
Executive Summary
Machine learning—a subset of artificial intelligence (AI)—is quickly entering the
mainstream. According to Gartner, machine-learning strategy development and
investment is already in the top five CIO priorities.1 And by 2021, 30 percent of net
new revenue growth from industry-specific solutions will include AI.2 Enterprises
are already seeing business value generated from their machine-learning
deployments. And the use cases for machine learning are expansive, ranging
from detecting fraud, making product recommendations, and automating various
business processes and tasks to enabling the next generation of applications
such as autonomous cars. Machine learning allows researchers, data scientists,
engineers, and analysts to produce reliable, repeatable decisions and results. It can
reveal hidden insights through learning from historical relationships and trends
in the data. As shown in Figure 1, machine learning running on Intel® architecture
speeds up model training time by up to 7.9x.3

Accelerating model training time means faster predictive analytics, which can
provide a competitive edge in today’s fast-paced business environment. The Intel®
Math Kernel Library (Intel® MKL), Intel® Advanced Vector Extensions 512 (Intel®
AVX-512), and Intel® Xeon® Scalable processors all contribute to machine-learning
workload acceleration, without having to make any changes to Apache Spark* code
or acquiring specialized hardware.

Performance Brief

Machine Learning

Speed up algorithm performance and insights by up to 7.9x

Accelerate Machine-Learning
Workloads with Intel® Math
Kernel Library

Table of Contents

Executive Summary 1

Introduction . 2

Gain Value from Machine Learning
with Intel® Math Kernel Library 2

Overview of Apache Spark* and Basic
Linear Algebra Subprograms (BLAS) . . 2

Challenges of Apache Spark MLlib
BLAS and Linear Algebra Package
(LAPACK) Implementations 3

Test Methodology 3

Results . 4

7.9x Increase in Machine-Learning
Performance with Intel MKL 5

Appendix A:
Libraries for Comparison 6

Appendix B:
Test Configuration Information 7

Test Steps . 7

Appendix C:
Optimizations and Tunings 10

BIOS Tuning . 10
OS Tuning . 10
Apache Hadoop Tuning 10
Apache Spark Tuning 11

Alternating
Least Squares

(ALS) algorithm

faSTer1.8X
PerSonaLiZeD ecommerce

faSTer7.9X
USer recommenDaTion

faSTer2.0X
DocUmenT cLaSSificaTion

Latent Dirichlet
Allocation

(LDA) algorithm

Intel® Math Kernel Library (Intel® MKL)

Intel® Advanced Vector Extensions 512 (Intel® AVX-512)

Intel® Xeon® Scalable Processors

Singular Value
Decomposition
(SVD) algorithm

Machine-Learning Workloads Run Better on Intel® Architecture

3 3 3

Figure 1. Machine-learning algorithms optimized by Intel® Math Kernel Library and
Intel® Advanced Vector Extensions 512 run faster on Intel® Xeon® Scalable processors.

Performance Brief | Accelerate Machine-Learning Workloads with Intel® Math Kernel Library 2

Introduction
Recent advances in machine learning, a branch of artificial
intelligence (AI), are driving a surge in global productivity and
economic growth. Consider these facts:

• Machine-learning patents grew at a 34 percent compound
annual growth rate (CAGR) between 2013 and 2017, the
third-fastest growing category of all patents granted.4

• IDC forecasts that spending on AI and machine learning will
grow from USD 12 billion in 2017 to USD 57.6 billion by 2021.5

• Deloitte Global predicts the number of machine-learning
pilots and implementations will double in 2018 compared
to 2017, and double again by 2020.6

Enterprises are already deriving business value from their
machine-learning projects, which span a wide variety of use
cases such as fraud detection, product recommendations,
business process automation and autonomous cars. The
growing use of machine learning is tightly correlated with
the proliferation of unstructured data and the need for
enterprises to remain competitive by improving time to
market, driving innovation, and generating real-time insights
in a digital economy.

