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Linux-based malware is a fast-
growing threat to multi-cloud 
environments, including data 
centers, that must be addressed 
to protect an organization’s assets 
and operations. This report details 
the research that the VMware 
Threat Analysis Unit™ has done 
into the latest threats to Linux-
based systems, documenting 
key findings that can help 
organizations better understand 
and prepare to defend themselves 
against these rising threats.  

78%
of the most 
popular 
websites are 
powered by 
Linux1 

Executive summary
In the past five years, Linux® has become the most common operating system 
(OS) in multi-cloud environments. It has even bypassed Windows on 
Microsoft Azure to power more than 78 percent of the most popular 
websites.1 Malicious actors have taken notice and are increasingly targeting 
vulnerable Linux-based systems in multi-cloud environments to infiltrate 
corporate and government networks. 

Threat actors know that current malware countermeasures are mostly focused 
on addressing Windows-based threats, leaving many public and private cloud 
deployments vulnerable to Linux-based attacks. These public and private clouds 
are high-value targets for cybercriminals, providing access to critical 
infrastructure services and substantial computational resources. 

In fact, cloud infrastructures and data centers host key components, such as email 
servers and customer databases, that have been the target of high-profile 
intelligence-gathering breaches. The large-scale campaign carried out in early 
2021, which targeted Exchange servers,2 and the Cybersecurity and Infrastructure 
Security Agency (CISA) alert about BlackMatter,3 which targeted the U.S. food 
and agriculture sector, are good examples of how attacks to vulnerable cloud 
infrastructure can disrupt an organization’s value-delivery pipeline.

These threats take advantage of weak authentication, vulnerabilities and 
misconfigurations in container-based infrastructures to infiltrate the environment 
with remote access tools (RATs). Once the attackers have obtained a foothold in 
their target cloud environment, they often look to perform two types of attacks: 
execute ransomware or deploy cryptomining components.   

Organizations need to bolster their ability to identify and defend against these 
types of attacks. Given the distributed, dynamic and heterogeneous nature of 
today’s enterprise workloads and networks, organizations need to extend 
telemetry across the entire infrastructure—from endpoints to multi-cloud 
environments. This will allow organizations to better monitor traffic and identify 
abnormal behavior to mitigate the impact of attacks on the enterprise, while 
increasing overall efficiencies and reducing operational costs.

This report, based on VMware’s experience with a diverse customer base, offers 
a comprehensive look at Linux-based malware threats to multi-cloud 
environments. It highlights the unique characteristics of this class of threats and 
provides guidance on how combining endpoint detection and response (EDR) 
and network detection and response (NDR) solutions can help organizations stay 
ahead of the threats Linux-based malware poses.

https://www.vmware.com/security/threat-analysis-unit-tau.html
https://www.vmware.com/security/threat-analysis-unit-tau.html
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Key findings 

Cryptojacking attacks use XMRig 
to mostly mine Monero.

• Cryptojacking attacks focus on monetizing 
stolen CPU cycles to mine cryptocurrencies.

• Most cryptojacking attacks focus on mining the 
Monero cryptocurrency (or XMR). XMRig is the 
most commonly used tool for cryptomining, 
and research found that 89 percent of 
cryptominers used XMRig-related libraries.

RATs are an increasing threat to 
Linux-based systems. 

• As Cobalt Strike is such a ubiquitous threat on 
Windows, its expansion to other operating 
systems, such as Linux, is notable. It 
demonstrates the desire of threat actors to use 
readily available remote-control tools to target 
as many platforms as possible.

• VMware Threat Analysis Unit discovered 
more than 14,000 active Cobalt Strike team 
servers on the internet since the end of 
February 2020.

• The most popular protocol for the Cobalt 
Strike beacon is HTTPS.

• Close to 90 percent of the Cobalt Strike server 
population is version 4 or later.

• The total percentage of cracked and leaked 
Cobalt Strike customer IDs is 56 percent. This 
means that more than half of the Cobalt Strike 
users are using illegitimately obtained versions 
of the commercial software.

• Vermilion Strike is just the first of many 
malware targeting Linux-based systems that 
will mimic the actions of other well-known 
RATs to simplify an adversary’s work.

Linux-based systems are fast 
becoming an attacker’s way into high-
value, multi-cloud environments.

• Linux is the most common OS across multi-cloud 
environments.4

• Malware targeting Linux-based systems is increasing 
in volume and complexity, but it is still less 
sophisticated than Windows threats.

• There is a lack of focus on the detection of threats 
that target Linux-based systems, making existing 
tools inadequate.

• The main threats in most multi-cloud environments 
are ransomware, cryptominers and RATs.

• Existing attack characterization techniques based on 
static information, such as strings and APIs, are 
useful but easily evaded by sophisticated threats.

• Defense evasion is the most common tactic used in 
ransomware and cryptominers. Various encryption 
or obfuscation techniques, such as Base64 encoding 
and AES-based encryption, are used by attackers to 
conceal code and data.

Ransomware is becoming more 
sophisticated. 

• Ransomware has recently evolved to target Linux 
host images that are used to spin workloads in 
virtualized environments. 

• Ransomware attacks against cloud deployments are 
targeted, not opportunistic. 

• Ransomware attacks against cloud environments are 
often combined with data exfiltration, implementing 
a double-extortion scheme that improves their odds 
of success. 

• The detection of sophisticated threats targeting 
Linux-based systems requires dynamic analysis and 
continuous host monitoring—capabilities that work 
well with the Linux kernel.
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Ransomware and cryptominers
Ransomware 

The impact of a ransomware attack can range from being a nuisance (e.g., 
having to restore data from backups and clean up the network) to being 
devastating (e.g., having to pay large sums of money to regain access to key 
assets). Unfortunately, when talking about cloud environments, the results tend 
to be more on the devastating side. Recently, cybercriminals have started 
calculating the damage they might cause to the valuation of a company going 
through a financial event to make the potential impact of their attack clear and 
incentivize ransom payments.5 At the same time, they’ve been honing their 
tactics with increasingly sophisticated techniques to target victim organizations. 

Large-scale ransomware attacks on cloud deployments, however, have some 
distinct characteristics that make them harder to spot and stop. First, ransomware 
attacks against cloud deployments are targeted, not opportunistic. Unlike general 
ransomware, which plays a numbers game (e.g., sending malicious email 
attachments to millions of users in hopes that some will inadvertently click and 
infect their systems), attacks on cloud infrastructures are more targeted and 
carefully planned. 

These attacks are designed for maximum impact. The cybercriminals make 
sure that their target systems have been fully compromised before starting 
the file encryption process. This allows them to simultaneously encrypt the 
whole network to inundate response resources and make incident response 
more difficult. 

Ransomware has recently evolved to target the Linux host images used to spin 
up workloads in virtualized environments. This new and worrisome development 
shows how attackers look for the most valuable assets in cloud environments to 
inflict the maximum damage on their target. Examples include the Defray777 
ransomware family, which encrypted host images on VMware ESXi servers,6 and 
the DarkSide ransomware family, which crippled Colonial Pipeline’s networks 
and caused a nationwide gasoline shortage in the U.S.7 

The basic profile of a ransomware 
attack is so popular that even 
non-technical people know 
how it works: a network is 
compromised, sensitive files are 
encrypted, and a ransom note 
is presented to the victim that 
asks for money/cryptocurrency 
in exchange for a decryption key 
that will unlock access to the 
files. (For a peek into what victim 
organizations go through, check 
out the blog post, HelloKitty: The 
Victim’s Perspective.8)

https://blogs.vmware.com/networkvirtualization/2021/09/hellokitty-the-victims-perspective.html/
https://blogs.vmware.com/networkvirtualization/2021/09/hellokitty-the-victims-perspective.html/
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Many ransomware attacks against cloud environments involve exfiltrating data, 
allowing the attacker to implement a double-extortion scheme. Essentially, the 
attacker uses the data they collect as leverage to incent the victim into paying 
the ransom. If the victim does not comply, the attacker leaks the information, 
making it public on the internet to damage the victim’s reputation.9

Ransomware families 

For this report, the VMware Threat Analysis Unit analyzed nine ransomware 
families that target Linux systems, characterizing their evolution and cross-
pollination. A brief description of the families covered is included in the sidebar. 
We started analyzing the different characteristics of the ransomware samples of 
each of these nine families by looking at the static information extracted from 
their ELF files. While threats can be a combination of shell scripts, Python 
scripts, and binaries, this report focuses on the binaries. Binaries are usually the 
components that carry out the file system encryption in a ransomware attack.

Characterizing similarity

As a first step, we used telfhash10 to characterize the code sharing among 
samples. The approach used by telfhash applies a locality-sensitive hashing 
function, namely TLSH, to the symbols contained in the ELF files. In the case of 
statically linked and stripped files that contain no symbols, the hashing function 
is applied to the target addresses of the call instructions observed in the binary 
code of the program. One of the advantages of telfhash is that it is architecture-
independent, so it can operate on binaries compiled for different platforms,  
such as x86 32bit, x86 64bit, and ARM.

Because of the locality-sensitive nature of TLSH, files with similar sets of symbols 
produce similar telfhash values. These values can be used as a similarity metric 
to identify closely related samples and cluster together malware families. Note 
that telfhash does not produce a normalized value between two fixed values 
(e.g., 0.0 to 1.0), but instead defines two samples as similar when their distance 
is below a certain number (the default is 50).

Figure 1 shows the confusion matrix of the ransomware families. Lighter colors 
indicate samples that were more similar. Note that this graph orders the samples 
by time of appearance to highlight their evolution over time.

Ransomware families 

REvil
The REvil ransomware, also 
known as Sodinokibi, originally 
targeted Windows hosts, but 
released a Linux version in spring 
2021.29 Interestingly, this threat 
relies on the esxcli command-
line tool to stop the current ESXi 
virtual machines (VMs). It then 
encrypts their on-disk images to 
prevent the recovery of running 
VMs. Recently, REvil actors have 
been targeted by a coordinated 
take-down operation30 that may 
impact future variants. 

