
Exposing Malware in
Linux-Based Multi-Cloud
Environments
Technical Threat Report

2 | Exposing Malware in Linux-Based Multi-Cloud Environments

Table of contents

Executive summary ... 3

Key findings ... 4

Ransomware and cryptominers .. 5

Ransomware ... 5

Ransomware families ...6
Characterizing similarity ..6
Characterizing behavior ..9
Detecting and mitigating the threat .. 10

Cryptominers ... 10

Cryptominer families ... 10
Characterizing similarity ... 14
Characterizing behavior .. 17
Detecting and mitigating the threat .. 17

Methodology .. 18

Static and dynamic analysis ... 18
Malware datasets ... 18

Remote access tools – Implants ... 20
Tactics used by implants ...21
Attack stages ...22
Attack management tools ...23

A deeper look at Cobalt Strike – Vermilion Strike .. 23

Vermilion Strike configuration details ...24
Vermilion Strike setup ...26
Cobalt Strike/Vermilion Strike C2 communication ...27
Vermilion Strike Windows and Linux differences ...28
Metadata ...29
Vermilion Strike compatibility with Cobalt Strike team server ...29

The VMware Threat Analysis Unit Cobalt Strike threat intelligence collection .. 30

Protocol overview and our approach ..30
Observations since February 2020 ..32
Attribution to the specific threat actors...35
Identifying potential targets ..37
Detecting and mitigating the threat ..38

VMware recommendations .. 39

References ... 41

3 | Exposing Malware in Linux-Based Multi-Cloud Environments

Linux-based malware is a fast-
growing threat to multi-cloud
environments, including data
centers, that must be addressed
to protect an organization’s assets
and operations. This report details
the research that the VMware
Threat Analysis Unit™ has done
into the latest threats to Linux-
based systems, documenting
key findings that can help
organizations better understand
and prepare to defend themselves
against these rising threats.

78%
of the most
popular
websites are
powered by
Linux1

Executive summary
In the past five years, Linux® has become the most common operating system
(OS) in multi-cloud environments. It has even bypassed Windows on
Microsoft Azure to power more than 78 percent of the most popular
websites.1 Malicious actors have taken notice and are increasingly targeting
vulnerable Linux-based systems in multi-cloud environments to infiltrate
corporate and government networks.

Threat actors know that current malware countermeasures are mostly focused
on addressing Windows-based threats, leaving many public and private cloud
deployments vulnerable to Linux-based attacks. These public and private clouds
are high-value targets for cybercriminals, providing access to critical
infrastructure services and substantial computational resources.

In fact, cloud infrastructures and data centers host key components, such as email
servers and customer databases, that have been the target of high-profile
intelligence-gathering breaches. The large-scale campaign carried out in early
2021, which targeted Exchange servers,2 and the Cybersecurity and Infrastructure
Security Agency (CISA) alert about BlackMatter,3 which targeted the U.S. food
and agriculture sector, are good examples of how attacks to vulnerable cloud
infrastructure can disrupt an organization’s value-delivery pipeline.

These threats take advantage of weak authentication, vulnerabilities and
misconfigurations in container-based infrastructures to infiltrate the environment
with remote access tools (RATs). Once the attackers have obtained a foothold in
their target cloud environment, they often look to perform two types of attacks:
execute ransomware or deploy cryptomining components.

Organizations need to bolster their ability to identify and defend against these
types of attacks. Given the distributed, dynamic and heterogeneous nature of
today’s enterprise workloads and networks, organizations need to extend
telemetry across the entire infrastructure—from endpoints to multi-cloud
environments. This will allow organizations to better monitor traffic and identify
abnormal behavior to mitigate the impact of attacks on the enterprise, while
increasing overall efficiencies and reducing operational costs.

This report, based on VMware’s experience with a diverse customer base, offers
a comprehensive look at Linux-based malware threats to multi-cloud
environments. It highlights the unique characteristics of this class of threats and
provides guidance on how combining endpoint detection and response (EDR)
and network detection and response (NDR) solutions can help organizations stay
ahead of the threats Linux-based malware poses.

https://www.vmware.com/security/threat-analysis-unit-tau.html
https://www.vmware.com/security/threat-analysis-unit-tau.html

4 | Exposing Malware in Linux-Based Multi-Cloud Environments

Key findings

Cryptojacking attacks use XMRig
to mostly mine Monero.

• Cryptojacking attacks focus on monetizing
stolen CPU cycles to mine cryptocurrencies.

• Most cryptojacking attacks focus on mining the
Monero cryptocurrency (or XMR). XMRig is the
most commonly used tool for cryptomining,
and research found that 89 percent of
cryptominers used XMRig-related libraries.

RATs are an increasing threat to
Linux-based systems.

• As Cobalt Strike is such a ubiquitous threat on
Windows, its expansion to other operating
systems, such as Linux, is notable. It
demonstrates the desire of threat actors to use
readily available remote-control tools to target
as many platforms as possible.

• VMware Threat Analysis Unit discovered
more than 14,000 active Cobalt Strike team
servers on the internet since the end of
February 2020.

• The most popular protocol for the Cobalt
Strike beacon is HTTPS.

• Close to 90 percent of the Cobalt Strike server
population is version 4 or later.

• The total percentage of cracked and leaked
Cobalt Strike customer IDs is 56 percent. This
means that more than half of the Cobalt Strike
users are using illegitimately obtained versions
of the commercial software.

• Vermilion Strike is just the first of many
malware targeting Linux-based systems that
will mimic the actions of other well-known
RATs to simplify an adversary’s work.

Linux-based systems are fast
becoming an attacker’s way into high-
value, multi-cloud environments.

• Linux is the most common OS across multi-cloud
environments.4

• Malware targeting Linux-based systems is increasing
in volume and complexity, but it is still less
sophisticated than Windows threats.

• There is a lack of focus on the detection of threats
that target Linux-based systems, making existing
tools inadequate.

• The main threats in most multi-cloud environments
are ransomware, cryptominers and RATs.

• Existing attack characterization techniques based on
static information, such as strings and APIs, are
useful but easily evaded by sophisticated threats.

• Defense evasion is the most common tactic used in
ransomware and cryptominers. Various encryption
or obfuscation techniques, such as Base64 encoding
and AES-based encryption, are used by attackers to
conceal code and data.

Ransomware is becoming more
sophisticated.

• Ransomware has recently evolved to target Linux
host images that are used to spin workloads in
virtualized environments.

• Ransomware attacks against cloud deployments are
targeted, not opportunistic.

• Ransomware attacks against cloud environments are
often combined with data exfiltration, implementing
a double-extortion scheme that improves their odds
of success.

• The detection of sophisticated threats targeting
Linux-based systems requires dynamic analysis and
continuous host monitoring—capabilities that work
well with the Linux kernel.

5 | Exposing Malware in Linux-Based Multi-Cloud Environments

Ransomware and cryptominers
Ransomware

The impact of a ransomware attack can range from being a nuisance (e.g.,
having to restore data from backups and clean up the network) to being
devastating (e.g., having to pay large sums of money to regain access to key
assets). Unfortunately, when talking about cloud environments, the results tend
to be more on the devastating side. Recently, cybercriminals have started
calculating the damage they might cause to the valuation of a company going
through a financial event to make the potential impact of their attack clear and
incentivize ransom payments.5 At the same time, they’ve been honing their
tactics with increasingly sophisticated techniques to target victim organizations.

Large-scale ransomware attacks on cloud deployments, however, have some
distinct characteristics that make them harder to spot and stop. First, ransomware
attacks against cloud deployments are targeted, not opportunistic. Unlike general
ransomware, which plays a numbers game (e.g., sending malicious email
attachments to millions of users in hopes that some will inadvertently click and
infect their systems), attacks on cloud infrastructures are more targeted and
carefully planned.

These attacks are designed for maximum impact. The cybercriminals make
sure that their target systems have been fully compromised before starting
the file encryption process. This allows them to simultaneously encrypt the
whole network to inundate response resources and make incident response
more difficult.