Enterprises of all types and sizes across industries collect vast
amounts of data (typically in the petabytes range), analyze
it, and make decisions based on the outcome of the analysis.
Machine learning is a method used to devise complex
models and algorithms that lend themselves to prediction;
in commercial use this is known as predictive analytics. It
is worth noting that the two go hand-in-hand as predictive
models typically include a machine-learning algorithm.

For example, product recommendation, a feature on most
eCommerce websites, creates models using the Singular Value
Decomposition (SVD) algorithm, which learns from historical
relationships and trends in the data to suggest products likely
to be interesting to a particular consumer. Because machine-
learning models and algorithms are compute-intensive, it is
important to find ways to speed up the computing process to
power faster business and scientific decision making.

Gain Value from Machine Learning with
Intel® Math Kernel Library
The Apache Spark* MLlib framework is widely used in machine
learning to solve high-value business use cases using its in-
memory compute architecture and native linear algebra library
integration. Further optimization to the computing process can
be achieved using the Intel® Math Kernel Library (Intel® MKL).
Intel MKL is a widely used library by enterprises of all types
and sizes. It is designed to accelerate math processing routines,
increase algorithm performance, and reduce development
time. The library includes many features, including linear
algebra, vector statistics, data fitting, and neural networks. The
performance boost provided with Intel MKL is a major benefit
because it does not require a modified version of Spark, or
modifications to Spark application code; it also does not
require procurement of extra or special hardware. Only a few
steps are needed to install Intel MKL on the cluster.

This paper compares the performance of Java*-based
f2jBLAS (the default MLlib linear algebra library) and Intel
MKL for machine-learning algorithms provided in the Apache
Spark MLlib framework.

Overview of Apache Spark* and Basic Linear
Algebra Subprograms (BLAS)
Apache Spark is a unified analytics engine for big data
processing, with built-in modules for SQL, streaming,
machine learning, and graph processing. Apache Spark MLlib
is a distributed machine-learning framework and is a leading
solution for machine learning on large distributed datasets.
Many common machine-learning and statistical algorithms,
including classification, regression, clustering, collaborative
filtering, dimensionality reduction, as well as underlying
optimization primitives have been implemented and are
shipped with MLlib, which simplifies large-scale machine-
learning pipelines. Many machine-learning algorithms use
linear algebra. Basic Linear Algebra Subprograms (BLAS) are
routines that provide standard building blocks for performing
basic vector and matrix operations.7

Apache Spark* Solution Stack

Spark
 SQL

Spark
 Streaming

Spark
 MLlib

Spark
 GraphX

Figure 2. Apache Spark* is a unified analytics engine for big data processing.

Performance Brief | Accelerate Machine-Learning Workloads with Intel® Math Kernel Library 3

Challenges of Apache Spark MLlib BLAS
and Linear Algebra Package (LAPACK)
Implementations
Figure 3 shows the software hierarchy of Spark MLlib and
its integration point with different BLAS and Linear Algebra
Package (LAPACK) implementations. Spark MLlib evokes BLAS
and LAPACK calls provided by the high-level API which netlib-
java* BLAS provides. Individual BLAS and LAPACK libraries can
integrate with MLlib by implementing the function calls that
netlib-java BLAS exposes to low-level libraries.

f2jBLAS is the default library for Spark MLlib and is
implemented in Java; thus, it does not require the Java Native
Interface (JNI) to be called from a Java Virtual Machine (JVM)
process. Native implementations of BLAS and LAPACK, such
as Automatically Tuned Linear Algebra Software (ATLAS),
OpenBLAS, and ARnoldi PACKage (ARPACK), are naturally
written in low-level languages such as FORTRAN* and C to
achieve top performance and called by the JNI within a JVM.
However, these libraries are targeted for general CPU use, so
their implementations are not fully optimized to use all the
CPU instructions provided by a given architecture.

Intel MKL is a BLAS and LAPACK implementation optimized
for Intel® Xeon® processors. It offers significant performance
advantages over other implementations, as discussed later in
this paper. Intel MKL is free for download and is included with
Cloudera Distribution for Hadoop* (CDH*).

