
Executive Summary
Machine learning—a subset of artificial intelligence (AI)—is quickly entering the 
mainstream. According to Gartner, machine-learning strategy development and 
investment is already in the top five CIO priorities.1 And by 2021, 30 percent of net 
new revenue growth from industry-specific solutions will include AI.2 Enterprises 
are already seeing business value generated from their machine-learning 
deployments. And the use cases for machine learning are expansive, ranging 
from detecting fraud, making product recommendations, and automating various 
business processes and tasks to enabling the next generation of applications 
such as autonomous cars. Machine learning allows researchers, data scientists, 
engineers, and analysts to produce reliable, repeatable decisions and results. It can 
reveal hidden insights through learning from historical relationships and trends 
in the data. As shown in Figure 1, machine learning running on Intel® architecture 
speeds up model training time by up to 7.9x.3

Accelerating model training time means faster predictive analytics, which can 
provide a competitive edge in today’s fast-paced business environment. The Intel® 
Math Kernel Library (Intel® MKL), Intel® Advanced Vector Extensions 512 (Intel® 
AVX-512), and Intel® Xeon® Scalable processors all contribute to machine-learning 
workload acceleration, without having to make any changes to Apache Spark* code 
or acquiring specialized hardware.
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Figure 1. Machine-learning algorithms optimized by Intel® Math Kernel Library and 
Intel® Advanced Vector Extensions 512 run faster on Intel® Xeon® Scalable processors.
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Introduction
Recent advances in machine learning, a branch of artificial 
intelligence (AI), are driving a surge in global productivity and 
economic growth. Consider these facts:

• Machine-learning patents grew at a 34 percent compound 
annual growth rate (CAGR) between 2013 and 2017, the 
third-fastest growing category of all patents granted.4

• IDC forecasts that spending on AI and machine learning will 
grow from USD 12 billion in 2017 to USD 57.6 billion by 2021.5

• Deloitte Global predicts the number of machine-learning 
pilots and implementations will double in 2018 compared 
to 2017, and double again by 2020.6

Enterprises are already deriving business value from their 
machine-learning projects, which span a wide variety of use 
cases such as fraud detection, product recommendations, 
business process automation and autonomous cars. The 
growing use of machine learning is tightly correlated with 
the proliferation of unstructured data and the need for 
enterprises to remain competitive by improving time to 
market, driving innovation, and generating real-time insights 
in a digital economy.

Enterprises of all types and sizes across industries collect vast 
amounts of data (typically in the petabytes range), analyze 
it, and make decisions based on the outcome of the analysis. 
Machine learning is a method used to devise complex 
models and algorithms that lend themselves to prediction; 
in commercial use this is known as predictive analytics. It 
is worth noting that the two go hand-in-hand as predictive 
models typically include a machine-learning algorithm.  

For example, product recommendation, a feature on most 
eCommerce websites, creates models using the Singular Value 
Decomposition (SVD) algorithm, which learns from historical 
relationships and trends in the data to suggest products likely 
to be interesting to a particular consumer. Because machine-
learning models and algorithms are compute-intensive, it is 
important to find ways to speed up the computing process to 
power faster business and scientific decision making.

Gain Value from Machine Learning with 
Intel® Math Kernel Library
The Apache Spark* MLlib framework is widely used in machine 
learning to solve high-value business use cases using its in-
memory compute architecture and native linear algebra library 
integration. Further optimization to the computing process can 
be achieved using the Intel® Math Kernel Library (Intel® MKL). 
Intel MKL is a widely used library by enterprises of all types 
and sizes. It is designed to accelerate math processing routines, 
increase algorithm performance, and reduce development 
time. The library includes many features, including linear 
algebra, vector statistics, data fitting, and neural networks. The 
performance boost provided with Intel MKL is a major benefit 
because it does not require a modified version of Spark, or 
modifications to Spark application code; it also does not 
require procurement of extra or special hardware. Only a few 
steps are needed to install Intel MKL on the cluster.

This paper compares the performance of Java*-based 
f2jBLAS (the default MLlib linear algebra library) and Intel 
MKL for machine-learning algorithms provided in the Apache 
Spark MLlib framework.

