximum depth of replacement.

"En in this column indicates that
an error has occurred during a
replacement attempt. L _______________________________________ J

p~GE

0
R

0
83
84

85
85

86

87
88
89

90
91
92
9":1
94

95

~ 96
97

98
98
9q

100 1
101 1
102 IE

103
104
If) 5
106
107
10e

Appendix F: Programming Exarq::le 203

PL/I CPTIMIZING COMPILER 1*'*'*** PLI1 SAMPLE PROGRAM c *****1

204

STMl LEV NT

2t'1
21

22

23

24
25
2l:

n
28
2<;
=~

?1
32

"" 34
35

31':

3E

41

42
43

44

2
2
2
2

2
2
2

1* THIS STATE~ENT, WHICH WILL NEVER BE EXECUTED, USES 'ONCOU~T' WHICH
IS NEITHER EXPLICITLY NOR IMPLICITLY DECLARED BUILTIN c T~E EFFECT
IS SHCWN I~ lHE ATTRIBUTE LISTING ANC DIAGNOSTIC MESSAGES. *1

FBVAR = ONCOUNT;
END;

1* TrIS IS A CUMMY PROCEDURE TO ILLUSTRATE GT~ER FREFROCESSOR
REPLACEME~lS/NON-IMPLICITLY CECLARED BUILTIN FUNCTIONS,
IT WILL NEVER BE EXECUTEC c *1

OU~M\,:

A:

E':

FRCC;

CCL AVAR ~REA BASED(PVARI,
OVAR OFFSET(AVARI,
A ENTR\, RETURNS(CHAR(eOI',
SIZE FIXED BIN(31,OI;

AVAR EMP1Y;
PVAP = NULL;
OVAP = NULL;

CALL PLISPTA('ARG1',
CALL FllSR1E('AR(;1',
CALL PLISP1C('t>RG1',
CALL PLISRT[('ARO',
CALL HICKFH'ARG1' ,

'ARG2' , SIZE,
'A RG2', SIZE,
'A RG2' , S I Z E,
'ARG2', S I Z E,
'ARG2' , 'PS' ,

RETCCDE I;
PETCCDE,
I<ETC(OE,
RETCCDE.
RETCCDEI;

1* S *1
A I; 1* 0 *1
B I; 1* R *1
/J, B I; 1* T *1
1* CHECKPelNT *1

CALL PLICKPl (' SYSCHK' , ", 'PS", CKPT_RETCI; 1* CHECKPCINT *1

CALL PLI HST;
CALL PLICANC;

1* FORCE RESTRT *1
1* CANCEL CKPT *1

CALL FLIRETC(RETCOCEI; 1* SET RETURN CrDE(TASKINGI *1

FROC HTLHS(CHAR(ECII; HC;

fRCCIFECCFCI; CCL RECORC CHAR(e~l;

END DUMM\,;

1* CU~~Y EXIT *1
1* PROCE(URES *1

ENe; 1* FOR SORT, *1

tALL PLIRETC(RETCCCEI; 1* SEI RETURN ((CE(NC~TASKI~GI *1
,PUI SKI P LI SI (' E~C SAHLE PPCGRA~' I;

HD SAHLE;

PAGE 9

R

1'"'9
109
1('<;
111

112
113

114
114
114
116

117
118

11<;
12'"
121
122

123
124
125

126 1
127 1
128 1
12<; 1
13:1 1
131 1E
131
132
133
134

135
136
137

138

139
14-,

141

FL/I (PTI~IZING CC~FILER 1***** FLII SA~FlE FI<CG"f:.Mc *****1 PAGE 10

00.00
36

23

38

4

22

2

4

2

~~0**
2

IDE~~ER
ATTRIBUTE ANC CROSS-REFERENCE TABLE

ATTRIBUTES AND REFEREt\CES

f:.Vf:.P.
85 ENTRY

5 28,::0

BASED
24

RETURNS(CHARf:.CTER (EOI I

(PI;AR I ALIGNED f:.I<Ef:. (10001

ENTFY RETUPNS(OECIMf:.L 1* SINGLE *1 FLOAT (611
2C;,3C

EIt\Vtf: AUTOMATIC 1* STRUCTURE *1

CKPT_RETC AUTCMATIC ALIGNED BINARY FIXED (31,01
~2

(VAR

Cf:.TE

[l:"~Y

E~FTY

FEVf:.R

NUll

AUTOMATIC UNALIGNED CHf:.RACTER (2551 Vf:.RYING
15,1(:,17.18.19

BUILTIN

ENTRY RETURNS(OECIMAL 1* SINGLE *1 FLOAT (611

BUI LT IN
24

1* IN BINVAR *1 AUTOMATIC ALIGNED BINf:.RY FIXED (15,01
14,20

BUIL TI N
25,26

ONCH~R BUILTIN
1:

ONCCCE

CNCCU~T

CNFILE

BUILTIN
14

AUTOMATIC ALIGNED DECIMf:.L 1* SINGLE *1 FLQAT (61
20

BUILTIN
Ie

r8~~~~i~~~~~-~~~-;~~~~=~~~;~;~~~-;~~i;~--: ~--~~f:~~~~f~~:i::~::i:~~~~~~:------1
I 1 Number of the statement in the I I order. I
I source listing in which the I 10 I
I identifier is explicitly declared. I I 4 Declared and default attributes I
I I I are listed. This list also I

11f2\ Asterisks indicate an undeclared II 110 includes descriptive comments. II
~ identifier; all of its . attributes
I are implied or supplied by I I 5 Cross references. These are the I
I default. I I numbers of all other statements in I
L _______________________________________ J I which the identifier appears. I

L _______________________________________ J

Appendix F: Programming Example 205

PlII CPTI~llI~G COMPILER 1***** PL II SAMPLE PROGRAMo "''''*'''*1 PAGE 11

CC L NOo IDENTIFIER AlTR I EUTES ANC REFEREHES

2 ONKEY BUll TH-
IS

2 ONLOC BUlL TIN
11

ONSOURCE BUILTIN
16

23 OVIlF< AUTOMATIC ALIGNED OFFSEl (AVAR'
26

2 PDATE AUTOMATIC UNALIGNED CHAF<ACTER {/':}

5,7

""'*'" PL IONC BUlL TIN
34

*""***** FlICKPT BUILTIN
31,:::2

""""**** FLIDUMF BUll TIN
1(l,1l,12,1::!

:(""***** FUREST BUll TIN
33

"""*"*** PLI R ETC BUILTIN
42
::!5

""""*"** PLISRTA EUIlTIN
27

"""''''''''** F LIS RT B EUIlTIN
28

""""""** PUS RT C BUlL TIN
2S

""""**** PLISRTD BUILTIN
::!I":

FTHIE AUTOMATIC UNALIGNED CHARAC1ER (61
6,1

:("11***** PVAI< AUTOMATIC ALIGNED PCINTER
24,25

206

Fl/I OPTIMIZING COMPILER

[C l NO,

3<;

4

23

I DENT If YER

FE CO F 0

FETeODE

SJlMPlE

SIZE

SYS PR INT

TIME

I~~*~~ Pl/I SJI~PLE PPOGRJlM e ***~*'

ATTRIBUTES AND REFEFE~CES

1* PARAMETER *1 UNJlLI(NEC CHARACTER (8~1

1* IN BINVAR *1 AUTOMATIC ALIGNEC BINARY FIXED 131,01
8,42
27,28,2S,3Q,31,35

EXTERNAL ENTRY RETURNS(OECI~AL 1* SINGLE *1 FLOAT (611

AUTOMATIC ALIGNED BINARY FIXED 131,01
27,2E,29,30

EXTERNAL FILE PRINT
7,43

BUILTIN
~

PIlGE 12

Appendix F: Programming Exarrple 207

PllI OPTIMIZING CO~PILER

IDE~IER
4 81 NVA R

208

1""*""""* Pli I SAMPLE PROGRAM. ***""*1

AGGREGATE LENGTH TABLE

(0
l ENGTI-\ IN BY1ES

6

6

r---------------------------------------,
'Aggregate Length Table. ,

b ' 1 Number of the statement in which ,
, the aggregate is declared, or, for'
, a controlled aggregate, the number'
, of the associated ALLOCATE ,
, statement. ,

0)'2 ': The elements of the aggregate as
declared.

Y:\, 3 III :~ Length of each element of the
aggregate.

'"f;\ Sum of the lengths of aggregates :,
~ whose lengths are constant. L _______________________________________ J

PAGE 13

PUI OPTI~IZING COMFILER

STORAGE

0)
E L DC t<, SECT! ~N OR STATEMENT

*SAMFl El
*S~MPLE2
SA~HE
9
DU,.,.V
A
8

1***** FL/I SAMPLE PROGRA'"1o *****1

REC:UIREMEN1S

G 0, G (hEX) LENGTH DSA SIZE

PROGRAM CSECT 2224 8B4
378 S1JITIC CSECT eeo

536 PROCEDURE BUJCK 530 212
208 ON UN IT e:26 276

PROCEDUFE ElCCK e32 340 224
168 PROCEDURE ELCCK 106 6A

PRQCECURE ElCCK 124 7C 176

r---------------------------------------,
IStorage requirements. This table gives
Ithe main storage requirements for the
1 program. These quantities do not
linclude the main storage that will be
Irequired by the resident and transient
Ilibrary subroutines that will be
lincluded by the linkage editor or
Iloaded dynamically during execution.

,
:(,"\ Name of the block, section, or
~ number of the statement in the
1 program.

'0 Description of the block, section,
or statement. 1

83
1

Length in bytes of the storage 1
areas in both decimal and hexa- 1

1 decimal notation. 1

'
:8 Length in bytes of the dynamic :

storage area (DSA) in both 1
1 decimal and hexadecimal notation. 1 L _______________________________________ J

PAGE 14

(!lEX)

218
DO
EO
AS
BO

Appendix F: Programming Exarr,ple 209

PL/l (PT1~IZI~G CCMPILER

210

Pl I 5111 Rl
*SAMPlEl
"SA~FlE2
FlIHES
IBtJiBP1I<A
IBMEFIH
IBMBF 1I<C
FllCl>llA
Pl ICALLB
FLlfoIAH
IEMEKCPC
18~EKC FI>
IBt-IBKCF8
IBi-IBKC FA
IBM8KCFt>
18MBKSH
IBMBI<SlA
IBMBK SlC
18MBI< S1I>
IBI'BKST8
18 M8 K S 1 A
181-1BK5lA
18t-1BK["1>
IBM8PRCA
1 ElCG(A
1 EtCH8
J8~BSICA
lEMBCCCA
lEMECCSA
I EMBCHFC
lEMBCOCE
18MBCll-[
IBM8ClH
I BMB E(CA
lEI-IEECLI>
IBM8JC1A
IBMBJ1TA
1 BMB(CLA
lEME(ClC
18M8SAOA
lEMBSECA
IB!oIBSICE
lEME5ICT
IBMESLCA

SO
SO
SO
WX
Ell
Ell
Ell
LC
LO
SD
Ell
Ell
Ell
Ell
Ell
Ell
Ell
Ell
B
Ell
Ell
Ell
Ell
Ell
SD
SO
Ell
Ell
Ell
EF<
B
Ell
B
Ell
EF<
Ell
Ell
Ell
WX
Ell
Ell
WX
WX
Ell

1***** Pl/I SA~PLE PROGRAM c *****1

ooe1
('(;02
('(03
('('04

{()i(i5
CCr:6
OCr!7

(CCS
009
(,OOA
("('":8

(("C
C(00
('(') E
"C" F
cno
C~ 11
(,C'12
cr 13
C'!J14
('(\ 15
(Y"16
(':'17
('[118

n: 1 <J
(nA
((lB

«: ':le
(00
eel E
Cf.llf
H20
C"21
"C22
cr2~

ff24
(('25

CC' 26
(('27
(021:1
cr 29
(rl2A

(OOCOO
H'CHHi'J
('IjC~C::

IJC~OC':J
C~!'jO~F
('~acc,:

ocoee:;
coon: 6
CI,"('(!,}A
IJ(''''·~OC
I;H'J(,(;Q)

O","CO"]
arn~I.:""
ccnoor
ccoac:'
"?tI)IQC'I
Qt;C«:C':'
OOOC'''''J
{jC~C~!;

r'".{,: ::"
(';1;,,=,CfJ~

MC(,C~
erc!v",)'
or:OtlC'
r~oc:i3-::
I;t:;"c-':l~
C~"(l{I:
('r:IQCO,~
(In,,('o~

CCMCO
!i~,:('r:~
CI)C{lO~

CODOO,)
"flC~O-:
COOCJIC
(1 "I)OC':J
CI)G')ri,:
'~!l":lQ'C;J
oooc:::!:
C(!MOI)
l:'~l!r{l")

1'1 {'ccrIJ
CCQOCI'1
C~'i30",)';:·

8
LENGTH

(''':1('')38
I"lC.)SBi
c:lC370

OOU008

000072
(;'00070

PAGE 15

r---------------------------------------,
IExternal symbol dictionary.

:1(,\ "SYMBOL" A list of all the
~ external symbols that make up the
I object module.

:10 "TYPE" Type of external symbol as
\J follows:
I CM Common area.
I ER External referonce.
I LO Label definition.
I PR Pseudo-register.
I SO Section definition.
I WX Weak external reference.
I Full definitions of all these
I terms are given in chapter 4.

~13 "10" All entries, except LD-type
entries, are identified by a

I hexadecimal number.

:I~ "ADOR" Address (in hexadecimal)
~ of LO-type entries only.

~15 "LENGTH" Length in bytes (in
hexadecimal) of LD, CM, and PR

I type entries only. L ______________________________________ _

PllI CPTJPlIZING COMPILER 1:+"":+" PLII S~MFLE PROGRAM c """:+*1 PAGE 16

IB~ESFU ER C(l28 00"000
IB~BSHA ER CC 2C CCCCCO
IB~BCKr::c EP (('20 C{11CC~

IBfoIBSXCA \-IX CUE ':'~GC(l~
IBfoIE5XCB \-IX C(2F t:CCIJOr:
IB~BSIST \-IX (1)3(l CCOCtl1
SHFLE LD G,,,,r{ 8
S YSFH. T PR (031 ~C::(~11 oIJ;),Hr) "'4
SY5FINT SO (iOn OI)GCC,) Ct;r:120

Appendix F: F~ograrnrning Exarrfle 211

PL/I OPTI~IZI~G CC~FILEP

0 0
ClF,{'r:C(~Ct('t'r(E
~((('(~ rl:~cr(iE
5;(11')(t 8 "c:rr r <;(:
((or t: C r;~r:(r::: 14
C;fjrfl1r. "C(,f':"272
((r(14 -;rr:c" 4C;C
t' U 1 E '::CQ('('4EE
(UnC '''''(If·; 7CC
'0' f r 2" f':-~('~E22

l"f't:C 24 r::ct:rrE:!E
t(('(2E -:t:Gr"SAI)
·::rr,'2C "(~t;c~ EAC
r(U3' Qr:-e;rf' 8A,)
((,r(34 cccrr EA':
((((,3E -:r':tt: EA\!
t(((3C "·'~IjC::JrC'1

r.;Ut:4' <>c 'c rcr ~ 1-1

f~UC 44 r.r:CC:CCC
(, '=I' 4 E rC~'~rt:61:
~l"fr4C "'.:~r;c~(""
';((r 5~ ~C ~rt;r{ ~

"cr.'" 5t. t:CCr:'1f"c':"
(f((5E rcc:r(c(,'"'
(f r(5C ~';:~rr'~::'''\

ur~e "I'H(~r~

(((,:f4 ~r\'rc{(~

U {(6E "~U'r~(c
,:;n1f'6C "rcru;(·~

,'f'C7f' ",~,::".,rc"
cr r(14 CC~"Grcr
:p:ne "CH~!";CC
cr C{ 7C """'I:)r~~,~\-

'''(f~Sr ~rr.u(tc

{CCC E" ~t;N~H~
rrr.(E E "(((e((O

(fif r EC ";:'C,,-rl'I'C
"'('.rC;C ,.,!~ro{cc

((((<;4 (~r'::G(~

~'U(C;E ~';"
(f((9A S':'C"'(17
UUC;E 4:H(rE14rL~fE'::

ECe':'':GCU',\:{ fE"!':
P:,tH'CU

:'~f)t B 2 8~('f ,:\(.9

':'((('136 4':'fryr':'fll Lr 4':'fE~
E(e':C"'(f ECC 74Ct:

212

1***** PL/I SAMPLE PROGPAMe *****1

STATIC I~TERML 5TCPAGE ~AP (:: 740(,(".:-

PPGGFGOCON
C')('~I CA "'(,C 1
~C(;f'CC

FFOGFAM AOCON ·J.:rr CJ t~rO~2~8~~170CC~

PROGRAM AOCCN !CDC"; C8 (~Cr~~00CC~f0C~~
FP OG FA M AOCCN 'Y'C~ EO rcc('o 21 FOC" c;r;ccr.
PROG RAM AOCON IV1CN8 rCCD)228~t120rC~
FPOGPAM ~CCON ,,)~(J F'" (C[C1J~~nC~L~rtr

FRGGPAfoI ACCO~ J(lr;~· F8 rrrO~~OOGC~3~n~(

FPOGFAM ACCON ~{'rlr: (ccn'Q~OC0~7CO~[

PROGRAM ACCON 9~f1('8 r~r~'~~00~~2CrtO
FFOGFAM ACCn '"'1:'1'11:- [tr~~o~nc~~f'C~~~

PROGRAM ACCON {l~n18 91E(91Ef,
FFOGFAM ACCON ,:\a;,r 11C C(CO"1'J~l

PROGRAM AOCON ,~(12" (;:'(0'::')65
FROGF~M ACCON "\~r124 4tCC"l))f
PPOGFAt-I MCON ')(\':1128 ~':'C.C1,)31<:1
Ao 0 I ElCGOIl {,.t)': 12C F FCIJ'i(l!)('.
Acc I ElCGOE 1''''(13'') r~Cr"lrcr,

Ae c IE MBCCCA ~'J(134 ECrO'J,I"I
Ace IBMBCCSA O~~138 srCIY'1"1(\1)
IIco1BMBCt-FC ':XC 13C IfI"CO(,<:){'C'
Ace IBMBCCCE ~t.')"14"\ (';::(,0"',,\C~

Ae e I BMBCTHC 'I"::" 144 E"'l:'r11lC
Aoo IBMECUIC 0;:)"148 8ccr,:"I~':l

Ae c IBMBEOCA f1"':'14C "'~CC,)'J:''')
I.e e I S~,BEOLA 0L 15':' r~.(("}:-iX

Acc 1B~·BJC1A ~CC154 (CrC"'Int:'J
AoeIBf'.EJTTA ~C(158 en'O':'llC
Ae e IBMBOCLA ~r;: 15C (~C(\':IO':'~

Aco IBMBOCLC rf'C1f':l t-::CO'J"Q'"
f.eo1EMBSACA ::'-:':'f 1(:4 E"(\\)':)'i17
Aoc IB~\ESEOA GCr168 ""G~C'IY.l(i
Aee IBMEnOE -J':IC l(:C E~'C ("''''('')
~ee IBI',B510T "'onn e'~~,!;~J~~'
Acc IBI'BSLCA :lee 174 S:':(,(':''''·:-':'
Ae e IB~BSFlA "0(.1713 ((,(C'"'('((.'

