
TIBCO® API Exchange Gateway
User Guide
Version 2.5.0
May 2022

Copyright © 2004-2022. TIBCO Software Inc. All Rights Reserved.



TIBCO® API Exchange Gateway User Guide

2 | Contents

Contents

Contents 2

Introduction to TIBCO API Exchange Gateway 18
Design-time Components 19

Config UI 20

Studio 20

Runtime Components 20
Gateway Operational Layer 20

Gateway Management Layer 21

Deployment Architecture 23
Single Server Deployment Architecture 24

Distributed Deployment Architecture 27

Getting Started 31
Examples Overview 31

Examples 32

Configure an Endpoint Operation for TIBCO API Exchange Gateway 33
Creating a New Configuration 34

Configuring Partner Group 34

Configuring Partner Data 35

Configuring a Facade Operation 35

Configuring a Target Operation 36

Configuring an Authorization Configuration 37

Configuring Routing Configuration 38

Saving the Gateway Configuration 39

Testing the Gateway configuration 39

Working with Studio 40
Starting Studio 40

Loading the Default ASG_DefaultImplementation Project 41



TIBCO® API Exchange Gateway User Guide

3 | Contents

Editing Validating and Building the Default ASG_DefaultImplementation Project 42

Validation Tool (asg-validate) 49
Running asg-validate Using asg-tools 50

Log File for asg-validate 50

Limitations of asg-validate 51

Runtime Properties 51
Runtime Properties of Core Engine 51

Runtime Properties of Central Logger 96

Building an EAR File at the Command Line 105

Core Engine Configuration 108
Core Engine 108

Starting Core Engine 108

Processing Units of Core Engine 110

Configure Log Files Settings 112

Logging Levels of Core Engine 115

Apache Module for TIBCO API Exchange Gateway 117
Installing Apache HTTP Server 118

Installing Apache HTTP Server with SSL 118

Configuring Apache HTTP Server Using HTTP Transport 118
On the Windows Platform 119

Configuration On the UNIX Platform 120

Running the Apache HTTP Server 120
On the Windows Platform 120

Running On the UNIX Platform 121

Secure Communications 121
Mutual SSL Authentication 121

SSL Communications Configuration 126

Configure the Apache Server for Basic HTTP Authentication 136

Configure Apache Module for RVRD Setup through a Firewall (DMZ) 144

Configure Apache HTTP Server as Reverse Proxy 146



TIBCO® API Exchange Gateway User Guide

4 | Contents

Transport Communication 151
Facade Operation Requests 151

Central Logger 152

Global Throttle Manager 152

Rendezvous Transport Communication 153
Enabling Rendezvous Communication for TIBCO API Exchange Gateway 154

Configuration Setup 159

Setting Rendezvous Transport Properties 160

Secure Deployments with TIBCO Rendezvous 167

Configuration for Secure Rendezvous Daemon 169

Enabling Facade HTTP Transport 180

Enable Facade HTTPS Transport 181
Setting SSL Properties 181

Download Tomcat Native Library 182

Setting Content-Type for Error Response 185
Endpoint Ports 186

JMS Transport Communication 190
SOAP JMS Transport 190

SSL Support for JMS Transport 202

Set JMS Message Delivery and Acknowledgment Mode 203
JMS Message Delivery Modes 203

JMS Message Acknowledgment Mode 204

Non-Standard JMS Headers 207
Setting up JMS Properties 207

ESB Channel 210
Enabling ESB Channels 210

Edit asg.properties File for ESB Channel Properties 212

Create queues on EMS Server 216

Create Users On EMS Server 217

Config UI 218



TIBCO® API Exchange Gateway User Guide

5 | Contents

Starting GUI 219
Accessing Config UI through HTTPS Transport 220

Changing Login Host and Port Information 224

Authentication Process for Config UI 225
Authentication Properties 226

Configuration Setup for Authentication Process 228
LDAP Server Authentication 228

File-Based Authentication 230

Default Authentication 234

Enable Debug Logging for Config UI 235
Creating Properties File 235

Using Properties File in the TRA File 237

Configuring Directory for Log Files 237

Manage a Gateway Project Configuration 237

Publish Project Configuration 239
Publishing Configuration 239

Change Log Level Settings 240

Updating Project Configuration 242

Validate Configuration 243

Project Configuration 243
MAPPING 244

SECURITY 247

MONITORING 251

ROUTING 255

PARTNER 271

Set Runtime Properties 275
Setting General Properties 276

Setting Monitoring Properties 277

Setting Database Properties 281

Setting Transport Properties 282

Security Properties 300



TIBCO® API Exchange Gateway User Guide

6 | Contents

Transaction Pipeline processing 308
Request Pipeline Processing 308

Response Pipeline Processing 311

Parsing Step 312
Set the Partner Identity for Request 313

Set the Routing Key for Request 314

Enrich the Audit Trail Log for Request 314

Logging Request Headers 315

Validate the Request Content 317

Set Metric Increment for Content-Based Throttles 318

Set Sticky Key for Load-Balancing with StickyResourceAffinity 319

Overriding HTTP Headers 319

Parsing XSLT Documents 322
Parsing Output Document Schema 327

Mappings and Transformations 332
Mapping Types 334

Mapping Configuration 335

Transformations (XSLT Mapping) 337
Set error codes for content validation 339

Validation 339

Implementing Request Validation 340

Map the Protocol Headers in Request Context 341

Enumeration Orchestration 342

Response Transformation 344

Mapping Schemas 344
Mapping Container 344

Mapping XSLT Schema 346

Context Document 347

JSON XML Transformation 352
Converting XML Message to JSON Message 354

Converting JSON Message to XML Message 358



TIBCO® API Exchange Gateway User Guide

7 | Contents

XSLT Functions for URL Encode and URL Decode 361
Decode() Function 362

Encode() Function 363

XSLT Functions for Base64 Encode and Decode 366
textToBase64() 366

base64ToText() 366

Custom Java Functions 367
Java Function 367

XSLT File 367

Pass-Through Gateway 368
Starting Config UI 368

Enabling Default Operation 368

Configuring DefaultOperation Facade Operation 369

Configuring Target Operation for DefaultOperation 371

Configuring Routing Key for DefaultOperation 372

Configuring Facade Access for DefaultOperation 373

Pass-Through Special Characters in Query String 373

Proxy Server 374
Configuring HTTP Headers 375

Routing Overview 376
Routing Key 377

Routing Key using XSLT 378

How to Derive and Configure Routing Key 378

Routing Use Case using XSLT 384
Configuration 384

Preferred Routing 387
Use Case for Preferred Routing 388

Overriding Preferred Routing Key using XSLT 389

Target Operation Group 391
Overview 391

Routing Algorithms for Target Operation Group 393



TIBCO® API Exchange Gateway User Guide

8 | Contents

LoadBalanced 393

RoundRobin 393

Weighted RoundRobin 395

RoundRobin with Failover 397

Weighted RoundRobin with Failover 403

Sticky Resource Affinity 404

Target Operation Group Configuration 405
Configuring a Target Operation Group 406

Configuring a RoundRobin Target Operation Group 407

Configuring a WeightedRoundRobin Target Operation Group 408

Configuring a RoundRobinWithFailOver Target Operation Group 410

Configuring a WeightedRoundRobinWithFailOver Target Operation Group 411

StickyResourceAffinity Target Operation Group Configuration 412

HealthCheck for Reference 418
HealthCheck Modes for a Target Operation 418

HealthCheck Methods for Timer Mode 419

HealthCheck Configuration for Target Operation 421

Configuration for Reset Mode of HealthCheck 421

Configuration for Timer Based HealthCheck 422

Throttles Overview 427
Facade Throttles 427

Service Throttles 428

Throttle Types 428
Rate 429

Quota 430

High Water Mark 431

Error 431

Monitor Time Modifiers 433
Configuring Time Modifier Throttles 434

Throttle Chaining 435

Throttle Counter 436



TIBCO® API Exchange Gateway User Guide

9 | Contents

Throttle UpdateInterval 436

Configuring Throttles 437
Configuration Parameters for Throttles 437

Creating a Throttle Policy Definition 438

Content Based Throttles 441
Configure Content-Based Throttles 442

Configuring Throttle 442

Define XSLT File 443

Uploading XSLT File 447

Payload Size Throttles 447
Payload Size Throttle Types 448

Configuring Payload Size Throttles 450

Traffic Shaping 452
Configuration 452

Shared Throttles Overview 453
Configuration Setup for Shared Throttles 453

Example Use Case 457

Authentication and Authorization 459
User Authentication 459

Transport and Protocol Level Authentication 459

WS Security Services Authentication 460
Security Service Providers 462

Web Services Security (WSS) Properties 462

Types of Security Service Providers 462

Configuring LDAP Authentication Service Provider (LDAP ASP) 463

Configuring Trust Identity Provider 474

Properties for Subject Identify Provider (SIP)Configuring Subject Identity Provider 476

Configuring WSS Service Provider 479

Limitations 480

Web Services Security Authentication 481

Registering WSS resources with TIBCO API Exchange Gateway 483



TIBCO® API Exchange Gateway User Guide

10 | Contents

Defining the WSS security operations 484

Configure Secure Services with TIBCO API Exchange Gateway 485
Altering List of Algorithms (Optional) 486

Define DSS Properties for Services 486

Configuring Services 493

Partner Authorization Overview 494
Operation Identification 495

Partner Identification 495

Partner Authorization 499

Overview of Security Policies 500
Security Concepts 501

Types of Security Policies 504
Authentication 505

Authorization 507

Confidentiality 508

Integrity 508

CredentialMapping 508

Manage Policies 509
Configure Shared Resource 510

Create Policy 511

Registering Policy 515

Applying Policies 516

Policy Use Cases 518
Authentication Policies 518

Creating a User Account in the Microsoft Active Directory for TIBCO API
Exchange Gateway 528

Mapping the Service Principal Name (SPN) to a Microsoft User Account 529

Generating a Keytab File for an SPN 530



TIBCO® API Exchange Gateway User Guide

11 | Contents

Sample Custom LoginModule 535
Applying Authorization Policies 539

Integrity Policies 542

Confidentiality Policies 546

Credential Mapping Policies 549

Types of Security Shared Resources 553

Shared Resources Properties 554
Configuring LDAP Authentication Shared Resource 555

Configuring SiteMinder Service Provider 565

Configuring Trust Identity Provider 566

Configuring Subject Identity Provider 568

Configuring the Kerberos Service Provider 571

Configuring Custom Shared Resource 574

Shared Resources Properties Sample Files 576

Authentication using File-Based Identity Store 586
Configuring User Authentication Policy using File 587

Data Masking and Selective Log Policy 599
Configuration Setup For Log Policy 599

AntiVirus Scan of Request and Response Payloads 624
Configuration Setup of McAfee Web Gateway 624

Configuring McAfee Web Gateway for SSL (Optional) 631

Configure TIBCO API Exchange Gateway to Enable AntiVirus Scan 634

OAuth Server 638
Capabilities of the OAuth Server 638

OAuth Client Policies 639

OAuth 2.0 Concepts 639

Benefits of using the OAuth Server 642

OAuth Server Components and Interactions 642
Components 642

Component Interactions 643

OAuth Flows 647



TIBCO® API Exchange Gateway User Guide

12 | Contents

Authorization Code 647

Client Credential 648

Password Credential 649

Configuration Setup of OAuth Server Authorization 649
Setting OAuth Server Properties 650

Enable OAuth Authorization For Gateway (Set Adapter Properties) 650

Starting OAuth Server 659

Manage Access Token 660
OAuth Server Endpoint 660

Token Management APIs 661

OAuth Server Endpoints 661

Accessing Token Persistence 673

Authorization API 678
Name 678

Description 678

Authorization Request 678

Authorization Response 680

Authorization Error 681

Token Request API 683
Name 683

Description 683

Access Token Request 683

Access Token Response 684

Access Token Request Error 685

Token Validation API 687
Name 688

Description 688

Token Validation Request 688

Token Validation Response 688

Token Validation Error 690

Retrieve Access Token 691



TIBCO® API Exchange Gateway User Guide

13 | Contents

Retrieving all tokens 692

Retrieving tokens for specific owner 692

Revoke Token API 693
Name 693

Description 693

Revoke Token Request 694

OAuth Service Provider Interfaces 694
Owner Service Provider Interface 695

Client Service Provider Interface 697

Scope Service Provider Interface 700

Deploying Custom Adapters 702

Default Adapters 703

Gateway Management Features 705
Central Logger 705

Overview 705

Database Setup and Configuration for Central Logger 706

Runtime Properties For Central Logger 712

Enabling Reporting to the Central Logger 712

Running the Central Logger 713

Central Logger Database 713
Database Tables 713

Schema Details 714

ASG_TRANSACTIONS Table 715

ASG_TRANSACTION_DETAILS Table 718

ASG_TRANSACTION_MESSAGES Table 719

ASG_TRANSACTION_KEYS Table 720

ASG_THROTTLE_USAGE Table 721

ASG_THROTTLE_MESSAGES Table 721

ASG_KPI Table 723

ASG_LOG_MESSAGES Table 724

Write Transactions Data to File 725



TIBCO® API Exchange Gateway User Guide

14 | Contents

Enabling Transaction Data to a File 726

Format of Transaction Data Log File 727

Recording Error Events to Central Logger 728
Publishing Error (Failed) Transactions 728

Correlation ID 729
Setting Correlation ID for HTTP Header 730

Enable JMS Channel for Central Logger 730
Configuration Setup for JMS Channel 731

Global Throttle Manager 738
Throttle Calculation 739

Running Global Throttle Manager 740

Enabling AS Transport 741
Overview 741

Configuration 741

Cache Cleanup Agent 748
Running Cache Cleanup Agent 748

Reporting 749
TIBCO Spotfire Integration 749

Spotfire Configuration 750

Basic Deployment 756
Deploying TIBCO API Exchange Gateway Processing Units 756

Requirements For Deployment 756

Deployment Options 757

Running Processing Units At Command Line 757

Deploying Gateway Components Using TIBCO Administrator 758

Advanced Features 765
Cache Agent 765

Running Cache Agent 765

Hot Deployment Overview 766
Enabling Hot Deployment 766



TIBCO® API Exchange Gateway User Guide

15 | Contents

Invoking Hot Deployment 766

Extension Mechanism 767

Response Caching 768
Types of Response Caching 769

Cache Response Key 772

Response Caching with Proxy Server 773

Enabling Response Caching 773

Response Caching Parameters 774

Clearing Cached Items 774

Overriding Cache Response Key and Parameters 775

Performance Tuning Parameters 777

Large Payload Limit Settings 778

Enable Access Logs in HTTP Channel 778

High Availability Deployment Of Runtime Components 780
Overview 781

Operational Layer Components 782

Gateway Management Layer Components 783

Configuration For High Availability Setup 787
Configure Load Balancer 788

Configure Apache Modules for Core Engines 791

Cluster Configuration For Runtime Components 793

Configuring Fault Tolerance Parameters 796

Configuring Core Engines 797

Configuring Cache Agent 797

Configuring Cache Cleanup Agent 799
Example Setting For Cache Cleanup Agent Instance 800

Configuring Global Throttle Manager 800
Example Setting For Global Throttle Manager Instance 801

Configuring Central Logger 802
Example Settings For Central Logger Instance 803

Configure Rendezvous Session Connection Parameters 804



TIBCO® API Exchange Gateway User Guide

16 | Contents

Appendix A 805
Edit Cluster Deployment Descriptor (CDD) File 805

Editing CDD File using Text Editor 805

Editing CDD File using Studio 806

Setting Discover URL 807

Setting Max Active 807

Setting Priority 808

Configuration Tasks 808
Enabling Cross-Origin Resource Sharing(CORS) Filter Properties 808

Configuring JMS Destinations for Southbound Service Operations 811

Configuring Async Mode for Southbound JMS Service 812

Configuring Retry parameters for HTTP HTTP(s) Transport 813

Enabling detail level logging for Gateway 814

Configuring TIBCO Enterprise Message Service 815

Configuring JMS Northbound Transport for XML 816
Configuring TIBCO Designer 816

Configuring Operations 817

Enable the ESB Channels in CDD File 817

Updating TIBCO Enterprise Message Service Libraries 818

Change the Stack Size 818
Changing the Stack Size Permanently 818

Changing the Stack Size Temporarily 819

Modify Unicast Discovery URL in CDD file 819
Editing the Discover URL and Listen URL (using text editor) 820

Editing the Discover URL and Listen URL (using Studio) 821

Generate Private Keys And Public Certificates with OpenSSL 822
Generating Self-Signed SSL Certificates 823

Generating SSL Keys and Certificates With Your Own your own Trusted CA 824

Editing Cluster Deployment Descriptor (CDD) File 826
Using Text Editor 826

Using Studio 826



TIBCO® API Exchange Gateway User Guide

17 | Contents

Connection Problem to TIBCO DataGrid 828

Glossary 830

TIBCO Documentation and Support Services 832

Legal and Third-Party Notices 834



TIBCO® API Exchange Gateway User Guide

18 | Introduction to TIBCO API Exchange Gateway

Introduction to TIBCO API Exchange Gateway
This section provides an overview of TIBCO API Exchange Gateway and describes the key
components.

TIBCO API Exchange Gateway provides an event-driven web services platform. Using this
platform, users can route the APIs requests from consumers to various target services
exposed by an organization’s internal services layer. Users can completely manage the
requests to access the APIs. TIBCO API Exchange Gateway is an event-based routing engine,
which processes the requests and responses at a high speed.

TIBCO API Exchange Gateway provides the following key features:

l Receives, routes, and forwards the requests at a high speed

l Routes the requests between any requester and any service endpoint

l Protects from overuse of target service endpoints

l Protects the access of target service endpoints from unauthorized partners

l Reports operation activity such as performance and fault monitoring

l Ensures service level agreements are met

TIBCO API Exchange Gateway supports the following policy models:

l Authorization rules

You can configure authorization policies for partners that determine whose requests
are handled.

l Throttling models

You can configure various types of throttles that determine when the requests are
handled.

l Routing rules

You can configure the routing rules that determine where the requests are handled.

l Light-weight orchestration models determine how requests are handled.

The following diagram shows an overview of the product functionality:

Functional Overview



TIBCO® API Exchange Gateway User Guide

19 | Introduction to TIBCO API Exchange Gateway

Design-time Components
Using the design-time components, the users can perform the following tasks:

l Configure the data for a project used by the Core Engine at run time.

l Develop custom extensions to change the default behavior of the Core Engine.



TIBCO® API Exchange Gateway User Guide

20 | Introduction to TIBCO API Exchange Gateway

Config UI
Config UI is used to configure the data required by the gateway at run time.

TIBCO API Exchange Gateway provides a web-based configuration user interface (UI). Using
Config UI, users can enter information such as partner data, partner operations, partner
groups, services, operations, mappings, throttles, errormaps, schemas, and routing. This
information is used by the Core Engine at run time for the various functions of the
gateway.

Studio
Studio is used to extend the default functionality of the gateway.

Studio is a design-time environment. Using the Studio, users can design and develop
custom extensions. Custom extensions can be integrated with the default implementation
to customize the default behavior of the Core Engine.

Runtime Components
This section explains the run-time components.

TIBCO API Exchange Gateway provides the following run-time components:

l Gateway Operational Layer

l Gateway Management Layer

Gateway Operational Layer
The Gateway Operational layer provides the core functionality of the gateway.

The Gateway Operational layer consists of the following subcomponents:

Core Engine

The Core Engine is a high-performance, event-based, service-request routing engine that
receives requests as events and uses the rules engine to determine where requests are
handled.

The Core Engine can be used as follows:



TIBCO® API Exchange Gateway User Guide

21 | Introduction to TIBCO API Exchange Gateway

l With cache enabled

The cache-enabled Core Engine does not require the Cache Agent.

l Without cache enabled

The Core Engine without cache enabled requires the Cache Agent to run separately.

Cache Agent

The Cache Agent stores the cache data for all objects of the cluster.

Apache HTTP Server (Optional)

You can use the Apache HTTP server as follows:

l Reverse Proxy with HTTP channel (use the Apache HTTP server as it is)

l Apache Module for RV channel (Optional)

The Apache module is used to terminate an incoming request through the HTTP(S)
transport. This module communicates with the facade component to forward the
requests for further processing.

Gateway Management Layer
The Gateway Management layer provides request tracking and logging.

It has the following subcomponents:

Central Logger

The Central Logger provides centralized logging of messages in a database.

Global Throttle Manager

The Global Throttle Manager manages the Facade Throttle Manager and Service Throttle
Manager. This component maintains the state of all global throttles in both Facades
(Facade Throttles) and Routers (Service Throttles).

Cache Cleanup Agent

The Cache Cleanup Agent component clears the cache based on the size and age of the
cached values.



TIBCO® API Exchange Gateway User Guide

22 | Introduction to TIBCO API Exchange Gateway

Gateway Reporting (Optional)

The Gateway Reporting component generates various type of reports based on the data
logged by the Central Logger component. This component integrates with the TIBCO
Spotfire product to display the metrics.

The primary software components are displayed in the following diagram:

Functional Components



TIBCO® API Exchange Gateway User Guide

23 | Introduction to TIBCO API Exchange Gateway

Deployment Architecture
This section describes the various options to deploy the Core Engine and other
components.



TIBCO® API Exchange Gateway User Guide

24 | Introduction to TIBCO API Exchange Gateway

TIBCO API Exchange Gateway is deployed as a cluster of engines that act as a single logical
gateway. The engines in the cluster can run on a single server or in a distributed
environment across multiple physical or virtual servers, providing fine-grained control over
the cluster deployment topology.

TIBCO Rendezvous/TIBCO ActiveSpaces is used for communication between most of the
runtime components of both the gateway operational layer and the gateway management
layer. The gateway operational layer and all its components share a single set of
configuration files. Therefore, the configuration files should be stored on a shared storage
device that is accessible to each of the runtime components.

When multiple instances of the Core Engine are deployed in a cluster, multiple instances of
cache-agents are also instantiated. This deployment has a single distributed cache that is
shared across all the core engines to support association and response cache functionality.

Single Server Deployment Architecture
This section explains the deployment of gateway components as a single server instance.

In its simplest non-high available form, TIBCO API Exchange Gateway can run as a single
server. The following figure displays the deployment of the software components as a
single server instance:



TIBCO® API Exchange Gateway User Guide

25 | Introduction to TIBCO API Exchange Gateway

Single Server Deployment

This configuration provides the entire functionality, including the optional operational
reporting and analytics provided by TIBCO Spotfire® Server components. TIBCO Spotfire
Professional client software running on a Windows workstation and TIBCO Spotfire Web
Player Server software running on a Windows server are not visible in the diagram.

The protocol termination components, The Module for Apache HTTP Server (Optional) and
TIBCO Enterprise Messaging Service for JMS transport (Optional), need to be deployed and
managed with their standard operations management tools.

The Module for Apache HTTP Server that is part of TIBCO API Exchange Gateway is
deployed as a normal module for the Apache HTTP server. This module turns the Apache
HTTP requests into TIBCO Rendezvous messages for communication with the Core Engine.
In case the Apache HTTP Server is deployed within a DMZ zone, you should configure



TIBCO® API Exchange Gateway User Guide

26 | Introduction to TIBCO API Exchange Gateway

TIBCO Rendezvous Routing Deamon. TIBCO Rendezvous Routing Deamon forwards the
TIBCO Rendezvous messages from the DMZ network through the firewall to the internal
network where TIBCO API Exchange Gateway components are deployed.

Runtime Components

The runtime components of TIBCO API Exchange Gateway are deployed as a single
application that can span multiple host servers. The runtime components are as follows:

l Core Engine

l Central Logger

l Global Throttle Manager

l Cache Cleanup Agent

The management layer components, the Central Logger and the Global Throttle Manager
communicate with the Core Engine using Rendezvous messages at run time.

The Core Engine publishes the messages as events on the Rendezvous bus. The Central
Logger component receives these messages from the Rendezvous bus and stores them in
the Central Logger database at appropriate intervals. The Global Throttle Manager also
uses the Rendezvous bus to report the throttle usage data to the Central Logger.

The Global Throttle Manager controls the throttle allocation for each Core Engine. The
Global Throttle Manager receives throttle reports from the Core Engines over the
Rendezvous bus. It also sends the throttle grants back to the Core Engines over the
Rendezvous bus.

The Global Throttle Manager treats the throttle usage events as the heartbeat interval of a
Core Engine. In the absence of a configurable number of consecutive heartbeats, the Global
Throttle Manager treats the Core Engine as dead and distributes the throttle limits of the
dead instance equally to all the live Core Engines.

The Cache Cleanup Agent does not use the Rendezvous bus to interact with the Core
Engine. It connects directly to one of the Cache agents to clear the cache so that it does
not grow too large. This cleanup of the cache is called cache flushing.

To deploy and start the cluster of runtime components, use one of the following methods:

l Command Line

At the command line, specify the component unit to start and optionally, a custom
CDD file to use.



TIBCO® API Exchange Gateway User Guide

27 | Introduction to TIBCO API Exchange Gateway

Note: Use only one method for the entire gateway cluster you are deploying. For
best results, use the Management and Monitoring Server to deploy the runtime
components.

Both of the deployment methods use two default resources: an EAR file and a cluster
deployment descriptor (CDD), which is an XML file.

When the Core Engine (with or without caching agent), Global Throttle Manager, or Cache
Cleanup Agent are started, they use the asg_core.ear and asg_core.cdd files in the ASG_
HOME/bin directory.

When the Central Logger component is started, it uses the asg_core.ear and asg_cl.cdd files
in the ASG_HOME/bin directory.

Any configuration updates that are made through the GUI Configuration Server are
persisted in the configuration files on the shared storage device. These configuration files
need to be reloaded by the runtime components to be effectuated.

The optional operational reporting and analytics provided by the TIBCO Spotfire Server
components interacts with the Central Logger through the Central Logger database using a
standard JDBC connection.

Distributed Deployment Architecture
The distributed deployment architecture describes the deployment of multiple instances of
the Core Engines and other components of gateway.

TIBCO API Exchange Gateway supports a distributed deployment environment, in which
multiple instances of the Core Engines can be deployed. This architecture meets the
requirements of high availability and scalability of the gateway components, which is
recommended in a production environment.

Scaling and High Availability

TIBCO API Exchange Gateway provides a default site topology file, which is configured for a
deployment with single instances for each Core Engine of the gateway cluster, all deployed
on a single server host. Using this configuration you can quickly deploy the API Exchange
Gateway in a development environment, though it typically does not meet availability and
scalability requirements for a production deployment. See High Availability Deployment Of
Runtime Components.



TIBCO® API Exchange Gateway User Guide

28 | Introduction to TIBCO API Exchange Gateway

The Studio can be used to create production site topology configurations for your
production environment including load balanced and fault-tolerant setups.

Load Balancing

TIBCO API Exchange Gateway can be rapidly scaled up and down through the addition or
removal of additional instances of the Core Engines to the gateway cluster.

When multiple Core Engine instances are deployed in a gateway cluster, the key
management functions including throttle management, cache management, cache clearing
management, and Central Logger are coordinated across all the Core Engine instances. The
components that provide the management functions do not need to be scaled to support
the higher transaction volumes.

However, as transaction levels increase, it is likely that this is accompanied by a
corresponding increase in management activity. To avoid the possible impact of the
management activity on the Core Engines, these management components and the TIBCO
Spotfire Servers should be moved onto separate servers.

The following diagram illustrates a simplified view of the scaled solution and depicts the
deployment of various components in a distributed environment:

Deployment of Multiple Components in Distributed Environment

Increasing the number of the Core Engines in TIBCO API Exchange Gateway deployment
provides a near linear increase in the maximum number of transactions that can be



TIBCO® API Exchange Gateway User Guide

29 | Introduction to TIBCO API Exchange Gateway

managed. This type of deployment reduces the impact of the failure of an individual Core
Engine. TIBCO API Exchange Gateway uses a shared nothing model between the active
Core Engines to ensure that there is no shared state.

To support a load balanced setup, the transport protocol termination components must be
configured appropriately.

l For the JMS transport endpoints, load balancing of the requests across multiple Core
Engines is achieved by setting up non-exclusive queues in the JMS server. This type
of setup automatically balances the load of incoming messages across the JMS
receivers of the Core Engine instances.

l For the HTTP transport endpoints, load balancing of the requests across multiple
Core Engines is handled by the Module for the Apache HTTP server. If a comma-
separated list of TIBCO Rendezvous/TIBCO ActiveSpaces subjects is configured for an
Apache server location, the Module for the Apache HTTP server load balances the
incoming requests across the list of TIBCO Rendezvous/TIBCO ActiveSpaces subjects.
For each deployed Core Engine instance, a different TIBCO Rendezvous/TIBCO
ActiveSpaces subject from the list must be configured to ensure that requests are
handled only once by a single Core Engine instance.

When the protocol termination components reach the limits of the scale they can provide,
an IP load balancer can be added to the deployment in front of multiple Apache HTTP
servers or JMS servers. The load balancer should be configured to make the Apache HTTP
servers or JMS servers available on a single IP address.

High Availability of TIBCO API Exchange Gateway

For a high available setup of the TIBCO API Exchange Gateway deployment, the
configuration setup of the components in the Gateway Operational Layer is different from
the setup of components in the Gateway Management Layer.

Gateway Operational Layer

As the Core Engine and Apache HTTP server maintain no state, fault tolerance is provided
by multiple engine instances running across sites and the host servers with the same
configuration supporting a load balanced configuration. See Load Balancing.

A fault-tolerant setup for JMS endpoints of TIBCO API Exchange Gateway leverages the
fault-tolerant setup capabilities of the TIBCO Enterprise Message Service. See TIBCO
Enterprise Message Service™ User’s Guide for details.

Fault tolerance of Cache Agents is handled transparently by the object management layer.
For the fault tolerance of cache data, the only configuration task is to define the number of



TIBCO® API Exchange Gateway User Guide

30 | Introduction to TIBCO API Exchange Gateway

backups you want to keep, and to provide sufficient storage capacity. Cache Agents are
used only to implement the association cache. The association cache is automatically
rebuilt after complete failure when new transactions are handled by TIBCO API Exchange
Gateway. Therefore, Cache Agents do not require a backing store.

Gateway Management Layer

The components of the Gateway Management Layer must be deployed once in a primary-
secondary group configuration. The Central Logger and the Global Throttle Manager must
have a single running instance at all times to ensure that the Core Engine operates without
loss of functionality.

Therefore the Central Logger and Global Throttle Manager must be deployed in fault-
tolerant configuration with one active instance engine and one or more standby agents on
separate host servers. Such fault-tolerant engine setup can be configured in the cluster
deployment descriptor (CDD) file by specifying the maximum number of one active agent
for either of the agent classes and by creating multiple processing unit configurations for
both the Global Throttle Manager and the Central Logger agent. Deployed standby agents
maintain a passive Rete network. They do not listen to events from channels and they do
not update working memory. They take over from an active instance in case it fails.

The other components of the Gateway Management Layer have no direct impact on the
functionality of an operating Core Engine instance, and they can be deployed with a cold
standby configuration. This applies to the following components:

l Cache Cleanup Agent

l Configuration GUI Server

Deploy multiple versions of these components across host servers with one instance
running. If the running instance goes down, start one of the other instances to regain
complete gateway functionality.



TIBCO® API Exchange Gateway User Guide

31 | Getting Started

Getting Started
This section provides information on how to get started with TIBCO API Exchange Gateway
product.

Examples Overview
TIBCO API Exchange Gateway provides sample projects to demonstrate various capabilities
of the gateway. Examples include:

l APIExchange

l BookQuery

l BookQueryBE

l Caching

l GetLocation

l ProductQuery

Prerequisites

Complete the following tasks before running the examples:

Install TIBCO API Exchange Gateway

Install the TIBCO API Exchange Gateway software and complete the post installation tasks,
as described in TIBCO API Exchange Gateway Installation Guide.

Verify the TIBCO API Exchange Gateway Server Status

Verify the installation of the TIBCO API Exchange Gateway server by following the steps
listed in the "Checking TIBCO API Exchange Gateway Server Status" section of TIBCO API
Exchange Gateway Installation Guide.

Install TIBCO Runtime Agent and TIBCO BusinessWorks

The examples require the installation of TIBCO Runtime Agent and TIBCO BusinessWorks
products. Refer to the TIBCO API Exchange Gateway readme file at TIBCO_HOME/release_



TIBCO® API Exchange Gateway User Guide

32 | Getting Started

notes directory for the supported version of TIBCO Runtime Agent and TIBCO
BusinessWorks products.

Examples
TIBCO API Exchange Gateway software ships with sample projects, such as the following
examples:

GetLocation

GetLocation example is shipped with a GetLocation BusinessWorks project. The project
contains the client operations and back-end services, such as GetLocationService to be
executed. The GetLocation service demonstrates the routing capability of TIBCO API
Exchange Gateway.

The gateway interacts with a mock-up back-end service that returns the coordinates of a
device associated with a phone number. The gateway routes the request to a different
back-end service depending on the input phone number in the request.

Refer to ASG_HOME/examples/GetLocation/readme.html file for instructions on how to
run the example.

BookQuery

The BookQuery service queries all the books in a book store using different criteria such as
author, ISBN, publisher, and title. TIBCO API Exchange Gateway example project
implements the following policies:

l Rate Throttles

l Quota Throttles

l High Water Mark Throttles

l Error Throttles

Refer to ASG_HOME/examples/BookQuery/readme.html file for instructions on how to run
the example.

Caching

The Caching example demonstrates the caching functionality provided by TIBCO API
Exchange Gateway.

The main components of this example:



TIBCO® API Exchange Gateway User Guide

33 | Getting Started

l ASG_CBA is a TIBCO BusinessWorks project that simulates an east side service. The
service takes the firstIdentity field as a cross-reference key and translates its value.
This project does a simple translation on the key using an XML file. Alternatively, the
service can be an adapter call, a lookup in a database, or any other web service.

l A SOAP service, which is hosted on TIBCO API Exchange Gateway. This service type is
NOOP which means that it returns a XML document with a received key and a
translated value.

After the translated value is received from the service implemented in the ASG_CBA
BusinessWorks project, this is plugged into a SOAP payload. This payload is used to call a
SOAP service running on TIBCO API Exchange Gateway.

When the CustomStage feature is applied to an operation configuration, it enables a set of
rules in the ASG_DefaultImplementation project. When the operation request is invoked, it
looks into the cache for a cross-reference before the routing step. It uses the value of
firstIdentity as a key for the cross-reference. If a value for that key is present in the cache,
it is used in the cross- reference. If a value is not found, it sends a TIBCO Rendezvous
message to retrieve that value from the service in the ASG_CBA BusinessWorks project.

Refer to ASG_HOME/examples/Caching/readme.html file for instructions on how to run the
example.

Configure an Endpoint Operation for TIBCO API
Exchange Gateway
Create, configure and run a gateway project configuration.

Refer to the following high level steps to configure a service operation on the TIBCO API
Exchange Gateway platform:

l Creating a New Configuration

l Configuring Partner Group

l Configuring Partner Data

l Configuring a Facade Operation

l Configure a Target Operation

l Configuring an Authorization Configuration

l Configuring Routing Configuration



TIBCO® API Exchange Gateway User Guide

34 | Getting Started

l Testing the Gateway configuration

Creating a New Configuration
Steps to create a new gateway project configuration.

Procedure
1. Launch the GUI. See Starting GUI for details.

2. Expand the Projects node.

3. Click the Add New Project Configuration icon. A new configuration with a

default configuration name, ASG_Config_uniqueNumId, is created under Projects
node.

4. Move the mouse pointer over the new project configuration, select the icon to

rename the configuration name as ASG_Get_Start and press Enter.

Configuring Partner Group
Steps to configure partner group.

Procedure
1. Click the ASG_Get_Start configuration.

2. Click the Partner Groups tab.

3. Click the Add property (+) icon on the top menu bar.

4. Type the values for the fields as shown in the following table:

Partner Group Configuration

Parameter Value

Group Name supportASG

Email support@tibco.com

Phone 0019202331999



TIBCO® API Exchange Gateway User Guide

35 | Getting Started

Configuring Partner Data
Steps to configure partner data.

Procedure
1. Select the ASG_Get_Start configuration.

2. Click the PARTNER tab on the upper-right tab.

3. Click the Partners tab on the top menu bar.

4. Click the Add property icon on the upper-right to create a new partner.

5. Type the values for the fields as shown in the following table:

Partner Data Configuration

Parameter Value

Partner Name tibcoASG

Partner Email support@tibco.com

Partner Phone 0019202331999

Partner Group supportASG (select from the drop-down list)

Configuring a Facade Operation
Steps to configure a facade operation.

Procedure
1. Select the ASG_Get_Start configuration.

2. Click the ROUTING tab on the upper-right tab.

3. Click the Facade Operations tab on the top menu bar.

4. Click the Add property icon on the upper-right to create a new facade operation.

5. Type the values for the fields as shown in the following table:



TIBCO® API Exchange Gateway User Guide

36 | Getting Started

Facade Operation Configuration

Parameter Value

Operation
Name

queryBookByAuthorBW

SOAP Action "/GetBooksByAuthorEndpoint"

Operation URI /ServerProcesses/GetBooksByAuthorEndpoint

Operation
Service Name

MWC

Note: Refer to the Characters Supported in Facade Operation URI that are
supported and not supported in Facade Operation URI.

Configuring a Target Operation
Steps to configure a target operation.

Procedure
1. Select the ASG_Get_Start configuration.

2. Click the ROUTING tab on the upper-right tab.

3. Click the Target Operations tab on the top menu bar.

4. Click the Add property icon on the upper-right to create a new target operation.

5. Type the values for the fields as shown in the following table:

Parameter Value

Operation
Name

http.GetBooksByAuthor

Target Operation Configuration



TIBCO® API Exchange Gateway User Guide

37 | Getting Started

Parameter Value

Type HTTP

(select from the drop-down list.)

Timeout 30000

SOAP Action "/GetBooksByAuthorEndpoint"

URI /ServerProcesses/GetBooksByAuthorEndpoint

Host 127.0.0.1

Port 9696

Configuring an Authorization Configuration
Steps to configure a partner operation.

Procedure
1. Select the ASG_Get_Start configuration.

2. Click the PARTNER tab on the upper-right tab.

3. Click the Facade Access tab on the top menu bar.

4. Click the Add property icon on the upper-right to create a new partner

operation.

5. Type in the following values:

Parameter Value

Partner tibcoASG

(select from the drop-down list.)

Facade queryBookByAuthorBW

Partner Authorization Configuration



TIBCO® API Exchange Gateway User Guide

38 | Getting Started

Parameter Value

Operation (select from the drop-down list.)

Partner
Timeout

5000

Configuring Routing Configuration
Steps to configure routing information for a request.

Procedure
1. Select the ASG_Get_Start configuration.

2. Click the ROUTING tab on the upper-right tab.

3. Click the Routing tab on the top menu bar.

4. Click the Add property icon on the upper-right to create a new routing

configuration.

5. Type in the following values:

Parameter Value

Operation
Name

queryBookByAuthorBW

(select from the drop-down list.)

Routing Type Target Operation

(select from the drop-down list.)

Routing Key default

Target
Operation

http.GetBooksByAuthor

(select from the drop-down list.)

Routing Configuration



TIBCO® API Exchange Gateway User Guide

39 | Getting Started

Saving the Gateway Configuration
Save the gateway project configuration.

On the menu bar, click the Save Configuration icon to save the ASG_Get_Start
configuration.

Testing the Gateway configuration
The following steps describe how to test the gateway configuration:

l Running Apache HTTP Server if not running

l Running Core Engine

l Testing the Configured Operation and Target operation

Running Apache HTTP Server if not running
See Running the Apache HTTP Server for details.

Running Core Engine
How to run Core Engine using a gateway configuration.

Procedure
1. Navigate to the TIBCO API Exchange Gateway installation as follows:

   cd ASG_HOME/bin

2. Start the Core Engine for the ASG_Get_Start configuration as follows:

On the Windows platform, type the following command:

asg-engine -u asg-caching-core -a ASG_Get_Start

On the UNIX platform, type the following command:

./asg-engine -u asg-caching-core -a ASG_Get_Start

3. Verify that the Core Engine starts successfully without any errors.

4. In the Core Engine log file, verify that the configuration for operation, services and



TIBCO® API Exchange Gateway User Guide

40 | Getting Started

partner are loaded correctly. By default, the Core Engine log file is asg-caching-
core.log which is located under ASG_CONFIG_HOME\logs directory.

Testing the Configured Operation and Target Operation
How to test a target operation.

Procedure
1. Launch TIBCO Designer.

2. Open the following project:

ASG_HOME/examples/BookQuery/BookQuery

3. Run the following server process:

BooksInterface-service1

4. Run the following client process:

QueryByAuthorClient

5. Verify that the process runs successfully without any errors.

Working with Studio
Studio provides the design-time environment for adding custom extensions to a project. It
is an Eclipse-based user interface that is used to build, maintain, configure, and modify
deployments for the project. It is integrated into the standard Eclipse menus wherever
appropriate, and works with many established Eclipse UI methodologies and plug-ins.

Note: Studio is supported only on Windows and Linux platforms.

Starting Studio
Steps to start Studio

Procedure
1. Navigate to the ASG_HOME/studio/eclipse directory.



TIBCO® API Exchange Gateway User Guide

41 | Getting Started

2. Start TIBCO Business Studio.

On the Windows platform, double-click the studio.exe executable.

You can also type the following command on a command prompt window:

   cd ASG_HOME\studio\eclipse
   studio.exe

Note: You can start the Studio by following the Windows menu Start > All
Programs > TIBCO > TIBCO ENV > TIBCO API Exchange 2.3 > Studio.

On the LINUX platform, type the following command on a command prompt window:

   cd ASG_HOME/studio/eclipse
   studio

3. If you are prompted, select or create the Eclipse workspace directory where your
project files are stored. If you select the option to use this workspace as default, you
are not prompted again.

A Welcome screen displays when you run the Studio first time. Click the X next to
Welcome to close the welcome screen.

4. Click OK.

Loading the Default ASG_DefaultImplementation Project

Procedure
1. Start the Studio. See Starting Studio.

2. Select File > Import > TIBCO BusinessEvents > Existing TIBCO BusinessEvents
Studio Project.

3. Click Next.

4. On Existing TIBCO BusinessEvents Project Import Wizard, select the values for the
following fields:

a. Existing project root directory:



TIBCO® API Exchange Gateway User Guide

42 | Getting Started

i. Click Browse

ii. Select ASG_HOME\projects\ASG_DefaultImplementation project.

iii. Click OK.

b. Select the Copy project into workspace check box.

5. Click Finish.

6. In the Studio Explorer, on the upper left, select the ASG_DefaultImplementation
project and expand ASG_DefaultImplementation > DefaultImplementation node
to view the channels, rule functions, rules, and other resources in the project.

Editing Validating and Building the Default ASG_
DefaultImplementation Project
After you import the ASG_DefaultImplementation project in Studio, you can edit the default
project to add the custom rule functions, rules, or any extensions as required to customize
the default transaction processing pipeline.

Adding or Edit a Resource in a Project
How to add or edit a resource in the project.

Procedure
1. In Studio Explorer, select the folder where you want to store the new resource and

right-click to display the menu.

2. To add a new rulefunction, follow these steps:

a. Select the RuleFunction node, right-click and select New > Rule Function

b. Input the values in the Rule Function wizard, as appropriate.

c. Enter the code for the rule function in the editor.

d. Save the rulefunction.

3. To edit an existing rulefunction, follow these steps:

a. Select the rulefunction to be edited.

b. Double-click to open the rulefunction in an editor. Modify the function code as



TIBCO® API Exchange Gateway User Guide

43 | Getting Started

required.

c. Save the rulefunction.

4. Save your project.

l To save all changes to all resources in a project (since last save), click File >
Save All or click Ctrl+Shift+S.

l To save changes in just the currently viewed resource, click File > Save or click
Ctrl+S, or click Save.

Validating a Project, Project Folder or Project Resource
How to validate a project, project folder, or project resource.

In Studio Explorer, follow one of the following steps:

Procedure
1. Right-click a project name, folder name, or a project resource name, and select

Validate Project.

2. Select a project name, folder name, or a project resource name, and select Project >
Validate Project.

Note: A pop-up window displays the message, "Validation was successful"
or summary information about any problems. Details about problems are
displayed in the Problems view.

Fixing Validation Errors
How to fix the validation errors using Studio.

Many validation issues can be fixed using the Quick Fix feature. In the Problems view, right-
click on a problem and select Quick Fix.

Building the Default ASG_DefaultImplementation Project
How to build the default ASG_DefaultImplementation project.

You can build the EAR file of the project for testing before deployment.



TIBCO® API Exchange Gateway User Guide

44 | Getting Started

Procedure
1. In the Studio Explorer, highlight the ASG_DefaultImplementation project. From the

top menu, select Project > Build Enterprise Archive.

If you see a message prompting you to save all project resources, click Yes. This
means that an unsaved resource editor is open.

2. In the Build Enterprise Archive dialog, complete the values according to the
guidelines provided in Build Enterprise Archive Reference Parameters.

3. Click Apply to save the configuration details. To revert to the version already saved,
click Revert.

Click OK to build the archive.

Field Description

Name The name of the EAR configuration. (Not the EAR filename.)

The default value is the project name.

Author The person responsible for the EAR file.

The default value is the currently logged-on user name.

Description The optional description.

Archive
Version

Specifies a version identifier. This increments on each build of the
EAR. You can also manually enter a version identifier.

Generate
Debug Info

Select this check box if you want to use the debugger.

The default setting is selected.

Include all
service level
global
variables

Select to include service level global variables.

File Location The location where you want to store the EAR file.

Build Enterprise Archive Reference Parameters



TIBCO® API Exchange Gateway User Guide

45 | Getting Started

Field Description

Browse to the directory to specify the location of EAR file and enter an
EAR filename.

For example, for the TIBCO API Exchange Gateway Core Engine, the
ear file is set as

TIBCO_HOME\asg\2.3\bin\asg_core.ear.

Delete
Temporary
Files

Before TIBCO API Exchange Gateway packages the EAR file, it
generates the Java code in a temporary directory. After the files are
packaged in the EAR file, the temporary files and directory are deleted.

You can choose to keep the generated Java files, for example, to
troubleshoot some problem with an EAR file. To do so, clear the
Delete Temporary Files check box, and specify where to store the
Java files in the Compilation Directory field.

The default setting is selected, that is, the temporary files are not
saved.

Compilation
Directory

If you clear the Delete Temporary Files check box, specify the
directory where you want to save the Java files generated during the
process of building the EAR file.

Debugging Project in Studio
How to debug the ASG_DefaultImplementation project.

You can set the breakpoints, stepping through the code, suspending launched programs,
examining the contents of variables, providing rule input, and so on, using the Studio
debugger.

The Studio debugger integrates with the Eclipse Java development toolkit debugger. You
can debug local projects using their CDD and EAR files.

To debug the ASG_DefaultImplementation project in Studio, follow these steps:

Procedure
1. Copy TIBCO_HOME/be/5.1/bin/be-engine.tra to TIBCO_HOME/be/5.1/bin/be-

engine.tra.bak



TIBCO® API Exchange Gateway User Guide

46 | Getting Started

2. Copy TIBCO_HOME/asg/2./bin/asg-engine.tra to TIBCO_HOME/be/5.1/bin/be-
engine.tra

Note: Steps 1 and 2 are optional and are used only to back up the TRA
files.

3. Open the ASG_CONFIG_HOME/asg/asg.properties file and copy the entire contents.

4. Open the TIBCO_HOME/be/5.1/bin/be-engine.tra file, go to the end of the file and
append the contents of ASG_CONFIG_HOME/asg/asg.properties file.

5. In the TIBCO_HOME/be/5.1/bin/be-engine.tra file, uncomment and set the
following property to the project configuration folder.
tibco.clientVar.ASG/ConfigRoot=
C:/ProgramData/TIBCOASG/tibco/cfgmgmt/asg/default

For example,

l To debug a BookQuery project configuration, set the property as follows:
tibco.clientVar.ASG/ConfigRoot=
C:/ProgramData/TIBCOASG/tibco/cfgmgmt/asg/BookQuery

l To enable the generic pageflow, set the java property as follows:
java.property.be.engine.channel.pageflow.genericContext.enabled=true

Note: You must change the value of the tibco.clientVar.ASG/ConfigRoot
property to the configuration of the project you are working on.

6. Save your changes for the TIBCO_HOME/be/5.1/bin/be-engine.tra file.

7. Start the Studio, if not already started. See Starting Studio.

8. Import the ASG_HOME/projects/ASG_DefaultImplementation project in the Studio.
See Loading the Default ASG_DefaultImplementation Project.

9. In Studio Explorer, select the ASG_DefaultImplementation project. From the menu,
select Run > Debug Configurations

10. For local debugging, On the Debug Configurations dialog, select and double-click the
TIBCO BusinessEvents Application node on the left. Ensure that the ASG_
DefaultImplementation project is selected.

a. Select the Main tab and configure values as explained in the "Debug



TIBCO® API Exchange Gateway User Guide

47 | Getting Started

Configuration Parameters Reference" table in step 10c.

b. Select the Environment tab and configure the environment variables as
needed, to run or debug the project in Studio.

For example, edit the following variable to set the value as:

PATH: PATH:TIBCO_HOME/tibrv/8.3/bin

where PATH is the existing value of the PATH variable.

Note: You can add new variables using the Environment tab. You
can select and then edit the existing variables. You can append your
edited variable to the existing environment variable, or replace the
existing environment variable with the specified variable. For
example, if a custom function depends on a native library, you can
add the path to that library using the PATH, LD_LIBRARY_PATH,
SHLIB_PATH, or LIBPATH variable, as appropriate for your operating
system.

c. Select the Classpath tab and configure the class path for external libraries or
custom functions, as needed.

For example, if the project uses Rendezvous or JMS channels, then you can add
the Rendezvous or JMS libraries to the class path.

Field Notes

Name A descriptive name. It appears in the drop-down list of configurations.

Main Tab

Project Browse to select the ASG_DefaultImplementation project. This appears
by default as this project is currently selected in the Studio.

VM
Arguments

Optional. Provide options and parameters using -V, -D, -X and so on.

For example,

Debug Configuration Parameters Reference



TIBCO® API Exchange Gateway User Guide

48 | Getting Started

Field Notes

l To set global variables use: -VVariable=value

l To set properties for generic page flow, set java property as
follows:

-
Dbe.engine.channel.pageflow.genericContext.enabled=
true

CDD File Browse to select the CDD file as ASG_HOME\bin\asg_core.cdd to be used
for this debug configuration.

Processing
Unit

Specifies the name of the processing unit (PU) whose values are used for
this debug configuration. The drop-down list displays PUs available in
the asg_core.cdd file.

For example, set this value as asg-caching-core.

Working
Directory

The location of the working directory for the Core Engine. This location is
used to store temporary files and logs. Browse and select an existing
directory.

Path names that do not start with the root directory are assumed by the
operating system to start from the working directory.

For example, on the Windows platform, set the working directory as
follows:

C:\temp\asgworkarea

EAR File Browse to select the EAR file to be used for this debug configuration. The
EAR file must be generated with the Generate Debug Info option
selected on the Project > Build Enterprise Archive. See Editing
Validating and Building the Default ASG_DefaultImplementation Project
to build the EAR file.

Set this value as: TIBCO_HOME\asg\2.3\bin\asg_core.ear

11. On the Main tab, click Apply to save the debug configuration changes.



TIBCO® API Exchange Gateway User Guide

49 | Getting Started

12. Click Debug to launch the debugger. Verify that the debugger is launched.

Setting the Debug Perspective within Studio

Procedure
1. Switch to the Debug perspective. Select Window > Open Perspective, or click Open

Perspective ( ). Then select Other > Debug.

2. Click the down-arrow to the right of the debugger ( ) button to display a drop-
down list. Follow one of the following steps:

l Select a debug configuration from the list.

l Select Debug Configurations. From the Debug Configurations dialog, select a
debug configuration and click Debug.

3. Verify that the debugger is launched.

Validation Tool (asg-validate)
Use validation tool to validate the configuration data for a gateway project.

The asg-validate tool checks for a complete and correct configuration set using the Config
UI before the configuration can be used by the Core Engine at run time.

The asg-validate tool loads the data from all the configuration (cfg) files for a gateway
configuration project into the memory and validates it against each other. The asg-validate
also loads and compiles all the XSLT files for a gateway configuration project and therefore
it checks if the XSLT files are valid.

The asg-validate tool ensures that the data in one configuration file that is dependent on
the other configuration file is valid.

For example, you have defined a partner P_1 and assigned it to a partner group PG_1 for a
myconfig project configuration. When you run asg-validate for myconfig project, it loads
partner P_1 data into memory and finds that this is assigned to PG_1 partner group. Then
it checks if the data of partner group PG_1 is also available in the memory of the Core
Engine. If it does not find PG_1 partner group data, it throws an error indicating that
partner group PG_1 is not defined in Partner Groups.



TIBCO® API Exchange Gateway User Guide

50 | Getting Started

If all data such as partner, target operations, facade operations, throttles, and so on, is
valid and correct for a project configuration, it displays a successful message as: The ASG
configuration status is OK . Otherwise, it reports errors on the console.

You can find the output of the asg-validate tool in a log file. See Log File for asg-validate

Running asg-validate Using asg-tools
Utility to validate configuration data for a gateway project.

You can use the asg-tools utility to perform the validation for a gateway project
configuration.

Procedure
1. Navigate to the ASG_HOME/bin directory.

2. Type the following command:

asg-tools -u asg-validate -aasg_config_name

where asg_config_name is the name of the configuration to be validated.

For example, to validate the BookQueryBE configuration type the following
command:

asg-tools -u asg-validate -a BookQueryBE

Log File for asg-validate
Set the location of log file for asg-validate tool.

The output of the asg-validate tool is stored in a log file named asg-validate.log. By default,
this log file is located in the ASG_CONFIG_HOME/logs directory. You can change the location
of the logs directory in the ASG_HOME/bin/asg_validation.cdd file by editing the dir
parameter as follows:

 <log-configs>
<log-config id="logConfig">
<dir>C:/ProgramData/TIBCO_ASG/tibco/cfgmgmt/logs</dir>



TIBCO® API Exchange Gateway User Guide

51 | Getting Started

Limitations of asg-validate
Defines the limitations of asg-validate tool.

The asg-validate mainly validates the integrity of data stored in the configuration files for a
configuration set. This tool does not detect certain configuration issues such as invalid URL
for a transport, invalid queue, or topic name for JMS services.

Note: The Validate icon on the Config UI uses the asg-validate tool to validate
the configuration data entered on the UI. It is good practice to run the validation
after you have entered the complete data for a project configuration set. This
helps to find the errors at design time so that they can be fixed earlier and
prevents errors at run time for the Core Engine.

Runtime Properties
Runtime properties for the Core Engine and the Central Logger component of the gateway.

The runtime properties of the Core Engine and the Central Logger component are defined
in the asg.properties and asg_cl.properties files respectively.

Note: The runtime properties can be set in one of the following ways:

l By using the Config UI:

To set the properties on the home page, select the Gateway Engine
Properties from the drop-down list next to the
icon.

l By using a text editor:

Directly edit the asg.properties and asg_cl.properties files using a text
editor. The files are located in the ASG_CONFIG_HOME directory.

Runtime Properties of Core Engine
Explains the runtime properties of Core Engine.

The properties for the Core Engine are defined in the asg.properties file located in ASG_
CONFIG_HOME directory. The following properties can be defined:



TIBCO® API Exchange Gateway User Guide

52 | Getting Started

Property Name Description

tibco.clientVar.ASG/UseDefaultIfPartnerNotFound

The property
tibco.clientVar.ASG/UseDefaultIfPartnerNotFou
nd in the asg.properties file directs the system that
if a Partner does not match the Serial number or
Issuer CA then can the system allow such requests to
be successfully processed or not.

The default is false.

tibco.clientVar.ASG/HttpClient/useSynchHttpClient

A Boolean field used to send a request to the target
side by running the http client in the same thread as
the facade processing. Use the synchronous http
client when a high load of short lived requests are
expected

If the value is set to true, the client sends a
synchronous request for HTTP transport. If the value
is set to false, an asynchronous request is sent for
HTTP transport.

The default is false.

tibco.clientVar.ASG/HttpClient/workers

The number of threads used for HTTP Client. This is
relevant only if the value of the useSynchHttpClient
is false (that is, when an asynchronous request is
sent for HTTP transport).

The default is 10.

tibco.clientVar.ASG/modRV/facade_request

Specifies the Rendezvous subject name which is
used by the Core Engine to listen for requests from

Core Engine Properties



TIBCO® API Exchange Gateway User Guide

53 | Getting Started

Property Name Description

the Apache module.

The default is _LOCAL.asg.north.request.

tibco.clientVar.ASG/modRV/facade_request_binary

Specifies the Rendezvous subject name which is
used by the Core Engine to listen for binary requests
from the Apache module.

The default is _LOCAL.asg.north.request_binary.

tibco.clientVar.ASG/modRV/facade_response

Specifies the Rendezvous subject to send the
response when the Apache module is configured not
to use the auto-generated reply subject.

If the Apache module is configured to use the reply
subject, this is ignored.

tibco.clientVar.ASG/modRV/RvDaemon

Specifies the value of the Rendezvous daemon for
the Core Engine to connect and listen for the
requests from the Apache module.

tibco.clientVar.ASG/modRV/RvNetwork

Specifies the value of the Rendezvous network for
the Core Engine to connect and listen for the
requests from the Apache module.

tibco.clientVar.ASG/modRV/RvService

Specifies the value of the Rendezvous service for the
Core Engine to connect and listen for the requests
from the Apache module.



TIBCO® API Exchange Gateway User Guide

54 | Getting Started

Property Name Description

tibco.clientVar.ASG/GTM/RV/RvDaemon

Specifies the value of the Rendezvous daemon for
the Core Engine to connect to the Global Throttle
Manager.

tibco.clientVar.ASG/GTM/RV/RvNetwork

Specifies the value of the Rendezvous network for
the Core Engine to connect to the Global Throttle
Manager.

tibco.clientVar.ASG/GTM/RV/RvService

Specifies the value of the Rendezvous service for the
Core Engine to connect to the Global Throttle
Manager.

tibco.clientVar.ASG/CL/RV/RvDaemon

Specifies the value of the Rendezvous daemon for
the Core Engine to send messages to the Central
Logger.

tibco.clientVar.ASG/CL/RV/RvNetwork

Specifies the value of the Rendezvous network for
the Core Engine to send messages to the Central
Logger.

tibco.clientVar.ASG/CL/RV/RvService

Specifies the value of the Rendezvous service for the
Core Engine to send messages to the Central Logger.

tibco.clientVar.Common/Connections/RV/SubjectPrefix

Specifies the prefix for all Rendezvous subject names



TIBCO® API Exchange Gateway User Guide

55 | Getting Started

Property Name Description

used between the Core Engine and the Central
Logger, the Core Engine and the Global Throttle
Manager components.

The default is TIBCO.ASG.INTERNAL.

tibco.clientVar.ASG/Deployments/AllowHotUpdate

Set this field as true or false to enable or disable
hot configuration updates.

The default is false.

tibco.clientVar.ASG/ConfigRoot

l Specifies the root directory for an entire
configuration.

l If this property is set, the configuration value
specified for this property takes precedence
over the configuration specified by asg-engine
command-line option such as asg-engine.exe -
a <Config project name>.

For example, the root directory for default
configuration is:
C:/ProgramData/ASG200/tibco/cfgmgmt/asg/
default.

tibco.clientVar.EXAMPLES_HOME

Specifies the home directory for the examples
shipped with TIBCO API Exchange Gateway.

For example, the home directory for the examples
directory is:

ASG_HOME/examples
.

tibco.clientVar.ASG/Response/DefaultContentType



TIBCO® API Exchange Gateway User Guide

56 | Getting Started

Property Name Description

Specifies the default content-type and format of
error response content when the error message is
returned from the TIBCO API Exchange Gateway for
any incoming request. The possible values are as
follows:

l

application/json
application/xml
text/xml

The default value is application/json.

tibco.clientVar.ASG/Logging/reportingEnabled

Specifies if reporting to the Central Logger is
enabled or not. By default, the Core Engine does not
record the transactions to Central Logger.

The default is false.

See Enabling Reporting to the Central Logger.

tibco.clientVar.ASG/Logging/interval

Specifies the time interval (in milliseconds) between
the Core Engine and the Central Logger to record
transactions.

The default is 30000.

tibco.clientVar.ASG/Logging/MinLogLevel

Set this field to enable the detail level logging for
the Central Logger component. If the value is 1,the
Central Logger records all the details of transaction.
If the value is 0, the Central Logger records high
level transaction.

The default is 0.



TIBCO® API Exchange Gateway User Guide

57 | Getting Started

Property Name Description

tibco.clientVar.ASG/Throttle/UpdateIntervalSec

Specifies the time interval (in seconds) for sending
throttle updates to the Global Throttle Manager.

The default is 10.

tibco.clientVar.ASG/anonymous/PartnerName/Authenticated

Specifies the default partner name for the
unauthenticated requests.

The default value is anon.

tibco.clientVar.ASG/Endpoint/ESB/EnableTempQueueResponse

Specifies the usage of temporary queue, instead of a
dedicated response queue. The property enables
every ESB response to a temporary queue.

The default is false.

tibco.clientVar.ASG/Endpoint/ESB0/requestQueue

Specifies the queue name for an Enterprise Service
Bus (ESB) channel (one) communication for the
target operation request.

The default queue name is asg.out.request.

tibco.clientVar.ASG/Endpoint/ESB0/replyQueue

Specifies the queue name for ESB channel (one)
communication for the target operation response.

The default queue name is
asg.out.request.reply.0.0.

tibco.clientVar.ASG/Endpoint/ESB1/requestQueue



TIBCO® API Exchange Gateway User Guide

58 | Getting Started

Property Name Description

Specifies the queue name for an ESB channel (two)
communication for the target operation request.

The default queue name is asg.out.request.

tibco.clientVar.ASG/Endpoint/ESB1/replyQueue

Specifies the queue name for an ESB channel (two)
communication for the target operation response.

The default queue name is
asg.out.request.reply.0.1.

tibco.clientVar.ASG/Endpoint/ESB2/requestQueue

Specifies the queue name for an ESB channel (three)
communication for the target operation request.

The default queue name is asg.out.request.

tibco.clientVar.ASG/Endpoint/ESB2/replyQueue

Specifies the queue name for an ESB channel (three)
communication for the target operation response.

The default queue name is
asg.out.request.reply.0.2

tibco.clientVar.ASG/facade/ESB0/requestQueue

Specifies the queue name to be used for the
requests sent by the client at the facade side when
the inbound channel is ESB (JMS transport with
XML).

The default queue name is asg.in.request.

tibco.clientVar.ASG/facade/ESB0/replyQueue

Specifies the queue name to be used for the facade



TIBCO® API Exchange Gateway User Guide

59 | Getting Started

Property Name Description

responses received for the client requests when the
inbound channel is ESB (JMS transport with XML).

The default queue name is asg.in.request.reply.0

tibco.clientVar.ASG/facade/SOAPJMS/requestQueue

Specifies the queue name to be used for the facade
requests sent by the client when the inbound
transport is SOAP JMS.

The default queue name is asg.soap.in.request.

tibco.clientVar.ASG/facade/SOAPJMS/replyQueue

Specifies the queue name to be used for the facade
responses received for the client requests when the
inbound transport is SOAP JMS.

The default queue name is
asg.soap.in.request.reply.0.

tibco.clientVar.ASG/Endpoint/SOAPJMS/DefaultTargetRequestQueue

Specifies the queue name to be used for the
requests sent to target operations when the inbound
transport is SOAP JMS.

The default queue name is asg.soap.forward.

tibco.clientVar.ASG/Endpoint/SOAPJMS/TargetResponseQueue

Specifies the queue name to be used for the target
responses received from the target operations when
the inbound transport is SOAP JMS.

The default queue name is
asg.soap.forward.reply.0

EMS Server Connections (Facade ESB Channel)



TIBCO® API Exchange Gateway User Guide

60 | Getting Started

Property Name Description

tibco.clientVar.Common/Connections/JMS/FacadeEsbConnection0/JMSProviderURL

Specifies the connection URL for the EMS Server
used for facade operation requests from ESB
communication domain. ESB communication uses
JMS transport with XML.

The default is tcp://localhost:7222.

tibco.clientVar.Common/Connections/JMS/FacadeEsbConnection0/JNDIContextURL

Specifies the URL to the JNDI service provider used
for facade operation requests with ESB
communication domain.

The default is tibjmsnaming://localhost:7222.

tibco.clientVar.Common/Connections/JMS/FacadeEsbConnection0/TopicConnectionFactor
yName

Specifies the name of TopicConnectionFactory
object stored in JNDI. This object is used to create a
topic connection with ESB services at the facade
side.

The default is TopicConnectionFactory.

tibco.clientVar.Common/Connections/JMS/FacadeEsbConnection0/QueueConnectionFactor
yName

Specifies the name of QueueConnectionFactory
object stored in JNDI. This object is used to create a
queue connection with ESB services at the facade
side.

The default is QueueConnectionFactory.

tibco.clientVar.Common/Connections/JMS/FacadeEsbConnection0/JNDIUsername

Specifies the user name for logging into the JNDI



TIBCO® API Exchange Gateway User Guide

61 | Getting Started

Property Name Description

server in the ESB communication domain at the
facade side. If the JNDI provider does not require
access control, this field can be empty.

The default is admin.

tibco.clientVar.Common/Connections/JMS/FacadeEsbConnection0/JNDIPassword

Specifies the password for logging into the JNDI
server in the ESB communication domain at the
facade side. If the JNDI provider does not require
access control, this field can be empty.

tibco.clientVar.Common/Connections/JMS/FacadeEsbConnection0/JMSUsername

Specifies the user name for logging into the EMS
server in the ESB communication domain at the
facade side.

The default is admin.

tibco.clientVar.Common/Connections/JMS/FacadeEsbConnection0/JMSPassword

Specifies the password for logging into the EMS
server in the ESB communication domain at the
facade side.

EMS Server Connections for ESB Channel1 at Target Side

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection0/JMSProviderURL

Specifies the connection URL for the EMS Server
used for target operation requests sent to back-end
services in ESB communication domain. ESB
communication uses JMS transport with XML.

The default is tcp://localhost:7222 .

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection0/JNDIContextURL



TIBCO® API Exchange Gateway User Guide

62 | Getting Started

Property Name Description

Specifies the URL to the JNDI service provider used
for target operation requests sent to back-end
services in ESB communication domain.

The default value is tibjmsnaming://localhost:7222

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection0/TopicConnectionFactor
yName

Specifies the name of TopicConnectionFactory
object stored in JNDI. This object is used to create a
topic connection with ESB services at the target
operation side.

The default value is TopicConnectionFactory .

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection0/QueueConnectionFactor
yName

Specifies the name of QueueConnectionFactory
object stored in JNDI. This object is used to create a
queue connection with ESB services at the target
operation side.

The default value is QueueConnectionFactory .

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection0/JNDIUsername

Specifies the user name for logging into the JNDI
server in the ESB communication domain at the
target operation side. If the JNDI provider does not
require access control, this field can be empty.

The default value is admin.

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection0/JNDIPassword

Specifies the password for logging into the JNDI
server in the ESB communication domain at the
target operation side. If the JNDI provider does not



TIBCO® API Exchange Gateway User Guide

63 | Getting Started

Property Name Description

require access control, this field can be empty.

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection0/JMSUsername

Specifies the user name for logging into the EMS
server in the ESB communication domain at the
target operation side.

The default value is admin.

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection0/JMSPassword

Specifies the password for logging into the EMS
server in the ESB communication domain at the
target operation side.

EMS Server Connections for ESB Channel2 at Target Side

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection1/JMSProviderURL

Specifies the connection URL for the EMS Server
used for target operation requests sent to back-end
services in ESB communication domain. ESB
communication uses JMS transport with XML.

The default is tcp://localhost:7222 .

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection1/JNDIContextURL

Specifies the URL to the JNDI service provider used
for target operation requests sent to back-end
services in ESB communication domain.

The default value is
tibjmsnaming://localhost:7222.

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection1/TopicConnectionFactor
yName



TIBCO® API Exchange Gateway User Guide

64 | Getting Started

Property Name Description

Specifies the name of TopicConnectionFactory
object stored in JNDI. This object is used to create a
topic connection with ESB services at the target
operation side.

The default value is TopicConnectionFactory.

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection1/QueueConnectionFactor
yName

Specifies the name of QueueConnectionFactory
object stored in JNDI. This object is used to create a
queue connection with ESB services at the target
operation side.

The default value is QueueConnectionFactory.

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection1/JNDIUsername

Specifies the user name for logging into the JNDI
server in the ESB communication domain at the
target operation side. If the JNDI provider does not
require access control, this field can be empty.

The default value is admin

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection1/JNDIPassword

Specifies the password for logging into the JNDI
server in the ESB communication domain at the
target operation side. If the JNDI provider does not
require access control, this field can be empty.

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection1/JMSUsername

Specifies the user name for logging into the EMS
server in the ESB communication domain at the
target operation side.

The default value is admin.



TIBCO® API Exchange Gateway User Guide

65 | Getting Started

Property Name Description

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection1/JMSPassword

Specifies the password for logging into the EMS
server in the ESB communication domain at the
target operation side.

EMS Server Connections for ESB Channel3 at Target Side

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection2/JMSProviderURL

Specifies the connection URL for the EMS Server
used for target operation requests sent to back-end
services in ESB communication domain. ESB
communication uses JMS transport with XML.

The default value is tcp://localhost:7222.

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection2/JNDIContextURL

Specifies the URL to the JNDI service provider used
for target operation requests sent to back end
services in ESB communication domain.

The default value is
tibjmsnaming://localhost:7222 .

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection2/TopicConnectionFactor
yName

Specifies the name of TopicConnectionFactory
object stored in JNDI. This object is used to create a
topic connection with ESB services at the target
operation side.

The default value is TopicConnectionFactory.

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection2/QueueConnectionFactor
yName



TIBCO® API Exchange Gateway User Guide

66 | Getting Started

Property Name Description

Specifies the name of QueueConnectionFactory
object stored in JNDI. This object is used to create a
queue connection with ESB services at the target
operation side.

The default value is QueueConnectionFactory.

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection2/JNDIUsername

Specifies the user name for logging into the JNDI
server in the ESB communication domain at the
target operation side. If the JNDI provider does not
require access control, this field can be empty.

The default value is admin.

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection2/JNDIPassword

Specifies the password for logging into the JNDI
server in the ESB communication domain at the
target operation side. If the JNDI provider does not
require access control, this field can be empty.

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection2/JMSUsername

Specifies the user name for logging into the EMS
server in the ESB communication domain at the
target operation side.

The default value is admin.

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection2/JMSPassword

Specifies the password for logging into the EMS
server in the ESB communication domain at the
target operation side.

Connection Parameters for SOAP JMS (Facade)



TIBCO® API Exchange Gateway User Guide

67 | Getting Started

Property Name Description

tibco.clientVar.Common/Connections/JMS/SOAPConnection_Facade/JMSProviderURL

Specifies the connection URL for the EMS Server
used for client requests when SOAP JMS transport is
used at the facade side.

The default value is tcp://localhost:7222.

tibco.clientVar.Common/Connections/JMS/SOAPConnection_Facade/JNDIContextURL

Specifies the URL to the JNDI service provider used
for client requests when SOAP JMS transport is used
at the facade side.

The default value is
tibjmsnaming://localhost:7222.

tibco.clientVar.Common/Connections/JMS/SOAPConnection_
Facade/TopicConnectionFactoryName

Specifies the name of TopicConnectionFactory
object stored in JNDI. This object is used to create a
topic connection with JMS application at facade
side.

The default value is TopicConnectionFactory.

tibco.clientVar.Common/Connections/JMS/SOAPConnection_
Facade/QueueConnectionFactoryName

Specifies the name of QueueConnectionFactory
object stored in JNDI. This object is used to create a
queue connection with JMS application at facade
side.

The default value is QueueConnectionFactory.

tibco.clientVar.Common/Connections/JMS/SOAPConnection_Facade/JNDIUsername

Specifies the user name for logging into the JNDI



TIBCO® API Exchange Gateway User Guide

68 | Getting Started

Property Name Description

server used to send client requests at facade side. If
the JNDI provider does not require access control,
this field can be empty.

The default value is admin.

tibco.clientVar.Common/Connections/JMS/SOAPConnection_Facade/JNDIPassword

Specifies the password for logging into the JNDI
server used to send client requests at facade side. If
the JNDI provider does not require access control,
this field can be empty.

tibco.clientVar.Common/Connections/JMS/SOAPConnection_Facade/JMSUsername

Specifies the user name for logging into the EMS
server used to send client requests at facade side.

The default value is admin.

tibco.clientVar.Common/Connections/JMS/SOAPConnection_Facade/JMSPassword

Specifies the password for logging into the EMS
server used to send client requests at facade side.

Connection Parameters for SOAP JMS (Target)

tibco.clientVar.Common/Connections/JMS/SOAPConnection_Target/JMSProviderURL

Specifies the connection URL for the EMS Server
when SOAP JMS transport is used at the target
operation side.

The default value is tcp://localhost:7222.

tibco.clientVar.Common/Connections/JMS/SOAPConnection_Target/JNDIContextURL

Specifies the URL to the JNDI service provider when
SOAP JMS transport is used at the target operation



TIBCO® API Exchange Gateway User Guide

69 | Getting Started

Property Name Description

side.

The default value is
tibjmsnaming://localhost:7222.

tibco.clientVar.Common/Connections/JMS/SOAPConnection_
Target/TopicConnectionFactoryName

Specifies the name of TopicConnectionFactory
object stored in JNDI. This object is used to create a
topic connection with JMS application at target
operation side.

The default value is TopicConnectionFactory.

tibco.clientVar.Common/Connections/JMS/SOAPConnection_
Target/QueueConnectionFactoryName

Specifies the name of QueueConnectionFactory
object stored in JNDI. This object is used to create a
queue connection with JMS application at target
operation side.

The default value is QueueConnectionFactory .

tibco.clientVar.Common/Connections/JMS/SOAPConnection_Target/JNDIUsername

Specifies the user name for logging into the JNDI
server when SOAP JMS transport is used at the
target operation side. If the JNDI provider does not
require access control, this field can be empty.

The default value is admin.

tibco.clientVar.Common/Connections/JMS/SOAPConnection_Target/JNDIPassword

Specifies the password for logging into the JNDI
server when SOAP JMS transport is used at the
target operation side. If the JNDI provider does not
require access control, this field can be empty.



TIBCO® API Exchange Gateway User Guide

70 | Getting Started

Property Name Description

tibco.clientVar.Common/Connections/JMS/SOAPConnection_Target/JMSUsername

Specifies the user name for logging into the EMS
server when SOAP JMS transport is used at the
target operation side.

The default value is admin.

tibco.clientVar.Common/Connections/JMS/SOAPConnection_Target/JMSPassword

Specifies the password for logging into the EMS
server when SOAP JMS transport is used at the
target operation side.

Connection Parameters for HTTP Channel(Facade)

tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPConnection/Host

Specifies the host where the Core Engine runs and
accepts HTTP requests from the client.

The default value is localhost.

tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPConnection/Port

Specifies the port through which the Core Engine
accepts HTTP requests from the client.

The default value is 9222.

tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPConnection/Conne
ctionTimeout

Specifies the timeout value for HTTP native
transport when the target service takes more than
one minute to send the response to client.

tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPConnection/Debug
Folder



TIBCO® API Exchange Gateway User Guide

71 | Getting Started

Property Name Description

Specifies where the log file should be generated.
Default is the currently running folder/logs.

tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPConnection/Debug
Pattern

Specifies the log pattern. The default log pattern is
used.

Connection Parameters for HTTPS Channel(Facade)

tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPSSLConnection/Po
rt

Specifies the port through which the Core Engine
accepts SSL enabled HTTP requests from client.

The default value is 9233.

tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPSSLConnection/us
eSSL

This is a boolean field which indicates if SSL should
be enabled for accepting HTTPs requests. If set to
true SSL is enabled to accept the requests using
HTTPs transport.

tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPSSLConnection/Id
entity

Specifies an identity resource which is used by
FacadeHTTPSSLConnection HTTP shared resource to
provide SSL properties.

tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPSSLConnection/Id
entityFileType

l Specifies the type of identity resource.

The possible values are as follows:



TIBCO® API Exchange Gateway User Guide

72 | Getting Started

Property Name Description

o
url
certPlusKeyURL

l Set the IdentityFileType property to URL for
Identity File type.

l Set the IdentityFileType property to
certPlusKeyURL for Certificate/Private Key
type.

l If the IdentityFileType property is set to url,
set the IdentityType,IdentityURL , and
IdentityFilePassword properties.

l If the IdentityFileType property is set to
certPlusKeyURL, set the CertificateURL,
KeyURL and IdentityFilePassword properties.

tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPSSLConnection/Id
entityType

Specifies the type of the file if the IdentityFileType
property is set to url. The supported values are as
follows:

l

JCEKS
JKS
PEM
PKCS12

tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPSSLConnection/Id
entityURL

Specifies the URL to the identity file if the
IdentityFileType property is set to url.

For example, C:\keystore.jks

tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPSSLConnection/Id



TIBCO® API Exchange Gateway User Guide

73 | Getting Started

Property Name Description

entityFilePassword

Specifies the password of the identity file or private
key.

l if the IdentityFileType property is set to url,
this refers to the password for the identity file.

l if the IdentityFileType property is set to
certPlusKeyURL, this refers the password for
the private key.

tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPSSLConnection/Ce
rtificateURL

Specifies the URL to the certificate file if the
IdentityFileType property is set to certPlusKeyURL.

For example, C:\mydomain.csr

tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPSSLConnection/Ke
yURL

Specifies the URL to the private key in certificate file
if the IdentityFileType property is set to
certPlusKeyURL.

For example, C:\keystore.jks

tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPSSLConnection/Re
quiresClientAuthentication

Indicates a boolean flag to enable or disable mutual
SSL authentication for HTTPS transport between the
client and the gateway.

When this field is set to true, the Trusted
Certificates Folder becomes enabled so that you can
specify a location containing the list of trusted
certificate authorities.



TIBCO® API Exchange Gateway User Guide

74 | Getting Started

Property Name Description

tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPSSLConnection/Tr
uststorePassword

Specifies the password to access the certificate
stored in the folder defined by
TrustedCertificateFolder property.

tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPSSLConnection/Tr
ustedCertificateFolder

Required when the RequiresClientAuthentication
property is set to true.

Specifies a folder in the project containing one or
more certificates from trusted certificate authorities,
which is required for mutual SSL authentication. This
folder is checked when a client connects to ensure
that the client is trusted.

tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPSSLConnection/SS
LServerProtocols

The possible values are as follows :

l TLSv1.2

l TLSv1.3

l SSLv3

Note: Since Java 11 has stopped TLSv1 and
TLSv1.1 support, hence these are not supported
by default. If you want to enable it then look for
jdk.tls.disabledAlgorithms property available
in the <TIBCO_
HOME>/tibcojre64/11/conf/security/java.secu
rity file and remove legacy TLSv1, TLSv1.1
version and then restart application. The client
can use older TLS version.

tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPSSLConnection/Co



TIBCO® API Exchange Gateway User Guide

75 | Getting Started

Property Name Description

nnectionTimeout

Specifies the timeout value for HTTPS native
transport when the target service takes more than
one minute to send the response to client.

tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPSSLConnection/De
bugFolder

Specifies where the log file should be generated.
Default is the currently running folder/logs.

tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPSSLConnection/De
bugPattern

Specifies the log pattern. The default log pattern is
used.

OAuth Properties

tibco.clientVar.DefaultImplementation/Connections/HTTP/OAuthWebappsConnection/Hos
t

Specifies the host IP address of the TIBCO API
Exchange Gateway OAuth Server.

tibco.clientVar.DefaultImplementation/Connections/HTTP/OAuthWebappsConnection/Por
t

Specifies the non-SSL port number of the TIBCO API
Exchange Gateway OAuth Server.

The default value is 9322.

tibco.clientVar.DefaultImplementation/Connections/HTTP/OAuthWebappsConnection/Con
nectionTimeout

Specifies the timeout value for OAuth HTTP
transport when the target service takes more than



TIBCO® API Exchange Gateway User Guide

76 | Getting Started

Property Name Description

one minute to send the response to client.

tibco.clientVar.DefaultImplementation/Connections/HTTP/OAuthWebappsConnection/Web
apps

l Specifies the location of the OAuth web
application.

l Change this only if you want to add custom
login page or access grant page to the OAuth
server.

tibco.clientVar.DefaultImplementation/Connections/HTTP/OAuthWebappsSSLConnection/
Port

Specifies the SSL port number of the TIBCO API
Exchange Gateway OAuth Server.

The default value is 9333.

tibco.clientVar.DefaultImplementation/Connections/HTTP/OAuthWebappsSSLConnection/
useSSL

A Boolean field that indicates if SSL should be
enabled for accepting HTTPS requests for OAuth
APIs and servlets. If set to true SSL is enabled to
accept the requests using HTTPS transport for the
OAuth server.

The default value is true.

tibco.clientVar.DefaultImplementation/Connections/HTTP/OAuthWebappsSSLConnection/
Identity

Specifies an identity resource which is used by
OAuthWebappsSSLConnection HTTP shared resource
to provide SSL properties for OAuth servlets and
APIs.

The default value is



TIBCO® API Exchange Gateway User Guide

77 | Getting Started

Property Name Description

/DefaultImplementation/SharedResources/HTTP/O
AuthIdentityResource.id .

tibco.clientVar.DefaultImplementation/Connections/HTTP/OAuthWebappsSSLConnection/
IdentityFileType

• Specifies the type of identity resource set for OAuth
server.

The possible values are as follows:

l url.

l certPlusKeyURL.

l Set the IdentityFileType property to url for
Identity File type.

l Set the IdentityFileType property to
certPlusKeyURL for Certificate/Private Key
type.

l If the IdentityFileType property is set to url,
set the IdentityType,IdentityURL , and
IdentityFilePassword properties.

l If the IdentityFileType property is set to
certPlusKeyURL, set the CertificateURL,
KeyURL and IdentityFilePassword
properties.

tibco.clientVar.DefaultImplementation/Connections/HTTP/OAuthWebappsSSLConnection/
IdentityType

Specifies the type of the file if the
IdentityFileType property is set to url.

The supported values are as follows:

l JCEKS

l JKS

l PEM



TIBCO® API Exchange Gateway User Guide

78 | Getting Started

Property Name Description

l PKCS12

tibco.clientVar.DefaultImplementation/Connections/HTTP/OAuthWebappsSSLConnection/
IdentityURL

Specifies the URL to the identity file if the Identity
file type is of the type Identity File for OAuth server
SSL connection.

For example, C:\keystore.jks

tibco.clientVar.DefaultImplementation/Connections/HTTP/OAuthWebappsSSLConnection/Ident
ityFilePassword

Specifies the password of the identity file or private
key used for SSL connection to the OAuth server.

l If the IdentityFileType property is set to url,
this refers to the password for the identity file.

l If the IdentityFileType property is set to
certPlusKeyURL, this refers the password for
the private key.

tibco.clientVar.DefaultImplementation/Connections/HTTP/OAuthWebappsSSLConnection/
CertificateURL

Specifies the URL to the certificate file used for
OAuth server SSL connection if the Identity file type
is of the type Certificate/Private Key.

tibco.clientVar.DefaultImplementation/Connections/HTTP/OAuthWebappsSSLConnection/
KeyURL

Specifies the URL to the private key in certificate file
used for OAuth server SSL connection if the Identity
file type is of the type Certificate/Private Key.

tibco.clientVar.DefaultImplementation/Connections/HTTP/OAuthWebappsSSLConnection/
RequiresClientAuthentication



TIBCO® API Exchange Gateway User Guide

79 | Getting Started

Property Name Description

Indicates a Boolean flag to enable or disable mutual
SSL authentication for HTTPS transport used for
OAuth server requests from the requestor. When this
field is set to true, the Trusted Certificates Folder
becomes enabled so that you can specify a location
containing the list of trusted certificate authorities.

tibco.clientVar.DefaultImplementation/Connections/HTTP/OAuthWebappsSSLConnection/
TruststorePassword

Specifies the password to access the certificate
stored in the folder defined by the
TrustedCertificateFolder property.

tibco.clientVar.DefaultImplementation/Connections/HTTP/OAuthWebappsSSLConnection/
TrustedCertificateFolder

Required when the RequiresClientAuthentication
property is set to true. Specifies a folder in the
project containing one or more certificates from
trusted certificate authorities, which is required for
mutual SSL authentication. This folder is checked
when a client connects to ensure that the client is
trusted.

tibco.clientVar.DefaultImplementation/Connections/HTTP/OAuthWebappsSSLConnection/
SSLServerProtocols

Enables the SSLv3 support for the northbound
request received through the OAuth HTTPS channel.
The possible values are as follows :

l TLSv1

l TLSv1.1

l TLSv1.2

l TLSv1.3



TIBCO® API Exchange Gateway User Guide

80 | Getting Started

Property Name Description

tibco.clientVar.DefaultImplementation/Connections/HTTP/OAuthWebappsSSLConnection/
ConnectionTimeout

Specifies the timeout value for OAuth HTTPS
transport when the target service takes more than
one minute to send the response to client.

Enable JMS Transport for Central Logger

tibco.clientVar.ASG/Logging/transport

Specifies the transport to be used between the Core
Engine and the Central Logger component to log the
transactions.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/JMSProviderURL

Specifies the URL to connect to the Enterprise
Message Service (EMS) or a JMS server.

Example: tcp://localhost:7222 .

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/JNDIContextURL

Specifies a JNDI connection URL to look up a JMS
server.

Example:

tibjmsnaming://localhost:7222.

tibco.clientVar.Common/Connections/JMS/CL_
JMSConnection/TopicConnectionFactoryName

Specifies the name of TopicConnectionFactory
object stored in JNDI. This object is used to create a
topic connection with JMS server for the Central
Logger.

The default value is TopicConnectionFactory.



TIBCO® API Exchange Gateway User Guide

81 | Getting Started

Property Name Description

tibco.clientVar.Common/Connections/JMS/CL_
JMSConnection/QueueConnectionFactoryName

Specifies the name of QueueConnectionFactory
object stored in JNDI. This object is used to create a
queue connection with JMS server for the Central
Logger.

The default value is QueueConnectionFactory .

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/JNDIUsername

Specifies the user name to use when logging into the
JNDI server. If the JNDI provider does not require
access control, this field can be empty.

For example, admin.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/JNDIPassword

Specifies the password for logging into the JNDI
server. If the JNDI provider does not require access
control, this field can be empty.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/JMSUsername

Specifies the user name to use to authenticate to the
JMS server.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/JMSPassword

Specifies the password to use to authenticate to the
JMS server.

tibco.clientVar.Common/Connections/JMS/CL_
JMSConnection/TransactionReportDestinationName

Specifies the name of the JMS destination to which
the transaction reports are sent to the Central



TIBCO® API Exchange Gateway User Guide

82 | Getting Started

Property Name Description

Logger by the Core Engine.

For example, asg.cl.transaction.queue.

tibco.clientVar.Common/Connections/JMS/CL_
JMSConnection/TransactionReportDestinationType

Specifies the type of the JMS destination to which
the transaction reports are sent to the Central
Logger by the Core Engine.

The possible values are queue and topic.

The default value is queue.

The Central Logger always listens on a queue. If the
value of destination type set to topic, the JMS
administrator must configure a bridge between the
topic and the queue.

tibco.clientVar.ConfigApi.ConfigurationBackupProperty

Specifies the maximum number of latest revisions of
the configuration projects to be kept.

SSL JMS Transport Properties for Central Logger

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/useSSL

Specifies if SSL is enabled for the Central Logger
when using the JMS transport. Set this to true to
enable SSL for the JMS transport.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/TrustedCertificatesFolder

If you use the SSL enabled JMS transport for Central
Logger, this field specifies a location of the trusted
certificates on this machine. The trusted certificates
are a collection of certificates from servers with



TIBCO® API Exchange Gateway User Guide

83 | Getting Started

Property Name Description

which you establish connections. If the server with
which the connection is going to be established,
presents a certificate that does not match one of
your trusted certificates, the connection is refused.
This prevents connections to unauthorized servers.
Import the trusted certificates into a folder before
you select the folder in this field.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/Identity

Specifies an identity resource used to provide the
SSL properties for JMS transport. The default value
is /Common/SharedResources/JMS/CL_
JMSConnIdentityResource.id .

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/TrustStorePassword

Specifies the password to access the certificate
stored in the folder defined by the Trusted
Certificate Folder field. The certificate is required
for SSL connection.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/trace

Specifies whether SSL tracing should be enabled
during the SSL connection. If the value is set to
true, the SSL connection messages are logged and
sent to the console.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/debugTrace

Specifies whether SSL debug tracing should be
enabled during the SSL connection. Debug tracing
provides more detailed messages than standard
tracing.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/verifyHostName



TIBCO® API Exchange Gateway User Guide

84 | Getting Started

Property Name Description

Specifies whether the host you are connecting to is
the expected host. The host name in the digital
certificate of the host is compared against the value
in the Expected Host Name field. If the host name
does not match the expected host name, the
connection is refused.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/ExpectedHostName

Specifies the name of the host you are expecting to
connect to. This field is only relevant if the Verify
Host Name field is set to true. If the name of the
host in the digital certificate of host does not match
the value specified in this field, the connection is
refused.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/strongCipherSuitesOnly

When this field is set to true, this specifies the
minimum strength of the cipher suites that can be
specified with the
bw.plugin.security.strongcipher.minstrength
custom engine property. See TIBCO ActiveMatrix
BusinessWorks Administration for more information
about this property. The default value of the
property disables cipher suites with an effective key
length below 128 bits. When this field is set to false,
only cipher suites with an effective key length of up
to 128 bits can be used.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/IdentityType

Specifies the type of identity resource for SSL
connection. The possible values are:

l certPlusKeyURL

l url



TIBCO® API Exchange Gateway User Guide

85 | Getting Started

Property Name Description

l usernamePassword

Properties for Identity Type=usernamePassword

Use this option if you want to use a user name and password for authentication instead of a
certificate.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/IdentityUsername

Specifies the name of the user for this identity.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/IdentityPassword

Specifies the password for the user for this identity

Properties for Identity Type=url

Use this option if the certificate includes the private key information in the same file.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/IdentityFileType

Specifies the type of certificate file if Identity Type
is set to url.

The accepted values are as follows:

l Entrust

l JCEKS

l JKS

l PEM

l PKCS12

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/IdentityURL

Specifies the location of the certificate (which
includes the private key) if Identity Type is set to
url.



TIBCO® API Exchange Gateway User Guide

86 | Getting Started

Property Name Description

For example, C:\asgserver.pfx

tibco.clientVar.oauth.refresh.token.grace.period

Specifies the grace period (in minutes) for the
refresh token to be active. During the grace period
same refresh token can be used to create another
access token. The default value is 0 minutes which
means it is disabled. By default, every time a refresh
token is used it creates a new access token and
refresh token. When you specify the value (in
minutes), then for that duration specified in the
value same refresh token can be used to create
another access token.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/KeyPassword

Specifies the password for the certificate if Identity
Type is of url type.

Properties for Identity Type=certPlusKeyURL

Use this option if the private key and the certificate are in two separate files.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/KeyPassword

Specifies the password for the certificate if Identity
Type is of certPlusKeyURL type.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/CertificateURL

Specifies the URL to the certificate file if Identity
Type is of certPlusKeyURL type.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/KeyURL

Specifies the URL to the private key in the certificate
file if Identity Type is of certPlusKeyURL type.



TIBCO® API Exchange Gateway User Guide

87 | Getting Started

Property Name Description

OAuth Server Related Settings

Properties For OAuth Data Space

tibco.clientVar.oauth.dataspace.metaspace.name

l Specifies the metaspace name used by the
OAuth server.

l The default value is ASG-OAuth-Tokens.

tibco.clientVar.oauth.dataspace.local.discovery

Specifies the discovery URL for this OAuth instance
of the metaspace discovers the current metaspace
members.

For example, tcp://machine1_IP_
Address:6300;machine2_IP_Address:6300

tibco.clientVar.oauth.dataspace.local.listen

Specifies the listening URL for this OAuth instance of
the metaspace.

For example, tcp://machine1_IP_Address:6300

tibco.clientVar.oauth.dataspace.remote.discovery

Specifies the remote discovery URL for this OAuth
instance of the metaspace discovers the current
metaspace members.

tibco.clientVar.oauth.dataspace.remote.listen

Specifies the remote listening URL for this OAuth
instance of the metaspace.

tibco.clientVar.oauth.dataspace.load.batch.size



TIBCO® API Exchange Gateway User Guide

88 | Getting Started

Property Name Description

Specifies the maximum number of entries to return
when querying data such as access token.

tibco.clientVar.oauth.access.token.retention.period

Specifies the expiration time (in minutes) for an
access token. The default value is 60 minutes. When
the access token passes expiration time as specified
by this property, it is no longer valid but still
remains in the database. The access token is
removed from the database based on the value
specified by the
tibco.clientVar.oauth.access.token.retention.
timeproperty.

Note: In a multi-instance TIBCO API Exchange
environment, if you change the TTL value on a
gateway instance, shut down all instances that
connect to that metaspace and then restart the
instances.

tibco.clientVar.oauth.access.token.retention.time

Specifies the retention period (in minutes) for an
access token. The default value is 1440 minutes (1
day) . When the access token passes retention
period as specified by this property, the token is
removed from the database. By default, the access
token is removed from the database after 1 day.

Note: The value of
tibco.clientVar.oauth.access.token.retentio
n.period property must be less than the value
specified by the
tibco.clientVar.oauth.access.token.retentio
n.time property.

tibco.clientVar.oauth.dataspace.replication.policy



TIBCO® API Exchange Gateway User Guide

89 | Getting Started

Property Name Description

Specifies the OAuth access token replication policy
when more than one OAuth servers are configured in
a cluster. The possible policy options are as folllows:

l sync.

If you set this property to sync means that as
the tokens are added to OAuth servers, they
are replicated immediately to all seeders in
the cluster.

l async.

If you set this property to async means that as
the tokens are added to OAuth servers, it does
not guarantee that the tokens are replicated
immediately.

The default value is async.

tibco.clientVar.oauth.dataspace.replication.count

Specifies the number of seeders that are used to
replicate token. If you have n number of OAuth
servers , set this property to n-1 to replicate the
token to all servers. The default value is 0.

For example, if you set this property to 1 means that
the token is replicated to one additional seeder.

tibco.clientVar.oauth.cache.token.in.session

Set this property to false to turn off caching.

Properties For OAuth Persister

tibco.clientVar.oauth.dataspace.persister.store

l Defines the type of persistence store. The
possible values are:



TIBCO® API Exchange Gateway User Guide

90 | Getting Started

Property Name Description

o
InMemory
Database

If the Database is set, you must define
the properties for database server
connection.

tibco.clientVar.oauth.access.token.include.attributes=true

Specifies if the response from token validation API
should return the owner’s attributes.

The default is false.

Properties For OAuth Server Persister Store of Database Type

oauth.dataspace.persister.jdbc.url=jdbc:mysql://DB_HOST:3306/DB_NAME

To obtain support for JAVA 11 for TLS 1.1, the
database connection string must be modified to
supported TLS.

If the database has TLS as mandatory then you must
modify the above property as:

oauth.dataspace.persister.jdbc.url=jdbc:mysql
://DB_HOST:3306/DB_
NAME?enabledTLSProtocols=TLSv1.1,TLSv1.2,TLSv
1.3;

Remove the TLS version which is not required.

tibco.clientVar.oauth.dataspace.persister.jdbc.driver

Specifies the database JDBC driver when the
database is used as OAuth persistence store.

tibco.clientVar.oauth.dataspace.persister.jdbc.url

Specifies the JDBC URL for the database server when



TIBCO® API Exchange Gateway User Guide

91 | Getting Started

Property Name Description

the database is used as OAuth persistence store.

tibco.clientVar.oauth.dataspace.persister.jdbc.username

Specifies the user to connect to the database server
when the database is used as OAuth persistence
store.

tibco.clientVar.oauth.dataspace.persister.jdbc.password

Specifies the password of the user to connect to the
database server when the database is used as OAuth
persistence store.

Properties For OAuth Adapters

tibco.clientVar.oauth.adapter.resource.home

Specifies the directory from where the custom
adapters loads the resources such as properties file
used by adapters. This directory location is relative
to the ASG_HOME.

For example, if the value is specified as
/examples/Adapters/resources, the custom adapter
looks for the resources such as properties file in the
directory ASG_HOME/examples/Adapters/resources.

tibco.clientVar.oauth.owner.adapter.class

l Specifies the class that provides the Owner
Adapter interface. This adapter is used to
authenticate the resource owner and provide
the login and access grant pages.

For example, for file-based owner adapter
interface, value specified as:
com.tibco.asg.oauth.identity.provider.fi
le.OwnerAdapterService



TIBCO® API Exchange Gateway User Guide

92 | Getting Started

Property Name Description

tibco.clientVar.oauth.client.adapter.class

Specifies the class that provides the Client Adapter
interface.

tibco.clientVar.oauth.scope.adapter.class

l Specifies the class that provides the Scope
Adapter interface. This adapter is used to
retrieve the scope description and the scope
form a specific resource for a given owner.

For example, for file-based scope adapter
interface, value specified as:

com.tibco.asg.oauth.identity.provider.file
.ScopeAdapterService

Advanced Properties

tibco.clientVar.ASG/Headers/SoapAction/RemoveQuotes

Enables the Core Engine to remove quotes from the
incoming SOAPAction header of the facade request.

Set this property to true to remove single or double
quotes from SOAPAction header of the request. If
the property is set to false or has no value, the
single or double quotes from SOAPAction header are
not removed, which is the default behavior.

tibco.clientVar.MessageEncoding

Specifies the encoding for the payloads in the
request sent to TIBCO API Exchange Gateway
through the Apache server using the HTTP transport.
The default value is ISO-8859.

Set this property to UTF-8 to enable the Core Engine



TIBCO® API Exchange Gateway User Guide

93 | Getting Started

Property Name Description

to handle non-ASCII characters in the request and
response payloads of the request sent to TIBCO API
Exchange Gateway using the RV channel through the
Apache server.

tibco.clientVar.ASG/RV/Headers/RequiresLowerCase

Enables the Core Engine to convert all the header
names in lower case for a request when a HTTP
request is sent to TIBCO API Exchange Gateway from
the Apache server.

tibco.clientVar.ASG/Request/Headers/KeepPassthroughHeaders

Enables the core engine to forward the HTTP
headers of northbound incoming request to the
southbound request the when pass-through
mapping is configured.

Set this property to true to copy the HTTP headers
of northbound request to southbound request when
the pass-through mapping is configured for forward
mapper of the target operation. Do not configure
any values for the Headers To Forward field of
target operation when setting this property to true.

Note: According to HTTP/1.1 RFC, HTTP headers
are case-insensitive. The native HTTP channel of
API Exchange uses Apache Tomcat which
enforces this behavior by converting all headers
to lower case. We recommend that application
developers must not depend on case sensitive
headers in their application logic.

tibco.clientVar.ASG/Operation/RequiresQueryDecoding

A Boolean property to indicate if the special
characters in the query string of HTTP url for the

https://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.2


TIBCO® API Exchange Gateway User Guide

94 | Getting Started

Property Name Description

facade request are decoded or not.

l Set the value of this property to false to
pass-through the special characters in the
query string of HTTP url. The Core Engine does
not remove any special characters in the
query string of HTTP url.

l Set the value of this property to true to
decode the special characters in the query
string of HTTP url.

com.tibco.asg.runtime.http_client.default_uri_format

A boolean property to indicate if the URI encoding is
enabled before the http request is sent to the target
operation or not.

l Set the value of this property to true to
encode the standard URI before the http
request is sent to the target operation.

l Set the value of this property to false to
pass-through the special characters in the
standard URI before the http request is sent to
the target operation.

tibco.clientVar.ASG/Request/CorrelationHeaderName

Specifies the HTTP Header for correlation ID. The
default value is X-Request-ID.

ICAP server properties

tibco.clientVar.ASG/ICAP/Host/URL

The IP address of the ICAP host server.

tibco.clientVar.ASG/ICAP/Port



TIBCO® API Exchange Gateway User Guide

95 | Getting Started

Property Name Description

The port where the ICAP host server runs. The
default value is 1344.

tibco.clientVar.ASG/ICAP/service

Specifies the service name of ICAP server. For
example, McAfeeService.

tibco.clientVar.ASG/ICAP/useSSL=false

Enables SSL communication for ICAP server. By
default, the SSL communication is not enabled. Set
the value to true to enable the SSL communication
with ICAP server.

Properties for SSL communication with ICAP Server

tibco.clientVar.ASG/ICAP/keystoreFile

Specifies the full path of the keystore file if SSL is
enabled.

tibco.clientVar.ASG/ICAP/keystoreType

Specifies the type of keystore for SSL. For example,
JKS. The supported formats are JKS,PKCS12.

tibco.clientVar.ASG/ICAP/keystorePassphrase

Specifies the password of the keystore file.

tibco.clientVar.ASG/ICAP/binaryContentTypeList

Specifies a comma separated list of content type to
be scanned by antivirus server. By default, the
supported binary content types are
application/octet-stream and multipart/*.



TIBCO® API Exchange Gateway User Guide

96 | Getting Started

Property Name Description

For example, to send the image/jpeg and
application/pdf content types as binary types for
scanning, use the values as follows:

tibco.clientVar.ASG/ICAP/binaryContentTypeLis
t=image/jpeg,application/pdf

Runtime Properties of Central Logger

The properties for the Central Logger are defined in the asg_cl.properties file located in
ASG_CONFIG_HOME directory. The following properties can be defined, if the default values
do not serve your purpose:

Property Name Description

tibco.clientVar.CL/Logging/fileFilter

Specifies the lists of facade operation as a pipe ('|')
separated string. The transaction logs of these facade
operations are logged to the files instead of database.

For example:

ping|test|addConfiguration

tibco.clientVar.CL/Logging/files/directory

Specifies the directory name to store the log file used by the
Core Engine to record the transactions of facade operations.

The default value is ASG_HOME/bin/logs.

tibco.clientVar.CL/Logging/files/transactions

Specifies the name of the log file used by the Core Engine to
record the transactions data. This is used only for the
transactions of facade operations which are filtered by the
tibco.clientVar.CL/Logging/fileFilter property.

Central Logger Properties



TIBCO® API Exchange Gateway User Guide

97 | Getting Started

Property Name Description

The default value is trans_log.txt.

tibco.clientVar.CL/Logging/files/maxcount

Specifies the maximum number of log files for the Core
Engine to keep on roll over for the transactions log file.

The default value is 3.

tibco.clientVar.CL/Logging/files/maxsize

Specifies the maximum size (in bytes) of the log file for
writing the transactions data at which the Core Engine rolls
over to the next log file.

The default value is 5000000.

tibco.clientVar.ASG/Logging/tsFormat=yyyyMMdd HH:mm:ss.SSSS

Specifies the format of the log's timestamp value.

tibco.clientVar.Common/Connections/RV/SubjectPrefix

Specifies the prefix for all Rendezvous subject names used
between the Core Engine and Central Logger.

The default value is TIBCO.ASG.INTERNAL.

RV Session Connection Parameters

tibco.clientVar.ASG/CL/RV/RvService

Specifies the service parameter for Rendezvous used
between the Core Engine and Central Logger
communication.

The default value is 7500.

tibco.clientVar.ASG/CL/RV/RvDaemon



TIBCO® API Exchange Gateway User Guide

98 | Getting Started

Property Name Description

Specifies the daemon parameter for Rendezvous used
between the Core Engine and Central Logger
communication.

The default value is tcp:7500 .

tibco.clientVar.ASG/CL/RV/RvNetwork

Specifies the network parameter for Rendezvous used
between the Core Engine and Central Logger
communication.

Database Connection Parameters

be.dbconcepts.dburi

/CentralLogger/SharedResources/Logging
Database.sharedjdbc

be.dbconcepts.connection.retry.count

Specifies the number of attempts to be made for the Central
Logger to connect to the database server.

be.dbconcepts.connection.check.interval

Specifies the time interval (in seconds) for the Central
Logger to connect to the database server.

The default value is 5.

tibco.clientVar.CL/Database/Username

Specifies the username for the Central Logger to connect to
the database server.

The default value is asguser.

tibco.clientVar.CL/Database/Password



TIBCO® API Exchange Gateway User Guide

99 | Getting Started

Property Name Description

Specifies the password for the Central Logger to connect to
the database server.

tibco.clientVar.CL/Database/Driver

Specifies the database driver for the database server used by
the Central Logger.

For example:

For oracle database, the value is defined as:
oracle.jdbc.OracleDriver.

For MS SQL server, the value is defined as:
com.microsoft.sqlserver.jdbc.SQLServerDriver.

tibco.clientVar.CL/Database/Url

Specifies the database server connection URL for the Central
Logger.

For example:

For oracle database, the value is defined as:
jdbc:oracle:thin:@localhost:1521:asgstat.

For MS SQL server, the value is defined as:
sqlserver://localhost:1433;databaseName=asgstat.

tibco.clientVar.CL/Database/Schema

Specifies the database schema to be used by the Central
Logger on the database server.

For example:

For oracle database, the value is defined as: asgstat

For MS SQL server, the value is defined as: dbo

Enable JMS Transport for Central Logger Properties



TIBCO® API Exchange Gateway User Guide

100 | Getting Started

Property Name Description

tibco.clientVar.ASG/Logging/transport

Specifies the transport to be used between the Core Engine
and Central Logger component to log the transactions. Valid
values are RV or JMS.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/JMSProviderURL

Specifies the URL to connect to the Enterprise Message
Service (EMS) or a JMS server.

Example: tcp://localhost:7222

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/JNDIContextURL

Specifies a JNDI connection URL to look up a JMS server.

Example:

tibjmsnaming://localhost:7222

tibco.clientVar.Common/Connections/JMS/CL_
JMSConnection/TopicConnectionFactoryName

Specifies the name of TopicConnectionFactory object stored
in JNDI. This object is used to create a topic connection with
JMS server for the Central Logger.

The default value is TopicConnectionFactory.

tibco.clientVar.Common/Connections/JMS/CL_
JMSConnection/QueueConnectionFactoryName

Specifies the name of QueueConnectionFactory object
stored in JNDI. This object is used to create a queue
connection with JMS server for the Central Logger.

The default value is QueueConnectionFactory.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/JNDIUsername



TIBCO® API Exchange Gateway User Guide

101 | Getting Started

Property Name Description

Specifies the user name to use when logging into the JNDI
server. If the JNDI provider does not require access control,
this field can be empty.

Example, admin.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/JNDIPassword

Specifies the password for logging into the JNDI server. If
the JNDI provider does not require access control, this field
can be empty.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/JMSUsername

Specifies the user name to use to authenticate to the JMS
server.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/JMSPassword

Specifies the password to use to authenticate to the JMS
server.

tibco.clientVar.Common/Connections/JMS/CL_
JMSConnection/TransactionReportDestinationName

Specifies the name of the JMS destination where the
transaction reports are sent to the Central Logger by the
Core Engine.

For example, asg.cl.transaction.queue

tibco.clientVar.Common/Connections/JMS/CL_
JMSConnection/TransactionReportDestinationType

Specifies the type of the JMS destination where the
transaction reports are sent to the Central Logger by the
Core Engine.

The possible values are queue or topic.



TIBCO® API Exchange Gateway User Guide

102 | Getting Started

Property Name Description

The default value is queue.

The Central Logger always listens on a queue. If the value of
destination type is set to topic, the JMS administrator must
configure a bridge between the topic and the queue.

SSL JMS Transport Properties for Central Logger

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/useSSL

Specifies if SSL is enabled for the Central Logger when using
the JMS transport. Set this to true to enable SSL for the JMS
transport.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/TrustedCertificatesFolder

If you use the SSL enabled JMS transport for Central Logger,
this field specifies a location of the trusted certificates on
this machine. The trusted certificates are a collection of
certificates from servers with which you establish
connections. If the server with which the connection is going
to be established, presents a certificate that does not match
one of your trusted certificates, the connection is refused.
This prevents connections to unauthorized servers. Import
the trusted certificates into a folder before you select the
folder in this field.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/Identity

Specifies an identity resource used to provide the SSL
properties for JMS transport. The default value is:
/Common/SharedResources/JMS/CL_
JMSConnIdentityResource.id

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/TrustStorePassword

Specifies the password to access the certificate stored in the
folder defined by the Trusted Certificate Folder field. The
certificate is required for SSL connection.



TIBCO® API Exchange Gateway User Guide

103 | Getting Started

Property Name Description

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/trace

Specifies whether SSL tracing should be enabled during the
SSL connection. If the value is set to true, the SSL
connection messages are logged and sent to the console.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/debugTrace

Specifies whether SSL debug tracing should be enabled
during the SSL connection. Debug tracing provides more
detailed messages than standard tracing.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/verifyHostName

Specifies whether the host you are connecting to is the
expected host. The host name in the digital certificate of the
host is compared against the value in the Expected Host
Name field. If the host name does not match the expected
host name, the connection is refused.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/ExpectedHostName

Specifies the name of the host you are expecting to connect
to. This field is only relevant if the Verify Host Name field is
set to true. If the name of the host in the digital certificate
of host does not match the value specified in this field, the
connection is refused.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/strongCipherSuitesOnly

When this field is set to true, this specifies the minimum
strength of the cipher suites that can be specified with the
bw.plugin.security.strongcipher.minstrength custom
engine property. See TIBCO ActiveMatrix BusinessWorks
Administration for more information about this property. The
default value of the property disables cipher suites with an
effective key length below 128 bits. When this field is set to
false, only cipher suites with an effective key length of up



TIBCO® API Exchange Gateway User Guide

104 | Getting Started

Property Name Description

to 128 bits can be used.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/IdentityType

Specifies the type of identity resource for SSL connection.
The possible values are:

l certPlusKeyURL

l url

l usernamePassword

Properties for Identity Type=usernamePassword

Use this option if you want to use a user name and password for authentication instead of a
certificate.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/IdentityUsername

Specifies the name of the user for this identity.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/IdentityPassword

Specifies the password for the user for this identity

Properties for Identity Type=url

Use this option if the certificate includes the private key information in the same file.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/IdentityFileType

Specifies the type of certificate file if Identity Type is set to
url.

The accepted values are as follows:

l Entrust

l JCEKS

l JKS



TIBCO® API Exchange Gateway User Guide

105 | Getting Started

Property Name Description

l PEM

l PKCS12

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/IdentityURL

Specifies the location of the certificate (which includes the
private key) if Identity Type is set to url.

For example, C:\asgserver.pfx

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/KeyPassword

Specifies the password for the certificate if Identity Type is
of url type.

Properties for Identity Type=certPlusKeyURL

Use this option if the private key and the certificate are in two separate files.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/KeyPassword

Specifies the password for the certificate if Identity Type is
of certPlusKeyURL type.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/CertificateURL

Specifies the URL to the certificate file if Identity Type is of
certPlusKeyURL type.

tibco.clientVar.Common/Connections/JMS/CL_JMSConnection/KeyURL

Specifies the URL to the private key in the certificate file if
Identity Type is of certPlusKeyURL type.

Building an EAR File at the Command Line

Procedure



TIBCO® API Exchange Gateway User Guide

106 | Getting Started

1. Backup the EAR file. For example, if you generate the asg_core.ear file in the ASG_
HOME/bin directory, take a backup of this file.

2. Navigate to TIBCO_HOME/be/5.2/studio/bin.

3. Open the studio-tools.tra file for editing.

4. Append the following parameters to the java.extended.properties property:
-DTIBCO.BE.function.catalog.http.servlet.getRequestHeaders=true

For example, the property is modified as follows:
java.extended.properties=-server -Xms1024m -Xmx1024m -javaagent:%BE_
HOME%/lib/cep-base.jar -XX:MaxPermSize=256m -Xbootclasspath/p:%TIB_JAVA_
HOME%/lib/tools.jar -
DTIBCO.BE.function.catalog.http.servlet.getRequestHeaders=true

5. Save changes to the studio-tools.tra file.

6. Open a command prompt.

7. Execute a command with the following format (all on one line) at a command
prompt:

studio-tools -core buildEar [-h] [-x] [-lc] [-o outputEarFile>] -p
studioProjectDir [-pl projectLibrariesFilePath] [-cp extendedClasspath]

For example:

studio-tools -core buildEar -x
-o C:\tibco\asg\2.3\bin\asg_core.ear
-p C:\tibco\asg\2.3\projects\ASG_DefaultImplementation

The following table provides detailed information about the options:

Option Description

-core buildEar Within the core category of operations, specifies the buildear
operation for building EAR files.

-h Optional. Displays help.

TIBCO BusinessEvents StudioTools Options for Building an EAR File



TIBCO® API Exchange Gateway User Guide

107 | Getting Started

Option Description

-x Optional. Overwrites the specified output file if it exists.

-lc Optional. Specifies that the file-based legacy compiler must be
used to build the EAR file. By default, the EAR files are built in
memory.

-o Optional. Specifies the filename for the output EAR file. If not
specified the EAR file is the same as the final (leaf) directory
name in the projectDir path.

-p Absolute path to the TIBCO BusinessEvents Studio project
directory. The EAR file is built using this project.

-pl Optional. Specifies list of project library file paths to be used,
separated by a path separator.

-cp Optional. Specifies the extended classpath to be used.

Note: When building an EAR file in memory for a large project, the JVM
may run out of PermGenSpace and/or heap space. In such cases, edit the
TIBCO_HOME/be/5.2/studio/eclipse/studio.ini and TIBCO_
HOME/be/5.2/studio/bin/studio-tools.tra file to set appropriate values
for the JVM settings. By default the heap size is set to -
XX:MaxPermSize=256m.



TIBCO® API Exchange Gateway User Guide

108 | Core Engine Configuration

Core Engine Configuration
This section explains the processing units, logging configuration, and runtime properties of
TIBCO API Exchange Gateway.

Core Engine
The Core Engine provides the main functionality of TIBCO API Exchange Gateway at run
time.

Starting Core Engine

To start the Core Engine, use the following command format. See Core Engine Command-
Line Options for the various command-line options.

ASG_HOME/bin/asg-engine [-h] [--propFile startup property file] [--propVar
varName=value
] [-p custom property file] [-n engine name] [-d][-a asg config folder] [-c CDD file] [-u
processing unit ID]  [EAR file]

Option Description

-h
Displays this help.

--propFile
Specifies the location of the startup property file (TRA file).

When you execute asg-engine, by default, it looks for a property file of the
same name (asg-engine.tra) in the directory where you execute the
command. This property file provides the startup values and other
parameters to the engine executable.

To explicitly specify a path and file name of the startup property file, use
the --propFile parameter. For example, to use asg_startup.tra file as the

Core Engine Command-Line Options



TIBCO® API Exchange Gateway User Guide

109 | Core Engine Configuration

Option Description

startup property file for the Core Engine, specify the --propFile parameter
as follows:

asg-engine --propFile c:\tibco\mylocation\asg_startup.tra

--propVar
Used to provide a value for a specified variable. This value overrides any
other design-time value. The format is propVar varName=value . For
example to specify the value of the %jmx_port% variable used in TRA files
to configure a JMX connection, use this: --propVar jmx_port=XXXX, where
XXXX is the port number.

-p
Specifies the path and file name of a custom property file to be passed to
asg-engine.

-n
Provides a name for the Core Engine. The name provided here is used in
the console and log files.

The default value is the processing unit name.

-d
Starts the debugger service on the Core Engine for remote debugging.

-a
Specifies the location of a TIBCO API Exchange Gateway configuration
directory.

-c
Specifies the path and file name for the Cluster Deployment Descriptor
(CDD) file to be used.

The default is default.cdd.

-u
Specifies the processing unit name to be used for this engine. This
processing unit name must exist in the CDD file referred to the -c option.

The following processing unit names are available. See Processing Units of
Core Engine for processing units details.

l asg-core: Starts the Core Engine.

l asg-caching-core: Starts the Core Engine in Cache Agent enabled



TIBCO® API Exchange Gateway User Guide

110 | Core Engine Configuration

Option Description

mode.

l asg-gtm: Starts the Global Throttle Manager.

l asg-cache: Starts the Cache Agent.

l asg-cache-cleanup: Starts the Cache Cleanup Agent.

l asg-cl: Starts the Central Logger.

The default processing unit is asg-caching-core.

EAR filename
and path

Specifies the path and file name for the EAR file to be used.

If you do not specify the EAR file name and no tibco.repourl property is
set, the EAR file defaults to ASG_HOME/bin/asg_core.ear for all processing
units of TIBCO API Exchange Gateway.

If you do not specify the EAR file name and tibco.repourl property is set,
the Core Engine uses the tibco.repourl property as the EAR file path and
name. To use this property, add it to the asg-engine.tra file. If you deploy
the Core Engine using TIBCO Administrator, the property is added to the
generated TRA file automatically.

Processing Units of Core Engine
In the Processing Units tab of the CDD file (See Processing Units of Core Engine), you can
define which agents to include in the processing unit and which logging configuration to
use.

Processing units are configured in the CDD files as follows:

CDD File Name Processing Unit Names

ASG_HOME/bin/asg-core.cdd asg-core, asg-caching-core, asg-gtm, asg-cache, asg-cache-
cleanup

ASG_HOME/bin/asg_cl.cdd asg-cl

CDD File and Processing Units



TIBCO® API Exchange Gateway User Guide

111 | Core Engine Configuration

CDD File Name Processing Unit Names

ASG_HOME/bin/asg_
validation.cdd

asg-validate

By default, the Core Engine supports the following processing units:

l asg-core

The main processing unit of TIBCO API Exchange Gateway is asg-core. The asg-core
provides the critical gateway functions at run time. This requires a separate Cache
Agent running to provide the caching functionality at run time and function properly.

l asg-caching-core

asg-caching-core is a processing unit of TIBCO API Exchange Gateway that provides
the gateway functions at run time including the caching functionality. This agent is a
cache-enabled stand alone Core Engine and does not require a separate Cache Agent
running.

l asg-gtm

asg-gtm is a processing unit of TIBCO API Exchange Gateway that provides the
functionality of the Global Throttle Manager at run time.

l asg-cache

asg-cache is a processing unit of TIBCO API Exchange Gateway that provides the
caching functionality to the Core Engine.

l asg-cache-cleanup

asg-cache-cleanup is a processing unit of TIBCO API Exchange Gateway that starts
the Cache Cleanup Agent to clear the cache based on the size and age of the cached
values.

l asg-cl

asg-cl is a processing unit of TIBCO API Exchange Gateway that provides the
functionality of the Central Logger component at run time.

l asg-validate

asg-validate is a processing unit of TIBCO API Exchange Gateway that validates for
the correct configuration to be used at run time.



TIBCO® API Exchange Gateway User Guide

112 | Core Engine Configuration

Configure Log Files Settings
The Core Engine logs the messages in the files. The configuration for the log files are
defined as log configurations for a processing unit. Each processing unit references a log
configuration. The log configurations are defined in the Collections tab of the CDD file
depending on the processing unit. For example, use ASG_HOME/bin/asg_cl.cdd for the asg-
cl processing unit and ASG_HOME/bin/asg_core.cdd for rest of the run time processing
units.See Processing Units of Core Engine to find the CDD file for a processing unit.

For a reference to the settings, see File Properties Settings for a Log Configuration in the
CDD Collections Tab.

Property Notes

Enable Select the Enable check box to enable log files to be written. Configure the
settings in this section to specify details. If this check box is cleared, all other
properties in this section are ignored.

Directory Enter the absolute path to the directory in which you want to store the files.

If you do not enter a leading slash, the files are stored relative to the working
directory (the directory in which you start the asg-engine.exe executable).

Name The name of the log file.

If no name is set, the default value is the <processing unit name>.log.

For example, for the asg-caching-core processing unit, the log file name
defaults to asg-caching-core.log.

Max
number

The number of log files to keep. When the value set in the Max size field is
reached, a new log file is created for the next log entries. Files are created up to
the value set in the Max number field. The oldest file is deleted when a new
file is added after this value is reached.

The default is value is 10.

Max size The maximum size of one log file in bytes.

The default is 10000000.

File Properties Settings for a Log Configuration in the CDD Collections Tab



TIBCO® API Exchange Gateway User Guide

113 | Core Engine Configuration

Property Notes

Append If selected, new entries are added to the end of the file. If not selected, the
contents of the file are flushed each time the engine starts.

Log File Name and Location
Set the name and location of the log file for a log configuration using the Name and
Directory settings. See File Properties Settings for a Log Configuration in the CDD
Collections Tab.

If you do not type a leading slash, the files are stored relative to the working directory (the
directory in which you start the asg-engine.exe executable). If you do not specify a name,
the name of the processing unit is used. If no processing unit name is specified, the name
defaults to <processing unit name>.log.

Number and Size of Log Files
You can set the size of a single log file, the number of files to keep, and select if a log file is
flushed when the Core Engine starts, or when entries are appended. See File Properties
Settings for a Log Configuration in the CDD Collections Tab.

The maximum size of the file is defined in bytes and the default value is configured as
10MB.

Setting the Log File Configuration Settings in a CDD File
You can edit the parameters for log file configuration in the Cluster Deployment Descriptor
(asg_core.cdd) file as follows:

Procedure
1. Copy the asg_core.cdd File to ASG_DefaultImplementation Project

Copy the asg_core.cdd file from the Core Engine directory to the ASG_
DefaultImplementation project directory:

a. Navigate to the ASG_HOME/bin directory.

b. Copy the asg_core.cdd file to ASG_HOME/projects/ASG_DefaultImplementation



TIBCO® API Exchange Gateway User Guide

114 | Core Engine Configuration

folder.

2. Import the ASG_DefaultImplementation Project

a. Start the TIBCO API Exchange Gateway Studio. See Starting Studio.

b. Import the ASG_DefaultImplementation project. See Loading the Default ASG_
DefaultImplementation Project.

3. Edit the asg_core.cdd File

Set the log file configuration settings in the asg_core.cdd file.

a. In the Studio Explorer, expand the ASG_DefaultImplementation project node.
Verify that you see the asg_core.cdd file.

b. Double-click the asg_core.cdd file.

c. Select and expand Collections tab.

d. Select Log Configurations > logConfig.

e. Go to Configuration > Files section.

f. Edit the properties for log files configuration as needed. See File Properties
Settings for a Log Configuration in the CDD Collections Tab.

g. Save the project.

4. Copy the asg_core.cdd File to Engine directory

Copy the modified asg_core.cdd file from the ASG_DefaultImplementation project
directory to the Core Engine directory as follows:

a. Back up the original asg_core.cdd file in the ASG_HOME/bin directory.

b. Copy the modified asg_core.cdd file from ASG_HOME/projects/ASG_
DefaultImplementation to the ASG_HOME/bin directory.

Note: If you select the Copy projects into workspace option during the
import of the project, the modified asg_core.cdd file exists in the
workspace directory. Make sure to copy the asg_core.cdd file from the
workspace directory to the ASG_HOME/bin directory.



TIBCO® API Exchange Gateway User Guide

115 | Core Engine Configuration

Logging Levels of Core Engine
You can choose the level of logging for the Core Engine. A level corresponds to what types
of messages are logged to the log files and what types of messages are filtered out.

Levels of Logging

This section explains the various levels of logging available for the Core Engine.

The following logging levels are supported:

Level Description

4 Specifies no logging for the Core Engine.

The highest possible rank. This logging level filters out all the logging
messages (turns logging off).