Overview of Apache Spark* and Basic Linear 
Algebra Subprograms (BLAS)
Apache Spark is a unified analytics engine for big data 
processing, with built-in modules for SQL, streaming, 
machine learning, and graph processing. Apache Spark MLlib 
is a distributed machine-learning framework and is a leading 
solution for machine learning on large distributed datasets. 
Many common machine-learning and statistical algorithms, 
including classification, regression, clustering, collaborative 
filtering, dimensionality reduction, as well as underlying 
optimization primitives have been implemented and are 
shipped with MLlib, which simplifies large-scale machine-
learning pipelines. Many machine-learning algorithms use 
linear algebra. Basic Linear Algebra Subprograms (BLAS) are 
routines that provide standard building blocks for performing 
basic vector and matrix operations.7

Apache Spark* Solution Stack

Spark
 SQL

Spark
 Streaming

Spark
 MLlib

Spark
 GraphX

Figure 2. Apache Spark* is a unified analytics engine for big data processing.
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Challenges of Apache Spark MLlib BLAS 
and Linear Algebra Package (LAPACK) 
Implementations
Figure 3 shows the software hierarchy of Spark MLlib and 
its integration point with different BLAS and Linear Algebra 
Package (LAPACK) implementations. Spark MLlib evokes BLAS 
and LAPACK calls provided by the high-level API which netlib-
java* BLAS provides. Individual BLAS and LAPACK libraries can 
integrate with MLlib by implementing the function calls that 
netlib-java BLAS exposes to low-level libraries.

f2jBLAS is the default library for Spark MLlib and is 
implemented in Java; thus, it does not require the Java Native 
Interface (JNI) to be called from a Java Virtual Machine (JVM) 
process. Native implementations of BLAS and LAPACK, such 
as Automatically Tuned Linear Algebra Software (ATLAS), 
OpenBLAS, and ARnoldi PACKage (ARPACK), are naturally 
written in low-level languages such as FORTRAN* and C to 
achieve top performance and called by the JNI within a JVM. 
However, these libraries are targeted for general CPU use, so 
their implementations are not fully optimized to use all the 
CPU instructions provided by a given architecture.

Intel MKL is a BLAS and LAPACK implementation optimized 
for Intel® Xeon® processors. It offers significant performance 
advantages over other implementations, as discussed later in 
this paper. Intel MKL is free for download and is included with 
Cloudera Distribution for Hadoop* (CDH*).

Test Methodology
Our tests show that Intel MKL significantly speeds up machine-
learning algorithms when used with Spark MLlib on Intel 
architecture, compared to f2jBLAS. We focused on how MLlib 
can take advantage of the Intel® Advanced Vector Extensions 
512 (Intel® AVX-512) on Intel Xeon Scalable processor to 
accelerate BLAS computations. The elapsed time of algorithms 
computed using f2jBLAS serve as the baseline metric.

The tests used the spark-perf machine-learning benchmark 
(see Appendix B for detailed test steps).8 We selected six 
popular machine-learning algorithms for our MLlib tests:
• Alternating Least Squares (ALS)
• Principal Component Analysis (PCA)
• Latent Dirichlet Allocation (LDA)
• Singular Value Decomposition (SVD)
• Logistic regression

• Linear regression

Appendix B contains information on hardware, software, 
workload, and CDH service configuration for our tests. 
Appendix C includes optimization and tuning information.

netlib-java* Basic Linear Algebra Subprograms (BLAS)

Apache Spark* MLlib

Java Native Interface (JNI)

Intel® Math Kernel Library (Intel® MKL)

Intel® Xeon® Processor Scalable Family

Extension 
Instruction Sets

General 
Instruction Set

f2jBLAS

Intel® Advanced Vector 
Extensions 512 (Intel® AVX-512)

Figure 3. The Apache Spark* MLlib software stack and associated BLAS implementations can take advantage 
of Intel® architecture and the Intel® Math Kernel Library to accelerate machine-learning algorithms.
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Results
Figure 4 shows the absolute values for training-time 
performance for the different machine-learning workloads 
we tested with f2jBLAS and Intel MKL. The y-axis shows 
training time in seconds (log scale) and the x-axis represents 
the machine-learning workload that is included in the Spark 
MLlib framework. The time measured is reported by the 
spark-perf benchmark and does not include time taken to 
read data from the Hadoop Distributed File System* (HDFS*). 
A lower training time is better.