Test Methodology
Our tests show that Intel MKL significantly speeds up machine-
learning algorithms when used with Spark MLlib on Intel
architecture, compared to f2jBLAS. We focused on how MLlib
can take advantage of the Intel® Advanced Vector Extensions
512 (Intel® AVX-512) on Intel Xeon Scalable processor to
accelerate BLAS computations. The elapsed time of algorithms
computed using f2jBLAS serve as the baseline metric.

The tests used the spark-perf machine-learning benchmark
(see Appendix B for detailed test steps).8 We selected six
popular machine-learning algorithms for our MLlib tests:
• Alternating Least Squares (ALS)
• Principal Component Analysis (PCA)
• Latent Dirichlet Allocation (LDA)
• Singular Value Decomposition (SVD)
• Logistic regression

• Linear regression

Appendix B contains information on hardware, software,
workload, and CDH service configuration for our tests.
Appendix C includes optimization and tuning information.

netlib-java* Basic Linear Algebra Subprograms (BLAS)

Apache Spark* MLlib

Java Native Interface (JNI)

Intel® Math Kernel Library (Intel® MKL)

Intel® Xeon® Processor Scalable Family

Extension
Instruction Sets

General
Instruction Set

f2jBLAS

Intel® Advanced Vector
Extensions 512 (Intel® AVX-512)

Figure 3. The Apache Spark* MLlib software stack and associated BLAS implementations can take advantage
of Intel® architecture and the Intel® Math Kernel Library to accelerate machine-learning algorithms.

Performance Brief | Accelerate Machine-Learning Workloads with Intel® Math Kernel Library 4

Results
Figure 4 shows the absolute values for training-time
performance for the different machine-learning workloads
we tested with f2jBLAS and Intel MKL. The y-axis shows
training time in seconds (log scale) and the x-axis represents
the machine-learning workload that is included in the Spark
MLlib framework. The time measured is reported by the
spark-perf benchmark and does not include time taken to
read data from the Hadoop Distributed File System* (HDFS*).
A lower training time is better.

In Figure 5, ALS using Intel MKL shows an approximate 7.9x
speedup of training time compared to the MLlib default library
(f2jBLAS). The other algorithms also benefit from using Intel
MKL, gaining from 1.08x to 2.0x compared to f2jBLAS.

As seen in Figure 5, the training-time performance speedup
varies for different algorithms. The following discussion
explains what is happening with each algorithm.

ALS shows the largest speedup for training time (7.9x)
from using Intel MKL compared to using f2jBLAS, because
it has more than 548 million BLAS calls that are routed
to Intel MKL, which takes advantage of the Intel AVX-
512 instruction-set architecture available on Intel Xeon
Scalable processors to accelerate vector operations.9 PCA
and SVD have approximately five million calls to the level 2
DSPR subroutine, and accordingly show a 66 to 76 percent
performance gain compared to f2jBLAS, due to the matrix
operation optimizations from Intel MKL and the vector
operation optimizations from Intel AVX-512. LDA also invokes
millions of DSPR calls and shows a 2.0x speedup from Intel
MKL compared to f2jBLAS.

In contrast, logistic regression and linear regression have a
limited number of level 1 BLAS function invocations. This
is the reason for the maximum performance gains in ALS
training times. Since the ALS algorithm makes approximately
548 million BLAS calls, there is a noticeable performance
improvement with respect to run time. See Table A1 in
Appendix A for information on how often level 1, 2, and 3
BLAS subroutines were called in the different machine-
learning workload that we tested. For detailed workload
configurations, refer to Table B3 in Appendix B.