3 Specifies Error level of logging.

Logs the run time error messages that might cause the Core Engine to
stop running.

2 Specifies WARNING level of logging.

Logs the potentially harmful runtime messages (warnings).

1 Specifies INFORMATION level of logging.

Logs the runtime informational messages of general interest
(Information).

0 Specifies Debug level of logging.

The lowest possible rank. This logging level logs the detailed runtime
messages. Use this level to identify and debug the issues.

Logging Levels of Core Engine

Note: The Levels property in the CDD Collections Tab should be at least set to
1 (INFORMATION) for the log levels of the Core Engine to work.



TIBCO® API Exchange Gateway User Guide

116 | Core Engine Configuration

How to Set the Logging Level for the Core Engine

Set the logging level using the tibco.clientVar.ASG/Logging/MinLogLevel property defined in
the ASG_CONFIG_HOME/asg/asg.properties file as follows:

tibco.clientVar.ASG/Logging/MinLogLevel=1

The default value is 1, which is INFORMATION level of logging.

Note: TIBCO API Exchange Gateway stores the configuration files in a directory
which is separate from the installation directory. This directory is referenced as
ASG_CONFIG_HOME. ASG_CONFIG_HOME is defined during installation time.

For example, on the Windows platform, the value of ASG_CONFIG_HOME is
C:\ProgramData\TIBCOASG\tibco\cfgmgmt.



TIBCO® API Exchange Gateway User Guide

117 | Apache Module for TIBCO API Exchange Gateway

Apache Module for TIBCO API Exchange Gateway
The Apache module terminates the HTTP transports.

The module first translates the inbound HTTPS requests to Rendezvous messages, then
forwards the Rendezvous messages to the facade component of the gateway operational
layer. The Apache module, also translates the response messages from the service
providers and forwards each reply to the appropriate requester.

The Apache module of TIBCO API Exchange Gateway deploys and runs within an Apache
HTTP server. The module uses the Rendezvous API to communicate with the Core Engine.

The following components must be installed and operational for the Apache module to
function:

l Apache HTTP server

l TIBCO Rendezvous

l TIBCO API Exchange Gateway Apache Module

Note:
o Using the Apache module is optional. This module is required only

when sending requests to TIBCO API Exchange Gateway through the
Apache server.

o API key authorization is not supported for Apache module.

o OAuth authorization is not supported for Apache module.

It is good practice to use the Apache HTTP Server in the following scenarios:

l DMZ deployment

l Multiple HTTP endpoints (in case you have internal and external HTTP/HTTPS
endpoints)

The requests can be sent directly to TIBCO API Exchange Gateway using the HTTP
channel of the gateway. Refer to the ASG_HOME/examples/BookQueryBE example to
send the requests directly over the HTTP channel.

You can use the HTTP channel of the gateway directly for better performance when
there are less components to manage.



TIBCO® API Exchange Gateway User Guide

118 | Apache Module for TIBCO API Exchange Gateway

Installing Apache HTTP Server
The Apache module requires installation of Apache HTTP server.

To install the Apache HTTP server, see Installing Apache HTTP Server in the TIBCO API
Exchange Gateway Installation guide.

Installing Apache HTTP Server with SSL
The Apache module requires installation of Apache HTTP Server with SSL to process the
HTTPS requests.

You can install the Apache HTTP server from the Apache website http://httpd.apache.org
.

.R
efer to the TIBCO API Exchange Gateway readme file for Apache server version
requirements, and download the supported version. See the "Appendix" in the TIBCO API
Exchange Gateway Installation guide.

Configuring Apache HTTP Server Using HTTP Transport
This section explains the configuration required to set up the Apache HTTP server using the
HTTP transport.

Follow these steps to configure the Apache HTTP server installation for using the Apache
module of TIBCO API Exchange Gateway.

Procedure
1. Open the APACHE_HOME/conf/httpd.conf file for editing.

2. Add the following line in the file:

Include ASG_HOME/modules/http_server/apache/mod_ASG.conf

Note: Replace the ASG_HOME with the directory location where TIBCO API
Exchange Gateway product is installed.

3. In the same file, edit the value of the listening port, if required:
Listen 8080

http://httpd.apache.org/
http://httpd.apache.org/


TIBCO® API Exchange Gateway User Guide

119 | Apache Module for TIBCO API Exchange Gateway

Note: The default listening port is 80. Change the value of the listening
port, if required.

The samples shipped with TIBCO API Exchange Gateway use the port value
of 8080. Change the value of the listening port to run the samples.

4. Verify that you have set up the system environment variables on the machine where
the Apache HTTP server is installed. You should set the variables as follows.

On Windows: After TIBCO API Exchange Gateway product is installed, verify that the
PATH system variable includes RV_HOME/bin, where RV_HOME specifies the directory
where the TIBCO Rendezvous product is installed.

On UNIX: After TIBCO API Exchange Gateway product is installed, ensure that the
following environment variables are set correctly. Depending on the type of shell, you
might have to use different commands to set these variables.

l RV_HOME: verify that this variable is set to the directory where TIBCO
Rendezvous is installed. If not, set it as follows:

export RV_HOME=<directory where the TIBCO Rendezvous product is installed>

l PATH: verify that this variable includes $RV_HOME/bin. If not, set it as follows:

export PATH=$RV_HOME/bin:$PATH

l LD_LIBRARY_PATH: verify that this variable includes $RV_HOME/lib. If not, set it
as follows:

export LD_LIBRARY_PATH=$RV_HOME/lib:$RV_HOME/lib/64:$LD_
LIBRARY_PATH

On the Windows Platform
Set the variables on the Windows platform.

After TIBCO API Exchange Gateway product is installed, verify that the PATH system variable
includes RV_HOME/bin, where RV_HOME specifies the directory where the TIBCO
Rendezvous product is installed.



TIBCO® API Exchange Gateway User Guide

120 | Apache Module for TIBCO API Exchange Gateway

Configuration On the UNIX Platform
Set the variables on the UNIX platform.

After TIBCO API Exchange Gateway product is installed, ensure that the following
environment variables are set correctly. Depending on the type of shell, you might have to
use different commands to set these variables.

l RV_HOME: verify that this variable is set to the directory where TIBCO Rendezvous is
installed. If not, set it as follows:

export RV_HOME=directory where the TIBCO Rendezvous product is installed.

l PATH: verify that this variable includes $RV_HOME/bin. If not, set it as follows:

export PATH=$RV_HOME/bin:$PATH

l LD_LIBRARY_PATH: verify that this variable includes $RV_HOME/lib. If not, set it as
follows:

export LD_LIBRARY_PATH=$RV_HOME/lib:$RV_HOME/lib/64:$LD_LIBRARY_PATH

Running the Apache HTTP Server
This section lists the basic commands to run the Apache server.

Refer to the Apache HTTP server documentation for details.

On the Windows Platform
Run the Apache HTTP Server on the Windows platform as follows:

Procedure
1. Navigate to the directory:

APACHE_HOME/bin

2. Run the following command:

httpd.exe



TIBCO® API Exchange Gateway User Guide

121 | Apache Module for TIBCO API Exchange Gateway

Running On the UNIX Platform
Run the Apache HTTP Server on the UNIX platform as follows:

Procedure
1. Navigate to the directory:

APACHE_HOME/bin

2. Run the following command:

./apachectl start

Secure Communications
TIBCO API Exchange Gateway supports transport for secure communications between the
client requester and the Apache HTTP server.

The transport uses the Secure Sockets Layer (SSL) protocol for exchanging transactions in
a secured way. The SSL protocol uses signed digital certificates from a certificate authority
(CA) for authentication.

Mutual SSL Authentication
When the client sends a request using HTTPs transport, TIBCO API Exchange Gateway
supports the authentication of the client based on the digital certificates. This is known as
two-way (mutual) SSL authentication.

Mutual SSL authentication is also referred as client authentication, as with client
authentication the client presents its certificate to the server after the server authenticates
itself to the client.

TIBCO API Exchange Gateway uses X.509 digital certificates for mutual SSL authentication
and to authorize client requests. In this case, authorization of the request is based on the
trusted identity in the gateway processing pipeline. The trusted identity is represented by
the digital certificate's X.509 subject distinguished name or the certificate's serial number.

TIBCO API Exchange Gateway uses the Apache HTTP server to terminate the incoming
HTTP and transports. The actual mutual SSL authentication is handled in the Apache



TIBCO® API Exchange Gateway User Guide

122 | Apache Module for TIBCO API Exchange Gateway

module of the TIBCO API Exchange Gateway. The Apache module authenticates each client
request and extracts credentials from the X.509 certificate. The facade layer of the gateway
uses those credentials to authorize the request before forwarding it to the Core Engine.

Perform the following high-level steps for mutual SSL authentication.

Generate Keys and Certificates
See Generate Private Keys And Public Certificates with OpenSSL to generate the private
keys and public certificates.

Configure SSL on Apache HTTP Server
You must configure SSL on Apache HTTP server for secure communications.

Enabling SSL on the Apache HTTP server provides a secure and encrypted connection to
the client as the Apache HTTP server authenticates itself to the client.

Enabling the SSL communication requires the mod_ssl Apache module. The mod_ssl
Apache module provides strong encryption using the secure sockets layer (SSL) and
transport layer security (TLS) protocols for the HTTP communication between a client and
the Apache HTTP server. Using SSL/TLS, a private connection between the Apache HTTP
server and the client is established. Data integrity is ensured and the client is able to
authenticate the server. In this case, the Apache HTTP server sends its digital certificate to
the client before any request is processed.

The mod_ssl Apache module on the server guarantees to the client that the server is a
uniquely correct end point for the communication. The client uses the public key contained
in the digital certificate to encrypt the communication between the client and the server.
The mod_ssl Apache module does not implement the SSL/TSL protocols itself, but it acts
as an interface between the Apache module and the OpenSSL library.

For the configuration steps, see Configuring Mutual SSL on Apache HTTP Server.

Configure Client Authentication with Digital Certificates on Apache
HTTP Server
You must configure client authentication on Apache HTTP server for mutual SSL
communications.

The Apache HTTP server and clients can communicate over an encrypted connection using
the SSL communication. This reduces the risk of exposing sensitive content in plain text.



TIBCO® API Exchange Gateway User Guide

123 | Apache Module for TIBCO API Exchange Gateway

The secured communication using an encrypted connection ensures that the server always
identifies itself to its clients. This guarantees that the server is the uniquely correct end
point for the communication. However, if you want to authorize the service requests in
TIBCO API Exchange Gateway, the clients must authenticate themselves to the Apache
HTTP server using its own client certificates.

The client authentication can be configured on the Apache HTTP server by setting the
following Apache directives in the virtual host configuration for the SSL virtual server
instance:

l SSLVerifyClient

The SSLVerifyClient directive defines the verification type. The possible values are
as follows:

o none: indicates that no client certificate is required at all.

o optional: indicates that the client may present a valid certificate.

o require:indicates that the client has to present a valid certificate.

The require value is used to ensure that the Apache HTTP server authenticates
every client request before it forwards it to TIBCO API Exchange Gateway.

o optional_no_ca: indicates that the client may present a valid certificate but
does not have to be successfully verified.

l SSLVerifyDepth

The SSLVerifyDepth directive specifies the depth of the certificate issuer chains
verification. If the server does not find a trusted Certificate Authority (CA) within this
depth, it declares the certificate invalid. The depth actually is the maximum number
of intermediate certificate issuers, that is, the maximum number of CA certificates
that is followed while verifying the client certificate. For example, Depth 0 (zero)
means that all clients must present certificates that are self-signed and present in the
server's collection of trusted certificates. Depth 1 means that client certificates may
be either self-signed (as previously mentioned), or signed by a trusted CA. The default
value is 1.

l SSLCACertificatePath

The SSLCACertificatePath directive specifies the path to a directory containing
certificate authority’s digital certificate files. Each digital certificate has a separate
file. However, when you use this SSLCACertificatePath directive, the Apache HTTP
server expects that each file be named with the hash of the CA certificate that is in it,
followed by a period and a sequence number that starts at 0 and gets incremented



TIBCO® API Exchange Gateway User Guide

124 | Apache Module for TIBCO API Exchange Gateway

for each file. The Apache server expects this for efficiency reasons. When you have a
large number of CA certificates, it becomes inefficient to open and read every file in
the directory every time it needs to find a specific certificate.

l SSLCACertificateFile

The SSLCACertificateFile directive specifies the name and location of a single
certificate file that contains all CA certificates.

Note: Configuring the SSLCACertificateFile directive is easy. As the number of
trusted certificate authorities increases, it can be difficult or error prone to add,
replace, or remove CA certificates in this file. When the number of trusted
certificate authorities is large, use the SSLCACertificatePath directive for best
results.

See Configuring Client Authentication with Digital Certificates on Apache HTTP Server for
configuration steps.

Configure Client Certificate Identification Details On Apache HTTP
Server
After setting up the client authentication configuration on the Apache HTTP server,
configure the identity details of the authenticated client on the Apache HTTP server.

The identity details of the authenticated client can be forwarded as custom HTTP headers
to the Core Engine. The Core Engine matches the client identification details from the HTTP
headers with the identification details configured on the Config UI.

Note: By default, the Apache HTTP server does not forward the authenticated
client identity to TIBCO API Exchange Gateway. Therefore, all requests that
TIBCO API Exchange Gateway receives through this channel are identified as
being sent by the anonymous user.

TIBCO API Exchange Gateway retrieves the client’s identity from the two custom HTTP
header fields CAissuer and SerialNumber. The CAissuer field contains the distinguished
name of the certificate authority that issued the client certificate. The distinguished name
provides the unique identification of that certificate authority. The SerialNumber HTTP
header contains the unique identification of the client in the context of a TIBCO API
Exchange Gateway partner. This could either be the client certificate’s serial number, or the
certificate’s subject distinguished name.



TIBCO® API Exchange Gateway User Guide

125 | Apache Module for TIBCO API Exchange Gateway

When TIBCO API Exchange Gateway receives a request that includes these two HTTP
header fields, it identifies the partner by matching the values in these two HTTP header
fields with the Partner CA Issuer and Partner Serial Number fields in the Partner tab
configuration of the Config UI. The Partner CA Issuer contains the identity realm and the
Partner Serial Number represents the partner’s identity for that realm.

The serial number uniquely identifies a specific certificate that the partner uses to identify
itself. If you use the serial number for the partner configuration, the partner configuration
needs to be updated to reflect a new serial number in case a partner’s certificate has
expired.

Note: When the partner renews its certificate after the certificate expiration, you
do not need to update the TIBCO API Exchange Gateway partner configuration in
case you use the subject distinguished name.

The following configuration setup is required on the Apache HTTP server so that TIBCO API
Exchange Gateway can identify a partner based on the CAissuer and SerialNumber HTTP
header fields:

l Configure SSL engine options

Configure the SSL engine options to export the standard SSL/TLS related SSL_*
environment variables. This makes the client certificate information available in the
Apache server for further reference in the request processing steps. This includes the
issuer distinguished name, the certificate serial number, and the subject
distinguished name.

l Enable mod_headers module

Enable the mod_headers module to control and modify the HTTP request and
response headers.

l Set RequestHeader directives

Set the RequestHeader directives that add specific CAissuer and SerialNumber
HTTP headers to the incoming request. The header values are populated with the
values retrieved from the SSL environment variables including the issuer
distinguished name, the certificate serial number, or the subject distinguished name.

See for configuration steps.



TIBCO® API Exchange Gateway User Guide

126 | Apache Module for TIBCO API Exchange Gateway

Register Partners on Config UI
Register the partners in TIBCO API Exchange Gateway with digital certificate identification
details. This means that you can add partners on the Config UI with the identity
information that the client sends with its digital certificate.

See Registering Partners Using the Config UI for the procedure on configuration.

SSL Communications Configuration
This section explains the configuration setup required for SSL communications between
the client requester and Apache HTTP server.

Before you can set up the configuration for SSL, you should install the Apache server with
SSL enabled. See Mutual SSL Authentication Configuration.

Configuring One-Way SSL Authentication

Procedure
1. Ensure that the mod_ssl module is available in the Apache HTTP server installation.

2. Enable the mod_ssl module as follows:

a. Open the APACHE_HOME/conf/httpd.conf file for editing.

b. Uncomment the following directive in the httpd.conf file, if commented. If this
directive does not exist, add it in the file:

   LoadModule ssl_module APACHE_ROOT/modules/mod_ssl.so

where APACHE_ROOT is the actual path of the Apache HTTP server installation
which must be SSL enabled.

c. Uncomment the following line in the file:
#Include conf/extra/httpd-ssl.conf

d. Save the changes in the file.

3. Open the APACHE_HOME/conf/extra/httpd-ssl.conf file for editing.

a. Set the values for the specified directives (if not already set), as follows:

SSLEngine on



TIBCO® API Exchange Gateway User Guide

127 | Apache Module for TIBCO API Exchange Gateway

SSLCertificateFile "Name_of_Server_public_certificate"

SSLCertificateKeyFile "Name_of_Server_private_key"

SSLCACertificateFile Name_of_CA_Certificate

SSLVerifyClient none

b. Set the Listen directive if you want to change the default port value for SSL
requests:

   Listen listening_port_value

c. Save the changes made to the APACHE_HOME/conf/extra/httpd-ssl.conf
file.

4. Import the CA certificate as specified in the SSLCACertificateFile directive of the
Apache Server configuration.

5. Verify that the SSL configuration is working.

a. Open a web browser window.

b. Enter the following URL to verify the connection to the Apache server.
http://machine_name:listening_port_value

For example,

http://<machine-name>:8443

6. Verify that the connection to the Apache server is successful.

Mutual SSL Authentication Configuration
To enable authentication and X.509-based authorization, you must configure both the
Apache HTTP server and the Module for the Apache HTTP Server in TIBCO API Exchange
Gateway.

Before you start configuring mutual authentication and authorization, see Prerequisites for
Mutual SSL Setup.

Prerequisites for Mutual SSL Setup

l Apache HTTP server with mod_ssl module. Refer to the TIBCO API Exchange Gateway
readme for the Apache server version information. Verify that you have set it up as
specified in Installing Apache HTTP Server.



TIBCO® API Exchange Gateway User Guide

128 | Apache Module for TIBCO API Exchange Gateway

l RSA private key in PEM format to be used by the Apache HTTP server.

l Digital certificate in PEM format that identifies the Apache HTTP server and includes
the public key that corresponds to the Apache HTTP server’s private key.

l Digital certificate chain in PEM format for each certificate authority that is trusted by
the Apache HTTP server. This certificate chain is used to verify the digital certificates
presented by the clients as part of the authentication step.

l The issuer distinguished name and subject distinguished name (or optionally the
certificate’s serial number) of each certificate that clients use to identify themselves
to the Apache HTTP server.

Configuring Mutual SSL on Apache HTTP Server

This section explains the steps to enable mutual SSL on Apache HTTP server.
Enabling the mutual SSL requires Apache HTTP server with mod_ssl module.

To use the mod_ssl module with Apache HTTP server, ensure that the following tasks are
completed:

Before you begin
l OpenSSL is installed on the Apache server's host computer.

l An RSA private key in PEM format is available to be used by the Apache HTTP server.

l A digital certificate in PEM format is available that identifies the Apache HTTP server
and includes the public key that corresponds to the Apache HTTP server’s private
key. To ensure the integrity of the certificate, it must be signed by a party that every
client trusts. For details, see Generate Private Keys And Public Certificates with
OpenSSL.

To configure mutual SSL on the Apache HTTP server, follows these steps:

Procedure
1. Ensure that the mod_ssl module is available and enabled on the Apache HTTP server

installation. To enable the mod_ssl module, follow these steps:

a. Open the APACHE_HOME/conf/httpd.conf file for editing.

b. Uncomment the following directive in the httpd.conf file, if commented. If this
directive does not exist, add it in the file:



TIBCO® API Exchange Gateway User Guide

129 | Apache Module for TIBCO API Exchange Gateway

   LoadModule ssl_module APACHE_ROOT/modules/mod_ssl.so

where APACHE_ROOT is the actual path of the Apache HTTP server installation
which must be SSL enabled.

c. Uncomment the following line in the file:
#Include conf/extra/httpd-ssl.conf

d. Save the changes in the file.

2. Open the APACHE_HOME/conf/extra/httpd-ssl.conf file for editing.

a. Set the values for the specified directives (if not already set), as follows:
SSLEngine on

SSLCertificateFile "Name_of_Server_public_certificate"

SSLCertificateKeyFile "Name_of_Server_private_key"

SSLCACertificateFile Name_of_CA_Certificate

SSLVerifyClient require

SSLVerifyDepth 1

For example, the following are the example values:

SSLCertificateFile "C:\apache2\conf\server.crt"SSLCertificateKeyFile
"C:\apache2\conf\server.key"SSLCACertificateFile
"C:\apache2\certs\myrootca.crt"

Note:
l For details on each of the SSL specific properties, refer to the

Apache HTTP server SSL documentation.

l The value of SSLVerifyDepth is set to 1 as you are doing only
one level of authentication. You have configured only one CA
which is the root CA.

b. Set the Listen directive if you want to change the default port value for the SSL
requests:

Listen listening_port_value

l The default port for SSL/TLS requests on the Apache HTTP server side is



TIBCO® API Exchange Gateway User Guide

130 | Apache Module for TIBCO API Exchange Gateway

443. The regular Apache server listens on the port 80 so there is no
conflict between a regular Apache listening on port 80 and an SSL/TLS
enabled Apache listening on port 443. Both HTTP and SSL/TLS enabled
can run with the same Apache server instance, usually by defining
separate virtual hosts listening on port 80 and port 443 to separate the
virtual servers.

l You can access the machine using the http://<machine-
name>:443/../..when the default port as 443 is used. If the port is changed
to 8443, the access link is: http://<machine-name>:8443/..

Note: Ensure that the firewall is open to listening_port_value
specified in the Listen directive.

c. Ensure that the global SSL configuration directives are defined as follows:

      LoadModule ssl_module C:/apache2/modules/mod_ssl.so
      SSLRandomSeed startup builtin
      SSLRandomSeed connect builtin
      AddType application/x-x509-ca-cert .crt
      AddType application/x-pkcs7-crl .crl
      SSLPassPhraseDialog builtin
      SSLSessionCache "shmcb:c:/apache2/logs/ssl_scache
(512000)"
      SSLSessionCacheTimeout 300
      SSLMutex default

d. Ensure that the SSL related directives are defined as follows and set per virtual
host instance basis:

      SSLEngine on
      SSLProtocol all -SSLv2
      SSLCipherSuite HIGH:MEDIUM:!aNULL:!MD5
      SSLCertificateFile "Name_of_Server_public_certificate"
      SSLCertificateKeyFile "Name_of_Server_private_key"



TIBCO® API Exchange Gateway User Guide

131 | Apache Module for TIBCO API Exchange Gateway

Note: Ensure that you have copied the private key and the server’s
digital certificate in the directories specified in the SSLCertificateFile
and SSLCertificateKeyFile directives.

3. Save the changes made to the APACHE_HOME/conf/extra/httpd-ssl.conf file.

4. Import the CA certificate as specified in the SSLCACertificateFile directive of the
Apache Server configuration.

5. Verify that the SSL configuration is working.

a. Open a web browser window.

b. Enter the following URL to verify connection to Apache HTTP server.

      http://machine_name:listening_port_value

For example,

http://<machine-name>:8443

c. Verify that the connection to the Apache HTTP server is successful.

Note: When you invoke a secure connection to the Apache server for the
first time using HTTP or HTTPS transport, the browser displays a message
indicating that the server presented is an untrusted certificate. Accept the
certificate by clicking Yes and the following message should be displayed:
"it works!".

Configuring Client Authentication with Digital Certificates on Apache
HTTP Server

Configure the client authentication with digital certificates on the Apache HTTP server.

Procedure
1. Open the APACHE_HOME/conf/extra/httpd-ssl.conf file in a text editor.

2. Ensure that the following SSL directives are defined:



TIBCO® API Exchange Gateway User Guide

132 | Apache Module for TIBCO API Exchange Gateway

Parameter Value

SSLCACertificatePath Location of the directory containing the separate files for
each certificate authority’s digital certificate.

For example, /etc/apache2/ssl.crt

Set either of the SSLCACertificatePath or
SSLCACertificateFile directive, not both.

SSLCACertificateFile Name and location of a single certificate file that contains
all CA certificates.

For example, /etc/apache2/ssl.crt/cacert-bundle.pem

Set one of the SSLCACertificatePath or SSLCACertificateFile
directive, not both.

SSLVerifyClient require

SSLVerifyDepth 1

SSL Directives

3. Save the changes and close the file.

4. Restart the Apache HTTP server, if already running.

5. Test the configuration changes by importing a client certificate into the web browser.
To do this, import a PKCS12 archive file into the browser which contains the client’s
X.509 certificate, corresponding private key and the public certificates of all the CAs
in the chain of trust. The archive file must be trusted by one of the CAs as configured
on the Apache HTTP server.

6. Use one of the following browsers:

l Firefox

l Internet Explorer

Using Firefox

Import a client digital certificate using Firefox.

Procedure



TIBCO® API Exchange Gateway User Guide

133 | Apache Module for TIBCO API Exchange Gateway

1. Open the web browser.

2. Navigate to Tools > Options on the browser menu.

3. Select Advanced tab in the new window.

4. Select Security tab in the new dialog.

5. Click View Certificates.

6. Click Import and follow the wizard to import the file.

Using Internet Explorer

Import a client digital certificate using Internet Explorer.

Procedure
1. Open the web browser.

2. Navigate to Tools > Internet Options on the browser menu.

3. Select Content tab in the new dialog window.

4. Go to Certificates section and click Certificates tab.

5. Click Import and follow the wizard to import the file.

Testing the Imported Certificate

You must test the imported certificate for client authentication.

Procedure
1. After you have imported the PKCS12 file, open a browser window.

2. Enter the following URL to verify secure connection to the Apache server.
http://machine_name:listening_port_value

For example,

http://<machine-name>:8443

3. Verify that the connection to the Apache server is successful.



TIBCO® API Exchange Gateway User Guide

134 | Apache Module for TIBCO API Exchange Gateway

Forwarding Client Certificate Identification Details on Apache HTTP
Server to Core Engine

You must configure Apache HTTP server to forward client certificate identification details to
the Core Engine.

To configure the setup so that the Apache HTTP server forwards the client identification
details to the Core Engine,

Procedure
1. Open the ASG_HOME/modules/http_server/apache/mod_ASG.conf file in a text

editor.

2. Add the following line to enable the mod_headers module:

   LoadModule headers_module APACHE_HOME/modules/mod_headers.so
   SSLOptions +StdEnvVars

3. Set RequestHeader directives as follows:

   RequestHeader add X-SSL_PROTOCOL "%{SSL_PROTOCOL}s"
   RequestHeader add CAissuer "%{SSL_CLIENT_I_DN}e"
   RequestHeader add SerialNumber "%{SSL_CLIENT_S_DN}e"

4. Save the changes and close the file.

5. Restart the Apache HTTP server.

6. Start the Core Engine, if not already running. See Starting Core Engine.

7. Test the configuration changes to see that only requests from clients that
authenticate themselves with a client certificate are forwarded to the Core Engine. As
no partners are configured yet on the Config UI with the credentials specified in the
certificate, the incoming request fails the identification with this configuration.

8. To test this configuration setup, enter the following URL to submit a ping operation
request:

   http://machine_name:listening_port_value/ping

If you have configured everything on the Apache HTTP server but have not registered
the partner in the TIBCO API Exchange Gateway yet, you should receive the response
from TIBCO API Exchange Gateway on the web browser as follows:



TIBCO® API Exchange Gateway User Guide

135 | Apache Module for TIBCO API Exchange Gateway

   <asg:Error> <asg:ErrorCode> 2001 </asg:ErrorCode>
   <asg:ErrorMessage> Partner null not identified
   </asg:ErrorMessage>

</asg:Error>

Registering Partners Using the Config UI

Register the partner using the Config UI.

Register the partner with the identity information as follows:

Procedure
1. Start the Config UI. See Starting GUI for details.

2. Select the gateway project configuration.

3. Click the PARTNER tab.

4. Add a new partner. See Partners for details.

5. Set the following fields for the new partner:

Parameter Description

Partner Serial Number Specifies the client’s identity that the Apache HTTP server
forwards in the SerialNumber HTTP header of requests that
are submitted by this partner. This can either be the
certificate’s serial number or the subject distinguished name
as used for the digital certificate.

For example, the value can be defined as follows:

Partner Serial Number: /C=US/ST=California/L=Palo
Alto/O=TIBCO Software Inc./OU=ActiveMatrix Service
Gateway/CN=ASG Demo
Client01/emailAddress=asgclient01@tibasg.co.pd

Partner Issuer CA Specifies the realm in which the client’s identity is valid. This is
always the issuer distinguished name as used from the digital
certificate for that partner.



TIBCO® API Exchange Gateway User Guide

136 | Apache Module for TIBCO API Exchange Gateway

Parameter Description

For example, the value can be defined as follows:

Partner Issuer CA: /C=US/ST=California/O=TIBCO Software
Inc./OU=ActiveMatrix Service Gateway/CN=TIBCO ASG
Certificate Authority/emailAddress=admin@tibasg.co.pd

Note: Partner Serial Number and Partner Issuer CA fields contain
distinguished names as defined by the X.509 standard. The X.509 standard
defines the fields, field names, and abbreviations used to refer to the
fields.

6. Click the Partner Operations tab.

7. Define a ping operation (internal_ping) for a new partner. See Facade Access for
details.

8. Save the configuration.

9. Start the Core Engine. See Starting Core Engine

10. Test the configuration.

a. Open a web browser window.

b. Enter the following URL to submit a ping operation request:

      http://machine_name:listening_port_value/ping

c. Verify that you receive ASG is alive response from TIBCO API Exchange
Gateway on the web browser.

Configure the Apache Server for Basic HTTP Authentication
To support basic HTTP authentication for a request, you must configure the Apache HTTP
server.

Basic HTTP authentication requires the client to provide a user name and password when
it sends the request to the Apache HTTP server. The basic authentication typically is used
over transport as it does not provide any protection of the submitted credentials from the
client to the Apache HTTP server.



TIBCO® API Exchange Gateway User Guide

137 | Apache Module for TIBCO API Exchange Gateway

To use basic authentication by the client, it is good practice that you use one-way SSL for
secure communication between the Apache HTTP server and the requester. Configure the
following for secured communication:

l Configure the Apache HTTP server for one-way SSL. See Configuring One-Way SSL
Authentication. If you use the HTTP transport, do not set up the SSL configuration on
Apache HTTP server.

l Configure the Apache HTTP server for Basic Authentication. See Enabling Basic
Authentication on Apache HTTP Server for the configuration.

l Configure the Core Engine for Basic Authentication. See Configuring TIBCO API
Exchange Gateway for Basic Authentication.

Configuring Apache HTTP Server for Basic Authentication
This section explains the steps required to configure the Apache HTTP server for basic
authentication.

Enabling Basic Authentication on Apache HTTP Server

Enable the basic authentication on Apache HTTP server.

Procedure
1. Open a terminal window.

2. Navigate to ASG_HOME/modules/http_server/apache directory.

3. Edit the mod_ASG.conf file.

4. Search for the following section in the file:

   <Location/>
   SetHandler asg_rv_inbound_handler
   AsgSubject _LOCAL.asg.north.request
   AsgTimeout 30
   </Location>

5. Insert the configuration for a new location above the old location configuration as
follows:



TIBCO® API Exchange Gateway User Guide

138 | Apache Module for TIBCO API Exchange Gateway

   <Location /asg/ba>
   AuthType Basic
   AuthName "ASG"
   # (Following line optional, file is default)
   AuthBasicProvider file
   AuthUserFile /home/asg/apache/htpasswd/htpasswords
   Require validuser
   SetHandler asg_rv_inbound_handler
   AsgSubject _LOCAL.asg.north.request
   AsgTimeout 30
   </Location>

6. Verify that the location changes are as follows:

   <Location /asg/ba>
   AuthType Basic
   AuthName "ASG"
   # (Following line optional, file is default)
   AuthBasicProvider file
   AuthUserFile /home/asg/apache/htpasswd/htpasswords
   Require validuser
   SetHandler asg_rv_inbound_handler
   AsgSubject _LOCAL.asg.north.request
   AsgTimeout 30
   </Location>
   <Location / >
   SetHandler asg_rv_inbound_handler
   AsgSubject _LOCAL.asg.north.request
   AsgTimeout 30
   </Location>

Note: This location change enforces user access with basic authentication.

7. Save the mod_ASG.conf file.

Creating a Password File for the Apache HTTP Server

The Apache HTTP server requires a password file.

Procedure
1. Open a terminal window.



TIBCO® API Exchange Gateway User Guide

139 | Apache Module for TIBCO API Exchange Gateway

2. Navigate to APACHE_HOME.

3. Create a htpasswd subdirectory to store the password file. Create a blank
htpasswords file, if not already there in this directory.

4. Navigate to the APACHE_HOME/bin directory.

5. Create a partner identity using the Apache htpasswd utility for the user asgpartner01
with password asgpartner01, shown as follows:

For example, on the Windows platform:

   htpasswd APACHE_HOME\htpasswd\htpasswords asgpartner01
   New Password:asgpartner01
   Enter New Password:asgpartner01

6. Create a second partner identity using the Apache htpasswd utility for the user
asgpartner02 with password asgpartner02, shown as follows:

For example, on the Windows platform:

   htpasswd APACHE_HOME\htpasswd\htpasswords asgpartner02
   New Password:asgpartner02
   Enter New Password:asgpartner02

Reloading the Configuration File for the Apache HTTP Server

You must restart the Apache HTTP server to reload the configuration file.

On the Windows Platform

Procedure
1. Open a terminal window.

2. Navigate to the APACHE_HOME/bin directory.

3. Stop the Apache server, if already running.

4. Run the following command to start the Apache server: httpd.exe

On the UNIX Platform

Procedure



TIBCO® API Exchange Gateway User Guide

140 | Apache Module for TIBCO API Exchange Gateway

1. Open a terminal window.

2. Navigate to the APACHE_HOME/bin directory.

3. Run the following command to restart the Apache server:

  ./apachectl restart

Configuring a Client (Requester) for Basic Authentication (Example
Use Case)
Configuration details to use TIBCO Business works as a client for basic authentication.

This section explains an example use case how to configure a client for basic
authentication. This example shows the configuration setup for TIBCO Designer when
TIBCO BusinessWorks is used as a client to send the request to API Exchange Gateway.
Customize the changes accordingly if you are using a different client to send requests to
TIBCO API Exchange Gateway.

Note: Ensure that the Uniform resource identifier (URI) used by the client to
send the request (for example, TIBCO BusinessWorks as a client) matches the
URI used by the receiving gateway (for example, TIBCO API Exchange Gateway
facade). This example uses "/asg/ba/" as the URI.

Configuring the Endpoint URL for Transport

In this example, the client side HTTP URL contains "/asg/ba/" string in the endpoint URL to
access the server running the Core Engine.

For example, refer to BookQuery project shipped with TIBCO API Exchange Gateway at the
ASG_HOME/examples/BookQuery/BookQuery location as follows:

Procedure
1. Open the ASG_HOME/examples/BookQuery/BookQuery project using TIBCO Designer.

2. Navigate to BookQuery > Client process.

3. Double-click QueryByTitleClient to open the process.

4. Click SOAPRequestReply activity to open it.



TIBCO® API Exchange Gateway User Guide

141 | Apache Module for TIBCO API Exchange Gateway

5. Click Transport Details tab. To use the basic authentication, change the endpoint
URL as follows:

l From:

http://127.0.0.1:9696/ServerProcesses/GetBooksByTitleEndpoint

l To:

http://127.0.0.1:9696/asg/ba/ServerProcesses/GetBooksByTitleEnd
point

6. Save the changes to the configuration.

Creating an Identity Resource

You must create an identity as set on the Apache HTTP server configuration. See Creating a
Password File for the Apache HTTP Server.

For example, you can create an identity as follows for the BookQuery project:

Procedure
1. Select Client Process node.

2. Navigate to Resources > Add Resources > General > Identity.

3. Input the values for the following fields:

l Name: a string value (For example, MyIdentity)

l Type: select Username/Password from the drop-down list.

l Username: username (username must match the username created at the
Apache server. For example, asgpartner01. See Creating a Password File for the
Apache HTTP Server.

l Password: password (password must match the password created at the Apache
server. For example, asgpartner01. See Creating a Password File for the Apache
HTTP Server).

4. Save the changes to the configuration.



TIBCO® API Exchange Gateway User Guide

142 | Apache Module for TIBCO API Exchange Gateway

Configuring Identity For Transport

Configure the identity (username and password) for the HTTP transport.

You must set the identity (username and password) for the HTTP transport as follows:

Procedure
1. Double-click QueryByTitleClient to open the process.

2. Click SOAPRequestReply activity to open it.

3. Click Transport Details tab.

a. Select the Use Basic Authentication check box.

b. Set the Identity field as follows:

l Click Browse next to the Identity field.

l Select the Identity resource created as explained Creating an Identity
Resource.

l Click OK to select the identity resource.

c. Click Apply to save the changes.

4. Save changes to the configuration.

Configuring TIBCO API Exchange Gateway for Basic Authentication

Procedure
1. Start Config UI.

See Starting GUI to launch the Config UI.

2.
Add a New Facade Operation
.

a. Create a new configuration or select an existing configuration, as applicable.

b. Click the ROUTING > Facade Operations tab.

c. Add a new operation or select an existing operation. See Facade Operations.

d. The Operation URI field contains "/asg/ba/" string in the endpoint as follows
for the facade operation:



TIBCO® API Exchange Gateway User Guide

143 | Apache Module for TIBCO API Exchange Gateway

e. For example, /asg/ba/ServerProcesses/GetBooksByTitleEndpoint

f. Note that the client uses the "/asg/ba" in the transport URL to send the request
to the Core Engine.

g. Save the changes to the configuration.

3. Add a New Partner Group.

a. Create a new configuration or select an existing configuration, as applicable.

b. Add a new partner group. See Partner Groups.

c. Save the changes to the configuration.

4.
Add a New Partner
.

a. Create a new configuration or select an existing configuration, as applicable.

b. Add a new partner as setup for the client. See Partners.

l See Creating an Identity Resource for the username. The partner name
must match the username of the identity resource.

For example, set up the partner name as follows:

l Partner Name: asgpartner01

c. Save changes to the configuration.

5. Add a New Partner Group.

Create or add a new partner group for the partner. See Partner Groups.

6. Add a New Facade Access.

You must add a new facade access to authorize the asgpartner01 partner to access
the operation configured for basic authentication.

a. Create a new configuration or select an existing configuration, as applicable.

b. Add a new facade access to authorize the partner to access the operation. See
Facade Access.

c. Save changes to the configuration.

7. Add Routing.

You must add the routing data for the partner and operation created in Add a New



TIBCO® API Exchange Gateway User Guide

144 | Apache Module for TIBCO API Exchange Gateway

Partner and Add a New Facade Operation sections so that the Core Engine can route
the facade request to the appropriate target operation. See Routing.

Configure Apache Module for RVRD Setup through a Firewall
(DMZ)
Deployment overview of Apache module in the DMZ setup and other gateway components
in a secure network.

By default, the Core Engine uses the TIBCO Rendezvous daemon (rvd) to communicate with
the Apache module. The Apache module receives client requests directly from the Internet
and performs SSL validation. By placing a firewall between the DMZ (De-Militarized Zone)
and the rest of the system, you can protect the system against the threat of malicious
communications and provide stronger security.

When the services are exposed to an unsecured network (such as the Internet) it is usual to
define different security zones with restricted connections allowed between them.
Requests from the outside world are terminated behind a firewall in a de-militarized zone
(DMZ). Applications running in the DMZ are not allowed to initiate connections into the
more secured zones. In some cases, defense-in-depth is applied and multiple DMZs are
used.

TIBCO Rendezvous routing daemon can be configured to forward the Rendezvous
messages from the DMZ network through the firewall to the internal network where the
TIBCO API Exchange Gateway components are deployed.

This section explains the deployment topology illustrating the deployment of Apache HTTP
Server separately in the DMZ and all other gateway components in a secure network. See
Apache HTTP Server in DMZ and Other Components in Secure Network.

Rendezvous transport can be configured so that all connections between the Core Engine
(asg_core) and the Apache HTTP server are instantiated from the internal secure zone into
the DMZ (that is, the server running asg_core).

In this layout only, the authentication is carried out in the DMZ and the minimal possible
gateway configuration must be available in the DMZ.

Note: If you want to deploy TIBCO API Exchange Gateway in the DMZ setup
between the firewalls, configure RVRD when the machines are in different
subnets of the network.



TIBCO® API Exchange Gateway User Guide

145 | Apache Module for TIBCO API Exchange Gateway

Apache HTTP Server in DMZ and Other Components in Secure Network

Setting up TIBCO API Exchange Gateway in a DMZ Environment

Procedure
1. Install TIBCO Rendezvous on Machine 1. Refer to the readme file located in TIBCO_

HOME directory for the supported version of TIBCO Rendezvous.

2. Install Apache HTTP Server on the Machine 1. Refer to the readme file located in the
TIBCO_HOME directory for the supported version of the Apache HTTP server.

3. Install TIBCO API Exchange Gateway software on Machine 2.

4. Configure RVRD between Machine 1 and Machine 2 (Machine 1 is outside the firewall
and Machine 2 is inside the firewall) so that they can send and receive Rendezvous
messages to each other. The subject used to configure RVRD should match the value
specified in the AsgSubject parameter defined in the mod_ASG.conf file located in the
Apache Server Installation. See TIBCO Rendezvous Administration for detailed
instructions to configure rvrd or rvd, as required.

5. Install the Apache module on Machine 1 as follows:



TIBCO® API Exchange Gateway User Guide

146 | Apache Module for TIBCO API Exchange Gateway

a. Navigate to the TIBCO API Exchange Gateway installation directory on Machine
2.

b. Browse to the ASG_HOME/modules/http_server/apache directory.

c. Copy the mod_ASG.conf file from the Machine 2 and place it under Apache
HTTP server installation directory on Machine 1.

6. On Machine 1 (where Apache HTTP server is installed), edit the mod_ASG.conf
configuration file located in the Apache HTTP server installation to set the
Rendezvous session connection parameters as described in the Rendezvous Session
Connection Parameters for Apache Module.

7. On Machine 2, where TIBCO API Exchange Gateway software is installed, edit the
asg.properties file, located under ASG_CONFIG_HOME to set the Rendezvous session
connection parameters. See Rendezvous Session Parameters for Apache Module and
Core Engine Communication.

8. If you want to change the default values for the Rendezvous session connection
parameters for the Core Engine and Central Logger component, set or edit the
parameters in the ASG_CONFIG_HOME/asg.properties file. See Parameters for
Rendezvous connection from Core Engine to Central Logger. Also, set or edit the
Rendezvous session connection parameters in the ASG_CONFIG_HOME/asg_
cl.properties file. See Parameters for Rendezvous connection for Central Logger.

9. To change the default values for the Rendezvous session connection parameters for
the Core Engine and Global Throttle Manager, set or edit the parameters in the ASG_
CONFIG_HOME/asg.properties file as described in the table, Rendezvous Parameters
for Core Engine and Global Throttle Manager Communication.

10. Save the changes to the file.

Note: You can edit the parameters in the ASG_CONFIG_
HOME/asg.properties file and ASG_CONFIG_HOME/asg_cl.properties file on
the Config UI. See Runtime Properties for details.

Configure Apache HTTP Server as Reverse Proxy
Using Apache HTTP Server as Reverse Proxy.

TIBCO API Exchange Gateway supports the Apache HTTP server in reverse proxy mode. You
can place the Apache HTTP server in front of the inner firewall accepting the requests from



TIBCO® API Exchange Gateway User Guide

147 | Apache Module for TIBCO API Exchange Gateway

the clients, and forward those requests to TIBCO API Exchange Gateway residing behind
the firewall.

The Apache HTTP server can be used as reverse proxy for the following purposes:

l Provide users access to a server that is behind a firewall.

l Balance the load among multiple instances of the TIBCO API Exchange Gateway.

l Bring multiple instances of TIBCO API Exchange Gateway servers into the same URL
space.

The Apache HTTP server in reverse proxy mode can be used for both SSL and non-SSL
communication.

Directives
List of directives for Apache HTTP server to be used as reverse proxy.

The following directives must be enabled to use Apache HTTP server as the reverse proxy:

l ProxyPass

l ProxyPassReverse

l SSLCertificateFile (for SSL communication only)

l SSLCertificateKeyFile (for SSL communication only)

Refer to Apache HTTP server documentation for the description of directives.

Setting up Reverse Proxy Server for Non-SSL Communication

Procedure
1. Navigate to the following directory of Apache HTTP server installation:

APACHE_HOME/conf

2. Open the httpd.conf file for editing.

3. Uncomment the following lines:

   LoadModule proxy_module modules/mod_proxy.so



TIBCO® API Exchange Gateway User Guide

148 | Apache Module for TIBCO API Exchange Gateway

   LoadModule proxy_ajp_module modules/mod_proxy_ajp.so
   LoadModule proxy_http_module modules/mod_proxy_http.so

4. Add the following contents:

<VirtualHost *:ListenPort>
ProxyPreserveHost On
# Servers to proxy the connection, or;
# List of application servers:
# Usage:
# ProxyPass / http://[IP Addr.]:[port]/
# ProxyPassReverse / http://[IP Addr.]:[port]/
# Example:
   ProxyPass / http://APIExchangeGateway_Host:HTTP_PORT/
   ProxyPassReverse / http://APIExchangeGateway_Host:HTTP_PORT/
ServerName localhost
</VirtualHost>

where,

l ListenPort is the port on which Apache HTTP server runs. The ListenPort must
match the value specified by Listen directive.

l APIExchangeGateway_Host is the machine on which TIBCO API Exchange
Gateway runs.

l HTTP_PORT is the HTTP port for TIBCO API Exchange Gateway.

Note: To forward a specific operation request, include the request URI in
the ProxyPass and ProxyPassReverse directives. For example, define the
directives for ping operation URI, as follows:

ProxyPass /ping http://APIExchangeGateway_Host:HTTP_PORT/ping
ProxyPassReverse /ping http://APIExchangeGateway_Host:HTTP_
PORT/ping

5. Save the changes to the file.

Setting up Reverse Proxy Server for SSL Communication

Procedure



TIBCO® API Exchange Gateway User Guide

149 | Apache Module for TIBCO API Exchange Gateway

1. Navigate to the following directory of Apache HTTP server installation:

APACHE_HOME/conf

2. Open the httpd.conf file for editing.

3. Uncomment the following line:

LoadModule ssl_module modules/mod_ssl.so

4. Add the following line to include the SSL configuration file:

Include conf/extra/httpd-ssl.conf

5. Save changes to the httpd.conf file.

6. Navigate to the following directory of Apache HTTP server installation:

APACHE_HOME/conf/extra

7. Open the httpd-ssl.conf file for editing.

8. Add the following contents:

<VirtualHost *:ListenSSLPort>
SSLEngine On
ProxyPreserveHost On
# Set the path to SSL certificate
# Usage: SSLCertificateFile /path/to/example.crt
# Usage: SSLCertificateKeyFile /path/to/example.key
# Example:
   SSLCertificateFile Name_of_Server_public_certificate
   SSLCertificateKeyFile Name_of_Server_private_key
# Servers to proxy the connection, or;
# List of application servers:
# Usage:
# ProxyPass / http://[IP Addr.]:[port]/
# ProxyPassReverse / http://[IP Addr.]:[port]/
# Example:
   ProxyPass / http://APIExchangeGateway_Host:HTTP_PORT/
   ProxyPassReverse / http://APIExchangeGateway_Host:HTTP_PORT/
</VirtualHost>

where,



TIBCO® API Exchange Gateway User Guide

150 | Apache Module for TIBCO API Exchange Gateway

l ListenSSLPort is the SSL transport port on which Apache HTTP server runs.
The ListenSSLPort must match the value specified by Listen directive.

l APIExchangeGateway_Host is the machine on which TIBCO API Exchange
Gateway runs.

l HTTP_PORT is the HTTP port for TIBCO API Exchange Gateway.

l Name_of_Server_public_certificate is the full path to the public certificate.
For example, "C:\apache2\conf\server.crt".

l Name_of_Server_private_key is the full path to the private key. For example,
"C:\apache2\conf\server.key".

9. Save the changes to the file.

10. Configure the client certificate authentication as described in the Configuring Client
Authentication with Digital Certificates on Apache HTTP Server section.

Note: If you want to use the Apache HTTP server in reverse proxy mode to
forward the client requests to multiple instances of the Core Engines, use a
load balancer. Refer to the High Availability Deployment Of Runtime
Components chapter.



TIBCO® API Exchange Gateway User Guide

151 | Transport Communication

Transport Communication
Overview of various transports for inter-component communications.

This section explains the configuration settings required for various transports supported
by TIBCO API Exchange Gateway at the facade and target side.

Facade Operation Requests
Overview of transports for the facade operation.

For the facade operation requests, TIBCO API Exchange Gateway supports the following
transports:

HTTP

The Core Engine has the native HTTP Channel, which can receive requests out of the box.
The native HTTP Channel can be used in conjunction with Apache HTTP server as
described in the Configure Apache HTTP Server as Reverse Proxy section. The native HTTP
Channel is the most straight forward configuration option for handling the HTTP requests.

Rendezvous (RV)

The HTTP requests can be sent to the Apache HTTP server, which communicates with the
Core Engine using the RV module. The RV communication between the Apache RV module
and the Core Engine can be configured to initiate the connection from Core Engine to the
RV module to provide securer network topology. The RV transport used internally between
RV module and the Core Engine is not exposed to the external HTTP client. Usage of RV
module requires each instance of the Core Engine to be pairs with a dedicated Apache
server.

JMS

The client can send either SOAP or non-SOAP requests over the JMS transport. Use the JMS
transport to send the requests to the Core Engine when the reliable messaging is
important.



TIBCO® API Exchange Gateway User Guide

152 | Transport Communication

Central Logger
Overview of the transports for Central Logger.

The Central Logger component of the TIBCO API Exchange Gateway supports the following
transports:

Rendezvous (RV)

When the RV transport is used for the Central Logger, the Core Engine sends the log reports
to the Central Logger using RV channel. The log reports are lost if the Central Logger is not
running.

JMS

When the JMS transport is used for the Central Logger, the Core Engine sends the log
reports to the Central Logger using JMS channel. The log reports are retained if the Central
Logger is not running.

AS

When the AS transport is used for the Central Logger, the Core Engine sends the log reports
to the Central Logger using ActiveSpaces channel.

Global Throttle Manager
Overview of the transports for Global Throttle Manager.

The Global Throttle Manager component of the TIBCO API Exchange Gateway supports the
following transports:

Rendezvous (RV)

When the RV transport is used for the Global Throttle Manager, the Core Engine
communicates with the Global Throttle Manager using RV channel.

AS

When the AS transport is used for the Global Throttle Manager, the Core Engine
communicates with the Global Throttle Manager using AS Channel. When AS transport is
configured for Global Throttle Manager, the Central Logger must use the AS transport.



TIBCO® API Exchange Gateway User Guide

153 | Transport Communication

The following table summarizes the supported transports for the components of TIBCO API
Exchange Gateway:

Transport Engine CL GTM

HTTP X

JMS X X

RV X X X

AS X X

Transports For Intercomponent Communication

Rendezvous Transport Communication
Rendezvous is the internal transport used for communication between the various
components of the Core Engine.

The following figure shows the communication for the various components using
Rendezvous transport.



TIBCO® API Exchange Gateway User Guide

154 | Transport Communication

Rendezvous Transport Communication

Enabling Rendezvous Communication for TIBCO API Exchange
Gateway
By default, Rendezvous channel is disabled. You must enable the RV communication if you
want to use RV transport for TIBCO API Exchange Gateway.

Pre-requisites:

Install TIBCO Rendezvous.



TIBCO® API Exchange Gateway User Guide

155 | Transport Communication

Backup Files
To enable the RV transport communication, edit the CDD, TRA, and properties files. It is
good practice to back up these files before making any changes to them.

Procedure
1. Back up the following files in the ASG_HOME/bin directory and ASG_CONFIG_HOME

directory:

In ASG_HOME/bin,

l asg_core.cdd

l asg_cl.cdd

l asg_engine.tra

In ASG_CONFIG_HOME,

l asg.properties

l asg_cl.properties

For example, to back up the asg.properties file on the Windows platform, type the
following command:

copy asg.properties asg.properties.backup

Editing asg_core.cdd File
You must edit the asg_core.cdd file to enable RV channel and disable the AS transport.

Procedure
1. Navigate to the ASG_HOME/bin directory.

2. Open the asg_core.cdd file in an editor.

3. Search the be.channel.deactivate property:

<property name="be.channel.deactivate"
value="/DefaultImplementation/Channels/SouthboundEsb0Channel,/Defau
ltImplementation/Channels/SouthboundEsb1Channel,/DefaultImplementat
ion/Channels/SouthboundEsb2Channel,/DefaultImplementation/Channels/
North_ESBChannel,/DefaultImplementation/Channels/North_



TIBCO® API Exchange Gateway User Guide

156 | Transport Communication

HTTPChannel,/ASG/Channels/SOAPJMSChannel_
North,/ASG/Channels/SOAPJMSChannel_
South,/Common/Channel/CentralLoggerJMS,/Common/Channel/Channel,/Def
aultImplementation/Channels/OAuthWebappsHTTPSChannel,/DefaultImplem
entation/Channels/FacadeHTTPSSLChannel,/ASG/Channels/modRV_
Channel,/ASG/Channels/RvCacheableChannel,/ASG/Channels/RvMappingCha
nnel,/Common/Channel/CentralLoggerRV"/>

4. If you have not made a backup of the be.channel.deactivate property, copy the
be.channel.deactivate property to the be.channel.deactivate.backup property,
as follows:

<property name="be.channel.deactivate.backup"
value="/DefaultImplementation/Channels/SouthboundEsb0Channel,/Defau
ltImplementation/Channels/SouthboundEsb1Channel,/DefaultImplementat
ion/Channels/SouthboundEsb2Channel,/DefaultImplementation/Channels/
North_ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel_
North,/ASG/Channels/SOAPJMSChannel_
South,/Common/Channel/CentralLoggerJMS,/Common/Channel/Channel,/Def
aultImplementation/Channels/OAuthWebappsHTTPSChannel,/DefaultImplem
entation/Channels/FacadeHTTPSSLChannel,/ASG/Channels/modRV_
Channel,/ASG/Channels/RvCacheableChannel,/ASG/Channels/RvMappingCha
nnel,/Common/Channel/CentralLoggerRV"/>

5. Remove the following channels from the value of the be.channel.deactivate
property:

l /Common/Channel/Channel

l /ASG/Channels/modRV_Channel

l /ASG/Channels/RvCacheableChannel

l /ASG/Channels/RvMappingChannel

l /Common/Channel/CentralLoggerRV

6. Add the following channel to the value of be.channel.deactivate property:
/Common/Channel/AS

7. Save changes to the asg_core.cdd file.

Editing asg_cl.cdd File
You must edit the asg_cl.cdd file to enable RV channel and disable the AS transport.



TIBCO® API Exchange Gateway User Guide

157 | Transport Communication

Procedure
1. Navigate to the ASG_HOME/bin directory.

2. Open the asg_cl.cdd file in an editor.

3. Search the be.channel.deactivate property:

<property name="be.channel.deactivate"
value="/DefaultImplementation/Channels/SouthboundEsb0Channel,/Defau
ltImplementation/Channels/SouthboundEsb1Channel,/DefaultImplementat
ion/Channels/SouthboundEsb2Channel,/DefaultImplementation/Channels/
North_ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel,/ASG/Channels/SOAPJMSChann
el_North,/ASG/Channels/SOAPJMSChannel_
South,/Common/Channel/CentralLoggerJMS,/DefaultImplementation/Chann
els/OAuthWebappsChannel,/DefaultImplementation/Channels/OAuthWebapp
sHTTPSChannel,/ASG/Channels/RvMappingChannel,/ASG/Channels/RvCachea
bleChannel,/ASG/Channels/modRV_
Channel,/Common/Channel/Channel,/Common/Channel/CentralLoggerRV"/>

4. If you have not made a backup of the be.channel.deactivate property, copy the
be.channel.deactivate property to the be.channel.deactivate.backup property,
as follows:

<property name="be.channel.deactivate.backup"
value="/DefaultImplementation/Channels/SouthboundEsb0Channel,/Defau
ltImplementation/Channels/SouthboundEsb1Channel,/DefaultImplementat
ion/Channels/SouthboundEsb2Channel,/DefaultImplementation/Channels/
North_ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel,/ASG/Channels/SOAPJMSChann
el_North,/ASG/Channels/SOAPJMSChannel_
South,/Common/Channel/CentralLoggerJMS,/DefaultImplementation/Chann
els/OAuthWebappsChannel,/DefaultImplementation/Channels/OAuthWebapp
sHTTPSChannel,/ASG/Channels/RvMappingChannel,/ASG/Channels/RvCachea
bleChannel,/ASG/Channels/modRV_
Channel,/Common/Channel/Channel,/Common/Channel/CentralLoggerRV"/>

5. Remove the following channel from the value of the be.channel.deactivate
property:
/Common/Channel/CentralLoggerRV

6. Add the following channel to the value of the be.channel.deactivate property:
/Common/Channel/AS



TIBCO® API Exchange Gateway User Guide

158 | Transport Communication

7. Save changes to the asg_cl.cdd file.

Setting tibco.env.RV_HOME Property in TRA Files
You must set the tibco.env.RV_HOME property in the following TRA file:

l asg-engine.tra

Procedure
1. Navigate to the ASG_HOME/bin directory.

2. Using a text editor, open the asg-engine.tra file for editing.

3. Set the tibco.env.RV_HOME property to the location of TIBCO Rendezvous installation
home.

For example, on the Windows platform, the property is set to d:/tibco/tibrv/8.4.

4. Set the tibco.env.CUSTOM_EXT_PREPEND_CP property to append the %PSP%%RV_
HOME%/lib/tibrvj.jar file.

For example, on the Windows platform, the property is set as follows:

tibco.env.CUSTOM_EXT_PREPEND_CP=%ASG_HOME%/lib%PSP%%ASG_
HOME%/lib/ext/hotfix%PSP%%ASG_HOME%/lib/ext/tibco%PSP%%ASG_
HOME%/lib/ext/tpcl%PSP%%RV_HOME%/lib/tibrvj.jar

5. Save changes to the asg-engine.tra file.

Editing Properties Files
To enable Rendezvous communication for the gateway, set the transport to RV in the
properties files for the Core Engine and Central Logger.

Procedure
1. Navigate to the ASG_CONFIG_HOME directory.

2. Using an editor, open the asg.properties file for editing.

3. Search the following property:
tibco.clientVar.ASG/transport=AS

4. Edit the value of following property from AS to RV:
tibco.clientVar.ASG/transport=RV



TIBCO® API Exchange Gateway User Guide

159 | Transport Communication

5. Save changes to the asg.properties file.

6. Using an editor, open the asg_cl.properties file for editing.

7. Search the following property:
tibco.clientVar.ASG/Logging/transport

8. Edit the value of following property from AS to RV (remove comment if it exists):
tibco.clientVar.ASG/Logging/transport=RV

9. Save changes to the asg_cl.properties file.

Configuration Setup
This section explains the configuration setup required for Rendezvous communication.

To ensure that Rendezvous is only used as an internal transport with the Core Engine,
perform the following actions:

l Kill any running Rendezvous daemons on the system.

l Explicitly start the Rendezvous daemons.

You can start the Rendezvous daemons using the Rendezvous session parameters as
defined in the ASG_CONFIG_HOME/asg.properties file. By default, the Rendezvous
connection parameters are defined as follows:

o RvDaemon tcp:7500

o RvNetwork

o RvService 7500

If you want to change the network, daemon or service parameters for the
Rendezvous transport connection, edit the properties defined in the ASG_
CONFIG_HOME/asg.properties and ASG_CONFIG_HOME/asg_cl.properties files.
See Setting Rendezvous Transport Properties.

Note: If the Gateway components are deployed on the machines within the
same subnet, the rvd daemon is used. In case the components are deployed on
the machines within different subnets, it requires the rvrd daemon setup. See
TIBCO Rendezvous Administration Guide for the configuration setup and starting
the Rendezvous daemons.



TIBCO® API Exchange Gateway User Guide

160 | Transport Communication

Setting Rendezvous Transport Properties
This section explains the properties to be set for Rendezvous transport as a communication
channel between the TIBCO API Exchange Gateway components.

Rendezvous Session Connection Parameters for Apache Module
List of Rendezvous session connection parameters for Apache module.

The parameters used for Apache module to connect to the Rendezvous daemon are
defined in the mod_ASG.conf file located under ASG_HOME/modules/http_server/apache
directory. To set the parameters for Apache module, perform the following actions:

Procedure
1. Navigate to the ASG_HOME/modules/http_server/apache directory.

2. Open the mod_ASG.conf file in a text editor.

3. Set the values for the following parameters:

Parameter Description

AsgService Specifies the Rendezvous daemon service
parameter. The default value is 7500.

AsgNetwork Specifies the Rendezvous daemon network
parameter. The default value is lo.

AsgDaemon Specifies the Rendezvous daemon
parameter. This parameter is set as the
TCP port. The default value is:

tcp:7500.

AsgSubject l Specifies the subject to which the
Rendezvous daemon sends the client
request. The default value is: _
LOCAL.asg.north.request

You can change the default value, as

Rendezvous Session Connection Parameters for Apache Module



TIBCO® API Exchange Gateway User Guide

161 | Transport Communication

Parameter Description

required.

l This value should match the value
set in the
tibco.clientVar.ASG/modRV/north_
request parameter of the ASG_
CONFIG_HOME/asg.properties file.

Note: For the communication between the Apache module and the
Core Engine, the Rendezvous session connection parameters in the
ASG_CONFIG_HOME/asg.properties file and ASG_HOME/modules/http_
server/apache/mod_ASG.conf file must match.

4. Save the changes to the file.

Rendezvous Session Connection Parameters for Core Engine
List of Rendezvous session connection parameters for the Core Engine.

This section lists the properties required for the Core Engine to listen to the messages from
the Apache module using Rendezvous daemon. The properties are defined in the ASG_
CONFIG_HOME/asg.properties file.

To set or edit the properties, follow these steps:

Procedure
1. Navigate to the ASG_CONFIG_HOME directory.

2. Open asg.properties file in a text editor.

3. Set the following properties:

Parameter Description

tibco.clientVar.ASG/modRV/facade_request Specifies the subject name used
by the Rendezvous daemon to

Rendezvous Session Parameters for Apache Module and Core Engine Communication



TIBCO® API Exchange Gateway User Guide

162 | Transport Communication

Parameter Description

listen to the requests from
Apache module. The Core Engine
listens to the requests on the
same subject.

l This property value must
match the subject value
specified in the Apache
module configuration file
(mod_ASG.conf) for Apache
server. The default value
is: _
LOCAL.asg.north.request

tibco.clientVar.ASG/modRV/RvDaemon Specifies the value of
Rendezvous daemon for the Core
Engine to connect and listen for
the requests from the Apache
module. The default value is:
tcp:7500

tibco.clientVar.ASG/modRV/RvNetwork Specifies the value of the
Rendezvous network for the Core
Engine to connect and listen for
the requests from the Apache
module.

This property value must match
the network value specified in
the Apache module configuration
file for Apache server.

tibco.clientVar.ASG/modRV/RvService Specifies the value of the
Rendezvous service for the Core
Engine to connect and listen for
the requests from the Apache
module. The default value is:
7500



TIBCO® API Exchange Gateway User Guide

163 | Transport Communication

4. Save the changes to the file.

Rendezvous Session Connection Parameters For Core Engine and
Central Logger Communication
List of Rendezvous session connection parameters for Core Engine and Central Logger
Communication.

This section lists the properties required for Rendezvous communication between the Core
Engine and the Central Logger. The properties are defined in the ASG_CONFIG_
HOME/asg.properties and ASG_CONFIG_HOME/asg_cl.properties files.

Parameters for Rendezvous connection from Core Engine to Central Logger

The Core Engine uses the Rendezvous daemon to send messages to the Central Logger. Set
the properties for the Core Engine to communicate with the Rendezvous daemon for the
Central Logger in the ASG_CONFIG_HOME/asg.properties file as follows:

Parameter Description

tibco.clientVar.Common/Connections/RV/SubjectPrefix Specifies the prefix for the
Rendezvous subject names
used by the Core Engine to
communicate with the other
components. The default
value is: TIBCO.ASG.INTERNAL

tibco.clientVar.ASG/CL/RV/RvDaemon Specifies the value of the
Rendezvous daemon for the
Core Engine to send
messages to the Central
Logger.

The default value is:tcp:7500.
By default, this property is
not defined in the ASG_
CONFIG_HOME/asg.properties
file. You must explicitly add
this.

Rendezvous Session Parameters for Core Engine to Communicate with Central Logger



TIBCO® API Exchange Gateway User Guide

164 | Transport Communication

Parameter Description

tibco.clientVar.ASG/CL/RV/RvNetwork Specifies the value of the
Rendezvous network for the
Core Engine to send
messages to the Central
Logger.

By default, this property is
not defined in the ASG_
CONFIG_HOME/asg.properties
file. You must explicitly add
this.

tibco.clientVar.ASG/CL/RV/RvService Specifies the value of the
Rendezvous service for the
Core Engine to send
messages to the Central
Logger.

The default value is: 7500. By
default, this property is not
defined in the ASG_CONFIG_
HOME/asg.properties file. You
must explicitly add this.

Parameters for Rendezvous connection for Central Logger

The Central Logger uses the Rendezvous to listen to the messages from the Core Engine.
Set the properties for the Central Logger to communicate with the Rendezvous daemon in
ASG_CONFIG_HOME/asg_cl.properties file as follows:

Parameter Description

tibco.clientVar.Common/Connections/RV/SubjectPrefix Specifies the prefix for the
Rendezvous subject names
used by the Core Engine to
communicate with the
Central Logger and the Global

Rendezvous Session Connection Parameters for Central Logger



TIBCO® API Exchange Gateway User Guide

165 | Transport Communication

Parameter Description

Throttle Manager.

The default value is:
TIBCO.ASG.INTERNAL

tibco.clientVar.ASG/CL/RV/RvDaemon Specifies the value of the
Rendezvous daemon for the
Central Logger to listen to the
messages from the Core
Engine.

The default value is:
tcp:7500. By default, this
property is not defined in the
ASG_CONFIG_
HOME/asg.properties file. You
must explicitly add this.

tibco.clientVar.ASG/CL/RV/RvNetwork Specifies the value of the
Rendezvous network for the
Central Logger to listen to the
messages from the Core
Engine.

By default, this property is
not defined in the ASG_
CONFIG_HOME/asg.properties
file. You must explicitly add
this.

tibco.clientVar.ASG/CL/RV/RvService Specifies the value of the
Rendezvous service for the
Central Logger to listen to the
messages from the Core
Engine.

The default value is: 7500 . By
default, this property is not
defined in the ASG_CONFIG_



TIBCO® API Exchange Gateway User Guide

166 | Transport Communication

Parameter Description

HOME/asg.properties file. You
must explicitly add this.

Note: For the communication between the Core Engine and the Central Logger
components, the Rendezvous session connection parameters in the ASG_
CONFIG_HOME/asg.properties file and ASG_CONFIG_HOME/asg_cl.properties
file must match.

Rendezvous Session Connection Parameters for Core Engine and
Global Throttle Manager Communication
List of Rendezvous session connection parameters for the Core Engine and the Global
Throttle Manager.

The properties must be defined in the ASG_CONFIG_HOME/asg.properties file.

Parameter Description

tibco.clientVar.Common/Connections/RV/SubjectPrefix Specifies the prefix for the
Rendezvous subject names
used by the Core Engine to
communicate with other
components. The default
value is: TIBCO.ASG.INTERNAL

tibco.clientVar.ASG/GTM/RV/RvDaemon Specifies the value of the
Rendezvous daemon for the
Core Engine to connect to the
Global Throttle Manager.

The default value is:
tcp:7500. By default, this
property is not defined in the
ASG_CONFIG_

Rendezvous Parameters for Core Engine and Global Throttle Manager Communication



TIBCO® API Exchange Gateway User Guide

167 | Transport Communication

Parameter Description

HOME/asg.properties file. You
must explicitly add this.

tibco.clientVar.ASG/GTM/RV/RvNetwork Specifies the value of the
Rendezvous network for the
Core Engine to connect to the
Global Throttle Manager.

By default, this property is
not defined in the ASG_
CONFIG_HOME/asg.properties
file. You must explicitly add
this.

tibco.clientVar.ASG/GTM/RV/RvService Specifies the value of the
Rendezvous service for the
Core Engine to connect to the
Global Throttle Manager.

The default value is: 7500. By
default, this property is not
defined in the ASG_CONFIG_
HOME/asg.properties file. You
must explicitly add this.

Secure Deployments with TIBCO Rendezvous
Overview of secure communication using the Rendezvous secure daemons.

The Apache module of the TIBCO API Exchange Gateway is enhanced to support the secure
communication using the Rendezvous secure daemons, rvsd and rvsrd. For detailed
information on secure daemons (rvsd and rvsrd), see Chapter 6, Secure Daemons in the
TIBCO Rendezvous Administration Guide.

For the DMZ (De-Militarized Zone) setup, the Apache server runs on the machine outside
the firewall and the Core Engine runs on a machine inside the firewall. The following
options are available to run the Apache server:

l Option 1: Run the Apache server on the same machine where secure rvsrd (or rvsd)



TIBCO® API Exchange Gateway User Guide

168 | Transport Communication

daemon runs.

l Option 2: Run the Apache server and secure rvsrd (or rvsd) daemon on different
machines. In this case, the Apache server acts a client to connect to rvsrd (or rvsd)
daemons. If the Apache server and rvsd daemon are running on the machines in the
same subnet, rvrd configuration is not required to connect from the Apache server to
rvsd. However, if the Apache server and the rvsrd daemon are running on machines
in different subnets, you must configure routing daemon between the two machines
(one with Apache server machine running rvrd and the other machine running rvsrd).

The Core Engine runs on a machine in a secure network inside the firewall which has rvrd
running. Configure rvsrd(running on a machine where the Apache server runs in case of
Option 1) and rvrd (running on a machine where the Core Engine is running) as neighbors.
See TIBCO Rendezvous Administration Guide for configuration setup details of the
Rendezvous daemons.

This chapter mainly explains the configuration details required for the Apache module to
connect to rvsrd (or rvsd) daemons.

Secure Deployment with Rendezvous

The figure above illustrates an example deployment of the Apache module and the Core
Engine in a DMZ setup where the Apache module communicates with the secure
Rendezvous daemons. In this deployment, the Apache server and Rendezvous secure
daemon (rvsrd) runs on the same machine, Machine 1. The deployment consists of the
following components:

Components of Machine 1

l The Apache server. Refer to ASG_HOME/readme file for the supported version of the
Apache server.



TIBCO® API Exchange Gateway User Guide

169 | Transport Communication

l The TIBCO API Exchange Gateway Apache Module. See Setting up and Configuring
Apache Module for details.

l The TIBCO Rendezvous secure daemon (rvsrd). Refer to the ASG_HOME/readme file
for the supported Rendezvous version.

Components of Machine 2

l The Core Engine.

l The TIBCO Rendezvous daemon (rvrd). Refer to the ASG_HOME/readme file for the
supported Rendezvous version.

Note: If Machine 1 and Machine 2 are on the same subnet, you can use rvsd on
Machine 1 and rvd on Machine 2.

Configuration for Secure Rendezvous Daemon
This section explains the configuration steps required to set up the deployment for the
Apache server communicating with the secure Rendezvous daemon (rvsrd).

Configuration Tips
You must consider the following points when configuring the Rendezvous daemons (rvsrd
and rvrd), the Apache module, and TIBCO API Exchange Gateway.

l Ensure that the subject name configured for Local Area Network (LAN) during the
rvsrd daemon configuration on Machine 1 matches the subject name configured for
LAN for the rvrd daemon configuration on Machine 2. The authorized subject names
used in the rvsrd configuration on Machine 1 must be the same as the subject name
used for the rvrd configuration on Machine 2.

l Ensure that the authorized subject names used in the configuration of rvsrd on
Machine 1 matches the subject name set using the AsgSubject parameter in the
Apache module configuration file (mod_ASG.conf) on Machine 1.

l Ensure that the subject names configured for rvrd on Machine 2 matches the subject
name set using the tibco.clientVar.ASG/modRV/north_request property in the Core
Engine properties file. The properties file is located as the ASG_CONFIG_
HOME/asg.properties file.



TIBCO® API Exchange Gateway User Guide

170 | Transport Communication

l Ensure that the subject name configured using the AsgSubject parameter in the
Apache module configuration file (mod_ASG.conf) on Machine 1 matches the subject
name set using the tibco.clientVar.ASG/modRV/north_request property in the Core
Engine properties file. The properties file is located as the ASG_CONFIG_
HOME/asg.properties file.

l The listen port used to start the rvsrd daemon on Machine 1 must be different from
the listen port used to start the rvrd daemon on Machine 2.

For example,

o Start the rvsrd daemon on Machine 1 as follows:

      rvsrd –store rvsrd.store –http 3500 –listen 7500

o Start the rvrd daemon on Machine 2 as follows:

      rvrd –store rvrd.store –http 3500 –listen 7502

l The network parameter configured in the Apache module configuration file (mod_
ASG.conf) on Machine 1 must be same as the network property value set in the Core
Engine properties (asg.properties) file.

For example,

In the mod_ASG.conf file on Machine 1, configure the network daemon as follows:

   AsgNetwork ;239.1.1.11

In the Core Engine properties (asg.properties) file on Machine 2, set the network
property value as follows:

   tibco.clientVar.ASG/modRV/RvNetwork=;239.1.1.11

l The daemon certificate configured for the rvsrd setup must match the certificate
specified by the AsgSecureDaemonCert parameter in the Apache module
configuration file (mod_ASG.conf).

l The user certificate configured for a user during the rvsrd setup must match with the
certificate specified by the AsgSecureDaemonKey parameter in the Apache module
configuration file (mod_ASG.conf).



TIBCO® API Exchange Gateway User Guide

171 | Transport Communication

Setup and Configure Rendezvous Daemons
This section explains the guidelines to setup and configure Rendezvous daemons.

l Install TIBCO Rendezvous on the machines in the firewall security zone, Machine 1
and Machine 2 as shown in the Secure Deployment with Rendezvous diagram.

l Configure the secure Rendezvous daemon (rvsrd or rvsd) on the machine that is
outside the firewall. This is shown as Machine 1 in the Secure Deployment with
Rendezvous diagram. See TIBCO Rendezvous Administration for detailed instructions
to configure rvsrd or rvsd, as required.

l Configure the Rendezvous daemon (rvrd or rvd) on the machine that is inside the
inner security zone. This is shown as Machine 2 in the Secure Deployment with
Rendezvous diagram. See TIBCO Rendezvous Administration for detailed instructions
to configure rvrd or rvd, as required.

l For rvsrd or rvsd configuration, see Configuration Tips.

Configuration Setup for Apache Module and TIBCO API Exchange
Gateway
This section explains the configuration setup for Apache Server, the Apache module and
TIBCO API Exchange Gateway on the machines outside and inside the firewall.

Install Apache Server

l Install, configure, and setup the Apache server on Machine 1. Refer to TIBCO API
Exchange Gateway Installation guide for details.

Install TIBCO API Exchange Gateway

l Install TIBCO API Exchange Gateway on the machine within the firewall security zone
(Machine 2).

Setting up and Configuring Apache Module

This section explains the configuration to set up the Apache module.



TIBCO® API Exchange Gateway User Guide

172 | Transport Communication

Setting up Apache Module on Machine 1

To set up the Apache module on the machine where Apache server runs (Machine 1), follow
these steps:

Procedure
1. Copy the following files from the TIBCO API Exchange Gateway installation on

Machine 2:

l ASG_HOME\modules\http_server\apache\mod_ASG.conf

l ASG_ HOME\modules\http_server\apache\mod_asg_rv_inbound.so

2. Save these files locally on Machine 1 where the Apache server runs. You may place
these files in a location accessed by the Apache server.

3. Open the APACHE_HOME/conf/httpd.conf file for editing.

4. Add the following line in the file:

   Include <Full Path>/mod_ASG.conf

5. Save the changes.

Configuring Apache Module on Machine 1

You must configure the Apache module to connect to the secure Rendezvous daemon. To
configure the Apache module installed on the machine where Apache server is running
(Machine 1), follow these steps:

Procedure
1. Open the mod_ASG.conf file for editing.

2. Set the parameters as described in the following table:

Property Description

AsgService Specifies the service parameter configured for rvsrd on
Machine 1. For example, 1111.

Apache Module Properties



TIBCO® API Exchange Gateway User Guide

173 | Transport Communication

Property Description

This parameter value must be configured different from
the value specified for rvrd setup on Machine 2.

AsgNetwork Specifies the network parameter set during the
configuration of secure Rendezvous daemon (rvsrd).

This parameter is a random multicast IP address used
to broadcast messages to the machines in that
multicast group.

For example, ;239.1.1.11

l This network parameter value must match the
network value set during the configuration of
rvrd setup on Machine 2.

AsgDaemon Specifies the daemon value set during the configuration
of secure Rendezvous daemon (rvsrd). For example,

ssl:ASGRVSecure:7500

You must specify the ssl prefix before the machine
name, otherwise the connection fails.

AsgSubject Specifies the subject name used to send the message to
the secure Rendezvous daemon (rvsrd).

AsgSecureDaemon A Boolean property to enable or disable the secure
Rendezvous daemon connection for the Apache
module.

The secure Rendezvous daemon can run on the same or
different machines where the Apache server is running.

Possible values are On and Off.

Set this value to On to enable the Apache module to
connect to the secure Rendezvous daemon (rvsrd).



TIBCO® API Exchange Gateway User Guide

174 | Transport Communication

Property Description

AsgSecureDaemonCert l Specifies the path to the public certificate of the
secure Rendezvous daemon (rvsrd). This public
certificate is configured during the rvsrd setup.

For example,

C:\tibcoasg\tibrv\8.3\certs\cert2.pem

l Required.

AsgSecureDaemonUsername l Specifies the username used in rvsrd
configuration.

If AsgSecureDaemonUsername is set, the Apache
module uses the username and password to
connect to the rvsrd daemon.

If AsgSecureDaemonUsername is not set,
AsgSecureDaemonKey parameter must be set. See
AsgSecureDaemonKey .

l Optional.

AsgSecureDaemonPassword l Specifies the password used by the client in rvsrd
configuration. The password is required when
connecting to the rvsrd daemon either using the
username or the client certificate. You can specify
an obfuscated password for this parameter. The
obfuscated password is generated using the asg-
password-obfuscator utility located in the ASG_
HOME/bin directory.

l Required.

AsgSecureDaemonKey l Specifies the path to the user certificate of secure
Rendezvous daemon (rvsrd). This user certificate
is configured for a user in the rvsrd setup. The
certificate should be in text (PEM) format.



TIBCO® API Exchange Gateway User Guide

175 | Transport Communication

Property Description

The Apache module connects to the secure
Rendezvous daemon (rvsrd) using the user
certificate specified by this parameter.

l If this parameter is not set, the Apache module
connects to the secure Rendezvous daemon
(rvsrd) using the username and password
specified by AsgSecureDaemonUsername and
AsgSecureDaemonPassword parameters.

l Optional.

3. Save the changes to the file.

Note: You can use the asg-password-obfuscator executable to obfuscate
the password. The obfuscated password can be used in the
AsgSecureDaemonPassword parameter of the mod_ASG.conf file of Apache
module. See asg-password-obfuscator Utility for usage details.

Sample Properties For Apache Module

List of sample properties for Apache module.

The following is the list of properties with example values for the Apache module set in the
mod_ASG.conf file. Refer to Apache Module Properties for the properties description.

l AsgService 1111

l AsgNetwork ;239.1.1.11

l AsgDaemon ssl:ASGRVSecure:7500

l AsgSecureDaemon On

l AsgSecureDaemonCert "C:\tibcoasg\tibrv\8.3\certs\cert2.pem"

l AsgSecureDaemonUsername "user"

l AsgSecureDaemonPassword "user"

l AsgSecureDaemonKey "C:\tibcoasg\tibrv\8.3\certs\Usercert.pem"



TIBCO® API Exchange Gateway User Guide

176 | Transport Communication

Configuring the Core Engine Properties

List of Core Engine Properties for Rendezvous communication with Apache module.

You must set the following properties for the Core Engine to receive the requests from the
Apache module.

To set or edit the properties, follow these steps:

Procedure
1. Navigate to the ASG_CONFIG_HOME directory.

2. Open the asg.properties file in a text editor.

3. Set or edit the properties as described in the Core Engine Properties table:

Property Description

tibco.clientVar.ASG/modRV/facade_
request

l Specifies the subject name used by
the Rendezvous daemon to listen
the requests from the Apache
module. The Core Engine listens to
the requests on the same subject.

o This property value must
match the subject value
specified in the Apache
module configuration file
(mod_ASG.conf) for Apache
server.

o This property value must
match the subject value
specified for the rvrd
configuration.

l The default value is:
MachineName.asg.north.request

tibco.clientVar.ASG/modRV/RvDaemon l Specifies the value of the
Rendezvous daemon for the Core

Core Engine Properties



TIBCO® API Exchange Gateway User Guide

177 | Transport Communication

Property Description

Engine to connect and listen for the
requests from the Apache module.

o This property value should
match the listen port value
given for the command to
start the rvrd daemon on the
machine where the Core
Engine runs.

For example,

Set this property value to
7502 for the following
command used to start the
rvrd daemon:

rvrd –store rvrd.store –
http 3500 –listen 7502

o This property value must be
different from the listen port
value given for the command
to start the rvsrd daemon on
the machine where the
Apache server runs.

l The default value is: 7500.

tibco.clientVar.ASG/modRV/RvNetwork Specifies the value of the Rendezvous
network for the Core Engine to connect
and listen for the requests from the
Apache module.

This property value must match the
network value specified in the Apache
module configuration file for Apache
server. See Setting up and Configuring



TIBCO® API Exchange Gateway User Guide

178 | Transport Communication

Property Description

Apache Module.

For example, the value can be specified
as:

;239.1.1.11

tibco.clientVar.ASG/modRV/RvService Specifies the value of the Rendezvous
service for the Core Engine to connect
and listen for the requests from the
Apache module.

For example, 2222.

4. Save the changes to the file.

Sample Properties for Core Engine

List of sample properties for Core Engine.

The following is the list of properties with example values for the Core Engine set in the
asg.properties file. Refer to Core Engine Properties for the properties description.

tibco.clientVar.ASG/modRV/facade_request=ASG200-Test.asg.north.request

tibco.clientVar.ASG/modRV/RvDaemon=7502

tibco.clientVar.ASG/modRV/RvNetwork=;239.1.1.11

tibco.clientVar.ASG/modRV/RvService=2222

asg-password-obfuscator Utility

This utility generates an obfuscated password.

TIBCO API Exchange Gateway provides the asg-password-obfuscator utility to generate an
obfuscated password.

For example,

l An obfuscated password can be specified for the tibco.env.ASG_ADMIN_PASSWORD
property of the Config UI. The Config UI uses this password to verify the credentials



TIBCO® API Exchange Gateway User Guide

179 | Transport Communication

for the default authentication mechanism of the Config UI. See Default
Authentication.

l An obfuscated password is used by the Apache module (C module) to communicate
with the Rendezvous daemon. The obfuscated password can be set for the
AsgSecureDaemonPassword parameter in the Apache module configuration (mod_
ASG.conf) file.

Usage
Usage: asg-password-obfuscator <password>

Example Output

C:\tibcoasg\asg\2.3\bin>asg-password-obfuscator admin

Obfuscating password ...

Jul 15, 2013 1:52:54 PM com.tibco.security.providers.SecurityVendor_j2se <clinit>

INFO: Initializing JSSE's crypto provider class com.sun.net.ssl.internal.ssl.Provider

in default mode

Obfuscated password (in brackets): [#_R9gvPGRME0hRIveQJJS9i9tAzshJUjfK]



TIBCO® API Exchange Gateway User Guide

180 | Transport Communication

Note: If the obfuscated password generated by the asg-password-obfuscator
utility contains special characters, you must escape the special characters before
using the obfuscated password.

For example, to use the obfuscated password for tibco.env.ASG_ADMIN_
PASSWORD property of the ASG_HOME/bin/asg-configui.tra file, escape the
special characters if the obfuscated password contains the special characters.
See the following examples:

l The asg-password-obfuscator utility generates #_
R9gvPGRME0hRIveQJJS9i9tAzshJUjfK as the password. Use this password
in the ASG_HOME/bin/asg-configui.tra file, as follows:
tibco.env.ASG_ADMIN_PASSWORD=\#\_
R9gvPGRME0hRIveQJJS9i9tAzshJUjfK

l The asg-password-obfuscator utility generates
#!gJRT2BcdqcmvDRxKcjAcJxTRt3FHPK1AwOZlrivOiLE= as the password. Use
this password in the ASG_HOME/bin/asg-configui.tra file, as follows:
tibco.env.ASG_ADMIN_
PASSWORD=\#\!gJRT2BcdqcmvDRxKcjAcJxTRt3FHPK1AwOZlrivOiLE\=

l The asg-password-obfuscator utility generates
#!gJRT2BcdqcmvDRxKcjAc!xTRt3FHPK1AwOZlrivOiLE= as the password
which contains the embedded special characters. Use this password in the
ASG_HOME/bin/asg-configui.tra file, as follows:
tibco.env.ASG_ADMIN_
PASSWORD=\#\!gJRT2BcdqcmvDRxKcjAc\!xTRt3FHPK1AwOZlrivOiLE\=

Enabling Facade HTTP Transport
To enable the native HTTP transport at the facade side of the TIBCO API Exchange
Gateway, follow these steps:

Procedure
1. Start the Config UI.

2. Log in to the Config UI using your credentials.

3. On the home page of the Config UI, select Gateway Engine Properties from the
drop-down list.



TIBCO® API Exchange Gateway User Guide

181 | Transport Communication

4. Click the Transport link to display the runtime properties.

5. Expand the Facade Node.

6. Set the Port field for HTTP request. The default is 9222.

7. Save the changes to the configuration.

Enable Facade HTTPS Transport
TIBCO API Exchange Gateway supports the native HTTPS channel at the facade side.

Setting SSL Properties
To enable the HTTPS channel at the facade side of the TIBCO API Exchange Gateway, set
the SSL properties on the Config UI as follows:

Procedure
1. Start the Config UI.

2. Log in to the Config UI using your credentials.

3. On the home page of the Config UI, select the Gateway Engine Properties from the
drop-down list.

4. Click the Transport link to display the runtime properties.

5. Set the SSL properties as explained in the Setting Transport Properties section of
Setting Transport Properties table.

6. Save the configuration changes to the project.



TIBCO® API Exchange Gateway User Guide

182 | Transport Communication

Note:
l The SSL properties can be set in the ASG_CONFIG_

HOME/asg.properties file. Refer to the Connection Parameters for
HTTPS Channel(Facade) properties.

l If the
tibco.clientVar.DefaultImplementation/Connections/HTTP/Faca
deHTTPSSLConnection/IdentityFileType property is set to
certPlusKeyURL, download Tomcat and configure the TIBCO API
Exchange Gateway to include the Tomcat native library. See
Download Tomcat Native Library for details.

Download Tomcat Native Library
Perform the following steps to download and copy the required native library.

Downloading on Windows platform
Copy the library as follows:

Procedure
1. Download the tomcat-native-1.1.31-win32-bin.zip archive from the Apache

Tomcat website.

For example, download the tomcat-native-1.1.31-win32-bin.zip archive file from the
following URL to a temporary location, such as C:\temp\apache_lib.

http://mirror.reverse.net/pub/apache/tomcat/tomcat-
connectors/native/1.1.31/binaries/tomcat-native-1.1.31-win32-bin.zip

2. Navigate to the temporary location directory, C:\temp\apache_lib, where the
tomcat-native-1.1.31-win32-bin.zip archive is downloaded.

3. Extract the tomcat-native-1.1.31-win32-bin.zip archive in the same directory,
C:\temp\apache_lib.

4. Copy the tcnative-1.dll library to the TIBCO_HOME\tibcojre64\1.7.0\bin directory.

a. For Windows 64-bit platform, the tcnative-1.dll library is found at the
C:\temp\apache_lib\tomcat-native-1.1.31-win32-bin\bin\x64 location.



TIBCO® API Exchange Gateway User Guide

183 | Transport Communication

b. For Windows 32-bit platform, the tcnative-1.dll library is found at the
C:\temp\apache_lib\tomcat-native-1.1.31-win32-bin\bin location.

Downloading on Linux platform
Download, build, and copy the library.

Downloading and Building APR

Procedure
1. Install the Apache Portable Runtime (APR) and OpenSSL (if not already installed on

the system).

2. For Debian-based Linux platform, execute the following command:
apt-get install build-essential libapr1-dev libssl-dev

3. For Redhat Linux, follow these steps:

a. Download the source (.tar.gz) file for APR from the following URL:

http://apr.apache.org/download.cgi

b. Execute the following command to extract the package:
tar xvzf apr-1.5.0.tar.gz

c. Execute the following commands at the command prompt in sequence:

cd apr-1.5.0
./configure
make
make install

d. Check the path shown at the end of make install command. The directory
specified by this path should contain apr-1-config. The apr-1-config is required
to build the Tomcat native library as mentioned in Building Tomcat Native
Library section.

Building Tomcat Native Library

Procedure

http://httpd.apache.org/


TIBCO® API Exchange Gateway User Guide

184 | Transport Communication

1. Download the tomcat-native.tar.gz archive to a temporary location, such as
/home/user/tomnative. The tomcat-native.tar.gz archive is located under CATALINA_
HOME/bin.

2. Navigate to the temporary location directory where the tomcat-native.tar.gz
archive is downloaded. For example, navigate to the /home/user/tomnative
directory.

3. Extract the tomcat-native.tar.gz archive in the temporary location, such as
/home/user/tomnative directory.

4. Change to the /home/user/tomnative/tomcat-native-1.1.27-src/jni/native
directory.

5. Execute the following commands at the command prompt in sequence:

a. ./configure -with-apr=Full_APR_CONFIG_PATH -with-java-home=Full_Path_JDK -
with-ssl=yes -prefix=Path_to_destination_directory

where,

l Path_to_destination_directory is the destination directory where the
libraries are created.

l Full_APR_CONFIG_PATH is the full path to apr-1-config. For example,
,/usr/bin/apr-1-config.

l Full_Path_JDK is the full path to JDK. For example, /usr/tools/jdk_1.7.0_
45

b. make

c. make install

6. Verify that the Path_to_destination_directory/lib directory contains around five new
files with extensions such as .so, .la,.a and so on after the successful installation.

Setting LD_LIBPARY_PATH
Set the LIBRARY PATH to the user’s profile as follows:

Procedure
1. Open a command prompt window.

2. Set the LD_LIBRARY_PATH to the destination directory where the libraries are
created, as follows



TIBCO® API Exchange Gateway User Guide

185 | Transport Communication

      LD_LIBRARY_PATH = Path_to_destination_directory/lib:$LD_LIBRARY_PATH
      export LD_LIBRARY_PATH

Setting Content-Type for Error Response
Using TIBCO API Exchange Gateway, you can set the Content-Type for the error message.

When the error response is returned for any incoming request from TIBCO API Exchange
Gateway, the content-type of the error response is set as follows:

l The Content-Type can be set based on the Accept Header of the incoming request.

l If the HTTP header of the incoming request message contains the Accept Header,
TIBCO API Exchange Gateway sets the content type of the error response to the
content type specified in the Accept Header of the request message.

l If the HTTP header of the incoming request message does not contain the Accept
Header, TIBCO API Exchange Gateway sets the content type of the error response
using the tibco.clientVar.ASG/Response/DefaultContentType property. The property is
set in the ASG_CONFIG_HOME/asg.properties file. See
tibco.clientVar.ASG/Response/DefaultContentType.

Note: If the tibco.clientVar.ASG/Response/DefaultContentType property is
not set, TIBCO API Exchange Gateway sets the Content-Type of the error
response message to application/json.

To set the Content-Type for the error response from TIBCO API Exchange Gateway for any
incoming request, follow these steps:

Procedure
1. Navigate to the ASG_CONFIG_HOME directory.

2. Edit the asg.properties file in a text editor.

3. Set the following property :
tibco.clientVar.ASG/Response/DefaultContentType

For example, you can set the property to application/xml as follows:



TIBCO® API Exchange Gateway User Guide

186 | Transport Communication

tibco.clientVar.ASG/Response/DefaultContentType=application/xml

Note:
l If the tibco.clientVar.ASG/Response/DefaultContentType

property is set to application/XML or text/XML, the error response
is returned in XML format to the requester.

l If the tibco.clientVar.ASG/Response/DefaultContentType
property is set to application/JSON, the error response is returned
in JSON format to the requester.

Endpoint Ports
Default ports for components of TIBCO API Exchange Gateway.

The following table lists default ports for various endpoints used in TIBCO API Exchange
Gateway. You can change the default value of ports by editing the listed properties

Compone
nt/
Endpoint

Defau
lt
Port
Value

Property Name

ASG_CONFIG_HOME/asg_properties file:

RV 7500 tibco.clientVar.ASG/modRV/RvDaemon

tibco.clientVar.ASG/modRV/RvService

tibco.clientVar.ASG/GTM/RV/RvDaemon

tibco.clientVar.ASG/GTM/RV/RvService

tibco.clientVar.ASG/CL/RV/RvDaemon

tibco.clientVar.ASG/CL/RV/RvService

JMS or
EMS

7222 Specified by JMSProviderURL or JNDIContextURL property.

For example,

Endpoint Ports



TIBCO® API Exchange Gateway User Guide

187 | Transport Communication

Compone
nt/
Endpoint

Defau
lt
Port
Value

Property Name

Set the port of ESB channel 1 of target service using the following
property:

l tibco.clientVar.Common/Connections/JMS/TargetEsbConnection0
/JMSProviderURL

l

tibco.clientVar.Common/Connections/JMS/TargetEsbCo
nnection0/JNDIContextURL

Set the port of ESB channel 2 of target service using the following
property:

l tibco.clientVar.Common/Connections/JMS/TargetEsbConnection1
/JMSProviderURL

l

tibco.clientVar.Common/Connections/JMS/TargetEsbCo
nnection1/JNDIContextURL

Set the port of ESB channel 3 of target service using the following
property:

l

tibco.clientVar.Common/Connections/JMS/TargetEsbCo
nnection2/JMSProviderURL

tibco.clientVar.Common/Connections/JMS/TargetEsbCo
nnection2/JNDIContextURL

Set the port of facade ESB channel using the following property:

l

tibco.clientVar.Common/Connections/JMS/FacadeEsbCo
nnection0/JMSProviderURL

Set the port of SOAP JMS transport of facade using the following
property:



TIBCO® API Exchange Gateway User Guide

188 | Transport Communication

Compone
nt/
Endpoint

Defau
lt
Port
Value

Property Name

l

tibco.clientVar.Common/Connections/JMS/SOAPConnect
ion_Facade/JMSProviderURL

Set the port of SOAP JMS transport of target service using the
following property:

l

tibco.clientVar.Common/Connections/JMS/SOAPConnect
ion_Target/JMSProviderURL

Facade
HTTP

9222 tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeH
TTPConnection/Port

Facade
HTTPS

9233 tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeH
TTPSSLConnection/Port

OAuth
HTTP

9322 tibco.clientVar.DefaultImplementation/Connections/HTTP/OAuthWe
bappsConnection/Port

OAuth
HTTPS

9333 tibco.clientVar.DefaultImplementation/Connections/HTTP/OAuthWe
bappsSSLConnection/Port

OAuth
Data
Space

6300 To set the port in the URL for OAuth data space, use the following
properties:

l tibco.clientVar.oauth.dataspace.local.discovery=tcp://localhost:63
00

l tibco.clientVar.oauth.dataspace.local.listen=tcp://localhost:6300

ASG_HOME/bin/asg-configui.tra file:

Config UI 9200 tibco.env.ASG_PORT

l ASG_HOME/bin/asg_core.cdd file:



TIBCO® API Exchange Gateway User Guide

189 | Transport Communication

Compone
nt/
Endpoint

Defau
lt
Port
Value

Property Name

Active
Spaces-
GTM

6001 l be.engine.cluster.as.discover.url

l be.engine.cluster.as.listen.url

l be.mm.cluster.as.listen.url

Active
Spaces-
Cluster

6000 l <discovery-url>tcp://IP_Address_Of_Machine:6000/</discovery-url>

l <listen-url>tcp://IP_Address_Of_Machine:6000-*/</listen-url>

The following figure illustrates the components and endpoints communication with TIBCO
API Exchange Gateway using the default ports.



TIBCO® API Exchange Gateway User Guide

190 | Transport Communication

JMS Transport Communication
Overview of JMS transport communication.

TIBCO API Exchange Gateway provides JMS communication for both facade and target
sides.

You can use the JMS transport as SOAP/JMS or JMS/XML as ESB channels.

SOAP JMS Transport
The SOAP JMS channel of the Core Engine is configured to connect to a single JMS server
on the facade side and a single JMS server on the target side. This enables the Core Engine
to act as both the SOAP JMS server and SOAP JMS client. You can use this transport at
both facade and target sides.



TIBCO® API Exchange Gateway User Guide

191 | Transport Communication

When the SOAP JMS is used for communication, the queue names for facade and target are
specified as the global variables in the ASG_CONFIG_HOME/asg.properties file.

Note: The queue names can be overwritten by editing the values of global
variables. You can edit the global variable values as follows:

l Using the Config UI. See Set Runtime Properties for details.

l Editing the ASG_CONFIG_HOME/asg.properties file using a text editor.

Gateway as SOAP JMS Server
TIBCO API Exchange Gateway acts as a SOAP JMS server at the facade side. To submit a
request using the SOAP JMS transport at the facade side, the consumer or client must use
a single incoming queue to place the request. By default, the queue name for the incoming
request is asg.soap.in.request. Similarly, you can configure another queue to store the
response from the target operations at the facade side. By default, the queue name for
storing responses at the facade side is asg.soap.in.request.reply.0.

When a client sends a request using the SOAP JMS transport, it sets the
JMSReplyDestination header field on the request message. The Core Engine uses the
destination name as specified in the JMSReplyDestination header field to send the
response. If the JMSReplyDestination header field of the request message is not set by the
client, the Core Engine uses the queue name to send the response as specified in the ASG_
CONFIG_HOME/asg.properties file.

The Core Engine populates the JMSCorrelationId header field value of the response
message with the value of JMSCorrelationId header, which was received in the request
from the client. If the JMSCorrelationId header field value of the client request message is
empty, the Core Engine populates the JMSCorrelationId header field value of the response
message with the value of JMSMessageId from the received message.



TIBCO® API Exchange Gateway User Guide

192 | Transport Communication

Note:
l You can define and configure one JMS server at the facade side to store

the requests and responses at the facade side.

l The request queue must exist on the JMS server at the facade side when
the Core Engine is started.

l The destination value as specified in the JMSReplyDestination header field
must exist on the same JMS Server from where the request was received.

l The queue for storing the response at the facade side is used only if the
JMSReplyDestination header value was not set in the request message
from the client. This is used mostly for the asynchronous incoming client
requests where it does not expect a response.

Gateway as SOAP JMS Client
TIBCO API Exchange Gateway acts as a SOAP JMS client at the target side.

Request Destination at Target Side

When the Core Engine forwards the request to the target side, it uses the queue or topic
name as configured in the Destination Name and Destination Type fields of the Services
tab configuration of the Config UI to store the southbound request. The queue name for
southbound requests can also be specified by the
tibco.clientVar.ASG/Endpoint/SOAPJMS/DefaultTargetRequestQueue global variable in the
ASG_CONFIG_HOME/asg.properties file. The queue name from this global variable is used
only if the Destination Name field on the ROUTING > Target operations tab on the Config
UI is empty.

Note: The Config UI gives an error if the value of the Destination Name field of
the ROUTING > Target operations tab on the Config UI is empty. You can set
this value as empty in the TargetOperation.cfg directly located under the ASG_
CONFIG_HOME/ASG_Config_name directory, where ASG_Config_name is the
gateway configuration project.

Response Destination at Target Side

When the SOAP JMS transport is used at the southbound (target) side, the Core Engine
uses the queue to store the southbound responses. This queue name is specified by the
tibco.clientVar.ASG/facade/SOAPJMS/replyQueue global variable in the ASG_CONFIG_



TIBCO® API Exchange Gateway User Guide

193 | Transport Communication

HOME/asg.properties file. The Core Engine sets the JMSReplyDestination as the value
specified in the reply queue name to store the responses from the target operations.

When the SOAP JMS transport is used at the target side, the default queue names for
request and response are as follows:

Request queue: asg.soap.forward

Response queue: asg.soap.forward.reply.0

Note:
l You can define and configure one JMS server at the target side to store the

requests and responses at the target side.

l The response queue should exist on the JMS server at the target side when
the Core Engine is started. If the Core Engine cannot find them on the JMS
server, it throws an exception. When the Core Engine is started and the
SOAP JMS channel is enabled, the Core Engine connects to the JMS server
and starts listening to the configured queue during the engine startup.

The Core Engine uses a single JMS queue as the reply destination for all SOAPJMS requests
sent by the engine. If multiple instances of the Gateway core engines (asg-core or asg-
caching-core) are deployed, it is required that each instance must have a unique setting for
the tibco.clientVar.ASG/Endpoint/SOAPJMS/TargetResponseQueue global variable. This
ensures that the responses are returned to the correct Core Engine.

Configuring SOAP JMS Transport
Configuration setup to use SOAP JMS transport.

This section explains the configuration setup required for TIBCO API Exchange Gateway to
use the SOAP JMS transport.

Enabling SOAP JMS Channels

By default, SOAP JMS channels are disabled. To enable the SOAP JMS channels, follow
these steps:

Procedure
1. Open the ASG_HOME/bin/asg_core.cdd file for editing in a text editor.



TIBCO® API Exchange Gateway User Guide

194 | Transport Communication

2. Search the following property:

<property-group comment="" name="Channel"><property
name="be.channel.deactivate"
value="/DefaultImplementation/Channels/SouthboundEsb0Channel,/DefaultImplemen
tation/Channels/SouthboundEsb1Channel,/DefaultImplementation/Channels/Southbo
undEsb2Channel,/DefaultImplementation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel_North,/ASG/Channels/SOAPJMSChannel_
South,/ASG/Channels/modAS_
Channel,/Common/Channel/PSMChannel,/Common/Channel/CentralLoggerJMS"/>

3. If you have not taken the backup of the be.channel.deactivate property, copy the
be.channel.deactivate property to be.channel.deactivate.backup, as follows:

<property name="be.channel.deactivate.backup"
value="/DefaultImplementation/Channels/SouthboundEsb0Channel,/DefaultImplemen
tation/Channels/SouthboundEsb1Channel,/DefaultImplementation/Channels/Southbo
undEsb2Channel,/DefaultImplementation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel_North,/ASG/Channels/SOAPJMSChannel_
South,/ASG/Channels/modAS_
Channel,/Common/Channel/PSMChannel,/Common/Channel/CentralLoggerJMS"/>

4. To enable the SOAPJMS channels, remove the /ASG/Channels/SOAPJMSChannel_
North and /ASG/Channels/SOAPJMSChannel_South from the value of the
be.channel.deactivate property. The modified value of the property is as follows:

<property name="be.channel.deactivate"
value="/DefaultImplementation/Channels/SouthboundEsb0Channel,/DefaultImplemen
tation/Channels/SouthboundEsb1Channel,/DefaultImplementation/Channels/Southbo
undEsb2Channel,/DefaultImplementation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/modAS_
Channel,/Common/Channel/PSMChannel,/Common/Channel/CentralLoggerJMS"/>

5. Save the changes to the file.

Edit asg.properties File for JMS Server

Edit the JMS server properties for SOAP JMS transport.

The ASG_CONFIG_HOME/asg.properties file defines JMS server connections, queue names,
and the user details for SOAP JMS transport.



TIBCO® API Exchange Gateway User Guide

195 | Transport Communication

JMS Server Connection Parameters

List of properties for JMS server connection at facade and target side.

JMS server connection parameters are defined by the following properties. Edit the
property as per your JMS server connection details.

JMS Server Connection Parameters at Facade Side

The following properties define the JMS sever connection parameters used at the facade
(northbound) side. Edit the property values as per your JMS server settings.

Property Name Default Value

tibco.clientVar.Common/Connections/JMS/SOAPConnectio
n_Facade/JMSProviderURL

tcp://localhost:7222

tibco.clientVar.Common/Connections/JMS/SOAPConnectio
n_Facade/JNDIContextURL

tibjmsnaming://localhost:722
2

tibco.clientVar.Common/Connections/JMS/SOAPConnectio
n_Facade/TopicConnectionFactoryName

TopicConnectionFactory

tibco.clientVar.Common/Connections/JMS/SOAPConnectio
n_Facade/QueueConnectionFactoryName

QueueConnectionFactory

tibco.clientVar.Common/Connections/JMS/SOAPConnectio
n_Facade/JNDIUsername

admin

tibco.clientVar.Common/Connections/JMS/SOAPConnectio
n_Facade/JNDIPassword

tibco.clientVar.Common/Connections/JMS/SOAPConnectio
n_Facade/JMSUsername

admin

tibco.clientVar.Common/Connections/JMS/SOAPConnectio
n_Facade/JMSPassword

JMS Server Connection Parameters(Facade Side)



TIBCO® API Exchange Gateway User Guide

196 | Transport Communication

JMS Server Connection Parameters at Target Side

The following properties define the JMS sever connection parameters used at the target
(southbound) side. Edit the properties values as per your JMS Server settings:

Property Name Default Value

tibco.clientVar.Common/Connections/JMS/SOAPConnectio
n_Target/JMSProviderURL

tcp://localhost:7222

tibco.clientVar.Common/Connections/JMS/SOAPConnectio
n_Target/JNDIContextURL

tibjmsnaming://localhost:722
2

tibco.clientVar.Common/Connections/JMS/SOAPConnectio
n_Target/TopicConnectionFactoryName

TopicConnectionFactory

tibco.clientVar.Common/Connections/JMS/SOAPConnectio
n_Target/QueueConnectionFactoryName

QueueConnectionFactory

tibco.clientVar.Common/Connections/JMS/SOAPConnectio
n_Target/JNDIUsername

admin

tibco.clientVar.Common/Connections/JMS/SOAPConnectio
n_Target/JNDIPassword

tibco.clientVar.Common/Connections/JMS/SOAPConnectio
n_Target/JMSUsername

admin

tibco.clientVar.Common/Connections/JMS/SOAPConnectio
n_Target/JMSPassword

JMS Server Connection Parameters (Target Side)

JMS Server Queue Names

Queue Names for JMS server at facade and target side.

By default, the queue names are defined by the global variables in the ASG_CONFIG_
HOME/asg.properties file. You can override the default values, if needed.



TIBCO® API Exchange Gateway User Guide

197 | Transport Communication

Facade Queue Names for SOAPJMS Transport

The default queue names are defined by the following properties. Edit the default values, if
needed.

Global Variable Default Value

tibco.clientVar.ASG/facade/SOAPJMS/requestQueue asg.soap.in.request

tibco.clientVar.ASG/facade/SOAPJMS/replyQueue asg.soap.in.request.reply.0

Facade Queue Names (SOAPJMS)

Target Queue Names for SOAPJMS Transport

The queue names are defined by the following properties. Edit the default values, if
needed:

Global Variable Default Value

tibco.clientVar.ASG/Endpoint/SOAPJMS/DefaultTargetRequestQ
ueue

asg.soap.forward

tibco.clientVar.ASG/Endpoint/SOAPJMS/TargetResponseQueue asg.soap.forward.reply.
0

Target Queue Names (SOAPJMS)

Note: Ensure that all queue names are created on the JMS server before the
Core Engine is started. See Create queues on EMS Server.

Create queues on EMS Server

By default, the TIBCO API Exchange Gateway uses the queue names for SOAP JMS
transport as defined in the ASG_CONFIG_HOME/asg.properties file. After the SOAP JMS
transport is enabled, create the queues on the EMS server.

Create the following queues on the EMS server:

asg.soap.in.request

asg.soap.in.request.reply.0



TIBCO® API Exchange Gateway User Guide

198 | Transport Communication

asg.soap.forward

asg.soap.forward.reply.0

Note:
l The queue names can be overwritten by editing the values of global

variables as defined in the ASG_CONFIG_HOME/asg.properties file. If you
change the default values as mentioned in Facade Queue Names for
SOAPJMS Transport and Target Queue Names for SOAPJMS Transport,
create the queue names defined by the global variables.

l You can edit the global variable values as follows:

o By using the Config UI. See Set Runtime Properties.

o By editing the ASG_CONFIG_HOME/asg.properties file using a text
editor.

Create Users On JMS Server

Ask the JMS server administrator to create a normal user without administrator privileges.
TIBCO API Exchange Gateway uses this user to connect to the JMS server when the JMS
transport is used at the facade and target side. The administrator should grant the
following privileges to this user:

l Send

l Receive

l Browse

This user is specified by the global variable property in the ASG_CONFIG_
HOME/asg.properties file. See JMS Server Connection Parameters.

Setting JMS Jars in ClassPath

To include the JMS jar files in the classpath of the Core Engine, do any of the following:

l Copy JMS jars

Manually copy the JMS jar files in the following location:

ASG_HOME/lib/ext/tpcl

l Edit the asg-engine.tra file to set the EMS_HOME variable.



TIBCO® API Exchange Gateway User Guide

199 | Transport Communication

Set the tibco.env.EMS_HOME property as defined in the ASG_HOME/bin/asg-
engine.tra file. Set this to the TIBCO Enterprise Message Service installation home.

For example,

tibco.env.EMS_HOME=c:/tibco/ems/5.1

Config UI Configuration

This section describes the configuration required to process the SOAP JMS requests using
the Config UI.

Configuring New Partner

Configure a new partner for SOAP JMS transport.

Define a new partner to process the requests from this partner using the SOAP JMS
transport.

Follow these steps to define a new partner:

Procedure
1. Start the gateway configuration interface. See Starting GUI.

2. Select an existing project configuration or add a new project configuration. See
Manage a Gateway Project Configuration.

3. Define a new partner. See Partners to add the partner data.

The following table displays a sample value for the required field:

Parameter Sample Value

Partner
Name

anon_JMS

Partner Sample Configuration

Note: Define the partner name anon_JMS must be defined by the
following property in the ASG_CONFIG_HOME/asg.properties file:
tibco.clientVar.ASG/anonymous/PartnerName/Authenticated=anon_

JMS



TIBCO® API Exchange Gateway User Guide

200 | Transport Communication

4. Save the changes.

Configuring Facade Operation

Configure a new facade operation for SOAP JMS transport.

Define a new operation to process the request from the client using the SOAP JMS
transport. See Facade Operations.

The following are sample values for the required fields:

Parameter Sample Value

Operation
Name

GetBooks1

SOAP Action "/QueryBooksByAuthor"

Operation
URI

Status Code
on Error

500

Facade Operation Sample Configuration

Note: The operation and SOAP Action must match the client request.

Configuring Partner Operation

Configure a partner operation for SOAP JMS transport.

Define a partner operation for a partner. See Facade Access.

The following table displays sample values for the required fields:



TIBCO® API Exchange Gateway User Guide

201 | Transport Communication

Parameter Sample Value

Partner anon_JMS

Partner
Operation

GetBooks1

Partner
Timeout

20000

Forward
Mapping

Pass-Through

Reverse
Mapping

Pass-Through

Partner Operation Sample Configuration

Configuring Target Operation

Configure a new target operation for SOAP JMS transport.

Define a new service configuration to forward the client requests to a back-end service
using the SOAP JMS transport. See Adding a New Target Operation to add a new service.

The following table displays sample values for the required fields:

Parameter Sample Value

Operation
Name

getByAuthorService

Type SOAP JMS

Timeout 30000

SOAP Action "/QueryBooksByAuthor"

Destination
Name

sample

Target Operation Sample Configuration



TIBCO® API Exchange Gateway User Guide

202 | Transport Communication

Parameter Sample Value

Destination
Type

Queue

Note: Save the configuration changes.

SSL Support for JMS Transport
Overview of SSL connection properties for JMS transport.

TIBCO API Exchange Gateway supports SSL for SOAP JMS transport and ESB channels at
the facade and target sides. The SSL configuration parameters for JMS transport are
configured using the Show SSL Properties tab on the Config UI.

Go to the Show SSL Properties tab as follows:

Procedure
1. On the home page of the Config UI, select the Gateway Engine Properties in the

drop-down list.

2. Click the Transport link.

3. Expand the required JMS transport node. For example, to set the SSL properties for
ESB channel at the facade side, expand the JMS Facade ESB Connection node.

4. Click the Show SSL Properties tab.

See Show SSLPropertiesUse the Show SSL Properties button to configure the SSL
connection parameters for JMS transport at the facade and target side. to configure
the SSL connection parameters for JMS transport.

Note: SSL is supported only when using TIBCO Enterprise Message Service.
If you specify Identity Type as certpluskeyurl, the Identity File type must be
set to use TIBCO security vendor as entrust61. Also, place enttoolkit.jar
in the ASG_HOME/lib/ext/tpcl directory.



TIBCO® API Exchange Gateway User Guide

203 | Transport Communication

Set JMS Message Delivery and Acknowledgment Mode
Overview of delivery and acknowledgment modes for the JMS messages.

This section explains the delivery and acknowledgment modes for the JMS messages as
processed by the TIBCO API Exchange Gateway. You can set the delivery and
acknowledgment modes for a message sent over the JMS channel.

Refer to the TIBCO Enterprise Message Service User’s Guide for details on the JMS message
delivery and acknowledgment modes.

JMS Message Delivery Modes
Overview of delivery modes for JMS message.

The delivery mode for a JMS message is specified by the sender and instructs the server
concerning persistent storage for the message. The JMSDeliveryMode message header field
defines the delivery mode for the message.

JMS supports PERSISTENT and NON_PERSISTENT delivery modes for both topic and queue.
TIBCO Enterprise Message Service extends these delivery modes to include a RELIABLE
delivery mode.

To set the delivery mode for the JMS message, add the following configuration property in
the ASG_CONFIG_HOME/asg.properties file:

tibco.clientVar.ASG/SharedResources/JMS/deliveryMode=delivery_mode_number

where delivery_mode_number is one of the numbers that represent a delivery mode, as
shown in JMS Message Delivery Modes table.

For example, if you want to set the delivery mode as PERSISTENT, add the property as
follows:

tibco.clientVar.ASG/SharedResources/JMS/deliveryMode=2

No. Mode Description

1 NON_PERSISTENT

JMS Message Delivery Modes



TIBCO® API Exchange Gateway User Guide

204 | Transport Communication

No. Mode Description

The message is not persisted on the disk or database by the server, so
you lose the in-transit message when the server is restarted.

2 PERSISTENT

l Ensures the delivery of messages to the destination on the server in
almost all circumstances. This is applicable when a producer sends
a PERSISTENT message when waiting for the server to reply with a
confirmation. The message is persisted on the disk by the server.

l This is the default value.

22 RELIABLE

l TIBCO Proprietary

l This value is an extension of the JMS standard delivery modes.

l Defines the reliable delivery mode and is used only in TIBCO
Enterprise Message Service.

l When this delivery mode is used, it offers increased performance of
the message producers.

Note:
l JMS providers such as IBM WebSphere MQ support the standard delivery

modes (1 interpreted as NON_PERSISTENT and 2 interpreted as
PERSISTENT), but, do not support the delivery mode 22 interpreted as
RELIABLE.

l TIBCO Enterprise Message Service supports the standard delivery modes (1
interpreted as NON_PERSISTENT, 2 interpreted as PERSISTENT) and the
extended mode 22 interpreted as RELIABLE.

l Persistent messaging is usually slower than non-persistent delivery.

JMS Message Acknowledgment Mode
Overview of acknowledgment modes for JMS message.



TIBCO® API Exchange Gateway User Guide

205 | Transport Communication

Set the acknowledgment mode for the JMS message by adding a configuration property in
the ASG_CONFIG_HOME/asg.properties file as follows:

tibco.clientVar.ASG/SharedResources/JMS/ackMode=acknowledgement_mode_number

where acknowledgement_mode_number is one of the numbers that represent an
acknowledgment mode, as shown in JMS Message Acknowledgment Mode table.

For example, if you want to set the acknowledgement mode as CLIENT_ACKNOWLEDGE,
add the property as follows:

tibco.clientVar.ASG/SharedResources/JMS/ackMode=2

No. Mode Description

1 AUTO_ACKNOWLEDGE

Specifies that the session is to automatically acknowledge consumer
receipt of messages when message processing is complete.

2 CLIENT_ACKNOWLEDGE

Specifies that the consumer is to acknowledge all messages delivered in
this session. With this acknowledgment mode, the client acknowledges a
consumed message by calling the message's acknowledge method.

3 DUPS_OK_ACKNOWLEDGE

Specifies that the session is to "lazily" acknowledge the delivery of
messages to the consumer. "Lazy" means that the consumer can delay
the acknowledgment of messages to the server until a convenient time;
meanwhile the server might redeliver messages. This mode reduces the
session overhead. However, if JMS fails, the consumer can receive
duplicate messages.

22 NO_ACKNOWLEDGE (TIBCO Proprietary)

l TIBCO Enterprise Message Service extension to JMS acknowledge

JMS Message Acknowledgment Modes



TIBCO® API Exchange Gateway User Guide

206 | Transport Communication

No. Mode Description

modes. Suppresses the acknowledgment of received messages.
After the server sends a message to the client, all information
regarding that message for that consumer is eliminated from the
server. Therefore, there is no need for the client application to
send an acknowledgment to the server about the received
message. Not sending acknowledgments reduces message traffic
and saves time for the receiver, therefore allowing better utilization
of system resources.

Note: Sessions created in NO_ACKNOWLEDGE receipt mode
cannot be used to create durable subscribers.

Note: Also, queue receivers on a queue that is routed from
another server are not permitted to specify NO_ACKNOWLEDGE
mode.

23 EXPLICIT_CLIENT_ACKNOWLEDGE (TIBCO Proprietary)

l TIBCO Enterprise Message Service extension to JMS acknowledge
modes.

l This is the default.

l EXPLICIT_CLIENT_ACKNOWLEDGE is like CLIENT_ACKNOWLEDGE
except it acknowledges only the individual message, rather than all
messages received so far on the session.

l One example of when EXPLICIT_CLIENT_ACKNOWLEDGE is used
when receiving messages and putting the information in a
database. If the database insert operation is slow, use multiple
application threads all doing simultaneous inserts. As each thread
finishes its insert, it can use EXPLICIT_CLIENT_ACKNOWLEDGE to
acknowledge only the message that it is currently working on.

24 EXPLICIT_CLIENT_DUPS_OK_ACKNOWLEDGE (TIBCO Proprietary)

l TIBCO Enterprise Message Service extension to JMS acknowledge
modes.



TIBCO® API Exchange Gateway User Guide

207 | Transport Communication

No. Mode Description

l EXPLICIT_CLIENT_DUPS_OK_ACKNOWLEDGE mode is similar to
TIBEMS-DUPS-OK-ACKNOWLEDGE except it "lazily" acknowledges
only the individual message, rather than all messages received so
far on the session.

Note:
l The standard acknowledgement modes (1-AUTO_ACKNOWLEDGE,2-

CLIENT_ACKNOWLEDGE,3-DUPS_OK_ACKNOWLEDGE) are supported by all
the JMS providers such as IBM WebSphere MQ.

l The extended acknowledgment modes (22-NO_ACKNOWLEDGE, 23-
EXPLICIT_CLIENT_ACKNOWLEDGE, 24-EXPLICIT_CLIENT_DUPS_OK_
ACKNOWLEDGE) are provided as an extension only by TIBCO Enterprise
Message Service. These modes are not supported by other JMS providers
such as IBM WebSphere MQ.

l If you are using TIBCO Enterprise Message Service for JMS transport, use
the extended acknowledgment modes (22-NO_ACKNOWLEDGE, 23-
EXPLICIT_CLIENT_ACKNOWLEDGE, 24-EXPLICIT_CLIENT_DUPS_OK_
ACKNOWLEDGE) for performance and tuning purposes.

Non-Standard JMS Headers
You can set the JMS properties using the non-standard header fields in the request
message. The HTTP header fields such as Host, Content-Type, and Content-Length of the
request message can be set as the JMS properties. TIBCO API Exchange Gateway forwards
the request message containing the JMS properties to the target operation. The header
fields can be set using a transformation (XSLT) file.

Setting up JMS Properties
Set up the JMS properties using the following steps:

Procedure
1. Create an XSLT File. Refer to Example XSLT.



TIBCO® API Exchange Gateway User Guide

208 | Transport Communication

2. Copy the XSLT file to the ASG_CONFIG_HOME/ASG_Project/xslt/internal directory.

3. Start the Config UI.

4. Create a new mapping as follows:

a. Select the gateway configuration project.

b. Click the MAPPING > Mapping tab.

c. Click the Add Property icon to create a new mapping.

d. Under New Mapping, add the parameters as follows:

l Mapping Name: Enter a name for the mapping.

l Type: select XLST from the drop-down list.

l Existing Files: select the newly created XLST file from the drop-down list.

e. Click the Save icon to save the changes.

5. Upload the XSLT file for the facade operation as follows:

a. Click the ROUTING tab.

b. Click the Facade Operations tab.

c. Select the facade operation for which the headers are to be set.

d. Click on Request Transform field. Select the newly added mapping from the
drop-down list.

6. Click the Save icon to save the changes.

Example XSLT
Refer to the following XSLT:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet

version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:map="http://www.tibco.com/asg/mapping"
xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
xmlns:soap11="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:form="http://www.tibco.com/asg/functions/form"
xmlns:c="http://www.tibco.com/schemas/asg/context"



TIBCO® API Exchange Gateway User Guide

209 | Transport Communication

xmlns:h="http://www.tibco.com/asg/protocols/http"
xmlns:k="http://www.tibco.com/asg/protocols/jms"
xmlns:f="http://www.tibco.com/asg/content-types/form"
xmlns:codecs="http://www.tibco.com/asg/functions/codecs"
exclude-result-prefixes="xsl soap11 c h form codecs"

>
<xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"
omit-xml-declaration="no"/>
<xsl:variable name="cnRequestHref">

<xsl:value-of select="/transformation/cnRequest/@href"/>
</xsl:variable>
<xsl:variable name="context">
<c:context>
<xsl:for-each select="/transformation/context">
<xsl:copy-of select="document(@href)/c:context/*"/>

</xsl:for-each>
</c:context>

</xsl:variable>
<xsl:variable name="recdRequest">

<xsl:copy-of select="$context/c:context/c:entry
[@key='asg:jmsRequest']/k:request"/>
</xsl:variable>
<xsl:variable name="reqBody">
<xsl:choose xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<xsl:when test="count(document
($cnRequestHref)/soap:Envelope/soap:Body)=1">

<xsl:copy-of select="document($cnRequestHref)"/>
</xsl:when>
<xsl:otherwise>

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Header>
</soapenv:Header>
<soapenv:Body>
<xsl:copy-of select="document($cnRequestHref)"/>

</soapenv:Body>
</soapenv:Envelope>

</xsl:otherwise>
</xsl:choose>

</xsl:variable>
<xsl:template match="/">
<map:mapping-result>
<map:failOnError>false</map:failOnError>
<map:context>
<c:context>



TIBCO® API Exchange Gateway User Guide

210 | Transport Communication

<c:entry key="asg:jmsRequest">
<k:override-header name="httpheadertest">identity</k:override-

header> </c:entry> </c:context> </map:context> <map:payload-xml>
<xsl:copy-of select="$reqBody"/> </map:payload-xml> </map:mapping-
result></xsl:template></xsl:stylesheet>

ESB Channel
Overview of ESB channel.