In Figure 5, ALS using Intel MKL shows an approximate 7.9x 
speedup of training time compared to the MLlib default library 
(f2jBLAS). The other algorithms also benefit from using Intel 
MKL, gaining from 1.08x to 2.0x compared to f2jBLAS.

As seen in Figure 5, the training-time performance speedup 
varies for different algorithms. The following discussion 
explains what is happening with each algorithm. 

ALS shows the largest speedup for training time (7.9x) 
from using Intel MKL compared to using f2jBLAS, because 
it has more than 548 million BLAS calls that are routed 
to Intel MKL, which takes advantage of the Intel AVX-
512 instruction-set architecture available on Intel Xeon 
Scalable processors to accelerate vector operations.9 PCA 
and SVD have approximately five million calls to the level 2 
DSPR subroutine, and accordingly show a 66 to 76 percent 
performance gain compared to f2jBLAS, due to the matrix 
operation optimizations from Intel MKL and the vector 
operation optimizations from Intel AVX-512. LDA also invokes 
millions of DSPR calls and shows a 2.0x speedup from Intel 
MKL compared to f2jBLAS. 

In contrast, logistic regression and linear regression have a 
limited number of level 1 BLAS function invocations. This 
is the reason for the maximum performance gains in ALS 
training times. Since the ALS algorithm makes approximately 
548 million BLAS calls, there is a noticeable performance 
improvement with respect to run time. See Table A1 in 
Appendix A for information on how often level 1, 2, and 3 
BLAS subroutines were called in the different machine-
learning workload that we tested. For detailed workload 
configurations, refer to Table B3 in Appendix B.
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Figure 4. spark-perf benchmark results, comparing 
Intel® Math Kernel Library to MLlib’s default Basic Linear 
Algebra Subprograms (BLAS) implementation.
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7.9x Increase in Machine-Learning 
Performance with Intel MKL
Modern, successful enterprises require real-time solutions 
that can keep pace with the accelerating volume of big data. 
Machine-learning systems have recently demonstrated 
superhuman performance in domains as diverse as 
recognizing objects in images, detecting fraud, diagnosing 
disease, making product recommendations, and even 
playing poker.10 In our tests, the ALS recommendation engine 
algorithm demonstrated an exceptional 7.9x speedup of 
training time when using Intel MKL, compared to using 
f2jBLAS.3 Faster training time means faster analytics—all of 
which lead to near-real-time or real-time insights that can 
enhance the customer experience and drive new revenue.

While ALS showed the greatest performance improvement, 
the other machine-learning algorithms we tested also 
benefited, with a range of 1.08x to 2.0x speedup of training 
time with no extra cost associated with cluster resources. 

By taking advantage of Intel AVX-512, Intel MKL accelerates 
machine learning without requiring any modifications to 
MLlib source code or the purchase of specialized hardware. 
Intel  MKL makes it possible to train with larger data sets, 
explore a larger range of the model hyperparameter space, 
and train more models. Enterprises can use Intel MKL to find 
new and interesting patterns, retrain existing models in real 
time as new data becomes available, increase development 
agility, and shorten time to insight.

Find the solution that is right for your organization. 
Contact your Intel representative or visit  
Intel® AI Academy.

Real-World Use Cases for  
Machine-Learning Algorithms
Being able to train machine-learning models faster 
can provide a competitive edge. Consider the following 
examples for LDA, ALS, and SVD:

LDA can be applied to many areas, including brand 
monitoring, customer insights, retail marketing analytics, 
and social media analysis. For example, Algorithmia offers 
LDA as part of its “Analyze Tweets*” service: Introduction 
to Twitter Topic and Sentiment Analysis.

ALS is a recommendation algorithm that helps make 
automatic predictions about customers’ interests—a 
cornerstone of modern eCommerce, eBanking, and 
e-almost-anything-else. See how Spotify is using ALS: 
Music Recommendations at Scale with Spark.

SVD is a collaborative filtering algorithm that uses matrix 
factorization; it has broad applicability across many 
disciplines. For example, a team of researchers used SVD 
to predict product duration for adaptive advertisement.

