
Apple II

Reference
Manual
January 1978

APPLE n
Reference Manual

January 1978

APPLE Computer Inc.

10260 Bandley Dr.

Cupertino, CA
95014

APPLE n Reference Manual

TABLE OF CONTENTS

A. GETTING STARTED WITH YOUR
APPLE II 1

1. Unpacking 1

2. Warranty Registration Card 1

3. Check for Shipping Damage 2

4. Power Up 2

5. APPLE II Speaks Several Languages . 3

6. APPLE Integer BASIC 3

7. Running Your First

and Second Programs 3

8. Running 16K Startrek 3

9. Loading a Program Tape 4

10. Breakout and Color Demos Tapes . . 6

11. Breakout and Color
Demos Program Listings 12

12. How to Play Startrek 14

13. Loading HIRES Demo Tape 15

B. APPLE II INTEGER BASIC 17

1. BASIC Commands 18

2. BASIC Operators 19

3. BASIC Functions 22

4. BASIC Statements 23

5. Special Control and Editing 28

6. Table A — Graphics Colors 29

7. Special Controls and Features 30

8. BASIC Error Messages 32

9. Simplified Memory Map 33

10. Data Read/Save Subroutines 34

11. Simple Tone Subroutines 43

12. High Resolution Graphics
Subroutines and Listings 46

13. Additional BASIC Program
Examples 55

a. Rod's Color Pattern (4K) 55

b. Pong <4K) 56

c. Color Sketch (4K) 57

d. Mastermind (8K) 59

e. Biorhythm (4K) 61

f. Dragon Maze (4K) 63

C. APPLE II FIRMWARE 67

1. System Monitor Commands 68

2. Control and Editing Characters 72

3. Special Controls and Features 74

4. Annotated Monitor and
Dis-assembler Listing 76

5. Binary Floating Point Package 94

6. Sweet 16 Interpreter Listing 96

7. 6502 Op Codes 100

D. APPLE II HARDWARE 106

1. Getting Started with Your
APPLE II Board 107

2. APPLE II Switching Power Supply. 110

3. Interfacing with the Home TV 112

4. Simple Serial Output 114

5. Interfacing the APPLE —
Signals, Loading, Pin

Connections 1 22

6. Memory —
Options, Expansion, Map,
Address 133

7. System Timing 140

8. Schematics 141

GETTING STARTED WITH YOUR APPLE II

Unpacking

Don't throw away the packing material . Save it for the unlikely

event that you may need to return your Apple II for warrantee repair.

If you bought an Apple II Board only, see hardware section in this

manual on how to get started. You should have received the following!

1. Apple II system including mother printed circuit board

with specified amount of RAM memory and 8K of ROM memory,

switching power supply, keyboard, and case assembly.

2. Accessories Box including the following:

a. This manual including warranty card .

b. Pair of Game Paddles

c. A.C. Power Cord
d. Cassette tape with "Breakouf'on one side

and "Color Demos" on the other side.

e. Cassette recorder interface cable (miniature

phone jack type)

3. If you purchased a 16K or larger system, your accessory

box should also contain:

a. 16K Startrek game cassette with High Resolution

Graphics Demo ("HIRES") on the flipside.

b. Applesoft Floating Point Basic Language Cassette

with an example program on the other side.

c. Applesoft reference manual

4. In addition other items such as a vinyl carrying case

or hobby board peripherial may have been included if

specifically ordered as "extras".

Notify your dealer or Apple Computer, Inc. immediately if you are

missing any items.

Warranty Registration Card

Fill this card out immediately and completely and mail to Apple in

order to register for one year warranty and to be placed on

owners club mailing list. Your Apple IPs serial number is located

on the bottom near the rear edge. You model number is:

A2SJ0OMMX

MM is the amount of memory you purchased. For Example:

A2S0008X

is an 8K Byte Apple II system.

Check for Damage

Inspect the outside case of your Apple for shipping damage. Gently
lift up on the top rear of the lid of the case to release the lid
snaps and remove the lid. Inspect the inside. Nothing should be
loose and rattling around. Gently press down on each integrated
circuit to make sure that each is still firmly seated in its
socket. Plug in your game paddles into the Apple II board at the
socket marked "GAME I/O" at location J14. See hardware section of
this manual for additional detail. The white dot on the connector
should be face forward. Be careful as this connector is fragile.
Replace the lid and press on the back top of it to re-snap it into
place.

Power Up

First, make sure that the power ON/OFF switch on the rear power
supply panel on your Apple II is in the "OFF" position. Connect
the A.C. power cord to the Apple and to a 3 wire 120 volt A.C.
outlet. Make sure that you connect the third wire to ground if
you have only a two conductor house wiring system. This ground
is for your safety if there is an internal failure in the Apple
power supply, minimizes the chance of static damage to the Apple,
and minimizes RFI problems.

Connect a cable from the video output jack on the back of the Apple
to a TV set with a direct video input jack. This type of set is
commonly called a "Monitor". If your set does not have a direct
video input, it is possible to modify your existing set. Write for
Apple's Application note on this. Optionally you may connect the
Apple to the antenna terminals of your TV if you use a modulator.
See additional details in the hardware section of this manual under
"Interfacing with the Home TV".

Now turn on the power switch on the back of the Apple. The indicator
light (it's not a switch) on the keyboard should now be ON. If
not, check A.C. connections. Press and release the "Reset" button
on the keyboard. The following should happen: the Apple's internal
speaker should beep, an asterisk ("*") prompt character should appear
at the lower left hand corner of your TV, and a flashing white square
should appear just to the right of the asterisk. The rest of the
TV screen will be made up of radom text characters (typically question marks)

If the Apple beeps and garbage appears but you cannot see an "*" and the
cursor, the horizontal or vertical height settings on the TV need to be
adjusted. Now depress and release the "ESC" key, then hold down the
"SHIFT" key while depressing and releasing the P key. This should
clear your TV screen to all black. Now depress and release the "RESET"
key again. The "*" prompt character and the cursor should return to
the lower left of your TV screen.

Apple Speaks Several Languages

The prompt character indicates which language your Apple is currently
in. The current prompt character, an asterisk ("*"), indicates that
you are in the "Monitor" language, a powerful machine level language
for advanced programmers. Details of this language are in the
"Firmware" section of this manual.

Apple Integer BASIC

Apple also contains a high level English oriented language called
Integer BASIC, permanently in its ROM memory. To switch to this

language hold down the "CTRL" key while depressing and releasing the

"B" key. This is called a control-B function and is similiar to

the use of the shift key in that it indicates a different function
to the Apple. Control key functions are not displayed on your
TV screen but the Apple still gets the message. Now depress and

release the "RETURN" key to tell Apple that you have finished typing
a line on the keyboard. A right facing arrow (">") called a caret

will now appear as the prompt character to indicate that Apple is

now in its Interger BASIC language mode.

Running Your First and Second Program

Read through the next three sections that include:

1. Loading a BASIC program Tape

2. Breakout Game Tape

3. Color Demo Tape

Then load and run each program tape. Additional information on

Apple II's interger BASIC is in the next section of this manual.

Running 16K Startrek

If you have 16K Bytes or larger memory in your Apple, you will also
receive a "STARTREK" game tape. Load this program just as you did
the previous two, but before you "RUN" it, type in "HIMEM: 16384"

to set exactly where in memory this program is to run.

LOADING A PROGRAM TAPE

INTRODUCTION

This section describes a procedure for loading BASIC programs

successfully into the Apple II. The process of loading a program is divided

into three section; System Checkout, Loading a Tape and What to do when

you have Loading Problems. They are discussed below.

When loading a tape, the Apple II needs a signal of about 2 1/2 to 5

volts peak-to-peak. Commonly, this signal is obtained from the "Monitor"

or "earphone" output jack on the tape recorder. Inside most tape recorders,

this signal is derived from the tape recorder's speaker. One can take

advantage of this fact when setting the volume levels. Using an Apple

Computer pre-recorded tape, and with all cables disconnected, play the tape

and adjust the volume to a loud but un-distorted level. You will find that

this volume setting will be quite close to the optimum setting.

Some tape recorders (mostly those intended for use with hi-fi sets)

do not have an "earphone" or high-level "monitor" output* These machines

have outputs labeled "line output" for connection to the power amplifier.

The signal levels at these outputs are too low for the Apple II in most cases.

Cassette tape recorders in the $40 - $50 range generally have ALC

(Automatic Level Control) for recording from the microphone input. This feature

is useful since the user doesn't have to set any volume controls to obtain

a good recording. If you are using a recorder which must be adjusted, it

will have a level meter or a little light to warn of excessive recording levels.

Set the recording level to just below the level meter 1

s maximum, or to just a

dim indication on the level lamp. Listen to the recorded tape after you've

saved a program to ensure that the recording is "loud and clear".

Apple Computer has found that an occasional tape recorder will not function

properly when both Input and Output cables are plugged in at the same time.

This problem has been traced to a ground loop in the tape recorder itself which

prevents making a good recording when saving a program. The easiest solution

is to unplug the "monitor" output when recording. This ground loop does not

influence the system when loading a pre-recorded tape.

Tape recorder head alignment is the most common source of tape recorder

problems. If the playback head is skewed, then high frequency information

on pre-recorded tapes is lost and all sorts of errors will result. To confirm

that head alignment is the problem, write a short program in BASIC. >10 END

is sufficient. Then save this program. And then rewind and load the program.

If you can accomplish this easily but cannot load pre-recorded tapes, then

head alignment problems are indicated.

Apple Computer pre-recorded tapes are made on the highest quality professional

duplicating machines, and these tapes may be used by the service technician to

align the tape recorder's heads. The frequency response of the tape recorder

should be fairly good; the 6 KHz tone should be not more than 3 db down from

a 1 KHz tone, and a 9 KHz tone should be no more than 9 db down. Note that

recordings you have made yourself with mis-aligned heads may not not play

properly with the heads properly aligned. If you made a recording with a

skewed record head, then the tiny magnetic fields on the tape will be skewed as

well, thus playing back properly only when the skew on the tape exactly matches

the skew of the tape recorder's heads. If you have saved valuable programs with

a skewed tape recorder, then borrow another tape recorder, load the programs with

the old tape recorder into the Apple, then save them on the borrowed machine.

Then have your tape recorder properly aligned.

Listening to the tape can help solve other problems as well. Flaws in the

tape, excessive speed variations, and distortion can be detected this way.

Saving a program several times in a row is good insurance against tape flaws.

One thing to listen for is a good clean tone lasting for at least 3 1/2 seconds

is needed by the computer to "set up" for proper loading. The Apple puts out

this tone for anout 10 seconds when saving a program, so you normally have

6 1/2 seconds of leeway. If the playback volume is too high, you may pick up tape

noise before getting to the set-up tone. Try a lower playback volume.

SYSTEM CHECKOUT

A quick check of the Apple II computer system will help you spot any

problems that might be due to improperly placed or missing connections between

the Apple II, the cassette interface, the Video display, and the game

paddles. This checkout procedure takes just a few seconds to perform and

is a good way of insuring that everything is properly connected before the

power is turned on.

1. POWER TO APPLE - check that the AC power cord is plugged

into an appropriate wall socket, which includes a "true"

ground and is connected to the Apple II.

2. CASSETTE INTERFACE - check that at least one cassette

cable double ended with miniature phone tip jacks is

connected between the Apple II cassette Input port and

the tape recorder's MONITOR plug socket.

3. VIDEO DISPLAY INTERFACE -

a) for a video monitor - check that a cable connects

the monitor to the Apple's video output port,

b) for a standard television - check that an adapter

(RF modulator) is plugged into the Apple II (either

in the video output (K 14) or the video auxiliary

socket (J148), and that a cable runs between the

television and the Adapter's output socket.

4. GAME PADDLE INTERFACE - if paddles are to be used, check

that they are connected into the Game I/O connector (J14)

on the right-hand side of the Apple II mainboard.

5. POWER ON - flip on the power switch in back of the Apple II,

the "power" indicator on the keyboard will light. Also

make sure the video monitor (or TV set) is turned on.

After the Apple II system has been powered up and the video display

presents a random matrix of question marks or other text characters the

following procedure can be followed to load a BASIC program tape:

1. Hit the RESET key.

An asterick, "*", should appear on the lefthand side

of the screen below the random text pattern. A flashing

white cursor will appear to the right of the asterick.

2. Hold down the CTRL key, depress and release the B key,

then depress the "RETURN" key and release the "CTRL" key.

A right facing arrow should appear on the lefthand side

of the screen with a flashing cursor next to it. If it

doesn't, repeat steps 1 and 2.

3. Type in the word "LOAD" on the keyboard. You should see

the word in between the right facing arrow and the

flashing cursor. Do not depress the "RETURN" key yet .

4. Insert the program cassette into the tape recorder and

rewind it.

5. If not already set, adjust the Volume control to 50-70%

maximum. If present, adjust the Tone control to 80

maximum.

6. Start the tape recorder in "PLAY" mode and now depress
the "RETURN" key on the Apple II.

7. The cursor will disappear and Apple II will beep in a
few seconds when it finds the beginning of the program.
If an error message is flashed on the screen, proceed
through the steps listed in the Tape Problem section
of this paper.

8. A second beep will sound and the flashing cursor will
reappear after the program has been successfully loaded
into the computer.

9. Stop the tape recorder. You may want to rewind the program
tape at this time.

10. Type in the word "RUN" and depress the "RETURN" key.

The steps in loading a program have been completed and if everying has

gone satisfactorily the program will be operating now.

LOADING PROBLEMS

Occasionally, while attempting to load a BASIC program Apple II

beeps and a memory full error is written on the screen. At this time

you might wonder what is wrong with the computer, with the program tape,

or with the cassette recorder. Stop. This is the time when you need

to take a moment and checkout the system rather than haphazardly attempt-

ing to resolve the loading problem. Thoughtful action taken here will

speed in a program's entry. If you were able to successfully turn on the

computer, reset it, and place it into BASIC then the Apple II is probably

operating correctly. Before describing a procedure for resolving this

loading problem, a discussion of what a memory full error is in order.

The memory full error displayed upon loading a program indicates that

not enough (RAM) memory workspace is available to contain the incoming data.

How does the computer know this? Information contained in the beginning of

the program tape declares the record length of the program. The computer

reads this data first and checks it with the amount of free memory. If

adequate workspace is available program loading continues. If not, the

computer beeps to indicate a problem, displays a memory full error statement

stops the loading procedure, and returns command of the system to the key-

board. Several reasons emerge as the cause of this problem.

Memory Size too Small

Attempting to load a 16K program into a 4K Apple II will generate this

kind of error message. It is called loading too large of a program. The

solution is straight forward: only load appropriately sized programs into

suitably sized systems.

Another possible reason for an error message is that the memory pointers

which indicate the bounds of available memory have been preset to a smaller

capacity. This could have happened through previous usage of the "HIMEN:"

and "LOMEN:" statements. The solution is to reset the pointers by B c (CTRL B)

command. Hold the CTRL key down, depress and release the B key, then depress

the RETURN key and release the CTRL key. This will reset the system to max-

imum capacity.

Cassette Recorder Inadjustment

If the Volume and Tone controls on the cassette recorder are not

properly set a memory full error can occur. The solution is to adjust

the Volume to 50-70% maximum and the Tone (if it exists) to 80-100%

maximum.*

A second common recorder problem is skewed head azimuth. When

the tape head is not exactly perpendicular to the edges of the magnetic

tape some of the high frequency data on tape can be skipped. This causes

missing bits in the data sent to the computer. Since the first data read

is record length an error here could cause a memory full error to be

generated because the length of the record is inaccurate. The solution:

adjust tape head azimuth. It is recommended that a competent technician

at a local stereo shop perform this operation.

Often times new cassette recorders will not need this adjustment.

*Apple Computer Inc. has tested many types of cassette recorders and so far

the Panasonic RQ-309 DS (less than $40.00) has an excellent track record

for program loading.

8

Tape Problems

A memory full error can result from unintentional noise existing in

a program tape. This can be the result of a program tape starting on its

header which sometimes causes a glitch going from a nonmagnetic to magnetic

recording surface and is interpreted by the computer as the record length.

Or, the program tape can be defective due to false erasure, imperfections

in the tape, or physical damage. The solution is to take a moment and

listen to the tape. If any imperfections are heard then replacement of the

tape is called for. Listening to the tape assures that you know what a

"good" program tape sounds like. If you have any questions about this please

contact your local dealer or Apple for assistance.

If noise or a glitch is heard at the beginning of a tape advance the

tape to the start of the program and re-Load the tape.

Dealing with the Loading Problem

With the understanding of what a memory full error is an efficient way

of dealing with program tape loading problems is to perform the following

procedure:

1. Check the program tape for its memory requirements.
Be sure that you have a large enough system.

2. Before loading a program reset the memory pointers
with the Bc (control B) command.

3. In special cases have the tape head azimuth
checked and adjusted.

4. Check the program tape by listening to it.
a) Replace it if it is defective, or
b) start it at the beginning of the program.

5. Then re-LOAD the program tape into the Apple II.

In most cases if the preceeding is followed a good tape load will result.

UNSOLVED PROBLEMS

If you are having any unsolved loading problems, contact your

nearest local dealer or Apple Computer Inc.

BREAKOUT GAME TAPE

PROGRAM DESCRIPTION

Breakout is a color graphics game for the Apple II computer. The object of

the game is to "knock-out* all 160 colored bricks from the playing field by

hitting them with the bouncing ball. You direct the ball by hitting it with

a paddle on the left side of the screen. You control the paddle with one of

the Apple's Game Paddle controllers. But watch out: you can only miss the

ball five times!

There are eight columns of bricks. As you penetrate through the wall the

point value of the bricks increases. A perfect game is 72(1 points; after

five balls have been played the computer will display your score and a

rating such as "Very Good".
N Terrible'.\ etc. After ten hits of the ball,

its speed with double, making the game more difficult. If you break through

to the back wall, the ball will rebound back and forth, racking up points.

Breakout is a challenging game that tests your concentration, dexterity,

and skill

.

REQUIREMENTS

This program will fit into a 4K or greater system.

BASIC is the programming language used.

PLAYING BREAKOUT

1. Load Breakout game following instructions in the "Loading

a BASIC Program from Tape" section of this manual.

2. Enter your name and depress RETURN key.

3. If you want standard BREAKOUT colors type in Y or Yes

and hit RETURN. The game will then begin.

4. If the answer to the previous questions was N or No

then the available colors will be displayed. The

player will be asked to choose colors, represented by a

number from to 15, for background, even bricks, odd

bricks, paddle and ball colors. After these have been

chosen the game will begin.

10

At the end of the game you will be asked if they
want to play again. A Y or Yes response will start
another game. A N or No will exit from the program

NOTE: A game paddle (150k ohm potentiometer) must be connected
to PDL (0) of the Game I/O connector for this game.

COLOR DEMO TAPE

PROGRAM DESCRIPTION

COLOR DEMO demonstrates some of the Apple II video graphics

capabilities. In it are ten examples: Lines, Cross, Weaving,

Tunnel, Circle, Spiral, Tones, Spring, Hyperbola, and Color Bars.

These examples produce various combinations of visual patterns

in fifteen colors on a monitor or television screen. For example,

Spiral combines colorgraphics with tones to produce some amusing

patterns. Tones illustrates various sounds that you can produce

with the two inch Apple speaker. These examples also demonstrate

how the paddle inputs (PDL(X)) can be used to control the audio

and visual displays. Ideas from this program can be incorporated

into other programs with a little modification.

REQUIREMENTS

4K or greater Apple II system, color monitor or television,

and paddles are needed to use this program. BASIC is the pro-

gramming language used.

11

BREAKOUT GAME

PROGRAM LISTING

PROGRAM LISTING

-•J T :_it:

H.--1 i-j-i =.".

= : i_U=\ * -.'J-^-JU

J-J-J .- = 3*i_f

•„".: i -. t'l- :J-JT:

iiWJ \ l:LT: UH! :*_ i:i-?= \ i
" :: .-"

U^j^-J _-•_=

-J i '-' - »: i : i

:

i\if;
- is ;~v= uii '_= uv

;--.;-. i: •*.-•_:- iiii.;i s--j~ s uuuu-

~2]= IUL=JK-b

I; IrULuK**t-r

™ EHS.5: :-.i

i :=.? -i-Js ^~ Li-fi \ i-J-J-Jv

12

COLOR DEMO PROGRAM

LISTING
PROGRAM LISTING

0,1001 fvfvr.

rii£^

. svs i v:vi» ;_-_- £.-•_•

H= HHINI
::

4K UULuR DlHOS"' PR X N1

'-:liL= \—
1 4-1 * Tz • sfif: OOii = Cf:D T —

1

"-"-"-- v - - t s _ -i trvL"' i-t- ! i: : \!T\ 1~ Z

•pi ; r-:if= /if .=. .™;

: Hi- s * i

ii-i isi.-"-. *

l; ntin h:L hi Ls YL In NjL Hi

K; HLXI jri= hySUK IHHMn- GO 1 8?^ P-H-fi-rliV-n/lsn: ffM nP=i?= ^0^1!

46 PRIHT
;;

4 TUNHEL" * PR 1 II I
^5 CIRC

i = uv?_?-ju ut^

= -JU = U -JL-J

r-i 5JlT

i l"f\ir?i

KlvjjiJ "HI! HNY i.?i r\W. Nrkl UrFJlT

* 7z£i i! n:DT;.=T : T=JD!;T Hliiirii nr=lfi
Ji- *.' = = L\.i:*: i:;iUi =?::i^:: i/=_ni?

f sir =irl ! II" 1/S Hrti-- l\ll

THEH GOTO 188*1: GOTO 38

TkiDUT ZUW-PU f^r^n nr-::: r-. ^r: j; ; t-.-t
inrv= ^-iii/if e/LHU ?L=:JL[/ >UU LINl

i: T. r~i . " r * ~ ! ifi T ' " " Turn
»x: UK I ir 1 riND K^ itllrl

GOTO 188*1; GOTO 3^

T-ii? sf;f- "0- ?- T -" J x^^v.t --fi
i
-

I £ i ivi" ! - i •-' - i i \ 1 /O .•• j^"-. 5 7

-i-lh GOSUB £868; GOSUB 18888

'j-n run i

isv t:i i: U !,!_".!D C:1tv; P:L:": I li

~ ": "
: :

~:
-. t" :" "j ;! . ~ i" T "• •" " -"•

h4H K-|f ;';|_~K siKlriTlC^hT?^:! z'227fj

S'J 7J i i "- I iVJif l-Jl rU^ I

~ rJ iU -J?

t FLU! nsT; HLf^l fisil UUJiUi;

viu ^^itj fjiji; ^^; L-ULUK— -J -' si = VLIN

8,39 RT 3tj: VTBB EinJ/c) HOD
""

: i TQD Oils TC T £!":*- ": TMri;

r; r:-i:T !.--.. r:":
-"™ -«.-..--.-. .-.-•!-.-.

rfurn ^^cii uu^ud id^^di uU!U

tj=39-li GObljH 2Mm GOSUB

.y-."_* iri-Lyp- r-i-iL' \i =_-.-(«•_ a« = 07 Hi

' POKE -16368 J; POP ; GOTO

13

APPLE II STARTREK VERSION

THIS IS A SHORT DESCRIPTION OK HOW TO PLAY STARTREK ON THE
APPLE COMPUTER.

THE UNIVERSE IS MADE UP OF 64 QUADRANTS IN AN 8 BY 8 MATRIX.
THE QUADRANT IN WHICH YOU 'THE ENTERPRISE ARE* IS IN WHITEr
AND A BLOW UP OF THAT QUADRANT IS FOUND IN THE LOWER LEFT
CORNER. YOUR SPACE SHIP STATUS IS FOUND IN A TABLE TO
THE RIGHT SIDE OF THE QUADRANT BLOW UP.

THIS IS A SEARCH AND DESTROY MISSION. THE OBJECT IS TO LONG-RANGE
SENSE FOR INFORMATION AS TO WHERE KLINGONS <K> ARE r MOVE TO THAT QUADRANT,
AND DESTROY.

NUMBERS DISPLAYED FOR EACH QUADRANT DENOTE

t

* OF STARS IN THE ONES PLACE
* OF BASES IN THE TENS PLACE
* OF KLINGONS IN THE HUNDREDS PLACE

AT ANY TIME DURING THE GAME r FOR INSTANCE BEFORE ONE TOTALLY
RUNS OUT OF ENERGY, OR NEEDS TO REGENERATE ALL SYSTEMS, ONE MOVES TO AQUADRANT WHICH INCLUDES A BASE, IONS NEXT TO THAT BASE (B) AT WHICH TIME
THE BASE SELF-DESTRUCTS AND THE ENTERPRISE (E) HAS ALL SYSTEMS "GO'
AGAIN.

TO play:
1* THE COMMANDS CAN BE OBTAINED BY TYPING
THEY ARE!

(ZERO) AND RETURN.

REGENERATE
PHASERS
GALAXY RECORD
PROBE

PROPULSION
LONG RANGE SENSORS
PHOTON TORPEDOES
COMPUTER
SHIELD ENERGY

11. LOAD PHOTON TORPEDOES
THE COMANDS ARE INVOKED BY TYPING THE NUMBER REFERING TO THEM

FOLLOWED BY A 'RETURN".
A. IF RESPONSE IS 1 THE COMPUTER

EXPECTS »W IF ONE WANTS
BETWEEN QUADRANTS AND AN
INTERNAL QUADRANT TRAVEL-
DURATION OR WARP FACTOR IS THE NUMBER OF SPACES OR
QUADRANTS THE ENTERPRISE WILL MOVE.
COURSE IS COMPASS READING IN DEGREES FOR THE DESI-
RED DESTINATION.

B. A 2 REGENERATES THE ENERGY AT THE EXPENSE OF TIME.
C. A 3 GIVES THE CONTENTS OF THE IMMEDIATE ADJACENT QUADRANTS.

THE GALAXY IS WRAP-AROUND IN ALL DIRECTIONS.
B. 4 FIRES PHASERS AT THE EXPENSE OF AVAILABLE ENERGY.

10. DAMAGE REPORT

WILL ASK WARP OR
TO TRAVEL IN THE

ION AND
GALAXY

IF ONE WANTS ONLY

F. 6

G.
H.

E. 5 INITIATES A SET OF QUESTIONS FOR TORPEDO FIRING.
THEY CAN BE FIRED AUTOMATICALLY IF THEY HAVE
BEEN LOCKED ON TARGET WHILE IN THE COMPUTER
MODE, OR MAY BE FIRED MANUALLY IF THE TRAGECTORY ANGLE
IS KNOWN.

8 AND 10 ALL GIVE INFORMATION ABOUT THE STATUS OF THE' SHIP
AND ITS ENVIRONMENT.

9 SETS THE SHIELD ENERGY/AVAILABLE ENERGY RATIO.
11 ASKS FOR INFORMATION ON LOADING AND UNLOADING OF

PHOTON TORPEDOES AT THE ESPENSE OF AVAILABLE ENERGY.
THE ANSWER SHOULD BE A SIGNED NUMBER. FOR EXAMPLE
+5 OR -2.

I. 7 ENTERS A COMPUTER WHICH WILL RESPOND TO THE FOLLOWING
INSTRUCTIONS:

1. COMPUTE COURSE
3. LOCK PHOTON TORPEDOES
4. LOCK COURSE 5,
6. STATUS 7,

IN THE FIRST FIVE ONE WILL HAVE TO GIVE COORDINATES.
COORDINATES ARE GIVEN IN MATHMATICAL NOTATION WITH
THE EXCEPTION THAT THE "Y' VALUE IS GIVEN FIRST.
AN EXAMPLE WOULD BE "YrX'

2, LOCK PHASERS

COMPUTE TREJECTORY
RETURN TO COMAND MODE

COURSE OR trajectory;

270- 90

180

THIS EXPLANATION WAS WRITTEN BY ELWOOD
WOT RESPONSIBLE FOR

ERRORS

14

LOADING THE HI-RES DEMO TAPE

PROCEDURE

1. Power up system - turn the AC power switch in the back
of the Apple II on. You should see a random matrix of
question marks and other text characters. If you don't,
consult the operator's manual for system checkout pro-
cedures.

2. Hit the RESET key. On the left hand side of the screen
you should see an asterisk and a flashing cursor next to
it below the text matrix.

3. Insert the HI-RES demo tape into the cassette and rewind
it. Check Volume (50-70%) and Tone (8p-lpp%) settings.

4. Type in "C00.FFFR" on the Apple II keyboard. This is the
address range of the high resolution machine language sub-
program. It extends from $C00 to $FFF. The R tells the
computer to read in the data. Do not depress the "RETURN"
key yet.

5. Start the tape recorder in playback mode and depress the
"RETURN" key. The flashing cursor disappears.

6. A beep will sound after the program has been read in.
STOP the tape recorder. Do not rewind the program tape yet

7. Hold down the "CTRL" key, depress and release the B key,
then depress the "RETURN" key and release the "CTRL" key.
You should see a right facing arrow and a flashing cursor.
The B c command places the Apple into BASIC initializing
the memory pointers.

8. Type in "LOAD", restart the tape recorder in playback mode
and hit the "RETURN" key. The flashing cursor disappears.
This begins the loading of the BASIC subprogram of the
HI -RES demo tape.

9. A beep will sound to indicate the program is being loaded.

15

10. A second beep will sound, and the right facing arrow
will reappear with the flashing cursor. STOP the
tape recorder. Rewind the tape.

11. Type in "HIMEM:8192" and hit the "RETURN" key. This
sets up memory for high resolution graphics.

12. Type in "RUN" and hit the "RETURN" key. The screen
should clear and momentarily a HI -RES demo menu table
should appear. The loading sequence is now completed

SUMMARY OF HI-RES DEMO TAPE LOADING

1

.

RESET

2. Type in C00.FFFR

3. Start tape recorder, hit RETURN

4. Asterick or flashing cursor reappear
Bc (CTRL B) into BASIC

5. Type in "LOAD", hit RETURN

6. BASIC prompt (7) and flashing cursor
reappear. Type in "HIMEN:8192" , hit
RETURN

7. Type in "RUN", hit RETURN

8. STOP tape recorder, rewind tape.

16

APPLE II INTEGER BASIC

1. BASIC Commands
2. BASIC Operators

3. BASIC Functions

4. BASIC Statements

5. Special Control and Editing

6. Table A — Graphics Colors

7. Special Controls and Features

8. BASIC Error Messages

9. Simplified Memory Map
10. Data Read/Save Subroutines

11. Simple Tone Subroutines

12. High Resolution Graphics

13. Additional BASIC Program Examples

BASIC COMMANDS

Commands are executed immediately; they do not require line numbers. Most Statements
(see Basic Statements Section) may also be used as commands. Remember to press
Return key after each command so that Apple knows that you have finished that
line. Multiple commands (as opposed to statements) on same line separated by
a

M
:

" are NOT allowed.

COMMAND NAME

AUTO num

AUTO numl,> num2

CLR

CON

DEL numl

DEL numl, num2

DSP var

HIMEM expr

GOTO expr

GR

Sets automatic line numbering mode. Starts at line
number num and increments line numbers by 10. To
exit AUTO mode, type a control X*, then type the
letters "MAN" and press the return key.

Same as above execpt increments line numbers by

number num2«

Clears current BASIC variables; undimensions arrays.
Program is unchanged.

Continues program execution after a stop from a

control C*. Does not change variables.

Deletes line number numl.

Deletes program from line numbemuml through line
number num2.

Sets debug mode that will display variable var every-
time that it is changed along with the line number
that caused the change. (NOTE: RUN command clears
DSP mode so that DSP command is effective only if

program is continued by a CON or GOTO command.)

Sets highest memory location for use by BASIC at
location specified by expression exp^in decimal .

HIMEM: may not be increased without destroying program.

HIMEM: is automatically set at maximum RAM memory when
BASIC is entered by a control B*.

Causes immediate jump to line number specified by

expression expr.

Sets mixed color graphics display mode. Clears screen

to black. Resets scrolling window. Displays 40x40
squares in 15 colors on top of screen and 4 lines of text

at bottom.

LIST

LIST numl

LIST numl, num2

Lists entire program on screen.

Lists program line number numl.

Lists program line numberm^ through line number

num2.

18

LOAD expr,

LOMEM

:

expv

MAN

NEW

NO DSP var

NO TRACE

RUN

RUN expv

SAVE

TEXT

TRACE

Reads (Loads) a BASIC program from cassette tape.

Start tape recorder before hitting return key. Two
beeps and a " >

M indicate a good load, "ERR" or "MEM"
FULL ERR" message indicates a bad tape or poor recorder
performance.

Similar to HIMEM: except sets lowest memory location
available to BASIC. Automatically set at 2048 when
BASIC is entered with a control B*. Moving LOMEM:
destroys current variable values.

Clears AUTO line numbering mode to all manual line
numbering after a control C* or control X*.

Clears (Scratches) current BASIC program.

Clears DSP mode for variablet?ar>.

Clears TRACE mode.

Clears variables to zero, undimensions all arrays and

executes program starting at lowest statement line
number.

Clears variables and executes program starting at line
number specified by expression expr.

Stores (saves) a BASIC program on a cassette tape.

Start tape recorder in record mode prior to hitting
return key.

Sets all text mode. Screen is formated to display
alpha-numeric characters on 24 lines of 40 characters
each. TEXT resets scrolling window to maximum.

Sets debug mode that displays line number of each

statement as it is executed.

Control characters such as control X or control C are

typed by holding down the CTRL key while typing the
specified letter. This is similiar to how one holds

down the shift key to type capital letters. Control
characters are NOT displayed on the screen but are

accepted by the computer. For example, type several

control G's. We will also use a superscript C to indicate
a control character as in X

c
.

19

BASIC Operators

Symbol Sample Statement

Prefix Operators

() 10 X= 4*(5 + X)

+ 20 X= 1+4*5

30 ALPHA =

-(BETA +2)

NOT 40 IF A NOT B THEN

200

Explanation

Expressions within parenthesis ()

are always evaluated first.

Optional; +1 times following expression

Negation of following expression.

Logical Negation of following expression;
if expression is true (non-zero), 1

if expression is false (zero).

Arithmetic Operators

+ 66 Y = X+3

7J0 LET D0TS=A*B*N2

Exponentiate as in X'

shifted letter N.

NOTE + is

Multiplication. NOTE: Implied multi-
plication such as (2 + 3) (4) is not

allowed thus N2 in example is a variable
not N * 2.

/ 80 PRINT GAMMA/S Divide

MOD 90 X = 12 MOD 7

100 X = X M0D(Y+2)
Modulo:
first exp

+ 110 P = L + G Add

_ 120 XY4 = H-D Substract

130 HEIGHT=15
140 LET SIZE=7*5
150 A(8) = 2

155 ALPHA$ = "PLEASE"

Modulo: Remainder after division of

first expression by second expression

Assignment operator; assigns a value to

a variable. LET is optional

20

Relational and Logical Operators

The numeric values used in logical evaluation are "true" if non-zero,

"false" if zero.

Symbol Sample Statement Explanation

16? IF D = E

THEN 500
Expression "equals" expression

17? IF A$(l,l)
"Y" THEN 500

or < > 180 IF ALPHA #X*Y
THEN 500

190 IF A$ # "NO"

THEN 500

> 200 IF A>B

THEN GO TO 50

< 210 IF A+l<B-5
THEN 100

>= 220 IF A>=B
THEN 100

<= 230 IF A+l<=B-6
THEN 200

AND 240 IF A>B AND
C<D THEN 200

OR 250 IF ALPHA OR
BETA+1 THEN 200

String variable "equals?' string variable

Expression "does not equal" expression.

String variable "does not equal" string
variable. NOTE: If strings are not

the same length, they are considered
un-equal . < > not allowed with strings

Expression "is greater than" expression

Expression "is less than" expression.

Expression "is greater than or equal to"

expression.

Expression "is less than or equal to"

expression.

Expression 1 "and" expression 2 must
both be "true" for statements to be true

If either expression 1 or expression 2

is "true", statement is "true".

21

BASIC FUNCTIONS

Functions return a numeric result. They may be used as expressions or as part
of expressions. PRINT is used for examples only* other statements may
be used. Expressions following function name must be enclosed between two

parenthesis signs.
FUNCTION NAME

ABS (expr) 300 PRINT ABS(X)

ASC (str$) 31Qf PRINT ASC("BACK M
)

320 PRINT ASC(B$)
330 PRINT ASC(B$(4,4))
335 PRINT ASC(B$(Y))

LEN (str$) 340 PRINT LEN(B$)

PDL (expr) 350 print PDL(X)

PEEK (expr) 360 PRINT PEEK(X)

RND (expr) 370 PRINT RND(X)

Gives absolute value of the expression expr.

Gives decimal ASCII value of designated
string variable str$. If more than one
character is in designated string or
sub-string, it gives decimal ASCII
value of first character,

Gives current length of designated
string variable etr$\i.e. 9 number of
characters.

Gives number between and 255 corres-
ponding to paddle position on game paddle
number designated by expression expr and must

be legal paddle (0,1,2, or 3) or else 255 is

returned.

Gives the decimal value of number stored
of decimal memory location specified by

expression expr. For MEMORY locations
above 32676, use negative number; i.e.,

HEX location FFFGf is -16

Gives random number between and
(expression expr -1) if expression expr
is positive; if minus, it gives random
number between and (expression expr +1).

Sm(exprl, 380 PRINT SCRN (XI, Yl) Gives color (number between and 15) of
expr2) screen at horizontal location designated

by expression exprl and vertical

location designated by expression expr2
Range of expression exprl is to 39. Range

of expression expr2 is to 39 if in standan
mixed colorgraphics display mode as set by

GR command or p to 47 if in all color mode
set by POKE -163J04 ,jD: POKE - 16302,0.