TIBCO API Exchange Gateway supports ESB transport to communicate with JMS servers
both at facade and target side. ESB transport allows you to use JMS transport with XML
messages and does not contain SOAP messages.

By default, you can define one ESB channel at facade side to process northbound requests.
Similarly you can define three ESB channels at target side to process southbound requests.
Each ESB channel is configured using the global variables specified in the ASG_CONFIG_
HOME/asg.properties file.

Note: You can add more ESB channels, if required using the custom extension
mechanism.

Enabling ESB Channels
By default, JMS channels are disabled. If they are enabled, the Core Engine tries to connect
to JMS server on the startup. If you do not use the JMS transport, keep them disabled so
that the Core Engine does not attempt to connect to EMS server. If you use the JMS
transport, enable the JMS channels so that the Core Engine can connect to the EMS server
when started.

To enable the JMS channels, follow these steps:

Procedure
1. Open the ASG_HOME/bin/asg_core.cdd file for editing in a text editor.

2. Search the be.channel.deactivate property:



TIBCO® API Exchange Gateway User Guide

211 | Transport Communication

<property-group comment="" name="Channel"><property
name="be.channel.deactivate"
value="/DefaultImplementation/Channels/SouthboundEsb0Channel,/DefaultImplemen
tation/Channels/SouthboundEsb1Channel,/DefaultImplementation/Channels/Southbo
undEsb2Channel,/DefaultImplementation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel_North,/ASG/Channels/SOAPJMSChannel_
South,/ASG/Channels/modAS_
Channel,/Common/Channel/PSMChannel,/Common/Channel/CentralLoggerJMS"/>

3. If you have not taken the backup of the be.channel.deactivate property, copy the
be.channel.deactivate property to be.channel.deactivate.backup, as follows:

<property name="be.channel.deactivate.backup"
value="/DefaultImplementation/Channels/SouthboundEsb0Channel,/DefaultImplemen
tation/Channels/SouthboundEsb1Channel,/DefaultImplementation/Channels/Southbo
undEsb2Channel,/DefaultImplementation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel_North,/ASG/Channels/SOAPJMSChannel_
South,/ASG/Channels/modAS_
Channel,/Common/Channel/PSMChannel,/Common/Channel/CentralLoggerJMS"/>

4. Enable the ESB channels as follows:

a. To enable the northbound ESB channel, remove
/DefaultImplementation/Channels/North_ESBChannel from the value of the
be.channel.deactivate property. The modified value of the property is as
follows:

<property name="be.channel.deactivate"
value="/DefaultImplementation/Channels/SouthboundEsb0Channel,/
DefaultImplementation/Channels/SouthboundEsb1Channel,/DefaultI
mplementation/Channels/SouthboundEsb2Channel,/DefaultImplement
ation/Channels/North_HTTPChannel,/ASG/Channels/SOAPJMSChannel_
North,/ASG/Channels/SOAPJMSChannel_South,/ASG/Channels/modAS_
Channel,/Common/Channel/PSMChannel,/Common/Channel/CentralLogg
erJMS"/>

b. To enable the southbound ESB channels, remove the
/DefaultImplementation/Channels/SouthboundEsb0Channel,/DefaultImplement
ation/Channels/SouthboundEsb1Channel,
,/DefaultImplementation/Channels/SouthboundEsb2Channel from the value of
the be.channel.deactivate property. The modified value of the property is as



TIBCO® API Exchange Gateway User Guide

212 | Transport Communication

follows:

<property name="be.channel.deactivate"
value="/DefaultImplementation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel_
North,/ASG/Channels/SOAPJMSChannel_South,/ASG/Channels/modAS_
Channel,/Common/Channel/PSMChannel,/Common/Channel/CentralLogg
erJMS"/>

5. Save the changes to the file.

Edit asg.properties File for ESB Channel Properties
The ASG_CONFIG_HOME/asg.properties file defines JMS server connections, queue names
and the user details for ESB transport.

JMS Server Connection Parameters For ESB Channel
List of properties for ESB channel at facade and target side.

JMS server connection parameters are defined by the following properties. Edit the
property per your JMS server connection details.

JMS Server Connection Parameters at Facade Side

The following properties define the JMS server connection parameters for ESB channel
used at the facade (northbound) side. Edit the properties values per your JMS server
settings.

Property Name Default Value

tibco.clientVar.Common/Connections/JMS/FacadeEsbConnection0/JM
SProviderURL

tcp://localhost:7222

tibco.clientVar.Common/Connections/JMS/FacadeEsbConnection0/JN
DIContextURL

tibjmsnaming://localh
ost:7222

tibco.clientVar.Common/Connections/JMS/FacadeEsbConnection0/To TopicConnectionFact

JMS Server Connection Parameters (facade)



TIBCO® API Exchange Gateway User Guide

213 | Transport Communication

Property Name Default Value

picConnectionFactoryName ory

tibco.clientVar.Common/Connections/JMS/FacadeEsbConnection0/Qu
eueConnectionFactoryName

QueueConnectionFact
ory

tibco.clientVar.Common/Connections/JMS/FacadeEsbConnection0/JN
DIUsername

admin

tibco.clientVar.Common/Connections/JMS/FacadeEsbConnection0/JN
DIPassword

tibco.clientVar.Common/Connections/JMS/FacadeEsbConnection0/JM
SUsername

admin

tibco.clientVar.Common/Connections/JMS/FacadeEsbConnection0/JM
SPassword

JMS Server Connection Parameters At Target Side

The following properties define the JMS server connection parameters for ESB channels
used at the target (southbound) side. By default, you can use three ESB channels at
southbound side. Edit the properties values per your JMS server settings.

Property Name Default Value

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection0/JM
SProviderURL

tcp://localhost:7222

tibco.clientVar.Common/Connections/JMS/SouthboundEsbConnectio
n0/JNDIContextURL

tibjmsnaming://localh
ost:7222

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection0/To
picConnectionFactoryName

TopicConnectionFacto
ry

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection0/Qu
eueConnectionFactoryName

QueueConnectionFact
ory

JMS Server Connection Parameters (Target)



TIBCO® API Exchange Gateway User Guide

214 | Transport Communication

Property Name Default Value

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection0/JN
DIUsername

admin

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection0/JN
DIPassword

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection0/JM
SUsername

admin

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection0/JM
SPassword

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection1/JM
SProviderURL

tcp://localhost:7222

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection1/JN
DIContextURL

tibjmsnaming://localh
ost:7222

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection1/To
picConnectionFactoryName

TopicConnectionFacto
ry

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection1/Qu
eueConnectionFactoryName

QueueConnectionFact
ory

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection1/JN
DIUsername

admin

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection1/JN
DIPassword

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection1/JM
SUsername

admin

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection1/JM
SPassword

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection2/JM tcp://localhost:7222



TIBCO® API Exchange Gateway User Guide

215 | Transport Communication

Property Name Default Value

SProviderURL

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection2/JN
DIContextURL

tibjmsnaming://localh
ost:7222

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection2/To
picConnectionFactoryName

TopicConnectionFacto
ry

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection2/Qu
eueConnectionFactoryName

QueueConnectionFact
ory

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection2/JN
DIUsername

admin

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection2/JN
DIPassword

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection2/JM
SUsername

admin

tibco.clientVar.Common/Connections/JMS/TargetEsbConnection2/JM
SPassword

Facade Queue Names For ESB Transport

The queue names for the ESB channel at facade side are defined by the following
properties. Edit the default values, if needed.

Global Variable Default Value

tibco.clientVar.ASG/facade/ESB0/requestQueue asg.in.request

tibco.clientVar.ASG/facade/ESB0/replyQueue asg.in.request.reply.0

Facade Queue Names (ESB)



TIBCO® API Exchange Gateway User Guide

216 | Transport Communication

Target Queue Names For ESB Transport

The queue names for the ESB channel at target side are defined by the following
properties. Edit the default values, if needed:

Global Variable Default Value

tibco.clientVar.ASG/Endpoint/ESB0/requestQueue asg.out.request

tibco.clientVar.ASG/Endpoint/ESB0/replyQueue asg.out.request.reply.0.0

tibco.clientVar.ASG/Endpoint/ESB1/requestQueue asg.out.request

tibco.clientVar.ASG/Endpoint/ESB1/replyQueue asg.out.request.reply.0.1

tibco.clientVar.ASG/Endpoint/ESB2/requestQueue asg.out.request

tibco.clientVar.ASG/Endpoint/ESB2/replyQueue asg.out.request.reply.0.2

Target Queue Names (ESB)

Create queues on EMS Server
By default, TIBCO API Exchange Gateway uses the queue names for ESB transport as
defined in the ASG_CONFIG_HOME/asg.properties file.

Create the following queues on the EMS server:

asg.out.request

asg.out.request.reply.0.0

asg.out.request.reply.0.1

asg.out.request.reply.0.2



TIBCO® API Exchange Gateway User Guide

217 | Transport Communication

Note:
l The queue names can be overwritten by editing the values of global

variables as defined in the ASG_CONFIG_HOME/asg.properties file. If you
changed the default values as mentioned in Facade Queue Names For ESB
Transport and Target Queue Names For ESB Transport, you should create
the queue names defined by the global variables.

l You can edit the global variables values as follows:

o Using the Config UI. See Set Runtime Properties for details.

o Editing the ASG_CONFIG_HOME/asg.properties file using a text editor.

Create Users On EMS Server
Ask the EMS server administrator to create a normal user without administrator privileges.
TIBCO API Exchange Gateway uses this user to connect to EMS server when ESB transport
channel is used at facade and target side. The administrator should grant the following
privileges to this user:

l Send

l Receive

l Browse

This user is specified by the global variable properties in the ASG_CONFIG_
HOME/asg.properties file. See JMS Server Connection Parameters For ESB Channel.



TIBCO® API Exchange Gateway User Guide

218 | Config UI

Config UI
TIBCO API Exchange Gateway provides the graphical user interface (GUI). Using the Config
UI, you can add a new gateway configuration for partners, facade operations, target
operations, routing, throttles, mapping, schemas, and other configuration data required for
various functions of TIBCO API Exchange Gateway.

Using the Config UI, you can manage the entire configuration for a gateway project. A
gateway project configuration contains all the information related to the partners, partner
groups, facade operations, target operations, mappings, schemas, throttles, and routing
which is required by the Core Engine at run time.

The details of the configuration data are saved in the files which are located in the
following configuration folder:

ASG_CONFIG_HOME

For example, the configuration data for the default configuration is stored in the following
location:

C:\tibcoASGConfig\tibco\cfgmgmt\asg\default

A project configuration folder contains the following types of files:

l configuration (.cfg)

l properties

l XSLT

l XSD

l certificates and keys

Note: When the TIBCO API Exchange Gateway configuration server is started on
a machine for the first time after the product installation, the ASGConfig.war
archive is extracted under the ASG_HOME/webapp directory. You can notice few
errors if you kill the configuration server before the complete extraction of the
archive file.

The home page of the Config UI has the following main sections:



TIBCO® API Exchange Gateway User Guide

219 | Config UI

l Global Properties

Select Gateway Engine Properties from the drop-down list to set the run time
properties for the Core Engine as follows:

See Set Runtime Properties.

l Projects

You can manage a project configuration. See Manage a Gateway Project
Configuration.

l Advanced Settings

You can add the settings for an environment.

Starting GUI
How to start the Config UI.

This section explains the steps to start the configuration server in a test environment.

Procedure
1. Open a window.

2. Navigate to the ASG_HOME/bin directory.

3. Start the Config UI as follows:

On the Windows platform, type the following command on a command prompt:

   asg-configui.exe

On the UNIX platform, type the following command on a terminal window:

   ./asg-configui

4. Open a browser window and enter the following URL:

   http://localhost:9200/ConfigUI



TIBCO® API Exchange Gateway User Guide

220 | Config UI

Note: To access the Config UI using the HTTPs transport, see Accessing
Config UI through HTTPS Transport.

5. Enter the login information as follows:

 username: admin

password: admin
6. Ensure that the user logs on the Config UI successfully.

7. Ensure that the following default project configurations are displayed under Projects
panel:

l default

l GetLocation

l BookQuery

l BookQueryWSS

l Caching

l BookQueryBE

l BookQueryBEWSS

l APIExchange

l BookQuerySecurity

l ProductQuery

Accessing Config UI through HTTPS Transport

Procedure
1. Stop the GUI server (if running).

2. Open a command prompt window.

3. Navigate to the ASG_HOME/bin directory.

4. Make a copy of the asg-configui.tra file.

5. Using a text editor, edit the asg-configui.tra file. To enable SSL, set the following
properties:



TIBCO® API Exchange Gateway User Guide

221 | Config UI

java.property.com.tibco.asg.designtime.configui.launcher.secure=true
java.property.com.tibco.asg.designtime.configui.launcher.SSLEnabled=true

Note:
l To enable SSL, both properties should be set to true.

l To disable SSL, both properties should be set to false.

l TIBCO API Exchange Gateway supports one-way and two-way
(mutual) SSL to access Config UI using HTTPs transport.

6. Set the keystore configuration properties as explained in the SSL Properties for
HTTPs Transport table.

7. Save changes to the file.

SSL Properties for Config UI
List of SSL properties for Config UI.

The following table explains the SSL properties to specify the keystore configuration for
using the HTTPs transport:

Property Description

java.property.com.tibco.asg.designtime.
configui.launcher.secure

To enable SSL connection, set this property
to true.

java.property.com.tibco.asg.designtime.
configui.launcher.SSLEnabled

Enables the SSL communication. Set this
property to true to use HTTPs transport.

The default value is false.

If this property is set to true, it requires the
scheme and secure properties to be set
correctly for HTTPs transport.

java.property.com.tibco.asg.designtime.
configui.launcher.scheme

Set this property to the name of the protocol
for SSL.

SSL Properties for HTTPs Transport



TIBCO® API Exchange Gateway User Guide

222 | Config UI

Property Description

Set this to https.

java.property.com.tibco.asg.designtime.
configui.launcher.keyAlias

The alias used to specify the server certificate
in the keystore. If not specified the first key
read in the keystore is used.

java.property.com.tibco.asg.designtime.
configui.launcher.keystoreFile

The path to the keystore file. The keystore file
contains the server certificates. The JKS
format keystore type is supported.

For example,
C:/tibco/keystores/config.jks

By default, the path name is the .keystore
file. The file is stored in the home directory of
the user who is running Tomcat server.

java.property.com.tibco.asg.designtime.
configui.launcher.keystoreType

Specifies the keystore type of the private
credentials. Supported formats are
JKS,PKCS12. For example, JKS.

java.property.com.tibco.asg.designtime.
configui.launcher.keystorePass

The password used to access the server key
from the specified keystore file.

java.property.com.tibco.asg.designtime.
configui.launcher.sslProtocol

The version of the SSL protocol to use. If not
specified, the default value is TLS.

The following SSL protocols are supported:

SSL,SSLv3, TLSv1.2, TLSv1.3



TIBCO® API Exchange Gateway User Guide

223 | Config UI

Property Description

Note: Since Java 11 has stopped TLSv1
and TLSv1.1 support, hence these are not
supported by default. If you want to
enable it then look for
jdk.tls.disabledAlgorithms property
available in the <TIBCO_
HOME>/tibcojre64/11/conf/security/ja
va.security file and remove legacy
TLSv1, TLSv1.1 version and then restart
application. The client can use older TLS
version.

java.property.com.tibco.asg.designtime.
configui.launcher.server

Overrides the server header information for
the http response.

If this property is set, the value for this
attribute overrides the default header of
Tomcat or any server set by a web
application. For example, Apache.

If this property is not set, any value specified
by the application is used. If the application
does not specify a value, Apache-Coyote/1.1
is used by default.

Mutual SSL Properties

Set the following properties only for two-way (mutual) SSL authentication.

java.property.com.tibco.asg.designtime.
configui.launcher.clientAuth

Specifies a boolean flag to enable or disable
the mutual(two-way) SSL authentication for
HTTPS transport between the client and the
Config UI. When this field is set to true, set
the
java.property.com.tibco.asg.designtime.
configui.launcher.truststoreFile
property to specify a file containing the list of
trusted certificate authorities.



TIBCO® API Exchange Gateway User Guide

224 | Config UI

Property Description

java.property.com.tibco.asg.designtime.
configui.launcher.truststoreFile

Specifies a file containing one or more
certificates from trusted certificate
authorities, which is required for mutual SSL
authentication. You must set this property
when the
java.property.com.tibco.asg.designtime.
configui.launcher.clientAuth property is
set to true.

java.property.com.tibco.asg.designtime.
configui.launcher.truststorePass

Specifies the password to access the
certificate file defined by the
java.property.com.tibco.asg.designtime.
configui.launcher.truststoreFile
property.

java.property.com.tibco.asg.designtime.
configui.launcher.truststoreType

Specifies the type of trusted store file.
Supported formats are JKS,PKCS12.

Changing Login Host and Port Information
You can change the login information for Config UI.

The values for username, password, host, and port are configured in the ASG_
HOME/bin/asg-configui.tra file. By default, the values are shown as follows:

   tibco.env.ASG_HOST=localhost

   tibco.env.ASG_PORT=9200

   tibco.env.ASG_ADMIN_USERNAME=asgadmin

   tibco.env.ASG_ADMIN_PASSWORD=asgadmin

To change the values for username, password, host, and port, follow these steps:

Procedure
1. Open a terminal window.

2. Navigate to the ASG_HOME/bin directory.



TIBCO® API Exchange Gateway User Guide

225 | Config UI

3. Make a copy of the asg-configui.tra file.

4. Edit the asg-configui.tra file using a text editor to set the following properties, as
required:

   tibco.env.ASG_HOST=hostname

   tibco.env.ASG_PORT=port

   tibco.env.ASG_ADMIN_USERNAME= username

   tibco.env.ASG_ADMIN_PASSWORD= password

5. Stop the GUI server (if running).

6. Restart the GUI server using the asg-configui executable.

For example,

On the Windows, run the asg-configui.exe.

On the UNIX, type the following command:

   ./asg-configui

Note: For production systems, it is good practice to deploy the
ASGConfig.war file on a secure application server running in the
production environment. The war file is located under the ASG_
HOME/webapp directory.

Authentication Process for Config UI
Introduction to authentication process for Config UI.

Using the login screen of the Config UI, you can enter username and password for
authentication. TIBCO API Exchange Gateway supports the authentication of users on the
LDAP server or in a file. This functionality enables you to do the following:

l Create multiple users to login to the Config UI.

l Define the timeout value for an active session of the user.

l The option to logout after the user logs to the Config UI.

By default, only one user is allowed to login to the Config UI. This user is specified with the
tibco.env.ASG_ADMIN_USERNAME parameter in the ASG_HOME/bin/asg-configui.tra file.



TIBCO® API Exchange Gateway User Guide

226 | Config UI

Authentication Properties
List of Authentication properties used by Config UI.

The following table explains the properties to enable the LDAP or FILE-based user
authentication for the Config UI.

Property Description

asg-configui.tra File Properties

java.property.com.tibco.asg.designtime.c
onfigui.ASGAuthProcess

Specifies the type of the authentication
process required to login to the Config UI.

The possible values are: LDAP or FILE.

l The default value of this property is
blank. If you do not specify any value
and keep it blank, the login user is
authenticated with the values
specified in the tibco.env.ASG_
ADMIN_USERNAME and
tibco.env.ASG_ADMIN_PASSWORD
properties of asg-configui.tra file. See
Default Authentication for details.

l The value of this property is required
if you want to authenticate the user
on a LDAP server or in a FILE.

java.property.com.tibco.asg.designtime.c
onfigui.ASGPropFile

Specifies the path to the property file for
the authentication process.

l Value of this property is required if
the
java.property.com.tibco.asg.designtim
e.configui.ASGAuthProcess property is
set to FILE or LDAP.

l If the authentication process is done

Authentication Properties



TIBCO® API Exchange Gateway User Guide

227 | Config UI

Property Description

on the LDAP server, then this
parameter specifies the path to a
property file containing the complete
details to connect to LDAP server.

Example: ASG_
HOME/bin/ldapSearch.properties

where ASG_HOME is set to the
directory where TIBCO API Exchange
Gateway is installed.

l If the authentication process type is
FILE, then this parameter specifies the
path to a text file containing the
credentials of the users.

Example:

ASG_HOME/mm/config/users.pwd

where ASG_HOME is set to the
directory where the TIBCO API
Exchange Gateway is installed.

See Authentication Property Files for details.

java.property.com.tibco.asg.designtime.c
onfigui.ASGSessionTimeOut

Specifies the timeout value (in minutes) for
a session.

Set as Integer value. The session does not
time out if the value is set to a negative
value.

Required.

web.xml file properties

asgAuthProcess Same as the



TIBCO® API Exchange Gateway User Guide

228 | Config UI

Property Description

java.property.com.tibco.asg.designtime.conf
igui.ASGAuthProcess property defined in
asg-configui.tra file. See
java.property.com.tibco.asg.designtime.conf
igui.ASGAuthProcess.

asgAuthPropFile Same as
java.property.com.tibco.asg.designtime.conf
igui.ASGPropFile property. See
java.property.com.tibco.asg.designtime.conf
igui.ASGPropFile.

session-timeout Same as
java.property.com.tibco.asg.designtime.conf
igui.ASGSessionTimeOut. See
java.property.com.tibco.asg.designtime.conf
igui.ASGSessionTimeOut.

Configuration Setup for Authentication Process
This section explains the configuration setup required for the authentication process when
the user logins to the Config UI.

You can define the authentication process for a user on the LDAP server or in a file. The
authentication process and session timeout values are defined in the following files:

l ASG_HOME/asg-configui.tra

l ASG_HOME/webapp/ASGConfig/WEB-INF/web.xml

LDAP Server Authentication
Enable LDAP server authentication for Config UI.

This section explains the configuration steps to authenticate a user on the LDAP server.
LDAP Server Authentication can be defined either in the asg-configui file or web.xml file.

l To configure the asg-configui.tra file, see Configuring asg-configui.tra File.



TIBCO® API Exchange Gateway User Guide

229 | Config UI

l To configure the web.xml file, see Configuring web.xml File.

Configuring asg-configui.tra File
To configure the authentication process type, the authentication property file and session
timeout in the asg-configui.tra file, follow these steps:

Procedure
1. Navigate to the ASG_HOME directory.

2. Open the asg-configui.tra file for editing.

3. Set the following properties. See Authentication Properties table for the description
of properties.

   java.property.com.tibco.asg.designtime.configui.ASGAuthProcess=L
DAP
   java.property.com.tibco.asg.designtime.configui.ASGPropFile=path of
the property file for LDAP server details

   java.property.com.tibco.asg.designtime.configui.ASGSessionTimeOu
t=Timeout value (An integer in minutes)

4. Save the changes to the file.

Configuring web.xml File
To configure the authentication process type, the authentication property file and session
timeout in the web.xml file, follow these steps:

Procedure
1. Navigate to the ASG_HOME/webapp/ASGConfig/WEB-INF directory.

2. Open the web.xml file for editing.

3. Set the following properties. See Authentication Properties table for the description
of properties.

a. Set the authentication process type to LDAP as follows:



TIBCO® API Exchange Gateway User Guide

230 | Config UI

      <init-param>
      <param-name>asgAuthProcess</param-name>
      <param-value>LDAP</param-value>
      </init-param>

b. Set the property file for the LDAP authentication as follows:

      <init-param>
      <param-name>asgAuthPropFile</param-name>
      <param-value>Path to the property file for LDAP Server property file
     </param-value>
      </init-param>

c. Set the timeout value for the login session of the user on the Config UI, as
follows:

      <session-config>
      <session-timeout>An integer value in minutes</session-timeout>
      </session-config>

4. Save the changes to the file.

File-Based Authentication
Enable File-based server authentication for Config UI.

This method authenticates a user against the user data stored in a file-based repository. Do
not use this method for production purposes.

This section explains the configuration steps to authenticate a user with the credentials
stored in a file on the file system. File-based authentication can be defined either in the
asg-configui file or web.xml file.

l To configure asg-configui.tra file, see Configuring asg-configui.tra File (FILE).

l To configure the web.xml file, see Configuring web.xml File (FILE)

Configuring asg-configui.tra File (FILE)
To configure the authentication process type as FILE, the authentication property file and
session timeout in the asg-configui.tra file, follow these steps:



TIBCO® API Exchange Gateway User Guide

231 | Config UI

Procedure
1. Navigate to the ASG_HOME directory.

2. Open the asg-configui.tra file for editing.

3. Set the following properties. See Authentication Properties table for the description
of properties.

   java.property.com.tibco.asg.designtime.configui.ASGAuthProcess=F
ILE
   java.property.com.tibco.asg.designtime.configui.ASGPropFile=Full
path of the user credentials file

   java.property.com.tibco.asg.designtime.configui.ASGSessionTimeOu
t=Timeout value (An integer in minutes)

4. Save the changes to the file.

Configuring web.xml File (FILE)
To configure the authentication process type as FILE, the authentication property file and
session timeout in the web.xml file, follow these steps:

Procedure
1. Navigate to the ASG_HOME/webapp/ASGConfig/WEB-INF directory.

2. Open the web.xml file for editing.

3. Set the following properties. See Authentication Properties table for the description
of properties.

a. Set the authentication process type to FILE as follows:

      <init-param>
      <param-name>asgAuthProcess</param-name>
      <param-value>FILE</param-value>
      </init-param>

b. Set the property file for the FILE-based authentication as follows:

      <init-param>
      <param-name>asgAuthPropFile</param-name>



TIBCO® API Exchange Gateway User Guide

232 | Config UI

      <param-value>Path to the user credentials file</param-value>
      </init-param>

c. Set the timeout value for the login session of the user on the Config UI as
follows:

      <session-config>
      <session-timeout>An integer value in minutes</session-timeout>
      </session-config>

4. Save the changes to the file.

Note:
l If the configuration is of the authentication type, the authentication

property file and session timeout parameters are done in both the
asg-configui.tra and web.xml files. The asg-configui.tra file has the
precedence over the web.xml file.

l If you want to use the web.xml for configuring the session timeout,
remove the ASGSessionTimeOut property from the asg-configui.tra
file.

Authentication Property Files
List of property files used by Config UI for authentication.

Based on the authentication type, define the property files. The property files are used in
the configuration of the authentication process.

If you are using the LDAP server authentication, you should define an LDAP search property
file. See LDAP Server Property File for LDAP Server Authentication.

If you are using the FILE-based authentication, define a user credentials file. The user
credentials file is a text file containing the usernames and passwords required to login to
the Config UI. See User Credentials File for File-Based Authentication.

LDAP Server Property File for LDAP Server Authentication

The LDAP server property file contains the LDAP search properties to connect to the LDAP
server and authenticate the user. Define a property file for the LDAP server authentication.



TIBCO® API Exchange Gateway User Guide

233 | Config UI

Sample File

The sample file is located in the ASG_HOME/bin/ldapSearch.properties.

LDAP Server Properties Sample File: shows the example properties to be defined in the
property file for the LDAP server authentication.

LDAP Server Properties Sample File:

User Credentials File for File-Based Authentication

In the file-based authentication, the credentials of the user are stored in a file. By default,
the file is users.pwd file, which contains a list of user names, passwords, and roles. This file
is referred as the password file. The user names, passwords, and roles are separated by
colon (:) character and each pair must be present on a separate line. The user names are
used to login the Config UI for file- based authentication.

The Config UI does not use the role for authentication process. It is mandatory to define
the role in the users.pwd file. Use GUI_USER as the role in the file when defining the user
to log in the Config UI for file- based authentication.

Note: The password in the users.pwd file must be generated using MD5
(Message-Digest 5) hashing algorithm. For example, refer to
http://www.md5hasher.net to generate the password using MD5 algorithm.

Sample File

The sample file is found as follows:

ASG_HOME/mm/config/users.pwd

Sample Property File for File Authentication shows the example file for file-based
authentication.



TIBCO® API Exchange Gateway User Guide

234 | Config UI

Sample Property File for File Authentication

Default Authentication
By default, TIBCO API Exchange Gateway does not authenticate the user from a file or an
LDAP server to login to the Config UI.

When the authentication process property (asgAuthProcess) is blank, the Config UI
authenticates the credentials of the user with the values specified by the following
parameters in the ASG_HOME/bin/asg-configui.tra file.

tibco.env.ASG_ADMIN_USERNAME
tibco.env.ASG_ADMIN_PASSWORD

Perform the following, if you do not want the user authentication on an LDAP server or in a
file.

Procedure
1. Open the ASG_HOME/bin/asg-configui.tra file for editing.

2. Set the following property to blank as follows:
java.property.com.tibco.asg.designtime.configui.ASGAuthProcess=

(You can also specify the asgAuthProcess parameter as blank in the web.xml file.)

3. Set the following parameters to specify the username and password:

   tibco.env.ASG_ADMIN_USERNAME

(Example, admin)

   tibco.env.ASG_ADMIN_PASSWORD

(Example, admin or an encrypted value)

4. Save the changes to the file.



TIBCO® API Exchange Gateway User Guide

235 | Config UI

Note:
l The password value for the tibco.env.ASG_ADMIN_PASSWORD

property can be in plain text or in TIBCO obfuscated form. The
password can be obfuscated using the asg-password-obfuscator
utility in the ASG_HOME/bin directory.

Note: If the obfuscated password contains the special
characters, you must escape the special characters of the
obfuscated password.

For example,

tibco.env.ASG_ADMIN_
PASSWORD=\#\!3nmDCAG\/oN0vfFUw\+HODauShgrSDXpF1

See asg-password-obfuscator Utility.

l When the authentication process property (asgAuthProcess) is blank,
the Config UI allows only one user for the login as specified by the
tibco.env.ASG_ADMIN_USERNAME parameter. If you want multiple
users to login to the Config UI, you must use the LDAP or FILE based
authentication.

Enable Debug Logging for Config UI
This section explains the steps to enable the debug level logging for the Config UI.

Creating Properties File
You must create a properties file for debug level logging.

Define a log4j.properties properties file as follows:

Procedure
1. Navigate to the ASG_HOME\be\5.1\lib\ext\tpcl\apache directory.

2. Create a file with the name log4j.properties.



TIBCO® API Exchange Gateway User Guide

236 | Config UI

Logging to stdout
Properties to send logging messages to the stdout.

To send the logging messages to the stdout, define the following properties in the
log4j.properties file. To set the properties, complete the following steps:

Procedure
1. Open the log4j.properties file in a text editor.

2. Add the following properties:

log4j.rootLogger = DEBUG, Console, file
log4j.appender.Console=org.apache.log4j.ConsoleAppender
log4j.appender.Console.layout=org.apache.log4j.PatternLayout
log4j.appender.Console.layout.conversionPattern=%m%n

3. Save the changes to the file.

Logging to a File
Properties to send logging messages to a file.

To redirect the logging messages to a file instead of sending them to stdout, complete the
following steps:

Procedure
1. Edit the log4j.properties file in a text editor.

2. Add the following properties:

log4j.rootLogger = DEBUG, Console, file
log4j.appender.file=org.apache.log4j.RollingFileAppender
log4j.appender.file.File=test.log
log4j.appender.file.MaxFileSize=10MB
log4j.appender.file.MaxBackupIndex=2
log4j.appender.file.layout=org.apache.log4j.PatternLayout
log4j.appender.file.layout.ConversionPattern=%m%n

3. Save the changes to the file.



TIBCO® API Exchange Gateway User Guide

237 | Config UI

Using Properties File in the TRA File
Define properties file in the TRA file.

Use the log4j.properties in the TRA file of the Config UI after you have added the
properties. To add the log4j.properties file in the TRA file, follow these steps:

Procedure
1. Navigate to the ASG_HOME/bin directory.

2. Open the asg-configui.tra file for editing.

3. Edit the following property to append the log4j.properties as follows:

   java.extended.properties=-server -Xmx256m -Dlog4j.debug    -
Dlog4j.configuration=log4j.properties

4. Save the changes to the file.

Note: You must restart the gateway configuration server to see the
messages. See Starting GUI.

Configuring Directory for Log Files
Property to set log files directory.

Procedure
1. Navigate to the ASG_HOME/bin directory.

2. Open the asg-configui.tra file for editing.

3. Edit the following property as follows:
java.property.com.tibco.asg.designtime.configui.logDir=path_to_log_
directory

4. Save the changes to the file.

Manage a Gateway Project Configuration
Config UI is used to manage a project configuration of the gateway.



TIBCO® API Exchange Gateway User Guide

238 | Config UI

Using the Config UI, you can create, modify, delete, and duplicate a gateway project
configuration. A gateway project configuration is a folder that contains all the information
related to the partner data, facade operations, target operations, facade access, mappings,
routing, and so on.

All the configuration files related to the partner data, facade access, facade operations,
target operations, mappings, throttles, and so on, for a gateway project configuration are
saved in a folder underASG_CONFIG_HOME. For example, when you create a new gateway
project configuration with the name ASG_Get_Start, the configuration server creates an
ASG_Get_Start folder under ASG_CONFIG_HOME. The ASG_Get_Start folder is created with
the default configuration data files for partner data, partner operations, operations,
services, mappings, routing, and so on.

To manage any project configuration, move the mouse pointer over the configuration and
then select any of the options listed in the table below.

Action Icon Description

Add a new
project
configuration

You can add a new configuration for the gateway project.

Duplicate an
existing
configuration

You can copy an existing project configuration to a new project
configuration.

Rename a
project
configuration

You can rename the project.

Validate an
existing
configuration

You can validate an existing configuration.

Publish a
project
configuration

You can publish the configuration changes to the Core Engine
at run time.

Delete an You can delete an existing configuration.

Manage Project Configuration



TIBCO® API Exchange Gateway User Guide

239 | Config UI

Action Icon Description

existing
configuration

Publish Project Configuration
The Publish project configuration enables you to send the configuration changes of a
project to memory so that they are available to the Core Engine at run time without
restarting the Core Engine.

You can publish and update the following changes at run time:

l Publish Configuration

Using the Publish Configuration option, you can publish any configuration changes
saved in the configuration files to an active Core Engine instance. After you make any
changes to the configuration of a project, you do not need to start the Core Engine
instance, as the Core Engine instance picks all the changes as soon as you publish
the configuration.

l Update Log Level

Using the Update Log Level option, you can dynamically change the levels of logging
of the Core Engine at run time. For example, you can update the logging level from
INFO to DEBUG at run time for the Core Engine.

l Update Central Log Level

Using the Update Central Log Level option, you can dynamically change the levels of
logging of the Central Logger component at run time.

Publishing Configuration
You can publish the configuration changes using the Config UI.

Procedure
1. Start the Config UI. See Starting GUI.

2. Move the mouse pointer on the gateway configuration project and select Publish
Project Configuration icon.



TIBCO® API Exchange Gateway User Guide

240 | Config UI

3. In the dialog box wizard, set the values for the fields as follows:

l Type: from the drop-down list, select Publish Configuration.

l Gateway URL: Enter the URL of the Core Engine instance where the
configuration changes are to be published. For example,
http://ASGServer:PortName

where ASGServer is the server machine and PortName is the port number for a
running Core Engine instance.

4. Click Submit.

Note:
l The Core Engine instance must be running with the same project

configuration for which you published the configuration.

l The configuration changes are published only to a single engine
instance locally. To update the configuration changes to multiple
engine instances running remotely in a cluster environment, see
Updating Project Configuration.

l If you change the username and password to login to the Config UI,
make sure to add the username and password in the ASG_
HOME/mm/config/users.pwd file. See User Credentials File for File-
Based Authentication.

Change Log Level Settings
Using the Config UI, you can change the log level settings for the Core Engine and the
Central Logger component.

See the following topics:

l Changing Log Level Settings for Core Engine.

l Changing Log Level Settings for Central Logger.

Changing Log Level Settings for Core Engine
To change the log level settings for the Core Engine, follow these steps:

Procedure



TIBCO® API Exchange Gateway User Guide

241 | Config UI

1. Start the Config UI. See Starting GUI.

2. Move the mouse pointer on your gateway configuration project and select Publish
Project Configuration icon.

3. On the dialog box wizard, set the values for the fields as follows:

l Type: from the drop-down list, select Update Log Level.

l Gateway URL: Enter the URL of the Core Engine instance where the log level
settings are to be applied. For example,

http://ASGServerMachine:PortName

where ASGServerMachine is the server machine and PortName is the port
number for a running the Core Engine instance.

l Log Level: from the drop-down list, select the level of logging. For example,
DEBUG.

See Logging Levels of Core Engine for types of supported logging levels.

4. Click Submit.

Changing Log Level Settings for Central Logger
To change the log level settings for the Central Logger, follow these steps:

Procedure
1. Start the Config UI. See Starting GUI.

2. Move the mouse pointer on the gateway configuration project and select Publish
Project Configuration icon.

3. On the dialog box wizard, set the values for the fields as follows:

l Type: from the drop-down list, select Update Central Logger Log Level.

l Gateway URL: Enter the URL of the Core Engine instance where the log level
settings are to be applied. For example,

http://ASGServerMachine:PortName

where ASGServerMachine is the server machine and PortName is the port
number for a running Core Engine instance.

l Log Level: Enter the level of logging from the drop-down list. For example,



TIBCO® API Exchange Gateway User Guide

242 | Config UI

Detail Logging ON. See Central Logger Log Level .

4. Click Submit.

Note:
l The Update log level settings for the Core Engine and the Central

Logger are applicable only at run time.

l When the Core Engine is restarted, the original log level settings for
the Core Engine and the Central Logger component are picked up
from the ASG_CONFIG_HOME/asg.properties and ASG_CONFIG_
HOME/asg_cl.properties files respectively.

o For the Core Engine, the log level setting is defined by the
tibco.clientVar.ASG/Logging/MinLogLevel property in the ASG_
CONFIG_HOME/asg.properties file.

o For the Central Logger component, the log level setting is
defined by the tibco.clientVar.ASG/Logging/clLogLevel property
in the ASG_CONFIG_HOME/asg_cl.properties file.

Updating Project Configuration
Using the Update project configuration, you can update the configuration changes to the
multiple Core Engine instances running in a cluster with a project configuration without
restarting any of the Core Engine instances. When you update the configuration changes to
the multiple Core Engine instances, the same project configuration is used by all the
instances at run time.

To update a project configuration, follow these steps:

Procedure
1. Start the Config UI. See Starting GUI.

2. On the home page, go to Advanced Settings section. Select the environment and
cluster for which you want to update the configuration.

3. Navigate to the Projects section to select the project configuration. Move the mouse
pointer on the gateway configuration project and select the Update Project
Configuration icon.



TIBCO® API Exchange Gateway User Guide

243 | Config UI

4. In the dialog box wizard, set the values for the fields as follows:

l Type: from the drop-down list, select Cluster.

5. Click Submit.

Note:
l If you make any configuration changes in a gateway project, the

changes are applied to all the Core Engine instances running in a
cluster with that gateway project.

l If you select Gateway type for Update Project Configuration, you
can update the configuration for a single Core Engine instance
running on a remote machine.

Validate Configuration
The Validate Configuration icon on the Config UI validates the data for a specific
project configuration. To validate the data for a configuration, select the project
configuration and click the Validate Configuration icon.

If any of the configuration is missing or not correct for a facade operation, target operation,
mapping or routing, it reports the error for that tab.

Note: To run the validation tool for a configuration on the command line, see
Running asg-validate Using asg-tools.

Project Configuration
A project configuration consists of all information required by the Core Engine.

Config UI groups the configuration for any project into following categories:

l MAPPING

Using the MAPPING tab, you can enter the configuration data required by the Core
Engine for mapping of the request and response documents. See MAPPING for
details.

l SECURITY



TIBCO® API Exchange Gateway User Guide

244 | Config UI

Using the SECURITY tab, you can configure the data related to the security of the
facade and target operations such as configuring polices, keystores, and so on. See
SECURITY for details.

l MONITORING

Using the MONITORING tab, you can enter the data related to the monitors to
enforce the throttle policy, KPI groups required for the reporting purposes. See
MONITORING for details.

l ROUTING

Using the ROUTING tab, you can enter the configuration data for facade and target
operations. You can configure the routing data required by the Core Engine to route
any facade request to a target operation. See ROUTING for details.

l PARTNER

Using the PARTNER tab, you can enter the configuration data for the partner, partner
groups, and facade operation authorization data for the partners. See PARTNER for
details.

MAPPING
The MAPPING tab of the Config UI provides the configuration parameters for the following
areas:

Mapping
Mapping Configuration Parameters

Using the Mapping tab, you can register the transformation (XSLT) files with the Core
Engine.

To add a new mapping, follow these steps:

Procedure
1. Click the Mapping tab.

2. Click the Add property icon to create a new mapping.

3. Enter the following mapping configuration parameters:

Mapping Configuration Parameters



TIBCO® API Exchange Gateway User Guide

245 | Config UI

Parameter Description

Mapping Configuration

Type Select the type of mapping from the drop-down
list.

The possible values are:

l RV

l XSLT

RV Type

Subject Specifies the RV subject to send the mapping
request to.

Transformation Name Specifies the name of the transformation to
perform on the message.

XSLT Type

New File The location of the transformation file.

Existing Files The existing transformation file.

Response Type Specifies the response type. Select one of the
possible values as follows:

l Payload

l Full

See Transformations (XSLT Mapping)

Schemas
Using the Schemas tab, you can configure the list of XSD files. The XSD files are used to
validate the northbound request and response documents.

To add a new schema, follow these steps:



TIBCO® API Exchange Gateway User Guide

246 | Config UI

Procedure
1. Click the Schemas tab.

2. Click the Add property icon to create a new schema.

3. Enter the details for schema files, as follows:

Parameter Description

Schema Key Specifies the unique ID of the XSD schema file.

New XSD File Specifies the location of the XSD file.

Existing XSD
File

Specifies the existing XSD file.

Schemas Configuration Parameters

Error Maps
Using the ErrorMaps tab, you can define all the error messages supported by TIBCO API
Exchange Gateway.

To add a new errormap, follow these steps:

Procedure
1. Click the ErrorMaps tab.

2. Click the Add property icon to create a new error map.

3. Enter the details for Error Maps configuration, as follows:

Parameter Description

Error Id The External ID of the ErrorMap. Must be globally unique.

Status Specifies the status of the transaction reported by the gateway error
message.

ErrorMaps Configuration Parameters



TIBCO® API Exchange Gateway User Guide

247 | Config UI

Parameter Description

Component Specifies the component of the gateway for this error message.

Error
Description

Specifies the description of the error.

Category Specifies the category of the error. The allowed values are:

l

ServiceException(SVC:)
PolicyException(POL:)

Fault Code Specifies the SOAP fault code. Usually, the value is Client.

Fault String Specifies the SOAP fault string. For example, SVC0002

Fault Actor Specifies the SOAP Fault Actor.

Message Id Specifies the message ID or any client specific code. For example,
SVC0001

Text Specifies the error text with locations for variables to be embedded
indicated by “%1”, “%2”, and so on.

Variables A list of strings separated by a comma (,) that the gateway client uses
for token replacement in the text.

SECURITY
The SECURITY tab of the Config UI provides the configuration parameters.

WSS
The WSS tab on the Config UI allows you to register the WSS resources with the gateway.

To add a new WSS resource, follow these steps:

Procedure



TIBCO® API Exchange Gateway User Guide

248 | Config UI

1. Click the WSS tab.

2. Click the Add property icon to create a new WSS resource.

3. Enter the details for WSS resource parameters, as follows:

Parameter Description

WSS Name The unique name which identifies a WSS configuration.

Type The type of WSS configuration. Select the type from the drop-down list.
The possible values are:

l WSS

l Subject Identity

l Trust Identity

New Property
File

A new property file which defines the WSS resources configuration. See
Define the WSS Configuration Properties File.

Existing
Property Files

Select an existing WSS resources configuration property file. The file
must exist in the ASG_CONFIG_HOME/ASG_Project_Configuration/wss
directory.

WSS Resource Configuration Parameters

KeyStores
Using the KeyStores tab on the Config UI, you can upload the keystore configuration.

To add a new keystore file, follow these steps:

Procedure
1. Click the KeyStores tab.

2. Click the Add property icon to upload a new keystore file.

3. Enter the details for the keystores file, as follows:



TIBCO® API Exchange Gateway User Guide

249 | Config UI

Parameter Description

New
KeyStores
File

Specifies the security certificate files such as .jks type files.

Existing
KeyStores
Files

Specifies the existing security certificate files. The files exist in the ASG_
CONFIG_HOME/ASG_Project/security/keystore

KeyStore Configuration Parameters

Note:
For more information on self-signed keystores, refer to:
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.ht
ml

For an example of how to create self-signed keystores, refer to the readme
included in the ASG_CONFIG_HOME/ASG_Project/security/keystore
directory.

Policy Mapping
Using the Policy Mapping tab on the Config UI, you can upload a policy file.

To upload a new policy file, follow these steps:

Procedure
1. Click the Policy Mapping tab.

2. Click the Add property icon to upload a new policy file.

3. Enter the details for the policy file, as follows:

Parameter Description

Policy Name Specifies the name for the policy.

Policy Mapping Configuration Parameters

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html


TIBCO® API Exchange Gateway User Guide

250 | Config UI

Parameter Description

Intent(Type) Sets the type of the policy. For example, Authentication.

See Overview of Security Policies for details.

Qualifier
(SubType)

Sets the policy sub type. For example, UsernameToken.

See Overview of Security Policies for details.

New Policy
File

Specifies the policy definition file. Browse to choose a new policy file.
See Overview of Security Policies for details.

Existing
Policy File

Specifies an existing policy definition file. The policy file must exist in
the gateway ASG_CONFIG_HOME/configuration/policy folder. For
example, for the default configuration, the policy file must exist in the
ASG_CONFIG_HOME/default/policy folder.

Policy Binding
Using the Policy Binding tab on the Config UI, you can associate a registered policy with
one or more target operation endpoints.

To map a policy to a target operation, follow these steps:

Procedure
1. Click the Policy Binding tab.

2. Click the Add property icon to map a policy file.

3. Enter the details for policy mapping configuration, as follows:

Parameter Description

Policy Specifies a name for the policy. The policy name must be configured
under the Policy Mapping tab.

URI Specifies the URI of the operation to which the policy is applied.

Policy Mapping Configuration Parameters



TIBCO® API Exchange Gateway User Guide

251 | Config UI

Parameter Description

Note:
l If the URI in facade operation is left blank, then URI field for

security binding should use SOAP action instead of URI.

l For XML/JMS or SOAP/JMS, the SOAP action can be used
instead of the URI.

Facade
Operation

Specifies the operation to which the policy is applied. The facade
operation must be configured in the Adding a New Facade
Operationtab.

Target
Operation

Specifies the target operation. The target operation must be configured
in the Adding a New Target Operation tab.

Binding Specifies the binding component that the policy is applied to. This
could be either a facade operation (service) or a target operation
(reference).

Flow Specifies the flow of the request or response. The possible values are:

l in

l out

Partner Specifies the partner to which the policy is applied. This field can be
left blank in case no partner needs to be applied.

Type Specifies the type of the request.

Note: Set this to SOAP for any SOAP request, or to http for any non-
SOAP http request.

MONITORING
The MONITORING tab of the Config UI provides the configuration parameters.



TIBCO® API Exchange Gateway User Guide

252 | Config UI

Monitors
The Monitors tab enables you to define different types of throttles with different throttle
metrics.

Procedure
1. Click the Monitors tab.

2. Click the Add property icon to create a new monitor.

3. Enter the parameters for monitors, as follows:

Monitors Configuration Parameters

Parameter Description

Throttle Parameters

Monitor Name The logical name for the monitor. This is the
value used in the configuration to identify the
monitor.

Monitor Type The type of monitor. The possible values for
monitors are as follows:

l

Rate
Quota
High Water Mark
Error

Interval The time interval during which the monitor is
applied. It has different time units depending on
the monitor type.

For example,

l Rate and Error throttle types specify the
interval in seconds.

l Quota throttle type specify the interval in
hours.



TIBCO® API Exchange Gateway User Guide

253 | Config UI

Parameter Description

l High Water Mark throttle type does not
have any time interval.

Max Limit The number of requests allowed during the
interval. This number should be a positive
integer greater than zero.

Monitor Time Modifiers Specifies the time modifiers to apply to the
monitor. Multiple time modifiers are allowed.

This has the following parameters:

l Max Count - Monitor limit to apply if the
time modifier is active (in range).

l Start Date - Specifies the start date when
the time modifier can be applied. The
format is yyyyMMdd. It can be combined
with the end date to specify a date range.
Optional.

l End Date - Specifies the end date when
the time modifier can be applied. The
format is yyyyMMdd. Optional.

l Day of Week - Specifies a list of the days
of the week when the time modifier can
be applied. The order of the days is not
important. Optional.

l Time Range - Specifies a list of time
ranges when the modifier can be applied.
The format is hh:mm:ss-hh:mm:ss.
Multiple time ranges can be specified.
Optional.

Monitor Count l Specifies the type of the counter used to
increment the count of the used monitor.



TIBCO® API Exchange Gateway User Guide

254 | Config UI

Parameter Description

The possible values are:

o
Request Count
Input Payload Size
Output Payload Size
Transaction Payload Size

l The Monitor count is not applicable for
Error and High Water Mark monitor types.

See Throttle Counter.

Use Approximate Monitor Indicates if the maximum number of requests as
specified by the Max Limit property is
distributed by the number of running engine
instances.

If this value is set to true, the maximum number
of requests is distributed by the number of
active engines.
If the value is set to false, the maximum
number of requests is shared by the number of
engines. You must set the Max Count Ratio
parameter if the value of Use Approximate
Monitor is set to false.

Max Count Ratio An integer value indicating the percentage of
maximum number of requests allowed by
instance of an engine locally.

KPI Groups

Using KPI Groups tab, you can configure the aggregation levels used in KPI generation by
the Central Logger component. KPIs are maintained for every facade operation, target
operation, and partner as configured for a configuration.

To set the parameters for KPI generation, configure the following parameters:



TIBCO® API Exchange Gateway User Guide

255 | Config UI

Parameter Description

KPI Groups Configuration

KPI Group Name External ID of the KPI_Group. Set a unique name
for this field. For example, oneMinute.

Required.

Interval (ms) Interval in milliseconds. The KPI data is written to
the output file after this interval is expired.

Required.

Prefix Specifies the logical name of the KPI. This value is
stored in the KPI_FREQUENCY column of the ASG_
KPI database table of the Central Logger
component.

ROUTING
The ROUTING tab of the Config UI provides the configuration parameters.

Facade Operations
A facade operation is any operation provided by the gateway.

An operation request is defined as a single type of request sent to the Core Engine. Using
the Facade Operations tab, you can add the list of operations supported by the TIBCO API
Exchange Gateway.

Adding a New Facade Operation

To add a new facade operation, follow these steps:

Procedure
1. Click the Facade Operations tab.

2. Click the Add property icon to create a new facade operation.



TIBCO® API Exchange Gateway User Guide

256 | Config UI

3. Enter the details for the operation, as follows:

Parameter Description

Operation
Name

The logical operation name.

SOAP Action The SOAP Action for this operation. This field is used to identify an
operation to which an incoming request is applied to. This must be
unique.

Operation URI The URI for this operation.

Note: Refer to the Characters Supported in Facade Operation URI
that are supported and not supported in Facade Operation URI.

Operation
Service Name

The logical service name (used for routing).

New
ProcessBody
Transform

The new XSLT transformation sheet file containing the rules to parse
and validate the message.

Optional.

ProcessBody
Transform

The existing XSLT transformation sheet file containing the rules to
parse and validate the message.

Optional.

New
FaultReport
XSLT

The new XSLT transformation used to produce the fault message for
the provided fault data.

Existing
FaultReport
XSLT

The existing XSLT transformation used to produce the fault message
for the provided fault data.

Optional.

Facade Operation Configuration Parameters



TIBCO® API Exchange Gateway User Guide

257 | Config UI

Parameter Description

Request
Transform

The reference to forward the facade operation mapping. This
mapping transforms from requestor API to a canonical request
format.

If no mapping reference needed, select Pass-Through from the drop-
down list.

Required.

Response
Transform

The reference to reverse northbound mapping. This mapping
transforms from a canonical request format to requestor API.

If no mapping reference needed, select the value as Pass-Through
from the drop-down list.

Required.

Operation
Method

The HTTP method used to separate REST requests which are made on
the same URI but with different operations.

Optional.

Operation
Features

The list of keywords identifying the features required by the
operation. The supported features are as follows:

l Validation – The XSD validates northbound request and
response. See Validation.

l Shaping - See Traffic Shaping.

l Proxy - Enables TIBCO API Exchange Gateway to act as Proxy
Server. See Proxy Server.

l CacheEnabled - Enables the caching of response messages. See
Response Caching.

l AntiVirusCheckEnabledOnRequest - Enables the antivirus scan
on the request payload of a facade operation.

l AntiVirusCheckEnabledOnResponse- Enables the antivirus scan



TIBCO® API Exchange Gateway User Guide

258 | Config UI

Parameter Description

on the response payload of a facade operation

l Optional.

Status Code on
Error

Specifies the HTTP status code to return if an error occurs in request
processing. This is an optional field.

Enable WSS This check box flag enables or disables an operation for WSS security.

Enable Caching This check box flag enables or disables the response caching for an
operation. See Response Caching Parameters.

Deleting an Operation

To delete an existing operation, click the red cross icon located at the top left corner of
Operation Name field.

Characters Supported in Facade Operation URI

The following are the list of special characters that are supported and not supported by the
TIBCO API Exchange Gateway HTTP Channel.

This is due to restrictions imposed by the dependencies of TIBCO API Exchange Gateway.

The list of supported and unsupported characters include:

Characters REST/HTTP SOAP/HTTP

Supported l - (dash)

l : (colon)

l ~ (tilde)

l (blank space)

l . (dot)

l " (quotation mark)

l ' (Single quote)

l . (dot)

l ' (Single quote)

l (blank space)

l " (quotation mark)



TIBCO® API Exchange Gateway User Guide

259 | Config UI

Characters REST/HTTP SOAP/HTTP

Not Supported l $ (dollar sign)

l ^ (caret)

l & (ampersand)

l // (double forward
slash)

l \ (backslash)

l : (colon)

l - (dash)

l $ (dollar sign)

l ~ (tilde)

l ^ (caret)

l & (ampersand)

l // (double forward
slash)

l \ (backslash)

Target Operations
A target operation is defined as a single type of request that the gateway instance sends to
back-end systems. The backed-API defines the request structure, and the expected reply
structure.

Using the Target Operations tab, you can configure target operation details.

TIBCO API Exchange Gateway supports the following types of target operations:

l ESB

l HTTP

l SOAPJMS

l HTTPs

Adding a New Target Operation

To add a new target operation, follow these steps:

Procedure
1. Click the Target Operations tab.

2. Click the Add property icon to create a new facade operation.



TIBCO® API Exchange Gateway User Guide

260 | Config UI

3. Enter the configuration parameters for target operation, as follows:

Parameter Description

Type: No Operation

Specifies an empty target operation. This does not accept any messages. This type is
used for the operations that use the information retrieved during customer validation.

Operation Name The name of the target operation.

Type The type of transport to use when accessing the
target operation.

For example, No Operation.

Target Operation Group The name of the Target Operation group. See Target
Operation Groups to configure a target operation
group.

Timeout Timeout (in milliseconds) to use when accessing the
target operation.

Request Transform The mapping from request canonical form to the
target operation API. The mapping details are
defined in MAPPING > Mapping tab.

Response Transform The mapping from back-end service API to response
canonical form. The mapping details are defined in
MAPPING > Mapping tab.

Monitor(s) Throttle chain to be applied when invoking the
back-end service. You can add one or more throttle
names. The details of the throttles are defined in the
MONITORING > Monitors tab.

Type: ESB

Target Operation Configuration Parameters



TIBCO® API Exchange Gateway User Guide

261 | Config UI

Parameter Description

When the JMS transport is used to invoke the target operation, configure the following
parameters specific to JMS transport:

ESB Channel The number of predefined ESB channels. By default,
three ESB channels are supported, this field can
have the values as 0, 1,2.

You can add more ESB Channels by customizing
ASG_DefaultImplementation project.

ESB Service The name of the ESB service to call.

This is an additional header value added to the
outgoing JMS message if specified. The header
name in the JMS message is mentioned as Service.

Service Instance The identity of service instance to call.

This is an additional header value added to the
outgoing JMS message if specified. The header
name in the JMS message is mentioned as
ServiceInstance.

ESB Operation Specifies the ESB called operation. This is an
additional header value added to the outgoing JMS
message if specified. The header name in the JMS
message is mentioned as Operation.

Note that this tuple determines SOAP Action used by
ESB as: "/esb/service//operation”

Destination Name The name of the queue or topic for the JMS channel
used to override the default JMS destination. The
default destination is specified by the global
variables
tibco.clientVar.ASG/Endpoint/ESB0/requestQueue,
tibco.clientVar.ASG/Endpoint/ESB1/requestQueue,



TIBCO® API Exchange Gateway User Guide

262 | Config UI

Parameter Description

tibco.clientVar.ASG/Endpoint/ESB2/requestQueue in
ASG_CONFIG_HOME/asg.properties file respectively.

Optional.

Destination Type The type of the destination for JMS channel.

The default value is queue.

Optional.

Mode Specifies a mode for a back-end JMS service. The
valid values are SYNC/ASYNC.

For the sync mode, the gateway waits for the
southbound response from the target operation
after the southbound request is sent to the target
operation. This is the default mode.

For the async mode, the gateway does not wait for
the southbound response from the target operation
after the southbound request is sent to the target
operation. A default northbound response payload is
created after the async request is sent to the target
operation.

Type: HTTP

When the HTTP transport is used to invoke the target operation, configure the following
parameters specific to HTTP transport:

SOAP Action The value of the SOAP Action as defined by the
WSDL of the target operation API.

URI Specifies the URI to use when invoking the target
operation.



TIBCO® API Exchange Gateway User Guide

263 | Config UI

Parameter Description

Host The IP address or hostname of the target operation
implementation when invoked over HTTP.

Port The TCP port of the target operation
implementation when invoked over HTTP.

Username The username with BASIC authentication.

Password The password with BASIC authentication.

Headers To Forward Using this field, you can copy the HTTP headers
information from the northbound incoming request
(facade operation) and forward it to the target
operation at the southbound side. This field can
contain the following characters:

l A comma separated list of named HTTP
header names.

You can specify any header name from the
incoming HTTP request such as content-
type, soap-action, and content-length.

l An asterix (*) as the wildcard symbol to
forward all HTTP headers from the facade
service request to the target reference
request.

l An asterix (*) as the wildcard symbol in
combination with a comma separated list of
named HTTP header names prefixed with the-
sign to drop these specific HTTP headers from
the list of headers to forward.

l apikey as the keyword to forward api key.

l {query_string} as the keyword to forward
the query string.



TIBCO® API Exchange Gateway User Guide

264 | Config UI

Parameter Description

For example,

l If the value of Headers To Forward field is
specified as *, then all the headers are copied.

l If the Headers To Forward field contains "*,-
SoapAction", any incoming SOAP Action
header is removed from the incoming headers
and the value set on the endpoint is ignored.

The default value is *, -apikey which copies all the
HTTP headers except the apikey to the target
operation request at the southbound side.

Note: According to HTTP/1.1 RFC, HTTP headers
are case-insensitive. The native HTTP channel of
API Exchange uses Apache Tomcat which
enforces this behavior by converting all headers
to lower case. We recommend that application
developers must not depend on case sensitive
headers in their application logic.

Method Specifies the method to be used as an HTTP method
for sending a southbound request over the HTTP
transport.

The following methods are available for the HTTP
transport:

OPTIONS, GET, HEAD, POST,
PUT,DELETE,TRACE,CONNECT

The default value is POST

Retry Count The number of retries.

Retry Interval The interval between the HTTP connection retries. A
value of 0 indicates no retry.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.2


TIBCO® API Exchange Gateway User Guide

265 | Config UI

Parameter Description

Retry Timeout The timeout value on each attempt of HTTP
connection. This value is specified in milliseconds. A
value of 0 indicates no timeout.

Communications Type Specifies a mode for a back-end HTTP service. The
valid values are SYNC/ASYNC.

For the sync mode, the gateway waits for the
southbound response from the target operation
after the southbound request is sent to the target
operation. This is the default mode.

For the async mode, the gateway does not wait for
the southbound response from the target operation
after the southbound request is sent to the target
operation. A default northbound response payload is
created after the async request is sent to the target
operation.

Type: SOAPJMS

When the SOAPJMS transport is used to invoke the back-end service, configure the
following parameters specific to SOAPJMS transport:

SOAP Action The value of the SOAP Action as defined by the
WSDL of target operation.

JMS Priority The value of JMSPriority header to set in the
outgoing JMS message.

JMS Expiration The value of JMSExpiration header to set in the
outgoing JMS message.

Destination Name The name of the destination on JMS server.

Destination Type The type of the destination (TOPIC/QUEUE).



TIBCO® API Exchange Gateway User Guide

266 | Config UI

Parameter Description

Target Service The name of the service to call.

Content Type The value of JMSType header to set in the outgoing
JMS message

Is Async

Type: HTTPS

When the HTTPS transport is used to invoke the target operation, configure the
following parameters specific to HTTPs transport:

SOAP Action The value of the SOAP Action as defined by the
WSDL of the target operation.

URI The URI to use when invoking the target operation.

Host The IP address or host name of the target operation
implementation when invoked over the HTTPS.

Port The TCP port of the target operation
implementation when invoked over HTTPS.

Username Username with BASIC authentication.

Password Password with BASIC authentication.

Headers To Forward Using this field, you can copy the HTTP headers
information from the northbound incoming request
(facade operation) and forward it to the target
operation at the southbound side. This field can
contain the following characters:

l A comma separated list of named HTTP
header names.



TIBCO® API Exchange Gateway User Guide

267 | Config UI

Parameter Description

You can specify any header name from the
incoming HTTP request such as content-
type, soap-action, and content-length.

l An asterix (*) as the wildcard symbol to
forward all HTTP headers from the facade
service request to the target reference
request.

l An asterix (*) as the wildcard symbol in
combination with a comma separated list of
named HTTP header names prefixed with the-
sign to drop these specific HTTP headers from
the list of headers to forward.

l apikey as the keyword to forward api key.

l {query_string} as the keyword to forward
the query string.

For example,

l If the value of Headers To Forward field is
specified as *, then all the headers are copied.

l If the Headers To Forward field contains "*,-
SoapAction", any incoming SOAP Action
header is removed from the incoming headers
and the value set on the endpoint is ignored.

The default value is *, -apikey which copies all the
HTTP headers except the apikey to the target
operation request at the southbound side.



TIBCO® API Exchange Gateway User Guide

268 | Config UI

Parameter Description

Note: According to HTTP/1.1 RFC, HTTP headers
are case-insensitive. The native HTTP channel of
API Exchange uses Apache Tomcat which
enforces this behavior by converting all headers
to lower case. We recommend that application
developers must not depend on case sensitive
headers in their application logic.

Method Specifies the method to be used as a HTTP method
for sending a southbound request over the HTTPS
transport.

The following methods are available for the HTTPS
transport:

OPTIONS, GET, HEAD, POST,
PUT,DELETE,TRACE,CONNECT

The default value is POST

Retry Count The number of retries.

Retry Interval The interval between the HTTPS connection retries.
A value of 0 indicates no retry.

Retry Timeout The timeout value on each attempt of the HTTP
connection. This value is specified in milliseconds. A
value of 0 indicates no timeout.

New Property File Specifies the DSS properties file to use the HTTPs
transport for target operation. See Define DSS
Properties for Services.

Existing Property Files Specifies an existing DSS property file from the
drop-down list if the file exists in the wss directory
of the project configuration.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.2


TIBCO® API Exchange Gateway User Guide

269 | Config UI

Parameter Description

Is Anonymous This field is a Boolean field and determines if the
client authentication is required or not. The client
authentication, also known as mutual SSL
authentication is required if the Is Anonymous flag
is set to false. If the Is Anonymous flag is set to
true,the service does not require the authentication
of the client.

See Configure Secure Services with TIBCO API
Exchange Gateway for details.

Target Operation Groups

Using the Target Operation Groups tab, you can define a target operation group with a
load balancing policy type which refers to a routing algorithm. A service group can have
multiple target operations so that they can participate in the load balancing functionality.
See Configuring a Target Operation Group for details.

To define a target operation group, configure the following fields:

Parameter Description

Service Groups Configuration

Group Name l The user defined name of the target operation
group.

l Required.

Description The user defined description.

Type l Specifies the type of the target operation group.
See Types of Target Operations Group for
details.

l The supported types of target operation group
are as follows:

Target Operation Groups Configuration Parameters



TIBCO® API Exchange Gateway User Guide

270 | Config UI

Parameter Description

o
LoadBalanced
RoundRobin
RoundRobinWithFaiOver
WeightedRoundRobin
WeightedRoundRobinWithFaiOver
StickyResourceAffinity

Target Operations Specifies the list of configured target operations within
a target operation group. The target operations must
be configured in the ROUTING > Target Operations
tab of the Config UI. You can add the target operations
by clicking the "+" icon sign, and selecting a target
operation from the drop-down list.

Routing
Configuring Routing Parameters

Using the Routing tab, you can configure the routing information for the Core Engine. The
routing provides the binding between a facade operation and a target operation.

Procedure
1. Click the Routing tab.

2. Enter the following parameters:

Parameter Description

Operation
Name

The name of the facade operation. This is defined in the Facade
Operations tab.

Routing Type Specifies the type of routing which indicates if the request is routed to
a target operation or target operation group.

The possible values are as follows:

Routing Configuration Parameters



TIBCO® API Exchange Gateway User Guide

271 | Config UI

Parameter Description

l

Target Operation
Target Operation Group

Routing Key Evaluated routing key for the given operation. See Routing Key.

Type: Target Operation

When the routing type is specified as Target Operation, configure the following
parameters specific to the target operation:

Target
Operation
Version

The version number of the target operation.

Target
Operation.

The name of the target operation. The target operation must be
defined in the Target Operation tab.

Type: Target Operation Group

When the routing type is specified as Target Operation Group, configure the following
parameters specific to target operation group:

Target
Operation
Group

The name of the target operation group used for load balancing of
requests for target operations. See Target Operation Groups to
configure a target operation group.

PARTNER
The PARTNER tab of the Config UI provides the configuration parameters.

Partners
Using the Partners tab, you can configure and manage the information for a partner who
is authorized to access the gateway and send an operation request.

To add the data for a new partner, follow these steps:



TIBCO® API Exchange Gateway User Guide

272 | Config UI

Procedure
1. Click the Partner tab.

2. Click Add property icon to create a new partner.

3. Enter the details for the partner data, as follows:

Parameter Description

Partner Name The partner name. Required.

Partner Email The contact email for the partner.

Partner
Phone

The contact phone for the partner.

Partner
Group

The name of the group of which the partner is a member. The partner
group name is defined in the Partner Groups tab.

Partner Serial
Number

Specifies the value used for partner identification.

For example, for SSL mutual authentication, this specifies the serial
number of the SSL certificate of the partner. See Partner Identification
Fields for details.

Partner Issuer
CA

Specifies the value used for partner identification.

For example, for SSL mutual authentication, this specifies the issuing
Certificate Authority of the SSL certificate of the partner. See Partner
Identification Fields for details.

Enable
Secondary
ACL

If selected, this partner exists in the secondary ACLs list.

If not selected, this partner does not exist in the secondary ACLs list.

Monitors Defines the throttle chain which is applied to the partner. You can
define a list of throttle names. The throttles are applied in the order
given in the chain list. The details of the throttles are defined in the
Monitors tab.

Partner Data Configuration



TIBCO® API Exchange Gateway User Guide

273 | Config UI

Partner Groups
Using the Partner Groups tab, you can configure the information for a partner group and
the throttle chain,which is applied to any requests sent by a partner who belongs to this
group.

Adding a Throttle for a Partner Group

Procedure
1. Click the Partner Groups tab.

2. Click the Add property icon to create a new partner.

3. Enter the details for partner group and monitor, as follows:

Parameter Description

Group Name The name of the partner group. Required.

Email The contact email for the partner group.

Phone The contact phone for the partner group.

Monitor Defines the throttle chain which is applied to the group. You can define
a list of throttle names. The throttles are applied in the order given in
the chain list. The details of the throttles are defined in the Monitors
tab.

Partner Group Configuration

Facade Access
Use Facade Access tab to configure an operation for a specific partner.

Using the Facade Access tab, you can invoke a specific operation by a specific partner.
This tab also defines any throttles that are applied for the operation from this partner.

Adding a New Facade Access

Procedure



TIBCO® API Exchange Gateway User Guide

274 | Config UI

1. Click the Facade Access tab.

2. Click the Add property icon to create a new facade operation for a partner.

3. Enter the details for partner and operation data, as follows:

Parameter Description

Partner The partner name. Required.

Facade
Operation

The name of the facade operation for which the partner is granted the
access. This operation is configured in the Facade Operations tab.

Monitors A list of the throttle names to be applied to any requests sent by this
partner which invoke the operation. The monitors are applied in the
order given in the chain.

Partner
Timeout

The timeout in milliseconds to any incoming request from the partner
to the selected operation.

Partner
Secondary
ACL Check

If selected, this partner is verified in the secondary ACL list when the
partner invokes the operation.

Request
Transform

The partner-specific mapping reference to call on an inbound message.

Response
Transform

The partner-specific mapping reference to call on an outbound
message.

Allowed
Requestor IDs

The list of authorized partner’s references when the partner is an
aggregator.

API Key Specifies the API Key used for partner identification when the request is
sent from the TIBCO API Exchange Manager.

Preferred
Routing Key

Enables the preferred routing based on the value specified in this field.
See Preferred Routing.

Facade Access Configuration



TIBCO® API Exchange Gateway User Guide

275 | Config UI

Partner API Key
Using the Partner API Key tab, you can enter the API key and partner name required to
access the API hosted by TIBCO API Exchange Gateway.

If you use TIBCO API Exchange Manager to send a request to access the API registered with
TIBCO API Exchange Gateway, the fields under Partner API Key tab such as API Key, and
Partner are populated.

Note: Do not edit the API key and partner values for a request sent from TIBCO
API Exchange Manager to TIBCO API Exchange Gateway.

Parameter Description

API Key An identifier assigned to an API that is registered with TIBCO API Exchange
Gateway. The API key is used to access the API, and is passed as an HTTP
header or as a URL parameter with the request.

For example,

https://demoserver.booksore.com:9222/Books/BookOperations/Author/Viv
ek Ranadive?API Key=95-532d7700-44fe-9175-3a9d408a7286

Partner Specifies the name of partner accessing the API.

Identify
Partner

Specifies if the Client ID retrieved from the API key is used to identify the
partner.

New Partner API Key

Set Runtime Properties
Use the Config UI to set the runtime properties of the Core Engine.

To set the runtime properties of the Core Engine, select the Gateway Engine Properties in
the drop-down list next to icon on the home page of the Config UI.

Using the Config UI, the runtime properties can be set to the following links:



TIBCO® API Exchange Gateway User Guide

276 | Config UI

l General

l Monitoring

l Database

l Transport

l Security

On the home page of the Config UI, select the Gateway Engine Properties to display the
runtime properties of the Core Engine. These properties are saved in the ASG_CONFIG_
HOME/asg.properties and ASG_CONFIG_HOME/asg_cl.properties files respectively.

Setting General Properties

Procedure
1. Select the Gateway Engine Properties from the drop-down list.

2. Click the General link:

Property Description

Common

Example
Home

Specifies the home location for the examples directory shipped with
TIBCO API Exchange Gateway.

For example, the home directory for the examples location is as follows:

ASG_HOME/examples

Allow Hot
Update

Select this check box to set the value to true.If the check box is not
selected, the value is set to false. The default is false.

l If this check box is set to true, the hot configuration update is
enabled.

l If this check box is set to false, the hot configuration update is
disabled.

General Properties



TIBCO® API Exchange Gateway User Guide

277 | Config UI

Property Description

Enable
Default
Operation

Select this to enable the default operation feature. See Pass-Through
Gateway.

Setting Monitoring Properties

Procedure
1. Select the Gateway Engine Properties from the drop-down list.

2. Click the Monitoring link.

Property Description

Generic

Use Synchronous HTTP
Client

A Boolean field used to send a request to the target side
by running the http client in the same thread as the
facade processing. It is good practice to use the
synchronous http client when high load of short lived
requests are expected.

Select this check box to set the value to true. If the
check box is not selected, the value is set to false. The
default is false.

l If this check box is set to true, the client sends
the synchronous request for the HTTP transport.

l If this check box is set to false, the asynchronous
request is sent for the HTTP transport.

Number of Threads The number of threads used for the HTTP Client. This is
relevant only if the value of useSynchHttpClient is false
(that is, when asynchronous request is sent for the HTTP
transport).

Monitoring Properties



TIBCO® API Exchange Gateway User Guide

278 | Config UI

Property Description

The default value is 10.

ModRV North Request
Subject Name

Specifies the Rendezvous subject name, which is used
by the Core Engine to listen for requests from the
Apache module.

The default value is _LOCAL.asg.north.request.

RV Subject Prefix Specifies the prefix for all Rendezvous subject names
used between the Core Engine and Central Logger, Core
Engine and Global Throttle Manager components.

The default value is TIBCO.ASG.INTERNAL.

Throttle Update Interval
(sec)

Specifies the time interval (in seconds) for sending
throttle updates to the Global Throttle Manager.

The default value is 10.

Request Binary The default value is _LOCAL.asg.north.request_binary.

RV Daemon Specifies the value of Rendezvous daemon for the Core
Engine to listen for the requests from the Apache
module.

The default value is tcp:7500.

RV Network Specifies the value of the Rendezvous network for the
Core Engine to listen for the requests from the Apache
module.

RV Service Specifies the value of the Rendezvous service for the
Core Engine to connect and listen for the requests from
the Apache module.

The default value is 7500.



TIBCO® API Exchange Gateway User Guide

279 | Config UI

Property Description

GTM RV Daemon Specifies the value of the Rendezvous daemon for the
Core Engine to connect to the Global Throttle Manager.

The default value is tcp:7500.

GTM RV Network Specifies the value of the Rendezvous network for the
Core Engine to connect to the Global Throttle Manager.

GTM RV Service Specifies the value of the Rendezvous service for the
Core Engine to connect to the Global Throttle Manager.

The default value is 7500.

Logging

Enable Reporting to Central
Logger

Specifies if the reporting to the Central Logger is
enabled or not. By default, the Core Engine does not
record the transactions to the Central Logger.

The default value is false.

See Enabling Reporting to the Central Logger.

Logging Interval (ms) Specifies the time interval (in milliseconds) between
Core Engine and Central Logger to record transactions.

The default value is 30000.

Minimum Log Level Specifies the logging level for the Central Logger
component. The possible values are as follows:

l

DEBUG
INFO
WARN
ERROR
NO LOGGING



TIBCO® API Exchange Gateway User Guide

280 | Config UI

Property Description

The default value is DEBUG.

Central Logger Log Level Specifies if the detail level logging is enabled for the
Central Logger component. The possible values are as
follows:

l

Detail Logging ON
Detail Logging OFF

If the detail logging is set to ON, all the details of
transaction are logged. If the detail logging is set
to OFF, the Central Logger records the high level
transaction.

The default value is Detail Logging OFF.

Central Logger : The Central Logger section is populated on the Config UI when Enable
Reporting to Central Logger property in the Logging section is selected as true.

File Filter Regular Expression Specifies the lists of facade operation as a pipe ('|')
separated string. The transaction logs of these facade
operations are logged to the files instead of database.

For example:

ping|test|addConfiguration

Transactions Log File
Directory

Specifies the directory name to store the log file used by
the Core Engine to record the transactions data.

The default value is ASG_HOME/bin/logs.

Transactions Log File Specifies the name of the log file used by the Core
Engine to record the transactions data. This is used only
for the transactions of facade operations which are
filtered by the
tibco.clientVar.CL/Logging/fileFilter property.



TIBCO® API Exchange Gateway User Guide

281 | Config UI

Property Description

The default value is trans_log.txt.

Number of Log Files Specifies the maximum number of log files for the Core
Engine to keep on roll over for the transactions log file.

The default value is 3.

Log File Max Size Specifies the maximum size (in bytes) of the log file for
writing the transactions data at which the Core Engine
rolls over to the next log file.

The default value is 5000000.

Timestamp Format Specifies the format of the log's timestamp value.

RV Subject Prefix Specifies the prefix for all Rendezvous subject names
used between the Core Engine and Central Logger.

The default value is TIBCO.ASG.INTERNAL.

RV Service Specifies the service parameter for Rendezvous used
between the Core Engine and Central Logger
communication.

The default value is 7500.

RV Daemon Specifies the daemon parameter for Rendezvous used
between the Core Engine and Central Logger
communication.

The default value is tcp:7500 .

RV Network Specifies the network parameter for Rendezvous used
between the Core Engine and Central Logger
communication.

Setting Database Properties

Procedure



TIBCO® API Exchange Gateway User Guide

282 | Config UI

1. Select the Gateway Engine Propertiesfrom the drop-down list.

2. Click the Database link.

Property Description

Connection Check
Interval

Specifies the time interval (in seconds) after which the Central
Logger polls for the connection to the database server. The default
value is 5.

Connection Retry
Count

Specifies the number of attempts made by the Central Logger to
connect to the database server if the database server goes down.
The default value is -1.

DB Driver Specifies the database driver for the database server used by the
Central Logger.

DB URL Specifies the database server connection URL for the Central
Logger.

For example, for the MS SQL server, the following value is used:

jdbc:sqlserver://10.107.174.56:1433;databaseName=asgstat

DB Username Specifies the username for the Central Logger to connect to the
database server.

The default value is asguser

DB Password Specifies the password for the Central Logger to connect to the
database server.

The default value is obfuscated format of asgpass .

DB Schema Specifies the database schema to be used by the Central Logger on
the database server. The default value is asgstat.

Database Properties

Setting Transport Properties

Procedure



TIBCO® API Exchange Gateway User Guide

283 | Config UI

1. Select the Gateway Engine Properties from the drop-down list.

2. Click the Transport link.

Property Description

Facade

Port Specifies the port through which the gateway accepts the
HTTP requests from the client.

The default value is 9222.

Active Spaces

Transport Type Type of the transport for Global Throttle Manager and
Central Logger. Select AS from the drop-down list.

Metaspace Name The name of the ActiveSpaces Metaspace to connect to. A
metaspace is a logical group of spaces—a cluster of hosts
and processes that share the same metaspace name and set
of discovery transport attributes. The hosts and processes in
a metaspace work together by joining the same spaces.

Refer to TIBCO ActiveSpaces Developer's Guide for details on
Metaspaces.

The default value for the metaspace name is GTM.

Discovery URL Specifies the discovery URL to use to discover spaces in the
cluster. The TCP discovery has the following format:

tcp://ip1[:port1];ip2[:port2],...

where any number of ip[:port] well-known addresses can be
listed. If no port is specified, the default port number value
of 50000 is assumed.

For example, tcp://127.0.0.1:13000.

Refer to TIBCO ActiveSpaces Developer's Guide for details on

Transport Properties



TIBCO® API Exchange Gateway User Guide

284 | Config UI

Property Description

the discovery URLs.

Listen URL Specifies a URL that is used for direct communication
between the members of the metaspace.

To use a listen URL, use a string of the form:

tcp://[interface[:port]]

This syntax specifies that the member should bind to the
specified interface and the specified port when creating the
TCP socket that will be used for direct communication
between the members of the metaspace. If not specified, it
will default to 0.0.0.0 (INADDR_ANY) for the interface and
to the first available port starting from port 5000 and above.

For example, tcp://127.0.0.1:13000-*/

Log Level The logging level of the messages when the ActiveSpaces
channel is used.

The default value is INFO.

The possible values are as follows:

INFO

WARN

ERROR

FATAL

FINE

FINER

FINEST

NONE

Log Directory The directory to store the log files. The log files contain the



TIBCO® API Exchange Gateway User Guide

285 | Config UI

Property Description

messages when the ActiveSpaces channel is used.

The default value is ASG_CONFIG_HOME/logs

For example,

C:/TIBCO_HOMEAPIXCONFIG/tibco/cfgmgmt/asg/logs

MEMBER_TIMEOUT Sets the amount of time (in milliseconds) to wait for a
member to reconnect. If the reconnect time exceeds
timeout value then the member cannot reestablish
connection and has to be restarted.

Note: The default value is 30000 milliseconds.

SSL

Port Specifies the port through which the gateway accepts SSL
enabled HTTP requests from client.

The default value is 9233.

Use SSL This is a boolean field which indicates if SSL should be
enabled for accepting the HTTPS requests. If this is set to
true, SSL is enabled to accept the requests using the HTTPS
transport.

Identity Resource Specifies an identity resource which is used by
FacadeHTTPSSLConnection HTTP shared resource to
provide the SSL properties.

Identity File Type Specifies the type of identity resource.

The possible values are as follows:

l Identity File



TIBCO® API Exchange Gateway User Guide

286 | Config UI

Property Description

l

Certificate/Private Key

l If Identity File Type is of the Identity File type, enter
the Identity Type, Identity URL, and Identity File
Password parameters.

l If Identity File Type is of the Certificate/Private Key
type, enter Certificate URL, Key URL, and Key
Password parameters.

Identity Type Specifies the type of the keystore if the Identity File Type is
of the Identity File type. The supported values are as
follows:

l

JCEKS
JKS
PEM
PKCS12

Identity URL Specifies the URL to the identity file if Identity File Type is
of the Identity File type.

For example, C:\asgserver.pfx

Identity File Password Specifies the password for the identity file used for the SSL
connection if Identity File Type is of the Identity File type.

Certificate URL Specifies the URL to the certificate file if Identity File Type
is of the Certificate/Private Key type.

Key URL Specifies the URL to the private key in the certificate file if
Identity File Type is of the Certificate/Private Key type.

Key Password Specifies the password for the private key used for the SSL
connection if Identity File Type is of the Certificate/Private



TIBCO® API Exchange Gateway User Guide

287 | Config UI

Property Description

Key type.

Requires Client
Authentication

Indicates a Boolean flag to enable or disable mutual SSL
authentication for HTTPs transport between the client and
the gateway.

When this field is set to true, the Trusted Certificates
Folder becomes enabled so that you can specify a location
containing the list of trusted certificate authorities.

Truststore Password Specifies the password to access the certificate stored in the
folder defined by Trusted Certificate Folder field.

Trusted Certificate
Folder

Specifies a folder containing one or more certificates from
trusted certificate authorities, which is required for mutual
SSL authentication.

Required when the RequiresClientAuthentication property is
set to true.

JMS Facade ESB Connection

JMS Provider URL Specifies the connection URL for the EMS Server used for
facade operation requests from the ESB communication
domain. The ESB communication uses JMS transport with
XML.

The default value is tcp://localhost:7222.

JNDI Context URL Specifies the URL to the JNDI service provider used for
facade operation requests with ESB communication domain.

The default value is tibjmsnaming://localhost:7222

Topic Connection
Factory Name

Specifies the name of TopicConnectionFactory object stored
in JNDI. This object is used to create a topic connection with
ESB services at the facade side.



TIBCO® API Exchange Gateway User Guide

288 | Config UI

Property Description

The default value is TopicConnectionFactory.

Queue Connection
Factory Name

Specifies the name of QueueConnectionFactory object
stored in JNDI. This object is used to create a queue
connection with ESB services at the facade side.

The default value is QueueConnectionFactory.

JNDI Username Specifies the user name for logging into the JNDI server in
the ESB communication domain at the facade side. If the
JNDI provider does not require access control, this field can
be empty.

The default value is admin.

JNDI Password Specifies the password for logging into the JNDI server in
the ESB communication domain at the facade side. If the
JNDI provider does not require access control, this field can
be empty.

JMS Username Specifies the user name for logging into the EMS server in
the ESB communication domain at the facade side.

The default value is admin.

JMS Password Specifies the password for logging into the EMS server in the
ESB communication domain at the facade side.

Request Queue Specifies the queue name for an ESB channel (one)
communication for the target operation request.

The default value is asg.out.request.

Reply Queue Specifies the queue name for ESB channel (one)
communication for the response from the target operation.

The default value is asg.out.request.reply.0.0.



TIBCO® API Exchange Gateway User Guide

289 | Config UI

Property Description

JMS Target ESB Connection Primary

JMS Provider URL Specifies the connection URL for the EMS Server used for
facade operation requests from ESB communication
domain. ESB communication uses JMS transport with XML.

The default value is tcp://localhost:7222.

JNDI Context URL Specifies the URL to the JNDI service provider used for
facade operation requests with ESB communication domain.

The default value is tibjmsnaming://localhost:7222.

Topic Connection
Factory Name

Specifies the name of TopicConnectionFactory object stored
in JNDI. This object is used to create a topic connection with
ESB services at the facade side.

The default value is TopicConnectionFactory.

Queue Connection
Factory Name

Specifies the name of QueueConnectionFactory object
stored in JNDI. This object is used to create a queue
connection with ESB services at the facade side.

The default value is QueueConnectionFactory.

JNDI Username Specifies the user name for logging into the JNDI server in
the ESB communication domain at the facade side. If the
JNDI provider does not require access control, this field can
be empty.

The default value is admin.

JNDI Password Specifies the password for logging into the JNDI server in
the ESB communication domain at the facade side. If the
JNDI provider does not require access control, this field can
be empty.



TIBCO® API Exchange Gateway User Guide

290 | Config UI

Property Description

JMS Username Specifies the user name for logging into the EMS server in
the ESB communication domain at the facade side.

The default value is admin.

JMS Password Specifies the password for logging into the EMS server in the
ESB communication domain at the facade side.

Request Queue Specifies the queue name for an ESB channel (one)
communication for the target operation request.

The default value is asg.out.request.

Reply Queue Specifies the queue name for the ESB channel (one)
communication for the response from the target operation.

The default value is asg.out.request.reply.0.0.

JMS Target ESB Connection Secondary

JMS Provider URL Specifies the connection URL for the EMS Server used for
facade operation requests from the ESB communication
domain. The ESB communication uses JMS transport with
XML.

The default value is tcp://localhost:7222.

JNDI Context URL Specifies the URL to the JNDI service provider used for
facade operation requests with ESB communication domain.

The default value is tibjmsnaming://localhost:7222.

Topic Connection
Factory Name

Specifies the name of TopicConnectionFactory object
stored in JNDI. This object is used to create a topic
connection with ESB services at the facade side.

The default value is TopicConnectionFactory.



TIBCO® API Exchange Gateway User Guide

291 | Config UI

Property Description

Queue Connection
Factory Name

Specifies the name of QueueConnectionFactory object
stored in JNDI. This object is used to create a queue
connection with ESB services at the facade side.

The default value is QueueConnectionFactory.

JNDI Username Specifies the user name for logging into the JNDI server in
the ESB communication domain at the facade side. If the
JNDI provider does not require access control, this field can
be empty.

The default value is admin.

JNDI Password Specifies the password for logging into the JNDI server in
the ESB communication domain at the facade side. If the
JNDI provider does not require access control, this field can
be empty.

JMS Username Specifies the user name for logging into the EMS server in
the ESB communication domain at the facade side.

The default value is admin.

JMS Password Specifies the password for logging into the EMS server in the
ESB communication domain at the facade side.

Request Queue Specifies the queue name for an ESB channel (one)
communication for the target operation request.

The default value is asg.out.request.

Reply Queue Specifies the queue name for ESB channel (one)
communication for the response from the target operation.

The default value is asg.out.request.reply.0.0.

JMS Target ESB Connection Tertiary



TIBCO® API Exchange Gateway User Guide

292 | Config UI

Property Description

JMS Provider URL Specifies the connection URL for the EMS Server used for
facade operation requests from the ESB communication
domain. The ESB communication uses JMS transport with
XML.

The default value is tcp://localhost:7222.

JNDI Context URL Specifies the URL to the JNDI service provider used for
facade client requests with the ESB communication domain.

The default value is tibjmsnaming://localhost:7222.

Topic Connection
Factory Name

Specifies the name of TopicConnectionFactory object stored
in JNDI. This object is used to create a topic connection with
ESB services at the facade side.

The default value is TopicConnectionFactory.

Queue Connection
Factory Name

Specifies the name of QueueConnectionFactory object
stored in JNDI. This object is used to create a queue
connection with ESB services at the facade side.

The default value is QueueConnectionFactory.

JNDI Username Specifies the user name for logging into the JNDI server in
the ESB communication domain at the facade side. If the
JNDI provider does not require access control, this field can
be empty.

The default value is admin.

JNDI Password Specifies the password for logging into the JNDI server in
the ESB communication domain at the facade side. If the
JNDI provider does not require access control, this field can
be empty.

JMS Username Specifies the user name for logging into the EMS server in



TIBCO® API Exchange Gateway User Guide

293 | Config UI

Property Description

the ESB communication domain at the facade side.

The default value is admin.

JMS Password Specifies the password for logging into the EMS server in the
ESB communication domain at the facade side.

Request Queue Specifies the queue name for an ESB channel (one)
communication for the target operation request.

The default value is asg.out.request.

Reply Queue Specifies the queue name for ESB channel (one)
communication for the response from the target operation.

The default value is asg.out.request.reply.0.0.

JMS SOAP Connection North

JMS Provider URL Specifies the connection URL for the EMS Server used for
facade operation requests from the ESB communication
domain. The ESB communication uses JMS transport with
XML.

The default value is tcp://localhost:7222.

JNDI Context URL Specifies the URL to the JNDI service provider used for
facade client requests with the ESB communication domain.

The default value is tibjmsnaming://localhost:7222.

Topic Connection
Factory Name

Specifies the name of TopicConnectionFactory object stored
in JNDI. This object is used to create a topic connection with
ESB services at the facade side.

The default value is TopicConnectionFactory.



TIBCO® API Exchange Gateway User Guide

294 | Config UI

Property Description

Queue Connection
Factory Name

Specifies the name of QueueConnectionFactory object
stored in JNDI. This object is used to create a queue
connection with ESB services at the facade side.

The default value is QueueConnectionFactory.

JNDI Username Specifies the user name for logging into the JNDI server in
the ESB communication domain at the facade side. If the
JNDI provider does not require access control, this field can
be empty.

The default value is admin.

JNDI Password Specifies the password for logging into the JNDI server in
the ESB communication domain at the facade side. If the
JNDI provider does not require access control, this field can
be empty.

JMS Username Specifies the user name for logging into the EMS server in
the ESB communication domain at the facade side.

The default value is admin.

JMS Password Specifies the password for logging into the EMS server in the
ESB communication domain at the facade side.

Request Queue Specifies the queue name for an ESB channel (one)
communication for the target operation request.

The default value is asg.out.request.

Reply Queue Specifies the queue name for the ESB channel (one)
communication for the response from the target operation.

The default value is asg.out.request.reply.0.0.

JMS SOAP Connection South



TIBCO® API Exchange Gateway User Guide

295 | Config UI

Property Description

JMS Provider URL Specifies the connection URL for the EMS Server used for
facade operation requests from the ESB communication
domain. The ESB communication uses JMS transport with
XML.

The default value is tcp://localhost:7222.

JNDI Context URL Specifies the URL to the JNDI service provider used for
facade client requests with the ESB communication domain.

The default value is tibjmsnaming://localhost:7222.

Topic Connection
Factory Name

Specifies the name of TopicConnectionFactory object stored
in JNDI. This object is used to create a topic connection with
ESB services at the facade side.

The default value is TopicConnectionFactory.

Queue Connection
Factory Name

Specifies the name of QueueConnectionFactory object
stored in JNDI. This object is used to create a queue
connection with ESB services at the facade side.

The default value is QueueConnectionFactory.

JNDI Username Specifies the user name for logging into the JNDI server in
the ESB communication domain at the facade side. If the
JNDI provider does not require access control, this field can
be empty.

The default value is admin.

JNDI Password Specifies the password for logging into the JNDI server in
the ESB communication domain at the facade side. If the
JNDI provider does not require access control, this field can
be empty.

JMS Username Specifies the user name for logging into the EMS server in



TIBCO® API Exchange Gateway User Guide

296 | Config UI

Property Description

the ESB communication domain at the facade side.

The default value is admin.

JMS Password Specifies the password for logging into the EMS server in the
ESB communication domain at the facade side.

Request Queue Specifies the queue name for an ESB channel (one)
communication for the target operation request.

The default value is asg.out.request.

Reply Queue Specifies the queue name for an ESB channel (one)
communication for the response from the target response.

The default value is asg.out.request.reply.0.0.

Show SSLProperties

Use the Show SSL Properties button to configure the SSL connection parameters for
JMS transport at the facade and target side.

Use SSL A boolean field to indicate if SSL is enabled for accepting
requests using the JMS transport.

Set this to true to enable SSL for the JMS transport.

Trusted Certificate
Folder

Specifies a location of the trusted certificates on this
machine. The trusted certificates are a collection of
certificates from servers with which you establish
connections. If the server with which the connection is going
to be established, presents a certificate that does not match
one of your trusted certificates, the connection is refused.
This prevents connections to unauthorized servers.

Import the trusted certificates into a folder before you select
the folder in this field.



TIBCO® API Exchange Gateway User Guide

297 | Config UI

Property Description

Identity Resource Specifies an identity resource used to provide the SSL
properties for JMS transport.

For example,

/DefaultImplementation/SharedResources/JMS/Target_
ESB0ConnIdentityResource.id

TrustStorePassword Specifies the password to access the certificate stored in the
folder defined by the Trusted Certificate Folder field.

Trace Specifies whether SSL tracing should be enabled during the
connection. If checked, the SSL connection messages are
logged and sent to the console.

Debug Trace Specifies whether SSL debug tracing should be enabled
during the connection. Debug tracing provides more
detailed messages than standard tracing.

Verify Host Name Specifies whether the host you are connecting to is the
expected host. The host name in the host’s digital certificate
is compared against the value in the Expected Host Name
field. If the host name does not match the expected host
name, the connection is refused.

Note: The default context factories for TIBCO Enterprise
Message Service automatically determine if host name
verification is necessary. If you are using a custom
implementation of the context factories, your custom
implementation must explicitly set the verify host property
to the correct value. For example:

com.tibco.tibjms.TibjmsSSL.setVerifyHost
(false)

Expected Host Name Specifies the name of the host you are expecting to connect



TIBCO® API Exchange Gateway User Guide

298 | Config UI

Property Description

to. This field is only relevant if the Verify Host Name field is
also selected.

If the name of the host in the host’s digital certificate does
not match the value specified in this field, the connection is
refused.

This prevents hosts from attempting to impersonate the
host you are connecting to.

Strong Cipher Suites
Only

When selected, this field specifies that the minimum
strength of the cipher suites used can be specified with the
bw.plugin.security.strongcipher.minstrength custom engine
property. See TIBCO ActiveMatrix BusinessWorks
Administration for more information about this property.
The default value of the property disables cipher suites with
an effective key length below 128 bits.

When this field is unchecked, only cipher suites with an
effective key length of up to 128 bits can be used.

Identity Type Speicifies the type of identity resource. The possible values
are:

l certPlusKeyURL

l url

l usernamePassword

Certificate/Private Key Identity

Use this option if the private key and the certificate are in two separate files.

Certificate URL Specifies the URL to the certificate file if the Identity Type
is of the certPlusKeyURL type.

Key URL Specifies the URL to the private key in the certificate file if



TIBCO® API Exchange Gateway User Guide

299 | Config UI

Property Description

the Identity Type is of the certPlusKeyURL type.

Key Password Specifies the password for the private key used for SSL
connection if the Identity Type is of the certPlusKeyURL
type.

Username/Password

Use this option if you want to use a username and password for authentication instead
of a certificate.

Identity User Name Name of the user for this identity.

Identity Password Password for the user for this identity.

url

Use this option if the certificate includes the private key information in the same file.

Identity URL Specifies the location of the certificate (which includes the
private key) if Identity Type is of url type.

For example, C:\asgserver.pfx

Identity File Type Specifies the type of certificate file if Identity Type is of url
type.

Choose the certificate file type from the drop-down list:

l Entrust

l JCEKS

l JKS

l PEM

l PKCS12

Key Password Password for the certificate if Identity Type is of url type.



TIBCO® API Exchange Gateway User Guide

300 | Config UI

Security Properties

Procedure
1. Select the Gateway Engine Properties from the drop-down list.

2. Click the Security link:

Property Description

Common

Anonymous
Partner Name

Specifies a default partner name for the unauthenticated requests.

OAuth

Transport
Scheme

l Specifies the transport type used to connect to for TIBCO API
Exchange Gateway OAuth server.

The possible values are:

o HTTP

o HTTPS

l See OAuth HTTP Transport to set the OAuth HTTP transport
settings.

l See OAuth WebApps SSLProperties are shown if the transport
scheme is selected as HTTPS. to set the OAuth HTTPS (SSL)
transport settings.

OAuth HTTP Transport

Port Specifies the non-SSL port number of the TIBCO API Exchange
Gateway OAuth Server.

The default value is 9322.

OAuth WebApps SSL

Properties are shown if the transport scheme is selected as HTTPS.

Security Properties



TIBCO® API Exchange Gateway User Guide

301 | Config UI

Property Description

Host Specifies the IP address of the TIBCO API Exchange Gateway OAuth
Server.

Port Specifies the SSL port number of the TIBCO API Exchange Gateway
OAuth Server.

The default value 9333.

Use SSL This is a Boolean field which indicates if SSL should be enabled for
accepting HTTPS requests for OAuth APIs and servlets. If set to true,
SSL is enabled to accept the requests using HTTPS transport for the
OAuth server.

The default value is true.

Identity
Resource

Specifies an identity resource used by OAuthWebappsSSLConnection
HTTP shared resource to provide SSL properties for the OAuth servlets
and APIs.

The default value is

/DefaultImplementation/SharedResources/HTTP/OAuthIdentityReso
urce.id

Identity File
Type

Specifies the type of identity resource used by
OAuthWebappsSSLConnection HTTP shared resource.

The possible values are as follows:

l Identity File

l Certificate/Private Key

If Identity File Type is of type Identity File , enter the Identity Type,
Identity URL, and Identity File Password parameters.

If Identity File Type is of type Certificate/Private Key, enter the
Certificate URL, Key URL, Key Password parameters.



TIBCO® API Exchange Gateway User Guide

302 | Config UI

Property Description

Identity Type Specifies the type of the keystore if the Identity File Type is of the
Identity File type. The supported values are as follows:

l JCEKS

l JKS

l PEM

l PKCS12

Identity URL Specifies the URL to the identity file used for the OAuth server SSL
connection if the Identity File Type is of the Identity File type.

For example, C:\keystore.jks

Identity File
Password

Specifies the password for the identity file used for the OAuth server
SSL connection if the Identity File Type is of the Identity File type.

Certificate URL Specifies the URL to the certificate file used for the OAuth server SSL
connection if Identity File Type is of the Certificate/Private Key type.

Key URL Specifies the URL to the private key in certificate file used for the
OAuth server SSL connection if Identity File Type is of the
Certificate/Private Key type.

Key Password Specifies the password for the private key used for the OAuth server
SSL connection if Identity File Type is of the Certificate/Private Key
type.

Requires
Client
Authentication

Indicates a Boolean flag to enable or disable mutual SSL
authentication for HTTPs transport used for OAuth server requests
from the requestor.

When this field is set to true, the Trusted Certificates Folder
becomes enabled so that you can specify a location containing the list
of trusted certificate authorities.



TIBCO® API Exchange Gateway User Guide

303 | Config UI

Property Description

Truststore
Password

Specifies the password to access the certificate stored in the folder
defined by the Trusted Certificate Folder field.

Trusted
Certificate
Folder

Specifies a folder containing one or more certificates from trusted
certificate authorities, which is required for mutual SSL authentication.

Required when the RequiresClientAuthentication property is set to
true.

Portal Engine Integration Properties

Engine URL Specifies the URL of the portal engine if used as a client. For example,
the engine URL can be specified as follows: http://portal_host_
name:9122

where portal_host_name is the host machine running the portal
engine.

General

WebApps Path l Specifies the location of the OAuth web application.

l Change web.xml file if you want to add custom login page or
access grant page to the OAuth server.

l Do not remove the content of this war file.

OAuth Data Space

Access Token Retention Period

Specifies the expiration time (in minutes) for an access token. The
default value is 60 minutes. When the access token passes expiration
time as specified by this property, it is no longer valid but still remains
in the database.



TIBCO® API Exchange Gateway User Guide

304 | Config UI

Property Description

MetaSpace Name

l Specifies the metaspace name used by the OAuth server.

l The default value is ASG-OAuth-Tokens

Local Discovery URL

Specifies the discovery URL for this OAuth instance of the metaspace
discovers the current metaspace members.

For example, tcp://machine1_IP_Address:6300;machine2_IP_
Address:6300

Local Listen URL

Specifies the listening URL for this OAuth instance of the metaspace.

For example, tcp://machine1_IP_Address:6300

Batch Size

Specifies the maximum number of entries to return when querying the
data such as access token details.

Properties For OAuth Persister

Persister Store

l Defines the type of persistence store. The possible values are:

o InMemory

o Database

l You can select the type of persistence store from a drop-down
list. When the Database is selected, you must define the
properties for database server connection. See Database



TIBCO® API Exchange Gateway User Guide

305 | Config UI

Property Description

Connection Properties for OAuth Persister as DatabaseSet the
properties if the OAuth Persister is selected as Database type. .

Database Connection Properties for OAuth Persister as Database

Set the properties if the OAuth Persister is selected as Database type.

Driver

Specifies the database JDBC driver when Database is used as OAuth
persistence store.

JDBC URL

Specifies the JDBC url for the database server when Database is used
as the OAuth persistence store.

JDBC User Name

Specifies the user name to connect to the database server when
Database is used as the OAuth persistence store.

JDBC Password

Specifies the password of the user to connect to the database server
when Database is used as the OAuth persistence store.

Properties For OAuth Adapters

Resource Path Name

Specifies the directory from where the custom adapters loads the
resources such as properties file used by adapters. This directory
location is relative to the ASG_HOME.

For example, if the value is specified as /examples/OAuth/resources,



TIBCO® API Exchange Gateway User Guide

306 | Config UI

Property Description

the custom adapter looks for the resources such as properties file in
the ASG_HOME/examples/OAuth/resources directory.

Owner Adapter

l Specifies the class that provides the owner adapter interface.
This adapter is used to authenticate the resource owner and
provide the login and access grant pages. See the Owner Service
Provider Interface for details.

For example, for the file based owner adapter interface, the
value is specified as:
com.tibco.asg.oauth.identity.provider.file.OwnerAdapter
Service

l The jar file that contains this adapter implementation must be
placed in a directory in the classpath set in the ASG_
HOME/bin/asg-engine.tra file. See Deploying Custom Adapters
for details.

Client Adapter

l Specifies the class that provides the client adapter interface.
This adapter is used to authenticate the client and to retrieve
the client attributes. See Client Service Provider Interface for
details.

For example, for the file based client adapter interface, the
value is specified as:
com.tibco.asg.oauth.identity.provider.file.ClientAdapte
rService

l The jar file that contains this adapter implementation must be
placed in a directory in the classpath set in the ASG_
HOME/bin/asg-engine.tra file. See Deploying Custom Adapters
for details.



TIBCO® API Exchange Gateway User Guide

307 | Config UI

Property Description

Scope Adapter

l Specifies the class that provides the Scope Adapter interface.
This adapter is used to retrieve the scope description and the
scope from a specific resource for a given owner. See Scope
Service Provider Interface for details.

For example, for the file based scope adapter interface, value is
specified as:

com.tibco.asg.oauth.identity.provider.file.ScopeAdapterServi
ce

l The jar file that contains this adapter implementation must be
placed in a directory in the classpath set in the ASG_
HOME/bin/asg-engine.tra file. See Deploying Custom Adapters
for details.

Portal Engine Integration Properties

Engine URL

Specifies the URL of the portal engine. For example, the engine URL
can be specified as: http://portal_host_name:9122



TIBCO® API Exchange Gateway User Guide

308 | Transaction Pipeline processing

Transaction Pipeline processing
This section describes the full cycle of transaction pipeline processing and the mapping
and transformation capabilities of TIBCO API Exchange Gateway.

TIBCO API Exchange Gateway uses a staged event-driven architecture. TIBCO API Exchange
Gateway supports the processing of the transactions into a set of stages for high
performance.

The types of transaction pipeline processing are:

l Request pipeline processing

l Response pipeline processing

Request Pipeline Processing
The request processing cycle indicates the normal life cycle of the incoming request
message and consists of the following phases. This life cycle assumes that there are no
errors in any of the processing stages.

Processing Order

1. Transport Level Authentication

When the RV module of TIBCO API Exchange Gateway is used with Apache server for
a partner to send a request using the HTTP transport, the first level of authentication
is performed at the Apache server depending on the first part of URI. The
authentication type is configured in the Apache server configuration file as asg_
mod.conf. See Configure the Apache Server for Basic HTTP Authentication for
details.

The following types of authentication are supported:

l No Authentication - This indicates that the request does not have any user
credentials. In this case, the request is processed as an anonymous user.

l Basic Authentication - This indicates that the request has the user credentials.
In this case, the user is authenticated.



TIBCO® API Exchange Gateway User Guide

309 | Transaction Pipeline processing

l Digest Authentication.

l Mutual (SSL) Authentication.

For example, No Authentication is defined as follows:

   <Location / >
   SetHandler asg_rv_inbound_handler
   AsgSubject _LOCAL.asg.north.request
   AsgTimeout 30
   </Location>

For example, No Authentication is defined as follows:

   <Location / >
   SetHandler asg_rv_inbound_handler
   AsgSubject _LOCAL.asg.north.request
   AsgTimeout 30
   </Location>

After the request is processed by Apache server for authentication, the request is
passed to the Core Engine over Rendezvous transport.

Note:
l When the Apache server is used as reverse proxy in front of the

native HTTP channel of the TIBCO API Exchange Gateway, the same
types of authentication can be configured at the Apache Server using
the Apache directives. See Configure Apache HTTP Server as Reverse
Proxy.

l When the native HTTP Channel is used, the HTTP channel can be
configured to provide basic authentication and SSL(Mutual)
authentication. See Enable Facade HTTPS Transport for the SSL
authentication configuration details.

2. Operation Identification

When TIBCO API Exchange Gateway receives a request , the gateway identifies the
operation based on URI and headers of the request. See Operation Identification for
details.

3. Partner Identification



TIBCO® API Exchange Gateway User Guide

310 | Transaction Pipeline processing

After the operation is identified, the partner is identified from the request context
message. See Partner Identification and Partner API Key for details.

4. Request Parsing (Optional)

After the operation and partner are identified from the incoming request, the next
step is to parse the request. The parse step is an optional preprocessing of the
facade request. See Parsing Step for details on the parsing step of request
processing.

5. Authorization

The Core Engine checks if the identified partner is authorized to access the requested
operation. The partner and the associated operation is configured in the Facade
Access under PARTNER tab of the Config UI.

6. Request Message Validation

If the flag for request validation is enabled, the request message is validated for
syntax against XSD for the incoming northbound request message.

7. Facade Throttling

You can enforce the commercial throttles for service level agreements for a partner
request using the facade throttling. Facade Throttling is applied on the partner,
partner group, and partner operations.

After the request reaches this stage in the processing pipeline, how often this partner
can invoke the operation is checked.

8. Forward Northbound Mapping

After the request passes the facade throttle check, the request is processed by the
northbound mapper for any transformations required from the operation request
message to the canonical request message. Whether or not the mapping is required
for this request operation, it is configured using the Request Transform field on the
ROUTING > Facade Operations tab or PARTNER > Facade Access tab.

Note: If a request transform is configured at both places (Facade
Operations and Facade Access), only the Facade Access transform is
executed.

The transformation details are defined in the MAPPING > Mappings tab of the Config
UI.



TIBCO® API Exchange Gateway User Guide

311 | Transaction Pipeline processing

By default, if no mappings are defined, the request message is just copied as the
output request message at this stage.

9. Routing

Based on the operation name and routing key defined in the ROUTING > Routing tab
of the Config UI, the Core Engine determines the target operation endpoint for the
incoming request. See Transaction Pipeline processing for details.

10. Service Throttling

After the name of the southbound service endpoint is derived for the invoked
operation, the service throttling policy is applied. Service throttles are technical
throttles implemented to protect the overuse of the service endpoints.

11. Forward Southbound Mapping

If the service throttle is not violated, the request message is processed by the
southbound mapper for any transformations required from the canonical request
message to the service request message. Whether the mapping is required for this
request operation or not, it is configured using the Request Transform field on the
ROUTING > Target Operations tab. The transformation details are defined in
MAPPING > Mappings tab of the Config UI.

By default, if no mappings are defined, the request message is just copied as the
output request message at this stage.

12. Invoke Southbound Service

This is the final stage where the Core Engine invokes the southbound service for the
requested operation.

Response Pipeline Processing
The response processing cycle indicates the life cycle of the response message and consists
of the following phases:

Processing Order

1. Reverse Southbound Mapping

After the response is received from the southbound service, the response document
is processed for any transformations required from the service response message to



TIBCO® API Exchange Gateway User Guide

312 | Transaction Pipeline processing

the canonical response message. Whether the mapping is required for this request
operation or not, it is configured using the Response Transform Mapping field on
the ROUTING > Target Operations tab. The transformation details are defined in the
Mappings tab of the Config UI.

By default, if no mappings are defined, then the response message is just copied as
the output response message at this stage.

2. Reverse Northbound Mapping

Using the reverse northbound mapping, you can transform the canonical response
message to the northbound response message. Whether or not the mapping is
required for this request operation, it is configured using the Request Transform
field on the ROUTING > Facade Operations tab or PARTNER > Facade Access tab.

Note: If a request transform is configured at both places (Facade
Operations and Facade Access), only the Facade Access transform is
executed.

The transformation details are defined in the Mappings tab of the Config UI.

This mapping can be used for the censor response policy. Using the censor response
policy, you can hide certain fields from the response message so that they are not
exposed to the requestor.

3. Termination

The response message is finally sent back to the original requestor in this stage.

Generate Transaction

After the request and response messages are processed, the Core Engine generates
the events to audit log the transaction details. The Central Logger component
receives the events and logs the transaction details in a database.

Parsing Step
The parsing step can be used to pre-process a facade operation request.

The parse step is an optional preprocessing of the facade request used for both content
validation and for identifying and normalizing control data. Using the parse step you can
enhance the downstream processing by setting or overwriting predefined parameters that
are derived either from the request message content or the request transport context. The
parsing of the request is done using an XSLT- based transformation file configured in the



TIBCO® API Exchange Gateway User Guide

313 | Transaction Pipeline processing

New ProcessBody Transform or ProcessBody Transform field on the ROUTING > Facade
Operations tab of the Config UI.

The transformation (XSLT) file defined in the parsing step is used for the following
purposes:

l Setting a partner identity for the requester that is derived from the payload content
or transport context of the request

l Setting a routing key that is used to identify the route for the request to the
appropriate target operation endpoint

l Enriching the transaction audit trail logging information of the request

l Validating the request content with the ability to set an error code and error message
when a request does not pass the content validation rules

l Setting a metric increment for content-based throttles

l Setting sticky key for load-balancing with StickyResourceAffinity routing algorithm
type.

Set the Partner Identity for Request
Using transformation file to set partner identify for request.

TIBCO API Exchange Gateway supports multiple identity types for identification of the
requester. These identities use different protocol standards to support either transport
level identification or request-based identification. In addition to the standards-based
protocols, TIBCO API Exchange Gateway also provides a way to derive custom identities
from either the payload message of the request or the transport context of the request.

The XSLT transformation file in the parse step can be used to populate the partner identity
for the request. If the partner identity is set by the parse XSLT file, it overrides any other
standards-based identity associated with the request.

When a standards-based identity is associated with the request which gets overridden by
the parse XSLT, the original partner identity is stored as a row in the ASG_TRANSACTION_
KEYS table that is associated with the audit trail log record of the request in the ASG_
TRANSACTIONS table. The override log records or such credential mapping records are
stored with a value of incomingPartner for the key_type column.



TIBCO® API Exchange Gateway User Guide

314 | Transaction Pipeline processing

Set the Routing Key for Request
Using transformation (XSLT) file to set routing key for request.

For a single facade operation, multiple routes can be configured. Each of the routing
configurations map a facade operation to a different target operation or target group.
When multiple routes are configured for a facade operation, the request processing
requires to derive a routing key for that request to determine which of the configured
routes should process the request. When the routing key should be dynamically derived
from the request payload message or the request transport context, the parse step XSLT
can be used to set the routing key for the request. See Transaction Pipeline processing.

Enrich the Audit Trail Log for Request
Using transformation (XSLT) file to enrich the audit trail log data.

You can extract data from the request payload message or the request transport context
and use it to enrich the audit trail logging data that is stored in the Central Logger
database. The parse step XSLT transformation supports the following elements in its
output document to support this function:

l Reference Id

referenceId is a specific element that is used to store an external transaction ID or
reference key for the request. Any value mapped into the referenceId element of the
output document generated by the parse step XSLT transformation is stored in the
TRN_TRANSACTION_ID column of the ASG_TRANSACTIONS table in the Central Logger
database.

l Key

key is a repeatable element in the output document of the parse step XSLT
transformation that can be used in a more generic fashion. It is typically used to
store business keys extracted from the received request. Each populated key element
is stored as a separate row in the ASG_TRANSACTION_KEYS table and includes a foreign
key to the associated row in the main ASG_TRANSACTIONS table of the Central Logger
database. The value of the key element is stored in the KEY_VALUE column.

The key element provides the following attributes:

o @type

o @log



TIBCO® API Exchange Gateway User Guide

315 | Transaction Pipeline processing

@type attribute

When you set a @type attribute for the key element, the @type attribute is stored in the
KEY_TYPE column in the ASG_TRANSACTION_KEYS table.

By using the @type attribute for the key element, users can search for specific audit trial
logging records in the Central Logger database through the business keys from the request
message. This also provides the flexibility to enrich the standard audit trail logging data
with any key, value pair based contextual information without the need for customization
of TIBCO API Exchange Gateway itself.

@log attribute

If you do not want to store the parameters in the Central Logger database, you can use the
@log attribute of the key element. The @log attribute is a Boolean attribute and its value
determines whether this key should be stored in the Central Logger database or not. When
there is no @log attribute set for key elements, a default value of true is set for the key
elements and the key elements are stored as rows in the ASG_TRANSACTION_KEYS table of
the Central Logger database. If you do not want to store the key elements in the database,
set the @log attribute to false.

Logging Request Headers
Using transformation (SLT) file to store the header values from the request .

The BookQueryBE example ships the sample XSLT file to parse the request for
queryBookByAuthor facade operation and store the header values into the database.

To store the header values using the parse_headers.xsl,follow these steps:

Procedure
1. Stop the Config UI server, if running.

2. Navigate to the ASG_CONFIG_HOME/BookQueryBE/xslt directory.

3. Copy the parse_headers.xsl file to ASG_CONFIG_HOME/BookQueryBE/xslt/operations
directory.

4. Start the Config UI server.

5. Login to the Config UI using your credentials.

6. Click BookQueryBE project.



TIBCO® API Exchange Gateway User Guide

316 | Transaction Pipeline processing

7. Select ROUTING > Facade Operations tab.

8. Select queryBookByAuthor operation.

9. Select operations/parse_headers.xsl from the drop-down list in the ProcessBody
Transform field.

10. Save changes to the configuration.

Sample XSLT
Refer to the following sample XSLT to store the headers of the request message:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:f="http://www.tibco.com/asg/content-types/form"
xmlns:c="http://www.tibco.com/schemas/asg/context"
xmlns:h="http://www.tibco.com/asg/protocols/http"
xmlns:form="http://www.tibco.com/asg/functions/form" exclude-result-
prefixes="xsl h c f form">
<xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"
omit-xml-declaration="no"/>
<xsl:variable name="context">
<xsl:for-each select="/transformation/context">
   <xsl:copy-of select="document(@href)"/>
</xsl:for-each>
</xsl:variable>
<xsl:variable name="httpRequest">
<xsl:copy-of select="$context/c:context/c:entry
[@key='asg:httpRequest']/h:request"/>
</xsl:variable>
   <xsl:variable name="request-uri">
   <xsl:copy-of select="$httpRequest/h:request/h:request-uri"/>
   </xsl:variable>
   <xsl:template match="/">
   <output>
   <key type="requestURI" log="true">
     <xsl:copy-of select="normalize-space($request-uri)"/>
   </key>
   <key type="clientIP" log="true">
   <xsl:choose>
   <xsl:when    test="$httpRequest/h:request/h:header[lower-case
(@name)='x-forw   arded-for']">
   <xsl:value-of    select="$httpRequest/h:request/h:header[lower-case
(@name)='x-fo   rwarded-for']"/>



TIBCO® API Exchange Gateway User Guide

317 | Transaction Pipeline processing

   </xsl:when>
   <xsl:otherwise>
     <xsl:value-of select="$httpRequest/h:request/h:client-ip"/>
   </xsl:otherwise>
   </xsl:choose>
   </key>
   <xsl:for-each select="$httpRequest/h:request/h:header">
   <xsl:variable name="hdr_name" select="@name"/>
   <xsl:if test="lower-case($hdr_name)='host'">
     <key type="host" log="true">
     <xsl:value-of select="."/>
     </key>
   </xsl:if>
   <xsl:if test="lower-case($hdr_name)='apikey'">
     <key type="apikey" log="true">
     <xsl:value-of select="."/>
     </key>
   </xsl:if>
   <xsl:if test="lower-case($hdr_name)='referer'">
     <key type="referer" log="true">
     <xsl:value-of select="."/>
     </key>
   </xsl:if>
   <xsl:if test="lower-case($hdr_name)='user-agent'">
     <key type="useragent" log="true">
     <xsl:value-of select="."/>
     </key>
   </xsl:if>
</xsl:for-each>
   </output>
   </xsl:template>
   </xsl:stylesheet>

Note: You can use the key elements populated by the parse step XSLT
transformation to pass parameters to custom policies, which can be developed
leveraging the custom extension mechanism. The SampleStage custom
extension in the ASGDefaultImplementation project uses the key elements.

Validate the Request Content
Using transformation (XSLT) file to validate the request content.

You can use XPath expressions in the parse step XSLT transformation. Using the XPath
expressions, you can apply content validation logic to the request payload message. When



TIBCO® API Exchange Gateway User Guide

318 | Transaction Pipeline processing

the request fails a validation check, an appropriate error code and associated error
message can be set in the parse step XSLT transformation.

If the parse step XSLT transformation returns an error code, the transaction is terminated
and an error response is generated and returned to the client. This functionality allows
users to create parse XSLT to return the error codes and descriptions that are expected by
the API of which it is a part. Then if an error XSLT is configured for the operation it is
called, and any API-specific error document can be created.

Set Metric Increment for Content-Based Throttles
Using transformation(XSLT) file to set the metricContent for content-based throttles.

TIBCO API Exchange Gateway supports the notion of content-based throttles, by extending
a throttle configuration with a monitor. You can define a content-based metric increment
counter using the throttle configuration.

Using the content-based throttles, you can define custom throttle policies. The custom
throttle policies enforce the API usage controls on business metric such as order amounts.
When a throttle configuration has been extended with a monitor definition, it uses the
parse step XSLT transformation at run time. The parse step XSLT transformation maps the
business metric containing element from the request payload message to a throttle
monitor specific element in the output document generated by the parse step XSLT
transformation.

To support the content-based throttle extension mechanism for multiple throttle
definitions on a request's throttle chain, the monitor element is defined as a repeatable
element in the output document of the parse step XSLT transformation. The monitor
element itself is a node element that contains two elements which need to be defined
when setting the content-based throttle metric increment. The first element of the monitor
node element is the metric name element that must contain the throttle name to which
the content-based metric counter increment must be applied. The second element of the
monitor node element is the metric increment that contains the actual counter increment
that has been derived from the request message payload and needs to be applied to the
throttle.

For more information on how to configure and use content-based throttles, see Content
Based Throttles section.



TIBCO® API Exchange Gateway User Guide

319 | Transaction Pipeline processing

Set Sticky Key for Load-Balancing with StickyResourceAffinity
Using transformation (XSLT) file to set sticky key.

TIBCO API Exchange Gateway supports multiple load-balancing policy types for target
operations that are grouped within a target group. When a load-balancing policy with
StickyResourceAffinity is configured for a target group, a parse step XSLT transformation is
used to derive the sticky key from the request payload message or request transport
context. The output document as generated by the parse step XSLT transformation
contains a stickyRoutingKey element that needs to be set to associate a sticky routing key
to the request for further processing.

For more information on how to configure and use load-balancing policies for target
groups with StickyResourceAffinity, see StickyResourceAffinity Target Operation Group
Configuration.

Overriding HTTP Headers
Use southbound forward mapping to overwrite the HTTP headers of a facade operation
request.

To overwrite the host, port, and URI and any other header fields, enable the southbound
forward mapping for a target operation, as follows:

Procedure
1. Create the XSLT file, such as pass-through.xsl. Refer to the Save the changes to your

project. to override the fields in the request message.

2. Copy the XSLT file (pass-through.xsl) to the ASG_CONFIG_HOME/ASG_Project/xslt
directory.

3. Click on MAPPING > Mapping tab.

4. Click the Add Property icon.

5. Enter the parameters as follows:

Parameter Description

Mapping Enter a name for the mapping. For example, pass-through-map.

Mapping Configuration to Upload XSLT File



TIBCO® API Exchange Gateway User Guide

320 | Transaction Pipeline processing

Parameter Description

Name

Type Select XSLT from the drop-down list.

New File Select the XSLT file. For example, pass-through.xsl.

Existing Files Select the XSLT file (pass-through.xsl) from the drop-down list, if
the XSLT is located in the ASG_CONFIG_HOME/ASG_Project/xslt
directory.

Response
Type

Select Full from the drop-down list.

6. Save the changes to your project.

7. Click the PARTNER > Target Operations tab.

8. Click the Add Property icon.

9. Configure forward mapping for the target operation as follows:

l Select the mapping, such as pass-through-map in the Request Transform field.