DarkSide
The actors behind DarkSide 
initially distributed REvil 
ransomware but grew tired 
of sharing the profits with the 
REvil ransomware-as-a-service 
(RaaS) operator, so decided to 
create their own ransomware.31 
The DarkSide ransomware has 
been used to target a wide 
variety of organizations across 
North America and Europe. 
Most famously, the U.S. fuel 
distribution company, Colonial 
Pipeline, was held ransom by 
DarkSide, dramatically affecting 
gasoline distribution on the East 
Coast.32 DarkSide initially targeted 
Windows hosts but quickly 
evolved to include Linux targets—
and in particular, those running on 
ESXi servers.33 These servers are 
usually targeted after the threat 
actors gain access to a VMware 
vCenter® deployment, often by 
means of stolen credentials.
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Figure 1: Code similarity between ransomware samples, based on telfhash (lighter color/lower 
distance corresponds to higher similarity).

From the confusion matrix in Figure 1, it is clear that samples that belong to the 
same family have a strong telfhash similarity. This indicates that one can build an 
effective classification system using telfhash. However, in some cases, the 
similarities diminish as time passes, showing that evolution within a family might 
lead to new code being introduced—possibly invalidating signatures developed 
for early versions of a threat.

From the graph, we see how DarkSide and BlackMatter samples share 
substantial portions of code, and that ViceSociety shares some code fragments 
with REvil. This accounts for the relationship between threats that have been 
highlighted in previous reports.

To further characterize the relationships between families of ransomware, we 
developed a similarity measure that leverages the term frequency–inverse 
document frequency (TF-IDF) algorithm applied to the hashes of the strings 
contained in the samples. This allows us to find the strings that best 
characterize each family. The confusion matrix in Figure 2 is based on the 
cosine similarity computed over the TF-IDF values for each string in the 
ransomware dataset we analyzed.

Ransomware families 

BlackMatter
BlackMatter is considered 
an evolution of the DarkSide 
ransomware.34 Interestingly, the 
actors behind BlackMatter made 
sure to publicly announce that 
they were not targeting specific 
verticals, such as healthcare, 
oil and gas, government, and 
critical infrastructure companies—
possibly following the backlash 
that the Colonial Pipeline attack 
created, and the unwanted 
attention that the DarkSide 
operators received.

Defray777 
Defray ransomware is another 
Linux-based threat that targets 
ESXi VMs.35 An interesting 
property of some of its samples 
is that it doesn’t strip or tamper 
with ELF binaries, which 
makes it easier to analyze. This 
ransomware family is closely 
related to RansomEXX36—to the 
point that sometimes the two 
families are considered to be 
variations of the same threat.
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Figure 2: Similarity among ransomware samples based on TF-IDF applied to string hashes 
(lighter color/lower distance corresponds to higher similarity).

The use of string hashes for similarity shows that, in some cases, strings are 
better than telfhash to capture similarity among samples. For example, the REvil 
family is better characterized using this technique instead of relying on telfhash. 

The use of the TF-IDF algorithm over the strings in the samples provides an 
opportunity for the creation of YARA rules for the identification of samples. We 
evaluated the YARA rules generated using our corpus of ransomware samples 
found running on Linux-based systems against the samples in the benign 
dataset, and we obtained a very low 0.01 percent false positive rate. 

Another interesting way to characterize Linux-based ransomware threats is to 
look at the directories they avoid during the encryption process. For example, 
the /proc file system is a pseudo-file system that provides access to kernel-
level information, using a file system-like interface. Attempting to encrypt the 
files under this directory could create an unstable system, jeopardizing the 
attack. The same issue is true for other directories, such as /bin, /usr/bin, 
and /lib, so they are explicitly avoided by ransomware targeting  
Linux-based systems.

Ransomware families 

HelloKitty
The actors behind HelloKitty 
ransomware have achieved 
notoriety after successfully 
attacking CD Projekt Red, the 
makers of the Cyberpunk 2077 
video game. It’s another example 
of a Windows-based threat 
that evolved and expanded 
into the Linux world, targeting 
Linux-based systems and ESXi 
servers.37 Like other samples 
that target ESXi VMs, HelloKitty 
uses the esxcli tool to stop the 
VMs currently running before 
encrypting their files. 

ViceSociety
The actors behind ViceSociety 
ransomware are believed to have 
broken away from the HelloKitty 
group. Not surprisingly, their 
malware shows substantial 
similarities with the HelloKitty 
ransomware. This ransomware 
family was responsible for 
attacking the United Health 
Centers in the San Joaquin Valley 
in California, among other targets, 
which resulted in the leaking of 
sensitive patient records.38 
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We also looked at other paths that could indicate the use of specific tools as part 
of the attack. Most notably, the /sbin/esxcli command is used in ESXi 
environments to shut down existing virtual workloads so their on-disk images 
can be encrypted. Therefore, the presence of a reference to this tool is likely an 
indication of ransomware-like behavior. 

Characterizing behavior

We used CAPA11  to detect the capabilities of the Linux-based ransomware 
samples. Figure 3 shows the typical behaviors detected by CAPA aligned to the 
MITRE ATT&CK tactics and techniques framework. As we see from Figure 3, 
defense evasion is the most common tactic used in the samples. We also found 
various encryption or obfuscation techniques, such as Base64 encoding and 
AES-based encryption, used by the attacks to hide their code and data.

Defense Evasion::Obfuscated Files or Information 
- T1027.005, 59.1% (220)

Discovery::System Information Discovery - T1082, 
18.0% (67)

Defense Evasion::Deobfuscate/Decode Files or 
Information - T1140, 10.8% (40)

Discovery::File and Directory Discovery - T1083,
8.1% (30)

Execution::Shared Modules - T1129, 1.6% (6)

Discovery::System Network Configuration 
Discovery - T1016, 1.3% (5)

Defense Evasion::Virtualization/Sandbox Evasion -
T1497.001, 1.1% (4)

base64, 25.0% (55)

aes, 22.3% (49)

xor, 20.5% (45)

rc4 prga, 17.7% (39)

sosemanuk, 7.3% (16)

salsa20 or chacha, 3.6% (8)

stackstrings, 3.6% (8)

(A)

(B)

Figure 3: Malicious behaviors of the ransomware samples in the dataset: (A) Typical MITRE 
ATT&CK tactics and techniques leveraged by the samples; (B) Various encryption/obfuscation 
techniques used for defense evasion.

Ransomware families 

Erebus
Erebus is a relatively older 
ransomware family. It initially 
targeted Windows hosts but 
evolved in 2016 to include a 
Linux variant.39 This threat is 
unique because of its multilingual 
nature. While the actors behind 
the ransomware have stopped 
their activity, it is still an 
interesting sample that shares 
some behaviors with other 
ransomware families. 

GonnaCry
GonnaCry is an open source 
ransomware sample written in C 
and Python.40 While the Python 
version is mostly used as a way to 
showcase some of the behaviors 
associated with ransomware, 
the C version has actually been 
observed in the wild.

eCh0raix
eCh0raix ransomware targets 
QNAP network-attached 
storage (NAS) devices with 
weak credentials.41 This family 
is written in the Go language, 
and its features are simpler than 
other ransomware families. For 
example, it appears that this 
threat does not have a way to 
distinguish among victims.42 
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Detecting and mitigating the threat

The solution to the ransomware threat is a combination of approaches, 
mechanisms and policies. Beyond having a solid data backup and recovery 
process, deploying an EDR solution that monitors the actions performed by 
processes on cloud workloads is critical to a defense-in-depth strategy. This 
must be complemented by an effective segmentation and NDR system that can 
recognize network-based evidence of attacks and ideally block the malware 
before it can take hold of the target hosts.

Cryptominers

Cybercriminals are not indifferent to the frenzy surrounding cryptocurrencies. The 
advantage of targeting cryptocurrencies is that successful attacks can be 
immediately and directly turned into cyber cash. Cybercriminals get instant reward 
without the need to perform cumbersome scams using stolen information, such as 
personal data, or by having to interact with victims of ransomware.12

Attacks targeting cryptocurrencies typically take one of two approaches. The first 
is to include wallet-stealing functionality in malware, sometimes posing as 
cryptocurrency-based applications.13 The second is to monetize stolen CPU cycles 
to successfully mine cryptocurrencies, sometimes called cryptojacking. One of 
the first cryptojacking attacks was against Tesla’s public cloud14—a Kubernetes 
deployment was hijacked and dedicated to mining the currency, while the 
computational costs were paid by Tesla. This notorious event was just the first in 
a series of incidents that targeted the CPU cycles of cloud environments. A report 
from Palo Alto Networks15 indicated that cryptojacking affected “at least 23 
percent of organizations that maintain cloud infrastructures.”

Monero is the coin of the realm

Most cryptojacking attacks focus on mining the Monero currency, also known as 
XMR. Monero is an attractive target because it is known for preserving the 
privacy of its users, thanks to its use of Ring Confidential Transactions (RingCT), 
which hides the amount of each transaction, and stealth addresses that make 
transactions much more difficult to trace.16 

Another driver behind the popularity of Monero among cryptojacking operators 
is the fact that it can be mined without needing specialized hardware. This 
differs from mining Bitcoin, which requires specific hardware, such as 
application-specific integrated circuits (ASICs), that can cost thousands of 
dollars.17 With Monero, cryptominers can simply use the CPU or GPU cycles of 
ordinary computers, making compromised cloud workloads suitable for mining 
this cybercurrency. 

Cryptominer families

XMRig 
XMRig43 is an open source miner 
available for Windows, Linux and 
macOS. While this miner is not 
a threat by itself, a variant of this 
component is often deployed 
as part of cryptojacking attacks 
to perform the mining. XMRig is 
often used to mine the Monero 
cryptocurrency, which is the 
preferred target because it 
can be mined without needing 
specialized hardware. 