SGN (expr) 39/) PRINT SGN(X) Gives siqn (not sine) of expression expr
i.e., -1 if expression expr is negative, zero

zero and +1 if expr is positive.

22

BASIC STATEMENTS

Each BASIC statement must have a

names must start with an alpha c

numeric characters up to iffl.

of the following words: AND, AT,
not begin with the letters END,
with a $ (dollar sign). Multipl
if separated by a : (colon) as 1

(including spaces) is less than
Most statements may also be used
by RUN or GOTO commands.

line number between and 32767. Variable
haracter and may be any number of alpha-
Variable names may not contain buried any
MOD, OR, STEP, or THEN. Variable names may

LET, or REM. String variables names must end
e statements may appear under the same line number
ong as the total number of characters in the line
approximately 150 characters
as commands. BASIC statements are executed

NAME

CALL expv 10 CALL-936

C0L0R=5xpr 30 C0L0R=12

DIM vavl (expvl)
stv$ (expv2)
Vav2 (expv3)

DSP VOV

50 DIM A(20),B(10)
60 DIM B$(30)

70 DIM C (Z)

Illeqal:

80 DIM A(30)
Leqal

:

85 DIM C(1000)

Leqal

:

90 DSP AX: DSP L

Illeqal:

100 DSP AX,B
102 DSP AB$
104 DSP A(5)

Legal

:

105 A=A(5): DSP A

Causes execution of a machine level
language subroutine at decimal memory
location specified by expression expv
Locations above 32767 are specified using
negative numbers; i.e., location in

example 10 is hexidecimal number $FC53

In standard resolution color (GR)

graphics mode, this command sets screen
TV color to value in expression expv
in the range to 15 as described in

Table A. Actually expression expv may be

in the range to 255 without error message
since it is implemented as if it were
expression expv MOD 16.

The DIM statement causes APPLE II to

reserve memory for the specified variables.
For number arrays APPLE reserves
approximately 2 times expv bytes of memory
limited by available memory. For string
arrays -stv$-(expv) must be in the range of
1 to 255. Last defined variable may be

redimensioned at any time; thus, example
in line is illegal but 85 is allowed.

Sets debug mode that DSP variable vav each

time it changes and the line number where the

change occured.

23

NAME

END

EXAMPLE DESCRIPTION

110 END Stops program execution. Sends carriage
return and "> " BASIC prompt) to screen.

Begins FOR... NEXT loop, initializes
variable var to value of expression exprl
then increments it by amount in expression

expr 3 each time the corresponding "NEXT"
statement is encountered, until value of

expression expr 2}$ reached. If STEP exprZ
is omitted, a STEP of +1 is assumed. Negative

numbers are allowed.

FOR var= 110 FOR L=0 to 39

exprl J0expr2 120 FOR X=Y1 TO Y3

S7tPexpr3 130 FOR 1=39 TO 1

150 GOSUB 100 *J2

GOSUB expr 140 GOSUB 500

GOTO expr

GR

160 GOTO 200
170 GOTO ALPHA+100

180 GR

190 GR POKE -16302,0

HLIN exprl

>

expr2Mexpr3

Note

Causes branch to BASIC subroutine starting
at legal line number specified by expression
expr Subroutines may be nested up to

16 levels.

Causes immediate jump to legal line

number specified by expression expr.

Sets mixed standard resolution color
graphics mode. Initializes COLOR =

(Black) for top 40x40 of screen and sets

scrolling window to lines 21 through 24

by 40 characters for four lines of text
at bottom of screen. Example 190 sets

all color mode (40x48 field) with no text
at bottom of screen.

In standard resolution color graphics mode,

this command draws a horizontal line of a

predefined color (set by C0L0R=) starting

at horizontal position defined by expression

exprl and ending at position expr2 at

vertical position defined by expression

exprd .exprl ar)dexpr2 must be in the range

of to 39 and exprl < = expr2 • exprZ
be in the range of to 39 (or to 47 if not

in mixed mode).

HLIN 0, 19 AT is a horizontal line at the top of the screen

extending from left corner to center of screen and HLIN 20,39 AT

39 is a horizontal line at the bottom of the screen extending from

center to right corner.

200 HLIN 0,39 AT 20
210 HLIN Z,Z+6 AT I

24

IF_ expression 220 IF A> B THEN
THEN statement PRINT A

230 IF X=0 THEN C=l
240 IF A#10 THEN

GOSUB 200
250 IF A$(l,l)# "Y"

THEN 100
Illegal:

260 IF L> 5 THEN 50:

ELSE 60
Legal

:

270 IF L> 5 THEN 50
GO TO 60

If expression is true (non-zero) then
execute statement-, if false do not
execute statement I f statement
is an expression, then a GOTO expr
type of statement is assumed to be implied.

The "ELSE 11

in example 260 is illegal but
may be implemented as shown in example 270.

INPUT varU 280 INPUT X,Y,Z(3)
var2 3 str$ 290 INPUT "AMT",

DLLR

300 INPUT "Y or N?\ A$

IN# expr 310 IN# 6

320 IN# Y+2
330 IN#

LET 340 LET X=5

LIST nurnl, 350 IF X > 6 THEN
num2 LIST 50

NEXT varl 3 360 NEXT I

var2 370 NEXT J,K

Enters data into memory from I/O
device. If number input is expected,
APPLE wil output "?"; if string inout is

expected no "?" will be outputed. Multiple

numeric inputs to same statement may be

separated by a comma or a carriage return.

String inputs must be separated by a

carriage return only. One pair of " " may

be used immediately after INPUT to output
prompting text enclosed within the quotation

marks to the screen.

Transfers source of data for subsequent
INPUT statements to peripheral I/O slot
(1-7) as specified as by expression expr.
Slot is not addressable from BASIC.
IN#0 (Example 330) is used to return data
source from peripheral I/O to keyboard
connector.

Assignment operator. "LET" is optional

Causes program from line number nvml
through line number num2 to be displayed
on screen.

Increments corresponding "FOR" variable
and loops back to statement following
"FOR" until variable exceeds limit.

NO DSP var 380 NO DSP I

NO TRACE 390 NO TRACE

Turns-off DSP debug mode for variable

Turns-off TRACE debug mode

25

PLOT expvl, expv2 400 PLOT 15, 25
400 PLT XV, YV

POKE expvl , expr2 420 POKE 20, 40
430 POKE 7*256,

XM0D255

POP 440 POP

In standard resolution color

graphics, this command plots a small

square of a predefined color (set

by C0L0R=) at horizontal location

specified by expression expvl in

range to 39 and vertical location
specified by express i on expr2 in range

to 39 (or to 47 if in all graphics

mode) NOTE: PLOT is upper left

and PLOT 39, 39 (or PLOT 39, 47) is

lower right corner.

Stores decimal number defined by

expression expv2 in range of
255 at decimal memory location

specified by expression expvl

Locations above 32767 are specified
by negative numbers.

"POPS" nested GOSUB return stack

address by one.

PRINT varl> vav3 stv$

i i\

REM

£ expr

RETURN

450 PRINT LI

460 PRINT LI, X2

470 PRINT "AMT= M
;DX

480 PRINT A$;B$;

490 PRINT
492 PRINT "HELLO"
494 PRINT 2+3

500 PR# 7

510 REM REMARK

520 RETURN

530 IFX= 5 THEN
RETURN

Outputs data specified by variable
vav or string variable stv$ starting

at current cursor location. If there

is not trailing \" or ";" (Ex 450)

a carriage return will be generated.

Commas (Ex. 460) outputs data in 5

left justified columns. Semi-colon
(Ex. 470) inhibits print of any spaces
Text imbedded in " " will be printed
and may appear multiple times.

Like IN#, transfers output to I/O

slot defined by expression expr
is video output not I/O slot 0.

PR#

No action. All characters after REM

are treated as a remark until terminated

by a carriage return.

Causes branch to statement following

last GOSUB; i.e., RETURN ends a

subroutine. Do not confuse "RETURN"

statement with Return ke^ on keyboard.

26

TAB expr 530 TAB 24

540 TAB 1+24

550 IF A#B THEN
TAB 20

TEXT 550 TEXT
560 TEXT CALL-936

Moves cursor to absolute horizontal
position specified by expression
expr in the range of 1 to 40. Position

is left to right

Sets all text mode. Resets
scrolling window to 24 lines by 40
characters. Example 560 also clears

screen and homes cursor to upper left

corner

TRACE 570 TRACE
580 IFN> 32000

THEN TRACE

Sets debug mode that displays each
line number as it is executed.

VLIN exprl 3 expr

2

AT expr

3

VTAB expr

590 VLIN 0, 39AT15
600 VLIN Z,Z+6ATY

610 VTAB 18

620 VTAB Z+2

Similar to HLIN except draws vertical

line starting at exprl and ending at

expr2 at horizontal position expr3.

Similar to TAB. Moves cursor to

absolute vertical position specified

by expression expr in the range 1 to

24. VTAB 1 is top line on screen;

VTAB24 is bottom.

27

SPECIAL CONTROL AND EDITING CHARACTERS

"Control" characters are indicated by a super-scripted "C" such as G . They
are obtained by holding down the CTRL key while typing the specified letter.
Control characters are NOT disolaved on the TV screen. B and C must be
followed by a carriage return. Screen editing characters are indicated by a
sub-scripted "E" such as D^. They are obtained by pressing and releasing the
ESC key then typing specified letter. Edit characters send information only
to display screen and does not send data to memory. For example, Uc moves to
cursor to right and copies text while &£ moves cursor to right but does not
copy text.

CHARACTER

RESET key

DESCRIPTION OF ACTION

Immediately interrupts any program execution and resets
computer. Also sets all text mode with scrolling window
at maximum. Control is transfered to System Monitor and
Apple prompts with a "*" (asterisk) and a bell. Hitting
RESET key does NOT destroy existing BASIC or machine
language program.

Control B If in System Monitor (as indicated by a "*"), a control
B and a carriage return will transfer control to BASIC,
scratching (killing) any existing BASIC program and set
HIMEM: to maximum installed user memory and LOMEM:
to 2048.

Control C If in BASIC, halts program and displays line number
where stop occurred*. Program may be continued with a

CON command. If in System Monitor, (as indicated by "*")

control C and a carraige return will enter BASIC without
killing current program.

Control G

Control H

Control J

Control V

Sounds bell (beeps speaker)

Backspaces cursor and deletes any overwritten characters
from computer but not from screen. Apply supplied
keyboards have special key "«-" on right side of keyboard
that provides this functions without using control button

Issues line feed only

r
Compliment to H . Forward spaces cursor and copies over
written characters. Apple keyboards have "+" key on

right side which also performs this function.

Control X Immediately deletes current line

* If BASIC program is expecting keyboard input, you will have

to hit carriage return key after typing control C.

28

CHARACTER DESCRIPTION OF ACTION

Move cursor to right

Move cursor to left

Move cursor down

Move cursor up

Clear text from cursor to end of line

Clear text from cursor to end of page

Home cursor to top of page, clear text to end
of page.

Table A: APPLE II COLORS AS SET BY COLOR =

Note: Colors may vary depending on TV tint (hue) setting and may also
be changed by adjusting trimmer capacitor C3 on APPLE II P.C. Board

Of = Black
1 - Magenta
2 = Dark Blue
3 = Light Purple
4 = Dark Green
5 = Grey
6 = Medium Blue
7 = Light Blue

8

9

10

11

12

13

14

15

Brown
Orange
Grey
Pink
Green
Yellow
Blue/Green
White

29

Special Controls and Features

Hex BASIC Example

Display 1fade Controls

C05O
C051

C052

C053

C054

10 POKE -16304,0
20 POKE -16303,0
30 POKE -16302,0
40 POKE -16301,0
50 POKE -16300,0

C055
C056

C057

60 POKE -16299,0
70 POKE -16298,0
80 POKE -16297,0

TEXT Mode Controls

0020 90 POKE 32, LI

0021 100 POKE 33, Wl

0022 110 POKE 34, Tl

0023 120 POKE 35, Bl

0024 130 CH=PEEK(36)
140 POKE 36, CH

150 TAB(CH+1)

0025 160 CV=PEEK(37)
170 POKE 37, CV
180 VTAB(CV+1)

0032 190 POKE 50,127
200 POKE 50,255

FC58 210 CALL -936

FC42 220 CALL -958

Description

Set color graphics mode
Set text mode
Clear mixed graphics
Set mixed graphics (4 lines text)

Clear display Page 2 (BASIC commands
use Page 1 only)

Set display to Page 2 (alternate)
Clear HIRES graphics mode
Set HIRES graphics mode

Set left side of scrolling window
to location specified by LI in

range of to 39.

Set window width to amount specified
by Wl. L1+W1<40. W1>0

Set window top to line specified
by Tl in range of to 23

Set window bottom to line specified
by Bl in the range of to 23. B1>T1

Read/set cusor horizontal position
in the range of to 39. If using
TAB, you must add H

l" to cusor position
read value; Ex. 140 and 150 perform
identical function.

Similar to above. Read/set cusor
vertical position in the range to
23.

Set inverse flag if 127 (Ex. 190)
Set normal flag if 255(Ex. 200)

(@e) Home cusor, clear screen

(Fe) Clear from cusor to end of page

30

Hex BASIC Example

FC9C 230 CALL -868

FC66 240 CALL -922

FC70 250 CALL -912

Description

(Eg) Clear from cusor to end of line

(J
C

) Line feed

Scroll up text one line

Miscellaneous

C030

C000

C010

C061

C062

C063

C058

C059

C05A

C05B

C05C

C05D

C05E

C05F

360 X=PEEK(-16336)
365 POKE -16336,0

370 X=PEEK(-16384)

380 POKE -16368,0

390 X=PEEK(16287)

400 X=PEEK(-16286)

410 X=PEEK(-16285)

420 POKE -16296,0

430 POKE -16295,0

440 POKE -16294,0

450 POKE -16293,0

460 POKE -16292,0

470 POKE -16291,0

480 POKE -16290,0

490 POKE -16289,0

Toggle speaker

Read keyboard; if X>1 27 then key was

pressed.

Clear keyboard strobe - always after

reading keyboard.

Read PDL(0) push button switch. If

X>127 then switch is "on".

Read PDL(l) push button switch.

Read PDL(2) push button switch.

Clear Game I/O AN0 output

Set Game I/O AN0 output

Clear Game I/O AN1 output

Set Game I/O AN1 output

Clear Game I/O AN2 output

Set Game I/O AN2 output

Clear Game I/O AN3 output

Set Game I/O AN3 output

31

APPLE II BASIC ERROR MESSAGES

*** SYNTAX ERR

*** > 32767 ERR

*** > 255 ERR

*** BAD BRANCH ERR

*** BAD RETURN ERR

*** BAD NEXT ERR

*** 16 GOSUBS ERR

*** 16 FORS ERR

*** NO END ERR

*** MEM FULL ERR

*** TOO LONG ERR

*** DIM ERR

Results from a syntactic or typing error.

A value entered or calculated was less than
-32767 or greater than 32767.

A value restricted to the range to 255 was
outside that range.

Results from an attempt to branch to a non-
existant line number.

Results from an attempt to execute more RETURNS
than previously executed GOSUBs.

Results from an attempt to execute a NEXT state
ment for which there was not a corresponding
FOR statement.

Results from more than 16 nested GOSUBs.

Results from more than 16 nested FOR loops.

The last statement executed was not an END.

The memory needed for the program has exceeded
the memory size allotted.

Results from more than 12 nested parentheses or
more than 128 characters in input line.

Results from an attempt to DIMension a string
array which has been previously dimensioned.

*** RANGE ERR An array was larger than the DIMensioned
value or smaller than 1 or HLIN,VLIN,
PLOT, TAB, or VTAB arguments are out of
range.

*** STR OVFL ERR

*** STRING ERR

RETYPE LINE

The number of characters assigned to a string
exceeded the DIMensioned value for that string.

Results from an attempt to execute an illegal

string operation.

Results from illegal data being typed in response
to an INPUT statement. This message also requests
that the illegal item be retyped.

32

Simplified Memory Map

FFFF

E000

C000

XX

7FF

64K

56K

Monitor and BASIC Routines in ROM

Future enhancement or user supplied
PROMS

52K

48K
Peripheral I/O

XX

(HIMEM:)

» User specified RAM memory size

User Workspace

(LOMEM:)
2K

IK

Screen Memory

Internal Workspace

33

READ/SAVE DATA SUBROUTINE

INTRODUCTION

Valuable data can be generated on the Apple II computer and sometimes

it is useful to have a software routine that will allow making a permanent

record of this information. This paper discusses a simple subroutine that

serves this purpose.

Before discussing the Read/Save routines a rudimentary knowledge of

how variables are mapped into memory is needed.

Numeric variables are mapped into memory with four attributes. Appearing

in order sequentually are the Variable Name, the Display Byte, the Next Variable

Address, and the Data of the Variable. Diagramatically this is represented as:

VN DSP NVA DATA ((?) DATA(l) DATA(N)

hn+l

VARIABLE NAME - up to 100 characters
represented in memory as ASCII equi-
valents with the high order bit set.

DSP (DISPLAY) BYTE - set to 01 when
DSP set in BASIC initiates a process
that displays this variable with the

line number every time it is changed
within a program.

NVA (NEXT VARIABLE ADDRESS) - two

bytes (first low order, the second
high order) indicating the memory
location of the next variable.

DATA - hexadecimal equivalent of
numeric information, represented
in pairs of bytes, low order byte

first.

34

String variables are formatted a bit differently than numeric ones.

These variables have one extra attribute - a string terminator which desig-

nates the end of a string. A string variable is formatted as follows:

VN DSP NVA DATA(Q0 DATA(l) DATA(n) ST

1 hi h2 hn+l

VARIABLE NAME - up to 100 characters

represented in memory as ASCII equi-

valents with the high order bit set.

DSP (DISPLAY) BYTE - set to 01 when

DSP set in BASIC, initiates a process

that displays this variable with the

line number every time it is changed

within a program.

NVA (NEXT VARIABLE ADDRESS) - two

bytes (first low order, the second

high order) indicating the memory

location of the next variable.

DATA - ASCII equivalents with high

order bit set.

STRING TERMINATOR (ST) - none high

order bit set character indicating

END of string.

There are two parts of any BASIC program represented in memory. One is

the location of the variables used for the program, and the other is the actual

BASIC program statements. As it turns out, the mapping of these within memory

is a straightforward process. Program statements are placed into memory starting

at the top of RAM memory* unless manually shifted by the "HIMEM:." command, and

are pushed down as each new (numerically larger) line numbered statement is

entered into the system. Figure la illustrates this process diagramatically.

Variables on the other hand are mapped into memory starting at the lowest position

of RAM memory - hex $800 (2048) unless manually shifted by the "LOMEM :" command.

They are laid down from there (see Figure lb) and continue until all the variables

have been mapped into memory or until they collide with the program statements.

In the event of the latter case a memory full error will be generated

*Top of RAM memory is a function of the amount of memory.

16384 will be the value of "HIMEM:" for a 16K system.

35

The computer keeps track of the amount of memory used for the variable

table and program statements. By placing the end memory location of each into

$CC-CD(204-205) and $CA-CB(203-204) , respectively. These are the BASIC

memory program pointers and their values can be found by using the statements

in Figure 2. CM defined in Figure 1 as the location of the end of the variable

tape is equal to the number resulting from statement a of Figure 2. PP, the

program pointer, is equal to the value resulting from statement 2b. These

statements (Figure 2) can then be used on any Apple II computer to find the

limits of the program and variable table.

FINDING THE VARIABLE TABLE FROM BASIC

First, power up the Apple II, reset it, and use the CTRL B (control B)

command to place the system into BASIC initializing the memory pointers. Using

the statements from Figure 2 it is found that for a 16K Apple II CM is equal to

2048 and PP is equal to 16384. These also happen to be the values of LOMEN and

HIMEN: But this is expected because upon using the B
c command both memory

pointers are initialized indicating no program statements and no variables.

To illustrate what a variable table looks like in Apple II memory suppose

we want to assign the numeric variable A ($C1 is the ASCII equivalent of a with

the high order bit set) the value of -1 (FF FF in hex) and then examine the

memory contents. The steps in this process are outlined in example I. Variable A

is defined as equal to -1 (step 1). Then for convenience another variable - B -

is defined as equal to (step 2). Now that the variable table has been defined

use of statement 2a indicates that CM is equal to 2060 (step 3). LOMEN has not

been readjusted so it is equal to 2048. Therefore the variable table resides in

memory from 2048 ($800 hex) to 2060 ($8JBC). Depressing the "RESET" key places

the Apple II into the monitor mode (step 4).

We are now ready to examine the memory contents of the variable table.

Since the variable table resides from $800 hex to $80C hex typing in "800. 80C"

and then depressing the "RETURN" key (step 5) will list the memory contents of

this range. Figure 3 lists the contents with each memory location labelled.

Examining these contents we see that CI is equal to the variable name and is the

memory equivalent of "A" and that FF FF is the equivalent of -1. From this, since

the variable name is at the beginning of the table and the data is at the end, the

variable table representation of A extends from $800 to $805. We have then found

36

the memory range of where the variable A is mapped into memory. The reason for

this will become clear in the next section.

READ/SAVE ROUTINE

The READ/SAVE subroutine has three parts. The first section (lines 0-10)

defines variable A and transfers control to the main program. Lines 20 through

26 represents the Write data to tape routine and lines 30-38 represent the Read

data from tape subroutine. Both READ and SAVE routines are executable by the

BASIC "GOSUB X" (where X is 20 for write and 30 is for read) command. And as

listed these routines can be directly incorporated into almost any BASIC program

for read and saving a variable table. The limitation of these routines is that

the whole part of a variable table is processed so it is necessary to maintain

exactly the dimension statements for the variables used.

The variables used in this subroutine are defined as follows:

A = record length, must be the first variable defined

CM= the value obtained from statement a of figure 2

LM= is equal to the value of "LOMEM:"
Nominally 2048

SAVING A DATA TABLE

The first step in a hard copy routine is to place the desired data onto

tape. This is accomplished by determining the length of the variable table and

setting A equal to it. Next within the main program when it is time to write the

data a GOSUB20 statement will execute the write to tape process. Record length,

variable A, is written to tape first (line 22) followed by the desired data

(line 24). When this process is completed control is returned to the main program,

READING A DATA TABLE

The second step is to read the data from tape. When it is time a GOSUB30

statement will initiate the read process. First, the record length is read in

and checked to see if enough memory is available (line 32-34). If exactly the

same dimension statements are used it is almost guaranteed that there will be

enough memory available. After this the variable table is read in (line 34) and

control is then returned to the main program (line 36). If not enough memory

is available then an error is generated and control is returned to the main pro-

gram (line 38)

37

EXAMPLE OF READ/SAVE USAGE

The Read/Save routines may be incorporated directly into a main program.

To illustrate this a test program is listed in example 2. This program dimensions

a variable array of twenty by one, fills the array with numbers, writes the data

table to tape, and then reads the data from tape listing the data on the video

display. To get a feeling for how to use these routines enter this program and

explore how the Read/Save routines work.

CONCLUSION

Reading and Saving data in the format of a variable table is a relatively

straight forward process with the Read/Save subroutine listed in figure 4. This

routine will increase the flexibility of the Apple II by providing a permanent

record of the data generated within a program. This program can be reprocessed.

The Read/Save routines are a valuable addition to any data processing program.

38

Var Var2

tLOMEN
$800

V^.

Var,
Unused

Memory Pi p 3 ••• Pn-2

/ tCM End of 'PP beginning
Variable of
Table DProgram

Pn-1

HIMEM
Max System
Size

Variable Data BASIC Program

Figure 1

a) PRINT PEEK(204) + PEEK(205)*256 -» PP

b) PRINT PEEK(202) + PEEK(203)*256 -* CM

Figure 2

800 801 802 803 804 805 806 807 808 809 80A 80B 80C
CI 00 06 08 FF FF C2 00 0C 08 00 00 00

VAR DSP
NAM

L H

NVA

I

L H

DATA VAR DSP
NAM

-* 1

L H

NVA

I

DATA

i

Figure 3

$800. 80C rewritten with labelling

39

FIGURE 4b

READ/SAVE PROGRAM

% A=0

10 GOTO 100

20 PRINT "REWIND TAPE THEN
START TAPE RECORDER"

:

INPUT "THEN HIT RETURN"

COMMENTS

This must be the first statement in the
program. It is initially 0, but if data
is to be saved, it will equal the length
of the data base.

This statement moves command to the main
program.

Lines 20-26 are the write data to tape
subroutine.

22 A=CM-LM: POKE 60,4:
POKE 61,8: POKE 62,5:
POKE 63,8: CALL -307

24 POKE 60, LM MOD 256:

POKE 61, LM/256:
POKE 62, CM MOD 256:
POKE 63, CM/256:
CALL -307

26 PRINT "DATA TABLE SAVED":
RETURN

30 PRINT "REWIND THE TAPE
THEN START TAPE RECORDER"

:

INPUT "AND HIT RETURN",
BS

32 POKE 60,4: POKE 61,8:
POKE 62,5: POKE 63,8:
CALL -259

34 IF A<0 THEN 38: P=LM+A:
IF P>HM THEN 38: CM=P:
POKE 60, LM MOD 256:

POKE 61, LM/256: POKE 62,
CM MOD 256: POKE 63, CM/256
CALL -259

36 PRINT "DATA READ IN":

RETURN

38 PRINT "***TOO MUCH DATA

BASE***": RETURN

Writing data table to tape

Returning control to main program.

Lines 30-38 are the READ data from tape
subroutine.

Checking the record length (A) for memory

requirements if everything is satisfactory

the data is READ in.

Returning control to main program

NOTE: CM, LM and A must be defined within the main program

40

1 >A=1
>

2 >B=0
>

3 >PRINT PEEK (204) + PEEK
(205) * 256

computer responds with=
2060

5 *800.80C

Define variable A=-l , then hit RETURN

Define variable B=0, then hit RETURN

Use statement 2a to find the end of
the VARIABLE TABLE

Hit the RESET key, Apple moves into
Monitor mode.

Type in VARIABLE TABLE RANGE and HIT
the RETURN KEY.

Computer responds with:

0800- CI 00 86 08 FF FF C2 00

0808 0C 08 00 00 00

Example 1

41

Example 2

>LIST

8 fi=8

18 GOTO 188

d6 REM wait uhir iu mrt Kuuuiit

22 R=CH-LH: POKE 66,4: POKE 61

,8s POKE 62,5: POKE 63 f 8: CfiLL

-307

l4 ru!\L b^iLH nliU £3be i"Ur-.L bl

frttb: PUKE b£,Ln flUI/ cOb

: POKE 63 5 Crf/?56; CRLL -38?

118 PRINT
3
26 NuHBtRS GtHERRlLL

iHL DHIfl"; PRINT
H
yNLN YOU fiRE R

COtW C7QD7 ~ur nr :-!-{-»,-]-: tl- n""
L.JUM JiiiFit lili_ \£. ,_-'Ji\L-*Li''. ii'i £L'--"_'it

D HODE nil KL1UKM'

ijb bhLL "ooi rKi.Nl "Os sKillHU Drt

Tfi TO WUi GOSOB 28

2b RETURN

-iu PF* prDfi RpTfl- CnDprsliTIMr
Oc r>Li3 Ri.fiL- fcTui! juuP.uUi tii=_

32 POKE §3,4: POKE 6!, 8; POKE

o4 if H\b sHlN oo;t"-LftTn; ir r/

HH THEN 38:CH=Pj POKE 68.LH HOD

,CH HOD 256; POKE 63,011/256

: COLL -259

36 RETURN

38 PRINT **** TOO iiCH DHTH 8RSE *#

*
H

: EHD

188&IHMCt) fH28>

185 FOR 1=1 T0 28:X(I)=I: HEKT

T

i

188 LH=2848:Ci?=2l8b:B=58;HH=i6383

int ^.cb; ihbLt nWJ Ktni> lilt L'fl

Tft FRGH TRPE"

i-jfj sub i-i :!= i-w.rA iy-bl sKini

B

K(*;I;
5
)=

s
ja(I)e NEXT I

J IHrui nnu ihLn nil r,Llu?.n

M
iC-. DD?'.!7 ='G £ Q
i'-'-J j i\i:J! it sfl

J -i .-. .- n. .— : : p. .». .-.

198 FOR 1=1 TO 28; PRIHT "K<
re

1 1

j

195 PRIHT 'THIS IS THE EHD
8

288 EHD

42

A SIMPLE TONE SUBROUTINE

INTRODUCTION

Computers can perform marvelous feats of mathematical computation
at well beyond the speed capable of most human minds. They are fast,
cold and accurate; man on the other hand is slower, has emotion, and makes
errors. These differences create problems when the two interact with one
another. So to reduce this problem humanizing of the computer is needed.

Humanizing means incorporating within the computer procedures that aid in

a program's usage. One such technique is the addition of a tone subroutine.
This paper discusses the incorporation and usage of a tone subroutine within
the Apple II computer.

Tone Generation

To generate tones in a computer three things are needed: a speaker,
a circuit to drive the speaker, and a means of triggering the circuit. As it

happens the Apple II computer was designed with a two-inch speaker and an
efficient speaker driving circuit. Control of the speaker is accomplished
through software.

Toggling the speaker is a simple process, a mere PEEK - 16336 ($C030)
in BASIC statement will perform this operation. This does not, however,
produce tones, it only emits clicks. Generation of tones is the goal, so

describing frequency and duration is needed. This is accomplished by toggling
the speaker at regular intervals for a fixed period of time. Figure 1 lists
a machine language routine that satisfies these requirements.

Machine Language Program

This machine language program resides in page of memory from $02 (2)
to $14 (20). $00 (00) is used to store the relative period (P) between
toggling of the speaker and $01 (01) is used as the memory location for the
value of relative duration (D). Both P and D can range in value from $00 (0)
to $FF (255). After the values for frequency and duration are placed into
memory a CALL2 statement from BASIC will activate this routine. The speaker
is toggled with the machine language statement residing at $02 and then a

43

delay in time equal to the value in $00 occurs. This process is repeated until

the tone has lasted a relative period of time equal to the duration (value in $01)

and then this program is exited (statement $14).

Basic Program

The purpose of the machine language routine is to generate tones controllable

from BASIC as the program dictates. Figure 2 lists the appropriate statement that

will deposit the machine language routine into memory. They are in the form of

a subroutine and can be activated by a GOSUB 32000 statement. It is only necessary

to use this statement once at the beginning of a program. After that the machine

language program will remain in memory unless a later part of the main program

modifies the first 20 locations of page 0.

After the GOSUB 32000 has placed the machine language program into memory

it may be activated by the statement in Figure 3. This statement is also in the

form of a GOSUB because it can be used repetitively in a program. Once the fre-

quency and duration have been defined by setting P and D equal to a value between

and 255 a GOSUB 25 statement is used to initiate the generation of a tone. The

values of P and D are placed into $00 and $01 and the CALL2 command activates the

machine language program that toggles the speaker. After the tone has ended

control is returned to the main program.

The statements in Figures 2 and 3 can be directly incorporated into BASIC

programs to provide for the generation of tones. Once added to a program an

infinite variety of tone combinations can be produced. For example, tones can

be used to prompt, indicate an error in entering or answering questions, and

supplement video displays on the Apple II computer system.

Since the computer operates at a faster rate than man does, prompting can

be used to indicate when the computer expects data to be entered. Tones can be

generated at just about any time for any reason in a program. The programmer's

imagination can guide the placement of these tones.

CONCLUSION

The incorporation of tones through the routines discussed in this paper

will aid in the humanizing of software used in the Apple computer. These routines

can also help in transforming a dull program into a lively one. They are relatively

easy to use and are a valuable addition to any program.

44

8 8 8 S - FF
8891- FF
8082 — RD 30
6885 — o o
d C-s & £ _r—* *LJ ^_' =_: D8 84
@ 8 S 8 — Cb 81
Ca d M Q
i..* kj kj n 88
888C- Cfi

088D- D8 F6
088F- fib 88
0011- 4C 8£
8014- 68

l:h LuR $C838

hh

DEY
BHE ^80H1J

L.-* L_ =_-
-Sr-Ts i

BEQ £ 8 8 1

4

DEa
a-1 ' 1 L_ ^pjfjfi^

LDf :
: £ 6 8

T M O ir i~~ C-i Ci o
•*' *-.= r_= *J L...

R TC

FIGURE 1. Machine Language Program

adapted from a program by P. Lutas.

ottoc r^ht LfUJl r\m. 6 t *6l rUKL

9,1: POKE i§,?46

poke ie.pj f

£8,96: RETURN

. } K!T:i- lU*i,t rUFsL i7sUs K'f-L

FIGURE 2. BASIC "POKES"

ca riat ftjf; rmt i,us U1LI

RETURN

FIGURE 3. GOSUB

45

High- Resolution Operating Subroutines

These subroutines were created to make programming for

High-Resolution Graphics easier, for both BASIC and machine

language programs. These subroutines occupy 757 bytes of memory

and are available on either cassette tape or Read-Only Memory

(ROM). This note describes use and care of these subroutines.

There are seven subroutines in this package. With these,

a programmer can initialize High-Resolution mode, clear the screen,

plot a point, draw a line, or draw and animate a predefined shape,

on the screen. There are also some other general-purpose

subroutines to shorten and simplify programming.

BASIC programs scan access these subroutines by use of , the

CALL statement, and can pass information by using the POKE state-

Bent. There are special entry points for most of the subroutines

that will perform the same functions as the original subroutines

without modifying any BASIC pointers or registers. For machine

language programming, a JSR to the appropriate subroutine address

will perform the same function as a BASIC CALL.

In the following subroutine descriptions, all addresses

given will be in decimal. The hexadecimal substitutes will

be preceded by a dollar sign ($) . All entry points given are

for the cassette tape subroutines, which load into addresses

C00 to FFF (hex). Equivalent addresses for the ROM subroutines

will be in italic type face.

46

High- Resolution Operating Subroutines

INIT Initializes High-Resolution Graphics mode

From BASIC: CALL 3072 (or CALL -12288)

From machine language: JSR $C00 (or JSR $DfT{T0)

This subroutine sets High-Resolution Graphics mode with a

280 x 16? matrix of dots in the top portion of the screen and

four lines of text in the bottom portion of the screen. INIT

also clears the screen.

CLEAR Clears the screen.

From BASIC: CALL 3B86 (or CALL -12274)

From machine language: JSR $C0E (or JSR $Djf0E)

This subroutine clears the High-Res61ution screen without

resetting the High-Resdlution Graphics mode.

PLOT Plots a point on the screen.

From BASIC: CALL 378JBT (or CALL -1158&)

From machine language: JSR $C7C (or JSR $D07C)

This subroutine plots a single point on the screen. The

X and Y coodinates of the point are passed in locations 800,

801, and 802 from BASIC, or in the A, X, and Y registers from

machine language. The Y (vertical) coordinate can be from

47

High-Rcsloution Operating Subroutines

PLOT (continued)

(top of screen) to 159 (bottom of screen) and is passed in

location 802 or the A-register; but the X (horizontal) coordinate

can range from (left side of screen) to 279 (right side of screen)

and must be split between locations 800 (X MOD 256) and 801

(X/256).or, from machine language, between registers X (X LO)

and Y (X HI). The color of the point to be plotted must be set

in location 812 ($32C). Four colors are possible: is BLACK,

85 ($55) is GREEN, 170 ($AA) is VIOLET, and 255 ($FF) is WHITE.

POSN Positions a point on the screen.

From BASIC: CALL 3761 (or CALL -11S99J

From machine language: JSR $C26 (or JSR $D(f26)

This subroutine does all calculations for a PLOT, but does

not plot a point .(** leaves the screen unchanged). This is useful

when used in conjumction with LINE or SHAPE (described later).

To use this subroutine, set up the X and Y coordinates just the r.

saae as for PLOT. The color in location 812 ($32C) is ignored.

LINE Draw a line on the screen.

48

High-Resolution Operating Routines

LINE Draws a line on the screen.

From BASIC: CALL 3786 (or CALL -US74)

Fron machine language: JSR $C95 (or JSR $t>(?9S)

This subroutine draws a line from the last point PLOTted

or POSN»ed to the point specified. One endpoint is the last point

PLOTted or POSN'ed; the other endpoint is passed in the sane manner

as for a PLOT or POSN. The color of the line is set in location

812 ($32C). After the line is drawn, the new endpoint becomes the

base endpoint for the next line drawn.

SHAPE Draws a predefined shape on the screen.

From BASIC: CALL 3805 (or CALL -11555)

From machine language: JSR $DBC (or JSB $D1BC)

This subroutine draws a predefined shape on the screen at

the point previously PLOTted or POSN'ed. The shape is defined

by a table.. of vectors in memory. (How to create a vector table

will be described later). The starting address of this table

should be passed in locations 804 and 805 from BASIC .or in':the

Y and X registers from machine language. The color of the shape

should be passed in location 28 ($1C).

There are two special variables that are used only with shapes:

the scaling factor and the rotation factor . The scaling factor

determines the relative size of the shape. A scaling factor of

49

High-Resolution Operatin g Subroutines

SHAPE (continued)

1 will cause the shape to be drawn true sire, while a scaling

factor of 2 will draw the shape double size, etc. The scaling

factor is passed in location 806 from BASIC or $32F from machine

language. The rotation factor specifies one of 64 possible angles

of rotation f.r the shape. A rotation factor of will cause the

shape to be drawn right-side up. where a rotation factor if 16

will draw the shape rotated 90° clockwise, etc. The rotation

factor is passed in location 807 foom BASIC of in the A-register

fron machine language.