10. Save the changes to your project.

Sample XSLT File
The following is an example XSLT to override the host, port, and URI :

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet

version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:map="http://www.tibco.com/asg/mapping"
xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
xmlns:soap11="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:form="http://www.tibco.com/asg/functions/form"
xmlns:c="http://www.tibco.com/schemas/asg/context"
xmlns:h="http://www.tibco.com/asg/protocols/http"
xmlns:f="http://www.tibco.com/asg/content-types/form"
xmlns:codecs="http://www.tibco.com/asg/functions/codecs"



TIBCO® API Exchange Gateway User Guide

321 | Transaction Pipeline processing

exclude-result-prefixes="xsl soap11 c h form codecs">
<xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"
omit-xml-declaration="no"/>
<xsl:variable name="cnRequestHref">

<xsl:value-of select="/transformation/cnRequest/@href"/>
</xsl:variable>
<xsl:variable name="context">
<c:context>
<xsl:for-each select="/transformation/context">
<xsl:copy-of select="document(@href)/c:context/*"/>

</xsl:for-each>
</c:context>

</xsl:variable>
<xsl:variable name="recdRequest">

<xsl:copy-of select="$context/c:context/c:entry
[@key='asg:httpRequest']/h:request"/>
</xsl:variable>
<xsl:template match="/">
<map:mapping-result>
<map:context>
<c:context>
<xsl:for-each select="$recdRequest/h:request/h:header">

<xsl:variable name="hdr_name" select="@name"/>
<xsl:if test="lower-case($hdr_name)!='accept-encoding'">
<xsl:element name="h:override-header">
<xsl:attribute name="name"><xsl:value-of select="$hdr_

name"/></xsl:attribute>
<xsl:value-of select="."/>

</xsl:element>
</xsl:if>

</xsl:for-each>
<h:override-header name="Accept-Encoding">identity</h:override-

header>
<xsl:choose>
<xsl:when test="string-length($recdRequest/h:request/h:query-

string)>0">
<h:override-URI><xsl:value-of select="concat

($recdRequest/h:request/h:request-
uri,'?',$recdRequest/h:request/h:query-string)"/></h:override-URI>

</xsl:when>
<xsl:otherwise>

<h:override-URI><xsl:value-of
select="$recdRequest/h:request/h:request-uri"/></h:override-URI>

</xsl:otherwise>
</xsl:choose>
<h:override-method><xsl:value-of

select="$recdRequest/h:request/h:method"/></h:override-method>



TIBCO® API Exchange Gateway User Guide

322 | Transaction Pipeline processing

</c:context>
</map:context>
<map:payload-xml><root><xsl:value-of

select="$recdRequest/h:request/h:body"/></root></map:payload-xml>
</map:mapping-result>

</xsl:template>
</xsl:stylesheet>

Note: For non-XML payloads, use the isBinary attribute. For example:

<map:payload isBinary="true"><xsl:value-of
select="$recdRequest/h:request/h:body"/></map:payload>

Parsing XSLT Documents
Structure of XSLT document.

The XLST transformation file used in the parse step of request processing has a predefined
input document as well as a predefined output document.

Input Document

The input document used by the XSLT transformation file of the parse step has the same
structure as the input document used by the other mapping and transformation steps in
TIBCO API Exchange Gateway. The structure of this generic transformation and mapping
input document in the Mapping Schemas section.

Output Document

The output document is unique for the XSLT transformation file of the parse step as it
supports the specific behavior of TIBCO API Exchange Gateway.

The table Elements and Attributes of Parsing Output Document describes the elements and
attributes of output document used for the parsing step. See Parsing Output Document
Schema:



TIBCO® API Exchange Gateway User Guide

323 | Transaction Pipeline processing

XML Node Type Required Description

/output Sequence of
Complex
Type

Yes Root element for the
document.

/output/requester String No This value is stored in the
RequestorId attribute of
the TIBCO API Exchange
Gateway transaction
object.

This is currently not
used.

/output/serviceInterface /Version String No This value is stored in the
ServiceInterfaceVersion
attribute of the TIBCO
API Exchange Gateway
transaction object.

This is currently not
used.

/output/referenceId String No The value in this field is
stored by the Central
Logger in the TRN_
TRANSACTION_ID column
of the main ASG_
TRANSACTIONS table. It
may be used to store an
external transaction ID or
reference key that is
extracted from the
payload message of the
received request.

/output/serviceId String No This is currently not
used.

Elements and Attributes of Parsing Output Document



TIBCO® API Exchange Gateway User Guide

324 | Transaction Pipeline processing

XML Node Type Required Description

/output/timestamp String No This is currently not
used.

/output/correlationId String No This is currently not
used.

/output/identityId String No This is currently not
used.

/output/opCoId String No This value is stored in the
OpCo attribute of the
TIBCO API Exchange
Gateway transaction
object.

This is currently not
used.

/output/partnerId String No This element is used to
perform content-based
identity mapping for the
requester. It must
contain the partner name
as configured in the
Config UI.

/output/routingKey String No If routingKey element is
present, its value is used
to set the routing key for
the request to determine
which target operation or
target group the request
should be routed to.

/output/stickyRoutingKey String No This element is used to
set the sticky key for a
request for a load-
balancing policy with



TIBCO® API Exchange Gateway User Guide

325 | Transaction Pipeline processing

XML Node Type Required Description

StickyResourceAffinity
target operation type.

/output/monitor Sequence of
Complex
Type

No This is a node element
for defining a content-
based throttle monitor
configuration.

/output/monitor/metricName String Yes Specifies a throttle name
for which a content-
based counter increment
needs to be set.

/output/monitor/metricIncrement Integer Yes Specifies content-based
counter increment value
that is applied to the
throttle as defined in the
metricName element of
the monitor.

/output/key String No This is a repeating
element that may be
used to store business
keys extracted from the
received request. The
keys can be accessed by
custom extensions and
are also logged to the
transaction database by
the Central Logger
component.

/output/key@type String No Specifies the key used to
store the contextual
information in the
Central Logger database.
Its value is stored in the



TIBCO® API Exchange Gateway User Guide

326 | Transaction Pipeline processing

XML Node Type Required Description

KEY_TYPE column of the
ASG_TRANSACTION_KEYS
table.

/output/key@log Boolean No l This is a Boolean
field used to
suppress the
logging of a key in
the Central Logger
database. This
attribute is useful
when the key is
used to pass
parameters to
custom policies
that are not
required to be
logged.

l The default value is
True, including
when you omit the
attribute and do
not set it.

l This is applicable
when you set the
value to False.

/output/tns:context Complex
Type

No This is currently not
used.

/output/errorCode String Yes l If the parse step
returns an
errorCode, further
processing of the
request is
terminated and the



TIBCO® API Exchange Gateway User Guide

327 | Transaction Pipeline processing

XML Node Type Required Description

response is
generated by the
fault mapper. If
this value is
registered in the
Error Maps of the
Config UI and a
FaultReport XSLT
is defined on the
Facade Operation
tab, the mapping
succeeds.
Otherwise a default
value of 1001 is
used.

l Use of the
errorCode and
errorMessage
elements are
mutually exclusive
with the other
elements in the
output document
of the parse step
XSLT
transformation.

/output/errorMessage String Yes Specifies the detailed
error description, which
indicates that the
validation check has
been violated.

Parsing Output Document Schema
The following is the schema for the output document used for parsing step:



TIBCO® API Exchange Gateway User Guide

328 | Transaction Pipeline processing

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.tibco.com/schemas/asgMapping/Schema.xsd2"
xmlns:tns="http://www.tibco.com/schemas/asg/context"
targetNamespace="http://www.tibco.com/schemas/asgMapping/Schema.xsd2"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:annotation>
<xs:documentation>This schema describes the structure of the XML

document that should be returned from the ActiveMatrix Service Gateway's
"parse" step</xs:documentation>

</xs:annotation>
<xs:import namespace="http://www.tibco.com/schemas/asg/context"

schemaLocation="context.xsd" />
<xs:element name="output">

<xs:complexType>
<xs:choice>

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:choice minOccurs="0">

<xs:element ref="requester" minOccurs="0" />
<xs:element ref="serviceInterfaceVersion"

minOccurs="0" />
<xs:element ref="referenceId" minOccurs="0" />
<xs:element ref="serviceId" minOccurs="0" />
<xs:element ref="timestamp" minOccurs="0" />
<xs:element ref="correlationId" minOccurs="0" />
<xs:element ref="identityId" minOccurs="0" />
<xs:element ref="opCoId" minOccurs="0" />
<xs:element ref="partnerId" minOccurs="0" />
<xs:element ref="routingKey" minOccurs="0" />
<xs:element ref="stickyRoutingKey" minOccurs="0"

/>
<xs:element ref="monitor" minOccurs="0"

maxOccurs="unbounded" />
<xs:element ref="key" minOccurs="0"

maxOccurs="unbounded" />
<xs:element ref="tns:context" />

</xs:choice>
</xs:sequence>
<xs:sequence>

<xs:element ref="errorCode" />
<xs:element ref="errorMessage" />

</xs:sequence>
</xs:choice>

</xs:complexType>
</xs:element>
<xs:element name="requester" type="xs:string">

<xs:annotation>



TIBCO® API Exchange Gateway User Guide

329 | Transaction Pipeline processing

<xs:documentation>This value is stored in the RequestorId
attribute of the API Exchange Gateway transaction object. This is
currently not used. </xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="serviceInterfaceVersion" type="xs:string">

<xs:annotation>
<xs:documentation>This value is stored in the Service-

InterfaceVersion attribute of the API Exchange Gateway transaction
object. This is currently not used.</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="referenceId" type="xs:string">

<xs:annotation>
<xs:documentation>TThe value stored in this field will be

stored by the Central Logger in the TRN_TRANSACTION_ID column of the
main ASG_TRANSACTIONS table. It may be used to store an external
transaction id or reference key that is extracted from the payload
message of the received request.

</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name="serviceId" type="xs:string">

<xs:annotation>
<xs:documentation>Currently not used</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="timestamp" type="xs:string">

<xs:annotation>
<xs:documentation>Currently not used</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="correlationId" type="xs:string">

<xs:annotation>
<xs:documentation>Currently not used</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="identityId" type="xs:string">

<xs:annotation>
<xs:documentation>Currently not used</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="opCoId" type="xs:string">

<xs:annotation>
<xs:documentation>This value is stored in the OpCo attribute

of the API Exchange Gateway transaction object. This is currently not
used.</xs:documentation>



TIBCO® API Exchange Gateway User Guide

330 | Transaction Pipeline processing

</xs:annotation>
</xs:element>
<xs:element name="partnerId" type="xs:string">

<xs:annotation>
<xs:documentation>This element is used to perform content

based identity mapping for the requester. It must contain the partner
name as configured in the Configuration UI. The original partner id will
be stored as an adress element with type "incomingPartner" so that the
data will be logged to the central logger.

</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name="routingKey" type="xs:string">

<xs:annotation>
<xs:documentation>f this element is present it's value will

be used to set the routing key for the request to determine which target
operation or target group the request should be routed
to.</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="stickyRoutingKey" type="xs:string">

<xs:annotation>
<xs:documentation>This element is used to set the sticky key

for a request for which a load-balancing policy with
StickyResourceAffinity.</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="monitor">

<xs:annotation>
<xs:documentation>Node element for defining content based

throttle monitor configuration.
</xs:documentation>

</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element ref="metricName" />
<xs:element ref="metricIncrement" />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="metricName" type="xs:string">

<xs:annotation>
<xs:documentation>Throttle name for which a content based

counter increment needs to be set.</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name="metricIncrement" type="xs:int">



TIBCO® API Exchange Gateway User Guide

331 | Transaction Pipeline processing

<xs:annotation>
<xs:documentation>Content based counter increment value that

will be applied to the throttle as defined in the metricName
element.</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="key">

<xs:annotation>
<xs:documentation>This element may be used to store business

keys extracted from the received request. These can be accessed by
custom extensions and are also logged to the transaction DB by the
CentralLogger.</xs:documentation>

</xs:annotation>
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string">
<xs:annotation>

<xs:documentation>The key used to store the
contextual information in the Central Logger database, Its value will be
stored in the KEY_TYPE column of the ASG_TRANSACTION_KEYS
table.</xs:documentation>

</xs:annotation>
</xs:attribute>
<xs:attribute name="log" type="xs:boolean">

<xs:annotation>
<xs:documentation>Switch to suppress logging

of a key in the Central Logger database. The default value is True,
including when you omit the attribute, as such its only impact is when
you set it to False.This is useful when key is used to pass parameters
to custom policies that don’t need to be logged.

</xs:documentation>
</xs:annotation>

</xs:attribute>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>
<xs:element name="errorCode" type="xs:string">

<xs:annotation>
<xs:documentation>If the parse step returns an errorCode

then the further processing of the request is terminated and the
response is generated by the fault mapper. If this value is registered
in ASG's "Error Maps" and a "FaultReport XSLT" is defined on the
Operation then the mapping will succeed. Otherwise a default value of
1001 will be used.</xs:documentation>

</xs:annotation>



TIBCO® API Exchange Gateway User Guide

332 | Transaction Pipeline processing

</xs:element>
<xs:element name="errorMessage" type="xs:string">

<xs:annotation>
<xs:documentation>The detailed error

description</xs:documentation>
</xs:annotation>

</xs:element>
</xs:schema>

Note: Overriding headers at parse step is not supported.

Mappings and Transformations
TIBCO API Exchange Gateway provides message transformations using the mappings. Using
the mappings, you can map the gateway endpoint operation request and response
messages to the gateway reference operation request and response messages with another
format. The mapping capabilities of TIBCO API Exchange Gateway allows you to decouple
the northbound operations interface and southbound services interface by providing a
mutual common canonical message format between the operations interface and services
interface.

TIBCO API Exchange Gateway supports mappings at various levels and reduces the number
of point-to-point mappings between gateway endpoint operations (exposed by the
gateway) and gateway reference operations (service clients of the gateway that invoke
internal service operations).

TIBCO API Exchange Gateway provides the transformation of request and response
messages at the following four points:

l Facade Request Handler to Router Boundary

After the request has been received by the Facade Request Handler and before it is
been passed to the Router

l Router to Service Endpoint Handler Boundary

After the request has been routed, but before it is passed to the Service Endpoint
Handler.

l Service Endpoint Handler to Router Boundary

After a response has been received from the Service Endpoint Handler, and before it



TIBCO® API Exchange Gateway User Guide

333 | Transaction Pipeline processing

is passed to the Router

l Router to Facade Request Handler

After the response has been routed from the Router to the Facade Request Handler,
and before the response is sent back to the original requestor

You can do the following actions using the mapping transformations:

l Access the multiple versions and formats of service APIs

l Add semantic content validation rules to the incoming requests

l Access the fields from the request context and payload

l Change the routing of request and response messages based on error handling in
case of message validation failures

l Protect the service end-points using service validation policies

TIBCO API Exchange Gateway supports the transformations of both request and response
messages as follows:

l Forward mapping - The transformations are done from request canonical form to
back-end service API as per defined mapping

l Reverse mapping - The transformations are done from the back-end service API to
the response canonical form as per defined mapping

The mapper of TIBCO API Exchange Gateway provides the six different versions of
documents as follows:

l Northbound request message

l Canonical request message

l Southbound request message

l Southbound response message

l Canonical response message

l Nouthbound response message

TIBCO API Exchange Gateway supports mapping at both northbound and southbound
sides.

Northbound Mapping

Using the northbound mapping, you can map as follows:



TIBCO® API Exchange Gateway User Guide

334 | Transaction Pipeline processing

l Map northbound request message to canonical request

l Map canonical response to northbound response message

l Map errors to northbound fault response

Northbound mapping configuration is defined in ROUTING > Facade Operations and
PARTNER > Partner Operations tab of the Config UI.

Southbound Mapping

Using the southbound mapping, you can map as follows:

l Map canonical request to southbound request message

l Map southbound response message to canonical response

Southbound mapping configuration is defined in ROUTING > Target Operations tab of the
Config UI.

Mapping Types
The following types of mapping are supported:

Rendezvous (RV) Mapping

Using the Rendezvous mapping, you can access an external mapping handler as a service
using Rendezvous. Rendezvous starter process that calls service endpoint handler and
listens to the matched requested subject must exist.

Rendezvous mapping provides external processes to execute mappings between
corresponding but not compatible APIs. This provides a set of services called Rendezvous
messages that transform the given input messages to other messages. The Core Engine
calls the mappers services whenever it transforms messages between the northbound,
canonical, and southbound form.

XSLT Mapping

XSLT mapping describes embedded mapping transformation. The transformation of the
request and response documents are done according to the XSLT files defined in the
mappings configuration. This can be defined for both forward and reverse mappings. See
Transformations (XSLT Mapping) for details.



TIBCO® API Exchange Gateway User Guide

335 | Transaction Pipeline processing

Mapping Configuration
Using the Config UI, you can add the mapping configuration for the northbound and
southbound request messages (gateway operation endpoint) as well as southbound
response and northbound response messages (gateway reference endpoint).

This section explains the steps to configure mappings for the gateway endpoint operation
and the gateway service endpoint.

Rendezvous Mapping Type
Configuring Rendezvous Mapping Type.

Procedure
1. Start the GUI, if not already started. See Starting GUI for details.

2. Click the MAPPING > Mapping tab for a project.

3. Type the parameters, as follows:

Parameter Description

Mapping Name The name of mapping

Type RV (select from the drop-down list.)

Subject Specifies the RV subject to send the mapping request to

Transformation
Name

The transformation to perform on the message. If it is default, the
transformation is determined by mpSubject. Other values force
specific transformation.

RV Mapping Type Configuration

XSLT Mapping Type
Configuring XSLT Mapping Type.

Procedure
1. Start the GUI, if not already started. See Starting GUI for details.



TIBCO® API Exchange Gateway User Guide

336 | Transaction Pipeline processing

2. Click the MAPPING > Mapping tab for a project.

3. Type the parameters, as follows:

Parameter Description

Mapping
Name

The name of mapping.

Type XSLT (select from the drop-down list).

New File The file name containing the transformations (XSLT file).

Existing Files The file name containing the transformations (XSLT file).

Response
Type

The output type from the transformation. This can have the following
values:

l Payload: the output document from the transformation contains
just the payload.

l Full: the output document from the transformation contains both
the request context and the payload.

<Details> (Payload | Full)

XSLT Mapping Type Configuration

Assign to the Gateway Operation Endpoint
Selecting a mapping for a facade operation.

After the mappings are registered, they are assigned to the gateway operation endpoint for
forward and reverse mappings to be performed for request operations. The transformation
can be applied at only one level for a given facade operation. If applied at both levels, the
facade operation transformation takes precedence over facade access transformation. They
are defined in the Facade Operations and Facade Access tab of the GUI. See Facade
Operations and Facade Access.

Assign to the Gateway Reference Endpoint
Selecting a mapping for a target operation.



TIBCO® API Exchange Gateway User Guide

337 | Transaction Pipeline processing

After the mappings are registered, they are assigned to the gateway operation endpoint for
forward and reverse mappings to be performed for request operations.They are defined in
the Target Operations tab of the GUI. See Adding a New Target Operation.

Transformations (XSLT Mapping)
Response type for transformations.

To define the XSLT mapping for facade or target request and response messages, files are
defined in the Mapping tab of the Config UI. See XSLT Mapping Type.

For the XSLT mapping, the Response Type indicates the output of the transformations,
which can be as follows:

Payload

If the Response Type is specified as Payload, the output document of the transformation
contains just the payload and is used as the request payload for the next stage in the
request pipeline processing.

The output document of the mapping transformation either becomes a canonical request
or a southbound request, just depending on where you are in the request processing
pipeline.

For example, the output document from the northbound forward mapping is a payload
XML document. This becomes the canonical request and is populated as the input for the
southbound forward mapping.

Full

If the Response Type is specified as Full, you can access additional fields from the
transaction object. The main field is the request context field which contains the HTTP
headers information, URI, user name, and other authentication fields.

This provides the mapping and transformations of the full transaction (request) object. The
transaction context contains the header information and the payload. After the
transformation is done, the Core Engine processes the request as follows:

l The value of the transaction context is replaced by the output document from the
transformation.

l The payload is extracted from the transaction context and is used for the next stage
in the request pipeline processing.



TIBCO® API Exchange Gateway User Guide

338 | Transaction Pipeline processing

You can do the following using the Response Type as Full transformation:

l Map and update the document with additional fields available in the request context
(HTTP headers, JMS headers, and so on).

l Set error code for content validation.

l Create documents for enumeration orchestration.

The following is an example XSLT of a northbound request transformation:

<xsl:variable name="nbRequestHref">
<xsl:value-of select="/transformation/nbRequest/@href" />

</xsl:variable>
<xsl:variable name="nbRequest">

<xsl:copy-of select="document($nbRequestHref)/*" />
</xsl:variable>
<xsl:variable name="RequestParam">

<xsl:value-of select="$nbRequest//book:Request" />
</xsl:variable>
<xsl:template match="/">

<map:mapping-result>
<map:context>

<c:context>
<c:entry key="asg:httpRequest">

<h:override-URI>
<xsl:value-of select="concat

('/Books/BookOperations/Title/',
$RequestParam)" />

</h:override-URI>
</c:entry>
<c:entry key="http:override">

<h:override-header
name="accept">application/xml</h:override-header>

<h:override-header name="content-
type">application/xml</h:override-header>

</c:entry>
</c:context>

</map:context>
<map:payload-xml>

<html/>
</map:payload-xml>

</map:mapping-result>
</xsl:template>

The template includes the following elements:



TIBCO® API Exchange Gateway User Guide

339 | Transaction Pipeline processing

l nbRequestHref - This element represents northbound request href attribute

l nbRequest - This element represents the northbound request payload.

l RequestParam - This element represents request parameters

The following functionality is implemented using the Full Response Type of mapping
transformation capability:

Set error codes for content validation
With the mapping transformation with Response Type as Full, you can set the error code
when the validation of the contents fails. The output of the transformation is a document
which contains the updated transaction object with the error code.

For example, in case of extra validation of requests like semantic validation using XPath, it
sets the error code if it fails. With the Full mapping type, the error code is updated in the
transaction object. The request message processing follows the error handler path in the
request processing pipeline, and is sent back to the original requester with the error
message. See Implementing Request Validation.

Validation
Using the validation feature, you can do the schema validation against XSD for an incoming
request message. Request validation is performed during the request parsing step and after
the authorization step in the request processing pipeline.

Enabling Validation

Procedure
1. Set Operation Features for the Operation

In the ROUTING > Facade Operations tab of the Config UI, set the Operation
Features parameter as follows:

Operation Features Validation

2. Configure Schema

In the MAPPING > Schemas tab of the Config UI, set the XSD file reference as follows:

New XSD Filelocation of the XSD file



TIBCO® API Exchange Gateway User Guide

340 | Transaction Pipeline processing

Implementing Request Validation
Validation of requests is supported for the following stages:

l Request Parsing

The request message can be validated at the request parsing stage. The following
elements exist in the schema for the output message to be used by the Parse XSLT:

<errorCode> <errorMessage>

If errorCode is set, the request is handled by the error processing path of the
processing pipeline. An error XSLT, as defined, for the operation generates an error
response message by executing the FaultReportXSLT that is defined for the
operation. The request is rejected with the error message sent back as the response
to the request.

l Mapping and Transformation Stage

Extended request or response validation can be implemented at any of the four
mapping steps. If the message does not pass the validation rules, an error message is
constructed and returned in the message.

To set an Error Code in the transformation step, follow these steps:

l Include the following name spaces in the XSLT

xmlns:map="http://www.tibco.com/asg/mapping"
xmlns:err="http://www.tibco.com/schemas/asg/error"

l With these namespaces, use the following elements in the output message of the
mapper:

<map:mapping-result>
<map:error>

l Within "http://www.tibco.com/schemas/asg/error" namespace, use the following
error elements to set error code and message details:

<errorCode>
<errorMessage>
<errorBody>
<errorDetails>



TIBCO® API Exchange Gateway User Guide

341 | Transaction Pipeline processing

<nestedError>
</errorDetails>

With the mapping registered as Full mode, if an error element within the registered
namespaces is found in the output message, the error attributes for the request object are
set with the corresponding values in the elements from the /schemas/asg/error schema
from the output message.

This instructs the Core Engine to follow the error handling path of the processing pipeline.
An error XSLT, as defined, for the operation generates an error message. The request is
rejected and the error message is sent back as the request response.

In the Parsing step, you can only set the errorCode and errorMessage.

In any of the four mapping steps, you can return four error elements: errorCode,
errorMessage, and additional elements as errorBody and errorDetails. In case, if
errorCode and errorMessage are only set, then the request processing is handled in same
way as in the parse step. Using the additional elements, errorBody and errorDetails
elements you can construct the actual error response message for the request, which can
override the creation of error message by the FaultReportXSLT. This helps to speed up
processing as no second XSLT action has to be executed.

Map the Protocol Headers in Request Context
You can transform the protocol headers within the request and response messages, which
includes the transport related information.

Use the responseType as Full to access the request context field. The request context field
contains the transport level information and is available for any transformations. The
request context field is used for the following purposes:

l Map the transport header properties and pass it to the next stage in request
processing pipeline.

l Set the transport header properties. For example, when the JMS transport is used as
the channel for incoming request, the JMS priority property can be set based on the
XPATH value received in a request.

The following example shows how to convert the JMS message element to HTTP header:

<xsl:template match="/">
<map:mapping-result>



TIBCO® API Exchange Gateway User Guide

342 | Transaction Pipeline processing

<map:context>
<c:context>

<c:entry key="asg:httpResponse">
<h:response>
<h:status-code>200</h:status-code>
<h:header name="X-Powered-By">Servlet/2.5

JSP/2.1</h:header>
<h:header name="Content-Type">
<xsl:value-of select="concat($sbContentType,'; start-

info=text/xml')"/>
</h:header>
<h:body>
<xsl:value-of select="$jmsResponse/k:body"/>

</h:body>
</h:response>

</c:entry>
</c:context>

</map:context>
</map:mapping-result>

</xsl:template>

Enumeration Orchestration
Enumeration Orchestration is implemented using the mapping capability of TIBCO API
Exchange Gateway.

With parallel orchestration, a single inbound request is split into a set of multiple outbound
sub-requests. Each sub-request might be routed differently to various service endpoints.
After processing and receiving the responses for each sub-requests, all responses are
recombined into a single response message for the original inbound request.

Define the transformations for the northbound request forward mapping in such a way that
the output document contains the sequence that defines the enumeration orchestration.
This output document from this transformation serves as an input for the southbound
forward request mapping. This contains the <asg_map:repeat> tag for enumeration and
instructs the Core Engine to split the requests.

Enumeration orchestration is done at the southbound forward mapping meaning that one
payload is split into multiple sub-requests independently. It also allows you to override the
routing key. For each sub-request, the routing key can be defined so that each sub-request
is forwarded to a separate service endpoint. Enumeration orchestration modifies the
routing of sub-requests to a different service at the southbound forward mapping
boundary.



TIBCO® API Exchange Gateway User Guide

343 | Transaction Pipeline processing

The following example shows the snippet of forward southbound mapping transformation
for enumeration orchestration:

<asg_map:repeat>
<asg_map:payload-xml>

<asg_map:mapping-result>
<asg_map:routingKey>getbookbyAuthor_AAA.HTTP</asg_map:routingKey>
<asg_map:payload>

<SOAP-ENV:Envelope>
<SOAP-ENV:Body>

<...>
<..>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

</asg_map:payload>
</asg_map:mapping-result>

</asg_map:payload-xml>
<asg_map:payload-xml>

<asg_map:mapping-result>
<asg_map:routingKey>getbookbyTitle_BBB.JMS</asg_map:routingKey>
<asg_map:payload>

<SOAP-ENV:Envelope>
<SOAP-ENV:Body>

<...>
<...>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

</asg_map:payload
</asg_map:mapping-result>

</asg_map:payload-xml>
</asg_map:repeat>

For example, GetLocation is a service which finds the location for a single service. This
service can be exposed as a service to find location for a group of services. This means that
the gateway has to map one request to multiple requests per service. For this case, the
payload in the operation request contains a sequence of multiple requests which has to be
spilt and sent individually to each service endpoint.

Re-combination of Response Documents

Transformations are defined at the southbound reverse response mapper boundary to
rejoin the multiple response documents for each sub-request into a single response
document.



TIBCO® API Exchange Gateway User Guide

344 | Transaction Pipeline processing

Response Transformation
Use the following tag in your reverse northbound mapping to apply transformations to a
response before sending it out.

Use reverse northbound mapping to apply transformations to a response before sending it
out. As an example, you can add a status code by specifying the following element in the
mapping file:

<h:status-code>....</h:status-code>

Mapping Schemas
This section lists the schemas for the transformation (XSLT) files.

Mapping Container
The input document to the XSLT file for XSLT transformations is described by the following
schema(XSD):

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="unqualified" attributeFormDefault="unqualified">

<xs:element name="transformation" type="transformationType" />
<xs:complexType name="transformationType">

<xs:sequence>
<xs:element name="nbRequest" type="stageType" minOccurs="0"

/>
<xs:element name="cnRequest" type="stageType" minOccurs="0"

/>
<xs:element name="sbRequest" type="stageType" minOccurs="0"

maxOccurs="unbounded" />
<xs:element name="sbResponse" type="stageType" minOccurs="0"

maxOccurs="unbounded" />
<xs:element name="cnResponse" type="stageType" minOccurs="0"

/>
<xs:element name="nbResponse" type="stageType" minOccurs="0"

/>
<xs:element name="context" type="stageType" minOccurs="0" />

</xs:sequence>
</xs:complexType>



TIBCO® API Exchange Gateway User Guide

345 | Transaction Pipeline processing

<xs:complexType name="stageType">
<xs:attribute name="href" type="xs:string" />

</xs:complexType>
</xs:schema>

The request payloads and the request context is passed to the XSLT as a map, keyed using
the values of the “href” attribute for each element. In order to access the actual payload, it
is necessary to load it using the document() function.

The schemas contains the following elements:

l nbRequest – This element represents the northbound request payload.

l cnRequest – This element represents the request payload after the northbound
forward mapping has been applied.

l sbRequest – This one element is present for each of the array of request payloads
after the southbound forward mapping has been applied

l sbResponse – This one element for each request sent to the southbound service
endpoint. It contains either the received response or an error document.

l cnResponse – This element represents the response payload generated by the
southbound reverse mapping.

l nbResponse – This element represents the response payload after the northbound
reverse mapping has been applied.

l context – This element represents additional context document related to the
request. It contains the headers from request and response and transport related
information.

At any stage during request processing, only the versions of the request payload created up
to that point are available. Though the mapping container has the corresponding element
present, an attempt to load the payload via document() causes the XSLT processor to
throw an error.

For example, use the following XSLT snippet to map a value when the received request is
SOAP :

<xsl:variable name="nbRequest">
<xsl:value-of select="/transformation/nbRequest/@href" />

</xsl:variable>
<xsl:choose xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<xsl:when test="count(document



TIBCO® API Exchange Gateway User Guide

346 | Transaction Pipeline processing

($nbRequest)/soap:Envelope/soap:Body)=1">
This is a SOAP request

</xsl:when>
<xsl:otherwise>This is not a SOAP request</xsl:otherwise>

</xsl:choose>

Mapping XSLT Schema
Any type of transformation can be done using the following XSLT schema:

<?xml version="1.0" encoding="UTF-8" ?>
<xsd:schema xmlns="http://www.w3.org/1999/xhtml"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://www.tibco.com/asg/mapping"
targetNamespace="http://www.tibco.com/asg/mapping"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xsd:element name="mapping-result" type="tns:mapping-result" />
<xsd:complexType name="mapping-result">

<xsd:sequence>
<xsd:element name="context" minOccurs="0">

<xsd:complexType>
<xsd:sequence>

<xsd:any processContents="lax" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:choice>

<xsd:element name="payload-xml" minOccurs="0"
maxOccurs="unbounded">

<xsd:complexType>
<xsd:sequence>

<xsd:any processContents="lax" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="payload-text" minOccurs="0"

maxOccurs="unbounded" type="xsd:string" />
</xsd:choice>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>



TIBCO® API Exchange Gateway User Guide

347 | Transaction Pipeline processing

Context Document
The contents of the context document are described by the following XSD:

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:c="http://www.tibco.com/schemas/asg/context"
targetNamespace="http://www.tibco.com/schemas/asg/context"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="context">
<xs:complexType>

<xs:sequence>
<xs:element ref="c:entry" minOccurs="0"

maxOccurs="unbounded" />
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="entry">

<xs:complexType>
<xs:sequence>

<xs:any namespace="##any" processContents="lax" />
</xs:sequence>
<xs:attribute name="key" type="xs:string" />

</xs:complexType>
</xs:element>
<xs:simpleType name="key">

<xs:restriction base="xs:string" />
</xs:simpleType>

</xs:schema>

If the incoming request is received from an HTTP server, the contents of the request
context document are described by the following XSD:

<xs:schema attributeFormDefault="unqualified"
elementFormDefault="qualified"
targetNamespace="http://www.tibco.com/asg/protocols/http"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="request">
<xs:complexType>

<xs:sequence>
<xs:element name="request-id" type="xs:short" minOccurs="0"/>
<xs:element name="server-ip" type="xs:string" minOccurs="0"/>
<xs:element name="server-port" type="xs:short" minOccurs="0"/>
<xs:element name="client-ip" type="xs:string" minOccurs="0"/>
<xs:element name="client-port" type="xs:byte" minOccurs="0"/>
<xs:element name="scheme" type="xs:string" minOccurs="0"/>



TIBCO® API Exchange Gateway User Guide

348 | Transaction Pipeline processing

<xs:element name="method" type="xs:string" minOccurs="0"/>
<xs:element name="request-uri" type="xs:string" minOccurs="0"/>
<xs:element name="protocol-version" type="xs:string"

minOccurs="0"/>
<xs:element name="query-string" type="xs:string" minOccurs="0"/>
<xs:element name="header" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="name" type="xs:string"
use="optional"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="payloadSize" type="xs:short" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

The following is an HTTP Request Context sample:

<?xml version="1.0" encoding="utf-8"?>
<ctx:context xmlns:ctx="http://www.tibco.com/schemas/asg/context">

<!--Context doc href: context.0.xml-->
<c:entry xmlns:c="http://www.tibco.com/schemas/asg/context"

key="asg:httpRequest">
<c:origin>i_http</c:origin>
<h:request xmlns:h="http://www.tibco.com/asg/protocols/http">

<h:request-id>2192</h:request-id>
<h:server-ip>localhost</h:server-ip>
<h:server-port>9222</h:server-port>
<h:client-ip>127.0.0.1</h:client-ip>
<h:client-port>0</h:client-port>
<h:scheme>http</h:scheme>
<h:method>POST</h:method>
<h:request-

uri>/TerminalLocationService/services/TerminalLocation</h:request-uri>
<h:protocol-version>HTTP/1.1</h:protocol-version>
<h:query-string/>
<h:header name="content-type">text/xml; charset="utf-

8"</h:header>
<h:header name="soapaction">"/getLocation"</h:header>
<h:header name="connection">close</h:header>
<h:header name="user-agent">Jakarta Commons-

HttpClient/3.0.1</h:header>



TIBCO® API Exchange Gateway User Guide

349 | Transaction Pipeline processing

<h:header name="host">localhost:9222</h:header>
<h:header name="content-length">489</h:header>
<h:payloadSize>489</h:payloadSize>

</h:request>
</c:entry>

</ctx:context>

The contents of HTTP Response Context document are described by the following XSD:

<xs:schema attributeFormDefault="unqualified"
elementFormDefault="qualified"
targetNamespace="http://www.tibco.com/asg/protocols/http"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="response">
<xs:complexType>

<xs:sequence>
<xs:element name="status-code" type="xs:short" minOccurs="0"/>
<xs:element name="all_headers" type="xs:string" minOccurs="0"/>
<xs:element name="header" maxOccurs="unbounded" minOccurs="0">

<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="name" type="xs:string"
use="optional"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="payloadSize" type="xs:short" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

The following is an HTTP Response Context sample:

<?xml version="1.0" encoding="utf-8"?>
<ctx:context xmlns:ctx="http://www.tibco.com/schemas/asg/context">

<!--Context doc href: context.0.xml-->
<c:entry xmlns:c="http://www.tibco.com/schemas/asg/context"

key="asg:sbHttpResponse">
<h:response xmlns:h="http://www.tibco.com/asg/protocols/http">

<h:status-code>200</h:status-code>
<h:all_headers>Date: Fri, 29 Apr 2016 00:15:16 GMT

Content-Length: 486



TIBCO® API Exchange Gateway User Guide

350 | Transaction Pipeline processing

Content-Type: text/xml;charset=utf-8
Server: Apache-Coyote/1.1

</h:all_headers>
<h:header name="Date">Fri, 29 Apr 2016 00:15:16

GMT</h:header>
<h:header name="Content-Length">486</h:header>
<h:header name="Content-Type">text/xml;charset=utf-

8</h:header>
<h:header name="Server">Apache-Coyote/1.1</h:header>
<h:payloadSize>486</h:payloadSize>

</h:response>
</c:entry>

</ctx:context>

If the incoming request is received from a JMS server, the contents of the request context
document are described by the following XSD:

<xs:schema attributeFormDefault="unqualified"
elementFormDefault="qualified"
targetNamespace="http://www.tibco.com/asg/protocols/jms"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="request">
<xs:complexType>

<xs:sequence>
<xs:element name="request-id" type="xs:int" minOccurs="0"/>
<xs:element name="JMSCorrelationID" type="xs:string"

minOccurs="0"/>
<xs:element name="JMSReplyTo" type="xs:string" minOccurs="0"/>
<xs:element name="body" type="xs:string" minOccurs="0"/>
<xs:element name="payloadSize" type="xs:short" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

The following is a JMS Request Context sample:

<?xml version="1.0" encoding="utf-8"?>
<c:context xmlns:c="http://www.tibco.com/schemas/asg/context">

<c:entry key="asg:jmsRequest">
<j:request xmlns:j="http://www.tibco.com/asg/protocols/jms">

<j:request-id>40709</j:request-id>
<j:JMSCorrelationID>GetLocation_118009</j:JMSCorrelationID>
<j:JMSReplyTo>asg.out.request.reply.0.0</j:JMSReplyTo>



TIBCO® API Exchange Gateway User Guide

351 | Transaction Pipeline processing

<j:body>40709req</j:body>
<j:payloadSize>397</j:payloadSize>

</j:request>
</c:entry>

</c:context>

The contents of JMS Response Context document are described by the following XSD:

<xs:schema attributeFormDefault="unqualified"
elementFormDefault="qualified"
targetNamespace="http://www.tibco.com/asg/protocols/jms"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="message">
<xs:complexType>

<xs:sequence>
<xs:element name="JMSCorrelationID" type="xs:int"

minOccurs="0"/>
<xs:element name="Service" type="xs:string" minOccurs="0"/>
<xs:element name="ServiceInstance" type="xs:string"

minOccurs="0"/>
<xs:element name="Operation" type="xs:string" minOccurs="0"/>
<xs:element name="JMSExpiration" type="xs:byte" minOccurs="0"/>
<xs:element name="body">

<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="size" type="xs:short"/>
<xs:attribute name="isBinary" type="xs:string"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

The following is a JMS Response Context sample:

<?xml version="1.0" encoding="utf-8"?>
<c:context xmlns:c="http://www.tibco.com/schemas/asg/context">

<c:entry key="asg:sbJMSResponse"
xmlns:c="http://www.tibco.com/schemas/asg/context">

<k:message xmlns:k="http://www.tibco.com/asg/protocols/jms">
<k:JMSCorrelationID>40724</k:JMSCorrelationID>



TIBCO® API Exchange Gateway User Guide

352 | Transaction Pipeline processing

<k:Service/>
<k:ServiceInstance/>
<k:Operation/>
<k:JMSExpiration>0</k:JMSExpiration>
<k:body size="371" isBinary="false"></k:body>

</k:message>
</c:entry>

</c:context>

JSON XML Transformation
Functions to transform JSON XML messages.

TIBCO API Exchange Gateway can handle non-XML request and response messages, and
provide XSLT extension functions to handle non-XML message serializations.

Using the mapping feature of TIBCO API Exchange Gateway, you can transform the
messages as follows:

l Request message from one message format to other format using the forward
mapper. For example, use the northbound forward mapper to modify the JSON
request to an XML request. See BookQueryBE Example Request Message.

l Response message from one message format to other format using the reverse
mapper. For example, use northbound reverse mapper to modify the XML response
message format to a JSON response message format. See BookQuery Example
Response Message.

To support the JSON XML message transformations, TIBCO API Exchange Gateway provides
the following options:

JSON Extension

The JSON extension is defined in the namespace http://www.tibco.com/asg/functions/json

XSLT Functions

TIBCO API Exchange Gateway provides the following two functions:

l parse()

The parse() function converts the JSON message format to XML message format.

l render()



TIBCO® API Exchange Gateway User Guide

353 | Transaction Pipeline processing

The render() function converts the XML message format to JSON message format.

Note: The XML message format has a 1-to-1 correspondence with the JSON
structure.

JSON Schema

TIBCO API Exchange Gateway provides the following built-in schema for JSON message:

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:json="http://www.tibco.com/asg/content-types/json"
targetNamespace="http://www.tibco.com/asg/content-types/json"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="json_xml">
<xs:complexType>

<xs:sequence>
<xs:element ref="json:list" />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="list">

<xs:complexType>
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element ref="json:text" />
<xs:element ref="json:double" />
<xs:element ref="json:list" />
<xs:element ref="json:dict" />

</xs:choice>
<xs:attribute name="key" type="xs:string" />

</xs:complexType>
</xs:element>
<xs:element name="text">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="key" type="xs:string" />

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="double">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="key" type="xs:string" />



TIBCO® API Exchange Gateway User Guide

354 | Transaction Pipeline processing

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="dict">

<xs:complexType>
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element ref="json:text" />
<xs:element ref="json:double" />
<xs:element ref="json:list" />

</xs:choice>
<xs:attribute name="key" type="xs:string" />

</xs:complexType>
</xs:element>

</xs:schema>

Converting XML Message to JSON Message
By default, TIBCO API Exchange Gateway sends the response message in XML format from
the target operation to the client. If a client requests the response message in a JSON
format, you can convert the XML message to a JSON message as follows:

Procedure
1. Create an XSLT File.

To create an XSLT file to render the data in JSON format, follow these high level
steps:

l Add namespaces:

The render() function requires the following namespace:
http://www.tibco.com/asg/functions/json

l Build JSON structure.

l Use the render() function:

See Example XSLT to Convert BookQuery XML Response to JSON Response for
an example XSLT.

2. Upload the XSLT File.

Using the Config UI, upload the XSLT file in the northbound reverse mapper to render
the XML response message in JSON message format as follows:

a. Start the GUI server, if not already running.



TIBCO® API Exchange Gateway User Guide

355 | Transaction Pipeline processing

b. Log in to the Config UI using your credentials.

c. Add a new project or select an existing project under Projects. For example,
select BookQuery project.

d. Add the mapping configuration as follows:

i. Click the MAPPING > Mapping tab.

ii. Click the Add property to create a new mapping.

iii. Enter the parameters, as follows:

l Mapping Name: XML_JSON_Mapping

l Type: XSLT (select from the drop-down list.)

l New File: Click Choose File and select the XSLT file.

l Response Type: Full (select from the drop-down list.)

l Save the changes to your configuration.

e. Select the mapper for the facade operation, as follows:

i. Click the ROUTING > Facade Operations tab.

ii. Select the facade operation.

iii. In the Response Transform field, select the XML_JSON_Mapping
mapper, as created in the mapping configuration from the drop-down
list.

iv. Save the changes to your configuration.

BookQuery Example Response Message
When the BookQuery example is run, TIBCO API Exchange Gateway sends the response
message in XML format to the client, by default.

BookQuery Example XML Response

BookQuery Response message in XML format.

The response message in XML format is shown as follows:



TIBCO® API Exchange Gateway User Guide

356 | Transaction Pipeline processing

<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>
<ns0:BookStore xmlns:ns0="http://www.example.com/xsd/books">

<ns0:Book>
<ns0:Title>The Power of Now</ns0:Title>
<ns0:Author>Vivek Ranadive</ns0:Author>
<ns0:Date>1999</ns0:Date>
<ns0:ISBN>0-06-566778-9</ns0:ISBN>
<ns0:Publisher>Tibco Software Inc</ns0:Publisher>

</ns0:Book>
</ns0:BookStore>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
Transformed JSON Response for BookQuery Service:
{

"BookStore": {
"Book": [

{
"Publisher": "Tibco Software Inc",
"ISBN": "0-06-566778-9",
"Author": "Vivek Ranadive",
"Title": "The Power of Now"

}
]

}
}

Example XSLT to Convert BookQuery XML Response to JSON Response

Use the following XSLT to convert XML message format to JSON message format:

<xsl:stylesheet version="1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:ns0="http://www.example.com/xsd/books"
xmlns:fn="http://www.tibco.com/asg/functions/json"
xmlns:json="http://www.tibco.com/asg/content-types/json" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/" exclude-result-
prefixes="xsl fn json ns0 SOAP-ENV">

<xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"
omit-xmldeclaration="
yes" />

<xsl:variable name="cnResponseHref">
<xsl:value-of select="/transformation/cnResponse/@href" />



TIBCO® API Exchange Gateway User Guide

357 | Transaction Pipeline processing

</xsl:variable>
<xsl:variable name="cnResponse">

<xsl:copy-of select="document($cnResponseHref)/*" />
</xsl:variable>
<xsl:variable name="JsonXmlResponse">

<json:json_xml>
<json:dict>

<json:dict key="BookStore">
<json:list key="Book">

<xsl:for-each select="$cnResponse/SOAP-
ENV:Envelope/SOAP-ENV:Body/ns0:BookStore/
ns0:Book">

<json:dict key="Book">
<json:text key="Title">

<xsl:value-of select="ns0:Title" />
</json:text>
<json:text key="ISBN">

<xsl:value-of select="ns0:ISBN" />
</json:text>
<json:text key="Author">

<xsl:value-of select="ns0:Author" />
</json:text>
<json:text key="Publisher">

<xsl:value-of select="ns0:Publisher"
/>

</json:text>
</json:dict>

</xsl:for-each>
</json:list>

</json:dict>
</json:dict>

</json:json_xml>
</xsl:variable>
<xsl:template match="/">

<xsl:value-of select="fn:render($JsonXmlResponse//json:json_
xml/json:dict)" />

</xsl:template>
</xsl:stylesheet>

BookQuery Example JSON Transformed Response

JSON response message for BookQuery example.

The following is the transformed JSON response message from the XSLT defined as
Example XSLT to Convert BookQuery XML Response to JSON Response.



TIBCO® API Exchange Gateway User Guide

358 | Transaction Pipeline processing

{
"BookStore": {

"Book": [
{
"Publisher": "Tibco Software Inc",
"ISBN": "0-06-566778-9",
"Author": "Vivek Ranadive",
"Title": "The Power of Now"

}
]

}
}

Converting JSON Message to XML Message
Using the northbound forward mapper, parse the JSON encoded string to generate an XML
message. Usually, the JSON data is encoded using base64 format, therefore, the data must
be converted from base64 to text. TIBCO API Exchange Gateway provides the
codecs:base64ToText() function to convert the json data to text.

To parse a JSON encoded string in a north-side forward mapper, follow these steps:

Procedure
1. Create an XSLT File.

To create an XSLT file to parse the JSON encoded, perform the following steps:

l Add namespaces:

The parse() function requires the following namespaces:
http://www.tibco.com/asg/functions/json

http://www.tibco.com/asg/functions/codecs

l Use the parse() function as follows:

o Extract the base64 encoded request payload from the context document.

o Use the codecs:base64ToText() function to convert the payload to text
message.

o Pass the text message to the json:parse() function.



TIBCO® API Exchange Gateway User Guide

359 | Transaction Pipeline processing

See Example XSLT to Convert BookQueryBE JSON Request to XML Request for an
example XSLT.

2. Upload the XSLT File.

Using the Config UI, upload the XSLT file in the northbound forward mapper to parse
the JSON encoded request message in XML message format as follows:

a. Start the GUI server, if not already running.

b. Log in to the Config UI using your credentials.

c. Add a new project or select an existing project under Projects. For example,
select the BookQueryBE project.

d. Add the mapping configuration as follows:

i. Click the MAPPING > Mapping tab.

ii. Click the Add property to create a new mapping.

iii. Enter the parameters, as follows:

l Mapping Name: JSON_XML_Mapping.

l Type: XSLT (select from the drop-down list.).

l New File: Click Choose File and select the XSLT file.

l Response Type: Full (select from the drop-down list.)

l Save the changes to your configuration.

e. Select the mapper for the facade operation, as follows:

i. Click the ROUTING > Facade Operations tab.

ii. Select the facade operation.

iii. In the Request Transform field, select JSON_XML_Mapping mapper, as
created in the mapping configuration from the drop-down list.

iv. Save the changes to your configuration.

BookQueryBE Example Request Message
For example, when the BookQueryBE example is run, the client can send a request
message in JSON format. This section describes how to convert the JSON data to an XML
request using the json:parse() function for the BookQueryBE example.



TIBCO® API Exchange Gateway User Guide

360 | Transaction Pipeline processing

BookQueryBE Example JSON Message

BookQueryBE response message in JSON format.

The client sends the following request message in JSON encoded string:

{
"BookStore": {

"Book": [
{
"Publisher": "Tibco Software Inc",
"ISBN": "0-06-566778-9",
"Author": "Vivek Ranadive",
"Title": "The Power of Now"

}
]

}
}

Example XSLT to Convert BookQueryBE JSON Request to XML Request

Use the following XSLT to convert the JSON message to an XML message format:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:fn="http://www.w3.org/2005/xpath-functions"
xmlns:j="http://www.tibco.com/asg/content-types/json"
xmlns:f="http://www.tibco.com/asg/content-types/form"
xmlns:m="http://www.tibco.com/asg/mapping"
xmlns:c="http://www.tibco.com/schemas/asg/context"
xmlns:h="http://www.tibco.com/asg/protocols/http"
xmlns:v="http://tag-pg.vipnet.hr/pg/content-types/formdata"
xmlns:form="http://www.tibco.com/asg/functions/form"
xmlns:json="http://www.tibco.com/asg/functions/json"
xmlns:codecs="http://www.tibco.com/asg/functions/codecs"
exclude-result-prefixes="xsl soapenv fn h c j f v form json" >

<xsl:variable name="context">
<xsl:for-each select="/transformation/context">
<xsl:copy-of select="document(@href)"/>

</xsl:for-each>
</xsl:variable>
<xsl:variable name="httpRequest">

<xsl:copy-of select="$context/c:context/c:entry
[@key='asg:httpRequest']/h:request"/>



TIBCO® API Exchange Gateway User Guide

361 | Transaction Pipeline processing

</xsl:variable>
<xsl:template match="/">

<xsl:if test="$httpRequest/h:request/h:body">
<xsl:copy-of select="json:parse(codecs:base64ToText

($httpRequest/h:request/h:body))"/>
</xsl:if>

</xsl:template>
</xsl:stylesheet>

BookQueryBE Example XML Transformed Request

JSON response message for BookQueryBE example.

The following is the transformed XML request message from the XSLT defined as Example
XSLT to Convert BookQueryBE JSON Request to XML Request.

<?xml version="1.0" encoding="UTF-8" ?>
<dict xmlns="http://www.tibco.com/asg/content-types/json">

<dict key="BookStore">
<list key="Book">

<dict>
<text key="Publisher">Tibco Software Inc</text>
<text key="ISBN">0-06-566778-9</text>
<text key="Author">Vivek Ranadive</text>
<text key="Title">The Power of Now</text>

</dict>
</list>

</dict>
</dict>

XSLT Functions for URL Encode and URL Decode
To encode or decode any special characters in the headers or the payload body of the
request message, TIBCO API Exchange Gateway provides the following XSLT functions to be
used in the XSLT file:

l decode()

l encode()

The namespace for the above functions is as follows:

http://www.tibco.com/asg/functions/url



TIBCO® API Exchange Gateway User Guide

362 | Transaction Pipeline processing

Decode() Function
The decode function decodes any URL-encoded characters in the input string passed as an
argument.

For example, if a string contains the %20 character , the decode () function decodes it to
the space character.

In the following example, Single%20general%20admission is converted as Single general
admission.

Sample XSLT (Decode)
The following is the sample XSLT for the decode function, which decodes any URL-encoded
characters in the <payload> element of request message.

In the following example, the description field is defined as
Single%20general%20admission%20theater%20ticket. The decode() function transforms
the value of description field as Single general admission theater ticket.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:url="http://www.tibco.com/asg/content-types/url"
xmlns:f="http://www.tibco.com/asg/functions/url" exclude-result-
prefixes="xsl f">

<xsl:output indent="yes" method="xml" />
<xsl:template match="/">

<context>
<entry name="request">

<http>
<payload>

<xsl:copy-of select="f:decode(context/entry
[@name='request']/http/payload)" />

</payload>
</http>

</entry>
</context>

</xsl:template>
</xsl:stylesheet>

Sample Input XML(Decode)
The following is the sample input XML for the decode function:



TIBCO® API Exchange Gateway User Guide

363 | Transaction Pipeline processing

<?xml version="1.0" encoding="UTF-8" ?>
<context>

<entry name="request">
<http>

<payload>endUserId=acr:Authorization&transactionOperationStatus=charged&
description= Single%20general%20admission%20theater%20ticket&code=wac-
11faf3e6- e440-4daa-824e-62d8ed83723e&referenceCode=REF-ASM600-
239238&onBehalfOf=WAC%20Cinemas
%20Inc&amp;purchaseCategoryCode=Ticket&channel=WAP

</payload>
</http>

</entry>
</context>

Sample Output XML(Decode)
The following is the sample output XML from the decode function:

<?xml version="1.0" encoding="UTF-8"?>
<context xmlns:url="http://www.tibco.com/asg/content-types/url">

<entry name="request">
<http>

<payload>
<url xmlns="http://www.tibco.com/asg/content-

types/url">endUserId=acr:Authorization&transactionOperationStatus=charge
d&description=Single general admission theater ticket&code=wac-11faf3e6-
e440-4daa-824e-62d8ed83723e&referenceCode=REF-ASM600-
239238&onBehalfOf=WAC Cinemas
Inc&purchaseCategoryCode=Ticket&channel=WAP
</url>

</payload>
</http>

</entry>
</context>

Encode() Function
The encode() function encodes the special characters in the input string to the URL-
encoded characters.

For example, if a string contains the backspace character , the encode () function encodes
it to the %08 character.



TIBCO® API Exchange Gateway User Guide

364 | Transaction Pipeline processing

Sample XSLT (Encode)
The following is the sample XSLT for the encode function, which encodes the special
characters in the <payload> element of request message to the URL- encoded characters.

In the following example, the description field is defined as Single general admission
theater ticket. The encode() function transforms the value of description field as
Single%20general%20admission%20theater%20ticket.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:url="http://www.tibco.com/asg/content-types/url"
xmlns:f="http://www.tibco.com/asg/functions/url" exclude-result-
prefixes="xsl f">

<xsl:output indent="yes" method="xml" />
<xsl:template match="/">

<context>
<entry name="request">

<http>
<payload>

<xsl:copy-of select="f:encode(context/entry
[@name='request']/http/payload)" />

</payload>
</http>

</entry>
</context>

</xsl:template>
</xsl:stylesheet>

Sample Input XML (Encode)
The following is the sample input XML for encode function:

<?xml version="1.0" encoding="UTF-8"?>
<context xmlns:url="http://www.tibco.com/asg/content-types/url">

<entry name="request">
<http>

<payload>endUserId=acr:Authorization&transactionOperationStatus=charged&
description=Single general admission theater ticket&code=wac-11faf3e6-
e440-4daa-824e-62d8ed83723e&referenceCode=REF-ASM600-
239238&onBehalfOf=WAC Cinemas
Inc&purchaseCategoryCode=Ticket&channel=WAP



TIBCO® API Exchange Gateway User Guide

365 | Transaction Pipeline processing

</payload>
</http>

</entry>
</context>

Sample Output XML (Encode)
The following is the sample output XML from the encode function:

<?xml version="1.0" encoding="UTF-8" ?>
<context>

<entry name="request">
<http>

<payload>endUserId=acr:Authorization%26amp;transactionOperationStatus=ch
arged %26amp;description=Single%20general%20admission%20theater%20ticket
%26amp;code=wac-11faf3e6-e440-4daa-824e-
62d8ed83723e%26amp;referenceCode=REFASM600-
239238%26amp;onBehalfOf=WAC%20Cinemas%20Inc%26amp;purchaseCategoryCode=T
icket %26amp;channel=WAP

</payload>
</http>

</entry>
</context>

Using Encode() and Decode() Functions

Procedure
1. Create an XSLT File.

Create an XSLT file with decode() and encode() functions, as required. Refer to the
following XSLT files to create an XSLT file:

l Sample XSLT (Decode)

l Sample XSLT (Encode)

2. Upload the XSLT File.

To upload the XSLT file for a facade operation, follow these steps:

a. Start the Config UI, if not running.



TIBCO® API Exchange Gateway User Guide

366 | Transaction Pipeline processing

b. Log in to the Config UI using your credentials.

c. Select the project under Projects.

d. On the ROUTING tab, click Routing on the top menu.

Select the Facade Operations tab.

e. In the New ProcessBody Transform field, upload the XSLT file.

f. Save the changes to the project configuration.

XSLT Functions for Base64 Encode and Decode
To encode or decode any Base64 fields in an XSLT file, TIBCO API Exchange Gateway
provides the following XSLT functions:

l codecs:base64ToText()

l codecs:textToBase64()

To use these functions, add the following namespace to the XSL style sheet:
xmlns:codecs="http://www.tibco.com/asg/functions/codecs"

textToBase64()
The codecs:textToBase64() function encodes any ASCII (text) string in Base64 format.

base64ToText()
The codecs:base64ToText() function decodes any Base64 encoded string in ASCII (text)
format.

Sample XSLT

<xsl:variable name="sbResponse">
<xsl:copy-of select="codecs:base64ToText($httpResponse/h:body)"/>
</xsl:variable>



TIBCO® API Exchange Gateway User Guide

367 | Transaction Pipeline processing

Custom Java Functions
Using Java functions in transformations.

TIBCO API Exchange Gateway bundles the Saxon Professional Edition (PE) product libraries
with the installation package to support the Java functions in the XSLT files.

To create your own Java functions and use the functions in the XSLT files, complete the
following steps:

Procedure
1. Create the function in the Java program. The function must have static modifier.

2. Create the jar file for the Java class. Put the jar file in the ASG_HOME/lib/ext/tpcl
directory.

3. Call the function using the package name as namespace in the XSLT file. See the
following example:

Java Function

Sample Java Function
The HelloWorld java function is defined as follows:

package Test;
public class HelloWorld {
public static String getName(){
return "Hello";
}
}

XSLT File

Sample XSLT File
Use the HelloWorld function in an XSLT file as follows:



TIBCO® API Exchange Gateway User Guide

368 | Transaction Pipeline processing

<routingKey>
<xsl:value-of select="nameUtils:getName()"
xmlns:nameUtils="java:Test.HelloWorld"/>
</routingKey>

Pass-Through Gateway
TIBCO API Exchange Gateway acts as a pass-through gateway for the REST, SOAP/HTTP,
SOAP/JMS, and ESB facade operation requests, which contains the URI or SOAPAction that
do not match the operation URI or SOAP Action of the facade operation configured in the
gateway.

TIBCO API Exchange Gateway supports the pass-through functionality using the
DefaultOperation facade operation. You must configure a DefaultOperation facade
operation for your project using the Config UI. See Configuring DefaultOperation Facade
Operation.

To enable the TIBCO API Exchange Gateway as a pass-through gateway, complete these
tasks:

Starting Config UI

Procedure
1. Start the Config UI. See Starting GUI.

2. Log in to the Config UI using your credentials.

Enabling Default Operation
Enable the DefaultOperation feature as follows:

Procedure
1. Select the Gateway Engine Properties from the drop-down list.

2. Click the General link.

3. Expand the Common node.



TIBCO® API Exchange Gateway User Guide

369 | Transaction Pipeline processing

4. Select the Enable Default Operation field.
To set the runtime property in the asg.properties file, follow these steps:

5. Navigate to the ASG_CONIG_HOME directory.

6. Edit the asg.properties file in a text editor.

7. Set the following property to true:

8.    tibco.clientVar.ASG/Operation/EnableDefaultOperation=true

9. Save the changes to the file.

Configuring DefaultOperation Facade Operation
You can configure Default operation for any facade operation using Config UI.

By default, TIBCO API Exchange Gateway provides the DefaultOperation facade operation
for the example projects shipped with the product. For example, BookQuery project has a
DefaultOperation operation configured under ROUTING > Facade Operations.

To use the DefaultOperation feature for your project, configure a facade operation as
follows:

Configuring DefaultOperation Facade Operation (REST)
For the REST requests, configure a DefaultOperation facade operation as follows:

Procedure
1. Click the PARTNER > Facade Operations tab.

2. Click the Add Property icon.

3. Add a new facade operation as follows:

Parameter Value

Operation
Name

Enter DefaultOperation as the name of the facade operation.

DefaultOperation Facade Operation Parameters (REST)



TIBCO® API Exchange Gateway User Guide

370 | Transaction Pipeline processing

Parameter Value

Operation
URI

The URI of the facade operation request.

For example, /asg/defaultOperation

Note: The Operation URI supports regular expressions which are
evaluated by Java.util.regex at runtime.

Operation
Service Name

Enter a logical service name.

For example, Internal

4. Save the changes to your configuration.

Configuring DefaultOperation Facade Operation (SOAP)
For the SOAP/HTTP, SOAP/JMS, and ESB requests, configure a DefaultOperation as follows:

Procedure
1. Click the PARTNER > Facade Operations tab.

2. Click the Add Property icon.

3. Add a new facade operation as follows:

Parameter Value

Operation
Name

Enter DefaultOperation as the name of the facade operation.

Operation
URI

The URI of the facade operation request.

For example, /asg/defaultOperation

SOAP Action The SOAP action of the facade operation request.

For example, "/GetDefaultOperation"

DefaultOperation Facade Operation Parameters (SOAP)



TIBCO® API Exchange Gateway User Guide

371 | Transaction Pipeline processing

Parameter Value

Operation
Service Name

Enter a logical service name.

For example, MWC

4. Save changes to the configuration.

Configuring Target Operation for DefaultOperation
A target operation must exist for DefaultOperation of a facade operation.

Configure a target operation (if not existing), where the DefaultOperation facade operation
request is routed.

For example, configure a HTTP type target operation for the DefaultOperation facade
operation as follows:

Procedure
1. Click the ROUTING > Target Operations tab.

2. Click the Add Property icon.

3. Add a new target operation as follows:

Parameter Description

Target
Operation
Name

The name of the target operation.

For example, http.DefaultTargetOperation

Type The type of the target operation.

For example, HTTP

URI The URI of the target operation.

For example, /asg/test

Target Operation Configuration



TIBCO® API Exchange Gateway User Guide

372 | Transaction Pipeline processing

Parameter Description

Host The host name of the target operation.

Port The TCP port of the target operation implementation when
invoked over HTTP.

4. Save the changes to the configuration.

Configuring Routing Key for DefaultOperation
You must configure a routing key for the DefaultOperation of a facade operation.

Configure a routing key for the DefaultOperation as follows:

Procedure
1. Click the ROUTING > Routing tab.

2. Click the Add Property icon.

3. Add a routing key as follows:

Parameter Description

Operation
Name

Select DefaultOperation from the drop-down list.

Routing
Type

Select Target Operation from the drop-down list.

Routing Key Enter a routing key.

Target
Operation

Select http.DefaultTargetOperation from the drop-down list.

Routing Key Configuration

4. Save changes to the configuration.



TIBCO® API Exchange Gateway User Guide

373 | Transaction Pipeline processing

Configuring Facade Access for DefaultOperation
Configure the partner for DefaultOperation as follows:

Procedure
1. Click the PARTNER > Facade Access tab.

2. Click the Add Property icon.

3. Add the anon partner to access the DefaultOperation as follows:

Parameter Description

Partner Select anon from the drop-down list.

Facade
Operation

Select DefaultOperation from the drop-down list.

Facade Access Configuration

4. Save changes to the configuration.

Pass-Through Special Characters in Query String
TIBCO API Exchange Gateway decodes the special characters specified in the parameter
values of the query string of the HTTP URL for a facade request. To pass through the
special characters in the parameter values of the query string, follow these steps:

Procedure
1. Navigate to the ASG_CONFIG_HOME/bin directory.

2. Edit the asg.properties file.

3. Set the following properties:
com.tibco.asg.runtime.http_client.default_uri_format=false

tibco.clientVar.ASG/Operation/RequiresQueryDecoding=false



TIBCO® API Exchange Gateway User Guide

374 | Transaction Pipeline processing

Note: Refer to Runtime Properties of Core Engine for the description of
properties.

4. Save changes to the file.

Proxy Server
TIBCO API Exchange Gateway acts as a proxy server for facade operation requests and
target operation responses. When you use the TIBCO API Exchange Gateway as proxy
server, TIBCO API Exchange Gateway does not process or validates the incoming facade
operation request. TIBCO API Exchange Gateway just forwards the facade operation
request to the appropriate target operation. Similarly, for any response message from the
target service, TIBCO API Exchange Gateway passes the response message to the client. For
example, when an error response is returned from the target service, TIBCO API Exchange
Gateway sends the error response to the client without modifying or customizing the error
code and message. Using the proxy feature improves the performance of the request
processing in TIBCO API Exchange Gateway.

Note: When TIBCO API Exchange Gateway is used as a proxy server and the user
has not explicitly configured the response caching for a facade operation on the
Config UI , TIBCO API Exchange Gateway provides the response caching with the
default caching parameters, as follows:

Cache Type: SimpleCache

Time To Live: 1 day (24 hours)

You can configure the headers of the request message to be forwarded to the target
operation.

To use TIBCO API Exchange Gateway as a proxy server, enable the proxy functionality as
follows:

Procedure
1. Start the Config UI, if not running.

2. Log in to the Config UI using your credentials.

3. Select the project under Projects.



TIBCO® API Exchange Gateway User Guide

375 | Transaction Pipeline processing

4. On the ROUTING tab, click Facade Operations on the top menu.

5. Select an existing facade operation to be used by proxy server. If the facade
operation does not exist, add a new facade operation.

6. Select Operation Features field. Enter Proxy.

7. Save changes to the configuration.

Configuring HTTP Headers
When a facade operation request is passed to TIBCO API Exchange Gateway in a proxy
enabled mode, you can copy the headers information from the facade operation incoming
request and forward it to the target operation.

Configure the Headers To Forward field to copy the headers of request message as
follows:

Procedure
1. On the ROUTING tab, click Target Operations on the top menu.

2. Select an existing target operation for the operation request. If the target operation
does not exist, add a new target operation for the operation request.

3. Select Headers to Forward field. Enter the value, as required. See the following
values as an example:

l Enter "*" to forward all the headers.

l Enter "*,-SoapAction" forwards all the headers except SOAP Action header.

4. Save changes to the configuration.

Note: According to HTTP/1.1 RFC, HTTP headers are case-insensitive. The
native HTTP channel of API Exchange uses Apache Tomcat which enforces
this behavior by converting all headers to lower case. We recommend that
application developers must not depend on case sensitive headers in their
application logic.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.2


TIBCO® API Exchange Gateway User Guide

376 | Routing Overview

Routing Overview
Overview of the routing functionality of TIBCO API Exchange Gateway

The routing capabilities of TIBCO API Exchange Gateway determine the target operation to
process a facade request. TIBCO API Exchange Gateway uses the routing key to route a
facade request to either one of the following:

l Target Operation

A target operation is an external operation which is called by the gateway to process
a facade request.

l Target Operation Group

A target operation group is used to group multiple target operations, which helps the
Core Engine to balance the load of requests processing across target operations. See
Target Operation Group.

When the Core Engine routes the facade request to a target operation group, an
appropriate target operation within the target operation group is selected, based on the
type of the target operation group. See Types of Target Operations Group for details.

A routing key is used to determine the target operation or a target operation group to
process an incoming facade request. See Routing Key for the details.

TIBCO API Exchange Gateway provides options to derive a routing key.

Content Based Routing

When the routing key is generated from the content (data) of the request message, the
routing is defined as content based routing. The generated routing key is used to route the
client request to a target operation or target operation group.

Context Based Routing

When the routing key is derived from the HTTP or JMS header fields in the request context
message, the routing is defined as context based routing. The generated routing key is
used to route the client request to a target operation or target operation group.



TIBCO® API Exchange Gateway User Guide

377 | Routing Overview

Routing Key
Use a routing key to forward a facade operation request to a target operation endpoint.

A routing key is used by the Core Engine to select a target operation or target operation
group for an incoming facade request. Therefore, the routing key is a key factor to route a
facade request for processing. Based on the routing key, a facade request can be routed to
any target operation or target operation group.

TIBCO API Exchange Gateway uses routing key in one of the following ways:

l By default. The default routing key is provided.

l The preferred routing key.

l Deriving the routing key from a custom XSLT file.

A routing key is extracted from the parsing of the facade request message using the
transformation (XSLT) files. You can conditionally evaluate the facade request
message and parse the data content as well as the context of the request message.
To derive a routing key, define a transformation file in the parsing step of the request
processing pipeline.

If no routing key is derived from the parsing of the request message and no preferred
routing key is configured, default routing key is used.

The routing key can have the following values:

l default: default routing key is used:

o if the ProcessBody transform field for a facade operation does not generate a
routing key.

o if preferred routing key is not configured for a facade operation.

o if the routing key derived from custom XSLT or specified in Preferred Routing
Key field for a facade operation is not configured in the Routing tab.

l routingKeyValue: indicates a specific value of the routing key derived from an XSLT
file. The routingKeyValue is a value populated from the transformation (XSLT) file
using the routingKey element tag.

l Preferred Routing Key: a specific value specified in the Preferred Routing Key field
of PARTNER > Facade Access tab.



TIBCO® API Exchange Gateway User Guide

378 | Routing Overview

Routing Key using XSLT
If you want to use a custom (non-default) routing key to route a facade request to an
appropriate target operation or target operation group, follow these main steps:

l Derive a Routing Key

l Configure a Routing Key

To derive a routing key, define a XSLT file with routingKey element tag and upload this
XSLT file in the ProcessBody transform field for a facade operation configuration. In such
a case, the incoming facade operation request is parsed as per the defined XSLT file and a
routing key is returned. After the routing key is populated from the transformation, the
Core Engine checks the routing key configuration to determine the target operation or
target operation group for a facade operation request. The routing key configuration
contains the routing key, the facade operation name, and the target operation name or
target operation group name and is configured in the Routing tab of the Config UI. See
How to Derive and Configure Routing Key for details.

How to Derive and Configure Routing Key
This section explains how to derive and configure a routing key.

Define a Transformation File
Define a transformation (XSLT) file that contains the routingKey element tag to populate
the routing key.

See the following references:

l See Routing Schema document as a reference to the XSLT file schema for the routing
key.

l See Example XSLT File to Derive Routing Key.



TIBCO® API Exchange Gateway User Guide

379 | Routing Overview

Routing Schema document

Note: The following elements are available as input for the transformations and
can be used to derive the routing key:

l facade operation request content (as defined by nbRequest element).

l facade operation request context (as defined by context element).

In the request processing pipeline of a facade operation request, the input document to
the XSLT file for parsing the facade request is defined by the following schema:

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="unqualified" attributeFormDefault="unqualified">

<xs:element name="transformation" type="transformationType" />
<xs:complexType name="transformationType">

<xs:sequence>
<xs:element name="nbRequest" type="stageType" minOccurs="0"

/>
<xs:element name="cnRequest" type="stageType" minOccurs="0"

/>
<xs:element name="sbRequest" type="stageType" minOccurs="0"

maxOccurs="unbounded" />
<xs:element name="sbResponse" type="stageType" minOccurs="0"

maxOccurs="unbounded" />
<xs:element name="cnResponse" type="stageType" minOccurs="0"

/>
<xs:element name="nbResponse" type="stageType" minOccurs="0"

/>
<xs:element name="context" type="stageType" minOccurs="0" />

</xs:sequence>
</xs:complexType>
<xs:complexType name="stageType">

<xs:attribute name="href" type="xs:string" />
</xs:complexType>

Example XSLT File to Derive Routing Key

Refer to the following transformation (XSLT) file shipped with the GetLocation example:

l ASG_CONFIG_HOME/GetLocation/xslt/operations/parse_getLocation.xml

The example illustrates that the routing key is populated based on the value of
opCoId, which is derived as a substring of the address element in the request



TIBCO® API Exchange Gateway User Guide

380 | Routing Overview

message.

<routingKey>
<xsl:choose>

<xsl:when test="$opCoId != ''"><xsl:value-of
       select="$opCoId"/></xsl:when>

<xsl:otherwise>undefined</xsl:otherwise>
</xsl:choose>

</routingKey>

Navigating to the ROUTING Tab
Navigate to the Routing tab on the Config UI.

Procedure
1. Start the GUI server, if not already running. See Starting GUI.

2. Log in to the Config UI using your credentials.

3. Add a new project or select an existing project under Projects.

4. Click the ROUTING tab on the upper right.

Uploading the Transformation (XSLT) File
To upload the XSLT transformation file for a facade operation request, follow these steps:

Procedure
1. Ensure that you are on the ROUTING tab of the Config UI. See Navigating to the

ROUTING Tab

2. Click the Facade Operations tab on the top menu.

3. Add a new facade operation or select an existing facade operation.

4. Upload the XSLT transformation file as follows:

a. Click the Choose File button in the New ProcessBody Transform field to
select a XSLT transformation file.

b. Click Open to upload the XSLT file.



TIBCO® API Exchange Gateway User Guide

381 | Routing Overview

Note:
l Define the XSLT file to upload in the New ProcessBody
Transform field. See Define a Transformation File.

l If the XSLT file is located in the ASG_CONFIG_
HOME/ASGConfigName/xslt/operations directory, select the
XSLT file in the ProcessBody Transform field.

l If the New ProcessBody Transform or ProcessBody
Transform field of the facade operation configuration contains
no XSLT file or has an XSLT file with no routingKey element
tag, the Core Engine uses the Routing configuration with the
default routing key.

5. Save the changes to the configuration.

Routing Configuration
You can configure the routing key to map a facade request to a target operation or a target
operation group using the ROUTING > Routing tab of the Config UI as follows:

l See Routing Configuration for a Target Operation

l See Routing Configuration for a Target Operation Group

Routing Configuration for a Target Operation
To configure the routing key for a target operation, follow these steps:

Procedure
1. Ensure that you are on the ROUTING tab of the Config UI.

2. Click the Routing tab on the top menu.

3. Enter the parameters defined as follows:



TIBCO® API Exchange Gateway User Guide

382 | Routing Overview

Parameter Description

Operation
Name

l Specifies the name of the facade operation. The operation name
must be defined in the Facade Operations tab of the Config UI.

l Select a predefined facade operation from this drop-down list.

l This is a required field.

Routing Type l Determines whether the facade request is routed to a target
operation or a target operation group containing target
operations.

l The possible values are:

o Target Operation

o Target Operation Group

l Select Target Operation to route the facade request to a target
operation.

l This is a required field.

Routing Key l Specifies the evaluated routing key for the given operation. A
routing key must be defined. See How to Derive and Configure
Routing Key for details.

l The default value is default.

l This is a required field.

Target
Operation
Name

l Specifies the name of the target operation. The target operation
name must be defined in the Target Operations tab of the
Config UI.

l Select a predefined target operation from this drop-down list.

l This is a required field.

Routing Configuration for a Target Operation

4. Save changes to your configuration.

Routing Configuration for a Target Operation Group
To configure the routing key for a target operation group, follow these steps:



TIBCO® API Exchange Gateway User Guide

383 | Routing Overview

Procedure
1. Ensure that you are on the ROUTING tab of the Config UI.

2. Click the Routing tab on the top menu.

3. Enter the parameters defined as follows:

Parameter Description

Operation
Name

l Specifies the name of the facade operation. The operation name
must be defined in the Facade Operations tab of the Config UI.

l Select a predefined facade operation from this drop-down list.

l This is a required field.

Routing Type l Determines whether the facade operation request is routed to a
target operation or a target operation group containing the
target operations.

l The possible values are:

o Target Operation

o Target Operation Group

l Select Target Operation Group to route the operation request to
a target operation group. The target operation group is a group
of the target operations.

l This is a required field.

Routing Key l Specifies the evaluated routing key for a given operation. A
routing key must be defined. See How to Derive and Configure
Routing Key for the details.

l The default value is default.

l This is a required field.

Target
Operation
Group

l Specifies the name of the target operation group for the load
balancing functionality.

Routing Configuration for a Target Operation Group



TIBCO® API Exchange Gateway User Guide

384 | Routing Overview

Parameter Description

l Select a predefined target operation group from this drop-down
list. The target operation group must be defined in the Target
Operation Groups tab of the Config UI. See Target Operation
Group for the details.

l This is a required field.

4. Save the changes to your configuration.

Routing Use Case using XSLT
This section describes the GetLocation sample shipped with the TIBCO API Exchange
Gateway product to illustrate the configuration steps required for routing. Refer to the
GetLocation example in the ASG_HOME/examples directory.

Sample Name

GetLocation

Description

The GetLocation example illustrates how to use a routing key to route the facade request
to a different target operation or target operation group. The routing key is derived from
the telephone number specified in the address element of the request. The target
operation or target operation group must be configured in the Config UI.

For example, If the value of the address element is specified as "tel:+498948956000", the
opCoId derived using the substring function (substring($address,6,2)) from the address
element is 49.The routing key is populated based on the opCoId as 49. See Configuration
for the routing configuration.

Sample Location

ASG_CONFIG_HOME/GetLocation

Configuration
Routing configuration using XSLT file for GetLocation example.



TIBCO® API Exchange Gateway User Guide

385 | Routing Overview

Define a Transformation File

Refer to the Sample XSLT File sample file to define a transformation file. This XSLT file
shows that the routing key is derived based on the value of the address element of the
request message. The address element contains a telephone number. You can edit the file,
as required.

Sample XSLT File Location

ASG_CONFIG_HOME/GetLocation/xslt/operations/parse_getLocation.xsl

Sample XSLT File

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:loc="urn:oma:wsdl:pxprof:terminallocation:1.0:interface:local">

<xsl:template match="/">
<xsl:variable name="nbRequestHref">

<xsl:value-of select="/transformation/nbRequest/@href" />
</xsl:variable>
<xsl:variable name="nbRequest">

<xsl:copy-of select="document
($nbRequestHref)/soap:Envelope/soap:Body/*" />

</xsl:variable>
<output>

<xsl:variable name="address">
<xsl:value-of

select="$nbRequest/loc:getLocation/loc:address" />
</xsl:variable>
<xsl:variable name="partner">

<xsl:value-of
select="$nbRequest/loc:getLocation/loc:requester" />

</xsl:variable>
<xsl:variable name="opCoId">

<xsl:value-of select="substring($address,6,2)" />
</xsl:variable>
<requester>

<xsl:value-of select="$partner" />
</requester>
<serviceInterfaceVersion></serviceInterfaceVersion>
<referenceId></referenceId>
<serviceId></serviceId>
<timestamp></timestamp>
<correlationId></correlationId>



TIBCO® API Exchange Gateway User Guide

386 | Routing Overview

<identityId></identityId>
<opCoId>

<xsl:value-of select="$opCoId" />
</opCoId>
<partnerId>

<xsl:value-of select="$partner" />
</partnerId>
<routingKey>

<xsl:choose>
<xsl:when test="$opCoId != ''">

<xsl:value-of select="$opCoId" /></xsl:when>
<xsl:otherwise>undefined</xsl:otherwise>

</xsl:choose>
</routingKey>
<address><xsl:value-of select="$address"/></address>

</output>
</xsl:template>

</xsl:stylesheet>

Uploading the Transformation File
To upload the parse_getLocation.xsl transformation file, complete the following steps:

Procedure
1. Start the Config UI. See Starting GUI.

2. Log in to the Config UI using your credentials.

3. Select Getlocation under Projects.

4. Click the ROUTING tab on upper left.

5. Click the Facade Operations tab.

6. Expand the getLocationBW operation.

7. Make sure that the operations/parse_getLocation.xsl file is populated in the
ProcessBody Transform field. If it is not selected, select it from the drop-down list.

8. Save any changes to the configuration.

Routing Configuration
Configure a routing key for the getLocationBW operation to route the request to the
http.getLocation target operation, as follows:



TIBCO® API Exchange Gateway User Guide

387 | Routing Overview

Procedure
1. On ROUTING tab, click the Routing tab on the top menu.

2. Click the Add Property to add a new routing configuration.

3. Enter the fields as follows:

Parameter Value

Operation
Name

Select getLocationBW from the drop-down list.

Routing
Type

Select Target Operation from the drop-down list.

Routing Key Enter 49 as the routing key.

Target
Operation

Select the target operation as http.getLocation from the drop-
down list. The http.getLocation target operation is defined in the
Target Operations tab.

Routing Configuration for GetLocation Example

4. Save any changes to the configuration.

Note: The routing configuration for the GetLocation example demonstrates
the getLocationBW operation. For the getLocationBW operation request, if
the routing key is populated as 49 from the data content of the incoming
request message, the request is routed to the http.getLocation target
operation. Similarly, you can define additional routing configuration to
route the request to a different target operation for a different routing key.

Preferred Routing
TIBCO API Exchange Gateway supports routing of the client request based on preferred
routing key. To use preferred routing, specify a preferred routing key for a partner
operation as a facade access.

TIBCO API Exchange Gateway processes a facade operation request from the partner for
preferred routing, as follows:



TIBCO® API Exchange Gateway User Guide

388 | Routing Overview

l If the Preferred Routing Key is not blank, preferred routing is enabled and the Core
Engine uses this value as the routing key. Make sure to configure a routing key which
matches the preferred routing key.

l If the Preferred Routing Key is blank, the Core Engine does not enable preferred
routing.

l To select the target operation for the facade operation request, configure the
preferred routing key on the Routing tab of the Config UI.

o If the preferred routing key is not configured on the Routing tab, the default
routing key is used.

o If the default routing key is not configured, an error such as Route not found
for transaction ID transaction_ID is returned.

Use Case for Preferred Routing
Using plan type for preferred routing.

TIBCO API Exchange Gateway supports the plan type for preferred routing. When the plan
type is passed from the TIBCO API Exchange Manager to TIBCO API Exchange Gateway, the
Core Engine populates the plan type in the Preferred Routing Key field of the Facade
Access tab on the Config UI of TIBCO API Exchange Gateway.

Refer to TIBCO API Exchange Manager Administration on how to configure a plan type.

Example
Illustrates the routing configuration for the Gold plan type as preferred routing.

If you selected the Gold plan type in TIBCO API Exchange Manager for the getLocationBW
facade operation, use the following configuration to route the getLocationBW facade
operation request to the http.getLocation target operation:

Procedure
1. Start the Config UI, if not running.

2. Log in to the Config UI using your credentials.

3. Select the project under Projects.

4. On the ROUTING tab, click Routing on the top menu.



TIBCO® API Exchange Gateway User Guide

389 | Routing Overview

5. Click Add Property to add a new routing configuration.

6. Enter information for the fields as follows:

Parameter Value

Operation
Name

Select getLocationBW from the drop-down list.

Routing
Type

Select Target Operation from the drop-down list.

Routing Key The routing key must match the value populated in the Preferred
Routing Key field of the Facade Access tab as the routing key.

For example, Gold.

Target
Operation

Select the target operation as http.getLocation from the drop-
down list. The http.getLocation target operation is defined in the
Target Operations tab.

Routing Configuration for Preferred Routing Key Type

7. Save the changes to the configuration.

Note:
l If the preferred routing key is not configured as the routing key in

the Routing tab of Config UI, the default routing key is used.

l You can change the value of the preferred routing key using the XSLT
file. The XSLT file is uploaded in the New ProcessBody Transform
field of the facade operation to derive the routing key. The routing
key derived from the XSLT file takes the precedence over the routing
key configured as preferred routing in the Routing tab of Config UI.
See Overriding Preferred Routing Key using XSLT for details.

Overriding Preferred Routing Key using XSLT
To change the value of the preferred routing key using the XSLT file, follow these steps:

Procedure



TIBCO® API Exchange Gateway User Guide

390 | Routing Overview

1. Start the Config UI, if not running.

2. Log in to the Config UI using your credentials.

3. Select the project under Projects.

4. On the ROUTING tab, click Routing on the top menu.

5. Select the Facade Operations tab.

6. In the New ProcessBody Transform field, upload the XSLT file. The XSLT file
generates the routing key using the <routingKey> tag. See Example XSLT File.

7. Save the changes to the project configuration.

Example XSLT File
The following is an example of an XSLT file that sets the routing key as SILVER. Set any
value for the routing key in the XSLT file to overwrite the Preferred Routing Key value
specified in the Facade Access tab.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fn="http://www.w3.org/2005/xpath-functions"
xmlns:c="http://www.tibco.com/schemas/asg/context"
xmlns:h="http://www.tibco.com/asg/protocols/http"
exclude-result-prefixes="xsl fn h c">
<xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"

omit-xml-declaration="no"/>
<xsl:variable name="contextHref">

<xsl:value-of select="/transformation/context/@href"/>
</xsl:variable>
<xsl:variable name="httpRequest">

<xsl:copy-of select="document($contextHref)/c:context/c:entry
[@key='asg:httpRequest']/h:request"/>
</xsl:variable>
<xsl:template match="/">
<output>
<routingKey>SILVER</routingKey>
</output>
</xsl:template>
</xsl:stylesheet>



TIBCO® API Exchange Gateway User Guide

391 | Routing Overview

Target Operation Group
A target operation group consists of target operations.

TIBCO API Exchange Gateway provides the load balancing functionality to distribute client
requests across the target operations grouped within a target operation group. The target
operations can be grouped together to achieve maximum productivity and distribute the
load of requests from clients. TIBCO API Exchange Gateway supports the failover for a
target operation group. Using the failover mechanism, the request is processed by an
alternate target operation within the target operation group if the primary target operation
is not available.

Overview
This section gives an overview of the target operation groups followed by the details on the
supported routing algorithms for a target operation group. The routing algorithm type
determines the routing of the request to an appropriate target operation grouped within a
target operation group.

Using TIBCO API Exchange Gateway you can group target operations and add multiple
target operations in a target operation group. You can also create multiple target operation
groups as needed. When any client request is routed to a target operation group containing
multiple target operations, the Core Engine forwards the request to a target operation
based on type of the target operation group. The type of the target operation group
indicates a routing algorithm to be used to select a target operation for processing a client
request.

Note: The property
tibco.clientVar.ASG/Routing/MinimumFailoverHTTPStatusCode in the
asg.properties file allows the failure response from the backend to be
propagated to the client even when the TargetOperations are configured with
RoundRobinWithFailover or WeightedRoundRobinWithFailover. This is the
minimum Error Status code after which the load balancer will continue with
failover. Normally the value should be 500, but in some use cases, this can go up
to 550.

See Types of Target Operations Group for supported types of target operation groups.



TIBCO® API Exchange Gateway User Guide

392 | Routing Overview

Types of Target Operations Group
TIBCO API Exchange Gateway supports the following types of target operation groups to
provide the load balancing of requests within target operations in a group.

l LoadBalanced

when the type of target operation group is defined as LoadBalanced, the Core Engine
picks up a random target operation from the list of target operations grouped into a
target operation group.
See LoadBalanced for details.

l RoundRobin

when the type of target operation group is defined as RoundRobin, the load
balancing of target operations within the target operation group can be classified as
the following subtypes:

o RoundRobin

o RoundRobin with Failover

See RoundRobin for details.

l Weighted RoundRobin

when the type of target operation group is defined as Weighted RoundRobin, it
means you can assign a weight value to each target operation in the target operation
group. With Weighted RoundRobin routing type,the load balancing of target
operations within the target operation group can be classified as the following
subtypes:

o Weighted RoundRobin

o Weighted RoundRobin with Failover

See Weighted RoundRobin for details.

l Sticky Resource Affinity

when the type of target operation group is defined as Sticky Resource Affinity,the
routing of the request can be done based on various parameters such as the IP
address of the client machine, XPath, and the machine domain name.

See Sticky Resource Affinity for details.



TIBCO® API Exchange Gateway User Guide

393 | Routing Overview

Routing Algorithms for Target Operation Group
This section explains the various types of supported routing algorithms for a target
operation group. A target operation group type is defined based on the routing algorithm.

Example

Consider a target operation group SG1 containing three target operations as A, B, and C.
The Core Engine routes the incoming facade operation requests (for example, Request 1-n)
to the SG1 target operation group based on the routing key. The Core Engine selects the
target operation within the SG1 target operation group based on the type of the target
operation group, which are defined as follows:

LoadBalanced
If the target operation group type for the SG1 target operation group is defined as
LoadBalanced, the Core Engine uses the LoadBalanced routing algorithm. For the
LoadBalanced routing algorithm type, the Core Engine picks up a random target operation
that is a part of this target operation group. The Core Engine distributes the requests
evenly over a large number of requests.

When the Core Engine routes the client requests (Request 1-n) to SG1 target operation
group with the LoadBalanced target operation group type, the target operation is selected
as follows to process the client requests:

l The first facade request Request 1 is forwarded to the target operation B.

l The second facade request Request 2 is forwarded to the target operation C.

l The third facade request Request 3 is forwarded to the target operation A.

l The fourth request Request 4 is forwarded to the target operation A.

l The subsequent facade requests are forwarded to the target operations at random.

RoundRobin
If the target operation group type for the SG1 target operation group is defined as
RoundRobin, the Core Engine uses the RoundRobin routing algorithm. For the RoundRobin
routing algorithm type, the Core Engine selects the target operation in a RoundRobin
fashion. This means that the Core Engine rotates through the list of target operations one
at a time to process the client requests.



TIBCO® API Exchange Gateway User Guide

394 | Routing Overview

Figure RoundRobin Routing illustrates the SG1 target operation group with RoundRobin
type.

When the Core Engine routes the client requests to SG1 target operation group, the target
operation from the SG1 target operation group is selected as follows to process the client
request:

l The first facade request Request 1 is forwarded to target operation A.

l The second facade request Request 2 is forwarded to target operation B.

l The third facade request Request 3 is forwarded to target operation C.

l The fourth request Request 4 is forwarded to target operation A. The subsequent
facade requests are forwarded to target operation B, then target operation C, and so
on.

Scheduling Pattern

The Core Engine uses the following scheduling pattern for the RoundRobin algorithm type:

(Target Operation A, Target Operation B, Target Operation C, Target Operation A, Target
Operation B, Target Operation C, Target Operation A, and so on.)

If the selected target operation is not running or times out to process the facade request,
the Core Engine processes the request as follows:

l Retries to route the request to the same target operation as per the retry mechanism.

l The Core Engine does not route the facade request to an alternate target operation
in the target operation group.

l Returns the fault message to the client for the facade request.

RoundRobin Routing



TIBCO® API Exchange Gateway User Guide

395 | Routing Overview

Weighted RoundRobin
For the Weighted RoundRobin routing algorithm, a weight value is assigned to each target
operation. The weight value for a target operation specifies a priority for each target
operation in a target operation group. You can assign a weight value to each target
operation in a target operation group using the Config UI.

When you assign the weight to a target operation, the weight value indicates the capacity
of that target operation in comparison to other target operations within the target
operation group.

Note: You can assign same weight values to multiple target operations. When
the target operations in a target operation group have the same weight values, a
target operation is selected in a RoundRobin way to process the facade request.



TIBCO® API Exchange Gateway User Guide

396 | Routing Overview

When a client request is forwarded to a target operation group type as Weighted
RoundRobin, the Core Engine selects the target operation within the target operations
group based on the weight values.

Figure Weighted RoundRobin shows the SG1 target operation group containing three target
operations (target operation A, target operation B, and target operation C) with Weighted
RoundRobin type. Target operation A is assigned weight value as 5, Target operation B is
assigned weight value as 2, and Target operation C is assigned weight value as 3.

When the Core Engine routes any facade request to the SG1 target operation group, the
Core Engine processes the request in the following way:

l The first facade request Request 1 is forwarded to target operation A as that has the
maximum weight 5.

l The second facade request Request 2 is forwarded to target operation A.

l The third facade request Request 3 is forwarded to target operation A.

l The fourth facade request Request 4 is forwarded to target operation C.

l The fifth facade request Request 5 is forwarded to target operation A.

l The sixth facade request Request 6 is forwarded to target operation B.

Scheduling Pattern

The Core Engine uses the scheduling pattern as follows for the Weighted RoundRobin
algorithm type:

(Target Operation A, Target Operation A, Target Operation A, Target Operation C, Target
Operation A, Target Operation B, Target Operation C, and so on.)

If the selected target operation is not running or times out to process the facade request,
the Core Engine processes the request as follows:

l Retries to forward the request to the same target operation as per the retry
mechanism.

l The Core Engine does not route the facade request to an alternate target operation
in the target operations group.

l Returns the fault message to the client for the facade request.



TIBCO® API Exchange Gateway User Guide

397 | Routing Overview

Note: When the target operations in a target operation group have the same
weight values, the Core Engine selects the target operations in a RoundRobin
fashion.

Weighted RoundRobin

RoundRobin with Failover
For a target operation group of RoundRobin with Failover type, the Core Engine selects the
target operation as per the RoundRobin algorithm. See RoundRobin for details. After the
target operation is selected, the Core Engine checks the health of the target operation
using the HealthCheck reference functionality of TIBCO API Exchange Gateway. See
HealthCheck for Reference.



TIBCO® API Exchange Gateway User Guide

398 | Routing Overview

The Core Engine processes the client request as follows:

l The Core Engine selects the target operation in a RoundRobin fashion.

l If the selected target operation within the target operation group is running and
available, the facade request is forwarded to this target operation for processing.

l If the target operation is not running or times out, an alternate target operation is
selected from the group of target operations using the RoundRobin algorithm. This
process continues until a target operation is found within the target operations group
that is available to process the request. The facade request is routed to the available
target operation for processing.

The following variables are used to group the status codes to separate them from the
MinimumFailoverHTTPStatusCode. The MinimumFailoverHTTPStatusCode is the minimum
HTTP status code above which a failover is triggered. The default value is 502.

l ASG/Routing/HTTPStatusCodeInclusionSet: The codes to be allowed for failover are
included in this variable. known It is a comma-separated list of status codes. For
example, tibco.clientVar.ASG/Routing/HTTPStatusCodeInclusionSet

l ASG/Routing/HTTPStatusCodeExclusionSet: The codes to be restricted from failover
are included in this variable. It is a comma-separated list of status codes. For
example, tibco.clientVar.ASG/Routing/HTTPStatusCodeExclusionSet.

The following scenarios are covered:

MinimumFailover
HTTPStatusCode
Default value:
502
Property is either
defined or empty

ASG/Routing/HTTPStat
usCodeInclusionSet
Default value: Empty
Property is either
defined or empty

ASG/Routing/HTTPStat
usCodeExclusionSet
Default value: Empty
Property is either
defined or empty

Effect

Value not
provided

Value provided

For example,
HTTPStatusCodeInclus
ionSet = 408, 421

Value not provided Failover for all
status codes
greater or equal to
MinimumFailoverH
TTPStatusCode
(502), OR status
code present in
the inclusion list
but NOT present in



TIBCO® API Exchange Gateway User Guide

399 | Routing Overview

MinimumFailover
HTTPStatusCode
Default value:
502
Property is either
defined or empty

ASG/Routing/HTTPStat
usCodeInclusionSet
Default value: Empty
Property is either
defined or empty

ASG/Routing/HTTPStat
usCodeExclusionSet
Default value: Empty
Property is either
defined or empty

Effect

the exclusion list.

502 - Failover
(equal to default
MinimumFailoverH
TTPStatusCode)
408 - Failover
(available in
HTTPStatusCodeIn
clusionSet) 429 -
No failover (less
then
MinimumFailoverH
TTPStatusCode)

Value provided

For example,
MinimumFailover
HTTPStatusCode =
510

Value not provided Value not provided Failover for all
status codes
greater or equal to
the provided
MinimumFailoverH
TTPStatusCode
(510), OR status
code present in
inclusion list but
NOT present in the
exclusion list

510 - Failover
(equal to provided
MinimumFailoverH
TTPStatusCode)
502 - No Failover
(less than
MinimumFailoverH



TIBCO® API Exchange Gateway User Guide

400 | Routing Overview

MinimumFailover
HTTPStatusCode
Default value:
502
Property is either
defined or empty

ASG/Routing/HTTPStat
usCodeInclusionSet
Default value: Empty
Property is either
defined or empty

ASG/Routing/HTTPStat
usCodeExclusionSet
Default value: Empty
Property is either
defined or empty

Effect

TTPStatusCode)

Value provided

For example,
MinimumFailover
HTTPStatusCode =
510

Value provided

For example,
HTTPStatusCodeInclus
ionSet = 503, 504

Value provided

For example,
MinimumFailoverHTTPS
tatusCode = 596

Failover for all
status codes
greater or equal to
MinimumFailoverH
TTPStatusCode
(510), OR status
code present in
inclusion list but
NOT present in the
exclusion list

510 - Failover
(equal to provided
MinimumFailoverH
TTPStatusCode)
503 - Failover
(available in
HTTPStatusCodeIn
clusionSet) 596 -
No failover
(available in
HTTPStatusCodeEx
clusionSet)

Value not
provided

Value not provided Value not provided Failover for all
status codes
greater or equal to
MinimumFailoverH
TTPStatusCode
(502)

502 - Failover
(equal to



TIBCO® API Exchange Gateway User Guide

401 | Routing Overview

MinimumFailover
HTTPStatusCode
Default value:
502
Property is either
defined or empty

ASG/Routing/HTTPStat
usCodeInclusionSet
Default value: Empty
Property is either
defined or empty

ASG/Routing/HTTPStat
usCodeExclusionSet
Default value: Empty
Property is either
defined or empty

Effect

MinimumFailoverH
TTPStatusCode)
408 -No Failover

Value not
provided

Value provided

For example,
HTTPStatusCodeInclus
ionSet = 408, 421

Value provided

For example,
HTTPStatusCodeExclus
ionSet = 596

Failover for all
status codes
greater or equal to
MinimumFailoverH
TTPStatusCode
(502), or status
code present in
inclusion list but
not present in the
exclusion list

502 - Failover
(equal to
MinimumFailoverH
TTPStatusCode)
408 - Failover
(available in
HTTPStatusCodeIn
clusionSet)

596 - No failover
(available in
HTTPStatusCodeEx
clusionSet

)

Value provided

For example,
HTTPStatusCodeI
nclusionSet =

Value not provided Value provided

For example,
HTTPStatusCodeExclus
ionSet = 596

Failover for all
status codes
greater or equal to
MinimumFailoverH



TIBCO® API Exchange Gateway User Guide

402 | Routing Overview

MinimumFailover
HTTPStatusCode
Default value:
502
Property is either
defined or empty

ASG/Routing/HTTPStat
usCodeInclusionSet
Default value: Empty
Property is either
defined or empty

ASG/Routing/HTTPStat
usCodeExclusionSet
Default value: Empty
Property is either
defined or empty

Effect

408, 421 TTPStatusCode
(510), OR status
code present in
inclusion list but
NOT present in the
exclusion list

510 - Failover
(equal to
MinimumFailoverH
TTPStatusCode)
502 - Don't failover
(less than
MinimumFailoverH
TTPStatusCode)

596 - Don't failover
(available in
HTTPStatusCodeEx
clusionSet

)

Value not
provided

Value not provided Value provided

For example,
HTTPStatusCodeExclus
ionSet = 510

Failover for all
status codes
greater or equal to
MinimumFailoverH
TTPStatusCode
(502), but NOT
present in the
inclusion list

502 - Failover
(equal to provided
MinimumFailoverH



TIBCO® API Exchange Gateway User Guide

403 | Routing Overview

MinimumFailover
HTTPStatusCode
Default value:
502
Property is either
defined or empty

ASG/Routing/HTTPStat
usCodeInclusionSet
Default value: Empty
Property is either
defined or empty

ASG/Routing/HTTPStat
usCodeExclusionSet
Default value: Empty
Property is either
defined or empty

Effect

TTPStatusCode)
510 - No failover
(available in
HTTPStatusCodeEx
clusionSet)

Value provided or
not provided

Value provided

For example,
HTTPStatusCodeInclus
ionSet = 510

Value provided

For example,
HTTPStatusCodeExclus
ionSet = 510

IF Inclusion and
exclusion both
contain duplicate
entries then
IllegalArgumentE
xceptionto is
thrown with an
additional
message Given
Http Code can not
be part of BOTH
Inclusion and
Exclusion set and
Engine ignores all
the values given in
HTTPStatusCodeIn
clusionSet and
HTTPStatusCodeEx
clusionSet. (both
values to be
considered as
EMPTY set)

Weighted RoundRobin with Failover
For a target operation group of Weighted RoundRobin with Failover type, the Core Engine
selects the target operation as per the assigned weight to the target operations. See
Weighted RoundRobin for details. After the target operation is selected, the Core Engine



TIBCO® API Exchange Gateway User Guide

404 | Routing Overview

checks the health of the target operation using the HealthCheck functionality. See
HealthCheck for Reference for details. If the target operation is available, the facade
request is forwarded to this target operation. If the target operation is not available, the
Core Engine finds an alternate target operation based on the weight assigned to the
remaining target operations in the target operations group. This process continues until a
target operation is found within the target operations group that is running. The facade
request is routed to the available target operation for processing.

Sticky Resource Affinity
When a target operation group type is configured as Sticky Resource Affinity, the Core
Engine distributes the client requests between the target operations in the target
operations group based on the information such as the sticky key. When the Core Engine
routes a client request to a target operation group of the Sticky Resource Affinity type, the
target operation is selected based on the value of a sticky key.

l If the sticky key to the target operation map already exists, the client request is
routed to the same target operation.

l If the sticky key to the target operation map does not exist, a new map is created
using the sticky key and the next available target operation in the target operations
group. The Core Engine balances the load of the target operations in the target
operation group when it selects the available target operation from the group.

Define a sticky key to route the facade operation request to a specific target operation. See
Defining and Configuring Sticky Key for details.

For the SG1 target operation group with Sticky Resource Affinity type, consider the
following configuration:

l Sticky Routing Key SK1 is mapped to target operation A. Target operation A has
processed 10 requests.

l Sticky Routing Key SK2 is mapped to target operation B. Target operation B has
processed 7 requests.

l Sticky Routing Key SK3 is mapped to target operation C. Target operation C has
processed 4 requests.

For this scenario, the Core Engine processes the client requests as follows:

l Any incoming client request with SK1 sticky routing key is forwarded to target
operation A.



TIBCO® API Exchange Gateway User Guide

405 | Routing Overview

l Any incoming client request with SK2 sticky routing key is forwarded to target
operation B.

l Any incoming client request with SK3 sticky routing key is forwarded to target
operation C.

l A client request with SK4 sticky routing key is forwarded to target operation C. For
this client request, the Core Engine does not associate the SK4 sticky routing key
with the request, but chooses target operation A as next target operation in the
RoundRobin way. As target operation A has processed 10 requests, the Core Engine
forwards this request to target operation C to balance the load between A, B, and C
target operations. Any further client requests with SK4 sticky routing key is forwarded
to target operation C for processing.

StickyResourceAffinity Routing Algorithm

Defining and Configuring Sticky Key

To use the Sticky Resource Affinity routing algorithm, define a sticky routing key. The sticky
routing key is derived in a XSLT transformation file as part of the parsing step in the
request processing pipeline of a facade operation. You can upload the XSLT file for a
facade operation configuration in the Config UI. The Core Engine retrieves the sticky key
from the transformation. See StickyResourceAffinity Target Operation Group Configuration.

Target Operation Group Configuration
This section explains the configuration setup for a target operation group to select a
routing algorithm. The routing algorithm determines the target operation within the target



TIBCO® API Exchange Gateway User Guide

406 | Routing Overview

operation group to process the facade request received by this target operation group.

Configuring a Target Operation Group
To configure a target operation group, follow these steps:

Procedure
1. Ensure that you are on the Routing tab of the Config UI. See Navigating to the

ROUTING Tab.

2. Click the Target Operation Groups tab on the top menu.

3. Enter the value for the following fields:

Parameter Description

Group Name l Specifies the name of the target operation group. This can
be any name defined by a user.

l This is a Required field.

Description A short user description of the target operation group.

Type Specifies the type of target operation group. See Routing
Algorithms for Target Operation Group for details.

Select one of the possible values from the drop-down list:

l LoadBalanced

l RoundRobin. See Configuring a RoundRobin Target
Operation Group.

l WeightedRoundRobin

l RoundRobinWithFailover

l WeightedRoundRobinWithFailover

l StickyResourceAffinity.

Target
Operations

Specifies the list of target operations in the group. Add multiple

Target Operation Group Configuration



TIBCO® API Exchange Gateway User Guide

407 | Routing Overview

Parameter Description

target operations using the Add Target Operation( ) icon to a

target operations group. The target operations must be
configured under the Target Operations tab.

4. Save the changes to the configuration.

Note: If you configure a target operation group of the type
RoundRobinWithFailover or WeightedRoundRobinWithFailover, you must
define the HealthCheck configuration for each target operation in the
group. See HealthCheck Configuration for Target Operation for
configuration details.

Configuring a RoundRobin Target Operation Group
To configure a target operation group of RoundRobin type, select the type of target
operation group as RoundRobin. Follow these steps:

Procedure
1. Click the Target Operation Groups tab.

2. Enter the value for the following fields:

Parameter Description

Group Name l Specifies the name of the target operation group. This can
be any name defined by a user.

l This is a Required field.

Description A short user description of the target operation group.

Type Select RoundRobin from the drop-down list. See RoundRobin
Target Operation Group Configuration.

RoundRobin Target Operation Group Configuration



TIBCO® API Exchange Gateway User Guide

408 | Routing Overview

Parameter Description

Target
Operations

Specifies the list of target operations in the group. Add multiple
target operations using the Add Target Operation ( )icon to a

target operations group. The target operations must be
configured under the Target Operations group.

3. Save the changes to the configuration.

4. Figure RoundRobin Target Operation Group Configuration shows the RoundRobin
Target Operation Group configuration.

RoundRobin Target Operation Group Configuration

Configuring a WeightedRoundRobin Target Operation Group
To configure a target operation group of WeightedRoundRobin type, select the type of the
target operation group as WeightedRoundRobin. Follow these steps:

Procedure
1. Click the Target Operation Groups tab.



TIBCO® API Exchange Gateway User Guide

409 | Routing Overview

2. Enter the value for the following fields:

Parameter Description

Group Name l Specifies the name of the target operation group. This can
be any name defined by a user.

l This is a Required field.

Description A short user description of the target operation group.

Type Select WeightedRoundRobin from the drop-down list. See
WeightedRoundRobin Target Operation Group Configuration.

Target
Operations

Specifies the list of target operations in the group. Add multiple
target operations using the Add Target Operation ( ) icon to a

target operations group. The target operations must be
configured under the Target Operations group.

WeightedRoundRobin Target Operation Group Configuration

3. Save the changes to the configuration.

4. Figure WeightedRoundRobin Target Operation Group Configuration shows the
RoundRobin Target Operation Group configuration.

WeightedRoundRobin Target Operation Group Configuration



TIBCO® API Exchange Gateway User Guide

410 | Routing Overview

Configuring a RoundRobinWithFailOver Target Operation Group
To configure a target operation group of RoundRobinWithFailover type, select the type of
the target operation group as RoundRobinWithFailover. Follow these steps:

Procedure
1. Click the Target Operation Groups tab.

2. Enter the value for the following fields:

Parameter Description

Group Name l Specifies the name of the target operation group. This can
be any name defined by a user.

l This is a required field.

Description A short user description of the target operation group.

Type Select RoundRobinWithFailover from the drop-down list. See
RoundRobinWithFailOver Target Operation Group.

Target
Operations

Specifies the list of target operations in the group. Add muliple
target operations using the Add Target Operation ( )icon to a

target operations group. The target operations must be
configured under the Target Operations group.

RoundRobinWithFailOver Target Operation Group Configuration

3. Save the changes to the configuration.

4. Figure RoundRobinWithFailOver Target Operation Group shows the
RoundRobinWithFailover Target Operation Group configuration:

RoundRobinWithFailOver Target Operation Group



TIBCO® API Exchange Gateway User Guide

411 | Routing Overview

Configuring a WeightedRoundRobinWithFailOver Target
Operation Group
To configure a target operation group of WeightedRoundRobinWithFailover type, select the
type of the target operation group as WeightedRoundRobinWithFailover. Follow these
steps:

Procedure
1. Click the Target Operation Groups tab.

2. Enter the value for the following fields:

Parameter Description

Group Name l Specifies the name of the target operation group. This can
be any name defined by a user.

l This is a Required field.

Description A short user description of the target operation group.

WeightedRoundRobinWithFailOver Target Operation Group Configuration



TIBCO® API Exchange Gateway User Guide

412 | Routing Overview

Parameter Description

Type Select WeightedRoundRobinWithFailover from the drop-down list.
See WeightedRoundRobinWithFailOver Target Operation Group.

Target
Operations

Specifies the list of target operations in the group. Add muliple
target operations using the Add Target Operation ( )icon to a

target operations group. The target operations must be
configured under the Target Operations group.

3. Save the changes to the configuration.

4. Figure WeightedRoundRobinWithFailOver Target Operation Group shows the
RoundRobinWithFailover Target Operation Group configuration:

WeightedRoundRobinWithFailOver Target Operation Group

StickyResourceAffinity Target Operation Group Configuration
This section explains the steps required to configure the target operation group of
StickyResourceAffinity type.



TIBCO® API Exchange Gateway User Guide

413 | Routing Overview

Define Sticky Routing Key
The sticky routing key can be defined based on many parameters such as the IP address,
machine domain name, and so on. The StickyKey is populated from the <stickyRoutingKey>
element tag in the transformation (XSLT) file.

Refer to Example XSLT File for StickyRoutingKey to define an XSLT file for the sticky routing
key.

Example XSLT File for StickyRoutingKey

The following example illustrates an XSLT file to derive a StickyRouting Key. Refer to the
<stickyRoutingKey> element tag in the file defined as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet
version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:c="http://www.tibco.com/schemas/asg/context"
xmlns:h="http://www.tibco.com/asg/protocols/http"
xmlns:f="http://www.tibco.com/asg/functions/form"
xmlns:form="http://www.tibco.com/asg/content-types/form"
xmlns:book="http://www.example.com/xsd/books"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<xsl:output
omit-xml-declaration="yes"
indent="yes"
/>
<xsl:variable name="contextHref">
<xsl:value-of select="/transformation/context/@href"/>
</xsl:variable>
<xsl:variable name="httpRequest">
<xsl:copy-of select="document($contextHref)/c:context/c:entry
[@key='asg:httpRequest']/h:request/*"/>
</xsl:variable>
<xsl:variable name="parsedQueryString">
<xsl:value-of select="$httpRequest/h:client-ip"/>
</xsl:variable>
<xsl:variable name="nbRequestHref">
<xsl:value-of select="/transformation/nbRequest/@href"/>
</xsl:variable>
<xsl:variable name="nbRequest">
<xsl:copy-of select="document
($nbRequestHref)/soapenv:Envelope/soapenv:Body/*"/>
</xsl:variable>



TIBCO® API Exchange Gateway User Guide

414 | Routing Overview

<xsl:template match="/">
<output>
<xsl:variable name="username">
<xsl:value-of select="$nbRequest/book:Author"/>
</xsl:variable>
<username><xsl:value-of select="$username"/></username>
<parsedQueryString><xsl:value-of
select="$parsedQueryString"/></parsedQueryString>
<routingKey>
<xsl:choose>
<xsl:when test="$username = 'Vivek Ranadive'"><xsl:value-of
select="$username"/></xsl:when>
<xsl:when test="$username = 'Vivek Ranadive1'"><xsl:value-of
select="$username"/></xsl:when>
<xsl:when test="$username = 'Vivek Ranadive3'"><xsl:value-of
select="$username"/></xsl:when>
<xsl:otherwise>default</xsl:otherwise>
</xsl:choose>
</routingKey>
<stickyRoutingKey><xsl:choose><xsl:when test="$parsedQueryString !=
''"><xsl:value-of
select="$parsedQueryString"/></xsl:when>
<xsl:otherwise>default</xsl:otherwise></xsl:choose></stickyRoutingKey>
</output>
</xsl:template>
</xsl:stylesheet>

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:c="http://www.tibco.com/schemas/asg/context"
xmlns:h="http://www.tibco.com/asg/protocols/http"
xmlns:f="http://www.tibco.com/asg/functions/form"
xmlns:form="http://www.tibco.com/asg/content-types/form"
xmlns:book="http://www.example.com/xsd/books"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<xsl:output omit-xml-declaration="yes" indent="yes" />
<xsl:variable name="contextHref">

<xsl:value-of select="/transformation/context/@href" />
</xsl:variable>
<xsl:variable name="httpRequest">

<xsl:copy-of select="document($contextHref)/c:context/
c:entry[@key='asg:httpRequest']/h:request/*" />

</xsl:variable>



TIBCO® API Exchange Gateway User Guide

415 | Routing Overview

<xsl:variable name="parsedQueryString">
<xsl:value-of select="$httpRequest/h:client-ip" />

</xsl:variable>
<xsl:variable name="nbRequestHref">

<xsl:value-of select="/transformation/nbRequest/@href" />
</xsl:variable>
<xsl:variable name="nbRequest">

<xsl:copy-of select="document
($nbRequestHref)/soapenv:Envelope/soapenv:Body/*" />

</xsl:variable>
<xsl:template match="/">

<output>
<xsl:variable name="username">

<xsl:value-of select="$nbRequest/book:Author" />
</xsl:variable>
<username>

<xsl:value-of select="$username" />
</username>
<parsedQueryString>

<xsl:value-of select="$parsedQueryString" />
</parsedQueryString>
<routingKey>

<xsl:choose>
<xsl:when test="$username = 'Vivek Ranadive'">

<xsl:value-of select="$username" /></ xsl:when>
<xsl:when test="$username = 'Vivek Ranadive1'">

<xsl:value-of select="$username" /></
xsl:when>

<xsl:when test="$username = 'Vivek
Ranadive3'">

<xsl:value-of select="$username" /></
xsl:when>

<xsl:otherwise>default</xsl:otherwise>
</xsl:choose>

</routingKey>
<stickyRoutingKey>

<xsl:choose>
<xsl:when test="$parsedQueryString != ''">

<xsl:value-of select="$parsedQueryString"
/></xsl:when>

<xsl:otherwise>default</xsl:otherwise>
</xsl:choose>

</stickyRoutingKey>
</output>

</xsl:template>
</xsl:stylesheet>



TIBCO® API Exchange Gateway User Guide

416 | Routing Overview

Uploading Sticky Routing Key File
To upload the XSLT file containing the <stickyRoutingKey> element, follow these steps:

Procedure
1. Start the Config UI, if not running.

2. Log in to the Config UI using your credentials.

3. Add a new project or select an existing project under Projects.

4. Click the ROUTING tab on the right-hand side.

5. Click the Facade Operations tab on the top menu.

6. Add a new operation or select an existing operation.

7. Upload the XSLT file as follows:

a. Click Choose File in the New ProcessBody Transform field to select the XSLT
transformation file containing stickyRoutingKey tag.

b. Click Open on the new dialog to upload the file.

c. If the XSLT file is located in the ASG_CONFIG_
HOME/ASGConfigName/xslt/operations directory, choose the XSLT file in the
ProcessBody Transform field.

8. Save the changes to the configuration.

Configuring StickyResourceAffinity Type Target Operation Group
To configure a target operation group of StickyResourceAffinity type, select the type of the
target operation group as StickyResourceAffinity.

Procedure
1. Click the Target Operation Groups tab.

2. Enter the value for the following fields:



TIBCO® API Exchange Gateway User Guide

417 | Routing Overview

Parameter Description

Group Name (Required) Specifies the name of the target operation group.

Description A short user description of the target operation group.

Type Select StickyResourceAffinity from the drop-down list. See
StickyResourceAffinity Target Operation Group Configuration for
details.

Target
Operations

Specifies the list of target operations in the group. Add multiple
target operations using the Add Target Operation ( )icon to a

target operations group. The target operations must be
configured under the Target Operations group.

StickyResourceAffinity Target Operation Group Configuration

3. Save the changes to the configuration.

The following figure shows the StickyResourceAffinity Target Operation Group
configuration:

StickyResourceAffinity Target Operation Group Configuration



TIBCO® API Exchange Gateway User Guide

418 | Routing Overview

HealthCheck for Reference
TIBCO API Exchange Gateway provides HealthCheck for Reference functionality to monitor
the availability of the target operations in a target operations group.

The Load Balancing Router component of the TIBCO API Exchange Gateway uses the
HealthCheck for Reference functionality when it routes an operation request to a target
operation group.

TIBCO API Exchange Gateway supports the HealthCheck for Reference functionality for the
following types of target operation group:

l RoundRobinWithFailover

l WeightedRoundRobinWithFailover

When a facade operation request is routed to a target operation group of the
RoundRobinWithFailover or WeightedRoundRobinWithFailover type, the Load Balancer
Router of the gateway uses HealthCheck for Reference to check the health of the target
operations configured in the target operations group. If the selected target operation is not
available or running, the gateway forwards the request to an alternate target operation
that is running.

Using the HealthCheck for Reference functionality, the router component of the gateway
intelligently picks the available target operation. This increases the throughput and
reduces the latency of the request processing at runtime.

Note: The HealthCheck for Reference functionality is available to the Gateway
Load balancer Router component to monitor the health of target operations in a
target operations group with failover routing algorithms only
(RoundRobinWithFailover or WeightedRoundRobinWithFailover).

HealthCheck Modes for a Target Operation
HealthCheck for Reference provides the following modes for any target operation in a
target operations group:

l Timer

For each target operation in the target operation group, you can configure a timer-based
HealthCheck. Healthcheck for Reference checks the status of the target operation each



TIBCO® API Exchange Gateway User Guide

419 | Routing Overview

time the timer expires. You must configure a HealthCheck method for the timer mode. See
HealthCheck Methods for Timer Mode for the details.

l Reset

You can configure the reset mode HealthCheck for each target operation in the target
operation group. When Reset mode is used, the HealthCheck for Reference resets the
health status of a target operation after the specified interval (in milliseconds). See Reset
Interval.

Reset Interval

The HealthCheck module resets the health status of a target operation after the time
interval as specified by the ResetInterval configuration parameter. This parameter is used
when the Reset mode for the HealthCheck configuration is selected for a target operation
in the target operation group.

HealthCheck Methods for Timer Mode
Choose a method for the timer mode of HealthCheck. HealthCheck for Reference uses a
specified method to check the health status of the target operation. The following types of
HealthCheck methods are supported:

l HTTP

The Core Engine forms an HTTP based URL from the fields configured for the HTTP
based target operation such as service-type, URI, host, and port. Once the URL is
formed, the Core Engine invokes an HTTP connection to ping the target operation.
Based on the response code returned from the HTTP connection, HealthCheck for
Reference determines the health of the target operation. For example, if the returned
response code indicates a success, the HealthCheck for Reference returns that the
target operation is running. If the returned response code indicates a failure, the
HealthCheck for Reference returns that the target operation is not running. The
response code returned is checked to determine the heath of the target operation.

l HTTPs

The Core Engine forms a based URL from the fields configured for the based target
operation such as service-type, URI, host, port and the SSL properties set in
dss.properties. After the URL is formed, the Core Engine invokes a URL connection to
ping the target operation. Based on the response code returned from the HTTP
connection, HealthCheck for Reference determines the health of the target operation.
For example, if the returned response code indicates a success, the HealthCheck for



TIBCO® API Exchange Gateway User Guide

420 | Routing Overview

Reference returns that the target operation is running. If the returned response code
indicates a failure, the HealthCheck for Reference returns that the target operation is
not running.

Note: For the HTTPs based target operation, configure the SSL properties for
mutual SSL authentication. If the HTTPs based target operation is enabled for
one-way authentication, SSL properties configuration is not required.

l HealthCheckURL

Using the HealthCheckURL method, you can specify the URL to invoke a HTTP
connection. The Core Engine attempts to invoke the HTTP connection with the
configured URL for this method. The Core Engine uses the returned response code to
determine the heath of the target operation. For example, if the returned response
code is a success, the HealthCheck returns that the target operation is running. If the
returned response code is a failure, the HealthCheck returns that the target operation
is not running.

Note: When HealthCheck method is HealthCheckURL or ContentVerification, for
HTTPS based Load Balanced Target Groups, the Core Engine looks for
Certificates under JRE's cacerts instead of Keystore configured for Target
Operation.

l ContentVerification

The ContentVerification method uses the configured HealthCheck URL and sends an
HTTP GET request to the URL. The HealthCheck for Reference examines the returned
response content and searches for the configured keyword in the response content. If
the keyword is found in the response content returned from the HTTP GET request,
the HealthCheck returns that the target operation is running. If the keyword is not
found in the response content returned from the HTTP GET request, the HealthCheck
returns that the target operation is not running.

Configure the following parameters for the TCPEcho method:

o Health Check URL

o Keyword

l TCPEcho

For TCPEcho Health Check to work, a TCP echo server needs to be running on the



TIBCO® API Exchange Gateway User Guide

421 | Routing Overview

host where the target service runs and the echo server must listen on the port
specified in the Health Check configuration. The TIBCO API Exchange Gateway engine
will connect to this server, send a message and expects the echo server to send the
same message back. Note that TCPEcho Health Check will only indicate whether the
host on which the target service is running is up or not.

Configure the following parameters for the TCPEcho method:

o TCP Host

o TCP Port

l SampleRequest

The SampleRequest method reads the data from a file as specified by the Content
File parameter and sends the data content of this file in the HTTP POST request to
the URL specified by the Health Check URL parameter to check the health of the
target operation. The HealthCheck module examines the returned response code to
determine if the target operation is running or not.

Configure the following parameters for the TCPEcho method:

o Health Check URL

o Content File

HealthCheck Configuration for Target Operation
This section explains the configuration set up to use the HealthCheck for Reference
functionality for the target operations in a target operation group. Configure the
HealthCheck parameters for each target operation in a target operation group for
RoundRobinWithFailover or WeightedRoundRobinWithFailover group type.

Configuration for Reset Mode of HealthCheck
When you enable the Reset mode of HealthCheck for each target operation in a target
operation group of RoundRobinWithFailover or WeightedRoundRobinWithFailover,
configure the ResetInterval parameter.

To configure the ResetInterval parameter for a target operation, follow these steps:

Procedure
1. Start the GUI server, if it is not already running.



TIBCO® API Exchange Gateway User Guide

422 | Routing Overview

2. Log in to the Config UI using your credentials.

3. Add a new project or select an existing project under Projects, as applicable.

4. Click the Target Operation Groups tab.

5. Select a target operation group and expand the node.

6. Select a Target Operation of RoundRobinWithFailover or
WeightedRoundRobinWithFailover type for the Type parameter from the drop-down
list.

7. Expand the Health Check node.

8. Select Reset for the Health Check Mode parameter from the drop-down list.

9. Type the value of the Reset Interval parameter. See Reset Interval.

Configuration for Timer Based HealthCheck
After you enable the timer-based HealthCheck for each target operation in a target
operation group of RoundRobinWithFailover or WeightedRoundRobinWithFailover, you
must configure the HealthCheck parameters.

To configure the HealthCheck parameters for a target operation, follow these steps:

Procedure
1. Start the GUI server, if not already running.

2. Log in to the Config UI using your credentials.

3. Add a new project or select an existing project under Projects, as applicable.

4. Click the Target Operation Groups tab.

5. Select a Target Operation of RoundRobinWithFailover or
WeightedRoundRobinWithFailover type for the Type parameter from the drop-down
list.

6. Expand the Health Check node to enter the HealthCheck configuration parameters
described as follows:



TIBCO® API Exchange Gateway User Guide

423 | Routing Overview

Parameter Description

Health Check
Mode

l Specifies the mode for the HealthCheck functionality.

l The possible values are:

o Timer

o Reset

l Select Timer from the drop-down list.

Health Check
Method

l Specifies the method to be used by HealthCheck to check the
availability of the target operation. The possible values are:

o HTTP

o HTTPS

o HealthCheckURL

o TCPEcho

o ContentVerification

o SampleRequest

l This is a Required field.

Check
Interval

Specifies a time interval (in millseconds) which is used by HealthCheck
as an expiration time to check the health status of the target operation.

For example, if this value is specified as 10000, the HealthCheck checks
the health status of the target operation after every 10 seconds,
whether the target operation is running or not. The health status of the
target operation is used by routing functionality to determine whether
to route a request to this target operation or not.