Ransomware has recently evolved to target the Linux host images used to spin
up workloads in virtualized environments. This new and worrisome development
shows how attackers look for the most valuable assets in cloud environments to
inflict the maximum damage on their target. Examples include the Defray777
ransomware family, which encrypted host images on VMware ESXi servers,6 and
the DarkSide ransomware family, which crippled Colonial Pipeline’s networks
and caused a nationwide gasoline shortage in the U.S.7

The basic profile of a ransomware
attack is so popular that even
non-technical people know
how it works: a network is
compromised, sensitive files are
encrypted, and a ransom note
is presented to the victim that
asks for money/cryptocurrency
in exchange for a decryption key
that will unlock access to the
files. (For a peek into what victim
organizations go through, check
out the blog post, HelloKitty: The
Victim’s Perspective.8)

https://blogs.vmware.com/networkvirtualization/2021/09/hellokitty-the-victims-perspective.html/
https://blogs.vmware.com/networkvirtualization/2021/09/hellokitty-the-victims-perspective.html/

6 | Exposing Malware in Linux-Based Multi-Cloud Environments

Many ransomware attacks against cloud environments involve exfiltrating data,
allowing the attacker to implement a double-extortion scheme. Essentially, the
attacker uses the data they collect as leverage to incent the victim into paying
the ransom. If the victim does not comply, the attacker leaks the information,
making it public on the internet to damage the victim’s reputation.9

Ransomware families

For this report, the VMware Threat Analysis Unit analyzed nine ransomware
families that target Linux systems, characterizing their evolution and cross-
pollination. A brief description of the families covered is included in the sidebar.
We started analyzing the different characteristics of the ransomware samples of
each of these nine families by looking at the static information extracted from
their ELF files. While threats can be a combination of shell scripts, Python
scripts, and binaries, this report focuses on the binaries. Binaries are usually the
components that carry out the file system encryption in a ransomware attack.

Characterizing similarity

As a first step, we used telfhash10 to characterize the code sharing among
samples. The approach used by telfhash applies a locality-sensitive hashing
function, namely TLSH, to the symbols contained in the ELF files. In the case of
statically linked and stripped files that contain no symbols, the hashing function
is applied to the target addresses of the call instructions observed in the binary
code of the program. One of the advantages of telfhash is that it is architecture-
independent, so it can operate on binaries compiled for different platforms,
such as x86 32bit, x86 64bit, and ARM.

Because of the locality-sensitive nature of TLSH, files with similar sets of symbols
produce similar telfhash values. These values can be used as a similarity metric
to identify closely related samples and cluster together malware families. Note
that telfhash does not produce a normalized value between two fixed values
(e.g., 0.0 to 1.0), but instead defines two samples as similar when their distance
is below a certain number (the default is 50).

Figure 1 shows the confusion matrix of the ransomware families. Lighter colors
indicate samples that were more similar. Note that this graph orders the samples
by time of appearance to highlight their evolution over time.

Ransomware families

REvil
The REvil ransomware, also
known as Sodinokibi, originally
targeted Windows hosts, but
released a Linux version in spring
2021.29 Interestingly, this threat
relies on the esxcli command-
line tool to stop the current ESXi
virtual machines (VMs). It then
encrypts their on-disk images to
prevent the recovery of running
VMs. Recently, REvil actors have
been targeted by a coordinated
take-down operation30 that may
impact future variants.

DarkSide
The actors behind DarkSide
initially distributed REvil
ransomware but grew tired
of sharing the profits with the
REvil ransomware-as-a-service
(RaaS) operator, so decided to
create their own ransomware.31
The DarkSide ransomware has
been used to target a wide
variety of organizations across
North America and Europe.
Most famously, the U.S. fuel
distribution company, Colonial
Pipeline, was held ransom by
DarkSide, dramatically affecting
gasoline distribution on the East
Coast.32 DarkSide initially targeted
Windows hosts but quickly
evolved to include Linux targets—
and in particular, those running on
ESXi servers.33 These servers are
usually targeted after the threat
actors gain access to a VMware
vCenter® deployment, often by
means of stolen credentials.