The table of vectors which defines the shape to be drawn is

a series of bytes stored in memory. Each byte is divided into

three sections, and each section specifies whether or not to plot

a point and also a direction to move (up, down, left, or right).

The SHAPE subroutine steps through the vector table byte by byte,

and then through each byte section by section. When it reaches

a 00 byte, it is finished.

The three sections are arranged in a byte like this:

In I i 14 !»)*!»
! £ I i *OiOPD *' 00

! itf>" >
I 1 4: »rr A : ~T » \ •• <r

Each bit^ir'DD^ptcifies a* direction to move, and the two bits

P specify whether or not to plot a point before moving. Notice

that the last section (most significant bits) does not have a P

field, so it can only be a move without plotting. IThe SHAPE

50

High-Resolution Operating Subroutines

SHAPE (continued)

subroutine processes the sections from right to left (least

significant bit to most significant bit). IF THE REMAINING SECTIONS

OF THE BYTE ARE ZERO, THEN THEY ARE IGNORED. Thus, the byte

cannot end with sections of 00 (move up without plotting).

Here is an example of how to create a vector table:

Suppose we want to draw a shape like this

First, draw it on graph paper, one dot per square. Then decide

where to start drawing the shape. Let's start this one in the center.

Next, we must draw a path through each point in the shape, using

only 90 angles on the turns.!

Next, re-draw the shape as a series of vectors, each one moving

one place up, down, left, or right, and distin guish the vectors that

plot a point before moving:

Now "unwrap*1 those vectors and write *them in a straight line.

Now draw a table like the one in Figure 1. For each vector in the

line, figure the bit code and place it in the next available section

in the table. If it will not fit or is a 00 at. the end of a byte,

then skip that section and go on to the next. When you have finished

51

Hi gh-Resolution Operating Subroutines

SHAPE (continued)

coding all vectors, check your work to make sure it is accurate.

Then make another table (as in figure 2) and re-copy the coded

vectors from the first table. Then decode the vector information

into a series of hexadecimal bytes, using the hexidecimal code

table in figure 3. This series of hexidecimal bytes is your shape

definition table, which you can now put into the Apple H's memory

and use to draw that shape on the screen.

52

5 V, *.p v e c t~ «> r 5 O^^^^itf -7 *">»-* *7^^*<*

<0

I

Z
3

1
S
c

7
8

o i <s5

i i \

\ o o
O I \ oo

\ o \

I o
1 \ o
oi I

OO o
• o boo
t_

A C s A
o \ <S5 * *
1 1 1 «*<•

OO O ti
I o o ^t*
\ o I ^
» O I ^-*
I \ o ^i
1 1 o <r&
\ 1 I «•

o o o

5tf»cT CooCS

*J

<- E~t|»4-t ;

05 i a
a> i i

I i ©
l I I

I

1 1

J
t-rV

o /- c or * *A»^e. Op L^)

1 2
3F
Z <f>

64
2 O
I 5
3 (,

<8 7

F i

o o olopo o

oi r t.

O oo o -} o
O © O V -* i

o e> t o "7 t.

o o i \ -* 3

i o o -7> ^
o i o I -} J

O I V O -7

° \ I I
~7

1 o o o -^

-7

7

B
I o I o

\ \ O O -^ C
I I O 1 -y t>

I 1 I ft -7 E
II II "* F

53

. • « =
• -06^ Cs vLL"?.-0yOG; rU3n-0; O:

, : ••" a-. : i

-J -Is3 if &«£/ wv^Kl I lt£.=1 j^'Ur.L CO

—¥DIR» Y=— Ys- IF Y<8 IHEH Y-Vt

7£Q :

~i~ pnii'T 5£& id.^* PfWF :":« =

elB . XU)=(n(I)-?!)*9/18fV; V(I)=(

8b IfiLL iNi!:X= KHD ^4)*!^

f RHD (3)*85*85; GGSUB 2888

s bHLL ruUi

IU II- k'HD (1888K1 IHEH 388= IF

Lfi."^„ -"• i

•: s_L.if : :-: : lI 1. ~:i"_^:! _•• bO^s LULL bHHfxi; fiLhl Kl bUbUu

3888: GOTO fel8

ru-r-. .-• •- -. i -LLic. rr Ji/ck nn
•\=?=/ \js iJ*iJl if AivS UK

tl)u? OR ¥I<8 OR YDI59 JHEH

-I'-i* K —K I = I —T 1 1 bUbUt? coBH; UiLL

•_in-_ s uvj'.«= jy-j-j s yysy yi»

'His UUiUS IssSb ^UKL c'liis KHU *

'.; :jUKiv^: i"Lj: ; Lf: :";T

rijf.c nn«

L' "i.'vH- 1 L"_ •=_*:: : •_• _: -J:

"•
1 :.- " . i i-:i -j

--»» :=i. t

i J -j -_:_: '_L! ~ L! %.'
"

: «J '_:JVU

:J'.=u OfJi_L =_-i

r:/T
,

-0-_:~Q.j: e— £f?L-
: :

-. 0/~CT r.l

riifL? c50i ruKi

Fi|i":.-L-Jvt i l?p.s_ yyL|i'i;J t-iiLL

'&)v'j>' 1

o;?Vintoi^AU>-£: HtX! I

bUo UHLL IHiiz HIIKt HHH,Hj CBLL

:i:- : ::: :

!
: v-t-i. i.i ; ^.r t. :-••_ • -•-

i^.
-

". . - rr -
-. =

lOIV- f:~-7-\ i si I- \\ i *; UUjUD l.uuus "LiUKfl

£m$ I^U^t bl^vsA HUD c^n; FijKt HHi

JHHH |h PttK \~lbou4)ur8 THEN RETURN

b
:

Hr
f Y= tHLL LiNtz HUKL b

!

yy?

(279-K) HOD ?5£' POKE 881 5 K(

POKE 888,23; POKE 881 ^ 1= POKE

OC:^ i=-ii_v: rot I I TMT

l-:^^ • l_ij: ; r- ^|:KJ- Hrjkr Z ri\)\l ^^K= Kl't?!- >\=il-v J '_':-.^ «y«jn ;s-_-L- j.-_-_*a 1 -jr-.i. v v i

fA/C-J-Js fUr-.L OSCe-vJ L-llLL Lifit!

K-K^k
:

DIR^B: IF K/-8 HNO n
:

<388

Ls "*\ ill.1 ; L -J"-. L. ,
; » i7i_j": : is !\V- !

!J!\£!

54

ROD'S COLOR PATTERN

PROGRAM DESCRIPTION

ROD'S COLOR PATTERN is a simple but eloquent program. It generates a

continuous flow of colored mosaic-like patterns in a 40 high by 40 wide

block matrix. Many of the patterns generated by this program are pleasing

to the eye and will dazzle the mind for minutes at a time.

REQUIREMENTS

4K or greater Apple II system with a color video display.

BASIC is the programming language used.

PROGRAM LISTING

V& 1-Uk y=3 iO i8

1 !-'t :; i s : i L:
i ::

:Vi. DIP" i:~- • Au T <~.: .-.- .. ^ - _

•
- Jr Tj '.'«' 5 s- :-'i i»~ fJ r.= i

55

PROGRAM LISTING: PONG

:t-i/Ui_ -Ji^i. i« i.v. it i-iJJ

L.v If Hi : \ -J J s vis: ;:: ?'-. i"i.

uLl-;---J: ••L.i-': • : -J-J :: « s • SL. i

«

-/t;-?-t -V

-IH i.iH Uk"=K: H :i; a-I.-Y

f a-« lilLn t I
U~ f=Dj \ ? /

H.i n-.*t~~n; [}-.-:

Uliil? C=-i

intf ITnTSi

NL^I

v.* i =!!_!! _'«-_'?.

eJ3 ir H ifttn «D5m/=U rui {

i!M UULUk=b= VLIN P(l>,r\I^j Hi

I7I i|j:i -lir^S 1 \'r Ft i j :-Kt* '-:
i J'^S)-

}\iV6) IHLH VLIN PiI;tSt|.^4

RT39sP(3)=p{i)

is If

s

Ss :*ni HD-U: Tl DfSWOs'O'i TiirB

VLIN u=riy)~I Hi B* ih r\iJ)

{'Pf:-'"i TMfii Uj IM p="gUs4-f ^Q

III V

UULUk=»= ih H(U)>Flu) ! HEN

:_l : i ii Li j.
!
: :.: ;_: ii : G: IT 0:' Ci V

TLi-1 U«*\V/ i i:i « a ii J\V/

\T\Cf i OCr- VLili P-.** /i" Z-
"=" is -j^

s-Ti, -nr^ r-.i: ;.;

: r- X-ZiH j™ '^rr-:7; Hr ."i ."h,™

?v i v?"-. :~i ii,' i^sij- i L.L.:\ *, iUw^ !
.

•j i- •• •:=-/ :_-.*".; !==_ i-j-j ;\v/; ii :"-'_' iiti.n : : ~S '-. i

!hui v-i-s i- i"ii : l- •s-n

™;: i -:/ :+i

56

COLOR SKETCH

PROGRAM DESCRIPTION

Color Sketch is a little program that transforms the Apple II into an

artist's easel, the screen into a sketch pad. The user as an artist

has a 40 high by 40 wide (1600 blocks) sketching pad to fill with a

rainbow of fifteen colors. Placement of colors is determined by

controlling paddle inputs; one for the horizontal and the other for

the vertical. Colors are selected by depressing a letter from A through

P^ on the keyboard.

An enormous number of distinct pictures can be drawn on the sketch pad

and this program will provide many hours of visual entertainment.

REQUIREMENTS

This program will fit into a 4K system in the BASIC mode.

57

PROGRAM LISTING: COLOR SKETCH

z. pfigT :-
! f?Q* Df-iT jiQt pfii-T« fui_- *_.,_; 0. !'_»%_, -Jj'iQ. rUM.

Tiijfi-i rUf-.L -J.s iC-J« fUKL Ds«

s PfiiT 7 *"'-'= pHiT i£0. DfssT
e « >jFii. ; «-js_* fur-.E- i-^i-wi t ur-X

•/,i_-^ ; Tui-.L _UrlO-j s fUM. ii

,1: POKE i£ f £88; POKE 13,4
"

ig pf.iT- *--- iOO B DsItT iK OA* Dfi.T

iGjCto; ru?-.L _;=;). fUf-L lo'j

xttL-, ! v'Iil i7.ii ! iff-.*. L-Vii'.'i

POKE 21,2: POKE 22,8: *POKE

23,96-

j^ f-Ts 3e/i{S i. T_"v7 ; i"_H e _00^iv _-*<t L** VTC'/i ii_r=! '.-Hi.-. J.JM

C-J H- LLH\Dt/; i UK _>i iy ill Uu^Uu

hV PRINT Ptf? 7^" MrzT ? :

~:lT H J-_ s -"" •"• : ~*~ .— :.-r--9-.-.; : is nr-irt ST-.:

:

AQ Dt-f=rnDvD1T;UT ilDO; ~ rHMDIItrD iG7

45 B$="TH1S PROGRfiH fiLLOyS VOU TO
s

POKE UOH HOD £56: POKE £4

f i
!_M:- Lt,:J : ii E L'Pii. L! $r-."-. i l_-i-_._-

W.GOSUB 38: GOSUB £5; PRIHT :

OSUB 38; GOSUE £5

DD S-. itnCiiD .48. f
•L' -Jt •iUJ'Jl? "J i '.

_->-'

TiT: ? LET

uOSOB 25= PRINT « GGSUB 58

uu.'Ud c-Ji rr. ins

i GGSUB £5= PRIHT

i :-.ni: i i ;-.i)ii i « '.-J U" iJ S V Jt *j1S '_ t

~ ::.:-!-!: rir^riv SETT rirT:i-i:!l fji-

i Tup 7*0 a". a pDTUT D-t:
; 7if 7i

1«

14b

C£= SCRK(X f Y):C3=15: IF C£=

15 THEN C3=5, C0LuK=C3f PLOT

Etnin «o^

IF PEEK (-16384)#1d@ THEH 15:

iP-Gst-5: piiVV _i£0£0 Q; DfivT

39: CRLL -936

QDTliT « D-t-_«|- -;"— -lee j— Af} rr-j-g

: VTRB £4; GGSUB £5: IHPUT

\ u r
-* / ? D* = if b*\ I j, i /- L-

THEH 118; PRINT
5

END"; END

;

UKt -I636S.8: GOTO l£b

58 B$= ~SkETCH COLORED F IuUREh W

05 i;^-'
:

LUy KLbULU ! llliH bkHPHllb Hi i

H

PQnoi re** opTiipM

<_*-_= r-.r-.-iu. iuEi-i'.'s -vjj'jw l'-.'s r-.i_s-.T-.il

7S k$z-:&: tE^y-Hti: Ce"eCeeD GRi^iV-O-i

75 KK=£B;T0H-£6^ GOSUB 35; RETURN

HOi rLBG THlN I3j; COLOk-C

:iE*j-j^:4- i.nLEii- -J-.t Ul i U-Jii

58

MASTERMIND PROGRAM

PROGRAM DESCRIPTION

MASTERMIND is a game of strategy that matches your wits against Apple's*

The object of the game is to choose correctly which 5 colored bars have

been secretly chosen by the computer. Eight different colors are possible

for each bar - Red (R), Yellow (Y), Violet (V), Orange (0), White (W), and

Black (B). A color may be used more than once. Guesses for a turn are

made by selecting a color for each of the five hidden bars. After hitting

the RETURN key Apple will indicate the correctness of the turn. Each white

square to the right of your turn indicates a correctly colored and positioned

bar. Each grey square acknowledges a correctly colored but improperly posi-

tioned bar. No squares indicate you're way off.

Test your skill and challenge the Apple II to a game of MASTERMIND.

REQUIREMENTS

8K or greater Apple II computer system.

BASIC is the programming language.

59

PROGRAM LISTING: MASTERMIND

J.WW ! :P.t'L i:-JL- -uw 'is : tl. ! : fv : • I

w / si."'. -J .-' ;;":. w ,

s AV. .-

:

~-Ji A-?~ L: =ij\ ; ? -jfe&

8; HUH 8*39 RT V;FlHSH=h FOR

Pi
-

1 I U -J Im =1 ,- - ; uUjUD 1 ub«

= NEKT H*H=1

0££ pf;p yDTT= - TO. iiki'vTS-- Dfri''www :L-i-, 3?;ti : i -_• iVji-Li" * US. P.

XMijR P;[N fiRLL ~^S4 ^FT^ INV^i^F -IF)

s.-i.-. rtr-i;

jww* KLh P0KE~lb368 CLRS KBD STROBE

ww tw fit-i: w: ::„=_ _*ww w=-UE*_; -Jw?:i.i-j- »i»l/

hl iu ifiL UH11L Ur nniiLKni"!/!

uu?, iiDOLwi i j iu uULio D wULU

niriun HUllHLi\ Oh uULbbtbs iHlK

r ddt rirrur r:?L~~Q~!a7 c-r-.i adc "=
i- iit-.u ^iwiii ^i--^t\i_i;= vw=_w:_= iw

*_•n u 1=l r ftun s

- uUUL?"b ^K!Hi " is :U ii li

l~l iv w* ii i-.j- / :•_}•.-". ss-r"- i .'

) 1HLN NLK! 1; ir I
z ^ THEN

j~iiwr HLXI yni i ; hLHHH= I ~FlR5H=

4MM wULUk^Id^H^w! ["UK I
=

i !& h'

i: ii •!-_! is: ti? Owe. wULUK :

I >U j; NiSf

;; ir mu IHLK

fe HrtU iKKiw Itttfi t-'K 1 h I 'liUOU

4HHH Ktr_f| S = nIS 16
-
58 INTRO

£;i "::.-: wi. M CTbsTC ": -i is _ "•
: Q k-ETU CT^IIw-wiw ai_u ji-iij iww ii'j nL?? 3L = UT

'iwCb rlLli blPlI Cww HLs UUL^b

4838 REH STMTS 388-318 USER INPUT

AaA& pfis C7=? ^^^ r;-rrr n-rt-

iSiLii DCis CMDO i&&& vCil HD • TsiT:www :-i_SE _»Ji.Ti *www WUu.w"-. LiiTi-

om m n rKlHi

u s: : : : :i:

iiil ii::i Pii. ! iw LJL-Jin :L::I

ivv wHLL ""OOO; If rtC!\ \™ib^ST/

\16L :HLN 1ww= FUKt ~lbwbSj

Lis HP - pDTMT : ChD T-i Tnwi w:-. t)!\i!1i 3 Vi\ i~i !=_:

Q^r^T^- vUh /OU'r rrii !">.«•
u=w\i-- v-.-vt- \u-=i, wULUi\-fi\

i)= iillN I*4*c«I*4 BT 39* PRIHT

;:":•? \ i ^ i / a s : ti_n ! i

t i f- T~! !_! _ji- nri T:!~ r.r.r:^ s ;__-.__
ii^ iivi-n: hfe in; : Thin! " LLIILK

KEYS FOR COLOR CHflNGE"i PRIHT

HKKU= Rty^i I" UK nUVrinCL fiW Wd

Zk" i PRIHT
3

HIT RETURN TO RCC

H
BVLKfiGE

5
|i Ir 1 RV>I4 iHEn

-384;' IBB 5i PRIHT
£

HIT mi KEY

iw r^_;:- iiw-ii:; s •>*_» i 'J IVV

J. www 11" N~o it1t.:1 KL I UfiN s w'JLL'K"

K(H(H))*FLrlSHi HLIH N*4-£,H*

£888 IF H(IK>P<3} THEH RETORH ;

£i-«i- = Dl hT Oiii-U" V= DDTUT
5J-HT ir !!_»_'! L.1 • I! ' i> j ! * !i\il!?

?•-!—r i::".:

' ; :HU >-B; L«. -i
i=55 st i UKN

60

BIORHYTHM PROGRAM

PROGRAM DESCRIPTION

This program plots three Biorhythm functions: Physical (P), Emotional (E),

and Mental (M) or intellectual. All three functions are plotted in the

color graphics display mode,

Biorhythm theory states that aspects of the mind run in cycles. A brief

description of the three cycles follows:

Physical

The Physical Biorhythm takes 23 days to complete and is an indirect indicator

of the physical state of the individual. It covers physical well-being, basic

bodily functions, strength, coordination, and resistance to disease.

Emotional

The Emotional Biorhythm takes 28 days to complete. It indirectly indicates

the level of sensitivity, mental health, mood, and creativity.

Mental

The mental cycle takes 33 days to complete and indirectly indicates the level

of alertness, logic and analytic functions of the individual, and mental recep-

tivity.

Bio rhythms

Biorhythms are thought to affect behavior. When they cross a "baseline" the

functions change phase - become unstable - and this causes Critical Days. These

days are, according to the theory, our weakest and most vulnerable times. Acci-

dents, catching colds, and bodily harm may occur on physically critical days.

Depression, quarrels, and frustration are most likely on emotionally critical

days. Finally, slowness of the mind, resistance to new situations and unclear

thinking are likely on mentally critical days.

REQUIREMENTS

This program fits into a 4K or greater system.

BASIC is the programming language used.

61

PROGRAM LISTING: BIORHYTHM

uiWt 170 = DsWl 0. £0. Dftfr™

4«I^i* HUKL t)j 16^?; HUKL b>«

e DH-T 7 00* DHVr iiOs DfliT
* i -*r-.s_ >,«*.* i v:\l y f *.*«-'« lt-.j-

» Ok0 = Dni^L iQ i£n = Dfii/r i:

s s i.
: Mi-'L t "J "_: L'£L?s afiisL i'j £

I '-;'-. L. iTji.'vi t
!«?F>.L. i-_'ti_ :i t UF-.i.

198* POKE 19 f h POKE £8 =76=

UU 1 U oD

tt_-!. --j-Hri "j. nr-jiriL:

« 'j ; =_! rv.i_ issR iivL' i_-js= t yr-.i. i_- f

a DlTMDU

,H,DjYii =Y ,KY(I88}*I988

7_3/H_V*:J
s!Yj'ti.tja TC 11/ Li TUlU

i Ii' v -J* 1
, ii/i. .' 'L-r U !«-.« ISii.it

Ji-U-iOiOSO. Dr?=iQk:
ft— -1 ! LsLvL: F>.i_ • Ut\:l

^ HIN MtfjR^ Rl^ "'!) RC"'*-': Pi'
'-:'":

L? j \ v .-" i ii\ i :"vTJ t LA S_ .-

~

S-*jy » I

POKE 34»2§; GOSUB 28: GOSUB

J=I: bk I rUKt y't.c.j. "Uf, n-

18 TO cB: COLORE: HLIH 8,31

QT vi LOT Vt Lll Til 1 QT
Mi r; . nuA! fit SfUill ifv M!

Hi E: ?TBB 21

Vj; IF Y<18 THEH PRIHT
a

~i

I rKiHi ii sii-ni T; FRIHT

1E9 ¥TBB £3, PRINT "DfiVS LIVED
s

,i:. rr-.u ?-\ in Os ffiinD-ii^
Jn; ruK i~i fJ .-? ^jLurri-.

I=lHb*(i=£HS*(I=3)s ?LIN

'- '"0 ST OOiT + Ts UTGD 0.4
SfOJ HI OO'i+ i, 7JMU E-T

iilj l"UK n=^ IU ^i^r-ln nuy d?m/

+K) HOD BV(D. GOSUB 56; FLO!

tD s KtiUKN

--' i -Ji': 1- i s i Ui HUE/ Lv !Jj : U:\i_ L.T

;0H/£5&ti= POKE SrKK= CRL

.; : i ;y\ r :f: In" /;A i ;;••% r
-?* rlrl^

"; inb 13; mH!

DDTJJT HDTDTU n S5 rnciiD 7k

TiHD LLl ihQ Cli ^fLi^! Dii\in

138 PRINT i IHPUT "HHOTHER PLOi CY/H

i S-svs TUCi
itB

i /' i5=j/

Lj— -44-: J-'jS * rlrr I- -litii : ; "; ":iki "41-! - :'

: i-
:s

i rid '":.;. :--• T • -. .• t n-Fi .!.-;.• : '•- - i r^ -. \ E

H-3S*(rl)39)^fi^(fi(48)i RETURN

.05 PRINT "FORlCHST ~i; GOSUB 75

. t ii ;r-.»_= iifLSi «i~it l t_ *•_-«_

' Vlhb CjI |Hn ib" e KKlnl TUKLtu

ST DhTE
a

;fi;
H

,

s

;Dr f

E
jY: ¥THB

t=. vi/_7 t Ts-:£ s cnCUD 7S* pCTiipU
_s _: r-.F-.

-
- a tl:

_ i«* U-J^IUU !Ut t\"_ s UF-.i"

62

DRAGON MAZE PROGRAM

PROGRAM DESCRIPTION

DRAGON MAZE is a game that will test your skill and memory. A maze is

constructed on the video screen. You watch carefully as it is completed.

After it is finished the maze is hidden as if the lights were turned out.

The object of the game is to get out of the maze before the dragon eats

you. A reddish-brown square indicates your position and a purple square

represents the dragon's!* You move by hitting a letter on the keyboard;

U for up, D for down, R for right, and L for left. As you advance so

does the dragon. The scent of humans drives the dragon crazy; when he is

enraged he breaks through walls to get at you. DRAGON MAZE is not a game

for the weak at heart. Try it if you dare to attempt out-smarting the

dragon.

REQUIREMENTS

8K or greater Apple II computer system.

BASIC is the programming language.

Color tints may vary depending upon video monitor or television adjustments

63

PROGRAM LISTING: DRAGON MAZE

2 PRIHT
5
yELC8Ht TO THE DRhGOH'S rf

hLl.1

3 PRIHT-
s

tOU Mi iRTCB HHILE I BUI

i nn"i|T sn-rr nyrn i~\r rri»ni rrr r
f hKini DL?= SslUs ii 5 LUhfLLtLj 1

;

LL ERRSE
5

•J i Rifii iiiu !*.*_•< UKi_x ii iL.it iiib l.i_

UfiLT itt \nl milt* ru ^UU bUflr 1

FT. ini id e!Uvl.;-IUO Hi I i\ flfo

RIGHT."

7 DpTUT 3E s

3 ? CHD ilTT MM tHD MD
i s t\it?s l. i ur-. _!_! it y i yr-. «j; •

HHiT ;

DDTMT «Jri' CfiD iSHiikl ?•& M^T UT

T

iQ DDTkIT =TUr flBTpPT, TC Lug vHH f?U

t bKLtn »0T
b

[1 PRINT 2 Tp G'M T^ TuV nnn^ HM wli : tii:!: ; 'j -Js- i I -_• t s ts- :,• '•.•-«.':. -:! 5 Hi-

nt ^H.T -JTi-fS

IS PRIHT
H
BEF0RE THE DRflGOH (THE RE

Cb ^rUilt I3 f L?Lh ttLrifat iUb LHtl J)

Et ii, b?

L.i rriiFit tilt Hi'.-i ndl. JnC i-KsiauH

CBH'T GEP

cc PRINT "THROUGH IT!)
s

8S Din H$(3)

,; ihrui n*

l68 OR \ C0L0R-15

-r,-.r. -' r.r- : T-r,f~-T =.-.-.r-.tr r — i .;.-.::

j! Ihb' \d)\ "Kin! uHKl ^, jHhn

HOH
s

i i -j mn

v t jj Hi il HLIH y,^7 Hi il HtK!

T

I3S

i u£"£

1881

I

-

UK. 1- i i y i ? ; ~i\ 1 i- i i r ntA i

1898 Q=R+D+Ltl)

1180 IF (0(3 RHD RHD (IB He) OR

£-'} INlH iii'u

III» l/R= KH& \4;

1128 GOTO IISB-WDR

f 1 * Y~^tl

iiuv ?t_iti -J-»"i L. f g^! i Hi -J-*"-.:" i .-

i i'j-j \±*j S li i Juif

i 1 .4 D TC UHT ft TiirU 1 t iS= rs^i/ \~%i V \

Tl8;Y=¥*i

ii-iK L-i T LI 0~v_0 QiV_1 ST 0~/v_i\

I 146 GOTO 1835

: unt i

nu > L

1155 ¥LIH 3*Y-2 f3*i-l nT m,

i i -JD UU i L= i & 'J-J

iiyc ir nU! u InlN iiiS;au-i^; :

llb3 HLiH ^X-c,3¥K-l HI '6*U bUI

U

183;

14 PRIH 1 " BEiRRE! !!!!!;!! SOHtllHtS

CRH'T GO OVER*

):S(K)=- BBS (H(K));C=C-i

t l w • •;= turn i «£ s t o-M; j/i. • • \

8

IF Y=13 THEN 1878;H1\M3>

11% 1=^1= bUiu iH3b

jQzk rnCiiD ^5ii|5s ppTMT ;=TUl M07C T-
ALL"-1 UvJUU vvv\it fr.iin t^i- Hi-i-L. A.

EflDY"

1285 GR i C0L0R=I5

u i r%ih\ \Hin!= iUU L-tiii v~ it-ii ILL

mMl n sHLL"

si ~ zziir R=i ihLR i83Ba=riU-W/S

iSoo ir i=I irttli ig7b;U=nu-ij;/

'ftl HLiii H,X> Hi o: HLiH H,

OQ OT -7Q
•j j tit -j/

1 CCS A- i ; i
- Shy \ i-j Jt i ; LULUr -0

«

64

DRAGON MAZE cont.

1516

c$m

£828

£116

UY= RHD (13)4-1

"ft: r-n_^. ••: :•* -(j.!!-..! -*": -':^i:U i

IrULUS—£ij ?i,in O'hsM ~c^0*3? ~i

fiT 39

Cy— * j i C V—yV

K~ Till--. K-'lQ-itfitl tr *Aliib !t1t_rt

1568

Q8=K; GGSUB 7888; K=QS

IF 5X=X m SY=Y THEN 8888

II" R= ICmA"K'J InLn C&jv

ir i.-'_ £-{-/ e-'« •. r-iry ":r;A3
ir ?,- rtoU U i intfi oM
IF K= BSC(

S
D

3
) THEN 3588

r.j : i r. it. .-,

yft=i:uf=B

4888

FK=3*K-£iFY=3*Y-c; FOR 1=1 TO

FX=FX+DX:FY=FY+DY

hUR K=s III I \ hUR L=b !U I;

D: AT Ur'i.V Livi.ii UtVT i ifs.. rf'i AD-

1; PLOT FM, Fitl; NEKT L,K:

NEXT I

-: \ -. ¥-Yii:V: V-ViijV

ilih it £=io mv 'i-m irttN bti*Jtf

£128 GOTO 1588

£518 IF H(X+i3*(Y-i"M> HOD 18 THEN

2588 GOTO 2828

3588 DK=8:DY=1

3518 It H(X+13*<Y-1)>/18 THEN 438b

4818

4828

4838

.
,:.'Lu» Ii1

GOTO 1588

.'0 ul>j<ju >j*jQv

4138 GOTO 1588

4288 bOSUB 5888

4218 C0L0R-15

fj_i-Q !!!_in iJ^'ift 1 / f -J-!, iii ui", I i

4H3&

4388

4318

4338

5B88

GOTO 1588

GOSUB 5888

C0L8R=15

HLIH3*(HU*XflT3*Y

GOTO 1588

S=S-1: FOR 1-1 TO 28: B= PEEK

^-loJ-Jb^ Ptth .-i&o'jb.rt rtU

(-16336)+ PEEK (-16336): HEKT

6888

6828

6838

I i RETURN

"LIT «1 •.-;?* *»

KKiHi "Hid «iN5'

GOSUB 5888; GOSUB 5888: G0S1

5888

PRINT
s
SC0RE=

n
;St3

END

ih a/3a ihe.fi fodj; it* i/3i ihtH

7858

TC vYCv TUrLi 7' £3= TC t-, -"-~y TLJl«
ii ii\jn irtLn /ioel 1^ i\j(ifitn

IF SX=I3 THEN 7858; IF KSX*

13*tSY-l)»9THEH7B18s IF

H(SX*13*(SY-i» HDD 18 THEN

DX=i:DY=8

7SOp

7822 KX=3?SX-£; RY=3*SY-£
"•*C¥.i : i.ry

7823 FOR 1=1 TO 3sRX=RX*DX:RY=RY+

L-
:

>

7824 C0LOR=8

7825 FOR K=8 TO 1: FOR 1=8 TO h

PLOT QX+K,QY+L: NEXT L f K: COLORE

RD: FOR K=8 TO 1: FOR 1=8 TO

Is PLOT RX+K,RY+L: HEKT ill

QK=RK;SY=RY

7po» urvT r

7835 SK=SKtDK:SY=SYtDY

7848 T(SX+13*(SY-1))=T(SX+13*(SY-

DH1

7845 RETURN

iuib ir ji-lo inch fidb; it" Hiftt

-13*(SY-1)»9 THEN 7868i IF

fhi^-ij^Hin-l/^ id tntn fide

7868 DX=8:DY=1: GOTO 782&

7188 lFSX=MHEH7t5B'fIFT{SX+

13*(SY-1»>9 THEN 7118: IF

IKSX+13«SY-I)-i) H0D.i8 TIEH

7158

65

DRAGON MAZE cont

i lib i*ri-~~ il'01-ul Ul'ib tSCb

•;:r.-, :r .-:; s Tjtr-Et -\r-.r.r rr X.- ."is-

Hjs ir M=l IhtH imjl It KiAt

i o*j" cy_ i
*• \ *vj Turu 7 1 £ s * t c

i v"Jv

iYV-5:

:-i~j-*j rnrnn csss. *"ii~nj) z~*iiii- ~f""IID
Q555? UU3UD- JuCuJ UUjUu -JOb^ uloUb

5688 ; GOSuB 5888; PRINT
5
THE DRR

66

APPLE II FIRMWARE

1. System Monitor Commands
2. Control and Editing Characters

3. Special Controls and Features

4. Annotated Monitor and Dis-assembler Listing

5. Binary Floating Point Package

6. Sweet 16 Interpreter Listing

7. 6502 Op Codes

67

System Monitor Commands

Apple II contains a powerful machine level monitor for use by the advanced

programmer. To enter the monitor either press RESET button on keyboard or

CALL-151 (Hex FF65) from Basic. Apple II will respond with an "*" (asterisk)

prompt character on the TV display. This action will not kill current BASIC

program which may be re-entered by a Cc (control C). NOTE: "adrs" is a

four digit hexidecimal number and "data" is a two digit hexidecimal number.

Remember to press "return" button at the end of each line.

Command Format Example Description

Examine Memory

adrs *C0F2

adrsl.adrs2

(return)

adrs2

*1024.1048

* (return)

*.4096

Examines (displays) single memory

location of (adrs)

Examines (displays) range of memory

from (adrsl) thru (adrs2)

Examines (displays) next 8 memory

locations.

Examines (displays) memory from current

location through location (adrs2)

Change Memory

adrsrdata
data data

*A256:EF 20 43

:data data
data

*:F0 A2 12

Move Memory

adrsl<adrs2.
adrs3M

*100<B010.B410M

Verify Memory

adrsl<adrs2.
adrs3V

*100<B010.B410V

Deposits data into memory starting at
location (adrs).

Deposits data into memory starting
after (adrs) last used for deposits.

Copy the data now in the memory range
from (adrs2) to (adrs3) into memory
locations starting at (adrsl).

Verify that block of data in memory

range from (adrs2) to (adrs3) exactly

matches data block starting at memory

location (adrsl) and displays
differences if any.

68

Command Format Example Description

Cassette I/O

adrsl.adrs2R

adrsl .adrs2W

*300.4FFR

*800.9FFW

Reads cassette data into specified
memory (adrs) range. Record length
must be same as memory range or an

error will occur.

Writes onto cassette data from speci

fied memory (adrs) range.

Display

I

N

*I

*N

Set inverse video
on white backgroun

Set normal video mode
on black background)

de. (Black characters

(White characters

Dis-assembler

adrsL *C800L Decodes 20 instructions starting at

memory (adrs) into 6502 assembly
nmenonic code.

Decodes next 20 instructions starting

at current memory address.

Mini -assembler

(Turn-on)

$(monitor
command)

adrs: (6502

MNEMONIC
instruction)

*F666G

$C800L

!C010:STA 23FF

Turns-on mini-assembler. Prompt

character
point).

is now a (exclamation

Executes any monitor command from mini-

assembler then returns control to mini-

assembler. Note that many monitor

commands change current memory address

reference so that it is good practice

to retype desired address reference

upon return to mini-assembler.

Assembles a mnemonic 6502 instruction

into machine codes. If error, machine

will refuse instruction, sound bell,

and reprint line with up arrow under

error.

69

Command Format

(space) (6502
mnemonic
instruction)

(TURN-OFF)

Example

! STA JQ1FF

I (Reset Button)

Description

Assembles instruction into next
available memory location. (Note
space between "!" and instruction)

Exits mini-assembler and returns
to system monitor.

Monitor Program Execution and Debugging

adrsG

adrsT

adrsS

(Control E)

(Control Y)

*300G

*800T

*C050S

*rC

•y 1

Runs machine level program starting
at memory (adrs).

Traces a program starting at memory
location (adrs) and continues trace
until hitting a breakpoint. Break
occurs on instruction 00 (BRK), and
returns control to system monitor.
Opens 6502 status registers (see note 1)

Single steps through program beginning
at memory location (adrs). Type a

letter S for each additional step
that you want displayed. Opens 6502
status registers (see Note 1).

Displays 6502 status registers and
opens them for modification (see Note 1)

Executes user specified machine
language subroutine starting at
memory location (3F8).

Note 1:

6502 status registers are open if they are last line displayed on screen
To change them type ":" then "data" for each register.

Example: A = 3C X = FF Y = 00 P = 32 S = F2
*: FF Changes A register only
*:FF 00 33 Changes A, X, and Y registers

To change S register, you must first retype data for A, X, Y and P.

Hexidecimal Arithmetic

datal+data2

datal-data2

*78+34

*AE-34

Performs hexidecimal sum of datal

plus data2.

Performs hexidecimal difference of

datal minus data2.

70

Command Format Example Description

Set Input/Output Ports

(X) (Control P) •5P
1

(X) (Control K) *2K l

Sets printer output to I/O slot

number (X). (see Note 2 below)

Sets keyboard input to I/O slot

number (X). (see Note 2 below)

Note 2:

Only slots 1 through 7 are addressable in this mode. Address (Ex: 0P C

or 0KC) resets ports to internal video display and keyboard. These commands

will not work unless Apple II interfaces are plugged into specificed I/O

slot.

Multiple Commands

*100L 400G AFFT Multiple monitor commands may be

given on same line if separated by

a "space"

1LLL Single letter commands may be

repeated without spaces.

71

SPECIAL CONTROL AND EDITING CHARACTERS

"Control" characters are indicated by a super-scripted "C" such as G . They
are obtained by holding down the CTRL key while typing the specified letter.
Control characters are NOT disolaved on the TV screen. B and C must be
followed by a carriage return. Screen editing characters are indicated by a

sub-scripted "E" such as Dp. They are obtained by pressing and releasing the
ESC key then typing specified letter. Edit characters send information only
to display screen and does not send data to memory. For example, Uc moves to
cursor to right and copies text while A^ moves cursor to right but does not
copy text.

CHARACTER DESCRIPTION OF ACTION

RESET key

Control B

Immediately interrupts any program execution and resets
computer. Also sets all text mode with scrolling window
at maximum. Control is transfered to System Monitor and

Apple prompts with a "*" (asterisk) and a bell. Hitting

RESET key does NOT destroy existing BASIC or machine
language program.