Learn More
You may find the following resources useful:
• Reference Architecture: Machine Learning-Based 

Advanced Analytics Using Intel® Technology
• Intel® Xeon® Scalable Processors
• Intel® Math Kernel Library
• Intel® Advanced Analytics
• BLAS Information
• spark-perf benchmark
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Appendix A: Libraries for Comparison
We compared the following two libraries:

• f2jBLAS, which is the default BLAS library for MLlib. The primary use for f2j is to provide 
numerical linear algebra software originally written in FORTRAN* as Java*-class files.  
The numerical libraries are distributed as class files produced by an f2j translator.  
The f2j translator is a formal compiler that translates programs written using a subset  
of FORTRAN 77 into a form that can be executed on JVMs. 

• Intel® Math Kernel Library, which optimizes code with minimal effort for future 
generations of Intel® Xeon® processors. It is compatible with a wide variety of compilers, 
languages, operating systems, and linking and threading models. It features highly 
optimized, threaded, and vectorized math functions that maximize performance on 
each processor family. In addition, it uses industry-standard C and FORTRAN APIs for 
compatibility with popular BLAS, LAPACK, and Fastest Fourier Transform in the West 
(FFTW) functions, with no code changes required. Intel Math Kernel Library dispatches 
optimized code for each processor automatically without the need to branch code and 
is optimized for single-core vectorization and cache utilization.

Table A1. Function Calls Profiled from Fommil_Netlib_Java*

Workload
BLAS 

Functions
Number of 

Times Invoked
Alternating Least Squares (ALS) DSPR 149,554,032

SSCAL 36,895,513

DAXPY 150,885,368

DDOT 51,881,970

SNRM2 41,648,800

DPPSV 117,335,569

Principal Component Analysis (PCA) DSPR 4,999,989

DAXPY 2,214

Singular Value Decomposition (SVD) DSPR 4,999,971

DAXPY 1,107

Latent Dirichlet Allocation (LDA) DSPR 62,616,544

DGEMV 603,201

DAXPY 488,123,049

DCOPY 1,427,614,037

Logistic Regression DAXPY 111,650

Linear Regression DDOT 12,480,819

DAXPY 2,233
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Appendix B: Test Configuration Information
This appendix describes the test steps and provides configuration details.

Test Steps
We used the following methodology for our Apache Spark* MLlib tests:

1. Build spark-perf once.

2. Configure hyper-parameters in workload settings (see Table B3).

3. Generate data and store it in HDFS*.

4. For each of the two libraries (f2jBLAS and Intel® Math Kernel Library):

a. Run three iterations of each workload.

b. Record training time from benchmark output.

c. Collect and process data collected by the Performance Analysis Tool (PAT). 
(PAT automates benchmark execution and data collection and uses Linux* 
performance counters.)

The following tables provide information about the hardware, software, workload, 
and Cloudera Distribution for Hadoop* configuration used in our Spark MLlib 
machine-learning tests. Click here for additional hardware configuration details.

Table B1. Hardware Configuration

Component Management Node Master Node Worker Nodes
Number of Nodes 1 1 6

Processor Intel® Xeon® Platinum 8168 
processor (2.70 GHz)

Intel Xeon Platinum 8168  
processor (2.70 GHz)

Intel Xeon Platinum 8168 processor 
(2.70 GHz)

Sockets Dual-socket Dual-socket Dual-socket

Core Count 48 48

Thread Count 96 96

Base Frequency 2.7 GHz 2.7 GHz

Turbo Frequency 3.7 GHz 3.7 GHz

Hyper-Threading Enabled Yes Yes Yes

Memory 256 GB - 8x 32 GB DDR4  
2,666 MHz RDIMM

384 GB - 12x 32 GB DDR4  
2,666 MHz RDIMM

384 GB - 12x 32 GB DDR4  
2,666 MHz RDIMM

Network Intel® Ethernet Connection X722 for 
10G BASE-T, Speed: 10000 Mb/s

Intel Ethernet Connection X722 for 
10G BASE-T, Speed: 10000 Mb/s

Intel Ethernet Connection X722 for 
10G BASE-T, Speed: 10000 Mb/s

OS Drive Intel® SSD DC S3700 Series (800 GB, 
2.5-inch SATA 6 Gb/s, 25nm, MLC)

Intel SSD DC S3700 Series (800 GB, 
2.5-inch SATA 6 Gb/s, 25nm, MLC)

Intel SSD DC S3700 Series (800 GB, 
2.5-inch SATA 6 Gb/s, 25nm, MLC)