AecIBMB5FOA r,')r 17C C~C{l~D':l(,

Aeo1B~BCKDO "rJ: 18: rHC'}illl"
Ae e 5T~T1 C If)f~'184 e::r~~"lY,

OED OC''J188 rectl":"Ioc
FED {I(>~ 1 SC (CCCQI'!:C
FED ;:"(: 1 C;~ {(Cf.!,")"'!,W

":I:r:194 (:C~J':''1~

r.co<;e f(cc"r·\('\
FED ~(l(j19C e'lc ;=,'i('~Cl
FED J(~ 1 A) r'Cn:;1~r,J;

[''''''lA4 f:({:nl)F'J1:'

r---------------------------------------,
IStatic Internal Storage Map. This is a
Istorage map of the static control
Isection for the program. This control
Isection is the third standard entry in
Ithe external symbol dictionary. '

:1(,\ Six-digit offset (in hexa-
V decimal).

~I :
~ Text (in hexadecimal),

comment indicating type of item to
which the text refers. A comment
appears only against the first
line of the text for an item. L _______________________________________ J

PAGE 17

CONSTANT

LOCATOR
LOCATORo=PDATE
LOCATOR
LOCATOR
LOCATCR
LOCATOR
LOCATOR
LOCATOR
LOCATOR
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
Ao c DCLCI3
A, POATE
AccTEMP
Ae DCLCB
AooTEMP
A= CONSTANT
A~ 0 RETCODE
Ao:ENTRV PLIRETC
AeeCCLCB
A, TEMP
Ao=CONSTANT
Ac;ENTRV PL1CUMP
AeoTEI-IP
A: TEI-IP
Ae 0 TEMP
AceTEI-IP
AeoFBVAR
AocTEMP
AeoTEMP
Ae TEMP
AooSIZE
A, 0 RETCODE
AccENTRV PLI SRTA
AooTEMP
AocTEI-IP
Aoe S1ZE
Ao 0 R ETCOOE
Ao e TEMP
AeeENTRV PLISRTB
AeoTEMP

Pl/I CP1IMIZI~G CCMPIlER

('r (1 A E
eu lAC
IJH lBC
(jU184
cr~18E
CUlBC
Ct:ClC
('((lC4
Or''''lCE
C(~ ICC
OCrlO,r
(C"lC4
(,rICE
("'"lCC
cr n E"'
t:'CI"I1E4
'~(!'1Ee
Ijr r lEC
err 1 F\"
ree 1F4
(.. rIFe
CUlFC
r.rr2(~

OC t 2("
(U 2(E

CU21F

rr.. r: 2 ~ t
CC(23 E
((041
f'(f24E
(C r 24C
CU25'
rC~2~2

rr.C25E

~r.(((CCC
':'t:!~r,~~c("

~(Cr."'~(('

ercrrCiC:""
r:r:rf!~(l(~

rnrQrCr
,. 1Crf OC,f\
t:';crccC'':
O::(CC(('('O
':lrlOC'''C'C''
e':CCOH(
rrcroccc
<;(·Jr1~r.('

IJCt'Or.C"l
"r.cr(o:'~'('

EC(lCCCCC
~~()C'()(O(l

I:rCC'(iU~!J

,:C':;rr;O({
rccr"l'1~t
EOCC'(Cf'C'
~:-~r~~~()

"~~rl}C'C"
E':t;:C'IJCC"
E2CIC4[;C;C~4~Oi

[~[fC7[qCl[47A4r

C4CIE;C ~4(iE4"
fB4 r E:CC;[4C!:4CiE
4
C!:C!:C44,: E2C 10407
[3C54~[7[C;[fC7CC;

C1[4
E;CH3C1
FlFa7
[C;C5E3C:[fC4C5
ClCSC7Fl
ClCSC7F2
C7E2
E~EEE2C3CE[2
rC1f(~(r~(C((214

'***** PLII SAMPLE PROGRAMc *****1

Aco lE"F
AooSIZE
Ao 0 ~ El C C [E
Aoo lEI'F
AooE~TRY FlIS~lC

Aoo lEI'P
Aoc lEI'P
Aoe SIZE
Aoe RE1CCCE
AcolEtJP
Ac e lEI'F
Aeo E"lRY FLISFlO
AcolEI'P
AcolEI'F
Aoe lEtJF
AooRElCCCE
Ao o E"lRY FlICKFT
AoelEMF
toe lEI'F
AoolE"F
Ao 0 CKFT_R ETC
AccE"TFY FlI~EST
AoeE~lRY PlICANC
Aoe RETCCCE
CCfl5Hlll

CCflS1A~1

CCflSHNT

CCt\SlANT
CCNSlANl
CCt\STANT
CCNSTANl
CCNSTANl
CCNSHNT
CCN5TANl
STATIC ONCB

STATIC EXTERt\AL CSECTS

r:;c ~:)') ")I'(412'11(')~r"

r2[7~FrO(~rc~cc'

(r:~7":'14(((EE2E8

E2r7CqC9D5E34:4~

CCLCB

PAGE 18

Appendix F: Programming Example 213

Pl/I CPTI~IZI~G CC~PILER 1***** PL/I SA~PLE PROGRAM, *****1

TASlES CF OFFSE1S A~[ST'TE~ENT ~U~SERS

~ lTl-I~ FHCECURE SA~FLE

OFFSEl , t-EX I (10('(eE 0('00.64 (lCCCCr.' ('-r1SC
SlA1HHl NC 6 1 e

.. IUH CN u~n

OFFSEl (t- EX' !'rCI"!:E 01::1:068 (Cf(B(CH':FE
SlATEHNT NC 1r 11 12 13

~ I 1'1-'1 ~ FRCCECURE [u~n

OFFS ET (t-EX, cec(5E ')1j~06E ·~(tC1f CHC7A
SlA1EfolHT I\C 24 2'5 26 27

~ITI-n PRCCECl!~E

(FFSET (t-E X, ~'Jt"5(: r."~~6e
SlA1HHl NC 37 3E

~I1HI~ FRCCECURE B

CfFSEl (I-EX' G(~((:8
SlA1EME~1 ~C 4r

214

r..r.C1A4 CC"lIA8
S 42

!)H'1C2 ~", 118
14 15

r.CC':D2 'I('\'",13E
2e 2<;

-:l~,'"l1C!" f',''''\i lFA
43 44

IJO"'13E CC, 18~
16 11

O(,·(:1AA O~C22A
3'= 31

PAGE 1.9

C(\,")2"lC

C'(11C4 "C r 2"6 rOU248 IVIC262 Or:'l~274
18 19 2{~ 21 22

((."2<;6 Ger.-2FC 'i)"'3~6 ~f'\J3,l1 ~C.':'I328 ,.,"\n338
32 33 34 35 41 36

PLlt CPT 1"t Zt t-G (CHILER />1>1>1>1" PLlt SAMPLE PROGRAM, >1>1*"*/ PAGE '2')
CE'JECT LISTlt\G (~C:J21C 4(E'J F r 5":' STH 14, 81") ({i, 15 1

(2)
IELCGOA

0 l'I"U:'24 ~E E1 F ~ 4C L 14,7610,151
"'{"(t;,28 4~ Et: 7 rC2 AH 14,2(0,7)

" COFIlH CENERATEC SUBRCUTINE ~(cr ;:C 5" E'; F r4C ST 14,76(0,151
r r: (((: ,,~ f" 1 ':;(,C ST
',lNCI) 4 ':8 F~ 1 n4 L
M're r 8 '11 I"=' 1 ')11 1M
(UC'C 47 It 7 (14 EC
(rt' (1'~ <;~ r4 C "r~ " t: (I
crrf" 14 D2 r3 1 U8 F :'4C ~VC
(((r'IA 4E P' F r ~1" lH
'1."«(1 E 4B F7' E t:'C,2 5H
C(('~22 ~7 B~ ECR
ere:: 24 'H: 4~ 1 ~1C CI
(':'((28 58 F~ 0 I' 4C l
rrU2C s-r- F~ 1 ~!8 51
~~({3': 4A F(E {,(" AH
!"C C':3 4 4A F':' 7 t7C' AH
{une 54 Ft:' 7 UC N
':1"(/,3C 55 Fe C ~~C Cl
(((II.: 4~ 47 2C 7 r:. 4A EH
((("44 5~ F': C "4C S1
';'((48 (7 Fe ER
(,(C'~4A 5:~ rr- rIC 5T
(I"f'(4E IE 71 LR
f ("'r 5~ 18 ('F lR
rr"~52 !:8 1: D ,. 4C l
r:fr'~ 56 58 H C ~48 l
(eCe 5A "'~ EF enR
,:r t'i[~C ~: r~ C (; 4C ST
,('I'U6: 5(' 11" 7 t:(E 5T
C(t:/"~4 18 17 lR
rr('~u 58 r'" tiC L
rrr:'o, (7 F6 ER
(U{6C F FFFFFF8 CC
rr:r':7': CC

* EI\C CF CCIAPIlER GENERATED SUBFCL TINE

* CO~FIlER (;ENERHEt SUERCUTII\E IELCGCE
(!U~t"~ 94 FB C (1('2 1\1
i:f.t'(\4 91 4C 1 "1':' Ttl
«(('''8 47 1{ 7 (52 BC
1,1r)I'CF'C 58 Ftl 1 "', 14 l
(rt:rlC 5C 7 1 !'IC ST
tU',r 14 58 7(1 C,.C L
('{(~ 18 48 E"I F nc lH
CU'lC 4B E" 7 rr2 SI-'

14,12(\i,11)Jl"':"3'1 4e E,) 1 fl2~ lH 14,32(11),11
1~,2{l(C,11 C'Or:lO~4 .q E:' E ('(1 lA 14,1(-1,141
17 (1 1 , X ' 1~ , "::1:)(":38 4'; E'J 1 I) 2(STH 14,32«(',11
*"8 ':;Jere 3C 4{ E'"I F ": 52 STH 14,82(':'\,151
2(121,)(I~4' ':'CCC4C <;1 1'1 1 rl'"' TM 16(II,X'l'"
8(4,11,76(151 OCC~44 (7 86 BCR 8,6
E ,el; ({J,1':1 ':)1:'(,046 5E 7':1 1 JlC l 7,28(",11
15,2(1",141 joe'i4A 58 F'" 7 C 68 L 15,1"4«(',71
11 ,~ ~'J(""', 4 E ('5 EF BAlR 14,15
16(11,X'4'1' I)CCC51J Cl F6 BR 6
15,H«("l,131 ':J(,C'r 52 58 F':' r ~(L 15, Ie> 8 (I) ,71
15, I' ("),1 1 ~-:lr') 56 f 5 EF BALR 14,15
15,2(~,141 crC08 58 E~J ~~8 L 14,8(t:',11
15,112 (e , 7 I (lcel' 5C 50:' E':' "'4C ST 14,76(~,131

15,H8('J,71 ;'\~,)O6:l <;4 BF 'Hr, NI 16(1I,X'BF'
15,1,(\;,121 (!~'l!'64 (7 F6 BR 6
'HI fIle(F; 6~ (7 C''"l NOPR '" 15,7~(,:,,131 GCe" 68 DC Al4 ("II
~ 'V"(C ~C cc AL4WI
~',2E(r,l1

7,1 * END OF COMPILER GENERATED SUBROUTINE
: ,1 ~
1,7~(~,,131

1~,12(r,121 * STATEMEt-.T t\UMBEI<
14,15 c';m:::::
(,ltC:",131 ~OCC'': 7
1, E U' ,71
1,7 * FRCCECCRE
(,28(~,11

~ * REn ENTPY
X' FFFFFFF8' (JI)CIJ'~ 8 '10 EC C ('II.';'C
Al;: (71 C·:J!JC~C 47 F() F C14

:!(C'" 1:; HCO"''':'':1J
!JCC014 t'CCC'J218
:lC("l E (,CCC"C'O'i
"OCCIC ~E 3"l F '\, lw

2(121,X'FB' '"C,,·:; 21: 58 1<:' D ')4C
16(lI,X'4{)' I) 1)C I;. 24 ~8 C":: F rec
*+74 G~CC28 1E Cl
1~,2(2(C',11 'JI)(~, 2A ~5 f""l C (,CC
7,280,1) J:CC"2E 47 C1 F 'C'13C
7,12("1,11 O:,)Oi} 32 58 F': C e 74
14,8 fl ((;,151 (,')Or. 36 ('5 EF
14,2 (';,71 rCC'D 3 e 58 EO D r48

r---------------------------------------,
IObject listing. This is a listing of 1
Ithe machine instructions generated by 1
Ithe optimizing compiler from the PL/I 1
Isource program. 1

1(0 1 I 1 Machine instructions (in hexa- 1
I decimal). 1

tv 1
2 Assembler-language form of the 1

1 machine instructions. I L _______________________________________ J

DC C' SAMPLE'
DC All(~ I

SAMPLE

STM 14,12,12(13)
B *+16
DC A(STMTc NOc TABlEI
DC F'536'
DC A(STATIC CSECT)
l 3,16(Q,151
L 1,76(1':.13)
L 0,12(,'"',151
ALR 0,1
Cl ':\,12(0,121
BNH *+10
L 15,IH((",121
BALR 14.15
L 14,72<0,131

Appendix F: Programming Example 215

P III (PTlfoI1 ZHG ((MF1LER 1""""""'*"" PLI I S~foIPLE PROGRAMc "":+*""*1 P~GE 21

a; r ':f 3C Ie f~ LIl 1 ~, ";
C'((3E S(l H (4E ST/i l<1,~,i2(l1 * 51HEMEN1 NUMBER 7
r;(f~42 ~~ OC CC4 S1 13,4IJ,11 QOC~C8 <II 9'3 C IF(LA 9,4961('),131
re f (46 lo1 [1 ~ ':{l:J LA 13,~(1,GI t:l0rO CC 5C <;') 3 14":' ST 9, 32~ II' ,31
((f'r<lA ~,~

"''' C r '58 S1 5,E8(C,,131 "IOO!) Cfl <;2 2') D 2<')1 MV1 5 L~ 1131, X' 2Cl'
C.((C4E i;1 f') D rAE LA 6,168H'1,131 Cl':lt:lC' [4 41 1<: 3 13C LA 1,:=161'1,:=1
rc((~ 2 ~ ... f": C r: 7" ST f,1121:-,131 ccc;r[8 58 F~ 3 r7C L 15,Ao o 1BMBSICE
rr.cr.56 C7 r~ D f" A8 D '''A8 xc 168n,131,H:81l31 ~OG("CC (5 EF BALR 14,15
rt:t;(5C 02 n D 'AS tlVI H<;(131,X'I"I' ::l~«("CE 41 A'} ('9~ LA 1'" ,CLc 7
(((r 6 r <;2 cr D ':t:' MV1 1131,X'C~' :JO(I") E2 i;1 E1 C C,,:, LA 14,21'\81~,31
U((64 <;2 2i; D ((1 t'IJI 11131,X'24' ~1)(()E6 41 F'J r<;8 LA 15,15210,31
fcrr6E 41 e7l 2~8 LA 8,l':or((l,31 !:IOC'.lE~ 41 1':' C IF: LA 1,4961(\.131
(U':6C !:''C E'~ D (5C 51 8,<;21'1,,131 JIjIJ,) E E ~f', 1) 0 1E8 S1 1,488((',131
N()C 7.: [2 (3 D '~<I 3 118 MVC 84(4,131,28"'(31 {ll',''l'l(F2 91;\ EF 1 ~I!y, S1M 14,15,~(1l
':)(((76 C5 2':' E'ALI< 2,r;' ('e,c":' F6 ('5 A~ BALR 11,1"