Apache Spark* MLlib

Training-Time Performance

Running spark-perf Benchmark, Lower Is Better

M
ac

hi
ne

-L
ea

rn
in

g
W

or
kl

oa
ds

Training Time (seconds)
Logarithmic Scale

Alternating Least

Squares

Principal Component

Analysis

Singular Vector

Decomposition

Latent Dirichlet

Allocation

Logistic Regression

Linear Regression

f2jBLAS Intel® Math Kernel Library (Intel® MKL)

10,0001,000100101

5,560

5,339

5,130

7,801

244

166

707

3,208

2,911

3,887

225

152

Figure 4. spark-perf benchmark results, comparing
Intel® Math Kernel Library to MLlib’s default Basic Linear
Algebra Subprograms (BLAS) implementation.

Apache Spark* MLlib

Training-Time Performance Speedup

Running spark-perf Benchmark, Higher Is Better

f2jBLAS Intel® Math Kernel Library (Intel® MKL)

M
ac

hi
ne

 L
ea

rn
in

g
W

or
kl

oa
ds

Relative Speedup

Alternating Least

Squares

Principal Component

Analysis

Singular Vector

Decomposition

Latent Dirichlet

Allocation

Logistic Regression

Linear Regression

8x6x4x2x0

7.86

1.66

1.76

2.01

1.08

1.09

1.00

1.00

1.00

1.00

1.00

1.00

Figure 5. Intel® Math Kernel Library speedup for various
machine-learning algorithms.

Intel® MKL can speed up

machine-learning training by

up to 7.9 times compared to

default BLAS libraries37.9X

Performance Brief | Accelerate Machine-Learning Workloads with Intel® Math Kernel Library 5

7.9x Increase in Machine-Learning
Performance with Intel MKL
Modern, successful enterprises require real-time solutions
that can keep pace with the accelerating volume of big data.
Machine-learning systems have recently demonstrated
superhuman performance in domains as diverse as
recognizing objects in images, detecting fraud, diagnosing
disease, making product recommendations, and even
playing poker.10 In our tests, the ALS recommendation engine
algorithm demonstrated an exceptional 7.9x speedup of
training time when using Intel MKL, compared to using
f2jBLAS.3 Faster training time means faster analytics—all of
which lead to near-real-time or real-time insights that can
enhance the customer experience and drive new revenue.

While ALS showed the greatest performance improvement,
the other machine-learning algorithms we tested also
benefited, with a range of 1.08x to 2.0x speedup of training
time with no extra cost associated with cluster resources.

By taking advantage of Intel AVX-512, Intel MKL accelerates
machine learning without requiring any modifications to
MLlib source code or the purchase of specialized hardware.
Intel MKL makes it possible to train with larger data sets,
explore a larger range of the model hyperparameter space,
and train more models. Enterprises can use Intel MKL to find
new and interesting patterns, retrain existing models in real
time as new data becomes available, increase development
agility, and shorten time to insight.

Find the solution that is right for your organization.
Contact your Intel representative or visit
Intel® AI Academy.

Real-World Use Cases for
Machine-Learning Algorithms
Being able to train machine-learning models faster
can provide a competitive edge. Consider the following
examples for LDA, ALS, and SVD:

LDA can be applied to many areas, including brand
monitoring, customer insights, retail marketing analytics,
and social media analysis. For example, Algorithmia offers
LDA as part of its “Analyze Tweets*” service: Introduction
to Twitter Topic and Sentiment Analysis.

ALS is a recommendation algorithm that helps make
automatic predictions about customers’ interests—a
cornerstone of modern eCommerce, eBanking, and
e-almost-anything-else. See how Spotify is using ALS:
Music Recommendations at Scale with Spark.

SVD is a collaborative filtering algorithm that uses matrix
factorization; it has broad applicability across many
disciplines. For example, a team of researchers used SVD
to predict product duration for adaptive advertisement.