If in System Monitor (as indicated by a "*"), a control

B and a carriage return will transfer control to BASIC,

scratching (killing) any existing BASIC program and set

HIMEM: to maximum installed user memory and LOMEM:

to 2048.

Control C

Control G

Control H

Control J

Control V

Control X

If in BASIC, halts program and displays line number

where stop occurred*. Program may be continued with a

CON command. If in System Monitor, (as indicated by "*"),

control C and a carraige return will enter BASIC without
killing current program.

Sounds bell (beeps speaker)

Backspaces cursor and deletes any overwritten characters
from computer but not from screen. Apply supplied

keyboards have special key "<-" on right side of keyboard

that provides this functions without using control button.

Issues line feed only

r
Compliment to H . Forward spaces cursor and copies over

written characters. Apple keyboards have "-" key on

right side which also performs this function.

Immediately deletes current line.

* If BASIC program is expecting keyboard input, you will have

to hit carriage return key after typing control C.

72

SPECIAL CONTROL AND EDITING CHARACTERS

(continued)

CHARACTER DESCRIPTION OF ACTION

A
F

Move cursor to right

B
F

Move cursor to left

C r
Move cursor down

Dp Move cursor up

E F
Clear text from cursor to end of line

F Clear text from cursor to end of page

@ r Home cursor to top of page, clear text to end

of page.

73

Special Controls and Features

Hex BASIC Example

Display Mode Controls

C05O
C051

C052
C053
C054

10 POKE -16304,0
20 POKE -16303,0
30 POKE -16302,0
40 POKE -16301,0
50 POKE -16300,0

C055
C056
C057

60 POKE -16299,0
70 POKE -16298,0
80 POKE -16297,0

TEXT Mode Controls

0020 90 POKE 32, LI

0021 100 POKE 33,Wl

0022 110 POKE 34,Tl

0023 120 POKE 35,81

0024 130 CH=PEEK(36)
140 POKE 36, CH

150 TAB(CH+1)

0025 160 CV=PEEK(37)
170 POKE 37, CV
180 VTAB(CV+1)

0032 190 POKE 50,127
200 POKE 50,255

FC58 210 CALL -936

FC42 220 CALL -958

Description

Set color graphics mode
Set text mode
Clear mixed graphics
Set mixed graphics (4 lines text)

Clear display Page 2 (BASIC commands

use Page 1 only)

Set display to Page 2 (alternate)

Clear HIRES graphics mode

Set HIRES graphics mode

Set left side of scrolling window
to location specified by LI in

range of to 39.

Set window width to amount specified
byWl. L1+W1<40. W1>0

Set window top to line specified
by Tl in range of to 23

Set window bottom to line specified
by Bl in the range of to 23. B1>T1

Read/set cusor horizontal position
in the range of to 39. If using
TAB, you must add "1" to cusor position
read value; Ex. 140 and 150 perform
identical function.

Similar to above. Read/set cusor
vertical position in the range to
23.

Set* inverse flag if 127 (Ex. 190)
Set normal flag if 255(Ex. 200)

(<?[:) Home cusor, clear screen

(Fj:) Clear from cusor to end of page

74

Hex BASIC Example

FC9C 230 CALL -868

FC66 240 CALL -922

FC70 250 CALL -912

Description

(Eg) Clear from cusor to end of line

(J
C

) Line feed

Scroll up text one line

Miscellaneous

C030

C000

C010

C061

C062

C063

C058

C059

C05A

C05B

C05C

C05D

C05E

C05F

360 X=PEEK(-16336)
365 POKE -16336,0

370 X=PEEK(-16384

380 POKE -16368,0

390 X=PEEK(16287)

400 X=PEEK(-16286)

410 X=PEEK(-16285

420 POKE -16296,0

430 POKE -16295,0

440 POKE -16294,0

450 POKE -16293,0

460 POKE -16292,0

470 POKE -16291,0

480 POKE -16290,0

490 POKE -16289,0

Toggle speaker

Read keyboard; if X>127 then key was

pressed.

Clear keyboard strobe - always after

reading keyboard.

Read PDL(0) push button switch. If

X>127 then switch is "on".

Read PDL(l) push button switch.

Read PDL(2) push button switch.

Clear Game I/O AN0 output

Set Game I/O AN0 output

Clear Game I/O AN1 output

Set Game I/O AM output

Clear Game I/O AN2 output

Set Game I/O AN2 output

Clear Game I/O AN3 output

Set Game I/O AN3 output

75

* *

* APPLE II *

* SYSTEM MONITOR *

* *

* COPYRIGHT 197? BY *

* APPLE COMPUTER, INC. *

* *

* ALL RIGHTS RESERVED *

* S. WOZNIAK
*

*
A. BAUM

TITLE
LOCO EPZ $00
LOCI EPZ $01
WNDLFT EPZ $20
WNDWDTH EPZ $21
WNDTOP EPZ $22
WND3TM EPZ $23
CH EPZ $24
CV EPZ $25
GBASL EPZ $26
GBASH EPZ $27
BASL EPZ $28
BASH EPZ $29
BAS2L EPZ S2A
BAS2H EPZ $2B
H2 EPZ $2C
LMNEM EPZ $2C
RTNL EPZ $2C
V2 EPZ $2D
RMNEM EPZ $2D
RTNH EPZ $2D
MASK EPZ $2E
CHKSUM EPZ $2E
FORMAT EPZ $2E
LASTIN EPZ $2F
LENGTH EPZ $2F
SIGN EPZ $2F
COLOR EPZ $30
MODE EPZ $31
INVFLG EPZ $32
PROMPT EPZ $33
YSAV EPZ $34
YSAV1 EPZ $35
CSWL EPZ $36
CSWH EPZ $37
KSWL EPZ $38
KSWH EPZ $39
PCL EPZ $3A
PCH EPZ $3P
XQT EPZ $3C
AIL EP? $3C
A1H EPZ $3D
A2L EPZ S3E
A2H EPZ S3F
A3L EPZ S40
A3H EPZ $41
A4L EPZ $42
A4H EPZ $43
A5L EPZ $44
ASH EPZ $45

APPLE II SYSTFV. MONITOR

76

F800
F801
F802
F805
F806
F808
F80A
F80C
F80E
F810
F812
F814
F816
F818
F819
F81C
F81E
F820
F821
F824
F826
F828
F829
F82C
F82D:
F82F
F831
F832
F834
F836
F838

F83A:

F83C
F83E;
F840:
F843:
F844:
F846
F847
F848
F849
F84B
F84D:
F84F:
F850
F852
F854
F656

4A
08
20 47 F8

28
A9 OF
90 02

-69 EO
85 2E
Bl 26
45 30
25 2E
51 26

91 26
60
20 00 F8

C4 2C
BO 11
C8
20 OE F8
90 F6
69 01
48
20 00 F8
68
C5 2D
90 F5
60
AO 2F
DO 02
AO 27

84 2D

AO 27

A9 00
85 30
20 28

88
10 F6
60
46
4A
29 03

09 04
85 27
68
29 18
90 02
69 7F

85 26

F6

ACC
XP.EG
YREG
STATUS
SPNT
RWDL
PNDH
ACL
ACH
XTrfOL

XT'W
AUXL
AUXH
PICK
IN
USK.ADR

IK9L0C
ICADR

KRDSTRP
TAPEOUT
SPKR
TXTCLR
T/TSET
M IXC LP
MIXSET
LOW5CR
HISCR
LOPES
HIRES
TAPEIN
PADDLO
PTRIG
BASIC
BASIC2

PLOT

RT*4AS\
PLOT1

HLINE
HLINE1

VLINEZ
VLINE

RTS1
CLRSCR

CLRTOP
CLRSC2

CLP.SC3

G6ASCALC

GBCALC

EFZ
EPZ
EPZ
EPZ
EPS
EPZ
EPZ
EPZ
FP7
EPZ
RPZ
EPZ
EPZ
EPZ
ECU
EQU
EOU
ECU
EOU
EQU
EQU
ECU
ECU
ECU
EOU
ECU
ECU
EOU
ECU
EOU
ecu
ECU
EOU
ECU
EOU
EOU
ORG
LSR
PHP
JSP
PLP
LDA
BCC
ADC
3TA
LDA
EOR
AND
EOR
STA
RTS
JSP
CPY
BCS
INY
J3R
BCC
ADC
PHA
JSP
PLA
CMP
BCC
RTS
LDY
PNE
LDY
STY
FOP

LDY
LDA
STA
JSP
DEY
*PL
RTS
PHA
r,SR

AND
OPA
STA
PLA
AMD
see
ADC
STA

$45
$46
$47
$48

$49
$4F
$^F
$50
$51
$52
$53
$54
$55
$95
$0200
S03F8
$03FB
S03FF
SCCOO
$C0OO
SC010
$C020
SC0-30
$C050
SC051
$C052
$C053
SC054
$C055
$C056
$C057
$C060
$C064
$C070
SE000
$E003
$F800 ROM START ADDRESS
A Y-COOFD/2

SAVE LSB IN CARRY
GBASCALC CALC BASE ADP IN GBASL,H

RESTORE LSB FROM CARRY
MASK $0F IF EVEN

MASK $F0 IF ODD

#$0F
RTMASK
#$E0
.<1A5K

(GBASL) ,'l DATA
COLOR XOR COLOR
MASK AND i*ASK

(GPASL) r Y XOR DATA
(GBASL) ,Y TO DATA

PLOT PLOT SOUARE
H2 DOME?
RTS1 YES, RETURN

MO, I NCR INDEX (X-COORD)
PLOT1 PLOT NEXT SOUARE
HLIME1 ALWAYS TAKEN
#$01 NEXT Y-COORD

SAVE ON1 STACK
PLOT SOUAREPLOT

V2
VLINE

Z

#$2F
CLRSC2
#$27
V2
VLINE
#$?7
*$0
COLOR
VLINE

CLRSC3

DONE?
NO, LOOP.

^AX Y, FULL SCRN CLR
ALWAYS TAKEM
WAX Y, TOP SCRN CLR
STORF AS BOTTOM COORD

CALLS
RIGHTMOST X-COORD (COLUMN)
TOP COOPO FOR VLINE CALLS
CLEAR COLOR (BLACK)
rRAK VLIN'E

NEXT LEFTMOST X-COORD
LOOP UNTIL DONE.

A

+ $03
#$04
GESASrf

*$18
G3CALC
#$7F
GFASL

FOR INPUT nOODFFGH

GFVJERATE GBASH=00C001FC

M)D G^ASL-HOEOFOOO

77

F858:
F859:
F85A:
F85C:
F85E:
F85F:
F8 61:
F862:
F864:
F866:
F868:
F8 69:
F86A:
F86B:
F86C:
F86E:
F870:
F871:
F872:
F873:
F87 6:
F878:
F879:
F8 73:
F87C:
F87D:
F87E:
F87F:
F881:
F882:
F884:
F886:
F889:
F68C:
F88E:
F88F:
F89U:
F892:
F893:
F695:
F897:
F899:
F893:
F89C:
F89D:
F8A0:
F8A3:
F8A5:
F8A7:
F8A9:
F8AA:
F8AD:
F8AF:

F8B1
F8B3
F834
F8B6
F8S7
F8B8
F8BA
F8BC
F8BE
F8BF;
F8C1:

F8C2.
F8C3
F8C5
F8C6
F8C8
F8C9
F8CA
F8CC
F8CD:
F8D0
F8D3
F8D4
F8D6
F8D9
F8DB
F8DE
F8E0
F8E1
F8E3
F8E5

F8

OA
OA

05 26
85 26
60
A5 30
13
69 03
29 OF
65 30
OA
OA
OA
OA
05 30
85 30
60
4A
08
20 47

81 26
28
90 04

4A
4A
4A

4A
29 OF
60
A6 3A
A4 38
2P 9 6 FD

20 48 F9
Al 3A
A8
4A
90 09
6>

BO 10
C9 A

2

FO OC

29 87
4 A
AA
bo
20

NIXTCOL

3ETC0L

SCFN

SCRN2

RTi^SKZ

I MS OS 1

IN3DS2

6 2 F9
79 Ffe

DO 04

AO 80
A9 00
AA
BD A6 F9
85 2E
29 03

85 2F
93

29 8F
AA
98
AO 03
EO 8A
FO OB
4A
90 08
4A
4A

09 20
88
DO FA
C8
88
DO F2
60
FF FF FF
20 82 F8
48
Bl 3A
20 DA FD
A2 01
20 4A F9

C4 2F
C8
90 Fl

A2 03
CO 04

I EVE

RP

GETFjVT

KNNDXl

MNNDX2

MNNDX3

INSTDSP

PRNTOP

PRNTBL

ASL
ASF,

ORA
STA
RTS
LDA
CLC
ADC
AMC
STA
ASL
ASL
ASL
ASL
OPA
STA
RTS
LSR
PHP
JSR
LDA
PLP
RCC
LSR
LSR
LS R

LSR
ANTE

RTS
LDX
LDY
JSP
JSR
LDA
TAY
LSR
BCC
ROP
3CS
C^P
FEO
AND
LSR
TAX
LDA
JSP
.?NE

LDY
LDA
TAX
LDA
STA
AND

STA
TYA
AND
TAX
TYA
LDY
CPX
3E0
LSR
BCC
LSR
LSP

ORA
DEY
BNE
INY
DEY
BNE
RTS
DFB
JSR
PHA
LDA
JSR
LDX
JSR
CPY
INY
BCC
LDX
CPY

IMCPEr.ErtT COLOR BY 3

SETS COLOR=17*A MOD 16

FOTrt HALF PYTES OF COLO^ EQUAL

A

A
GBASL
GPASL

COLOR

SS0 3

t-*0?
COLOR
A

A
A
A

COLOR
COLOR

A READ SCREEN Y-COORD/2
SAVE LSB (CARRY)

GE-ASCALC CALC BASF ADDRESS
(GE-A3L) ,Y GET PYTE

RESTORE LSP FROM CAR*Y
KTi-'iSK? IF EVEN, USE LO H

A

A

A

A
fc$0F

PCL
PCK
PRYX2
PUP-Lmk

SHIFT HIGH HALF BYTE DO^N

MASK 4-BITS

PRINT pcl,h

FOLLOWED 3Y A BLANK
(PCL,X) GET OF CODE

A
IFVFN
A

ERP
i ? * 2

r. F K

*$B7
A

FMT1,X
SCRW2
GETFJ-T

#?8C
tso

EVE* /ODD TFST

BIT 1 TEST
XXXXXXll INVALID OP

OPCODE ^9 INVALID
!ASK r-ITS
LSR IN7TO CARRY FOR L/P TEST

GET FOR.'-"AT INDEX 8YTE
R/L H-HYTE ON! CARRY

SU?STITUTE $80 FOR INVALID OP:

SET PRINT FOPYAT INDEX TO

INDEX INTO PPINT FORMAT TABLE
SAVE FOR ADR FIELD FORMATTING
MASK FOR 2-BIT LENGTH

(P=l BYTE, 1=2 BYTE, 2=3 BYTE)
LENGTH

OPCODE
MASK FOR 1XXX1010 TEST
SAVF IT
OPCODE TO A AGAIN

F;-1T2,X

FORMAT

#$BF

*$03
#S8A
MNNDX3
A

F1NNDX3
A

A

#$20

MNNDX2

MNWDXl

FORM INDEX INTO MNEMONIC TABLE

1) 1XXX1010=>00101XXX

2) XXXYYY01*>00111XXX
3) XXXYYY10=>00110XXX

4) XXXYY100=*>00100XXX
5) XXXXX000=>000XXXXX

$FF,$FF,$FF
INSDS1 GEN FMT, LEN BYTES

SAVE MNEMONIC TABLE INDEX
(PCL) ,Y

PRBYTE
#$01
PRBL2
LENGTH

PRNTOP
#$03
#$04

PRINT 2 BLANKS

PRINT INST (1-3 BYTES)
IN A 12 CHR FIELD

CHAR COUNT FOR MNEMONIC PRINT

78

F8E7 : 90 F2 BCC PRNTBL
F8E9 : 68 PLA RECOVER MNEMONIC INDEX
F8EA : A8 TAY
F8EB : B9 CO F9 LDA MNEML,Y
F8EE : 85 2C STA LMNEM FETCH 3-CHAR MNEMONIC
F8F0 : B9 00 FA LDA MNEMF,Y (PACKED IN 2-BYTES)
F8F3 : 85 2D STA RMNEM
F8F5 : A9 00 PRMNl LDA #$00
F8F7 : A0 05 LDY #$05
F8F9 : 06 2D PRMN2 ASL RMNEM SHIFT 5 BITS OF
F8FB : 26 2C ROL LMNEM CHARACTER INTO A
F8FD : 2A ROL A (CLEARS CARRY)
F8FE : 88 DEY
F8FF : DO F8 BNE PRMN2
F901 i 69 BF ADC #$BF ADD "?" OFFSET
F903 : 20 ED FD JSR COUT OUTPUT A CHAR OF MNEM

F906 : CA DEX
F907 : DO EC BNE PRMNl
F909 : 20 48 F9 JSR PRBLNK OUTPUT 3 BLANKS
F90C : A4 2F LDY LENGTH
F90E : A2 06 LDX #$06 CNT FOR 6 FORMAT BITS
F910 : EO 03 PRADR1 CPX #$03
F912 : FO 1C BEQ PRADR5 IF X=3 THEN ADDR.
F914 : 06 2E PRADR2 ASL FORMAT
F916 : 90 OE BCC PRADR3
F918 : BD B3 F9 LDA CHAR1-1, X
F91B : 20 ED FD JSR COUT
F91E : BD B9 F9 LDA CHAR2-1, X

F921 : FO 03 BEQ PRADR3
F923 : 20 ED FD JSR COUT
F926 : CA PRADR3 DEX
F927 : DO E7 BNE PRADR1
F929 : 60 RTS
F92A : 88 PRADR4 DEY
F92B : 30 E7 BMI PRADR2
F92D: 20 DA FD JSR PRBYTE
F930: A5 2E PRADR5 LDA FORMAT
F932: C9 E& CMP #$E8 HANDLE REL ADR MODE
F934: Bl 3A LDA (PCL) ,Y SPECIAL (PRINT TARGET,
F936: 90 F2 BCC PRADR4 MOT OFFSET)
F938: 20 56 F9 RELADR JSP PCADJ

3

F93B: AA TAX PCL,PCH+OFFSET+l TO A,Y
F93C: E8 INX
F93D: DO 01 BNE PRNTYX +1 TO Y,X
F93F: C8 INY
F940: 98 PRNTYX TYA
F941: 20 DA FD PRNTAX JSR PPBYTE OUTPUT TARGET ADR
F944J 8A PRNTX TXA OF BRANCH AND RETURN
F945: 4C DA FD JMP PPBYTE
F948: A2 03 PPBLNK LDX #$03 BLANK COUNT
F94A: A9 AO PR3L2 LDA #$A0 LOAD A SPACE
F94C: 20 ED FD PPBL3 JSR COUT OfTPUT A BLANK
F94F: CA DEX
F950: DO F8 BNE PRBL2 LOOP UNTIL COUNT=0
F952: 60 RTS
F953: 38 PCADJ SEC 0=1-3YTE,1=2-BYTE,
F954: A5 2F PCADJ2 LDA LENGTH 2=3-BYTE
F956: A4 3B PCADJ3 LDY PCH
F958: AA TAX TEST DISPLACEMENT SIGN
F959: 10 01 BPL PCADJ4 (FOR REL BRANCH)
F95B: 88 DEY EXTEND NEG BY DECR PCH

F95C: 65 3A PCADJ4 ADC PCL
F95E: 90 01 BCC RTS 2 PCL+LENGTH(OR DISPL) +1 TO A
F960: C8 INY CARRY INTO Y (PCH)

F961: 60 RTS2 RTS
• FMT1 BYTES: XXXXXXY0 INSTRS
* IF Y=0 THEN LEFT HALF BYTE
* IF Y=l THEN RIGHT HALF BYTE
* (X=INDEX)

F962: 04 20 54

F965: 30 OD
F967: 80 04 90
F96A: 03 22

F96C: 54 33 OD
F96F: 80 04
F971: 90 04 20

F974: 54 33
F976: 0D 80 04
F979: 90 04

F97B: 20 54 3B
F97E: 0D 80
F980: 04 90 00

F983: 22 44
F985: 33 OD C8
F988: 44 00

FMT1 DFB $04,$20,$54,$30,$0D

DFB $80,$04,$90,$03,$22

DFB $54, $33, $0D,$80,$04

DFB $90, $04, $20, $54, $33

DFB $0D,$80,$'H,$90,$04

DFB $2O,$54,$3B,$0D,$80

DFB $04,$90,$0,0 r $22,$44

DFB $3 3,$0D,$C8,$4 4, $00

79

F98A
F98D
F98F
F992
F994
F997
F999
F99C
F99E
F9A1
F9A2
F9A5
F9A6
F9A7
F9A8
F9A9
F9AA
F9AB
F9AC
F9AD
F9AE
F9AF
F9B0
F9B1
F9B2
F9B3
F9B4

F9BA:
F9BD:

F9C0;
F9C3:
F9C6:
F9C9:
F9CC:
F9CF:
F9D2
F9D5
F9D8
F9DB
F9DE:
F9E0:

F9E3
F9E6
F9E8
F9EB
F9EE
F9F0
F9F3
F9F6
F9F8
F9FB:
F9FE
FAOO
FA03
FA06:
FA09
FAOC
FAOF
FA12
FA15
FA18
FAlB
FA1E
FA20
FA23
FA26
FA28
FA2B
FA2E
FA30
FA33
FA36
FA38
FA3B
FA3E

11 22 44
33 OD
C8 44 A9
01 22

44 33 OD
80 04

90 01 22
44 33
OD 80 04

90
26 31 87
9A
00
21
81

82
00
00
59
4D
91

92
86
4A

85
9D
AC A9 AC
A3 A8 A4

D9 00 D8
A4 A4 00

1C 8A
23 5D
IB Al
8A ID
9D 8B
Al 00
19 AE
A8 19
24 53

23 24
19 Al
00 1A

5B A5
24 24
AE AE
AD 29
7C 00
15 9C
9C A5

29 53
84 13
11 A5
23 AO
D8 62
48 26
94 88
44 C8
68 44
94 00
08 84
B4 28
74 F4
4A 72

A4 8A
00 AA
A2 74
74 72
44 68
32 B2
22 00
1A 1A
26 72

88 C8
C4 CA
48 44
A2 C8

DFB $11,S22,$44,$33,$0D

DFB $C8,$44,$A9,S01,$22

DFB $44,$33,$OD,$80,$04

DFB $90, $01,$22,$44,$33

DFB $0D,$80, $04, $90

FMT2

CHAR1

CHAR2
*CHAR2

*

*

1C
8B MNEML
9D
23
ID
29
69
23
IB

53

5B

69

A8
00

6D
69

34

69

5A
62 MNEMR
54
54

E8
B4
74
6E
CC
F2

A2
74

B2
00

26
72

26
44

DFB $26, $31 ,$P7,$9A ZZXX
DFB $00 ERF
DFB $21 I MM
DFB $81 Z-PAGE
DFB $82 ABS
DFB $00 IMPLIED
DFB $00 ACCUMULATOR
DFB $59 (ZPAG,X)
DFB $4D (Z PAG) ,

Y

DFB $91 ZPAG,X
DFB $92 ABS,X
DFB $86 ABS,Y
DFB $4A (ABS)

DFB $85 ZPAG,Y
DFB

ASC

$9D

",),#($'

RELATIVE

DFB $D9,$00,$D8,$A4,$A4,$00
"Y%0/'X$$",0
MNEML IS OF FORM:
(A) XXXXX000
(B) XXXYY100
(C) 1XXX1010
(D) XXXYYY10
(E) XXXYYY01

(X=INDEX)

DFB $1C,S8A,$1C,$2 3,$5D,$8B

DFB $1B,$A1,$9D,S8A,$1D,$23

DFB $9D,$8B,$1D,$A1,$00,$29

DFB $19,$AE,$69,$A8,$19,$23

DFB $24, $53, $1B, $23, $24, $53
DFB $19,$A1 (A) FORMAT ABOVE

DFB $00,$1A,$5B,$5B,$A5,S69
DFB $24, $24 (B) FORMAT

DFB $AE,$AE,$A8,$AD,$29,$00
DFB $7C,$00 (C) FORMAT

DFB $15,$9C,$6D,$9C,$A5,$69
DFB $29, $53 (D) FORMAT

DFB $84,$13,$3 4,$11,$A5,$69
DFB $23,$A0 (E) FORMAT

DFB $D8,$62,$5A,$4 8,$26,$62

DFB $94,$88,$54,$4 4,$C8,$54

DFB $68,$4 4,$E8,$94,$00,$B4

DFB $08,$84,$74,$B4,$28,$6E

DFB S74,$F4,$CC,$4A,$72,$F2
DFB $A4,$8A (A) FORMAT

DFB $00,$AA,$A2,$A2,$74 r $74
DFR $74, $72 (B) FORMAT

DFB $4 4,S68,$E2,$3 2,$B2,S0O
DFB $22, $00 <C) FORMAT

DFB S1A,$1A,$26,$26,$72,$72
DFB $86,$C8 (D) FORMAT

DFB $C4,$CA,$2 6,S4e,$44,S44
DFB SA2,$C8 <E) FORMAT

80

FA40 : FF FF FF DFB $FF,$FF r $FF
FA43 : 20 DO F8 STEP JSR INSTDSP DISASSEMBLE ONE INST
FA46 : 68 PLA AT <PCL,H)
FA47 : 85 2C STA RTNL ADJUST TO USER
FA49 : 68 PLA STACK. SAVE
FA 4A : 85 2D STA PTNH RTN ADR.
FA4C : A2 08 LDX #$08
FA4E : BD 10 FB XQINIT LDA INITBL- 1,X INIT XEO AREA
FA51 : 95 3C STA XQT,X
FA53 : CA DEX
FA54 : DO F8 BNE XOI NIT
FA56 : Al 3A LDA (PCL,X) USER OPCODE BYTE
FA 5 8 : FO 42 BEO XBRK SPECIAL IF BREAK
FA5A : A4 2F LDY LENGTH LEN FROM DISASSEMBLY
FA5G : C9 20 CMP #$20
FA5E : FO 59 PEG XJSP HANDLE JSR, PTS , JMP,
FA60 : C9 60 CMP *$60 JMP () , RTI SPECIAL
FA62 : FO 45 BEQ XRTS
FA64 : C9 4C CMP #$4C
FA66 : FO 5C 3E0 xjm-p

FA68 : C9 6C CMP #$6C
FA6A : FO 59 BEQ XJMFAT
FA6C : C9 40 CMP #?40
FA6E : FO 35 3E0 XRTI
FA70 : 29 IF AND #$1F
FA72 : 49 14 EOR #$14
FA74 : C9 04 CMP #$04 COPY USER INST TO XEO AREA
FA76 : FO 02 BEQ XQ2 WITH TRAILING NOPS
FA78 : Bl 3A xoi LDA (PCL),Y CHANGE REL BRANCH
FA 7A : 99 3C 00 XQ2 STA XQTNZ,Y DISP TO 4 FOR
FA7D : 88 DEY JMP TO BRANCH OR
FA7E : 10 F8 BPL XQ1 NBRANCH FROM XEQ.
FA80 : 20 3F FF JSR RESTORE RESTORE USER REG CONTENTS.
FA83 : 4C 3C 00 JMP XQTNZ XEQ USER OP FROM RAM
FA66 : 85 45 IRQ STA ACC (RETURN TO NBRANCH)
FA88 : 68 PLA
FA89 : 48 PHA **IRQ HANDLER
FA8A : OA ASL A
FA8B : OA ASL A
FA8C : OA ASL A
FA8D : 30 03 BMI BREAK TEST FOR BREAK
FA8F : 6C FE 03 JMP (IROLOC) USER ROUTINE VECTOR IN RAM
FA92 : 28 BREAK PLP
FA93 : 20 4C FF JSR SAV1 SAVE REG'S ON BREAK
FA96 : 68 PLA INCLUDING PC
FA97 : 85 3A STA PCL
FA99 : 68 PLA
FA9A : 85 3B STA PCH
FA9C : 20 82 F8 XBRK JSR INSDS1 PRINT USER PC.
FA9F : 20 DA FA JSR RGDSP1 AND REG'S
FAA2 : 4C 65 FF JMP MON GO TO MONITOR
FAA5 ! 18 XRTI CLC
FAA 6 • 68 PLA SIMULATE RTI BY EXPECTING
FAA7 85 48 STA STATUS STATUS FROM STACK, THEN I

FAA9i 68 XRTS PLA PTS SIMULATION
FAAAi 85 3A STA PCL EXTRACT PC FROM STACK
FAAC: 68 PLA AND UPDATE PC BY 1 (LEN*0)
FAAD: 85 3B PCINC2 STA PCH
FAAF: A5 2F PCINC3 LDA LENGTH UPDATE PC BY LEN
FAB1: 20 56 F9 JSR PCADJ3
FAB 4: 84 3B STY PCH
FAB6: 18 CLC
FAB7: 90 14 BCC NEWPCL
FAB9: 18 XJSR CLC
FABA: 20 54 F9 JSR PCADJ2 UPDATE PC AND PUSH
FABD: AA TAX ONTO STACK FOR
FABE: 98 TYA JSR SIMULATE
FABF: 48 PHA
FACO: 8A TXA
FAC1: 48 PHA
FAC2: AO 02 LDY #$02
FAC4: 18 XJMP CLC
FAC5: Bl 3A XJMPAT LDA (PCL),Y
FAC7: AA TAX LOAD PC FOR JMP,
FAC8: 88 DEY (JMP) SIMULATE.
FAC9: Bl 3A LDA (PCL),Y
FACB: 86 3B STX PCH
FACD: 85 3A NEWPCL STA PCL
FACF: BO F3 BCS XJMP
FAD1: A5 2D RTWJMP LDA RTNH
FAD3: 46 PHA
FAD 4: A5 2C LDA RTNL
FAD6: 48 PHA
FAD7: 20 8E FD REGDSP JSR CROUT DISPLAY USER REG
FADA: A9 4 5 RGDSP1 LDA #ACC CONTENTS WITH
FADC: 65 40 STA A3L

81
LABELS

FADE: A9 00 LDA #ACC/256
FAEO: 85 41 STA A3H
FAE2i A2 FB LDX #$FB
FAE4: A9 AO RDSP1 LDA #$A0
FAE6: 20 ED FD JSR COUT
FAE9: BD IE FA LDA RTBL-$FB ,x

FAEC: 20 ED FD JSR COUT
FAEF: A9 BD LDA #$3D
FAF1: 20 ED FD JSR COUT
FAF4: B5 4A LDA ACC+5,X
FAF6: 20 DA FD JSR PRBYTE
FAF9: E8 INX

FAFA: 30 E8 3MI RDSP1
FAFCj 60 RTS
FAFD: 18 BRANCH CLC BRANCH TAKEN,

FAFE: AO 01 LDY #$01 ADD LEN+2 TO PC
FBOOi Bl 3A LDA (PCL) f Y

FB02: 20 56 F9 JSR PCADJ3
FB05: 85 3A STA PCL
FB07: 98 TYA
FB08: 38 SEC
FB09: BO A2 3CS PCINC2
FBOB: 20 4A FF NBPNCH JSR SAVE NORMAL RETURN AFTER
FBOE: 38 SEC XEO USER OF
FBOF: BO 9E PCS PCINC3 GO UPDATE PC
FB11: EA INITBL NOP
FB12I EA NOP DUMMY FILL FOR

FB13: 4C OB FB JMP MBRNCH XEO AREA
FB16: 4C FD FA JMP BRANCH
FB19: CI RTBL DFB SCI

FB1A: D8 DFB $D8
FB1B! D9 DFB $D9
FB1C: DO DFB $D0
FB1D: D3 DFB $D3
FBlE: AD 70 CO PREAD LDA PTPIG TRIGGER PADDLES
FB21J AO 00 LDY #$00 INIT COUNT
FB23: EA NOP COMPENSATE FOR 1ST COUNT
FB24- EA NOP
FB25: BD 64 CO PREAD2 LDA PADDL0,X COUNT Y-PEG EVERY

FB28' 10 04 BPL RTS2D 12 USEC
FB2A: C8 INY
FB2B: DO F8 BNE PREAD2 EXIT AT 255 MAX

FB2D! 88 DEY
FB2E 60 RTS2D RTS
FB2F A9 00 INIT LDA #$00 CLR STATUS FOR DEBUG
FB31 : 85 48 STA STATUS SOFTWARE
FB33 i AD 56 CO LDA LORES
FB36 • AD 54 CO LDA LOWSCR INIT VIDEO MODE
FB39 : AD 51 CO SETTXT LDA TXTSET SET FOR TEXT MODE

FB3C A9 00 LDA #$00 FULL SCREEN WINDOW
FB3E • FO OB BEQ SETWND
FB40 AD 50 CO SETGR LDA TXTCLR SET FOP GRAPHICS MODE
FB43 AD 53 CO LDA WIXSET LOWER 4 LINES AS

FB46 20 36 F8 JSR CLPTOP TEXT WINDOW

FB49 • A9 14 LDA #$14
FB4B . 85 22 SETWND STA WMDTOP SET FOP 4 COL WINDOW
FB4D: A9 00 LDA #$00 TOP IN A-PEG,

FB4F : 85 20 STA WNDLFT BTTM AT LINE 24

FB51 : A9 28 LDA #$28
FB53 : 85 21 STA WNDWDTH
FB55 i A9 18 LDA #$1S
FB57 i 85 23 STA WNDBTM VTAE TO ROW 23

FB59 : A9 17 LDA #$17
FB5B . 85 25 TABV STA CV VTABS TO ROW IN A-REG
FB5D: 4C 22 FC JMP VTA P.

FB60 i 20 A4 FB MULP* JSP UD1 A3S VAL OF AC AUX

FB63 AO 10 MUL LDY #$10 INDEX FOP 16 BITS
FB65 A5 50 MUX 2 LDA ACL ACX « AUX + XTND
FB67 4A LSR A TO AC, XTND

FB68: 90 oc BCC MUL4 IF MO CARRY,
FB6A: ie CLC NO PARTIAL PPOD.

F66B; A2 FE LDX #$FE

FB6D: B5 54 MUL3 LDA. XTNDL+2, X-ADD MPLCND (AUX)

FB6F- 75 56 ADC AUXL+2,X TO PARTIAL PROD
FB71 95 54 STA XTiJDL+2,X (XTND)

.

FB73 EH INX
FB74 DO F7 BlMF ^UL3
FB76 A2 03 MUL4 LDX #$03
FB76 76 MUL 5 DFB #$76
F379 50 DFB #$50
FS7A CA DEX
FP7B 10 FE 3PL MUL 5

FB7D: 88 DEY
FB7E< DO E5 BNE MUL2
FB80 60 RTS

82

FB81: 20 A 4 FB DIVPM J-SR MD1 ^HS VAL OF AC, ^UX.

FB84: AO 10 DIV LDY mo INDEX FOR 16 BITS

FB86: 06 50 DIV2 ASL ACL
FB88: 26 51 ROL ACH

FB8A: 26 52 ROL XTNDL XTND/AUX

FB8C: 26 53 ROL XTNDH TO AC.

FB8E: 38 SEC
FB8F: A5 52 LDA XTNDL

FB91: E5 54 sec AUXL MOD TO XTNO.

FB93: AA TAX
FB94: A5 53 LDA XlTOtf

F396: E5 55 sbc AUXK
FB98: 90 06 BCC DIV3
FB9A: 86 52 STX XTNDL

F39C: 85 53 STA XTMDH
FB9E: E6 50 INC ACL
FBAO: 88 DIV3 DEY

FBAl: DO E3 BNE DIV2

FBA3: 60 RTS
FBA4: AO 00 MD1 LDY *$00 JBS VAL OF AC, AUX

FBA6: 84 2F STY SIGN WITH RESULT SIGN

FBA8: A2 54 LDX #AUXL IN LSB OF SIGN.

FBAA: 20 AF FE JSR MD2

FBAD: A2 50 LDX #ACL
FBAF: B5 01 MD2 LDA LOCl r X X SPECIFIES AC OR AUX

FBB1: 10 OD BPL MDRTS

FBB3: 38 SEC
FBB4: 98 MD3 TYA
FBB5: F5 00 SBC LOC0,X COMPL SPECIFIED REG

FBB7: 95 00 STA LOC0,X IF NEG.

FBB9: 98 TYA
FBBA: F5 01 SBC LOC 1 ,

X

FBBC: 95 01 STA L0C1,X
FBBE: E6 2F INC SIGN
FBCO: 60 MDRTS RTS

FBC1: 48 BASCALC PHA CALC BASE ADR IN BASL,H

FBC2: 4A LSR A FOR GIVEN LINE NO.

FBC3: 29 03 AND #S03 ONLINE NO.<=$17

FBC5: 09 04 OPA #$04 APG^OOOABCDE, GENERATE
FBC7: 85 29 STA BASH BASH^OOOOOICD
FBC9: 68 PLA AND

FBCA: 29 18 AND #$1B BA3L=EABAB000
FBCC: 90 02 BCC 6SCLC2
FBCE: 69 7F ADC #$7F

FBDO: 85 28 3SCLC2 STA BASL
FBD2: OA ASL A

FBD3: OA ASL A

FBD4: 05 28 ORA BASL
FBD6: 85 28 STA BASL
FBD8: 60 RTS

FBD9: C9 87 BELLI CMP #$87 BELL CHAR? (CNTRL-G)

FBDB: DO 12 3NE RTS2B NO, RETURN
FBDD: A9 40 LDA #$40 DELAY .01 SECONDS

F6DF: 20 A8 FC JSP WMT
FEE2: AO CO LDY #SC0
FBE4: A9 OC BELL2 LDA $$0C TOGGLE SPEAKER AT

FBE6: 20 A 8 FC JSR WAIT 1 KHZ FOR .1 SEC.