':lO('lt F8 41 E':l C ClBf LA 14,1761(,131

""
HOLCGUE EAS E *:(rf) FC 41 F'j 3 (" S8 LA 15,OECooPDA1E

(C,((78 [2 ('7 D ~B~' 3 "D8 MVC LCC~TCRo:PCAT~(~I, ilji"t' 1""\1 9:J EF 1 ~~; STM 14,15,~11l

216 131 ':\(\(\1(,4 rJ 5 AA BALR 11), I""
qrr7E 41 c(' C I'D4 LA <;,FOTE ~1Jf."1"'6 41 E,) (Ei"' LA 14,2241~,31
((r,~E2 ~,~ <:~ D F,B'~' 51 9,LCCA101<, PCATE M~I"A 41 Fl [<;8 LA 15,152((1,31
(1':(':86 [2 (:7 ["BE roD8 MVC LCCA1(PooPTltJEIAI, (l:'C If' E O~ EF I: [,/", S1M 14,15,(,,111

216 (31 t:'IJCl12 (~ At.. BALR 1"',1('
U~f.8C li1 fJ C (' DA U l~,FTH'E (ltO 114 i;l E" D (tBE LA 14,1841"',131
('t;(' S~ 5~ A(0 t'B8 51 1~,LOCA10Rc,P11ME ,)1){118 41 F'"l 3 (98 LA 15,[EDocPT1ME
rrr.·:94 /"5 2':1 E' ~l R 2, ,QO:11 C 9') EF 1 (,\G~ S1M 14,15,"'(11

:lQ(112t' (5 At:. BALI' 1"'\,1;)

" FRGCHURE BASE OCrl22 47 FO 1r:4 B CL,8
OC(126 CLo7 EQU * t);:l~,12 6 41 E" 3 r SA LA 14,154(1",31

" 5TA1E"'ENT NUtJE'ER 'JC(12A 5E 1') 0 lE8 L 1,4881(',131
rr({<:6 41 <::" [r [4 LA 9, PCATE 'Hl""12E 5E 7'1 " 3C L 7,Aoo1ELCGCA
~ C ((<;A ~~ ~~ 1!4 51 C;, 31 E 1'l,3 1 J'r.132 ~5 67 BALI' 6,7
rue <; E <;t: E::l 3 134 (I 3r E (3 1 , X ' E::' , O~O34 5E F~I rc 74 L 15,~oc 1BMBSAOA
J(1'1~:' A 2 41 I""" l:::li LA 1, 3(E (C ,31 1JUH38 C5 EF BALI' 14,15
rc((~6 58 Fe 1'1':4 L 15, ~cc IBtJBJC1A D·~ 13A 58 7~ 3 r 4~ L 7,AocIELCGOB
,'Jrt";AA "'5 EF B~LR 14,15 J,)C13E ~5 67 BALI' 6,7

".l%14C' (5 ~A BALI' 11">,11;
()t:'C 142 41 E'J 3 (<; E L~ 14,15810,31

" 51A TEHNT ~LMBER ::l{,·rI4(: 51: 1ry 0 1E~ L 1,488(1':,131
(:cr':AC 41 CJ D IF! LA 9,496U',131 'l(;,Z" 14A ~8 7': 3 -::3C L 7,A o : IELCGOA
crt'[BI" ,,~

~.~ 3 13E S1 c;,::: 12 (!: ,31 'C'::': 14E (' 5 67 B~LR 6,7
('(r~B4 <;6 8,1" 13E CI 312 (31 , X' er ' 11)(;151: 58 F" (l8C L 15,Aeo 1BMBSPCA
lJrr~B8 41 1"1 3 138 LA 1,:::12L~,31 ,"':n 54 ('5 EF BALR 14,15
(((, B C 51: F"' 3 "68 L E,~o: 1BMBJT1~ ~(() 1 '56 5E 7':' (;4'"' L 7,A oo IELCGOB
ru\,u .. , ~ FF E AL I< 14,15 ':I~('1 5A t5 67 BALR 6,7
0(1"' ... ·(2 [2 f5 f' [A D IF') MVC PT1tJE(t:1,496(131 CCC'l5C (~ ~A BALR 1(',1':"

~rCl5E 41 E'"l ,)B2 LA 14,178(1),31

216

PLl1 OPT1~lZIt\C; CC,",PILER 1 ***** PLl1 SAt-1PLE PROGRAM: *****1 PAGE 22

Cr:,r 162 ~8 1() 0 lE8 l 1,488('),131 ..1("'IC8 ~I: F~ f)7C L 15,A c0 18MBSI0E
(1((166 51: 7C 3 -:: 3C l 7,A oc lElCGCA '.JCf 1 [C !)~ EF BALR 14,15
0(0 (;A ('5 67 BALI< (;,7 I)OIJICE 41 E'J OE8 LA 14,232(0,31
IJC'"16C 58 F': (14 l l~,Aoc IBMBSAOA ~:)rI E2 41 F1 3 r <;8 LA 15,152(~,31

err! 1r.. "5 EF E AL P 14,15 (C~1E6 41 1'" 0 IF" LA 1,496(C,131
OCC11~ ~E 7" tl4\ l 7 ,Ac c IE lCGCB :(l10C 1 Ell 5~ 1'1 C lE8 ST 1,488(l:'d~1
or r 11 f 1:5 67 EALR 6,7 OO'ilEE 9":: EF 1 rc" STM 14,15,'"'(11
CUllE (~ AA EAlF HJ,llJ GCe; 1 F2 ~8 F'J C E4 L 15,A oc IB~BSLCI\
U':',l1A 41 E.f" 3 ,. B6 LA 14,182((',31 CC'J1F6 r ~ EF BALR 14,15
OC r 11 E 5E Ie C lEE l 1,48E('),131 (I~OF8 :E 1'1 lE8 L 1,488(1"',131
CC':'>lE2 5E l r r 3C l 7,Aoc lELCGOA r'lClO1FC 58 F~J C 8(1 L 15,A oc 18MBSI0T
rr:C18f r 5 t? EAlI< 6,7 ('0'.:20:<" (' 5 EF BALR 14,15
·orq88 58 F': rec l 15,lI oo IB"BSPOA
Cer18C r '; EF BALI< 14,15
1'\(' 1 E E 5E 7(' r4~ l 7,A oc IELCGCB * STA TEM ENT NUMBER 44
((rl<;2 ,.~ f1 BAlR (;,1 0(\J 2~' 2 18 00 LR (\,13
Ccr1 <;4 '5 AA BAlR I1'~', 1 n 1)C'~'2~'4 :8 D'J 0 ':;""4 L 13,4("',131
ceC! <; f 41 F:: ~<;O 8 Clc1 iJ\'i':j2'~ 8 :8 E~ 0 C'C L 14,12«(':,131
~COC;A C Lo 8 ECU * 'JCC2I"'C 'l8 2C 0 ~ Ie LM 2,12,28(131
(e r 19 II ~8 1~ 0 lE8 L 1,488(~,131 ICC 21(1 C5 IE BALR 1,14
CCrI<;E 5E F'~ t: 8e l 15,110< 18"8S10T
ot:'n II 2 ,. ~ EF BAlR 14,15 * E~C FRCCECURE

""'(212 (l C'7 NCPR 7

* ~TA TEHNl ~U~BEI<

rC"'lA4 58 F~ 12 r l 1~,2E8(ry,31 * ~TAlEMENT NU"BER
('C':' 1A 8 50 Fr o "C:; ST 15,B1NVIIR,RETCOOE

,. n un BleCK ,. ~lA 1E!oIENT t\U,",SEI< rc;C F 214 <;1\' EC 0 r:,c STM 14,12,121131
r"(l lAC c2 rc c CA8 t-1Vl 168(131,X'('C' nCJ218 41 F':l F C 14 B 2"l 1"',151

cr(21C C 'JC (.')'1(.... , CC A(STMT o NOo TA8LEI
t"f22~ 'C~(,C'DD:) DC F' 2' 8'

* ~TATEPJHT ~l"BEF 42 J"r224 ere c,~r~ DC A(STAlIC C S EC T 1
(((1B" 41 <;c c "CI" lA 9,B1NVAR c RETCODE t,(,·j 22 8 58 3" F rr I" L 3,16(':;,151
*'('lE4 ,,- ,,·r 3 14E ST c;, ::28 (n, 3 I OC',t)22C 5E 1~ 0 ': 4C L 1,76 ("t, 131
('('IB 8 <;6 PC 148 (I 32c(31,~'8r-· I,lC"2~':' ~8 ('I F CIC L ') ,12 (,'" , 151
re(lBe IB c" SP 5,5 0('01"234 IE ':'1 ALR /" , 1
~~(1B E 41 1":' 3 14E LA 1,~28«(',,31 ':'Q02~6 ':5 (1 C CC CL),12(1'\,121
DC{lC2 58 Fe 14C L 15,=32(,31 rrC'23A 41 c ... F C 3: B~'H 48«(,151
crflC6 "5 EF 8 III I< 14,15 (,) fl 23E 58 F'J C ('74 L 15,1l6({',121

::;O{242 r: EF BALR 14.15
~rr 244 5E EO 0 ('48 L 14,72(1i"i,131 ,. 1 nEIo'ENT NUPJBER 4~ :l~(248 18 F"" LI< 15, ~:

or 1C e 41 c; : 0 1Fr lA <;, <;f('!,131 ('~1'24A c;~ E':\ ""48 STM 14,"',12(11
(C ICC 5a <;e 3 1:4 ST s, 4r. (~, 31 (l('lt.:24E ,,- C" r'~ 4 ST 13,4(":,11
I'JC lOr: <;2 L,C 0 2.:i1 t-AVl 51 (l31,X'4t~' 'Yr:,c 252 41 01 ~ cr,: LA 13,1i"i (1,('11
CIJ 1C4 41 I!: 15~ LA 1, =6(~,31 (1\,:256 5(" 5'"' C 5 C ST 5,88(0,131

Appendix F: Frogramming Exa~fle 217

FLII OPTl"'IZII\G CC,.,FILER 1***** FL 1 I SAMPLE PROGRAM: *****1 PAGE 23

-,n2!:A <;2 EC 0 rr.r ,., \II '1H31,X'8C' OOC2F4 41 CJIJ CC4 LA <;, 1CJ6«(', 131
(H2!:E n 24 0 en M\lI 1(13I,X'24' '1C::'2F8 5(CJ~ 3 HC ST CJ,3(:4«(',31
CCtlU2 58 (:'= 0 C !:8 l 1':,88({i,131 ~OO2FC <;(: 8) 3 l(:C 01 364(31,X'8C'
(1J~,2(;1': ~,rt H 0 /jA8 ST 6,1(:8(~,13' rIJCl3(XI 1B 55 SR 5,5
ct'"26A 02 !"3 0 f~4 118 fJ\lC 84(4,131,28~(31 CC('I3,:"2 41 1'] 1(:8 LA 1,3(:\' (I) ,31
r'C27": 1:5 2"1 fAlR 2,: Q:JC 3:" 6 58 F1 15C L 15,34E(/),31

0(03: A t"5 Ef BALR 14,15

* FRCCECt:RE e.a S E

* STATEHt\T NUr.oBER 13

* S1A TEMENT t\LMBER 1'.:1 rCG3:C Ie 11 SR 1,1
ClCf2i2 Ie 11 SR 1.1 CC:;3)E 1B 55 SR 5,5
::C~2i4 1B 55 SI< ~ ~ -,- 'r'~31(l 58 F"! 3 15C L 15,348(0,,31
orr 276 !:8 FO 3 15C L 1!:,348(~,31 '<:1<"1314 "5 EF BAlR 14,15
I.:H2iA r!: EF BALR 14,15

* STATEMENT NUMBER 14

* STA TEwEN1 I\'UMBER 11 n.lC316 41 CJO 6 OC4 LA 9,BINvARoFBVAR
(C~27C C2 1'3 C "1B'" 23A M\lC 1i/':(4,131,57 (31 t:'~"'31A

,,~ CJ"I 3 170 ST 9,368((1,31
rU'2E2 C2 ('7 C ~8it 3 ~F') fJ';C 18~(S,131,24J(31 ~O"')31E <;1': se 3 17' 01 368 (3 I , X ' 8C' ,
::IJ(2eE ,1,1 Et; 0 (1B': LA 8,171':1:,131 1)0('322 41 1" 3 17~ LA 1,3(:8((;,31
~C" 28C 50 s<; 0 rB4 ST 8, 18D (0,13 1 OCt326 58 F') 3 (' 5C L 15,Ac oIBMBEOCA
(U2CJ!: 1t1 «;{ 0 '[\4 LA <;,IEr((',131 ()CC32A !"5 Ef BALR 14,15
(('294 51 c;r Ht Sl <;,352 (0; ,~ 1
U",2<;E 02 ('2 C ':I:C 3 23E fJ\lC 1eE(3,131,574131
\5("2<;E 02 n C (CC 3 'F8 fJ\lC 192(S,1!1,24S(31 * STATEMENT NUMB ER I!:
rt:t2A4 41 E1j 0 "BC LA 14,lE81:-,131 0~K32C !:E 81 C r. 48 L 8,72('),131
/JU2A8 5"1 E(C f(" Sl 14,1<;2(-:;,131 ~nS33,) 4A 8~ 8 (;(\2 AH 8,210, Sl .,rt 2 A C 41 C;(0 «C(LA <;,1<;21:,131 Ilf'G334 CL:18 Eeu * (,C~2B: 50 <;0 3 H4 S1 <; ,3!:(: (f, ,31 O(,C334 !:E 13'1 Gr" L 8,OW,EI
CC" 2B 4 C;I': E" 3 H4 CI 35t(31,X'8~' 00(,:338 <;1 41 ru TM 6(81,X'4(1'
(' r 28 8 IB 55 SP ~ " -,- !Joe 3 3C 47 80 ~C2 BZ CLe18
N'2BA 41 1~ It":' U 1, 3!: 2 I'J ,3 I rlC:'34") 5E C;ry ~ 1'" L C;,l61'~,81

01'11" 2B E !:E FO 15C L 15,3481(;,31 OOr'344 4S 7~ ('CA LH 7,202((,31
C{>~ 2C 2 ,." H BALR 14,15 ':\~C348 4C 7C (l Er:' STH 7,CVAR

1)O'"l34C C2 01 ;[lE2 <; r{-I M\lC CVAR+2 HI ,or, (91

* ~lA1EHNT t\L~EER 12
crt' 2C4 C2 r3 C !: Be 3 23A fJ \Ie 17 I': 14,13 I , 57(,(31 * STATEfJENT NUMBER 1(:
(.~" 2CA 1:2 r 7 0 CB it 3 ::F" fJ\lC IE!: (8 , 13 I ,24'" (31 (1(,052 ~8 81) o {'48 L 8,72(~,131

rol' 2ce' 41 E':' C C B(U 8,nl':(C.131 0003~6 4A 81 8 C'" 2 AH 8,2('O,SI
e'et' 204 ~~ E~ 0 .. B4 ST E, 18C I (I, 13 1 OCQ35A CLe 19 EeU *
~-:'r2C8 41 C;) 0 fB4 LA <;,18~(Cl,131 rfC3!:A 58 81"1 8 mr L 8,"10.81
r.CF 2CC 5C <;I' He ST <;,3UI[>,31 Dr~3'3E <;1 4'C 8 ©Cf: TM 6(81,X'4!)'
CC'2E"' C2 rl': 0 tBC 3 241 fJVC 188(7,131,577(31 O()C'3f2 4i 81 2 (1 E8 BZ CLc 1CJ
r:!)~2E(: C2 f'7 0 {C it 1(t~, ~';C 1<;(:(E,131,256131 00(;3(:(: 5E <;0 8 08 L CJ, 24 II) ,8 1
,e: rF 2EC 41 S"" 0 'BC U E,lSe(!),131 ,N:':36A 4E F") 8 <C Ie LH 15,281{\,81
O((2F(5~ S~ 0 "C4 Sl S,l<;tl'J,131 '''~(3H 41 8~ ') r: F F LA 8,255(1),1''1

218

PUI CPTI~IZ!f\G CC"PIlER 1'*'*'*'*'* PLII SAMFLE PROGRAM. '*'*'*'*'*1 PAGE 24

(((372 10; EF CR 8,15 ,:,,,r3Fd 48 F~ 8 (f"C LH 15,12«(,81
t:!CC3i4 41 Cc ICE Br-.H C L, 2" ~C; 3 F4 41 8~ '0 ~FF LA 8,255(",'11
CO(311: 18 8F LR 8,15 ocr3F8 IS 8F CQ 8,15
Ct;'j3H CL2f ECI1 '* ~(,'-:3 FA 47 C,) lEE BNH C Lc 2<;
CO~37A 41) EC 6 rEt' STH 8,CVAR ~N3FE 18 8F LR 8,15
O~01E 4B EC 3 tCA SH 8,202 (e, 31 ~C':::4(J CLc 2<; EQU '* ('(3E2 47 "'~ 122 Bf' C lo 21 oJOC4(') 4':1 8"1 6 OF' STH 8,CVAQ
Q(t:3E6 44 8e lIC EX 8,Cl.22 ':C"4'~4 48 S 3 CCA SH 8,2" 2 (t:', 31
(CC38A 47 Fe 122 B Clc 23 'JO(4~ 8 47 4) 2 lAS B'" CLc 3~
C'C"3EE CLc 22 ECU * I)CC4'" C 44 8') 2 lA2 EX 8,CL-31
OCC38E [2 C''': 6 ~E2 9 000 MVC CV "R + 2 (1 I, Q (<; 1 C~(,41':l 47 F'.:I 2 1A8 B CLc32
OC"30;4 CLc 21 ECl * OC(,414 CL,31 EQU * 0(<<:3<;4 CLc23 EQU '* "I{,C414 [2 C" 6 CE2 9 "'Oi MVC CVAR+211I,"I(91