HealthCheck Configuration Parameters

7. Save the changes to your configuration.

Configuration for HTTP HealthCheck Method

Procedure
1. Configure the parameters as explained in HealthCheck Configuration Parameters



TIBCO® API Exchange Gateway User Guide

424 | Routing Overview

table.

2. Select HTTP in the Health Check Method field from the drop-down list.

Configuration for HTTPS HealthCheck Method

Procedure
1. Configure the parameters as explained in HealthCheck Configuration Parameters

table.

2. Select HTTPS in the Health Check Method field from the drop-down list.

Configuration for HealthCheckURL HealthCheck Method
If you want to use the HealthCheck method as HealthCheckURL, follow these steps:

Procedure
1. Configure the parameters as explained in HealthCheck Configuration Parameters

table.

2. Select HealthCheckURL in the Health Check Method field from the drop-down list.

3. Enter the following parameter:

l Health Check URL: specifies the URL to invoke a HTTP connection. See
HealthCheckURL.

Configuration for TCPEcho HealthCheck Method
If you want to use the HealthCheck method as TCPEcho, follow these steps:

Procedure
1. Configure the parameters as explained in HealthCheck Configuration Parameters

table.

2. Select TCPEcho in the Health Check Method field from the drop-down list.

3. Enter the parameters described as follows:



TIBCO® API Exchange Gateway User Guide

425 | Routing Overview

Parameter Description

TCPHost Specifies the host on which the TCP server is running.

TCPPort Specifies the port on which the TCP server is running.

TCPEcho HealthCheckMethod Configuration Parameters

Configuration for ContentVerification HealthCheck Method
If you want to use the HealthCheck method as ContentVerification, follow these steps:

Procedure
1. Configure the parameters as explained in HealthCheck Configuration Parameters

table.

2. Select ContentVerification in the Health Check Method field from the drop-down list.

3. Enter the parameters described as follows:

Parameter Description

Health Check URL Specifies the URL to which the heathcheck module sends the
HTTP GET request.

Keyword Specifies the keyword to be searched in the content returned in
response to the HTTP GET request.

ContentVerification HealthCheckMethod Configuration Parameters

Configuration for SampleRequest HealthCheck Method
If you want to use the HealthCheck method as SampleRequest, follow these steps:

Procedure
1. Configure the parameters as explained in HealthCheck Configuration Parameters

table.

2. Select SampleRequest in the Health Check Method field from the drop-down list.



TIBCO® API Exchange Gateway User Guide

426 | Routing Overview

3. Enter the parameters described as follows:

Parameter Description

Health Check URL Specifies the URL to which the HealthCheck for Reference sends
the HTTP POST request.

Content File Specifies a file from where the HealthCheck for Reference reads
the data contents and sends it in HTTP POST request.

Existing Content
File

Specifies an existing content file from the HealthCheck directory
under ASG_CONFIG_HOME. The HealthCheck directory is created
when the first file is uploaded. The HealthCheck for Reference
reads the data contents from this content file and sends it in the
HTTP POST request.

SampleRequest HealthCheckMethod Configuration Parameters



TIBCO® API Exchange Gateway User Guide

427 | Throttles Overview

Throttles Overview
This section explains the throttle functionality of TIBCO API Exchange Gateway.

TIBCO API Exchange Gateway supports throttles to control the flow of requests from the
client to the target operations. TIBCO API Exchange Gateway uses a throttle policy to
determine if a client request should be passed on to a target operation or rejected. TIBCO
API Exchange Gateway uses the throttles for the following operations:

l Protect the target operations from overuse

l Maintain the limit of requests load on a target operation

l Protect the target operation to be accessed by unauthorized partners

l Enforce the service level agreements at a partner level

Using throttles, you can define the maximum number of requests that are handled by a
target operation in a defined time interval. You must define the maximum count and a time
interval for the throttle.

The throttles define a condition for a throttle type and metric (entity). TIBCO API Exchange
Gateway checks the condition for an incoming request before processing the request. For
example, you can define a condition to allow only five client requests within 10 seconds to
the target operation for a partner request.

A throttle policy is defined using the Monitors tab of the Config UI. After defining a throttle
policy, the policy can be applied to a metric such as partner, partner group, partner
operation, or target operation.

Facade Throttles
Facade throttles are designed for the partners, partner groups, and partner+operation. The
Core Engine applies the facade throttle after it identifies the facade operation.

The supported throttle types can be applied at the following level:

l Partner

After defining a throttle policy, apply the policy at a partner level. The Core Engine



TIBCO® API Exchange Gateway User Guide

428 | Throttles Overview

checks the throttle condition on every request sent by the partner.

l Partner Group

After defining a throttle policy, apply the policy at a partner group level. The Core
Engine checks the throttle condition on every request sent by the partners in a
group.

l Partner + Operation

After defining a throttle policy, apply the policy by the combination of the partner
and the operation. The Core Engine checks the throttle condition on every request
sent by the partner for a specific operation.

Service Throttles
Service throttles are designed for a target operation. The Core Engine applies the service
throttle after it identifies the target operation.

The supported throttles types can be applied at the following level:

l Target Operation

After defining a throttle policy, apply the policy for a target operation. The Core
Engine checks the throttle condition on every request sent to the target operation.

Note: For both facade and service throttles, if an error occurs before the throttle
has been identified, the throttle is not applied.

Throttle Types
TIBCO API Exchange Gateway supports the following types of throttles:

l Rate

l Quota

l High Water Mark

l Error



TIBCO® API Exchange Gateway User Guide

429 | Throttles Overview

Rate
The rate throttle is a throttle that allows the requests to pass through until a limit is
reached for a time interval.

The rate throttle count is increased based on the following:

l Request Count

l Payload Size. See Payload Size Throttles.

l Monitor metric retrieved from the context of the input request message. See Content
Based Throttles.

The rate throttle is a technical throttle which can be applied to any metric. For example:

l Define a rate throttle to apply at a partner level. Using the throttle at a partner level,
limit the number of requests from a partner.

l Define a rate throttle to apply at a target operation level. Using the throttle at a
target operation level, protect the target operations from overuse.

You may define the rate throttles for any metric if you want to measure the number of
requests within a small time interval. After each request is processed, the current throttle
count is usually incremented by 1, if the throttle counter is set to Request Count. See
Throttle Counter for the details.

Note: Rate throttle is applied for the shorter intervals and is reset once the
interval is reached.

For a rate throttle, define throttle interval (in seconds) and throttle max limit. The throttle
max limit is reset as specified by Throttle UpdateInterval. See Throttle UpdateInterval.

Example

Set the following throttle configuration on the Config UI to allow only five maximum
requests to be processed by a target operation within 10 seconds. The following throttle
configuration allows five requests every 10 seconds and rejects the other requests within
10 seconds.

Interval : 10
Max Limit: 5
Monitor Type: Rate Throttle
Monitor Counter: Request Count



TIBCO® API Exchange Gateway User Guide

430 | Throttles Overview

Quota
Quota throttle is similar to the Rate throttle, but it uses a much larger count over much
longer intervals (such as hours). Quota throttles are increased on the request. For a quota
throttle, define throttle interval (in hour) and throttle max limit, if the throttle counter is
set to Request Count.

Quota throttles are commercial throttles designed to prevent commercial overuse of the
target operations, such as wholesale usage.

Example

Set the following throttle configuration for a target operation on the Config UI to allow only
maximum 10 requests to be processed by a target operation within one hour. The following
throttle configuration allows 10 requests to be processed within one1 hour and rejects the
other requests within one hour.

Interval : 1
Max Limit: 10
Type: Quota Throttle
Monitor Counter: Request Count

For more information, see Global Throttle Manager.

Display Quota Usage Statistics

The quota usage statistics are displayed on the Organizations page of the Management
Portal. See the “Configuring the API Exchange Engine and the Portal Engine" section in
Chapter 2 of the TIBCO API Exchange Getting Started guide, "Deploying the Product
Components” for configuration details.

Support Quota Notification

To support quota throttle notification, start each engine instance using the -n EngineName
parameter for the asg-engine command:

For example, on the Windows platform, run the asg-engine as follows:

asg-engine.exe -n EngineName -u asg-gtm

where EngineName specifies a unique engine name.



TIBCO® API Exchange Gateway User Guide

431 | Throttles Overview

Note: If you are running multiple instances of the Core Engines, you must run
the Global Throttle Manager as described in Chapter 16, "High Availability
Deployment Of Runtime Components".

High Water Mark
High Water Mark throttle is similar to the Rate throttle, but this throttle also decrements
the count after the passed on requests are completed and the response is ready to return
to the requester.

The High Water Mark throttle increments the throttle count on the request and decreases
the throttle count once the response for that request is sent. Define a throttle max count
for a high water mark throttle. Using the High Water Mark throttle, you can process a
specific number of requests in parallel by a target service.

Example

High water mark throttle can be defined when the requests are sent in parallel by different
users to a target operation. The target operation is slow in responding to such requests
sent to it in parallel.

For example, if you want to send five requests to a target operation A by five users
concurrently, define the throttle configuration for a target operation on the Config UI as
follows. The following throttle configuration allows only five parallel requests to be served
by a target operation A at a time, with this throttle configuration.

Max Limit: 5
Type: High Water Mark Throttle

Error
An Error throttle acts as a Rate Throttle in logic, but the Error throttle counts the number
of error responses as opposed to the number of requests. The throttle count of an error
throttle is increased on the error responses.

For an error throttle, define throttle interval (in seconds) and throttle max count. The
throttle max count is reset as specified by throttle updateInterval. See Throttle
UpdateInterval.



TIBCO® API Exchange Gateway User Guide

432 | Throttles Overview

Example

You can define an error throttle for a target operation when you want to block the requests
after a certain number of error responses are returned from this target operation.

Set the following throttle configuration on the Config UI if you allow only 10 error
responses from a target operation within 10 seconds. This means that 10 requests are sent
by the client within 10 seconds to a target operation and all the requests are processed
with errors. An error response for each request is sent back to the client and the throttle
count is incremented after each request is processed. The Core Engine rejects the 11th
request onwards. After 10 seconds, the throttle maximum limit is reset to 0 so that the
client can send the requests to the target operation again.

Interval : 10
Max Limit: 10
Throttle Type: Error Throttle

The following diagram shows how the throttles are implemented for a throttle type:



TIBCO® API Exchange Gateway User Guide

433 | Throttles Overview

Throttle Types

Monitor Time Modifiers
Using TIBCO API Exchange Gateway, you can design the throttles that work on the time
modifiers. You can modify the throttle limits depending on the time of the day by applying
time modifiers. Throttles time modifier specifies the time ranges when the time modifier
can be active. You can specify multiple days and time ranges. For example, a throttle can
relax or tighten its limit based on the time of day, such as 9a.m. - 1a.m.

The time modifiers of a throttle specify when any throttle can be overridden with the new
values such as date and time range, days of the week, and the throttle max count. You can
specify multiple time modifiers for a single throttle of each type. The time modifier limit
applies if the current time meets all the rules specified in the time modifier configuration.



TIBCO® API Exchange Gateway User Guide

434 | Throttles Overview

Configuring Time Modifier Throttles

To configure a time modifier throttle, edit a throttle configuration and add the day, date,
and time modifiers. The parameters for the throttle time modifiers are explained in the
following table:

Parameter Description

Max Count l Specifies a maximum count that is active during this time.

l Refers to a throttle limit to apply if the throttle is in range.

l Required.

Start Date l Specifies the start date when the time modifier can be active.

l Optional.

End Date l Specifies the end date when the time modifier can be active.

l Optional.

Day of Week l Specifies the days of the week when the time modifier can be
active.

l Optional.

Time Range l Specifies the time ranges when the time modifier can be active.
Multiple ranges can be given.

l Optional.

Throttle Time Modifiers



TIBCO® API Exchange Gateway User Guide

435 | Throttles Overview

Note:
l When you configure time modifiers for monitors, and if no day is selected,

the time modifiers settings are applicable for all days of the week.

For example, if you configure throttle time modifiers for a rate throttle as
follows, the settings work for all the days of the week.

o Max Count: 10

o Start Date: Current Date

o End Date: Current Date

o Time Range: 9 A.M. - 11 A.M.

l The date and time modifiers for monitors use the local time as set on the
host machine where the Core Engine instance runs.

l The time zone for time modifiers should match the Server Time Zone of
the Joomla! -based portal of TIBCO API Exchange. Refer to Adapter Code
for TIBCO® API Exchange and Joomla! User's Guide to set the Server Time
Zone under Location Settings of the system. The Adapter Code for TIBCO®
API Exchange and Joomla! User's Guide available at the following location:
https://github.com/API-Exchange/JoomlaAdapter/wiki.

Throttle Chaining
Using TIBCO API Exchange Gateway, you can assemble the throttles into a throttle chain.
You can define multiple throttles for a partner request and service endpoint for each
enforcement point.

By defining multiple throttles, you can pass a partner request through a chain of throttles
to meet complex throttling needs. For example, the following throttle chains can be
configured:

l Rate and High Water Mark: this throttle chain addresses the interface load.

l Quota: this throttle chain addresses the interface agreements.

The configuration of the throttles determines whether the request is passed on to be
processed by the Core Engine or whether it is applied to any other throttle. Passing on the
request to other throttles is called throttle chaining.

https://github.com/API-Exchange/JoomlaAdapter/wiki


TIBCO® API Exchange Gateway User Guide

436 | Throttles Overview

Throttle Counter
The throttle counter provides the type of counter used to increment the throttle count.

The possible values for the throttle counter are as follows:

l Request Count

The throttle count is incremented by 1 after each request is processed. To use this
throttle counter, define Request Count as the throttle type for Rate, Quota, High
Water Mark, Error and Content based throttles.

l Input Payload Size

The throttle count is incremented by the size of request payload message (in bytes)
after each request is processed. The Input Payload Size throttle counter is used for
Payload size throttle type. See Payload Size Throttles.

l Output Payload Size

The throttle count is incremented by the size of response payload message (in bytes)
after each request is processed. The Output Payload Size throttle counter is used for
Payload size throttle type. See Payload Size Throttles

l Transaction Payload Size

The throttle count is incremented by the size of both request and response payload
messages (in bytes) after each request is processed. The Transaction Payload Size
throttle counter is used for Payload size throttle type. See Payload Size Throttles

Throttle UpdateInterval
Throttle UpdateInterval is the time interval (in seconds) which is used by the Core Engine
to calculate the throttle count allowed until the next UpdateInterval period is lapsed.

The default value for Throttle UpdateInterval is 10 seconds. This means that the Core
Engine refreshes the throttle count allowed for the next 10 seconds using the Interval and
Max Limit parameters configured for the throttle Instance in the Config UI. For example, if
the Interval is 60 seconds and Max Limit is 6, at most one request is allowed every 10
seconds.

Throttle UpdateInterval is defined by the following property in the ASG_CONFIG_
HOME/asg.properties file.

tibco.clientVar.ASG/Throttle/UpdateIntervalSec=10



TIBCO® API Exchange Gateway User Guide

437 | Throttles Overview

Configuring Throttles
Using the Config UI, you can configure all types of the throttles. This section explains how
to create a throttle policy definition and assign a throttle policy to a partner, partner
group, partner operation, or target operation.

Configuration Parameters for Throttles
List of parameters for throttle configuration.

The following table describes the parameters required to configure throttles. These
parameters can be configured under the Monitors tab of a project configuration on the
Config UI.

Parameter Description

Monitor Name l Specifies the name of the throttle. The name of the throttle is
required to configure the throttle for a service, partner, partner
group, or partner operation.

l Required.

Monitor Type l Specifies the type of throttle. Select one of the supported values
from the drop-down list:

o Rate

o Quota

o HWM

o Error

l Required.

Interval l Specifies a time period for which the maximum count of throttles
are allowed.

Max Limit l Specifies the maximum number of throttle count allowed during the
throttle interval period.

Throttle Configuration Parameters



TIBCO® API Exchange Gateway User Guide

438 | Throttles Overview

Parameter Description

Monitor
Counter

l Specifies the type of the counter used to increment the throttle
count.

l Not Applicable for the Error and High Water Mark throttle types.

l The possible values for the monitor counter are as follows:

o
Request Count
Input Payload Size
Output Payload Size
Transaction Payload Size

l The default value is Request Count. Request Count applies to all
throttle types, except Payload size throttles. Input Payload Size,
Output Payload Size, and Transaction Payload Size are applicable
for only Rate and Quota throttle types.

Monitor Time
Modifiers

Specifies the date, day, and time ranges for the throttle when the time
modifiers are active. See Monitor Time Modifiers.

Use
Approximate
Monitor

Indicates if the maximum number of requests as specified by the Max
Limit property is distributed by the number of running engine instances.

If this value is set to true, the maximum number of requests is distributed
by the number of active engines.
If the value is set to false, the maximum number of requests is shared by
the number of engines. You must set the Max Count Ratio parameter if
the value of Use Approximate Monitor is set to false.

Max Count
Ratio

An integer value indicating the percentage of maximum number of
requests allowed by an Core Engine instance locally.

Creating a Throttle Policy Definition
This section explains how to configure a quota monitor T1 with a limit of five requests
within 24 hours for service throttle metric.

Prerequisites



TIBCO® API Exchange Gateway User Guide

439 | Throttles Overview

This example assumes that you have completed Configure an Endpoint Operation for
TIBCO API Exchange Gateway.

Modifying the Existing Configuration to Add Throttles
This section explains how to open the existing configuration.

Procedure
1. Start the GUI, if not already started. See Starting GUI for details.

2. Expand the Projects node, click the ASG_Get_Start configuration.

Defining a Quota Throttle
Add a new throttle as follows:

Procedure
1. Click the MONITORING tab.

2. Click the Monitors tab.

3. Click the Add property icon to create a new monitor.

4. Specify the throttles details, as follows:

Parameter Value

Monitor
Name

T1

Monitor Type Quota

Interval 24

Max Limit 5

Quota Throttle Configuration

Assigning a Throttle Policy to the Target Operation
To assign a Quota throttle to the target operation, follow these steps:



TIBCO® API Exchange Gateway User Guide

440 | Throttles Overview

Procedure
1. Click the ROUTING tab on the upper right.

2. Click the Target Operations tab on the top menu.

3. Edit the http.GetBooksByAuthor target operation configuration.

4. Enter the details defined as follows:

Parameter Value

Operation
Name

http.GetBooksByAuthor

Type HTTP (select from the drop-down list.)

Monitor(s) T1 (select from the drop-down list.)

Edit Target Operation Configuration

Testing the Target Operation
Test the configured throttle policy.

Procedure
1. Launch the TIBCO Designer and open the following project: ASG_

HOME/examples/BookQuery/BookQuery

2. Run the following server processes:
BooksInterface-service1

3. Run the following client process:
QueryByAuthorClient

4. Verify that the process runs successfully without any errors.

5. Send a few more requests to the gateway.

6. Notice that after five successful requests, an error appears for the Quota Throttle
violation.



TIBCO® API Exchange Gateway User Guide

441 | Throttles Overview

Content Based Throttles
Overview of content based throttles.

Using TIBCO API Exchange Gateway allows you can create custom throttles based on the
content information in the facade request.

For any throttle configuration specified in the Config UI, you can extend a throttle
configuration to create a monitor. Using this monitor, you enforce a custom throttle policy
based on the data of the message. You can create a monitor to extract a value based on
the data in the request message. This value is used as an increment counter for the throttle
count.

You can create a custom throttle monitor by defining a metric based on the request
content of the message. The metric is defined by the following parameters:

l metricName: specifies the name of the throttle to be used from the Config UI
configuration.

l metricIncrement: specifies the increment value for the throttle count. The metric
increment value for the throttle (monitor) is defined, typically as an XPath formula
based on the data content of the request message.

The monitor for a throttle is defined in a transformation (XSLT) file. The XSLT file is
configured as a parse XSLT file for an operation. When a request goes through the parsing
step of the request operation, the Core Engine reads all the data from the XSLT file and
creates the throttle monitors.

For example, you can define a throttle for a bookorder service that orders the books from a
store. You can define the throttle in such a way that the service is not overloaded with the
client requests.

A throttle T1_BookOrder is defined in such a way that the throttle T1_BookOrder allows a
user to order only 20 books in 10 seconds. In such a case, a throttle T1_BookOrder is
configured using the Config UI as follows:

Throttle Name: T1_BookOrder

Throttle Type: Rate

Throttle Interval: 10 seconds

Throttle Max Count: 20



TIBCO® API Exchange Gateway User Guide

442 | Throttles Overview

For this scenario, the Core Engine allows a maximum of 20 requests within 10 seconds. You
can extend the throttle policy by creating a monitor to allow a specific number of book
orders in a single request.

For example, you can create a custom throttle monitor for this throttle T1_BookOrder to
increment the throttle count based on the number of book orders in the request. This
allows you to customize the throttle count by providing the increment counter defined as
metricIncrement for the monitor. The metricIncrement for this monitor can be populated
using an XPath formula based on the total number of book orders in the request message.
In this case, you can define the metricIncrement to count the book orders in the request.
So, if the count of book orders in a request is 5, then it increments the throttle count as 5
allowing only 4 similar requests within 10 seconds.

Note: Content-based throttles are not applicable for Error and High Water Mark
throttle types.

Configure Content-Based Throttles
To configure the content based throttles, you need a XSLT file which typically contains an
XPath formula. The XSLT file defines the metric definition to create the custom monitor.
The Core Engine evaluates and parses the XSLT file in the parsing step for an operation in
the request processing pipeline and creates the monitor based on the metric definition.

To configure the content-based throttle monitors, follow these steps:

Configuring Throttle
Define the throttle in the Config UI to create a custom throttle monitor.

Procedure
1. Start the GUI server, if not already running.

2. Log in to the Config UI using your credentials.

3. Add a new project or select an existing project under Projects.

4. Click the MONITORS > Monitors tab.

5. Define a T1_BookOrder throttle.



TIBCO® API Exchange Gateway User Guide

443 | Throttles Overview

Parameter Description

Monitor
Name

l Specifies the name of the throttle. For example, T1_BookOrder.

l Required.

Monitor Type l Specifies the type of throttle. Select one of the possible values
from the drop-down list:

o
Rate
Quota

l Required.

For example, Rate.

Interval l Specifies a time period (in seconds) for which the maximum
count of throttles is allowed.

For example, 10.

Max Limit l Specifies the maximum number of throttle count allowed during
throttle interval period.

For example, 20.

Throttle Configuration Parameters

6. Save the changes to the configuration.

Define XSLT File
Define an XSLT transformation file to configure a throttle monitor.

For example, the monitor for a throttle T1 is defined in the XSLT file using a <monitor> tag
as follows:

<output>
<xsl:variable name="childnodes">

<xsl:value-of select="$nbRequest/loc:NewOrderReq/count
(loc:OrderDtl)" />

</xsl:variable>
<monitor>



TIBCO® API Exchange Gateway User Guide

444 | Throttles Overview

<metricName>T1</metricName>
<metricIncrement>

<xsl:value-of select="$childnodes" />
</metricIncrement>

</monitor>
</output>

In the preceding example, the metricIncrement is assigned based on the count of the
OrderDtl element in the payload of an incoming request. If you have an input payload with
n number of OrderDtl elements, you can parse the number of OrderDtl elements and assign
that number to metricIncrement. The metricIncrement is applied to the throttle
configuration.

Note:
l The throttle monitor defined in the XSLT file must be configured in the

Config UI under Monitors tab.

l You can create multiple monitors in an XSLT file. Each monitor is defined
using a separate <monitor> tag.

l If the XPath formula used in the metricIncrement field returns an invalid
value, the content throttle increments the throttle count value by 1, which
is the default value.

Example XML (Payload) Files

This section shows the sample XML files which shows payloads with 2 Orderdetails and 4
Orderdetails. Refer to Example XSLT File for the XSLT file for these payloads.

l Payload with 2 Orderdetails

<?xml version = "1.0" encoding = "UTF-8"?>
<NewOrderReq xmlns =
"http://www.tibco.com/schemas/TAO/NewOrderSchema-v3.xsd">
<CustID>11111</CustID>
<EmailID>user01@edusvr</EmailID>
<OrderDtl>
   <ProductID>1001</ProductID>
   <ProductDesc>Executive Black Leather Chair</ProductDesc>
   <Qty>1</Qty>
   <UnitPrice>159.99</UnitPrice>
</OrderDtl>



TIBCO® API Exchange Gateway User Guide

445 | Throttles Overview

<OrderDtl>
   <ProductID>3002</ProductID>
   <ProductDesc>Medium point, black ink pens,50-pk</ProductDesc>
   <Qty>5</Qty>
   <UnitPrice>17.99</UnitPrice>
</OrderDtl>
<ShippingDtl>
<Address>3303 Hillview</Address>
<City>Palo Alto</City>
<State>CA</State>
<Zipcode>94303</Zipcode>
<Country>USA</Country>
</ShippingDtl>
</NewOrderReq>

l Payload with 4 Orderdetails

<?xml version = "1.0" encoding = "UTF-8"?>
<NewOrderReq xmlns =
"http://www.tibco.com/schemas/TAO/NewOrderSchema-v3.xsd">
<CustID>11111</CustID>
<EmailID>user01@edusvr</EmailID>
<OrderDtl>
   <ProductID>1001</ProductID>
   <ProductDesc>Executive Black Leather Chair</ProductDesc>
   <Qty>1</Qty>
   <UnitPrice>159.99</UnitPrice>
</OrderDtl>
<OrderDtl>
   <ProductID>3002</ProductID>
   <ProductDesc>Medium point, black ink pens,50-pk</ProductDesc>
   <Qty>5</Qty>
   <UnitPrice>17.99</UnitPrice>
</OrderDtl>
<OrderDtl>
   <ProductID>3002</ProductID>
   <ProductDesc>Medium point, black ink pens,50-pk</ProductDesc>
   <Qty>5</Qty>
   <UnitPrice>17.99</UnitPrice>
</OrderDtl>
<OrderDtl>
   <ProductID>3002</ProductID>
   <ProductDesc>Medium point, black ink pens,50-pk</ProductDesc>
   <Qty>5</Qty>
   <UnitPrice>17.99</UnitPrice>



TIBCO® API Exchange Gateway User Guide

446 | Throttles Overview

</OrderDtl>
<ShippingDtl>
<Address>3303 Hillview</Address>
<City>Palo Alto</City>
<State>CA</State>
<Zipcode>94303</Zipcode>
<Country>USA</Country>
</ShippingDtl>
</NewOrderReq>

Example XSLT File

This section shows an example XSLT file which you can use as a reference to create an
XSLT file. This XSLT file illustrates how you can use the number of OrderDtl element in a
payload.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:loc="http://www.tibco.com/schemas/TAO/NewOrderSchema-v3.xsd">

<xsl:template match="/">
<xsl:variable name="nbRequestHref">

<xsl:value-of select="/transformation/nbRequest/@href" />
</xsl:variable>
<xsl:variable name="nbRequest">

<xsl:copy-of select="document
($nbRequestHref)/soap:Envelope/soap:Body/*" />

</xsl:variable>
<output>

<xsl:variable name="childnodes">
<xsl:value-of select="$nbRequest/loc:NewOrderReq/count

(loc:OrderDtl)" />
</xsl:variable>
<monitor>

<metricName>T1</metricName>
<metricIncrement>

<xsl:value-of select="$childnodes" />
</metricIncrement>

</monitor>
</output>

</xsl:template>
</xsl:stylesheet>



TIBCO® API Exchange Gateway User Guide

447 | Throttles Overview

Uploading XSLT File
After you define the XSLT file for a throttle monitor, upload the file in the New
ProcessBody XSLT field on facade Operations tab in the Config UI.

To upload the XSLT file, follow these steps:

Procedure
1. Start the GUI server, if not already running.

2. Log in to the Config UI using your credentials.

3. Add a new configuration or select an existing configuration.

4. Click the ROUTING tab on the right hand side.

5. Click the Facade Operations tab on the top menu.

6. Add a new operation or choose an existing operation.

7. Upload the XSLT transformation file to create a monitor as follows:

a. Click Choose File in the New ProcessBody Transform field to select the
monitor XSLT transformation file.

b. Click Open to upload the XSLT file.

8. Save the changes to the configuration.

Payload Size Throttles
Overview of Payload size throttles.

Using TIBCO API Exchange Gateway, you can create throttles based on the size of a
payload in the message. For payload size throttles, the throttle count for a throttle is
incremented as per the size of the payload in the message.

For the rate and quota throttle types, define the throttles based on the payload size as
follows:

l Payload size in the request message

l Payload size in the response message

l Payload size in both request and response message



TIBCO® API Exchange Gateway User Guide

448 | Throttles Overview

For the payload size throttles, define a throttle counter to specify the message type for
which the payload size is calculated. For example, if the throttle counter is defined as Input
Payload Size, the throttle count is incremented by the payload size of the request message.
The throttle count is incremented by the payload size of the response message if the
throttle counter is defined as Output Payload Size.

Note:
l The throttle Max Count for a payload size throttle should be specified in

bytes.

l The payload size value in a message is used as an increment counter for
the throttle count. The throttle counter field determines if the payload size
is calculated for the request message, response message, or both request
and response message.

l The payload size throttles are not supported for the Error and High Water
Mark (HWM) throttle types.

Payload Size Throttle Types
Based on the throttle counter value, the payload size throttles can be any of the following
subtypes:

l Input Payload Size

Specifies that the throttle count for a throttle is incremented by the size of the input
message (that is, request message).

l Output Payload Size

Specifies that the throttle count for a throttle is incremented by the size of the
output message (that is, response message).

l Transaction Payload Size

Specifies that the throttle count for a throttle is incremented by the sum of the size
of input and output message (that is, request and response payload).

For example, you can define a payload size throttle T2 as follows:

Throttle Name: T2
Throttle Type : Rate
Throttle Interval : 10 seconds



TIBCO® API Exchange Gateway User Guide

449 | Throttles Overview

Throttle Max Count: 10000
Throttle Counter: Input Payload Size

For this throttle T2 configuration, the Core Engine allows 10000 bytes of request payload
size in 10 seconds. For instance, if the first incoming request has a payload size of 5000
bytes, the Core Engine performs the following actions:

l Checks the current throttle count, which is 0 bytes as this is the first request.

l Compares if the current throttle count (0 bytes) is less than or equal to the throttle
max count (10000 bytes).

l Increments the current throttle count value by 5000 bytes, so the value of throttle
count becomes 5000 bytes.

l Checks if the current throttle count (5000 bytes) is less than or equal to the throttle
max count (10000 bytes).

l Forwards the request to the back-end service for processing as the throttle count is
less than max count.

If the second request received after 3 seconds has a payload size of 5000 bytes, the Core
Engine performs the following actions:

l Checks the current throttle count, which is 5000 bytes.

l Compares if the current throttle count (5000 bytes) is less than or equal to the
throttle max count (10000 bytes).

l Increments the current throttle count value by 5000 bytes, so the value of throttle
count becomes 10000 bytes.

l Checks if the current throttle count (10000 bytes) is less than or equal to the throttle
max count (10000 bytes).

l Forwards the request to the back-end service for processing as the throttle count
(10000) is less than the max count (10000).

If the third request received after 2 seconds has a payload size of 1000 bytes, the Core
Engine performs the following actions:

l Checks the current throttle count, which is 10000 bytes.

l Compares if the current throttle count (10000 bytes) is less than or equal to the
throttle max count (10000 bytes).

l Increments the current throttle count value by 5000 bytes, so the value of throttle



TIBCO® API Exchange Gateway User Guide

450 | Throttles Overview

count becomes 15000 bytes.

l Checks if the current throttle count (15000 bytes) is less than or equal to the throttle
max count (10000 bytes).

l Rejects the request for processing as the throttle count (15000) reached the max
count (10000). The Core Engine sends an error back to the client.

Configuring Payload Size Throttles
The payload size throttles are configured using the Config UI. You can configure the
throttles for the payload size of request, response, or both request and response messages.

To configure the payload size throttles, follow these steps:

Procedure
1. Start the GUI server, if not already running.

2. Log in to the Config UI using your credentials.

3. Add a new configuration or select an existing configuration.

4. Click the MONITORING tab on the right hand side.

5. Click the Monitors tab.

6. Specify the following parameters:

Parameter Description

Monitor
Name

l Specifies the name of the throttle. For example, T2

l Required.

Monitor Type l Specifies the type of throttle. Select one of the possible values
from the drop-down list for the payload size throttle:

o
Rate
Quota

l Required.

Payload Size Throttle



TIBCO® API Exchange Gateway User Guide

451 | Throttles Overview

Parameter Description

l Example, Rate

Interval Specifies a time period for which the maximum count of throttles are
allowed.

Max Limit Specifies the maximum number of throttle count allowed during the
throttle interval period.

Monitor
Counter

Specifies the message type for which the payload size is calculated.
Select one of the possible values from the drop-down list:

l

Input Payload Size
Output Payload Size
Transaction Payload Size

Configuring Monitor Counter

Configuring Payload Size Throttle for Request Message

To configure the payload size throttle for a request message, configure the Throttle
Counter as Input Payload Size for a throttle configuration.

Configuring Payload Size Throttle for Response Message

To configure the payload size throttle for a response message, configure the Throttle
Counter as Output Payload Size for a throttle configuration.

Configuring Payload Size Throttle for Request and Response Message

To configure the payload size throttle for both the request and response message,
configure the Throttle Counter as Transaction Payload Size for a throttle configuration.

Note: If an XSLT is configured to define content based throttle using
metricName and metricIncrement for a throttle which also has payload based
throttle configured, the Core Engine applies the content based throttle policy at
run time.



TIBCO® API Exchange Gateway User Guide

452 | Throttles Overview

Traffic Shaping
Shaping is a new throttle violation policy. TIBCO API Exchange Gateway is capable of
shaping the requests traffic after reaching the throttle metric. By default, TIBCO API
Exchange Gateway blocks the throttled request and sends an error response.

When the Shaping feature is enabled for a facade operation request and the request
violates the rate throttle metric, the transaction is placed in an internal queue and the
transaction state is set to held. When the throttle metric has been reset by the Global
Throttle Manager, all the held transactions are released up to the limit for the throttle and
the Core Engine continues to process these transactions. This means that all throttle chains
are reevaluated when the transaction is released.

For the performance reasons, the Core Engine does not remove the transactions from the
Shaping queue after the transactions are processed from the queue. The gateway uses a
separate timer to compact the queue to truncate the queue. See
QueueCompactionInterval.

If the transactions in this queue time out, the Core Engine processes the request with
normal error handling.

Note:
l Shaping is only valid for the rate throttles.

l The Shaping feature does not support the custom monitors.

l When the Shaping feature is enabled for a rate throttle and if the rate
throttle is applied at the end of a throttle chain, the earlier throttles in the
chain are not decremented.

Configuration
To enable Shaping for a facade operation, follow these steps:

Procedure
1. Start the Config UI.

2. Create a new configuration project or select an existing project.

3. Click ROUTING > Facade Operations tab.

4. Create a new facade operation or select an existing facade operation.



TIBCO® API Exchange Gateway User Guide

453 | Throttles Overview

5. In the Operation Features field, type Shaping.

6. Save the configuration changes.

QueueCompactionInterval
Specifies a time interval (in milliseconds) used for cleaning up the shaping queue. The time
interval can be set by the following property in ASG_CONFIG_HOME/asg.properties file.

   ASG/Throttle/Shaping/QueueCompactionInterval

The default value is 30000 ms.

Shared Throttles Overview
Use the shared throttles functionality to share the maximum throttle count for a throttle
between the running engine instances.

TIBCO API Exchange Gateway does not require the Global Throttle Manager instance to
distribute the maximum throttle count between the running engine instances. TIBCO API
Exchange Gateway uses ActiveSpaces to provide the shared throttles functionality.

Configuration Setup for Shared Throttles
The shared throttles functionality uses ActiveSpaces to share the maximum throttle count
between the gateway engine instances. You must set up the properties for ActiveSpaces
metaspace configuration.



TIBCO® API Exchange Gateway User Guide

454 | Throttles Overview

Configuring ActiveSpaces Metaspace Connection Properties
The shared throttles functionality uses ActiveSpaces metaspace to share the maximum
throttle count for a throttle between the running Core Engine instances. You must setup
the connection properties for ActiveSpaces metaspace.
To configure the ActiveSpaces connection properties, follow these steps:

Procedure
1. Navigate to the ASG_CONFIG_HOME directory.

2. Edit the asg.properties file in a text editor.

3. Set the following properties:

Property Descriptio
n

Example

tibco.clientVar.ASG/AS/Metasp
aceName

Name of
the
ActiveSpac
es
metaspac
e.

APIXMS

tibco.clientVar.ASG/AS/Discov
eryUrl

Discovery
URL of the
metaspac
e.

tcp://192.168.0.10:13000

tibco.clientVar.ASG/AS/Listen
Url

Listen URL
of the
metaspac
e.

tcp://192.168.0.10:13000-*/

tibco.clientVar.ASG/AS/asLogL
evel

Log level
of
ActiveSpac
es logs.

0

ActiveSpaces Metaspace Properties Configuration



TIBCO® API Exchange Gateway User Guide

455 | Throttles Overview

Property Descriptio
n

Example

tibco.clientVar.ASG/AS/asLogD
ir

Log
directory
of
ActiveSpac
es logs.

ASG_CONFIG_LOGS/logs

tibco.clientVar.ASG/AS/Metasp
aceMemberTimeout

Sets the
amount of
time (in
millisecon
ds) to wait
for a
member
to
reconnect.

Note:
The
unit for
this
value
must
always
be
millisec
onds.

tibco.clientVar.ASG/AS/Metaspace
MemberTimeout=30000

4. Save changes to the file.

Enable Shared Throttles
To use ActiveSpaces as a metaspace to share the maximum throttle count for a throttle
between the gateway engine instances, enable the shared throttle property as follows:

Before you begin
ActiveSpaces metaspace connection properties must be configured.



TIBCO® API Exchange Gateway User Guide

456 | Throttles Overview

Procedure
1. Navigate to the ASG_CONFIG_HOME directory.

2. Edit the asg.properties file in a text editor.

3. Set the following property to true, as follows:
tibco.clientVar.ASG/ST/useSharedThrottle=true

4. Save changes to the file.

Throttle Configuration Parameters
Use the Config UI to set the configuration parameters for a throttle.

Before you begin
l ActiveSpaces metaspace connection parameters are set. See Configuring

ActiveSpaces Metaspace Connection Properties.

l Enable the shared throttles. See Enable Shared Throttles.

Procedure
1. Start Config UI, if not running.

2. Login to the Config UI using your credentials.

3. Click on your project under Projects.

4. Click the Monitors tab.

5. Set the following parameters for a throttle:

Note: Refer to Configuration Parameters for Throttles for the description of
parameters.

l Use Approximate Monitor

l Max Count Ratio

6. Save changes to the project configuration.



TIBCO® API Exchange Gateway User Guide

457 | Throttles Overview

Example Use Case
TIBCO API Exchange Gateway shares the maximum throttle count of a rate throttle
between the two active Core Engine instances.

TIBCO API Exchange Gateway requires the following configuration setup to share the
throttle count for a T1 throttle between the two active Core Engine instances:

l Number of active Core Engine instances : 2

l Throttle Configuration:

o Throttle Name: T1

o Throttle Type: Rate

o Max Limit: 5

o Use Approximate Monitor: false

o Max Count Ratio:10

l Set the useSharedThrottle property to true in the ASG_CONFIG_
HOME/asg.properties file.

l Start the two engine instances.

Note: Do not start any Global Throttle Manager instance.

TIBCO API Exchange Gateway processes the requests between the active Core Engine
instances as follows:

1. If you send two requests to the Core Engine1 instance, the value of throttle count in
ActiveSpaces metaspace is set as follows:

l Current throttle count : 2

l Max Limit: 5

The Core Engine1 instance processes two requests successfully.

2. If you send three requests to the Core Engine2 instance, instance, the value of
throttle count in ActiveSpaces metaspace is set as follows:

l Current throttle count : 5

l Max Limit: 5



TIBCO® API Exchange Gateway User Guide

458 | Throttles Overview

The Core Engine1 instance processes three requests successfully.

3. If you send any additional request to the Core Engine1 or Core Engine2 instance, the
value of throttle count in ActiveSpaces metaspace is set as follows:

l Current throttle count : 6

l Max Limit: 5

TIBCO API Exchange Gateway rejects this request as the value of current throttle
count in metaspace is greater than maximum limit for the throttle.



TIBCO® API Exchange Gateway User Guide

459 | Authentication and Authorization

Authentication and Authorization
Overview of user authentication and authorization functionality.

This section explains the following topics:

l User Authentication

l WS Security Services Authentication

l Configuring Web Services Security Authentication

l Configure Secure Services with TIBCO API Exchange Gateway

l Partner Authorization

User Authentication
TIBCO API Exchange Gateway Supports authentication at the following two levels:

l Transport Layer

This layer supports the authentication mechanism supported by the transport.

l Gateway Layer

This layer supports the WebServices Security (WSS) authentication.

Transport and Protocol Level Authentication
When the partner sends a request, the first level authentication is done at the transport
layer. TIBCO API Exchange Gateway supports the following transports for authentication:

l HTTPS

TIBCO API Exchange Gateway uses the Apache HTTP Server for HTTP/HTTPs
transport.

l JMS

TIBCO API Exchange Gateway uses TIBCO Enterprise Message Service for JMS
transport.



TIBCO® API Exchange Gateway User Guide

460 | Authentication and Authorization

Authentication at Apache HTTP Server

For the HTTP/HTTPs transport, the request is created with the header fields in the context
message. This request context message becomes part of the RV message using the protocol
termination functionality when forwarded to the gateway.

The following types of authentication are supported for HTTP/HTTPs transport:

l No Authentication: indicates that the request does not have any user credentials. In
this case, the request is processed as an anonymous user.

l Basic Authentication: indicates that the request has the user credentials. In this case,
the user is authenticated.

l Mutual Authentication using SSL certificates.

Note: Refer to the Apache HTTP server documentation to configure the
authentication type for the Apache server.

Authentication at TIBCO Enterprise Message Service

TIBCO API Exchange Gateway provides the authentication mechanism supported by TIBCO
Enterprise Message Service for the JMS transport. The request is created with the JMS
application header fields in the context message for the JMS transport. The request context
message is forwarded to the gateway using the protocol termination functionality.

WS Security Services Authentication
Overview of WSS authentication

TIBCO API Exchange Gateway supports the WebServices Security (WSS) authentication
services for the northbound messages.



TIBCO® API Exchange Gateway User Guide

461 | Authentication and Authorization

Note:
l The configuration mechanism for WS security policies on Facade
Operations tab in TIBCO API Exchange Gateway 2.x is provided for the
backward compatibility to use with TIBCO ActiveMatrix Service Gateway
1.2.0 product release. This configuration mechanism is deprecated in 2.x
release of the software.

l WS Security is supported using the security policies in the TIBCO API
Exchange Gateway 2.x release. Refer to Overview of Security Policies
chapter for details on how to use security policies.

TIBCO API Exchange Gateway supports the following security token profiles:

l User name

TIBCO API Exchange Gateway provides the user authentication for the northbound
requests with the LDAP system.

l SAML 1.1 and SAML 2.0

TIBCO API Exchange Gateway provides SAML based sign-in authentication of the
northbound requests.

l X.509

TIBCO API Exchange Gateway uses X.509 protocol to process the requests and
confirm that integrity and confidentiality is maintained.

TIBCO API Exchange Gateway provides the processing of northbound messages as follows:

l Northbound Request Messages

The Core Engine can verify the signature of the sender of the request using the trust
store as well as can decrypt it.

l Northbound Response Messages

The Core Engine can sign the response message using a private key to maintain
integrity and can encrypt it using the trust store and public certificate of the receiver
of the response.

TIBCO API Exchange Gateway ensures availability, integrity and confidentiality by
implementing the following protocols:

l SAML 1.1 and SAML 2.0 authentication.

l X.509 based signature verification and public key infrastructure for non-repudiation.



TIBCO® API Exchange Gateway User Guide

462 | Authentication and Authorization

l Signs the response using private keys issued by CA.

l Decrypts the request with private keys issued by CA. TIBCO API Exchange Gateway
supports variety of encryption algorithms and modes.

l TIBCO API Exchange Gateway can encrypt the response document with the
consumer's public certificates.

Security Service Providers
This section describes the following types of security service providers:

l Authentication Service Provider

Authenticated Service provider ensures that access is restricted to authenticated user. To
access the web services managed by the API Exchange Gateway, the user must include an
appropriate token in the SOAP header to authenticate.

The supported authentication tokens are:

- Web Services Security usernameToken

- Web Services Security X.509 Certificate

- Web Services Security SAML token profile

l Identity Service Providers

Identity service providers makes use of public and private credentials for common
trust and identity operations such as token signing, data encryption and creation of
SSL connections. The main types of identity service providers are Trust Identity
Provider and Subject Identity Provider.

Web Services Security (WSS) Properties
This section explains the Web Services Security (WSS) properties for TIBCO API Exchange
Gateway.

Types of Security Service Providers
The following table lists the types of service providers used by WSS configuration.



TIBCO® API Exchange Gateway User Guide

463 | Authentication and Authorization

Type Description

LDAP LDAP authentication service provider (LDAP ASP) provides the ability to
authenticate a username and password against an LDAP server.

Trust Identity The Trust Identity Provider is used for retrieving certificates required for
performing trust operations from a credential store.

For example, use Trust Identity Provider (TIP) for verifying a signature or
encryption and SSL client authentication.

Subject
Identity

The Subject Identity Provider is used for retrieving and using private
credentials obtained from a credential store.

For example, use Subject Identity Provider (SIP) for signing or decryption.

WSS WSS security authentication provider is used as a combination of LDAP,
Trust Identity Provider(TIP), and Subject Identity Provider(SIP).

Types of Service Providers

Note:
l WSS service provider is a combination of LDAP authentication, Trust

Identity and Subject Identity Providers. Depending on the usage of the
service provider, WSS can be configured to include one or more types of
service providers that it is used for.

l Trust Identity Provider (TIP) and Subject Identity Provider (SIP) depends on
Keystore Credential Provider (KCP), so TIP and SIP always include an
associated KCP.

Configuring LDAP Authentication Service Provider (LDAP ASP)

Description

The LDAP authentication service provider is used to authenticate the user name and
password against the LDAP server. The user name is specified as the usernameToken in the
incoming request from the client.



TIBCO® API Exchange Gateway User Guide

464 | Authentication and Authorization

Use Case

Verifying usernameToken in the incoming request.

Example Properties

See the following properties:

Properties

The table describes the properties for LDAP Authentication Service Provider.

Property Description

com.tibco.asg.intent.usernameToken

Boolean intent property indicates if the LDAP
authentication method can be enforced on
the request message or not. Possible values
are true or false.

If the value of this property set to true, the
request message must contain a valid
username token.

com.tibco.trinity.runtime.core.provider.authn.ldap.initialCtxFactory

Properties for LDAP Authentication Service Provider



TIBCO® API Exchange Gateway User Guide

465 | Authentication and Authorization

Property Description

Specifies the name of the JNDI Factory to
use.

The default value is
com.sun.jndi.ldap.LdapCtxFactory (Sun's
LdapCtxFactory).

Optional.

com.tibco.trinity.runtime.core.provider.authn.ldap.serverURL

l Specifies the URL to connect to the
LDAP directory server. TIBCO API
Exchange Gateway supports list of
multiple values separated by comma to
configure LDAP server in a high
availability and fault tolerant setup.

l The LDAP URL is defined as:

ldap://hostname1:port ,
ldap://hostname2:port

l The LDAP SSL URL is defined as:

ldaps://hostname1:port,
ldaps://hostname2:port,

l Required.

com.tibco.trinity.runtime.core.provider.authn.ldap.searchTimeOut

The time (in milliseconds) to wait for a
response from the LDAP directory server. A
value of 0 causes it to wait indefinitely. If a
negative number is specified, it uses the
provider's default setting.

Optional.



TIBCO® API Exchange Gateway User Guide

466 | Authentication and Authorization

Property Description

com.tibco.trinity.runtime.core.provider.authn.ldap.userAttributeUsersName

The name of the attribute in the user object
that represents the user's name. The value
depends on which LDAP server is used. If you
are using ActiveDirectory LDAP Server, set this
value as CN. If SunOne or OpenLDAP LDAP
Server is used, set this value as uid.

Optional.

com.tibco.trinity.runtime.core.provider.authn.ldap.userAttributesExtra

Specifies the optional list of user attributes to
retrieve from the LDAP directory during
authentication. Separation characters for the
list of user attributes are comma, any ASCII
whitespace or semicolon.

For example, mail givenname

Optional.

com.tibco.trinity.runtime.core.provider.authn.ldap.userSearchBaseDN

Specifies the base distinguished name (DN)
where the searches for the users begin. You
must supply the base DN that narrows the
search to the smallest set of objects that
includes all valid users. This is relevant only
when used with the administrator's
credentials in search mode.

For example,
ou=people,ou=na,dc=example,dc=org



TIBCO® API Exchange Gateway User Guide

467 | Authentication and Authorization

Property Description

Required in admin (search) mode.

com.tibco.trinity.runtime.core.provider.authn.ldap.userSearchExpression

Specifies the expression to be used for
searching in admin mode against potential
user objects. For example, the search
expression is specified as: (&(uid={0})
(objectClass=person)).

In this string, the variable {0} represents the
name of the user. The code substitutes the
user name for this variable, and passes the
resulting Boolean expression to the LDAP
server. The LDAP server matches that search
expression against user objects to find a
match. The search result must contain exactly
one match.

This property is relevant only when
credentialProvider property is set and the
binding is done as an administrator;
otherwise userDNTemplate is used.

Required in admin (search) mode.

com.tibco.trinity.runtime.core.provider.authn.ldap.userDNTemplate

Specifies a template to be used when
formatting user's DN before binding. It is used
as an alternative to admin (search) mode.

For example, uid=
{0},ou=employee,ou=tsi,o=tibco

Required for bind mode (not in admin
(search) mode).



TIBCO® API Exchange Gateway User Guide

468 | Authentication and Authorization

Property Description

com.tibco.trinity.runtime.core.provider.authn.ldap.userAttributeGroupsName

If you specified "LDAP user indicates groups"
(as either userHasGroups or
userDNHasGroups) then you must supply the
name of the attribute in each user object that
lists the groups to which the user belongs.
Otherwise, this parameter is not relevant.
Mandatory when relevant.

com.tibco.trinity.runtime.core.provider.authn.ldap.userAttributesExtraList

Same as userAttributesExtra property but this
is specified in list form.

Optional.

com.tibco.trinity.runtime.core.provider.authn.ldap.userSearchScopeSubtree

A Boolean property which determines if the
entire sub-tree is searched or not. If a true
value is specified, the entire sub-tree starting
at the base DN is searched. Otherwise, the
nodes one level below the base DN are
searched.

Optional.

com.tibco.trinity.runtime.core.provider.authn.ldap.groupSearchBaseDN

Specifies the base distinguished name (DN)
where the searches for the groups begin.
Supply the base DN that narrows the search



TIBCO® API Exchange Gateway User Guide

469 | Authentication and Authorization

Property Description

to the smallest set of objects that includes all
valid groups.

For example,
ou=groups,ou=na,dc=example,dc=org

The default value is empty.

Optional.

com.tibco.trinity.runtime.core.provider.authn.ldap.enableNestedGroupSearch

Indicates the flag to determine if nested
groups should be searched for. If the value is
not set to true, the groups are only returned
in which the user is the direct member.

The default value is false.

Optional.

com.tibco.trinity.runtime.core.provider.authn.ldap.groupSearchExpression

Specifies the expression to be used for
searching against potential groups. For
example, search expression is specified as: (&
(uid={0})(objectClass=person)).

In this string, the variable {0} represents the
name of the user. The code substitutes the
user name for this variable, and passes the
resulting Boolean expression to the LDAP
server. The LDAP server matches that search
expression against groups to find all groups
containing the username.

The values might be different for different
LDAP server.



TIBCO® API Exchange Gateway User Guide

470 | Authentication and Authorization

Property Description

For example, its defined as uniquemember=
{0} for SunOne, cn={0} for OpenLDAP,
member={0} for Active Directory.

Required.

com.tibco.trinity.runtime.core.provider.authn.ldap.groupSearchScopeSubtree

A Boolean property which determines if the
entire sub-tree is searched or not. If a true
value is specified, the entire sub-tree starting
at the base DN for groups is searched.
Otherwise, the nodes one level below the
base DN are searched.

Optional.

com.tibco.trinity.runtime.core.provider.authn.ldap.groupIndication

Specifies how the group memberships for
users are found.

The default value is noGroupInfo.

Optional.

The possible values are as follows:

l userHasGroups

l userDNHasGroups

l groupHasUsers

l noGroupInfo

l If the value has userHasGroups,you
must specify the attribute name which
points the groups the user belongs to
in the userAttributeGroupsName



TIBCO® API Exchange Gateway User Guide

471 | Authentication and Authorization

Property Description

property.

l If the value has userDNHasGroups,the
userAttributeGroupsName property has
the attribute name which hold the DNs
of groups to which the user belongs.
You must specify
groupAttributeGroupsName property to
get a specific part of the DN name.

l If the value has groupHasUsers,each
group object includes a list of users
that belong to the group.

l If the value has noGroupInfo, group
memberships are not handled.

com.tibco.trinity.runtime.core.provider.authn.ldap.groupAttributeGroupsName

Depends on value of groupIndication.
Required if the groupIndication property has
groupHasUsers value.

l groupHasUsers: Specifies the group
attribute holding the name of group.

For example, the value is defined as cn
for OpenLDAP server, sAMAccountName
for ActiveDirectory LDAP server.

l userHasGroups:Specifies the name of
the group. If this is not specified, the
whole DN of the group is used. For
example, the value is defined as cn for
OpenLDAP server.

com.tibco.trinity.runtime.core.provider.authn.ldap.groupAttributeSubgroups
Name



TIBCO® API Exchange Gateway User Guide

472 | Authentication and Authorization

Property Description

Specifies the name of the attribute in each
group object denoting subgroups.

For example, the value is defined as
uniqueMember for OpenLDAP server, member
for ActiveDirectory LDAP server.

Optional

com.tibco.trinity.runtime.core.provider.authn.ldap.groupAttributeUsersName

Specifies the attribute name if the
groupIndication property has groupHasUsers
value. It specifies the name of the attribute in
each group object denoting its users.

For example, the value is uniqueMember for
OpenLDAP, member for ActiveDirectory
Server.

Required if the groupIndication property has
groupHasUsers value.

followReferrals

Determines if the client follow referrals are
returned by the LDAP server.

The default value is false.

Optional.

LDAP SSL

com.tibco.trinity.runtime.core.provider.identity.trust.trustStoreServicePr
ovider



TIBCO® API Exchange Gateway User Guide

473 | Authentication and Authorization

Property Description

Specifies the Identity Trust Provider
configuration to provide SSL support for
LDAP

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key
StoreLocation

Specifies the location of the keystore for the
credentials.

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key
StorePassword

Specifies the location of the keystore for the
credentials.

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key
StoreRefreshInterval

Specifies the refresh interval (milliseconds).

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key
StoreType

Specifies the keystore type. Supported
formats are JKS,PKCS12.

Sample File

The properties and example configuration for LDAP authentication service providers are
found in the following sample files:

l ASG_CONFIG_HOME/default/wss/req_usernametoken_ldapbind.properties

This file lists the properties with the example configuration for the LDAP server in



TIBCO® API Exchange Gateway User Guide

474 | Authentication and Authorization

bind mode.

l ASG_CONFIG_HOME/default/wss/req_usernametoken_ldapsearch.properties

This file lists the properties with the example configuration for the LDAP server in
search mode.

l ASG_CONFIG_HOME/default/wss/req_usernametoken_ldapbindssl.properties

This file lists the properties with the example configuration for the LDAP server in SSL
mode.

Configuring Trust Identity Provider

Description

The Trust Identity Provider is used to retrieve public certificates from a credential store
required to perform trust operations. You must store the public certificate and provide its
location. The certificates are used by the Core Engine to verify the signatures when the
payload in the incoming request is signed. The Core Engine uses the public certificate to
encrypt the response payload before it sends the response back to the client.

Use Case

l Verify signatures for the signed request payload.

l Encrypt the response payload.

Example Properties

See the following properties:

Properties

Table Properties for Trust Identify Provider (TIP) describes the properties for Trust Identify
Provider.



TIBCO® API Exchange Gateway User Guide

475 | Authentication and Authorization

Property Description

com.tibco.asg.intent.signature

Boolean intent property which indicates if the
incoming request message is signed or not. If
signed, then the signatures are verified using
the trust identity provider properties (public
credentials). Possible values are true or
false.

If the value of this property set to true, the
request message must have valid signatures.

com.tibco.trinity.runtime.core.provider.identity.trust.trustStoreServicePr
ovider

Specifies the name of the credential service
provider containing the credentials for
establishing trust.

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key
StoreType

Specifies the keystore type. Supported
formats are JKS,PKCS12.

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key
StoreLocation

Specifies the location of the keystore.

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key

Properties for Trust Identify Provider (TIP)



TIBCO® API Exchange Gateway User Guide

476 | Authentication and Authorization

Property Description

StorePassword

Specifies the password to unlock the
keystore.

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key
StoreRefreshInterval

Specifies the refresh interval (milliseconds).

Sample File

l See ASG_CONFIG_HOME/default/wss/req_verifysig.properties file for the properties
and example configuration for verifying the signature in the request message.

l See ASG_CONFIG_HOME/default/wss/resp_encrypt.properties file for the properties
and example configuration for encrypting the response message.

Properties for Subject Identify Provider (SIP)Configuring Subject
Identity Provider

Description

The Subject Identity Provider is used to retrieve private keys (credentials) from a credential
store. You must store the private keys and provide its location. The private keys are used
by the Core Engine to decrypt the message when the payload in the incoming request is
encrypted. The Core Engine uses the private keys to sign the response message before
sending it back to the client.

Use Case

l Decrypt the request payload.

l Sign the response payload.



TIBCO® API Exchange Gateway User Guide

477 | Authentication and Authorization

Example Properties

See the following properties:

Properties

The below table describes the properties for Subject Identify Provider.

Property Description

com.tibco.asg.intent.decrypt

Boolean intent property indicates if the
incoming request message is encrypted or
not. If encrypted, then the request message
payload is decrypted using the subject
identity provider properties (private
credentials). Possible values are true or false.

If the value of this property set to true, the
request message must be encrypted.

com.tibco.trinity.runtime.core.provider.identity.subject.identityStoreServ
iceProvider

Specifies the name of the credential service
provider containing the private credentials for
establishing the subject's identity.

Properties for Subject Identify Provider (SIP)



TIBCO® API Exchange Gateway User Guide

478 | Authentication and Authorization

Property Description

com.tibco.trinity.runtime.core.provider.identity.subject.keyAlias

Specifies an alias name for the key
corresponding to the private credentials in
the credential store for establishing the
subject's identity.

com.tibco.trinity.runtime.core.provider.identity.subject.keyPassword

Specifies the protection parameter of the
private credentials in the credential store for
establishing the subject's identity.

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStoreType

Specifies the keystore type of the private
credentials.

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStoreLocati
on

Specifies the location(s) of the keystore of the
private credentials.

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStorePasswo
rd

Specifies the password to unlock the
keystore.



TIBCO® API Exchange Gateway User Guide

479 | Authentication and Authorization

Property Description

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStoreRefres
hInterval

Specifies the refresh interval in milliseconds.

Sample File

l See ASG_CONFIG_HOME/default/wss/req_decrypt.properties file for the properties and
example configuration for decrypting a request message.

l See ASG_CONFIG_HOME/default/wss/resp_sign.properties.properties file for the
properties and example configuration for encrypting a request message.

Configuring WSS Service Provider

Description

You can combine the properties of LDAP, Subject Identity Provider (SIP) and Trust Identity
Provider(TIP) to obtain more than one functionality. For example, you can verify the
signatures in an incoming payload, when signed, and also decrypt the request payload,
when encrypted.

Use Case

l Verify signatures in the request payload and decrypt the request payload.

l Sign and Encrypt the response payload.

Example Properties

See the following properties:



TIBCO® API Exchange Gateway User Guide

480 | Authentication and Authorization

Properties

The properties for WSS Service Provider are defined as a combination of LDAP
authentication, Subject Identity and Trust Identity provider.

See the following properties to define the WSS Service Provider properties:

l Configuring LDAP Authentication Service Provider (LDAP ASP)

l Configuring Trust Identity Provider

l Properties for Subject Identify Provider (SIP)Configuring Subject Identity Provider

Sample File

l See ASG_CONFIG_HOME/default/wss/req_decrypt_verifysig.properties file for the
properties and example configuration for decrypting and verifying signatures for the
request message.

l See ASG_CONFIG_HOME/default/wss/resp_sign_and_encrypt.properties file for the
properties and example configuration for signing and encrypting the response
message.

Limitations
l WSS authentication does not check if the request contains SAML 1.1 or SAML 2.0

version.

l WSS authentication validates the request only if the SAML assertion is valid but does
not enforce a specific SAML version or issuer on the request.



TIBCO® API Exchange Gateway User Guide

481 | Authentication and Authorization

Web Services Security Authentication
This section explains the procedure to configure the web services security for the Core
Engine.

Define the WSS Configuration Properties File

This section explains how to define the properties files required for the WSS shared
resources configuration.

Sample Files

TIBCO API Exchange Gateway provides the sample configuration file for the shared
resources for each of the security type profile. It is good practice to use the sample files as
templates and edit the properties as per your requirement. The sample files are located in
the ASG_CONFIG_HOME/asg/default/wss directory.

The property files are defined depending on the type of WSS configuration selected. The
following section explains the WSS type and a sample property file which can be used for
that type:

l User name token

TIBCO API Exchange Gateway authenticates the user with the LDAP system and requires to
create the configuration file for LDAP configuration as follows:

LDAP configuration for bind mode

This configuration type provides the authentication based on the user name token with a
LDAP system for bind mode.

The sample file req_usernametoken_ldapbind.properties for LDAP shared resource
configuration is located in the following directory: ASG_CONFIG_HOME/asg/default/wss

You can use this file as a template and edit the LDAP server properties as per your
environment.

LDAP configuration in bind mode with SSL Enabled

This configuration type provides the authentication based on the user name token with a
LDAP system with SSL enabled in bind mode.

The sample file req_usernametoken_ldapbindssl.properties for LDAP shared resource
configuration is located in the following directory: ASG_CONFIG_HOME/asg/default/wss



TIBCO® API Exchange Gateway User Guide

482 | Authentication and Authorization

You can use this file as a template and edit the LDAP server with SSL properties as per your
environment.

LDAP configuration for search mode

This configuration type provides the authentication based on the user name token with an
LDAP system for search mode.

The sample file req_usernametoken_ldapsearch.properties for LDAP shared resource
configuration is located in the following directory: ASG_CONFIG_HOME/asg/default/wss

You can use this file as a template and edit the LDAP server properties for search mode as
per your environment.

l Subject Identity

The configured keystore along with a valid key from keystore can be used to provide an
identity of the interested subject. The Identity provider takes as an input the password of
the Key alias, and it is used to access the private key of that particular alias. This is used
for signing.

TIBCO API Exchange Gateway requires certain properties to be defined for this type. These
properties are defined in a file, which can be imported in the configuration GUI. See Define
the WSS Configuration Properties File.

This configuration type provides the properties for the keystore configuration (private key)
to sign the message or decrypt the message.

The sample file resp_sign.properties describes the keystore properties required to sign
the message. This file is located in the following directory: ASG_CONFIG_
HOME/asg/default/wss

You can use this file as a template and edit the keystore configuration as per your
environment.

l Trust Identity

The trust store consumes a keystore provider and it is used for accessing public keys of the
keys for signature verification or for encryption.

TIBCO API Exchange Gateway requires certain properties to be defined for this type. These
properties are defined in a file, which can be imported in the configuration GUI. See Define
the WSS Configuration Properties File

This configuration type provides the properties for the keystore configuration to verify the
signatures or encrypt the message.



TIBCO® API Exchange Gateway User Guide

483 | Authentication and Authorization

The sample file resp_encrypt.properties describes the certificate keystore properties
required to encrypt the message. This file is located in the following directory: ASG_
CONFIG_HOME/asg/default/wss

You can use this file as a template and edit the keystore configuration as per your
environment.

Registering WSS resources with TIBCO API Exchange
Gateway
The WSS tab on the configuration allows you to register the WSS resources with TIBCO API
Exchange Gateway.

Procedure
1. Start the GUI, if it has not already been started.

2. Click WSS tab.

3. Enter the details for WSS defined as follows:

Parameter Description

WSS Name Unique name which identifies a WSS configuration.

Type Type of the WSS configuration. Select the type from the drop-down list.
Possible values are:

l WSS

l Subject Identity

l Trust Identity

New Property
File

A new property file which defines the WSS resources configuration. See
Define the WSS Configuration Properties File.

Existing
Property Files

Select a configuration file of WSS resources configuration.

WSS Configuration



TIBCO® API Exchange Gateway User Guide

484 | Authentication and Authorization

Defining the WSS security operations
This section explains the steps to define a WSS enabled security operation. An operation is
WSS enabled using the Operations tab of the Config UI.

Procedure
1. On the configuration GUI, click ROUTING tab.

2. Click the Facade Operations tab.

3. Add a new operation. Enter the details of the Operation. See Facade Operations.

4. Check the Enable WSS check box.

5. Enter the details for WSS enabled operation defined as follows:

Parameter Description

WSS Request This is the name of the WSS configuration from WSS tab. The property
file from this configuration is used for northbound request processing.

WSS
Response

This is the name of the WSS configuration from WSS tab. The property
file from this configuration is used for northbound response processing.

Encrypt
Response

This check box flag indicates whether to encrypt the response message.

Sign
Response

This check box flag indicates whether to sign the response message.

Encryption
Algorithm

Using this list box, select the algorithm to use for data encryption.
Supported values are:

TRIPLE_DES, AES_128, AES_256, AES_192

Key
Algorithm

Using this list box, select the algorithm to use for key encryption.
Supported values are:

RSA15, RSAOEP, AES128, AES192, AES256, TRIPLEDES

WSS Enabled Operation Configuration



TIBCO® API Exchange Gateway User Guide

485 | Authentication and Authorization

Parameter Description

Signing
Algorithm

Using this list box, select the algorithm to use for signing. Supported
values are:

HMAC_MD5, DSA_SHA1, HMAC_SHA1, RSA_SHA1, RSA_MD5, RSA_
RIPEMD160, RSA_SHA256, RSA_SHA384, RSA_SHA512, HMAC_
RIPEMD160, HMAC_SHA256, HMAC_SHA384, HMAC_SHA512

Key Type Using this list box, choose a key reference method. Supported values
are:

BST_DIRECT_REFERENCE, ISSUER_SERIAL, X509_KEY_IDENTIFIER, SKI_
KEY_IDENTIFIER, EMBEDDED_KEYNAME, EMBED_SECURITY_TOKEN_REF,
UT_SIGNING, THUMBPRINT_IDENTIFIER

Keystore Alias Specifies an alias of the public certificate from the truststore to be used
for encryption.

Configure Secure Services with TIBCO API Exchange
Gateway
Access secure web services using TIBCO API Exchange Gateway.

TIBCO API Exchange Gateway provides the HTTPs transport for the secure communication
with the web services at the back end. You can access the target services with or without
client authentication.

The backend services may or may not require X.509 client authentication. The Is
Anonymous flag for a target service determines if the client authentication is required or
not. The client authentication, also known as mutual SSL authentication is required if the Is
Anonymous flag is set to false. If the Is Anonymous flag is set to true, the service does not
require the authentication of client.

Note: When the authentication policies are enforced on a SSL enabled target
service, make sure to set the class path in the ASG_HOME/bin/asg-engine.tra file.
The class path must include the TIBCO_HOME/tools/lib directory, and can be set
using the following variable: tibco.env.CUSTOM_EXT_PREPEND_CP.



TIBCO® API Exchange Gateway User Guide

486 | Authentication and Authorization

Altering List of Algorithms (Optional)
Java 7 bundled with TIBCO API Exchange Gateway defines a constraint in the TIB_JAVA_
HOME/lib/java.security file. This constraint limits the algorithms used by the accepted
certificates from the counterpart. To resolve this, follow one of these workarounds:

Note: The default values for the security algorithms are usually excluded by
vendors to make the system more secure. By implementing any of this
workaround, you are reducing the security level of the system.

Procedure
1. Download Java Cryptography Extension (JCE) Policy Files

To download the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction
Policy Files 7, follow these steps:

a. Navigate to the following URL:http://www.oracle.com/technetwork/java/javase/downloads/jce-7-
download-432124.html

b. Accept the license agreement.

c. Right click the UnlimitedJCEPolicyJDK7.zip link. Click Save link as....

d. Save the zip file in the TIB_JAVA_HOME/jre/lib/security directory.

2. Disable Algorithms Constraint

To disable the algorithm constraint, follow these steps:

a. Navigate to the TIB_JAVA_HOME/jre/lib/security directory.

b. Open the java.security file in a text editor.

c. Comment the following property:
jdk.certpath.disabledAlgorithms=MD2, RSA keySize < 1024

d. Save changes to the file.

Define DSS Properties for Services
To use the services, define the DSS properties in a file. The DSS properties file is used
during the configuration of the service using the Config UI. See Configuring Services.

This section explains the properties required to use the back-end services using the HTTPs
transport.

http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html


TIBCO® API Exchange Gateway User Guide

487 | Authentication and Authorization

Properties For SSL Authentication (isAnonymous = true)
One way SSL authentication properties for a target operation.

Trust Identity Provider (TIP) properties are used if the Is Anonymous flag is set to true for
any target service. TIBCO API Exchange Gateway supports the one way SSL authentication ,
that is, when the service is accessed by the Core Engine and the service does not require
the authentication of the client.

Use Case

Use service when no authentication of the client required (one way SSL).

Example Properties

See the following properties:

Properties

Table SSL Authentication Properties for Service explains the properties for SSL
authentication (one way SSL authentication) for the service.

Property Description

com.tibco.trinity.runtime.core.provider.identity.trust.trustStoreServicePr
ovider

Specifies that trust store service provider uses
keystores for credentials. By default, this is
configured to use internal implementation and
should not be changed. It is configured as follows:

class:com.tibco.trinity.runtime.core.provide
r.credential.keystore

SSL Authentication Properties for Service



TIBCO® API Exchange Gateway User Guide

488 | Authentication and Authorization

Property Description

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key
StoreLocation

Specifies the location of the keystore.

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key
StorePassword

Specifies the password to unlock the keystore.

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key
StoreRefreshInterval

Specifies the refresh interval (milliseconds).

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key
StoreType

Specifies the keystore type. Supported formats are
JKS,PKCS12.

.

Properties For Mutual SSL Authentication (isAnonymous = false)
Mutual (two way) SSL authentication properties for a target operation.

Subject Identity Provider (SIP) properties are used if the Is Anonymous flag is set to false
for any service. API Exchange Gateway supports the mutual SSL authentication to access
the service.

Note: These properties can be found in the SslMutual.properties file of the ASG_
CONFIG_HOME\default\security\resource directory.



TIBCO® API Exchange Gateway User Guide

489 | Authentication and Authorization

Use Case

Using service when client authentication (mutual SSL authentication) required.

Example Properties

See the following properties:

#FOR TARGET SERVICE's PUBLIC CERT(s)

com.tibco.trinity.runtime.core.provider.identity.trust.enableTrustStoreA
ccess=true

com.tibco.trinity.runtime.core.provider.identity.trust.trustStoreService
Provider=class:com.tibco.trinity.runtime.core.provider.credential.keysto
re
#-----------------

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.k
eyStoreLocation=security/keystore/default_truststore.jks

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.k
eyStorePassword=password

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.k
eyStoreType=JKS

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.k
eyStoreRefreshInterval=60000

#FOR ASG's PRIVATE KEY & CERT(s)

com.tibco.trinity.runtime.core.provider.identity.subject.identityStoreSe
rviceProvider=class:com.tibco.trinity.runtime.core.provider.credential.k
eystore

com.tibco.trinity.runtime.core.provider.identity.subject.trustStoreServi
ceProvider=class:com.tibco.trinity.runtime.core.provider.credential.keys
tore

com.tibco.trinity.runtime.core.provider.identity.subject.enableCredentia
lStoreAccess=true

com.tibco.trinity.runtime.core.provider.identity.subject.enableTrustStor
eAccess=true
#-------------------------



TIBCO® API Exchange Gateway User Guide

490 | Authentication and Authorization

com.tibco.trinity.runtime.core.provider.credential.keystore.credentialst
ore.keyStoreLocation=security/keystore/meraasg.p12

com.tibco.trinity.runtime.core.provider.credential.keystore.credentialst
ore.keyStorePassword=password

com.tibco.trinity.runtime.core.provider.credential.keystore.credentialst
ore.keyStoreType=PKCS12

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStoreRefr
eshInterval=60000

com.tibco.trinity.runtime.core.provider.identity.subject.keyAlias=meraas
g

com.tibco.trinity.runtime.core.provider.identity.subject.keyPassword=pas
sword

#WRONG-IDENTITY-but Valid File and Alias

com.tibco.trinity.runtime.core.provider.credential.keystore.credentialst
ore.keyStoreLocation=C:/VVK/certs/user3.p12
com.tibco.trinity.runtime.core.provider.identity.subject.keyAlias=1user

Properties

This table explains the properties for mutual SSL authentication (client authentication) for
a service.

Property Description

com.tibco.trinity.runtime.core.provider.identity.subject.identityStoreServ
iceProvider

Specifies that subject service provider uses
keystores for credentials. By default, this is
configured to use internal implementation and
should not be changed. It is configured as follows:

class:com.tibco.trinity.runtime.core.provide

Mutual Authentication SSL Properties for service



TIBCO® API Exchange Gateway User Guide

491 | Authentication and Authorization

Property Description

r.credential.keystore

com.tibco.trinity.runtime.core.provider.identity.subject.trustStoreService
Provider

Specifies that identity store service provider uses
keystores for credentials. By default, this is
configured to use internal implementation and
should not be changed. It is configured as follows:

class:com.tibco.trinity.runtime.core.provide
r.credential.keystore

com.tibco.trinity.runtime.core.provider.identity.subject.keyAlias

Specifies an alias name for the key corresponding
to the private credentials in the credential store for
establishing the subject's identity.

com.tibco.trinity.runtime.core.provider.identity.subject.keyPassword

Specifies the protection parameter of the private
credentials in the credential store for establishing
the subject's identity.

com.tibco.trinity.runtime.core.provider.identity.subject.enableCredentialS
toreAccess

By default, this is configured to use internal
implementation and should not be changed.

com.tibco.trinity.runtime.core.provider.identity.subject.enableTrustStoreA



TIBCO® API Exchange Gateway User Guide

492 | Authentication and Authorization

Property Description

ccess

By default, this is configured to use internal
implementation and should not be changed.

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStoreLocati
on

Specifies the location of the keystore of the private
credentials.

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStorePasswo
rd

Specifies the password to unlock the keystore.

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStoreType

Specifies the keystore type of the private
credentials.

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStoreRefres
hInterval

Specifies the refresh interval in milliseconds.

com.tibco.trinity.runtime.core.provider.identity.trust.trustStoreServicePr
ovider

By default, this is configured to use internal



TIBCO® API Exchange Gateway User Guide

493 | Authentication and Authorization

Property Description

implementation and should not be changed.

com.tibco.trinity.runtime.core.provider.identity.trust.enableTrustStoreAcc
ess

By default, this is configured to use internal
implementation and should not be changed.

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key
StoreType

Specifies the keystore type. Supported formats are
JKS,PKCS12.

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key
StoreRefreshInterval

Specifies the refresh interval (milliseconds).

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key
StoreLocation

Specifies the location of the keystore.

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key
StorePassword

Specifies the password to unlock the keystore.

Configuring Services
You can create and configure a service (target operation) using the Config UI.



TIBCO® API Exchange Gateway User Guide

494 | Authentication and Authorization

To configure a target operation, provide a DSS properties file. See Define DSS Properties
for Services.

To configure a service, follow these steps:

Procedure
1. Start the Config UI.

2. Log in to the Config UI using your credentials.

3. Create a new project configuration.

4. Select and click the newly created configuration.

5. Select ROUTING from the top menu bar.

6. Select the Target Operations tab.

7. Create a new target operation using the "+" icon at the top menu bar.

8. Select from the drop-down list for the Type field.

9. Set the following fields:

a. Is Anonymous: set this field to false for mutual SSL authentication. If you do
not require client authentication, set this field to true.

b. New Property File: select the DSS property file you created to define the
properties as explained in Define DSS Properties for Services.

c. Existing Property Files: select an existing DSS property file from the drop-
down list if the file exists in the wss directory of the configuration.

10. Save the changes to the target services configuration.

Partner Authorization Overview
This section describes the partner authorization.

TIBCO API Exchange Gateway supports the authorization based on following actions:

l Operation Identification

l Partner Identification

l Partner Authorization



TIBCO® API Exchange Gateway User Guide

495 | Authentication and Authorization

Operation Identification
When a client sends the request to TIBCO API Exchange Gateway , the gateway identifies
the operation as follows:

l For SOAP requests, the operation is identified from either the SOAP Action header or
URI, or both, as defined in the HTTP header.

l For HTTP/XML requests, the operation is identified from the combination of method
and URI.

l For HTTP/HTTPs REST requests, the operation is identified from the combination of
method, URI, and the value of some named HTTP header.

l For SOAPJMS requests, the operation is identified from the JMS message SoapAction
header . The SoapAction of facade Operation must be configured with SoapAction
where SoapAction matches the value of the JMS SoapAction header.

l For ESB requests, the operation is identified from the JMS message Operation
header. The SoapAction of facade Operation must be configured with /ESB/
[Operation] where[Operation] matches the value of the JMS Operation header.

The operation details are configured in the Facade Operations tab of the Config UI.

Partner Identification
TIBCO API Exchange Gateway uses the Partner Serial number and Partner Issuer CA from
the header fields of the incoming request to uniquely identify the partner. The gateway
maps the authenticated users from the transport headers to validate the identified partner
in the gateway configuration repository.

The Partner Serial Number and Partner Issuer CA are configured on the PARTNER >
Partners tab of the Config UI for a project configuration.

For example, for HTTP or HTTPS transport, the partner is identified as follows:

l Anonymous user

If no user is specified in the incoming request, the Core Engine considers this request
as a request from anonymous user which is not authenticated. The Core Engine looks
for the partner name defined by the
tibco.clientVar.ASG/anonymous/PartnerName/Authenticated property in ASG_
CONFIG_HOME/asg.properties file. The Core Engine matches the value of this property



TIBCO® API Exchange Gateway User Guide

496 | Authentication and Authorization

with the value defined by Partner Name field under Partners tab on the Config UI. If
both the values match, the Core Engine further processes the request.

For example, the property is defined in ASG_CONFIG_HOME/asg.properties file as
follows:

   tibco.clientVar.ASG/anonymous/PartnerName/Authenticated=anon_
partner

To process any unauthenticated requests where no user is specified in the request,
configure a partner as anon_partner under PARTNER > Partners tab on the Config
UI.

If there is a mismatch, then the Core Engine rejects the partner with Authorization
error.

By default, the gateway provides an anon partner to handle the requests from
unauthenticated users.

tibco.clientVar.ASG/UseDefaultIfPartnerNotFound

The property comes into action when Partner does not match Serial number or Issuer
CA and even then you want to fall-back on it as default anon so that the request is
successfully processed.

l Mutual SSL Authentication

If the Core Engine receives the request using mutual SSL authentication mechanism,
the partner is identified by the certificate issuer and serial number from the
certificate retrieved from the SSL headers.

The Core Engine retrieves the user name and issuer CA from the request headers. The
Core Engine matches the user name and issuer CA as specified in the request header
with the Partner Serial Number and Partner Issuer CA fields under Partners
tab on the Config UI.

If there is a mismatch, the Core Engine rejects the partner with Authorization error.

l

The following table explains the values of partner identification fields for various
authentication mechanisms:



TIBCO® API Exchange Gateway User Guide

497 | Authentication and Authorization

Parameter Description

SSL Mutual authentication (Apache HTTP Server)

Partner Serial
Number

Subject DN from the X.509 certificate of the client.

Partner Issuer
CA

Issuer DN from the X.509 certificate of the client.

Basic Authentication (Apache HTTP Server)

Partner Serial
Number

username

Partner Issuer
CA

O=TIBCO;CN=ASG;CN=HTTP;CN=Basic Domain

Basic/UsernameToken Authentication (LDAP)

Partner Serial
Number

LDAP DN of the authenticated user.

Partner Issuer
CA

urn:www.tibco.com

UsernameToken authentication (File based)

Partner Serial
Number

username

Partner Issuer
CA

urn:www.tibco.com

Partner Identification Fields

Partner API Key
A partner can be identified by an API key from an incoming request.

TIBCO API Exchange Gateway enables a partner to be identified by an API key from an
incoming request. The API key can be sent via HTTP header or the URL. The reason for



TIBCO® API Exchange Gateway User Guide

498 | Authentication and Authorization

recommending to have the API key in the header is that it is more secure than having the
API in the URL. The API in the URL may be exposed as it may be saved in the browser
history or server log.

The API key can be passed in the header using the following format:

apikey: nnnnnnnnnnnnnnnn

or in the URL as:

https://host:port/resource/api&apikey = nnnnnnnnnnnnnnnn &….

If the API key is available in both URL and header, a warning is logged and the API key from
the header is used.

If the API key is enabled to use for identifying a partner, the partner identified by the API
key then will be used as the sender of the request, instead of the actual authenticated
principal. This is useful in the case where the API key owner (or the partner) wants to be
responsible for authorization of the invocation and assumes the throttling rate, mapping,
and other actions associated with the request.

In a secure environment, using the API key alone to identify the partner is not enough. The
request must be authenticated by some other means as the API key may be a stolen key.
To protect from stolen key scenario, the API can be further protected by a policy where the
sender of must be authenticated. When a request is authenticated, a principal is generated
from the authentication. The authenticated principal may or may not be the owner of the
API key.

If the authenticated principal is not the owner of the API key, the API key owner should
have a choice to deny the use the API key in order to make sure that no else but the owner
can use the API key.

In order to allow for the API key to identify the owner (partner) and be able to restrict the
API key to be used by the owner, each API key will have the following configuration
options:

l API key

l Partner name

l Flag to use API key to identify partner

l Flag to restrict the API key for the partner principal only



TIBCO® API Exchange Gateway User Guide

499 | Authentication and Authorization

Note: This flag will make sure that if a request has and API key as when as
a principal, the partner that has the API key must also be the same partner
that can be identified by the principal.

The configuration file, PartnerApiKey.cfg, is used to configure the partner's API keys.

When a partner request passes through a security processing stage, the authenticated
principle will be used to identify a partner. If the API key is in the request, the API key will
be used as one of the identification method. Issuer and Serial number from the SSL will
also be used to identify the partner, if available. For a request to map to a partner, the API
Key or principal and serial number/Issuer combination are used to identify the partner. If a
partner is authorized to invoke the operation, then the rest of the operation processing will
be based on the authorized partner. If a partner cannot be authenticated, it will be treated
as an unidentified partner. If a partner cannot be identified, it is classified as an
anonymous partner and the request is rejected. A request without any partner identifier is
treated as an anonymous partner.

The following global variable in asg.properties is used as the partner name for an
anonymous partner:

# Default PartnerName for unauthenticated requests
tibco.clientVar.ASG/anonymous/PartnerName/Authenticated=anonABC

In the above example, the anonymous partner is set to anonABC. The default value is anon
and can be changed.

Note: No certificate issuer and serial number is assigned to the anonymous
partner. The issuer and serial number in partner data configuration should be
left as empty fields, otherwise they will be ignored.

Partner Authorization
After the operation and partner is identified, TIBCO API Exchange Gateway validates that
the identified partner is authorized to invoke the operation. Setup the configuration details
under PARTNER > Facade Access tab of the Config UI where you specify the operation
which the identified partner is allowed to access.



TIBCO® API Exchange Gateway User Guide

500 | Overview of Security Policies

Overview of Security Policies
This section explains the security policies supported by TIBCO API Exchange Gateway
software.

TIBCO API Exchange Gateway allows you to secure a facade operation or a target operation
using various types of security policies. This allows you to apply the policy to the incoming
messages received from the service consumers and also apply the policy to the outgoing
messages forwarded to the service providers. You can apply the policies at the endpoints of
facade or target operations. See Types of Security Policies for the details on the supported
policies.

The figure below illustrates the security policy enforcement points in the standard request
processing pipeline.

Security Enforcement EndPoints



TIBCO® API Exchange Gateway User Guide

501 | Overview of Security Policies

Security Concepts
This section explains the terms required to understand how the policies can secure an
incoming request or outgoing request.

Authentication

Authentication is a process of identifying the credential of the party who sent the request.
TIBCO API Exchange Gateway supports the following types of authentication:

l Basic

In the basic authentication, the credential used for authentication is obtained from
the HTTP authorization header in the form of username and password. The username
and password are authenticated against an LDAP authentication provider.

l UsernameToken

In UsernameToken authentication, the credential used for authentication is the
usernameToken obtained from the security header of the SOAP message. The
username and password from the usernameToken are authenticated against an LDAP
authentication provider.

l Security Assertion Markup Language (SAML)

In SAML authentication, the credential used for authentication is the SAML assertion
derived from the security header of the SOAP message. The SAML assertion is
authenticated using an identity service provider.

l X509

In X509 authentication, the credential used for authentication is the X509 certificate
in the SAML assertion from the security header of the SOAP message. To use the X509
authentication, the SOAP message must be sent using X509 token profile. The SAML
assertion is authenticated using an identity service provider.

l SiteMinder

In SiteMinder authentication, the credential used for authentication is the SiteMinder
session cookie or the username/password from the HTTP headers.

o If no credential is found, a password challenge is returned to request for
username/password.

o If the HTTP headers has both SiteMinder session cookie and
username/password, the SiteMinder session is used for authentication using the
SiteMinder Service provider as specified in the policy.



TIBCO® API Exchange Gateway User Guide

502 | Overview of Security Policies

o If SiteMinder session cookie is not available but username/password is
provided, username/password is used to authenticate with the SiteMinder
server and the SM session cookie is added to the response after a successful
authentication.

Note: SiteMinder authentication policy can be applied to the
requests received directly by the HTTP channel of Core Engine, not
to the requests which are received through the Apache HTTP Server.

l Kerberos SPNEGO

In SPNEGO authentication, the credential used for authentication is the SPNEGO
token from the HTTP headers.

o If no credential is found, a NEGOTIATE challenge is returned to request for the
SPNEGO token.

o If the HTTP headers has the SPNEGO token, the SPNEGO token is used for
authentication using the Kerberos service provider as specified in the policy.

Note: SPNEGO authentication policy can be applied to the requests
received directly by the HTTP channel of Core Engine, not to the requests
which are received through the Apache HTTP Server.

Authorization

Authorization is a process of authorizing the party who has been authenticated to access
some resources and allowing the party to proceed with the incoming request. TIBCO API
Exchange Gateway supports the authorization of a request on the basis of roles. When a
request is authenticated, a SAML assertion is generated that may contains the roles as
attributes of the SAML assertions. The roles in the SAML assertion may be originated as
follows:

l From the groups defined in the LDAP which is applicable for basic or usernameToken
authentication.

l From the authenticated SAML assertion which is applicable for SAML or X509
authentication.

Confidentiality

Confidentiality is a process to ensure that the data is accessible to the intended party only.
To achieve this goal, the data is encrypted by the sender using a public certificate. The



TIBCO® API Exchange Gateway User Guide

503 | Overview of Security Policies

receiver decrypts the data using a private key before using the data.

Integrity

Integrity is a process to ensure that the data has not been tampered with. To achieve this
goal, the data is signed by the party who sent the request and includes the signature along
with a digital certificate in the request. The receiver can verify signature using the
certificate to determine the integrity of the data received.

Credential Mapping

Credential Mapping is a process of propagating an identity to the outgoing request. The
gateway propagates the credentials using usernameToken or SAML assertion.

Policy

A policy specifies how the gateway enforces the security constraints applied to facade or
target operations. Each policy has an assertion to perform an intended security constraint
such as authentication, authorization, confidentiality, integrity, or credential mapping. You
must refer to following topics for details to understand the policy:

See Policy Use Cases for details on assertions for specific policy.

To enforce or process a policy at runtime, the gateway requires following external
resources:

l Authentication service providers

l Identity service providers

l Trust service providers

Shared Resource

Any provider such as Authentication service provider, Identity service provider or Trust
service provider may be used by more than one policy. This means that these providers are
shared among the policies as a collection of shared resources. A policy usually refers to a
service provider as a resource instance. A policy views a specific service provider as a
resource instance which is configured as a shared resource.

A shared resource is a configured resource that may be used by one or more policy. For
example, If you configure a resource instance named LdapAspRI, the same resource can be
used for LDAP authentication as well as WSS authentication.

See Define Shared Resource Properties File for the list of shared resource that are
applicable to specific type of policy.



TIBCO® API Exchange Gateway User Guide

504 | Overview of Security Policies

Policy Types And Subtypes

The following table lists the policy types and subtypes supported by TIBCO API Exchange
Gateway .

Policy Type Policy Subtype Endpoints

Authentication l Basic

l UsernameToken

l SAML

l SiteMinder

l OAuth

l Kerberos SPNEGO

l Facade
Operation

Authorization l Role l Facade
Operation

Integrity l Sign

l Verify Signature

l Facade
Operation

l Target
Operation

Confidentiality l Encrypt

l Decrypt

l Facade
Operation

l Target
Operation

Credential Mapping l Basic

l UsernameToken

l SAML

l OAuth

l Target
Operation

Policy Types and SubTypes

Types of Security Policies
The following types of security policies are supported by TIBCO API Exchange Gateway.



TIBCO® API Exchange Gateway User Guide

505 | Overview of Security Policies

l Authentication

l Authorization

l Confidentiality

l Integrity

l CredentialMapping

Authentication
TIBCO API Exchange Gateway supports following types of authentication policies:

An authentication policy determines how to authenticate the users. An authentication
policy requires that the incoming request must provide the identities of the sender so that
the gateway will authenticate those identities before processing the request.

You can define an authentication policy for a client to require that target services must
authenticate the client’s identity before processing a request. A client authentication policy
is usually applied at target services.

Basic

When the client sends the username and password in the HTTP basic authentication
header of the request message, you can enforce a basic authentication policy to
authenticate the client’s identity. The basic authentication policy authenticates the
username and password in the client request against LDAP Authentication service provider
and generates SAML 2.0 assertion which is forwarded to the TIBCO API Exchange Gateway .

UsernameToken

The UsernameToken authentication policy authenticates the username and password
specified with the usernameToken in the client request message using a specified LDAP
shared resource.



TIBCO® API Exchange Gateway User Guide

506 | Overview of Security Policies

Note: TIBCO API Exchange Gateway supports UsernameToken authentication
policy with the password digest using WSS processor for LDAP server. Use the
password digest for UsernameToken authentication policy as follows:

l The LDAP server must save plain text passwords which are available to the
administrative user.

l Use the OpenLDAP LDAP server.

SAML

TIBCO API Exchange Gateway provides SAML authentication policy, where you can
authenticate the credentials in the SAML assertion from the security header of the SOAP
message. The SAML assertion is authenticated using an identity service provider shared
resource.

X509

TIBCO API Exchange Gateway provides the X509 security policy so that the target
operations with SOAP bindings can authenticate the consumer's identity using the
consumer's X509 signature. The consumer’s identity is authenticated using an identity
service provider shared resource.

See following policies:

l BasicAuthentication.policy

l AuthenticationByUsernameToken.policy

l AuthenticationBySaml.policy

SiteMinder

TIBCO API Exchange Gateway provides the SiteMinder security policy so that the target
operations with HTTP bindings can authenticate the consumer's identity using the
SiteMinder session cookie. The consumer’s identity is authenticated using a SiteMinder
service provider shared resource.

See AuthenticationBySiteMinder.policy.

OAuth

TIBCO API Exchange Gateway provides the authentication by OAuth policy. The
authentication by the OAuth policy ensures that any access to a target operation with this



TIBCO® API Exchange Gateway User Guide

507 | Overview of Security Policies

policy enforced must be authenticated by an OAuth authorization server. The authorization
server used is specified in the policy along with the client ID and client secret registered
with an OAuth authorization server.

To support PingIdentity authorization server for OAuth policies, make sure that you set the
Provider field correctly in the policy file, as follows:

<ns:Provider>PingIdentity</ns:Provider>

See AuthenticationbyOAuth Policy.

Kerberos SPNEGO

TIBCO API Exchange Gateway provides the SPNEGO security policy so that the facade
operations with HTTP bindings can authenticate the consumer's identity using the SPNEGO
token. The SPNEGO token is authenticated using a Kerberos service provider shared
resource.

See AuthenticationBySPNEGO.policy

To configure the Kerberos SPNEGO policy, refer to Configuration Setup for Kerberos
SPNEGO Authentication Policy.

Custom Authentication

TIBCO API Exchange Gateway provides an extensible authentication framework to support
non-standard authentication. For example, when you want to verify the user credentials
from a request that are stored in a proprietary way, or verify the credentials against a
custom identity store, you can extend the base login module as per your requirements.

TIBCO API Exchange Gateway enables the development of an authentication framework
using the custom shared resource. See Authentication Using Custom Shared Resource.

Authorization
TIBCO API Exchange Gateway supports following authorization policies:

Role

Authorization by role policy of TIBCO API Exchange Gateway provides a way to authorize
the user based on the role.

See Authorization By Role Policy.



TIBCO® API Exchange Gateway User Guide

508 | Overview of Security Policies

Confidentiality
TIBCO API Exchange Gateway enforces the confidentiality of the data in the requests and
responses as follows:

l Decrypts the encrypted data in the facade request.

l Encrypts the data in the target request to forward to any external target operation.

l Encrypts the data in the target response.

See the following policies:

l Encryption.policy

l Decryption.policy

Integrity
TIBCO API Exchange Gateway ensures the integrity of inbound and outbound requests by
virtue of Integrity policy in following ways:

l Verify the signatures of the users of the incoming facade request.

l Sign the request to forward to any external target operation.

l Sign the facade response.

See the following policies:

l Sign

l Verify Signature

CredentialMapping
This section explains the types of Credential Mapping policies.

TIBCO API Exchange Gateway can map the credentials of the subject from the
authenticated principal in the form of SAML assertion, or can map the user name and
password in the security header or the HTTP Authorization header by virtue of Credential
mapping policies.

TIBCO API Exchange Gateway supports following policies for credential mapping:

l Basic



TIBCO® API Exchange Gateway User Guide

509 | Overview of Security Policies

l usernameToken

l SAML

l OAuth

See the following policies:

l CredentialMappingByUsernameToken Policy

l CredentialMappingBySAML Policy

l Credential Mapping by OAuth Policy

Credential Mapping By OAuth

TIBCO API Exchange Gateway supports the credential mapping by OAuth policy. The policy
generates the access token using the credentials configured in the policy. The credential
mapping uses the OAuth password credential or client credential authorization flow to
obtain the access token required to access the protected target operation, therefore, the
previous authentication or authorization is not needed.

Manage Policies
This section explains the configuration setup required to manage the policies by TIBCO API
Exchange Gateway . Using gateway you can configure various types of policies to support
authentication, authorization, integrity, confidentiality and credential mapping.

Note: TIBCO API Exchange Gateway provides sample template policy files for all
types of supported policies at the following location:

ASG_CONFIG_HOME/default/policy.

Table Sample Template Policies lists the sample template policy files for each
supported policy.

To manage policies in TIBCO API Exchange Gateway product, you must do the following
configuration setup:

l Define the shared resources. See Configure Shared Resource.

l Create policies for the intended usage. See Policy And Shared Resource Property File.

l Register the policies to the system. See Registering Policy.



TIBCO® API Exchange Gateway User Guide

510 | Overview of Security Policies

l Apply the policies to target operation. See Applying Policies.

Configure Shared Resource
A policy file requires a configured shared resource.

You may configure an appropriate shared resource before you can create a policy. The
table Types of Security Shared Resources explains the types of shared resources supported
by TIBCO API Exchange Gateway product.

To configure a shared resource, perform the following steps:

Define Shared Resource Properties File

This section explains how to define the properties files required for the shared resource
configuration.

TIBCO API Exchange Gateway provides the sample configuration file for the shared
resources for each of the security type profile. It is good practice to use the sample files as
templates and edit the properties as per your requirement. See Shared Resources
Properties for details of properties for each supported shared resource.

Sample Files

Note:
l The property files for various supported shared resources are located

under this directory: ASG_CONFIG_HOME/default/security/resource

l See Shared Resources Properties Sample Files for sample file for each
shared resource.

Registering Shared Resource with TIBCO API Exchange Gateway
Using the Shared Resources tab on the configuration, you can register the shared
resources with TIBCO API Exchange Gateway.

To configure a shared resource, follow these steps:

Procedure
1. Start the Config UI server, if not already started. See Starting GUI.



TIBCO® API Exchange Gateway User Guide

511 | Overview of Security Policies

2. Create a new project or select an existing project under Projects.

3. Click the SECURITY tab on the right hand side.

4. Click Shared Resources tab on top menu.

5. Enter the details for shared resource defined as follows:

Parameter Description

New
Resources
File

A new property file which defines the Shared Resources configuration.
See Shared Resources Properties for details.

Existing
Resources
Files

Select a configuration file of Shared Resource configuration. See Shared
Resources Properties for details.

Shared Resource Name Configuration

6. Save changes to the project.

Note:
l The shared resource name is defined in the properties file by the

following property:
com.tibco.governance.sharedresource.name

For example, the shared resource name is defined in the properties
file as follows:

com.tibco.governance.sharedresource.name=LdapAsp

l The shared resource name from the properties file must match the
shared resource name in the policy file defined by ResourceInstance
property.

<tpa:SharedResourceLoginModule ResourceInstance="LdapAsp"/>

Create Policy
Use shared resource to create a policy file.



TIBCO® API Exchange Gateway User Guide

512 | Overview of Security Policies

Define Shared Resource For a Policy

Before you create a policy, make sure that you have created the appropriate shared
resource properties file for that policy. See Configure Shared Resource for details.

You must define the correct shared resource for a specific policy. For example, you must
define LDAP shared resource for a username token authentication policy.

The following table lists the shared resource required for a specific policy.

Policy Shared Resource Shared Resource Property File
(Resource Files)

l UsernameToken
authentication

l Basic
authentication

LDAP Shared Resource Properties for LDAP
Authentication Shared Resource

SAML Authentication WSS Shared Resource WssAsp.properties

SiteMinder
Authentication

Siteminder Shared Resource Configuring SiteMinder Service
Provider

SPNEGO Authentication Kerberos SPNEGO Shared
Resource

Sign Subject Shared Resource Configuring Subject Identity
Provider

Decryption Subject Shared Resource Configuring Subject Identity
Provider

Verify Signature Trust shared resource Configuring Subject Identity
Provider

Encryption Trust shared resource Configuring Subject Identity
Provider

Credential Mapping l UsernameToken -

Policy And Shared Resource Property File



TIBCO® API Exchange Gateway User Guide

513 | Overview of Security Policies

Policy Shared Resource Shared Resource Property File
(Resource Files)

l UsernameToken

l SAML

Password identity
provider

l Keystore - Password
identity provider

l SAML - Subject Identity
Provider

Creating Policy File
You can create any supported policy file in the following ways:

Procedure
1. Copy a sample template file from the following location:

ASG_CONFIG_HOME/default/policy

2. Edit the parameters in the file as required. For example, you must change the
ResourceInstance parameter to match the shared resource name defined in the
properties file.

      ResourceInstance="LdapAsp".

Note:
l The policy must be a well-formed WS policy.

l All the resource instances in the policy must be defined in the shared
resource. properties file.

Sample Template Policy Files

Following table lists the policy template (sample) file for each of the supported policy:



TIBCO® API Exchange Gateway User Guide

514 | Overview of Security Policies

Policy Type Template File

Authentication Basic Authentication Policy

BasicAuthentication.policy

Username token Authentication Policy

AuthenticationByUsernameToken.policy

SAML Authentication Policy

AuthenticationBySaml.policy

SiteMinder Authentication Policy

AuthenticationBySiteMinder.policy

OAuth Authentication Policy

AuthenticationbyOAuth Policy

SPNEGO Authentication Policy

AuthenticationBySPNEGO.policy

Authorization Authorization By Role Policy

Authorization By Role Policy

Confidentiality Decryption policy

Decryption.policy

Encryption policy

Encryption.policy

Integrity Sign policy

Sign.policy

VerifySignature policy

Sample Template Policies



TIBCO® API Exchange Gateway User Guide

515 | Overview of Security Policies

Policy Type Template File

VerifySignature.policy

CredentialMapping UsernameToken Credential Mapping

UsernameToken Credential Mapping

SAML Credential Mapping

SAML Credential Mapping

OAuth Credential Mapping

CredentialMappingByOAuth.policy

Registering Policy
You can register a policy on the Config UI by uploading a policy file and set the name for a
policy.

To register a policy, follow these steps:

Procedure
1. Start the Config UI, if it is not running.

2. Create a new project or select an existing project under Projects.

3. Click the SECURITY tab on the right hand side.

4. Click the Policy Mapping tab on the top menu.

5. Click the Add Property icon to add a new policy mapping.

6. Enter the following parameters for the policy:

Type Description

Policy Name l Specifies the name for the policy.

Policy Mapping Parameters



TIBCO® API Exchange Gateway User Guide

516 | Overview of Security Policies

Type Description

l Required.

Intent Set the type of the policy. For example, Authentication.

See Types of Security Policies for details.

Qualifier Set the policy sub type. For example, UsernameToken

See Policy Types and SubTypes.

See Types of Security Policies for details.

New Policy
File

Specifies the policy definition file. Browse to choose a new policy file.
See Create Policy to create the policy definition file.

Existing
Policy File

Specifies an existing policy definition file. The policy file must exist in
the gateway ASG_CONFIG_HOME/configuration/policy folder. For
example, for the default configuration, the policy file must exist in the
ASG_CONFIG_HOME/default/policy folder.

7. Save changes to the project or configuration.

Applying Policies
You can apply a policy on the Config UI by associating an existing policy to a target
operation or reference endpoint.

Use Policy Binding to associate the policy with one or more target operation endpoints.

To apply any registered policy to a target operation or reference endpoints, follow these
steps:

Procedure
1. Start the Config UI, if not running.

2. Create a new configuration or select an existing configuration.

3. Click the SECURITY tab on the right hand side.

4. Click the Policy Binding tab on the top menu.



TIBCO® API Exchange Gateway User Guide

517 | Overview of Security Policies

5. Click the Add Property icon to add a new policy binding.

6. Enter the following parameters for the policy:

Parameter Description

Policy Specifies a name for the policy. The policy name must be configured
under the Policy Mapping tab.

URI Specifies the URI of the operation to which the policy is applied.

Note:
l If the URI in facade operation is left blank, then URI field for

security binding should use SOAP action instead of URI.

l For XML/JMS or SOAP/JMS, the SOAP action can be used
instead of the URI.

Facade
Operation

Specifies the operation to which the policy is applied. The facade
operation must be configured in the Adding a New Facade
Operationtab.

Target
Operation

Specifies the target operation. The target operation must be configured
in the Adding a New Target Operation tab.

Binding Specifies the binding component that the policy is applied to. This
could be either a facade operation (service) or a target operation
(reference).

Flow Specifies the flow of the request or response. The possible values are:

l in

l out

Partner Specifies the partner to which the policy is applied. This field can be
left blank in case no partner needs to be applied.

Type Specifies the type of the request.

Policy Binding Parameters



TIBCO® API Exchange Gateway User Guide

518 | Overview of Security Policies

Parameter Description

Note: Set this to SOAP for any SOAP request, or to http for any non-
SOAP http request.

7. Save changes to the project or configuration.

Policy Use Cases
This section describes the use cases for supported policies.

Authentication Policies
This section describes the configuration to apply authentication policies.

Figure Authentication Policies illustrates how to apply the authentication policies for an
incoming request.

Authentication Policies

Configuring Authentication Policies
To configure the authentication policies, follow these steps:



TIBCO® API Exchange Gateway User Guide

519 | Overview of Security Policies

Procedure
1. Configure Shared Resource.

See Configure Shared Resource for details.

2. Create Policy.

See Create Policy for details.

3. Register Policy.

See Registering Policy for detailed steps. You must choose the correct type and
subtype to register the policy as shown in the following table:

Policy Intent Qualifier

Basic Authentication Authentication Basic

UsernameToken
Authentication

Authentication UsernameToken

SAML Authentication Authentication SAML

Authentication by OAuth Authentication OAuth

SPNEGO Authentication Authentication SPNEGO

Note: Use the custom shared resource in an authentication policy to
implement a custom login module, which can be used for the
authentication in the following ways:

l Extract the user credentials from an incoming request available in a
non-standard format.

l Query the user credentials stored in the database to authenticate the
user.

See Authentication Using Custom Shared Resource for details.

4. Apply Policy.

See Applying Policies for details.



TIBCO® API Exchange Gateway User Guide

520 | Overview of Security Policies

Authentication Policies Types
TIBCO API Exchange Gateway supports the following authentication policies:

Basic

l The client sends the request with user name/password in HTTP basic authentication
header.

l The Basic Authentication policy authenticates the request against LDAP.

Example Policy

BasicAuthentication.policy

<wsp:Policy
xmlns:tpa="http://xsd.tns.tibco.com/governance/policy/action/2009"

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wssp="http://docs.oasis-open.org/ws-sx/ws-

securitypolicy/200702">
   <wsp:All>
     <tpa:AuthenticationByJaas>
      <wssp:SupportingTokens>
     <tpa:Any>

       <wssp:HttpBasicAuthentication/>

     </tpa:Any>
     </wssp:SupportingTokens>
    <tpa:SharedResourceLoginModule ResourceInstance="LDAPSource">
    </tpa:SharedResourceLoginModule>
     </tpa:AuthenticationByJaas>
   </wsp:All>
</wsp:Policy>

UsernameToken

l The client sends the request containing usernameToken in WS-Security header of the
SOAP message.

l UsernameToken authentication policy authenticates the request against LDAP.

Example Policy



TIBCO® API Exchange Gateway User Guide

521 | Overview of Security Policies

AuthenticationByUsernameToken.policy

<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

xmlns:wssp="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702"
xmlns:tpa="http://xsd.tns.tibco.com/governance/policy/action/2009" >
   <wsp:All>
    <wsp:ExactlyOne>
     <tpa:AuthenticationByJaas>
      <wssp:SupportingTokens>
       <tpa:ExactlyOne>
        <wssp:UsernameToken />
       </tpa:ExactlyOne>
      </wssp:SupportingTokens>
   <tpa:SharedResourceLoginModule ResourceInstance="LdapAsp" />
     </tpa:AuthenticationByJaas>
    </wsp:ExactlyOne>
   </wsp:All>
</wsp:Policy>

SAML

The client sends the request containing a SAML assertion in WS-Security header of the
SOAP message.

Example Policy

AuthenticationBySaml.policy

<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wssp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
xmlns:tpa="http://xsd.tns.tibco.com/governance/policy/action/2009">
   <wsp:All>
     <wsp:Policy >
      <tpa:WssProcessor ResourceInstance="WssAsp"/>
     </wsp:Policy>
     <wsp:Policy
     xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
      <tpa:VerifyAuthentication>
       <wsp:ExactlyOne>
        <wssp:SignedSupportingTokens>
       <wsp:ExactlyOne>



TIBCO® API Exchange Gateway User Guide

522 | Overview of Security Policies

        <wssp:SamlToken>
     <!-- The following will enable verify IssuerName
        <wssp:IssuerName>urn:test.tibco.com</wssp:IssuerName>
     -->
     <!-- The following will enable verify SAML version
        <wssp:WssSamlV20Token11/>
     -->
        </wssp:SamlToken>
        </wsp:ExactlyOne>
        </wssp:SignedSupportingTokens>
        </wsp:ExactlyOne>
        </tpa:VerifyAuthentication>
        </wsp:Policy>
        </wsp:All>
        </wsp:Policy>

SiteMinder

l The client sends the request containing the SiteMinder session cookie in the HTTP
header.

l SiteMinder authentication policy authenticates the request against SiteMinder service
provider.

Example Policy

AuthenticationBySiteMinder.policy

<wsp:Policy
<wsp:Policy
   xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
   xmlns:wssp="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702"
   xmlns:tpa="http://xsd.tns.tibco.com/governance/policy/action/2009" >
   <wsp:All>
     <wsp:ExactlyOne>
       <tpa:AuthenticationByJaas>
         <wssp:SupportingTokens>
          <tpa:ExactlyOne>
            <tpa:SiteminderToken />
          </tpa:ExactlyOne>
         </wssp:SupportingTokens>
         <tpa:SharedResourceLoginModule ResourceInstance="SiteminderAsp"
/>



TIBCO® API Exchange Gateway User Guide

523 | Overview of Security Policies

       </tpa:AuthenticationByJaas>
     </wsp:ExactlyOne>
   </wsp:All>
</wsp:Policy>

OAuth

When a request is received from the user, the gateway redirects the user to OAuth
Authorization server to login and grant access to the protected facade operation.

When the OAuth authentication server sends the authorization code back to the policy
callback endpoint after the user’s successful login and grant access to the facade
operation, the gateway exchanges the authorization code for an access token from the
authorization server. Because the protected facade operation does not access user’s
resources, the access token is only used for authentication purposes.

Example Policy

AuthenticationbyOAuth Policy

<?xml version="1.0" encoding="UTF-8"?>
<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">

<ns:AuthenticationByJaas
xmlns:ns="http://xsd.tns.tibco.com/governance/policy/action/2009">

<ns:OAuthToken>
<ns:Provider>TIBCO</ns:Provider>
<ns:ClientID>security</ns:ClientID>

<ns:ClientSecret>ef6e7dca3d52973f73ec3dd0da7087d400f5a05a</ns:ClientSecr
et>

<ns:CallbackURI>http://localhost:9322/asg/oauth2/client/callback</ns:Cal
lbackURI>

</ns:OAuthToken>
</ns:AuthenticationByJaas>

</wsp:Policy>

Schema for OAuth Policies

The supported OAuth policies use the following OAuth assertion schema:



TIBCO® API Exchange Gateway User Guide

524 | Overview of Security Policies

OAuth Policy Schema

<xsd:complexType name="OAuthAssertion">
<xsd:sequence>

<xsd:element name="Provider" type="xsd:string" minOccurs="1"
maxOccurs="1" />

<xsd:element name="ClientID" type="xsd:string" minOccurs="1"
maxOccurs="1" />

<xsd:element name="ClientSecret" type="xsd:string"
minOccurs="1" maxOccurs="1" />

<xsd:element name="CallbackURI" type="xsd:string"
minOccurs="0" maxOccurs="1" />

<xsd:element name="Scopes" type="xsd:string" minOccurs="0"
maxOccurs="1" />

<xsd:choice>
<xsd:element name="AuthorizationEndpoint" type="xsd:string"

minOccurs="1" maxOccurs="1" />
<xsd:element name="TokenEndpoint" type="xsd:string"

minOccurs="1" maxOccurs="1" />
</xsd:choice>
<xsd:element name="Username" type="xsd:string" minOccurs="0"

maxOccurs="1" />
<xsd:element name="Password" type="xsd:string" minOccurs="0"

maxOccurs="1" />
<xsd:element name="AccessToken" type="xsd:string"

minOccurs="0" maxOccurs="1" />
<xsd:element name="RefreshToken" type="xsd:string"

minOccurs="0" maxOccurs="1" />
<xsd:element name="TokenValidator" type="xsd:string"

minOccurs="0" maxOccurs="1" />
<xsd:element name="TokenType" type="tpa:EnumTokenType"

minOccurs="0" maxOccurs="1" default="Query"/>
</xsd:sequence>

</xsd:complexType>

OAuth Policy File Fields

The OAuth 2.0 policy file contains the following fields:

Field Description Example Value

Provider Specifies the
provider for

Tibco

OAuth Policy File Fields



TIBCO® API Exchange Gateway User Guide

525 | Overview of Security Policies

Field Description Example Value

authorization
server used for
authentication. The
supported values
are as follows:

l Tibco

Use this
value for
TIBCO
authorization
server.

l PingIdentif
ty

Use this
value for
PingIdentity
authorization
server

ClientID Specifies the client
identifier issued to
the client by the
authorization
server during the
registration
process.

gateway

ClientSecret Specifies the client
secret of the
registered
application.

UbrJ0YxG

CallbackURI Optional. Specifies
the callback URL.

https://localhost:9333/asg/oauth2/client/c
allback



TIBCO® API Exchange Gateway User Guide

526 | Overview of Security Policies

Field Description Example Value

Scopes Specifies a list of
comma separated
scopes.

public

AuthorizationEndpoi
nt

Specifies an
endpoint on the
authorization
server where the
client requests for
authorization.

https://localhost:9333/asg/oauth2/authoriz
ation

TokenEndpoint Specifies an
endpoint on the
authorization
server where the
client requests for
access token.

https://localhost:9333/asg/oauth2/access_
token

Username Optional. Specifies
the user name of
the resource owner
who requests the
token.

asgtibcouser

Password Optional. Specifies
the password of
the resource owner
who requests the
token.

asgtibcopass

SPNEGO

l The client sends the request containing the SPNEGO token in the HTTP header.

l SPNEGO authentication policy authenticates the request against the specified
Kerberos service provider.

Example Policy



TIBCO® API Exchange Gateway User Guide

527 | Overview of Security Policies

AuthenticationBySPNEGO.policy

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wssp="http://docs.oasis-open.org/ws-sx/ws-

securitypolicy/200702"
xmlns:tpa="http://xsd.tns.tibco.com/governance/policy/action/2009">
<wsp:All>

<wsp:ExactlyOne>
<tpa:AuthenticationByJaas>

<wssp:SupportingTokens>
<tpa:ExactlyOne>

<wssp:SpnegoContextToken />
</tpa:ExactlyOne>

</wssp:SupportingTokens>
<tpa:SharedResourceLoginModule

ResourceInstance="KerberosAsp">
<tpa:Properties>

<tpa:Property Name="ServiceName" Value="HTTP/vm-
w2k8-spml3.support.ch.com@SUPPORT.CH.COM" />

</tpa:Properties>
</tpa:SharedResourceLoginModule>

</tpa:AuthenticationByJaas>
</wsp:ExactlyOne>

</wsp:All>
</wsp:Policy>

Configuration Setup for Kerberos SPNEGO Authentication Policy

This section explains the configuration setup required to process SPNEGO Kerberos
authentication requests for TIBCO API Exchange Gateway.



TIBCO® API Exchange Gateway User Guide

528 | Creating a User Account in the Microsoft Active Directory for TIBCO API Exchange Gateway

Creating a User Account in the Microsoft Active
Directory for TIBCO API Exchange Gateway
You must create a user account in the Microsoft Active Directory for the machine where
TIBCO API Exchange Gateway is installed.

Before you begin
Microsoft Windows Active Directory is installed.

Procedure
1. Click Start->All Programs-> Control Panel > All Control Panel Items >

Administrative Tools->Active Directory Users and Computers.

2. Enter a value for User logon name.

Use the machine name of the TIBCO API Exchange Gateway installation as the user.

For example, if your machine name is testtibcoapix.pa.tibco.com, create a new
user in an Active Directory as testtibcoapix.

3. Make sure that the account options are choosen as follows:

l Do not select User must change password at next logon.

l Select User can not change password.

l Select Password never expires.



TIBCO® API Exchange Gateway User Guide

529 | Mapping the Service Principal Name (SPN) to a Microsoft User Account

Mapping the Service Principal Name (SPN) to a
Microsoft User Account
The Kerberos service principal name is defined as service name/Full_Qualified_Host_Name

Before you begin
A user account is created in the Active Directory.

Procedure
1. Open a command prompt window.

2. Enter the following command to map the Kerberos service principal name (SPN) to a
user account:
setspn -A service name/fully_qualified_host_nameuser account

For example, for the HTTP/testtibcoapix.pa.tibco.com service principal name, use
the following command:

setspn -A HTTP/testtibcoapix.pa.tibco.com testtibcoapix

l setspn tool is found on the Windows 2000 Resource Kit.

l Refer to the following url for details:

http://social.technet.microsoft.com/wiki/contents/articles/717.service-principal-
names-spns-setspn-syntax-setspn-exe.aspx

http://social.technet.microsoft.com/wiki/contents/articles/717.service-principal-names-spns-setspn-syntax-setspn-exe.aspx
http://social.technet.microsoft.com/wiki/contents/articles/717.service-principal-names-spns-setspn-syntax-setspn-exe.aspx


TIBCO® API Exchange Gateway User Guide

530 | Generating a Keytab File for an SPN

Generating a Keytab File for an SPN
You can generate the Kerberos keytab file (krb5.keytab) for an SPN using the ktpass tool
from the Windows Server toolkit.

Before you begin
l Make sure you have created a user account in the Microsoft Active Directory.

l Ensure that you have mapped the service principal name to the user account.

Note: The instructions in this topic are for Windows platform only.

Procedure
1. Open a command prompt.

2. To generate the keytab file, type the ktpass command:

ktpass -out Path_To_Keytab_file
-princ service name/fully_qualified_host_name -passPasswordValue
-mauser user_logon_name -mapOp set -cryptoEncryption_Key_Type
-pType KRB5_NT_PRINCIPAL

ktpass -out c:\temp\apixg.keytab
-princ HTTP/testtibcoapix.pa.tibco.com -pass testtibcopass -mapUser
test\testtibcoapix -mapOp set -crypto all
-pType KRB5_NT_PRINCIPAL

Refer to the following table for command line options:

Parameter Description Example Value

-out Specifies the
name of the
Kerberos keytab
output file.

c:\temp\apixg.keytab

Command Line Options for ktpass Command



TIBCO® API Exchange Gateway User Guide

531 | Generating a Keytab File for an SPN

Parameter Description Example Value

-princ Specifies the
principal user
name. The value
for this field is
defined in the
form
user@REALM .
The
concatenation of
the user logon
name, and the
realm must be
uppercase.

HTTP/testtibcoapix.pa.tibco.com

-pass Specifies a
password for the
principal user
name that is
specified by the
princ option.

testtibcopass

-mapUser Maps the name
of the Kerberos
principal, which
is specified by
the princ option
to the specified
domain account.

test\testtibcoapix

-mapOp Specifies how
the mapping
attribute is set.

set

sets the value for Data Encryption
Standard (DES)-only encryption for the
specified local user name.



TIBCO® API Exchange Gateway User Guide

532 | Generating a Keytab File for an SPN

Parameter Description Example Value

-crypto Specifies the
encryption key
type that are
generated in the
keytab file. The
possible values
are:

l DES-CBC-
CRC

l AES256-
SHA1

l all

all, which indicates that all
supported cryptographic types can be
used.

Refer to https://technet.microsoft.com/en-us/library/cc753771.aspx for ktpass
command syntax details.

Authentication Using Custom Shared Resource
You may use a custom shared resource in an authentication policy to authenticate a
request.

The custom shared resource contains a custom login module implemented by the user.
The custom shared resource is specified using the ResourceInstance attribute in a policy.

For example, if the custom shared resource CelmAsp is configured in the
CelmAsp.properties file, use it as follows in an authentication policy:

<tpa:WssProcessor ResourceInstance="CelmAsp"/>

TIBCO API Exchange Gateway calls the custom login module defined in the
CelmAsp.properties file.

Refer to Configuring Custom Shared Resource for custom shared resource properties.

To use custom shared resource for an authentication, you must complete the following
tasks:

l Implement the custom login module. See Implementing Custom Login Module.

l Package the custom login module. See Packaging and Deploying the Custom Login

https://technet.microsoft.com/en-us/library/cc753771.aspx


TIBCO® API Exchange Gateway User Guide

533 | Generating a Keytab File for an SPN

Module.

Example Authentication Policy Using Custom Shared Resource

AuthenticationByCelm.policy

<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wssp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
xmlns:tpa="http://xsd.tns.tibco.com/governance/policy/action/2009">

<wsp:All>
<wsp:Policy >

<tpa:WssProcessor ResourceInstance="CelmAsp"/>
</wsp:Policy>
<wsp:Policy

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
<tpa:VerifyAuthentication>

<tpa:ExactlyOne>
<wssp:UsernameToken />

</tpa:ExactlyOne>
</tpa:VerifyAuthentication>

</wsp:Policy>
</wsp:All>

</wsp:Policy>

Implementing Custom Login Module

The custom login module uses the LoginModule of Java Authentication and Authorization
Service ( JAAS).

TIBCO API Exchange Gateway provides an abstract LoginModule class that implements the
JAAS LoginModule. You must extend the abstract LoginModule, as required.

For example, you can extend the abstract LoginModule for the following functionality:

l Extract security information or credentials such as user name and password from the
request.

l Authenticate the extracted credentials as required.

Note: To create your custom login module, refer to Sample Custom LoginModule
class.



TIBCO® API Exchange Gateway User Guide

534 | Generating a Keytab File for an SPN

Abstract LoginModule

The CelmAbstractLoginModule is an abstract login module class.

You must extend the CelmAbstractLoginModule base class to implement the custom
authentication module. This abstract login module class implements the methods of the
LoginModule of Java JAAS and populates some fields before passing the control to the
custom login module class implemented by the user. When the control is passed to the
user specific implementation module, the user specific implementation module may
retrieve object such as HTTP request and response or SOAP document depending on the
type of authentication is configured.

Custom LoginModule

The custom login module class must be extended from CelmAbstractLoginModule abstract
base class.

The CelmAbstractLoginModule class wraps LoginModule methods such as login() and
delegates the method to doLogin(). The custom login module class should override the
methods of the abstract class such as doLogin() or doCommit() to provide customized
authentication processing. Any resource allocation should be cleaned up in the doLogout()
or doAbort() methods.

Example doLogin() Method of a Custom LoginModule

The following is an example of doLogin() of a custom LoginModule:

/**
* Perform login.
* This method is called when login() in LoginModule is called.
*
*/
@Override
public boolean doLogin() throws LoginException
{
if (getMessageElement() != null)
extractUsernamePassword(getMessageElement().getOwnerDocument());
return authenticateUsernamePassword(getUsername(), getPassword());
}

Refer to Sample Custom LoginModule for a complete sample custom login module class.



TIBCO® API Exchange Gateway User Guide

535 | Sample Custom LoginModule

Sample Custom LoginModule
The following code defines a sample custom login module
CelmExampleUsernamePasswordLoginModule class:

CelmExampleUsernamePasswordLoginModule Sample Class

package com.example.security.authentication.provider.celm;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;
import javax.security.auth.Subject;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.login.LoginException;
import org.opensaml.xml.util.XMLHelper;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
import com.tibco.asg.security.provider.celm.CelmAbstractLoginModule;
/**
* CelmExampleUsernamePasswordLoginModule is an example LoginModule
* to demonstrate how to extend CelmExampleUsernamePasswordLoginModule.
*
*/
public class CelmExampleUsernamePasswordLoginModule extends
CelmAbstractLoginModule
{
private static Logger logger =
LoggerFactory.getLogger(CelmExampleUsernamePasswordLoginModule.class);
private String authorizedUsername = null;
private String authorizedPassword = null;
private String authorizedRole = null;
/**
* Perform initialize.
* <p>
* This method is called when login() in initialize is called.
*
* @param subject the Subject for authentication.
* @param callbackHandler the callback handler to provide authentication
* variables like username/password, etc.
* @param sharedState
* @param options a map contains the options from properties file.