7 | Exposing Malware in Linux-Based Multi-Cloud Environments

b
l
a
c
k
m
a
t
t
e
r
_
6
a
7
b
7

b
l
a
c
k
m
a
t
t
e
r
_
1
2
4
7
a

b
l
a
c
k
m
a
t
t
e
r
_
d
4
6
4
5

d
a
r
k
s
i
d
e
_
d
a
3
b
b

d
a
r
k
s
i
d
e
_
c
9
3
e
6

d
a
r
k
s
i
d
e
_
9
c
c
3
c

d
a
r
k
s
i
d
e
_
9
8
4
c
e

d
a
r
k
s
i
d
e
_
e
4
8
c
8

d
e
f
r
a
y
_
7
8
1
4
7

d
e
f
r
a
y
_
c
b
4
0
8

d
e
f
r
a
y
_
0
8
1
1
3

d
e
f
r
a
y
_
6
5
4
b
5

d
e
f
r
a
y
_
1
9
6
e
b

d
e
f
r
a
y
_
0
6
9
c
7

d
e
f
r
a
y
_
8
f
3
b
3

d
e
f
r
a
y
_
8
b
d
6
4

d
e
f
r
a
y
_
c
7
4
5
8

d
e
f
r
a
y
_
6
3
d
e
4

d
e
f
r
a
y
_
8
1
f
6
2

d
e
f
r
a
y
_
1
e
c
d
d

d
e
f
r
a
y
_
a
0
d
9
f

d
e
f
r
a
y
_
5
e
1
6
6

d
e
f
r
a
y
_
c
6
2
8
0

d
e
f
r
a
y
_
1
0
c
7
7

d
e
f
r
a
y
_
5
c
a
f
1

d
e
f
r
a
y
_
5
8
6
a
a

d
e
f
r
a
y
_
1
d
3
1
e

d
e
f
r
a
y
_
3
0
3
c
6

d
e
f
r
a
y
_
1
b
c
c
a

d
e
f
r
a
y
_
f
0
8
8
4

d
e
f
r
a
y
_
0
4
c
9
b

d
e
f
r
a
y
_
e
2
b
b
3

d
e
f
r
a
y
_
0
5
d
4
4

d
e
f
r
a
y
_
9
1
9
5
d

d
e
f
r
a
y
_
c
8
6
e
a

d
e
f
r
a
y
_
e
a
9
b
3

d
e
f
r
a
y
_
f
d
d
5
0

d
e
f
r
a
y
_
7
e
a
5
2

d
e
f
r
a
y
_
9
6
5
3
2

d
e
f
r
a
y
_
1
5
a
9
c

e
c
h
0
r
a
i
x
_
1
5
4
d
e

e
c
h
0
r
a
i
x
_
0
7
6
a
6

e
c
h
0
r
a
i
x
_
0
3
9
a
9

e
c
h
0
r
a
i
x
_
6
7
0
2
5

e
c
h
0
r
a
i
x
_
e
4
b
3
3

e
c
h
0
r
a
i
x
_
8
c
5
5
b

e
c
h
0
r
a
i
x
_
e
6
9
6
7

e
c
h
0
r
a
i
x
_
f
3
1
5
0

e
r
e
b
u
s
_
3
2
_
d
8
8
9
7

e
r
e
b
u
s
_
6
4
_
0
b
7
9
9

e
r
e
b
u
s
_
6
4
_
1
2
f
b
a

g
o
n
n
a
c
r
y
-
c
_
a
7
f
9
9

g
o
n
n
a
c
r
y
-
c
_
b
9
0
f
d

g
o
n
n
a
c
r
y
-
c
_
f
5
d
e
7

g
o
n
n
a
c
r
y
-
c
_
2
e
a
1
e

h
e
l
l
o
k
i
t
t
y
_
8
f
3
d
b

h
e
l
l
o
k
i
t
t
y
_
5
5
6
e
5

h
e
l
l
o
k
i
t
t
y
_
9
f
8
2
f

h
e
l
l
o
k
i
t
t
y
_
c
a
6
0
7

h
e
l
l
o
k
i
t
t
y
_
b
4
f
9
0

r
e
v
i
l
_
3
d
3
7
5

r
e
v
i
l
_
d
6
7
6
2

r
e
v
i
l
_
e
a
1
8
7

r
e
v
i
l
_
7
9
6
8
0

r
e
v
i
l
_
5
5
9
e
9

v
i
c
e
s
o
c
i
e
t
y
_
1
6
a
0
0

blackmatter_6a7b7

blackmatter_1247a

blackmatter_d4645

darkside_da3bb

darkside_c93e6

darkside_9cc3c

darkside_984ce

darkside_e48c8

defray_78147

defray_cb408

defray_08113

defray_654b5

defray_196eb

defray_069c7

defray_8f3b3

defray_8bd64

defray_c7458

defray_63de4

defray_81f62

defray_1ecdd

defray_a0d9f

defray_5e166

defray_c6280

defray_10c77

defray_5caf1

defray_586aa

defray_1d31e

defray_303c6

defray_1bcca

defray_f0884

defray_04c9b

defray_e2bb3

defray_05d44

defray_9195d

defray_c86ea

defray_ea9b3

defray_fdd50

defray_7ea52

defray_96532

defray_15a9c

ech0raix_154de

ech0raix_076a6

ech0raix_039a9

ech0raix_67025

ech0raix_e4b33

ech0raix_8c55b

ech0raix_e6967

ech0raix_f3150

erebus_32_d8897

erebus_64_0b799

erebus_64_12fba

gonnacry-c_a7f99

gonnacry-c_b90fd

gonnacry-c_f5de7

gonnacry-c_2ea1e

hellokitty_8f3db

hellokitty_556e5

hellokitty_9f82f

hellokitty_ca607

hellokitty_b4f90

revil_3d375

revil_d6762

revil_ea187

revil_79680

revil_559e9

vicesociety_16a00

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Code similarity between ransomware samples, based on telfhash (lighter color/lower
distance corresponds to higher similarity).

From the confusion matrix in Figure 1, it is clear that samples that belong to the
same family have a strong telfhash similarity. This indicates that one can build an
effective classification system using telfhash. However, in some cases, the
similarities diminish as time passes, showing that evolution within a family might
lead to new code being introduced—possibly invalidating signatures developed
for early versions of a threat.

From the graph, we see how DarkSide and BlackMatter samples share
substantial portions of code, and that ViceSociety shares some code fragments
with REvil. This accounts for the relationship between threats that have been
highlighted in previous reports.

To further characterize the relationships between families of ransomware, we
developed a similarity measure that leverages the term frequency–inverse
document frequency (TF-IDF) algorithm applied to the hashes of the strings
contained in the samples. This allows us to find the strings that best
characterize each family. The confusion matrix in Figure 2 is based on the
cosine similarity computed over the TF-IDF values for each string in the
ransomware dataset we analyzed.

Ransomware families

BlackMatter
BlackMatter is considered
an evolution of the DarkSide
ransomware.34 Interestingly, the
actors behind BlackMatter made
sure to publicly announce that
they were not targeting specific
verticals, such as healthcare,
oil and gas, government, and
critical infrastructure companies—
possibly following the backlash
that the Colonial Pipeline attack
created, and the unwanted
attention that the DarkSide
operators received.

Defray777
Defray ransomware is another
Linux-based threat that targets
ESXi VMs.35 An interesting
property of some of its samples
is that it doesn’t strip or tamper
with ELF binaries, which
makes it easier to analyze. This
ransomware family is closely
related to RansomEXX36—to the
point that sometimes the two
families are considered to be
variations of the same threat.

8 | Exposing Malware in Linux-Based Multi-Cloud Environments

b
l
a
c
k
m
a
t
t
e
r
_
6
a
7
b
7

b
l
a
c
k
m
a
t
t
e
r
_
1
2
4
7
a

b
l
a
c
k
m
a
t
t
e
r
_
d
4
6
4
5

d
a
r
k
s
i
d
e
_
d
a
3
b
b

d
a
r
k
s
i
d
e
_
c
9
3
e
6

d
a
r
k
s
i
d
e
_
9
c
c
3
c

d
a
r
k
s
i
d
e
_
9
8
4
c
e

d
a
r
k
s
i
d
e
_
e
4
8
c
8

d
e
f
r
a
y
_
7
8
1
4
7

d
e
f
r
a
y
_
c
b
4
0
8

d
e
f
r
a
y
_
0
8
1
1
3

d
e
f
r
a
y
_
6
5
4
b
5

d
e
f
r
a
y
_
1
9
6
e
b

d
e
f
r
a
y
_
0
6
9
c
7

d
e
f
r
a
y
_
8
f
3
b
3

d
e
f
r
a
y
_
8
b
d
6
4

d
e
f
r
a
y
_
c
7
4
5
8

d
e
f
r
a
y
_
6
3
d
e
4

d
e
f
r
a
y
_
8
1
f
6
2

d
e
f
r
a
y
_
1
e
c
d
d

d
e
f
r
a
y
_
a
0
d
9
f

d
e
f
r
a
y
_
5
e
1
6
6

d
e
f
r
a
y
_
c
6
2
8
0

d
e
f
r
a
y
_
1
0
c
7
7

d
e
f
r
a
y
_
5
c
a
f
1

d
e
f
r
a
y
_
5
8
6
a
a

d
e
f
r
a
y
_
1
d
3
1
e

d
e
f
r
a
y
_
3
0
3
c
6

d
e
f
r
a
y
_
1
b
c
c
a

d
e
f
r
a
y
_
f
0
8
8
4

d
e
f
r
a
y
_
0
4
c
9
b

d
e
f
r
a
y
_
e
2
b
b
3

d
e
f
r
a
y
_
0
5
d
4
4

d
e
f
r
a
y
_
9
1
9
5
d

d
e
f
r
a
y
_
c
8
6
e
a

d
e
f
r
a
y
_
e
a
9
b
3

d
e
f
r
a
y
_
f
d
d
5
0

d
e
f
r
a
y
_
7
e
a
5
2

d
e
f
r
a
y
_
9
6
5
3
2

d
e
f
r
a
y
_
1
5
a
9
c

e
c
h
0
r
a
i
x
_
1
5
4
d
e

e
c
h
0
r
a
i
x
_
0
7
6
a
6

e
c
h
0
r
a
i
x
_
0
3
9
a
9

e
c
h
0
r
a
i
x
_
6
7
0
2
5

e
c
h
0
r
a
i
x
_
e
4
b
3
3

e
c
h
0
r
a
i
x
_
8
c
5
5
b

e
c
h
0
r
a
i
x
_
e
6
9
6
7

e
c
h
0
r
a
i
x
_
f
3
1
5
0

e
r
e
b
u
s
_
3
2
_
d
8
8
9
7

e
r
e
b
u
s
_
6
4
_
0
b
7
9
9

e
r
e
b
u
s
_
6
4
_
1
2
f
b
a

g
o
n
n
a
c
r
y
-
c
_
a
7
f
9
9

g
o
n
n
a
c
r
y
-
c
_
b
9
0
f
d

g
o
n
n
a
c
r
y
-
c
_
f
5
d
e
7

g
o
n
n
a
c
r
y
-
c
_
2
e
a
1
e

h
e
l
l
o
k
i
t
t
y
_
8
f
3
d
b

h
e
l
l
o
k
i
t
t
y
_
5
5
6
e
5

h
e
l
l
o
k
i
t
t
y
_
9
f
8
2
f

h
e
l
l
o
k
i
t
t
y
_
c
a
6
0
7

h
e
l
l
o
k
i
t
t
y
_
b
4
f
9
0

r
e
v
i
l
_
3
d
3
7
5

r
e
v
i
l
_
d
6
7
6
2

r
e
v
i
l
_
e
a
1
8
7

r
e
v
i
l
_
7
9
6
8
0

r
e
v
i
l
_
5
5
9
e
9

v
i
c
e
s
o
c
i
e
t
y
_
1
6
a
0
0

blackmatter_6a7b7

blackmatter_1247a

blackmatter_d4645

darkside_da3bb

darkside_c93e6

darkside_9cc3c

darkside_984ce

darkside_e48c8

defray_78147

defray_cb408

defray_08113

defray_654b5

defray_196eb

defray_069c7

defray_8f3b3

defray_8bd64

defray_c7458

defray_63de4

defray_81f62

defray_1ecdd

defray_a0d9f

defray_5e166

defray_c6280

defray_10c77

defray_5caf1

defray_586aa

defray_1d31e

defray_303c6

defray_1bcca

defray_f0884

defray_04c9b

defray_e2bb3

defray_05d44

defray_9195d

defray_c86ea

defray_ea9b3

defray_fdd50

defray_7ea52

defray_96532

defray_15a9c

ech0raix_154de

ech0raix_076a6

ech0raix_039a9

ech0raix_67025

ech0raix_e4b33

ech0raix_8c55b

ech0raix_e6967

ech0raix_f3150

erebus_32_d8897

erebus_64_0b799

erebus_64_12fba

gonnacry-c_a7f99

gonnacry-c_b90fd

gonnacry-c_f5de7

gonnacry-c_2ea1e

hellokitty_8f3db

hellokitty_556e5

hellokitty_9f82f

hellokitty_ca607

hellokitty_b4f90

revil_3d375

revil_d6762

revil_ea187

revil_79680

revil_559e9

vicesociety_16a00

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Similarity among ransomware samples based on TF-IDF applied to string hashes
(lighter color/lower distance corresponds to higher similarity).