«("41A CLc3" ECl! '*
~C':41A CLo32 EQU *

* ~1A lEflEr-.T r-.UfJEEI< 17
((i('3e;4 41 c;,~ C ceo LA 9,176(0,131
C';O<;8 50 e;c 174 51 9,::72«(;,31 * 5TATEfJEr-. T NUfJBER 19
crr3<;C <;6 80 3 174 Gl 372 (3 I , x • ee • ,)0("41A 58 8" C C48 L 8,72(",131
c~r3Ar, 41 1(' 174 lA 1.372(1;;,31 VCC4lE 4A 8" 8 '1:1'"',2 AH 8, 2(D, E I
CC",3A4 58 FO ~Hl L 15.A oc IBfJBECLA OO(l422 CL o 33 EQU * OCr.3A E '5 EF E IILR 14,15 0('('422 58 S'j 8 "C' L 8,,:'\ ('1,81
Cr:"3AA 5E o;c 0 "B'':'' L S,176('::,131 (>0(426 <;1 1'1 8 (C6 TM 6(81, X'1 "I'
:"C(3A E 48 8" C !:'B4 LH 8,18'?(~,131 rGr:42A 47 8":' 2 1 B(BZ CLc33
C':':3B2 41 FI) r (\,FF LA E,255(".: ,f! I ";(V·"42E ~E S'1 8 ~, 2" L <;,32(~,81

('r(,3B 6 Ie; FE CR 15,8 0('0432 48 F'" 8 (24 LH 15,361"'::,81
(C':"3B8 47 [CI 14C ENH CL~24 ~Cr.436 41 8"" ,.., 0FF LA 8,255(1:,(\1
CCOBC 18 F8 LR l!:,e (I;;<'43A IS 8F CR 8,15
oce 3B E C Lc 24 ECU '* ~(,':'43C 47 C1 2 1 C'" BNH CL 34
CC"3B E 4C F{, 6 CEO STI- 15,CVAR (('(440 IE SF LR 8,15
1J::(~C2 4B Fe 3 ~CA SH 15,2" 2 (',31 (00442 CL c 34 EQU * (l0"3C6 47 4C 2 166 Bf' CLc25 I1r0442 4 !I' 8':1 6 ~ Er. STH 8,CVAR
1Jt:':'3CA 44 H' 2 If': EX 15,CL~26 ,':'1)(446 4B 8~ 3 eCA SH 8, 2t.2 (1"',31
1,;((3C E 47 FO 2 1H B CLo27 (lC'C44A 47 4!l 2 1 EA BM CLc35
('0(3[2 CL: 2t EQU * ~cr44E 44 8':) 2 1 E4 EX 8,CL c 36
cr:r 3[2 [2 rc 6 !:E2 c; N'~ ,,\lC CV,c!R+2 111," (<; I (3:)C452 47 F:l 2 lEA B CLc 37
CC~~[8 CLo 25 EQU '* '.)([;1"456 CL,36 EQU * t:C r 30 8 CLc27 EQU nc C 456 [2 O'! C E2 <; ('C~ r.<VC CVAP+2(1I"i('l1

(l1)t"4!:C Ctc 35 EQU '*
<'C~4!:C CLc37 ECU

'* 5lATE"ENT r-.lfJBER 18
(COrE 58 er. 0 C4E l 8,72(1J,131
((1"3[C 4A 8~ 8 '~2 AI-' 8,2«(':,81 * 5HTEfJEr-.T NUMBER 2~
Cr:(3E': CL 2E ECl * 'J':'::45C 78 1)0 6 ro:::' LE "'l,Cr-.CCUNT
oce 3E~ 58 EC 8 OC'D L 8 ,C (~, 81 {l(":1"!4t('! IE 0") 3 124 AU ",20 2 (1",31
QeOE4 <;1 80 8 "t; 6 TM 6 (E I, X' 8':1' J~"464 70 C') C r B"' STE ':',176«"\.131
OCOE8 47 fA .' 2 16E BZ CL 28 '1'!Cr468 48 91) 0 ;',82 LH <),178(",131
'JC~3EC ~e <;0 8 cee l S, EI'J ,81 (OC46C 47 8'"' 2 2{i BNM C Lc 38

Appendix F: rrogramming Exarq:le 219

HIl OPT IMIZIIIG CCHIlER 1***** FL/I SA~PLE PROGRAM, *****1 PAGE 25

C'Cr:'470 13 99 LCR S,S
OCC472 CLo;E ECU *

,. FI<CCECI.:FE BASE
0«;('412 4~ <;~ 6 "C4 S11-1 <;,BII\V~RcFeVAR

* STt!TEHI\1 NUMBER 24 ,. 51ATEMENT NUMBER 21 (OQ4EE !:8 9') 6 (CC L 9,PVAR
(({476 18 rc LR -',13)0(14 F2 S2 0:1 9 OClO MVI AVAR,X'!I'1'
("O"'47E '5E ['3 C ~J4 L 13,41'),1;1 ee-t4Ft': ~E E'1 3 128 L 14,291:\0,31
C(C47C 58 EO 0 ecc L 14.I21~1,131 ,:")~~4FA 5~ E'": <; C:4 S1 14,AVAR+4
Cet.: 4eC S8 2C C (1C L/ol 2,12,2EI131
(C':4E4 1:5 IE Et.LR 1,14

* 5HTEMENT t\JUMBER 25 ,. CN UNI1 BU:;CI< ENC OCC4FE '.:E 7') 3 12C L 7,3'='Olr,31
')((4E(: ":7 (7 I\CPR 7 ON15:.'2 ~C 71 6 (CC S1 7,PVAR

,. 5TATEHH I\Ut<BH 22 * STATEHI\1 NUMBER 26
C'Ct:4EE DC C' [U/oI,.,Y' ('0:;; 5"6 ~fl 71 C 08 S1 7,CVAR
C'CC4EF CC All I 51

* PROCE[URE [Ut<MY * SHTEMENT NUMBER 21
OC,/; 5[A [2 '13 0 ('lB8 3 248 t-IVC 18414,131.584(31

* HAL ENTRV (('1510 C2 07 0 ('BC 3 =' F~ MVC 18818,131,24~131
((-:'491: <;:0 EC C "."IC SlM 14,12,1211;1 ,DC~!:16 .q 80 C ~B8 LA 8,18411:',131
tllJ(,4S4 41 FO F " 1<4 B *+H ':lCC'51t. 5~ 8· C (BC ST 8,188U'\tl31
1j1'1j4C; E ('('cr"oc'- [C t.ISTfJT c I\Co T ABL E 1 ~(1r!:lE 41 8~ C rBC u 8,188Ir,131
U(4C;C ':OO(OCE' CC F'224' (~C: 5 22 5" 8"1 178 ST 8,376(':',31
0(r:;4A;; ':'(l ') ""':I Dr CC AI51ATIC CSECT I r.:)C~526 02 n c ';'C4 3 24C t-IVC 196(4,131,588(31
,)((4A4 '5E 3C F 'Hr- L 3,16 (,151 OQI"52C [2 :t17 C :ce 3 ~-F{' MVC 2nO(8,131.24~(31

Or;r4AE '58 Ie 0 C4C L 1,16([·,131 oor 532 41 81 0 C'C4 LA 8,1<:)6(",131
~Qr4AC 58 CC F C~C L ,12 (,151 ':ICC !:36 5«:" 8') C (C8 ST 8,200 (C' , 1., I
!JCr"4B':: IE ~1 HI' ... ,1 'Qr'5~A ~1 8'1 C cce LA 8,2('') (r"I,131
CCr.LoB;: c:c: ec C eec Cl ~,12(O ,12, t;C~~;E ~C 8'1 3 17C ST 8,;e"(~,;1

')(':4B6 47 O'C F I'3C BI\H *+1'1 (C(~ 5~2 41 e') 0 rAC LA 8,SIZE
"lC"4BA 58 F~ C C 1~ L 15,116(,121 (0(546 5:' 8') ? lee ST 8,384((·,31
1J~':14B E "5 EF BALI' 14,15 ":lIJC54A 41 8} 6 ('C'J LA 8,B1NVAR o RETC(10E
(((4C(58 E(0 "~E L 14,12((,131 or;::r 54E 5\ 8" 1E4 ST 8,388(r,;1
O(,C-4C4 18 F{I LR 15,t; 1QC 5'52 c6 8'3 184 01 38 8 (3 I , X' 8" ,
CC r 4C6 <;1) E"'I " 48 51M 14,~,12111 CC~556 Ie 55 S" 5,5
ccr 4CA 5:: 00:' r 1"4 ST 13,41"',11 ~,i)C 5'58 ~1 1'3 178 LA 1,376(':',31
OCl'14C E ~ 1 01 tee LA l;,fl1,-1 :IN'55C '58 F1 3 1A8 L 1'5.392(-",;1
0((4C2 ~~ c:~ C C 5 E S1 '5,E81'!,131 {;!)(" 56(1 ('5 EF Bt.LR 14,15
'2N'406 <;2 E{ 0 CC r /01"1 -: 1131, X' 8""
~C"4 CA S2 24 0 ': ~ 1 "'''1 1I131,X'24'
~C" 40E '5E 6C C (58 L 6,8e(~,131 * SHTEfJENT NUMBER 28
(l('r4E2 5~ 6r. 0 .. Bn ST 6,1l6({l,131 ,\(C 562 [2 ~3 0 CB8 3 248 MVC 184(4,131,584(31
~r"4E6 02 r3 0 Q54 3 118 f-IVC 84(4,131,2S:'(3) ecc 568 C2 (7 C GBC 3 (- F"' MVC 188(8,131,24~(31

{(C4EC (5 2~ EHF 2.r (~r 5 6 E 41 8:: C rB8 LA 8,184(r:,131

220

PLII [PTIII1Z1"G [C,",PILER /,*,*,.,.>1 PLl1 SAMPLE PROGRAM c '*'**'*,./ PAGE 26

~!'1r512 51:' p.~ ["BC 51 8tl8E('.1,l;1 OOC(:2E IE 55 SR 5,5
Cr(~7(: 41 e: D r BC LA B , 1 B 8 (0 , 13 I rC(,63D 41 1'1 3 1A4 LA 1,420 (0,31
':'U 57A ~C e" 3 leC ST e, ;<;(: «(',31 I"<JU;;4 58 F~ 3 1B8 L 15,44(/'1,31
O:U 57E [2 ('3 0 t:CL. 3 24C ,..VC 1<;(:(4,1;I,5E8(31 COr. (:3 8 ('~ EF 8ALR 14,15
cr(~~4 [2 r7 e ':C E 3 :FC fJVC 2(,::' (E ,1; I ,24.' (3 I
'Y" ~EA 41 Er e "C4 LA 14,1<;(:(;:,131
rcr~eE '5" Et: ('] ~[8 ST 14,20(' Ci,131 '* SHTEfJENT NUMBER 3f1

'j((~S2 41 er: C rC8 LA 8,20') (e:'!,l"11 or ~63A [2 (3 0 ~88 248 MVC 184(4,131,584(31
1"('5<;6 50 P"'1 1<;!l SI 8,4(,('0((,),31 CCrl:4" e2 r. 7 C CBC 3 1::- F:' MVC 188 (8,13 I ,240 (31
(It' 5SA 41 E'" " AC LA 8,SIZE ((rt4t 41 8~ 0 CB8 LA 8,184 (e' ,131
ccr ~9E 5(' e':. 1<;4 ST 8,4(4("',31 ""I(t4A 5~ 81 o (,"'8C ST 8,188(0,131
0"" ~A 2 41 E':' (C(LA 8,8 H\VARc RETCOOE '.1C(,(:4E 41 8') 0 ('BC LA E,188(~,131

err. ~A t 5'~ E? 1C:E ST E,4:E(~,31 (;CC't52 ~J 8') 3 1BC ST 8,444(1',31
('Cf'" 5AA '5Q C" C "C4 ST 13,212(:,131 ~rr:656 [2 03 e ~lC4 3 24C MVC 19(:(4,131,588(31
r.cr 5A E 'i8 ec ,. 1C L 8,28(:',31 ':IOt:(:~C [2 (7 e ":C8 "F'I MVC 2~O(8,13I,24~(31
((':~B2 ~C EI': 0 " 0':' ST E , 2(' E (0 , 13 I 000662 41 E,) C (C4 LA 14,19(:(",131
rcr 5~ 6 41 8" e ~O', LA 8,21' E (IJ ,13 I ror (:66 5~ El 0 eC8 ST 14,2(10 (C' , 13 I
'~{"'~8A ~t~ EF 3 1<;C ST 8,412(0:,31 CtrttA 41 8"1 0 ;CC8 LA 8,201'((',131
H'= ~BE <;t E~ l<;C CI 412 (31 , X' 8t:' ' t:'':'1: 6(: E 5t 8') 3 ICC ST 8,448(('031
r: (t' ~C 2 IB 1::1:: SR 5,5 ;)Cr:672 41 81 0 OC LA 8,SIZE
rcr 5C4 41 It: lEC LA l,3St FI,31 0(676 5f) 8') 3 lC4 ST 8,4~2(r:,31

CP'5CE !:8 F':' IV' L 1~,41tP',31 D(t:67A 41 8') 6 (Cr LA 8, B 1NVARo RETCOOE
C{(5CC ~, I:: EF 8ALR 14,15 :'Irl.:'67E 5~ S' ICE ST 8,456«(",31

:~::JD682 5~, ["l e (IC4 ST 13,212(C,131
.~ 'C t8t 5E 8~) 3 llC L 8,28«(',31

'* STATEIIE~T ~L;"'EER 2<; 'JCr(:EA £::::'1' 81 0 CC· ST 8 , 2" fl (C , 13 I
1)("5CE 02 "3 0 ':'B 8 248 t-'VC 184(4,1;1,5E4131 O':l(68E 41 8" C CO..., LA 8,2('8 (/l,13 I
C(" 5[4 C2 :' 7 C rBC 3 ": F. MVC 1 8 E (8 , 1 ~ I , 2 4'~ (3 I (((6S2 5(8"" 3 ICC ST 8,4I:CC'),31
rU5CJ1 41 E~ 0 ~B8 LA 8,1E4(:,131 or C 6<;6 5~ ['1 0 CCC ST 13,22')«(',131
IJr,f~CE '5~ 8~ C "'BC 51 EtI88(C,131 C,:)o:'69A 'S8 8"! 3 (24 L 8,3(:(1),31
((~5E2 41 E·" C ':' BC LIl E,lEE((',131 :U{6SE ~'" 81 0 1"08 ST 8,216(~,131

CU 5Ef 5(EP 1A4 5T 8,42C((I,31 "CC6A2 ~ 1 81 D eee LA 8,21(:(":',131
')~"5EA [2 ~3 C "C4 2~C M\lC lS(:(4,131,5E8(31 ,:cr1:A6 5'~ 8:' 3 Ie'"' ST 8,464(C,31
c(n~F:: [2 r7 0 (C8 "F" ,..\1(2e 9 (8,13),24.;:'(31 ('1r:'}6AA St 81J 10~ C1 464(3I,X'8C"
cr (5F(: 41 E~ C ~ C4 LA 14,1<;(:((',131 J0:'6AE H 55 SR 5,5
CU5FA ~O E'· [rc8 ST 1 ~ , 2(;:' C: , 13 I ,)0('6B;) 41 1r:l 1BC LA 1,444{I"I,31
fU~FE ~1 E ~, 0 ",C 8 LA 8,20(',131 ,:,r'J684 58 F'J 3 104 L 15,4(:8«(1,31
-:;,." 61r 2 'it' 8', lA 8 51 8,424(,=,31 (;((6B8 C5 EF BALR 14,15
(((H(: 41 8 r ~AC LA E,S1ZE
~(t'e'iI "" 1'., lAC 51 E,~28(C,31
(:(""6," E 41 8: 6 "CIi: LA E,81NVAR o RETCOOE * STATEH"T NUMBER 31
"""02 ~r E'" IS" SI 8,432(':,31 ')C1'6BA [2 ('3 0 r)B 8 248 ,..vc 184(4,131,584(31
(CUH ~'= [0 ~ 04 ST 13,212(':',,131 :iOFtC~ [2 "7 0 (BC 3 OF'"'\ MVC 188 (8 , 13 I , 241:' 13 I
0(" (:1 A 58 E 3 r24 L 8,31: (t, 3 I DC C 1:(6 L.1 8':1 0 CBE LA 8,184('C),131
'U'- (:1 E 5~ 8 0 'JD~ ST E,2{8(':',l3) "~r6CA 5'" 8'J 0 (BC Sl 8,18S(~,131

f.:r"(:22 41 8 C '7 D~ LA 8,2(.S(",131 :lr'>U,CE 41 8") 0 (BC LA 8,188(0,131
r:cr (:2t ~C 8 1B4 Sl e,43t(~.,31 :0(('t[2 :.~, 8'! ICE ST 8,472((,31
U·OA Sf 8 1B4 C1 43tnl,X'8C' cre 6[6 [2 (13 0 I)C4 3 24C "'VC 19(:(4,131,588(31