Data Drive n/a NameNode:  
2x 2.5” Seagate ST2000NX0403* 
HDD 2 TB SATA 6 Gb/s 7200RPM 
128 MB buffer

DataNode: 
8x 2.5” Seagate ST2000NX0403 
HDD 2 TB SATA 6 Gb/s 7200RPM 
128 MB buffer

Tiered Storage (Block I/O) n/a n/a Intel SSD DC P3520 Series  
(2 TB, 1/2-Height PCIe* 3.0 x4,  
3D NAND G1, MLC)

DC = Data Center          HDD = hard disk drive          MLC = multi-level cell          SSD = solid state drive
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Table B2. Software Configuration

Component Management Node
OS CentOS Linux* release 7.3.1611 (Core) 

(inclusive of the patch for Spectre and Meltdown)

Kernel 3.10.0-693.11.6.el7.x86_64

Java* Development Kit (JDK) Java HotSpot* 64-bit Server VM  
(build 25.131-b11, mixed mode)

Apache Spark* 1.6.0

Cloudera Distribution for Hadoop* (CDH*) CDH 5.11.0, Parcels

Apache Hadoop* Hadoop 2.6.0-cdh5.11.0

Apache Hive* Hive 1.1.0-cdh5.10.0

Intel® Math Kernel Library 2018.0.082

spark-perf Version 1 - github.com/databricks/spark-perf

Table B3. Workload Configuration

Component Dataset Configuration Size Dataset Size Configuration Parameters
Alternating Least Squares (ALS) num-users=100M 

num-products=100M 

num-ratings=50M 

rank=400

1.7 GB inter-trial-wait=10 

random-seed=5 

rank=400 

reg-param=0.1 

num-partitions=1140 

num-iterations=1

Latent Dirichlet Allocation (LDA) num documents=60M 

num-vocab=60K 

num-topics=80 

document-length=500

140.6 GB inter-trial-wait=10 

random-seed=5 

num partitions=1140 

num-iterations=5 

optimizer=online

Singular Value Decomposition (SVD) num-rows=5M 

num-columns=8K 

rank=4K

286.6 GB inter-trial-wait=10 

random-seed=5 

num-partitions=1140 

num-iterations=5 

optimizer=online

Principal Component Analysis (PCA) num-rows=5M 

num-columns=8K 

rank=50

286.6 GB inter-trial-wait=10 

random-seed=5 

num-partitions=1140 

num-iterations=5 

optimizer=online

Logistic Regression num-examples=1.2M 

num-features=100K
1.1 TB inter-trial-wait=10 

random-seed=5 

num-partitions=1140 

num-iterations=50 

step-size=0.001 

reg-type=l1 

reg-param=0.1 

optimizer=sgd 

per-negative=0.3 

loss=logistic 

elastic-net-param=0.01 

feature-noise=0.1

Linear Regression num-examples=10M 

num-features=10K
711.3 GB inter-trial-wait=10 

random-seed=5 

num-partitions=1140 

num-iterations=50 

step-size=0.001 

reg-type=l1 

reg-param=0.1 

optimizer=sgd 

per-negative=0.3 

loss=logistic 

elastic-net-param=0.01 

feature-noise=0.1
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Table B4. Cloudera Distribution for Hadoop* (CDH*) Service Configuration

Service Management Node 1 Master Node Worker Nodes (1-6)

HDFS* NameNode ü  

HDFS Secondary NameNode  ü  

HDFS DataNode   ü
YARN* MR2 Included Resource Manager  ü  

YARN MR2 Included Job History Server  ü  

YARN MR2 Included Node Manager   ü
Spark* History Server  ü  

Spark Gateway  ü ü
Hive* Server2  ü  

Hive Metastore Server  ü  

Hive Gateway  ü ü
ZooKeeper*  ü  

Cloudera Management Service Activity Monitor ü   

Cloudera Management Service Alert Publisher ü   

Cloudera Management Service Event Server ü   

Cloudera Management Service Host Monitor ü   

Cloudera Management Service Report Manager ü   

Cloudera Management Service Service Monitor ü   
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Appendix C: Optimizations and Tunings
The following sections describe BIOS, OS, Apache Hadoop*, and Apache Spark* tunings.

BIOS Tuning
We chose “Performance” for the CPU Power and Performance Policy.