Learn More
You may find the following resources useful:
• Reference Architecture: Machine Learning-Based

Advanced Analytics Using Intel® Technology
• Intel® Xeon® Scalable Processors
• Intel® Math Kernel Library
• Intel® Advanced Analytics
• BLAS Information
• spark-perf benchmark

Performance Brief | Accelerate Machine-Learning Workloads with Intel® Math Kernel Library 6

Appendix A: Libraries for Comparison
We compared the following two libraries:

• f2jBLAS, which is the default BLAS library for MLlib. The primary use for f2j is to provide
numerical linear algebra software originally written in FORTRAN* as Java*-class files.
The numerical libraries are distributed as class files produced by an f2j translator.
The f2j translator is a formal compiler that translates programs written using a subset
of FORTRAN 77 into a form that can be executed on JVMs.

• Intel® Math Kernel Library, which optimizes code with minimal effort for future
generations of Intel® Xeon® processors. It is compatible with a wide variety of compilers,
languages, operating systems, and linking and threading models. It features highly
optimized, threaded, and vectorized math functions that maximize performance on
each processor family. In addition, it uses industry-standard C and FORTRAN APIs for
compatibility with popular BLAS, LAPACK, and Fastest Fourier Transform in the West
(FFTW) functions, with no code changes required. Intel Math Kernel Library dispatches
optimized code for each processor automatically without the need to branch code and
is optimized for single-core vectorization and cache utilization.

Table A1. Function Calls Profiled from Fommil_Netlib_Java*

Workload
BLAS

Functions
Number of

Times Invoked
Alternating Least Squares (ALS) DSPR 149,554,032

SSCAL 36,895,513

DAXPY 150,885,368

DDOT 51,881,970

SNRM2 41,648,800

DPPSV 117,335,569

Principal Component Analysis (PCA) DSPR 4,999,989

DAXPY 2,214

Singular Value Decomposition (SVD) DSPR 4,999,971

DAXPY 1,107

Latent Dirichlet Allocation (LDA) DSPR 62,616,544

DGEMV 603,201

DAXPY 488,123,049

DCOPY 1,427,614,037

Logistic Regression DAXPY 111,650

Linear Regression DDOT 12,480,819

DAXPY 2,233

Performance Brief | Accelerate Machine-Learning Workloads with Intel® Math Kernel Library 7

Appendix B: Test Configuration Information
This appendix describes the test steps and provides configuration details.

Test Steps
We used the following methodology for our Apache Spark* MLlib tests:

1. Build spark-perf once.

2. Configure hyper-parameters in workload settings (see Table B3).

3. Generate data and store it in HDFS*.

4. For each of the two libraries (f2jBLAS and Intel® Math Kernel Library):

a. Run three iterations of each workload.

b. Record training time from benchmark output.

c. Collect and process data collected by the Performance Analysis Tool (PAT).
(PAT automates benchmark execution and data collection and uses Linux*
performance counters.)

The following tables provide information about the hardware, software, workload,
and Cloudera Distribution for Hadoop* configuration used in our Spark MLlib
machine-learning tests. Click here for additional hardware configuration details.

Table B1. Hardware Configuration

Component Management Node Master Node Worker Nodes
Number of Nodes 1 1 6

Processor Intel® Xeon® Platinum 8168
processor (2.70 GHz)

Intel Xeon Platinum 8168
processor (2.70 GHz)

Intel Xeon Platinum 8168 processor
(2.70 GHz)

Sockets Dual-socket Dual-socket Dual-socket

Core Count 48 48

Thread Count 96 96

Base Frequency 2.7 GHz 2.7 GHz

Turbo Frequency 3.7 GHz 3.7 GHz

Hyper-Threading Enabled Yes Yes Yes

Memory 256 GB - 8x 32 GB DDR4
2,666 MHz RDIMM

384 GB - 12x 32 GB DDR4
2,666 MHz RDIMM

384 GB - 12x 32 GB DDR4
2,666 MHz RDIMM

Network Intel® Ethernet Connection X722 for
10G BASE-T, Speed: 10000 Mb/s

Intel Ethernet Connection X722 for
10G BASE-T, Speed: 10000 Mb/s

Intel Ethernet Connection X722 for
10G BASE-T, Speed: 10000 Mb/s

OS Drive Intel® SSD DC S3700 Series (800 GB,
2.5-inch SATA 6 Gb/s, 25nm, MLC)