Appendix F: Programming Example 221

PLI I OPTIMIZING CC"PILER ,,.**** PLII SAI'FLE PROGRAMc *****' PAGE 27

CC(HC 02 C7 C ~C8 3 ,. FO "VC 20':' (E , 1 3 I , 241' (3 I C(C? 8C IE 11 SR 1,1
I:lrrtE2 41 E1) 0 ('C4 l/l 14,1~6(O,131 ar08E Ie 55 SR 5,5
CCC6E6 51) E{'l C tC8 ST 14,2M(~,131 "Cfl79:) 58 FfJ 3 1FC L 15,5"8«(1,31
OCC6EA 41 E~ 0 CC e U 8,2C!O(r.>,131 1')007<;4 f'5 EF BALR 14,15
ocr 6EE 5C Be 3 HC ST e,416(1},31
CC':tF2 02 {II C '" C2 25' M"C 21 (2,131,592(31
~r,= 6F 8 D2 r1 I: C [4 3 Ie e MH 212(8,131,2f4(31 * ST~TEMENT NUMBER 34
((C6FE 41 80 0 ~02 LA 8,a~(C,131 .001:796 Ie 11 SR 1,1
(1(C 7C2 5C eo 0 rC4 5T 8,212(0,131 C(,07<;8 IB 55 SR 5,5
CCC 7(f 41 ee 0 C04 LA, 8,212(!'i,131 .,0079A 58 FI) 3 2CC l 15,512({',31
CCC7CA 5~ 8e leO' 51 8,48" (r, 31 OCG79E n EF BALR 14,15
erc 7C E 41 ee 6 eCI) u 8,EINVtRoRETCCOE
C(012 50 8t; 1E4 51 8,484«(',31
IJCt"7lf 96 8-, lE4 01 484 (31 , X' 80 ' * ST liTE MENT NUMBER 35
Ilr(f1A 1B 55 SR 5,5 1)1)1:)7 ~(\ 41 81'J 6 ecc LA 8,BINVIIRc RETCOCE
GC01C 41 It: 1C e LA 1,472(0,31 00(7114 sr 81 3 21;4 5T 8,511::«(,31
I)C(12::- 5E FI) 3 lE8 L 15,488(0,31 OCC 7A8 «;6 8'J 3 2r:'4 OI 51 f (3 1 , X' 81'\ I

01:(124 05 EF BALR 14,15 1)(C7 AC 18 55 SR 5,5
O(Cl7AE 41 1') 3 2/!4 LA 1,516«(',31
?CC1E2 58 F') 3 14C L 15,332«(1,31 ,. 5TATEHNT NU"8EP 32 OU'7E6 r 5 EF BALR 14,15

(C~12t: 02 05 o ~BA 3 252 M'4C 18~(6,131,5~4(31
o(cnc 02 f1 o {lce 3 (08 ~VC 1<;2(e,1~1,21t:(31
IjCCi~2 41 EO C {,EA LA 14t18f({·, 131 * SlATEMENT NUMBER 41
CC r 73f 5") E') o ~CO 5T 14,1«;2«('1,131 (C07E8 18 (II: LR ~ ,I?
(lr{;3A 41 8e o eCI) LA e,1<;2(~),131 1:((7BA 58 0" 0 C?4 L 13,4(1",131
eee 13 E 5(' 8~ 3 lEC Sl 8,49':(C,31 HOEE ~8 E'J C C'rc L 14,12(r:;,131
aCCi42 02 C1 o cce 3 11(1 ~VC 20~(e,131,272(31 ()CC7C2 c;e 2C 0 rIC LM 2,12,28(131
:t!r.t:748 41 Et:\ 0 CC e U 14,20C(t',131 ~('(7C6 r5 lE BAlR 1,14
CC04C 5(' EO 0 ':'C8 5T 14,20(:;,131
eec 15~ 41 8r: 0 ':;C8 U 8,2(:1)(-,,131 * ENI: FRee EOUR E
Cr.Ci54 511 8r. 3 1 F'J 5T 8,4~6(1J,31

CCt'15E 02 ('1 0 CC2 3 250 ~VC 21~(2,131,5~2(31

rr05E 02 C1 0 tD4 3 H8 nc 212(8,131,2f4(31 * STATEMENT NUMBER 3f
ece 164 41 81) 0 CC2 LA 8,210({I,131 f}(t 7C 8 CC C' A'
OCC16E 51:' e', 0 (04 ST 8,212(,131 I"r!:7CB ce ALl(11
IJC~16C 41 8~ 0 CD4 L~ 8,212(0,131
C-CC77C 50 ee 3 lF4 ST 8,50/J(,31 * PROCECURE A
or,.,; 4 41 E~ 6 OC8 LA e,Ct<PT_RETC
C(!"'11e so Et 3 1F8 5T E,5~4(1l,31 * REn E NHY
e'Cf i7C 9(; e(' 3 1F8 CI 51,! 4 (3 1 ,)(I 80 ' ocr 7CC «;0 EC o c~ C STM 14,12,12<131
IOC08~ 1B ~s SP 5,5 0(07C' 47 F"J F 014 B *+16
O(C782 41 1'" 3 1EC LA 1,492«('·,31 0('«:7[4 C'':ct:'l'JtI(f1 CC A(5TMT c NOo HBLEI
CCOE6 58 FO 3 IE 8 L 15,4ee(Q,31 M07C8 (r.C'ttl'~A8 DC F '168'
("(n8A C5 EF EALR 14,15 OCOI:C o"C:(V)"r~ DC A(5TAHC (SECTI

oce 7E':' ~e 3':" F C 1(· L 3,16(C.151
MC7E4 58 1;) C ':'4C L 1,76(1'),131 ,. STATHEH NUMEER 33 (('C7E8 58 (I') F C":'C L :1,12('1,151

222

PL II OPTH'IZIH CO'FIlER 1***** PLII SII"'PLE PROGRAM, ""*""1 PAGE 28

~cr 7 EC IE n IILR ~I ,1 (,(C862 SI: F~ r;74 L 15,1161(',121
Q(I'7EE '''' r~ C C~C CL :J, 12 1(\,121 CI[(8(:6 ("S EF BALR 14,15
(e'.7F2 47 DC! F ') ~") BNH HI ~)(C81::8 S8 E'J C 48 L 14,7210,131
((': 1Ft 58 F': C "14 L 1~,116H;,121 fcr8tC 18 F"') LR 15,("
('et:: 7FA "'~ FF BALR 14,15 0(e86E SO E,) 1 "48 STM 14,(J, 12111
ccr 7 FC "8 E:l ~4E L 14,721':\,131 ':ICC 812 5(C1 1 Cf"4 ST 13,4(11),11
C t:{ Sf''': 18 F":\ LR 1" ~ ~ , ':IC ':876 41 C1 "\ (10, LA 13,(111,01
':'f" 8": 2 9(E~ r 4 E STM 14,~,12111 OCC 8711 5~ 5'3 C IJ 58 ST 5,SSIO,131
(~ 8t' 6 5(' Dr ':174 ST 13,41"·,11 "'CC 87E <;2 8') 0 ely) MVI "'l1131,X'80'
{'((80 41 01 C c,:,r LA 13,(11,(1 OC'CS82 <;2 24 0 0"1 MV I 1113 I, X' 24'
(Ct:SOE 50 S':I 0 " 58 S1 5,8810,131 0(,C886 C2 ,=,3 C (54 3 lIS MVC 84 1 4 , 1 3 1 , 2 8D 1 3 1
CCU1;: S2 I:C 0 eel(' foIVI :1 1131 , X' 8" • CC'JE8C 58 11'1 0 (":,4 L 1,411'1,131
(le(0(: <;2 24 0 CCl /lVI 11131,X'24' {'l("C8St;l 58 10 1 (IS L 1,241':1tll
C(fl81A 02 t'3 0 ':~4 3 118 foIVC 8414,131, 2 8~ 13 1 (I(Q894 [2 03 0 "A8 ':7 -, MVC 16S(4,131,n(11
(>(rE2("5 2'= EALR 2, "

(l(08SA S2 0') 0 r.A8 MVI 16S113I,X'OO'
(((89E (5 21 BALR 2,.11

'* FRC(HLR E EliSE

'* FRCCECLRE EASE

,. 5TATEtJEf\ T ~U"EER 37
C(r822 18 :'0 LR (1,13 '* STATEMEt- T NUMBER 4~

0(1:"824 58 C"" C ')~4 L 1;,41,:\,131 ~ C (" 8 AO 18 (·C LR 0,13
r,cc E2 8 5E EIj 0 ~rc L 14,12(0,131 (((8A2 58 C,,) 0 C'J4 L 13,41(',131
ocr E 2C S8 2C 0 {IC LII 2t12,281131 OC'C8A6 58 E"I C ("'lC L 14,12 (",131
(((831" . " 1 E EALR 1.14)0(,,8I1A <;8 2C C OC LtJ 2,12,281131

oe (8AE ~5 IE BALR 1,14

" E"C FHCECUI<E
ncr 832 ':7 n f\CPR '* ENC PROCEOUR E

'* Ef\C FRCGFAM

" S1ATHEf\T NLtJeER 3E
~rr834 CC C' E'
CC"E37 CC ALII 11

" FRCCHtFE

'* Hill E"TRY
rUE3E <;c EC C "!C SH 14,12,12(131
1)('(E3C 47 Fr:; F ': 14 B HH:
rc r E41: ~"C('OCC CC AISHTo r-,C: TABLEI
(('844 H1:1~t;B CC F'l'1(:'
r,rr 848 "fCC!:'.:C CC AISTATIC C SEC T 1
CUE4C 5E =C F C 1(' L 3,l6(~,151
0('1' E 5(~E If:) C t,: <lC L 1,71::(':,131
OC'CE54 58 ('.: F "~c L :';\ ,12 ('"' ,151
en 8 c: E IE n IILIl : ,1
~rr E 5A 55 (~ ':i JC CL "',12«",121
Cr(85 E 47 D: F (3(E"H 'HI'"

Appendix F: Programming Example 223

Fl/l CPTl~IZt~G CC~FtlER 1-4**** Pl/l SAMPLE ptlOGRAMc :+-4***1

CC~FIlE~~GN(S1IC ~ESSAGES

EF~IC ~ ~ MESS~GE CESCPIFTICN

SE~ERE AND EFFOR CIAGNCSTIC ~ESSAGES

I ElC 413 I E 23 CECLARATICN CF INTERN~l E~TRV NCT ALlOWEC. [EClARATIn (F 'A' IGNORECo

W~F~I~G [I~GNCS1IC ~ESSAGES

IEU8S2I

lELr:-518I W

1ARGET STFING SHCRTER 1~AN SCURCE RESUl1 lRU~CA1ED CN ASSIGNMEN10

'(~CCUNT' IS T~E NAME OF A B~ILTIN FUNC1ICN BlT ITS I~PLICIT CEClARA1ION COES NOT IMPLY
'EUILTIN'o

E~F COPILER CIAGNCSTI"C MESSAHS 0
C(~FILE 1IME ~e12 ~1~S SFIll FILE: 27 !lECORCS, SIZE lCSl

224

r---------------------------------------,
IDiagnostic messages and an end of 1
Icompile step message generated by the 1
Icompiler. All diagnostic messages 1
Igenerated by the optimizing compiler 1
lare documented in the publication os 1
10ptimizing Compiler: Messages. -- 1
1(.\ 1
I~ "ERROR ID" This identifies the
1 message as originating from the
1 optimizing compiler (JELl, and
1 gives the message number.

82 "L" This is the severity level
of the message.

103 "STMT" This gives the number of
the statement in which the error

1 occurred.

~4 Compile time in minutes. This
time includes the preprocessor.

:10 This gives the number of records :
"spilled" into auxiliary storage 1

1 and the size in bytes of the 1
1 spill file. 1 L _______________________________________ J

PAGE 29

FEE-LEVEL LI~KA(E ECITCR CPTIC~S SPECIFIEr LIST,LET,XREF
VARIAELE CFTIC~S usee - SIZE=(l\.',44-ic,:"3"21- ~CEFALLl CPTIC~(SI USED

~C~TFCL SECTIC~
~CFCSS REFERE~CE lAELE

NAH

fllSHFl

FLItJAIN
~Y~FI~T

'*SAtJn E2
IELC(U
1 HUCE
'*~AtJHEl

18tJEFIF1"

IEtJ8CCCl'*

IEf'8CCS1'*

lEtJ!.'CC'l"

1 8P04 8CU~ 1"

IEM8EOCl'*

IEtJEKC"'l'*

IEtJ8FFCl"

IEf'ESICl'*

I B"'8CK'"1*

I Ef'E ECL 1*

CRIGlt- LEt-GTH

C6E

l:EC

IeI.' E

I"CE

1E4E

1C2{

2l '5 E

23FE

2100

21 E)

28C8

2EFC

2CEt)

38

2~

37':
72
7".:

EB(

23E

2C2

IDE

2SC

31:' E

EE

2E

24C

161.'

se

Et\ TRY

t-AME

PLICALLA

SA"FLE

I I.' tJ8KC FA

lE",8K ST A

18MBPIRA

IB"BCCC8

18f'8CCSA

IBP048CHXE
I Ef>'BCI-'XY
IBMBCI-FC

IBtJBCQDE

18MBClI-C
IBMBCTI-E

IEMBCUIX
I8MBCUIF

18f'BECCA

IEf'8KCf>'A

18MBPRCA

IBMBSIOA
IEtJESICE

IEMBCKCP

LCCATION

4C'

068

FAO

18E8

1<;C8

1E48
11.'58
1B68

1D2{

2158
2178

23F8
2418

27E.

28C8

28F.
28F8

284t'

I8f>'8ECLA 2C8,I

PLICALLE

I8f'8KCPB

IBtJBKSTB

IBM8PIRB

IBMBCCCC

IBM8CI-FE
IBtJBCI-FY
IBtJBCHXC

IBtJBCCZE

IBf'BCTl-X

I8fJBCUID

IBfoI8SICB
IBtJ8 S 1(1

18M8CKZP

LCCATICt-

06A

FA2

18BA

1B48
1858
1868

102"

28F2
2AA6

2B4r

NAME LCCA lION NAME LCCAT ION

r---------------------------------------,
IFirst page of the linkage editor I
Ilisting. I

8 I
IBtJBKCPC 1 Statement identifying the version I

. I and level of the linkage editor I
IBMBKSTCI and giving the options as I

I specified in the PARM parameter ofl
IBMBPIRCI the EXEC statement that invokes I

I the cataloged procedure. I
IBMBCCCA~ I

2 Cross reference table. This tablel
I consists of a module map and the
I cross-reference table.

I8M8CHXP ~
IBtJBCHFH 3 The module map shows each control
18MECI-XFI section and its associated entry

I points, if any, listed across the
IBMBCOOPI page. An asterisk after the name

I means that these are library
IBMBCTHFI subroutines obtained by automatic

I library call.
I

IBtJBCUIP0 The cross-reference table gives
all the locations in a control
section at which a symhol is
referenced. $UNRESOLVED(W)
identifies a weak external
reference that has not been
resolved.

I
I
I
I
I
L ______________________________________ _

I BMBS I DC 28F4 IBMBSICD 28F6

IBMBCKOO 2848 IBtJBCKZC 2848

Appendix F: Programming Exarr,ple 225

~A tJE CRIGH LENGTH NAME LCCATICN ~AME LOCAT ICN NAME LOCATION NAME LOCA TlON

IEMEJCll* 2C4E 8(
IE"EJCTA 2C48

IE'~EJT11* 2CCE (:E
IE"BJTTA 2CD8

1 E~ECCll* 2 ELI" Hlii
IBMBOCLA 2E4· IB"BCClB 2E42 IE'MBOCLC 2E44 IBMBOCLC 2E46

IE~B5I1(1* 2F4E AE
IB"BSACA 2F4€

IEfJE'5EC1* 2 F F" EE
IB~BSECA 2FF,

IE'fJBSl(l* :::r [E (:C4
IEME'SLCA 3;" C8 IB~B SLCB 3"'CII

IEfJESHH 37 E,r 28E
IBMB5PLA 37B,' 1811B SPlB 37B2 IBMBSPLC 3784

IB~B5Hl* 3 ~3 E 12'=
IE'fJESFCA 3A38

I 1"" E C E'" 1 * ::E!:E 2C(
IEt-1ECEZB 3B58 IBMBCECB 3B(:'1 IBMBCEDX 3B68 IBMBCEDF 3B68
IBt-1BCEFX 3E68 tBMBCEZF 3B68 IB"BCEZX 3B(:8

IE"BCCTl* 3E2E BE
1 Et-1ECGTA 3 E28

IE'''BEHI* 3 EE ~
IE'MEEER~ 3 E 1".