Sysrv 
Sysrv is a botnet written in Go 
with cryptomining capabilities44 
that has been recently deployed 
against Kubernetes pods running 
WordPress.45 The actors behind 
Sysrv rely on shell scripts to 
obtain persistency and hide 
the presence of the miner 
(e.g., by providing a modified 
version of the top command 
that doesn’t show the CPU-
hungry processes). This threat 
has also worm-like capabilities, 
attempting to spread to different 
hosts by leveraging SSH keys 
found on compromised hosts, 
performing password dictionary 
attacks against vulnerable 
services, and using an ever-
increasing database of exploits 
against known remote code 
execution (RCE) vulnerabilities.
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XMRig 

The most common application used to mine Monero currency is the open  
source XMRig miner.18 This popular application can mine different types of 
cryptocurrencies, but it’s mostly used to mine Monero. Many of the cryptomining 
samples from Linux-based systems have some relationship to the XMRig 
application. Therefore, when XMRig-specific libraries and modules in Linux 
binaries are identified, it is likely evidence of potential cryptomining behavior. 

If a binary is dynamically linked and not stripped, the task of identifying XMRig-
related libraries and modules is trivial. However, stripped, statically linked binaries 
are challenging to analyze. In Table 1, we noted that all the cryptominers in our 
dataset are stripped. As a result, we needed to use function signature models, 
such as the ones produced by FLIRT,19 to identify known libraries in C/C++ 
binaries, and tools, such as redress20 to identify relevant modules in Go binaries. 

We developed FLIRT signatures for the libraries used by XMRig when compiled 
on various Linux distributions. We also developed Go module detectors to 
identify relevant crypto-related modules. 

When we checked for the presence of these components (written in both C/C++ 
and Go), we found that 89 percent of cryptomining attacks used XMRig-related 
libraries. None of the benign Linux binaries linked those components, making 
the presence of these libraries and modules an effective way to identify 
cryptomining behavior.

Mining pools

When a cryptomining program is deployed on a compromised host, the program 
connects to a mining pool. By joining a mining pool, the malware can contribute 
to the overall mining process and share the benefits of collective mining—the 
computing power of a single host would likely be insufficient to achieve any 
meaningful results. Some common, well-known mining pools are minexmr[.]com, 
nanopool[.]com, and supportxmr[.]com.

Cryptominer families

TeamTNT 
TeamTNT threat actors target 
open Kubernetes pods and 
Docker deployments to deploy 
XMRig cryptominers.46 To evade 
detection, this threat hijacks the 
library loading mechanism to hide 
specific directories in the /proc 
file system, which are associated 
with the processes running the 
cryptominers.47 

Mexalz 
Mexalz threat actors are likely 
based in Romania,48 exploiting 
weak credentials to compromise 
hosts and deploy cryptomining 
malware, which is mostly 
customized versions of XMRig.49 
The name of this threat is derived 
from the host that they use to 
store the components of the 
attacks, mexalz[.]us. 

89%
of cryptomining 
attacks used 
XMRig-related 
libraries

https://www.bitdefender.com/blog/labs/how-we-tracked-a-threat-group-running-an-active-cryptojacking-campaign


12 | Exposing Malware in Linux-Based Multi-Cloud Environments 

In Table 1, we show the cryptomining pools associated with the families analyzed 
in this report. 

Mining Pool Port Family Note

194.145.227[.]21 5443 Sysrv Proxy

80.211.206[.]105 6666 WatchDog Private pool

monerohash[.]com Mexalz, TeamTNT, XMRig Public pool

moneroocean[.]stream TeamTNT Public pool

pool.hashvault[.]pro XMRig Public pool

pool.minexmr[.]com 5555 Sysrv Public pool

pool.supportxmr[.]com 443 Mexalz, TeamTNT Public pool

xmr-eu1.nanopool[.]org 14444 Sysrv Public pool

xmr-eu2.nanopool[.]org 14444 Sysrv, WatchDog Public pool

xmr.f2pool[.]com 13531 Sysrv, WatchDog Public pool

xmr.pool.gntl[.]co.uk 40009 WatchDog Public pool

Table 1: Mining pools observed in the analyzed cryptominers.

Cryptominer families 
Omelette 
Omelette50 is a cryptomining 
worm that exploits known 
vulnerabilities in Exim, WebLogic 
and Confluence to install modified 
versions of XMRig. It spreads to 
other systems by exploiting trust 
relationships (e.g., the “known_
hosts” SSH config file). 

WatchDog 
WatchDog represents one of the 
longest running cryptomining 
operations.51 The name of this 
threat, which is written in Go, 
is derived from the presence 
of a component that is tasked 
to monitor the execution of the 
actual cryptomining program, 
similar to the Linux utility 
“watchdog.” This operation has 
been running for more than two 
years, starting in January 2019, 
targeting both Windows and 
Linux hosts. 

Kinsing 
Threat actors behind the Kinsing 
cryptominer family are known 
to target vulnerable container-
based deployments.52 More 
specifically, the attack exploits 
Docker API endpoints that are 
open to the world to download 
and install a number of shell 
scripts that aid in persistence and 
lateral movement, and ultimately 
lead to the download of a 
cryptomining component.
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In Table 2, we show the wallets that the analyzed cryptominers used to collect the mined currency. Even 
though these wallets can be used to identify relationships between different campaigns, the anonymous and 
transient nature of these indicators is a real barrier to meaningful tracking and attribution.

Monero Wallet Address Family Note

428uyvSqdpVZL7HHgpj2T5SpasCcoHZNTTzE3Lz2H5ZkiMzqayy19sYDcBGDCjobTfLBnc3t-
c9rG4Y8gXQ8fJiP5tqeBda

TeamTNT

43Xbgtym2GZWBk87XiYbCpTKGPBTxYZZWi44SWrkqqvzPZV6Pfmjv3UHR6FD-
wvPgePJyv9N5PepeajfmKp1X71EW7jx4Tpz

WatchDog Active

43zqYTWj1JG1H1idZFQWwJZLTos3hbJ5iR3tJpEtwEi43UBbzPeaQxCRysdjYTt dc8aHao7csi-
Wa5BTP9PfNYzyfSbbrwoR

WatchDog

49dnvYkWkZNPrDj3KF8fR1BHLBfiVArU6Hu61N9gtrZWgbRptntwht5JUrXX1ZeofwPw-
C6fXNxPZfGjNEChXttwWE3WGURa

Sysrv

4BrL51JCc9NGQ71kWhnYoDRffsDZy7m1HUU7MRU4nUMXAHNFBEJhkTZV9H-
daL4gfuNBxLPc3BeMkLGaPbF5vWtANQn3gTBhyMDeJJJSvog

Mexalz Active

82etS8QzVhqdiL6LMbb85BdEC3KgJeRGT3X1F3DQBnJa2tzgBJ54bn4aNDju-
WDtpygBsRqcfGRK4gbbw3xUy3oJv7TwpUG4

Sysrv, 
WatchDog

Active

85X7JcgPpwQdZXaK2TKJb8baQAXc3zBsnW7JuY7MLi9VYSamf4bFwa7SEAK-
9Hgp2P53npV19w1zuaK5bft5m2NN71CmNLoh

TeamTNT

87q6aU1M9xmQ5p3wh8Jzst5mcFfDzKEuuDjV6u7Q7UDnAXJR7FLeQH2UY-
FzhQatde2WHuZ9LbxRsf3PGA8gpnGXL3G7iWMv

WatchDog

88ZrgnVZ687Wg8ipWyapjCVRWL8yFMRaBDrxtiPSwAQrNz5ZJBRozBSJrCYffurn1Qg7Jn-
7WpRQSAA3C8aidaeadAn4xi4k

TeamTNT

Table 2: Monero wallet addresses observed in the analyzed cryptominers.
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Interestingly, at the time of writing, the Monero wallet address 82etS8QzVh…3oJv7TwpUG4 was actively 
mining on xmr.nanopool[.]org, as shown in Figure 4.

Figure 4: Current cryptomining operation on xmr.nanopool.org.

Even more interesting, the first payment was made in October 2020, more than a year ago (see Figure 5). This 
shows how long-lasting and difficult it is to eradicate these mining operations.

Figure 5: History of payments to the cryptominer’s Monero wallet.

Characterizing similarity 

We used both telfhash and our TF-IDF-based metric to characterize the similarity across the analyzed 
cryptominer families; the findings are shown in Figure 6. Because many of the cryptominers were packed, 
the analysis produced very poor results. For example, the similarity among samples of the Sysrv family was 
not captured. 
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Figure 6: Code-based and string-based similarity between cryptominer samples (lighter color/lower distance corresponds to higher 
similarity).

Applying dynamic analysis makes it possible to unpack most of the samples, and Figure 7 shows the code and 
string similarity between samples after the unpacking process. The confusion matrix shows how some clusters 
of samples are clearly identifiable and how the samples evolve over time (see, for example, the various Sysrv 
family clusters). The results also show that, while telfhash is considered the state of the art for code similarity 
among ELF files, TF-IDF, which looks for similarity based on string hashes, provides a more useful 
characterizing metric.

Applying dynamic analysis makes it possible to unpack most of the samples, and Figure 7 shows the code and 
string similarity between samples after the unpacking process.
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Figure 7: Code-based and string-based similarity between cryptominer samples after unpacking (lighter color/lower distance 
corresponds to higher similarity).
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When we ordered the samples by similarity, not by 
time, the clusters became even more evident, as 
shown in Figure 8. In particular, the similarity 
between some TeamTNT samples, Mexalz and 
XMRig, as well as the similarities between WatchDog 
and XMRig, are clearly emphasized. 
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Figure 8: Cryptominers ordered based on string similarity (instead of 
family and time), showing the dendrograms that cluster together similar 
samples (lighter color/lower distance corresponds to higher similarity).

In addition to unpacking the cryptominer samples, 
we also monitored their execution in our sandbox. 
We found that a subset of the samples was 
de-obfuscating and executing additional code at 
runtime. We extracted these code fragments and 
analyzed their similarity against the model we built 
for the existing cryptominers. Note that the similarity 
is based only on the strings. The dynamically 
generated code is not in ELF format, therefore 
telfhash cannot be applied. This further shows that 
TF-IDF analysis on strings is an effective and flexible 
approach with wider applicability than telfhash.