The use of string hashes for similarity shows that, in some cases, strings are
better than telfhash to capture similarity among samples. For example, the REvil
family is better characterized using this technique instead of relying on telfhash.

The use of the TF-IDF algorithm over the strings in the samples provides an
opportunity for the creation of YARA rules for the identification of samples. We
evaluated the YARA rules generated using our corpus of ransomware samples
found running on Linux-based systems against the samples in the benign
dataset, and we obtained a very low 0.01 percent false positive rate.

Another interesting way to characterize Linux-based ransomware threats is to
look at the directories they avoid during the encryption process. For example,
the /proc file system is a pseudo-file system that provides access to kernel-
level information, using a file system-like interface. Attempting to encrypt the
files under this directory could create an unstable system, jeopardizing the
attack. The same issue is true for other directories, such as /bin, /usr/bin,
and /lib, so they are explicitly avoided by ransomware targeting
Linux-based systems.

Ransomware families

HelloKitty
The actors behind HelloKitty
ransomware have achieved
notoriety after successfully
attacking CD Projekt Red, the
makers of the Cyberpunk 2077
video game. It’s another example
of a Windows-based threat
that evolved and expanded
into the Linux world, targeting
Linux-based systems and ESXi
servers.37 Like other samples
that target ESXi VMs, HelloKitty
uses the esxcli tool to stop the
VMs currently running before
encrypting their files.

ViceSociety
The actors behind ViceSociety
ransomware are believed to have
broken away from the HelloKitty
group. Not surprisingly, their
malware shows substantial
similarities with the HelloKitty
ransomware. This ransomware
family was responsible for
attacking the United Health
Centers in the San Joaquin Valley
in California, among other targets,
which resulted in the leaking of
sensitive patient records.38

9 | Exposing Malware in Linux-Based Multi-Cloud Environments

We also looked at other paths that could indicate the use of specific tools as part
of the attack. Most notably, the /sbin/esxcli command is used in ESXi
environments to shut down existing virtual workloads so their on-disk images
can be encrypted. Therefore, the presence of a reference to this tool is likely an
indication of ransomware-like behavior.

Characterizing behavior

We used CAPA11 to detect the capabilities of the Linux-based ransomware
samples. Figure 3 shows the typical behaviors detected by CAPA aligned to the
MITRE ATT&CK tactics and techniques framework. As we see from Figure 3,
defense evasion is the most common tactic used in the samples. We also found
various encryption or obfuscation techniques, such as Base64 encoding and
AES-based encryption, used by the attacks to hide their code and data.

Defense Evasion::Obfuscated Files or Information
- T1027.005, 59.1% (220)

Discovery::System Information Discovery - T1082,
18.0% (67)

Defense Evasion::Deobfuscate/Decode Files or
Information - T1140, 10.8% (40)

Discovery::File and Directory Discovery - T1083,
8.1% (30)

Execution::Shared Modules - T1129, 1.6% (6)

Discovery::System Network Configuration
Discovery - T1016, 1.3% (5)

Defense Evasion::Virtualization/Sandbox Evasion -
T1497.001, 1.1% (4)

base64, 25.0% (55)

aes, 22.3% (49)

xor, 20.5% (45)

rc4 prga, 17.7% (39)

sosemanuk, 7.3% (16)

salsa20 or chacha, 3.6% (8)

stackstrings, 3.6% (8)

(A)

(B)

Figure 3: Malicious behaviors of the ransomware samples in the dataset: (A) Typical MITRE
ATT&CK tactics and techniques leveraged by the samples; (B) Various encryption/obfuscation
techniques used for defense evasion.

Ransomware families

Erebus
Erebus is a relatively older
ransomware family. It initially
targeted Windows hosts but
evolved in 2016 to include a
Linux variant.39 This threat is
unique because of its multilingual
nature. While the actors behind
the ransomware have stopped
their activity, it is still an
interesting sample that shares
some behaviors with other
ransomware families.

GonnaCry
GonnaCry is an open source
ransomware sample written in C
and Python.40 While the Python
version is mostly used as a way to
showcase some of the behaviors
associated with ransomware,
the C version has actually been
observed in the wild.

eCh0raix
eCh0raix ransomware targets
QNAP network-attached
storage (NAS) devices with
weak credentials.41 This family
is written in the Go language,
and its features are simpler than
other ransomware families. For
example, it appears that this
threat does not have a way to
distinguish among victims.42

10 | Exposing Malware in Linux-Based Multi-Cloud Environments

Detecting and mitigating the threat

The solution to the ransomware threat is a combination of approaches,
mechanisms and policies. Beyond having a solid data backup and recovery
process, deploying an EDR solution that monitors the actions performed by
processes on cloud workloads is critical to a defense-in-depth strategy. This
must be complemented by an effective segmentation and NDR system that can
recognize network-based evidence of attacks and ideally block the malware
before it can take hold of the target hosts.

Cryptominers

Cybercriminals are not indifferent to the frenzy surrounding cryptocurrencies. The
advantage of targeting cryptocurrencies is that successful attacks can be
immediately and directly turned into cyber cash. Cybercriminals get instant reward
without the need to perform cumbersome scams using stolen information, such as
personal data, or by having to interact with victims of ransomware.12

Attacks targeting cryptocurrencies typically take one of two approaches. The first
is to include wallet-stealing functionality in malware, sometimes posing as
cryptocurrency-based applications.13 The second is to monetize stolen CPU cycles
to successfully mine cryptocurrencies, sometimes called cryptojacking. One of
the first cryptojacking attacks was against Tesla’s public cloud14—a Kubernetes
deployment was hijacked and dedicated to mining the currency, while the
computational costs were paid by Tesla. This notorious event was just the first in
a series of incidents that targeted the CPU cycles of cloud environments. A report
from Palo Alto Networks15 indicated that cryptojacking affected “at least 23
percent of organizations that maintain cloud infrastructures.”

Monero is the coin of the realm

Most cryptojacking attacks focus on mining the Monero currency, also known as
XMR. Monero is an attractive target because it is known for preserving the
privacy of its users, thanks to its use of Ring Confidential Transactions (RingCT),
which hides the amount of each transaction, and stealth addresses that make
transactions much more difficult to trace.16

Another driver behind the popularity of Monero among cryptojacking operators
is the fact that it can be mined without needing specialized hardware. This
differs from mining Bitcoin, which requires specific hardware, such as
application-specific integrated circuits (ASICs), that can cost thousands of
dollars.17 With Monero, cryptominers can simply use the CPU or GPU cycles of
ordinary computers, making compromised cloud workloads suitable for mining
this cybercurrency.

Cryptominer families

XMRig
XMRig43 is an open source miner
available for Windows, Linux and
macOS. While this miner is not
a threat by itself, a variant of this
component is often deployed
as part of cryptojacking attacks
to perform the mining. XMRig is
often used to mine the Monero
cryptocurrency, which is the
preferred target because it
can be mined without needing
specialized hardware.

Sysrv
Sysrv is a botnet written in Go
with cryptomining capabilities44
that has been recently deployed
against Kubernetes pods running
WordPress.45 The actors behind
Sysrv rely on shell scripts to
obtain persistency and hide
the presence of the miner
(e.g., by providing a modified
version of the top command
that doesn’t show the CPU-
hungry processes). This threat
has also worm-like capabilities,
attempting to spread to different
hosts by leveraging SSH keys
found on compromised hosts,
performing password dictionary
attacks against vulnerable
services, and using an ever-
increasing database of exploits
against known remote code
execution (RCE) vulnerabilities.

11 | Exposing Malware in Linux-Based Multi-Cloud Environments

XMRig

The most common application used to mine Monero currency is the open
source XMRig miner.18 This popular application can mine different types of
cryptocurrencies, but it’s mostly used to mine Monero. Many of the cryptomining
samples from Linux-based systems have some relationship to the XMRig
application. Therefore, when XMRig-specific libraries and modules in Linux
binaries are identified, it is likely evidence of potential cryptomining behavior.