TIBCO® API Exchange Gateway User Guide

536 | Sample Custom LoginModule

*/
@Override
public void initialize(Subject subject, CallbackHandler callbackHandler,
final Map<String, ?> sharedState, final Map<String, ?> options)
{
super.initialize(subject, callbackHandler, sharedState, options);
authorizedUsername =
(String)options.get
("com.tibco.asg.security.provider.celm.authorizedUsername");
authorizedPassword =
(String)options.get
("com.tibco.asg.security.provider.celm.authorizedPassword");
authorizedRole =
(String)options.get
("com.tibco.asg.security.provider.celm.authorizedRole");
}
/**
* Perform login.
* <p>
* This method is called when login() in LoginModule is called.
*
*/
@Override
public boolean doLogin() throws LoginException
{
if (getMessageElement() != null)
extractUsernamePassword(getMessageElement().getOwnerDocument());
return authenticateUsernamePassword(getUsername(), getPassword());
}
/**
* Perform commit.
* <p>
* This method is called when commit() in LoginModule is called.
*
*/
@Override
public boolean doCommit() throws LoginException
{
return true;
}
/**
* Perform cleanup.
* <p>
* This method is called when cleanup() in LoginModule is called.
*
*/
@Override



TIBCO® API Exchange Gateway User Guide

537 | Sample Custom LoginModule

public void doCleanUp() throws LoginException
{
super.doCleanUp();
}
//
// The methods below are example to show:
// 1. How to username/password can be extracted from SOAP header.
// 2. AUthenticat the user.
//
private static final String WSSE_NS =
"http://schemas.xmlsoap.org/ws/2002/04/secext";
private static final String USERNAME = "Username";
private static final String PASSWORD = "Password";
/**
* Extract username and password from the request.
*
* This example extract the username and password from the document.
* It is expecting the username and password is from a element with
* a specific namespace.
*
* This example does not handle and valid replay attack.
*
* @param document
* @return
* @throws LoginException
*/
private void extractUsernamePassword(Document document) throws
LoginException
{
try
{
NodeList nl = null;
nl = document.getElementsByTagNameNS(WSSE_NS, USERNAME);
if (nl.getLength() != 0)
{
// save the username
setUsername(nl.item(0).getFirstChild().getNodeValue());
}
nl = document.getElementsByTagNameNS(WSSE_NS, PASSWORD);
if (nl.getLength() != 0)
{
// save the password
setPassword(nl.item(0).getFirstChild().getNodeValue());
}
}
catch (Exception e)
{



TIBCO® API Exchange Gateway User Guide

538 | Sample Custom LoginModule

logger.error("Unable to extract username/password from request", e);
}
}
/**
* Authenticate the given username and password.
*
* This example validate the username/password against the
username/password
* extracted from the properties file in the
* {@link #initialize(Subject, CallbackHandler, Map, Map)} method above.
*
* Note that name identifier should be set if username is authenticated.
* The name identifier is used for the Subject's NameIdentifier when
* building the SAML assertion.
*
* There may be other way to validate the username/password, for example,
* look up password for the user in database.
*
* @param username username to verify.
* @param password password to verify.
* @throws LoginException throw if authentication failed.
*/
private boolean authenticateUsernamePassword(String username, String
password)
throws LoginException
{
if (authorizedUsername == null && authorizedPassword == null)
throw new LoginException("Invalid credentials");
if (username.equals(authorizedUsername) &&
password.equals(authorizedPassword))
{
this.setNameIdentifier(username);
this.setRoles(extractRoles(username));
return true;
}
throw new LoginException("Invalid credentials");
}
/**
* Extract roles for the given user.
*
* This example adds the role extracted from the properties file.
*
* There may be other way to get the roles for the authenticate user,
* for example, look up the roles for the user in database.
*
* @param username user whos roleas to be extracted
* @return set of roles for the specified user.



TIBCO® API Exchange Gateway User Guide

539 | Sample Custom LoginModule

*/
private Set<String> extractRoles(String username)
{
HashSet<String> roleSet = new HashSet<String>();
if (authorizedRole != null)
roleSet.add(authorizedRole);
return roleSet;
}
}

Note:
To compile the CelmExampleUsernamePasswordLoginModule class, you must
include asg-function.jar in the class path.

Packaging and Deploying the Custom Login Module

You must package the custom login module in a jar file for deployment with TIBCO API
Exchange Gateway.

Procedure
1. Create a JAR file containing the implementation class of custom login module.

2. Copy the JAR file and the dependencies to the ASG_HOME/lib/ext/tpcl directory.

Note: TIBCO API Exchange Gateway loads the custom login module at run
time.

Applying Authorization Policies
This section explains the configuration to apply authorization policies.

Figure Authorization Policies illustrates how to apply an authorization policy based on the
role or how you can apply an OAuth policy.



TIBCO® API Exchange Gateway User Guide

540 | Sample Custom LoginModule

Authorization Policies

Configuring Authorization Policies
To configure a authorization policies, complete the following tasks:

Procedure
1. Configure Shared Resource. See Configure Shared Resource for details.

2. Create Policy. See Create Policy for details.

3. Register Policy.

See Registering Policy for detailed steps. You must choose the correct type and
subtype to register the policy as shown in the following table:

Policy Type SubType

Authorization By Role Authorization Role

4. Apply Policy.

See Applying Policies for details.

Authorization Policies Types
TIBCO API Exchange Gateway supports the following authorization policies:



TIBCO® API Exchange Gateway User Guide

541 | Sample Custom LoginModule

Role

When an authorization policy by role is applied, an authenticated user with a specific role
defined by the policy will be authorized to access all the functions of the target operation.

l Consumer sends a request with the user name and password in HTTP header or as a
UsernameToken in WS-Security header of the SOAP message.

l Basic or UsernameToken authentication policy authenticates the request against
LDAP and retrieves LDAP attributes or roles for the user.

l After authentication policy, the gateway invokes an authorization policy. Using SOAP
operation information from SOAP request and user role information retrieved from
LDAP during authentication, the authorization policy determines if the user that is
sending the request is authorized to invoke the SOAP operation.

Example Policy

Authorization By Role Policy

<?xml version="1.0" encoding="UTF-8"?>
<wsp:Policy

xmlns:tpa="http://xsd.tns.tibco.com/governance/policy/action/2009"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

xmlns:wssp="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702"
xmlns:xacml="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
<wsp:All>
   <wsp:Policy>
     <wsp:All>
     <tpa:Authorization>
     <tpa:ByRole>
     <tpa:Default>
      <xacml:Rule Effect="Deny" RuleId="">
      <xacml:Condition>
      <xacml:Apply FunctionId="always-true">
      </xacml:Apply>
      </xacml:Condition>
      </xacml:Rule>
      </tpa:Default>
       <tpa:Operation>
        <xacml:Rule Effect="Permit" RuleId="">
        <xacml:Target>
        <xacml:Actions>



TIBCO® API Exchange Gateway User Guide

542 | Sample Custom LoginModule

        <xacml:Action>
        <xacml:ActionMatch MatchId="http://tempuri.org">
        <!--
        <xacml:AttributeValue
         DataType="xsd:string">GetBooks</xacml:AttributeValue>
         -->
        <xacml:AttributeValue
        DataType="xsd:string">queryBookByAuthorBW</xacml:Attribute      
  Value>

        <xacml:AttributeSelector DataType="xsd:string"

         RequestContextPath="" />
        </xacml:ActionMatch>
        </xacml:Action>
        </xacml:Actions>
        </xacml:Target>
        <xacml:Condition>
        <xacml:Apply FunctionId="is-in">
        <xacml:AttributeValue DataType="xsd:string">Accounting
        Managers</xacml:AttributeValue>
        </xacml:Apply>
        </xacml:Condition>
        </xacml:Rule>
        </tpa:Operation>
        </tpa:ByRole>
        </tpa:Authorization>
        </wsp:All>
   </wsp:Policy>
     </wsp:All>
     </wsp:Policy>

Integrity Policies
This section describes the configuration to apply integrity policies.

The following figure shows how to apply a sign policy:



TIBCO® API Exchange Gateway User Guide

543 | Sample Custom LoginModule

Sign Policy

The following figure shows how to apply a verify signature policy:

VerifySignature Policy

Configuring Integrity Policies
To configure the integrity policies, complete the following tasks:



TIBCO® API Exchange Gateway User Guide

544 | Sample Custom LoginModule

Procedure
1. Configure Shared Resource. See Configure Shared Resource for details.

2. Create Policy. See Create Policy for details.

3. Register Policy.

See Registering Policy for detailed steps. You must choose the correct type and
subtype to register the policy as shown in the following table:

Policy Type SubType

Sign Integrity Sign

Verify Signature Integrity Verify

4. Apply Policy.

See Applying Policies for details.

Integrity Policies Types
TIBCO API Exchange Gateway supports following types of integrity policies:

Sign

l Sign policy can be used to sign the outgoing SOAP message. Before a request is
forwarded, the signature policy is applied.

l The message is signed using the shared resource specified in the policy.

Example Policy

Sign.policy

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
<wsp:All>

<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:ns1="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

<ns:Signature
xmlns:ns="http://xsd.tns.tibco.com/governance/policy/action/2009"



TIBCO® API Exchange Gateway User Guide

545 | Sample Custom LoginModule

ResourceInstance="SubjectIsp">
<ns1:SignedParts>

<ns1:Body />
<ns1:Header />

</ns1:SignedParts>
<!-- The keyAlias should be replaced with a valid one

from the keystore from the
SubjectIsp -->

<ns:keyAlias>john_key</ns:keyAlias>
<!-- Change the AlgorithmSuite to use a different

encryption algorithm -->
<ns1:AlgorithmSuite>

<ns1:Basic128 />
</ns1:AlgorithmSuite>

</ns:Signature>
</wsp:Policy>

</wsp:All>
</wsp:Policy>

Verify Signature

When a signed request is received by the gateway, the verify signature policy is applied.

l The signature in the message is verified using the shared resource specified in the
policy.

l The policy verifies that there is a signature in the message and it has been verified.

Example Policy

VerifySignature.policy

<wsp:Policy
xmlns:tpa="http://xsd.tns.tibco.com/governance/policy/action/2009"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wssp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

<wsp:All>
<wsp:Policy>

<tpa:WssProcessor ResourceInstance="WssAsp" />
</wsp:Policy>
<wsp:Policy>

<tpa:VerifyAuthentication>
<wssp:SignedSupportingTokens>

<wssp:SamlToken />



TIBCO® API Exchange Gateway User Guide

546 | Sample Custom LoginModule

</wssp:SignedSupportingTokens>
</tpa:VerifyAuthentication>

</wsp:Policy>
<wsp:Policy>

<tpa:VerifySignature>
<wssp:SignedParts>

<wssp:Header Namespace="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wsswssecurity-
secext-1.0.xsd" />

<wssp:Body />
</wssp:SignedParts>

</tpa:VerifySignature>
</wsp:Policy>

</wsp:All>
</wsp:Policy>

Confidentiality Policies
Configuration to apply confidentiality policies.

The following figure shows how to apply an encrypt policy.

Encryption Policy

The following figure shows how to apply the decrypt policy.



TIBCO® API Exchange Gateway User Guide

547 | Sample Custom LoginModule

Decrypt Policy

Configuring Confidential Policies
To configure the confidentiality policies, do the following tasks:

Procedure
1. Configure Shared Resource

See Configure Shared Resource for details.

2. Create Policy

See Create Policy for details.

3. Register Policy

See Registering Policy for detailed steps. You must choose the correct type and
subtype to register the policy as shown in the following table:

Policy Type SubType

Encrypt Confidentiality Encrypt

Decrypt Confidentiality Decrypt

4. Apply Policy



TIBCO® API Exchange Gateway User Guide

548 | Sample Custom LoginModule

See Applying Policies for details.

Confidentiality Policies Types
TIBCO API Exchange Gateway supports following types of confidentiality policies:

Encryption

l Before a request is forwarded the Encryption policy is applied.

l The message is encrypted using the shared resource specified in the policy.

Example Policy

Encryption.policy

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
<wsp:All>

<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:ns1="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

<ns:Encryption
xmlns:ns="http://xsd.tns.tibco.com/governance/policy/action/2009"
ResourceInstance="TrustIsp">

<ns1:EncryptedParts>
<ns1:Body />
<ns1:Header />

</ns1:EncryptedParts>
<!-- The keyAlias should be replaced with a valid one

from the keystore from the
TipIsp -->

<ns:keyAlias>john_key</ns:keyAlias>
<!-- Change the AlgorithmSuite to use a different

encryption algorithm -->
<ns1:AlgorithmSuite>

<ns1:Basic128 />
</ns1:AlgorithmSuite>

</ns:Encryption>
</wsp:Policy>

</wsp:All>
</wsp:Policy>



TIBCO® API Exchange Gateway User Guide

549 | Sample Custom LoginModule

Decryption

l When a request is received, the decryption policy is applied.

l The message is decrypted using the shared resource specified in the policy. The
policy verifies that the message is decrypted.

Example Policy

Decryption.policy

<wsp:Policy
xmlns:tpa="http://xsd.tns.tibco.com/governance/policy/action/2009"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wssp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">

<wsp:All>
<wsp:Policy>

<tpa:WssProcessor ResourceInstance="WssAsp" />
</wsp:Policy>
<wsp:Policy>

<tpa:VerifyAuthentication>
<wssp:SignedSupportingTokens>

<wssp:SamlToken />
</wssp:SignedSupportingTokens>

</tpa:VerifyAuthentication>
</wsp:Policy>
<wsp:Policy>

<tpa:VerifyDecryption/>
</wsp:Policy>

</wsp:All>
</wsp:Policy>

Credential Mapping Policies
Configuration to apply credential mapping policies.

Figure CredentialMapping Policies illustrates how you can apply a credential mapping
policy.



TIBCO® API Exchange Gateway User Guide

550 | Sample Custom LoginModule

CredentialMapping Policies

Credential Mapping Policies Types
TIBCO API Exchange Gateway supports following types of credential mapping policies:

UsernameToken Credential Mapping

When applying UsernameToken Credential Mapping, remember the following points:

l There is no authentication needed.

l The client sends request to the facade operation.

l When the service invoked by the client request calls the target operation,
UsernameToken credential mapping policy is applied. A UsernameToken is then
added to the outgoing request using the credentials extracted from the policy or the
shared resource specified in the policy.

Example Policy

CredentialMappingByUsernameToken Policy

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wssp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
xmlns:tpa="http://xsd.tns.tibco.com/governance/policy/action/2009">

<wsp:All>
<wsp:Policy

xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">



TIBCO® API Exchange Gateway User Guide

551 | Sample Custom LoginModule

<ns:CredentialMapping
xmlns:ns="http://xsd.tns.tibco.com/governance/policy/action/2009">

<tpa:Fixed>
<!-- Replace the username/password in the following

UsernameToken -->
<wssp:UsernameToken xmlns:wsse="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd">

<wsse:Username>schalla</wsse:Username>
<wsse:Password Type="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wssusername-
token-profile-1.0#PasswordText">password</wsse:Password>

</wssp:UsernameToken>
</tpa:Fixed>
<wssp:SupportingTokens xmlns:wssp="http://docs.oasis-

open.org/ws-sx/ws-securitypolicy/
200702">

<wssp:UsernameToken>
<!-- Uncomment to generate digested password

<wssp:HashPassword />
-->

</wssp:UsernameToken>
</wssp:SupportingTokens>

</ns:CredentialMapping>
</wsp:Policy>

</wsp:All>
</wsp:Policy>

SAML Credential Mapping

When applying SAML Credential Mapping, remember the following points:

l The client sends request as a UsernameToken in WS-Security header of the SOAP
message.

l UsernameToken authentication policy authenticates the request against LDAP and
retrieves LDAP attributes or roles for the user.

l When the service invoked by the client request calls any external service and
forwards the outgoing request, SAML credential mapping policy is applied. The SAML
assertion generated from the previous UsernameToken authentication is added to
the outgoing request.



TIBCO® API Exchange Gateway User Guide

552 | Sample Custom LoginModule

Note: To use credential mapping by SAML policy on a target operation,
make sure that SingleSignonSAMLSigner.properties file is present in the
resource directory of the gateway configuration project. The
SingleSignonSAMLSigner.properties file is found in the ASG_CONFIG_
HOME\default\security\resource directory.

Example Policy

CredentialMappingBySAML Policy

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
<wsp:All>

<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">

<ns:CredentialMapping ResourceInstance="SubjectIsp"
xmlns:ns="http://xsd.tns.tibco.com/governance/policy/action/2009">

<ns:Saml>
<ns:WSS>

<ns:IssuerName>urn:kimyou.tibco.com</ns:IssuerName>
<ns:ValidPeriod>300</ns:ValidPeriod>

</ns:WSS>
</ns:Saml>
<wssp:SignedSupportingTokens

xmlns:wssp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/
200702">

<wssp:SamlToken>

<wssp:IssuerName>urn:www.example.com</wssp:IssuerName>
<wssp:WssSamlV20Token11 />

</wssp:SamlToken>
</wssp:SignedSupportingTokens>

</ns:CredentialMapping>
</wsp:Policy>

</wsp:All>
</wsp:Policy>

Credential Mapping by OAuth Policy

When applying Credential Mapping by OAuth, remember the following points:

l The client sends request to the facade operation.



TIBCO® API Exchange Gateway User Guide

553 | Sample Custom LoginModule

l When the service invoked by the client request calls the target operation, OAuth
credential mapping policy is applied. An access token is obtained using either client
credential or owner credential from the token endpoint of the Authorization server. It
then propagates the access token to the target operation by adding the access token
to the query string when calling the target operation.

Example Policy

CredentialMappingByOAuth.policy

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
<ns:CredentialMapping

xmlns:ns="http://xsd.tns.tibco.com/governance/policy/action/2009">
<ns:OAuth>

<ns:Provider>TIBCO</ns:Provider>
<ns:ClientID>security</ns:ClientID>

<ns:ClientSecret>ef6e7dca3d52973f73ec3dd0da7087d400f5a05a</ns:ClientSecr
et>

<ns:CallbackURI>http://localhost:9322/asg/oauth2/client/callback</ns:Cal
lbackURI>

<ns:Scope>public</ns:Scope>
<ns:GrantType>OWNER_CREDENTIAL</ns:GrantType>
<ns:Username>eric</ns:Username>

<ns:Password>#!OG7dY1XHxlRknIJxgIx4TE08IXNX6+MhSiSAXov3K34=</ns:Passwor
d>

</ns:OAuth>
</ns:CredentialMapping>

</wsp:Policy>

Types of Security Shared Resources
Table Types of Security Shared Resources lists the types of shared resources types used by
different policies. You must use an appropriate shared resource properties file to create the
policy. See Policy And Shared Resource Property File.

For example, to create authentication policy to authenticate an username against LDAP
server, you must register the LDAP shared resource property file.



TIBCO® API Exchange Gateway User Guide

554 | Sample Custom LoginModule

Type Description

LDAP LDAP authentication shared resource provides the ability to authenticate a
username and password against an LDAP server.

Trust
Identity

The Trust Identity Provider is used for retrieving certificates required for
performing trust operations from a credential store.

For example, use Trust identity provider (TIP) for verifying signature or
encryption and SSL client authentication.

Subject
Identity

The Subject Identity Provider is used for retrieving and using private credentials
obtained from a credential store.

For example, use Subject identity provider (SIP) for signing or decryption.

WSS WS security authentication provider is used as a combination of LDAP, Trust
Identity Provider(TIP), and Subject Identity Provider(SIP).

Types of Security Shared Resources

Note:
l WSS shared resource is a combination of LDAP authentication, Trust

Identity and Subject Identity Providers. Depending on the usage of shared
resource, WSS can be configured to include one or more types of shared
resource that it is used for.

l Trust Identity Provider (TIP) and Subject Identity Provider (SIP) depends on
Keystore Credential Provider (KCP), so TIP and SIP always include an
associated KCP.

Shared Resources Properties
This section explains the properties of supported shared resources.



TIBCO® API Exchange Gateway User Guide

555 | Sample Custom LoginModule

Configuring LDAP Authentication Shared Resource

Description

The LDAP authentication shared resource is used to authenticate the user name and
password against the LDAP server. The user name is specified as the usernameToken in the
incoming request from the client.

Use Case

Verifying usernameToken in the incoming request.

Properties

Table Properties for LDAP Authentication Shared Resource describes the properties for
LDAP Authentication Shared Resource.

Property Description

com.tibco.asg.intent.usernameToken

Boolean intent property indicates if the LDAP
authentication method can be enforced on
the request message or not. Possible values
are true or false.

If the value of this property set to true, the
request message must contain a valid
username token.

com.tibco.trinity.runtime.core.provider.authn.ldap.initialCtxFactory

Specifies the name of the JNDI Factory to
use.

The default value is
com.sun.jndi.ldap.LdapCtxFactory (Sun's
LdapCtxFactory).

Properties for LDAP Authentication Shared Resource



TIBCO® API Exchange Gateway User Guide

556 | Sample Custom LoginModule

Property Description

Optional.

com.tibco.trinity.runtime.core.provider.authn.ldap.serverURL

l Specifies the URL to connect to the
LDAP directory server. TIBCO API
Exchange Gateway supports list of
multiple values separated by comma to
configure LDAP server in a high
availability and fault tolerant setup.

l The LDAP URL is defined as:

ldap://hostname1:port ,
ldap://hostname2:port

l The LDAP SSL URL is defined as:

ldaps://hostname1:port,
ldaps://hostname2:port,

l Required.

com.tibco.trinity.runtime.core.provider.authn.ldap.searchTimeOut

The time (in milliseconds) to wait for a
response from the LDAP directory server. A
value of 0 causes it to wait indefinitely. If a
negative number is specified, it uses the
provider's default setting.

Optional.

com.tibco.trinity.runtime.core.provider.authn.ldap.userAttributeUsersName

The name of the attribute in the user object



TIBCO® API Exchange Gateway User Guide

557 | Sample Custom LoginModule

Property Description

that represents the user's name. The value
depends on what LDAP server is used. If you
are use ActiveDirectory LDAP Server, set this
value as CN. If SunOne or OpenLDAP LDAP
Server is used, set this value as uid.

Optional.

com.tibco.trinity.runtime.core.provider.authn.ldap.userAttributesExtra

Specifies the optional list of user attributes to
retrieve from the LDAP directory during
authentication. Separation characters for the
list of user attributes are comma, any ASCII
whitespace or semicolon.

For example, mail givenname

Optional.

com.tibco.trinity.runtime.core.provider.authn.ldap.userSearchBaseDN

Specifies the base distinguished name (DN)
where the searches for the users begin. You
must supply the base DN that narrows the
search to the smallest set of objects that
includes all valid users. This is relevant only
when used with administrator's credentials in
search mode.

For example,
ou=people,ou=na,dc=example,dc=org

Required in admin (search) mode.



TIBCO® API Exchange Gateway User Guide

558 | Sample Custom LoginModule

Property Description

com.tibco.trinity.runtime.core.provider.authn.ldap.userSearchExpression

Specifies the expression to be used for
searching in admin mode against potential
user objects. For example, search expression
is specified as: (&(uid={0})
(objectClass=person)).

In this string, the variable {0} represents the
name of the user. The code substitutes the
user name for this variable, and passes the
resulting boolean expression to the LDAP
server. The LDAP server matches that search
expression against user objects to find a
match. The search result must contain exactly
one match.

This property is relevant only when
credentialProvider property is set and the
binding is done as administrator; otherwise
userDNTemplate is used.

Required in admin (search) mode.

com.tibco.trinity.runtime.core.provider.authn.ldap.userDNTemplate

Specifies a template to be used when
formatting user's DN before binding. It is used
as an alternative to admin (search) mode.

For example, uid=
{0},ou=employee,ou=tsi,o=tibco

Required for bind mode (not in admin search
mode).



TIBCO® API Exchange Gateway User Guide

559 | Sample Custom LoginModule

Property Description

com.tibco.trinity.runtime.core.provider.authn.ldap.userAttributeGroupsName

If you specified "LDAP user indicates groups"
(as either userHasGroups or
userDNHasGroups) then you must supply the
name of the attribute in each user object that
lists the groups to which the user belongs.
Otherwise, this parameter is not relevant.
Mandatory when relevant.

com.tibco.trinity.runtime.core.provider.authn.ldap.userAttributesExtraList

Same as userAttributesExtra property but this
is specified in list form.

Optional.

com.tibco.trinity.runtime.core.provider.authn.ldap.userSearchScopeSubtree

A Boolean property which determines if the
entire sub-tree is searched or not. If true
value is specified, the entire sub-tree starting
at the base DN is searched. Otherwise, the
nodes one level below the base DN is
searched.

Optional.

com.tibco.trinity.runtime.core.provider.authn.ldap.groupSearchBaseDN

Specifies the base distinguished name (DN)
where the searches for the groups begin. You
must supply the base DN that narrows the



TIBCO® API Exchange Gateway User Guide

560 | Sample Custom LoginModule

Property Description

search to the smallest set of objects that
includes all valid groups.

For example,
ou=groups,ou=na,dc=example,dc=org

The default value is empty.

Optional.

com.tibco.trinity.runtime.core.provider.authn.ldap.enableNestedGroupSearch

Indicates the flag to determine if nested
groups should be searched for. If the value is
not set to true, the groups are only returned
in which the user is the direct member.

The default value is false.

Optional.

com.tibco.trinity.runtime.core.provider.authn.ldap.groupSearchExpression

Specifies the expression to be used for
searching against potential groups. For
example, search expression is specified as: (&
(uid={0})(objectClass=person)).

In this string, the variable {0} represents the
name of the user though. The code
substitutes the user name for this variable,
and passes the resulting boolean expression
to the LDAP server. The LDAP server matches
that search expression against groups to find
all groups containing the username.

The values might be different for different
LDAP server.



TIBCO® API Exchange Gateway User Guide

561 | Sample Custom LoginModule

Property Description

For example, its defined as uniquemember=
{0} for SunOne, cn={0} for OpenLDAP,
member={0} for Active Directory.

Required.

com.tibco.trinity.runtime.core.provider.authn.ldap.groupSearchScopeSubtree

A Boolean property which determines if the
entire sub-tree is searched or not. If the value
true is specified, the entire sub-tree starting
at the base DN for groups is searched.
Otherwise, the nodes one level below the
base DN is searched.

Optional.

com.tibco.trinity.runtime.core.provider.authn.ldap.groupIndication

Specifies how the group memberships for
users are found.

The default value is noGroupInfo.

Optional.

Possible values are as follows:

l

userHasGroups
userDNHasGroups
groupHasUsers
noGroupInfo

l If the value has userHasGroups,you
must specify the attribute name which
points the groups the user belongs to
in the userAttributeGroupsName



TIBCO® API Exchange Gateway User Guide

562 | Sample Custom LoginModule

Property Description

property.

l If the value has userDNHasGroups,the
userAttributeGroupsName property has
the attribute name which hold the DNs
of groups to which the user belongs.
You must specify
groupAttributeGroupsName property to
get a specific part of the DN name.

l If the value has groupHasUsers,each
group object includes a list of users
that belong to the group.

l If the value has noGroupInfo, group
memberships are not handled.

com.tibco.trinity.runtime.core.provider.authn.ldap.groupAttributeGroupsName

Depending on groupIndication's value:

groupHasUsers: group attribute holding the
group's name. Example value for OpenLDAP:
cn, for Active Directory: sAMAccountName.
Mandatory.

userHasGroups: group's name part holding
group's name. If not specified the group's
whole DN will be used. Example cn

otherwise ignored

com.tibco.trinity.runtime.core.provider.authn.ldap.groupAttributeSubgroups
Name

Specifies the name of the attribute in each
group object denoting subgroups.



TIBCO® API Exchange Gateway User Guide

563 | Sample Custom LoginModule

Property Description

For example, the value is defined as
uniqueMember for OpenLDAP server, member
for ActiveDirectory LDAP server.

Optional

com.tibco.trinity.runtime.core.provider.authn.ldap.groupAttributeUsersName

Specifies the attribute name if the
groupIndication property has groupHasUsers
value. It specifies the name of the attribute in
each group object denoting its users.

For example, the value is uniqueMember for
OpenLDAP, member for ActiveDirectory
Server.

Required if the groupIndication property has
groupHasUsers value.

followReferrals

Determines if the client follow referrals
returned by the LDAP server.

The default value is false.

Optional.

LDAP SSL

com.tibco.trinity.runtime.core.provider.identity.trust.trustStoreServicePr
ovider

Specifies the Identity trust provider
configuration to provide SSL support for



TIBCO® API Exchange Gateway User Guide

564 | Sample Custom LoginModule

Property Description

LDAP.

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key
StoreLocation

Specifies the location of the keystore for the
credentials.

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key
StorePassword

Specifies the location of the keystore for the
credentials.

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key
StoreRefreshInterval

Specifies the refresh interval (milliseconds).

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key
StoreType

Specifies the keystore type. Supported
formats are JKS,PKCS12.

Sample File

The properties and example configuration for LDAP authentication shared resource is
provided in the following sample file:

l See ASG_CONFIG_HOME/default/security/resource/LdapAsp.properties, as follows:

LdapAsp.properties



TIBCO® API Exchange Gateway User Guide

565 | Sample Custom LoginModule

Configuring SiteMinder Service Provider

Description

The Siteminder Service Provider is used to authenticate SiteMinder session cookie or
username/password retrieved from the HTTP header.

Use Case

l Authenticate username and password from the incoming request.

l Authenticate SiteMinder session cookie from the incoming request.

Properties

Table Properties for SiteMinder Service Provider describes the properties for SiteMinder
Service Provider.

Property Description

com.tibco.trinity.runtime.core.provider.authn.siteminder.agentName

Specifies the name of SiteMinder agent.

For example, sm-agent

com.tibco.trinity.runtime.core.provider.authn.siteminder.clientIPAddress

Specifies the IP address of the machine
where agent is installed.

For example, 10.97.107.22

com.tibco.trinity.runtime.core.provider.authn.siteminder.resource

Specifies the resource to protect.

Properties for SiteMinder Service Provider



TIBCO® API Exchange Gateway User Guide

566 | Sample Custom LoginModule

Property Description

com.tibco.trinity.runtime.core.provider.authn.siteminder.smHostConfFileLoc
ationOption

Specifies how to identify the SmHost.conf file
location.

For example, this value can be specified as
specifyCustomLocation.

com.tibco.trinity.runtime.core.provider.authn.siteminder.smHostConfFileLoc
ation

Specifies the path to the agent configuration
file.

For example, this value can be specified as
/security/resource/SmHost.conf.

Sample File

l See ASG_CONFIG_HOME/default/security/resource/SiteMinderAsp.properties, as
follows:

SiteMinderAsp.properties

Configuring Trust Identity Provider

Description

The Trust Identity Provider is used to retrieve public certificates from a credential store
required to perform trust operations. You must store the public certificate and provide its
location. The certificates are used by the Core Engine to verify the signatures when the
payload in the incoming request is signed. The Core Engine uses the public certificate to
encrypt the response payload before it sends the response back to the client.



TIBCO® API Exchange Gateway User Guide

567 | Sample Custom LoginModule

Use Case

l Verify signatures for the signed request payload.

l Encrypt the request payload to forward to the external target operation.

l Encrypt the response payload.

Properties

Table Properties for Trust Identify Provider (TIP) describes the properties for Trust Identify
Provider.

Property Description

com.tibco.asg.intent.signature

Boolean intent property indicates if the
incoming request message is signed or not. If
signed, then the signatures are verified using
the trust identity provider properties (public
credentials). Possible values are true or
false.

If the value of this property set to true, the
request message must have valid signatures.

com.tibco.trinity.runtime.core.provider.identity.trust.trustStoreServicePr
ovider

Specifies the name of the credential service
provider containing the credentials for
establishing trust.

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key
StoreType

Specifies the keystore type. Supported

Properties for Trust Identify Provider (TIP)



TIBCO® API Exchange Gateway User Guide

568 | Sample Custom LoginModule

Property Description

formats are JKS,PKCS12.

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key
StoreLocation

Specifies the location of the keystore.

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key
StorePassword

Specifies the password to unlock the
keystore.

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.key
StoreRefreshInterval

Specifies the refresh interval (milliseconds).

Sample File

l See ASG_CONFIG_HOME/default/security/resource/TrustIsp.properties, as follows:

TrustIsp.properties

Configuring Subject Identity Provider

Description

The Subject Identity Provider is used to retrieve private keys (credentials) from a credential
store. You must store the private keys and provide its location. The private keys are used
by the Core Engine to decrypt the message when the payload in the incoming request is
encrypted. The gateway uses the private keys to sign the response message before sending
it back to the client.



TIBCO® API Exchange Gateway User Guide

569 | Sample Custom LoginModule

Use Case

l Decrypt the request payload.

l Sign the request message to forward to any external target operation.

l Sign the response payload.

Properties

This table describes the properties for Subject Identify Provider.

Property Description

com.tibco.asg.intent.decrypt

Boolean intent property indicates if the
incoming request message is encrypted or
not. If encrypted, then the request message
payload is decrypted using the subject
identity provider properties (private
credentials). Possible values are true or
false.

If the value of this property set to true, the
request message must be encrypted.

com.tibco.trinity.runtime.core.provider.identity.subject.identityStoreServ
iceProvider

Specifies the name of the credential service
provider containing the private credentials for
establishing the subject's identity.

com.tibco.trinity.runtime.core.provider.identity.subject.keyAlias

Specifies an alias name for the key

Properties for Subject Identify Provider (SIP)



TIBCO® API Exchange Gateway User Guide

570 | Sample Custom LoginModule

Property Description

corresponding to the private credentials in
the credential store for establishing the
subject's identity.

com.tibco.trinity.runtime.core.provider.identity.subject.keyPassword

Specifies the protection parameter of the
private credentials in the credential store for
establishing the subject's identity.

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStoreType

Specifies the keystore type of the private
credentials.

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStoreLocati
on

Specifies the location of the keystore of the
private credentials.

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStorePasswo
rd

Specifies the password to unlock the
keystore.

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStoreRefres
hInterval

Specifies the refresh interval in milliseconds.



TIBCO® API Exchange Gateway User Guide

571 | Sample Custom LoginModule

Sample File

l See ASG_CONFIG_HOME/default/security/resource/SubjectIsp.properties, as follows:

SubjectIsp.properties

Configuring the Kerberos Service Provider

Description

The Kerberos service provider is used to authenticate the SPNEGO token retrieved from the
HTTP header.

Use Case

l Authenticate SPNEGO token from the incoming request.

Properties

The following table describes the properties for Kerberos Service Provider:

Property Description

com.tibco.trinity.runtime.core.provider.lookup

The property value must be
com.tibco.trinity.runtime.core.provider.au
thn.kerberos and should not be changed.

com.tibco.trinity.runtime.core.provider.authn.kerberos.enableSecurityToken
Attribute

A boolean property which controls the
embedding of original security token in the SAML
assertion as an attribute.

Properties for Kerberos Service Provider



TIBCO® API Exchange Gateway User Guide

572 | Sample Custom LoginModule

Property Description

com.tibco.trinity.runtime.core.provider.authn.kerberos.realm

Specifies the Kerberos realm.

com.tibco.trinity.runtime.core.provider.authn.kerberos.kdc

Specifies the KDC hostname. For example,

com.tibco.trinity.runtime.core.provider.authn.kerberos.useTicketCache

Set this to true to obtain the TGT from the ticket
cache.

com.tibco.trinity.runtime.core.provider.authn.kerberos.storeKey

A boolean property used to indicate if the key of
principal is stored in the private credentials of
subject.

Set this property value to true to store the
principal's key in the private credentials of
subject. The default value is true.

com.tibco.trinity.runtime.core.provider.authn.kerberos.useKeyTab

Set this to true if you want the module to get the
principal's key from the the keytab.(default value
is False) If keyatb is not set then the module will
locate the keytab from the Kerberos
configuration file. Default is TRUE



TIBCO® API Exchange Gateway User Guide

573 | Sample Custom LoginModule

Property Description

com.tibco.trinity.runtime.core.provider.authn.kerberos.keyTab

Specifies the path to keytab file.

com.tibco.trinity.runtime.core.provider.authn.kerberos.defaultDomain

Specifies the Kerberos domain.

com.tibco.trinity.runtime.core.provider.authn.kerberos.autoGeneratedKrb5Co
nfFileLocation

Specifies the relative file name to use for auto
generated kerberos configuration file The auto
generated file will be saved in the shared area
with this name.

com.tibco.trinity.runtime.core.provider.authn.kerberos.krb5ConfFileLocatio
nOption

Specifies the option to identify the
krb5.conf/krb5.ini file location. The possible
values are as follows:

l useDefault: Use the system specific
default krb5.conf/krb5.ini location. This
is the default value.

l specifyCustomLocation: Specify the
custom file location.

l autoGenerate:Auto generate the
krb5.conf/krb5.ini file dynamically
during initialization using configuration
options.



TIBCO® API Exchange Gateway User Guide

574 | Sample Custom LoginModule

Sample File

l See ASG_CONFIG_HOME/default/security/resource/KerberosAsp.properties, as
follows:

Kerberos SPNEGOAsp.properties

Configuring Custom Shared Resource
The custom shared resource is used to define a login module class which implements the
authentication mechanism.

The shared resource file consists of the following properties:

l Property to define the custom login module.

l User-defined list of properties to pass and use by the custom login module to
initialize or configure the custom login module.

TIBCO API Exchange Gateway provides a CelmAsp.properties sample properties file for the
shared resource. Use this file as a template and edit the properties, as required.

Use Case

The custom shared resource is useful for the following scenarios:

l The incoming request contains the user credentials in a non-standard format. The
username and password may be embedded within the XML of the message body so
the user must extract the credentials specific to application before passing it to
TIBCO API Exchange Gateway for authentication.

l Verification of credentials or information is done through a custom database query.

l The authentication mechanism requires third-party code.

Properties

The following table describes the properties for the custom shared resource:



TIBCO® API Exchange Gateway User Guide

575 | Sample Custom LoginModule

Property Description Example

com.tibco.asg.security.prov
ider.celm.loginModule

Name of the login
module class that
implements the
custom
authentication.

com.example.security.authentication.provider.c
elm.CelmExampleUsernamePasswordLoginModule

com.tibco.asg.security.prov
ider.celm.authorizedUsername

An example
property defined
by the user to
pass as an
argument to the
initialize()
method of
custom login
module. This
property can be
used to set the
value of the
username.

john

com.tibco.asg.security.prov
ider.celm.authorizedPassword

An example
property defined
by the user to
pass as an

password

Custom Shared Resource Properties



TIBCO® API Exchange Gateway User Guide

576 | Sample Custom LoginModule

Property Description Example

argument to the
initialize()
method of
custom login
module. This
property can be
used to set the
value of the
password.

com.tibco.asg.security.prov
ider.celm.authorizedRole

An example
property defined
by the user to
pass as an
argument to the
initialize()
method of
custom login
module. This
property can be
used to set the
value of the
developer.

developer

Sample File

See ASG_CONFIG_HOME/BookQuerySecurity/security/resource/CelmAsp.properties, as
follows:

CelmAsp.properties.

Shared Resources Properties Sample Files
This section lists the sample files for different types of security shared resources.



TIBCO® API Exchange Gateway User Guide

577 | Sample Custom LoginModule

LdapAsp.properties
Sample file for LDAP shared resource.

com.tibco.trinity.runtime.core.provider.lookup=com.tibco.trinity.runtime
.core.provider.authn.ldap
com.tibco.governance.sharedresource.name=LdapAsp
com.tibco.governance.sharedresource.type=LdapConfiguration
#Example configuration where incoming message must contain a valid
username token.
com.tibco.asg.intent.usernameToken=true
#WSS Authn Namespace

com.tibco.trinity.runtime.core.provider.authn.wss.usernameTokenValidatio
nService=class:com.tibco.trinity.runtime.core.provider.authn.ldap
com.tibco.trinity.runtime.core.provider.authn.wss.samlValiditySeconds=60

com.tibco.trinity.runtime.core.provider.authn.wss.enableSAML11Assertion=
false
#LDAP namespace. Used to verify user name token. This configuration is
for search mode.

com.tibco.trinity.runtime.core.provider.authn.ldap.serverURL=ldap://10.9
7.107.23:389,ldap://10.97.108.26:389

com.tibco.trinity.runtime.core.provider.authn.ldap.securityAuthenticatio
n=simple

com.tibco.trinity.runtime.core.provider.authn.ldap.initialCtxFactory=com
.sun.jndi.ldap.LdapCtxFactory
com.tibco.trinity.runtime.core.provider.authn.ldap.userDNTemplate=uid=
{0},ou=people,dc=policy,dc=tibco,dc=com

com.tibco.trinity.runtime.core.provider.authn.ldap.userAttributeUsersNam
e=uid

com.tibco.trinity.runtime.core.provider.authn.ldap.userAttributesExtra=m
ail,givenname

com.tibco.trinity.runtime.core.provider.authn.ldap.userSearchScopeSubtre
e=true

com.tibco.trinity.runtime.core.provider.authn.ldap.keyPassword=#!fGqMyES
TOe58y1QEt7sykDYhfWq9mjKMVsJwsSHnAC4=

com.tibco.trinity.runtime.core.provider.authn.ldap.keyAlias=uid=Manager,
ou=people,dc=example,dc=org



TIBCO® API Exchange Gateway User Guide

578 | Sample Custom LoginModule

# Group configuration
# For LDAP that uses group to find list of users that belong to the
group.

com.tibco.trinity.runtime.core.provider.authn.ldap.groupIndication=group
HasUsers
# For LDAP that uses user to find list of groups to which the user
belongs.

#com.tibco.trinity.runtime.core.provider.authn.ldap.groupIndication=user
HasGroups
# For LDAP user's DN as group, use

#com.tibco.trinity.runtime.core.provider.authn.ldap.groupIndication=user
DNHasGroups

com.tibco.trinity.runtime.core.provider.authn.ldap.groupSearchExpression
=uniquemember={0}

com.tibco.trinity.runtime.core.provider.authn.ldap.groupSearchBaseDN=ou=
groups,dc=policy,dc=tibco,dc=com

com.tibco.trinity.runtime.core.provider.authn.ldap.groupSearchScopeSubtr
ee=true

com.tibco.trinity.runtime.core.provider.authn.ldap.groupAttributeGroupsN
ame=cn

com.tibco.trinity.runtime.core.provider.authn.ldap.groupAttributeUsersNa
me=cn

com.tibco.trinity.runtime.core.provider.authn.ldap.groupIndication=group
HasUsers

com.tibco.trinity.runtime.core.provider.authn.ldap.enableNestedGroupSear
ch=true
# Credential provider configuration to provide details for ldap admin
user/admin password.

com.tibco.trinity.runtime.core.provider.authn.ldap.credentialProvider=cl
ass:com.tibco.trinity.runtime.core.provider.credential.password

com.tibco.trinity.runtime.core.provider.credential.password.usernameToke
n=uid=Manager\,ou=people\,dc=example\,dc=org,#!fGqMyESTOe58y1QEt7sykDYhf
Wq9mjKMVsJwsSHnAC4=



TIBCO® API Exchange Gateway User Guide

579 | Sample Custom LoginModule

com.tibco.trinity.runtime.core.provider.credential.password.protectionPa
rameter=password

SiteMinderAsp.properties
Sample file for SiteMinder shared resource.

com.tibco.trinity.runtime.core.provider.lookup=com.tibco.trinity.runtime
.core.provider.authn.siteminder
com.tibco.trinity.runtime.core.provider.authn.siteminder.agentName=sm-
agent
com.tibco.trinity.runtime.core.provider.authn.siteminder.resource=/

com.tibco.trinity.runtime.core.provider.authn.siteminder.smHostConfFileL
ocationOption=specifyCustomLocation

com.tibco.trinity.runtime.core.provider.authn.siteminder.smHostConfFileL
ocation=/security/resource/SmHost.conf

com.tibco.trinity.runtime.core.provider.authn.siteminder.clientIPAddress
=10.97.107.22

com.tibco.trinity.runtime.core.provider.authn.siteminder.enableSAML11Ass
ertion=false

com.tibco.trinity.runtime.core.provider.authn.siteminder.enableSecurityT
okenAttribute=true

Kerberos SPNEGOAsp.properties
Sample properties file for Kerberos SPNEGO authentication shared resource.

com.tibco.trinity.runtime.core.provider.lookup=com.tibco.trinity.runtime
.core.provider.authn.kerberos

com.tibco.trinity.runtime.core.provider.authn.kerberos.enableSecurityTok
enAttribute=true

com.tibco.trinity.runtime.core.provider.authn.kerberos.enableSAML11Asser
tion=true



TIBCO® API Exchange Gateway User Guide

580 | Sample Custom LoginModule

com.tibco.trinity.runtime.core.provider.authn.kerberos.realm=SUPPORT.CH.
COM
com.tibco.trinity.runtime.core.provider.authn.kerberos.kdc=10.97.49.107

com.tibco.trinity.runtime.core.provider.authn.kerberos.useTicketCache=fa
lse
com.tibco.trinity.runtime.core.provider.authn.kerberos.storeKey=true
com.tibco.trinity.runtime.core.provider.authn.kerberos.useKeyTab=true

com.tibco.trinity.runtime.core.provider.authn.kerberos.keyTab=apixg.keyt
ab

com.tibco.trinity.runtime.core.provider.authn.kerberos.defaultDomain=sup
port.ch.com

com.tibco.trinity.runtime.core.provider.authn.kerberos.autoGeneratedKrb5
ConfFileLocation=apixg-krb5.conf

com.tibco.trinity.runtime.core.provider.authn.kerberos.krb5ConfFileLocat
ionOption=autoGenerate

com.tibco.trinity.runtime.core.provider.authn.kerberos.permittedEncrypti
onTypes=aes128-cts des3-cbc-sha1 rc4-hmac des-cbc-md5 des-cbc-crc

com.tibco.trinity.runtime.core.provider.authn.kerberos.tktEncryptionType
s=aes128-cts des3-cbc-sha1 rc4-hmac des-cbc-md5 des-cbc-crc

com.tibco.trinity.runtime.core.provider.authn.kerberos.tgsEncryptionType
s=aes128-cts des3-cbc-sha1 rc4-hmac des-cbc-md5 des-cbc-crc

SubjectIsp.properties
Sample properties for Subject identity provider shared resource.

com.tibco.trinity.runtime.core.provider.lookup=com.tibco.trinity.runtime
.core.provider.identity.subject
com.tibco.governance.sharedresource.name=SubjectIsp
com.tibco.governance.sharedresource.type=SubjectConfiguration
#SIP For Decryption

com.tibco.trinity.runtime.core.provider.identity.subject.identityStoreSe
rviceProvider=class:com.tibco.trinity.runtime.core.provider.credential.k
eystore



TIBCO® API Exchange Gateway User Guide

581 | Sample Custom LoginModule

com.tibco.trinity.runtime.core.provider.identity.subject.trustStoreServi
ceProvider=class:com.tibco.trinity.runtime.core.provider.credential.keys
tore
com.tibco.trinity.runtime.core.provider.identity.subject.keyAlias=john_
key

com.tibco.trinity.runtime.core.provider.identity.subject.keyPassword=pas
sword

com.tibco.trinity.runtime.core.provider.identity.subject.enableCredentia
lStoreAccess=true

com.tibco.trinity.runtime.core.provider.identity.subject.enableTrustStor
eAccess=true
#KCP for SIP

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStoreLoca
tion=keystore/default_keystore.jks

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStorePass
word=password

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStoreType
=JKS

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStoreRefr
eshInterval=60000

TrustIsp.properties
Sample file for Trust identity provider shared resource.

com.tibco.trinity.runtime.core.provider.lookup=com.tibco.trinity.runtime
.core.provider.identity.trust
com.tibco.governance.sharedresource.name=TrustIsp
com.tibco.governance.sharedresource.type=TrustConfiguration
#TIP for Signature verification

com.tibco.trinity.runtime.core.provider.identity.trust.trustStoreService
Provider=class:com.tibco.trinity.runtime.core.provider.credential.keysto
re



TIBCO® API Exchange Gateway User Guide

582 | Sample Custom LoginModule

com.tibco.trinity.runtime.core.provider.identity.trust.enableTrustStoreA
ccess=true
#KCP for TIP Namespace. Used for verifying the signature.

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.k
eyStoreType=JKS

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.k
eyStoreRefreshInterval=60000

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.k
eyStoreLocation=keystore/john_keystore.jks

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.k
eyStorePassword=password

IdentityIsp.properties

com.tibco.trinity.runtime.core.provider.lookup=com.tibco.trinity.runtime
.core.provider.identity.subject
com.tibco.governance.sharedresource.name=IdentityIsp
com.tibco.governance.sharedresource.type=SubjectConfiguration

com.tibco.trinity.runtime.core.provider.identity.subject.identityStoreSe
rviceProvider=class:com.tibco.trinity.runtime.core.provider.credential.k
eystore

com.tibco.trinity.runtime.core.provider.identity.subject.trustStoreServi
ceProvider=class:com.tibco.trinity.runtime.core.provider.credential.keys
tore
com.tibco.trinity.runtime.core.provider.identity.subject.keyAlias=john_
key

com.tibco.trinity.runtime.core.provider.identity.subject.keyPassword=pas
sword

com.tibco.trinity.runtime.core.provider.identity.subject.enableCredentia
lStoreAccess=true

com.tibco.trinity.runtime.core.provider.identity.subject.enableTrustStor
eAccess=true

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStoreLoca
tion=keystore/PAJohnIdentity.jceks



TIBCO® API Exchange Gateway User Guide

583 | Sample Custom LoginModule

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStorePass
word=password

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStoreType
=jceks

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStoreRefr
eshInterval=60000

WssAsp.properties
Sample file for WS security (WSS) authentication provider shared resource.

com.tibco.trinity.runtime.core.provider.lookup=com.tibco.trinity.runtime
.core.provider.authn.wss
com.tibco.governance.sharedresource.name=WssAsp
com.tibco.governance.sharedresource.type=WSSConfiguration

com.tibco.trinity.runtime.core.provider.authn.wss.enableSAML11Assertion=
true

com.tibco.trinity.runtime.core.provider.authn.wss.signatureValidationSer
vice=class:com.tibco.trinity.runtime.core.provider.identity.subject

com.tibco.trinity.runtime.core.provider.authn.wss.usernameTokenValidatio
nService=class:com.tibco.trinity.runtime.core.provider.authn.ldap

com.tibco.trinity.runtime.core.provider.authn.ldap.enableSAML11Assertion
=true

com.tibco.trinity.runtime.core.provider.authn.saml.enableSAML11Assertion
=true

com.tibco.trinity.runtime.core.provider.authn.signature.enableSAML11Asse
rtion=true
#SIP For Decryption

com.tibco.trinity.runtime.core.provider.identity.subject.identityStoreSe
rviceProvider=class:com.tibco.trinity.runtime.core.provider.credential.k
eystore

com.tibco.trinity.runtime.core.provider.identity.subject.trustStoreServi



TIBCO® API Exchange Gateway User Guide

584 | Sample Custom LoginModule

ceProvider=class:com.tibco.trinity.runtime.core.provider.credential.keys
tore
com.tibco.trinity.runtime.core.provider.identity.subject.keyAlias=john_
key

com.tibco.trinity.runtime.core.provider.identity.subject.keyPassword=pas
sword

com.tibco.trinity.runtime.core.provider.identity.subject.enableCredentia
lStoreAccess=true

com.tibco.trinity.runtime.core.provider.identity.subject.enableTrustStor
eAccess=true
#KCP for SIP

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStoreLoca
tion=keystore/default_keystore.jks

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStorePass
word=password

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStoreType
=JKS

com.tibco.trinity.runtime.core.provider.credential.keystore.keyStoreRefr
eshInterval=60000
#TIP for Signature verification

com.tibco.trinity.runtime.core.provider.identity.trust.trustStoreService
Provider=class:com.tibco.trinity.runtime.core.provider.credential.keysto
re

com.tibco.trinity.runtime.core.provider.identity.trust.enableTrustStoreA
ccess=true
#KCP for TIP Namespace. Used for verifying the signature.

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.k
eyStoreType=JKS

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.k
eyStoreRefreshInterval=60000

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.k
eyStoreLocation=keystore/john_keystore.jks



TIBCO® API Exchange Gateway User Guide

585 | Sample Custom LoginModule

com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.k
eyStorePassword=password

#com.tibco.trinity.runtime.core.provider.credential.keystore.truststore.
keyStoreProvider=
#LDAP namespace. Used to verify user name token.

com.tibco.trinity.runtime.core.provider.authn.ldap.serverURL=ldap://10.9
7.107.23:389,ldap://10.97.108.26:389

com.tibco.trinity.runtime.core.provider.authn.ldap.securityAuthenticatio
n=simple

com.tibco.trinity.runtime.core.provider.authn.ldap.initialCtxFactory=com
.sun.jndi.ldap.LdapCtxFactory
com.tibco.trinity.runtime.core.provider.authn.ldap.userDNTemplate=uid=
{0},ou=people,dc=policy,dc=tibco,dc=com

com.tibco.trinity.runtime.core.provider.authn.ldap.userAttributeUsersNam
e=uid

com.tibco.trinity.runtime.core.provider.authn.ldap.userAttributesExtra=m
ail,givenname

com.tibco.trinity.runtime.core.provider.authn.ldap.userSearchScopeSubtre
e=true

com.tibco.trinity.runtime.core.provider.authn.ldap.groupSearchExpression
=uniquemember={0}

com.tibco.trinity.runtime.core.provider.authn.ldap.groupSearchBaseDN=ou=
groups,dc=policy,dc=tibco,dc=com

com.tibco.trinity.runtime.core.provider.authn.ldap.groupSearchScopeSubtr
ee=true

com.tibco.trinity.runtime.core.provider.authn.ldap.groupAttributeGroupsN
ame=cn

com.tibco.trinity.runtime.core.provider.authn.ldap.groupAttributeUsersNa
me=cn

com.tibco.trinity.runtime.core.provider.authn.ldap.groupIndication=group
HasUsers
com.tibco.trinity.runtime.core.provider.authn.ldap.followReferrals=true
com.tibco.trinity.runtime.core.provider.authn.ldap.connectionPools=5



TIBCO® API Exchange Gateway User Guide

586 | Sample Custom LoginModule

com.tibco.trinity.runtime.core.provider.authn.ldap.searchTimeOut=-1

com.tibco.trinity.runtime.core.provider.authn.ldap.enableSAML20Assertion
=true

com.tibco.trinity.runtime.core.provider.authn.ldap.enableSAML11Assertion
=false

com.tibco.trinity.runtime.core.provider.authn.ldap.samlValiditySeconds=3
00

CelmAsp.properties
Sample properties for custom shared resource.

# Custom LoginModule provider. DO NOT MODIFY.

com.tibco.trinity.runtime.core.provider.lookup=com.tibco.asg.security.pr
ovider.celm

# LoginModule class which implement the custom authentication

com.tibco.asg.security.provider.celm.loginModule=com.example.security.au
thentication.provider.celm.CelmExampleUsernamePasswordLoginModule

# Some properties used by the custom LoginModule
com.tibco.asg.security.provider.celm.authorizedUsername=john
com.tibco.asg.security.provider.celm.authorizedPassword=password
com.tibco.asg.security.provider.celm.authorizedRole=developer

Authentication using File-Based Identity Store
Overview of file-based authentication.

TIBCO API Exchange Gateway supports user authentication using the file identity store
which can be used for both Basic and UsernameToken authentication. When the client
sends the username and password in the HTTP basic authentication header of the request
message, you can enforce a Basic authentication policy to authenticate the client’s identity.

For user authentication using the file resource, the user credentials are stored in an XML
file accessible by the Core Engine. The XML file contains one-way hashes of salted



TIBCO® API Exchange Gateway User Guide

587 | Sample Custom LoginModule

passwords. The Core Engine uses the credentials stored in an XML file to authenticate the
user. To protect the credentials of the users, the file should be access-protected.

If the roles information are provided using the <group-name> tag in the XML file, the SAML
assertion generated from a successful authentication contains the roles information. The
roles can be used in the authorization policy.

Configuring User Authentication Policy using File
To configure the user authentication policy using a file resource, follow these steps:

Procedure
1. Create a shared resource See Create a Shared Resource Properties File.

2. Create an XML file for user credentials. See Create XML File for Credentials.

3. Create policy. See Creating Policy File.

4. Register the policies in the system. See Registering Policy.

5. Apply the policies to the target operation. See Applying Policy.

Create a Shared Resource Properties File
TIBCO API Exchange Gateway uses a shared resource properties file to support the user
authentication using a file resource. For example, the shared resource properties file
defines a property which refers to an XML file containing the user credentials.

TIBCO API Exchange Gateway provides a sample properties file XmlAsp.properties for the
shared resource. Use this file as a template and edit the properties, as required.

Sample Property File

The location of the shared resource property file for user authentication using the file
resource is as follows:

ASG_CONFIG_HOME/BookQuerySecurity/security/resource/XmlAsp.properties

XmlAsp.properties

com.tibco.trinity.runtime.core.provider.lookup=com.tibco.trinity.runtime
.core.provider.authn.xml



TIBCO® API Exchange Gateway User Guide

588 | Sample Custom LoginModule

# Location of the users, password, and group file.

com.tibco.trinity.runtime.core.provider.authn.xml.fileLocation=XmlAspUse
rs.xml

Properties

The following table describes the properties for the user authentication using file resource.

Property Description

com.tibco.trinity.runtime.core.provider.authn.xml.fileLocation

Specifies the name of the XML file containing the
credentials of the users required for
authentication. The location of the XML file can be
either a relative path or an absolute file path. The
relative file path is relative to the ASG_CONFIG_
HOME/ASGProjectConfiguration/security/resource
directory.

For example, XmlAspUsers.xml is found in the
following directory: ASG_CONFIG_
HOME/BookQuerySecurity/security/resource. See
Create XML File for Credentials.

Shared Resource Property for XML File Based Authentication

Create XML File for Credentials
The username and password used during authentication are set in an XML file. Refer to the
ASG_CONFIG_HOME/BookQuerySecurity/security/resource/XmlAspUsers.xml file as a
template.

The XML file contains the users credentials, which are defined as follows:

<?xml version="1.0" encoding="UTF-8"?>
<realm xmlns="http://xsd.tns.tibco.com/trinity/realm/2013"
hashAlgorithm="PBKDF2WithHmacSHA256" repetitionCount="128">

<users>



TIBCO® API Exchange Gateway User Guide

589 | Sample Custom LoginModule

<user>
<name>john</name>

<!-- specify the password as follows using the <plaintext>
element.

The code will replace <plaintext/> with <password
salt=...>hash</password>

in the file on the first authentication attempt.
Alternatively use the command-line asg-password-hasher

utility.
Make sure that the hashAlgorithm and repetitionCount attributes

at
line 2 match the input to the command-line tool.

<plaintext>password</plaintext>

-->
<password salt="tHpKLGzd92xa2A4Skkdv/oxxeq0=
">ES7VlmB26+h4wXaRfhj6PEze8rwYjUijzj2/5L3Cd2A=</password>

</user>
<user>

<name>alex</name>
<!-- the password is secret -->
<password salt="qEd8Hq7ObiuzvJUrq6lv1eIRUKYxBAEQc+x6byFFOXg=
">s34OkB7FjnhZcNm0z3XSvdWKQUKqdsckkjpXj3O+cE8=</password>

</user>
<user>

<name>username1</name>
<password salt="rBPcqwHagVwVSRi3ndbjcHCkEk2TV0zmEnHBnkfbf+U=
">836tSikrJDFgKfVDQn332khxjQt/xzeLym3i5dAzqFg=</password>

</user>
<user>

<name>username2</name>
<password salt="k8YuHe/QxhimlmfFLFMMSClGL6rx9Kuzb94VXDlx3gg=
">xgCmSLnmjoy1CCnvXK+D+kiuAaGBPcRSyKkk6Qh1H24=</password>

</user>
<user>

<name>username3</name>
<password salt="PuPZQnsuVnC0QTTgMA1LWvL7T38yVhKslcQviZfoD1U=
">ljPyYXbAmQVdzV13Hrk7UbRVl8WD8DSLD4mKxCedpFQ=</password>

</user>
<user>

<name>username4</name>
<password salt="kBV40kbnFJcD94kyHl1DJ4ATjStQ/Z8rEGxFJo0Hx1s=
">RO3VI95GR/VlM+d8pPpSw/sxPwUN4cj49oG9KzUvclY=</password>

</user>
<user>

<name>username5</name>



TIBCO® API Exchange Gateway User Guide

590 | Sample Custom LoginModule

<password salt="tta7NUkzBypyqS7EXnl+gR2MSZ/bT6kV6DVoR4pVmJA=
">q4g4rnJkUfIGS0jkuLlgoN5xgfhgLxATuNXp9MhfVhU=</password>

</user>
<user>

<name>username6</name>
<password salt="gTYrCR11ZfTDlp4pZ9hlga50UcpseqiasS0cT98KBto=
">Jic75Qs0U7yktbZyLDkvWXHiYKx8aloI1KSQXSwuI30=</password>

</user>
<user>

<name>username7</name>
<password salt="TgB9quAYdUY9St4zvMK8Uqq921Hcb7sUb8jMj5+V1Ks=
">Sf4CwL19/ON9Jmyp12yM9PuQpQW3nqYtHzhLCjOB42U=</password>

</user>
</users>
<group-mapping>

<group-name>Administrator</group-name>
<user-name>john</user-name>

</group-mapping>
<group-mapping>

<group-name>child1subgroup</group-name>
<user-name>username7</user-name>

</group-mapping>
<group-mapping>

<group-name>childgroup1</group-name>
<child-group>child1subgroup</child-group>
<user-name>username4</user-name>
<user-name>username5</user-name>

</group-mapping>
<group-mapping>

<group-name>childgroup2</group-name>
<user-name>username6</user-name>

</group-mapping>
<group-mapping>

<group-name>parentgroup1</group-name>
<child-group>childgroup1</child-group>
<child-group>childgroup2</child-group>
<user-name>username1</user-name>
<user-name>username2</user-name>
<user-name>username3</user-name>

</group-mapping>
</realm>



TIBCO® API Exchange Gateway User Guide

591 | Sample Custom LoginModule

Note:
l The password specified in the XML file can be plain text or hashed.

l Plain text passwords can be specified using the <plaintext> element in the
XML file. Any plain text passwords inside <plaintext> elements are
converted automatically. The file is rewritten and all plain text entries are
replaced with hashed passwords according to the hashAlgorithm and
repetitionCount attributes defined in the same XML file.

l To generate the password hashes, you can use the asg-password-
hasher.exe utility provided by TIBCO API Exchange Gateway. See asg-
password-hasher Tool.

For the hashed password, the following attributes must be defined in the XML file:

l hashAlgorithm

The hashAlgorithm attribute can have one of the following values:

l

SHA1
SHA-256
SHA-384
SHA-512
PBKDF2WithHmacSHA1
PBKDF2WithHmacSHA256
PBKDF2WithHmacSHA384
PBKDF2WithHmacSHA512

The default value is PBKDF2WithHmacSHA256

l repetitionCount

repetitionCount is the number of iterations used to compute the hash for the
password. The higher the repetitionCount, the harder it becomes for an attacker to
crack the password. However, using a higher repetition consumes more CPU time
during the password verification.

The default value is 1000.

Note: The values of hashAlgorithm and repetitionCount apply to all
hashed passwords in the XML file.



TIBCO® API Exchange Gateway User Guide

592 | Sample Custom LoginModule

Schema for XML File

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- (C) Copyright 2009-2014, TIBCO Software Inc. All rights reserved.
-->
<!-- ********************************
this is schema is for illustration. The real version is shipped as part
of the code.
***********************************
-->
<schema targetNamespace="http://xsd.tns.tibco.com/trinity/realm/2013"
xmlns:tns="http://xsd.tns.tibco.com/trinity/realm/2013"

xmlns="http://www.w3.org/2001/XMLSchema"
version="2.0" elementFormDefault="qualified">
<element name="realm">
<complexType>
<sequence>
<element name="users">
<complexType>
<sequence>
<element name="user" minOccurs="0" maxOccurs="unbounded">
<complexType>
<sequence>
<element name="name" type="tns:non-empty-string" />
<choice>
<element name="plaintext" type="string" />
<element name="password">
<complexType>
<simpleContent>
<extension base="base64Binary">
<attribute name="salt" type="base64Binary" use="required"

/>
</extension>
</simpleContent>

</complexType>
</element>
</choice>

</sequence>
</complexType>
</element>

</sequence>
</complexType>

</element>
<element name="group-mapping" minOccurs="0" maxOccurs="unbounded">
<complexType>
<sequence>



TIBCO® API Exchange Gateway User Guide

593 | Sample Custom LoginModule

<element name="group-name" type="tns:non-empty-string" />
<element name="child-group" type="tns:non-empty-string"
minOccurs="0" maxOccurs="unbounded" />
<element name="user-name" type="tns:non-empty-string"
minOccurs="0" maxOccurs="unbounded" />

</sequence>
</complexType>
<unique name="non-redundant-users">
<selector xpath="tns:user-name" />
<field xpath="." />

</unique>
<unique name="non-redundant-child-groups">
<selector xpath="tns:child-group" />
<field xpath="." />

</unique>
</element>

</sequence>
<attribute name="hashAlgorithm" type="tns:non-empty-string"
default="PBKDF2WithHmacSHA256" />

<attribute name="repetitionCount" type="int" default="1000" />
</complexType>
<key name="uniqueUser">
<selector xpath="./tns:users/tns:user/tns:name" />
<field xpath="." />
</key>
<keyref name="group-refers-to-existing-user" refer="tns:uniqueUser">
<selector xpath="tns:group-mapping/tns:user-name" />
<field xpath="." />
</keyref>
<unique name="unique-top-level-groups">
<selector xpath="./tns:group-mapping/tns:group-name" />
<field xpath="." />
</unique>

</element>
<simpleType name="non-empty-string">
<restriction base="string">
<minLength value="1" />
<maxLength value="255" />
</restriction>

</simpleType>
</schema>

asg-password-hasher Tool

Generates hash passwords.



TIBCO® API Exchange Gateway User Guide

594 | Sample Custom LoginModule

TIBCO API Exchange Gateway provides a command-line asg-password-hasher.exe utility
to generate hash passwords, which is located in the ASG_HOME/bin directory.

Input Parameters

The asg-password-hasher.exe utility prompts you to specify the following parameters:

l HashAlgorithm

The HashAlgorithm parameter is configured as hashAlgorithm attribute in the XML
file. The possible values are as follows:

SHA1
SHA-256
SHA-384
SHA-512
PBKDF2WithHmacSHA1
PBKDF2WithHmacSHA384
PBKDF2WithHmacSHA256
PBKDF2WithHmacSHA512

If you do not specify any value, the default value PBKDF2WithHmacSHA256 is accepted.

l Iteration count

The Iteration count parameter specifies the repetitionCount attribute in the XML
file. If you do not specify any value, the default value 1000 is accepted.

l password

Specifies the password to hash.

Output

The asg-password-hasher.exe utility generates the password with the salt and hash. The
generated hashed password is configured in the XML file.

Sample Output
C:\tibco\asg\2.3\bin>asg-password-hasher.exe
******************************************************** Calculate the hash
for a given password and random salt.
******************************************************** HashAlgorithm
(PBKDF2WithHmacSHA256): [hashAlgorithm=PBKDF2WithHmacSHA256] Iteration count
(1000): [repetitionCount=1000] Type in password to hash (<Enter> or Ctrl-C to
stop): <Type your password at the prompt> Type in same password again: <Re-
type the same password> log4j:WARN No appenders could be found for logger
(com.tibco.security.TIBCOSecurity). log4j:WARN Please initialize the log4j
system properly. <password



TIBCO® API Exchange Gateway User Guide

595 | Sample Custom LoginModule

salt="XLowtTUDQj6ocTCwpWlPkMwv2wbh/ZBCzBVKBgUglOs=">zfDDla/mcaVUaQj3Vq3kkwnWrA
47YPG7kNBfz+8u91g=</password>

Note: Ensure that the values of HashAlgorithm and Iteration count parameters
for the asg-password-hasher utility match the hashAlgorithm and
repetitionCount attributes specified in the XML file.

Creating Policy File
Configuration steps to create a policy file.

Before you create a policy, ensure that you have created the shared resource properties
file. See Create a Shared Resource Properties File for details.

Create the policy file as follows:

Procedure
1. Copy the sample template file for your configuration project from the following

location:

ASG_CONFIG_
HOME/BookQuerySecurity/security/policy/AuthenticationByXml.policy

2. Edit the parameters in the file, as required. For example, change the
ResourceInstance parameter to match the shared resource name as follows:

ResourceInstance="XmlAsp"

The properties for the XmlAsp shared resource are defined in the XmlAsp.properties
file which is found in the ASG_CONFIG_
HOME/BookQuerySecurity/security/resource directory.

Note:
l The policy must be a well formed WS policy.

l All the resource instances in the policy must have a shared resource
defined.

Sample Policy

The sample file for user authentication using the XML file is located as follows:



TIBCO® API Exchange Gateway User Guide

596 | Sample Custom LoginModule

ASG_CONFIG_HOME/BookQuerySecurity/security/policy/AuthenticationByXml.policy

AuthenticationByXml.policy

<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

xmlns:wssp="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702"

xmlns:tpa="http://xsd.tns.tibco.com/governance/policy/action/2009" >
<wsp:All>

<wsp:ExactlyOne>
<tpa:AuthenticationByJaas>

<wssp:SupportingTokens>
<tpa:ExactlyOne>

<wssp:HttpBasicAuthentication />
</tpa:ExactlyOne>

</wssp:SupportingTokens>
<tpa:SharedResourceLoginModule ResourceInstance="XmlAsp"

/>
</tpa:AuthenticationByJaas>

</wsp:ExactlyOne>
</wsp:All>

</wsp:Policy>

Registering Policy
Register the authentication policy on the Config UI as follows:

l Upload the policy file.

l Set the name for a policy.

To register a policy, perform the following steps:

Procedure
1. Start the Config UI, if it is not running.

2. Log in to the Config UI using your credentials.

3. Create a new project or select an existing project under Projects.

4. Click the SECURITY tab.

5. Click the Policy Mapping tab on the top menu.



TIBCO® API Exchange Gateway User Guide

597 | Sample Custom LoginModule

6. Click the Add Property icon to add a new policy mapping.

7. Enter the following parameters for the policy:

Type Description

Policy Name l Specifies the name for the policy.

l Required.

Intent Set the intent for the policy. Select Authentication from the drop-down
list.

Qualifier Set the qualifier for policy intent. Select UsernameToken or Basic from
the drop-down list, as per your requirement.

New Policy
File

Specifies the policy definition file. Browse to choose a new policy file.

Existing
Policy File

Specifies an existing policy definition file. The policy file must exist in
the gateway ASG_CONFIG_HOME/ASGProjectConfiguration/policy folder.
For example, for the BookQuerySecurity project configuration, the
policy file must exist in the ASG_CONFIG_
HOME/BookQuerySecurity/policy folder. Select
AuthenticationByXml.policy from the drop-down list to use the
example policy file.

Policy Mapping Parameters

8. Save the changes to the project or configuration.

Applying Policy
To apply the registered policy to a target operation, perform the following steps:

Procedure
1. Start the Config UI, if not running.

2. Log in to the Config UI using your credentials.

3. Create a new configuration or select an existing configuration.

4. Click the SECURITY tab.



TIBCO® API Exchange Gateway User Guide

598 | Sample Custom LoginModule

5. Click the Policy Binding tab on the top menu.

6. Click the Add Property icon to add a new policy binding.

7. Specify the following parameters for the policy:

Parameter Description

Policy Specifies a name for the policy. The policy name must be configured
under the Policy Mapping tab.

URI Specifies the URI of the operation to which the policy is applied.

l If the URI in facade operation is left blank, then URI field for
security binding should use SOAP action instead of URI.

l For XML/JMS or SOAP/JMS, the SOAP action can be used instead
of the URI.

Facade
Operation

Specifies the operation to which the policy is applied. The facade
operation must be configured in the Adding a New Facade
Operationtab.

Target
Operation

Specifies the target operation. The target operation must be configured
in the Adding a New Target Operation tab.

Binding Specifies the binding component that the policy is applied to. This
could be either a facade operation (service) or a target operation
(reference).

Flow Specifies the flow of the request or response. The possible values are:

l in

l out

Partner Specifies the partner to which the policy is applied. This field can be
left blank in case no partner needs to be applied.

Type Specifies the type of the request.

Policy Binding Parameters



TIBCO® API Exchange Gateway User Guide

599 | Sample Custom LoginModule

Parameter Description

Note: Set this to SOAP for any SOAP request, or to http for any non-
SOAP http request.

8. Save the changes to the project or configuration.

Data Masking and Selective Log Policy
TIBCO API Exchange Gateway masks the sensitive data in a payload and selectively logs
only the relevant data.

Configuration Setup For Log Policy
This sections explains how to configure a policy for data masking and selective logging of
payload data.

Setting up Properties

Before you begin
To enable the data masking and selective logging, make sure that you set the log level to 0
(DEBUG) using the tibco.clientVar.ASG/Logging/MinLogLevel property in the ASG_
CONFIG_HOME/asg.properties file.
To configure the payload data masking and selective log policy, you must set the following
properties in the ASG_CONFIG_HOME/asg.properties file:

Property Description

tibco.clientVar.ASG/Logging/enableLogMasking Enables or disables the log policy. The
possible values are true and false. The
default value is false.

tibco.clientVar.ASG/Files/PayloadMaskConfigFile Specifies the path of log policy XML file.

Properties for Data Masking



TIBCO® API Exchange Gateway User Guide

600 | Sample Custom LoginModule

Property Description

The log policy file must be copied to the
ASG_CONFIG_HOME directory.

To enable the log policy for a payload, follow these steps:

Procedure
1. Navigate to the ASG_CONFIG_HOME directory.

2. Set the following property to true, as follows:
tibco.clientVar.ASG/Logging/enableLogMasking=true

3. Set the following property to set the path to the log policy XML file:
tibco.clientVar.ASG/Files/PayloadMaskConfigFile

For example, the path can be set as follows:

tibco.clientVar.ASG/Files/PayloadMaskConfigFile=ASG_CONFIG_
HOME/APIExchange/security/policy/LogPolicy.xml

Note: See Create Log Policy Configuration File to create a log policy XML
file. The log policy XML filename cannot be changed. Otherwise, the policy
will not appear in the drop-down list on the Log Policy tab of the Config
UI.

4. Save changes to the asg.properties file.

Create Log Policy Configuration File
Log policy file is created as an XML file. You can use any XML editor to create the log policy
file.

The log policy XML file contains the following type of configurations:

l Data Masking Configuration Parameters. See the following data masking
configurations:

o Masking Headers Data

o Masking Query String Parameters Data



TIBCO® API Exchange Gateway User Guide

601 | Sample Custom LoginModule

o Masking Payload Data

l Selective Logging Configuration Parameters. See Create Selective Logging
Configuration

.

Creating Data Masking Configuration
The data masking configuration parameters are defined in a XML file. For any request, you
can mask the following data:

l Headers Data

l Query String Data

l Payloads Data

To create the data masking configuration in an XML file, refer to the Sample Log Policy XML
File .

Masking Headers Data

You can define the headers for masking using the <MaskHeader> tag in the log policy XML
file. This table explains the field names for masking the headers data in a request.

Parameter Description

HeaderName Specifies the name of the header to be masked.

Parameters For Masking Headers

Example of Headers Data for Masking

<MaskHeader>
<HeaderName>client-ip</HeaderName>
<HeaderName>content-type</HeaderName>

</MaskHeader>



TIBCO® API Exchange Gateway User Guide

602 | Sample Custom LoginModule

Example Header Policy

You can define a P1 policy with x as masking character. When this policy is applied for a
facade operation, TIBCO API Exchange Gateway masks the value of content-type header in
the request depending on the stage of the transaction pipeline processing.

<Name>P1</Name>
<MaskPolicy>

<MaskChar>x</MaskChar>
<MaskHeader>
<HeaderName>content-type</HeaderName>

</MaskHeader>

Masking Query String Parameters Data

You can define the parameters in a query string for masking using the <MaskQueryString>
tag. This table explains the field names for masking the query string parameters in a
request.

Parameter Description

ParamName Specifies the parameter of query string to be masked.

Parameters For Masking Headers

Example of Query String for Masking

<MaskQueryString>
<Parameters>

<ParamName>storenumber1</ParamName>
<ParamName>rmsskuid</ParamName>

</Parameters>
</MaskQueryString>



TIBCO® API Exchange Gateway User Guide

603 | Sample Custom LoginModule

Example of Query String Policy

You can define the following policy to mask the value of a author field in the query string
of the request. When this policy is applied for a facade operation, TIBCO API Exchange
Gateway masks the value of author parameter specified in the query string in the request.

<MaskQueryString>
<Parameters>

<ParamName>author</ParamName>
</Parameters>

</MaskQueryString>

Masking Payload Data

Using data masking policy, you can mask the data fields of a payload.

TIBCO API Exchange Gateway provides the masking of data for the following formats of
payload:

l Text payloads. See Masking Data in Text Payloads.

l XML payloads. See Masking Data in XML Payloads.

l JSON payloads. See Masking Data in JSON Payloads .

l Property based payloads. See Masking Data in Property Format Payloads.

Masking Data in Text Payloads

You can mask the data in the text format payloads using the <TextPayLoadMask> tag in the
log policy XML file. This table explains the field names for masking the data in a text
payload.

Parameter Description

LineNumber Specifies the line number which contains the string to
be masked.

l If a line number is specified using
<LineNumber></LineNumber> tag in the policy

Parameters For Masking Data in Text Payload



TIBCO® API Exchange Gateway User Guide

604 | Sample Custom LoginModule

Parameter Description

file, the Core Engine searches the data string to
be masked at that line number only.

l If no line number is specified, the Core Engine
searches the entire text payload for the data
string to be masked.

Starts with Specifies a prefix for the data string to be masked.

Regex Specifies a regular expression pattern which matches
the data string to be masked.

StartIndex Specifies an Index of the data string at which masking
starts.

EndIndex Specifies an Index of the data string at which masking
ends.

LengthOfClearAtStart Specifies the number of characters to be left clear at
the beginning.

LengthOfClearAtEnd Specifies the number of characters to be left clear at
the end.

Example of Data Masking in Text Payload

<TextPayLoadMask>
<MaskText>

<LineNumber></LineNumber>
<StartsWith>enerat</StartsWith>
<Regex></Regex>
<StartIndex>1</StartIndex>
<EndIndex>11</EndIndex>
<LengthOfClearAtStart>1</LengthOfClearAtStart>
<LengthOfClearAtEnd>1</LengthOfClearAtEnd>

</MaskText>
<MaskText>

<LineNumber>4</LineNumber>
<StartsWith></StartsWith>



TIBCO® API Exchange Gateway User Guide

605 | Sample Custom LoginModule

<Regex>SSN</Regex>
<StartIndex>0</StartIndex>
<EndIndex>1</EndIndex>
<LengthOfClearAtStart>2</LengthOfClearAtStart>
<LengthOfClearAtEnd>2</LengthOfClearAtEnd>

</MaskText>
<MaskText>

<LineNumber>1</LineNumber>
<StartsWith></StartsWith>
<Regex></Regex>
<StartIndex>4</StartIndex>
<EndIndex>12</EndIndex>
<LengthOfClearAtStart>2</LengthOfClearAtStart>
<LengthOfClearAtEnd>2</LengthOfClearAtEnd>

</MaskText>
</TextPayLoadMask>

Masking Data in XML Payloads

You can mask the data in the XML format payloads using the <XMLMaskFields> tag in the
log policy XML file. This table explains the field names for masking the data in an XML
payload.

Parameter Description

MaskFieldPath Specifies the XPath for the field. The value of this
field is masked.

RemoveField This is a Boolean field that indicates if the field
specified by MaskFieldPath tag is logged or not. The
possible values are Y and N.

l If the value of this field is Y, the field specified
by MaskFieldPath tag is not logged.

l If the value of this field is N, the field specified
by MaskFieldPath tag is masked and logged.

StartIndex Specifies an Index of the field value at which masking
starts. If the RemoveField field is set to Y, this is
ignored.

Parameters For Masking Data in XML Payload



TIBCO® API Exchange Gateway User Guide

606 | Sample Custom LoginModule

Parameter Description

EndIndex Specifies an index of the field value at which masking
ends. Specifies an Index of the field value at which
masking starts. If the RemoveField field is set to Y,
this is ignored.

LengthOfClearAtStart Specifies the number of characters to be left clear at
the beginning. Specifies an index of the field value at
which masking starts. If the RemoveField field is set
to Y, this is ignored.

LengthOfClearAtEnd Specifies the number of characters to be left clear at
the end. Specifies an index of the field value at which
masking starts. If the RemoveField field is set to Y,
this is ignored.

Example of Data Masking in XML Payload

<XMLMaskFields>
<XMLMaskField>

<MaskFieldPath>/soapenv:Envelope/soapenv:Body/book:Author</MaskFieldPat
h>

<RemoveField>Y</RemoveField>
<StartIndex>6</StartIndex>
<EndIndex>12</EndIndex>
<LengthOfClearAtStart>4</LengthOfClearAtStart>
<LengthOfClearAtEnd>6</LengthOfClearAtEnd>

</XMLMaskField>
<XMLMaskField>

<MaskFieldPath>BookStore/Book/ISBN</MaskFieldPath>
<RemoveField>Y</RemoveField>
<StartIndex>3</StartIndex>
<EndIndex>9</EndIndex>
<LengthOfClearAtStart>4</LengthOfClearAtStart>
<LengthOfClearAtEnd>6</LengthOfClearAtEnd>

</XMLMaskField>
</XMLMaskFields>



TIBCO® API Exchange Gateway User Guide

607 | Sample Custom LoginModule

Masking Data in JSON Payloads

You can mask the data in the JSON format payloads using the <JSONMaskFields> tag in the
log policy XML file. This table explains the field names for masking the data in an JSON
payload.

Parameter Description

MaskFieldPath Specifies the JSON path for the field. The value of
this field is masked. For example, BookStore.Book.
[0].Author

RemoveField This is a Boolean field that indicates if the field
specified by MaskFieldPath tag is logged or not. The
possible values are Y and N.

l If the value of this field is Y, the field specified
by MaskFieldPath tag is not logged.

l If the value of this field is N, the field specified
by MaskFieldPath tag is masked and logged.

Note: The default value is N.

StartIndex Specifies an index of the field value at which masking
starts. If the RemoveField field is set to Y, this is
ignored.

EndIndex Specifies an Index of the field value at which masking
ends. Specifies an index of the field value at which
masking starts. If the RemoveField field is set to Y,
this is ignored.

LengthOfClearAtStart Specifies the number of characters to be left clear at
the beginning. Specifies an index of the field value at
which masking starts. If the RemoveField field is set
to Y, this is ignored.

LengthOfClearAtEnd Specifies the number of characters to be left clear at
the end. Specifies an index of the field value at which

Parameters For Masking Data in JSON Payload



TIBCO® API Exchange Gateway User Guide

608 | Sample Custom LoginModule

Parameter Description

masking starts. If the RemoveField field is set to Y,
this is ignored.

Example of Data Masking in JSON Payload

<JSONMaskFields>
<JSONMaskField>

<MaskFieldPath>BookStore.Book.
[0].Author</MaskFieldPath>

<RemoveField>Y</RemoveField>
<StartIndex>0</StartIndex>
<EndIndex>10</EndIndex>
<LengthOfClearAtStart>4</LengthOfClearAtStart>
<LengthOfClearAtEnd>6</LengthOfClearAtEnd>

</JSONMaskField> <JSONMaskField>
<MaskFieldPath>BookStore.Book.

[0].Title</MaskFieldPath>
<RemoveField>N</RemoveField>
<StartIndex>6</StartIndex>
<EndIndex>12</EndIndex>
<LengthOfClearAtStart>4</LengthOfClearAtStart>
<LengthOfClearAtEnd>6</LengthOfClearAtEnd>

</JSONMaskField>
<JSONMaskField>

<MaskFieldPath>BookStore.Book.
[0].ISBN</MaskFieldPath>

<RemoveField>N</RemoveField>
<StartIndex>3</StartIndex>
<EndIndex>9</EndIndex>
<LengthOfClearAtStart>4</LengthOfClearAtStart>
<LengthOfClearAtEnd>6</LengthOfClearAtEnd>

</JSONMaskField>
</JSONMaskFields>

Masking Data in Property Format Payloads

You can mask data in the property format payloads using the <PropertiesMaskFields> tag
in the log policy XML file. Using the <PropertyToMask>, define the fields for the data
masking. This table explains the field names for masking the data in a property format
payload.



TIBCO® API Exchange Gateway User Guide

609 | Sample Custom LoginModule

Parameter Description

PropertyKey Defines the key of the property to be masked. The
Core Engine masks the value of key after the key is
found.

RemoveField This is a Boolean field that indicates if the field
specified by MaskFieldPath tag is logged or not. The
possible values are Y and N.

l If the value of this field is Y, the field specified
by MaskFieldPath tag is not logged.

l If the value of this field is N, the field specified
by MaskFieldPath tag is masked and logged.

StartIndex Specifies an index of the field value at which masking
starts. If the RemoveField field is set to Y, this is
ignored.

EndIndex Specifies an index of the field value at which masking
ends. Specifies an Index of the field value at which
masking starts. If the RemoveField field is set to Y,
this is ignored.

LengthOfClearAtStart Specifies the number of characters to be left clear at
the beginning. Specifies an index of the field value at
which masking starts. If the RemoveField field is set
to Y, this is ignored.

LengthOfClearAtEnd Specifies the number of characters to be left clear at
the end. Specifies an index of the field value at which
masking starts. If the RemoveField field is set to Y,
this is ignored.

Parameters For Masking Data in Property Format Payload

Example of Data Masking in Property Format Payload

<PropertiesMaskFields>
<PropertyToMask>



TIBCO® API Exchange Gateway User Guide

610 | Sample Custom LoginModule

<PropertyKey>Tibco</PropertyKey>
<RemoveField>N</RemoveField>
<StartIndex>3</StartIndex>
<EndIndex>9</EndIndex>
<LengthOfClearAtStart>2</LengthOfClearAtStart>
<LengthOfClearAtEnd>2</LengthOfClearAtEnd>

</PropertyToMask>
<PropertyToMask>

<PropertyKey>CC</PropertyKey>
<RemoveField>N</RemoveField>
<StartIndex>3</StartIndex>
<EndIndex>9</EndIndex>
<LengthOfClearAtStart>4</LengthOfClearAtStart>
<LengthOfClearAtEnd>6</LengthOfClearAtEnd>

</PropertyToMask>
</PropertiesMaskFields>

Sample Log Policy XML File

See the following example log policy file:

<?xml version="1.0" encoding="UTF-8"?>
<LogPolicies>

<LogPolicy>
<Name>P1</Name>
<MaskPolicy>

<MaskChar>X</MaskChar>
<MaskHeader>

<HeaderName>client-ip</HeaderName>
<HeaderName>content-type</HeaderName>

</MaskHeader>
<MaskQueryString>

<Parameters>
<ParamName>storenumber1</ParamName>
<ParamName>rmsskuid</ParamName>

</Parameters>
</MaskQueryString>
<PropertiesMaskFields>

<PropertyToMask>
<PropertyKey>Tibco</PropertyKey>
<RemoveField>N</RemoveField>
<StartIndex>3</StartIndex>
<EndIndex>9</EndIndex>
<LengthOfClearAtStart>2</LengthOfClearAtStart>
<LengthOfClearAtEnd>2</LengthOfClearAtEnd>



TIBCO® API Exchange Gateway User Guide

611 | Sample Custom LoginModule

</PropertyToMask>
<PropertyToMask>

<PropertyKey>CC</PropertyKey>
<RemoveField>N</RemoveField>
<StartIndex>3</StartIndex>
<EndIndex>9</EndIndex>
<LengthOfClearAtStart>4</LengthOfClearAtStart>
<LengthOfClearAtEnd>6</LengthOfClearAtEnd>

</PropertyToMask>
</PropertiesMaskFields>
<XMLMaskFields>

<XMLMaskField>
<MaskFieldPath>/Envelope/Body/Title</MaskFieldPath>
<RemoveField>Y</RemoveField>
<StartIndex>0</StartIndex>
<EndIndex>10</EndIndex>
<LengthOfClearAtStart>6</LengthOfClearAtStart>
<LengthOfClearAtEnd>2</LengthOfClearAtEnd>

</XMLMaskField>
<XMLMaskField>

<MaskFieldPath>BookStore/Book/ISBN</MaskFieldPath>
<RemoveField>Y</RemoveField>
<StartIndex>3</StartIndex>
<EndIndex>9</EndIndex>
<LengthOfClearAtStart>4</LengthOfClearAtStart>
<LengthOfClearAtEnd>6</LengthOfClearAtEnd>

</XMLMaskField>
</XMLMaskFields>
<JSONMaskFields>

<JSONMaskField>
<MaskFieldPath>BookStore.Book.

[0].Author</MaskFieldPath>
<RemoveField>Y</RemoveField>
<StartIndex>0</StartIndex>
<EndIndex>10</EndIndex>
<LengthOfClearAtStart>4</LengthOfClearAtStart>
<LengthOfClearAtEnd>6</LengthOfClearAtEnd>

</JSONMaskField> <JSONMaskField>
<MaskFieldPath>BookStore.Book.

[0].Title</MaskFieldPath>
<RemoveField>N</RemoveField>
<StartIndex>6</StartIndex>
<EndIndex>12</EndIndex>
<LengthOfClearAtStart>4</LengthOfClearAtStart>
<LengthOfClearAtEnd>6</LengthOfClearAtEnd>

</JSONMaskField>
<JSONMaskField>



TIBCO® API Exchange Gateway User Guide

612 | Sample Custom LoginModule

<MaskFieldPath>BookStore.Book.
[0].ISBN</MaskFieldPath>

<RemoveField>N</RemoveField>
<StartIndex>3</StartIndex>
<EndIndex>9</EndIndex>
<LengthOfClearAtStart>4</LengthOfClearAtStart>
<LengthOfClearAtEnd>6</LengthOfClearAtEnd>

</JSONMaskField>
</JSONMaskFields>
<TextPayLoadMask>

<MaskText>
<LineNumber></LineNumber>
<StartsWith>enerat</StartsWith>
<Regex></Regex>
<StartIndex>1</StartIndex>
<EndIndex>11</EndIndex>
<LengthOfClearAtStart>1</LengthOfClearAtStart>
<LengthOfClearAtEnd>1</LengthOfClearAtEnd>

</MaskText>
<MaskText>

<LineNumber>4</LineNumber>
<StartsWith></StartsWith>
<Regex>SSN</Regex>
<StartIndex>0</StartIndex>
<EndIndex>1</EndIndex>
<LengthOfClearAtStart>2</LengthOfClearAtStart>
<LengthOfClearAtEnd>2</LengthOfClearAtEnd>

</MaskText>
<MaskText>

<LineNumber>1</LineNumber>
<StartsWith></StartsWith>
<Regex></Regex>
<StartIndex>4</StartIndex>
<EndIndex>12</EndIndex>
<LengthOfClearAtStart>2</LengthOfClearAtStart>
<LengthOfClearAtEnd>2</LengthOfClearAtEnd>

</MaskText>
</TextPayLoadMask>

</MaskPolicy>
<SelectiveLogPolicy>

<PropertySelectiveLogFields>
<PropertyKey>CreditCard</PropertyKey>
<PropertyKey>SSN</PropertyKey>

</PropertySelectiveLogFields>
<XMLSelectiveLogFields>

<FieldPath>/Envelope/Body/Title</FieldPath>
<FieldPath>/Envelope/Body/Author</FieldPath>



TIBCO® API Exchange Gateway User Guide

613 | Sample Custom LoginModule

</XMLSelectiveLogFields>
<JSONSelectiveLogFields>

<FieldPath>BookStore.Book.[0].Author</FieldPath>
<FieldPath>BookStore.Book.[0].ISBN</FieldPath>

</JSONSelectiveLogFields>
<TextSelectiveLog>

<TextToLog>
<Prefix>SSN</Prefix>
<LineNumber>1</LineNumber>
<StartsWith>XSD </StartsWith>
<Regex></Regex>
<StartIndex>1</StartIndex>
<EndIndex>11</EndIndex>

</TextToLog>
<TextToLog>

<Prefix></Prefix>
<LineNumber>2</LineNumber>
<StartsWith></StartsWith>
<Regex>XSD</Regex>
<StartIndex>1</StartIndex>
<EndIndex>11</EndIndex>

</TextToLog>
</TextSelectiveLog>

</SelectiveLogPolicy>
</LogPolicy>
<LogPolicy>

<Name>P2</Name>
<MaskPolicy>

<MaskChar>X</MaskChar>
<MaskHeader>

<HeaderName>client-ip</HeaderName>
<HeaderName>content-type</HeaderName>

</MaskHeader>
<MaskQueryString>

<Parameters>
<ParamName>storenumber1</ParamName>
<ParamName>rmsskuid</ParamName>

</Parameters>
</MaskQueryString>
<PropertiesMaskFields>

<PropertyToMask>
<PropertyKey>SSN</PropertyKey>
<RemoveField>N</RemoveField>
<StartIndex>3</StartIndex>
<EndIndex>9</EndIndex>
<LengthOfClearAtStart>4</LengthOfClearAtStart>
<LengthOfClearAtEnd>6</LengthOfClearAtEnd>



TIBCO® API Exchange Gateway User Guide

614 | Sample Custom LoginModule

</PropertyToMask>
<PropertyToMask>

<PropertyKey>CreditCard</PropertyKey>
<RemoveField>Y</RemoveField>
<StartIndex>3</StartIndex>
<EndIndex>9</EndIndex>
<LengthOfClearAtStart>1</LengthOfClearAtStart>
<LengthOfClearAtEnd>1</LengthOfClearAtEnd>

</PropertyToMask>
</PropertiesMaskFields>
<XMLMaskFields>

<XMLMaskField>
<MaskFieldPath>/Envelope/Body/Author</MaskFieldPath>
<RemoveField>Y</RemoveField>
<StartIndex>6</StartIndex>
<EndIndex>12</EndIndex>
<LengthOfClearAtStart>4</LengthOfClearAtStart>
<LengthOfClearAtEnd>6</LengthOfClearAtEnd>

</XMLMaskField>
<XMLMaskField>

<MaskFieldPath>BookStore/Book/ISBN</MaskFieldPath>
<RemoveField>Y</RemoveField>
<StartIndex>3</StartIndex>
<EndIndex>9</EndIndex>
<LengthOfClearAtStart>4</LengthOfClearAtStart>
<LengthOfClearAtEnd>6</LengthOfClearAtEnd>

</XMLMaskField>
</XMLMaskFields>
<JSONMaskFields>

<JSONMaskField>
<MaskFieldPath>BookStore.Book.

[0].Author</MaskFieldPath>
<RemoveField>Y</RemoveField>
<StartIndex>0</StartIndex>
<EndIndex>10</EndIndex>
<LengthOfClearAtStart>4</LengthOfClearAtStart>
<LengthOfClearAtEnd>6</LengthOfClearAtEnd>

</JSONMaskField>
<JSONMaskField>

<MaskFieldPath>BookStore.Book.
[0].Title</MaskFieldPath>

<RemoveField>N</RemoveField>
<StartIndex>6</StartIndex>
<EndIndex>12</EndIndex>
<LengthOfClearAtStart>4</LengthOfClearAtStart>
<LengthOfClearAtEnd>6</LengthOfClearAtEnd>

</JSONMaskField>



TIBCO® API Exchange Gateway User Guide

615 | Sample Custom LoginModule

<JSONMaskField>
<MaskFieldPath>BookStore.Book.

[0].ISBN</MaskFieldPath>
<RemoveField>N</RemoveField>
<StartIndex>3</StartIndex>
<EndIndex>9</EndIndex>
<LengthOfClearAtStart>4</LengthOfClearAtStart>
<LengthOfClearAtEnd>6</LengthOfClearAtEnd>

</JSONMaskField>
</JSONMaskFields>
<TextPayLoadMask>

<MaskText>
<LineNumber></LineNumber>
<StartsWith>enerat</StartsWith>
<Regex></Regex>
<StartIndex>1</StartIndex>
<EndIndex>11</EndIndex>
<LengthOfClearAtStart>1</LengthOfClearAtStart>
<LengthOfClearAtEnd>1</LengthOfClearAtEnd>

</MaskText>
<MaskText>

<LineNumber>4</LineNumber>
<StartsWith></StartsWith>
<Regex>SSN</Regex>
<StartIndex>0</StartIndex>
<EndIndex>1</EndIndex>
<LengthOfClearAtStart>2</LengthOfClearAtStart>
<LengthOfClearAtEnd>2</LengthOfClearAtEnd>

</MaskText>
<MaskText>

<LineNumber>1</LineNumber>
<StartsWith></StartsWith>
<Regex></Regex>
<StartIndex>4</StartIndex>
<EndIndex>12</EndIndex>
<LengthOfClearAtStart>2</LengthOfClearAtStart>
<LengthOfClearAtEnd>2</LengthOfClearAtEnd>

</MaskText>
</TextPayLoadMask>

</MaskPolicy>
<SelectiveLogPolicy>

<PropertySelectiveLogFields>
<PropertyKey>SSN</PropertyKey>
<PropertyKey>CreditCard</PropertyKey>

</PropertySelectiveLogFields>
<XMLSelectiveLogFields>

<FieldPath>/SOAP-ENV:Envelope/SOAP-



TIBCO® API Exchange Gateway User Guide

616 | Sample Custom LoginModule

ENV:Body/ns0:BookStore/ns0:Book/ns0:Author</FieldPath>
<FieldPath>/SOAP-ENV:Envelope/SOAP-

ENV:Body/ns0:BookStore/ns0:Book/ns0:Publisher</FieldPath>
</XMLSelectiveLogFields>
<JSONSelectiveLogFields>

<FieldPath>BookStore.Book.[0].Author</FieldPath>
<FieldPath>BookStore.Book.[0].ISBN</FieldPath>

</JSONSelectiveLogFields>
<TextSelectiveLog>

<TextToLog>
<Prefix>SSN</Prefix>
<LineNumber>1</LineNumber>
<StartsWith>XSD </StartsWith>
<Regex></Regex>
<StartIndex>1</StartIndex>
<EndIndex>11</EndIndex>

</TextToLog>
<TextToLog>

<Prefix></Prefix>
<LineNumber>2</LineNumber>
<StartsWith></StartsWith>
<Regex>XSD</Regex>
<StartIndex>1</StartIndex>
<EndIndex>11</EndIndex>

</TextToLog>
</TextSelectiveLog>

</SelectiveLogPolicy>
</LogPolicy>

</LogPolicies>

Log Policy Schema File

See the following log policy schema (XSD):

<xs:schema attributeFormDefault="unqualified"
elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema"> <xs:element
name="LogPolicies"> <xs:complexType> <xs:sequence>
<xs:element name="LogPolicy" maxOccurs="unbounded" minOccurs="0">

<xs:complexType> <xs:sequence> <xs:element
type="xs:string" name="Name"/> <xs:element type="xs:string"
name="Format"/> <xs:element name="MaskPolicy">

<xs:complexType> <xs:sequence>
<xs:element type="xs:string" name="MaskChar"/>
<xs:element name="MaskHeader"> <xs:complexType>



TIBCO® API Exchange Gateway User Guide

617 | Sample Custom LoginModule

<xs:sequence> <xs:element
type="xs:string" name="HeaderName" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>
</xs:complexType> </xs:element>
<xs:element name="MaskQueryString">
<xs:complexType> <xs:sequence>

<xs:element name="Parameters">
<xs:complexType> <xs:sequence>

<xs:element type="xs:string" name="ParamName"
maxOccurs="unbounded" minOccurs="0"/>
</xs:sequence> </xs:complexType>

</xs:element> </xs:sequence>
</xs:complexType> </xs:element>

<xs:element name="XMLMaskFields">
<xs:complexType> <xs:sequence>

<xs:element name="XMLMaskField" maxOccurs="unbounded"
minOccurs="0"> <xs:complexType>

<xs:sequence> <xs:element
type="xs:string" name="MaskFieldPath"/>
<xs:element type="xs:string" name="RemoveField"/>

<xs:element type="xs:string" name="StartIndex"/>
<xs:element type="xs:string" name="EndIndex"/>

<xs:element type="xs:string"
name="LengthOfClearAtStart"/> <xs:element
type="xs:string" name="LengthOfClearAtEnd"/>
</xs:sequence> </xs:complexType>

</xs:element> </xs:sequence>
</xs:complexType> </xs:element>

<xs:element name="JSONMaskFields">
<xs:complexType> <xs:sequence>

<xs:element name="JSONMaskField" maxOccurs="unbounded"
minOccurs="0"> <xs:complexType>

<xs:sequence> <xs:element
type="xs:string" name="MaskFieldPath"/>
<xs:element type="xs:string" name="RemoveField"/>

<xs:element type="xs:string" name="StartIndex"/>
<xs:element type="xs:string" name="EndIndex"/>

<xs:element type="xs:string"
name="LengthOfClearAtStart"/> <xs:element
type="xs:string" name="LengthOfClearAtEnd"/>
</xs:sequence> </xs:complexType>

</xs:element> </xs:sequence>
</xs:complexType> </xs:element>

<xs:element name="TextPayLoadMask">
<xs:complexType> <xs:sequence>

<xs:element name="MaskText" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>



TIBCO® API Exchange Gateway User Guide

618 | Sample Custom LoginModule

<xs:sequence> <xs:element
type="xs:string" name="LineNumber"/>
<xs:element type="xs:string" name="StartsWith"/>

<xs:element type="xs:string" name="Regex"/>
<xs:element type="xs:string" name="StartIndex"/>

<xs:element type="xs:string" name="EndIndex"/>
<xs:element type="xs:string"

name="LengthOfClearAtStart"/> <xs:element
type="xs:string" name="LengthOfClearAtEnd"/>
</xs:sequence> </xs:complexType>

</xs:element> </xs:sequence>
</xs:complexType> </xs:element>

</xs:sequence> </xs:complexType>
</xs:element> <xs:element name="SelectiveLogPolicy">

<xs:complexType> <xs:sequence>
<xs:element name="XMLSelectiveLogFields">

<xs:complexType> <xs:sequence>
<xs:element type="xs:string" name="FieldPath"

maxOccurs="unbounded" minOccurs="0"/>
</xs:sequence> </xs:complexType>
</xs:element> <xs:element
name="JSONSelectiveLogFields"> <xs:complexType>

<xs:sequence> <xs:element
type="xs:string" name="FieldPath" maxOccurs="unbounded" minOccurs="0"/>

</xs:sequence>
</xs:complexType> </xs:element>
<xs:element name="TextSelectiveLog">
<xs:complexType> <xs:sequence>

<xs:element name="TextToLog" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>

<xs:sequence> <xs:element
type="xs:string" name="Prefix"/>
<xs:element type="xs:string" name="LineNumber"/>

<xs:element type="xs:string" name="StartsWith"/>
<xs:element type="xs:string" name="Regex"/>

<xs:element type="xs:string" name="StartIndex"/>
<xs:element type="xs:string" name="EndIndex"/>

</xs:sequence>
</xs:complexType> </xs:element>

</xs:sequence> </xs:complexType>
</xs:element> </xs:sequence>

</xs:complexType> </xs:element> </xs:sequence>
</xs:complexType> </xs:element> </xs:sequence>

</xs:complexType> </xs:element></xs:schema>



TIBCO® API Exchange Gateway User Guide

619 | Sample Custom LoginModule

Upload Log Policy XML File
You must use the Config UI to upload the log policy XML file.

Before you begin
l The log policy XML file is created.

l The log policy XML file exists in the location specified by
tibco.clientVar.ASG/Files/PayloadMaskConfigFile property in the ASG_CONFIG_
HOME/asg.properties file.

Procedure
1. Start the Config UI. See Starting GUI.

2. Log in to the Config UI using your credentials.

3. Click your gateway project under Projects.

4. Click the SECURITY tab.

5. Click Log Policy.

6. Click the Add property icon to create a new policy.

7. Enter the following log policy configuration parameters:

Parameter Description

Operation Name * l Specifies the name of the facade operation.
The operation must be configured in the
Facade Operations tab of the Config UI.

l Select a predefined facade operation from
this drop-down list.

l This is a required field.

Stage Name * l Specifies the name of the stage in the
transaction pipeline processing where the
policy has to be applied. Refer to Supported
Stages for Log Policy for the stage names

New Log Policy Configuration Parameters



TIBCO® API Exchange Gateway User Guide

620 | Sample Custom LoginModule

Parameter Description

where the policy can be applied.

l Select a stage name from this drop-down list.

l This is a required field.

Policy Type Select Log from the drop-down list.

Policy Name(s) l Select the name of policy which has to be
applied on the facade operation from this
drop-down list.

l You can configure multiple policies for a
facade operation.

This policy must be defined using the <Name> tag in
the log policy XML file to appear in this drop-down
list. See Sample Log Policy XML File.

8. Save changes to the configuration.

Supported Stages for Log Policy

The following table lists the stage names in the transaction pipeline processing where a log
policy can be applied.

Stage Names Description

RequestEntry Stage when the request from the client enters in
the gateway for processing.

ResponseEntry Stage when the response from target service
enters in the gateway.

Service Specifies the last stage before the request is
made and first stage when the response comes
in.

Stage Names for Log Policy



TIBCO® API Exchange Gateway User Guide

621 | Sample Custom LoginModule

Stage Names Description

ForwardSouthboundMapping Specifies the stage when the forward
southbound mapper is called.

ReverseNorthboundMapping Specifies the stage when the northbound reverse
mapper is called.

Response Specifies the stage when the final response exits
from the gateway.

Create Selective Logging Configuration
You can define the selective logging configuration parameters in a XML file.

For any request payload, you can define the fields in the policy which are logged. The
following formats of payloads are supported:

l Text payloads. See Selective Logging for Text Payloads.

l XML payloads. See Selective Logging for XML Payloads.

l JSON payloads. See Selective Logging for JSON Payloads.

l Property based payloads. See Selective Logging for Property Format Payloads.

Refer to the Sample Log Policy XML File to create the selective logging in an XML file.

Selective Logging for Text Payloads

To select the fields in the text format payloads, use the <TextSelectiveLog> tag in the log
policy XML file. This table explains the field names for logging in a text payload.

Parameter Description

Prefix Specifies a prefix string to be printed before the value of
string in the payload to be selectively logged. For
example, for <Prefix>SSN</Prefix>, the selectively log
string is SSN : 123 45 6789

Parameters for Logging in Text Payload



TIBCO® API Exchange Gateway User Guide

622 | Sample Custom LoginModule

Parameter Description

LineNumber Specifies a line number which contains the string to be
selectively logged.

StartsWith Specifies the prefix for the string to be selectively
logged.

Regex Specifies a regular expression pattern which matches the
data string to be selectively logged.

StartIndex Specifies an index of the data string at which masking
starts.

EndIndex Specifies an index of the data string at which masking
ends.

Example of Selective Logging Policy for Text Payloads

<TextSelectiveLog>
<TextToLog>

<Prefix>SSN</Prefix>
<LineNumber>1</LineNumber>
<StartsWith>XSD </StartsWith>
<Regex></Regex>
<StartIndex>1</StartIndex>
<EndIndex>11</EndIndex>

</TextToLog>
<TextToLog>

<Prefix></Prefix>
<LineNumber>2</LineNumber>
<StartsWith></StartsWith>
<Regex>XSD</Regex>
<StartIndex>1</StartIndex>
<EndIndex>11</EndIndex>

</TextToLog>
</TextSelectiveLog>

Selective Logging for XML Payloads

To select the fields in the XML payloads, use the <XMLSelectiveLogFields> tag in the log
policy XML file. This table explains the field names for logging in a XML payload:



TIBCO® API Exchange Gateway User Guide

623 | Sample Custom LoginModule

Parameter Description

FieldPath Specifies the XPath for the field to be selectively
logged.

Parameters for Logging in XML Payload

Example of Selective Logging Policy for XML Payloads

<XMLSelectiveLogFields>

<FieldPath>/soapenv:Envelope/soapenv:Body/book:Title</FieldPath>

<FieldPath>/soapenv:Envelope/soapenv:Body/book:Author</FieldPath>
</XMLSelectiveLogFields>

Selective Logging for JSON Payloads

To select the fields in the JSON payloads, use the <JSONSelectiveLogFields> tag in the
log policy XML file. This table explains the field names for logging in a JSON payload:

Parameter Description

FieldPath Specifies the JSON path for the field to be selectively
logged.

Parameters for Logging in JSON Payload

Example of Selective Logging Policy for JSON Payloads

<JSONSelectiveLogFields>
<FieldPath>BookStore.Book.[0].Author</FieldPath>
<FieldPath>BookStore.Book.[0].ISBN</FieldPath>

</JSONSelectiveLogFields>

Selective Logging for Property Format Payloads

To select the fields in the property format payloads, use the
<PropertySelectiveLogFields> tag in the log policy XML file. This table explains the field
names for logging in a property format payloads.



TIBCO® API Exchange Gateway User Guide

624 | Sample Custom LoginModule

Parameter Description

PropertyKey Specifies the key of the property to be selectively
logged.

Parameters for Logging in Text Payload

Example of Selective Logging Policy for Property Format Payloads

<PropertySelectiveLogFields>
<PropertyKey>CreditCard</PropertyKey>
<PropertyKey>SSN</PropertyKey>

</PropertySelectiveLogFields>

AntiVirus Scan of Request and Response Payloads
TIBCO API Exchange Gateway can scan the request and response payloads of a facade

operation.

TIBCO API Exchange Gateway integrates with McAfee Web Gateway through ICAP to scan
the payloads for anti-virus and other malwares.

Configuration Setup of McAfee Web Gateway
This section describes the setup of McAfee Web Gateway for ICAP server configuration.

To setup the McAfee Web Gateway, complete these tasks:

l Download McAfee Web Gateway. See Downloading McAfee Web Gateway.

l Configure McAfee Web Gateway for ICAP Server. See Configuring McAfee Web
Gateway for ICAP Server.

Downloading McAfee Web Gateway
You must download and configure McAfee Web Gateway ICAP server to scan the request
and response payloads.



TIBCO® API Exchange Gateway User Guide

625 | Sample Custom LoginModule

Note: Refer to the following website for details on downloading the McAfee Web
Gateway: http://www.mcafee.com/us/products/web-gateway.aspx

To download the trial version of the software, follow these steps:

Procedure
1. Open a web browser and enter the following URL:

http://www.mcafee.com/apps/downloads/free-
evaluations/default.aspx?region=us&pid=aaac14140

2. Click the McAfee Web Gateway Virtual Appliance Evaluation Request link for
trial software registration.

3. Verify that the Trial Software Registration page is displayed. Enter the information,
as required to obtain a trial registration key.

4. Follow the instructions after you submit the registration form to download and
activate the software.

Configuring McAfee Web Gateway for ICAP Server
You must configure the McAfee Web Gateway for ICAP Server.

Procedure
1. Log in to McAfee Web Console.

a. Open a web browser window.

b. Enter the following URL:

http://McAfee_Server_Address:Port_Value

where,

l McAfee_Server_Address is the ip address of McAfee Web Gateway server.

l Port_Value is the port on which McAfee Web Gateway server runs.

c. Enter your login credentials.

For example,

l username: admin

http://www.mcafee.com/us/products/web-gateway.aspx
http://www.mcafee.com/apps/downloads/free-evaluations/default.aspx?region=us&pid=aaac14140
http://www.mcafee.com/apps/downloads/free-evaluations/default.aspx?region=us&pid=aaac14140


TIBCO® API Exchange Gateway User Guide

626 | Sample Custom LoginModule

l password: webgateway

2. On the Setup Wizard dialog, enter the following information:

a. Click License.

l Select a product license file: Click Browse to select a valid product
license file.

l Click Activate product.

b. Click Timezone to set the time zone for system.

c. Click Network Settings. Use the default settings to set the network
parameters.



TIBCO® API Exchange Gateway User Guide

627 | Sample Custom LoginModule

d. Click Password. Set your account password.

3. Click Close wizard to close the Setup Wizard dialog.

4. Verify that the dashboard is displayed.



TIBCO® API Exchange Gateway User Guide

628 | Sample Custom LoginModule

Enabling ICAP Server

Use McAfee Web Console to enable the ICAP server.

Before you begin
Ensure that you are logged into McAfee Web Console.

Procedure
1. Click Configuration.

2. Import the license file, as follows:

a. Click the License node in the explorer under Appliances.

b. License file: Browse and select a valid license file.



TIBCO® API Exchange Gateway User Guide

629 | Sample Custom LoginModule

3. Click Save Changes.

4. Click the Proxies node in the explorer under Appliances.



TIBCO® API Exchange Gateway User Guide

630 | Sample Custom LoginModule

5. Select Enable ICAP server check box to enable the ICAP server.

6. Click Save Changes.

Configuring ICAP Client for Request and Response

Use McAfee Web Console to configure ICAP client and servers.

Before you begin
Ensure that you are logged into McAfee Web Console.

Procedure
1. Click Policy.

2. Click Settings.

3. Expand the ICAP Client node.



TIBCO® API Exchange Gateway User Guide

631 | Sample Custom LoginModule

a. Select ReqMod.

b. Under ICAP Service, select the ICAP server, as follows:

l List of ICAP servers: Select ReqMod Server from the drop-down list.

c. Select RespMod under ICAP Client node .

d. Under ICAP Service, select the ICAP server, as follows:

l List of ICAP servers: Select RespMod Server from the drop-down list.

4. Save your changes.

Configuring McAfee Web Gateway for SSL (Optional)
This section explains the configuration setup to use McAfee Web Gateway for SSL
communications.



TIBCO® API Exchange Gateway User Guide

632 | Sample Custom LoginModule

Before you begin
Ensure that you are logged into McAfee Web Console.

Procedure
1. Click Configuration.

2. Click the Proxies node in the explorer under Appliances.

3. Add a new ICAP server port, for example 11344 for SSL.



TIBCO® API Exchange Gateway User Guide

633 | Sample Custom LoginModule

4. Select the ICAPS check box to enable ICAPS.

5. Click Generate server certificate.

6. Enter all the required information for server certificate. Click OK.

7. Click Export.

8. Save the exported certificate in a file with .crt extension. For example, save the
exported certificate with the file name as mcafeeserver.crt.

9. Import the public key of the certificate to keystore of TIBCO API Exchange Gateway
Server.

a. Navigate to TIBCO_HOME/tibcojre64/1.7.0/bin directory.

b. Enter the following command:



TIBCO® API Exchange Gateway User Guide

634 | Sample Custom LoginModule

keytool -import -trustcacerts -alias rootCA -file Exported_Certificate_From_
ICAPS -keystore KeyStoreFileName

For example,

keytool -import -trustcacerts -alias rootCA -file mcafeeserver.crt
-keystore mykeystore.jks

Configure TIBCO API Exchange Gateway to Enable AntiVirus
Scan
This section describes the configuration setup to enable the anti-virus scanning of payloads
for TIBCO API Exchange Gateway.

To configure the anti-virus scanning of payloads, complete these tasks:

l Enable anti-virus scan of payloads for a facade operation.

l Set up the runtime properties. See Setting Runtime Properties of ICAP Server.

Setting Runtime Properties of ICAP Server
You must set up the runtime properties of ICAP server to use the anti-virus server.

Procedure
1. Navigate to the ASG_CONFIG_HOME directory.

2. Open the asg.properties file for editing.

3. Edit the following properties, as required. See Setting Runtime Properties of ICAP
Server in the ICAP server properties table for the description of the properties. The
following table shows the example value of the properties:

Property Example Value

tibco.clientVar.ASG/ICAP/Host/URL 127.10.180.15

tibco.clientVar.ASG/ICAP/Port 1344



TIBCO® API Exchange Gateway User Guide

635 | Sample Custom LoginModule

Property Example Value

tibco.clientVar.ASG/ICAP/service mcafee_gateway_service

Properties for SSL Enabled Server

tibco.clientVar.ASG/ICAP/useSSL true

tibco.clientVar.ASG/ICAP/keystoreFile C:/tibco/asg/2.3/bin/mykeystore.
jks

tibco.clientVar.ASG/ICAP/keystoreType JKS

tibco.clientVar.ASG/ICAP/keystorePassphra
se

password123

tibco.clientVar.ASG/ICAP/binaryContentTyp
eList

image/png

4. Save changes to the file.

Enabling AntiVirus Scan for Request Payload of Facade Operation
To enable the scanning of request payload for malwares and viruses, follows these steps:

Procedure
1. Start Config UI. See Starting GUI to start the Config UI.

2. Create a new configuration or select an existing configuration, as applicable.

3. Click ROUTING.

4. Click Facade Operations.

5. Create a new operation or select an existing facade operation, as applicable. See
Facade Operations.

6. In the Operation Features field of the operation, click (Add Feature) and select

AntiVirusCheckEnabledOnRequest from the list box.

7. Save changes to the facade operation configuration.



TIBCO® API Exchange Gateway User Guide

636 | Sample Custom LoginModule

Enabling AntiVirus Scan for Response Payload of Facade Operation
To enable the scanning of response payload for malwares and viruses, follows these steps:

Procedure
1. Start Config UI. See Starting GUI to start the Config UI.

2. Create a new configuration or select an existing configuration, as applicable.

3. Click ROUTING.

4. Click Facade Operations.

5. Create a new operation or select an existing facade operation, as applicable. See
Facade Operations.

6. In the Operation Features field of the operation, click (Add Feature) and select

AntiVirusCheckEnabledOnResponse from the list box.

7. Save changes to the facade operation configuration.

Enabling AntiVirus Scan for Request and Response Payloads of
Facade Operation
To enable the scanning of request and response payloads for malwares and viruses, follows
these steps:

Procedure
1. Start Config UI. See Starting GUI to start the Config UI.

2. Create a new configuration or select an existing configuration, as applicable.

3. Click ROUTING.

4. Click Facade Operations.

5. Create a new operation or select an existing facade operation, as applicable. See
Facade Operations.

6. In the Operation Features field of the operation, add the following features:

l Click (Add Feature) and select AntiVirusCheckEnabledOnRequest from the



TIBCO® API Exchange Gateway User Guide

637 | Sample Custom LoginModule

list box.

l Click (Add Feature) and select AntiVirusCheckEnabledOnResponse from

the list box

7. Save changes to the facade operation configuration.



TIBCO® API Exchange Gateway User Guide

638 | OAuth Server

OAuth Server
This section describes how to use the TIBCO API Exchange Gateway OAuth server.

The OAuth 2.0 framework enables a third party application to access private data to which
a user has granted permission. OAuth 2.0 is an open standard for authorization that allows
a third party application user to share data from a site that owns data, without exposing
any credentials to the application that is being accessed. TIBCO API Exchange Gateway
supports the OAuth 2.0 framework.

The OAuth 2.0 Authorization Framework specification can be found at the following location:

https://tools.ietf.org/html/draft-ietf-oauth-v2-31.

The following topics are explained:

l OAuth server components and interactions

l Configuration setup of OAuth server

l OAuth server endpoints

l APIs supported by OAuth server

Capabilities of the OAuth Server
The OAuth server has the following features:

l Register client application using TIBCO API Exchange Manager.

l Support the following standard OAuth flows. See OAuth Flows.

o Authorization Code

o Password Credential

o Client Credential

l Generate authorization code.

l Generate access tokens from the OAuth flows.

l Provide APIs to manage access tokens. See the following APIs:

https://tools.ietf.org/html/draft-ietf-oauth-v2-31


TIBCO® API Exchange Gateway User Guide

639 | OAuth Server

o Authorization API

o Token Request API

o Token Validation API

l Provide the interface to build custom (non-default) adapters to plug in your
implementations of the owner, client, and scope adapters. See OAuth Service
Provider Interfaces chapter.

PingIdentity Support

To support PingIdentity authorization server for OAuth policies, make sure that you set the
Provider field correctly in the policy file, as follows:

<ns:Provider>PingIdentity</ns:Provider>

See AuthenticationbyOAuth Policy.

OAuth Client Policies
TIBCO API Exchange Gateway supports the OAuth client policies for authentication and
credential mapping. See Overview of Security Policies section for details on the OAuth
client policies.

OAuth 2.0 Concepts
The OAuth server uses the following concepts from the OAuth 2.0 framework. Refer to the
following link for details:

https://tools.ietf.org/html/draft-ietf-oauth-v2-31

Resource Owner

A resource owner is an entity capable of granting access to a protected resource. When the
resource owner is a person, this is referred to as an end-user.

Client

A client is an application making protected resource requests on behalf of the resource
owner, which are authorized by the owner.

https://tools.ietf.org/html/draft-ietf-oauth-v2-31


TIBCO® API Exchange Gateway User Guide

640 | OAuth Server

Client ID

A client ID is a unique identifier issued to the client by authorization server during the
registration process.

Client Secret

A client secret is a password for the client. This should be kept confidential.

Authorization Server

An authorization server issues access tokens to the client after authenticating the resource
owner successfully and after obtaining authorization.

Resource Server

A resource server hosts the protected resources and responds to the requests to access the
protected resources using access tokens.

Authorization Code

The authorization code is obtained from an authorization server when the resource owner
grants the client access to the resource.

Access Token

Access tokens are credentials used to access the protected resources.

Refresh Token

Refresh tokens are credentials used to refresh the access tokens.

Authorization Endpoint

The authorization endpoint is the endpoint on the authorization server where the client
requests for authorization. The request is redirected to allow the resource owner to log in
and grant authorization to the client.

Token Endpoint

The token request endpoint is the endpoint on authorization server where the client
requests for access token. This includes exchanging an authorization code for an access
token or refreshing access token with a refresh token.



TIBCO® API Exchange Gateway User Guide

641 | OAuth Server

Redirect Endpoint

The redirect endpoint is the endpoint in the client application where the authorization
server redirects to after the resource owner grants authorization to the client application.
The client receives an authorization code which can be used to exchange for an access
token.

Example Scenario

For example, a client application can access an API from the TIBCO API Exchange Gateway
as long as the owner of the API allows the application to do so.

The following figure illustrates this example scenario.

OAuth Server Overview

The OAuth process flow for the above example is explained as follows:

l A user goes to a website hosting an application that displays some data from APIs on
the gateway.

l Before the application accesses the APIs on the gateway, the application requests an
access token from an authorization server.

l In the process of obtaining the access token, the user is asked to login and grant the
application to the data that the application wishes to access.



TIBCO® API Exchange Gateway User Guide

642 | OAuth Server

l After the user logs in and grants access, the application receives an authorization
code, which is exchanged to obtain an access token.

l The application uses the received access token to access the APIs on the gateway.

Benefits of using the OAuth Server
The OAuth server uses pluggable adapters for the following purposes:

l Authenticate owners

l Authenticate and authorize clients access

l Retrieve scopes for resources

The use of pluggable adapters enables the OAuth server to provide core OAuth2 capability
such that the OAuth server can delegate the authentication and authorization for specific
domain to pluggable adapters.

For example, the OAuth server can authenticate the resource owners from LDAP, database,
or from any third party identity provider using owner adapters. The OAuth server can
authorize resources with a scope that manage the resources for a specific domain. The
resources are authorized based on the scope of resources for a specific owner.

OAuth Server Components and Interactions
This section describes the main components of OAuth server and the interactions between
the components.