The results of the analysis are shown in Figure 9. It 
shows that the generated code has a few clusters 
that represent small variations of the deployed code. 
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Figure 9: Similarity analysis of dynamically generated code.

https://blogs.vmware.com/networkvirtualization/2021/12/introducing-darth-distributed-analysis-for-research-and-threat-hunting.html/
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Characterizing behavior

We also used CAPA to examine the behaviors of cryptomining samples. The malicious behaviors of the 
cryptomining samples are shown in Figure 10. Similar to the behaviors observed in the ransomware samples, 
defense evasion is the most commonly used technique by cryptominers. In terms of the encryption methods 
associated with defense evasion, it appears the techniques cryptominers use to obfuscate data are more 
diversified (Figure 10 (B)) in comparison to the ransomware samples discussed earlier (Figure 3 (B)).

aes, 18.5% (37)
base64, 18.5% (37)
rc4 prga, 10.0% (20)
xor, 10.0% (20)
rc4 ksa, 9.5% (19)
curve25519, 8.5% (17)
salsa20 or chacha, 6.5% (13)
blowfish, 6.0% (12)
camelia, 6.0% (12)
stackstrings, 6.0% (12)
upx, 0.5% (1)

(A)

(B)

Defense Evasion::Obfuscated Files or Information - 
T1027.005, 57.6% (200)

Discovery::System Information Discovery - T1082, 
15.0% (52)

Discovery::System Network Configuration 
Discovery - T1016, 6.9% (24)

Execution::Shared Modules - T1129, 6.3% (22)

Defense Evasion::Deobfuscate/Decode Files or 
Information - T1140, 5.5% (19)

Impact::Resource Hijacking - T1496, 5.5% (19)

Discovery::File and Directory Discovery - T1083, 
3.2% (11)

 

Figure 10: Malicious behaviors of the cryptominer samples in the dataset: (A) Typical MITRE ATT&CK tactics and techniques 
leveraged by the samples; (B) Various encryption/obfuscation techniques used for defense evasion.

Detecting and mitigating the threat

A cryptojacking attack might result in higher energy bills, stalled operations, or higher cloud computing costs. 
Unfortunately, these attacks can be tricky to detect because they do not completely disrupt the operations of 
cloud environments, like ransomware does, or raise alarms, like a data breach might when unauthorized or 
anomalous access to sensitive data is detected. 

The best way to detect cryptojacking attacks is to use network traffic analytics (NTA) to identify internal hosts 
that are communicating the results of mining work to the outside, as this communication is required to monetize 
the attack. The communications to look for are connections to mining pools. However, many cryptomining 
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malware samples connect to a command-and-control host that acts as a network proxy to avoid being detected. 
In these cases, more sophisticated anomaly detection techniques are necessary to identify the threat. EDR 
solutions may be able to identify abnormal CPU usage patterns that can be directly associated with the 
calculations related to blockchain mining. Once again, the concerted monitoring of cloud environments using 
both host-based and network-based detection techniques can help keep these attacks at bay.

Methodology

Static and dynamic analysis

Linux programs, malicious or not, can be analyzed with a number of different techniques that can be 
categorized into two classes: static and dynamic analysis. 

Static analysis looks at Linux binaries without executing them. These techniques either extract the meta-
information provided by the ELF binary format or investigate the code and data segments that are part of the 
binary (e.g., looking for strings used by the program). For example, pyelftools21 is a Python library that can 
extract information from ELF files. Another example is the FLIRT technology provided by the IDA Pro 
disassembler22 that enables the identification of specific libraries in statically linked, stripped binaries, where all 
the symbols associated with the source code have been removed. Another interesting tool is redress,23 which 
can be used to analyze Linux programs written in the Go language. 

The advantage of static analysis techniques is that they are typically fast and don’t require the execution of the 
program’s code, which might include malicious actions. For example, the CAPA tool24 can extract interesting 
behaviors without having to execute a sample. However, the main disadvantage of static analysis is that it is 
relatively easy to foil, using layers of obfuscation, packing and encryption. For example, the most used code-
similarity function for ELF files, telfhash,25 is of limited effectiveness when the files are packed.

Dynamic analysis looks at the actual execution of a program, usually in a controlled environment, such as a 
sandbox. These techniques are often resource-intensive and require extreme care to avoid the “spill out” of 
malicious actions or the fingerprinting of the analysis environment. However, the main advantage of dynamic 
analysis techniques is that they have the potential to expose the hidden behavior of malicious programs (e.g., 
encrypted portions of code). 

The Linux kernel has recently introduced a technology, called eBPF,26 that allows for the monitoring of 
programs with minimal overhead. Tools built on top of eBPF, such as Tracee,27 can identify specific malicious 
behaviors, such as the unpacking of code or the presence of suspicious sequences of system calls. 

In this report, we have applied a composition of static and dynamic techniques to characterize various families 
of malware observed on Linux-based systems.

Malware datasets 

As part of this report, we are releasing a curated dataset of metadata associated with Linux binaries. All the 
samples in this dataset are public and therefore they can be easily accessed using VirusTotal28 or various 
websites of major Linux distributions. 

https://github.com/aquasecurity/tracee
https://www.virustotal.com/
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We started by collecting more than 11,000 benign samples from several Linux distributions, namely Ubuntu, 
Debian, Mint, Fedora, CentOS and Kali. We then collected a dataset of samples for two classes of threats, 
namely ransomware and cryptominers. These datasets have been manually labeled and vetted. This is a 
resource-intensive process that provides better labels than the ones provided by most automated analysis 
tools, which can be noisy and imprecise. Finally, we collected a dataset of malicious ELF binaries from 
VirusTotal that we used as a test malicious dataset. We started collecting the dataset in June 2021 and 
concluded in November 2021.

For each sample in each dataset, we looked at the general characteristics of the program, such as the 
architecture, the type of linking (static or dynamic), the presence or absence of symbols, the use of UPX for 
packing, and other traits. Figure 11 displays the characteristics of the files in our datasets, which show how 
different the characteristics of each group are.

Figure 11: Characteristics of the samples in the datasets.



20 | Exposing Malware in Linux-Based Multi-Cloud Environments 

Remote access tools – Implants
An important aspect of an adversary’s activity is how they compromise systems to gain control. This control 
allows them to persist within the environment, establishing a staging server they can use to pivot and target 
additional systems. Once an adversary has gained initial access to an environment, they enter the most difficult 
portion of the attack. They will need to find a way to leverage this limited access to gain a stronger foothold, 
while attempting to map out and find resources to accomplish their goal.

Attackers look to install an implant on a compromised system that gives them partial control of the machine. 
An implant, also known as a beacon, is what is generally regarded as the malware component of an attack. Its 
goal is to simply make regular network connections out to the command-and-control (C2) server to obtain new 
commands to execute and pass along the results.

In the context of an attack, what is an implant? Malware, webshells, remote access Trojans, and even known-
good RATs can all be implants that install themselves on a compromised system to allow for remote access. An 
implant is deployed in a persistent manner to allow an adversary to keep control of that infected system. This is 
typically done in two ways: passive and active. A passive implant awaits an external connection, such as a 
webshell on a compromised server. Conversely, an active implant will continually try to send beacon messages 
to a preset C2 server and await further instructions. Analysis of RATs in the wild shows that most act as active 
implants that will communicate with known C2 servers to gather further instructions. Very few RATs make use 
of passive implants that rely on a service to listen for commands. While such malware could create its own 
listener, often they install a component into an existing service, such as a web server, to piggyback on existing 
network connectivity. However, the adversary would need to perform additional research of the infected 
system and face the risk of insufficient account privileges to install. Because a passive implant has no guarantee 
that the system will allow incoming connections, an active implant is the preferred tactic for malware.

From a malware analysis perspective, what is interesting is determining the number of implants that interact via 
well-known HTTP protocols, and those that create their own specialized protocols. An implant’s purpose is far-
reaching, depending on its author. Many are used for very simplistic purposes, such as to show files on the 
system, download new files, upload existing files, or execute commands. 

Others allow for more advanced tactics, such as mapping out the local network and pivoting from the infected 
system into new systems on the network. Overall, depending on the adversary and their ability, an implant can 
contain a great amount of functionality, as documented in Figure 12.
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Figure 12: Malicious implant diagram.

Tactics used by implants

Implants often perform reconnaissance on systems in the area. For instance, they may scan an entire set of IP 
addresses to collect systems information and grab TCP port banner data. This can also allow the implant to 
collect IP addresses, hostnames, active user accounts, and specific operating systems and software versions of 
all the systems it detects.

Implants also rely on their ability to entrench themselves within their infected systems to persist. Their hope is 
to become background noise within a typical day’s activity, showing up as just another Windows service or 
application to operate undetected. They can hide themselves in various ways, but on Linux-based multi-cloud 
environments, we often see their activities performed as routine cron jobs. Like the Scheduled Tasks within 
Windows, cron allows Linux, macOS and Unix environments to schedule processes to be executed at regular 
intervals. In this way, malware can implant itself onto a compromised system with a restart frequency of 15 
minutes, so it can relaunch if it is ever terminated. 
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One of the more advanced tactics used by implants is that of lateral movement. 
Also known as pivoting, this allows an adversary to install additional implants 
within the environment, allowing them to jump to another system internally. 
From here, they can start gathering additional data about the environment from 
systems that may have additional access. In incident responses seen in the past, 
there are specific systems that have higher privileges to connect into protected 
enclaves for more sensitive data. These protected enclaves do not have remote 
access but could be accessed via multiple pivots, allowing a patient and careful 
adversary the ability to test access and find the weak center of the infrastructure.

Implants could be active for weeks, or even months, as the adversary figures out 
how best to carry out their objectives. In a typical smash-and-grab ransomware 
scenario, the actor may get lucky—they could sit dormant on a Windows server 
they’ve compromised and scan logons for just a few days before they catch a 
domain administrator. Once they’ve got these stolen credentials, they can 
quickly pivot and use them to force ransomware across an entire environment 
using built-in PowerShell scripting capabilities. However, this task is more 
difficult in a multi-cloud environment. The actor typically must remain quiet and 
unnoticed for as long as possible while they discover all the required resources. 