IE'''BERFl* :::EEE (:CII
IBMBERRII 3EB8 tBMBERRB 3EF2 IEMBERRC 44E4

tE"E'H(I* 4!:c: E 22
IB"BFG(A 45<;8

IE'''EFCC1* 4':C"- 3~

IBMBFCCII 4':(.'
IEME'S(Vl* 4':H at

IE'''BSCVA 4':Fl
IE"EEEFl* 4P'\' 12C

IE'MBEEFA 4e~i

~CCATlCN REFERS TC SYME'OL IN (OIRCL S ECI tCN LCCATIC~ REFERS TC SYMBOL IN conRCL S ECTt CN

1': PL IMA IN P LI "A 11\ 14 SYSPINT SYSPINT
IC PL IT AES HJf\RESCLVECIW) 2E IBMBPIRA reMEPIRl
2C IE'MBFIRB IE'ME'FIRl 3~ IEWBPIRC TBMBPIRI
38 *SAMPLEI *SA"PLEI (:f *SAMPLEI *SAMPLEI
(:4 *SAfJFlEI *SII"FLEl CE *SAMPLEI *SAMPLEI
tr *SIIMPLEI *SA"PlEI 7-' *SAMPLEI *SAMPLEI
74 *SAMPlEI *SA"PLEI 7E *SAMPLEI *SAMPLEI
7C *SAMFlEI * SAfJFLEl e', *SAMPLE 1 *SAMPLEI
,,4 *SAMFLE 1 *SAHLEI ee *SAMPLEl *SAMPLEI
1"(*SAMPLEI *SA"PLEI c:(*SAMPLEI *SAMPLEI
<;4 *SAfJFlEl *SII"FlEl <;8 *SAMPLE 1 *SAMPLEI
9C IELCGCA lELCGOA A' I ELCGOB IELCGCB
~4 IE"BCCCA IEMECCCI liE TBMBCC SA IBMBCCSI
IIC IBMBCHFD IB"BCH:il B~ IBMBCODE IBMBCCI"'l
84 tHBCTI-C IBMEClf 1 BE IBMBCUIO I BMBCU~ 1

226

l(CATICN REFERS TO SYMBCl Ir-- CCNTRCl SECTICN lCCATICr-- REFERS TC SYMBOL IN CeNTROL SECTICN

SC '!'~RFrrl\ Tflt-'flFf'rl r,i TRMRl'n,-" !RMR",r:,-~

C4 IBt-IBJCTA I BI'BJCTl CE IBMBJTTA IBMBJTT1
CC IBtJBOCLA HMBCCLl 0: IBMBOCLC I BMBOCLl
C4 ISt-'BSACA IEt-'BSACl CE IBt-'B SEOA IBMBSECl
CC IBMBSICE IBMBSIC'l E: TBMBSIOT IBMRSTnl
E4 IBMBSLOA IEfJBSLCl EE IBMBSPLA IBMBSPLl
EC IBIIBSPCA IBliBS FCI F{ IBt-ABCKOO IBt-ABCKt 1

191: SYSPlr--T 5'tSPINI l<;C SYSPINT SYSPIr\T
1/1(IBMBFRCA IEMBPRCI lBf' SYSPINT SYSPINT
IBC IBIIBKCMA IB"BKCfo/l lEE IBMBKSTA IBMBKSTl
2(~ IBMBKSTB IBfo/eKSTl ~1E IBt-ABKSTC I BMBKSTl
2; 4 IBMBKSTC IBfJBKSTl ~4E IBMBKCPA IR"'BK(Fl
25C IBfo/BKCFB IBM8KCP1 2(;1' IBIIBKCPC IBM~KCP1

2BC *SAMFLE1 *SAfJPLEl 2C4 *SAMPLEI *SAt-APLEl
2F8 *SAMI'LEI *SAfJFLEl ;~C *SA"'PLEI *SAMPLEl
;S4 *SAIIPLE1 * SAMPL El ;<;C *SAMPLE1 *SAMPLE1
4B'- IBMBSIST $Ur--RESCLVE[(WI 484 TBMBSEOA IBMBSEOI
4C E *SAMFLE2 * SA fo/FLE2 4 CI' *SAMPLE2 *SAMPLE2
6[4 *SAMFLE2 *SAfoIPLE2 ~CC *SAMPLE2 *SAMPLE2
<;5" *SAMFlE2 *SAt-'FlE2 <; 5E *SAMPLE 2 *SAMPLE2
CBC *SAMFLE2 *SAMPLE2 C<;4 *SAMPLE2 *SAMPLE2
CF8 *SAMFLE2 *SAMPLE2 cr if *SAMPLE2 *SAMPLE:2
1~D4 ISMCKEXA !U~RESCLVEC (W I l~CE IBMCKEXB 1Ut--RF:SCLVF.[)(wl
lS54 IBMBJWTA H!fI<RESOL IIEC (III IE 5E IBMBTOC A $UNRESCLVEC(WI
lE~C TBMBTOCB ~Ur--RESCLIIEC(WI lU:(IBt-AB1PRA $UNRESCLVEC(WI
lElE IBt-'BGCLB IEfo/BCCLl le2C IBMBCCLB yeMflOCL 1
1 E41' IBMBCCLA I BfJECCL 1 1E44 IBMBOCLC I BMB[CLl
Ie4E IBMBERRA TBtJEERRl 1E4C IBMflERRR IBMBERR1
1R 5~' IBtJBPGCA IEMBP(Ol 1E~4 TBME PC:OA IB"'1BPQCl
H7C IBtJBERRC IBMEERRI HE4 IBMBEERA IBMBEERI
1.11 7C I EMBCHXC IBt-'BC I-'~. 1 1.11 E!: IBMBCHXF I BMBCH~'l
1ASC IEMBCt-XP I EM EC t-,:, 1 lAC!:, IBMBCHXY TBMflCH(1
1A<;4 IBMBCI-'XE IBMBCt- l l 1ABC IBMBCKOO I BMBC K'.' 1
1ACC IBMBCKCP IBfo/BCKf'l 1AFC IBMSCHFC I Bt.1BCH"1
1 Br 8 IBMBCnt- IEMBCt-°-'1 1BfCC IBMBCHFP I BMBCW'l
1Bl~ IBfJBCt-FY I EtJECh:' 1 18 14 IBMBCI-'FE I BMBCW 1
1AB8 IBIIBCEOX IEMBCE'l 1AU IBMRCEDF IBMBCE''' 1
lAF8 H~tJBCEFX IEMECK1 U7!' IBMBCYXX $lNRESOLIIEO(wl
lee" IBMBCYFF ~UI\RESCLVEC(WI 1B;8 IBMBCMPX C;UNRESClVEC(WI
1B3C IBMBC~PC WI\RESCLIJEC(III 1 B4(IBtJBCMPF tUNRESCLVEC(WI
1B2C IBMBCUIX IBtJBCUn lB34 IBMBCUIF IB"1BCUf'l
lAEC !eMBCTbX 18,.BC1"1 1 AF~ I~MBCTHC IBMBCF'l
1AF4 I BIIBCTI-'F 1 EMBCT'" 1 lAC4 IBMBCODE 1 BMBCc' 1
lAC':' IE'MBCVCY WI\FESCLVEC(III HC;C IB"'IBCRXB $UNRESQLVEC(WI
1.11.114 I BMBCRX8 nNRESOLIIECIWI 1BIC IBMBCRXB 1UNRESCLVEC(WI
11"24 IEMECRXB ~U~RES[LIIEClhl ItCE IBMBCIIOH $Ur--RE SCL VEC (h I
lAB"I IBMBCGZA Wr--RESCL VEC (W I lAE'4 IBMBCGPA $UNRESCLVfO(WI
11\98 IBt'BCACil !L.;NRESOLI;E[(WI lAAr 18MBCACA $UI\RESClVEC (W I
lAAE IBMBCACA ~Ut--RESCLIIEC(hl lACE IBMBCACA tUNRESQLVEC(WI
lAE~ IE'MBCACA H,r--RESCL VEC (W I lHE IEMBCACA $UI\RESCLVEC(WI
1E11E IBMBCACA tUr--RESCLVE[(WI 182 IBMBCACA $UNRESrLVEC(hl
1B 2 E IEMBCACA $L.;r--RESCLVE[(WI 1pL.4 IBMBCPBF $UNRESCLVEC(WI

ApFcndix F: Programming Lxamplc 227

lCCATICN REF ER S TC SY~BCl If\ CCr--TR(L SECTICN lCCAT IC" REFERS TO SYMBOL IN CONTROL Sr:CTION

1MB IBtJBCHXI-' IEMBCH'"\1 lilAC IBMBSCVA IBMBSCV1
111rc IEflABCECE IEMBCE~~l 1H4 IBMBCEOB IBMBC E'"'l
IB4C IBMBCOZE IB",BCC')l 1E'~4 IBMBCKZP IBMBCK(l
1B esc IBMBCVZY $UNRESOLVEC(\oI1 1H4 IBMBCWZ\-. $UNRESCLVEO(WI
IB6C IBMBCKZC IEtJBCKfll 1cr 8 IBMBCGTA IBMBCGTl
:21~C IBMBCKZC IB",BCK';l 217C IBMBCOZE IBM~CCP 1
:2 HC IBMBC EZF IeMBC E~ 1 2174 IBMBCKZP rBMBCK~1

<:If 4 IEIIBCEZX Ie'" BC E~ 1 2; F{ IB~BSCVA IBMBSCV1
23FC rBMBCEFX r EMBC E"l 24"14 IBMBCHFC IBMBCI-'(1
24~C Iet-'BCI-FP lE",BCI-'"'l 2414 rB~BCHFE IBMBCW"l
2fF4 IB~BSCVA IB"'BSCV1 2B3~ IBMBSPLA IBMBSPLl
2P34 IBMBSPLB IefJBSPLl 2B3E IBMBSPLC I BMBSPLl
2B2C IB~B(CLII IBMBCCLl 2B44 IBMBCOOP IBMBCO"l
2F 24 IB~BRIOB $l:~RESCLVEO (~I 2F28 IfWBR IOC $UNRESOLVEC(WI
2 F2C IBt-'BSCPA $U~RESClVEC (W I 2FE{' TB~BCCCA IBMBCCC1
2 FI: 4 I EMBCBCA H)~RES(LVEC (~I 2FEE IBMBCACA $U"RESCLVEC(WI
2FEC IBt-'BCXOA $UNRESCLVEC(\oI1 3;:,C4 IBMBSIST !UNRESOLVEC(WI
31M! rBMBCIICIl H:~R ESCl VEC (W I 31114 IBMBCBCA $UNRESClVED(~1

3711'" I BMBCZCA $Ut-RESCLVEO(l.I) 37<;C IBMBCXOA $UNRESCLVED(WI
37<;8 IB~BSIST $lf\RES(lLHC(\oI1 3B1E IBMBCHXP IBMBCH'l
3BIC IBt-'BCKDF Ie"'ECK~ 1 3B2'" IBMBCI-'FP IBMBCI-''')!
3B 2r IBflBCMPP $Ut-.RESCLVEC (.. I 3E34 IBMBCMPP 1;UNRESCLVEC(WI
3f\?E IBWBCI-'X E IE M EC I-f., 1 3B3C IBMBCODE ! BMBCO' 1
3f\4F IBMBC\-.FE IBtJBCI-(1 3B4C IBMBCMPE $UNRESCLVED(W)
3B54 IBIIBCMFE ~UNRESOLVEC(\o.1 3BL.4 IBMBCPBP $UNRESCLVEC(WI
3B48 rBMBCPBE $U/IRESCLVEC(WI 3B5'" IBMBCCSA IBMBCCS1
3f\5C IBMBC I<FB $URESCLVEC (W I 3Ef4 IBMBCRXB !Uf\RESCLVEO(WI
3E2': H'~BCGTII IBMECGTl 455C IBMBERCII !UNRESCLVEC(WI
4~t<:: IH'BEEFII IE",EEEF1

l((IITICN 2'" REQlESTS CUt-'LlATIVE FSELO(PEGISTER LEt-.GTH
FSElCC REGISTERS

Nf,ME CRIGI" lENGTH "AflE (RIGI!,; L ENGTI- NAflE (lRIGIN LENGTH NAME ORIGIN lENGTH

SY5FI/IT c~

lCTAL lEf\GW CF ~SEU[C REGISTERS 4
HTF'1 t[CFESS C~
1 (T III lE"GTI- 4<;3r

[CES /lCT EXIST BlT I-f,S BEEN II[CE[TC [ATA SET

228

SAMPLE PROGRAM: DATE
END SAMPLE PROGRAM

71/08/09, TIME 22.31.15

Appendix F: Programming Example 229

230

&LKLBDSN parameter in cataloged
procedure 133

* parameter of DD statement 20
* PROCESS statement 14

%INCLUDE statement 49
%PAGE statement 35,40
%SKIP statement 35,40

abbreviated form of compiler options 29
absolute addresses 73
absolute addressing 54
access methods 81-82
access speed

improving, for INDEXED data sets 102
improving, for REGIONAL data sets 110

addressing 54
advanced checkpoint/restart 171
aggregate length table 41
AGGREGATE option 32
ALIAS statement (linkage editor) 63
aliases 63
American National Standard control
characters (see ANS control characters)

American Standard Code for Information
Interchange (see ASCII)

ANS (American National Standard) control
characters

printers 90,98
punched card devices 98,84
source listing 35
specifying in JCL 178,84

APAR (Authorized Program Analysis
Report) 187-189

arguments in Assembler-PL/I
linkage 160-162

arguments in checkpoint/restart 182
arrays

in Assembler-PL/I linkage 160
length table 41
mapping 25
maximum number of dimensions 181

ASCII (American Standard Code for
Information Interchange)

for paper tape, specifying 176
option of ENVIRONMENT attribute 75
records 77

Assembler language linkage 151-162
abnormal termination 153,159
arguments and parameters 160-162
arrays 160
Assembler-PL/I-Assembler 159
caiiing Assembler routines from
PL/I 152-154

calling PL/I procedures from
Assembler 156-161

erroL handling 159,161
establishing PL/I environment 151
invoking PL/I procedure 151

linkage conventions 151
locator/descriptors 160
no main PL/I procedure 158
PL/I language facilities for
linkage 161

PL/I-Assembler-PL/I 159
problem data 160
program control data 160
string arguments 161
structures 160
use of based variables 160
use of register 12 153

Assembler language listing 43

Index

asterisk (*> parameter of DD statement 20
ATTACH macro instruction 50
attribute listing 40
ATTRIBUTES option 32
automatic library call

introduction 54-55
DD statement for 56
main discussion 57
suppressing 59,72
use of by loader 69,72
use of by programmer 125

auxiliary storage (see storage)

base library (SYS1.PLIBASE) 57,134
based variables as source of error 145-146
basic access technique 81
Basic Direct Access Method (BDAM) 82
Basic Indexed Sequential Access Method

(BISAM) 82
Basic Sequential Access Method (BSAM) 82
batch operation (definition) 11
batched compilation 44-47,64
BCD (Binary Coded Decimal)

compiler options 32
magnetic tape translation 85,179

BDAM (Basic Direct Access Method) 82
Binary Coded Decimal (see BCD)
BISAM (Basic Indexed Sequential Access

Method) 82
blanks, removal of 25
BLKSIZE option of ENVIRONMENT attribute 75
BLKSIZE subparameter of DCB

parameter 176,75
block size

introduction 18
INDEXED data sets 103
CONSECUTIVE data sets

record I/O 94,96
stream I/O 86,89

PRINT files 90
REGIONAL data sets 111
specifying 75,176
system output device (SYSOUT) 20

blocking (in general) 75
boundary alignment 25
branching, trace table showing 146
BSAM (Basic Sequential Access Method) 82

Index 231

buffers
contents, in dump 148-149
default storage allocations 27
general discussion 81
specifying number of 176,177

BUFFERS option of ENVIRONMENT
attribute 177

BUFNO subparameter of DCB
parameter 176,177

BUFOFF option 75
built-in functions

BUILTIN attribute 181
recognized by context 181
wi thout arguments _ 181

BUILTIN attribute 181
Burroughs code for paper tape,
specifying 176

bypassing errors 146

CALL macro instruction -50
CALL option (loader) 72
capacity record 110
card devices (see punched card devices)
card output (see punched card output)
cataloged data sets 74
cataloged procedures 132-142

creating new 135
DD statements 16
definition 12
IBM-supplied 135-142
input data set 136
invoking 132-134
modifying 134
multitasking 133
region size 135
shared library 193
standard files 21
with MFT 135
with MVT 135

CATLG subparameter of DISP parameter 74
chained scheduling 81,178
channel programs, specifying number 177
character set specification 32
character, invalid 178
CHARSET option 32
CHECK condition 147
CHECK prefix, use of 146,147
checkout, program 143-150