Intel SSD DC S3700 Series (800 GB,
2.5-inch SATA 6 Gb/s, 25nm, MLC)

Intel SSD DC S3700 Series (800 GB,
2.5-inch SATA 6 Gb/s, 25nm, MLC)

Data Drive n/a NameNode:
2x 2.5” Seagate ST2000NX0403*
HDD 2 TB SATA 6 Gb/s 7200RPM
128 MB buffer

DataNode:
8x 2.5” Seagate ST2000NX0403
HDD 2 TB SATA 6 Gb/s 7200RPM
128 MB buffer

Tiered Storage (Block I/O) n/a n/a Intel SSD DC P3520 Series
(2 TB, 1/2-Height PCIe* 3.0 x4,
3D NAND G1, MLC)

DC = Data Center HDD = hard disk drive MLC = multi-level cell SSD = solid state drive

Performance Brief | Accelerate Machine-Learning Workloads with Intel® Math Kernel Library 8

Table B2. Software Configuration

Component Management Node
OS CentOS Linux* release 7.3.1611 (Core)

(inclusive of the patch for Spectre and Meltdown)

Kernel 3.10.0-693.11.6.el7.x86_64

Java* Development Kit (JDK) Java HotSpot* 64-bit Server VM
(build 25.131-b11, mixed mode)

Apache Spark* 1.6.0

Cloudera Distribution for Hadoop* (CDH*) CDH 5.11.0, Parcels

Apache Hadoop* Hadoop 2.6.0-cdh5.11.0

Apache Hive* Hive 1.1.0-cdh5.10.0

Intel® Math Kernel Library 2018.0.082

spark-perf Version 1 - github.com/databricks/spark-perf

Table B3. Workload Configuration

Component Dataset Configuration Size Dataset Size Configuration Parameters
Alternating Least Squares (ALS) num-users=100M

num-products=100M

num-ratings=50M

rank=400

1.7 GB inter-trial-wait=10

random-seed=5

rank=400

reg-param=0.1

num-partitions=1140

num-iterations=1

Latent Dirichlet Allocation (LDA) num documents=60M

num-vocab=60K

num-topics=80

document-length=500

140.6 GB inter-trial-wait=10

random-seed=5

num partitions=1140

num-iterations=5

optimizer=online

Singular Value Decomposition (SVD) num-rows=5M

num-columns=8K

rank=4K

286.6 GB inter-trial-wait=10

random-seed=5

num-partitions=1140

num-iterations=5

optimizer=online

Principal Component Analysis (PCA) num-rows=5M

num-columns=8K

rank=50

286.6 GB inter-trial-wait=10

random-seed=5

num-partitions=1140

num-iterations=5

optimizer=online

Logistic Regression num-examples=1.2M

num-features=100K
1.1 TB inter-trial-wait=10

random-seed=5

num-partitions=1140

num-iterations=50

step-size=0.001

reg-type=l1

reg-param=0.1

optimizer=sgd

per-negative=0.3

loss=logistic

elastic-net-param=0.01

feature-noise=0.1

Linear Regression num-examples=10M

num-features=10K
711.3 GB inter-trial-wait=10

random-seed=5

num-partitions=1140

num-iterations=50

step-size=0.001

reg-type=l1

reg-param=0.1

optimizer=sgd

per-negative=0.3

loss=logistic

elastic-net-param=0.01

feature-noise=0.1

Performance Brief | Accelerate Machine-Learning Workloads with Intel® Math Kernel Library 9

Table B4. Cloudera Distribution for Hadoop* (CDH*) Service Configuration

Service Management Node 1 Master Node Worker Nodes (1-6)