Implants are also invaluable for collecting and exfiltrating data. Unlike large-
scale data collection, which is typically done through tools such as rclone, 
implants may have the ability to exfiltrate directory listings of existing files and 
individual files. This allows a malware operator to collect superficial data for a 
malicious analyst to identify critical assets to steal.

Attack stages

These implants allow for additional stages of attack. While a first stage may be to 
exploit a vulnerability and install an implant, a second stage may be to download 
additional malware. This is often seen in Windows attacks via malware, such as 
TrickBot and QBot. The same exists in multi-cloud environments, as adversaries 
tend to specialize their toolsets based on functionality. The initial implant may 
have very specific capabilities, but it can be leveraged to download and execute 
ransomware or a cryptomining application, such as those mentioned earlier in 
this report.

Within the data center, adversaries may have to juggle access and connections 
to a variety of operating systems and services. In some cases, it could be 
necessary to pivot between systems instead of making direct connections, 
especially if some services are virtually segmented and only allow connections 
from a hard-coded set of systems. Lucky for them, it is completely possible to 

Implants used by threat actors

Cobalt Strike and  
Vermilion Strike
Cobalt Strike is one of the most 
well-known and well-regarded 
red team tools on the market, sold 
as a legitimate service to select 
businesses. It uses HTTP, HTTPS 
and DNS to exfil information 
from a compromised network. 
Vermilion Strike is an open source 
threat emulation software based 
on Cobalt Strike’s protocols, 
making it compatible with Cobalt 
Strike servers.

Merlin 
Merlin74 is a post-exploit C2 tool 
that communicates using the 
HTTP/1.1, HTTP/2 and HTTP/3 
protocols. The server and 
implant are written in Go, so they 
can be cross-compiled to run on 
any OS platform. 

https://github.com/Ne0nd0g/merlin
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traverse an environment using simple command lines and built-in accessibility 
tools, such as SSH. However, mapping out an environment, as well as the 
resources found on each system, is difficult for someone using direct connection 
techniques. This creates the need for an attack management tool.

Attack management tools

Attack management tools are good for both attackers and red team operations. 
They provide the ability to graphically organize assets, store collections of notes, 
and easily transmit properly structured commands to multiple compromised 
systems. At a basic level, they allow the actor to map out accessible IP addresses 
and hostnames within an environment and identify their operating systems. The 
actor can then target specific systems for exploitation, track legitimate user 
accounts and credentials, and document which systems have what assets. 

A deeper look at Cobalt Strike – Vermilion Strike

The primary implant that this report focuses on is Cobalt Strike and its recent 
Linux-based variant, Vermilion Strike. To fully understand its impact on a multi-
cloud environment, this report will dive into the implant’s capabilities and 
methods of operation.

Cobalt Strike is a commercial penetration testing and red team tool. It allows a 
red team to simulate real attacks during their testing. Unfortunately, threat 
actors have found the tool useful, as well, thanks to its robust feature set, which 
makes it easy to remotely control victim machines once they are infected. Cobalt 
Strike uses an implant named beacon that, once deployed on a machine, will 
phone home to retrieve tasks to execute. Many threat actors simply use the 
Cobalt Strike beacon for their final payload delivery. The beacon implant is a 
Windows-only application.

In September 2021, Intezer reported53 that they had discovered malware that 
appeared to be a Linux re-implementation of the Cobalt Strike beacon implant. 
Open source versions of Cobalt Strike’s beacon implant exist, such as Geacon54 
and CrossC2,55 but Vermilion Strike appears to be the first re-implementation of 
the Cobalt Strike protocol in the wild. Because Cobalt Strike is such a ubiquitous 
threat on Windows, its expansion to other operating systems, such as Linux, is 
notable. It demonstrates the desire of threat actors to use readily available 
remote-control tools to target as many platforms as possible.

Vermilion Strike appears to be implemented against version 3 of the Cobalt 
Strike team server. Its C2 configuration and communication appear to be the 
same as Cobalt Strike, but it only supports a handful of commands. These 
commands are explained in more detail in the technical analysis in Figure 13.

Implants used by threat actors 

SSH backdoor implant 
An SSH backdoor implant75 can 
be loaded when a malicious actor 
exploits a control web panel 
(CWP) server administration web 
application and downloads a 
sshins installer binary. This drops a 
malicious shared library,  
/lib64/libs.so, and writes the 
name of the dropped file in the 
directory as /etc/ld.so.preload. 
When the OpenSSH service 
restarts, the malicious library will 
load and have the ability to inject 
its own code whenever sshd calls 
bind(). It then uses this hook to 
periodically beacon to the C2 
server and exfiltrate sensitive data, 
such as CPU and OS information, 
OpenSSH configuration, and other 
critical data.

Linux C2 malware – RedXOR  
RedXOR76 masquerades as 
a polkit daemon. It is named 
for its network data encoding 
scheme, which is based on 
XOR. It communicates with a 
C2 server over a TCP socket 
and makes the traffic look like 
HTTP traffic. The C2 server sends 
commands to the implant via a 
command code that is returned 
in a JSESSIONID cookie. These 
commands can include collect 
system information, upload file, 
open file, execute shell command, 
and other tasks.

https://www.intezer.com/blog/malware-analysis/vermilionstrike-reimplementation-cobaltstrike/
https://github.com/darkr4y/geacon
https://github.com/gloxec/CrossC2
https://blogs.juniper.net/en-us/threat-research/linux-servers-hijacked-to-implant-ssh-backdoor
https://securityboulevard.com/2021/04/detect-c2-redxor-with-state-based-functionality/
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File Name : 294b8db1f2702b60fb2e42fdc50c2cee-
6a5046112da9a5703a548a4fa50477bc

File Size : 89,416 bytes

MD5 : 3db3e55b16a7b1b1afb970d5e77c5d98

SHA256 : 294b8db1f2702b60fb2e42fdc50c2cee-
6a5046112da9a5703a548a4fa50477bc

Fuzzy : 1536:tMCIVGxHiGZsz9ZLTSKKTrcAFgtzgrSWUnCTOPS:tMCIVUbi
z9VT1KTwAFgtzgrFO

Magic : ELF 64-bit LSB executable, x86-64, version 1 (SYSV), 
dynamically linked, interpreter /lib64/
ld-linux-x86-64.so.2, for GNU/Linux 2.6.32, BuildID[s
ha1]=2322a87e5a86ac36f71d745a4b290772f4b3614e, 
stripped

Figure 13: Analysis of Vermilion Strike file on Linux.

Vermilion Strike configuration details

The malware has multiple encoded blocks of data that it loads at start-up. The 
first is a 4,096-byte block of data that is XOR-encoded with the key 0x69. After 
decoding this first block, we can see that it is a group of type-length-value (TLV) 
encoded values consistent with a Cobalt Strike beacon. The use of the 0x69 
decryption key implies that this beacon might be similar to Cobalt Strike 3.x 
beacons. Cobalt Strike 4.x beacons make use of the 0x2e key to decrypt.

Next, the malware decodes five separate blocks of string data. These chunks of 
data have 12 bytes of a header and a variable length chunk of XOR-encoded 
data. As shown in Figures 14 and 15, the first 4 bytes always appear to be “80 
80 00 00”. The second 4 bytes make up a 4-byte key to be used with XORing 
the encrypted data. The third 4 bytes indicate the length of the data. In the 
example shown in Figure 14 and 15, we can see a key of “e2 16 a2 de” used 
to decode 181 (0xb5) bytes of data.

Implants used by threat actors 

ACBackdoor malware 
ACBackdoor77 provides 
arbitrary execution of shell 
commands, arbitrary binary 
execution, persistence, and 
the ability to update malware 
on a compromised system. It 
communicates with a C2 server 
using the HTTPS protocol to send 
the information it collects as a 
Base64-encoded payload.

BlackTech – ELF_Plead 
ELF_Plead78 is a Linux version of 
a RAT used by the threat actor 
BlackTech. The configuration 
is RC4-encrypted, and a 
32-byte encryption key can be 
found before the encrypted 
configuration. It uses a custom 
protocol to communicate with 
a C2 server. The data sent to 
the C2 server is RC4-encrypted 
and then LZO-compressed. 
The ELF_Plead command can 
provide arbitrary shell command 
execution and send/receive files, 
among other things.

https://www.intezer.com/blog/research/acbackdoor-analysis-of-a-new-multiplatform-backdoor/
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00000000 80 80 00 00 e2 16 a2 de b5 00 00 00 cd 75 c3 fe |....â.¢Þµ...ÍuÃþ|

00000010 cd 49 fd ab 96 7b 8c b9 8b 70 82 f1 92 7f da bb |ÍIý«.{.¹.p.ñ..Ú»|

00000020 8e 38 c5 b7 84 36 8d b9 cc 66 cb a6 87 7a 82 f1 |.8Å·.6.¹ÌfË¦.z.ñ|

00000030 86 79 d6 f0 85 7f c4 fe cd 63 d2 ba 83 62 c7 ad |.yÖð..ÄþÍcÒº.bÇ.|

00000040 cc 64 d1 ad c2 39 c4 a9 8e 7f cc b5 c2 39 c1 b3 |ÌdÑ.Â9Ä©..ÌµÂ9Á³|

00000050 c2 39 c1 a6 c2 39 d2 b7 9a 73 ce fe cd 7b c3 aa |Â9Á¦Â9Ò·.sÎþÍ{Ãª|

00000060 81 7e 82 f1 94 7f d1 b7 96 38 c8 ad c2 39 ce b1 |.~.ñ..Ñ·.8È.Â9Î±|

00000070 83 72 82 f1 92 63 d1 b6 c2 39 d2 aa 88 36 8d b4 |.r.ñ.cÑ¶Â9Òª.6.´|

00000080 cc 77 c6 fe cd 71 c3 f0 88 65 82 f1 87 78 fd 8b |ÌwÆþÍqÃð.e.ñ.xý.|

00000090 b1 39 c3 b2 8e 38 c8 ad c2 39 c3 bd 96 7f d4 b7 |±9Ã².8È.Â9Ã½..Ô·|

000000a0 96 6f 82 f1 ab 53 9b 9d 8d 7b d2 bf 96 40 cb bb |.o.ñ«S...{Ò¿.@Ë»|

000000b0 95 5a cb ad 96 |.ZË..|

 Figure 14: Vermilion Strike encrypted string data.