232

(see also problem determination)
bypassing errors 146
CHECK prefix 146,147
common errors 144
compile-time 143,144
control of exceptional conditions 147
dumps 148-149
dynamic checking facilities 146,147
execution-time 144-146
file information 149
FLOW compiler option 146
invalid use of PL/I 144
logical errors 144
machine errors 146
on-codes 147
on-units 145,147
operating system errors 146
PLIDUMP 148

preprocessing 147
PUT ALL statement 146
return codes 149
SIGNAL statement 147
SNAP option 146
STRINGRANGE condition 146
SUBSCRIPTRANGE condition 145
system failure 146'
trace information 148
unidentified errors 145
use of a standard set of checkout
statements 147

checkpoint/restart 171-173,182
CLOSE macro instruction 84
CLOSE statement 84
COBOL option 161
COBOL structures in aggregate length

table 41
code identifying object module 32
CODE subparameterof DCB parameter 84,176
column binary mode for card device,
specifying 177

combining procedures 59
comments, removal of 25
common areas 42,53
compatibility with the PL/I (F)

compiler 181
compilation

batched 44-47,64
speed of 33
suppressing 144

COMPILE option 33
compile-time processing (see preprocessing)
compiler

entry point name 50
failure 146,781
failure, suspected 144
general description 23

compiler options 28-39
introduction 23
abbreviations 32
batched compilation 45
continuation line for 29
defaults 32
installation deletions 32
passing as parameter at dynamic
invocation 50

preprocessor 47
summary table 32
use in checking out program 143,144

completion code, system 172
concatenating data sets 79
concatenating libraries 126
condition built-in function values in
trace 148

condition handling 147
Models 91 and 195 191-192

conditional compilation 33
conditional execution of job step 149
conditions 182
CONSECUTIVE data sets 78

introduction 16
accessing in record I/O
accessing in stream I/O
creating in record I/O
creating in stream I/O

94-96
87-89

94
86-88

continuation line for compiler options 29

card devices 98
printers 90,98
specifying in JCL 178,84

CONTROL option 29,33
control program (see operating system)
control sections

identification 42
length 42
listing, linkage editor 61
listing, loader 72

control statements, linkage editor 62-67
listing of 60

control variables in DO statement 182
conversational processing (see TSO)
conversion feature of 2400-series tape
drives 179

COPY option, use of 145
cross-reference listing

compiler 41
linkage editor 59

cylinders
definition 85
index 100
overflow area 106,100
specifying overflow area 176,178

CYLOFL subparameter of DCB parameter 176

D-format records 18,76,77
data check 85
data codes 75,32
data control block (see DCB)
data conversion feature, magnetic tape
devices 85

data definition statement (see DD
statements)

data for program checkout 143
data management 81-84

specifying data management services in
JCL 178

DATA parameter 20
data set control block (see DSCB)
data sets 74-85

access methods 81-82
accessing (basic introduction) 19
accessing CONSECUTIVE data sets in

record I/O 94
accessing CONSECUTIVE data sets in
stream I/O 87

accessing INDEXED data sets 107
accessing REGIONAL data sets 112-113
ASCII 75
associating with PL/I file 83
BCD .75
blocks 75
capacity record 110
cataloged 74
characteristics 80
checkpoint/restart 171-172
~nn~~TQn~T;nn 7Q

CONSECUTIVE (see CONSECUTIVE data sets)
cr9ating (basic introduction) 16-19
creating CONSECUTIVE data sets in
record I/O 94

creating CONSECUTIVE data sets in
stream I/O 86

creating INDEXED data sets 102-107

creating REGIONAL data sets 110-112
':'l'l";'uuc.L lUUt::A :ivv
cylinder overflow area 100,106
DCB (data control block) 82-83
DD statements 26-28
ddnames 79,26-28
dedicated 27
defining 79

for record files 94-124
for stream files 86-93

definition of term 74
deletion 80
device class 20
device type 80,17,19
direct 78
disposition 80,19,20
dissociating from PL/I file 84
EBCDIC 75
generation data group 75
independent overflow area 100,106
index area 100,107
INDEXED (see INDEXED data sets)
indexed sequential 78
indexes 100-103
input 27
input, and cataloged procedures 136
labels

copying from 175
creation by data management
routines 83,84

modification by data management
routines 83,84

general description 78-79
in library data sets 125
LABEL parameter 80
nonstandard 79,96

limiting search extent 177
linkage editor 56-58
listings 28
loader 69-70
magnetic tape 94
master index 100,106
members 78
messages 28
names

introduction 18,20
main discussion 74-75,80

organization 78
output 27
overflow area 100,106
partitioned (see libraries)
prime data area 100,107
printer line spacing 80
qualified names 74,75
re-creation 108
record formats 76-78

specifying in JCL 177,178
record type 18,20
records 75
region numbers 110-111
:ru::;u:L':'~;;.u.. ~;QCC :N;U:LV1.;.rU:. ~a.i...a. ;QC,"-;QI

reorganizing INDEXED data sets 107,108
retrieval of cataloged data sets 74
sequential 78
sort/merge 164-165
source program 27
source statement library 28
storage for (see storage)

Index 233

data sets (con'd)
telecommunications 78
temporary 27,18
track index 100,102
unlabeled 79
unnamed 75,20
updating CONSECUTIVE data sets on
magnetic tape 94

updating INDEXED data sets 107
updating REGIONAL data sets 112
use of DCB subparameters 175-179
volume serial number 17,19
7-track tape 179

data, invalid 145
DB records 76
DB-format records 77
DCB (data control block) 82-83
DCB parameter

(see also DCB subparameters)
introduction 18,20
main discussion 80-81
summary appendix 175

DCB subparameters 175-179
BLKSIZE 176
BUFNO 176,177
CODE 176
CYLOFL 176
DEN 176
DSORG 177
for CONSECUTIVE data sets 96
for INDEXED data sets 104
for REGIONAL data sets 112
KEYLEN 177
LI~T 177
LRECL 177
MODE 177
NCP 177
NTM 177
OPTCD 178
overriding in cataloged procedures 135
RECFM 178
RKP 178
STACK 179
TRTCH 179

DD (data definition) statements 79
introduction 12,16

234

adding, to cataloged procedures 135
creating a library 126-127
DCB parameter (see: DCB parameter: DeB

subparameters)
ddnames (see ddnames)
essential parameters 19
for checkpoint/restart data
sets 171-173

for input data set in cataloged
procedures 136

for linkage editor data sets 56
for loader data sets 69
for record I/O 94-124
for sort/merge data sets 164
for standard data sets 26-28
for stream I/O 86-93
modifying, in cataloged procedures 135
parameters 17-21 '
PLIDUMP 148
separate, for index, prime, and overflow
areas 102,106

ddnames 79
definition of term 16
for checkpoint/restart data
sets 171-172

for linkage editor data sets 56
for loader data sets 69
for sort/merge data sets 165
for standard data sets 26-28
in dynamic invocation of compiler 50-51

deblocking of records 76,81-82
debugging (see checkout, program)
DECK option 33
DECLARE statement labels 185
dedicated data sets 27
dedicated workfiles 133
default options 28
DEFINED attribute 182
delimiter statement (job control

language) 20
demounting volumes, instructions for 80
DEN subparameter of DCB parameter 85,176
density, recording, magnetic tape 85,176
dependent declarations 182
depth of replacement maximum 48
device classes 20

for linkage editor data sets 56
for loader data sets 69

device description 80
device independence of source program 79
device specification 80,17,19
diagnostic messsages (see messages)
dictionary-build stage 25
direct data sets 78
direct-access devices

specifying storage requirements 18,85
specifying write validity check 178

directory, library 125-127,130
DISP parameter

introduction 19,20
in batched compilation 42
main discussion 80

DISPLAY statement 182
DO statement control variables 182
DSA (dynamic storage area)

in Assembler language linkage 152
trace 148-149

DSCB (data set control block) 79
for library 127

DSNAME parameter 79,18,20
DSORG subparameter of DCB parameter 177
dwmny records

INDEXED data sets 107,178
REGIONAL data sets 110,112

DUMP option 33
dumps 148-149
dynamic checkout facilities 146-147
dynamic invocation of the compiler 50
dynamically loaded modules 66

EBCDIC (Extended Binary Coded Decimal
Interchange Code) alternative modes 75
compiler option for source program 32
specifying mode for card devices 84,177
specifying translation to BCD 85,179

embedded keys 104,106
END instruction 54
ENTRY address 61

entry names 182
~n~ry poin~ ~~s~ings

linkage editor 61
loader 73

entry variables as source of error 146
ENVIRONMENT attribute 18,80,183
ENVIRONMENT option 84
environment, PL/I, in Assembler language
linkage 151,154

EP option (loader) 72
error correction by compiler 143,'183
error handling

Assembler-PL/I linkages 152,153,159,161
Models 91 and 195 191-192

error messages (see messages) 44
errors in program (see checkout, program)

(see also problem determination)
errors, operating 145
ESO (see external symbol dictionary)
ESO option 33
exception (definition of term) 191
exceptional condition handling 147

Models 91 and 195 191-192
EXCLUSIVE attribute 183
exclusive calls 66
EXEC statements 26

continuation line 29
for linkage editor 55
for loader 68
locating load module 125
modifying, in cataloged
procedures 134,135

option list maximum length 29
PARM parameter 29
specifying compiler options 29

executable load module labeling 59
executable program (definition) 23
execution

essential job control language 14
suppressing 144

execution-time options 29
execution-time storage requirements 30
Extended Binary Coded Oecimal Interchange

Code (see EBCDIC)
external references

definition 54
in ESO listing 42
in linkage editor listings 61
resolution by linkage editor

automatic library call 57
suppressing automatic library call 59

unresolved 60,61
external symbol dictionary (ESO) 53-54

listing 42-43

F-format records 76
FB records 76
FBS records 76
FCB (file control block) 149
FETCH statement 66
,.
.... c ... "&&Q....,,L~ ,LVGU WVUU,LCO UU

files
introduction 16
attributes 83
closing 84
information from PLIDUMP 149
opening 83-84
specifying number of channel

programs 177
::i~d.nud.ru ~u
SYSIN 20
SYSPRINT 20
TRANSIENT 78
variable, as source of error 146

final-assembly stage 25
fix-ups for program product faults 189,781
fixed-length records 76,18
FIAG option 33
flow of control, tracing 146
FLOW option 34,146
format of records (see record format)
formatted dump option 33
FORTRAN arrays in aggregate length
table 41

Friden code for paper tape, specifying· 176
FS records 76

generation data group 75
GET macro instruction 82
GONUMBER option 34
GOSTMT option 34

header label 78
heading information in listing 39
hexadecimal address representation in

ESD 42
hexadecimal dumps 148-149

I/O (see input/output)
IBG (interblock gap) 75
IBM code for paper tape, specifying 176
IBM control character, specifying 178
IBM programming support 187-189,146
IBM service aid program lMAPTFLS 189
IBMBPlRA 43
IBMBSTAB 92
identifier listing 41
IELOAA 50
IEWL 55
IEWLDRGO 68
lMAPTFLS service aid program 189
imprecise interrupts 191
IMPRECISE option 34,191
INCLUDE statement (linkage editor) 63
"INCLUDE statement 49
including source statements from a
library 49

independent overflow area 106,100
specifying in JCL 178

index (see INDEXED data sets)
INDEXED data sets 100

introduction 78
adding records to 100,106
adding records to 108-109,100,106
creation 102-107
deleted (dummy) records 107,178
index area 100.107
. ~eparat~_~D statement for 102
.1.J1U~A't::::i .LUU-~U'"

master index 106,178
overflow area 106,107,178

separate DD statement for 102,106
overfl~ records 176
prime area 107

separate DD statement for 102
specifying key position 178

Index 235

INDEXED data sets (con'd)
specifying number of tracks per
index 177

SYSOUT device restriction 103
initial storage area (ISA) 29
initial volume label 78
initialization 23,42
input

compiler
data in the input stream 20,93
data set 27,93
in cataloged procedures 136

linkage editor 56,63
loader 69

input/output
introduction 16
(see also: data sets: input: output)
access methods 81-82
defining data sets for record
files 94-124

defining data sets for stream
files 86-93

device independence of source
program 79

device specification 17
improving transmission time 178
locate mode 81,82
move mode 81,82
operating system data management 81
standard files 93
system output device (see SYSOUT
parameter)

INSERT statement (linkage editor) 64-65
INSOURCE option 34
installation factors for cataloged

procedures 135
INTER option 161
interblock gap (IBG) 75
inter language communication between PL/I

and Assembler 151
interrecord gap (see interblock gap)
interrupt (definition of term) 191
interrupt handling 147

Assembler-PL/I linkages 153,159,161
, Models 91 and 195 191-192

invocation, dynamic 50
ISA (initial storage area) 29
ISASIZE option 29

JCL (see job control language)
job (definition) 12
job class 11
job control language (JCL)

(see also: cataloged procedures; DD,
EXEC, and JOB statements)

introduction 12
checkpoint/restart
creating a library
DCB subparameters
DeB subparameters
sets 96

171-173
-126-127

175-179
for CONSECUTIVE data

DCB subparameters for INDEXED data
sets 104

DCB subparameters fOD REGIONAL data
sets 112

defining data set libraries 126
essential 14
for batched compilation 42

236

for compilation 26,28
for linkage editor 55,58
for loader 68,70
,for sort/merge data sets 164

JOB statement 12
MSGCLASS parameter 39
MSGLEVEL parameter 39

job step 12-13
JOBLIB DD statement 126

message processing programs 123
MPP (message processing program) 123

keying records
introduction 78
INDEXED data sets 104,106
REGIONAL data sets 110
specifying key length 177
specifying key position 178

KEYLEN subparameter of DCB parameter 177
keypunch (see punched card devices)

LABEL parameter 79
label variables as source of error 146
labeling data sets 78,79
labeling volumes 74
LEAVE option 79
length of record, specifying 177
LET option (linkage editor) 59
LET option (loader) 72
libraries 125-131

base library (SYS1.PLIBASE) 57,134
calling additional 63
creating 126-127
creating members 127
directory 1.30
including soUrce statements from 49
multitasking library (SYS1.PLITASK) 57
structure 130
system procedure library

(SYS1.PROCLIB) 125,132
system program library

(SYS1.LINKLIB) 125
types of 125
use by linkage editor 125
use by loader 125
use by operating system 125,126
use by PL/I program 126

LIBRARY statement (linkage editor) 63
library subroutines

introduction 23
control sections for 53
data set for 57
dynamic calling 54
ESD entries for 43
external reference resolution 61
failure of 146,781
failure of, suspected 144
in overlay structures 66
link-editing 54-55
multitasking version and cataloged

procedures 133
library, automatic call (see automatic
library call)

LIMCT subparameter ofDCB parameter 177
line numbers

and offsets, table of 33,34
in messages 34
in source listing 36

line numbers (con'd)
nreDrocp-s~or un

LINE oPtion/format item 90
line size

default, and overriding it 92
specification 91

line spacing, printers 98.90
specifying in JCL 178,85

LINECOUNT option 34
LINK macro instruction 50
link-pack area 67,12
linkage editor 52-66

(see also: load modules; loader)
ALXAS statement 63
checkout 144
choice of linkage editor or
loader 52~54

compatibility with F compiler 181
control statement listing 60
control statements 62-67
cross-reference listing 61
data sets 56-58
DD statements 56-58
ddnames 56-58
device classes 56
input 56,63
job control language for 55
listings 60-62
messages 60
multitasking program 57
NAME statement 62,35,45
non-multitasking program 57
optional facilities 58-59
output 57
output and cataloged procedures 132-134
output to a library 125
overlaying (see overlaying)
region size 135
resolution of external references (see
external references)

return code 0004 61
specifying storage for 59
storage requirements 55
suppressing link-editing 144
temporary workspace 57

LINKEDIT (program alias) 55
LIST option 34
LIST option (linkage editor) 59
listings .

aggregate lengths 41
attribute 41
cataloged procedures 132
cross-reference 40
dumps 148-149
external symbol dictionary 42
general discussion 39
identifier 40
linkage editor 60-62
loader 72-73
nesting level in 40
ob;ect modlllp- Ln
of compiler options 40
preprocessor input 40
preprocessor messages 40
sort/merge 166
source program 40
statement offset addresses 42
static internal control section 43

storage requirements 42
~aDle or options qU
use in checking out program 143
with APARs 187-189

listings produced by progra~ng
example 195

LMESSAGE option 34
load modules

control section listing 73
definition 13
disposition statement 60
libraries (see libraries)
location 125,126
map option 61,72
maximum size 57
naming

compiler 35,45
linkage editor 62-63

replacement 62
separation 62
structure 53-54

loader 67-73,52-54
(see also: linkage editor; load modules)
choice of linkage editor or
loader 52-54

data sets 69-70
DO statements for loader data
sets 69-70

ddnames 69-70
device classes 69
external reference resolution 72
general description 67
input 69
job control language for 68
listings 72-73
messages 73
module map 73
optional facilities 71-72
output 70
restriction on NAME option 42
specifying entry point of program to be
executed 72

specifying storage for 72
storage requirements 68

LOADER (program alias) 68
locate mode input/output 81,82
locator variables as source of error 145
locator/descriptors 160
locked records 184
looping, preventing 145
LRECL subparameter of DCB parameter 177

machine control characters (see control
characters)

machine errors 146
machine instruction listing 43
MACRO option 35,47
magnetic tapes

accessing, without standard
labels 89,96

=~~~ ~~==~==!== n~
special requirement for 7-track 179
specifying recording density 176

main procedure and Assembler language
linkage 158

MAP option
compiler 35
linkage editor 59,61

Index 237

MAP option (con'd)
loader 72

margin indicator option 35
MARGINI option 35
MARGINS option 35
master index (see INDEXED data sets)
MCP (message control program) 123
MDECK option 35
members of partitioned data sets (see
libraries)