FBE9: AD 30 CO LDA SPKR
FBEC: 88 DEY

FBED: DO F5 BNE EELL2
F3EF: 60 RTS 2* RTS
FBFO: A4 24 STOADV LDY CH CURSER H INDEX TO Y-REG

FBF2: 91 28 STA (BASL) ,Y STOP CHAR IN LINE
FBF4: E6 24 ADVANCE IMC CH INCREMENT CURSER H INDEX
FBF6: A5 24 LDA CM (MOVE RIGHT)

F8F8: C5 21 CUP WNDWDTH BEYOND WINDOW WIDTH?
FBFA: BO 66 ECS CR YES ^ TO WFXT LINE
FBFC: 60 RTS3 RTS MO, RETURN

FBFD: C9 AO VIDOUT CMP #$A0 CONTROL CHAP?
FBFF: BO EF BCS STOADV NO, OUTPUT IT.

FCOl: A8 TAY INVERSE VIDEO?

FC02: 10 EC BPL 3TOADV YES, OUTPUT IT.

FC04: C9 8D CMP #$8D CR?
FC06: FO 5A 3E0 CR YES.

FC08: C9 SA CMP #$8A LINE FEED?
FCOA: FO 5A BEQ LF IF SO, DO IT.

FCOC: C9 88 CMP #$S8 BACK SPACE? (CNTRL-H)

FCOE: DO C9 8ME BELLI MO, CHECK FOR BELL.
FCIO: C6 24 B3 DEC CH DECREMENT CURSER H INDEX
FC12: 10 E8 BPL RTS 3 IF POS, OK. ELSE MOVE UP

FC14: A5 21 LDA WNDWDTH SET CH TO WNDWDTH-1
FC16: 85 24 STA CH
FC18: C6 24 DEC CH (RIGHTMOST SCREEN POS)

FC1A: A5 22 UP LDA WNDTOP CURSER V INDEX
FC1C: C5 25 CMP CV

83

FC1E : BO OB 8CS STS4 IF TOP LINE THEN PETLJRN

FC20 : C6 25 DEC CV DFCR CURSER V-INDEX
FC22 : A5 25 VTAE LDA CV GET CURSER V-INDEX
FC24 : 20 CI FB VTABZ JSP PASCALC GENERATE BASE ADDR
FC27 : 65 20 ADC WHDLFT ADD WINDOW LEFT INDEX
FC29 : 85 28 STA BASL TO BASL
FC2B : 60 RTS4 PTS
FC2C : 49 CO ESC1 EOR #$C0 ESC?
FC2E : FO 28 BFQ HOME IF SO, DO HOi*E AMD CLEAR
FC30 : 69 FD ADC *$FD ESC-A OP B CHECK
FC32 : 90 CO BCC ADVAMCF A, ADVANCE
FC34 : FO DA BEO BS B, BACKSPACE
FC36 : 69 FD ADC #SFD ESC-C OR D CHFCK
FC38 : 90 2C 3CC LF C , DOWN
FC3A : FO DE BEQ UP D, GO UP
FC3C : 69 FD ADC #$FD ESC-E OP F CHECK
FC3E : 90 5C BCC CLREOL E, CLEAR TO END OF LINE
FC40 : DO E9 3NE *?TS4 NOT F, RETURN
FC42 : A4 24 CLREOP LDY CH CURSOR H TO Y INDEX
FC44 : A5 25 LDA CV CURSOR V TO A-REGISTER
FC46 : 48 CLE0P1 PHA SAVE CURRENT LINE ON STK
FC47 : 20 24 FC JSP VTARZ CALC RASE ADDRFSS
FC4A : 20 9E FC JSP CLBOL7 CLEAR TO EOL, SET CARRY
FC4D : AO 00 LDY #$00 CLEAR F^Otf H INDEX=0 FOR PES1
FC4F : 68 PLA INCREMENT CURRENT LINE
FC50 : 69 00 ADC #$00 (CARRY IS SET)
FC52 : C5 23 CMP tfNDBTM DONE TO BOTTOM OF WINDOW?
FC54 : 90 FO BCC CLEOP1 NC, KEEP CLFAPING LINES
FC56 : BO CA PCS VTAB YES, TAB TO CURRENT LINE
FC58 : A5 22 HOME LDA VlNDTOP INIT CURSOR V
FC5A : 85 25 STA CV AND H-INDICES
FC5C : AO 00 LDY #$00
FC5E : 84 24 STY CH THEN CLEAR TO END OF PAGE
FC60 : FO E4 a eg C LEO PI
FC62 : A9 00 CR LDA #$00 CURSOR TO LEFT OF INDEX
FC64 : 85 24 STA CH (PET CURSOR H=0)
FC66 : E6 25 LF INC CV INCR CURSOR V(DOWN 1 LINE)
FC68 : A5 25 LDA CV
FC6A : C5 23 CMP -JNDPTM OFF SCREFN?
FC6C : 90 B6 BCC VTABZ WO, SET BASE ADDR
FC6E : C6 25 DEC CV DECP CURSOR V(BACK TO BOTTOM
FC70 A5 22 SCROLL LDA WMDTOP START AT TOP OF SCRL WNDW
FC72- 48 PHA
FC73: 20 24 FC JSR VTAFZ GENERATE BASE ADDRESS
FC76: A5 28 SCRL1 LDA BASL COPY BASL,H
FC78: 85 2A STA BAS2L TO BAS2L,H
FC7AJ A5 29 LDA BASH
FC7C: 85 2B STA BAS2H
FC7E: A4 21 LDY WNDWDTH INIT Y TO RIGHTMOST INDEX
FC80: 88 DEY OF SCROLLING WINDOW
FC81: 68 FLA
FC82: 69 01 ADC #$01 INCR LINE NUMBER
FC84: C5 23 CMP WNDBTM DONE?
FC86: BO OD BCS SCRL3 YES, FINISH
FC88: 48 PHA
FC89: 20 24 FC JSP VTABZ FORM BASL,H (BASE ADDR)
FC8C: Bl 28 SCRL2 LDA (BASL) ,Y MOVE A CHR UP ON LINE
FC8E: 91 2A STA (BAS2L)

,

Y

FC90: 88 DEY NEXT CHAP OF LINE
FC91: 10 F9 BPL SCFL2
FC93: 30 El RMI SCRL1 NEXT LINE
FC95: AO 00 SCRL3 LDY #$00 CLEAR BOTTOM LINE
FC97: 20 9E FC JSR CLEOLZ GET BASE ADDR FOR BOTTOM LINE
FC9A: BO 86 3CS VTAP CARRY IS SET
FC9C: A4 24 CLREOL LDY CH CURSOR H INDEX
FC9E: A9 AO CLEOLZ LDA #$A0
FCAO: 91 28 CLE0L2 STA (PASL) ,Y STORE BLANKS FROM 'HERE'
FCA2: C8 I NY TO END OF LINES (tfNDWDTH)
FCA3: C4 21 CPY WNDWDTR
FCA5: 90 F9 PCC CLEOL2
FCA7: 60 PTS
FCA8: 38 WAIT- SEC
FCA9: 48 WAIT 2 PHA
FCAA: E9 01 WAIT3 3 PC #501
FCAC: DO FC PNE WVIT3 1.0204 U3EC
FCAE: 68 PLA (13+2712*A+512*A*A)
FCAF: E9 01 SBC #501
FCB1: DO F6 BNE WAIT 2

FCB3: 60 PTS
FCB4: Eb 42 NXTA4 INC A4L INCR 2-FYTE A4
FCB6: DO 02 PME NXTAl AND Al
FCB8: E6 43 INC A4H
FC6A: A5 3C NXTA1 LDA AIL INCP 2-BYTF Al.
FCBC: C5 3E CMP A2L
FC6E: A5 3D LDA A1H AND COMPARE TO A

2

84

FCCO t E5 3F SBC A2h
FCC2 : E6 3C INC ML (CARPY SET IF >=)
FCC 4 : DO 02 BNE RTS4R
FCC6 : E6 3D INC A1H
FCC 8 : 6 RTS 4 8 RTS
FCC9 : AO 43 headr LDY ?$4* WRITE A* 2 56 'LONG 1'

FCC8 : 20 DB FC JSP ZFFPLY HALF CYCLES
FCCE : DO F9 SNE HEAD^ (6 50 USEC EACH)

FCDO : 69 FE ADC #$FE
FCD2 : BO F5 *CS HE ADR THEN A 'SHORT 0'

FCD4 : AO 21 LDY *$21 (400 USEC)
FCD6 : 20 DB FC WRBIT JSR ZERDLY WRITE TWO HALF CYCLES
FCD9 : C8 INY OF 250 USEC ('0')
FCDA : C8 I NY OR 500 USEC { '0')

FCDB : 88 ZEPDLY DEY
FCDC : DO FD BNE ZEROLY
FCDE : 90 05 RCC WRTAPE Y IS COUNT FOR
FCEO : AO 32 LDY #$32 TIMING LOOP
FCE2 : 88 ONEDLY DEY
FCE3 : DO FD BNE ONEDLY
FCE5 : AC 20 CO - WRTAPE LDY TAPEOUT
FCE8 : AO 2C LDY #$2C
FCEA : CA DEX
FCEB : 60 RTS
FCEC : A2 08 RDRYTE LDX #$08 8 BITS TO READ
FCEE : 48 PDBYT2 PHA READ TWO TRANSITIONS
FCEF : 20 FA FC JSP RD2BIT (FIND EDGE)
FCF2 : 68 PLA
FCF3 : 2A POL A NEXT BIT
FCF4 : AO 3A LDY *$3A COUNT FOR SAMPLES
FCF6 : CA DEX
FCF7 : DO F5 BNE ROBYT2
FCF9 : 60 RTS
FCFA : 20 FD FC RD2BIT JSR RD3IT
FCFD : 88 RDPIT DEY DECR Y UNTIL
FCFE : AD 60 CO LDA TAPE IN TAPE TRANSITION
FDOl : 45 2F EOR LAST IN
FD03 : 10 F8 BPL RDBIT
FD05 : 45 2F EOR LA ST IN
FD07 : 85 2F STA LA ST IN
FD09 : CO 80 CPY #S80 SET CARRY ON Y-REG.
FDOB : 60 PTS
FDOC : A4 24 RDKEY LDY CH
FDOE : Bl 28 LDA (PASL) ,Y SET SCREEN TO FLASH
FDIO : 48 PHA
FD11 : 29 3F AND *S3F
FD13 : 09 40 ORA #$40
FD15 : 91 28 STA (FASL) ,Y
FD17 : 68 PLA
FD18 : 6C 38 00 J.wp (KSV.'L) GO TO USER KEY-IN
FD1B : E6 4E KEYIN INC P.NDL

FD1D DO 02 BNE KRYIM2 INCR RND NUMBER
FD1F E6 4F IMC RNDH
FD21 2C 00 CO KEYIN2 BIT KBD KEY DOWN?
FD24 10 F5 EPL KFYIH LOOP
FD26 91 28 STA (3ASL) ,Y REPLACE FLASHING SCREEN
FD28: AD 00 CO LDA K?D CET KEYCODE
FD2B: 2C 10 CO BIT KBDSTPB CLR KEY STROBE
FD2E: 60 RTS
FD2F: 20 OC FD ESC JSR PDKf.Y GET KFYCODE
FD32: 20 2C FC JSR ESC1 HANDLE ESC FUWC.
FD35: 20 OC FD P DC HAP JSP PDKEY READ KEY
FD38: C9 93 CMP #$93 ESC?
FD3A: FO F3 BEO ESC YES, DON'T RETURN
FD3C: 60 RTS
FD3D: A5 32 NOTCR LDA INVFLG
FD3F: 48 PHA
FD40: A9 FF LDA #$FF
FD42: 85 32 STA INVFLG ECHO USER LLNE
FD44: BD 00 02 LDA IN,X NON INVERSE
FD4 7: 20 ED FD JSR COUT
FD4A: 68 PLA
FD4B: 85 32 STA INVFLG
FD4D: BD 00 02 LDA IN,X
FD50: C9 88 CMP #$88 CHECK FOR EDIT KEYS
FD52: FO ID PEG BCK5PC BS, CTRL-X.
FD54: C9 98 C«P #$98
FD56: FO OA BEO CANCEL
FD58: EO F8 CPX #$F8 MARGIN?
FD5A: 90 03 BCC NOTCR

1

FD5C: 20 3A FF JSR BELL YES, SOUND PELL
FD5F: E8 NOTCR

1

INX ADVANCE INPUT INDEX
FD60: DO 13 BNE NXTCHAR
FD62: A9 DC CANCEL LDA #$DC BACKSLASH AFTER CANCELL?
FD64: 20 ED FD JSR COUT

85

FD67 : 20 8E FD GETLNZ JSR CPOUT OUTPUT CP
FD6A : A5 33 GETLN LDA PROMPT
FD6C : 20 ED FD JSR COUT OUTPUT PROMPT CHAP
FD6F : A2 01 LDX #501 INIT INPUT INDEX
FD71 : 8A BCKSPC TXA WILL BACKSPACE TO
FD72 : FO F3 EEQ GETliNZ
FD74 : CA DEX
FD75 : 20 35 FD NXTCilAF JSP PDCHAP
FD78 : C9 95 CMP #PIC;< USE SCREEN CHAR
FD7A : DO 02 BNE CAPTST FOP CTRL-U
FD7C : Bl 28 LDA (BASL)

,

Y

FD7E : C9 EO CAPTST CMP #SE0
FD80 : 90 02 3CC ADDIMP CONVERT TO CAPS
FD82 : 29 DF AND #SDF
FD84 : 9D 00 02 ADDIMP STA IM,X ADD TO IK PUT 3UF
FD87 : C9 8D CMP *$8D
FD89 : DO B2 BNE NOTCR
FD8B : 20 9C FC JSP CLPEOL CLR TO FOL IF CR
FD8E : A9 8D CROUT LDA ftS8D

FD90 : DO 5B BNE COUT
FD92 : A4 3D PPA1 LDY A1H PRINT CP ,Al IN7 HEX
FD94 : A6 3C LDX AIL
FD96 : 20 8E FD PEYX2 JSR CPOUT
FD99 : 20 40 F9 JSP PR.JTYX
FD9C : AO 00 LDY #$00
FD9E : A9 AD LDA #$AD PRItfT '-'

FDAO : 4C ED FD j:ip COUT
FDA 3 : A5 3C XAM 8 LDA AIL
FDA 5 : 09 07 ORA *$07 SET TO FINISH AT
FDA7 : 85 3E STA A2L MOD P = 7

FDA 9 : A5 3D LDA A1H
FDAB : 85 3F STA A2H
FDAD : A5 3C M0C8CHK LDA AIL
FDAF : 29 07 AND #$07
FDB1 : DO 03 BNE DAT AOUT
FDB3 : 20 92 FD XAM JSP PRA1
FDB6 : A9 AO DATAOUT LDA #$A0
FDB8 : 20 FD FD JSP COUT OUTPUT BLANK
FDBB : Bl 3C LDA (A1L),Y
FDBD : 20 DA FD JSP PRBYTE OUTPUT BYTE IN HEX
FDCO : 20 BA FC JSR WXTA1
FDC3 : 90 E8 BCC MOD3CHK CHECK IF TIME TO,
FDC5 : 60 RTS4C PTS PRINT ADDP
FDC6 : 4A XAMPM LSR A DETERMINE IF MOW
FDC7 : 90 EA see XAM MODE IS XAM
FDC9 : 4A LSR A ADD, OR SUB
FDCA : 4A LSR A
FDCB : A5 3E LDA A2L
FDCD : 90 02 BCC ADD
FDCF : 49 FF EOR 4SFF SU?: FORM 2'S COMPLEMENT
FDD1 : 65 3C ADD ADC AIL
FDD3 : 48 PHA
FDD4 : A9 BD LDA *t$3D

FDD6 : 20 ED FD JSR COUT PRINT '** , THEN RESULT
FDD9 : 68 PLA
FDDA i 48 PRBYTE PHA TRINT BYTE AS 2 HEX
FDDB . 4A LSR A DIGITS, DESTROYS A-REG
FDDC 4A LSR A
FDDD- 4A LSP A

FDDEi 4A LSR A

FDDF: 20 E5 FD JSR PRHEXZ
FDE2: 68 PL*
FDE3: 29 OF PRHEX AND #S0F PRINT HEX DIG IN A-REG
FDE5! 09 BO PRHEXZ ORA #SB0 LSB ' S

FDE7: C9 3A CMP #$BA
FDE9: 90 02 BCC COUT
FDEB: 69 06 ADC #$06
FDED: 6C 36 00 COUT JMP (CSFL) VECTOR TO USER OUTPUT ROUTI
FDFO: C9 AO C0UT1 CMP #$A0
FDF2: 90 02 BCC COUTZ DON'T OUTPUT CTRL' S INVERSE
FDF4: 25 32 AND INVFLG MASK WITH INVERSE FLAG
FDF6: 84 35 COUTZ STY YSAV1 SAV Y-REG
FDF8: 48 PHA SAV A-FEG
FDF9: 20 FD FB JSR VIDOUT OUTPUT A-REG AS ASCII
FDFC: 68 PLA RESTORE A-REG
FDFD: A4 35 LDY YSAV1 AND Y-RFG
FDFF: 60 RTS THEN RETURN
FEOO: C6 34 BL1 DEC YSAV
FE02: FO 9F BEO XAM8
FE04: CA BLANK DEX BLANK TO MON
FE05: DO 16 BNE SETMDZ AFTER BLANK
FE07: C9 BA CMP #$BA DATA STORE MODE?
FE09: DO BB BNE XAMPM NO, XAM, ADD OR SUB
FEOB: 85 31 STOP STA MODE KEEP IN STORE MODE
FEOD: A5 3E LDA A2L

86

FEOF:
FE11
FE13
FE15
FE17
FE18
FE1A
FE1D:
FElF
FE20
FE22
FE24
FE26
FE28
FE29
FE2B
FE2C
FE2E
FE30
FE33
FE35
FE36
FE38
FE3A
FE3C
FE3F
FE41
FE44
FE46
FE49
FE4B
FE4E
FE50
FE53
FE55
FE58
FE5B
FE5D:
FE5E
FE61
FE63
FE64
FE67
FE6A
FE6C
FE6E
FE6F
FE70
FE72
FE74
FE75
FE76
FE78
FE7A
FE7C
FE7D
FE7F
FE80
FE32
FE84
FE86
FE88
FE89
FE8B
FE8D:
FE8F
FE91
FE93
FE95
FE97
FE99
FE9B
FE9D:
FE9F
FEA1
FEA3
FEA5
FEA7
FEA9
FEAB
FEAD:
FEAE:
FEAF:
FEBO:
FEB3:

75 FE
14

91 40

E6 40

DO 02
E6 41

60
A4 34

B9 FF 01

85 31
60
A2 01

B5 3E
95 4 2

95 44

CA
10 F7
60
Bl 3C
91 42
20 B4 FC
90 F7
60
Bl 3C

Dl 42
FO 1C
20 92 FD

El 3C
20 DA FD
A9 AO

20 ED FD
A9 A3
20 ED FD

Bl 42
20 DA FD
A9 A9

20 ED FD
20 B4 FC
90 D9

60
20
A9
48
20 DO F8
20 53 F9

85 3A
84 3B
68
38
E9 01
DO EF

60
8A
FO 07

B5 3C
9 5 3A
CA
10 F9

60
AO 3F

DO 02
AO FF
84 32

60
A9 00
85 3E
A2 36

AO IB
DO 08
A9 00
85 3E
A2 36
AO FO
A5 3E
29 OF
FO 06

09 CO
AO 00
FO 02

A9 FD
94 00
95 01

60
EA
EA
4C 00 EO
4C 03 EO

RTS 5

SFTMODE

SETMDZ

LI'

LT2

MOV!

VFY

VFYOK

LIST

LIST2

A1PC

A IPC LP

A1PCRTS
SE'TINV

SETWORM
SETIFLG

SETKBD
IMPORT
INPRT

SETVID
OUTPORT
OUXPRT

IOPRT

IOPRT1
IOPRT2

XPASIC
BA SCONT

STA
INC
BNE
INC
RTS
LDY
LDA
STA
RTS
LDX
LDA
STA
STA
DEX
BPL
RTS
LDA
STA
JSR
BCC
RTS
LDA
CMP
BEO
JSP
LDA
JSR
LDA
JSR
LDA
JSR
LDA
J3F.

LDA
JSR
JSP
BCC
RTS
JSP
LDA
PHA
JSR
JSP
STA
STY
PLA
SEC
SBC
BNE
RTS
TXA
BEQ
LDA
STA
DEX
FPL
RTS
LDY
BNE
LDY
STY
RTS
LDA
STA
LDX
LDY
BNE
LDA
STA
LDX
LDY
LDA
AND
BEO
ORA
LDY
BEQ
LDA
STY
STA
RTS
rtOF

NOP
JiP
JMP

(A3L) ,Y STORE AS LOW BYTE AS (A3)

A3L
RTS5 INCR A3, RETURN
A3H

YSAV
IN-1,Y
'40DF

*$01
A2L,X
A4L,X
A5L,X

SAVE CONVERTED •
:

'
,

'+

•-' .
• AS MODE.

COPY A2 (2 8YTES) TO
A 4 AND A5

LT2

(AIL) ,Y MOVE (Al TO A2) TO
(A4L),Y (A4)
NXTA4
MOVE

(ML) ,Y

(A4L) ,Y
VFYOK
PRA1
(AIL) ,Y
PR3YTE
#$AG
COUT
#SA8
COUT
<A4L) ,Y
PR BYTE
<f$A9

COUT
MXTA4
VFY

A1PC
#$14

INSTDSP
PCACJ
PCL
PCB

#$01
LIST2

A IPC RTS
AlL r X
PCL,X

A IPC LP

VERIFY (Al TO A2) WITH
(A4)

T^VE Al (2 BYTES) TO
PC IF SPFJC'D AND

DISSEMBLE 20 INSTRS

ADJUST PC EACH INSTR

NEXT OF 2 INSTRS

IF USER SPEC'D ADR
COPY FROM Al TO PC

#$3F SET FOR INVERSE VID
SETIFLG VIA COUT1
#$FF SET FOR NORMAL VID
INVFLG

#$00
A2L
#KSWL
#KEYIN
IOPRT
#$00
A2L
#CSWL
tCOUTl
A2L
#$0F
IOPRT1
#IOADR/2 56
#$00
ICPRT2
#COUTl/256
LOC0,X
LOCl,X

SIMULATE PORT #0 INPUT
SPECIFIED (KEYIN ROUTINE;

SIMULATE PORT #0 OUTPUT
SPECIFIED (COUT1 ROUTINE;

SET RAM IN/OUT VECTORS

BASIC
BASIC 2

TO *ASIC WITH SCRATCH
CONTINUE BASIC

87

FEB6: 20 75 FE GO JSR A IPC

FEB9: 20 3F FF JSP RESTORE
FEBC: 6C 3A 00 JMP (PCL)
FEBF: 4C D7 FA RFGZ jwp REGDSP
FEC2: C6 34 TPACF DEC YSAV
FEC4: 20 75 FE STEPZ JSP A IPC
FEC7: 4C 43 FA JMP STEP
FECA: 4C F8 03 USP JMP USRADR
FECD: A9 40 WRITE LDA #S4
FECF: 20 C9 FC JSR HE ADR
FED2: A0 27 LDY #$27
FED4: A2 00 WR

1

LDX *$00
FED6: 41 3C EOF (A1L,X)
FED8: 48 PHA
FED9: Al 3C LDA (A1L,X)
FEDB: 20 ED FE JSR tfPPYTE

FEDE: 20 BA FC JSR NXTU
FEE1: AO ID LDY #$1D
FEE3: 68 FLA
FEE4: 90 HE ECC tfRl

FEE6: AO 22 LDY #$22
FEE 6: 20 ED FE JSR WRBYTE
FEEB: FO 40 BEC P. ELL
FEED: A2 10 WRBYTE LDX #$10
FEEF: OA WRBYT2 ASL A
FEFO: 20 D6 FC JSR WRBIT
FEF3: DO FA BNE WR3YT2
FEF5: 60 RTS
FEF6: 20 00 FE CRM.CW JSR BL1
FEF9: 68 PLA
PEFA: 68 PLA
FEFB: DO 6C BNE MONZ
FEFD: 20 FA FC READ JSR RD2BIT
FFOO: A9 16 LDA #$16
FF02: 20 C9 FC JSR HEADR
FF05: 85 2E STA CHKSUM
FF07: 20 FA FC JSR RD2BIT
FFOA: AO 24 RD2 LDY #$24
FFOC: 20 FD FC JSR PDBIT
FFOF: BO F9 BCS RD2
FFllt 20 FD FC JSR PDBIT
FF14: AO 3B LDY #$3B
FF16: 20 EC FC RD3 JSR RDBYTE
FF19: 81 3C STA (AlL,X)
FF1B: 45 2E EOR CHKSUM
FF1D: 85 2E STA CHKSU W

FF1F: 20 3A FC JSR N'XTAl
FF22: AO 35 LDY #$35
FF24: 90 FO BCC RD3
FF26: 20 EC FC JSR RDDYTE
FF29: C5 2E CMP CHKSUM
FF2B: FO OD BEO BELL
FF2D: A9 C5 PRERR LDA #$C5
FF2F: 20 ED FD JSR COUT
FF32: A9 D2 LDA 4SD2
FF34: 20 ED FD JSR COOT
FF37: 20 ED FD JSR COUT
FF3A: A9 87 BELL LDA #So7
FF3C: 4C ED FD JrlP COUT
FF3F: A5 48 RESTORE LDA STATUS
FF41: 48 PHA
FF42: A5 45 LDA ACC
FF44: A6 46 RESTRl LDX XREG
FF46: A4 47 LDY YREG
FF48: 28 PLP
FF49: 60 RTS
FF4A: 85 45 SAVE STA ACC
FF4C: 86 46 SAV1 STX XREG
FF4E: 84 47 STY YR EC-

FF50: 08 PHP
FF51: 68 PLA
FF52: 85 48 STA STATUS
FF54: BA TSX
FF55: 86 49 STY. 5PNT
FF57: D8 CLD
FF58: 60 PTS
FF59: 20 84 FE RESET JSR SETNORy
FF5C: 20 2F FB JSR I NIT
FF5F: 20 93 FE JSR SETVID
FF62: 20 69 FE JSR SETKBD
FF65: D8 MOW CLD
FF66: 20 3A FF JSR BELL
FF6 9: A9 AA MOW 2 LDA #SAA
FF6B: 85 33 STA PROMPT
FF6D: 20 67 FD JSR GETLNZ

ADR TO PC IF SPEC'D
RESTORE META REGS
GO TO USFP SUBR
TO REG DISPLAY

ADR TO PC IF SPEC'D
TAKE ONE STEP
TO USP SUB 9 AT USRADR

WRITE 10-SPC HEADER

HANDLE CR AS PLANK
THEN POP STACK
AND RTN TO MON

FIND TAPEIN EDGE

DKTAY 3.5 SECONDS
INIT CHKSUM»$FF
FIND TAPEIN EDGE
LOOK FOR SYNC ?IT

(SHORT 0)

LOOP UNTIL FOUND
SKIP SECOND SYNC B-CYCLE
INDEX FOP 0/1 TEST
READ A BYTE
STORE AT (Al)

UPDATE RUNNING CHKSUM
INCP Al f COMPARE TO A2
COMPENSATE 0/1 INDEX
LOOP UNTIL DONE
READ CHXSU'" BYTE

GOOD, SOUND BELL AND RETURN

PRINT "ERR" , THEN BE LI,

OUTPUT BELL AND RETURN

RESTORE 6 50 2 PEG CONTENTS
US SO BY DEfHIG SOFTWAPE

SAVE 65C2 REG CONTENTS

SET SCREEN 10DE

AND INIT KBD/SCREEN
AS I/O DEV'S

MUST SET HEX MODE!

**
' PROMPT FOR MON

READ A LINE

88

FF70
FF73
FF76
FF78
FF7A
FF7B
FF7D:
FF80
FF82
FF85:
FF87
FF8A
FF8C
FF8D;
FF8E
FF8F
FF90:
FF91:
FF93
FF95;
FF96
FF98
FF9A
FF9C
FF9E
FFAO
FFA2
FFA3
FFA5
FFA7
FFA9
FFAB
FFAD:
FFi30:
FFB1
FFB3:
FFB5:
FFB7:
FFB9:
FFBB
FFBD:
FFBE
FFCO
FFC1
FFC4
FFC5
FFC7
FFC9
FFCB
FFCC
FFCO:
FFCE
FFCF:
FF'DO

FFD1
FF02:
FFD3
FFD4
FFD5
FFD6
FFD7
FFD8
FFD9
FFDA
FFDB
FFDC
FFDD
FFDE
FFDF
FFEO;
FFE1:
FFE2:
FFE3
FFE4
FFE5
FFE6
FFE7
FFE8:
FFE9
FFFA
FFEB
FFEC
FFED:
FFEE
FFEF

20 C7 FF
20 A7 FF
84 34

AO 17
88
30 E8
D9 CC FF
DO F8
20 BE FF
A4 34
4C 73 FF
A2 03

OA
OA
OA
OA
OA
26 3E

26 3F
CA
10 F8

A5 31
DO 06
B5 3F

95 3D
95 41
E8
FO F3
DO 06
A2 00

86 3E
86 3F
B9 00 02

C8
49 30
C9 OA

90 D3
69 88
C9 FA
BO CD
60
A9 FE

48
B9 E3 FF
48

A5 31

AO 00
cJ4 31

60
BC
B2
BE
LD
EF
C4
EC
A9
KB
A6
A4

Ub
95
07
02
05
FO

00
EB
93
A7
C6
99
B2
C9
BE
CI
35
8C

C3
9b
AF
17
17
2B
IF

NXTITM

CHRSRCR

DIC

NXTBIT

NX TEAS

NXTBS

2

GETWUV

WfCHP

TOSUi

Z'-iODE

CHRTPL

SURTFL

JSR
JSK
STY
LDY
DFY
rv"i

CMP
BNE
JSR
LDY
JMP
LDX
ASL
ASL
ASL
ASL
ASL
ROL
POL
DEX
BPL
LDA
FNE
LDA
STA
ST A

INX
'iEQ

3NF
LDX
STX
STX
LDA
IKY
FOR
CMP
?cc
adc
CtfP

3C?
RTS
LDA
PHA
LDA
PHA
LDA
LDY
STY
RTS
DFP
DFP
DFB
DFB
DFP
DFP.

DF»*

DFB
OF!5

DFe
DFB
DF£
DFa
ofb
DFP
DFB
DFP
DFB
DFB
DFB
DFP
DFe
DFB
DFB
DFB
DFfc

DFB
DFB
DFP
DFB
DFv?

DFB
DFB
DFB
DFB
PF3

Z^ODE CLEAR "ON MODE, SCAN IDX
GETNtW GET ITEM, NON-HEX
YSAV CHAR IN A-REG
#$17 X-REG=0 IF NO HEX INPUT

MOW NOT FOUND, GO TO MON
CHRTBL,Y FIND CMND CHAR IN TEL
CBRS'RCH
T05UB FOUMD, CALL CORRESPONDING
YSAV SUBROUTINE
UXTITI*
#$03
A
A

A

A

A

A2L
A2K

NXTBIT
MODE
NXTBS2
A2B,X
A1H,X
A 3 H , X

'JXTBAS
rtXTCHW
asoc
A2L
A 21;

I V , Y

#S30
#50 A

DIG

iSFA
DIG

iiCO/256

«U QTFL,Y

MODE
*S0(!

*ODE

$3C
$B2
$3E
$ u;d

$RF
SC4
SFC
$A9
if^B

$A6
SA4
SOb
$9 5

$07
$02
$05
$F0
$00
SFB
$93
$A7
$C6
$99
4BASCONT-
*USft-l
#*FGZ-1
#TFACE-1
#VFY-1
#INPRT-1
#STEPZ-1
*OUTPRT-l
*XPASIC-1
#SETMODE-
#3ETMODE-
#MOVE-l
#LT-1

GOT HEX DIC,
SHIFT INTO A

2

LEAVE X=$FF IF DIG

IF '-10DF IS 7.3RO

THEN COPY A 2 TO
Al A*C A3

CLEAR A2

GET CHAR

IF HEX DIG, THEM

PUSM rtlGH-OFDER
SUPP ADR ON1 STK
PUS'* LO* ORDER
SUb*'. ADR ON STK

CLP iAQOF , OLD MODE
TO A-REG

GO TO SUBR VIA PTS
F ("CTRL-C")
F("CTRL-Y")
FPCTRL-F'*)
F("T")
P{" V")

FfCTFL-K")
F("3")
F(rt CTPL-P")
FC'CTBL-B")
P(--")
F (" + •)

FC'M") <F=EX-OP $B0 + $89'

F ("<")

FC'N")
F("I")
F<"L")
F("W")
F("0")
F("R")
F(" :")

F<".")
F("CR")
F (BLANK)
1

89

FFFO : 83
FFF1 : 7F
FFF2 : 5D
FFF3 : CC
FFF4 : fb
FFF5 : FC
FFF6 : 17
FFF7 : 17

FFF8 : F5
FFF9 i 03
FFFA F8
FFFB 03
FFFC 59
FFFDi FF
FFFB j SO

FFFF: FA
XOTfl

OFB #3ETUCRM-1
DFB 4SETINV-1
DFB #LIST-1
DFB #WRITE-1
DFB #GO-l
DFe #PEAQ-1
DFB #SETMODE-l
DFB #SFTMODE-l
OFB #CRMON-l
DFB &BLANK-1
DFB #NMI NMI VECTOR
DFB *NMI/256
DFB #RESET RESET VECTOR
DFB #FESET/256
DFB #IRC IRO VICTOR
DFB *IR0/256
ECU $3C

90

F500: E4 dl

F502: Ah
F503: DO 14
F505: A4 3F

F507: A6 3E

F509: DO 01
F503: 88

F50C: CA
F50D: 8A
F50E: 18
F50F: E5 3A
F511: 85 3E
F513: 10 01

F515: C8
F516: 98

* APPLE- II *

* MINI-ASSEiVI3LFR *

* *

* COPYRIGHT :1977 FY *

* APPLE CCK4PUTFP INC. *

* *

* ALL RIGHTS RESERVED *

* *

* S . WOZSIAK *

* A. 3AUM *

* *

TITLE "APPLE-II H INI -ASS EM 3

FORMAT EPZ $2E
LENGTH EPZ S2F
MODE EPZ 531
PROMPT EPZ $33
YSAV EPZ $34

L EPZ $35
PCL EPZ $3A
PCH EPZ S3*
AlH EPZ S3P
^2L EPZ $3E
A2E EPZ 53F
A4L EPZ $42
A4M EPZ $43
F*!T EPZ $44
IN EOU $200
IMSDS2 EOU SF8SE
INST03F EOU SF8O0
PR3L2 EOU SF94A
PC ADJ EOU SF953
CHAR1 EOU SF934
CHAR 2 EO.U $F9:-A

:-i^Lr-tL EOU SF9C0
mheap ECU $FA00
CUF.SU P c.QU SFC1A
GETLNZ EOU >FD67
COUT ECU SFOED
3L1 EOU SFE00
A1FCLP EOU SFE76
BELL EOU ?FF3A
GETNUM EOU $FF^7
TOSU?. EOU $FFP?
Z/'OOE EOU $FFC7
CHRTSL EOU $FFCC

ORG SF50
REL SEC * S 2 1 IS F;

ESP a .;ith

D^r ERR 3 40
LOY A 2,:

LEX »2L Y.iQViX

BWE REL2
DEY

REL2 DEX
TXA
CLC
SBC PCL FORM
STA A2L
6PL PEL 3

I MY
REL3 TYA

V COMPATIBLE
RELATIVE -'ODE?