HDFS* NameNode ü

HDFS Secondary NameNode ü

HDFS DataNode ü
YARN* MR2 Included Resource Manager ü

YARN MR2 Included Job History Server ü

YARN MR2 Included Node Manager ü
Spark* History Server ü

Spark Gateway ü ü
Hive* Server2 ü

Hive Metastore Server ü

Hive Gateway ü ü
ZooKeeper* ü

Cloudera Management Service Activity Monitor ü

Cloudera Management Service Alert Publisher ü

Cloudera Management Service Event Server ü

Cloudera Management Service Host Monitor ü

Cloudera Management Service Report Manager ü

Cloudera Management Service Service Monitor ü

Performance Brief | Accelerate Machine-Learning Workloads with Intel® Math Kernel Library 10

Appendix C: Optimizations and Tunings
The following sections describe BIOS, OS, Apache Hadoop*, and Apache Spark* tunings.

BIOS Tuning
We chose “Performance” for the CPU Power and Performance Policy.

OS Tuning
• Disable Transparent Huge Pages

 ₋ echo never > /sys/kernel/mm/transparent_hugepage/defrag

 ₋ echo never > /sys/kernel/mm/transparent_hugepage/enabled

• Disable Swapping
 ₋ swapoff –a

• Set Scaling Governor to Performance
 ₋ /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

• Directory Mount Options
 ₋ Set Directory Mount Options ext4 defaults,noatime

• Enable Jumbo Frames. The OS uses the maximum transmission unit (MTU) to control the maximum
size of a packet or frame sent over TCP. By default, MTU is set to 1500 but you can adjust its value
upwards to a maximum of 9000. When the MTU value is greater than its default value, this is called
“Jumbo Frames.” To change the MTU value, add MTU=9000 in /etc/sysconfig/network-scripts/ifcfg-
eth0 or whatever your eth device name is. You must restart the network service before the change
takes effect.

• Open File Handles and Files. By default, the maximum number of open files is set to 1024 for each
user. However, we found the default value resulted in a java.io.FileNotFoundException (Too many open
files) and our jobs failed. To avoid this scenario, we set the open file limit to 32832, for both hard and
soft limits, as follows:

 ₋ ulimit -Sn 32832
 ₋ ulimit -Hn 38232

Apache Hadoop Tuning
We used most of the default YARN* and Spark settings, recommended by Cloudera Distribution for
Hadoop* (CDH*), except for the ones listed in Table C1.

Table C1. Apache Hadoop* Tuning Settings

YARN* Property Value
Resource Manager yarn.scheduler.maximum-allocation-mb 380 GB

yarn.scheduler.minimum-allocation-mb 1 GB

yarn.resourcemanager.scheduler.class Fair Scheduler

Node Manager Container memory 380 GB

yarn.nodemanager.resource.cpu-vcores 96

Gateway mapreduce.map.memory.mb 3.9 GB

mapreduce.reduce.memory.mb 3.9 GB

Client Java Heap Size in Bytes 3 GB

mapreduce.map.java.opts.max.heap 3 GB

mapreduce.reduce.java.opts.max.heap 3 GB

mapreduce.task.io.sort.mb 512 MB

mapreduce.map.output.compress.codec org.apache.hadoop.io.compress.SnappyCodec

mapreduce.output.fileoutputformat.compress.codec org.apache.hadoop.io.compress.SnappyCodec

Hive* Gateway Client Java Heap Size in Bytes 2 GB

Performance Brief | Accelerate Machine-Learning Workloads with Intel® Math Kernel Library 11

Apache Spark Tuning
Table C2 shows the general tuning we used for Spark, as well as settings related to Intel® Math Kernel Library.