00000000 2f 63 61 20 2f 64 70 69 78 65 6c 20 2f 5f 5f 75 |/ca /dpixel /__u|

00000010 74 6d 2e 67 69 66 20 2f 70 69 78 65 6c 2e 67 69 |tm.gif /pixel.gi|

00000020 66 20 2f 67 2e 70 69 78 65 6c 20 2f 64 6f 74 2e |f /g.pixel /dot.|

00000030 67 69 66 20 2f 75 70 64 61 74 65 73 2e 72 73 73 |gif /updates.rss|

00000040 20 2f 66 77 6c 69 6e 6b 20 2f 63 6d 20 2f 63 78 | /fwlink /cm /cx|

00000050 20 2f 70 69 78 65 6c 20 2f 6d 61 74 63 68 20 2f | /pixel /match /|

00000060 76 69 73 69 74 2e 6a 73 20 2f 6c 6f 61 64 20 2f |visit.js /load /|

00000070 70 75 73 68 20 2f 70 74 6a 20 2f 6a 2e 61 64 20 |push /ptj /j.ad |

00000080 2f 67 61 2e 6a 73 20 2f 65 6e 5f 55 53 2f 61 6c |/ga.js /en_US/al|

00000090 6c 2e 6a 73 20 2f 61 63 74 69 76 69 74 79 20 2f |l.js /activity /|

000000a0 49 45 39 43 6f 6d 70 61 74 56 69 65 77 4c 69 73 |IE9CompatViewLis|

000000b0 74 2e 78 6d 6c |t.xml|

 Figure 15: Vermilion Strike decrypted string data.

These five chunks of data are either separated by a space or comma, and contain the rest of the configuration 
data the malware uses when communicating with its C2 server:

• DNS servers

• GET URLs

• POST URLs

• Subdomains to use with DNS C2 traffic

Finally, the malware parses the beacon configuration. Although the malware uses the same structure as a real 
Cobalt Strike beacon, it only loads the configuration types shown in Table 3 from the beacon data.
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Type Name Description

01 BeaconType How to communicate with the C2

02 Port What port to use when communicating with the C2

03 SleepTime How often to check in with the C2

07 PublicKey An RSA public key used to encrypt communication with the C2

08 C2Server A list of server names and GET URL paths to use to check in

09 UserAgent The User-Agent string to use in HTTP communication

10 HttpPostUri The POST URL to use to send responses to the C2

13 HttpPost_Metadata Additional data to set in POST requests to the C2

Table 3: Vermilion Strike configuration types.

Vermilion Strike setup

After loading the configuration, the malware proceeds to initialize the additional values it needs to 
communicate with the C2. These steps are similar to what a real Cobalt Strike beacon does.56 The setup 
consists of the following steps:

1. Generate an array of 16 random bytes

2. Generate a SHA256 of the bytes

3. Use the first half of the SHA256 for AES keys

4. Use the second half of the SHA256 for HMAC keys

5. Load the RSA key from the beacon configuration

6. Collect and encrypt victim machine information:

 –Random number

 –PID

 –OS name

 – IP address

 –User name

 –Host name

 –Malware version number

The version number used in this specific sample of the malware is 1.0.1.LR.
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Cobalt Strike/Vermilion Strike C2 communication

After loading the configuration and performing the additional setup, the malware enters its main processing 
loop. Each time through the main loop, the malware will attempt to check in with the C2 server and then go to 
sleep for the time specified in the SleepTime beacon configuration. Depending on the BeaconType value, 
as previously mentioned, the C2 communication method will change. The malware currently supports hybrid  
HTTP DNS, HTTPS, and HTTP communication. There is an additional ICMP communication method in  
the code but no configuration option to select it. As Intezer noted, this might indicate this code is under 
development. 

In the case of HTTP or HTTPS communications, a GET request is made to the server to check in. A cookie value 
is set with Base64-encoded data collected from the victim machine. The server responds to the GET request 
with any queued-up commands. The commands shown in Table 4 are supported by the malware.

Command Name Description

02 shell Execute the command

04 sleep Change how often the beacon calls home

05 cd Change directory on host

10 upload Upload a file to host (first chunk)

11 download Download a file

19 cancel Cancels a download that is currently in progress

39 pwd Displays the current working directory

53 ls List files in a folder

55 drives List drives on current system

67 upload Upload a file to host (subsequent chunks)

Table 4: Vermilion Strike supported commands.

The malware will execute the commands sent to it from the server and then send a POST request back with the 
requested information.

https://www.intezer.com/blog/malware-analysis/vermilionstrike-reimplementation-cobaltstrike/
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File Name : 7129434afc1fec276525acfeee5bb08923ccd9b32269638a54c7b452f5493492

File Size : 238,080 bytes

MD5 : 4baec501cd3c6318c8bceb4cf5c8b394

SHA256 : 7129434afc1fec276525acfeee5bb08923ccd9b32269638a54c7b452f5493492

Compiled Time : Wed Jun 26 02:59:19 2019 UTC

PE Sections (5) : Name Size MD5

.text 165,888 856639ce9212eb1329c8a59f89f0f97e

.rdata 51,200 590ccfa17cf705285509a4ae3ae50f38

.data 7,168 bfcb5a68d595cf49d2b372f35bbaacc5

.rsrc 512 09a004fff9ae1f2b5ff7ded5bcfaf389

.reloc 12,288 f6d8de448cad7e9a2587b75d8894c69d

Original DLL : gigabigsvc.dll

DLL Exports (1) : Ordinal Name

1    ServiceMain

Magic : PE32 executable (DLL) (GUI) Intel 80386, for MS Windows

 Figure 16: Vermilion Strike Windows file. 

Vermilion Strike Windows and Linux differences

As an aside, the Windows version of the malware is almost identical to the Linux version with only a few 
differences. For instance, when collecting and encrypting victim machine information, the Windows version 
uses the following malware version numbers: 

• 1.0.1.WR

• W1.0.1

Additionally, before entering the main loop, the Windows version will start a thread that attempts to read 
information from a named pipe and send the data to the C2 server using standard communication methods. 
Table 5 shows three additional commands the Windows version understands that are not available in the Linux 
variant due to differences in how the two operating systems manage named pipes. 

Command Name Description

20 create_pipe Create a named pipe

21 resume_pipe ResumeThread on the named pipe thread

23 suspend_pipe SuspendThread on the named pipe thread

Table 5: Vermilion Strike commands for named pipes.

These additional commands and threads seem to be related to Cobalt Strike functionality that allows the 
beacon to be injected into other processes and use a named pipe to communicate back to the main beacon 
when sending responses to the C2. Although the commands exist for controlling the named pipe thread in 
Linux, there doesn’t seem to be any ability for the beacon to inject itself into other processes.
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Metadata

The Windows version also provides additional metadata that might be useful. First is a PDB path, shown 
below. A PDB value is a file path stored within a Windows executable that has debugging enabled. This refers 
back to the original path on the malware developer’s computer where the malware was compiled, which can 
provide insightful clues to the actor.

C:\workspace\spy\cobaltstrike-client-vc2008\Release\gigabigsvc.pdb

Second is the compilation timestamps of the beacons and stager binaries. The following unique timestamps 
are seen on the Windows binaries:

• 2019-06-26 02:59:19

• 2019-06-26 02:59:26

• 2020-09-12 14:35:36

• 2020-09-12 14:36:10 

The fact that a lot of the compilation timestamps of the samples come from 2019 is a clue that this Cobalt Strike 
clone might have been written to be compatible with version 3.x.

Vermilion Strike compatibility with Cobalt Strike team server

Based on the analysis of malware samples, it appears this malware is most compatible with Cobalt Strike 3.x. 
After testing, a sample can connect and retrieve commands from the server but does not properly send back 
responses. There appears to be two problems. 

The first problem is even though the beacon configuration is read and the POST URI decoded, the malware does 
not use this value. Instead, it selects at random from an array of POST URIs, which are loaded from the .rodata 
section. When sending responses to the server, it most often gets a 404 error returned, as seen in Figure 17.

Figure 17: C2 POST error.
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The second issue is that the POST URI is supposed to include a session ID, but the malware just uses a random 
number for this session ID. The result is that, even if the correct POST URI is picked at random, the server 
doesn’t process the results because the session ID is unknown.

The VMware Threat Analysis Unit Cobalt Strike threat intelligence collection

Security practitioners often rely on the reputation of IP addresses to determine if traffic to and from that 
indicator of compromise (IOC) is malicious. However, the reputation is not effective for catching fresh 
malware C2 servers. In the example shown in Figure 18, antivirus (AV) engines detected an IP address as 
harmless (0/87)57 on VirusTotal in September 2021, but in the VMware Threat Analysis Unit, we were able to 
identify it as a Cobalt Strike team server (C2).

Figure 18: VirusTotal result against one IP address.

We looked at the DNS protocol, which we had reversed, and saw the protocols of high-profile malware 
families were emulated, especially those used for cyberespionage to discover real-time C2 instances on the 
internet. We utilized this intelligence to not only detect the threats but to also support incident response cases. 
The following section describes our findings on these Cobalt Strike threats. 

Protocol overview and our approach

Cobalt Strike is split into a client and server component called a team server. An operator using a client GUI 
program connects to a team server after authenticating with a password through the TLS protocol.

A Cobalt Strike stager then downloads a main RAT module, the beacon, from the team server. The beacon will 
receive task (command) information from the team server and send back the results of the executed command. 
Both stager and beacon protocols for C2 communications are implemented in HTTP/HTTPS/DNS.