Components
The OAuth server has the following main components:

l User Agent

l Relying Party

l Authorization server

l Identity Service Provider

l Resource server



TIBCO® API Exchange Gateway User Guide

643 | OAuth Server

l Owner Adapter

An interface used to manage the owner and authenticate the user credentials. By
default, TIBCO API Exchange Gateway provides file-based owner adapter.

l Client Adapter

An interface used to manage the client and validate the client credentials. By default,
TIBCO API Exchange Gateway provides file-based client adapter.

l Scope Adapter

An interface used to manage the scopes for a specific owner. By default, TIBCO API
Exchange Gateway provides file-based scope adapter.

l API Provider

Component Interactions
The following diagram illustrates the logical view of interaction between various
components that participate in an OAuth protected data request:



TIBCO® API Exchange Gateway User Guide

644 | OAuth Server

Interactions Between Components

The interactions between components of the OAuth server are explained as follows:

1. Request Data from API Service

When a resource is protected by OAuth, a resource owner may allow a relying party
such as an API explorer or a client application to get the resource on behalf of the
resource owner. In a typical OAuth scenario, the resource owner sends the request
from a user agent, such as a browser, to the relying party.

2. Requesting Access Token

When the relying party, such as a client application, that is serving the request,



TIBCO® API Exchange Gateway User Guide

645 | OAuth Server

receives the request from the resource owner, the application requests an access
token from the authorization server. The client application uses one of the following
authorization flows to obtain the access token:

l Authorization code

l Password credential

l Client credential

For details of the call for various flows, refer to the RFC 6749, "The OAuth 2.0
Authorization Framework " available at the following location:

https://tools.ietf.org/html/draft-ietf-oauth-v2-31

3. Login and Grant Access

In the authorization code flow scenario, to authenticate the resource owner, the
authorization server delegates the authentication process to an Identity Service
Provider. After a successful login, the Identity Service Provider returns the owner
credentials to the authorization server. The authorization server then makes another
request to the authentication server to enable the logged in owner to grant access to
the client. When the access is granted to the client, the authorization server
generates an authorization code and returns the code to the relying party.

Note: This is only applicable to the authorization code flow.

4. Redirect

When authenticating the user credentials, the owner adapter redirects the login
request and grants access request to a browser.

5. Authenticate Owner and Retrieve Attributes

TIBCO API Exchange Gateway uses the owner adapter to perform the user
authentication. The adapter may authenticate the owner using LDAP, database, or an
SSO provider such as PingFederate™ via custom owner adapter. The successful
authentication of owner returns the attributes of the owner such as owner’s DN,
email, and telephone. Refer to Owner Service Provider Interface for details.

By default, TIBCO API Exchange Gateway provides the flat file and LDAP based
adapter. The OAuth server provides an interface to use the custom owner adapter.

See OAuth Service Provider Interfaces for details on how to implement the custom
adapters.

https://tools.ietf.org/html/draft-ietf-oauth-v2-31


TIBCO® API Exchange Gateway User Guide

646 | OAuth Server

6. Authenticate Client and Retrieve Attributes

The authorization server authenticates the client credentials. The successful
authentication of the client returns the attributes such as redirect URL, scopes to the
authorization server.

Note: You can use the client adapter provided by TIBCO API Exchange
Manager.

7. Sending Request with Access Token

When the relying party, such as a client application, has an access token the
application forwards the request to get the resource by passing the access token in
the request.

8. Assigning Scope to Resource

To perform the resource authorization at runtime, the resource server relies on
resource manager to provide information required to perform the authorization.

For example, the resource manager is the TIBCO API Exchange Gateway where the
resources such as a facade operation is associated with an API key (client ID).

To authorize a partner for a specific operation, a scope is assigned to a partner
operation. When authorizing a request with an access token, the owner of the access
token is used to lookup the partner for the request. The client ID of the access token
is used as the API key of the request. A partner operation is retrieved using the
partner, API key, and the URI of the request. In order to authorize the operation, the
operation must have the scope that matches all of the scopes from the access token.

The scope adapter is responsible to return the scopes associated with a facade
operation.

9. Validate Access Token

Before the TIBCO API Exchange Gateway resource server forwards the request from
the relying parting to the API provider, the resource server validates the access token
from the request to ensure that the access token is valid. The request is authorized
based on the information obtained from the access token.

To validate the access token, the resource server sends the access token to the
authorization sever to retrieve the data associated with the access token. The access
token is valid when any one of the folllowing scenarios is true:

l It is issued by the authorization server.



TIBCO® API Exchange Gateway User Guide

647 | OAuth Server

l It is not expired.

l It is able to retrieve the scopes for the resource that are associated with the
token.

l If the access token is not valid, the request is terminated, and an error is
returned to the relying party.

l If the access token is valid, the owner of the access token is used to find the
partner of the operation and the request is processed as follows:

o If the partner is not found using the owner, the request is returned with a
partner identification error.

o The client of the operation is used to find the partner operation. If
partner operation is not found, the request is returned with a partner
operation not found error.

o The partner operation must have the scope associated with the access
token. If the partner operation does not have a scope that matches the
one with the access token, the request is returned with scope mismatch
error.

10. Forward Request with Access Token

If the owner, client, and scopes of the access token are valid for the facade
operation, the resource server forwards the access token or, alternatively, converts
the access token to a SAML assertion and forwards the assertion in the HTTP header.

OAuth Flows
The OAuth server supports the following OAuth flows:

l Authorization Code

l Client Credential

l Password Credential

Authorization Code
In the authorization code flow, the owner of the data is the user who is using the
application. The OAuth server authenticates the user and requests the user to grant the
client access to the data. The client application does not have access to the user's



TIBCO® API Exchange Gateway User Guide

648 | OAuth Server

credential and the scope of the data access is known to the user. The OAuth provider also
authenticates the client using the client ID and secret before an access token is given to
the client.

For details of authentication code flow, refer to "Authorization Code Grant," Section 4.1 of
RFC 6749, in the "The OAuth 2.0 Authorization Framework" available at the following
location:

https://tools.ietf.org/html/draft-ietf-oauth-v2-31

The following is an example scenario of this flow:

l A user uses an application developed by a third party developer that will access
photos uploaded to an OAuth server.

l The third party developer registers the application with the OAuth server.

l The user uses the application to view the uploaded photos.

l The application requests an access token using authentication flow before retrieving
the photo.

Refer to the following APIs:

l Authorization API

l Token Request API

l Token Validation API

Client Credential
The client does not need the credential of the user who uses the application. The client
uses its own credential to get the data from the resource server. The OAuth server
authenticates the client using the client ID and client secret of the client. For details of
client credential flow, refer to section 4.4 of RFC 6749, "Client Credentials Grant", "The
OAuth 2.0 Authorization Framework" found at the following location:

https://tools.ietf.org/html/draft-ietf-oauth-v2-31

The following is an example scenario of this flow:

l A user uses an application that provides some data that the client has access to.

l The application requests an access token using client credential flow before
retrieving the data.

https://tools.ietf.org/html/draft-ietf-oauth-v2-31
https://tools.ietf.org/html/draft-ietf-oauth-v2-31


TIBCO® API Exchange Gateway User Guide

649 | OAuth Server

Refer to the following APIs:

l Token Request API

l Token Validation API

l Revoke Token API

Password Credential
In the password credential flow, the owner of the data is the user who is using the
application. The difference between the password credential flow use case and
authorization code flow use case is that the application has access to the user's credential.
This use case usually applies to application design for mobile device where user credential
is stored on the mobile device.

For details of password credential flow, refer to "Resource Owner Password Credentials
Grant,"Section 4.3 of RFC 6749, in The OAuth 2.0 Authorization Framework" available at the
following location:

https://tools.ietf.org/html/draft-ietf-oauth-v2-31

The following is an example scenario of this flow:

l A user uses an application on a mobile device that accesses the photos uploaded to
an OAuth server.

l The user uses the application to view the uploaded photos.

l The application requests an access token using password flow before retrieving the
photo.

Refer to the following APIs:

l Token Request API

l Token Validation API

l Revoke Token API

Configuration Setup of OAuth Server Authorization
This section explains the configuration setup required to use the OAuth server.

https://tools.ietf.org/html/draft-ietf-oauth-v2-31


TIBCO® API Exchange Gateway User Guide

650 | OAuth Server

Setting OAuth Server Properties
To enable the OAuth server, set the OAuth server properties using the Config UI as follows:

Procedure
1. Navigate to ASG_HOME/bin directory.

2. Type asg-configui command to start the Config UI.

3. Open a browser window and enter the following URL:
http://localhost:9200/ConfigUI

4. Log in to the Config UI using your credentials.

5. On the Home page on the Config UI, select the Gateway Engine Properties from the
drop-down list.

6. Expand the Gateway Engine Properties node.

7. Click the SECURITY > Security tab.

8. Expand the OAuth node to see the OAuth server properties.

9. Set the OAuth server properties, as required. Refer to the OAuth server properties
defined in the OAuth section of the Security Properties table..

Note:
l The OAuth server properties described in the Security Properties can

be set in the ASG_CONFIG_HOME/asg.properties file. See Runtime
Properties of Core Engine for OAuth server properties names and
description.

l It is good practice to use the Config UI to set the properties.

l Refer to the ASG_CONFIG_HOME/asg.properties file for the example
values of OAuth server related properties.

Enable OAuth Authorization For Gateway (Set Adapter
Properties)
The OAuth server uses the following adapters for authenticating owner, client, and to
retrieve the scopes for authorizing the client to access resources.



TIBCO® API Exchange Gateway User Guide

651 | OAuth Server

l Owner Adapter - To authenticate the owner. See Owner Adapter for details.

l Client Adapter - To authenticate the client. See Client Adapter for details.

l Scope Adapter- To retrieve the scopes to authorize the client. See Scope Adapter for
details.

Owner Adapter
The OAuth server provides the following options to authenticate the user credentials.

File-Based Owner Adapter

By default, the OAuth server provides the file- based owner adapter. To use the file-based
owner adapter, follow these steps:

Procedure
1. Log in to the Config UI using your credentials.

2. On the home page on the Config UI, select the Gateway Engine Properties from the
drop-down list.

3. Expand the Gateway Engine Properties node.

4. Click the SECURITY > Security tab.

5. Expand the OAuth node.

6. Set the properties as follows:

Property Value

Owner
Adapter

com.tibco.asg.oauth.identity.provider.file.OwnerAdapterService

Resource
Path Name

/examples/OAuth/resources

Owner Adapter Properties for File

7. Click Save to save changes.

8. Set the owner credentials in the ASG_



TIBCO® API Exchange Gateway User Guide

652 | OAuth Server

HOME\examples\OAuth\resources\owner.properties file.

Note: The owner adapter properties can be set in ASG_CONFIG_
HOME\asg.properties file, as follows:

a. Navigate to the ASG_CONFIG_HOME directory.

b. Edit the asg.properties file in a text editor.

c. Set the following property:

tibco.clientVar.oauth.owner.adapter.class=com.tibco.asg.oau
th.

identity.provider.file.OwnerAdapterService

d. Save changes to the asg.properties file.

owners.properties

Parameters for owners.properties file.

The following table describes the owner adapter configuration parameters for the
owners.properties file.

Parameter Description

name user ID

password user password (can be in plain
text or obfuscated)

reserve reserved for future use

attribute list of key value pair attributes

Parameters for owners.properties file

Note: The following attributes must be present in the attribute list:

l dn

l uid



TIBCO® API Exchange Gateway User Guide

653 | OAuth Server

LDAP

To use the LDAP-based owner adapter, follow these steps:

Procedure
1. Log in to the Config UI using your credentials.

2. On the home page on the Config UI, select the Gateway Engine Properties from the
drop-down list.

3. Expand the Gateway Engine Properties node.

4. Click the SECURITY > Security tab.

5. Expand the OAuth node.

6. Set the adapter properties as follows:

Property Value

Owner
Adapter

com.tibco.asg.oauth.identity.provider.file.OwnerAdapterService

Resource
Path Name

/examples/OAuth/resources

Owner Adapter Properties for File

7. Set the LDAP properties as follows:

Property Description

tibco.clientVar.oauth.identity.provider.ldap.host

Specifies the hostname or IP address where LDAP
directory server runs. This is required.

For example, ldapserver.api.tibco.com

LDAP Server Connection Parameters



TIBCO® API Exchange Gateway User Guide

654 | OAuth Server

Property Description

tibco.clientVar.oauth.identity.provider.ldap.port

Specifies the port where LDAP directory server runs.
This is required.

For example, 10389

tibco.clientVar.oauth.identity.provider.ldap.loginDN

Specifies the base distinguished name (DN) for the
login user.

For example, uid=admin,ou=system

tibco.clientVar.oauth.identity.provider.ldap.loginPassword

Specifies the password for the login user.

For example, root@123

tibco.clientVar.oauth.identity.provider.ldap.searchFilter

Specifies the filter to be used for searching in admin
mode against potential user objects.

For example, search filter is specified as:
Objectclass=*

tibco.clientVar.oauth.identity.provider.ldap.ownerSearchTreeDn

Specifies the base distinguished name (DN) where
the searches for the users begin. You must supply
the base DN that narrows the search to the smallest
set of objects that includes all valid users.



TIBCO® API Exchange Gateway User Guide

655 | OAuth Server

Property Description

For example, ou=people,ou=na,dc=example,dc=org

tibco.clientVar.oauth.identity.provider.ldap.ownerDnTemplate

Specifies a template to be used when formatting
user's DN before binding.

For example, uid={0},ou=employee,ou=tsi,o=tibco

In this string, the variable {0} represents the name
of the user. The code substitutes the user name for
this variable, and passes the resulting boolean
expression to the LDAP server. The LDAP server
matches that search expression against user objects
to find a match. The search result must contain
exactly one match. This is required for bind mode
(not in admin search mode).

8. Click Save to save changes.

9. Set the owner credentials in the ASG_
HOME\examples\OAuth\resources\owner.properties file.

Note: The owner adapter properties can be set in ASG_CONFIG_
HOME\asg.properties file, as follows:

a. Navigate to the ASG_CONFIG_HOME directory.

b. Edit the asg.properties file in a text editor.

c. Set the following property:
tibco.clientVar.oauth.owner.adapter.class=com.tibco.asg.oau
th.identity.provider.jndildap.OwnerAdapterService

d. Save changes to the asg.properties file.

Client Adapter
The OAuth server provides the following options to validate the client ID and client secret
of an application:



TIBCO® API Exchange Gateway User Guide

656 | OAuth Server

File-Based Client Adapter

By default, the OAuth server provides the file- based owner adapter. To use the file-based
client adapter, follow these steps:

Procedure
1. Log in to the Config UI using your credentials.

2. On the home page on the Config UI, select the Gateway Engine Properties from the
drop-down list.

3. Expand the Gateway Engine Properties node.

4. Click the SECURITY > Security tab.

5. Expand the OAuth node.

6. Set the properties as follows:

Property Value

Client
Adapter

com.tibco.asg.oauth.identity.provider.file.ClientAdapterService

Resource
Path Name

/examples/OAuth/resources

Client Adapter Properties for File

7. Click Save to save changes.

8. Set the properties for the client adapter in the ASG_
HOME\examples\OAuth\resources\client.properties file.



TIBCO® API Exchange Gateway User Guide

657 | OAuth Server

Note: The client adapter properties can also be set in the ASG_CONFIG_
HOME/asg.properties file, as follows:

a. Navigate to the ASG_CONFIG_HOME directory.

b. Edit the asg.properties file in a text editor.

c. Set the following property:

tibco.clientVar.oauth.client.adapter.class=com.

tibco.asg.oauth.identity.provider.file.ClientAdapterService

d. Save changes to the asg.properties file.

clients.properties

Parameters for clients.properties file.

The following table describes the client adapter configuration parameters for the
client.properties file.

Parameter Description

name client ID

password client secret (can be in plain text
or obfuscated)

reserve reserved for future use

attribute list of key value pair attributes

Parameters for clients.properties file

Note: The following attributes must be present in the attribute list:

l dn

l oidClientID

l oidClientRedirectURI

l scopes



TIBCO® API Exchange Gateway User Guide

658 | OAuth Server

Scope Adapter
TIBCO API Exchange Gateway uses the scope adapter to manage the scope for a specific
owner. By default, the OAuth server provides the following options for scope adapter:

File-Based Scope Adapter

To use the file-based scope adapter, follow these steps:

Procedure
1. Log in to the Config UI using your credentials.

2. On the home page on the Config UI, select the Gateway Engine Properties from the
drop-down list.

3. Expand the Gateway Engine Properties node.

4. Click the SECURITY > Security tab.

5. Expand the OAuth node.

6. Set the properties as follows:

Property Value

Scope
Adapter

com.tibco.asg.oauth.identity.provider.file.ScopeAdapterService

Resource
Path Name

/examples/OAuth/resources

Scope Adapter Properties for File

7. Click Save to save changes.

8. Set the properties for the scope adapter in the ASG_
HOME\examples\OAuth\resources\scope.properties file.

Note: The scope adapter properties can also be set in the ASG_CONFIG_
HOME/asg.properties file, as follows:

a. Navigate to the ASG_CONFIG_HOME directory.

b. Edit the asg.properties file in a text editor.



TIBCO® API Exchange Gateway User Guide

659 | OAuth Server

c. Set the following property:

tibco.clientVar.oauth.scope.adapter.class=com.tibco.asg.oauth.identi
ty.provider.file.ScopeAdapterService

d. Save changes to the asg.properties file.

scopes.properties

Parameters for scopes.properties file

The following table describes the scope adapter configuration parameters for the
scope.properties. file.

Parameter Description

scope the name to identify the scope

description the description of the scope

Parameters for scopes.properties file

Non-Default (Custom) Adapter For Owner Client and Scopes
To use the other resources such as database to authenticate the client, owner and manage
the scopes, implement the custom adapters, which can be integrated to the interface
provided by TIBCO API Exchange Gateway.

See OAuth Service Provider Interfaces section for details.

Starting OAuth Server
The OAuth server is integrated within TIBCO API Exchange Gateway. The OAuth server is
run as a Core Engine instance.

To start an instance of OAuth server, follow these steps:

Procedure
1. Set the OAuth server properties. See Setting OAuth Server Properties.

2. To authenticate owner, client and manage the scopes, configure an adapter and set



TIBCO® API Exchange Gateway User Guide

660 | OAuth Server

the properties. See Enable OAuth Authorization For Gateway (Set Adapter Properties)
section.

3. Start a Core Engine instance using the following command:

On the Windows platform, type the following command:

 asg-engine -u asg-caching-core -a ASG_Configuration

On the UNIX platform, type the following command:

./asg-engine -u asg-caching-core -a ASG_Configuration

Manage Access Token
To access the target services using access tokens, the OAuth server can perform the
following tasks:

l Authorize a request to obtain an access token

l Generate an access token

l Refresh an access token

l Validate an access token

l Retrieve information for a valid access token

l Retrieve list of issued access tokens for a owner

l Revoke an access token

OAuth Server Endpoint
You can secure the applications such as mobile applications, web applications or any type
of applications using the OAuth flows supported by the OAuth server.

To access the endpoints of OAuth server, the following information is required:

l Client ID

l Client Secret

l Authorization grant type defined as an OAuth flow

l Additional Information such as user, password, redirect URL, authorization code, and
so on required for an OAuth flow



TIBCO® API Exchange Gateway User Guide

661 | OAuth Server

See OAuth Server Endpoints

Token Management APIs
The OAuth server provides the APIs to manage the access tokens. Refer to the following
APIs section for details:

l Authorization API

l Token Request API

l Token Validation API

OAuth Server Endpoints
This section explains various endpoints to access the OAuth server for access token
management.

Transport and Port
The OAuth server provides both HTTP and HTTPS transport for the endpoints. In
production environments, it is good practice to use HTTPS which provides the transport
level security.

Note: By default, the ports for the HTTP and HTTPS transports are enabled with
default values as 9322 and 9333 respectively.

If required, change the default value of the ports as follows:

Parameter Config UI Field Runtime Property

HTTP Port l Set the
Transport
scheme to
HTTP as
follows:

Gateway Engine

Set in the ASG_CONFIG_HOME/asg.properties file.

The default value is 9322.

tibco.clientVar.DefaultImplementation/Connections

/HTTP/OAuthWebappsConnection/Port

OAuth Server Transport and Port



TIBCO® API Exchange Gateway User Guide

662 | OAuth Server

Parameter Config UI Field Runtime Property

Properties > Security
> OAuth > Transport
Scheme

l Set the Port as
follows:

Gateway Engine
Properties > Security
> OAuth > Port

HTTPS Port l Set the
Transport
scheme to
HTTPS as
follows:

Gateway Engine
Properties > Security
> OAuth > Transport
Scheme

l Set the Port as
follows:

Gateway Engine
Properties > Security
> OAuth WebApps
SSL > Port

Set in the ASG_CONFIG_HOME/asg.properties file.

The default value is 9333.

tibco.clientVar.DefaultImplementation/Connections

/HTTP/OAuthWebappsSSLConnection/Port

Note: If you use HTTPS transport, set the SSL properties listed using the Config
UI as follows:

l On the home page of Config UI, go to Gateway Engine Properties >
Security > OAuth WebApps SSL.

l Set the OAuth SSL properties. See OAuth WebApps SSLProperties are
shown if the transport scheme is selected as HTTPS. for details



TIBCO® API Exchange Gateway User Guide

663 | OAuth Server

Request Access Token
You must request an access token to access the OAuth enabled target services.

Based on the type of OAuth flow, the endpoint to request an access token requires
different parameters. See Token Request API for details.

The following are the endpoints for each supported flow:

Client Credential Flow

Endpoint for client credential flow.

The client credential flow is used when you want to access the target services using any
trusted application. See Client Credential for details.

The client credential flow requires the following information to send an access token
request:

l Client ID

l Client Secret

l grant_type

Use the following endpoint to request an access token:

Method URL

POST http://ASGServerHost:httpPort/asg/oauth2/access_token?grant_
type=client&client_id=CLIENT_ID_VALUE&client_secret=CLIENT_SECRET_
VALUE

For example,

http://demoserverapi.tibco.com:9322/asg/oauth2/access_token?grant_
type=client&client_id=237-924f4a26-f1a5-4934-a17a-69c22bd52dbe&client_
secret=809950e0-c21c-4f84-8dab-239dba1c3187

Token Request Endpoint for Client Credential Flow

where,

l ASGServerHost is the machine running the Core Engine.

l httpPort is the port value for HTTP transport.



TIBCO® API Exchange Gateway User Guide

664 | OAuth Server

l CLIENT_ID_VALUE is the client ID of the registered application.

l CLIENT_SECRET_VALUE is the client secret of the registered application.

Password Credential Flow

Endpoint for password credential flow.

The password flow is used when you want to access the target services from an application
that requires a username and password. When any application such as a web or mobile
application is launched, and prompts for a username and password, the user credentials
are verified by an identity service provider and exchanged for an access token.

The OAuth server validates the credentials before issuing the access token. After the access
token is issued, the access token is the key to access the target services.

See Password Credential for details.

The password credential flow requires the following information to send an access token
request:

l Client ID

l Client Secret

l Username

l Password

l grant_type

Use the following endpoint to request an access token:

Method URL

POST http://ASGServerHost:httpPort/asg/oauth2/access_token?grant_
type=password&client_id=CLIENT_ID_VALUE&client_secret=CLIENT_SECRET_
VALUE&username=USERNAME&password=PASSWORD

For example,

http://demoserverapi.tibco.com:9322/asg/oauth2/access_token?grant_
type=client&client_id=237-924f4a26-f1a5-4934-a17a-69c22bd52dbe&client_
secret=809950e0-c21c-4f84-8dab-
239dba1c3187&username=john123&password=asgoauth2014

Token Request Endpoint for Password Flow



TIBCO® API Exchange Gateway User Guide

665 | OAuth Server

where,

l ASGServerHost is the machine running the Core Engine.

l httpPort is the port value for HTTP transport.

l CLIENT_ID_VALUE is the client ID of the registered application.

l CLIENT_SECRET_VALUE is the client secret of the registered application.

l USERNAME is the username required for application.

l PASSWORD is the password required for application.

Authorization Code Flow

Endpoint for authorization code flow.

To request an access token using the authorization code flow, an authorization code is
required.

See Authorization Code for details.

The following steps are required to process the access token request for authorization code
flow:

Procedure
1. Request an authorization code

The access token request requires a authorization code. Use the following endpoint
to request an authorization code:

Method URL

POST http://ASGServerHost:httpPort/asg/oauth2/authorize?response_
type=code&client_id=CLIENT_ID_VALUE&client_secret=CLIENT_SECRET_
VALUE&state=STATE_VALUE&redirect_uri=REDIRECT_URL_VALUE

For example,

http://ASGServerHost:httpPort/asg/oauth2/authorize?response_

Authorization Code Request Endpoint for Authorization Code Flow



TIBCO® API Exchange Gateway User Guide

666 | OAuth Server

Method URL

type=code&client_id=237-924f4a26-f1a5-4934-a17a-69c22bd52dbe&client_
secret=809950e0-c21c-4f84-8dab-239dba1c3187&state=xyz&redirect_
uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

2. Request an access token

The authorization code flow requires the following information to send an access
token request:

l Client ID

l Client Secret

l Authorization code

l Redirect URL

l grant_type

After the authorization code is returned, use the following endpoint to request an
access token:

Method URL

POST http://ASGServerHost:httpPort/asg/oauth2/access_token?grant_
type=authorization_code&client_id=CLIENT_ID_VALUE&client_
secret=CLIENT_SECRET_VALUE&code=AUTH_CODE_VALUE&redirect_
uri=REDIRECT_URL_VALUE

For example,

http://ASGServerHost:httpPort/asg/oauth2/access_token?grant_
type=authorization_code&client_id=237-924f4a26-f1a5-4934-a17a-
69c22bd52dbe&client_secret=809950e0-c21c-4f84-8dab-
239dba1c3187&code=SplxlOBeZQQYbYS6WxSbIA&redirect_
uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

Token Request Endpoint for Authorization Code Flow

where,

l ASGServerHost is the machine running the Core Engine..



TIBCO® API Exchange Gateway User Guide

667 | OAuth Server

l httpPort is the port value for HTTP transport.

l CLIENT_ID_VALUE is the client ID of the registered application.

l CLIENT_SECRET_VALUE is the client secret of the registered application.

l STATE_VALUE is an arbitrary string that is returned in the callback.

l AUTH_CODE_VALUE is the authorization code.

l REDIRECT_URL_VALUE is the URL of the third party application which performs
the authentication process.

Access Token Response Example
The response for the access token request contains the following information:

l Access Token

l Refresh token (Optional)

l Expiry information for access token

l Authorization grant type

l Additional information depending on the used OAuth flow.

Sample Response

For example, the successful response for password credential flow is returned as follows:

Response:

{ 

"expires_in": 3600,

"token_type": "Bearer",

"refresh_token": "T1amGR21.IdKM.5ecbf91162691e15913582bf2662e0",

"access_token": "T1amGT21.Idup.298885bf38e99053dca3434eb59c6aa"

}



TIBCO® API Exchange Gateway User Guide

668 | OAuth Server

Access Token Error Example
For example, the following is an error response returned for an access token request which
contains incorrect grant type:

Sample Response

For example, the error response is returned as follows:

Invalid Response: 400 Bad Request

{ 

"error": "invalid_grant",

"error_description": "Invalid username or password"

}

Retrieve Access Token Details
You can retrieve the information of an access token as follows:

l Using an access token

l List of access tokens issued by authorization server

l For a specific owner

Using Access Token

Validating Access Token Request

Procedure
1. To validate an access token and retrieve the token details, use the following

endpoint:



TIBCO® API Exchange Gateway User Guide

669 | OAuth Server

Method URL

GET http://ASGServerHost:httpPort/asg/oauth2/access_token/Token_ID

For example,

http://ASGServerHost:httpPort/asg/oauth2/access_
token/T1amGT21.Idup.3446d8984b48a7c0c531267317334ea7

Retrieve Access Token using Token

where:

l Token_ID refers to a valid access token.

Sample Response (Retrieve Access Token)

The following is an example response of retrieving an access token details using an access
token for client credential flow:

{
"id": "5d34e914ad73b262dbf88a963dbccb41",
"accessToken": "T1amGT21.Idup.3446d8984b48a7c0c531267317334ea7",
"refreshToken": "T1amGR21.IdKM.8a7420fe5079ab1b3bd24b4de1d5fe2",
"secret": "619307e5-8e20-4997-9045-c083c123e04f",
"owner": "251-20c8104e-e91a-4384-980c-84545aced892",
"client": "251-20c8104e-e91a-4384-980c-84545aced892",
"classification": "reviews",
"scopes": [

"reviews"
],
"status": "Active",
"key": 0,
"createdOn": 1409942780365,
"expiresOn": 1409946380427,
"grantType": "client_credentials",
"samlToken": null,
"stringId": "5d34e914ad73b262dbf88a963dbccb41"

}

Retrieve List of Tokens

To retrieve the list of tokens maintained by the authorization server, use the following
endpoint:



TIBCO® API Exchange Gateway User Guide

670 | OAuth Server

Method URL

GET http://ASGServerHost:httpPort/asg/oauth2/access_token/owners

For example,

http://ASGServerHost:httpPort/asg/oauth2/access_token/owners

Retrieve List of Tokens

where:

l ASGServerHost is the host name running TIBCO API Exchange Gateway.

l httpPort is the port value for HTTP transport.

Retrieve Token for Specific Owner

To retrieve the information for a token issued to a specific owner, use the following
endpoint:

Method URL

GET http://ASGServerHost:httpPort/asg/oauth2/access_token/owners/owner_ID

For example,

https://120.107.172.36:9333/asg/oauth2/access_
token/owners/CN=Administrator,CN=Users,DC=config2913vm0,DC=ad

Retrieve Access Token for an Owner

where,

l ASGServerHost is the machine running the Core Engine.

l httpPort is the port value for HTTP transport.

l owner_ID is the ID of owner.

Refresh Token
A refresh token is issued by the authorization server for an authorization code flow. When
the current access token expires or is invalid, a refresh token is used. When the



TIBCO® API Exchange Gateway User Guide

671 | OAuth Server

authorization server issues the access token, optionally the server can issue the refresh
token.

To refresh an access token generated for access token, use the following endpoint:

Method URL

POST http://ASGServerHost:httpPort/asg/oauth2/access_token?grant_
type=refresh_token&client_id=CLIENT_ID_VALUE&client_secret=CLIENT_
SECRET_VALUE&refresh_token=REFRESH_TOKEN

For example,

http://demoserverapi.tibco.com:9322/asg/oauth2/access_token?grant_
type=refresh_token&client_id=237-924f4a26-f1a5-4934-a17a-
69c22bd52dbe&client_secret=809950e0-c21c-4f84-8dab-
239dba1c3187&refresh_
token=T1amGT21.Idup.3446d8984b48a7c0c531267317334ea7

Refresh Token Endpoint

where,

l ASGServerHost is the machine running the Core Engine..

l httpPort is the port value for HTTP transport.

l CLIENT_ID_VALUE is the client ID of the registered application.

l CLIENT_SECRET_VALUE is the client secret of the registered application.

l REFRESH_TOKEN is the refresh token for the access token generated.

Sample Response (Refresh Token)

The following is a sample response for refresh_token request:

{
"expires_in": 3600,
"token_type": "Bearer",
"refresh_token": "T1amGR21.IdKM.dee72962103d707169e6e51d7fd5b58",
"access_token": "T1amGT21.Idup.e684f84d18e4bedec955c75482acef9"

}



TIBCO® API Exchange Gateway User Guide

672 | OAuth Server

Revoke Token
To revoke an access token from a specific owner, use the following endpoint:

Method URL

DELETE http://ASGServerHost:httpPort/asg/oauth2/access_token/Token_ID

For example,

http://demoserverapi.tibco.com:9322/asg/oauth2/access_
token/T1amGT21.Idup.3446d8984b48a7c0c531267317334ea7

Revoke Token Endpoint

where,

l ASGServerHost is the host name running TIBCO API Exchange Gateway.

l httpPort is the port value for HTTP transport.

l Token_ID is the access token to be revoked.

Sample Response (Revoke Token)

The following is a sample response for revoke token request:

{    

    "id": "429730f4beacf9882992b19f739f4d2e",

    "accessToken": "T1amGT21.Idup.e3a4999fa859deffe8d430e4464382",

    "refreshToken": "T1amGR21.IdKM.a18216e8acbd12fff96dc6f8fe7e8766",

    "secret": "49a8933c-152f-4486-954e-cf85c7eedb16",

    "owner": "CN=Administrator,CN=Users,DC=config2913vm0,DC=ad",

    "client": "379-be9ad58f-ac8a-4c47-bfe8-3ceb9f57ef39",

    "classification": "oauthsoap",

    "scopes": [    

    "oauthsoap"

    ],

    "status": "Active",



TIBCO® API Exchange Gateway User Guide

673 | OAuth Server

    "key": 0,

    "createdOn": 1412193378135,

    "expiresOn": 1412196978229,

    "grantType": "password",

    "samlToken": null,

    "stringId": "429730f4beacf9882992b19f739f4d2e"

}

Accessing Token Persistence
The OAuth server uses ActiveSpaces as caching and persistence layer. The access tokens
are persisted in the database or memory. Use the database in production systems to store
the access tokens. If you choose the memory to store the access tokens, they are lost if the
OAuth server goes down.

To use ActiveSpaces for access tokens persistence, follow these steps:

Procedure
1. Start the Config UI, if not running.

2. Log in to the Config UI using your credentials.

3. On the home page of the Config UI, select the Gateway Engine Properties from the
drop-down list.

4. Click the Security link.

5. Set the OAuth Metaspace properties as explained in the OAuth Data Space.

6. Save the changes.

You can set the following properties for OAuth Data Space in ASG_CONFIG_
HOME/asg.properties file:

tibco.clientVar.oauth.dataspace.metaspace.name

Properties for Access Token Persistence



TIBCO® API Exchange Gateway User Guide

674 | OAuth Server

l Specifies the metaspace name used by the OAuth
server.

l The default value is ASG-OAuth-Tokens.

tibco.clientVar.oauth.dataspace.local.discovery

Specifies the discovery URL for this OAuth instance of the
metaspace discovers the current metaspace members.

For example, tcp://machine1_IP_Address:6300;machine2_
IP_Address:6300

tibco.clientVar.oauth.dataspace.local.listen

Specifies the listening URL for this OAuth instance of the
metaspace.

For example, tcp://machine1_IP_Address:6300

tibco.clientVar.oauth.dataspace.load.batch.size

l Specifies the maximum number of entries to return
when querying data such as an access token.

l The default value is 1024.

l Newest tokens are loaded first.

tibco.clientVar.oauth.dataspace.persister.store

l Defines the type of persistence store. The possible
values are:

o
InMemory
Database

If the Database is set, define the properties
for database server connection.



TIBCO® API Exchange Gateway User Guide

675 | OAuth Server

tibco.clientVar.oauth.dataspace.capacity

Specifies the maximum number of tokens to store in the
local cache.

The default value is 1024.

tibco.clientVar.oauth.dataspace.replication.count

Specifies the number of seeders that are used to
replicate the token. If you have n number of OAuth
servers, set this property to n-1 to replicate the token to
all servers. The default value is -1.

For example, setting this property to 1 means that the
token is replicated to one additional seeder.

tibco.clientVar.oauth.dataspace.replication.policy

Specifies the OAuth access token replication policy when
more than one OAuth servers are configured in a cluster.
The possible policy options are:

l sync: as the tokens are added to the OAuth servers,
they are replicated immediately to all seeders in
the cluster.

l async: as the tokens are added to the OAuth
servers, it does not guarantee that the tokens are
replicated immediately.

The default value is async.

tibco.clientVar.oauth.dataspace.eviction.policy

Specifies how a token lookup request is received for a
token that exists in the database but not in the cache,
and if the cache capacity is reached.

The default value is LRU. This means the token is read



TIBCO® API Exchange Gateway User Guide

676 | OAuth Server

from the database and one token from the cache is
evicted.

Properties For OAuth Server Persister Store of Database Type

oauth.dataspace.persister.jdbc.url=jdbc:mysql://DB_HOST:3306/DB_NAME

To obtain support for JAVA 11 for TLS 1.1, the database
connection string must be modified to supported TLS.

If the database has TLS as mandatory then you must
modify the above property as:

oauth.dataspace.persister.jdbc.url=jdbc:mysql://D
B_HOST:3306/DB_
NAME?enabledTLSProtocols=TLSv1.1,TLSv1.2,TLSv1.3;

Remove the TLS version which is not required.

tibco.clientVar.oauth.dataspace.persister.jdbc.driver

Specifies the database jdbc driver when the database is
used as OAuth persistence store.

tibco.clientVar.oauth.dataspace.persister.jdbc.url

Specifies the jdbc url for the database server when the
database is used as OAuth persistence store.

tibco.clientVar.oauth.dataspace.persister.jdbc.username

Specifies the user to connect to the database server
when the database is used as OAuth persistence store.

tibco.clientVar.oauth.dataspace.persister.jdbc.password

Specifies the password of the user to connect to the
database server when the database is used as OAuth



TIBCO® API Exchange Gateway User Guide

677 | OAuth Server

persistence store.

tibco.clientVar.oauth.access.token.retention.period

Specifies the expiration time (in minutes) for an access
token. The default value is 60 minutes. When the access
token passes expiration time as specified by this
property, it is no longer valid but still remains in the
database. The access token is removed from the
database based on the value specified by the
tibco.clientVar.oauth.access.token.retention.time
property.

tibco.clientVar.oauth.access.token.retention.time

Specifies the retention period (in minutes) for an access
token. The default value is 1440 minutes (1 day) . When
the access token passes retention period as specified by
this property, the token is removed from the database.
By default, the access token is removed from the
database after 1 day.

l The value of
tibco.clientVar.oauth.access.token.retention
.period property must be less than the value
specified by the
tibco.clientVar.oauth.access.token.retention
.time property.

l Note: In a multi-instance TIBCO API Exchange
environment, if you change the TTL value on a
gateway instance, shut down all instances that
connect to that metaspace and then restart the
instances.

tibco.clientVar.oauth.refresh.token.grace.period

Specifies the grace period (in minutes) for the refresh



TIBCO® API Exchange Gateway User Guide

678 | OAuth Server

token to be active. During the grace period same refresh
token can be used to create another access token. The
default value is 0 minutes which means it is disabled. By
default, everytime a refresh token is used it creates a
new access token and refresh token. When you specify
the value (in minutes), then for that duration specified in
the value same refresh token can be used to create
another access token.

Authorization API
The OAuth server provides the following API to authorize a request:

Name
/authorize

Description
Process an authorization request.

Authorization Request
Use the following parameters to send an authorization request. The parameters can be
added to the query component of the authorization endpoint URI using the "application/x-
www-form-urlencoded" format.

Parameter Description

response_type The value must be set to code.

Required.

client_id The client identifier issued to the

Authorization Request Parameters



TIBCO® API Exchange Gateway User Guide

679 | OAuth Server

Parameter Description

client by the authorization server
during the registration process.

Required.

redirect_uri The URL where the authorization
server sends the authorization
code.

Optional.

Refer to Section 3.1.2 of RFC 6749
for details.

scope Specifies the scope of the access
request.

Refer to Section 3.3 of RFC 6749
for details.

Optional.

state Specifies an opaque value used
by the client to maintain the state
between the request and
callback. The authorization server
includes the state value when
redirecting the user-agent back to
the client.

Optional.

Authorization Request Example

The client directs the user-agent to make the following HTTP request using TLS:

GET /asg/oauth2/authorize?response_type=code&client_
id=s6BhdRkqt3&state=xyz

&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1



TIBCO® API Exchange Gateway User Guide

680 | OAuth Server

Host: server.example.com

Authorization Response
The authorization server processes the authorize request from client as follows:

l Issues an authorization code

l Adds the parameters as described in the following table to the query component of
the redirection URI using "application/x-www-form-urlencoded" format

l Delivers the authorization code to the client

Parameter Description

code The authorization code generated
by the authorization server.

Required.

Refer to Section 4.1.2 of RFC 6749
for details.

state Refers to the exact state
parameter value as received from
the client. This is required if the
state parameter was present in
the client authorization request.

Authorization Response Parameters

Authorization Response Example

The authorization server redirects the user-agent by sending the following HTTP response.

HTTP/1.1 302 Found

Location: https://client.example.com/cb?code=SplxlOBeZQQYbYS6WxSbIA



TIBCO® API Exchange Gateway User Guide

681 | OAuth Server

Authorization Error
The authorization server returns an error response if the request processing fails. The
processing of the request fails due to one of the following reasons:

l Missing, invalid, or mismatching redirection URI

For this case, the authorization server informs the resource owner of the error and
does not automatically redirect the user-agent to the invalid redirection URI.

l Missing or invalid client identifier

For this case, the authorization server informs the resource owner of the error and
does not automatically redirect the user-agent to the invalid redirection URI.

l Resource owner denies the access request

The authorization server informs the client by adding the following parameters to the
query component of the redirection URI using the application/x-www-form-
urlencoded format.

Parameter Description

error Specifies a single error code
returned from the authorization
server.

Required.

Refer to Authorization Error table
for the error codes.

state Refers to the exact state
parameter value as received from
the client. This is required if the
state parameter was present in
the client authorization request.

Authorize Request Error Parameters



TIBCO® API Exchange Gateway User Guide

682 | OAuth Server

Error
Code

Description

invalid_request

The request is missing a required parameter, includes an invalid parameter value,
includes parameter more than once, or is otherwise malformed.

unauthorized_client

The client is not authorized to request an authorization code using this method.

access_denied

The resource owner or authorization server denied the request.

unsupported_response_type

The authorization server does not support obtaining an authorization code using
this method.

invalid_scope

The requested scope is invalid, unknown, or malformed.

server_error

The authorization server encountered an unexpected condition that prevented it
from fulfilling the request. This error code is needed because a 500 Internal
Server Error HTTP status code cannot be returned to the client via an HTTP
redirect.

Authorize Request Error Codes

Authorization Error Example

The authorization server redirects the user-agent by sending the following HTTP response:

HTTP/1.1 302 Found

Location: https://client.example.com/cb?error=access_denied



TIBCO® API Exchange Gateway User Guide

683 | OAuth Server

Token Request API
To request an access token from the OAuth server, use the following API:

Name
/access_token

Description
Processes an access token request.

Access Token Request
The client makes a request to the token endpoint by sending the following parameters
using the application/x-www-form-urlencoded format with a character encoding of UTF-8
in the HTTP POST request:

grant_type Required. The value must be set
to authorization_code.

code Required. The authorization code
received from the authorization
server.

redirect_uri Required, if the redirect_uri
parameter was included in the
authorization request. The value
must match the redirect_uri value
sent in the authorization request.

client_id Required, if the client is not

Access Token Request Parameters



TIBCO® API Exchange Gateway User Guide

684 | OAuth Server

authenticating with the
authorization server.

scope Optional. Specifies the scope of
the access request.

Access Token Request Example

To request an access token for the authorization code flow, the client makes the following
HTTP POST request using TLS:

POST /asg/oauth2/access_token HTTP/1.1

Host: server.example.com

Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA

&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

Access Token Response
If the access token request is valid and authorized, the authorization server issues an
access token and an optional refresh token. The refresh token may be returned only for
authorization code flow.

Access Token Response Example

The following is a successful response:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache



TIBCO® API Exchange Gateway User Guide

685 | OAuth Server

{ 

"access_token":"2YotnFZFEjr1zCsicMWpAA",

"token_type":"example",

"expires_in":3600,

"refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",

"example_parameter":"example_value"

}

Access Token Request Error
If the request client authentication failed or is invalid, the authorization server returns an
error response. The authorization server responds with an HTTP 400 status code (unless
specified otherwise) and includes the following parameters with the response:

Parameter Description

error Specifies a single error code
returned from the authorization
server.

Required.

Refer to table Access Token
Request Error Codes for the error
codes.

Access Token Error Parameter

The following table lists the error codes for the error returned for an invalid token request:



TIBCO® API Exchange Gateway User Guide

686 | OAuth Server

Error
Code

Description

invalid_request

The request is missing a required parameter, includes an unsupported parameter
value (other than grant type), repeats a parameter, includes multiple credentials,
utilizes more than one mechanism for authenticating the client, or is otherwise
malformed.

invalid_client

Client authentication failed (e.g., unknown client, no client authentication
included, or unsupported authentication method). The authorization server MAY
return an HTTP 401 (Unauthorized) status code to indicate which HTTP
authentication schemes are supported. If the client attempted to authenticate via
the “Authorization” request header field, the authorization server MUST respond
with an HTTP 401 (Unauthorized) status code and include the "WWW-Authenticate"
response header field matching the authentication scheme used by the client.

invalid_grant

The provided authorization grant (e.g., authorization code, resource owner
credentials) or refresh token is invalid, expired, revoked, and does not match the
redirection URI used in the authorization request, or was issued to another client.

unauthorized_client

The authenticated client is not authorized to use this authorization grant type.

unsupported_grant_type

The authorization grant type is not supported by the authorization server.

invalid_scope

The requested scope is invalid, unknown, malformed, or exceeds the scope
granted by the resource owner.

Access Token Request Error Codes



TIBCO® API Exchange Gateway User Guide

687 | OAuth Server

Error
Code

Description

error_description

Optional. Human-readable ASCII [USASCII] text providing additional information,
used to assist the client developer in understanding the error that occurred.

error_uri

Optional. A URI identifying a human-readable web page with information about the
error, used to provide the client developer with additional information about the
error.

Access Token Error Example

The following is an example of the error response for an access token request:

HTTP/1.1 400 Bad Request

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{ 

"error":"invalid_request"

}

Token Validation API
To validate an access token issued by the authorization server of TIBCO API Exchange
Gateway, use the following API:



TIBCO® API Exchange Gateway User Guide

688 | OAuth Server

Name
/access_token

Description
Validates the access token and returns the token information.

Token Validation Request
To send a validate access token request, use the following parameters to the query
component of the authorization endpoint URI using the "application/x-www-form-
urlencoded" format in the HTTP GET request:

Parameter Description

access_token Specifies the access_token issued
by the authorization server.

Required.

Token Validation API Parameters

Token Validation Request Example

To validate an access token issued by the authorization server, send an HTTP GET request
using TLS with the following parameter:

Send the following HTTP request using TLS:

GET /asg/oauth2/access_token/2YotnFZFEjr1zCsicMWpAA HTTP/1.1

Host: server.example.com

Token Validation Response
If the access token request is valid and authorized, the resource server returns the data
associated with the access token, which can be used to query the resources.



TIBCO® API Exchange Gateway User Guide

689 | OAuth Server

Parameter Description

access_token Specifies the access_token issued
by the authorization server.

Required.

resource_uri Optional, if identical to the scope
requested by the client;
otherwise, Required.

access_token Optional, if identical to the scope
requested by the client;
otherwise, Required.

Token Validation Response Parameters

Token Validation Response Example

The successful response is as follows:

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{ 

"access_token":"2YotnFZFEjr1zCsicMWpAA",

"expires_in":3600,

"resource_uri":"https://fairlawn.bookclub.org/member/friend",

"scope":"friends"

}



TIBCO® API Exchange Gateway User Guide

690 | OAuth Server

Token Validation Error
The authorization server responds with an HTTP 400 (Bad Request) status code (unless
specified otherwise) and includes the following parameters with the response:

Parameter Description

error Specifies a single error code
returned from the authorization
server.

Required.

Refer to table Token Validation
Error Codes for the error codes.

Token Validation Error Parameters

Error
Code

Description

invalid_request

The request is missing a required parameter, includes an unsupported parameter
value (other than grant type), repeats a parameter, includes multiple credentials,
utilizes more than one mechanism for authenticating the client, or is otherwise
malformed.

invalid_grant

The provided authorization grant (e.g., authorization code, resource owner
credentials) or refresh token is invalid, expired, revoked, does not match the
redirection URI used in the authorization request, or was issued to another client.

error_description

Optional. Human-readable ASCII [USASCII] text providing additional information,
used to assist the client developer in understanding the error that occurred.

Token Validation Error Codes



TIBCO® API Exchange Gateway User Guide

691 | OAuth Server

Error
Code

Description

error_uri

Optional. A URI identifying a human-readable web page with information about the
error, used to provide the client developer with additional information about the
error.

Note: Values for the invalid_grant, error_description, and error_uri, parameters
must not include characters outside the set %x20-21 / %x23-5B / %x5D-7E.

Token Validation Error Example

The error response is a HTTP response using the "application/json" media type as follows:

HTTP/1.1 400 Bad Request

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{ 

"error":"invalid_grant"

}

Retrieve Access Token
The authorization server maintains the list of tokens that it has issued. The tokens can be
retrieved using the REST API.

The following are the REST APIs to retrieve the tokens:



TIBCO® API Exchange Gateway User Guide

692 | OAuth Server

Retrieving all tokens

GET /asg/oauth2/access_token/owners HTTP/1.1

Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

Host: server.example.com

Retrieving tokens for specific owner

GET /asg/oauth2/access_token/{ownerID} HTTP/1.1

Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

Host: server.example.com

Retrieve Token Response Example

The response of the API is list of tokens in JSON format. The example of the response of
the API call is as follows:

[ 

{ 

…

}

{ 

"id": "f0c997d31db2f8945ef63115d04783",

"owner": "uid=john,ou=owner,dc=tibco,dc=com",

"client": "playground",

"scopes": "public",

"accessToken": "3f8f4bfe51b7a99455e3a6bfccaf12b5",



TIBCO® API Exchange Gateway User Guide

693 | OAuth Server

"refreshToken": "e118715f2783d1cfe11e17e5c4b93318",

"createdOn": 1381246937747,

"expiresOn": 1381250541022,

"callback": "https://appHost:8080/site/client/callback",

"contact": "John Doe",

"email": “john.doe@tibco.com",

"stringId": "f0c997d31db2f8945ef63115d04783"

}

{ 

…

}

]

Revoke Token API
Send a revoke token request to remove the client permissions associated with a valid
token.

Name
/access_token

Description
Revoke the permissions associated with a valid access token.



TIBCO® API Exchange Gateway User Guide

694 | OAuth Server

Revoke Token Request
To send a request to revoke an access, use the following parameters to the query
component of the authorization endpoint URI using the "application/x-www-form-
urlencoded" format:

Parameter Description

access_token Specifies the access_token issued
by the authorization server.

Required.

Token Validation Request Parameters

Revoke Token Request Example

Send the following HTTP DELETE request to revoke an access token:

DELETE /asg/oauth2/access_token/{tokenID} HTTP/1.1

Host: server.example.com

Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

Content-Type: application/x-www-form-urlencoded

OAuth Service Provider Interfaces
Overview of OAuth service provider interfaces.

This section describes the service provider interfaces supported by the TIBCO API Exchange
Gateway OAuth server.

The OAuth server is capable of extending the OAuth authorization processing via Java-
based service provider interfaces. The service provider interface implementations are
implemented in plug-ins which are loaded during startup. Using this functionality, you can
implement custom adapters.

The following service provider interfaces are supported:



TIBCO® API Exchange Gateway User Guide

695 | OAuth Server

l Owner service provider interface

l Client service provider interface

l Scope service provider interface

Owner Service Provider Interface
Provides an interface to authenticate the resource owner.

The owner service provider interface is used by the OAuth server to authenticate the
resource owner during the authorization code flow, and to obtain attributes of the resource
owner. In addition to authenticate the owner, the owner service provider interfaces are
responsible for redirecting the client applications to login and access grant page.

Owner Service Provider Interface (SPI) Flow
The following figure illustrates the flow for owner service provider interface.

Owner SPI Flow



TIBCO® API Exchange Gateway User Guide

696 | OAuth Server

Owner Service Provider Interface (SPI) Java API
The following is the Java API of the owner service provider interface:

/**
* OwnerAdapter is the interface use by OpenID Provider to authenticate
* the resource owner.
* <p/>
* A OwnerAdapter may be implemented using LDAP, database, 3rd party *
ISP, or a combination of those.
*
*/
public interface OwnerAdapter {

/**
* This method is called when the instance of the adapter is first

loaded.
* The properties is a map of properties from SecurityRuntime.cfg.
* The adapter may initialize itself using these properties.
*
* @param properties a map of properties from SecurityRuntime.cfg.
*/
public void init(Map<String, String> properties);

/**
* Authenticate the owner with the specify username and password.
*
* @param username username to authenticate.
* @param password password to authenticate.
* @return a OwnerResult that has the result of the authentication.
* @see OwnerResult which will has the owner profile or error from

the authentication.
*/

public OwnerResult authenticateOwner(String username, String
password);

/**
* Process login redirects owner to a login page for resource owner

to login.
* The login page could be a form with j_username and j_password

which will be posted to
* the resumeUrl. When resumeUrl received the post request, it will
* authenticate the j_username and j_password with

#authenticateOwner.
* If authenticateOwner failed, processLogin is called again.
*
* @param request servlet request of the incoming request
* @param response servlet response of the incoming request
* @param resumeUrl the url to return to after login is done.
*

* @throws ServletException



TIBCO® API Exchange Gateway User Guide

697 | OAuth Server

* @throws IOException an exception if failed to redirect.
*/

public void processLogin(HttpServletRequest request,
HttpServletResponse response, String message, String resumeUrl)

throws ServletException, IOException;
/**

* Process grant access redirects owner to a grant access for
resource owner to

* grant access to the client based on the scopes.
*
* The login page could be a form with j_username and j_password

which will be posted to
* the resumeUrl. When resumeUrl received the post request, it will
* authenticate the j_username and j_password with

#authenticateOwner.
* If authenticateOwner failed, processLogin is called again.
*
* @param request servlet request of the incoming request
* @param response servlet response of the incoming request

* @param client the client to grant access to.
* @param scopes an array of discription of scopes that the client

wish to access
* @param resumeUrl the url to return to after login is done.

*
* @throws ServletException

* @throws IOException an exception if failed to redirect.
*/
public void processGrantAccess(HttpServletRequest request,

HttpServletResponse response, String client, String[]
scopes, String resumeUrl)

throws ServletException, IOException;
}

Client Service Provider Interface
Provides an interface to authenticate a client.

The client service provider interface is used by the OAuth server to authenticate a client
when the client is requesting the access token during the authorization code or client
credential flow. It enables the OAuth server to authenticate the client and obtain attributes
of the client.



TIBCO® API Exchange Gateway User Guide

698 | OAuth Server

Client Service Provider Interface (SPI) Flow
The following figure illustrates the flow for client service provider interface.

Client SPI Flow

Client Service Provider Interface (SPI) Java API
The following is the Java API of the client service provider interface:

/**
* ClientAdapter is the interface use by OpenID Provider to authenticate

client.
* It is also for OpenID Provider to retrieve the clients scopes.
* <p/>
* A ClientAdapter is implemented by Portal Service who manages the

client registration.
*
*/

public interface ClientAdapter {
/**
* This method is called when the instance of the adapter is first

loaded.
* The properties is a map of properties from SecurityRuntime.cfg.
* The adapter may initialize itself using these properties.
*
* @param properties a map of properties from SecurityRuntime.cfg.
*/
public void init(Map<String, String> properties);

/**
* Authenticate the client with the specify id and secret.
*
* @param clientId client id to authenticate.
* @param secret secret to authenticate.
* @return a DirectoryResult that has the result of the

authentication.
*/

public ClientResult authenticateClient(String clientId, String
secret);



TIBCO® API Exchange Gateway User Guide

699 | OAuth Server

/**
* Retrieve scopes for the specify client.
*
* @param clientId the clientId to retrieve the scope.
* @return return a map that contains information of the scopes.
* scope -> array of scopes
* description -> array of descriptions
* @throws AdapterException an exception if failed to retrieve the

scopes of the client.
*/

public Map<String, String> getClientAttributes(String clientId)
throws AdapterException;

}

getAttributes

The required attributes for getAttributes are as follows:

Attribute Description

dn Specifies the distinguish name for the client

oidcClientID Specifies the unique ID for the client

oidcClientRedirectURI Specifies the redirect or callback URL

scopes Specifies a list of comma separated scopes

Required Attributes For getAttributes

Sample attributes:

The following table shows the sample attributes:

Attribute Sample Value

oidcClientID playground

dn oidcClientIDplayground

ou client



TIBCO® API Exchange Gateway User Guide

700 | OAuth Server

Attribute Sample Value

dc tibco

scopes public playground

oidcClientRedirectURI https://redirectHost/site/client/redirectEndpoint

oidcAppName Playground

oidcAppLogoURL https://redirectHost/site/client/logo

oidcClientEmail playground.asg@tibco.com

Scope Service Provider Interface
Provides an interface to retrieve the scope details.

The scope service provider interface is used by the OAuth authorization server for the
following actions:

l Retrieve the description of the scopes

l Retrieve the scopes for a specified owner and resource to access

Scope Service Provider Interface (SPI) Flow
The following figure Scope SPI Flow illustrates the flow for scope service provider interface.



TIBCO® API Exchange Gateway User Guide

701 | OAuth Server

Scope SPI Flow

Scope Service Provider Interface (SPI) Java API
The following is the Java API of the scope (token) service provider interface:

/**
* ScopeAdapter is the interface use by OpenID Provider to retrieve

client's
* scope and scope for a specific resource for a user.
*

*/
public interface ScopeAdapter
{

/**
* This method is called when the instance of the adapter is first

loaded.
* The properties is a map of properties from SecurityRuntime.cfg.
* The adapter may initialize itself using these properties.
*
* @param properties a map of properties from SecurityRuntime.cfg.
*/
public void init(Map<String, String> properties);
/**
* Returns descriptions for specified scopes
*
* @param scopes the scopes to retrieve the descriptons for.
* @return the descriptions for specified scopes
* @throws AdapterException an exception if failed to retrieve the



TIBCO® API Exchange Gateway User Guide

702 | OAuth Server

scopes' descriptions.
*/
public String[] getDescriptions(String[] scopes)

throws AdapterException;
/**
* Retrieve scopes for the resource a specified owner.
*
* @param owner the owner to resource.
* @param resource the resource for the scope to retrieve.
* @param resourceAttributes attributes of the resources
* @return scopes for the resource a specified owner.
* @throws AdapterException an exception if failed to retrieve the

scopes of
* the resource.
*/
public String[] getResourceScopes(String owner, String resource,

Map<String, String> resourceAttributes)
throws AdapterException;

}

Deploying Custom Adapters
Use the custom adapters to implement the service provider interfaces.

The custom adapters implement the service provider interfaces for OAuth server. To enable
the OAuth server to use the custom adapters, deploy TIBCO API Exchange Gateway on the
same machine where the Identity service provider of the OAuth server runs.

To deploy the custom adapters, follow these steps:

Procedure
1. Copy the Adapters Jar Files.

Copy the jars containing the implementation class of the adapters and their
dependencies to ASG_HOME/lib/ext/tpcl directory.

2. Set OAuth Adapter Properties

Set the OAuth adapter properties using the Config UI. OAuth adapter properties
settings are described in the Properties For OAuth Adapters section..



TIBCO® API Exchange Gateway User Guide

703 | OAuth Server

Note:
l You can set the OAuth server adapter properties in the ASG_CONFIG_

HOME/asg.properties file. Refer to Properties For OAuth Adapters for
properties details.

l If the custom adapters use external resources and require
configuration, the custom adapters will need to obtain the
configuration accordingly.

For example, the file adapters for owner, client and scope use the
following resource files containing the configuration and are found in
ASG_HOME/examples/OAuth/resources directory :

o clients.properties

o owners.properties

o scopes.properties

Default Adapters
By default, TIBCO API Exchange Gateway provides the following adapters:

Client Adapter
List of default client adapters.

Out of the box, the following client adapters are supported:

l File

l Portal Engine of TIBCO API Exchange Manager

Owner Adapter
List of default owner adapters.

Out of the box, the following owner adapters are supported:

l File

l LDAP



TIBCO® API Exchange Gateway User Guide

704 | OAuth Server

Scope Adapter
List of default scope adapters.

Out of the box, the following owner adapters are supported:

l File



TIBCO® API Exchange Gateway User Guide

705 | Gateway Management Features

Gateway Management Features
Overview of Gateway management components.

This section explains the functionality of TIBCO API Exchange Gateway management
components. It consists of following topics:

l Central Logger

l Central Logger Database

l Global Throttle Manager

l Cache Cleanup Agent

Central Logger
This section explains the functionality of Central Logger component of TIBCO API Exchange
Gateway.

Overview
The Central Logger component provides the centralized logging. Each instance of the Core
Engine publishes events during its operation. The Central Logger component receives the
events from the management bus as messages. The Central Logger stores the messages in
the database. The Core Engine instance aggregates events in memory and publishes the
messages at configured intervals in order to reduce the disk load during high transaction
rates.

The Central Logger communicates with the Core Engine using the following transports:

l Rendezvous (RV): This is the default transport.

l Java Message Service (JMS). See Enable JMS Channel for Central Logger.

l ActiveSpaces (AS). See Enabling AS Transport.

Pre-requisites

The Central Logger component audit logs the transactions in a database. Make sure to
configure and setup a database server for the functionality of the Central Logger



TIBCO® API Exchange Gateway User Guide

706 | Gateway Management Features

component. See Database Setup and Configuration for Central Logger

Database Setup and Configuration for Central Logger
This section explains the steps required to configure the database and the database drivers
for the Central Logger component of TIBCO API Exchange Gateway.

Database Location
Instructions in this section assume you are working with a local database for testing
purposes. Adapt the instructions if you are working with a remote database. For example,
in production environments, you might have to ask a database administrator to create a
database and a database user for you.

Note: Make sure that you have access to a running database server instance
required for the Central Logger component.

Task A Setup Database Driver
l Copy the appropriate JDBC driver jar file to the ASG_HOME/lib/ext/tpcl directory. See

the product readme file for the supported versions of database drivers.

For example, database jar file for MySql database is:

      mysql-connector-java-5.1.22-bin.jar

For example, database jar file for Oracle database is:

      ojdbc6.jar

For example, database jar for SQL Server database is:

      sqljdbc4.jar

For example, database jars for DB2 database is:

      db2jcc.jar      db2jcc_license_cu.jar



TIBCO® API Exchange Gateway User Guide

707 | Gateway Management Features

Task B Creating a Database
Depending on your environment, you might have to ask your database administrator to
create a database or use an existing database. For example, for MySql database server, you
can create a local database for your testing purposes.

For production environments using Oracle, DB2 and MS SQL Server database server, ask
your database administrator to create a database such as asgstat for the Central Logger
component of TIBCO API Exchange Gateway.

This section lists the steps to create a database for testing purposes using MySql database
server. You must contact your database administrator to use appropriate database for
production requirements.

Procedure
1. Verify that the MySql database server is running.

2. Log on to the database server using the command:

   mysql -uroot -p

3. Enter the password when prompted.

   Enter password:

4. Type the following command at the mysql command prompt to create a new
database:

   create database asgstat;

5. Verify that the asgstat database is created.

Note:
l Refer to http://dev.mysql.com/doc/refman/5.5/en/creating-
database.html link for more information.

Task C Creating a Database User
For testing purposes, this section explains the steps required to create the database user
with appropriate privileges in a database, using the MySql database server.



TIBCO® API Exchange Gateway User Guide

708 | Gateway Management Features

Note: For production systems using Oracle, SQL Server and DB2 database server,
work with your database administrator to create a database user in the
appropriate database.

Procedure
1. Verify that you are connected to the MySql database server as a root user. If not, type

the command:

   mysql -u root -p

2. Type the following command at the mysql command prompt to create a new user:

   create user ’asguser’ identified by ’asgpass’;

3. To grant the appropriate privileges to the database user, type the following
command at the mysql command prompt:

   grant create,select,insert,update on asgstat.* to asguser@'%'
   identified by ’asgpass’;

4. Type the following command to reload the privileges from the grant tables in the
database:

   flush privileges;

l For Oracle Database

Ask your database administrator to create a database user (for example
asguser) and grant the connect,resource privileges to this user.

l For MS SQL Server Database

Ask your database administrator to create a database user (for example
asguser) and grant create,select,insert,update privileges to this user.

l For DB2 Database

Ask your database administrator to create a database user (for example
asguser) and grant ALL,CONTROL,CONNECT,insert,SELECT privileges to this
user.



TIBCO® API Exchange Gateway User Guide

709 | Gateway Management Features

Task D Setting up the Database Schema
This section explains the steps to create the database tables in the database required for
the Central Logger component.

For MySql Database

Procedure
1. Navigate to the following directory:

ASG_HOME/templates/database/mysql

2. Type the following command at the command prompt:

   mysql -D asgstat -u asguser -pasgpass <
createAsgTransactions.sql
   mysql -D asgstat -u asguser -pasgpass < createAsgKpis.sql

For Oracle Database

Procedure
1. Navigate to the following directory:

ASG_HOME/templates/database/oracle

2. Type the following command at the command prompt: (Replace SID with the actual
oracle database SID name):

   sqlplus asguser/asgpass@SID @createAsgTransactions.sql
   sqlplus asguser/asgpass@SID @createAsgKpis.sql

For SQL Server Database

Procedure
1. Navigate to the following directory:



TIBCO® API Exchange Gateway User Guide

710 | Gateway Management Features

ASG_HOME/templates/database/sqlserver

2. Type the following command at the command prompt:

   isql -Usa -d asgstat -i createAsgTransactions.sql
   isql -Usa -d asgstat -i createAsgKpis.sql

For DB2 Database

Procedure
1. Navigate to the following directory:

ASG_HOME/templates/database/db2

2. Type the following command on DB2 console:

   db2 -tvsf createAsgTransactions.sql
   db2 -tvsf createAsgKpis.sql

Task E Setting up the Database Connection Parameters
This section explains the steps required to setup the parameters to connect to the
database.

Procedure
1. Open the ASG_CONFIG_HOME/asg/asg_cl.properties file for editing.

2. Edit the following parameters to provide the values to connect to the appropriate
database:

   tibco.clientVar.CL/Database/Driver=database driver type
   tibco.clientVar.CL/Database/Url=database url
   tibco.clientVar.CL/Database/Username=database user name
   tibco.clientVar.CL/Database/Password=database password

For example, the values are shown for MySql database as follows:



TIBCO® API Exchange Gateway User Guide

711 | Gateway Management Features

   tibco.clientVar.CL/Database/Driver=com.mysql.jdbc.Driver

   tibco.clientVar.CL/Database/Url=jdbc:mysql://localhost:3306/asgs
tat
   tibco.clientVar.CL/Database/Username=asguser
   tibco.clientVar.CL/Database/Password=asgpass
   tibco.clientVar.CL/Database/Schema=asgstat

If the database has TLS as mandatory then you must modify the above property as:

tibco.clientVar.CL/Database/Url=jdbc:mysql://localhost:3306/asgstat
?enabledTLSProtocols=TLSv1.1,TLSv1.2,TLSv1.3;

Remove the version that is not required or supported.

For example, the values are shown for Oracle database as follows:

   tibco.clientVar.CL/Database/Driver=com.oracle.jdbc.Driver
   tibco.clientVar.CL/Database/Url=jdbc:oracle:thin:@localhost:
   1521:ORCL
   tibco.clientVar.CL/Database/Username=asguser
   tibco.clientVar.CL/Database/Password=asgpass
   tibco.clientVar.CL/Database/Schema=asgstat

For example, the values are shown for SQL Server database as follows:

   tibco.clientVar.CL/Database/Driver=com.microsoft.sqlserver.jdbc 
  .SQLServerDriver

   tibco.clientVar.CL/Database/Url=jdbc:sqlserver://localhost:1433 
  ;databaseName=asgstat
   tibco.clientVar.CL/Database/Username=asguser
   tibco.clientVar.CL/Database/Password=asgpass
   tibco.clientVar.CL/Database/Schema=dbo

For example, the values are shown for DB2 database as follows:

   tibco.clientVar.CL/Database/Driver=com.ibm.db2.jcc.DB2Driver

   tibco.clientVar.CL/Database/Url=jdbc:db2://localhost:50000/asgst
at



TIBCO® API Exchange Gateway User Guide

712 | Gateway Management Features

   tibco.clientVar.CL/Database/Username=asguser
   tibco.clientVar.CL/Database/Password=asgpass
   tibco.clientVar.CL/Database/Schema=asgstat

Note: For the database Url field, replace localhost with the host name
where database server runs, as required.

Runtime Properties For Central Logger
See Runtime Properties of Central Logger for details.

Enabling Reporting to the Central Logger
By default, the reporting is not enabled to the Central Logger. Enable the reporting as
follows:

Procedure
1. Open the ASG_CONFIG_HOME/asg.properties file for editing.

2. Search the following section in the file:

# Turn on or off reporting to CL

tibco.clientVar.ASG/Logging/reportingEnabled=false

3. To enable the reporting, set the value as:
tibco.clientVar.ASG/Logging/reportingEnabled=true

4. Save the changes in the file and close the editor.

Note: When the detail level logging is enabled for the Central Logger, the
Core Engine logs the complete HTTP headers (such as Client IP, Host),
SOAPAction, and Service URI of the request message into the ASG_
TRANSACTIONS_DETAILS database table. The SOAPAction, Service URI and
headers information is stored in the DET_SOAPACTION, DET_SERVICEURI,
DET_HTTPHEADERS columns respectively.



TIBCO® API Exchange Gateway User Guide

713 | Gateway Management Features

Running the Central Logger
This section explains the steps to run the Central Logger.

Procedure
1. Open a terminal window.

2. Navigate to ASG_HOME/bin directory.

3. Type the following command to start the Central Logger:

   /asg-engine -u asg-cl -a asg_config_name

For example: asg-engine -u asg-cl -a APIExchange

Note: Before you run the Central Logger, confirm that the Core Engine is
running in Cache Agent enabled mode. This means that the Core Engine is
running with asg-caching-core processing unit.

Central Logger Database
The Central Logger stores the transactions and transaction details in the database tables.

Note: When the database is down, there is a failure to store the data in the EMS
message queues until the Central Logger establishes communication with the
database.

Database Tables
The database schema includes the following tables:

l ASG_TRANSACTIONS

l ASG_TRANSACTION_DETAILS

l ASG_TRANSACTION_MESSAGES

l ASG_TRANSACTION_KEYS



TIBCO® API Exchange Gateway User Guide

714 | Gateway Management Features

l ASG_THROTTLE_MESSAGES

l ASG_THROTTLE_USAGE

l ASG_KPI

l ASG_LOG_MESSAGES

Schema Details

The following figure shows the schema details for the Central Logger database.



TIBCO® API Exchange Gateway User Guide

715 | Gateway Management Features

Central Logger Database Schema

ASG_TRANSACTIONS Table

The ASG_TRANSACTIONS table contains the basic statistics such as facade operation name,
target operation name, routing key, the name of the Core Engine for each request. The
Central Logger inserts one transaction record for each request in this table.



TIBCO® API Exchange Gateway User Guide

716 | Gateway Management Features

Field Name Description

TRN_GUID The primary key as an unique reference for the
transaction.

GUID is generated automatically by the Central
Logger component.

TRN_TIMESTAMP The time of the request.

TRN_SITE The site name which accepts the request. You
can use different gateway sites or environments
for TIBCO API Exchange Gateway product.

The value for the TRN_SITE field is populated
from the Common/Deployments/SiteNumber
global variable defined in the ASG_CONFIG_
HOME/asg_cl.properties file. The default value
of Common/Deployments/SiteNumber is 1.

Note: For 1.2.x release, the value for the TRN_
SITE field is populated from the
CL/Logging/siteNumber global variable
defined in the ASG_CONFIG_HOME/asg_
cl.properties file.

TRN_ENGINE The name of the engine which processes the
transaction request.

You can assign different engine names when
starting the Gateway core engine. The engine
name can be specified using -n parameter to
asg-engine command on the command line.

TRN_SOURCE The partner name, such as anon, who is the
requestor of the operation.

TRN_TARGET The value returned from the OpCo field of the
parsing step of the request processing.

Columns of ASG_TRANSACTIONS Table



TIBCO® API Exchange Gateway User Guide

717 | Gateway Management Features

Field Name Description

TRN_FACADE_OPERATION The facade operation name.

TRN_FACADE_SERVICE The facade service name. Not currently used,
might be used in future.

TRN_ROUTING_KEY The evaluated routing key used to determine
the target operation.

TRN_TARGET_OPERATION The target operation name or the target
operation group.

TRN_TARGET_SERVICE The target service name. Not currently used,
might be used in future.

TRN_TRANSACTION_ID The transaction id passed with the request.

TRN_FACADE_I_TIME The ingress (reception) time (in milliseconds)
for the facade operation message.

TRN_ROUTER_I_TIME The egress (emission) time (in milliseconds) for
the first target operation message.

TRN_FACADE_E_TIME The egress (emission) time (in milliseconds) for
the northbound message.

TRN_ROUTER_E_TIME The (reception) time (in milliseconds) for the
last target operation message.

TRN_FACADE_DURATION The total time (in milliseconds) spent in the
gateway.

TRN_ROUTER_DURATION The total time (in milliseconds) waiting for the
response from the back-end service (target
operation).

TRN_STATUS The completion status of the transaction.



TIBCO® API Exchange Gateway User Guide

718 | Gateway Management Features

Field Name Description

TRN_ERROR_CODE The error code for the transaction, if the
transaction finished with error.

TRN_ERROR_MESSAGE The error message for the transaction, if the
transaction finished with error.

TRN_APP_ID The application ID.

TRN_APP_NAME The name of the application.

TRN_PRODUCT_ID The product ID.

TRN_PRODUCT_NAME The name of the product.

TRN_PARTNER_ID The ID of the partner.

TRN_CORRELATION_ID The correlation id of the request message.

TRN_REQUEST_PAYLOAD_SIZE

TRN_RESPONSE_PAYLOAD_SIZE

ASG_TRANSACTION_DETAILS Table

The ASG_TRANSACTION_DETAILS table contains the transaction details of the request and
response messages exchanged between the facade operation and target operation of the
back-end service. The Central Logger inserts six detail rows for each transaction request.

Note: The ASG_TRANSACTION_DETAILS table is populated only when you enable
the detail logging. The detail level logging is set in the ASG_CONFIG_
HOME/asg.properties file, using the following property:

tibco.clientVar.ASG/Logging/clLogLevel



TIBCO® API Exchange Gateway User Guide

719 | Gateway Management Features

Field Name Description

DET_TRN_GUID The reference to the transaction in the ASG_
TRANSACTIONS table.

DET_SEQ The sequence order number of the transaction.

DET_TYPE The type of the message. The possible values are:

l nb.request

l cn.request

l sb.request

l sb.response

l cn.response

l nb.response

DET_BODY The body of the request or response payload.

DET_SERVICEURI The Service URI from the HTTP headers of request
payload.

DET_SOAPACTION The SOAPAction from the HTTP headers of request
payload.

DET_HTTPHEADERS The complete HTTP headers of request payload.

DET_PAYLOAD_SIZE

Columns of ASG_TRANSACTION_DETAILS Table

ASG_TRANSACTION_MESSAGES Table

The ASG_TRANSACTION_MESSAGES table contains the record of log messages reported
during the message processing.



TIBCO® API Exchange Gateway User Guide

720 | Gateway Management Features

Field Name Description

MSG_TRN_GUID The reference to the transaction in the ASG_
TRANSACTIONS table.

MSG_SEQ The sequence number of the transaction log message.

MSG_TIMESTAMP The time of the transaction log message.

MSG_LEVEL The severity of the transaction log message.

MSG_TEXT The text of the transaction log messages related to stages
in the lifecycle.

Columns of ASG_TRANSACTION_MESSAGES Table

ASG_TRANSACTION_KEYS Table

The ASG_TRANSACTION_KEYS table stores the reference data passed in the body of request
message. An example is the customer reference data sent in the request message.

Field Name Description

KEY_TRN_GUID The foreign key reference to the transaction in
the ASG_TRANSACTIONS table.

KEY_VALUE The transaction key name such as
tel:4366412345678.

KEY_TYPE The key type of the transaction message. The
type of the transaction message is populated
from the address element in the
transformation xslt file specified for the parse
output document.

Columns of ASG_TRANSACTION_KEYS Table



TIBCO® API Exchange Gateway User Guide

721 | Gateway Management Features

ASG_THROTTLE_USAGE Table

The ASG_THROTTLE_USAGE table stores the usage information related to throttles and
subscriptions.

Field Name Description

THU_GUID An unique ID of the throttle.

THU_TIMESTAMP The timestamp of the throttle record entry.

THU_SITE The site name which accepts the request. You can use
different gateway sites or environments for TIBCO API
Exchange Gateway product.

The value for the THU_SITE field is populated from the
Common/Deployments/SiteNumber global variable defined
in the ASG_CONFIG_HOME/asg_cl.properties file. The
default value of Common/Deployments/SiteNumber is 1.

THU_ENGINE The name of the Core Engine which sends the throttle
information. You can assign different engine names when
starting the Core Engine. The engine name can be
specified using -n parameter to asg-engine command on
the command line.

THU_THROTTLE The name given to the throttle for identification.

THU_MAX The maximum threshold count of the throttle.

THU_CUR The current usage count of the throttle.

THU_PCT The current percentage usage of the throttle.

Columns of ASG_THROTTLE_USAGE Table

ASG_THROTTLE_MESSAGES Table

The ASG_THROTTLE_MESSAGES table stores the messages related to throttles.



TIBCO® API Exchange Gateway User Guide

722 | Gateway Management Features

Field Name Description

THM_GUID A unique iID of the throttle.

THM_TIMESTAMP The timestamp of the throttle record entry.

THM_SITE The site name which accepts the request. You can use
different gateway sites or environments for TIBCO API
Exchange Gateway product.

The value for the THM_SITE field is populated from the
Common/Deployments/SiteNumber global variable defined in
the ASG_CONFIG_HOME/asg_cl.properties file. The default
value of Common/Deployments/SiteNumber is 1.

THM_ENGINE The name of the Core Engine which sends the throttle
information. You can assign different engine names when
starting the Core Engine in any of the following ways:

l Use the "-n" parameter to asg-engine command on the
command line.

l Change the name of the PU in the ASG_HOME/bin/asg_
core.cdd file.

THM_MESSAGE The text of the message related to the throttle. The message
can be one of the following types:

l INFO

l ERROR

l DEBUG

l WARN

THM_LEVEL The severity of the message related to the throttle. The
severity of the message is populated based on the log level
set in the ASG_CONFIG_HOME/asg.properties file using the
following global variable:

l tibco.clientVar.ASG/Logging/ThrottleMessageLogLevel

The default value is 0.

Columns of ASG_THROTTLE_MESSAGES Table



TIBCO® API Exchange Gateway User Guide

723 | Gateway Management Features

ASG_KPI Table

The ASG_KPI table stores information regarding the key performance indicators (KPI ) of
the transactions stored in the ASG_TRANSACTIONS table to support visualizations. The
central logger flushes the records in regular time frames as per the KPI configuration. You
should use the ASG_TRANSACTIONS table for historical data analysis.

Field Name Description

KPI_TIMESTAMP The timestamp.

KPI_SUCCESS_CNT The count of successful transactions with
status = OK.

KPI_FAILURE_CNT The count of failed transactions with status =
INVALID/FAIL.

KPI_TIMEOUT_CNT The count of the timed out transactions.

KPI_ERROR_CNT The count of the transactions with error as
response.

KPI_TOTAL_CNT The total number of transactions in a chosen
period.

KPI_AVG_LATENCY The average time spent in the gateway, which
measures the gateway overhead. The average
KPI latency time for a transaction is calculated
from the ASG_TRANSACTIONS table as below:

(Façade E Time – Façade Ingress Time – Router
Egress Time – Router Ingress Time)

KPI_AVG_DURATION The average time between request and
response message.

The average KPI duration for a transaction is
calculated from the ASG_TRANSACTIONS table
as below:

Columns of ASG_KPI Table



TIBCO® API Exchange Gateway User Guide

724 | Gateway Management Features

Field Name Description

(Façade Egress Time – Façade Ingress Time)

KPI_TYPE The KPI dimension. The possible values are:

l Engine

l Operation

l Partner

l Service

KPI_ENTITY Unique value for the KPI dimension.

KPI_FREQUENCY The name of aggregation group such as kpi1m
, kpi5m, kpi1h.

KPI_END_TIMESTAMP Specifies the end interval for the KPI type.

ASG_LOG_MESSAGES Table

The ASG_LOG_MESSAGES table contains the log messages generated by the gateway core
engine. When the detail level logging is enabled for the central logger, the ASG_LOG_
MESSAGES table is populated.

Field Name Description

LOG_GUID The unique ID of the message.

LOG_TIMESTAMP The timestamp of the message.

LOG_SITE l The site name which processes the
request. You can use different gateway
sites or environments for TIBCO API
Exchange Gateway product.

l The value for the TRN_SITE field is

Columns of ASG_LOG_MESSAGES Table



TIBCO® API Exchange Gateway User Guide

725 | Gateway Management Features

Field Name Description

populated from the
Common/Deployments/SiteNumber
global variable defined in the ASG_
CONFIG_HOME/asg_cl.properties file. The
default value of
Common/Deployments/SiteNumber is 1.

LOG_ENGINE The name of the Core Engine which generates
the message. You can assign different engine
names when starting the Core Engine. The
engine name can be specified using -n
parameter to asg-engine command on the
command line.

LOG_MESSAGE The text of the transaction log message.

LOG_LEVEL The severity of the log message. The severity of
the message is mentioned by the level of
logging set in ASG_CONFIG_
HOME/asg.properties file. The possible values
for the level of logging are 0,1,2,3,4.

Write Transactions Data to File
TIBCO API Exchange Gateway has the ability to log the transactions data of facade
operations to a file.

By default, TIBCO API Exchange Gateway stores the transactions data of the facade
operations in the ASG_TRANSACTIONS database table. You can write the transactions data to
a file instead of logging to the database table when the detail level logging is enabled.

To write the transactions of facade operation in a file, you must specify the facade
operation name in the tibco.clientVar.CL/Logging/fileFilter property. See Enabling
Transaction Data to a File to configure logging of transactions data to a file.

By default, TIBCO API Exchange Gateway write the transactions data of the following
operations (as separated by | character) to the file. These operations are internal to
gateway and do not have to be stored in a database.



TIBCO® API Exchange Gateway User Guide

726 | Gateway Management Features

test|ping|updateConfiguration|addConfiguration|deleteConfiguration|getConfigur
ation|getConfigurationStatus|publishConfiguration|unlockConfiguration|restoreC
onfiguration|CentralLoggerRuleFunctionOp|portalEventResource|analyticsResource
|apiKeyResource|oauthClientAuthenticateResource|oauthClientAttributesResource|
loadResourceListing|LogLevelRuleFunctionOp

Note: The Central Logger uses the regular expression search pattern to match
the facade operation name in the tibco.clientVar.CL/Logging/fileFilter
property. For any facade operation, the operation name must not contain any
string which matches the facade operation name in the
tibco.clientVar.CL/Logging/fileFilter property.

For example, When a facade operation name is configured, this should not
contain test or ping as they are listed in the fileFilter property.

Enabling Transaction Data to a File
Configure the properties to write the transaction data of facade operations to a file instead
of database.

Before you begin
The detail level logging must be enabled for the Central Logger.

Procedure
1. Verify that the detail level logging is enabled for the Central Logger, as follows:

a. Navigate to ASG_CONFIG_HOME directory.

b. Open the asg.properties file.

c. Ensure that the following property is set to true. If not, set the value of the
property to true.
tibco.clientVar.ASG/Logging/reportingEnabled=true

d. Save any changes to the file.

2. Navigate to ASG_CONFIG_HOME directory.

3. Open the asg_cl.properties file for editing.

4. Set the following properties:



TIBCO® API Exchange Gateway User Guide

727 | Gateway Management Features

tibco.clientVar.CL/Logging/fileFilter

tibco.clientVar.CL/Logging/files/directory

tibco.clientVar.CL/Logging/files/transactions

tibco.clientVar.CL/Logging/files/maxcount

tibco.clientVar.CL/Logging/files/maxsize

Note:
l Refer to Runtime Properties of Central Logger for the description of

the properties.

l To configure the properties using the Config UI, refer to the Central
Logger section of Setting Monitoring Properties.

l See Example
Valuestibco.clientVar.CL/Logging/fileFilter=test|ping|updateConfigura
tion|addConfiguration|deleteConfigurationtibco.clientVar.CL/Logging/
files/directory=C:/TIBCO_
HOMECONFIGAPIX220/tibco/cfgmgmt/asg/logstibco.clientVar.CL/Logg
ing/files/transactions=trans_
log.txttibco.clientVar.CL/Logging/files/maxcount=3tibco.clientVar.CL/
Logging/files/maxsize=5000000 for example values of the properties.

5. Save changes to the file.

Example Values
tibco.clientVar.CL/Logging/fileFilter=test|ping|updateConfiguration|addConfigu
ration|deleteConfiguration

tibco.clientVar.CL/Logging/files/directory=C:/TIBCO_
HOMECONFIGAPIX220/tibco/cfgmgmt/asg/logs

tibco.clientVar.CL/Logging/files/transactions=trans_log.txt

tibco.clientVar.CL/Logging/files/maxcount=3

tibco.clientVar.CL/Logging/files/maxsize=5000000

Format of Transaction Data Log File
This section lists the format of the output log file when the transactions data of facade
operations are logged to a file.



TIBCO® API Exchange Gateway User Guide

728 | Gateway Management Features

The Core Engine writes the transactions data in the following format:

TRN_TIMESTAMP, extID, TRN_GUID, TRN_SITE, TRN_ENGINE, TRN_SOURCE, TRN_
TARGET, TRN_FACADE_OPERATION, TRN_FACADE_SERVICE, TRN_ROUTING_KEY TRN_
TARGET_OPERATION, TRN_TARGET_SERVICE, TRN_TRANSACTION_ID, TRN_FACADE_I_
TIME, TRN_ROUTER_I_TIME, TRN_ROUTER_e_TIME, TRN_FACADE_E_TIME, TRN_
FACADE_DURATION, TRN_ROUTER_DURATION, TRN_STATUS, TRN_ERROR_CODE, TRN_
ERROR_MESSAGE

Sample Transaction Data Log File
The following sample output log file contains the transaction data of the ping facade
operation:

20150730 11:15:41,null,b43711f2-5b0f-4209-895b-a2f18f74ac13,1,asg-
caching-core,anon,noop.ping,internal_ping,RESERVED,default,service_
noop.ping,RESERVED,null,1438235141195,1438235141295,1438235141296,143823
5141340,145,1,ok,null,null

Recording Error Events to Central Logger
The Central Logger consumes the event messages published by the Core Engine and stores
them in the database for reporting purposes.

You can enable the Core Engine to publish all events, including successful and failed
transactions, to the Central Logger by setting the
tibco.clientVar.ASG/Logging/errorReportingEnabled property in the ASG_CONFIG_
HOME/asg.properties file.

With TIBCO API Exchange Gateway , you can also selectively publish the error events to the
Central Logger and store the failed transactions. This helps to reduce the volume of
transactions stored in the Central Logger database.

Publishing Error (Failed) Transactions
To selectively publish the error transactions to the Central Logger, follow these steps:

Procedure



TIBCO® API Exchange Gateway User Guide

729 | Gateway Management Features

1. Open the ASG_CONFIG_HOME/asg.properties file for editing.

2. Set the properties as shown below:

   tibco.clientVar.ASG/Logging/errorReportingEnabled=true

   tibco.clientVar.ASG/Logging/reportingEnabled=false

   tibco.clientVar.ASG/Logging/clLogLevel=1

3. Save the file and close the editor.

The failed transactions are stored in the following tables:

l ASG_TRANSACTIONS

l ASG_TRANSACTIONS_DETAILS

l ASG_TRANSACTIONS_KEYS

l ASG_TRANSACTIONS_MESSAGES

If the detail level logging is disabled (that is, tibco.clientVar.ASG/Logging/clLogLevel
property is set as 0 in ASG_CONFIG_HOME/asg.properties file), then the failed
transactions are stored in the following tables:

l ASG_TRANSACTIONS

l ASG_TRANSACTIONS_KEYS

Note: The tibco.clientVar.ASG/Logging/reportingEnabled property
takes precedence over
tibco.clientVar.ASG/Logging/errorReportingEnabled property.
Therefore, if you set tibco.clientVar.ASG/Logging/reportingEnabled
property as true, the Core Engine publishes all types of the
messages, and the Central Logger records both success and failure
type transactions.

Correlation ID
TIBCO API Exchange Gateway supports correlation ID to help the users in auditing and
debugging the message transactions. The correlation ID is used to group the related
message requests and responses.

When the detail level logging is enabled for the Central Logger, the correlation id is logged
in the TRN_CORRELATION_ID column of ASG_TRANSACTIONS table. A correlation ID is passed



TIBCO® API Exchange Gateway User Guide

730 | Gateway Management Features

as the HTTP header in the facade request and added to the headers of the target
operation. By default, the HTTP header name for the correlation ID is X-Request-ID.

Note: If the correlation ID is not set in the incoming request, TIBCO API
Exchange Gateway generates an ID dynamically and assigns or adds it to the SB-
Request or request is sent to the target operation.

Setting Correlation ID for HTTP Header
You can change the default name of the correlation ID for HTTP header.

Procedure
1. Navigate to the ASG_CONFIG_HOME directory.

2. Edit the asg.properties file.

3. Set the following property:
tibco.clientVar.ASG/Request/CorrelationHeaderName

For example, if you set the property, as follows:
tibco.clientVar.ASG/Request/CorrelationHeaderName=X-Request-Correlation-
ID, the HTTP header name is set as X-Request-Correlation-ID in the outgoing
request and expected in the incoming request.

4. Save changes to the file.

Note: You must restart the Core Engine after saving the changes to the
property.

Enable JMS Channel for Central Logger
The Central Logger component of the TIBCO API Exchange Gateway receives the messages
from the Core Engine and logs the transaction data records to a database. It writes the
records in bulk after a fixed interval. The Central Logger runs as a separate engine than the
Core Engine.



TIBCO® API Exchange Gateway User Guide

731 | Gateway Management Features

By default, the messages from the Core Engine are sent to the Central Logger using
Rendezvous transport. You can also enable the JMS transport for the Central Logger to
send the messages from the Core Engine to Central Logger.

When the Rendezvous transport is used by the Core Engine, the messages are not
guaranteed to be received by the Central Logger. If the Central Logger instance is not
running, the messages sent by the Core Engine are lost. To improve the reliability and
guaranteed delivery of the messages, API Exchange Gateway supports the JMS transport as
a communication channel between the Core Engine and the Central Logger.

Configuration Setup for JMS Channel
This section explains the configuration steps required to use JMS transport for the Core
Engine and the Central Logger.

Enabling JMS Channel for Central Logger
You must enable EMS channel to use JMS transport for Central Logger in the asg_coe.cdd
and asg_cl.cdd files.

By default, the JMS channel for the Central Logger is disabled using the property defined in
the asg_core.cdd and asg_cl.cdd files.

To enable the JMS channel for the Central Logger, follow these steps:

Procedure
1. Navigate to the ASG_HOME/bin directory.

2. Open the asg_core.cdd file in a text editor and edit it as follows:

a. Locate the be.channel.deactivate property as follows:

<property-group comment="" name="Channel">

<property name="be.channel.deactivate"
value="/Common/Channel/AS,/DefaultImplementation/Channels/OAut
hWebappsHTTPSChannel,/DefaultImplementation/Channels/Southboun
dEsb0Channel,/DefaultImplementation/Channels/SouthboundEsb1Cha



TIBCO® API Exchange Gateway User Guide

732 | Gateway Management Features

nnel,/DefaultImplementation/Channels/SouthboundEsb2Channel,/De
faultImplementation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel_
North,/ASG/Channels/SOAPJMSChannel_
South,/Common/Channel/CentralLoggerJMS"/>

b. If you have not taken the backup of the be.channel.deactivate property, copy
the be.channel.deactivate property to be.channel.deactivate.backup, as
follows:

<property-group comment="" name="Channel">

<property name="be.channel.deactivate.backup"
value="/Common/Channel/AS,/DefaultImplementation/Channels/OAut
hWebappsHTTPSChannel,/DefaultImplementation/Channels/Southboun
dEsb0Channel,/DefaultImplementation/Channels/SouthboundEsb1Cha
nnel,/DefaultImplementation/Channels/SouthboundEsb2Channel,/De
faultImplementation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel_
North,/ASG/Channels/SOAPJMSChannel_
South,/Common/Channel/CentralLoggerJMS"/>

c. Remove the following entry from the be.channel.deactivate property value:

      /Common/Channel/CentralLoggerJMS

d. Ensure that the value of be.channel.deactivate property is as follows:

<property-group comment="" name="Channel">

<property name="be.channel.deactivate"
value="/Common/Channel/AS,/DefaultImplementation/Channels/OAut
hWebappsHTTPSChannel,/DefaultImplementation/Channels/Southboun
dEsb0Channel,/DefaultImplementation/Channels/SouthboundEsb1Cha



TIBCO® API Exchange Gateway User Guide

733 | Gateway Management Features

nnel,/DefaultImplementation/Channels/SouthboundEsb2Channel,/De
faultImplementation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel_
North,/ASG/Channels/SOAPJMSChannel_South"/>

e. Save the changes to the file.

3. Open the asg_cl.cdd file in a text editor and edit it as follows:

a. Locate the be.channel.deactivate property as follows:

<property-group comment="" name="Channel">

<property name="be.channel.deactivate"
value="/Common/Channel/AS,/ASG/Channels/RvMappingChannel,/ASG/
Channels/RvCacheableChannel,/ASG/Channels/modRV_
Channel,/Common/Channel/Channel,/DefaultImplementation/Channel
s/SouthboundEsb0Channel,/DefaultImplementation/Channels/Southb
oundEsb1Channel,/DefaultImplementation/Channels/SouthboundEsb2
Channel,/DefaultImplementation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel,/ASG/Channels/SOAPJMS
Channel_North,/ASG/Channels/SOAPJMSChannel_
South,/Common/Channel/CentralLoggerJMS
,/DefaultImplementation/Channels/OAuthWebappsChannel,/DefaultI
mplementation/Channels/OAuthWebappsHTTPSChannel"/>

b. If you have not taken the backup of the be.channel.deactivate property, copy
the be.channel.deactivate property to be.channel.deactivate.backup, as
follows:

<property-group comment="" name="Channel">

<property name="be.channel.deactivate.backup"
value="/Common/Channel/AS,/ASG/Channels/RvMappingChannel,/ASG/
Channels/RvCacheableChannel,/ASG/Channels/modRV_
Channel,/Common/Channel/Channel,/DefaultImplementation/Channel
s/SouthboundEsb0Channel,/DefaultImplementation/Channels/Southb



TIBCO® API Exchange Gateway User Guide

734 | Gateway Management Features

oundEsb1Channel,/DefaultImplementation/Channels/SouthboundEsb2
Channel,/DefaultImplementation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel,/ASG/Channels/SOAPJMS
Channel_North,/ASG/Channels/SOAPJMSChannel_
South,/Common/Channel/CentralLoggerJMS
,/DefaultImplementation/Channels/OAuthWebappsChannel,/DefaultI
mplementation/Channels/OAuthWebappsHTTPSChannel"/>

c. Remove the following entry from the be.channel.deactivate property value:

      /Common/Channel/CentralLoggerJMS

d. Ensure that the be.channel.deactivate property value looks as follows:

<property-group comment="" name="Channel">

<property name="be.channel.deactivate"
value="/Common/Channel/AS,/ASG/Channels/RvMappingChannel,/ASG/
Channels/RvCacheableChannel,/ASG/Channels/modRV_
Channel,/Common/Channel/Channel,/DefaultImplementation/Channel
s/SouthboundEsb0Channel,/DefaultImplementation/Channels/Southb
oundEsb1Channel,/DefaultImplementation/Channels/SouthboundEsb2
Channel,/DefaultImplementation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel,/ASG/Channels/SOAPJMS
Channel_North,/ASG/Channels/SOAPJMSChannel_
South,/DefaultImplementation/Channels/OAuthWebappsChannel,/Def
aultImplementation/Channels/OAuthWebappsHTTPSChannel"/>

e. Save the changes to the file.

Setting JMS Transport for Central Logger
Set the JMS transport for the Central Logger in the asg.properties file as follows:

Procedure
1. Navigate to the ASG_CONFIG_HOME directory.

2. Open the asg.properties file in a text editor.

3. Set the value of following property to JMS:



TIBCO® API Exchange Gateway User Guide

735 | Gateway Management Features

   tibco.clientVar.ASG/Logging/transport=JMS

4. Save changes to the file.

5. Open the asg_cl.properties file in a text editor.

6. Enable the JMS transport as follows:

   tibco.clientVar.ASG/Logging/transport=JMS

7. Save changes to the file.

Note: The default value of logging transport is RV which means that
Rendezvous is used for communication between the Core Engine and
Central Logger. Setting the value to JMS specifies that JMS transport is
used for communication between the Core Engine and the Central Logger.

Configuring JMS Transport Properties
The JMS Transport Properties table shows the properties you must define to use the JMS
transport for the Central Logger. The JMS transport properties are defined in the Core
Engine properties asg.properties file as well as in the Central Logger properties asg_
cl.properties file.

To set the JMS transport properties, follow these steps:

Procedure
1. Navigate to the ASG_CONFIG_HOME directory.

2. Open the asg.properties file in a text editor.

3. Set the properties defined in the JMS Transport Properties table.

4. Save the changes to the file.

5. Open the asg_cl.properties file in a text editor.

6. Set the properties defined in the JMS Transport Properties table.

7. Save the changes to the file.



TIBCO® API Exchange Gateway User Guide

736 | Gateway Management Features

Property Description

tibco.clientVar.Common/Connections/JMS/CL_
JMSConnection/JMSProviderURL

Specifies the URL to connect to
the Enterprise Message Service
(EMS) or a JMS server.

Example: tcp://localhost:7222

tibco.clientVar.Common/Connections/JMS/CL_
JMSConnection/JNDIContextURL

Specifies a JNDI connection
URL to look up a JMS server.

Example:

tibjmsnaming://localhost:7222

tibco.clientVar.Common/Connections/JMS/CL_
JMSConnection/TopicConnectionFactoryName

Specifies the name of
TopicConnectionFactory object
stored in JNDI. This object is
used to create a topic
connection with JMS server for
the Central Logger.

The default value is
TopicConnectionFactory

tibco.clientVar.Common/Connections/JMS/CL_
JMSConnection/QueueConnectionFactoryName

Specifies the name of
QueueConnectionFactory object
stored in JNDI. This object is
used to create a queue
connection with JMS server for
the Central Logger.

The default value is
QueueConnectionFactory

tibco.clientVar.Common/Connections/JMS/CL_
JMSConnection/JNDIUsername

Specifies the user name to use
when logging into the JNDI
server. If the JNDI provider does

JMS Transport Properties



TIBCO® API Exchange Gateway User Guide

737 | Gateway Management Features

Property Description

not require access control, this
field can be empty.

Example, admin

tibco.clientVar.Common/Connections/JMS/CL_
JMSConnection/JNDIPassword

Specifies the password for
logging into the JNDI server. If
the JNDI provider does not
require access control, this field
can be empty.

tibco.clientVar.Common/Connections/JMS/CL_
JMSConnection/JMSUsername

Specifies the user name to use
to authenticate to the JMS
server.

tibco.clientVar.Common/Connections/JMS/CL_
JMSConnection/JMSPassword

Specifies the password to use
to authenticate to the JMS
server.

tibco.clientVar.Common/Connections/JMS/CL_
JMSConnection/TransactionReportDestinationName

Specifies the name of the JMS
destination to which the
transaction reports are sent to
the Central Logger by the Core
Engine.

For example,
asg.cl.transaction.queue

tibco.clientVar.Common/Connections/JMS/CL_
JMSConnection/TransactionReportDestinationType

Specifies the type of the JMS
destination to which the
transaction reports are sent to
the Central Logger by the Core
Engine.

Possible values are queue or
topic.



TIBCO® API Exchange Gateway User Guide

738 | Gateway Management Features

Property Description

The default value is queue

The Central Logger always
listens on a queue. If the value
of destination type set to topic,
the JMS administrator must
configure a bridge between the
topic and the queue.

Note: You must restart the Core Engine and Central Logger instance after
setting the properties in the asg.properties and asg_cl.properties file, if
they are running.

Global Throttle Manager
Overview of Global Throttle Manager.

The Global Throttle Manager manages the Façade Throttle Manager and Service Throttle
Manager. The Global Throttle Manager reports throttle usage to the Central Logger.

The Global Throttle Manager component maintains the state of all the global throttles in
both Facades (Facade Throttles) and Routers (Service Throttles). The Global Throttle
Manager exchanges the states of global throttles with active Facade Throttle Managers and
Service Throttle Managers.

The Global Throttle Manager component provides the mechanism to evenly distribute the
global throttles among TIBCO API Exchange Gatewayserver instances.

The Global Throttle Manager component allows you to implement simple group throttles.
Below are few examples of throttles types that are used in the Facade or Router as global
throttles:

l Commercial throttles implement gross usage agreements

l Partner throttles act to limit a partner’s impact on internal services

l Operation throttles implement fine-grained usage agreements

l Technical throttles protect service interfaces



TIBCO® API Exchange Gateway User Guide

739 | Gateway Management Features

Throttle Calculation
Global Throttle Manager calculates the throttles as follows:

For Quota and High-Water-Mark throttles, it uses the following formula to get the max
count per engine:

MaxCountPerEngine = ThrottleMaxCount/maxActiveEngines

For Rate and Error throttles, the calculation is done as follows:

MaxCountPerEngine = (ThrottleMaxCount/maxActiveEngines)*
(UpdateIntervalSec/Throttle Interval)

l ThrottleMaxCount and Throttle Interval are defined in the throttle configuration.

l UpdateIntervalSec is the time interval in seconds for sending throttle updates to
Global Throttle Manager. The default value is 10 seconds and can be edited in the
ASG_CONFIG_HOME/asg.properties file. This is defined by the following property:

      tibco.clientVar.ASG/Throttle/UpdateIntervalSec=10

The value of MaxCountPerEngine is always rounded up. For example, 1.1 will be 2 and 1.9
will also be 2.

For non-zero throttles, this rounding means that the MaxCount Per Engine will always be at
least 1. For example, if there are 20 active engines and the calculated value of
MaxCountPerEngine is 0.4, then the effective throttle limit is calculated as:

Ceiling(0.4 )x active engines = 1x20 = 20



TIBCO® API Exchange Gateway User Guide

740 | Gateway Management Features

For this case, the value of MaxCountPerEngine is not 8. (0.4x20)

This indicates that if there are many active engines and the throttles are defined in this
setup, then the MaxCount can never be less than the number of active engines.

Running Global Throttle Manager
This section explains the steps to run the Global Throttle Manager.

Procedure
1. Open a terminal window.

2. Navigate to ASG_HOME/bin directory.

3. Type the following command:

asg-engine -u asg-gtm -a ASG_Configuration_Name

where ASG_Configuration_Name is the project configuration of the API Exchange
Gateway.

For example. if you want to run the Global Throttle Manager for the BookQuery
configuration, type the following command:

   asg-engine -u asg-gtm -a BookQuery

where BookQuery is the current configuration.

Note:
l Make sure that the Cache Agent and the Core Engine are running

before you start the Global Throttle Manager.

l Type the following command to run the Global Throttle Manager:

asg-engine -u asg-gtm -a ASG_Configuration_Name -n Global_
Throttle_Manager_Instance_Name

where ASG_Configuration_Name is the project configuration of the API
Exchange Gateway and Global_Throttle_Manager_Instance_Name is the
name of the Global Throttle Manager instance.



TIBCO® API Exchange Gateway User Guide

741 | Gateway Management Features

Enabling AS Transport
This section describes the ActiveSpaces transport communication for Central Logger and
Global Throttle Manager.

Overview
TIBCO API Exchange Gateway supports an ActiveSpaces channel that enables the Global
Throttle Manager and Central Logger to communicate with the Core Engine. If you set the
ActiveSpaces transport for Global Throttle Manager, both the Central Logger and Global
Throttle Manager communicate with the Core Engine using the ActiveSpaces channel.

When RV transport is configured for Global Throttle Manager, and the transport for the
Central Logger is set as JMS, the Central Logger uses the JMS transport to log the
transactions in the database.

Configuration
Configuration to enable ActiveSpaces transport.

To set the ActiveSpaces transport for Global Throttle Manager and Central Logger, follow
these steps:

Procedure
1. Set Properties

Set the ActiveSpaces transport properties as follows:

a. Start the Config UI, if not running.

b. Log in to the Config UI using your credentials.

c. On the home page of the Config UI, select the Gateway Engine Properties in
the drop-down list.

d. Click the Transport link.

e. Set the ActiveSpaces transport properties as explained in the Setting Transport
Properties table.

f. Save changes to the project configuration.



TIBCO® API Exchange Gateway User Guide

742 | Gateway Management Features

You can set the following runtime properties to enable ActiveSpaces channel in
the ASG_CONFIG_HOME/asg.properties file: tibco.clientVar.ASG/transport=AS

 #Properties to connect to AS metaspace

  #asLogLevel values: 0-7 #0 - INFO, 1 - WARN, 2 - ERROR, 3 - FATAL,

 #4 - FINE, 5 - FINER, 6 - FINEST, 7 - NONE

 tibco.clientVar.ASG/AS/MetaspaceName=APIXMS

 tibco.clientVar.ASG/AS/DiscoveryUrl=tcp://127.0.0.1:13000

 tibco.clientVar.ASG/AS/ListenUrl=tcp://127.0.0.1:13000-*/

 tibco.clientVar.ASG/AS/asLogLevel=0

 tibco.clientVar.ASG/AS/asLogDir=c:/tibcocfg/tibco/cfgmgmt/asg/logs

tibco.clientVar.ASG/AS/MetaspaceMemberTimeout , default value 30000 ms.

2. Activate AS Channel in asg_core.cdd File

Activate the AS channel, as follows:

a. Navigate to the ASG_HOME/bin directory.

b. Edit the asg_core.cdd file in a text editor.

c. Search the following property:

<property name="be.channel.deactivate"
value="/Common/Channel/AS,/DefaultImplementation/Channels/Sout
hboundEsb0Channel,/DefaultImplementation/Channels/SouthboundEs
b1Channel,/DefaultImplementation/Channels/SouthboundEsb2Channe
l,/DefaultImplementation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel_
North,/ASG/Channels/SOAPJMSChannel_
South,/Common/Channel/CentralLoggerJMS"/>

d. If you have not taken the backup of the be.channel.deactivate property, copy
the be.channel.deactivate property to be.channel.deactivate.backup, as
follows:

<property name="be.channel.deactivate.backup"



TIBCO® API Exchange Gateway User Guide

743 | Gateway Management Features

value="/Common/Channel/AS,/DefaultImplementation/Channels/Sout
hboundEsb0Channel,/DefaultImplementation/Channels/SouthboundEs
b1Channel,/DefaultImplementation/Channels/SouthboundEsb2Channe
l,/DefaultImplementation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel_
North,/ASG/Channels/SOAPJMSChannel_
South,/Common/Channel/CentralLoggerJMS"/>

e. Remove /Common/Channel/AS from the value of the be.channel.deactivate
property. The modified value of the property is as follows:

<property name="be.channel.deactivate"
value="/DefaultImplementation/Channels/SouthboundEsb0Channel,/
DefaultImplementation/Channels/SouthboundEsb1Channel,/DefaultI
mplementation/Channels/SouthboundEsb2Channel,/DefaultImplement
ation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel_
North,/ASG/Channels/SOAPJMSChannel_
South,/Common/Channel/CentralLoggerJMS"/>

f. Save changes to the file.

3. Activate AS Channel in asg_cl.cdd File

Activate the AS channel as follows:

a. Navigate to the ASG_HOME/bin directory.

b. Edit the asg_core.cdd file in a text editor.

c. Search the following property:

<property-group comment="" name="Channel">

<property name="be.channel.deactivate"
value="/Common/Channel/AS,/ASG/Channels/RvMappingChannel,/ASG/
Channels/RvCacheableChannel,/ASG/Channels/modRV_
Channel,/Common/Channel/Channel,/DefaultImplementation/Channel
s/SouthboundEsb0Channel,/DefaultImplementation/Channels/Southb



TIBCO® API Exchange Gateway User Guide

744 | Gateway Management Features

oundEsb1Channel,/DefaultImplementation/Channels/SouthboundEsb2
Channel,/DefaultImplementation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel,/ASG/Channels/SOAPJMS
Channel_North,/ASG/Channels/SOAPJMSChannel_
South,/Common/Channel/CentralLoggerJMS,/DefaultImplementation/
Channels/OAuthWebappsChannel,/DefaultImplementation/Channels/O
AuthWebappsHTTPSChannel"/>

d. If you have not taken the backup of the be.channel.deactivate property, copy
the be.channel.deactivate property to be.channel.deactivate.backup, as
follows:

<property name="be.channel.deactivate.backup"
value="/Common/Channel/AS,/ASG/Channels/RvMappingChannel,/ASG/
Channels/RvCacheableChannel,/ASG/Channels/modRV_
Channel,/Common/Channel/Channel,/DefaultImplementation/Channel
s/SouthboundEsb0Channel,/DefaultImplementation/Channels/Southb
oundEsb1Channel,/DefaultImplementation/Channels/SouthboundEsb2
Channel,/DefaultImplementation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel,/ASG/Channels/SOAPJMS
Channel_North,/ASG/Channels/SOAPJMSChannel_
South,/Common/Channel/CentralLoggerJMS,/DefaultImplementation/
Channels/OAuthWebappsChannel,/DefaultImplementation/Channels/O
AuthWebappsHTTPSChannel"/>

e. Remove /Common/Channel/AS from the value of the be.channel.deactivate
property. The modified value of the property is as follows:

<property name="be.channel.deactivate"
value="/ASG/Channels/RvMappingChannel,/ASG/Channels/RvCacheabl
eChannel,/ASG/Channels/modRV_
Channel,/Common/Channel/Channel,/DefaultImplementation/Channel
s/SouthboundEsb0Channel,/DefaultImplementation/Channels/Southb
oundEsb1Channel,/DefaultImplementation/Channels/SouthboundEsb2
Channel,/DefaultImplementation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel,/ASG/Channels/SOAPJMS
Channel_North,/ASG/Channels/SOAPJMSChannel_



TIBCO® API Exchange Gateway User Guide

745 | Gateway Management Features

South,/Common/Channel/CentralLoggerJMS,/DefaultImplementation/
Channels/OAuthWebappsChannel,/DefaultImplementation/Channels/O
AuthWebappsHTTPSChannel"/>

f. Save changes to the file.

4. Deactivate the Central Logger RV and JMS Channel in asg_cl.cdd File

a. Navigate to the ASG_HOME/bin directory.

b. Edit the asg_cl.cdd file in a text editor.

c. Search the following property:

<property name="be.channel.deactivate"
value="/Common/Channel/AS,/ASG/Channels/RvMappingChannel,/ASG/
Channels/RvCacheableChannel,/ASG/Channels/modRV_
Channel,/Common/Channel/Channel,/DefaultImplementation/Channel
s/SouthboundEsb0Channel,/DefaultImplementation/Channels/Southb
oundEsb1Channel,/DefaultImplementation/Channels/SouthboundEsb2
Channel,/DefaultImplementation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel,/ASG/Channels/SOAPJMS
Channel_North,/ASG/Channels/SOAPJMSChannel_
South,/Common/Channel/CentralLoggerJMS,/DefaultImplementation/
Channels/OAuthWebappsChannel,/DefaultImplementation/Channels/O
AuthWebappsHTTPSChannel"/>

d. If you have not taken the backup of the be.channel.deactivate property, copy
the be.channel.deactivate property to be.channel.deactivate.backup, as
follows:

<property name="be.channel.deactivate.backup"
value="/Common/Channel/AS,/ASG/Channels/RvMappingChannel,/ASG/
Channels/RvCacheableChannel,/ASG/Channels/modRV_
Channel,/Common/Channel/Channel,/DefaultImplementation/Channel
s/SouthboundEsb0Channel,/DefaultImplementation/Channels/Southb
oundEsb1Channel,/DefaultImplementation/Channels/SouthboundEsb2
Channel,/DefaultImplementation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel,/ASG/Channels/SOAPJMS
Channel_North,/ASG/Channels/SOAPJMSChannel_



TIBCO® API Exchange Gateway User Guide

746 | Gateway Management Features

South,/Common/Channel/CentralLoggerJMS,/DefaultImplementation/
Channels/OAuthWebappsChannel,/DefaultImplementation/Channels/O
AuthWebappsHTTPSChannel"/>

e. Add /Common/Channel/CentralLoggerRV and
/Common/Channel/CentralLoggerJMS to the be.channel.deactivate property.
The modified value of the property is as follows:

<property name="be.channel.deactivate"
value="/Common/Channel/CentralLoggerRV,/Common/Channel/Central
LoggerJMS,/Common/Channel/AS,/ASG/Channels/RvMappingChannel,/A
SG/Channels/RvCacheableChannel,/ASG/Channels/modRV_
Channel,/Common/Channel/Channel,/DefaultImplementation/Channel
s/SouthboundEsb0Channel,/DefaultImplementation/Channels/Southb
oundEsb1Channel,/DefaultImplementation/Channels/SouthboundEsb2
Channel,/DefaultImplementation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel,/ASG/Channels/SOAPJMS
Channel_North,/ASG/Channels/SOAPJMSChannel_
South,/Common/Channel/CentralLoggerJMS,/DefaultImplementation/
Channels/OAuthWebappsChannel,/DefaultImplementation/Channels/O
AuthWebappsHTTPSChannel"/>

f. Save the changes to the CDD file.

5. Deactivate the Central Logger RV and JMS Channel in asg_core.cdd File

a. Navigate to the ASG_HOME/bin directory.

b. Edit the asg_core.cdd file in a text editor.

c. Search the following property:

<property name="be.channel.deactivate"
value="/Common/Channel/AS,/ASG/Channels/RvMappingChannel,/ASG/
Channels/RvCacheableChannel,/ASG/Channels/modRV_
Channel,/Common/Channel/Channel,/DefaultImplementation/Channel
s/SouthboundEsb0Channel,/DefaultImplementation/Channels/Southb
oundEsb1Channel,/DefaultImplementation/Channels/SouthboundEsb2
Channel,/DefaultImplementation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel,/ASG/Channels/SOAPJMS
Channel_North,/ASG/Channels/SOAPJMSChannel_



TIBCO® API Exchange Gateway User Guide

747 | Gateway Management Features

South,/Common/Channel/CentralLoggerJMS,/DefaultImplementation/
Channels/OAuthWebappsChannel,/DefaultImplementation/Channels/O
AuthWebappsHTTPSChannel"/>

d. If you have not taken the backup of the be.channel.deactivate property, copy
the be.channel.deactivate property to be.channel.deactivate.backup, as
follows:

<property name="be.channel.deactivate.backup"
value="/Common/Channel/AS,/ASG/Channels/RvMappingChannel,/ASG/
Channels/RvCacheableChannel,/ASG/Channels/modRV_
Channel,/Common/Channel/Channel,/DefaultImplementation/Channel
s/SouthboundEsb0Channel,/DefaultImplementation/Channels/Southb
oundEsb1Channel,/DefaultImplementation/Channels/SouthboundEsb2
Channel,/DefaultImplementation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel,/ASG/Channels/SOAPJMS
Channel_North,/ASG/Channels/SOAPJMSChannel_
South,/Common/Channel/CentralLoggerJMS,/DefaultImplementation/
Channels/OAuthWebappsChannel,/DefaultImplementation/Channels/O
AuthWebappsHTTPSChannel"/>

e. Add /Common/Channel/CentralLoggerRV and
/Common/Channel/CentralLoggerJMS to the be.channel.deactivate property.
The modified value of the property is as follows:

<property name="be.channel.deactivate"
value="/Common/Channel/CentralLoggerRV,/Common/Channel/Central
LoggerJMS,/Common/Channel/AS,/ASG/Channels/RvMappingChannel,/A
SG/Channels/RvCacheableChannel,/ASG/Channels/modRV_
Channel,/Common/Channel/Channel,/DefaultImplementation/Channel
s/SouthboundEsb0Channel,/DefaultImplementation/Channels/Southb
oundEsb1Channel,/DefaultImplementation/Channels/SouthboundEsb2
Channel,/DefaultImplementation/Channels/North_
ESBChannel,/DefaultImplementation/Channels/North_
HTTPChannel,/ASG/Channels/SOAPJMSChannel,/ASG/Channels/SOAPJMS
Channel_North,/ASG/Channels/SOAPJMSChannel_
South,/Common/Channel/CentralLoggerJMS,/DefaultImplementation/
Channels/OAuthWebappsChannel,/DefaultImplementation/Channels/O
AuthWebappsHTTPSChannel"/>



TIBCO® API Exchange Gateway User Guide

748 | Gateway Management Features

f. Save the changes to the CDD file.

Cache Cleanup Agent
The Cache Cleanup Agent provides mechanism to clear the cache. The Cache Cleanup
Agent manages the eviction of entries in the associative cache, especially for the entries
that are not often referenced.

TIBCO API Exchange Gateway server stores the responses from side-bound service requests
and is used for future look-ups. Cached objects have a time to live, which is evaluated
every time an entry is retrieved from the associative cache and the entry gets evicted on
lookup if the time to live(TTL) has expired. Cache entries with a relatively short time to live
(TTL) that are not often read, might pollute the associative cache using system resources at
no benefit. For that reason the Cache Cleanup Agent evaluates all cache entries on a
scheduled time basis and evicts these entries whose time-to-live has expired.

Running Cache Cleanup Agent
This section explains the steps to run the Cache Cleanup Agent:

Procedure
1. Open a terminal window.

2. Navigate to ASG_HOME/bin directory.

3. Type the following command:

 ./asg-engine -u asg-cache-cleanup

Note: It is good practice to start the Cache Cleanup Agent after the Cache
Agent is running successfully. If the cache clearing agent starts before the
Cache Agent, there could be a potential possibility of additional Cache
Agents not being able to connect to the cache provider using the discovery
listener and function properly.



TIBCO® API Exchange Gateway User Guide

749 | Gateway Management Features

Reporting
Overview of reporting functionality supported by TIBCO API Exchange Gateway using TIBCO
Spotfire.

The Central Logger component stores reporting information to the database. The Apache
HTTP server also generates access logs.

The data from the Central Logger database can be used for reporting. It contains the
following data:

l High level Transaction Auditing

o One entry for every received request

o Timing information

o Service, operation and partner identities

o Status of overall transaction

l Detailed level Transaction Auditing

o Request payload before and after every transformation

o Multiple identities associated with each transaction

o The list of stages through which the transaction passed

o Ad-hoc messages generated during transaction processing

l Key performance indicators

o Count of transactions received in a given time interval

o Per partner, service and operation

o Default time intervals one minute, five minutes and one hour

TIBCO Spotfire Integration
TIBCO API Exchange Gateway provides a sample TIBCO Spotfire analysis based on data
captured by the Central Logger component. The sample shows the following metrics:

l Transaction rate per partner and service

l Throttle violation, Service quality and Service timeouts failures



TIBCO® API Exchange Gateway User Guide

750 | Gateway Management Features

l Load Visualization for operations and management

o Volume

o Latency

o Peaks

l Defect detection

l System Usage

Spotfire Configuration
This section describes the steps for TIBCO Spotfire Professional configuration. The Spotfire
client retrieves the data stored in TIBCO API Exchange Gateway database to display the
reports.

Configuring TIBCO Spotfire Server and Client
This section assumes that you have a running instance of Spotfire server. Ask the Spotfire
administrator to create a username and password to allow access on the Spotfire server
instance.

Spotfire User Permissions

Make sure that the Spotfire Administrator creates a user to be part of the Library
Administrator group on the Spotfire server instance. Ensure that the Administrator grants
the library administration permissions to this user. This allows the users to perform the
following tasks:

l Create library contents (such as data sources, information links).

l Import and Export the library content.

l Store the analysis files.

Procedure
1. Install TIBCO Spotfire Professional software. Refer to the product readme for the

supported version.

2. Launch the TIBCO Spotfire Professional.

3. Connect to the appropriate TIBCO Spotfire server instance by providing the correct



TIBCO® API Exchange Gateway User Guide

751 | Gateway Management Features

URL in the Server field.

4. Download the software package updates from the server, if prompted.

5. Verify you have successfully connected to the TIBCO Spotfire server instance for
TIBCO API Exchange Gateway and updated your TIBCO Spotfire client to the version
that is deployed on the TIBCO Spotfire server.

Setting up a Spotfire Data source
Set up a data source for Spotfire.

Procedure
1. Within TIBCO Spotfire Professional, open the Information Designer from the menu

bar as: Tools -Information Designer.

2. Click the Setup Data Source link.

3. Input the Data Source fields, as appropriate.

For MySql database, example values are shown as follows:

Name: asgstat

Type: MySQL5

Connection URL: jdbc:mysql://database host:port/database

Where database host is the machine database server runs, by default the port is
3306, and database is the database name such as asgstat.

No. of connections:

l Min: 1

l Max: 10

Username: asguser

Password: asgpass

For Oracle database, example values are shown as follows:

Name: asgstat

Type: Oracle

Connection URL: jdbc:oracle:thin:@database host:port:service name

Where database host is the machine database server runs, by default the port is



TIBCO® API Exchange Gateway User Guide

752 | Gateway Management Features

1521, and the service name is the Oracle service name.

No. of connections:

l Min: 1

l Max: 10

Username: asguser

Password: asgpass

For SQL Server database, example values are shown as follows:

Name: asgstat

Type: SQL Server

Connection URL:jdbc:sqlserver://database host:1433/database

Where database host is the machine database server runs, by default the port is
1433, and database is the database name such as asgstat.

No. of connections:

l Min: 1

l Max: 10

Username: asguser

Password: asgpass

4. Click Save.

5. Click Save again, if pop window appears.

6. Verify that this data source appears in the left panel of the Information Designer
dialog with a plus (+) sign next to it.

Creating a Spotfire Information Model for Central Logger

Procedure
1. Within TIBCO Spotfire Professional, open the Information Designer from the menu

bar as: Tools - > Information Designer.

2. Select the Elements tab.

3. Create a new directory as follows:



TIBCO® API Exchange Gateway User Guide

753 | Gateway Management Features

l Click New - > Folder

l Enter the name of the new folder. For example, ASGTEST.

4. Select the Data Sources tab. In the left panel of the Information Designer dialog,
expand the data source name by clicking on the + sign. Expand the asguser schema.

5. Verify that following database tables are listed from the Central Logger database
schema:

l ASG_KPI

l ASG_LOG_MESSAGES

l ASG_THROTTLE_MESSAGES

l ASG_THROTTLE_USAGE

l ASG_TRANSACTION_DETAILS

l ASG_TRANSACTION_KEYS

l ASG_TRANSACTION_MESSAGES

l ASG_TRANSACTIONS

6. Press Shift and click on the first table and the last table to select all tables. With all
the tables selected, right-click on your mouse and select the option Create default
Information Model link from the context menu.

7. On the next window, select Destination folder from the Library as ASGTEST.

8. Click OK on the next new dialog window.

9. On the Create Default Information Model Settings window, ensure that the radio
button Automatically assign a new name to the created item is selected. Click OK.

10. Verify that the Information Links has been created for each table of the Central
Logger database, which appears in the left pane of the Information Designer window
on the Elements tab.

11. In the Information Designer window, follow these steps to create the join between
the ASG_TRANSACTIONS and ASG_TRANSACTION_KEYS tables:

a. Click New and select Join from the drop-down list.

b. From the database schema, expand the ASG_TRANSACTIONS table. Select TRN_
GUID and click Add on the right side of the Information Designer window.



TIBCO® API Exchange Gateway User Guide

754 | Gateway Management Features

c. From the database schema, expand the ASG_TRANSACTION_KEYS table. Select
KEY_TRN_GUID and click Add on the right side of the Information Designer
window.

d. Click Save to save changes.

e. On the next window, select Destination folder from the Library as ASGTEST.
Verify that this creates ASG_TRANSACTIONS - ASG_TRANSACTION_KEYS Inner
Join join under ASGTEST folder.