If a binary is dynamically linked and not stripped, the task of identifying XMRig-
related libraries and modules is trivial. However, stripped, statically linked binaries
are challenging to analyze. In Table 1, we noted that all the cryptominers in our
dataset are stripped. As a result, we needed to use function signature models,
such as the ones produced by FLIRT,19 to identify known libraries in C/C++
binaries, and tools, such as redress20 to identify relevant modules in Go binaries.

We developed FLIRT signatures for the libraries used by XMRig when compiled
on various Linux distributions. We also developed Go module detectors to
identify relevant crypto-related modules.

When we checked for the presence of these components (written in both C/C++
and Go), we found that 89 percent of cryptomining attacks used XMRig-related
libraries. None of the benign Linux binaries linked those components, making
the presence of these libraries and modules an effective way to identify
cryptomining behavior.

Mining pools

When a cryptomining program is deployed on a compromised host, the program
connects to a mining pool. By joining a mining pool, the malware can contribute
to the overall mining process and share the benefits of collective mining—the
computing power of a single host would likely be insufficient to achieve any
meaningful results. Some common, well-known mining pools are minexmr[.]com,
nanopool[.]com, and supportxmr[.]com.

Cryptominer families

TeamTNT
TeamTNT threat actors target
open Kubernetes pods and
Docker deployments to deploy
XMRig cryptominers.46 To evade
detection, this threat hijacks the
library loading mechanism to hide
specific directories in the /proc
file system, which are associated
with the processes running the
cryptominers.47

Mexalz
Mexalz threat actors are likely
based in Romania,48 exploiting
weak credentials to compromise
hosts and deploy cryptomining
malware, which is mostly
customized versions of XMRig.49
The name of this threat is derived
from the host that they use to
store the components of the
attacks, mexalz[.]us.

89%
of cryptomining
attacks used
XMRig-related
libraries

https://www.bitdefender.com/blog/labs/how-we-tracked-a-threat-group-running-an-active-cryptojacking-campaign

12 | Exposing Malware in Linux-Based Multi-Cloud Environments

In Table 1, we show the cryptomining pools associated with the families analyzed
in this report.

Mining Pool Port Family Note

194.145.227[.]21 5443 Sysrv Proxy

80.211.206[.]105 6666 WatchDog Private pool

monerohash[.]com Mexalz, TeamTNT, XMRig Public pool

moneroocean[.]stream TeamTNT Public pool

pool.hashvault[.]pro XMRig Public pool

pool.minexmr[.]com 5555 Sysrv Public pool

pool.supportxmr[.]com 443 Mexalz, TeamTNT Public pool

xmr-eu1.nanopool[.]org 14444 Sysrv Public pool

xmr-eu2.nanopool[.]org 14444 Sysrv, WatchDog Public pool

xmr.f2pool[.]com 13531 Sysrv, WatchDog Public pool

xmr.pool.gntl[.]co.uk 40009 WatchDog Public pool

Table 1: Mining pools observed in the analyzed cryptominers.

Cryptominer families
Omelette
Omelette50 is a cryptomining
worm that exploits known
vulnerabilities in Exim, WebLogic
and Confluence to install modified
versions of XMRig. It spreads to
other systems by exploiting trust
relationships (e.g., the “known_
hosts” SSH config file).

WatchDog
WatchDog represents one of the
longest running cryptomining
operations.51 The name of this
threat, which is written in Go,
is derived from the presence
of a component that is tasked
to monitor the execution of the
actual cryptomining program,
similar to the Linux utility
“watchdog.” This operation has
been running for more than two
years, starting in January 2019,
targeting both Windows and
Linux hosts.

Kinsing
Threat actors behind the Kinsing
cryptominer family are known
to target vulnerable container-
based deployments.52 More
specifically, the attack exploits
Docker API endpoints that are
open to the world to download
and install a number of shell
scripts that aid in persistence and
lateral movement, and ultimately
lead to the download of a
cryptomining component.

13 | Exposing Malware in Linux-Based Multi-Cloud Environments

In Table 2, we show the wallets that the analyzed cryptominers used to collect the mined currency. Even
though these wallets can be used to identify relationships between different campaigns, the anonymous and
transient nature of these indicators is a real barrier to meaningful tracking and attribution.

Monero Wallet Address Family Note

428uyvSqdpVZL7HHgpj2T5SpasCcoHZNTTzE3Lz2H5ZkiMzqayy19sYDcBGDCjobTfLBnc3t-
c9rG4Y8gXQ8fJiP5tqeBda

TeamTNT

43Xbgtym2GZWBk87XiYbCpTKGPBTxYZZWi44SWrkqqvzPZV6Pfmjv3UHR6FD-
wvPgePJyv9N5PepeajfmKp1X71EW7jx4Tpz

WatchDog Active

43zqYTWj1JG1H1idZFQWwJZLTos3hbJ5iR3tJpEtwEi43UBbzPeaQxCRysdjYTt dc8aHao7csi-
Wa5BTP9PfNYzyfSbbrwoR

WatchDog

49dnvYkWkZNPrDj3KF8fR1BHLBfiVArU6Hu61N9gtrZWgbRptntwht5JUrXX1ZeofwPw-
C6fXNxPZfGjNEChXttwWE3WGURa

Sysrv

4BrL51JCc9NGQ71kWhnYoDRffsDZy7m1HUU7MRU4nUMXAHNFBEJhkTZV9H-
daL4gfuNBxLPc3BeMkLGaPbF5vWtANQn3gTBhyMDeJJJSvog

Mexalz Active

82etS8QzVhqdiL6LMbb85BdEC3KgJeRGT3X1F3DQBnJa2tzgBJ54bn4aNDju-
WDtpygBsRqcfGRK4gbbw3xUy3oJv7TwpUG4

Sysrv,
WatchDog

Active

85X7JcgPpwQdZXaK2TKJb8baQAXc3zBsnW7JuY7MLi9VYSamf4bFwa7SEAK-
9Hgp2P53npV19w1zuaK5bft5m2NN71CmNLoh

TeamTNT

87q6aU1M9xmQ5p3wh8Jzst5mcFfDzKEuuDjV6u7Q7UDnAXJR7FLeQH2UY-
FzhQatde2WHuZ9LbxRsf3PGA8gpnGXL3G7iWMv

WatchDog

88ZrgnVZ687Wg8ipWyapjCVRWL8yFMRaBDrxtiPSwAQrNz5ZJBRozBSJrCYffurn1Qg7Jn-
7WpRQSAA3C8aidaeadAn4xi4k

TeamTNT

Table 2: Monero wallet addresses observed in the analyzed cryptominers.

14 | Exposing Malware in Linux-Based Multi-Cloud Environments

Interestingly, at the time of writing, the Monero wallet address 82etS8QzVh…3oJv7TwpUG4 was actively
mining on xmr.nanopool[.]org, as shown in Figure 4.

Figure 4: Current cryptomining operation on xmr.nanopool.org.

Even more interesting, the first payment was made in October 2020, more than a year ago (see Figure 5). This
shows how long-lasting and difficult it is to eradicate these mining operations.

Figure 5: History of payments to the cryptominer’s Monero wallet.

Characterizing similarity

We used both telfhash and our TF-IDF-based metric to characterize the similarity across the analyzed
cryptominer families; the findings are shown in Figure 6. Because many of the cryptominers were packed,
the analysis produced very poor results. For example, the similarity among samples of the Sysrv family was
not captured.