Additionally, Cobalt Strike allows third-party programs to act as a communication layer for the beacon’s 
payload. In those cases, the beacon session is forwarded to a team server’s External C258 service function, 
using a third-party client and controller. (For more Cobalt Strike protocol details, please see our presentation59 
for the Japan Security Analyst Conference (JSAC) 2021.)

https://www.virustotal.com/gui/ip-address/52.157.171.98
https://www.cobaltstrike.com/help-externalc2
https://jsac.jpcert.or.jp/archive/2021/pdf/JSAC2021_201_haruyama_jp.pdf
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Figure 19: Cobalt Strike protocols overview.

To identify Cobalt Strike team servers, we 
focused on the staging process of each protocol, 
(HTTP/HTTPS/DNS/External C2) to ensure we: 

• Did not circumvent any technological measure, 
such as authentication for the discovery. 
The client authentication protocol was not in 
our options because the emulation could be a 
login attempt by an unauthorized user to the 
team servers.

• Avoided false positives. Previous research 
(e.g., Fox-IT60 and ZoomEye61) didn’t 
differentiate the Cobalt Strike team servers and 
NanoHTTPD servers because they rely solely 
on the HTTP response header data. Similarly, 
we obtained responses from the team servers 
by sending requests based on the beacon 
protocol, such as HTTP/HTTPS GET requests, 
with the correct URI paths or arbitrary DNS A 
record queries. The team servers answered with a 200 OK status code in HTTP/HTTPS or a dns_idle value in 
DNS. However, we knew that a simple confirmation, without RSA/AES encryption in the beacon protocol 
would produce many false positives.

• Discovered team servers silently. We emulated the beacon session encryption and then downloaded task 
information from the servers. However, once the emulation code checked in at the servers, an entry was 
created on the Cobalt Strike GUI console. Such a noticeable method is unfavorable for this purpose.

Therefore, we took the same approach as the one used by the Cobalt Strike developers62 to emulate the stager 
protocol. Our implementation downloads beacon executables from Cobalt Strike team servers, and then 
decodes and parses their configuration blocks to obtain further information. The protocol requires no 
authentication, and the method will not lead to any false positives. We recognize that some security 
researchers and organizations analyze the Cobalt Strike team servers in the wild, using the stager protocol, but 
that doesn’t cover DNS and External C2 protocols, and threat actors tend to prefer them to HTTP/HTTPS.

Additionally, since version 3.5.1, Cobalt Strike has an option to disable the hosting of payload stages for HTTP/
HTTPS/DNS protocols (except External C2). Specifically, users are able to disable the stager protocol by just 
setting a line in the Malleable C2 Profile:63

When disabled, it is impossible to detect the server by our method, but it gives Cobalt Strike users an 
alternative mechanism to deliver their beacons.

set host_stage "false";

https://blog.fox-it.com/2019/02/26/identifying-cobalt-strike-team-servers-in-the-wild/
https://80vul.medium.com/identifying-cobalt-strike-team-servers-in-the-wild-by-using-zoomeye-part-2-acace5cc612c
https://blog.cobaltstrike.com/2019/02/19/cobalt-strike-team-server-population-study/
https://www.cobaltstrike.com/help-malleable-c2
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Observations since February 2020

Between February 2020 to November 2021, we discovered more than 14,000 active Cobalt Strike team 
servers on the internet.

Populations by protocol, version and customer ID

The percentage of each stager/beacon protocol is shown in Figure 20. The most popular protocol is HTTPS; 
the HTTP ratio increased 31 percent in January 2021 to 37 percent in November. We hypothesize Cobalt Strike 
users try to avoid a detection technique based on TLS 
handshakes, called JARM.64

Our discovery system guesses Cobalt Strike versions based 
on the collected beacon’s configuration values. For 
example, if a SETTING_WATERMARK value (i.e., the 
customer ID65) is included in the configuration, the version 
must be 3.9 and later at minimum. In addition, a SETTING_
DOMAIN_STRATEGY value indicates that the version is 4.3 
and later. From our sample datasets, we found that close to 
90 percent are version 4 and later (Figure 21). Regarding 
customer IDs, we found at least five customer Cobalt Strike 
IDs were cracked and leaked: 

• 1873433027

• 305419896

• 16777216

• 1359593325

• 0 (trial)

HTTPS
54%

HTTP
37%

DNS
8%

External C2
1%

Figure 20: Population by protocol.

4.1 and
later
49%

4.0
39%

3.14
10%

3.8 and below
0%

3.9-3.13
2%

Figure 21: Cobalt Strike server population by version.

305419896

3.9-3.13
2%

25%

16%

8%6%

1%

44%
Others

0 (trial and cracked)

1359593325

1873433027
16777216

Figure 22: Population by customer ID.

https://github.com/salesforce/jarm
https://www.cobaltstrike.com/help-authorization-files
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As shown in Figure 22, the total percentage of cracked and leaked customer IDs is 56 percent. This means that 
more than half of the observed Cobalt Strike users are using illegitimately obtained versions of the 
commercial software.

Additionally, it should be noted that cracked trial license cases are increasing lately. Since Cobalt Strike version 
3.6, the encryption of the beacon protocol is disabled66 in the trial license. It can be checked by looking at the 
config value SETTING_CRYPTO_SCHEME. If it's 1, it's disabled. However, we noticed there are a lot of team 
servers with the value 0, even if the customer ID is 0 and the version is newer than 3.6, such as in the following 
parsed config output:

We counted these servers as a part of the cracked customer IDs in Figure 22.

Change in the number of team servers obtained by a single scan

We discovered Cobalt Strike team servers targeting multiple protocols and ports. In Figure 23, we display the 
changes in the result of a single scan, which focuses on typical ports (HTTPS/443, HTTP/80, DNS/53 and 
ExternalC2/2222), and a scan that covers other ports as well. 
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Figure 23: Change in the result of a single scan.

Since December 2020, the numbers look to decrease. However, we understand a part of Cobalt Strike users 
just disabled the stager protocol, rather than halting its usage. Security researchers should pay attention to the 
stager-disabled team servers to detect any changes.

...
word CRYPTO_SCHEME (1 = disable encryption) at 0x746: 0 (0x0)
...
dword WATERMARK at 0x798: 0 (0x0)
...

https://blog.cobaltstrike.com/2015/10/14/the-cobalt-strike-trials-evil-bit/
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Domain fronting observation (e.g., Microsoft Azure, Fastly)

Domain fronting67 is a technique that obfuscates the intended destination of HTTPS traffic. Domain fronting 
takes advantage of routing schemes in content delivery networks (CDNs) and other services. 

Specifically, the Cobalt Strike beacon configuration has different hostnames in C2 hostname (SETTING_
DOMAINS) and HOST header values. Users can set the header values in either of two locations: in the  
HTTP config or the GUI menu. The Malleable C2 Profile68 setting is part of the HTTP transform data  
of the config, while the config value SETTING_HOST_HEADER is part of the GUI menu setting.  
The latter setting will overwrite the former one.

We found the most popular CDN abused by Cobalt Strike was Microsoft Azure, followed by Fastly.

CDN Host header value C2 hostname examples

Microsoft Azure *.azureedge.net *.microsoft.com, *.msn.com, *.skype.com, *.visualstudio.com, *.azure.com

Fastly *.global.prod.fastly.net *nytimes.com, *yelp.com, *bbc.com, *usatoday.com, *forbes.com, 
*theguardian.com, *cnn.com, *stackexchange.com, *reddit.com

Table 6: Azure/Fastly domain fronting settings observed in Cobalt Strike team servers.

0 20 40 60 80 100 120 140 160

Microsoft Azure
(until Jan. 2021)

Microsoft Azure
(since Feb. 2021)

Fastly
(until Jan. 2021)

Fastly
(since Feb. 2021)

Figure 24: The change in number of new domain-fronted team servers.

We found multiple Azure-fronted team 
servers with cracked and leaked customer 
IDs that were likely to be managed by 
threat actors, not red teamers. VMware 
researchers worked directly with Microsoft 
in January 2021 and, two months later, 
Microsoft stated69 that the company 
decided to make a change to their policy 
to ensure that domain fronting will be 
stopped and prevented within Azure. 
Since then, the new Azure-fronted cases 
have been on a downward slope. From 
August to October 2021, they have been 
reduced to zero. Based on our monitoring, 
we hypothesize that Cobalt Strike users 
that were using Azure have migrated to 
Fastly or other services hiding a real IP 
address, such as Cloudflare Workers. 

https://attack.mitre.org/techniques/T1090/004/
https://blog.cobaltstrike.com/2017/02/06/high-reputation-redirectors-and-domain-fronting/
https://www.microsoft.com/security/blog/2021/03/26/securing-our-approach-to-domain-fronting-within-azure/
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Attribution to the specific threat actors

We parsed configuration blocks of beacons downloaded from team servers to categorize them into clusters 
based on config values. The clusters could be attributed to specific threat actors or campaigns. We primarily 
focused on two values in the configuration for this purpose: SETTING_PUBKEY and SETTING_WATERMARK.

SETTING_PUBKEY is an RSA public key in a DER format utilized in the beacon protocol encryption. The RSA 
key pair is created as a file, .cobaltstrike.beacon_keys, when starting and logging on to a team server for the 
first time. After that, if the team server directory is copied to another host, the copied one will have the same 
key pair file and the public key will be reused. Therefore, the two servers, whose beacons have the same 
public key, are likely to be managed by the same person or organization, unless the key pair file is leaked. If 
the file is leaked, the number of servers using the same public key can be huge.70 We can exclude such a key 
for clustering.

SETTING_WATERMARK is a customer ID extracted from the authorization file, cobaltstrike.auth on a team 
server. According to Cobalt Strike’s developers,71 the ID is assigned to every team server of Cobalt Strike, 
version 3.9 and later, and is changed when running the update program. If a team server’s WATERMARK is 
matched with another one, it means they are operated by a single actor. Even if the software package is not 
valid (leaked or cracked), the activities utilizing an invalid package are probably malicious. This is how we can 
differentiate servers managed by valid customers and ones abused by criminals.