MERGE statement restriction 165
message control program (MCP) 123
message format, teleprocessing 123
message processing program (MPP) 123
messages

general discussion 44
line numbers in 34
linkage editor 60
loader 73
long form option 34
numbering in preprocessor messages 48
printed format 93
severity option 33
short form option 34
sort/merge 166
statement numbers in 34
use in checking out program 143

MFT (Multiprogramming with a Fixed number
of Tasks)

introduction 11
and cataloged procedures 135

MODEsubparameter of DCB parameter 177
Model 195 191-192
Model 91 191-192
module map, linkage editor 61
module, load (see load modules)

(see also: linkage editor; loader)
mounting volumes, instructions for 80
move mode input/output 81,82
MPP (message processing program) 123
MSGCLASS parameter 39
MSGLEVEL parameter 39
multiple compilation 27,44,52,64
multiple-exception imprecise interrupt

(definition) 191
multiprogramming 11
multitasking

library (SYS1.PLITASK) 57,133
options in CALL PLIDUMP 148
using cataloged procedures 133
with shared library 193

MVT (Multiprogramming with a Variable
number of Tasks)

introduction 11
and cataloged procedures 135

NAME option 35,45
NAME statement (linkage editor) 62,35,45
names, qualified 74-75
NCAL option

linkage editor 59
loader 72

NCP subparameter of DCB parameter 177
NCR code for paper tape, specifying 176
NE (not editable) attribute 52
NEST option 36
nesting level in listing 40
no-operation instructions 191

238

NOCALL option (loader) 72
NTM subparameter of DCB parameter 177
null statement, use for controlling
interrupt timing 191

NUMBER option 34,36

object module
combining 44
definition 13
format 27
libraries (see libraries)
listing 43
on punched cards

and cataloged procedures 136
identification 33

output 33
storage requirement listing 38
structure 53-54

OBJECT option 36,42
OFFSET option 36,42
offset variables as source of error 145
offsets, table of 33,42
on-codes 147
on-units 147

condition built-in function values in
trace 148

use in checking out program 145
ONCODE built-in function 147
ONCOUNT built-in function 191
OPEN macro instruction 83
OPEN statement 83
operating errors 145
operating system

introduction 11
compiler interface 23
data management 81-84
errors 146
release identification 39

operating system facilities 184
OPTCD subparameter of DCB parameter 178
optimization options 33
OPTIMIZE option 36
option list

compiler 29
dynamic invocation 50

linkage editor 58
loader 71

optional facilities
compiler 28-39
linkage editor 58-59
loader 71-72

OPTIONS option 37
organization of data set, specifying 177
OS facilities 184
output

(see also: data sets; input/output)
compiler 27
linkage editor 57
loader 70

overflow area
introduction 100
main discussion 106
separate DD statement for 102,106
specifying in JCL 176,178

OVERLAY statement (linkage editor) 64
overlaying

checkout of 144
library subroutines 66

overlaying (con'd)
main discussion 64-67
mapping 61
XCAL linkage editor option

OVLY attribute (linkage editor)

page number as parameter for
compiler 50,51

PAGE option/format item 90

59
64

page size specification and defaults 93
%PAGE statement 35,40
PAGESIZE option 93
paper tape code 176
paper tape reader 84
parameters 182
parameters in Assembler-PL/I

linkage 160-162
parameters, passing to compiler 50
parity bit 179
parity error (paper tape transmission) 84
PARM parameter

for compiler 29-30
for linkage editor 58
for loader 71
in GO step 29

partition
definition 11
size 37

partitioned data sets (see libraries)
PASS subparameter 19
password for CONTROL option 33
performance, linkage editor and loader 53
phases, compiler 23
pictures 184
PL/I (F) compiler, compatibility with 181
PL/I programming example 195
PL/I sort (see sort/merge)
PLICALLA 151,154,157
PLICALLB 151,157
PLICANC 173
PLICKPT 171
PLIOUMP 148
PLIMAIN 53

in Assembler-PL/I linkage 151,158
PLIREST 172
PLIRETC facility 149,164
PLISRTA 163
PLISRTB 163
PLISRTC 163
PLISRTO 163
PLISTART 53,54

in Assembler-PL/I linkage 151
PLITABS 93,43
PLIXC cataloged procedure (compile

only) 137
PLIXCG cataloged procedure (compile, load,

and execute) 141
PLIXCL cataloged procedure (compile and
link-edit) 138

PLIXCLG cataloged procedure (compile,
i1nK-ea1t, ana execute) 139

PLIXG cataloged procedure (load and
execute) 142

PLIXLG cataloged procedure (link-edit and
eA:ecute) 140

pointer variables as source of error 145
preprocessing

introduction 23

comniler OnT_; nn~ ':\'l

main discussion 47-49
phases 25
replacement depth 40,48
suspected failure in 188
use in program checkout 147

preprocessor restrictions 184
prime data area 100,107

separate OD statement for 102
PRINT files 90-93
PRINT option (loader) 72
printed output and record I/O 98
printers 98

control characters 90,98
for source listing 35
specifying in JCL 178,85

device class 80
handling invalid characters 178
record format 84

priority 11
problem determination 187-189
procedure step 132
PROCESS statement

example of 14
specifying compiler options in 28,31
use of 45

processing phases 23
processing time 53
program control section 42,43,53
program libraries (see libraries)
program product maintenance 187-189
program temporary fix (PTF) 189
programming example 195
PRTSP subparameter of DCB parameter 85
PRV (pseudo-register vector)
listings 61,73

pseudo-register vector (see PRV)
pseudovariables 184

BUILTIN attribute 181
without arguments 181

PSW in trace 149
PTF (program temporary fix) 189
punched card devices 98

Card Read Punch 2520 84
Card Read Punch 2540 84
Card Reader 2501 84
column binary/EBCDIC mode 177
control characters 84,98,178
device class 80
stacker selection 179

punched card output 98
and cataloged procedures 136
compiler 27,33
preprocessor 35
record format 84
record I/O 98

PUT ALL statement 146
PUT macro instruction 82

OTSAM (Ol1Pllpn Tnnpv~n ~4=>nn~T\"';::al 2\,..,...::>«:..:.

Method) 82
QSAM (Queued Sequential Access Method) 82
queued access technique 81
Queued Indexed Sequential Access Method

(QISAM) 82
Queued Sequential Access Method (QSAM) 82
queues 123

Index 239

RD parameter 172,173
RECFM subparameter of DCB parameter 118
record blocking (see: block size; blocking)
record format

introduction 18
CONSECUTIVE data sets

record I/O 94,96
stream I/O 86,89

auxiliary storage 81-83
INDEXED data sets 104
main discussion 76-78
PRINT files 90
REGIONAL data sets 110
specifying in JCL 178

record length
introduction 18
CONSECUTIVE data sets

record I/O 94
stream I/O 86

INDEXED data sets 103
PRINT files 90
REGIONAL data sets 111
specifying in JCL 111

record size, maximum, compiler input 21
record type specification 18

(see also: block size; record format;
record length)

record-oriented input/output
access methods 82
defining data sets 94-124

record-oriented transmission 184
records 18,75

deleted (dummy)
INDEXED data sets 107,178
REGIONAL data sets 110,112

spanned 18,76,178
region

definition 11
size 37,135

REGIONAL data sets 110-123
access 112-113
capacity record 110
creation 110-112
dummy records 110,112

register contents in trace 149
register 12, use of 153
release number in listing 39
RELEASE statement 66
relocation dictionary (RLD) 54
replacement depth (preprocessing) 40,48
reply maximum length 182
REPORT option 30
REREAD option 19
RES option (loader) 72
resident control phase 23
resident library (see library subroutines)
restart 111-173
RESTART parameter 112
return codes

checkpoint/restart 171
compiler 44
PL/I program 149
PLIRETC restriction 185
return code 0004 from linkage editor 61
sort/merge 163,164

returned values 182
RKP subparameter of DeB parameter 106,118
RLD (relocation dictionary) 54

240

root segment 64

save areas 151,152
scheduling time 53
scheduling, chained 81,118
segment, root 64
sequence numbering

compiler options 36,37
for preprocessor 48

SEQUENCE option 37,36
sequential data sets 78
SER subparameter 18
serial number, volume (see volume serial

number)
severity of messages

compiler 33
linkage editor 60

shared library cataloged procedures 193
SIGNAL statement 147
SIZE option

compiler 31,45
linkage editor 59
loader 12

SKIP option/format item 90
%SKIP statement 35,40
SMESSAGE option 34
SNAP option 146
sort/merge 163-170

arguments 165
data sets 164-165
ddnames 164-:165
entry names 163
examples 167-170
invoking 165
listing options 165,166
multiple invocation 165
sorting techniques 165,166
storage requirements 163
user exits 163

SORTCKPT 164,165
SORTIN 164,165
SORTLIB 164
SORTOUT 164,165
SORTWK 164,165
SOURCE option 38
source program

character set specification 32
data code specification 32
data set 27
listing 34

compiler option for 38
nesting level 32
record numbering 32,37
statement numbering 38,40

source statement library 49
SPACE.parameter

introduction 18
accessing data sets 20
for direct-access devices 85
for library 126-127
for linkage editor output 51
for standard data sets 26

spanned records 18,76,178
SPIE option 30
spill file 27
STACK subparameter of DCB parameter 84,119
stacker selection 98,84

specifying in JCL 119

STAE option 30
~+~~~~~~ fi!e~ ~~
statement numbers

compiler option 38
in messages 34
method of numbering 40
trace of 146

statement, maximum number of 185
static internal control section

description 53
length 42
listing 43

static storage map 35
STEPLIB DD statement 126
STMT option 38
storage

addressing 54
allocation 25
auxiliary, economy

in INDEXED data sets 104
in REGIONAL data sets 111
suppressing automatic library call 59
using loader 53
using track overflow 178
blocking PRINT files 91

buffers 81
dumps 148-149
for Assembler language
linkage 151,153,157

for checkpoint/restart data set 172
for compilation 37
for direct-access devices 85
for execution 29,30
for library data sets 126-127
for linkage editor 57,59
for loader 68,72
for sort/merge 163
for standard data sets 26
insufficient available 37
listing of requirements 41
optimization 36
overlaying (see overlaying)
requirements in general 37

STORAGE option 38,42
storage requirements 30

at execution time 30
stream-oriented input/output

access method 82
defining data sets 86-93
restrictions 185

STRINGRANGE condition 146
structures

in Assembler-PL/I linkage 160
length table 41
mapping 25
maximum depth 181

subroutines, library (see library
subroutines)

SUBSCRIPTRANGE condition 145
SUBSTR pseudovariable as source of
error 146

supervisor (see operating system)
symbolic parameter in cataloged

procedures 133,134
syntax analysis stage 25
syntax checking option

compiler option 38
suppression of 144

SYNTAX option 38
SYSCIN 27
SYSIN 27,93
SYSLIB

linkage editor 57
loader 69
multitasking programs 133
preprocessing 28,49

SYSLIN
hatched compilation 42
compiler output 27
linkage editor input 56
loader input 69

SYSLMOD 56
SYSLOUT 69, 72-73
SYSOUT parameter 20

INDEXED data set restriction 103
SYSPRINT

associated with terminal 38
compiler data set 28
linkage editor data set 58
loader data set 70, 72-73
standard PL/I file 93

SYSPUNCH 27
system completion code 172
system failure 146
system output device (see SYSOUT parameter)
system procedure library

(SYS1.PROCLIB) 132
system program library (SYS1.LINKLIB) 125
SYSUTl

compiler data set 27
linkage editor data set 57
preprocessing data set 48

SYS1.LINKLIB (system program library) 125
SYS1.PLIBASE (base libary) 57,134
SYS1.PLITASK (multitasking library) 57,134
SYS1.PROCLIB (system procedure
library) 125,132

tab position specification and defaults 93
tape, magnetic (see magnetic tapes)
TCA (task communications area) 149
TCAM (Telecommunications Access

Method) 82,123
Telecommunications Access Method

(TCAM) 82,123
teleprocessing 123
Teletype code for paper tape 176
temporary workspace

for compiler 27
for linkage editor 57
for preprocessing 48

TERMINAL option 38
terminal processing (see TSO)
termination

in Assembler-PL/I linkage 153,159
of compilation, dump option 33
of execution, abnormal 145
of execution, by request 148

~::::~:..::; ~;:;.:..:;. ~ ;:; ~vu\..., l;JLuyrd.lllJ
text (TXT), description of 53
text, source (definition) 25
Time Sharing Option (see TSO)
time taken for compilation 39
timer feature 39
trace information 146, 148-149

compiler option 34

Index 241

track (definition) 85
track index 100-103
track overflow, specifying 178
trailer label 78
transfer vector 193
transient control phase 23
TRANSIENT files 78
transient li"brary (see library subroutines)
translation stages 25
TRANSMIT condition, suppressing 178
troubleshooting (see checkout, program;

problem determination)
TRTCH subparameter of DCB parameter 85,179
TSO (Time Sharing Option)

introduction 11
checkpoint/restart restriction 171
conversational checkout 143
line numbers 36
storage requirements 38
terminal output option 38

U-format records 78
unblocked records 76-78
undefined-length records
UNDEFINED FILE condition
UNIT parameter

78
83,91

accessing a data set
creating a data set

unlabeled data sets 78
unlabeled magnetic tapes
unnamed data sets 75,20
updating data 19

19
17,79

89,96

user exit points 163

V-format records 76-77
validity check, write, specifying
variable-length records 76-77
VB records 76
VBS records 76-77
version number of compiler 39
volume

definition of term 17
labeling 78-79 78

VOLUME parameter
(see also volume serial number)

242

178

accessing data sets (general) 18
creating data sets (general) 19

volume serial number
creating CONSECUTIVE data sets

record I/O 96
stream I/O 89

accessing INDEXED data sets 107
accessing REGIONAL data sets 113
creating CONSECUTIVE data sets

record I/O 94
stream I/O 86

creating INDEXED data sets 103
creating REGIONAL data sets 111
in volume label 79

volume table'of contents (VTOC) 79
VS records 76
VTOC (volume table of contents) 79

WAIT statement 185
weak external reference 42
workfiles, temporary 133

XCAL option (linkage editor) 59
XCTL macro instruction 50
XREF option

compiler 39
linkage editor 59

1403 Printer control characters (see
printers)

2400-series tape drives, conversion
feature 179

2520 Card Read Punch 84
2540 Card Read Punch control
characters 84,99

2501 Card Reader 84

48-character set 25,32

60-character set 25,32

7-track magnetic tape (see magnetic

9-track magnetic tape (see magnetic

tapes)

tapes)

• 1

READER1S COMMENT FORM

OS PL/I optimizing Compiler
Programmer's Guide

• How did you use this publication?

As a reference source ...
As a classroom text
As a self-study text

D
D
D

• Based on your own experience, rate this publication

As a reference source:

As a text:

• What is -your occupation?

Very
Good

Very
Good

Good

Good

Fair

Fair

Poor

Poor

. Very
Poor

Very
Poor

• \tVe would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply, be sure to include your name and address .

• Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.

SC33-0006-0

SC33-0006-0

YOUR COMMENTS PLEASE

This SRL manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better pUblications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your I BM system
should be directed to your IBM representative or to the IBM sales office serving your locality.

fold fold

()

S
»
0"
::l
co
r
5·
CD

..

BUSINESS REPLY M A I L

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Department 813 (HP)

fold

ll1]3lli!
(l;

POSTAGE WILL BE PAID BY ...

IBM Corporation

112 East Post Road

White Plains, N.Y. 10601

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

I BM World Trade Corporation
921 United Nations Plaza, New York, New York 10017
[International]

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS, N.Y.

fold

o
en
-c
r -o

"0
.-+

3·
N·
5·
to
(')
o
3
~
CD ..,
-c ..,
o
to ..,
Q)

3
3
CD ..,
cn~

G>
c:
a:
CD

-c ..,
5·
.-+
CD a.
:i"
c
en »
en
(')
w
w
6
o
o
en
6

READER'S COMMENT FORM

OS PL/I optimizing Compiler
Programmpr'~ G"i~e

• How did you use this publication?

As a reference source
As a classroom text
As a self-study text

D
D
D

• Based on your own experience, rate this publication ...

As a reference source:

As a text:

• What is -your occupation?

Very
Good

Very
Good

Good Fair

Good Fair

Poor

Poor

Very
Poor

Very
Poor

• \Ve would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply, be sure to include your name and address.

o Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.

SC33-0006-0

SC33-0006-0

YOUR COMMENTS PLEASE

This SRL manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your I BM system
should be directed to your IBM representative or to the IBM sales office serving your locality.

fold fold

()

S
»
0"
::J
co
c:
::J
CD

..

BUSINESS REPLY M A I L

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Department 813 (HP)

POSTAGE WILL BE PAID BY ...

IBM Corporation

112 East Post Road

White Plains, N.Y. ~0601

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS. N.Y.

...

fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
B21·United Nations Plaza, New York, New York 10017
[Interna tional]

fold

o
U')

"t:I
r -o
'0
..-+
5·

E:.
::J
co
(")
o
3
~.
ctl ...,
"t:I ...,
o
co
@
3
3
ctl ...,
VI'

G)
c:::
c.:
ctl

"t:I ...,
5·
..-+
ctl
0-

5·
c
U')

»
U')
(")
w
w
6 o o
0>
6