LF dec reject

ADDR-PC-2

91

F517: E5 33 SBC PCH
F519: DO 6B ERR3 BNE ERR ERROR IF >1-BYTE BRANCH
F51B: A4 2F FINDOP LDY LENGTH
F51D: B9 3D 00 FND0P2 LDA A1H,Y MOVE INST TO (PC)
F520: 91 3A STA (PCL) ,Y
F522: 88 DEY
F523: 10 F8 BPL FND0P2
F525: 20 1A FC JSR CURSUP
F528: 20 1A FC JSP CURSUP RESTORE CURSOR
F52B: 20 DO F8 JSR INSTDSP TYPE FORMATTED LINE
F52E: 20 53 F9 JSR PCADJ UPDATE PC
F531: 84 3B STY PCH
F533: 85 3A STA PCL
F535: 4C 95 F5 J*!P NXTLINE GET NEXT LINE
F538: 20 BE FF FAKEM0N3 JSR TOSUB GO TO DELIM HANDLER
F53B: A4 34 LDY YSAV RESTORE Y-INDEX
F53D: 20 A7 FF FAKEMON JSR GETNUM READ PARAM
F540: 84 34 STY YSAV SAVE Y-INDEX
F542: AO 17 LDY #$17 INIT DELIMITER INDEX
F544: 88 FAKEM0N2 DEY CHECK NEXT DELIM
F545: 30 4B BMI RESETZ ERR IF UNRECOGNIZED DELIM
F547: D9 CC FF CMP CHRTBL,Y COMPARE WITH DELIM TABLE
F54A: DO F8 BME FAKEMON2 NO MATCH
F54C: CO 15 CPY #S15 MATCH, IS IT CR?
F54E: DO E8 BNE FAKEMON3 NO, HANDLE IT IN MONITOR
F550: A5 31 LDA MODE
F552: AO 00 LDY #$0
F554: C6 34 DEC YSAV
F556: 20 00 FE JSR BL1 HANDLE CR OUTSIDE MONITOR
F559: 4C 95 F5 JMP NXTLINE
F55C: A5 3D TRYNEXT LDA A1H GET TRIAL OPCODE
F55E: 20 8E F8 JSR INSDS2 GET FMT+LENGTH FOR OPCODE
F561: AA TAX
F562: BD 00 FA LDA MNEMR,X GET LOWER MNEMONIC BYTE
F565: C5 42 CMP A4L MATCH?
F567: DO 13 BNE NEXTOP NO, TRY NEXT OPCODE
F569: BD CO F9 LDA MNEML,X GET UPPER MNEMONIC BYTE
F56C: C5 43 CMP A4H MATCH?
F56E: DO OC BNE NEXTOP NO, TRY NEXT OPCODE.
F570: A5 44 LDA FMT
F572: A4 2E LDY FORMAT GET TRIAL FORMAT
F574: CO 9D CPY #$9D TRIAL FORMAT RELATIVE?
F576: FO 88 BEQ REL YES.
F578: C5 2E NREL CMP FORMAT SAME FORMAT?
F57A: FO 9F BEQ FINDOP YES.
F57C: C6 3D NEXTOP DEC A1H NO, TRY NEXT OPCODE
F57E: DO DC BNE TRYNEXT
F580: E6 44 INC FMT NO MORE, TRY WITH LEN=2
F582: C6 35 DEC L WAS L=2 ALREADY?
F584: FO D6 BEQ TRYNEXT NO.
F586: A4 34 ERR LDY YSAV YES, UNRECOGNIZED INST.
F588: 98 ERR2 TYA
F589: AA TAX
F58A: 20 4A F9 JSR PRBL2 PRINT " UNDER LAST READ
F58D: A9 DE LDA #$DE CHAR TO INDICATE ERROR
F58F: 20 ED FD JSR COUT POSITION.
F592: 20 3A FF RESETZ JSR BELL
F595: A9 Al NXTLINE LDA #$A1 M '

F597: 85 33 STA PROMPT INITIALIZE PROMPT
F599: 20 67 FD JSR GETLNZ GET LINE.
F59C: 20 C7 FF JSR ZMODE INIT SCREEN STUFF
F59F: AD 00 02 LDA IN GET CHAR
F5A2: C9 AO CMP #$A0 ASCII BLANK?
F5A4: FO 13 • BEO SPACE YES
F5A6: C8 INY
F5A7: C9 A4 CMP #$A4 ASCII '$' IN COL 1?
F5A9: FO 92 BEO FAKEMOM YES, SIMULATE MONITOR
F5AB: 88 DEY NO, BACKUP A CHAR
F5AC: 20 A7 FF JSP GETNUM GET A NUMBER
F5AF: C9 93 CMP #$93 '

:
' TERMINATOR?

F5B1: DO D5 ERR4 BMJ' EIRR2 NO, ERR.
F5B3: 8A TXA
F5B4: FO D2 BEQ ERR2 NO ADR PRECEDING COLON.
F5B6: 20 78 FE JSR A1PCLP MOVE A DP TO PCL, PCH.
F5B9: A9 03 SPACE LDA *$3 COUNT OF CHARS IN MNEMONIC
F5BB: 85 3D STA A1H
F5BD: 20 34 F6 NXTMN JSR GETNSP CET FIRST MNEM CHAR.
F5C0: OA NXTM A3L A
F5C1: E9 BE SEC #$BE SUBTRACT OFFSET
F5C3: C9 C2 CMP #$C2 LEGAL CHAR?
F5C5: 90 CI BCC ERR2 NO.
F5C7: OA ASL A COMPRESS-LEFT JUSTIFY
F5C8: OA ASL A
F5C9: A2 04 LDX #$4
F5CB: OA NXTM2 ASL A DO 5 TRIPLE WORD SHIFTS

92

F5CC : 26 42 ROL A4L
F5CE : 26 "4 3 ROL A4H
F5D0 : CA DEX
F5D1 : 10 F8 SPL NXTM2
F5D3 : C6 3D DEC A1H
F5D5 : F0 F4 BEQ NXTM2
F5D7 : 10 E4 BPL NXTMN
F5D9 : A2 05 F0PM1 LDX #$5
F5DB : 20 34 F6 F0Rrf2 JSP GETMSP
F5DE : 84 34 STY YSAV
F5E0 : DD 34 F9 CMP CHAR1,X
F5E3 : DO 13 BNE FORM 3

F5E5 : 20 34 F6 JSR GETMSP
F5E8 : DD 3A F9 CMP CH*\R2,X
F5EB FO OD B?9 "0R^5
F5ED: BD 3A F9 L-DA C«iA-'2,X

F5F0 FO 07 BEO FORK 4

F5F2 C9 A4 CMP #$A4
F5F4 FO 03 BEO FORM 4

F5F6: A4 34 Ley YSAV
F5F8: 18 FORK 3 CLC
F5F9' 88 FORM 4 DEY
F5FA- 26 44 FORM 5 ROL FtfT
F5FC- EO 03 CPX #S3
F5FE: DO OD BNE FOR?* 7

F600: 20 A7 FF JSP GETNU*
F603: A5 3F LDA A2H
F605: FO 01 BEQ FORM 6

F607: E» I NX
F608: 86 35 F0RW6 STX L

F60A: A2 03 LDX #S3
F60C: 88 DEY
F60D: 86 3D FOK.4 7 STX A 1

H

F60F: CA DEX
F610: 10 C9 BPL FORM 2
F612: A5 44 LDA F«T
F614! OA ASL A
F615: OA ASL A
F616: 05 35 ORA L

F618: C9 20 CMP *$20
F61A: BO 06 PCS FOR?18
F61C: A6 35 LDX L

F61E: FO 02 BEO FORM 8

F620: 09 80 ORA #$80
F622: 85 44 FORMS 3TA FKT
F624: 84 34 STY YSAV
F626: B9 00 02 LDA IN,Y
F629: C9 BB CMP #$B3
F62B: FO 04 BEO FORM9
F62D: C9 8D CMP #$8D
F62F: DO 80 BNE ERF4
F631: 4C 5C F5 FORM 9 JMP TRYNEXT
F634: B9 00 02 GFTNSP LDA IN,Y
F637: C8 INY
F638: C9 AO CMP #$A0
F63A: FO F8 BEO GETNSP
F63C: 60 RTS

ORG $F666
F666: 4C 92 F5 MINASM JMP RESETZ

DONE WITH 3 CHARS?
YES, BUT DO 1 MORE SHIFT
NO
5 CHAPS IN ADDR MOPE
GFT FIRST CHAR OF ADDR

FIRST CHAR MATCH PATTERN!?
NO
YES, GET SECOND CHAR
BATCHES SECOND HALF?
YES
NO, 13 SECOND HALF ZERO?
yes.
NO, SECOND HALF OPTIONAL?
VES.

CLEAR 3IT-KO MATCH
RACK UP 1 CHAR
FORW FORMAT BYTE
TIME TO CHECK FOR ADDR.
NO
YES

HIGH-ORDER 3YTE ZERO
NO, INCP FOR 2-BYTE
STORF LENGTH
RELOAD FORMAT INDEX
PACKUP A CHAR
SAVE INDEX
DONE WITH FORMAT CHECK?
NO.
YFS, PUT LENGTH
IN LOW BITS

ADD '$' IF NONZERO LENGTH
AND DON'T ALREADY HAVE IT

GET NEXT N0N3LANK
'

;
' START OF COMMENT?

YES
CARRIAGE RETURN?
NO, ERR.

GET NEXT NON BLANK CHAR

93

* *

*

*

* *

* mPVPTCHT 1Q?7 nv *

APPLE-I1 FLOATING
POINT ROUTINES

COPYRIGHT 197'

APPLE COMPUTER
' BY
I NC

.

ALL RIGHTS RESERVED

3. WOZNIAK

F425:
F426:
F428:
F42A:
F42C:
F42E:
F42F:
F431:
F432:
F434:
F437:
F439:
F43B:
F4 3E:
F440:
F441:
F443:
F445:
F447:
F4 49:
F44B:
F44D:
F44E:
F450:
F451:
F453:
F455:
F457:
F4 59:
F45B:
F450:
F45F:
F461:
F463:
F465:
F467:
F468:
F46B:
F46E:
F470:
F472:
F474:
F477:
F479:

18
A2 02
B5 F9
75 F5
9 5 F9
CA
10 F7

60
06 F3
20 37 F4

24 F9
10 05
20 A4
E6 F3
36
A2 04

94 FB
B5 F7
34 F3
9 4 F7

95 F3
CA
DO F3
60
A9 be

F4

85 F8
A5 F9
C9 CO
30 0C

C6 F8
06 FB

26 FA
26 F9
A5 F8
DO EE
60
20 A4 F4

20 7B F'
A5 F4
C5 F8
DO F7
20 25 F4
50 EA
70 05

SIGN
X2
M2
XI
Ml
E

OVLOC

ADD

ADUl

MD1

ABSrtAP

ADS,'API
SWAP
SWA PI

**********************!
TITLE "FLOATING POINT

EPZ SF3
EPZ
EPZ
FPZ
EPZ
EPZ
EOU
ORG
CLC
r.Dx

LDA
ADC
5TA
DKY
BPL
RTS
A3L
JSR
BIT
BPL
JSR
INC
SEC
LDX
STY
LDA
LDY
STY
STA
DFX
BMF.

RTS
LDA
STA
LDA
CMP
BrtI

DEC
ASL
ROL
ROL
LDA
BNE
RTS
JSR
JSR
LDA
CMP
BNE
JSR
BVC
BVS

ROUTINES'

FLOAT

kJORMl

NORM

RTS1
FSUB
SWPALGM
FACD

ADDEND

$F4
$F5
$F8
?F9
SFC
S3F5
$F425

H-2

K 2 , X

*Q,X

ADD1

SIGN
A-RS/'AP
•*1

ABSWAPl
FCOi-iPL

SIGN

E-1,X
X1-1,X
*2-l,X
X1-1,X
X2-1,X

SW^Pl

#SBE
XI

#sco
RTS1
XI
Ml + 2

«1 + 1

Ml
XI
NORMl

FCOtfPL

ALGNSU'P
X2
X 1

SWPALGN
ADD
NOR '4

RTLOG

CLEAR CARRY.
INDEX FOR 3-BYTF ADD.

ADD A '3YTE OF *IANT2 TO MAMTl.

INDEX TO NEXT MORE SIGNIF. BYTE.
LOOP UNTIL DONE.
RETURN
CLEAR LSB OF SIGN.
A*3 VAL OF MI, THEN SWAP WITH M2
MANT1 NEGATIVE?
MO, S'.'AP tflTH MA NT 2 AMD RETURN.
YES, COMPLEMENT IT.
INC'-

1 SIGN, COMPLEMENTING LSB.
SET CARRY FOR RETURN TO MUL/DIV.
INDEX FOR 4-BYTF SWAP.

SWAP A BYTE OF EXP/MANT1 WITH
EXP/MANT2 AND LEAVE A COPY OF
"ANT1 IN E (3 BYTES). E+3 USED

ADVANCE INDEX TO M3XT BYTE.
LOOP UNTIL DONE.
RETURN
I NIT F/Pl TO 14,
TKEN WORWALIZE TO FLOAT.
BIG ^-ORDER MANT1 BYTE.
UPPER TVT PITS UNEOUAL?
YES, RETURN WITH :"ANT1 NORMALIZED
DECREMENT EX PI.

SHIFT ^ANTl {3 BYTES) LEFT.

EXP1 ZERO?
NO, CONTINUE. NORMALIZING.
RETURN.
CMPL VANTl, CLEARS CARRY UNLESS
RIGHT SHIFT MANT1 OR SWAP WITH

COMPARE EXPl WITH EXP2.
IF #,SWAP ADDENDS OP ALIGN MANTS.
ADC ALIGNED KANTISSAS.
NO OVERFLOW, NORMALIZE RESULT.
OV: SHIFT Ml RIGHT, CARRY INTO SIGt*

94

F47B: 90 C4 ALGMSViP BCC S^AP
* ELSE SHIFT RIG

F47D: A5 F9 RTAP LDA >U
F47F: 0A ASL A
F480: E6 F8 RTLOG INC XI

F462: FO 75 PEC OVFL
F484: A2 FA RTL0G1 LDX #$FA
F486: 76 FF R0P1 ROR E + 3,X
F488: E8 INX
F489: DO FB BNE ROR1
F48B: 60 FTS
F48C: 20 32 F4 Fnuh JSP tfDl

F48F: 65 F8 AOC XI
F491: 20 E2 F4 JSR V D2
F494: 18 CLC
F495: 20 84 F4 -HJL1 JSK RTLOG

1

F498: 90 03 3CC fUL2
F49A: 20 25 F4 JSP ADO
F49D: 88 MUL2 DEY
F49E: 10 F5 PPL WUL1
F4A0: 46 F3 NiDFND LSR SIGN
F4A2: 90 CF MOPMX pec >.4C py
F4A4: 38 FCOMPL SEC
F4A5: A2 03 LDX #$3
F4A7: A9 00 CCMPL1 LDA #$0
F4A9: F5 F8 SSC XI, X

F4AB: 95 F8 STA XI, X

F4AD: CA DEX.
F4AE: DO F7 BNS COMPL1
F4B0: FO C5 BEQ ADDEND
F4B2: 20 32 F4 FDIV J3R «D1
F4B5: F5 F8 SBC XI
F4B7: 20 E2 F4 J3R r-lD2

F4BA: 38 DIV1 SEC
F4BB: A2 02 LDX #$2
F4BD: B5 F5 DIV2 LDA N2,X
F43F: F5 FC SBC E,X
F4C1: 48 PHA
F4C2: CA DEX
F4C3: 10 F8 BPL PIV2
F4C5: A2 FD LDX i$FD
F4C7: 68 DIV3 PLA
F4C8: 90 02 BCC DIV4
F4CA: 95 F8 STA M2+3,X
F4CC: E8 DIV4 I NX
F4CD: DO F8 BNE DIV3
F4CF: 26 FB ROL Ml + 2

F4D1: 26 FA ROL Ml + 1

F4D3: 26 F9 ROL Ml
F4D5: 06 F7 ASL Ni2 + 2

F4D7: 26 F6 ROL V.2+1

F4D9: 26 F5 ROL M2
F4DB: BO 1C BCS OVFL
F4DD: 88 DEY
F4DE: DO DA BNE DIV1
F4E0: FO BE BEG MDFND
F4E2: 86 FB MD2 STX Ml + 2

F4E4: 86 FA STX Ml + 1

F4E6: 86 F9 STX Ml
F4E8: BO OD BCS OVCHK
F4EA: 30 04 BMI MD3
F4EC: 68 PLA
F4ED: 68 PLA
F4EE: 90 B2 BCC NORi*X
F4F0: 49 80 MD3 EOR #$80
F4F2: 85 F8 STA XI
F4F4: AO 17 LDY *$17
F4F6: 60 RTS
F4F7: 10 F7 OVCHK BPL MD3
F4F9: 4C F5 03 OVFL J -VIP

QJIG
OVLOC
$F63D

F63D: 20 7D F4 FIX1 JSP RTAR
F640: A5 F8 FIX LDA XI
F642: 10 13 BPL UMDFL
F644: C9 8E CMP #$85
F646: DO F5 DMF FIX1
F648: 24 F9 BIT Wl
F64A: 10 OA BPL FIXPTS
F64C: A5 FB LDA Ml + 2

F64E: FO 06 BFO FIXRTS
F650: E6 FA INC Ml + 1

F652: DO 02 bne; FIXRTS
F654: E6 F9 INC Kl
F656: 60 FIXRTS RTS
F657: A9 00 UMDFL LDA #$0
F659: 85 F9 STA Ml
F658: 85 FA STA "il + l

F65D: 60 FTS

SWAP IF CARRY CLEAR,
HT ARITH.

SIGN OF MANT1 INTO CARRY FOR
RIGHT ARITH SHIFT.
I NCR XI TO ADJUST FOR RIGHT SHIFT
EXPl OUT OF RANGE.
INDEX FOR 6:RYTE RIGHT SHIFT.

NEXT BYTE OF SHIFT.
LOOP UNTIL DONS.
RETURN.
ABS VAL OF KANT1, HANT2.
ADD FXP1 TO EXP2 FOR PRODUCT EXP
CHECK PROD. EXP AND PREP. FOR MUL
CLEAR CARRY FOR FIRST BIT.
Ml AND E RIGHT (PROD AND MPLIEP)
IF CARRY CLEAR, SKIP PARTIAL PROD
ADC MULTIPLICAND TO PRODUCT.
NEXT wrjL ITERATION.
LOOP UNTIL DONE.
TEST SIGN LSB.
IF EVEN, NORMALIZE PROD, ELSE COMP
SET CARRY FOR SUBTRACT.
INDEX FOR 3- BYTE SUBTRACT.
CLEAR A.
SUBTRACT BYTE OF EXPl.
RESTORE IT.
NEXT :40RE SIGNIFICANT BYTE.
LOOP UNTIL DONE.
NORMALIZE (OR SHIFT RT IF OVFL).
TAKE ABS VAL OF MANT1 , MANT2.
SUBTRACT EXPl FRO^ EXP2.
SAVE AS OUOTIENT EXP.
SET CARRY FOR SUBTRACT.
IMDEX FOR 3-PYTF SUBTRACTION.

SUBTRACT A BYTE OF E FROM MANT2.-
SAVE ON STACK.
NEXT KORF SIGNIFICANT BYTE.
LOOP UNTIL DONE.
INDEX FOR 3-BYTE CONDITIONAL MOVE
PULL BYTE OF DIFFERENCE OFF STACK
IF M2<E THEN DON'T RESTORE M2.

NEXT LESS SIGNIFICANT BYTE.
LOOP UNTIL DONE.

ROLL OUOTIENT LEFT, CARRY INTO LSB

SHIFT DIVIDEND LEFT.

OVFL IS DUE TO UNNORMED DIVISOR
NEXT DIVIDE ITERATION.
LOOP UNTIL DONE 23 ITERATIONS.
NORM. QUOTIENT AND CORRECT SIGN.

CLEAR MANT1 (3 BYTES) FOR MUL/DIV.

IF CALC. SET CARRY, CHECK FOR OVFL
IF NTFG THEN MO UNDERFLOW.
POP ONE RETURN LEVEL.

CLFAF XI AND RETURN.
COMPLEMENT SIGN SIT OF EXPONENT.
STORE IT.
COUNT 24 VUL/2 3 OIV ITERATIONS
RETURN.
IF POSITIVE EXP THEN MO OVFL.

95

APPLE-II PSEUDO
MACHINE INTERPRETER

COPYRIGHT 1977
APPLE COMPUTER IMC

ALL RIGHTS RESERVED

S. WOZNIAK

TITLE -SWEET16 INTERPRETER

F689:
F68C:
F68D:
F68F:
F690:
F692:
F695:
F698:
F69A:
F69C:
F69E:
F6A0:
F6A1:
F6A3:
F6A5:
F6A7:
F6A8:
F6A9:
F6AA:
F6AC:
F6AE:
F6B0:
F6B1:
F6B2:
F633:
F684:
F6B7:
F6B8:
F6B9:
F6BB:
F63D:

F6BF:
F6C2:
F6C3:
F6C5:
F6C6:
F6C7:
F6C8:
F6C9:
F6CC:
F6CF:

20 4A FF
68
85 IE
68
85 IF
20 98 F6

4C 92 F6
E6 IE
DO G2
E6 IF
A9 F7
48

A0 00
81 IE
29 OF

OA
AA
4A

51 IE
FO OB
66 ID
4A
4A
4A
A8
E9 El F6
48

60
E6 IE
DO 02
E6 IF

fcD F4 F6
48

A5 ID
4A
60

68
68
20 3F FF
6C IE 00
Bl IF

ROL
ROM
R14H
R15L
R15H
S 16 PAG
SAVE
RESTORE

Sv/16

SW 16 8

SW1GC

S*U6D

T03P

TC:*K2

RTWZ

SETZ

EPZ
EPZ
EPZ
EPZ
EPZ
EQU
EQU
EQU
ORG
J3R
PLA
STA
PLA
STA
JSP
J MP
INC
BNE
INC
LDA
PHA
LDY
LDA
AND
ASL
TAX
LSR
EOR
?EO
STX
LSR
LSR
LSR
TAY
LDA
PHA
P.TS

INC
:w;
inc

LDA
PHA
LDA
LSR
PTS
PLA
PLA
JSR
Jf,P

LDA

$0
$1
510
S1E
: IF
SF7
SFF4A
$FF3F
$F689
SAVE

R15L

F15H
SVJ16C

SW16F
R15L
SW16D
R15H
*S16PAG

#S0
(R15L) r

Y
#$F
A

A

(P15L) ,Y

TOBP
P14"
A
A
A

TO Y-^EC FOP INDEXING
CPTBL-2,Y LOlv-ORDFR ADR "YTE

ONTO STACK
GOTO REG-OP ROUTINE

PRESERVE 6 50 2 REG CONTENTS

I NIT SWEET 16 PC
FROM RETURN

ADDPESS
IN'TF-RPRET AMD EXECUTE
OHE 3WEET16 INSTR.

INCP S'?EET16 PC FOR FETCH

PUSH On STACK FOR PTS

FETCH INSTR
MASK PEG SPECIFICATION
DOUBLE FOP 2-RYTE REGISTERS
TO X-PEG FOR I^DEYING

NOW HAVE OPCODE
IF ZERO THEN NON-REG OP
INDICATE' PRIOR RESULT PEG'

OPCOPE*2 TO LSP'S

R.15L
L'OMR2

R15H

PPTPL

?.1*H

PES TO RE

(P15L)
(R15L) ,Y

IfvCP. PC

LOW-ORDER ADR LYTF
ONTO STACK FOR NON-RFG OP
'PRIOR RESULT PEG' INDEX
PREPARE CARRY FOR PC, BNC.
GOTO NON-PEG OP ROUTINE
PO D RETURN ADORESS

RESTORF 6502 REG CONTENTS
RETURN TO 6 502 CODE VIA PC
HIGH-ORDER BYTE OF CONSTANT

96

F6D1:
F-6D3:

P6D4:
F6D6:
F6D8:
F6D9:
F6DA:
F6DC:
F6DE:
F6E0:
F6E2:
F6E3:
6E4:

F6E5:
F6E6:
F6E7:
F6E8:
F6E9:
F6EA:
F6EB:
F6EC:
F6ED:
F6EE:
F6EF:
F6F0:
F6F1:
F6F2:
F6F3:
F6F4:
F6F5:
F6F6:
F6F7:
F6F8:
F6F9:
F6FA:
F6FB:
F6FC:
F6FD:
F6FE:
F6FF:
F700:
F701:
F702:
F703:

F705:

F707
F709
F70B
F70D:
F70E
F710
F712
F714
F716
F717
F719
F71B
F71D:
F71F!
F721:
F723
F725
F726
F728
F72A:
F72C:
F72E
F730
F732
F734
F737;
F739:
F73A;
F73D:
F73F
F741
F743
F745:
F747
F748
F74B
F74D:
F74F:
F752:

95 01

88
Bl IE
95 00

98
38
65 IE
85 IE
90 02
E6 IF

60
02
F9

04
90
0D
9E
25
AF
16
B2
47
B9
51
CO
2F
C9
5B
D2
85
DD
6E
05
33
E8
70
93
IE
E7
65
E7
E7
E7
10 CA

B5 00

85 00
B5 01
85 01

60
A5 00
95 00
A5 01
95 01
60
A5 00
81 00
AO 00
84 ID
F6 00
DO 02

F6 01
60
Al 00
85 00
AO 00
84 01
FO ED
AO 00
FO 06
20 66 F7
Al 00
A8
20 66 F7
Al 00
85 00
84 01
AO 00
84 ID
60
20 26 F7
Al 00

85 01
4C IF F7
20 17 F7

SPT2
OPTBL
BR TBI.

SET

LD
BK

ST

STAT
STAT 2

STAT3
INR

INF2
LDAT

POP

POPD

POP2

PO?3

LDDAT

STDAT

STA
DF.Y

LDA
STA
TYA
SEC
ADC
STA
BCC
INC
RTS
DFB
DFE
DFB
DFE
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFP
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
BPL

LDA
EQU
STA
LDA
STA
RTS
LDA
STA
LDA
STA
RTS
LDA
STA
LDY
STY
INC
3NE
INC
RTS
LDA
STA
LDY
STY
BEO
LDY
BEO
JSR
LDA
TflY

JSR
LDA
STA
STY
LDY
STY
RTS
JSR
LDA
STA
J-MP

JSR

R0H,X

(R15L) ,Y LOW-ORDER BYTE OF CONSTANT
R L , X

Y-REG CONTAINS 1

tH5L
*15L
SET 2

P15H

SET-1
RTN-1
LD-1
£R-1
ST-1
BMC-1
LDAT-1
RC-1
STAT-1
8P-1
LDDAT-1
BM-1
STDAT-1
bz-1
POP-1
3NZ-1
ST PAT-

1

BM1-1
ADD-1
8N*1-1
SU3-1
BK-1
PCPD-1
PS-1
CPR-1
3S-1
INR-1
NUL-1
DCR-1
NUL-1
NUL-1
NUL-s-1

SETZ

R0L,X
*-l
ROL
R0H,X
ROH

ROL
R0L,X
ROH
R0H,X

POL
(P0L,X)
#$0
R14H
R0L,X
INR2
R0H,X

(R0L,X)
POL
#$0
ROH
STAT 3

#$0
POP2
DCR
<R0L,X)

DCP
(R0L,X)
ROL
ROH
*$0
R14H

LDAT
(R0L,X)
R0 r

-T

INR
STAT

ADD 2 TO PC

(IX)
(0)

(2X)

(1)
(3X)

(2)

(4X)
(3)

(5X)

(4)
(6X)

(5)

(7X)
(6)

(8X)

(7)
(9X)

(8)
(AX)

(9)

(BX)
(A)

(CX)

(B)

<DX)
(C)

(EX)

(D)
(FX)

(E)

(UNUSED)
(F)

ALWAYS TAKEN

MOVE RX TO RO

MOVE RO TO RX

STORE BYTE INDIRECT

INDICATE RO IS RESULT REG

INCR RX

LOAD INDIRFCT (RX)

10 RO

ZERO HIGH-ORDER PO BYTE
ALWAYS TAKEN
HIGH ORDER BYTE *
ALWAYS TAKEN
DECR RX
POP HIGH-ORDER BYTE (3RX
SAVE IN Y-REG
DECR RX
LOW-ORDER BYTE
TO RO

INDICATE RO AS LAST RSLT REG

LOW-ORDER BYTE TO R0 f INCR RX
HIGH-ORDER BYTE TO RO

I NCR RX
STORE INDIRFCT LOW-ORDER

97

F755
P757
F759
F75C
F75F
F761
F763
F766
F768
F76A
F76C
F76E
F76F
F771
F772
F774
F776
F779
F77B
F77D
F780
F781
F783
F785
F786
F788:
F78A:
F78C
F78E
F790
F792
F794
F796
F799
F79B
F79E
F79F
F7A1
F7A3
F7A5
F7A6
F7A8
F7AA
F7AB
F7AD
F7AF
F7E0
F7B2
F7B3
F7B4
F7B5
F737
F7B9
F7BA
F7BS
F7BC
F7BE
F7C0
F7C1
F7CZ
F7C3
F7C5
F7C7
F7C9
F7CA
F7C8
F7CC
F7CE
F7D0
F7D2
F7D3
F7D4
F7D5
F7D7
F7D9
F7DB
F7DD
F7DE
F7DF
F7E0
F7E2
F7E4
F7E6
F7E8
F7E9

A5 01

81 00
4C IF F7

20 6b F7
A5 00
81 00
4C 43 F7
B5 00
DO 02

D6 01
D6 00
60
AO 00

38
A5 00
F5 00
99 00
A5 01
F5 01
99 01
98
69 00
85 ID
60
A5 00
75 00
85 00
A5 01
75 01
AO 00
FO E9
A5 IE
20 19
A5 IF
20 19
18

BO OE
Bl IE
10 01
88
65 IE
85 IE

98
65 IF
85 IF
60
BO EC
60
OA
AA
B5 01

10 E8
60
OA
AA
B5 01
30 El
60
OA
AA
B5 00
15 01
FO D8
60
OA
AA
B5 00

15 01
DO CF
60
OA
AA
B5 00
35 01
49 FF
FO C4
60
OA
AA
B5 00
35 01
49 FF
DO B9
60
A2 18

1TPA'

F7
OCP

DCR2

sen

CPR

00

00 SU62

ADD

BS

BR
BNC
BR1

SR2

3NC2
3C

BP

3M

BZ

PrtZ

BM1

BNM1

NUL
RS

LDA
STA
JMP
JSP
LOA
STA
JMP
LDA
BNE
DEC
DEC
RTS
LDY

SEC
LDA
SBC
STA
LDA
SBC
STA
TYA
ADC
STA
RTS
LDA
ADC
STA
LDA
ADC
LDY
BEO
LDA
JSP
LDA
JSP
CLC
BCS
LDA
3PL
DEY
ADC
STA
TYA
ADC
STA
RTS
BCS
RTS
ASL
TAX
LDA
BPL
PTS
ASL
TAX
LDA
BMI
PTS
ASL
TAX
IDA
OF.A

DEO
PTS
ASL
TAX
LDA

ORA
BNE
PTS
ASL
TAX
LDA
AND
EOP
BEO
RTS
ASL
TAX
LOA
AND
EOR
BNE
PTS
LDX

ROH BYTE AND INCR PX. THEN
(R0L,X) STORE HIGH-ORDER BYTE.
INR I NCR <?X AND RETURN
DCF DECP RX
ROL
(P.0L,X» STORE PO LOiv "YTE GRX
POP3 INDICATE PO AS LAST RSLT PE!
R0L,X
DCR2 DECP *X
ROH,*
R0L,X

#S0

ROL
R0L,X
R0L,Y
ROH
R0H,X
R0H,Y

#$0
R14H

ROL
R0L r X
ROL
ROH
R0B,X
#$0
SUB2
R15L
STAT 2

R15H
STAT2

RESULT TO PO

MOTE Y-REG = 13*2 FOR CPR

RO-RX TO PY

LAST RESULT REG*2
CARRY TO LSB

RO+RX TO PO

PO FOR RESULT
FINISH ADD
NOTE X-REG IS 12*2!
PUSH LOW PC BYTE VIA R12

PUSH HIGH-ORDER PC BYTE

BNC 2 NO CAP.RY TEST
<R15L),Y DISPLACEMENT BYTE
BR 2

R15L
R15L

R15H
R15H

BR

A

R0H,X
BR1

P0H,X
RR1

K0L,X
R H , X
•3R1

ROL,X
R0H,X
BR1

R0L,X
R0H,X
#SFF
BR1

R0L,X
R0H,X
#$FF
BP1

#S18

ADD TO PC

LOUELE RESULT-PEG INDEX
TO X-REC FOR INDEXING
TEST FOR PLUS
BRANCH IF SO

DOU3LF PF.SULT-RfSG INDEX

TEST FOR MINUS

DOUBLE RESULT-PEG INDEX

Tt'ST FOR ZERO
(BOTH PYTES)
BRANCH IF SO

DOUBLE RESULT-REG INDEX

TEST FOR NONZERO
(BOTH BYTES)
BRANCH IF SO

DOUBLE RESULT-REG INDEX

CHECK BOTH BYTES
FOR $FF (MINUS 1)

BRANCH IF SO

DOUBLE RESULT-PEG INDEX

CHECK BOTH BYTES FOR NO $FF

PPANCH IF NOT MINUS 1

12*2 FOR R12 AS STK POINTER

98

F7EB:
F7EE:

20
Al

66
00

F7F0: 85 IF

F7F2:
F7F5:

20
Al

66
00

F7F7: 85 IE

F7F9:
F7FA:

60
4C C7

F7 JSR DCR DECR STACK POINTER
POP HIGH RETURN ADR TO PC

F7 JSP OCR SAKE FOR LOW-ORDER BYTE

F6 RTM

JSR DCR
LDA (F0L, X)

STA R15H
JSP DCR
LDA (R0L (-X)

STA R15L
RTS
JMP RTN2

99

6502 MICROPROCESSOR INSTRUCTIONS

ADC Add Memory to Accumulator with

Carry

AND "AND" Memory with Accumulator
ASL Shift Left One Bit (Memory or

Accumulator)

BCC Branch on Carry Clear

BCS Branch on Carry Set

BEQ Branch on Result Zero

BIT Test Bits in Memory with

Accumulator

BMI Branch on Result Minus

BNE Branch on Result not Zero

BPL Branch on Result Plus

BRK Force Break

BVC Branch on Overflow Clear

BVS Branch on Overflow Set

CLC Clear Carry Flag

CLD Clear Decimal Mode
CLI Clear Interrupt Disable Bit

CLV Clear Overflow Flag

CMP Compare Memory and Accumulator
CPX Compare Memory and Index X

CPY Compare Memory and Index Y

DEC Decrement Memory by One
DEX Decrement Index X by One
DEY Decrement Index Y by One

EOR "Exclusive-Or" Memory with

Accumulator

INC Increment Memory by One
INX Increment Index X by One
INY increment Index Y by One

JMP Jump to New Location

JSR Jump to New Location Saving

Return Address

LDA Load Accumulator with Memory
LDX Load Index X with Memory
LDY Load Index Y with Memory
LSR Shift Right one Bit (Memory or

Accumulator)

NOP No Operation

ORA "OR" Memory with Accumulator

PHA Push Accumulator on Stack

PHP Push Processor Status on Stack

PLA Puli Accumulator from Stack

PLP Pull Processor Status from Stack

ROL Rotate One Bit Left (Memory or

Accumulator)

ROR Rotate One Bit Right (Memory or

Accumulator)

RTI Return from Interrupt

RTS Return from Subroutine

SBC Subtract Memory from Accumulator

with Borrow

SEC Set Carry Flag

SED Set Decimal Mode
SEI Set Interrupt Disable Status

STA Store Accumulator in Memory
STX Store Index X in Memory
STY Store Index Y in Memory

TAX Transfer Accumulator to Index X

TAY Transfer Accumulator to Index Y

TSX Transfer Stack Pointer to Index X

TXA Transfer Index X to Accumulator

TXS Transfer Index X to Stack Pointer

TYA Transfer Index Y to Accumulator

100

THE FOLLOWING NOTATION
APPLIES TO THIS SUMMARY:

A Accumulator

X, Y Index Registers

M Memory

C Borrow

P Processor Status Register

s Stack Pointer

• Change
— No Change
+ Add
A Logical AND
- Subtract

¥ Logical Exclusive Or

4 Transfer From Stack

Transfer To Stack
-^ Transfer To
-* Transfer To
V Logical OR
PC Program Counter

PCH Program Counter High

PCL Program Counter Low
OPER Operand

Immediate Addressing Mode

FIGURE 1. ASL-SHIFT LEFT ONE BIT OPERATION

7 6 5 4 3 2 10

FIGURE 2. ROTATE ONE BIT LEFT (MEMORY
OR ACCUMULATOR)

M OR A

7 6 5 4 3 2 1 c

FIGURE 3.

L*- r. —*- D

NOTE 1: BIT — TEST BITS

Bit 6 and 7 are transferred to the status register. If the
result of A A M is zero then Z=1, otherwise 2=0.

PROGRAMMING MODEL

7

A

7

Y

7

X

15 7

PCH PCL

ACCUMULATOR

INDEX REGISTER Y

INDEX REGISTER X

PROGRAM COUNTER

01 STACK POINTER

N| v] B|d[l|z|c] PROCESSOR STATUS REGISTER, "P*

CARRY
ZERO
INTERRUPT DISABLE
DECIMAL MODE
BREAK COMMAND
OVERFLOW
NEGATIVE

101

COW
Q
O
O

a.
I

1

1

o
1

1

1

1

1

1o
1

1o
1

1

1 o

I

1

i
>

1

1

1

1

1

1

>
>

1

I

1

4

I

1

1

1

>
>

1

1

1

1

z >-«
CM - - - ^* cmcmcmcocococmcm CM CM CO CM CM CO CM CM CO CO ^ i—

3M CO COo 8 co
CO

OliniflQQQr- t-OOQOOQOO O T O
UJUJUJ

O * Oooo (O tG LU LUoooo <o S

3J3
a.o
CO>
CO

o
-Jo

o
_io 3o

>
O

x>"X X > ~. ~.

£ & & & & if &
o oooo oSS
0.0.0.0.0.0.0.0.
2 2SS22SSoooooooo

&> <£ <u
a. a. o.O o o
XXX
a- a. olooo

a> £> <5
o. Q. o.©oo

X X
a. o. a. a.oooo
oooo
UJ LU LU UJoooo

X
UJo

>-
LUO

S-S
aZ

TO

cc

«
"a.

E

T3
«y

"5.

E
"S.

E

V
"5.

E

X
•j » » x. >: x >"-

nj ao«) at a» «_r £?