Other than these values, some values in the configuration, such as HTTP header information, and the jar path 
hash value (SETTING_PROCINJ_STUB) may be beneficial for attribution work.

The undisclosed team servers owned by the threat actors (e.g., APT41)

Based on the SETTING_PUBKEY sharing, we were able to identify the undisclosed team servers owned by 
APT41 in the two attack campaigns.

Case 1: Campaign ColunmTK

Group-IB72 discovered and shared a cyberattack on Air India and attributed it with moderate confidence to 
APT41 in June 2021. The campaign was codenamed ColunmTK. Based on the published network indicators, we 
found two undisclosed Cobalt Strike team servers.

The identification procedure is simple: 

1. Search for the known IP addresses/domains in our datasets.

2. Obtain customer ID and public key MD5 values from the records.

3. Search for other IP addresses sharing the same values.

In this case, we utilized the four public key MD5 values extracted from three known servers. The customer IDs 
were not available for clustering as they were all cracked and leaked. 

https://blog.nviso.eu/2021/10/21/cobalt-strike-using-known-private-keys-to-decrypt-traffic-part-1/
https://www.cobaltstrike.com/help-authorization-files
https://blog.group-ib.com/colunmtk_apt41
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C2 IP address Protocol/port First seen Last seen Customer ID Public key MD5

104.224.169.214 HTTP and 
DNS/5353, 
HTTP/80,  
HTTPS/443, 
DNS/53

2020/03/16 2020/09/03 0 (trial and 
cracked), 
305419896 
(cracked and 
leaked)

90419b03b90efe0c2c708294 
b40ced50,

64e69b07e15940bdb21e44bd 
3d7d9da4

185.118.164.198 HTTPS/443 2021/01/12 2021/01/12 305419896 
(cracked and 
leaked)

99683533be317f513a70f40fb-
db61cd6 

185.118.166.66 HTTPS/443, 
HTTPS/8443

2020/12/06 2021/04/09 305419896 
(cracked and 
leaked)

9cdb3fca6156c6cbed2f01d6 
431b3dfb

Table 7: Known team servers reported by Group-IB and observed by the VMware Threat Analysis Unit system.

By using the public key MD5 values, we obtained two undisclosed server IPs, which are shown in Table 8. We 
were able to even catch a new server (45.144.31.31) deployed after the Group-IB report publication.

C2 IP address Protocol/port First seen Last seen Public key MD5

149.248.62.83 HTTPS/443 2020/04/04 2020/04/04 90419b03b90efe0c2c708294b40ced50

45.144.31.31 HTTPS/8443 2021/06/14 2021/06/14 9cdb3fca6156c6cbed2f01d6431b3dfb

Table 8: Two undisclosed servers sharing the public keys.

Case 2: Cobalt Strike loader used by APT41

LAC,73 a cybersecurity company in Japan, reported the campaign by APT41 using Cobalt Strike loaders in May 
2021. Our system detected seven other servers, which are likely to be managed by the same actor.

C2 IP address Protocol/port First seen Last seen Customer ID Public key MD5

104.168.30.164 HTTPS/443, 
HTTP/80

2020/12/04 2020/12/18 305419896 
(cracked and 
leaked)

531c720aae6e053b9db 
9be8e7b56f78f

185.118.166.205 DNS/53 2020/12/12 2021/09/11 305419896 
(cracked and 
leaked)

df50953714f29628a7f6a6c 
97eb0bc2e

Table 9: Known team servers reported by LAC and observed by the Threat Analysis Unit system.

https://www.lac.co.jp/lacwatch/report/20210521_002618.html
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C2 IP address Protocol/port First seen Last seen

45.144.29.242 HTTPS/443, HTTP/80 2021/05/20 2021/06/03

185.250.151.18 HTTP/80 2020/12/31 2020/12/31

45.142.214.242 HTTPS/443, HTTP/80, HTTPS/8443, DNS/53 2021/04/25 2021/07/02

45.142.214.56 HTTPS/443, HTTP/80 2021/06/18 2021/07/19

45.67.229.168 HTTPS/443 2020/12/03 2020/12/03

45.153.231.194 DNS/53 2021/02/03 2021/02/03

194.156.98.214 HTTP/80 2021/01/26 2021/01/26

Table 10: Seven undisclosed servers sharing the public key 531c720aae6e053b9db9be8e7b56f78f.

Moreover, it should be noted that the earliest server was active at least six months ahead of both reports. The 
team server discovery, using protocol emulations, enables us to take proactive countermeasures. 

Identifying potential targets

We collected manual proxy settings of the beacon configurations from team servers. The number of settings is 
small; however, they can be useful for identifying the victim organizations, based on the internal domain name, 
username and password. The victim information, based on the proxy settings, is listed in Table 11. 

Victim industry Victim country Time period Cracked/leaked customer ID?

Financial services ES 2020/03-2020/06 No

Vertical transportation CH 2020/04 No

Automotive DE 2020/04-2020/08 No

Energy (oil and gas) NL 2020/06 No

Airport - 2020/06 Yes

Insurance JP 2020/09 No

Networking equipment FI 2020/09-2020/12 No

Insurance US 2020/11 No

Financial services FI 2020/12 No

Insurance HK 2020/12-2021/01 Yes

Telecommunications HK 2021/01-2021/03 Yes

Government - 2021/03-2021/08 Yes

Financial services GB 2021/05 No

Financial services US 2021/06-2021/07 No

Hydrocarbon exploration US 2021/08 No

Table 11: Victim information included in the manual proxy configuration.
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Most team servers with the settings were likely to be owned by red teams, judging from the customer IDs. We 
contacted the victims and shared our findings – the team server had a cracked/leaked customer ID and was 
active at that time – so they could take steps to address the ongoing attack that was happening.

Detecting and mitigating the threat

RATs, such as Cobalt Strike and Vermilion Strike, pose a significant threat to enterprises. They are often used 
as the first stage of an attack, delivering additional information or even malware that allows threat actors to 
pivot and spread to other internal infrastructure. RATs typically gain an initial foothold via simple attacks, such 
as phishing emails. 

We have discovered Cobalt Strike team servers in the wild for more than a year and a half. The fact that more 
than half of the servers have cracked and leaked customer IDs tells us that Cobalt Strike has become a 
commodity tool among criminals. A robust combination of NDR software and EDR solutions can help stop 
these attacks before they begin. 

Looking for unknown applications executing in the environment or abnormal network connections is often  
an indicator of something larger going on. By actively monitoring and locking down the environment with NDR 
and EDR solutions, these malicious applications can be stopped before they have a chance to do real harm.
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VMware recommendations
Organizations need to think of security as an inherent and distributed part of the modern enterprise, which 
must be incorporated into all aspects of the environment. Protecting multi-cloud environments starts with 
complete visibility into all workloads with detailed system context that makes it easier to understand and 
prioritize mitigation efforts. Information from all sources must be combined in an intelligent fashion that adds 
value, while enabling the sharing of this contextual data across teams to reduce silos. 

This requires an EDR solution that can monitor the actions performed by processes on cloud workloads and 
implement effective segmentation to contain risks. In addition, organizations need an NDR system that can 
recognize network-based evidence of attacks and malicious lateral movements to ideally block the malware 
before it can take hold of the target hosts. 

A secure multi-cloud environment requires securing all workload access and communications, both inside and 
across multiple clouds. Easily operationalizing security across clouds requires a scale-out architecture with 
software that gives the underlying infrastructure—firewalls, network detection and response, meshes, and load 
balancers—the same elasticity as modern, distributed applications. 

A Zero Trust strategy can help organizations embed security throughout their infrastructure. Zero Trust offers a 
connected approach—joining users, devices, workloads and networks—to help organizations systematically 
address the threat vectors that make up their attack surface. Organizations can ensure they are implementing 
control points and distributing security across the infrastructure to better protect data and operations. With 
visibility, context, actionable insights, and control points embedded throughout the environment, organizations 
can start to spot and stop many of today’s threats before they can even get started.

How VMware can help

VMware can deliver security as a built-in distributed service across your control points of users, devices, 
workloads and networks. With VMware, you can implement Zero Trust with fewer tools and silos, and scale 
response with confidence, speed and accuracy. When security becomes intrinsic, you reduce your attack 
surface to mitigate security risk, ensure compliance, and simplify security operations.

With VMware Security, you can deliver the speed and security required of the modern enterprise. You can 
transition to next-gen systems and modern applications, without increasing security complexity, and with 
dramatically fewer blind spots or choke points. Through vendor, agent and tool consolidation, you can achieve 
better security outcomes and deliver better employee and customer experiences, while spending less time on 
administrative tasks. 
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With VMware, you operationalize more of your security through your IT and development teams by creating a 
common source of truth and dramatically increasing your capacity to protect and defend your infrastructure. 
The authoritative context from the visibility, depth and accuracy of VMware’s data collection enables security 
teams to confidently respond to events occurring within the organization’s assets. This allows an organization’s 
most critical assets—its people—to focus on high-value activities, using VMware’s intelligent risk correlation 
with proactive prevention, detection and response capabilities. 

VMware Security provides many capabilities to protect organizations from advanced threats targeting 
multi-cloud environments, such as ransomware, cryptominers, and remote access tools, as described in this 
threat report: 

• Organizations focusing on protecting end-user solutions can utilize VMware Workspace ONE®, VMware 
Horizon®, and VMware Carbon Black Cloud™ to stop advanced threats from entering the environment. 

• VMware vSphere®, VMware NSX® Advanced Threat Prevention™, VMware Carbon Black Cloud, 
CloudHealth® Secure State™, VMware Tanzu®, VMware vRealize® Suite, and VMware NSX provide 
organizations with robust capabilities to protect against, detect and respond to advanced threats in multi-
cloud environments.

By partnering with VMware, organizations can capitalize on enterprise modernization efforts, continuously 
incorporating security into all aspects of the technology stack to accelerate Zero Trust strategies and achieve a 
more effective security posture.
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