OS Tuning
• Disable Transparent Huge Pages

 ₋ echo never > /sys/kernel/mm/transparent_hugepage/defrag

 ₋ echo never > /sys/kernel/mm/transparent_hugepage/enabled

• Disable Swapping
 ₋ swapoff –a

• Set Scaling Governor to Performance
 ₋ /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

• Directory Mount Options
 ₋ Set Directory Mount Options ext4   defaults,noatime

• Enable Jumbo Frames. The OS uses the maximum transmission unit (MTU) to control the maximum 
size of a packet or frame sent over TCP. By default, MTU is set to 1500 but you can adjust its value 
upwards to a maximum of 9000. When the MTU value is greater than its default value, this is called 
“Jumbo Frames.” To change the MTU value, add MTU=9000 in /etc/sysconfig/network-scripts/ifcfg-
eth0 or whatever your eth device name is. You must restart the network service before the change 
takes effect.

• Open File Handles and Files. By default, the maximum number of open files is set to 1024 for each 
user. However, we found the default value resulted in a java.io.FileNotFoundException (Too many open 
files) and our jobs failed. To avoid this scenario, we set the open file limit to 32832, for both hard and 
soft limits, as follows:

 ₋ ulimit -Sn 32832
 ₋ ulimit -Hn 38232

Apache Hadoop Tuning
We used most of the default YARN* and Spark settings, recommended by Cloudera Distribution for 
Hadoop* (CDH*), except for the ones listed in Table C1.

Table C1. Apache Hadoop* Tuning Settings

YARN* Property Value
Resource Manager yarn.scheduler.maximum-allocation-mb 380 GB

yarn.scheduler.minimum-allocation-mb 1 GB

yarn.resourcemanager.scheduler.class Fair Scheduler

Node Manager Container memory 380 GB

yarn.nodemanager.resource.cpu-vcores 96

Gateway mapreduce.map.memory.mb 3.9 GB

mapreduce.reduce.memory.mb 3.9 GB

Client Java Heap Size in Bytes 3 GB

mapreduce.map.java.opts.max.heap 3 GB

mapreduce.reduce.java.opts.max.heap 3 GB

mapreduce.task.io.sort.mb 512 MB

mapreduce.map.output.compress.codec org.apache.hadoop.io.compress.SnappyCodec

mapreduce.output.fileoutputformat.compress.codec org.apache.hadoop.io.compress.SnappyCodec

Hive* Gateway Client Java Heap Size in Bytes 2 GB
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Apache Spark Tuning
Table C2 shows the general tuning we used for Spark, as well as settings related to Intel® Math Kernel Library.

Table C2. Apache Spark* Tuning

Property Value
Overall Apache Spark* Tuning

spark.executor.memory 15850 MB

spark.driver.memory 340 GB

spark.executor.cores 5

spark.memory.fraction 0.9

spark.driver.maxResultSize 256 GB

spark.scheduler.mode FAIR

spark.yarn.executor.memoryOverhead 4096

spark.scheduler.allocation.file /etc/spark/conf/fairscheduler.xml

spark.executor.extraJavaOptions  -XX:+UseG1GC -XX:MaxGCPauseMillis=100  -XX:ParallelGCThreads=51

spark.driver.extraJavaOptions  -XX:+UseG1GC -XX:MaxGCPauseMillis=100  -XX:ParallelGCThreads=51

spark.serializer org.apache.spark.serializer.JavaSerializer

Settings Related to Intel® Math Kernel Library

spark.executor.extraClassPath /opt/intel/mkl/wrapper/mkl_wrapper.jar

spark.driver.extraClassPath /opt/intel/mkl/wrapper/mkl_wrapper.jar

spark.executor.extraJavaOptions  -Dcom.github.fommil.netlib.BLAS=com.intel.mkl.MKLBLAS 

-Dcom.github.fommil.netlib.LAPACK=com.intel.mkl.MKLLAPACK

spark.driver.extraJavaOptions -Dcom.github.fommil.netlib.BLAS=com.intel.mkl.MKLBLAS 

-Dcom.github.fommil.netlib.LAPACK=com.intel.mkl.MKLLAPACK

spark.executorEnv.OMP_NUM_THREADS 1

spark.driverEnv.OMP_NUM_THREADS 1

spark.yarn.appMasterEnv.OMP_NUM_THREADS 1
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