= NN<<< ~ =^

V 0)

« 2>»
^oq! 3
*> „ o
e e «
JE INI <

* ~ o
E 2 «

X X
atom) v

rvi m < <

oV
"5.

E

X3
a>

"a.

E

Be
"S

Q.

II>
c
o
.co
c
re

m
t

o
7
o

>
t

o

2
1

<

S
1

X

S
1

3-

3E

t

1

2

X
t

1

X

>-

t

7
>-

s

W

o
r
cu
>
o
c
o

CO I
CD co

«]U
CJ re
-J «>O O

4)
"Oo
E

E
o
<L>

TJ

a re_J «
C3 o

to

so
t
>

=» re

CJ o

o
=
(0

>»

o
E
« >-

ES
a*
«

s is

•oc
m
>.

o
E
a>

E
V«x

x £•*
0. g-oO o =

«
>•

o
E
a>

E

J" E ®
a. op
CS o.E

3K

O
E
w
E
c
E «

** M c

X
X
ato
c

c
a»

E «
a> cx S °

O O -o

>-

Va
c

c

E w
a> e> S °

C3 o x»

o
D
DC
h-
co
Z

ex

3 —
5°
a. *
:

>
1

1

>

1

1

I

>

1

t

> 1

to

S
1

1

i
T ''I

oo

CMCMCMCOCOCOCMCM CMCMCMCOCOrOCMCM r- CM CM CO CO CM CM CM CM CO CM CM CM »• CM

3^3 SSsSsnSs CM^^g^^CM^ gs^s^ s £ £ s« 8 g o s a

Assembly Languaga Form

X 3"X X >- ^ ~.

<V 1) V V U U nn
a. o. o. a. o. a onoo o o oo S2
oooooooooooooooo<<<<<<<<

x>-
x_ x >• x.

^5

ooo oooSS
oooooooo
<£<£<<<<<<

x. x.

« <5 « vaaao.< o o o o
_J _J _l _J _i
CO CO GO CO t/)< < < < <

1o
oo
CO

&o
COo
CD

8.o
a
LU
CO

IIIoo
* *tt
CO CO

a.o
S
CO

clo
LUz
CO

cl
o
_J
a.
CO

cc
CO

o

CO

*> 4> O) . ^". X •

m en en a; <u ai ^; C

£ 2 £ « "> wS-o
£ rsi rsj < < < ^.cr

2> <u «' x >_ x >v
m ojcnaiw ai «-'^

E 2 2 S S °^

o x
« « a> X— o> oi (u a>

i<£ot = =

O n> <D -° -°
< ^g^^l< <

>

cc

>

a)
CC

A)
_>

«

CC

<u
at a>

ISI<

>

CC

_>

«
0)
CC

>

CC

I
a.
E

V
_>

M
tu
cc

co

exo

o
<
\

o

<

<
t

<
<

3
O)
LZ
a»
41
to

o
o
c
o

<Jc
JO

m

IIo
co
JZuc
re

m

ISJ

c
o
JZ
CJ
cn
m

z

<: *o

co

(J
c
(0

CD

o
ii

INI

C
O
J=ocA
CO

o
z
co
x:
uc
CO

CO

O 3*

o
II>
c
o
uc
to

CO

c

if

m
u
JZ

si
SB

*

o ,_

E SM
o o |Z z u
r? < a

o

E
.•r o
« **

-J c E
*2 £5< COS-

too
c
o

o 1
(J «
CD m

Hi

>.

to

c
o

CO 1
CO co

o

IM

2S
3m
to

c
o

i if to

CO CO

O k-

e 2

.o CO

3C
"E

v>
0)

co
-cu

£ i
oa m

o
a>
fM

Oc
"5

a>

c
o

UJ 1
CO co

3
Q.

<D

C
o

if
CD co

CO

m
it S

CD LL.

»

*
o
r
>o
c
o

sf
CO co

102

C/)

LU

Q
O
O

3 —
5 u

I

I

>
>©

1

1

t

1

>
>

1

1

1

1

>
>

u
re

CO

E
o
LL

t

1

>
3

l

l

l

>
>
>

CD
i-cvjwnn - cmcmcnjcocococmcsj - - - - T-tMCNPlm *- c\j cm co en

< CO (O LU LU <
LU 8gS8££o^ 5 3 s CO

CM S88&& 2i8£££

Assembly Language Form

X X
u « V IU
a. D. Q. CL< o o oo

cc cc cc cc cc
CO CO GO CO C/3
_i _i _j _j _j

a.oz

X
-

X
-
*". \J *lT

euajtoaJajcjjSS
a. a. o. a. ex a.s£oo o o o o 2-9,

<£<<<<<<<
oc oc tx cr tr oc oc ocoooooooo

<X
a.

X
a.

<
—J
a.

a.
—i
a.

X X
co co co co^ Q. Q. Q. CL< oo o o

—I _J _J —1 _io oo o o
or ac cc oc ac

X X
V V u V

^ o. o. a. a.< o o o o
oc ac ac oc cco o o o o
ac oc tr ac ac

B
M JJno *a

fe*o

2 x
'iq cu cu X— o> o> <u a>2 ra re •• *;Ea.o.22
3 o o ° °
o " £ co w
U j) nj J3 J3
< M fsj < <

T3

E

X _
as to to i

X. >; x >".

m cnaicu (u a> _r ^r
:— reretrtrtiejo^CLQ.-3 ~J=5 COa)
S o o ° O O •- -
C t) 1)AX1I} C C£NN<<< ~ :=-

a
a.

E

"O
to

"a.

E

OS

"3.

•a
QJ

"5.

E

o X
re a* oi x— 0)0)0)0)
^ re re *= t;Ea.o.22
3 O Oo S £ w m
U a) q)£)£)< rsi rsi < <

O X
re « a> x
— a* o) a> a>
2 «J ro t; t:Eq.q.22
3 O OU s 2 « «o a) <o .a .a< rsi rsi < <

E

a.o

3
O)
IT
co

en

co
re

as
a.O
oz

<
t

£
>
< < D_ < Qu

a)

3
o»
Ll

ai

CO

CO
a>

3
O)
LL.

CU
CD
CO

ca

£3

1

a
re

3
- E

c «
o >_— o
£cT

a: = E
CO E|

a
«

& &
Z Z

x:

S

o o
E S

5= o <->

o
re

3
E
3

W
3
00

V)

o
CO
to
03o
O j*

-re

Q. a. a

o

3
E -*
3 °
o «

2 £2

CO3
re

o
to

°i = E

o

3
- E
53
*- <->

s «

S ° Ecc oc 3

O
re

ll
— <J

5 «
03 O

°= « IS ° ECC ac S

o

o
D
DC
H
0)
z

M3 —
Zn rsi

Q_ *

i

i

>

1

1

1

3

i

i

i

i

l

I

1

1

>> i

1

1

1

1

>>

1

1

1

1>>

i

1

1

1

>
>

sim CJCNJCSJCOfncOOJCsJ CVJ CM CO CO - - co ro cr> ojtMCMCOcococgoj CM CM CNJ CO CO CM CM CM CO CO

OJ lO UQ o o o> »~ i- CO CO LU LU
LU LL LU U_

CO
LU

OO
CJ s#a 8 o>inir)000)-«-T-<<m<CQCQ<CD CM CO CO LU LU< < CD < 03

O ^ -V O O< < co < m

Assembly Language Form

x x >- x- ^
a)(U«ua)»(linn
o o o o o o £2
acocococacccacacoooooooo
LU 4JJ LU LU LU UU LU LU

X X
v u « oaaaao o o o
uuouz z z z Xz

>-
z

II
a. a.

IU
exo
ac
CO
-3

x >X X >
*Jj

^c

CUCUCUCUCUCUnn
O O O O O O SS
<<<<<<<<oooooooo—• —« —1 —I —J —1 —1 —

1

>- >
CO <u cu cu cuaaaaaO o o oo
X X X X XO O O O o—I —1 —

»

1 —

1

X X
cu a> cu co cuaao. a aO O O

00000
* 1 P 1 i

1

1

NamB

j

Operation

;

Addressing

Description

'

Mode

X _^^_
a> a, <u*

x
:

>- >< >-.

(Q 0)C3>CU cu u <JC—-reretrtitrotj^ Qu CL ^ ^* "^ V CD

E"S fc0t/)<n "O"o

^rsirst<<<^-:=:

<
t

<

X
a> qj X
ct O) a> co

££ 11

rsi rsi < <
I
a.
E

T3
cu

"5.

E

cu

3 t3
o £
en ~
51

cu

o
CAn
<

X —*N_« a> <u x
:

>
: ><

>-.

m enexcu a> cu^^r
^J n n 3 3 3 m m
2J o a O O O 3 .=

£ rsi m < < < ^r-=-

>
CD ft) CU *".

q O) D) O) V^££33
I S S°°e^^55

X
O) u j)' X
"J5 o> o> cu ai

-o££ 3 3

e^^§5

+

X
i

+

X
+

>•

-it

ii
^CVJ
+ +o o
CL CL

—1 X
as
.t t

A oo
OL^rb

<
t

£

X
t

£

>-

t

£

o
E

E o
^ re

? 1

(/) U3 re

OC O x;

S ^ 5

o
E
4)

E

IU

E »

c
o
>.

X
X
CD

c
a>

E
X -

CU
c
o
>N
JD

>-

X
cuo
tr

c
<u

E

3E =

tr
o
re
CJ

$
cu
tr

o

Is
re

o re

s E
CU 3

a k-

__ ex cr

S ll^ -a to

o
re

o E
o cu
re E

3 5*

x'>*
X
as c

si

3 5*

x

j j*

103

CO
ID
Q
O
O
z
g
o
D
DC
H
CO

a —
W OI

a.
*

1

t

i

I

I

I

I

l

>
>

M
z >»

- - -

Soi s < 3

Assembly Language Form

<X
i-

coX <

c
M »M "D
oi e£* o

.—*

"5.

E
75.

£

«
"5.

E

cu

O
<

X

CO

X

<
I
>-

[NameDescription

TXA

Transfer

index

X

to

accumulator

TXS

Transfer

index

X
to

stack

pointer

TYA

Transfer

index

Y

to

accumulator

fs
a —

53 rsi

a. x

u
re

E
o

I

1

>
>
>

Y

1

T
1

1

1

1

1

1

1

1

1

t

4

i

t

1

1

>

- - eMCsievifOc^coeMCM - - - cm cm co co co cm cm cvi cm <*> cm ex eo - - -

3M 5 a>LOWOoo>T--«—
UJUJU-LULL_Li_UJLl- 8 2 R oo oS 55 en o> co o> SS^ 5SS <<

to< ca

Assembly Language Form

CC

X 3"X X >- ~- ^
aaaaa o.-^-^

CJOOOOOOO
COCOCOCOCOCOCOCO

o
LU
CO

a
LU
CO

lu
CO

x x. >-_ ^j c-
te « a3 fe v £ S
o o o o oSS
<<<<<<<
\- i- t- - t- i- t-
CO CO CO CO CO CO CO

QJ 4) 4)aa o.OO o

CO to CO

X
tu a> tu
a. a. a.O O O

CO CO CO

X<
>-
<
1—

X
CO

CMB

cu o
0>

E

V

E

« <U »' x.^.x^
re o> ct> <d a> a> «_r £T
:-=rerat:T:t:o<->
T3 Q_ Q_ 3 3 3 Q3 i)

.ErNirNi<<<^^

-oV
15.

E

T3
OJ

"5.

E

a)

E

X
« « x,>-.x>:
o> o> a> iu a> *_" ^Ir
(0 «""" u o
q i

r^ 3 3 3 (u qj

Q _ o o o .t .t
£ £ Cft (rt (A "O "C3

<u tt> -9 -S -9 c c
INI IVI < < < :=- ^3-

>-

CT CD 0)
re re *r
Q_ Q. ^
s e

°

INI fVI <

X
V CD

re re *=
Q_ o_ ^
4> CD -Cl

MINK

cu

a.
E

-a
o>

E

CD.

"a.

E

e:
_©
T»
at
a.o o

a.

a.

£
CJ
a.

<
t

lo

<
t T t

<
t

X
t

>-

X
<

<

>
t

<

X
t

co1

Description

ZJ

£
o

— 3
t: «
CC cc

.E

3
O
.O
=>
en

E
o

c
CO ^

CC cc

£§
p O
,£ JO

1*

2 E

GO to re

JO

reO °
LU £>
CO to

O
E
*<6

.§
'u
VD "°

LU ^
CO co

-Q
re

.52

"O

GL

CD

— "-J!
LU £ re

CO co «

o
re

E

So
re e

CO co.E

o
E
oj

E

X
X
cu
T3
E

X £
»— 2
CO to

o
E
CD

E
.E
>-

X

_c

3- £
t— 2
CO co

o

E
Oo
re x
*£

x 2?
? £3

o
re

E
UO
re >.

? £2

c
o
a.

o
re

*« X

X c e
c" 2 ^1— K=2

104

<
I

Q_ Q.

ai O
Q Z

2
z z o
III
UOtlllL

Q O Q Q Q

I I

CD O
o co z

I I I

o> o>
n n
Q. 0.

O
z

I I

I !

X
CL

U

N
I

O
m -? ^ -,
CO £ Z ±

I I I

«8

3 3
o o
W (A

.0 *s

< <
I I

x °
a. cd
O CO

I

CL O O °- °-
O uj cq O O
Z CO CO Z z

IULUWLULULULULULULULUL1JWUJLU
I I

I I I I I I
I I I I I

II
2 o

(0*2
I I I

m to

<
I

<
1

n
<

LU
CO

CO
CO

0. 0. a.OOO
z z z

CO
CO

1

O
z

Cl

O
z

s 00 « < O UU-lLL_U_LLLLli_ll_

X x >
v a> ai
cn o> 01

<L CL CL

OOO
4) <U Q)

N N N
I I I

> < X CL

Q Q Q O
-l -i _J Z

I I I I

-Q

<
1

-0-0,0
< < <

>
-J

<
-1

X
co

1

0.

O
Z

1

1 1 1

> < X
Q Q Q
-J -1 -J

1 1 1

1

00
CO

1

CO
<
CO

CO
CO

1 1

O O LU
CO CO CO

II

cl 2
O O

Cl Cl

O O
Z Z

I

I

« (0
cl a
o o

I

£
E

I

CL ^ Cl

O > 2
z 2 o

uj O
Q Z

I I I I I [
I I I 1 ||t

a> £> * -

8 8 § 6

I
I

I I

>s:oq-ujo-clclclclISluOzSOOOooqzcoozzz
fill

»- CM CO

x X
a) a>"

o

UOOOOOOOOOOOOOOOOQOOQ

91
o o

I I

CO
LU
Q
O
O
Z
o

<
DC
LU
Q.

O
X
LU

I

o
2 «
£i .0
< <

1 I

< X
CO CO

I
I

Q uj

£ O <
9 9

*
Z CO CO

1!

' '

00 <fi

Cn O)
m n
Cl Cl

o o

Z CO tO if
I I

co cl

x O
h- z

S * £w 0) ^
«j 2- a
£ 6 £
E £ E

2 2°
t) V ffiN N N

I I I I I I I I I
I I I I I I I

- *^* *-/ T tlj
0> O) O) Cfi 01

V V
o> cn

III III
ooSggSSggSi2Zj_i_iZj"r!zK

I I I I

5 W (O S C5
< < < < <

<(DOQUJlj.OrN

is

1 1

1

1 1 1

< CO O
< < <

g X
n Q
< _i

1 I

Q uj ul
< < <

CO < 0- Q.

O.Q O O
CO -l z z
Mill
O 1- CM CO
CO CO CO CO

o o

<

So
-J z

I
I

LU LL

I

<-> £Q O
< z

I I

a. a. o cr a. ^ u
O O o O O 5 O
z z < n zo. <

I I I

<5 co

I I I

E
3
O

<
I

I

gc a a.
O O 2
cc Z ^

I I I

< CO

oil
2 o o
T) n j3

JE < <
I I

O CC CLOOO
< GC Z

I
I I I I

O O LU U. O t-

I

U 0. CL Cl5000

CL CL

O O

N N
I I

£ °-

O O
z z

< <

ffl 4> 4)

O) 01 cn
a « «
q. 1 a

(O <C (O (O <o CO to

CO < z z z < cc

I I I I

(O n A IS

QOOujQOO O
co < Z

I I
I

o o> <

I I

O
O
<

tr a
O O
cc z

CL rf CL CL

O h O O
Z CO Z Z

I I I I

I I I

>- < X
H H h-W CO CO

f

I I

O uj
z a

I I

CL -
O 5
Z to

I I

CM 8

x X

O) 01
ffl <Q
a. 0.

N m

Cl Cl

O O
Z Z

I I I

O Cl ClZOO
< z z

3 5
O o« «
5 n
< <,

I
I

Q -J

Z O
< cc

« ^

CL _ CC
Ol-O
2; tr uj

I I t I I
M

!
I

I I
1 1 l I I I

5? U? $

* 2

^ E
£

?; <
2 1Z Cl

I 2

I
I

£ cc ftO co O
uj -1 Z

I
I I

a> < CO

P< <
I

I

So
-l Z

I I I I

(J o

CC Cl aOOO
LU Z Z

i I I

m m m

x x
a»"

a,-

2 2

I
I

£ ccO co

< <
I I

_ tr cl cl a cc
-1 o o O O
O UJ Z Z Z LU

I I I I I I
I I t I

^rin<or-coo><C0OQ

-

(Indirect,

X)

-

Zero

Page

-

Zero

Page

<D 2

1 1

2 a.

2 3
S
1 JS
< <
t 1

>

1

1
1

" X

2 2
N N

l .

*
3
O

<
|

1

< Cl Cl Cl < .

cc O O cc co
Z Z Z <

l
1 l 1 1 1

0.

z
1

Cl

I
a

1

1

< j
£ w
<

1 1

!
1

Cl Cl < ,

O cc to
z z <
lilt

0.

Z
1

CO O

'
1

CL a. 0. < _| CLOOOJwO
z z z < z

1

O < Cl Cl CljiiOOO
O z z z

i 1 1 1 1 I

5 SSSSS
1 1 1 1

8S
lilt

CO O O UJ0000
1

LL
1 1

1-

1

CM
r-

1

CO
1-

1 1 1 1

«> <C N
• F T-

1)111
00 0> < CO O
*- y- r- 1- y-

S 8
5 5
* I

% -• fecc co O
O < z

z
< z

& 2* »
a.

o P p

t I

to < cr z a.

I
I I ! I I I I I I t I I

5 5
« I
t o
i*

f
1

Q -J CLZOO
< CC Z

t I

o<-nntu)ONcoa><lllOQuiu.pf-Nn^inipN«a)<air»-fri*f.rrf-»-rrrrfr«NNCy|«ftlfilNNSNN

€8

!
£0 <

I I I

105

APPLE II HARDWARE

1. Getting Started with Your APPLE II Board

2. APPLE II Switching Power Supply

3. Interfacing with the Home TV
4. Simple Serial Output

5. Interfacing the APPLE—
Signals, Loading, Pin Connections

6. Memory —
Options, Expansion, Map, Address

7. System Timing

8. Schematics

106

GETTING STARTED WITH YOUR APPLE II BOARD

INTRODUCTION

ITEMS YOU WILL NEED :

Your APPLE II board comes completely assembled and thoroughly tested.

You should have received the following:

a. 1 ea. APPLE II P.C. Board complete with
specified RAM memory.

b. 1 ea. d.c. power connector with cable.

c. 1 ea. 2" speaker with cable.

d. 1 ea. Preliminary Manual

e. 1 ea. Demonstration cassette tapes. (For 4K: 1 cassette (2 programs)
16K or greater: 3 cassettes.

f. 2 ea. 16 pin headers plugged into locations A7
and J14.

In addition you will need:

g. A color TV set (or B & W) equipped with a direct
video input connector for best performance or a com-
mercially available RF modulator such as a "Pixi-verte^"
Higher channel (7-13) modulators generally provide
better system performance than lower channel modulators
(2-6).

h. The following power supplies (NOTE: current ratings
do not include any capacity for peripheral boards.):

1. +12 Volts with the following current capacity:

a. For 4K or 16K systems - 350mA.

b. For 8K, 20K or 32K - 550mA.

c. For 12K, 24K, 36K or 48K - 850mA.

2. +5 Volts at 1.6 amps

3. -5 Volts at 10mA.

4. OPTIONAL: If -12 Volts is required by your keyboard.
(If using an APPLE II supplied keyboard, you will
need -12V at 50mA.)

107

i. An audio cassette recorder such as a Panasonic model
RQ-309 DS which is used to load and save programs.

j. An ASCII encoded keyboard equipped with a "reset"
switch.

k. Cable for the following:

1. Keyboard to APPLE IT P.C.B.

2. Video out 75 ohm cable to TV or modulator

3. Cassette to APPLE II P.C.B. (1 or 2)

Optionally you may desire:

1. Game paddles or pots with cables to APPLE II Game I/O

connector. (Several demo programs use PDL(O) and
"Pong" also uses PDL(l).

m. Case to hold all the above

Final Assembly Steps

1. Using detailed information on pin functions in hardware
section of manual, connect power supplies to d.c. cable
assembly. Use both ground wires to miminize resistance
With cable assembly disconnected from APPLE II mother
board, turn on power supplies and verify voltages on

connector pins. Improper supply connections such as re

verse polarity can severely damage your APPLE II.

2. Connect keyboard to APPLE II by unplugging leader in

location A7 and wiring keyboard cable to it, then plug
back into APPLE II P.C.B.

3. Plug in speaker cable.

4. Optionally connect one or two game paddles using leader

supplied in socket located at J14.

5. Connect video cable.

6. Connect cable from cassette monitor output to APPLE II

cassette input.

7. Check to see that APPLE II board is not contacting any

conducting surface.

8. With power supplies turned off, plug in power connector

to mother board then recheck all cableing.

108

POWER UP

1. Turn power on. If power supplies overload, immediately turn off

and recheck power cable wiring. Verify operating supply voltages

are within +3% of nominal value.

2. You should now have random video display. If not check video
level pot on mother board, full clockwise is maximum video out-

put. Also check video cables for opens and shorts. Check
modulator if you are usinq one.

3. Press reset button. Speaker should beep and a "*" prompt
character with a blinking cursor should appear in lower
left on screen.

4. Press "esc" button, release and type a "@" (shift-P) to

clear screen.. You may now try "Monitor" commands if you

wish. See details in "Monitor" software section.

RUNNING BASIC

1. Turn power on; press reset button; type "control B" and press
return button. A ">" prompt character should appear on screen
indicating that you are now in BASIC.

2. Load one of the supplied demonstration cassettes into recorder.
Set recorder level to approximately 5 and start recorder. Type
"LOAD" and return. First beep indicates that APPLE II has found
beginning of program; second indicates end of program followed
by ">" character on screen. If error occurs on loading, try a

different demo tape or try changing cassette volume level.

3. Type RUM and carriage return to execute demonstration program.

Listings of these are included in the last section of this

manual

.

109

THE APPLE II SWITCHING POWER SUPPLY

Switching power supplies generally have both advantages and peculiarities

not generally found in conventional power supplies. The Apple II user
is urged to review this section.

Your Apple II is equipped with an AC line

voltage filter and a three wire AC line cord.

It is important to make sure that the third
wire is returned to earth ground. Use a con-

tinuity checker or ohrrmeter to ensure that

the third wire is actually returned to earth.

Continuity should be checked for between the

power supply case and an available water pipe

for example. The line filter, which is of a

type approved by domestic (U.L. CSA) and

international (VDE) agencies must be returned

to earth to function properly and to avoid

potential shock hazards.

The APPLE II power supply is of the "flyback" switching type. In
this system, the AC line is rectified directly, "chopped up" by a high
frequency oscillator and coupled through a small transformer to the
diodes, filters, etc., and results in four low voltage DC supplies to
run APPLE II. The transformer isolates the DC supplies from the line
and is provided with several shields to prevent "hash" from being
coupled into the logic or peripherals. In the "flyback" system, the
energy transferred through from the AC line side to DC supply side is
stored in the transformer's inductance on one-half of the operating
cycle, then transferred to the output filter capacitors on the second
half of the operating cycle. Similar systems are used in TV sets to
provide horizontal deflection and the high voltages to run the CRT.

Regulation of the DC voltages is accomplished by controlling the
frequency at which the converter operates; the greater the output power
needed, the lower the frequency of the converter. If the converter is
overloaded, the operating frequency will drop into the audible range
with squeels and squawks warning the user that something is wrong.

All DC outputs are regulated at the same time and one of the four
outputs (the +5 volt supply) is compared to a reference voltage with
the difference error fed to a feedback loop to assist the oscillator
in running at the needed frequency. Since all DC outputs are regulated
together, their voltages will reflect to some extent unequal loadings.

110

For example; if the +5 supply is loaded very heavily, then all

other supply voltages will increase in voltage slightly; conversely,
very light loading on the +5 supply and heavy loading on the +12

supply will cause both it and the others to sag lightly. If precision
reference voltages are needed for peripheral applications, they should

be provided for in the peripheral design.

In general, the APPLE II design is conservative with respect to

component ratings and operating termperatures. An over-voltage crowbar
shutdown system and an auxilliary control feedback loop are provided
to ensure that even very unlikely failure modes will not cause damage to

the APPLE II computer system. The over-voltage protection references to

the DC output voltages only. The AC line voltage input must be within
the specified limits, i.e., 107V to 132V.

Under no circumstances, should more
than 140 VAC be applied to the input

of the power supply. Permanent damage
will result.

Since the output voltages are controlled by changing the operating
frequency of the converter, and since that frequency has an upper limit
determined by the switching speed of power transistors, there then must
be a minimum load on the supply; the Apple II board with minimum memory
(4K) is well above that minimum load. However, with the board discon-
nected, there is no load on the supply, and the internal over-voltage
protection circuitry causes the supply to turn off. A 9 watt load
distributed roughly 50-50 between the +5 and +12 supply is the nominal
minimum load.

Nominal load current ratios are The +12V supply load is h that of the +5V.
The - 5V supply load is 1/10 that of the +5V.

The -12V supply load is 1/10 that of the +5V.

The supply voltages are +5.0 + p. 15 volts, +11.8 + 0.5 volts, -12.0 +

-5.2 + 0.5 volts. The tolerances are greatly reduced when the loads are
close to nominal

.

IV,

The Apple II power supply will power the Apple II board and all present
and forthcoming plug- in cards, we recommend the use of low power TTL, CMOS,
etc. so that the total power drawn is within the thermal limits of the entire
system. In particular, the user should keep the total power drawn by any
one card to less than 1.5 watts, and the total current drawn by all the cards
together within the following limits:

+ 12V
+ 5V
- 5V
- 12V

use no more than 250 mA
use no more than 500 mA
use no more than 200 mA
use no more than 200 mA

The power supply is allowed to run indefinetly under short circuit
or open circuit conditions.

Ill

CAUTION: There are dangerous high
voltages inside the power supply
case. Much of the internal circuitry
is NOT isolated from the power line,

and special equipment is needed for
service. NO REPAIR BY THE USER IS

ALLOWED.

NOTES ON INTERFACING WITH THE HOME TV

Accessories are available to aid the user in connecting the Apple II

system to a home color TV with a minimum of trouble. These units are called
"RF Modulators" and they generate a radio frequency signal corresponding to
the carrier of one or two of the lower VHF television bands; 61.25 MHz
(channel 3) or 67.25 MHz (channel 4). This RF signal is then modulated with
the composite video signal generated by the Apple II.

Users report success with the following RF modulators:

the "PixieVerter" (a kit)

ATV Research
13th and Broadway
Dakota City, Nebraska 68731

the n
TV-l" (a kit)

UHF Associates
6037 Haviland Ave.
Whittier, CA 90601

the "Sup-r-Mod" by (assembled & tested)
M&R Enterprises
P.O. Box 1011
Sunnyvale, CA 94088

the RF Modulator (a P.C. board)
Electronics Systems
P.O. Box 212~

Burlingame, CA 94010

Most of the above are available through local computer stores.

The Apple II owner who wishes to use one of these RF Modulators should
read the following notes carefully.

All these modulators have a free running transistor oscillator. The
M&R Enterprises unit is pre-tuned to Channel 4. The PixieVerter and the
TV-1 have tuning by means of a jumper on the P.C. board and a small trimmer
capacitor. All these units have a residual FM which may cause trouble if
the TV set in use has a IF pass band with excessive ripple. The unit from
M&R has the least residual FM.

All the units except the M&R unit are kits to be built and tuned by
the customer. All the kits are incomplete to some extent. The unit from
Electronics Systems is just a printed circuit board with assembly instructions.
The kits from UHF Associates and ATV do not have an RF cable or a shielded
box or a balun transformer, or an antenna switch. The M&R unit is complete.

Some cautions are in order. The Apple II, by virtue of its color qraphics
capability, operates the TV set in a linear mode rather than the 100% contrast
mode satisfactory for displaying text. For this reason, radio frequency inter-
ference (RFI) generated by a computer (or peripherals) will beat with the

112

carrier of the RF modulator to produce faint spurious background patterns

(called "worms") This RFI "trash" must be of quite a low level if worms

are to be prevented. In fact, these spurious beats must be 40 to 5pdb

below the signal level to reduce worms to an acceptable level. When it is

remembered that only 2 to 6 mV (across 3ppnJ is presented to the VHF input

of the TV set, then stray RFI getting into the TV must be less than 50yV

to obtain a clean picture. Therefore we recommend that a good, co-ax

cable be used to carry the signal from any modulator to the TV set, such

as RG/59u (with copper shield), Belden #8241 or an equivalent miniature

type such as Belden #8218. We also recommend that the RF modulator be

enclosed in a tight metal box (an unpainted die cast aluminum box such as

Pomona #2428). Even with these precautions, some trouble may be encountered

with worms, and can be greatly helped by threading the coax cable conn-

ecting the modulator to the TV set repeatedly through a Ferrite toroid core.

Apple Computer supplies these cores in a kit, 'along with a 4 circuit

connector/cable assembly to match the auxilliary video connector found on

the Apple II board. This kit has order number A2M010X. The M&R "Sup-r-Mod

is supplied with a coax cable and toroids.

Any computer containing fast switching logic and high frequency clocks'

will radiate some 'radio frequency energy. Apple II is equipped witha

good line filter and many other precautions have been taken to minimize

radiated energy. The user is urged not to connect "antennas" to this

computer; wires strung about carrying clocks and/data will act as antennas,

and subsequent radiated energy may prove to be a nuisance.

Another caution concerns possible long term effects on the TV picture

tube. Most home TV sets have "Brightness" and "Contrast" controls with a

very wide range of adjustment. When an un-changing picture is displayed

with high brightness for a long period ,a faint discoloration of the

TV CRT may occur as an inverse pattern observable with the TV set
(

turned off. This condition may be avoided by keeping the "Brightness"

turned down slightly and "Contrast" moderate.

113

A SIMPLE SERIAL OUTPUT

The Apple II is equipped with a 16 pin DIP socket most frequently

used to connect potentiometers, switches, etc. to the computer for

paddle control and other game applications. This socket, located at

J-14, has outputs available as well. With an appropriate machine

language program, these output lines may be used to serialize data in

a format suitable for a teletype. A suitable interface circuit must

be built since the outputs are merely LSTTL and won't run a teletype

without help. Several interface circuits are discussed below and the

user may pick the one best suited to his needs.

The ASR - 33 Teletype

The ASR - 33 Teletype of recent vintage has a transistor circuit

to drive its solenoids. This circuit is quite easy to interface to,

since it is provided with its own power supply. (Figure la) It can

be set up for a 20mA current loop and interfaced as follows (whether

or not the teletype is strapped for full duplex or half duplex oper-

ation):

a) The yellow wire and purple wire should both go to

terminal 9 of Terminal Strip X. If the purple wire
is going to terminal 8, then remove it and relocate

it at terminal 9. This is necessary to change from

the 60mA current loop to the 20mA current loop.

b) Above Terminal Strip X is a connector socket identi-

fied as "2". Pin 8 is the input line + or high; Pin

7 is the input line - or low. This connector mates

with a Molex receptacle model 1375 #03-09-2151 or

#03-09-2153. Recommended terminals are Molex #02-09-

2136. An alternate connection method is via spade lugs

to Terminal Strip X, terminal 7 (the + input line) and

6 (the - input line).

c) The following circuit can be built on a 16 pin DIP

component carrier and then plugged into the Apple's
16 pin socket found at J-14: (The junction of the

3.3k resistor and the transistor base lead is float-

ing). Pins 16 and 9 are used as tie points as they

are unconnected on the Apple board. (Figure la).

114

The "RS - 232 Interface"

For this interface to be legitimate, it is necessary to twice invert

the signal appearing at J-14 pin 15 and have it swing more than 5 volts

both above and below ground. The following circuit does that but requires

that both +12 and -12 supplies be used. (Figure 2) Snipping off pins

on the DIP-component carrier will allow the spare terminals to be used for

tie points. The output ground connects to pin 7 of the DB-25 connector.

The signal output connects to pin 3 of the DB-25 connector. The "protective"

ground wire normally found on pin 1 of the DB-25 connector may be connected

to the Apple's base plate if desired. Placing a #4 lug under one of the

four power supply mounting screws is perhaps the simplest method. The +12

volt supply is easily found on the auxiliary Video connector (see Figure S-ll

or Figure 7 of the manual). The -12 volt supply may be found at pin 33 of

the peripheral connectors (see Figure 4) or at the power supply connector

(see Figure 5 of the manual).

A Serial Out Machine Center Language Program

Once the appropriate circuit has been selected and constructed a machine

language program is needed to drive the circuit. Figure 3 lists such a tele-

type output machine language routine. It can be used in conjunction with an

Integer BASIC program that doesn't require page $300 hex of memory. This

program resides in memory from $370 to $3E9. Columns three and four of the

listing show the op-code used. To enter this program into the Apple II the

following procedure is followed:

Entering Machine Language Program

1

.

Power up Apple II

2. Depress and release the "RESET" key. An asterick
and flashing cursor should appear on the left hand

side of the screen below the random text matrix.

3. Now type in the data from columns one, two and three
for each line from $370 to 03E9. For example, type in

"370: A9 82" and then depress and release the "RETURN"

key. Then repeat this procedure for the data at $372

and on until you complete entering the program.

Executing this Program

1. From BASIC a CALL 880 ($370) will start the execution of
this program. It will use the teletype or suitable 80
column printer as the primary output device.

115

2. PR#0 will inactivate the printer transferring control

back to the Video monitor as the primary output device.

3. In Monitor mode $370G activates the printer and hitting
the "RESET" key exits the program.

Saving the Machine Language Program

After the machine language program has been entered and checked for

accuracy it should, for convenience, be saved on tape - that is unless

you prefer to enter it by keyboard every time you want to use it.

The way it is saved is as follows:

1. Insert a blank program cassette into the tape

recorder and rewind it.

2. Hit the "RESET" key. The system should move
into Monitor mode. An asterick "*" and flash-
ing cursor should appear on the left-hand side
of the screen.

3. Type in "370.03E9W 370.03E9W".

4. Start the tape recorder in record mode and depress
the "RETURN" key.

5. When the program has been written to tape, the asterick
and flashing cursor will reappear.

The Program

After entering, checking and saving the program perform the following

procedure to get a feeling of how the program is used:

1. Bc (control B) into BASIC

2. Turn the teletype (printer on)

3. Type in the following

10 CALL 880

15 PRINT "ABCD...XYZ01 123456789"

20 PR#0

25 END

4. Type in RUN and hit the "RETURN" key. The

text in line 15 should be printed on the

teletype and control is returned to the key-

board and Video monitor.

116

Line 10 activates the teletype machine routine and all "PRINT" state-

ments following it will be printed to the teletype until a PR#0 statement is

encountered. Then the text in line 15 will appear on the teletype's output.

Line 20 deactivates the printer and the program ends on line 25.

Conclusion

With the circuits and machine language program described in this paper

the user may develop a relatively simple serial output interface to an ASR-33

or RS-232 compatible printers. This circuit can be activated through BASIC

or monitor modes. And is a valuable addition to any users program library.

117

+ 5V

OUTPUT TO TELETYPE

RESISTORS ARE 1/4 WATT CARBON

(a)

FIGURE 1 ASR-33

(b)

+ 12 (JUMPERED TO +12 SUPPLY)

o OUTPUT (+)

OUTPUT (-)

J-14

12 (JUMPERED TO -12 SUPPLY)

FIGURE 2 RS-232

118

TELETYPE DRIVER ROUTINES
3:42 P.M.* I 1/13/1977

I TITLE ' TELETYPE DRIVER ROU
2 **************** *********
3 * *

4 * TTYDRI7E3t: *

5 * TELETYPE OUTPUT *

6 * ROUTINE FOR 72 *

7 * COLUMN PRINT WITH *

8 * 3ASIC LIST *

9 * *

10 * COPYRIGHT 1977 BY: *

1 1 * APPLE COMPUTE;r inc. *

12 * il/18/77 *

13 * *

14 * R. VIGGINTON *

15 * S. WOZNIAK *

16 * *

17 *************************
18 WNDWDTH EQU S21

19 CH EQU i24
20 CSWL EQU S36
21 YSAVE EQU S778
22 COLCNT EQU S7F8
23 MARK EQU SC053
24 SPACE EQU SC059
25 WAIT EQU JFCA8
26 ORG S370

***WARNING : OPE RAND OVERFLOW IN LINE 27

0370: A9 82 27 TTINIT: LDA #TTOUT

0372: 85 36 28 STA CSWL

0374: A9 03 29 LDA #TT0UT/256

0376: 85 37 30 STA CSWL+l

0378: A9 48 31 LDA #72

037A: 85 21 32 STA WNDWDTH

037C: A5 24 33 LDA CH

037E: 3D F3 07 34 STA COLCNT

0331 : 60 35 RTS

0382; 48 36 TTOUT: PHA

0383s 43 37 PHA

0384: AD F8 07 38 TT0UT2: LDA COLCNT

0387: C5 24 39 CMP CH

0389:• 63 40 PLA

03 8AI\ 30 03 41 3CS TESTCTRL

038C: 48 42 PHA
038D:: A9 AO 43 LDA #SAO

038F': 2C CO 03 44 TESTCTRL: BIT RTS1

0392 : F0 03 45 BEQ PRNTIT

0394 : £E F8 07 46 INC COLCNT

0397 i 20 CI 03 47 PRNTIT: JSR DO CHAR

039A : 68 48 PLA
0393 : 48 49 PHA
039C : 90 E6 50 3CC TT0UT2

039E : 49 OD 51 EOR *$QD

03A0 : OA 52 ASL A

03A1 : DO OD 53

FIGURE

BNE

3a

FINISH

t>AGE : I

NES'

;F0R APPLE -I I

; CURSOR HORIZ*
;CHAR. OUT SWITCH

; COLUMN COUNT LOG.