12. In the Information Designer window, follow these steps:

a. Go to Elements tab and select ASGTEST folder.

b. Click New and select Information Link from the drop-down list.

c. Select the ASG_TRANSACTIONS data model folder. Add TRN_GUID and TRN_
STATUS columns.

d. Select the ASG_TRANSACTION_KEYS data model folder. Add KEY_TRN_GUID,
KEY_TYPE, KEY_VALUE columns.

e. Expand the Join Path tab. Add the ASG_TRANSACTIONS - ASG_TRANSACTION_
KEYS Inner Join join.

f. Save the Information link as Transaction-Transaction Keys.

13. Click Close to close the Information Designer.

Deploying Default TIBCO API Exchange Gateway Audit Trail DXP File
on TIBCO Spotfire Server

Procedure
1. Within TIBCO Spotfire Professional, open the ASG_HOME/templates/spotfire/ASG_

LogData.dxp Spotfire visualization file by selecting the menu option File - > Open.

2. If the analysis file opens with Missing Information Link warnings, follow the steps:

l Select the Browse for the missing information link radio button and click OK .

l In the Select Information Link dialog window, select the ASG_TRANSACTIONS
information link (with the paperclip icon next to it) and click OK .

l Repeat these steps for the following missing information links:

l ASG_KPI



TIBCO® API Exchange Gateway User Guide

755 | Gateway Management Features

l ASG_TRANSACTIONS

l ASG_TRANSACTION_DETAILS

l ASG_TRANSACTION_MESSAGES

l ASG_TRANSACTION_KEYS

l Transaction-Transaction Keys

3. Note that the analysis file opens without any errors. This file does not show any data
as the Central Logger database is empty.

4. Save the ASG_LogData.dxp analysis file in the Spotfire Server by selecting menu
option File - > Save as - > Library Item. In the Save As Library Item dialog window
that opens, click Finish.

5. Click Close in the dialog window.

6. After the tests are run, use the menu option File - > Reload Data to refresh the
data. Verify that the audit trail data from the database is loaded in the visualization
file.

7. Select File - > Exit to close the Spotfire Professional.



TIBCO® API Exchange Gateway User Guide

756 | Basic Deployment

Basic Deployment
Overview of the process for basic deployment of the Core Engine and its components.

After the project configuration is completely defined using the Config UI, test the
configuration by running the Core Engine and its components at the command line. After
testing the configuration, you can deploy the gateway components on production systems.

This section explains the process and configuration required to deploy the Core Engine and
its components in a single server or distributed environment.

Deploying TIBCO API Exchange Gateway Processing
Units
Full deployment of TIBCO API Exchange Gateway contains the deployment of following
components. The following components can be deployed on a single server or distributed
across multiple servers.

l Core Engine

l Central Logger

l Global Throttle Manager

l Cache Manager (Optional)

l Cache Cleanup Agent (Optional)

For deployment details of runtime components, see High Availability Deployment Of
Runtime Components .

Requirements For Deployment
TIBCO API Exchange Gateway software packages the required files for deployment of its
engine and other processing units, by default. Typically, a deployment requires one or
more Enterprise Archive (EAR) files and one or more Cluster Deployment Descriptor (CDD)
files. Ensure that the third party jars are available at run time, if applicable.



TIBCO® API Exchange Gateway User Guide

757 | Basic Deployment

In case, if any customizations are made in the ASG_DefaultImplementation project of the
gateway, configure the CDD file settings and build the EAR file.

Deployment Options
TIBCO API Exchange Gateway provides the following ways to deploy the Core Engine and
other processing units:

l Run the Core Engine and run time components at the command line. See Running
Processing Units At Command Line.

l Using TIBCO Administrator. See Deploying Gateway Components Using TIBCO
Administrator.

Running Processing Units At Command Line
See Processing Units of Core Engine for the processing units details of TIBCO API Exchange
Gateway.

You can run any processing unit as follows:

Procedure
1. Navigate to ASG_HOME/bin directory.

2. Type the command as follows:

   asg-engine -u asg_processing_unit_name -a asg_config_name

where,

l asg_processing_unit_name is the name of the processing unit name.

l asg_config_name is the name of the project configuration. The project
configuration is not required for the gateway management components such as
Global Throttle Manager, Central Logger, Cache Cleanup Agent.

For example, run the asg-gtm processing unit as follows:

   asg-engine -u asg-gtm -a ASG_Configuration_Name

where ASG_Configuration_Name is the gateway project configuration of TIBCO API



TIBCO® API Exchange Gateway User Guide

758 | Basic Deployment

Exchange Gateway.

Deploying Gateway Components Using TIBCO
Administrator
To administer the Core Engine or any component such as Central Logger or Global Throttle
Manager of TIBCO API Exchange Gateway within the TIBCO Administrator, follow these
steps:

Procedure
1. Back up Files

a. Navigate to the ASG_HOME/bin directory.

b. Open the asg-engine.tra file in a text editor.

c. Ensure that the tibco.env.HAWK_HOME property is set correctly to the location
of TIBCO Hawk installation home. For example, the property is set to
c:/tibco/hawk/4.9.

d. Ensure that the tibco.env.RV_HOME property is set correctly to the location of
TIBCO Rendezvous installation home. For example, the property is set to
c:/tibco/tibrv/8.3.

e. Ensure that the tibco.env.ASG_CONFIG_HOME property is set correctly to the
location of gateway configuration directory. For example, the property is set to
C:/TIBCOAPIX_Exchange211GA_CONFIG/tibco/cfgmgmt/asg.

f. Save changes to the file, if any.

g. Back up the asg-engine.tra file on all the machines where the components of
TIBCO API Exchange Gateway are deployed.

h. Back up the asg-core.ear file.

2. Register TIBCO API Exchange Gateway Component

To register the TIBCO API Exchange Gateway component within TIBCO Administrator,
follow these steps:

a. Start the TIBCO Administrator, if not running.

b. Log in to the TIBCO Administrator using your credentials.



TIBCO® API Exchange Gateway User Guide

759 | Basic Deployment

c. Expand the Resource Management node.

d. Click Installed Software.

e. Click Add Custom Software. Verify that the list of machines associated with
the domain are displayed.

f. Click the radio button to select the machine where TIBCO API Exchange
Gateway is installed.

g. Click OK.

h. Enter the values as explained in the following table:



TIBCO® API Exchange Gateway User Guide

760 | Basic Deployment

Paramete
r

Value Description

Software
Type

be-engine Specifies the name of
custom software. This is
a required field and
should not be changed.

Software
Display
Name

User_Specified_Software_Name Specifies a name of the
software.

The name of the
software displayed
under Installed
Software in TIBCO
Administrator is a
concatenation of this
display name and the
version value as entered
in the Version field.

Version 5.1.4 Specifies the version of
TIBCO BusinessEvents
used by TIBCO API
Exchange Gateway. This
is a required field.

For example, for TIBCO
API Exchange Gateway
2.3, enter 5.1.4

Executabl
e (Full
Path)

Full_Path of asg-engine.exe Specifies the full path of
the executable file on
the machine. For
example,

New Custom Software Properties



TIBCO® API Exchange Gateway User Guide

761 | Basic Deployment

Paramete
r

Value Description

c:\tibco\asg\2.3\bin\
asg-engine.exe

Software
is an
adapter

Select the check box.

Java
Software

Select the check box.

Java Start
Class

com.tibco.asg.container.standalone.
ASGMain

Specifies the JVM to be
used to launch this
application. This value
must match the value
entered in the ASG_
HOME/bin/asg-engine.tra
file.

Java Start
Method

main Specifies the main
function in start the
application. This method
must be main as entered
in the ASG_
HOME/bin/asg-engine.tra
file.

i. Click Save.

3. Load New Application

a. Navigate to Application Management > All Applications.

b. Click New Application.

c. Click Choose File and select the ASG_HOME/bin/asg_core.ear file.

d. Click OK.

e. Verify the settings on the New Application Configuration screen.



TIBCO® API Exchange Gateway User Guide

762 | Basic Deployment

f. Enter name of application and deployment name under Application
Parameters, as follows:

l Name: Enter a name for application. For example, BookQuery. The
default value is ASG_Core.

l Deployment Name: Enter a name for deployment. For example, APIX-
BookQuery. The default value is domain_name-application name.

g. Click Save.

h. Expand the Application_Name node.

i. Click ASG_Core.bar.

j. In the General section, select the Enable Service check box.

k. Click Save.

4. Deploy Application

a. Expand Application Management > Application_Name > Configuration.

b. Click Application_Name.

c. Click Advanced. Edit the default values of parameters, if required.

d. Click Save.

e. Delete the newly generated asg-engine.tra file.

f. Copy the original asg-engine.tra back up file to asg-engine.tra.

g. Click Deploy.

h. Clear the Start successfully deployed services check box.

i. Click OK.



TIBCO® API Exchange Gateway User Guide

763 | Basic Deployment

Note: When any TIBCO API Exchange Gateway component is
deployed for the first time, a new asg-engine.tra file is created under
ASG_HOME/bin directory, which does not contain full information. To
correct this, follow these steps:

Using the Administrator, follow these steps to perform the force
deployment on all machines:

l Navigate to Application Management > Application_Name >
Configuration.

l Click Deploy.

l Select the Force redeployment of all services check box.

l Click OK.

5. Modify Generated TRA File

After the TIBCO API Exchange Gateway components are deployed, a corresponding
TRA file is created in the Tibco_Domain_name/application/Application_Name
directory.

For example, for the BookQuery application, the default file name is BookQuery-
Process_Archive.tra file.

Follow these steps to edit these files for correct parameter settings:

a. Open the TRA file in a text editor.

b. Search for the application.args=%APP_ARGS% string. Ensure that there are no
additional parameters after APP_ARGS in this line. For example, if the
deployment has generated additional parameters within this line such as -p,
remove the text.

c. Search for the tibco.hawk.microagent.name=COM.TIBCO.ADAPTER.be-engine
line. Replace this line with Hawk.AMI.DisplayName=COM.TIBCO.ADAPTER.be-
engine.

d. Search for the tibco.clientVar.DirTrace line. Replace this line with:
Engine.Log.Dir.

e. Save changes to the file.

6. Modify Generated CMD File



TIBCO® API Exchange Gateway User Guide

764 | Basic Deployment

After the TIBCO API Exchange Gateway components are deployed, a corresponding
CMD file is created in the Tibco_Domain_name/application/Application_Name
directory.

For example, for the BookQuery application, the default file name is BookQuery-
Process_Archive.cmd file.

a. Open the CMD file in a text editor.

b. Append the parameters –u, -a, -n,-c and their associated values to the end of
the asg-engine.exe command. Refer to TIBCO API Exchange Gateway User’s
Guide for details on these parameters.

For example,

C:/tibco/be/be/5.0/bin/asg-engine.exe --run --propFile
"C:/tibco/classic/tra/Tibco_Domain_
name/application/BookQuery/BookQuery-ASG_Core.tra" -c
"C:\tibco\classic\asg\2.3\bin\asg_core_deploy.cdd" -u asg-caching-core -a
BookQuery -n BookQuery ASG_HOME/bin/asg_core.ear

c. Save changes to the file.

7. Start Engine Instance

a. Navigate to Application Management > ASG_Core > Service Instances.

b. Click the Machine_Name-Application_name service instance.

c. Click Start.

d. To ensure that the service instance is started successfully, follow these steps:

l Verify that the state of application is changed to Running.

l Ensure there are no errors in the Tibco_Domain_
name/application/Application_Name/logs directory.

l Using a browser, enter the following URL to submit a ping operation
request:

http://IP_Address_Of_machine_name:listening_port_value/ping

The gateway must return a successful response.



TIBCO® API Exchange Gateway User Guide

765 | Advanced Features

Advanced Features
This section describes some advanced functionality of TIBCO API Exchange Gateway.

Cache Agent
A cache agent manages the cache data.

The Cache Agent stores cache data and is responsible for object management. A processing
unit can have one only Cache Agent.

Using cache clustering technology, object data is kept in memory caches, with redundant
storage of each object for reliability and high availability. Cache data is shared across all
the Core Engines participating in the cluster. The purpose of Cache Agents is to store and
serve cache data for the cluster.

The Cache Agents are used to implement the association cache and response cache
functionality. The size of a cache can be unlimited or limited. Performance is best when all
the data is in the cache.

Note: Use an unlimited cache only if you deploy enough Cache Agents to handle
the data. Otherwise out of memory errors may occur.

Running Cache Agent

Procedure
1. Open a terminal window.

2. Navigate to ASG_HOME/bin directory.

3. Type the following command to start up the stand-alone Cache Agent:
./asg-engine -u asg-cache

The following command starts up the Core Engine in cache enabled mode:

./asg-engine -u asg-caching-core



TIBCO® API Exchange Gateway User Guide

766 | Advanced Features

Hot Deployment Overview
Allows the configuration changes at runtime.

You can make certain changes to a set of TIBCO API Exchange Gateway configuration
without shutting down the Core Engine. This is known as hot deployment.

Hot deployment process suspends north inbound channels and checks for any pending
transactions to complete in memory. If there are any pending transactions, the Core Engine
waits for the specified delay time before hot deploying the configuration. If there are no
transactions in memory, the configuration is reloaded immediately.

Enabling Hot Deployment
By default, hot deployment is not enabled. To enable the hot deployment feature, follow
these steps:

Procedure
1. Navigate to the ASG_CONFIG_HOME/asg directory.

2. Edit the asg.properties file to change the value of the following property to true:

tibco.clientVar.ASG/Deployments/AllowHotUpdate=true

3. Deploy and restart the Core Engines that need to be hot deployed engines. For
example, asg_core or asg_caching_core.

Invoking Hot Deployment
Hot deployment can be invoked from an MBean client by invoking the refreshConfig
method in com.tibco.asg domain for the appropriate Core Engine.

refreshConfig method uses following parameters:

l The first parameter is the location of the configuration directory used by the Core
Engine.

l The second parameter is the delay in milliseconds. If the delay value is -1, the Core
Engine does not shutdown on any error during hot deployment. Otherwise, the Core
Engine shuts down on error.



TIBCO® API Exchange Gateway User Guide

767 | Advanced Features

Extension Mechanism
Extension mechanism capability allows you to add custom stages in the default transaction
processing pipeline. The custom stage is developed using the rules language within Studio.

Extension mechanism implements the following features:

Association Cache

The Core Engine provides a mechanism to cache the previous acquired information
retrieved from the external systems during the lookups. It uses that information later to
optimize the time taken for routing of the requests.

Response Cache

The Core Engine has the capability to store the responses of requests in the cache clusters.
It uses these responses for later requests. Response cache is implemented using
association caches. This functionality allows the Core Engine to process the requests faster
and also to off load the service endpoints.

Sequential Orchestration

TIBCO API Exchange Gateway supports sequential orchestration. Sequential orchestration
allows you to access multiple service endpoints by making a number of sequential calls to
fulfill or authorize a request. With sequential orchestration, there is effectively a single
outbound service invocation, preceded by one or more sidebound service invocations.

Sequential orchestration may use the associative and responses cache features to
accelerate the processing of future requests, which helps minimize the load on back-end
systems.

Sequential orchestration allows you to access the external systems when one or more
service requests are pipelined.

Field Translation

The Core Engine has the ability to call the external services to perform the translations of
certain fields required for the main request processing. For example, if the requestor sends
a product ID in the request but the back-end service requires the product name, then the
Core Engine calls an east side service to translate the product ID into the product name.
This translated value (product name in this case) is replaced in the main request payload
and is used to invoke the back end service.



TIBCO® API Exchange Gateway User Guide

768 | Advanced Features

This cross referencing for lookups and data enrichments can use the association cache
functionality for faster processing of requests.

Content based Authorization

TIBCO API Exchange Gateway supports partner authorization based on the content of the
incoming request message. This functionality allows the partners to authenticate the
references of the partner (for example, customers of the partners) which are sent in the
content of the message.

For content based authorization, you have a single request which contains one or more
customer references. TIBCO API Exchange Gateway supports the authorization of each
request individually by parsing the content of the request message.

Content based authorization uses extension mechanism capability which allows you to use
the association cache functionality.

LDAP Based Authorization for Partner References

TIBCO API Exchange Gateway allows you to authorize the partner’s references in the
content of the request message with a LDAP system. TIBCO API Exchange Gateway provides
a set of catalog and custom rule functions to support this functionality.

Response Caching
Overview of Response caching.

TIBCO API Exchange Gateway can cache response messages from the target services. The
response caching functionality is supported for HTTPS and REST or HTTPS and SOAP
requests. To enable caching of response messages from the target services for any facade
operation, see Enabling Response Caching.

Response caching is supported by the CacheEnabled operation feature of TIBCO API
Exchange Gateway. If the CacheEnabled keyword is specified in the Operation Feature and
the caching is not explicitly configured on the Config UI for a facade operation, TIBCO API
Exchange Gateway uses the default caching parameters as follows:

l Cache Type: Simple Cache

l Time To Live: 1 day (24 hours)



TIBCO® API Exchange Gateway User Guide

769 | Advanced Features

Types of Response Caching
The following types of response caching are supported:

Facade Response Cache (Simple Cache)
The Facade Response Cache is known as Simple Cache. If the Simple Cache type is enabled
as response caching for a facade operation, the Core Engine processes the incoming facade
requests as follows:

l The Core Engine retrieves the response message from the cache for the matching
cache response key for every facade request from the client.

l If the response message is found in the cache and is not expired, the Core Engine
sends the response message from the cache as the facade response message to the
client.

l If the response message is not found in the cache, the Core Engine forwards the
facade request to the target operation and sends the response message from the
target service to the client. The Core Engine stores the response message into the
cache just before sending the response message to the client. This ensures that the
response message is available in the cache for subsequent requests from the client.
The Time to Live parameter specifies the duration of the response message in the
cache. See Response Caching Parameters table.

l If the response message in the cache for the same cache response key is expired, the
Core Engine deletes the response message from cache and forwards the facade
request to the target operation.

l When the response message is received from the target service by the Core Engine
for the first time, the Core Engine stores the response message including the headers
in the cache using the cache response key. See Cache Response Key. For every
subsequent requests from the client, the response from the cache is returned with all
the response headers, similar to the response headers from the target service. The X-
Cache: Hit in the response message header indicates that the response message is
returned from the cache.

l If the response from the target operation is an error, the Core Engine does not cache
the response.



TIBCO® API Exchange Gateway User Guide

770 | Advanced Features

Note:
o When a response message is found in the cache for a facade

operation request, the Core Engine adds the following header in the
response message:
X-Cache: Hit

o If the HTTP header of the response message from the target service
has a Cache Control header with either the no-cache or no-store
directive, the response is not cached.

Sample Request Header

The following is the sample request header for the facade request with accept header:

<h:request xmlns:h="http://www.tibco.com/asg/protocols/http">
<h:server-ip>localhost</h:server-ip>
<h:server-port>9222</h:server-port>
<h:client-ip>0:0:0:0:0:0:0:1</h:client-ip>
<h:client-port>0</h:client-port>
<h:scheme>http</h:scheme>
<h:method>GET</h:method>
<h:request-uri>/Books/BookOperations/Title/The Power of Now</h:request-
uri>
<h:protocol-version>HTTP/1.1</h:protocol-version>
<h:query-string/>
<h:header name="host">localhost:9222</h:header>
<h:header name="connection">keep-alive</h:header>
<h:header name="accept">

text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0
.8
</h:header>

Sample Response Headers

The following are sample response headers for the facade response caching type:

Sample Response Headers from Target Service

Access-Control-Allow-Origin: *
Date: Wed, 13 Aug 2014 20:59:06 GMT



TIBCO® API Exchange Gateway User Guide

771 | Advanced Features

Server: Apache-Coyote/1.1
Connection: Keep-Alive
Transfer-Encoding: chunked
Access-Control-Allow-Methods: GET, POST, DELETE, PUT
Content-Type: application/json;charset=ISO-8859-1

Sample Response Headers from Cached Response

Access-Control-Allow-Origin: *
Date: Wed, 13 Aug 2014 20:59:06 GMT
X-Cache: Hit
Server: Apache-Coyote/1.1
Connection: Keep-Alive
Transfer-Encoding: chunked
Access-Control-Allow-Methods: GET, POST, DELETE, PUT
Content-Type: application/json;charset=ISO-8859-1

Target Backup Response Cache
The Target Backup Response Cache is known as Backup Cache. The Target Backup
Response Cache ensures that the response message is sent from the cache if existing, to
the client in case the response is not received from the target service within a time period.

If the response caching of Improve SLA type is enabled for a facade operation, the Core
Engine processes the incoming facade request as follows:

l The Core Engine routes the request to the appropriate target service.

l The Core Engine sends the response message from the target service to the client if a
successful response message is received.

l The Core Engine stores the response message in the cache.

l The Core Engine processes the subsequent requests from the client as follows:

o For any request from the client, if the response from the target service is not
received within a configured time period specified by the Short Wait Timer
parameter, the Core Engine fetches the response message stored in the cache.

1. If the response is found in the cache and is not expired, the Core Engine sends
back the response message to the client.

2. If the response is found in the cache and is expired, the Core Engine deletes the
response from the cache and waits for the response message from the target



TIBCO® API Exchange Gateway User Guide

772 | Advanced Features

service.

3. If the response is not found in the cache, the Core Engine waits for the target
service to respond and sends back the response to client when received. If the
response message is not received from the target service, the Core Engine
sends a timeout error to the client.

o If the response message from the target operation is received after the
specified time period, the Core Engine just updates the cached response
message with the received response message.

Cache Response Key
TIBCO API Exchange Gateway uses the cache response key to check if a cached response
exists in the cache for an incoming request.

By default, the Core Engine constructs the value of the cache response key for REST/HTTP
requests using the following parameters:

routingKey+requestURI(minus the API Key)+Accept-Header+Soap Action

where,

l Routing Key: when the routing key is added to the cache response key, this ensures
that for each incoming request, the cached response is only returned for a particular
routing key.

l requestURI: this is the URI that contains the path and query parameters. The API key
is removed from the URI.

l Accept-Header: The Accept HTTP request-header may be used to pass a content-type
preference to the target service. For example, a service may support an Accept-
Header of application/xml or application/json to preferentially return the response
message in XML or JSON format. For the purpose of caching, the request with Accept-
Header of application/xml or application/json are managed as two separate requests.
The Accept-Header is added to the cache response key as an additional
discriminator.

For example, if a user requests the JSON data for a URI such as
/Books/BookOperations/Title/Power , the cached response is only returned if the
cache value has a JSON response for that URI in the cache.

l Soap Action: specifies the SOAP Action header for a HTTP SOAP request used to
construct the default cache response key.



TIBCO® API Exchange Gateway User Guide

773 | Advanced Features

For HTTP/REST and HTTP/SOAP requests, the Core Engine creates a default caching key
using the above parameters..

Note: You can override the default cache response key using the custom XSLT
specified in the parsing step of a facade operation request. See Overriding Cache
Response Key and Parameters on how to create a cache response key using
XSLT.

Response Caching with Proxy Server
For the Proxy operation feature of TIBCO API Exchange Gateway, the response caching is
supported as follows:

l If the caching is explicitly configured for a facade operation on the Config UI, TIBCO
API Exchange Gateway uses the Cache Type and other caching parameters such as
Time To Live as configured for the facade operation.

l If the caching is not explicitly configured for a facade operation on the Config UI,
TIBCO API Exchange Gateway uses the default caching parameters, as follows:

o Cache Type: Simple Cache

o Time To Live: 1 day (24 hours)

Enabling Response Caching
To enable the response caching for a facade operation request, follow these steps::

Procedure
1. Start the Config UI, if not running.

2. Log in to the Config UI using your credentials.

3. Add a new project or select an existing project under Projects.

4. Click the ROUTING tab on the right-hand side.

5. Click the Facade Operations tab.

6. Select a facade operation to enable the response caching.

7. Select the Enable Caching check box.



TIBCO® API Exchange Gateway User Guide

774 | Advanced Features

8. Enter the parameters as explained in the Response Caching Parameters table.

Response Caching Parameters

The following table explains the parameters required for response caching:

Parameter Description

Cache Type Specifies the type of the response caching. The possible values are:

l Simple Cache

l Backup Cache

Time To Live Specifies the time (in milliseconds) that a response is retained in the cache.

The default value is 86400000 (ms).

Short Wait
Timer

l Specifies the time that the Core Engine waits for a response from the
target operation before sending a response back from the cache.

l This parameter is not applicable for Simple Cache response caching
type.

Response Caching Parameters

Clearing Cached Items
The cached messages are deleted after the time specified by Time To Live parameter. Start
the Cache Cleanup Agent to clear the cached response messages as follows:

Procedure
1. Navigate to the ASG_HOME/bin directory.

2. Type the following command:

On Windows platform,

./asg-engine.exe -u asg-cache-cleanup

On Unix platform,

asg-engine -u asg-cache-cleanup



TIBCO® API Exchange Gateway User Guide

775 | Advanced Features

Overriding Cache Response Key and Parameters
Using TIBCO API Exchange Gateway, you can override the following parameters for a
specific facade operation request:

l Cache Response Key. See Cache Response Key.

l Cache Response Parameters.

The Cache Response Key and Cache Response parameters can be overwritten using a
custom XSLT file.

To override the cache response key and cache response parameters, follow these steps:

Procedure
1. Create XSLT File.

Create an XSLT file with the following key types to specify the new values for the
cache response. Refer to Sample XSLT File.

KeyType Description

CacheResponse_Key Specifies the cache response key for a facade operation
request used to check if a cached response exists for this
request.

CacheResponse_
ShortWait

Specifies the time that the Core Engine waits for a response
from the target service before sending a response back from
the cache.

CacheResponse_TTL Specifies the time (in seconds) that a response is retained in
the cache.

Key Tags for XSLT File

2. Upload XSLT File.

To upload the XSLT file, follow these steps:

a. Start the Config UI, if not running.

b. Log in to the Config UI using your credentials.

c. Add a new project or select an existing project under Projects.



TIBCO® API Exchange Gateway User Guide

776 | Advanced Features

d. Click the ROUTING tab on the right-hand side.

e. Click the Facade Operations tab.

f. Select a facade operation to enable the response caching.

g. Upload the XSLT file in the New ProcessBody Transform field.

h. Save the changes to your configuration.

Note: If you copy the XSLT file to the ASG_CONFIG_
HOME/ASGProjectConfig/xslt directory, select the XSLT file in the
ProcessBody Transform field of the Facade Operations tab.

Sample XSLT File

The following is an example XSLT file which can be used to override the cache response
key and response caching parameters:

<!-- The key used to check if a cached response exists for this request
-->

<key type="CacheResponse_Key"><xsl:value-of
select="$httpRequest/h:request/h:request-uri"/></key>

<!-- This is how long (in milliseconds) we wait for the response from
the service before sending a cached response instead -->

<key type="CacheResponse_ShortWait">4000</key>

<!-- This is the time (in seconds) that the response will be retained in
the cache -->

<key type="CacheResponse_TTL">50</key>

<!-- What caching semantics are applied?

simpleCache - return a value from cache if present, otherwise invoke
service and put response in cache.

improveSLA - use a cached value if the service takes more than ShortWait
ms to reply. Freshen value in cache with real response.

-->



TIBCO® API Exchange Gateway User Guide

777 | Advanced Features

<key type="xCacheResponse_Type">simpleCache</key>

Response Caching Example

Out of the box, TIBCO API Exchange Gateway provides a BookQueryBE example. By default
,the queryBookByTitle facade operation is enabled for simple cache response type.

Performance Tuning Parameters
To improve the performance of TIBCO API Exchange Gateway, tune the following
parameters:

Procedure
1. Set the following property in the ASG_CONFIG_HOME/asg.properties file:

tibco.clientVar.ASG/HttpClient/useSynchHttpClient=true

2. Increase the number of threads to handle the load of incoming requests, as follows:

a. Navigate to the ASG_HOME/bin directory.

b. Edit the asg_core.cdd file in a text editor.

c. Search the <inference-agent-class id="core-class"> under <agent-classes>
element.

d. For the <inference-agent-class id="core-class">, go to the <shared-queue>
node.

e. Expand the <shared-queue> node to edit the <workers> element value, as
follows:

<shared-queue>
<size>1024</size>
<workers>10</workers>

</shared-queue>

f. Edit the the value of <workers> element, as required. The default is 10.

g. Save changes to the asg_core.cdd file.



TIBCO® API Exchange Gateway User Guide

778 | Advanced Features

3. If you use native HTTP channel, select the Caller’s Thread threading model as follows:

a. Navigate to the ASG_HOME/bin directory.

b. Edit the asg_core.cdd file in a text editor.

c. Search the <destinations
id="DefaultImplementationDestinations">/<destination id="FacadeRequest_
5449883F"> under <destination-groups> element.

d. For the <destination id="FacadeRequest_5449883F">, go to the <threading-
model> node.

e. Edit the <threading-model> element value, as follows:

<threading-model>caller</threading-model>

Using the Caller’s Thread threading model, by default, 200 threads managed
by the underlying HTTP server resource are used to handle the incoming HTTP
requests. When the Caller’s Thread is set as threading model for native HTTP
channel, the settings for <workers> under <shared-queue> for <inference-
agent-class id="core-class"> under <agent-classes> do not apply for
native HTTP channel.

f. Save changes to the file.

Large Payload Limit Settings
The following global variables limit the size of payload at which logging is truncated.

The following global variables will limit the size of payload at which logging is truncated:

tibco.clientVar.ASG/ForwardLargePayloadLimit=10000

tibco.clientVar.ASG/ReverseLargePayloadLimit=10000

The default value is -1, which disables this behavior.

Enable Access Logs in HTTP Channel
Use the following settings to add support for access logs on Native HTTP Channels.

To add support for access logging for the native HTTP channel, change the following
settings found in the Advanced tab of the HTTP channel resource editor:



TIBCO® API Exchange Gateway User Guide

779 | Advanced Features

1. Select the Debug Request Info check box. This enables two additional debug fields -
Debug Log Folder and Debug Log Pattern.

2. In the Debug Log Folder field, specify where the location of the log file should be
generated. The default location is the currently running folder/logs.

3. In the Debug Log Pattern field, the default log pattern is used. To change the log
pattern, refer to the Tomcat documentation.

Note: You can use global variables in all fields of the Advanced tab.

The following properties need to be modified for the access logs.

Parameters to enable access logging for native HTTP Channel:

l tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPConnection/De
bugFolder

For example,
tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPConnecti
on/DebugFolder=C:/tibco/asg20/c/tibco/cfgmgmt/asg/logs

l tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPConnection/De
bugPattern

For example,
tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPConnecti
on/DebugPattern=%{yyyy MMM dd HH:mm:ss.SSS 'GMT'X}t %A %I [%m] '%U' [%s]
%bbytes %Dms

Parameters to enable access logging for native HTTPS Channel:

l tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPSSLConnectio
n/DebugFolder

For example,
tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPSSLConne
ction/DebugFolder=C:/tibco/asg20/c/tibco/cfgmgmt/asg/logs

l tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPSSLConnectio
n/DebugPattern

For example,
tibco.clientVar.DefaultImplementation/Connections/HTTP/FacadeHTTPSSLConne
ction/DebugPattern=%{yyyy MMM dd HH:mm:ss.SSS 'GMT'X}t %A %I [%m] '%U'
[%s] %bbytes %Dms



TIBCO® API Exchange Gateway User Guide

780 | High Availability Deployment Of Runtime Components

High Availability Deployment Of Runtime Components
Fault tolerance and high availability configuration setup of runtime components of API
Exchange Gateway software.

This section describes the deployment of runtime components in a high availability setup.
The runtime components are Core Engine, Cache Agents, Global Throttle Manager, Central
Logger and Cache Cleanup Agents. You should deploy the runtime components in such a
way that they are highly available in production systems to achieve maximum functionality
of the gateway.

TIBCO API Exchange Gateway is deployed as a cluster of Core Engines that together act as
a single logical gateway. The Core Engines in the cluster can run on a single server or in a
distributed environment across multiple physical or virtual servers.

Typically for production deployment requirements, you must add additional instances of
Core Engines. The architecture of Core Engine has been designed so that when multiple
Core Engine instances are deployed in a gateway cluster, the key management functions
such as global throttle management, cache management, cache cleanup management and
central logging are coordinated across all Core Engine instances.

However, as the levels of transactions increase, it is likely that there is a corresponding
increase in management activity. To avoid the possible impact of management activity
upon the Core Engines of the TIBCO API Exchange Gateway, the management components
(Global Throttle Manager, Cache CleanupAgent, and Central Logger) and the TIBCO Spotfire
servers should be moved onto separate servers.

If multiple instances of the Core Engines are deployed in a cluster, you must start the
Cache Agent instances explicitly once you start the Core Engines.

TIBCO Rendezvous is used for the communication between most of the runtime
components of the gateway. The runtime components share a single set of configuration
files.

Note: The set of configuration files should be stored on a shared file system so
that they are accessible for reading to each of the runtime components.



TIBCO® API Exchange Gateway User Guide

781 | High Availability Deployment Of Runtime Components

Overview
This section gives an overview and configuration setup of the deployment of runtime
components with multiple instances for load balancing and high availability.

The administrators deploy two or more instances of the Core Engines in production to
achieve high availability through load balancing. That is, a load balancer routes request
messages to multiple Core Engine instances. The Core Engines together can handle more
messages than just one Core Engine instance running. Also, such deployment makes the
runtime components highly available to process the requests with minimum or no down
time. The Core Engine instances, thus, share the load of requests when large number of
requests are received from the clients.

All the runtime components of the TIBCO API Exchange Gateway are deployed in the same
cluster except the Central Logger component. The Central Logger instance must be running
in a separate cluster.

Overview Of Deployment

Figure Overview of Runtime components For High Availability shows a high level overview
of a deployment model of runtime components in a cluster for high availability setup.



TIBCO® API Exchange Gateway User Guide

782 | High Availability Deployment Of Runtime Components

Overview of Runtime components For High Availability

Operational Layer Components
This section briefly describes the information for load balancing setup of the Core Engines
and Cache Agents.

Load Balancing Core Engines

All the instances of the Core Engine automatically behave in a fault tolerant manner. The
load balancer distributes the load of requests within all active agents in the same group as



TIBCO® API Exchange Gateway User Guide

783 | High Availability Deployment Of Runtime Components

per the configuration setup described in Configure Load Balancer section. If any Core
Engine instance fail, the load balancer distributes the load between the remaining active
Core Engine instances in the group.

There is no discovery protocol between Apache server and the Core Engine. If one of the
Core Engine instance goes down, the Apache server is not able to determine that this
instance is not available and keeps sending the requests to the Core Engine which results
in all those requests timing out. For this reason, it is good practice that you do not use a
single Apache server to send request messages to multiple instances of the Core Engines.

For the Apache server and Core Engine configuration setup, you must consider:

l There should be a single Apache server per Core Engine instance. For example, if you
plan to run two instances of Core Engine instances, you must setup two Apache
servers, one Apache server for each Core Engine instance.

l You must configure health monitor of the load balancer to call the gateway ping
operation so that the load balancer can determine which instances of the Core
Engines are up and running. See Configure Load Balancer for configuration details. If
any of the Apache server or the Core Engine instance goes down, the load balancer
considers it as a failure to forward the request and routes the request to the second
active instance of Apache server as configured in the load balancer group.

Cache Agents

TIBCO API Exchange Gateway supports in memory caching of the data. Fault tolerance of
Cache Agents is handled transparently by the object management layer. For fault tolerance
of cache data, the only configuration task is to define the number of backups you want to
keep. Use of a backing store is not needed as the Cache Agents are only used to implement
the association cache, which is automatically rebuilt after complete failure as new
transactions are handled by the API Exchange Gateway.

Note: TIBCO API Exchange Gateway does not support backing store for cache
management.

Gateway Management Layer Components
The components of the Gateway Management Layer should be deployed once in a active-
passive configuration setup. The Central Logger and the Global Throttle Manager need to
have a single running instance at all times to ensure that the Core Engine operates without
loss of functionality.



TIBCO® API Exchange Gateway User Guide

784 | High Availability Deployment Of Runtime Components

Therefore the Central Logger and Global Throttle Manager are deployed in fault tolerant
configuration with one active engine (Central Logger instance or Global Throttle Manager
instance) and one or more standby agents on a separate host servers. Such fault-tolerant
engine setup can be configured in the cluster deployment descriptor (CDD) file by
specifying the maximum number of one active agent for either of the agent classes and by
creating multiple processing unit configurations for both the Global Throttle Manager and
the Central Logger agent. Deployed standby agents maintain a passive Rete network. They
do not listen to events from channels and they do not update working memory. The
standby agents take over from the active instance in case it fails.

The Cache Cleanup agent of the Gateway Management Layer have no direct impact on the
functionality of an operating API Exchange Gateway Engine instance. It is good practice
that multiple versions of cache cleanup agents are deployed across host servers with one
active instance running. If the running instance goes down, one of the other instances is
started to regain full gateway functionality.

Example Deployment Model

Figure Deployment of Runtime Components In a Cluster illustrates the deployment of
runtime components on the machines in a cluster environment for high availability.



TIBCO® API Exchange Gateway User Guide

785 | High Availability Deployment Of Runtime Components

Deployment of Runtime Components In a Cluster

It is good practice to have the runtime components deployed in a cluster:

l Core Engines - You must deploy all the instances of the Core Engines as Active Active
engine instances.

l Cache Agents - Fault tolerance of Cache Agents is handled transparently by the object
management layer. At least two Cache Agents should be deployed to provide the
fault tolerance of the cached data.



TIBCO® API Exchange Gateway User Guide

786 | High Availability Deployment Of Runtime Components

l Cache Cleanup Agents - You must deploy multiple instances of the cache cleanup
agents with one instance as Active (primary) and the other instances are deployed as
Passive (secondary).

l Global Throttle Manager - You must deploy multiple instances of the Global Throttle
Manager with one instance as Active (primary) and the other instances are deployed
as Passive (secondary).

l Central Logger - You can deploy multiple instances of the Central Logger as follows:

o With one instance as Active (primary) and the other instances are deployed as
Passive (secondary)

o In Active-Active mode to handle additional load

The figure Deployment of Runtime Components In a Cluster illustrates an example
deployment model in which the components are deployed as follows:

l All the instances of the run time components of the gateway, except the Central
Logger are deployed on the machines in one cluster (Cluster A). The two instances of
the Central Logger are deployed on the machines in a second cluster (Cluster B).

l On machine A, the Apache server with Apache module instance 1 runs.

l On machine B, the Apache server with Apache module instance 2 runs.

l On machine C in Cluster A, the components are deployed as follows:

o The Core Engine instance 1 runs as an Active instance.

o One instance of the Cache Agent runs.

o The Cache Cleanup Agent instance 1 runs as an Active instance.

l On machine D in Cluster A, the components are deployed as follows:

o The Core Engine instance 2 runs as an Active instance.

o Second instance of the Cache Agent runs.

o The Cache Cleanup Agent instance 2 runs as an Passive instance.

l On machine E in Cluster A and Cluster B, the components are deployed as follows:

o One instance of the Global Throttle Manager runs as an Active instance.

o One instance of the Central Logger runs as an Passive instance.

l On machine F in Cluster A and Cluster B, the components are deployed as follows:



TIBCO® API Exchange Gateway User Guide

787 | High Availability Deployment Of Runtime Components

o Second instance of the Global Throttle Manager runs as an Passive instance.

o Second instance of the Central Logger runs as an Active instance.

Note:
n All the run time components communicate using the

Rendezvous channel. In the example deployment model as
shown in Deployment of Runtime Components In a Cluster, it
is assumed that all the machines running various instances of
runtime components are in the same subnet.

n You can add more instances of the components as required.
The Core Engine instances, if added, must be configured as
Active for load balancing. The instances of Cache Cleanup
Agent, Global Throttle Manager and Central Logger, if added,
must be configured as Passive for fault tolerance.

Configuration For High Availability Setup
This section describes the configuration of multiple processing units for load balancing and
fault tolerance to achieve high availability and high throughput.

Configuration Files

The high availability configuration of runtime components of the gateway can be setup in
the asg_core.cdd and asg_cl.cdd files respectively. An agent class is an agent type, defined
in the CDD file that deploys as an agent instance.

asg_core.cdd file defines the configuration for the following processing units:

l default, asg-core, asg-caching-core - These processing units refers to the Core Engine.
The configuration settings of core-class (Inference) agent class defines the runtime
behavior of default, asg-core, asg-caching-core agent processing units.

l asg-cache - This processing unit refers to the Cache Agent. The configuration settings
of cache-class (Cache) agent defines the runtime behaviour of asg-cache processing
unit.

l asg-cache-cleanup - This processing unit refers to the Cache Cleanup Agent. The
configuration settings of cache-cleanup-esp (Query) and cache-cleanup-scheduler
(Inference) agent classes define the runtime behaviour of asg-cache-cleanup



TIBCO® API Exchange Gateway User Guide

788 | High Availability Deployment Of Runtime Components

processing unit.

l asg-gtm - This processing unit refers to the Global Throttle Manager. The
configuration settings of gtm-class (Inference) agent class defines the runtime
behaviour of asg-gtm processing unit.

asg_cl.cdd file defines the configuration for the following processing unit:

l asg_cl- This processing unit refers to the Central Logger. The configuration settings of
BusinessEvents_Archive (Inference) agent class define the runtime behaviour of asg_
cl processing unit.

To setup the deployment configuration of runtime components for high availability.

l Configure an IP based load balancer. See Configure Load Balancer.

l Configure Apache module per Core Engine instance. See Configure Apache Modules
for Core Engines.

l Configure machines for cluster. See Cluster Configuration For Runtime Components.

l Configure the gateway core instances. See Configuring Core Engines.

l Configure the Cache Agent instances. See Configuring Cache Agent.

l Configure the Cache Cleanup Agent instances. See Configuring Cache Cleanup Agent.

l Configure the Global Throttle Manager instances. See Configuring Global Throttle
Manager.

l Configure the Central Logger instances. See Configuring Central Logger

Configure Load Balancer
You must use a HTTP load balancer with API Exchange Gateway. For example, you can use
the F5 load balancer. This section describes the configuration steps for F5 load balancer. If
you use a different load balancer, you should refer to the documentation of the load
balancer to complete the following tasks.

Creating A Health Monitor For Core Engines
To create a monitor for the load balancer, follow these steps:

Procedure



TIBCO® API Exchange Gateway User Guide

789 | High Availability Deployment Of Runtime Components

1. Go to the Health Monitor tab of the navigation pane.

2. Expand Monitors node under Local Traffic on left. Click the "+" to create a new
monitor.

3. Verify that the New Monitor screen appears.

4. For General Properties section, input the values for the following fields:

a. Name: Enter the name of the monitor. (For example, asgping)

b. Type: Select the type as HTTP from drop-down list

5. For Configuration field, select BASIC from drop-down list.

6. Input the values for the following fields under Configuration section.

a. interval-desired interval: Set this value in seconds (for example, 2)

b. timeout-desired timeout: Set this value in seconds (for example, 15)

c. Send String - Set the value to a string to send to API Exchange Gateway Engine
in the HTTP URL. GET /ping.

d. Receive String - Set the value to a string, expected to receive as a response
from API Exchange Gateway Engine. Set this as "ASG is alive" (without quotes).

7. Click Finished.

Creating A Load Balancing Pool
This task is required to create a pool to load balance HTTP connections. You can use the
configuration utility to create a load balancing pool.

Procedure
1. Go to the Main tab of the navigation pane.

2. On the left, under Local TrafficVirtual Servers, select Pools node. Click the "+" to
create a new pool.

3. Verify that the Pools screen opens.

4. In the upper-right corner of the screen, click Create. Verify that New Pool screen
opens.



TIBCO® API Exchange Gateway User Guide

790 | High Availability Deployment Of Runtime Components

Note: If the Create button is not available, make sure that you have
permission to create a pool. Ask your administrator to grant Create Pool
permissions to your user role.

5. Type the name of the pool in the Name field. (for example, asg_http_pool.)

6. For Configuration field, select BASIC from drop-down list.

7. Under Configuration section, Go to Health Monitors sub-section.

a. Add a health monitor as follows:

l Select an existing health monitor from the Available field. For example,
select asgping health monitor as created in Creating A Health Monitor For
Core Engines section.

b. Click Move (<<) to move the monitor from the Available field to the Active field.
For example move the asgping health monitor from the Available box to the
Active box.

c. Verify that the asgping health monitor appears under Active box.

8. Under the Resources setting, select an appropriate algorithm from the drop-down list
for the Load Balancing Method field. For example, you can select Round Robin.

9. Add the pool members as follows:

a. Select the New Address option.

b. In the Address box, type the IP address of the machine where the Core Engine
runs.

c. In the Service Port field, enter the service port of HTTP module on that
machine. (for example, type 80, or select HTTP).

d. Click Add.

e. You can add a pool member for each server in the pool using steps b, c, and d,
if needed.

10. Click Finished.

Creating a Virtual Server
This task is required to create a virtual server. The virtual server processes the HTTP traffic
and send it to the pool.



TIBCO® API Exchange Gateway User Guide

791 | High Availability Deployment Of Runtime Components

You can use the Configuration utility to create the virtual server.

Procedure
1. Go to the Main tab of the navigation pane.

2. Expand Local Traffic node. Click Virtual Servers.

3. Verify that the Virtual Servers screen opens.

4. In the upper-right corner of the screen, click Create. Verify that the New Virtual
Server screen opens.

Note: If Create button is not available, make sure that you have
permission to create a virtual server. Ask your administrator to grant
permissions to create virtual server for your role.

5. In the Name Box, type a name for the virtual server (example vs_http).

6. In the Destination Box, verify that the type of virtual server is Host.

7. In the Address Box, type an IP address for the virtual server.

8. In the Service Port Box, type 80, or select HTTP from the list.

9. In the Configuration area of the screen, locate the HTTP Profile setting and select
HTTP. This assigns the default HTTP profile to the virtual server.

10. In the Resources section of the screen, locate the Default Pool setting and select the
name of the HTTP pool created in the Creating A Load Balancing Pool section.

11. From the Default Persistence profile setting, select profile_none as the profile.

12. Click Finished.

Configure Apache Modules for Core Engines
You must configure the Rendezvous subject for each Core Engine instance and Apache
module so that the requests from the Apache server are forwarded to the correct instance
of the Core Engine.



TIBCO® API Exchange Gateway User Guide

792 | High Availability Deployment Of Runtime Components

Note:
l If the Rendezvous daemon is running with non-default parameters on the

machines where Apache server and the Core Engine runs, you must
configure the Rendezvous session connection parameters as described in
Rendezvous Session Connection Parameters for Apache Module and
Rendezvous Session Connection Parameters for Core Engine.

Setting the Rendezvous Connection Parameters For Apache Module
For each machine running the Apache server, set the Rendezvous parameters for Apache
module.

Procedure
1. Browse to ASG_HOME/modules/http_server/apache directory.

2. Edit the mod_ASG.conf file.

3. Set the AsgSubject parameter, which must be defined uniquely for each machine. For
example, this can be set be follows:

   AsgSubject ASG_CoreEngine1_Subject1

4. You must set the Rendezvous connection parameters as described in the table
Rendezvous Session Connection Parameters for Apache Module, if the Rendezvous
daemon is running with non-default session parameters.

5. Save the changes in the file.

Setting the Rendezvous Connection Parameters for Core Engine
For each machine running the Core Engine instance, set the properties for Rendezvous
connection.

Procedure
1. Navigate to the ASG_CONFIG_HOME directory.

2. Edit asg.properties file.

3. Set the tibco.clientVar.ASG/modRV/north_request property, which must be defined
unique for each machine. For example, this can be set as follows:



TIBCO® API Exchange Gateway User Guide

793 | High Availability Deployment Of Runtime Components

tibco.clientVar.ASG/modRV/north_request=ASG_CoreEngine1_Subject1

Note: The value of tibco.clientVar.ASG/modRV/north_request property
must match the AsgSubject defined in the mod_ASG.conf file for that
machine.

4. You must set the Rendezvous connection parameters as described in the table
Rendezvous Session Connection Parameters for Core Engine, if the Rendezvous
daemon is running with non-default session parameters.

5. Save the changes in the file.

Cluster Configuration For Runtime Components
This section explains the configuration to setup the cluster properties. A cluster defines the
machines running the Core Engines, Global Throttle Manager, Cache Agent and Cache
Cleanup Agents. You must define all runtime components in the same cluster except the
Central Logger component. The Central Logger instance must be deployed in a separate
cluster.

Configuration Files

The cluster properties are defined in the asg_core.cdd and asg_cl.cdd files.

Note:
l All the runtime components (Core Engine, Global Throttle Manager, Cache

Agent and Cache Cleanup Agent) must run in one cluster.

l The Central Logger instance must run in a separate cluster.

To define the machines in a cluster, you must set the discover URL for the cluster.

Discover URL

The discover URL specifies how the Core Engine (node) listens for discovery requests from
nodes attempting to join the cluster. When a cluster starts up, and also when new
members join a cluster, a discovery process enables the members to discover each other.
The discover URL specifies how an Core Engine (node) listens for discovery requests from
nodes attempting to join the cluster.

The discovery URL for well-known address configuration uses the following format:



TIBCO® API Exchange Gateway User Guide

794 | High Availability Deployment Of Runtime Components

   tcp://machine1_ipaddress:port;machine2_ipaddress:port;machine3_
ipaddress:port/

where machine1, machine2, machine3 belong to same cluster.

Note: For each machine in the cluster, the discover URL must have the IP
addresses of the machines with respective ports which belong to the same
cluster. These machines in the cluster run the components (Core Engine, Cache
Agent, Global Throttle Manager, Cache Cleanup Agent).

Configuring Discover URL
The discover URL for a cluster is defined in the Properties section of the Cluster tab in the
ASG_HOME/bin/asg_core.cdd and ASG_HOME/bin/asg_cl.cdd files. The discover URL is
defined on each machine where the runtime component runs.

l To set the discover URL for a cluster containing the machines where Core Engine,
Cache Agent, Cache Cleanup Agent, Global Throttle Manager instances are running,
you must edit the asg_core.cdd file on each machine in the cluster. See Editing asg_
core.cdd File To Set Discover URL (using text editor).

l To set the discover URL for a cluster containing the machines where Central Logger
instances are running, you must edit the asg_cl.cdd file on each machine in the
cluster. See Editing asg_cl.cdd File To Set Discover URL (using text editor).

Editing asg_core.cdd File To Set Discover URL (using text editor)

To edit the discover URL and listen URL.

Procedure
1. Open the ASG_HOME/bin/asg_core.cdd file for editing.

2. Edit the following properties and set the value to the actual IP addresses of the
machines in a cluster, and an unused port.

For example, if the Core Engine instance 1 is running on Machine C, Core Engine
instance 2 is running on Machine D, Cache Agent instance 1 is running on Machine C,
Cache Agent instance 2 is running on Machine D, Cache Cleanup Agent instance 1 is



TIBCO® API Exchange Gateway User Guide

795 | High Availability Deployment Of Runtime Components

running on Machine C, cleanup agent instance 2 is running on Machine D, Global
Throttle Manager instance 1 is running on Machine E, Global Throttle Manager
instance 2 is running on Machine F, then set the URL as follows, where port1 is an
unused port:

<property-group comment="" name="cluster">
<property name="be.engine.cluster.as.discover.url"
value="tcp://10.0.0.1:6000;10.0.0.2:6000;;10.0.0.2:6000;10.0.0.2:6000/"/>
<property name="be.engine.cluster.as.listen.url"
value="tcp://10.0.0.1:6000;10.0.0.2:6000;10.0.0.2:6000;10.0.0.2:6000/"/>
<property name="be.mm.cluster.as.listen.url"
value="tcp://10.0.0.1:6000;10.0.0.2:6000;;10.0.0.2:6000; 10.0.0.2:6000/"/>
</property-group>

3. Save the changes to asg_core.cdd file.

Editing asg_cl.cdd File To Set Discover URL (using text editor)

To set the discover URL for a cluster containing the machines where the Central Logger
instances are running, you must edit the ASG_HOME/bin/asg_cl.cdd file on each machine.

Procedure
1. Open the ASG_HOME/bin/asg_cl.cdd file for editing.

2. Edit the following properties and set the value to the actual IP addresses of the
machines in a cluster, and an unused port.

For example, if the Central Logger instance 1 is running on Machine E, Central Logger
instance 2 is running on Machine F, then set the URL as follows:

<property-group comment="" name="cluster">
<property name="be.engine.cluster.as.discover.url"
value="tcp://10.0.0.1:6000;10.0.0.2:6000;10.0.0.2:6000;10.0.0.2:6000/"/>
<property name="be.engine.cluster.as.listen.url"
value="tcp://10.0.0.1:6000;10.0.0.2:6000;10.0.0.2:6000;10.0.0.2:6000/"/>
<property name="be.mm.cluster.as.listen.url"
value="tcp://10.0.0.1:6000;10.0.0.2:6000;10.0.0.2:6000;10.0.0.2:6000/"/>
</property-group>

3. Save the changes to the asg_cl.cdd file.



TIBCO® API Exchange Gateway User Guide

796 | High Availability Deployment Of Runtime Components

Note: To edit the asg_core.cdd and asg_cl.cdd files using the Studio to set
the discover URL, See Editing CDD File using Studio.

Configuring Fault Tolerance Parameters
For the Core Engines, you should run the multiple instances across the servers in a load
balanced setup. The configuration for load balanced setup is defined in the asg_core.cdd
file. See Configuring Core Engines.

For the Cache Cleanup Agent, Global Throttle Manager and Central Logger components, the
instances must be deployed as one active engine and one or more stand by agents that run
on a separate server. See Configuring Cache Cleanup Agent, Configuring Global Throttle
Manager and Configuring Central Logger.

The maximum number of active instances are configured as an agent class configuration
parameter. An agent class is an agent type, defined in the CDD file that deploys as an agent
instance.

The following parameters define the fault tolerant configuration of runtime components:

Parameter Description

Max Active l Specifies the maximum number of active agents. This value is used for
fault tolerance. Deployed agents that are acting as standbys can take
over from active instances that fail. In many cases, there is no need to
keep standby instances.

Priority l Specifies the priority of the agent for fault tolerant setup of agents. The
priority is set at the processing unit level.

l The priority indicates the order in which standby agents become active,
and conversely, the order in which active agents become standbys,
when new agents join the cluster. The lower the number, the higher the
agent is in the activation priority list. For example, an agent with
priority 2 has a higher priority than an agent with a priority of 6. This
value determines the order of each instance of an agent class for
startup, as well as fail over and fail back in fault tolerance situations.

Fault Tolerant Configuration Parameters



TIBCO® API Exchange Gateway User Guide

797 | High Availability Deployment Of Runtime Components

Parameter Description

l If the priority values are same for agents in fault tolerant setup (active
passive), the agent which is started first gets the higher priority to
become active agent instance.

This section explains the steps for setting the maximum number of active instances and
priority required for the high availability of runtime components.

Configuring Core Engines
You must run the multiple Core Engine instances as Active to achieve load balancing. Out
of the box, API Exchange Gateway provides the configuration parameters for load
balancing, which are set in the ASG_HOME/bin/asg_core.cdd file. You can run multiple
instances of the Core Engine using the configuration parameters set in the ASG_
HOME/bin/asg_core.cdd file. By default, you can run unlimited number of instances.

Note: For the Core Engine Active Active instances, Max Active and Priority
parameters are not applicable.

Example Settings for Core Engine Instance

Just as a reference, this section shows the sample settings for the Core Engines in the ASG_
HOME/bin/asg_core.cdd (XML file). By default, no changes are required to run multiple
instances of the Core Engine.

<inference-agent-class id="core-class">
<load>

<max-active/>
</load>

Configuring Cache Agent
The Cache Agents behave according to the cache object management configuration set in
the Cluster tab of the CDD file. Refer to the table below for the object management
configuration parameters.



TIBCO® API Exchange Gateway User Guide

798 | High Availability Deployment Of Runtime Components

Out of the box using the default configuration in the asg_core.cdd file, you can run more
than one instance of Cache Agent.

Property Notes

Cache
Agent
Quorum

Specifies a minimum number (quorum) of storage-enabled nodes that must
be active in the cluster when the system starts up before the other agents
in the cluster become fully active.

The property does not affect the running of the deployed application after
startup (though a message is written to the log file if the number of Cache
Agents running falls below the number specified in this property).

The default value is 1.

Number of
Backup
Copies

The number of backup copies (also known as the backup count) specifies
the number of members of the distributed cache service that hold the
backup data for each unit of storage in the cache.

Value of 0 means that in the case of abnormal termination, some portion of
the data in the cache will be lost.

A backup count of 1 means one server plus one backup are needed, that is,
two Cache Agents.

The default value is 1.

CDD Cluster Tab Cache OM Settings

Example Settings For Cache Agent Instance

This section shows the sample settings for Cache Agents in the ASG_HOME/bin/asg_
core.cdd (XML) file. You can use the sample settings as a reference by editing the ASG_
HOME/bin/asg_core.cdd (XML) file in a text editor.

<object-management>
<cache-agent-quorum>1</cache-agent-quorum>
<backup-copies>1</backup-copies>

</cache-manager>
</object-management>



TIBCO® API Exchange Gateway User Guide

799 | High Availability Deployment Of Runtime Components

Configuring Cache Cleanup Agent
To run the Cache Cleanup Agent instances in a fault tolerant mode, you must set the Max
Active property. Optionally, you can configure Agent Priority parameter. The Max Active and
Priority parameters are defined in the asg_core.cdd file. See Configuring Fault Tolerance
Parameters for description of parameters.

To set the number of the active instances and priority for the Cache Cleanup Agent
instances.

Procedure
1. Navigate to the ASG_HOME/bin directory.

2. Edit the asg_core.cdd file. You can edit the file either using a text editor or using the
Studio. See Edit Cluster Deployment Descriptor (CDD) File.

3. If you use the Studio, set Max Active property for cache cleanup agents as follows:

a. Select the Agent Classes tab.

b. Select the cache-cleanup-scheduler, Inference agent.

c. On the right side, set the following property as follows:

      Max Active 1

d. Select the cache-cleanup-esp, Query agent.

e. On the right side, set the following property as follows:

      Max Active 1

4. Save the changes.

5. Optionally, you can set the Priority for the processing units as follows using the
Studio:

a. Select the Processing Units tab.

b. Select the asg-cache-cleanup node.

c. On the right side, in the Agents section, set the priority for following agents:

l cache-cleanup-scheduler



TIBCO® API Exchange Gateway User Guide

800 | High Availability Deployment Of Runtime Components

l cache-cleanup-esp

d. Double click the Priority column to set a value, if required.

6. Save the changes.

Example Setting For Cache Cleanup Agent Instance
This section shows the sample settings for cache cleanup agents in the ASG_HOME/bin/asg_
core.cdd (XML) file.

You can use the sample settings as a reference to set the values by editing the ASG_
HOME/bin/asg_core.cdd (XML) file in a text editor:

<query-agent-class id="cache-cleanup-esp">
<load>

<max-active>1</max-active>
</load>

</query-agent-class>
<inference-agent-class id="cache-cleanup-scheduler">

<load>
<max-active>1</max-active>

</load>
</inference-agent-class>
<processing-unit id="asg-cache-cleanup">

<agents>
<agent>

<ref>cache-cleanup-esp</ref>
<key/>
<priority/>

</agent>
<agent>

<ref>cache-cleanup-scheduler</ref>
<key/>
<priority/>

</agent>
</agents>

Configuring Global Throttle Manager
To run the Global Throttle Manager instances in a fault tolerant mode, you must set the
Max Active property. Optionally, you can configure Agent Priority parameter. The Max
Active and Priority parameters are defined in the asg_core.cdd file. See Configuring Fault



TIBCO® API Exchange Gateway User Guide

801 | High Availability Deployment Of Runtime Components

Tolerance Parameters for description of parameters.

Note: You can change the location of the Global Throttle Manager file using the
following property:

tibco.clientVar.GTM/Files/ThrottleState=/file/location/filename
.txt

You can set the number of the active instances and priority for the Global Throttle Manager
instances.

Procedure
1. Navigate to the ASG_HOME/bin directory.

2. Edit the asg_core.cdd file. You can edit the file either using a text editor or using the
Studio. See Edit Cluster Deployment Descriptor (CDD) File.

3. Set the Max Active property as follows for the Agent Classes > gtm-class (Inference)
agent. See Setting Max Active using the Studio.

 Max Active 1

4. Save the changes.

5. Optionally, you can set the priority for the asg-gtm processing unit using the Studio
as follows. See Setting Priority.

a. Go to Processing Units tab.

b. Select the asg-gtm node.

c. Go to the Agents section, and select the row with gtm-class agent.

d. Set a value for Priority. For example, you can set this value to 2.

6. Save the changes.

Example Setting For Global Throttle Manager Instance
This section lists the sample settings for the Global Throttle Manager instance in the ASG_
HOME/bin/asg_core.cdd (XML) file.



TIBCO® API Exchange Gateway User Guide

802 | High Availability Deployment Of Runtime Components

Use the sample settings as a reference to set the values by editing the ASG_HOME/bin/asg_
core.cdd (XML) file in a text editor:

<inference-agent-class id="gtm-class">
<load>

<max-active>1</max-active>
</load>

</inference-agent-class>
<processing-unit id="asg-gtm">

<agents>
<agent>

<ref>gtm-class</ref>
<key/>
<priority>2</priority>

</agent>
</agents>

Configuring Central Logger
To run the Central Logger instances in a fault tolerant mode, you must set the Max Active
property. Optionally, you can configure Agent Priority parameter. The Max Active and
Priority parameters are defined in the ASG_HOME/bin/asg_cl.cdd file. See Configuring Fault
Tolerance Parameters for description of parameters.

You can set the number of the active instances and priority for the Central Logger
instances:

Procedure
1. Navigate to the ASG_HOME/bin directory.

2. Edit the asg_cl.cdd file. You can edit the file either using a text editor or using the
Studio. See Edit Cluster Deployment Descriptor (CDD) File. If you use the Studio,
follow these steps:

a. Open the ASG_HOME/bin/asg_cl.cdd file using the steps described in Editing
CDD File using Studio.

b. Select Agent Classes tab.

c. Select the BusinessEvents_Archive (Inference) node.

d. On the right side, set the following property as follows:



TIBCO® API Exchange Gateway User Guide

803 | High Availability Deployment Of Runtime Components

      Max Active 1

e. Save the changes.

3. Optionally, you can set the priority for the asg-cl processing unit using the Studio as
follows. See Setting Priority.

a. Go to the Processing Units tab.

b. Select the asg_cl node.

c. Go to the Agents section, and select the row with BusinessEvents_Archive
agent.

d. Double-click the Priority column to set a value. For example, you can set this
value to 5.

e. Save the changes.

Example Settings For Central Logger Instance
This section lists the sample settings for the Central Logger instance in the ASG_
HOME/bin/asg_cl.cdd (XML) file.

You can use these sample settings as a reference to set the values for max-active and
priority by editing the ASG_HOME/bin/asg_cl.cdd (XML) file in a text editor:

<inference-agent-class id="BusinessEvents_Archive">
..... .....
<load>

<max-active>1</max-active>
</load>
<processing-unit id="asg-cl">

<agents>
<agent>

<ref>BusinessEvents_Archive</ref>
<key/>
<priority>5</priority>

</agent>
</agents>

Save the changes to the file.



TIBCO® API Exchange Gateway User Guide

804 | High Availability Deployment Of Runtime Components

Configure Rendezvous Session Connection Parameters
You must configure the Rendezvous session connection parameters for the Core Engine
instances to communicate with the Global Throttle Manager instances and the Central
Logger instances, in case, the Rendezvous daemon runs with the non-default session
parameter settings on the machines where these components are running.

The parameters are defined in the ASG_CONFIG_HOME/asg.properties file and ASG_CONFIG_
HOME/asg_cl.properties file. See following sections for the list of connection parameters:

l Rendezvous Session Connection Parameters for Core Engine and Global Throttle
Manager Communication

l Rendezvous Session Connection Parameters For Core Engine and Central Logger
Communication

The instances of the runtime components illustrated in the deployment Deployment of
Runtime Components In a Cluster assumes the following points:

l The Core Engine instances and the Global Throttle Manager instances are running on
machines which are in the same subnet.

l The Core Engine instances and the Central Logger instances are running on machines
that are in the same subnet.



TIBCO® API Exchange Gateway User Guide

805 | Appendix A

Appendix A
This appendix describes some configuration parameters required for high availability setup
configuration.

Edit Cluster Deployment Descriptor (CDD) File
You define the cluster member machines, processing units, and agents in the Cluster
Deployment Descriptor (CDD) which is an XML file. The CDD file is configured in the CDD
editor in Studio.

You can edit any CDD file in the following ways:

l Using text editor

l Using Studio

Editing CDD File using Text Editor
The CDD file is a XML file, you can use any text or XML editor to edit the file. To edit any
property in the CDD file, locate the property and set the new value in the value field.

Procedure
1. Open the CDD file in a text editor.

2. Set the value of the property, as needed. For example, to edit the value of discover
URL for a cluster, you can set the property as follows:

   <property name="be.engine.cluster.as.discover.url" value="tcp://Machine1_
IPAddress:port1;Machine2_IPAddress:port1;

        Machine3_IPAddress:port1/"/>

3. Save the changes to the file.



TIBCO® API Exchange Gateway User Guide

806 | Appendix A

Editing CDD File using Studio

Procedure
1. Navigate to the ASG_HOME/bin directory.

2. Copy the CDD file (for example, asg_core.cdd) file to ASG_HOME/projects/ASG_
DefaultImplementation folder.

3. Navigate to the ASG_HOME/studio/eclipse directory.

4. Type the following command to start the Studio:

Windows platform

studio.exe

UNIX platform

./studio

5. If you are prompted, select or create the Eclipse workspace directory where your
project files will be stored. If you select the option to use this workspace as a default,
you are not prompted again.

6. Click OK.

7. Close the Welcome screen.

8. From the File menu select Import.

9. In the Import Select wizard, select an import source as General > Existing Projects
into Workspace and click Next. You see the Import Projects dialog.

10. In the Import Projects dialog Select root directory field, browse to and select the
project: ASG_HOME/projects/ASG_DefaultImplementation.

11. Click Finish.

12. In the Studio Explorer, expand the ASG_DefaultImplementation project node. Verify
that you see the CDD file (for example, asg_core.cdd) file.

13. Double-click the CDD file (for example asg_core.cdd) file.

14. Select the appropriate tab to edit the properties. For example, see Setting Discover
URL, Setting Max Active, Setting Priority.



TIBCO® API Exchange Gateway User Guide

807 | Appendix A

15. Save the changes to the file.

16. Back up the original CDD file (for example, asg_core.cdd) file in the ASG_HOME/bin
directory.

17. Copy the modified CDD file (for example asg_core.cdd) file from ASG_
HOME/projects/ASG_DefaultImplementation to the ASG_HOME/bin directory.

Note: If you select the "Copy projects into workspace" option during the
import of the project, then the modified asg_core.cdd file exists in the
workspace directory. Make sure to copy the asg_core.cdd file from
workspace directory to the ASG_HOME/bin directory.

Setting Discover URL

Procedure
1. To set the discover URL for a cluster, select Cluster tab Properties on the left. On

the right, expand cluster node to edit the following properties:
be.engine.cluster.as.discover.url

2. Set the values to the actual IP address of the machine, and an unused port.

For example,

be.engine.cluster.as.discover.url=tcp://Machine1_
IPAddress:port1;Machine2_IPAddress:port1;Machine3_
IPAddress:port1;Machine4_IPAddress:port1/

3. Save the changes to the resource.

Setting Max Active
This task explains the steps to setup the Max Active property for an agent.

Procedure
1. Select Agent Classes tab.

2. Select an agent node for which you want to set the Max Active property.

For example, to set the Max Active property for Global Throttle Manager engine,



TIBCO® API Exchange Gateway User Guide

808 | Appendix A

select the gtm-class(Inference) node.

3. On the right side, click the following property to set a value as follows:

      Max Active 1

4. Save the changes to the resource.

Setting Priority
This section explains the steps to setup the Priority property for a processing unit.

Procedure
1. Select Processing Units tab.

2. Select the processing unit for which you want to setup the Priority property.

For example, to set the Priority property for Global Throttle Manager
processing unit, select the asg-gtm node.

3. On the right side, in the Agents section, select the row with gtm-class agent.

4. Double-click the Priority column to set a value. For example, you can set this value to
2.

5. Save the changes to the resource.

Configuration Tasks
This appendix explains a few configuration tasks required for some functionality of the
product.

Enabling Cross-Origin Resource Sharing(CORS) Filter Properties
TIBCO API Exchange Gateway can be configured to add servlet filters to its Tomcat engine.
You can enable CORS by adding one or more CORS filter to the Tomcat server instance that
runs the HTTP channels.

To add a CORS filter, set the following properties either in ASG_HOME/bin/asg_core.cdd file
or in the ASG_HOME/bin/asg_engine.tra file:



TIBCO® API Exchange Gateway User Guide

809 | Appendix A

The CDD file can be edited using:

l Text editor

l Studio

This section explains how to add the CORS filter properties in the asg_core.cdd file using a
text editor.

Procedure
1. Open the ASG_HOME/bin/asg_core.cdd file for editing in a text editor.

2. Set the properties as follows:
be.http.filter.cors.class=org.apache.catalina.filters.CorsFilter

be.http.filter.cors.urlpattern.arbitraryUniqueName=urlPattern

where,

l cors identifies an instance of the filter. It is a non-empty string which should
not contain a period (.) or an equal to (=) sign.

l org.apache.catalina.filters.CorsFilter is the name of the class that implements
the filter. For CORS, this must be org.apache.catalina.filters.CorsFilter

l arbitraryUniqueName is a non-empty string chosen arbitrarily by the user.This is
used to make the name of the property unique.

o arbitraryUniqueName cannot contain the equal sign (=).

o arbitraryUniqueName cannot be shared by multiple properties that have
the same be.http.filter.filterName.urlpattern. prefix

l urlPattern is the URL pattern that defines where the CORS filter is applied.

3. Save the changes to the file.



TIBCO® API Exchange Gateway User Guide

810 | Appendix A

Note:
l Properties start with be.http.filter.filterName where filterName is the

filter name.

l filterName cannot contain a period (.)

l filterName is used both by TIBCO API Exchange Gateway and by
Tomcat server to find all the declarations that apply to the same
filter.

l The type of Tomcat filter is defined by the value of the property
be.http.filter.filterName.class

Adding URL patterns
To add additional URL patterns, you can set additional properties:

l be.http.filter.cors.urlpattern.2

l be.http.filter.cors.urlpattern.3

Note: Ensure that the property names are unique when you add the properties
for additional url patterns by adding a unique arbitraryUniqueName.

Example Value (URL Pattern)

be.http.filter.cors.urlpattern.2=/some/Url*

be.http.filter.cors.urlpattern.3=/anotherUrl

Adding Filter Parameters
To add filter parameters, set the properties by following the structure:
be.http.filter.cors.param.paraName=paramValue

where:

l cors identifies an instance of the filter.

l paraName is the parameter name. This should not contain an equals sign (=).

l paramValue is the parameter value.



TIBCO® API Exchange Gateway User Guide

811 | Appendix A

Example Value (Filter Parameters)

be.http.filter.cors.param.cors.allowed.origins=*

be.http.filter.cors.param.cors.allowed.methods=GET,POST,HEAD,OPTIONS,PUT

Note:
l Refer to http://tomcat.apache.org/tomcat-7.0-doc/config/filter.html#CORS_

Filter for a list of available parameter names and values.

Configuring JMS Destinations for Southbound Service
Operations
By default, the southbound service operations are sent to a single default queue for all
service operations per ESB channel defined for a back-end service. Users can configure a
JMS destination name and type for a given channel for southbound service operation of
ESB type.

The default queue are explained in Configuring TIBCO Enterprise Message Service. You can
override the default JMS destinations by configuring the destination and type.

To configure a destination and type for an ESB service type, follow these steps:

Procedure
1. Start the GUI, if it has not already started. See Starting GUI for details.

2. Add a new service of ESB Type. See Adding a New Target Operation for details.

3. Set the following parameters to configure a destination for the service:

Parameter Description

ESB Channel Define the number of predefined ESB channels.

Destination Name Define a name of the custom queue or topic
destination for JMS channel. This topic or queue
should exist on the EMS server.



TIBCO® API Exchange Gateway User Guide

812 | Appendix A

Parameter Description

For example, type a queue name as
asg.custom.requestQ

For example, type a topic name as
asg.custom.requestT

Destination Type Select the type of the destination for JMS
channel from the drop-down list. Valid values
are QUEUE or TOPIC. If no value is given, then
the QUEUE type is used as default.

QUEUE type sets the JMS destination as queue.

TOPIC type sets the JMS destination as topic.

4. Save the service configuration.

Configuring Async Mode for Southbound JMS Service
TIBCO API Exchange Gateway provides the capability to send a JMS southbound service
asynchronously. Users can configure async mode for southbound service request using the
Services tab on configuration GUI. When the southbound request is sent to the back-end
service in async mode, no response is expected from the southbound service, and the
gateway does not wait for any southbound response from the back-end service

After the async request is sent to the back-end service, a default northbound response
payload is created and sent back as the northbound response. The default northbound
response is:

<?xml version="1.0" encoding="UTF-8"?>

<response>Request sent asynchronously.</response>

Note: Users can use the reverse southbound mapping to customize the default
northbound response.

Set the async mode for a service using the configuration GUI :



TIBCO® API Exchange Gateway User Guide

813 | Appendix A

Procedure
1. Start the GUI, if it has not already started. See Starting GUI for details.

2. Add a new service of ESB Type. See Adding a New Target Operation for details.

3. Set the following field for the service as follows:

Mode: ASYNC (select from the drop-down list.)

4. Save the service configuration.

Configuring Retry parameters for HTTP HTTP(s)
Transport
TIBCO API Exchange Gateway provides the retry mechanism in case when it fails to send
the southbound request message to the back-end service using HTTP or transport.

Users can configure the parameters for retry of the request messages, in case, the request
message is not delivered due to timeout or any network problems. The retry parameters
for HTTP and HTTPS service type are available on the services tab of the configuration GUI.

Set the retry parameters for a HTTP and HTTPS service using the configuration GUI:

Procedure
1. Start the GUI, if not already started. See Starting GUI for details.

2. Add a new service of HTTP and HTTPS type. See Adding a New Target Operation for
details.

3. Set the following fields:

Parameter Description

Timeout Set the value in milliseconds which is used as a
timeout to use when invoking the back-end
service. The indicates the maximum time to wait
before the northbound response is returned
from a back-end service.

Retry Count Set the value to use as a number of retries for



TIBCO® API Exchange Gateway User Guide

814 | Appendix A

Parameter Description

HTTP connection.

Retry Interval Set the value to use as an interval between
HTTP connection retries.

If set as 0, it means no retry is done between
HTTP connection retries.

Retry Timeout Set the value in milliseconds which is used as a
timeout value on each attempt of HTTP
connection.

If set as 0, it means no time to wait for each
attempt of HTTP connection.

4. Save the service configuration.

Enabling detail level logging for Gateway
This section explains the steps required to enable the detail level logging for basic
authentication.

Procedure
1. Open a terminal window.

2. Navigate to ASG_CONFIG_HOME/asg directory.

3. Edit the asg.properties file.

4. Search the following property in the file:

     tibco.clientVar.ASG/Logging/MinLogLevel=1
5. Set the highest log level by changing the value of the property as follows:

     tibco.clientVar.ASG/Logging/MinLogLevel=0
6. Search the following property to enable the detail logging for common logger logging

by:

   tibco.clientVar.ASG/Logging/clLogLevel=0



TIBCO® API Exchange Gateway User Guide

815 | Appendix A

7. Enable detailed logging by changing the value of the property as follows:

tibco.clientVar.ASG/Logging/clLogLevel=1

Configuring TIBCO Enterprise Message Service
This section describes the steps to setup and configure TIBCO Enterprise Messaging
services destination required by the Core Engine at run time. This section assumes that
TIBCO API Exchange Gateway has access to a running instance of TIBCO Enterprise
Messaging Service.

Procedure
1. Make sure the TIBCO EMS server is running.

2. Create the following queues in the TIBCO EMS server using the tibemsadmin tool:

   create queue asg.out.request
   create queue asg.out.request.reply.0.0
   create queue asg.out.request.reply.0.1
   create queue asg.out.request.reply.0.2
   create queue asg.in.request
   create queue asg.in.request.reply.0
   create queue asg.custom.request
   create queue asg.custom.request.reply.0

Note: The default configuration assumes that TIBCO Enterprise Message
Service is running on the localhost and port 7222. Depending on the host
and port where TIBCO Enterprise Message Service runs, edit the TIBCO
Enterprise Message Service configuration parameters in the ASG_CONFIG_
HOME/asg/asg.properties file.

For example, use the tibemsadmin tool of TIBCO Enterprise Message Service.

3. Navigate to the TIBCO Enterprise Message Service installation directory.

4. Change to the EMS_HOME/bin directory.

5. Start the tibemsadmin tool, as follows:



TIBCO® API Exchange Gateway User Guide

816 | Appendix A

   tibemsadmin server "tcp://host:port" user adminuser

6. Type the following command to create queues:

create queue asg.in.request
create queue asg.in.request.reply.0
create queue asg.out.request
create queue asg.out.request.reply.0.0
create queue asg.out.request.reply.0.1
create queue asg.out.request.reply.0.2
create queue asg.custom.request
create queue asg.custom.request.reply.0

7. Exit the tibemsadmin utility.

Configuring JMS Northbound Transport for XML
This section describes the steps to configure the JMS transport on the northbound side for
XML message.

Configuring TIBCO Designer
In this scenario, TIBCO BusinessWorks is used as a client to send the XML payload to theAPI
Exchange Gateway engine using the JMS transport.

Procedure
1. Open TIBCO Designer and create a new project.

2. Create a new JMS Application Properties activity resource. Type a name for this
resource (for example, JMSProperty1) Add a new property for this resource as
follows:

l PropertyName: Operation

l Type: string

l Cardinality: required

3. Create a new Process Definition. Type a name for this process (for example,
SendJMSMessage).



TIBCO® API Exchange Gateway User Guide

817 | Appendix A

4. Create a new activity JMS Queue Requestor resource in the process. Type a name for
this resource (for example, SendJMSRequest). Configure the JMS Queue Requestor
resource as follows:

a. Configure the JMS Connection parameter. Select a pre-configured JMS
connection resource.

b. Click the Advanced tab. For the JMS Application Properties field, select the
configured JMS Application Properties resource (for example, JMSProperty1).
Click Apply.

c. Click the Input tab. Verify that the Operation field appears under
OtherProperties. Specify a value for the Operation. This value of the operation
field matches the SOAP Action parameter of the operation configuration in the
facade Operations tab of the gateway configuration UI.

d. Click Apply and save the project.

Configuring Operations

Procedure
1. Start the Config UI.

2. Click Facade Operations tab. Configure a new operation as follows:

l Operation Name: Any logical name. For example, getLocationBW.

l SOAP Action: Specify the value of this parameter to prepend /ESB followed by
the value of Operation, a JMS application property.

For example, if the value of Operation (JMS application property) is specified as
getLocation, type the value of SOAP Action parameter as /ESB/getLocation.
Operation is identified by Operation/SOAP Action.

3. Click Save to save the configuration.

Enable the ESB Channels in CDD File
By default, the ESB channels are disabled. To enable the channels, see Enabling ESB
Channels.



TIBCO® API Exchange Gateway User Guide

818 | Appendix A

Updating TIBCO Enterprise Message Service Libraries
To include the TIBCO Enterprise Message Service libraries, perform only one of the
following steps:

Procedure
1. Open the ASG_HOME/bin/asg-engine.tra file for editing. Set the tibco.env.EMS_HOME

property to the TIBCO Enterprise Message Service installation home.

For example,

tibco.env.EMS_HOME=/home/asg/tibcoasg/ems/5.1

2. Copy the jms.jar and tibjms.jar files from TIBCO Enterprise Message Service
installation (EMS_HOME/lib) to ASG_HOME/lib/ext/tpcl.

Change the Stack Size
To address the high memory usage requirements of TIBCO API Exchange Gateway server, it
is good practice to set a smaller stack size, for example 256 KB.

Note: You must have super user privileges to change the stack size.

Changing the Stack Size Permanently

Procedure
1. Open the following file for editing:

   /etc/security/limits.conf

2. Add the following lines (example values shown):
* soft stacksize 256

* hard stacksize 256



TIBCO® API Exchange Gateway User Guide

819 | Appendix A

Note: Refer to your Operating System’s manual for details and set the
appropriate values.

Changing the Stack Size Temporarily
You can change the stack size for the current session at the command line. To do this, type
a command like the following at a command prompt:

   ulimit -s 256

The above command sets the stack size to 256 KB for the current session only.

Modify Unicast Discovery URL in CDD file
When API Exchange Gateway server configuration is manually copied to any server from
where it was installed and configured, it requires to edit the discover URL and listen URL.

Discover URL

The discover URL specifies how the Core Engine (node) listens for discovery requests from
nodes attempting to join the cluster. When a cluster starts up, and also when new
members join a cluster, a discovery process enables the members to discover each other.
The discover URL specifies how an Core Engine (node) listens for discovery requests from
nodes attempting to join the cluster.

The discovery URL for well-known address configuration uses the following format:

   tcp://ip:port[;ip:port]*

After the discovery is complete, the members communicate internally using a listen URL.

Listen URL

The listen URL is used for direct communication between the members of the metaspace.
The listen URL value must be different for each cluster member.

The listen URL uses this format:

tcp://interface:port[-EndPort |*]/



TIBCO® API Exchange Gateway User Guide

820 | Appendix A

The cluster member binds to the specified interface and the specified port when creating
the TCP socket. Specify the parameters as follows.

Parameter Notes

interface
To specify a value, use the desired IP address.

The value for interface must be the same in both the
discovery and the listen URLs for a node. If there are
multiple interfaces on one machine, specify the interface
you want to use and do not rely on the default value.

The default value for interface is the first available
interface provided by the operating system for the
machine.

port
To specify a single port use the port number in the listen
URL, as shown in this example:

tcp://interface:6000/

The default value is the first available port in the 50000+
range.

Editing the Discover URL and Listen URL (using text editor)
To edit the discover URL and listen URL.

Procedure
1. Open the ASG_HOME/bin/asg_core.cdd file for editing.

2. Edit the following properties and set the value to the actual IP address of the
machine, and an unused port.

For example:

     <property name="be.engine.cluster.as.discover.url"
value="tcp://127.0.0.1:6000/"/>

   <property name="be.engine.cluster.as.listen.url"
value="tcp://127.0.0.1:6000-*/"/>



TIBCO® API Exchange Gateway User Guide

821 | Appendix A

3. Save the file.

Editing the Discover URL and Listen URL (using Studio)
You can edit the discover and listen URL in the Cluster Deployment Descriptor (asg_
core.cdd).

Procedure
1. Navigate to the ASG_HOME/bin directory.

2. Copy the asg_core.cdd file to ASG_HOME/projects/ASG_DefaultImplementation folder.

3. Navigate to the ASG_HOME/studio/eclipse directory.

4. Type the following command to start the Studio:

./studio

5. If you are prompted, select or create the Eclipse workspace directory where your
project files will be stored. If you check the option to use this workspace as a default,
you are not prompted again.

6. Click OK.

7. Close the Welcome screen.

8. From the File menu select Import.

9. In the Import Select wizard, select an import source as General > Existing Projects
into Workspace and click Next. You see the Import Projects dialog.

10. In the Import Projects dialog Select root directory field, browse to and select the
project: ASG_HOME/projects/ASG_DefaultImplementation.

11. Click Finish.

12. In the Studio Explorer, expand the ASG_DefaultImplementation project node. Verify
that you see the asg_core.cdd file.

13. Double-click the asg_core.cdd file.

14. Select Cluster tab General on the left. On the right, expand cluster node to edit the
following properties:



TIBCO® API Exchange Gateway User Guide

822 | Appendix A

   be.engine.cluster.as.discover.url
   be.engine.cluster.as.listen.url

15. Set the values to the actual IP address of the machine, and an unused port.

For example,

   be.engine.cluster.as.discover.url=tcp://127.0.0.1:6000/
   be.engine.cluster.as.listen.url=tcp://127.0.0.1:6000-*/

16. Save the file.

17. Back up the original asg_core.cdd file in the ASG_HOME/bin directory.

18. Copy the modified asg_core.cdd file from ASG_HOME/projects/ASG_
DefaultImplementation to the ASG_HOME/bin directory.

Note: If you select the "Copy projects into workspace" option during the
import of the project, then the modified asg_core.cdd file exists in the
workspace directory. Make sure to copy the asg_core.cdd file from
workspace directory to the ASG_HOME/bin directory.

Generate Private Keys And Public Certificates with
OpenSSL
If you want to use SSL/TSL with the Apache HTTP server, you need to create an SSL
certificate. This certificate is required for the authorization between the Apache HTTP
server and client so that each party can clearly identify the other party. To ensure the
integrity of the certificate, it must be signed by a party every user trusts.

This section describes the procedure for following tasks:

l Generating a self-signed certificate using the OpenSSL toolkit.

l Creating your own certificate authority that you use to sign your own generated
request by using the OpenSSL toolkit.



TIBCO® API Exchange Gateway User Guide

823 | Appendix A

Generating Self-Signed SSL Certificates

Creating Private Key

To create a private RSA key using the OpenSSL package to be used by the mod_ssl module
of Apache HTTP serve, use the following command:

$ openssl genrsa -out asgserver01.key 1024

The above command generates a 1024 bit long RSA private key and stores the private key
file in the asgserver01.key file.

As SSL is a PKI based encryption system, it requires a private key to reside on the server.
The generated RSA private key asgserver01.key file is a digital file used to decrypt
messages sent to the Apache HTTP server. This file has a public component that will be
distributed (via a digital certificate file) to allow clients to encrypt messages before sending
them to the server.

Generating Certificate Signing Request (CSR)

A Certificate Signing Request (CSR) is a digital file that contains the server's public key and
the server's identity. Normally this file is sent to a Certifying Authority (CA) so that it can be
converted into a real digital certificate. A digital certificate contains the server's RSA public
key, it's name (or identity), the name of the CA, and it is digitally signed by your CA. The
clients that know the CA can verify the signature on that digital certificate, thereby
obtaining the server's RSA public key. This enables the clients to send messages that only a
server can decrypt.

To generate a certificate signing request (CSR) for a previously generated private key file,
use the following command:

$ openssl req -new -key asgserver01.key -out asgserver01.csr

This command retrieves the public key from the asgserver01.key key file and prompts the
user to gather information to construct a Distinguished Name for your server's identity.
Follow the prompts to enter the relevant information which will be incorporated into your
certificate request including a Distinguished Name or a DN. Also enter a password that is
used to encrypt the CSR.

Note: For a widely used production deployment when you want that the
certificate is automatically accepted by all major client implementations, you
will send the CSR file to an officially established Certificate Authority.



TIBCO® API Exchange Gateway User Guide

824 | Appendix A

For testing purposes, you can sign your own public key which will be perfectly usable
certificate.

To generate a self signed certificate for the previously generated certificate signing request
(CSR) signed with the generated private key file, use the following command:

$ openssl x509 -in asgserver01.csr -out tibasg.crt -req -signkey asgserver01.key -days 365

Generating SSL Keys and Certificates With Your Own your own
Trusted CA
This section explains the simplified approach of generating the keys and certificates by
using the CA.pl (or CA.sh) script that is shipped with OpenSSL tool kit.

Using the CA.pl (or CA.sh) script you can create your private Certificate Authority that you
can use in turn to generate new private keys and certificates that are signed by your own
private Certificate Authority. Use the CA.pl (perl) or CA.sh (shell) script that is shipped with
OpenSSL.

Creating CA Hierarchy
This section explains the steps to create CA hierarchy for your private CA. This is a one time
action. After you have created your CA hierarchy, it is used for every key/certificate pair you
want to generate and sign with this CA.

Procedure
1. Open a command prompt window.

2. Navigate to the directory.

3. Enter the following command, with the -newca parameter to create a CA hierarchy:

   CA.sh -newca

4. Follow the prompt and enter filename of the CA certificates which should also
contain the private key.

5. Verify that the relevant files and directories are created in a directory.



TIBCO® API Exchange Gateway User Guide

825 | Appendix A

Creating Private Key and Certificate Signing Request (CSR)
After you have created a hierarchy for your own Certificate Authority (CA), you can use the
same CA.sh script to create the private key and certificate signing request.

Procedure
1. Open a command prompt window.

2. Navigate to the directory.

3. Enter the following command (with the -newreq parameter) to create a new
certificate request (CSR):

   CA.sh -newreq

4. Verify that the output of this command contains both the private key and the
certificate signing request. The private key is written to the file newkey.pem and the
certificate request is written to the file newreq.pem.

5. Enter the following command (with the -sign parameter) to have the certificate
signing certificate request being signed by the CA:

   CA.sh -sign

Note: The script expects the certificate request to be in the file
newreq.pem. The new certificate is written to the file newcert.pem.

Creating PKCS#12 archive (Optional)
Optionally, can also create a PKCS#12 archive. The PKCS#12 filed is an archive file format
that contains the user certificate, private key and CA certificate. The PKCS#12 file can be
imported directly into a browser.

Procedure
1. Open a command prompt window.

2. Navigate to the directory.

3. Enter the following command (with the -pkcs12 parameter) to create a PKCS#12 file:



TIBCO® API Exchange Gateway User Guide

826 | Appendix A

   CA.sh -pkcs12 "ASG Server Demo Certificate"

Note: ASG Server Demo Certificate is typically displayed in the browser list
box. If you do not provide the ASG Server Demo Certificate argument, the
name My Certificate is used by default.

Editing Cluster Deployment Descriptor (CDD) File
You can edit cluster deployment descriptor (CDD) file in the following ways:

Using Text Editor

Procedure
1. Open the CDD file (for example, ASG_HOME/bin/asg_core.cdd) file in a text editor.

2. Edit the file, as needed. For example, you can set the following cluster properties to
the actual IP address of the machine, and an unused port as follows:

For example:

   <property name="be.engine.cluster.as.discover.url"
value="tcp://127.0.0.1:6000/"/>

   <property name="be.engine.cluster.as.listen.url" value="tcp://127.0.0.1:6000-*/"/>

3. Save the file.

Using Studio
You can modify the properties defined in the CDD file using the Studio. To do so, edit the
CDD file (for example, ASG_HOME/bin/asg_core.cdd) file.

Procedure
1. Navigate to the ASG_HOME/bin directory.

2. Copy the asg_core.cdd file to ASG_HOME/projects/ASG_DefaultImplementation folder.



TIBCO® API Exchange Gateway User Guide

827 | Appendix A

3. Navigate to the ASG_HOME/studio/eclipse directory.

4. Type the following command to start the Studio:

./studio

5. If you are prompted, select or create the Eclipse workspace directory where your
project files will be stored. If you check the option to use this workspace as a default,
you are not prompted again.

6. Click OK.

7. Close the Welcome screen.

8. From the File menu select Import.

9. In the Import Select wizard, select an import source as General > Existing Projects
into Workspace and click Next. You see the Import Projects dialog.

10. In the Import Projects dialog Select root directory field, browse to and select the
project: ASG_HOME/projects/ASG_DefaultImplementation.

11. Click Finish.

12. In the Studio Explorer, expand the ASG_DefaultImplementation project node. Verify
that you see the asg_core.cdd file.

13. Double-click the asg_core.cdd file.

14. Edit the properties, as needed. For example, to edit the cluster properties, perform
the following tasks:

a. Select Cluster tab General on the left. On the right, expand the cluster node to
edit the following properties:

      be.engine.cluster.as.discover.url
      be.engine.cluster.as.listen.url

b. Set the values to the actual IP address of the machine, and an unused port.

For example,

      be.engine.cluster.as.discover.url=tcp://127.0.0.1:6000/
      be.engine.cluster.as.listen.url=tcp://127.0.0.1:6000-*/



TIBCO® API Exchange Gateway User Guide

828 | Appendix A

15. Save the file.

16. Make a back up copy of the original asg_core.cdd file in the ASG_HOME/bin directory.

17. Copy the modified asg_core.cdd file from ASG_HOME/projects/ASG_
DefaultImplementation to the ASG_HOME/bin directory.

Note: If you select the "Copy projects into workspace" option during the
import of the project, then the modified asg_core.cdd file exists in the
workspace directory. Make sure to copy the asg_core.cdd file from
workspace directory to the ASG_HOME/bin directory.

Connection Problem to TIBCO DataGrid
If the IP address of the machine where TIBCO API Exchange Gateway software is installed
changes, the Core Engine might report the connection error to TIBCO Datagrid as it does
not automatically update the IP address in the cdd file of the Core Engine.

Error:

When the Core Engine is started using asg-engine executable, following warning message is
shown:

asg-caching-core Info [main] -
[com.tibco.cep.runtime.service.dao.impl.tibas.ASDaoProvider] Connecting
to [Metaspace:ASG] on ports [tcp://10.105.178.29:6000-*/] and
[tcp://10.105.178.29:6000/]

asg-caching-core Warning [main] -
[com.tibco.cep.runtime.service.dao.impl.tibas.ASDaoProvider] Failed
connecting to [Metaspace:ASG] with error TIBAS_SYS_ERROR (no_port_
available - ip=10.105.178.29:6000-65535). Retrying in [10] seconds

Resolution:

Modify the ASG_HOME/bin/asg_core.cdd file to either use the new public IP address or just
the loopback value. Restart the Core Engine after making the changes in the CDD file.

You can edit the file using an XML editor:



TIBCO® API Exchange Gateway User Guide

829 | Appendix A

<property-group comment="" name="cluster">

<property name="be.engine.cluster.as.discover.url"
value="tcp://127.0.0.1:6000/"/>

<property name="be.engine.cluster.as.listen.url"
value="tcp://127.0.0.1:6000-*/"/>

<property name="be.mm.cluster.as.listen.url"
value="tcp://127.0.0.1:6000-*/"/>

</property-group>



TIBCO® API Exchange Gateway User Guide

830 | Glossary

Glossary

A

alert
A notification to an end-user, for example, scheduled alerts deliver portal headlines
to a chosen device. See also real-time alert.

C

common page
A logical name-value binding to identify a portal page in page layout templates,
regardless of where that portal page exists in the page tree. Provides for flexibility
and ease of template maintenance.

community site
A type of portal site created and used by business users in support of team
communications.

consumer
A service consumer is the initiator of a message exchange with a service provider.

D

deployment descriptor
An XML file that describes the configuration of a web application. It’s located in the
WEB-INF directory of the application’s WAR file.

DMZ
An acronym for demilitarized zone, this term is used metaphorically for that part of
a network between an inner and an outer fire wall. Machines placed in the DMZ
may be available to authorized users outside the firewalls, whereas machines
placed behind the DMZ are protected from outside access.

domain
In TIBCO Administrator, two kinds of domains are used. See also administration
domain and application domain.



TIBCO® API Exchange Gateway User Guide

831 | Glossary

S

SOAP (Simple Object Access Protocol)
A basic web services standard for making web services available remotely. See also
UDDI, WSIL, WSDL, WSRP

T

transaction object
An instance that gets created for each request and contains various information
related to the processing of that request. The transaction object is deleted once the
request processing is complete, for example, when a response is sent back and log
reported is completed.



TIBCO® API Exchange Gateway User Guide

832 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product Documentation
website, mainly in HTML and PDF formats.

The TIBCO Product Documentation website is updated frequently and is more current than
any other documentation included with the product.

Product-Specific Documentation

The following documentation for this product is available on the TIBCO® API Exchange
Gateway Product Documentation page:

l TIBCO® API Exchange Gateway Release Notes

l TIBCO® API Exchange Gateway Installation

l TIBCO® API Exchange Gateway User Guide

To directly access documentation for this product, double-click the following file:

TIBCO_HOME/asg/2.5.0/doc/gateway/index.html

where TIBCO_HOME is the top-level directory in which TIBCO products are installed. On
Windows, the default TIBCO_HOME is C:\tibco. On UNIX systems, the default TIBCO_HOME
is /opt/tibco.

How to Contact TIBCO Support

Get an overview of TIBCO Support. You can contact TIBCO Support in the following ways:

l For accessing the Support Knowledge Base and getting personalized content about
products you are interested in, visit the TIBCO Support website.

l For creating a Support case, you must have a valid maintenance or support contract
with TIBCO. You also need a user name and password to log in to TIBCO Support
website. If you do not have a user name, you can request one by clicking Register on
the website.

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-api-exchange-gateway
https://docs.tibco.com/products/tibco-api-exchange-gateway
http://www.tibco.com/services/support
https://support.tibco.com/s/
http://www.tibco.com/services/support


TIBCO® API Exchange Gateway User Guide

833 | TIBCO Documentation and Support Services

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature
requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

https://ideas.tibco.com/
https://community.tibco.com/


TIBCO® API Exchange Gateway User Guide

834 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE AGREEMENT,
OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER LICENSE AGREEMENT
WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE SOFTWARE (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR
CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF
THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND
YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE
SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, and the TIBCO O logo are either registered trademarks or trademarks of
TIBCO Software Inc. in the United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle
and/or its affiliates.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time. See the readme file for the
availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

https://scripts.sil.org/OFL


TIBCO® API Exchange Gateway User Guide

835 | Legal and Third-Party Notices

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR
CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY
TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to
TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2004-2022. TIBCO Software Inc. All Rights Reserved.

https://www.tibco.com/patents

	Contents
	Introduction to TIBCO API Exchange Gateway
	Design-time Components
	Config UI
	Studio

	Runtime Components
	Gateway Operational Layer
	Gateway Management Layer

	Deployment Architecture
	Single Server Deployment Architecture
	Distributed Deployment Architecture


	Getting Started
	Examples Overview
	Examples

	Configure an Endpoint Operation for TIBCO API Exchange Gateway
	Creating a New Configuration
	Configuring Partner Group
	Configuring Partner Data
	Configuring a Facade Operation
	Configuring a Target Operation
	Configuring an Authorization Configuration
	Configuring Routing Configuration
	Saving the Gateway Configuration
	Testing the Gateway configuration
	Running Apache HTTP Server if not running
	Running Core Engine
	Testing the Configured Operation and Target Operation


	Working with Studio
	Starting Studio
	Loading the Default ASG_DefaultImplementation Project
	Editing Validating and Building the Default ASG_DefaultImplementation Project
	Adding or Edit a Resource in a Project
	Validating a Project, Project Folder or Project Resource
	Fixing Validation Errors
	Building the Default ASG_DefaultImplementation Project
	Debugging Project in Studio
	Setting the Debug Perspective within Studio


	Validation Tool (asg-validate)
	Running asg-validate Using asg-tools
	Log File for asg-validate
	Limitations of asg-validate

	Runtime Properties
	Runtime Properties of Core Engine
	Runtime Properties of Central Logger

	Building an EAR File at the Command Line

	Core Engine Configuration
	Core Engine
	Starting Core Engine
	Processing Units of Core Engine
	Configure Log Files Settings
	Log File Name and Location
	Number and Size of Log Files
	Setting the Log File Configuration Settings in a CDD File

	Logging Levels of Core Engine


	Apache Module for TIBCO API Exchange Gateway
	Installing Apache HTTP Server
	Installing Apache HTTP Server with SSL

	Configuring Apache HTTP Server Using HTTP Transport
	On the Windows Platform
	Configuration On the UNIX Platform

	Running the Apache HTTP Server
	On the Windows Platform
	Running On the UNIX Platform

	Secure Communications
	Mutual SSL Authentication
	Generate Keys and Certificates
	Configure SSL on Apache HTTP Server
	Configure Client Authentication with Digital Certificates on Apache HTTP Server
	Configure Client Certificate Identification Details On Apache HTTP Server
	Register Partners on Config UI

	SSL Communications Configuration
	Configuring One-Way SSL Authentication
	Mutual SSL Authentication Configuration
	Prerequisites for Mutual SSL Setup
	Configuring Mutual SSL on Apache HTTP Server
	Configuring Client Authentication with Digital Certificates on Apache HTTP Se...
	Using Firefox
	Using Internet Explorer
	Testing the Imported Certificate
	Forwarding Client Certificate Identification Details on Apache HTTP Server to...
	Registering Partners Using the Config UI


	Configure the Apache Server for Basic HTTP Authentication
	Configuring Apache HTTP Server for Basic Authentication
	Enabling Basic Authentication on Apache HTTP Server
	Creating a Password File for the Apache HTTP Server
	Reloading the Configuration File for the Apache HTTP Server
	On the UNIX Platform

	Configuring a Client (Requester) for Basic Authentication (Example Use Case)
	Configuring the Endpoint URL for Transport
	Creating an Identity Resource
	Configuring Identity For Transport

	Configuring TIBCO API Exchange Gateway for Basic Authentication

	Configure Apache Module for RVRD Setup through a Firewall (DMZ)
	Setting up TIBCO API Exchange Gateway in a DMZ Environment

	Configure Apache HTTP Server as Reverse Proxy
	Directives
	Setting up Reverse Proxy Server for Non-SSL Communication
	Setting up Reverse Proxy Server for SSL Communication



	Transport Communication
	Facade Operation Requests
	Central Logger
	Global Throttle Manager
	Rendezvous Transport Communication
	Enabling Rendezvous Communication for TIBCO API Exchange Gateway
	Backup Files
	Editing asg_core.cdd File
	Editing asg_cl.cdd File
	Setting tibco.env.RV_HOME Property in TRA Files
	Editing Properties Files

	Configuration Setup
	Setting Rendezvous Transport Properties
	Rendezvous Session Connection Parameters for Apache Module
	Rendezvous Session Connection Parameters for Core Engine
	Rendezvous Session Connection Parameters For Core Engine and Central Logger C...
	Rendezvous Session Connection Parameters for Core Engine and Global Throttle ...

	Secure Deployments with TIBCO Rendezvous
	Configuration for Secure Rendezvous Daemon
	Configuration Tips
	Setup and Configure Rendezvous Daemons
	Configuration Setup for Apache Module and TIBCO API Exchange Gateway
	Install Apache Server
	Install TIBCO API Exchange Gateway
	Setting up and Configuring Apache Module
	Setting up Apache Module on Machine 1
	Configuring Apache Module on Machine 1
	Sample Properties For Apache Module
	Configuring the Core Engine Properties
	Sample Properties for Core Engine

	asg-password-obfuscator Utility



	Enabling Facade HTTP Transport
	Enable Facade HTTPS Transport
	Setting SSL Properties
	Download Tomcat Native Library
	Downloading on Windows platform
	Downloading on Linux platform
	Downloading and Building APR
	Building Tomcat Native Library
	Setting LD_LIBPARY_PATH


	Setting Content-Type for Error Response
	Endpoint Ports

	JMS Transport Communication
	SOAP JMS Transport
	Gateway as SOAP JMS Server
	Gateway as SOAP JMS Client
	Configuring SOAP JMS Transport
	Enabling SOAP JMS Channels
	Edit asg.properties File for JMS Server
	JMS Server Connection Parameters
	JMS Server Queue Names

	Create queues on EMS Server
	Create Users On JMS Server
	Setting JMS Jars in ClassPath
	Config UI Configuration
	Configuring New Partner
	Configuring Facade Operation
	Configuring Partner Operation
	Configuring Target Operation




	SSL Support for JMS Transport
	Set JMS Message Delivery and Acknowledgment Mode
	JMS Message Delivery Modes
	JMS Message Acknowledgment Mode

	Non-Standard JMS Headers
	Setting up JMS Properties
	Example XSLT


	ESB Channel
	Enabling ESB Channels
	Edit asg.properties File for ESB Channel Properties
	JMS Server Connection Parameters For ESB Channel

	Create queues on EMS Server
	Create Users On EMS Server


	Config UI
	Starting GUI
	Accessing Config UI through HTTPS Transport
	SSL Properties for Config UI

	Changing Login Host and Port Information

	Authentication Process for Config UI
	Authentication Properties

	Configuration Setup for Authentication Process
	LDAP Server Authentication
	Configuring asg-configui.tra File
	Configuring web.xml File

	File-Based Authentication
	Configuring asg-configui.tra File (FILE)
	Configuring web.xml File (FILE)
	Authentication Property Files

	Default Authentication

	Enable Debug Logging for Config UI
	Creating Properties File
	Logging to stdout
	Logging to a File

	Using Properties File in the TRA File
	Configuring Directory for Log Files

	Manage a Gateway Project Configuration
	Publish Project Configuration
	Publishing Configuration
	Change Log Level Settings
	Changing Log Level Settings for Core Engine
	Changing Log Level Settings for Central Logger


	Updating Project Configuration
	Validate Configuration
	Project Configuration
	MAPPING
	Mapping
	Schemas
	Error Maps

	SECURITY
	WSS
	KeyStores
	Policy Mapping
	Policy Binding

	MONITORING
	Monitors
	KPI Groups

	ROUTING
	Facade Operations
	Adding a New Facade Operation
	Deleting an Operation
	Characters Supported in Facade Operation URI

	Target Operations
	Adding a New Target Operation

	Target Operation Groups
	Routing

	PARTNER
	Partners
	Partner Groups
	Adding a Throttle for a Partner Group

	Facade Access
	Adding a New Facade Access

	Partner API Key


	Set Runtime Properties
	Setting General Properties
	Setting Monitoring Properties
	Setting Database Properties
	Setting Transport Properties
	Security Properties


	Transaction Pipeline processing
	Request Pipeline Processing
	Response Pipeline Processing
	Parsing Step
	Set the Partner Identity for Request
	Set the Routing Key for Request
	Enrich the Audit Trail Log for Request
	Logging Request Headers
	Sample XSLT

	Validate the Request Content
	Set Metric Increment for Content-Based Throttles
	Set Sticky Key for Load-Balancing with StickyResourceAffinity
	Overriding HTTP Headers
	Sample XSLT File


	Parsing XSLT Documents
	Parsing Output Document Schema

	Mappings and Transformations
	Mapping Types
	Mapping Configuration
	Rendezvous Mapping Type
	XSLT Mapping Type
	Assign to the Gateway Operation Endpoint
	Assign to the Gateway Reference Endpoint


	Transformations (XSLT Mapping)
	Set error codes for content validation
	Validation
	Enabling Validation

	Implementing Request Validation
	Map the Protocol Headers in Request Context
	Enumeration Orchestration
	Response Transformation

	Mapping Schemas
	Mapping Container
	Mapping XSLT Schema
	Context Document

	JSON XML Transformation
	Converting XML Message to JSON Message
	BookQuery Example Response Message
	BookQuery Example XML Response
	Example XSLT to Convert BookQuery XML Response to JSON Response
	BookQuery Example JSON Transformed Response


	Converting JSON Message to XML Message
	BookQueryBE Example Request Message
	BookQueryBE Example JSON Message
	Example XSLT to Convert BookQueryBE JSON Request to XML Request
	BookQueryBE Example XML Transformed Request



	XSLT Functions for URL Encode and URL Decode
	Decode() Function
	Sample XSLT (Decode)
	Sample Input XML(Decode)
	Sample Output XML(Decode)

	Encode() Function
	Sample XSLT (Encode)
	Sample Input XML (Encode)
	Sample Output XML (Encode)
	Using Encode() and Decode() Functions


	XSLT Functions for Base64 Encode and Decode
	textToBase64()
	base64ToText()

	Custom Java Functions
	Java Function
	Sample Java Function

	XSLT File
	Sample XSLT File


	Pass-Through Gateway
	Starting Config UI
	Enabling Default Operation
	Configuring DefaultOperation Facade Operation
	Configuring DefaultOperation Facade Operation (REST)
	Configuring DefaultOperation Facade Operation (SOAP)

	Configuring Target Operation for DefaultOperation
	Configuring Routing Key for DefaultOperation
	Configuring Facade Access for DefaultOperation

	Pass-Through Special Characters in Query String
	Proxy Server
	Configuring HTTP Headers


	Routing Overview
	Routing Key
	Routing Key using XSLT
	How to Derive and Configure Routing Key
	Define a Transformation File
	Navigating to the ROUTING Tab
	Uploading the Transformation (XSLT) File
	Routing Configuration
	Routing Configuration for a Target Operation
	Routing Configuration for a Target Operation Group


	Routing Use Case using XSLT
	Configuration
	Define a Transformation File
	Uploading the Transformation File
	Routing Configuration


	Preferred Routing
	Use Case for Preferred Routing
	Example

	Overriding Preferred Routing Key using XSLT
	Example XSLT File


	Target Operation Group
	Overview
	Types of Target Operations Group


	Routing Algorithms for Target Operation Group
	LoadBalanced
	RoundRobin
	Weighted RoundRobin
	RoundRobin with Failover
	Weighted RoundRobin with Failover
	Sticky Resource Affinity

	Target Operation Group Configuration
	Configuring a Target Operation Group
	Configuring a RoundRobin Target Operation Group
	Configuring a WeightedRoundRobin Target Operation Group
	Configuring a RoundRobinWithFailOver Target Operation Group
	Configuring a WeightedRoundRobinWithFailOver Target Operation Group
	StickyResourceAffinity Target Operation Group Configuration
	Define Sticky Routing Key
	Uploading Sticky Routing Key File
	Configuring StickyResourceAffinity Type Target Operation Group


	HealthCheck for Reference
	HealthCheck Modes for a Target Operation
	HealthCheck Methods for Timer Mode
	HealthCheck Configuration for Target Operation
	Configuration for Reset Mode of HealthCheck
	Configuration for Timer Based HealthCheck
	Configuration for HTTP HealthCheck Method
	Configuration for HTTPS HealthCheck Method
	Configuration for HealthCheckURL HealthCheck Method
	Configuration for TCPEcho HealthCheck Method
	Configuration for ContentVerification HealthCheck Method
	Configuration for SampleRequest HealthCheck Method



	Throttles Overview
	Facade Throttles
	Service Throttles
	Throttle Types
	Rate
	Quota
	High Water Mark
	Error

	Monitor Time Modifiers
	Configuring Time Modifier Throttles

	Throttle Chaining
	Throttle Counter
	Throttle UpdateInterval

	Configuring Throttles
	Configuration Parameters for Throttles
	Creating a Throttle Policy Definition
	Modifying the Existing Configuration to Add Throttles
	Defining a Quota Throttle
	Assigning a Throttle Policy to the Target Operation
	Testing the Target Operation


	Content Based Throttles
	Configure Content-Based Throttles
	Configuring Throttle
	Define XSLT File
	Uploading XSLT File

	Payload Size Throttles
	Payload Size Throttle Types
	Configuring Payload Size Throttles
	Configuring Monitor Counter


	Traffic Shaping
	Configuration
	QueueCompactionInterval


	Shared Throttles Overview
	Configuration Setup for Shared Throttles
	Configuring ActiveSpaces Metaspace Connection Properties
	Enable Shared Throttles
	Throttle Configuration Parameters

	Example Use Case


	Authentication and Authorization
	User Authentication
	Transport and Protocol Level Authentication

	WS Security Services Authentication
	Security Service Providers
	Web Services Security (WSS) Properties
	Types of Security Service Providers
	Configuring LDAP Authentication Service Provider (LDAP ASP)
	Configuring Trust Identity Provider
	Properties for Subject Identify Provider (SIP)Configuring Subject Identity Pr...
	Configuring WSS Service Provider
	Limitations

	Web Services Security Authentication
	Registering WSS resources with TIBCO API Exchange Gateway
	Defining the WSS security operations
	Configure Secure Services with TIBCO API Exchange Gateway
	Altering List of Algorithms (Optional)
	Define DSS Properties for Services
	Properties For SSL Authentication (isAnonymous = true)
	Properties For Mutual SSL Authentication (isAnonymous = false)

	Configuring Services

	Partner Authorization Overview
	Operation Identification
	Partner Identification
	Partner API Key

	Partner Authorization


	Overview of Security Policies
	Security Concepts
	Types of Security Policies
	Authentication
	Authorization
	Confidentiality
	Integrity
	CredentialMapping

	Manage Policies
	Configure Shared Resource
	Registering Shared Resource with TIBCO API Exchange Gateway

	Create Policy
	Creating Policy File
	Sample Template Policy Files

	Registering Policy
	Applying Policies

	Policy Use Cases
	Authentication Policies
	Configuring Authentication Policies
	Authentication Policies Types
	Basic
	UsernameToken
	SAML
	SiteMinder
	OAuth
	Schema for OAuth Policies
	OAuth Policy File Fields

	SPNEGO
	Configuration Setup for Kerberos SPNEGO Authentication Policy





	Creating a User Account in the Microsoft Active Directory for TIBCO API Excha...
	Mapping the Service Principal Name (SPN) to a Microsoft User Account
	Generating a Keytab File for an SPN
	Authentication Using Custom Shared Resource
	Implementing Custom Login Module
	Abstract LoginModule
	Custom LoginModule



	Sample Custom LoginModule
	Packaging and Deploying the Custom Login Module
	Applying Authorization Policies
	Configuring Authorization Policies
	Authorization Policies Types
	Role


	Integrity Policies
	Configuring Integrity Policies
	Integrity Policies Types
	Sign
	Verify Signature


	Confidentiality Policies
	Configuring Confidential Policies
	Confidentiality Policies Types
	Encryption
	Decryption


	Credential Mapping Policies
	Credential Mapping Policies Types
	UsernameToken Credential Mapping
	SAML Credential Mapping
	Credential Mapping by OAuth Policy


	Types of Security Shared Resources
	Shared Resources Properties
	Configuring LDAP Authentication Shared Resource
	Configuring SiteMinder Service Provider
	Configuring Trust Identity Provider
	Configuring Subject Identity Provider
	Configuring the Kerberos Service Provider
	Configuring Custom Shared Resource
	Shared Resources Properties Sample Files
	LdapAsp.properties
	SiteMinderAsp.properties
	Kerberos SPNEGOAsp.properties
	SubjectIsp.properties
	TrustIsp.properties
	IdentityIsp.properties
	WssAsp.properties
	CelmAsp.properties


	Authentication using File-Based Identity Store
	Configuring User Authentication Policy using File
	Create a Shared Resource Properties File
	Create XML File for Credentials
	asg-password-hasher Tool

	Creating Policy File
	Sample Policy

	Registering Policy
	Applying Policy


	Data Masking and Selective Log Policy
	Configuration Setup For Log Policy
	Setting up Properties
	Create Log Policy Configuration File
	Creating Data Masking Configuration
	Masking Headers Data
	Example of Headers Data for Masking
	Example Header Policy

	Masking Query String Parameters Data
	Example of Query String for Masking
	Example of Query String Policy

	Masking Payload Data
	Masking Data in Text Payloads
	Masking Data in XML Payloads
	Masking Data in JSON Payloads
	Masking Data in Property Format Payloads

	Sample Log Policy XML File
	Log Policy Schema File

	Upload Log Policy XML File
	Supported Stages for Log Policy

	Create Selective Logging Configuration
	Selective Logging for Text Payloads
	Example of Selective Logging Policy for Text Payloads

	Selective Logging for XML Payloads
	Example of Selective Logging Policy for XML Payloads

	Selective Logging for JSON Payloads
	Example of Selective Logging Policy for JSON Payloads

	Selective Logging for Property Format Payloads
	Example of Selective Logging Policy for Property Format Payloads




	AntiVirus Scan of Request and Response Payloads
	Configuration Setup of McAfee Web Gateway
	Downloading McAfee Web Gateway
	Configuring McAfee Web Gateway for ICAP Server
	Enabling ICAP Server
	Configuring ICAP Client for Request and Response


	Configuring McAfee Web Gateway for SSL (Optional)
	Configure TIBCO API Exchange Gateway to Enable AntiVirus Scan
	Setting Runtime Properties of ICAP Server
	Enabling AntiVirus Scan for Request Payload of Facade Operation
	Enabling AntiVirus Scan for Response Payload of Facade Operation
	Enabling AntiVirus Scan for Request and Response Payloads of Facade Operation



	OAuth Server
	Capabilities of the OAuth Server
	OAuth Client Policies
	OAuth 2.0 Concepts
	Benefits of using the OAuth Server
	OAuth Server Components and Interactions
	Components
	Component Interactions

	OAuth Flows
	Authorization Code
	Client Credential
	Password Credential

	Configuration Setup of OAuth Server Authorization
	Setting OAuth Server Properties
	Enable OAuth Authorization For Gateway (Set Adapter Properties)
	Owner Adapter
	File-Based Owner Adapter
	owners.properties
	LDAP

	Client Adapter
	File-Based Client Adapter
	clients.properties

	Scope Adapter
	File-Based Scope Adapter
	scopes.properties

	Non-Default (Custom) Adapter For Owner Client and Scopes

	Starting OAuth Server

	Manage Access Token
	OAuth Server Endpoint
	Token Management APIs
	OAuth Server Endpoints
	Transport and Port
	Request Access Token
	Client Credential Flow
	Password Credential Flow
	Authorization Code Flow

	Access Token Response Example
	Access Token Error Example
	Retrieve Access Token Details
	Using Access Token
	Validating Access Token Request
	Sample Response (Retrieve Access Token)

	Retrieve List of Tokens
	Retrieve Token for Specific Owner

	Refresh Token
	Revoke Token


	Accessing Token Persistence
	Authorization API
	Name
	Description
	Authorization Request
	Authorization Response
	Authorization Error

	Token Request API
	Name
	Description
	Access Token Request
	Access Token Response
	Access Token Request Error

	Token Validation API
	Name
	Description
	Token Validation Request
	Token Validation Response
	Token Validation Error

	Retrieve Access Token
	Retrieving all tokens
	Retrieving tokens for specific owner

	Revoke Token API
	Name
	Description
	Revoke Token Request

	OAuth Service Provider Interfaces
	Owner Service Provider Interface
	Owner Service Provider Interface (SPI) Flow
	Owner Service Provider Interface (SPI) Java API

	Client Service Provider Interface
	Client Service Provider Interface (SPI) Flow
	Client Service Provider Interface (SPI) Java API

	Scope Service Provider Interface
	Scope Service Provider Interface (SPI) Flow
	Scope Service Provider Interface (SPI) Java API

	Deploying Custom Adapters
	Default Adapters
	Client Adapter
	Owner Adapter
	Scope Adapter



	Gateway Management Features
	Central Logger
	Overview
	Database Setup and Configuration for Central Logger
	Database Location
	Task A Setup Database Driver
	Task B Creating a Database
	Task C Creating a Database User
	Task D Setting up the Database Schema
	For MySql Database
	For Oracle Database
	For SQL Server Database
	For DB2 Database

	Task E Setting up the Database Connection Parameters

	Runtime Properties For Central Logger
	Enabling Reporting to the Central Logger
	Running the Central Logger

	Central Logger Database
	Database Tables
	Schema Details
	ASG_TRANSACTIONS Table
	ASG_TRANSACTION_DETAILS Table
	ASG_TRANSACTION_MESSAGES Table
	ASG_TRANSACTION_KEYS Table
	ASG_THROTTLE_USAGE Table
	ASG_THROTTLE_MESSAGES Table
	ASG_KPI Table
	ASG_LOG_MESSAGES Table

	Write Transactions Data to File
	Enabling Transaction Data to a File
	EXAMPLE_1AFECC7955EB472DBC50BA57F83FC6C5

	Format of Transaction Data Log File
	Sample Transaction Data Log File


	Recording Error Events to Central Logger
	Publishing Error (Failed) Transactions

	Correlation ID
	Setting Correlation ID for HTTP Header

	Enable JMS Channel for Central Logger
	Configuration Setup for JMS Channel
	Enabling JMS Channel for Central Logger
	Setting JMS Transport for Central Logger
	Configuring JMS Transport Properties


	Global Throttle Manager
	Throttle Calculation
	Running Global Throttle Manager

	Enabling AS Transport
	Overview
	Configuration

	Cache Cleanup Agent
	Running Cache Cleanup Agent

	Reporting
	TIBCO Spotfire Integration
	Spotfire Configuration
	Configuring TIBCO Spotfire Server and Client
	Setting up a Spotfire Data source
	Creating a Spotfire Information Model for Central Logger
	Deploying Default TIBCO API Exchange Gateway Audit Trail DXP File on TIBCO Sp...



	Basic Deployment
	Deploying TIBCO API Exchange Gateway Processing Units
	Requirements For Deployment
	Deployment Options

	Running Processing Units At Command Line
	Deploying Gateway Components Using TIBCO Administrator

	Advanced Features
	Cache Agent
	Running Cache Agent

	Hot Deployment Overview
	Enabling Hot Deployment
	Invoking Hot Deployment

	Extension Mechanism
	Response Caching
	Types of Response Caching
	Facade Response Cache (Simple Cache)
	Sample Request Header
	Sample Response Headers

	Target Backup Response Cache

	Cache Response Key
	Response Caching with Proxy Server
	Enabling Response Caching
	Response Caching Parameters
	Clearing Cached Items
	Overriding Cache Response Key and Parameters
	Sample XSLT File


	Performance Tuning Parameters
	Large Payload Limit Settings
	Enable Access Logs in HTTP Channel

	High Availability Deployment Of Runtime Components
	Overview
	Operational Layer Components
	Gateway Management Layer Components
	Configuration For High Availability Setup
	Configure Load Balancer
	Creating A Health Monitor For Core Engines
	Creating A Load Balancing Pool
	Creating a Virtual Server

	Configure Apache Modules for Core Engines
	Setting the Rendezvous Connection Parameters For Apache Module
	Setting the Rendezvous Connection Parameters for Core Engine

	Cluster Configuration For Runtime Components
	Configuring Discover URL
	Editing asg_core.cdd File To Set Discover URL (using text editor)
	Editing asg_cl.cdd File To Set Discover URL (using text editor)



	Configuring Fault Tolerance Parameters
	Configuring Core Engines
	Configuring Cache Agent
	Configuring Cache Cleanup Agent
	Example Setting For Cache Cleanup Agent Instance

	Configuring Global Throttle Manager
	Example Setting For Global Throttle Manager Instance

	Configuring Central Logger
	Example Settings For Central Logger Instance

	Configure Rendezvous Session Connection Parameters

	Appendix A
	Edit Cluster Deployment Descriptor (CDD) File
	Editing CDD File using Text Editor
	Editing CDD File using Studio
	Setting Discover URL
	Setting Max Active
	Setting Priority

	Configuration Tasks
	Enabling Cross-Origin Resource Sharing(CORS) Filter Properties
	Adding URL patterns
	Adding Filter Parameters


	Configuring JMS Destinations for Southbound Service Operations
	Configuring Async Mode for Southbound JMS Service
	Configuring Retry parameters for HTTP HTTP(s) Transport
	Enabling detail level logging for Gateway
	Configuring TIBCO Enterprise Message Service
	Configuring JMS Northbound Transport for XML
	Configuring TIBCO Designer
	Configuring Operations
	Enable the ESB Channels in CDD File
	Updating TIBCO Enterprise Message Service Libraries

	Change the Stack Size
	Changing the Stack Size Permanently
	Changing the Stack Size Temporarily

	Modify Unicast Discovery URL in CDD file
	Editing the Discover URL and Listen URL (using text editor)
	Editing the Discover URL and Listen URL (using Studio)

	Generate Private Keys And Public Certificates with OpenSSL
	Generating Self-Signed SSL Certificates
	Generating SSL Keys and Certificates With Your Own your own Trusted CA
	Creating CA Hierarchy
	Creating Private Key and Certificate Signing Request (CSR)
	Creating PKCS#12 archive (Optional)


	Editing Cluster Deployment Descriptor (CDD) File
	Using Text Editor
	Using Studio

	Connection Problem to TIBCO DataGrid

	Glossary
	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