15 | Exposing Malware in Linux-Based Multi-Cloud Environments

k
i
n
s
i
n
g
_
a
f
3
c
c

k
i
n
s
i
n
g
_
d
d
6
0
3

k
i
n
s
i
n
g
_
6
3
6
4
3

m
e
x
a
l
z
_
d
c
c
5
2

m
e
x
a
l
z
_
e
d
2
a
e

m
e
x
a
l
z
_
b
7
a
5
e

m
e
x
a
l
z
_
7
c
3
a
8

m
e
x
a
l
z
_
7
e
d
f
f

o
m
e
l
e
t
t
e
_
0
e
a
a
4

o
m
e
l
e
t
t
e
_
e
2
9
6
4

o
m
e
l
e
t
t
e
_
7
1
6
0
4

s
y
s
r
v
_
1
a
6
3
f

s
y
s
r
v
_
6
7
f
0
3

s
y
s
r
v
_
7
2
0
3
4

s
y
s
r
v
_
8
3
5
3
8

s
y
s
r
v
_
9
d
8
5
b

s
y
s
r
v
_
d
d
5
b
4

s
y
s
r
v
_
1
3
8
4
7

s
y
s
r
v
_
b
c
b
0
2

s
y
s
r
v
_
d
d
3
1
b

s
y
s
r
v
_
0
c
1
3
b

s
y
s
r
v
_
b
e
a
a
0

s
y
s
r
v
_
9
c
9
b
7

s
y
s
r
v
_
7
2
4
8
3

s
y
s
r
v
_
5
f
5
d
5

s
y
s
r
v
_
6
7
5
0
e

s
y
s
r
v
_
7
a
5
4
6

s
y
s
r
v
_
a
9
9
9
d

s
y
s
r
v
_
1
d
d
2
c

s
y
s
r
v
_
b
f
2
c
4

s
y
s
r
v
_
e
6
2
7
a

s
y
s
r
v
_
d
4
2
0
9

s
y
s
r
v
_
d
3
1
9
6

s
y
s
r
v
_
b
a
4
6
9

s
y
s
r
v
_
9
b
2
0
2

s
y
s
r
v
_
8
2
2
3
1

s
y
s
r
v
_
f
4
8
7
b

s
y
s
r
v
_
1
8
a
8
7

s
y
s
r
v
_
5
2
0
8
c

s
y
s
r
v
_
2
2
e
f
9

s
y
s
r
v
_
4
f
d
3
7

s
y
s
r
v
_
8
4
8
e
d

s
y
s
r
v
_
2
9
6
d
3

s
y
s
r
v
_
1
c
9
1
e

s
y
s
r
v
_
7
f
f
5
f

s
y
s
r
v
_
5
4
4
d
2

s
y
s
r
v
_
c
5
5
7
0

s
y
s
r
v
_
9
5
f
9
f

s
y
s
r
v
_
8
9
b
c
8

s
y
s
r
v
_
4
d
6
e
5

s
y
s
r
v
_
7
9
8
d
1

s
y
s
r
v
_
9
7
1
0
6

s
y
s
r
v
_
d
e
c
6
2

s
y
s
r
v
_
9
4
5
c
d

s
y
s
r
v
_
0
4
c
1
f

s
y
s
r
v
_
0
b
6
0
3

s
y
s
r
v
_
8
1
e
5
b

s
y
s
r
v
_
1
b
2
9
0

s
y
s
r
v
_
c
7
e
1
3

s
y
s
r
v
_
3
a
6
b
7

s
y
s
r
v
_
5
f
1
d
1

s
y
s
r
v
_
2
f
a
5
8

s
y
s
r
v
_
1
6
3
e
f

s
y
s
r
v
_
a
f
7
c
5

s
y
s
r
v
_
5
f
c
4
c

t
e
a
m
t
n
t
_
7
8
f
9
2

t
e
a
m
t
n
t
_
a
2
2
c
2

t
e
a
m
t
n
t
_
d
d
8
0
3

t
e
a
m
t
n
t
_
a
c
b
b
4

w
a
t
c
h
d
o
g
_
d
5
4
1
5

w
a
t
c
h
d
o
g
_
e
d
1
e
4

w
a
t
c
h
d
o
g
_
6
f
2
8
2

x
m
r
i
g
_
a
3
4
a
e

x
m
r
i
g
_
7
5
7
9
f

x
m
r
i
g
_
e
e
4
a
1

x
m
r
i
g
_
e
f
1
1
c

x
m
r
i
g
_
b
2
e
5
1

x
m
r
i
g
_
e
7
f
4
0

x
m
r
i
g
_
6
a
b
d
d

x
m
r
i
g
_
1
4
8
9
c

x
m
r
i
g
_
4
2
8
3
4

x
m
r
i
g
_
3
d
2
e
8

x
m
r
i
g
_
4
4
8
4
a

x
m
r
i
g
_
c
d
3
7
f

x
m
r
i
g
_
f
7
2
b
a

x
m
r
i
g
_
b
1
a
5
a

x
m
r
i
g
_
6
5
2
9
6

x
m
r
i
g
_
e
b
1
0
8

x
m
r
i
g
_
7
5
2
5
3

kinsing_af3cc

kinsing_dd603

kinsing_63643

mexalz_dcc52

mexalz_ed2ae

mexalz_b7a5e

mexalz_7c3a8

mexalz_7edff

omelette_0eaa4

omelette_e2964

omelette_71604

sysrv_1a63f

sysrv_67f03

sysrv_72034

sysrv_83538

sysrv_9d85b

sysrv_dd5b4

sysrv_13847

sysrv_bcb02

sysrv_dd31b

sysrv_0c13b

sysrv_beaa0

sysrv_9c9b7

sysrv_72483

sysrv_5f5d5

sysrv_6750e

sysrv_7a546

sysrv_a999d

sysrv_1dd2c

sysrv_bf2c4

sysrv_e627a

sysrv_d4209

sysrv_d3196

sysrv_ba469

sysrv_9b202

sysrv_82231

sysrv_f487b

sysrv_18a87

sysrv_5208c

sysrv_22ef9

sysrv_4fd37

sysrv_848ed

sysrv_296d3

sysrv_1c91e

sysrv_7ff5f

sysrv_544d2

sysrv_c5570

sysrv_95f9f

sysrv_89bc8

sysrv_4d6e5

sysrv_798d1

sysrv_97106

sysrv_dec62

sysrv_945cd

sysrv_04c1f

sysrv_0b603

sysrv_81e5b

sysrv_1b290

sysrv_c7e13

sysrv_3a6b7

sysrv_5f1d1

sysrv_2fa58

sysrv_163ef

sysrv_af7c5

sysrv_5fc4c

teamtnt_78f92

teamtnt_a22c2

teamtnt_dd803

teamtnt_acbb4

watchdog_d5415

watchdog_ed1e4

watchdog_6f282

xmrig_a34ae

xmrig_7579f

xmrig_ee4a1

xmrig_ef11c

xmrig_b2e51

xmrig_e7f40

xmrig_6abdd

xmrig_1489c

xmrig_42834

xmrig_3d2e8

xmrig_4484a

xmrig_cd37f

xmrig_f72ba

xmrig_b1a5a

xmrig_65296

xmrig_eb108

xmrig_75253

0.0

0.2

0.4

0.6

0.8

1.0

k
i
n
s
i
n
g
_
a
f
3
c
c

k
i
n
s
i
n
g
_
d
d
6
0
3

k
i
n
s
i
n
g
_
6
3
6
4
3

m
e
x
a
l
z
_
d
c
c
5
2

m
e
x
a
l
z
_
e
d
2
a
e

m
e
x
a
l
z
_
b
7
a
5
e

m
e
x
a
l
z
_
7
c
3
a
8

m
e
x
a
l
z
_
7
e
d
f
f

o
m
e
l
e
t
t
e
_
0
e
a
a
4

o
m
e
l
e
t
t
e
_
e
2
9
6
4

o
m
e
l
e
t
t
e
_
7
1
6
0
4

s
y
s
r
v
_
1
a
6
3
f

s
y
s
r
v
_
6
7
f
0
3

s
y
s
r
v
_
7
2
0
3
4

s
y
s
r
v
_
8
3
5
3
8

s
y
s
r
v
_
9
d
8
5
b

s
y
s