; point to tty routines
;high byte

;SET VINDOV WIDTH
;T0 NUMBER COLUMNS ONT

; WHERE WE ARE NOW.

;SAVE TWICE
;0N STACK.
; check for a ta3.

;restore output char.

;if c set, no ta3

PRINT A SPACE.
TRICK TO DETERMINE
IF CONTROL CHAR.
IF NOT, ADD ONE TO CH

PRINT THE CHAR ON TTY

RESTORE CHAR
AND PUT BACK ON STACK
DO MORE SPACES FOR T*

CHECK FOR CAR RET.
ELIM PARITY
IF NOT CR> DONE.

119

TELETYPE DRIVER ROUTINES

3:42 P.M., H/13/1977
03A3: 3D F3 07 54 STA COLCNT

03A6: A9 3A 55 LDA #S3A

03A8: 20 CI 03 56 JSR DOCHAR
03AB: A9 58 57 LDA #S53

03AD: 20 A8 FC 58 JSR VAIT
03B0: AD F8 07 59 FINISH: LDA COLCNT
03B3: F0 08 60 BEQ. SETCH

0335 : E5 21 61 SBC VMDWDTH
0337: E9 F7 62 SBC #SF7
0339: 90 04 63 3CC RETURN
0333: 69 IF 64 ADC #$1F
03BD: 85 24 65 SETCH: STA CH

033F:> 68 66 RETURN: PLA
03C0: 60 67 RTSl : RTS

68 * HERE IS THE TELETYPE PRIN
03CI <

: SC 78 07 69 DOCHAR: STY YSAVE
03C4«: 08 70 PHP
03C5<i AO 03 71 LDY #503
03C7 : 13 72 CLC
03CS : 48 73 TT0UT3: PHA
03C9;: 30 05 74 3CS MARKOUT
03C3 : AD 59 CO 75 LDA SPACE
03CE : 90 03 76 3CC TT0UT4
03D0 : AD 58 CO 77 MARKOUT : LDA MARK
03D3 : A9 D7 73 TT0UT4

:

LDA #SD7
03D5 t AS 79 DLYl : PHA
03D6 : A9 20 30 LDA #$20
03D8 : 4A 81 DLY2: LSR A
03D9 : 90 FD 32 3CC DLY2
03D3 : 68 83 PLA
03DC : E9 Oi 84 S3C #SOl
03DE : DO F5 35 3NE DLYt
03E0 : 68 36 PLA
03EI : 6A 37 ROR A
03E2 : 88 88 DEY
03E3 : DO E3 39 3NE TT0UT3
03E5 : AC 78 07 90 LDY YSAVE
03E8 : 23 91 PLP
03E9 : 60 92 RTS
**** ****SUCCESSFUL ASSEMBLY: NO ERRORS

^AGE:
;CLEAR COLUMN COUNT
;now do line ED

;200MSEC DELAY FOR LIB
; CHECK IF IN MARGIN
;FOR CRj reset CH
;IF SO, CARRY SET.

; adjust ch

; RETURN TO CALLER
A CHARACTER ROUTINE:

;SAVE STATUS.
; t l 3ITS (t START, <? 1
; begin VITH SPACE CSTI
;SAVE A REG AND SET FOK

;send A SPACE

;send a mark
; delay 9.09 1 msec
;l tO BAUD

OR

;NEXT BIT (STOP 3ITS
LOOP IK BITS.

; RE STORE Y-REG.
; RE STORE STATUS
; RETURN

FIGURE 3b

120

CROSS-REFERNCE: TELETYPE DRIVER ROUTINES
CH 0024 0033 0039 0065
COLCNT 07F8 0034 0033 0046 0054 0059
CSVL 0036 0023 0030
DLYl 03D5 0085
DLY2 03D8 0082
DOCHAR 03CI 0047 0056
FINISH 0330 0053
MARK C05S 0077
MARKOUT 03D0 0074
PRNTIT 0397 0045
RETURN 033F 0063
RTSI 03C0 0044
SETCH 033D 0060
SPACE C059 0075
TESTCTRL 033F 0041
TTINIT 0370
TTOUT 0382 0027 0029
TT0UT2 0384 0050
TT0UT3 03C8 0089
TT0UT4 03D3 0076
WAIT FCA8 0058
VNDVDTH 002i 0032 006 1

YSAVE 0778 0069 0090
ILE:

FIGURE 3c

121

INTERFACING THE APPLE

This section defines the connections by which external devices are

attached to the APPLE II board. Included are pin diagrams, signal

descriptions, loading constraints and other useful information.

TABLE OF CONTENTS

1. CONNECTOR LOCATION DIAGRAM

2. CASSETTE DATA JACKS (2 EACH)

3. GAME I/O CONNECTOR

4. KEYBOARD CONNECTOR

5. PERIPHERAL CONNECTORS (8 EACH)

6. POWER CONNECTOR

7. SPEAKER CONNECTOR

8. VIDEO OUTPUT JACK

9. AUXILIARY VIDEO OUTPUT CONNECTOR

122

Figure 1A APPLE II Board-Complete View

f MEMORY 7|«lLSt» H ^~f ~
... . „ .^ „_ ^ __ ______ r_ „

TRIMf

: d -b-d b 1 |

wear-amr~m£g?— i*K'
t

.
> ? t * t « * a * t

v

V^Mr H limAw i£

Ca«aHV0«KH*BBS*«BBftkBllBlll

iiminisiiilBiitiiiiiii

^FiiiiifM«i*i«ini«eitfi:
-yrtTTTrrrr^TTTry—15 TT—12 13 W— *

123

o
9*z m
z -<

m cd

%%Odddo

m3

Om
33 33

ro

O)

cji

G)

S^C/C £0G£ OF PC BOARD

03
*-

sE: I

<£>

O)

CD

o no

CO

en

CT>

N>

CO

CO

m
33

m

>
r-

co

J-

EZD

Right Side
of PC Board

-S 5-

oco
022 Cz £m £o m

o
ID

to

DO

o
o
13
3
fp
O
c+
O
-s

o
o
o>
c+
—j.
o

fl>

"0

o
CD
O
>
O

m

QOo>
z
z
m

O
33

< >

m 2S

OIZ

C

124

CASSETTE JACKS

A convenient means for interfacing an inexpensive audio cassette
tape recorder to the APPLE II is provided by these two standard
(3.5mm) miniature phone jacks located at the back of the APPLE II

board.

CASSETTE DATA IN JACK : Designed for connection to the "EARPHONE"
or "MONITOR" output found on most audio cassette tape recorders.

ViN=1Vpp (nominal), Z TW=12K Ohms. Located at K12 as illustrated in

Figure 1.
11M

CASSETTE DATA OUT JACK: Designed for connection to the "MIC" or

"MICROPHONE" input found on

V
QUI

=25 mV into 1W Ohms, Z

in Figure 1

.

most audio cassette tape recorders.

0UT
=1 00 Ohms. Located at K13 as illustrated

GAME I/O CONNECTOR

The Game I/O Connector provides a means for connecting paddle controls,
lights and switches to the APPLE II for use in controlling video games,
etc. It is a 16 pin IC socket located at J14 and is illustrated in

Figure 1 and 2.

Figure 2 GAME I/O CONNECTOR

(Front Edge or PC Board

+5V 7
m

swo 2
SW1 3

SW2 4

C040 STB 5
PDLO 6
PDL2 7

GND 8

16 N.C.

15 ANO
14 AN1
13 AN2
12 AN3
11 PDL3
10 PDL1
9 N.C.

LOCATION J1

4

125

SIGNAL DESCRIPTIONS FOR GAME I/O

AW-AN3:

C04(? STB

GND

NC

8 addresses (C058-C05F) are assigned to selectively

"SET" or "CLEAR" these four "ANNUNCIATOR" outputs.

Envisioned to control indicator lights, each is a

74LSxx series TTL output and must be buffered if used

to drive lamps.

A utility strobe output. Will go low during 2 of a

read or write cycle to addresses C04Q-C04F. This is

a 74LSxx series TTL output.

System circuit ground. Volt line from power supply,

No connection.

PDL0-PDL3

SW0-SW2

Paddle control inouts. Requires a 0-150K ohm variable

resistance and +5V for each paddle. Internal 100 ohm

resistors are orovided in series with external pot to

prevent excess" current if pot goes completely to zero

ohms.

Switch inputs. Testable by reading from addresses
C061-C063 (or C069-C06B). These are uncommitted
74LSxx series inputs.

+5V: Positive 5-Volt supply. To avoid burning out the connector
pin, current drain MUST be less than 100mA,

KEYBOARD CONNECTOR

This connector provides the means for connecting as ASCII keyboard
to the APPLE II board. It is a 16 pin IC socket located at A7 and

illustrated in Figures 1 and 3.

is

Figure 3 KEYBOARD CONNECTOR

TOP VIEW
(Front Edge of PC Board)

+5V 1
•

16 N.C.

STROBE 2 75 -12V
RESET 3 14 N.C.

N.C. 4 13 B2
B6 5 12 Bl
B5 6 11 B4
B7 7 10 B3

GND 8 9 N.C.

LOCATION A7

126

SIGNAL DESCRIPTION FOR KEYBOARD INTERFACE

B1-B7 : 7 bit ASCII data from keyboard, positive logic (high level=
"1"), TTL logic levels expected.

GND: System circuit ground. $ Volt line from power supply.

NC : No connection.

RESET: System reset input. Requires switch closure to ground.

STROBE : Strobe output from keyboard. The APPLE II recognizes the
positive going edge of the incoming strobe.

+5V: Positive 5-Volt supply. To avoid burning out the connector
pin, current drain MUST be less than lppmA.

-12V : Negative 12-Volt supply. Keyboard should draw less than
50mA.

PERIPHERAL CONNECTORS

The eight Peripheral Connectors mounted near the back edge of the
APPLE II board provide a convenient means of connecting expansion
hardware and peripheral devices to the APPLE II I/O Bus. These are
Winchester #2HW25C0-111 (or equivalent) 50 pin card edge connectors
with pins on .10" centers. Location and pin outs are illustrated in
Figures 1 and 4.

SIGNAL DESCRIPTION FOR PERIPHERAL I/O

A0-A15: 16 bit system address bus. Addresses are set up by the

6502 within 300nS after the beginning of
1

. These lines
will drive up to a total of 16 standard TTL loads.

DEVICE SELECT

i-D7

Sixteen addresses are set aside for each peripheral
connector. A read or write to such an address will

send pin 41 on the selected connector low during 0p
(5ppnS). Each will drive 4 standard TTL loads.

8 bit system data bus. During a write cycle data is

set up by the 6502 less than 300nS after the beginning
of

2
. During a read cycle the 65J82 expects data to

be ready no less than 100nS before the end of 0«.

These lines will drive up to a total of 8 total low
power schottky TTL loads.

127

DMA:

DMA IN:

DMA OUT

Direct Memory Access control output. This line has

3K Ohm pull up to +5V and should be driven with an

open collector output.

Direct Memory Access daisy chain input from higher

priority peripheral devices. Will present no more

than 4 standard TTL loads to the driving device.

Direct Memory Access daisy chain output to lower

priority peripheral devices. This line will drive
4 standard TTL loads.

GND:

INH:

INT IN:

INT OUT:

I/O SELECT:

System circuit ground. Volt line from power supply.

Inhibit Line. When a device pulls this line low, all

ROM's on board are disabled (Hex addressed D000 through

FFFF). This line has a 3K Ohm pullup to +5V and

should be driven with an open collector output.

Interrupt daisy chain input from higher priority peri-

pheral devices. Will present no more than 4 standard

TTL loads to the driving device.

Interrupt daisy chain output to lower priority peri-

pheral devices. This line will drive 4 standard TTL

loads.

256 addresses are set aside for each peripheral connector

(see address map in "MEMORY" section). A read or write

of such an address will send pin 1 on the selected

connector low during
2

(500nS). This line will drive

4 standard TTL loads.

I/O STROBE Pin 20 on all peripheral connectors will

0p of a read or write to any address

ltne will drive a total of 4 standard

go low during
-CFFF. This

TTL loads.

IRQ

NC:

NMf:

RDY:

RES

Interrupt request line to the 65JJ2. This line has a

3K Ohm pullup to +5V and should be driven with an open

collector output. It is active low.

No connection.

Non Maskable Interrupt request line to the 65(32. This
line has a 3K Ohm pullup to +5V and should be driven with
an open collector output. It is active low,

A 1MHz (nonsymmetrical) general purpose tii

drive •""» tn * tntal n-f 1 £ rfs^^/l tti *f~~
Will

up
asymmetrical} general purpose timing signal,
to a total of 16 standard TTL loads.

"Ready" line to the 6502. This line should change only
during

1
, and when low will halt the microprocessor at

the next READ cycle. This line has a 3K Ohm pullup to
+5V and should be driven with an open collector output.

Reset line from "RESET" key on keyboard. Active low. Will
drive 2 MOS loads per Peripheral Connector.

128

R/W: READ/WRITE line from 6502. When high indicates that a read
cycle is in progress, and when low that a write cycle is
in progress. This line will drive up to a total of 16
standard TTL loads.

USER_± : The function of this line will be described in a later
document.

^1 Microprocessor phase f/ clock. Will drive up to a total of
16 standard TTL loads.

0il Phase 1 clock, complement of n . Will drive up to a total
of 16 standard TTL loads.

u

7M: Seven MHz high frequency clock. Will drive up to a total
of 16 standard TTL loads.

+12V : Positive 12-Volt supply.

+5V : Possitive 5-Volt supply

-5V : Negative 5-Volt supply.

-12V : Negative 12-Volt supply.

POWER CONNECTOR

The four voltages required by the APPLE II are supplied via this

AMP #9-35028-1,6 pin connector. See location and pin out in Figures

1 and 5.

PIN DESCRIPTION

GND : (2 pins) system circuit ground. Volt line from power

supply.

+12V : Positive 12-Volt line from power supply.

+5V : Positive 5-Volt line from power supply.

-5V : Negative 5-Volt line from power supply.

-12V: Negative 5-Volt line from power supply.

129

Figure 4 PERIPHERAL CONNECTORS
(EIGHT OF EACH)

TOP VIEW
PINOUT (Back Edge of p C Board)

GND
DMA IN

INT IN

NMI
IRQ
RES
INH

-12V
-5V
N.C.

7U
Q3
$1

USER1
<J>0

DEVICE SELECT
D7
D6
D5
D4
D3
D2
D1
DO

+ 12V

26
27
28
29
30
31

32

33
34

35
36
37
38
39
40
41

42
43
44

45
46
47
48
49
50

o

ZD
m
ZD
Z3

CZ"
Z3
Z3

HJ

O

25 +5V
24 DMA OUT
23 INT OUT
22 DMA
21 RDY
20 I/O STROBE
19 N.C.

18 R/W
17 A15
16 A14
15 A13
14 A12
13 A11
12 A10
11 A9
10 A8
9 A7
8 A6
7 A5
6 A4
5 A3
4 A2
3 A1
2 AO
1 I/O SELECT

(Toward Front Edge of PC Board)

LOCATIONS J2 TO J1

2

PINOUT

Figure 5 POWER CONNECTOR

TOP VIEW

(Toward Right Side of PC Board)

(BLUE/WHITE WIRE) -12V

(ORANGE WIRE) +5V

(BLACK WIRE) GND

-5V (BLUE WIRE)

+ 12V (ORANGE/WHITE WIRE)

GND (BLACK WIRE)

LOCATION K1

130

SPEAKER CONNECTOR

This is a MOLEX KK 100 series connector with two .25" square pins on

.10" centers. See location and pin out in Figures 1 and 6

SIGNAL DESCRIPTION FOR SPEAKER

+5Vj

SPKR

System +5 Volts

Output line to speaker.
3 Ohms.

Will deliver about .5 watt into

Figure 6

SPEAKER CONNECTOR

4-
O

—j j

+5V SPKR

PINOUT

0) MM
Front

Ed

PC

Board

Right Edge of PC 3oard

LOCATION B14A

VIDEO OUTPUT JACK

This standard RCA phono jack located at the back edge of the APPLE II

P.C. board will supply NTSC compatible, EIA standard, positive composite

video to an external video monitor.

A video level control near the connector allows the output level to be

adjusted from to 1 Volt (peak) into an external 75 OHM load.

Additional tint (hue) range is provided by an adjustable trimmer capacitor

See locations illustrated in Figure 1.

131

AUXILIARY VIDEO OUTPUT CONNECTOR

This is a MOLEX KK 100 series connector with four .25" square pins
on .10" centers. It provides composite video and two power supply
voltages. Video out on this connector is not adjustable by the on
board 200 Ohm trim pot. See Figures 1 and 7.

SIGNAL DESCRIPTION

GND

VIDEO

+12V

5V:

System circuit ground. Volt line from power supply.

NTSC compatible positive composite VIDEO. DC coupled
emitter follower output (not short circuit protected).
SYNC TIP is Volts, black level is about .75 Volts, and
white level is about 2.0 Volts into 470 Ohms. Output level
is non-adjustable.

+12 Volt line from power supply

-5 Volt line from power supply.

Figure 7 AUXILIARY VIDEO OUTPUT CONNECTOR

PINOUT

a + 12V

a -5V

a VIDEO

a GND

Right Edge of PC Board

LOCATION J14B

-fh

T3
S-

o

O
D_

O
a;

T3

o
CO

132

INSTALLING YOUR OWN RAM

THE POSSIBILITIES

The APPLE II computer is designed to use dynamic RAM chips organized
as 4096 x 1 bit, or 16384 x 1 bit called M

4K" and "16K H RAMs

respectively. These must be used in sets of 8 to match the system
data bus (which is 8 bits wide) and are organized into rows of 8.

Thus, each row may contain either 4096 (4K) or 16384 (16K) locations
of Random Access Memory depending upon whether 4K or 16K chips are

used. If all three rows on the APPLE II board are filled with 4K
RAM chips, then 12288 (12K) memory locations will be available for

storing programs or data, and if all three rows contain 16K RAM
chips then 49152 (commonly called 48K) locations of RAM memory will
exist on board!

RESTRICTIONS

It is quite possible to have the three rows of RAM sockets filled with
any combination of 4K RAMs, 16K RAMs or empty as long as certain rules
are followed:

1. All sockets in a row must have the same type (4K or 16K)
RAMs.

2. There MUST be RAM assigned to the zero block of addresses.

ASSIGNING RAM

The APPLE II has 48K addresses available for assignment of RAM memory.

Since RAM can be installed in increments as small as 4K, a means of

selecting which address range each row of memory chips will respond
to has been provided by the inclusion of three MEMORY SELECT sockets

on board.

Figure 8

PINOUT

MEMORY SELECT SOCKETS

TOP VIEW

(OOOO-OFFF) 4K "0" BLOCK
(1000-1 FFF) 4K "1" BLOCK
(2000-2FFF) 4K "2" BLOCK
(3000-3FFF) 4K "3" BLOCK
(4000-4FFF) 4K "4" BLOCK
(5000-5FFF) 4K "5" BLOCK
(S000-&FFF) 4K "8" BLOCK

7 • 14

2 13

3 12

4 11

5 10
6 9
7 8

RAM ROW C
RAM ROW D
RAM ROW E
N.C.

16K "0" BJ.OCK (0000-3FFF)
16K "4" BLOCK (4000-7FFF)
16K "8" BLOCK (8000-BFFF)

LOCATIONS D1,E1, F1

133

MEMORY

TABLE OF CONTENTS

1

.

INTRODUCTION

2. INSTALLING YOUR OWN RAM

3. MEMORY SELECT SOCKETS

4. MEMORY MAP BY 4K BLOCKS

5. DETAILED MAP OF ASSIGNED ADDRESSES

INTRODUCTION

APPLE II is supplied completely tested with the specified amount of

RAM memory and correct memory select jumpers. There are five different
sets of standard memory jumper blocks:

1. 4K 4K 4K BASIC
2. 4K 4K 4K HIRES
3. 16K 4K 4K
4. 16K 16K 4K
5. 16K 16K 16K

A set of three each of one of the above is supplied with the board.

Type 1 is supplied with 4K or 8K systems. Both type 1 and 2 are
supplied with 12K systems. Type 1 is a contiguous memory range for

maximum BASIC program size. Type 2 is non-contiguous and allows 8K
dedicated to HIRES screen memory with approximately 2K of user BASIC
space. Type 3 is supplied with 16K, 20K and 24K systems. Type 4

with 30K and 36K systems and type 5 with 48K systems.

Additional memory may easily be added just by plugging into sockets
along with correct memory jumper blocks.

The 6502 microprocessor generates a 16 bit address, which allows
65536 (commonly called 65K) different memory locations to be specified.
For convenience we represent each 16 bit (binary) address as a 4-digit
hexadecimal number. Hexadecimal notation (hex) is explained in the

Monitor section of this manual.

In the APPLE II, certain address ranges have been assigned to RAM

memory, ROM memory, the I/O bus, and hardware functions. The memory
and address maps give the details.

134

MEMORY SELECT SOCKETS

The location and pin out for memory select sockets are illustrated
in Figures 1 and 8.

HOW TO USE

There are three MEMORY SELECT sockets, located at Dl , El and Fl

respectively. RAM memory is assigned to various address ranges by
inserting jumper wires as described below. All three MEMORY SELECT
sockets MUST be jumpered identically! The easiest way to do this
is to use Apple supplied memory blocks.

Let us learn by example:

If you have plugged 16K RAMs into row "C" (the sockets located at
C3-C10 on the board), and you want them to occupy the first 16K of
addresses starting at 0000, jumper pin 14 to pin 10 on all three
MEMORY SELECT sockets (thereby assigning row "C" to the 0000-3FFF
range of memory).

If in addition you have inserted 4K RAMs into rows "D" and "E", and
you want them each to occupy the first 4K addresses starting at 4000
and 5000 respectively, jumper pin 13 to pin 5 (thereby assigning row
"D" to the 4000-4FFF range of memory), and jumper pin 12 to pin 6
(thereby assigning row "E" to the 5000-5FFF range of memory). Remember
to jumper all three MEMORY SELECT sockets the same.

Now you have a large contiguous range of addresses filled with RAM
memory. This is the 24K addresses from 0000-5FFF.

By following the above examples you should be able to assign each
row of RAM to any address range allowed on the MEMORY SELECT sockets.
Remember that to do this properly you must know three things:

1. Which rows have RAM installed?

2. Which address ranges do you want them to
occupy?

3. Jumper all three MEMORY SELECT sockets the
same!

If you are not sure think carefully, essentially all the necessary
information is given above.

135

Memory Address Allocations in 4K Bytes

oooo

1000

2000

3000

4000

5000

6000

7000

text and color graphics
display pages, 6502 stack,
pointers, etc.

high res graphics display
primary page

high res. graphics display
secondary page

8000

9000

A000

BOOO

C000

D000

E000

F000

addresses dedicated to
hardware functions

ROM socket DO; spare

ROM socket D8: spare

ROM socket EO: BASIC
tt

ROM socket E8: BASIC
tt

ROM socket FO: BASIC
utility

ROM socket F8; monitor

Memory Map Pages to BFF

HEX
ADDRESS(ES)

USED
BY USED FOJt COMMENTS

PAGE fcERO
UTILITY register area for "sweet 16"

16 bit firmware processor.
OOOO-OOIF

0020-004D MONITOR

004E-004F MONITOR holds a 16 bit number that
is randomized with each key
entry.

0050-0055 UTILITY Integer multiply and divide
work space.

0055-OOFF BASIC

OOFO- OOFF UTILITY floating point work space.

PAGE ONE
6502 subroutine return stack.0100-01FF

PAGE TWO
character input buffer.0200-02FF

PAGE THREE
MONITOR Y (control Y) will cause

acJSR to this location.
03F8

03FB NMI's are vectored to this
location.

03FE-03FF IRQ's are vectored to the
address pointed to by these
locations.

0400-07FF DISPLAY text or color graphics
primary page.

0800-OBFF DISPLAY text or color graphics
secondary page.

BASIC initializes
LOIIEM to location
0800.

136

I/O and ROM Address Detail

HEX
ADDRESS ASSIGNED FUNCTION COMMENTS

COOX

COIX

C02X

C03X

C04X

C050

C051

C052

C053

C054

C055

C056

C057

C058

G059

C05A

C05B

C05C

C05D

C05E

C05F

Keyboard input

.

Clear keyboard strobe.

Toggle cassette output

Toggle speaker output

.

Keyboard strobe appears in bit
7. ASCII data from keyboard
appears in the 7 lower bits.

"C040 STB" Output strobe to Game I/O
connector.

Set graphics mode

" text

Set bottom 4 lines graphics

text

Display primary page

" secondary page

Set high res. graphics

" color "

Clear "ANO"

Set

Clear "AN1"

Set

Clear "AN2"

Set

Clear "AN3"

Set

Annunciator output to
Game I/O connector.

Annunciator 1 output to
Game I/O connector.

Annunciator 2 output to
Game I/O connector.

Annunciator 3 output to
Game I/O connector.

137

HEX
ADDRESS ASSIGNED FUNCTION COMMENTS

C060/8

C061/9

C062/A

C063/B

C064/C

C065/D

C066/E

C067/F

C07X

C08X

C09X

COAX

COBX

COCX

CODX

COEX

COFX

ClOX

C11X

C12X

Cassette input

"swr

SW2"

M CTATO ftSW3

Paddle timer output

MPDL STBn

DEVICE SELECT

1

2

3

4

5

6

7

8

9

A

State of "Cassette Data In"
appears in bit 7.

input on
State of Switch 1 /\ Game
I/O connector appears in bit 7

State of Switch 2 input on
Game I/O connector appears
in bit 7.

State of Switch 3 input on
Game I/O connector appears
in bit 7.

State of timer output for
Paddle appears in bit 7.

State of timer output for
Paddle 1 appears in bit 7.

State of timer output for
Paddle 2 appears in bit 7.

State of timer output for
Paddle 3 appears in bit 7.

Triggers paddle timers
during $2

.

Pin 41 on the selected
Peripheral Connector goes
low during 0~.

Expansion connectors

.

138

HEX
ADDRESS ASSIGNED FUNCTION COMMENTS

C13X BDEVICE SELECT

C14X IT C

C15X 1! D

C16X !t E

C17X

CIXX

C2XX

M F

1

2

Pin 1 on the selected
Peripheral Connector goes
low during $„.

I/O SELECT

fl

C3XX

C4XX

C5XX

C6XX

T!

It

II

M

3

4

5

6

NOTES

:

1. Peripheral Connector
does not get this

signal

.

2. I/O SELECT 1 uses the
same addresses as
DEVICE SELECT 8-F.

C7XX

C8XX

Tf

fl

7

Expansion connectors.8, I/O STROBE

C9XX tt

9,

CAXX II A,

CBXX 11 B,

CCXX If C,

CDXX M D,

CEXX II E,

CFXX M F,

D000-D7FF ROM socket DO Spare.

D800-DFFF D8 Spare.

E000-E7FF » " EO BASIC.

E800-EFFF E8 BASIC.

F000-F7FF FO IK of BASIC, IK of utility.

F800-FFFF F8 Monitor.

139

SYSTEM TIMING

SIGNAL DESCRIPTIONS

14M Master oscillator output, 14.318 MHz .+/- 35 ppm. All other
timing signals are derived from this one.

7M: Intermediate timing signal, 7.159 MHz.

COLOR REF : Color reference frequency used by video circuitry, 3.530 MHz

0i:

Phase clock to microprocessor, 1.023 MHz nominal.

Microprocessor phase 1 clock, complement of O9 1.023 riliz

nominal

.

0jl:

Q3:

Same as O . Included here because the 6502 hardware and

programming manuals use the designation 2 instead of O

A general purpose timing signal which occurs at the same

rate as the microprocessor clocks but is nonsymmetrical

MICROPROCESSOR OPERATIONS

ADDRESS The address from the microprocessor changes during 0i,
and is stable about 300nS after the start of 0i.

DATA WRITE : During a write cycle, data from the microprocessor
appears on the data bus during 2 , and is stable about

3GfQfnS after the start of 2 .

DATA READ : During a read cycle, the microprocessor will expect
data to appear on the data bus no less than lOOnS prior

to the end of 2 .

SYSTEM TIMING DIAGRAM

TIMING CIRCUITRY
BLOCK DIAGRAM

MASTER
OSCILLATOR

TIMING
CIRCUITRY

TIMING RELATIONSHIPS

JinmruiJinjinjiJ^^

<™> ji_TTjnjnjijnjiJTjn_ji_n_n_jij~L
COLOR REF> J

<±D T

<±T> J

<J>2 1

<*3> J
140

REFERENCE
OSCILLATOR
AND
SYSTEM
TIMING

FIG. S-3

HPE

SYNC
COUNTER

FIG. S^

—

^

SYNC OUT BUS

TIMING BUS

MPU
AND
BUS
DRIVERS

FIG. S-2

— ADDRESS BUS

n n

-*- TIMING BUS

I I I I I I

VIDEO
GENERATOR

FIG. S-11

| COMPOSITE VIDEO OUT

| AUXILIARY VIDEO OUT

DATA BUS

I I I I I IQ
ADDRESS BUS —

DATA OUT —

8K-12K
ROM
MEMORY
BASIC
AND
SYSTEM
MONITOR

FIG. S-5

4K/16K
RAM
SELECT

FIG. S-6

DATA IN —

-

RAM
ROW
SELECT

4K - 48K
RAM
MEMORY

FIG. S-8

RAM
ADDRESS
SELECT

RAM
ADDRESS
MUX

FIG. S-7

<
TO ALL SECTIONS

POWER IN

+ 12V
+ 5V
-5V
-12V
GND

PERIPHERAL
I/O

FIG. S-9

J~T— ADDRESS DECODE —

8 DECODED
PERIPHERAL
CONNECTORS

<t

ONBOARD
I/O

FIG. S-10

— DATA OUT 5

4t GAME I/O

EZ
4 CASSETTE IN

rz
t CASSETTE OUT

4 KEYBOARD

t SPEAKER

DMA BUS

FIGURE S-1 APPLE II SYSTEM DIAGRAM

141

8T97
(PINS 1 & 15 TRISTATE)

5V

T.

SYSTEM
ADDRESS <

BUS

2 <ADO>

3 < AD 1 >

4 < AD2 >

5 <AD3>

6 <AD4>

7 <AD5>

8 <AD6>

70 <AD8>

<AD9>

<AD10>

13 <AD11

74 <AD12>-

<AD13>

<AD14>

77 <AD15>

<R/W>

FROM PERIPHERAL l/O's

SEE FIG S-9

22 <DMA

40 < tt»0

FROM REFERENCE
OSCILLATOR AND TIMING

SEE FIG. S-3

29 <^*NH >

36 < 7M >

^7 <~Q3">

70

72

H5
73

H4

75

H3

17

H3

H3
10 19

H4
20

22

23

24

14 25

34

HS

C11

73

VCC
IRQ

NMI

ROY

RES

DO

01

MPU
6502 D2

03

D4

D5

D6

D7

Vss v ss

C14

-\

10™ F

40

32

31

28

26

38 < <I>1

39 <USER 1 >

20 < I/O SEL)

'8 <R/W

AVAILABLE ON
} 50 PIN PERIPHERAL

I/O CONNECTOR

IRQ > 30
T RA01

I VV^ >

3.3K ,

(NMI> 29
RA01

N '

I W >

FROM
> PERIPHERAL l/O's

SEE FIG. S-9

3.3K

1 RA01
I ^ »

<RDY> 2*

3.3K

1 RA01
I

\flA >

=e\ 17 FROM KEYBOARD AND
£E£/ J7

PERIPHERAL l/O's

SEE FIG. S-9&S-11

3.3K

<DA0> 49

H10
<DA1> 48

H10
DA2> 47

H11

H11

DA3 > 46

DA4> 45

TRISTATE
v SYSTEM
f DATA

BUS

H10
<DA5> 44

H10
<DA6> 43

DA7 > 42

J

SYSTEM TIMING
FIG. S-3

NOT AVAILABLE ON
50 PIN PERIPHERAL

I/O CONNECTOR

8T28
(PINS 7 & 15 TRISTATE)

<RAS>

<^>
<CAS>
<l4M>

<LD194>

LDPS

< COLOR REF >

FIGURE S-2 MPU AND SYSTEM BUS

142

y\

of OjT

1—I"

Od

_A

:CZD

S< 1

am—|i<

AM—|l<

O
(A
O
Ul
O
z
Ol
cc
LU
U.
Ill

CC

CO
I

</>

LU
CC
ID
O

143

SYNC OUT

(D14-1Q HO

(D14-13) H1

(D14-12) H2

(P14-11) H3

(D13-12) HPE

(D13-14) H4

(D13-13) H5

(D13-11) VA

FROM
SYSTEM

TIME
FIG. S-3

(D12-14) VB

(D12-13) VC

(D12-12) VO

(012-11) V1

(D11-14) V2

(D11-13) V3

(D11-12) V4

FIGURE S-4 SYNC COUNTER

144

2oe

145

146

SCREEN
ADDRESS

FROM i

SYNC
COUNT
FIG. S-4

H3 (D14-11>

H4 (D13-14>

V3 (D11-13>

V4 (D11-12>

H5 (D13-13^

SOFTS

HIRES (Bl1-6>
FIG. S-11

^
VA CD13-11>

FIG. S-4
"

VB (D12-14>
FIG. S-4

PAGE 2 C F14-6>-^
FIG. S-10

<Cax>
40 / <J>0 >

"D" SOURCES ARE
FROM SYNC COUNT

FIG. S-4

HO CD14-14>

2 <AD0>-

H1 (D14-13>

3<AD1

74

+ 5V

A1

Vcc
32

A2 E14

v,
3

A3 *"
d

74LS283
CO

B2
30

B4

B3
3l

A4

Bl C4

GND

T

73

7< AD5

TO

8 < AD6

40 < *o >

H2 CD14'12>

4 <AD2>-

5 <AD3

6 <AD4>
— N.C. V2 (D11-14>

" <AD9

<^>
40 < 0>0

5V V0 (D12-12>

9 <AD7

74LS04
(1/6)

VCC

C12*
Ma

74LS257
Mb (i/2)

10b

Za

2b

10a

GNDn

V1 CD12-11>

10 <AP8>-

M <AD10>

73 <AD11

SEE FIG. S-6 FOR OTHER HALF OF C12

+ 5V

2 76

SO S1 Vcc
t2a

I3a

,2b
E13

2a

I3b

10a

Ma

10b

74LS153

2b

lib

Ea Eb GND

QH

E13-7) A2

-* (E13-9) A5

5V

SO S1 \/cc

I2a

I3a

E12
I2b 2a

I3b

10a

11a

lob

74LS153

2b

Mb

Ea Eb GND

th

E12-7) A1

»—

-

(E12-9) A4

TO
RAM
ADDRESS
LINES

FIG. S-8

5V

2 \16

SO Si Vcc
12a

13a

E11
I2b 2a

74LS153

2b.

Mb
Ea Eb GND

Tm

E11-7) AO

->—<E11-9) A3

FIGURE S-7 RAM ADDRESS MUX

147

FROM 4K/16K SELECT
FIG. S-6

ROWC ROWC ROWD ROW D ROW E ROW E

CAS CS/A6 CAS CS/A6 CAS CS/A6

F1-U) (E1-14) (F1-13) (E1-13) (F1-12) QE1-12

LATCHED
RAM
OATA
OUT

FROM
RAM

ADDRESS
MUX

FIG. S-7

FIGURE S-8 4K TO 48K RAM MEMORY WITH DATA LATCH

148

Oi

149

cr > < dHWDOD

150

-5V

FROM
74LS02

SYSTEM <COLOR REF
TIME

N

RG. S-3 C
BURST

C13-6) TOC12-14
4K/16K
SELECT
FIG. S-6

FROM ADD
DECOD

Pfr
R
r1 o

BBdI<F^
FIG. 5-10

FROM f TEXT
ADDRRESS I MODE (£J±i

DECODER Ful MIX /cTTc
FIG. S- io [MOOE ^

FROM SYNC rV2CD11-14

COUNT I V4 CDrM2
FIG. S-4 ^ ^

FROM SYSTEM TIME <RAS
FIG. S-3

FIGURE S- 1 1 VIDEO GENERATOR

151

cippkz computer inc
10260 BANDLEY DRIVE

CUPERTINO, CALIFORNIA 95014 U.S.A.

TELEPHONE (408) 996-1010