Table C2. Apache Spark* Tuning

Property Value
Overall Apache Spark* Tuning

spark.executor.memory 15850 MB

spark.driver.memory 340 GB

spark.executor.cores 5

spark.memory.fraction 0.9

spark.driver.maxResultSize 256 GB

spark.scheduler.mode FAIR

spark.yarn.executor.memoryOverhead 4096

spark.scheduler.allocation.file /etc/spark/conf/fairscheduler.xml

spark.executor.extraJavaOptions -XX:+UseG1GC -XX:MaxGCPauseMillis=100 -XX:ParallelGCThreads=51

spark.driver.extraJavaOptions -XX:+UseG1GC -XX:MaxGCPauseMillis=100 -XX:ParallelGCThreads=51

spark.serializer org.apache.spark.serializer.JavaSerializer

Settings Related to Intel® Math Kernel Library

spark.executor.extraClassPath /opt/intel/mkl/wrapper/mkl_wrapper.jar

spark.driver.extraClassPath /opt/intel/mkl/wrapper/mkl_wrapper.jar

spark.executor.extraJavaOptions -Dcom.github.fommil.netlib.BLAS=com.intel.mkl.MKLBLAS

-Dcom.github.fommil.netlib.LAPACK=com.intel.mkl.MKLLAPACK

spark.driver.extraJavaOptions -Dcom.github.fommil.netlib.BLAS=com.intel.mkl.MKLBLAS

-Dcom.github.fommil.netlib.LAPACK=com.intel.mkl.MKLLAPACK

spark.executorEnv.OMP_NUM_THREADS 1

spark.driverEnv.OMP_NUM_THREADS 1

spark.yarn.appMasterEnv.OMP_NUM_THREADS 1

Performance Brief | Accelerate Machine-Learning Workloads with Intel® Math Kernel Library 12

 Solution Provided By:

1 Gartner, October 2017, “Top 10 Strategic Technology Trends for 2018.” gartner.com/ngw/globalassets/en/information-technology/documents/
top-10-strategic-technology-trends-for-2018.pdf

2 Gartner, 2017, “The Business Impact and Use Cases for Artificial Intelligence.” gartnerinfo.com/apacemergingtechtaipei/
TheBusinessImpactandUseCasesforAI_TracyTsai.pdf

3 For test configuration details refer to Appendix B.
4 IFI Claims Patent Services, January 2018, “8 Fast Growing Technologies.” ificlaims.com/rankings-8-fast-growing.htm
5 IDC, September 2017, “IDC Spending Guide Forecasts Worldwide Spending on Cognitive and Artificial Intelligence Systems to Reach $57.6

Billion in 2021.” idc.com/getdoc.jsp?containerId=prUS43095417
6 Deloitte, 2018, “2018 Global TMT Predictions.” deloitte.com/global/en/pages/technology-media-and-telecommunications/articles/tmt-

predictions.html#
7 For more information on Basic Linear Algebra Subroutines (BLAS) and BLAS wrappers, refer to the following sources of information:

Data Science Made Simpler; GitHub’s netlib-java page; Netlib.org’s BLAS page
8 For information about all the algorithms in the spark-perf suite, refer to spark.apache.org/docs/1.6.1/mllib-guide.html
9 For more information about using Intel® Advanced Vector Extensions 512, refer to “Instruction Set Specific Dispatching on Intel® Architectures”

at software.intel.com/en-us/mkl-linux-developer-guide-instruction-set-specific-dispatching-on-intel-architectures
10 Financial Times, July 2018, “Machine learning will be the engine of global growth.” ft.com/content/133dc9c8-90ac-11e8-9609-3d3b945e78cf
 Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will

affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete
information about performance and benchmark results, visit intel.com/benchmarks.

 Intel® Advanced Vector Extensions (Intel® AVX)* provides higher throughput to certain processor operations. Due to varying processor
power characteristics, utilizing AVX instructions may cause a) some parts to operate at less than the rated frequency and b) some parts
with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance varies depending on hardware,
software, and system configuration and you can learn more at intel.com/go/turbo.

 Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web
site and confirm whether referenced data are accurate.

 Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across
different processor families: Learn About Intel® Processor Numbers.

 All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product
specifications and roadmaps.

 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service activation.
Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer
or retailer, or learn more at intel.com.

 Intel, the Intel logo, and Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
 *Other names and brands may be claimed as the property of others. © 2018 Intel Corporation 1018/BGOW/KC/PDF 337180-001US