r
v
_
d
d
5
b
4

s
y
s
r
v
_
1
3
8
4
7

s
y
s
r
v
_
b
c
b
0
2

s
y
s
r
v
_
d
d
3
1
b

s
y
s
r
v
_
0
c
1
3
b

s
y
s
r
v
_
b
e
a
a
0

s
y
s
r
v
_
9
c
9
b
7

s
y
s
r
v
_
7
2
4
8
3

s
y
s
r
v
_
5
f
5
d
5

s
y
s
r
v
_
6
7
5
0
e

s
y
s
r
v
_
7
a
5
4
6

s
y
s
r
v
_
a
9
9
9
d

s
y
s
r
v
_
1
d
d
2
c

s
y
s
r
v
_
b
f
2
c
4

s
y
s
r
v
_
e
6
2
7
a

s
y
s
r
v
_
d
4
2
0
9

s
y
s
r
v
_
d
3
1
9
6

s
y
s
r
v
_
b
a
4
6
9

s
y
s
r
v
_
9
b
2
0
2

s
y
s
r
v
_
8
2
2
3
1

s
y
s
r
v
_
f
4
8
7
b

s
y
s
r
v
_
1
8
a
8
7

s
y
s
r
v
_
5
2
0
8
c

s
y
s
r
v
_
2
2
e
f
9

s
y
s
r
v
_
4
f
d
3
7

s
y
s
r
v
_
8
4
8
e
d

s
y
s
r
v
_
2
9
6
d
3

s
y
s
r
v
_
1
c
9
1
e

s
y
s
r
v
_
7
f
f
5
f

s
y
s
r
v
_
5
4
4
d
2

s
y
s
r
v
_
c
5
5
7
0

s
y
s
r
v
_
9
5
f
9
f

s
y
s
r
v
_
8
9
b
c
8

s
y
s
r
v
_
4
d
6
e
5

s
y
s
r
v
_
7
9
8
d
1

s
y
s
r
v
_
9
7
1
0
6

s
y
s
r
v
_
d
e
c
6
2

s
y
s
r
v
_
9
4
5
c
d

s
y
s
r
v
_
0
4
c
1
f

s
y
s
r
v
_
0
b
6
0
3

s
y
s
r
v
_
8
1
e
5
b

s
y
s
r
v
_
1
b
2
9
0

s
y
s
r
v
_
c
7
e
1
3

s
y
s
r
v
_
3
a
6
b
7

s
y
s
r
v
_
5
f
1
d
1

s
y
s
r
v
_
2
f
a
5
8

s
y
s
r
v
_
1
6
3
e
f

s
y
s
r
v
_
a
f
7
c
5

s
y
s
r
v
_
5
f
c
4
c

t
e
a
m
t
n
t
_
7
8
f
9
2

t
e
a
m
t
n
t
_
a
2
2
c
2

t
e
a
m
t
n
t
_
d
d
8
0
3

t
e
a
m
t
n
t
_
a
c
b
b
4

w
a
t
c
h
d
o
g
_
d
5
4
1
5

w
a
t
c
h
d
o
g
_
e
d
1
e
4

w
a
t
c
h
d
o
g
_
6
f
2
8
2

x
m
r
i
g
_
a
3
4
a
e

x
m
r
i
g
_
7
5
7
9
f

x
m
r
i
g
_
e
e
4
a
1

x
m
r
i
g
_
e
f
1
1
c

x
m
r
i
g
_
b
2
e
5
1

x
m
r
i
g
_
e
7
f
4
0

x
m
r
i
g
_
6
a
b
d
d

x
m
r
i
g
_
1
4
8
9
c

x
m
r
i
g
_
4
2
8
3
4

x
m
r
i
g
_
3
d
2
e
8

x
m
r
i
g
_
4
4
8
4
a

x
m
r
i
g
_
c
d
3
7
f

x
m
r
i
g
_
f
7
2
b
a

x
m
r
i
g
_
b
1
a
5
a

x
m
r
i
g
_
6
5
2
9
6

x
m
r
i
g
_
e
b
1
0
8

x
m
r
i
g
_
7
5
2
5
3

kinsing_af3cc

kinsing_dd603

kinsing_63643

mexalz_dcc52

mexalz_ed2ae

mexalz_b7a5e

mexalz_7c3a8

mexalz_7edff

omelette_0eaa4

omelette_e2964

omelette_71604

sysrv_1a63f

sysrv_67f03

sysrv_72034

sysrv_83538

sysrv_9d85b

sysrv_dd5b4

sysrv_13847

sysrv_bcb02

sysrv_dd31b

sysrv_0c13b

sysrv_beaa0

sysrv_9c9b7

sysrv_72483

sysrv_5f5d5

sysrv_6750e

sysrv_7a546

sysrv_a999d

sysrv_1dd2c

sysrv_bf2c4

sysrv_e627a

sysrv_d4209

sysrv_d3196

sysrv_ba469

sysrv_9b202

sysrv_82231

sysrv_f487b

sysrv_18a87

sysrv_5208c

sysrv_22ef9

sysrv_4fd37

sysrv_848ed

sysrv_296d3

sysrv_1c91e

sysrv_7ff5f

sysrv_544d2

sysrv_c5570

sysrv_95f9f

sysrv_89bc8

sysrv_4d6e5

sysrv_798d1

sysrv_97106

sysrv_dec62

sysrv_945cd

sysrv_04c1f

sysrv_0b603

sysrv_81e5b

sysrv_1b290

sysrv_c7e13

sysrv_3a6b7

sysrv_5f1d1

sysrv_2fa58

sysrv_163ef

sysrv_af7c5

sysrv_5fc4c

teamtnt_78f92

teamtnt_a22c2

teamtnt_dd803

teamtnt_acbb4

watchdog_d5415

watchdog_ed1e4

watchdog_6f282

xmrig_a34ae

xmrig_7579f

xmrig_ee4a1

xmrig_ef11c

xmrig_b2e51

xmrig_e7f40

xmrig_6abdd

xmrig_1489c

xmrig_42834

xmrig_3d2e8

xmrig_4484a

xmrig_cd37f

xmrig_f72ba

xmrig_b1a5a

xmrig_65296

xmrig_eb108

xmrig_75253

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: Code-based and string-based similarity between cryptominer samples (lighter color/lower distance corresponds to higher
similarity).

Applying dynamic analysis makes it possible to unpack most of the samples, and Figure 7 shows the code and
string similarity between samples after the unpacking process. The confusion matrix shows how some clusters
of samples are clearly identifiable and how the samples evolve over time (see, for example, the various Sysrv
family clusters). The results also show that, while telfhash is considered the state of the art for code similarity
among ELF files, TF-IDF, which looks for similarity based on string hashes, provides a more useful
characterizing metric.

Applying dynamic analysis makes it possible to unpack most of the samples, and Figure 7 shows the code and
string similarity between samples after the unpacking process.

k
i
n
s
i
n
g
_
a
f
3
c
c

k
i
n
s
i
n
g
_
d
d
6
0
3

k
i
n
s
i
n
g
_
6
3
6
4
3

m
e
x
a
l
z
_
d
c
c
5
2

m
e
x
a
l
z
_
e
d
2
a
e

m
e
x
a
l
z
_
b
7
a
5
e

m
e
x
a
l
z
_
7
c
3
a
8

m
e
x
a
l
z
_
7
e
d
f
f

o
m
e
l
e
t
t
e
_
0
e
a
a
4

o
m
e
l
e
t
t
e
_
e
2
9
6
4

o
m
e
l
e
t
t
e
_
7
1
6
0
4

s
y
s
r
v
_
6
2
b
a
6

s
y
s
r
v
_
1
8
b
c
0

s
y
s
r
v
_
7
e
7
6
5

s
y
s
r
v
_
5
f
8
0
9

s
y
s
r
v
_
8
b
c
3
8

s
y
s
r
v
_
4
0
d
2
a

s
y
s
r
v
_
a
f
b
6
e

s
y
s
r
v
_
1
7
f
b
c

s
y
s
r
v
_
d
5
c
e
8

s
y
s
r
v
_
b
8
f
e
2

s
y
s
r
v
_
3
2
2
c
c

s
y
s
r
v
_
5
9
7
3
7

s
y
s
r
v
_
7
2
4
8
3

s
y
s
r
v
_
c
4
2
e
5

s
y
s
r
v
_
6
7
5
0
e

s
y
s
r
v
_
2
1
f
5
7

s
y
s
r
v
_
8
f
9
2
1

s
y
s
r
v
_
4
7
1
8
3

s
y
s
r
v
_
3
e
6
6
b

s
y
s
r
v
_
e
6
2
7
a

s
y
s
r
v
_
2
d
5
d
e

s
y
s
r
v
_
d
3
1
9
6

s
y
s
r
v
_
b
a
4
6
9

s
y
s
r
v
_
6
e
a
a
b

s
y
s
r
v
_
3
b
c
b
d

s
y
s
r
v
_
f
4
8
7
b

s
y
s
r
v
_
f
6
4
0
c

s
y
s
r
v
_
7
7
a
9
f

s
y
s
r
v
_
f
e
b
3
8

s
y
s
r
v
_
6
1
e
3
5

s
y
s
r
v
_
8
7
5
f
0

s
y
s
r
v
_
d
9
3
a
f

s
y
s
r
v
_
9
d
f
4
3

s
y
s
r
v
_
6
5
8
b
d

s
y
s
r
v
_
d
5
0
8
6

s
y
s
r
v
_
4
6
2
7
6

s
y
s
r
v
_
a
3
9
2
a

s
y
s
r
v
_
4
2
7
c
c

s
y
s
r
v
_
2
d
9
c
1

s
y
s
r
v
_
1
e
b
f
d

s
y
s
r
v
_
6
3
1
6
2

s
y
s
r
v
_
3
5
2
1
3

s
y
s
r
v
_
8
c
8
e
e

s
y
s
r
v
_
f
8
4
7
2

s
y
s
r
v
_
d
4
2
9
a

s
y
s
r
v
_
0
c
c
a
2

s
y
s
r
v
_
f
4
2
5
f

s
y
s
r
v
_
d
f
e
a
f

s
y
s
r
v
_
6
e
d
8
6

s
y
s
r
v
_
0
d
3
b
0

s
y
s
r
v
_
1
a
7
b
e

s
y
s
r
v
_
b
a
5
1
8

s
y
s
r
v
_
8
9
6
f
d

s
y
s
r
v
_
0
b
c
a
3

t
e
a
m
t
n
t
_
7
8
f
9
2

t
e
a
m
t
n
t
_
a
2
2
c
2

t
e
a
m
t
n
t
_
d
5
8
7
0

t
e
a
m
t
n
t
_
a
c
b
b
4

w
a
t
c
h
d
o
g
_
d
5
4
1
5

w
a
t
c
h
d
o
g
_
e
d
1
e
4

w
a
t
c
h
d
o
g
_
6
f
2
8
2

x
m
r
i
g
_
a
3
4
a
e

x
m
r
i
g
_
7
5
7
9
f

x
m
r
i
g
_
e
e
4
a
1

x
m
r
i
g
_
e
f
1
1
c

x
m
r
i
g
_
b
2
e
5
1

x
m
r
i
g
_
e
7
f
4
0

x
m
r
i
g
_
6
a
b
d
d

x
m
r
i
g
_
1
4
8
9
c

x
m
r
i
g
_
4
2
8
3
4

x
m
r
i
g
_
3
d
2
e
8

x
m
r
i
g
_
4
4
8
4
a

x
m
r
i
g
_
c
d
3
7
f

x
m
r
i
g
_
f
7
2
b
a

x
m
r
i
g
_
b
1
a
5
a

x
m
r
i
g
_
6
5
2
9
6

x
m
r
i
g
_
e
b
1
0
8

x
m
r
i
g
_
7
5
2
5
3

kinsing_af3cc

kinsing_dd603

kinsing_63643

mexalz_dcc52

mexalz_ed2ae

mexalz_b7a5e

mexalz_7c3a8

mexalz_7edff

omelette_0eaa4

omelette_e2964

omelette_71604

sysrv_62ba6

sysrv_18bc0

sysrv_7e765

sysrv_5f809

sysrv_8bc38

sysrv_40d2a

sysrv_afb6e

sysrv_17fbc

sysrv_d5ce8

sysrv_b8fe2

sysrv_322cc

sysrv_59737

sysrv_72483

sysrv_c42e5

sysrv_6750e

sysrv_21f57

sysrv_8f921

sysrv_47183

sysrv_3e66b

sysrv_e627a

sysrv_2d5de

sysrv_d3196

sysrv_ba469

sysrv_6eaab

sysrv_3bcbd

sysrv_f487b

sysrv_f640c

sysrv_77a9f

sysrv_feb38

sysrv_61e35

sysrv_875f0

sysrv_d93af

sysrv_9df43

sysrv_658bd

sysrv_d5086

sysrv_46276

sysrv_a392a

sysrv_427cc

sysrv_2d9c1

sysrv_1ebfd

sysrv_63162

sysrv_35213

sysrv_8c8ee

sysrv_f8472

sysrv_d429a

sysrv_0cca2

sysrv_f425f

sysrv_dfeaf

sysrv_6ed86

sysrv_0d3b0

sysrv_1a7be

sysrv_ba518

sysrv_896fd

sysrv_0bca3

teamtnt_78f92

teamtnt_a22c2

teamtnt_d5870

teamtnt_acbb4

watchdog_d5415

watchdog_ed1e4

watchdog_6f282

xmrig_a34ae

xmrig_7579f

xmrig_ee4a1

xmrig_ef11c

xmrig_b2e51

xmrig_e7f40

xmrig_6abdd

xmrig_1489c

xmrig_42834

xmrig_3d2e8

xmrig_4484a

xmrig_cd37f

xmrig_f72ba

xmrig_b1a5a

xmrig_65296

xmrig_eb108

xmrig_75253

0.0

0.2

0.4

0.6

0.8

1.0

k
i
n
s
i
n
g
_
a
f
3
c
c

k
i
n
s
i
n
g
_
d
d
6
0
3

k
i
n
s
i
n
g
_
6
3
6
4
3

m
e
x
a
l
z
_
d
c
c
5
2

m
e
x
a
l
z
_
e
d
2
a
e

m
e
x
a
l
z
_
b
7
a
5
e

m
e
x
a
l
z
_
7
c
3
a
8

m
e
x
a
l
z
_
7
e
d
f
f

o
m
e
l
e
t
t
e
_
0
e
a
a
4

o
m
e
l
e
t
t
e
_
e
2
9
6
4

o
m
e
l
e
t
t
e
_
7
1
6
0
4

s
y
s
r
v
_
6
2
b
a
6

s
y
s
r
v
_
1
8
b
c
0

s
y
s
r
v
_
7
e
7
6
5

s
y
s
r
v
_
5
f
8
0
9

s
y
s
r
v
_
8
b
c
3
8

s
y
s
r
v
_
4
0
d
2
a

s
y
s
r
v
_
a
f
b
6
e

s
y
s
r
v
_
1
7
f
b
c

s
y
s
r
v
_
d
5
c
e
8

s
y
s
r
v
_
b
8
f
e
2

s
y
s
r
v
_
3
2
2
c
c

s
y
s
r
v
_
5
9
7
3
7

s
y
s
r
v
_
7
2
4
8
3

s
y
s
r
v
_
c
4
2
e
5

s
y
s
r
v
_
6
7
5
0
e

s
y
s
r
v
_
2
1
f
5
7

s
y
s
r
v
_
8
f
9
2
1

s
y
s
r
v
_
4
7
1
8
3

s
y
s
r
v
_
3
e
6
6
b

s
y
s
r
v
_
e
6
2
7
a

s
y
s
r
v
_
2
d
5
d
e

s
y
s
r
v
_
d
3
1
9
6

s
y
s
r
v
_
b
a
4
6
9

s
y
s
r
v
_
6
e
a
a
b

s
y
s
r
v
_
3
b
c
b
d

s
y
s
r
v
_
f
4
8
7
b

s
y
s
r
v
_
f
6
4
0
c

s
y
s
r
v
_
7
7
a
9
f

s
y
s
r
v
_
f
e
b
3
8

s
y
s
r
v
_
6
1
e
3
5

s
y
s
r
v
_
8
7
5
f
0

s
y
s
r
v
_
d
9
3
a
f

s
y
s
r
v
_
9
d
f
4
3

s
y
s
r
v
_
6
5
8
b
d

s
y
s
r
v
_
d
5
0
8
6

s
y
s
r
v
_
4
6
2
7
6

s
y
s
r
v
_
a
3
9
2
a

s
y
s
r
v
_
4
2
7
c
c

s
y
s
r
v
_
2
d
9
c
1

s
y
s
r
v
_
1
e
b
f
d

s
y
s
r
v
_
6
3
1
6
2

s
y
s
r
v
_
3
5
2
1
3

s
y
s
r
v
_
8
c
8
e
e

s
y
s
r
v
_
f
8
4
7
2

s
y
s
r
v
_
d
4
2
9
a

s
y
s
r
v
_
0
c
c
a
2

s
y
s
r
v
_
f
4
2
5
f

s
y
s
r
v
_
d
f
e
a
f

s
y
s
r
v
_
6
e
d
8
6

s
y
s
r
v
_
0
d
3
b
0

s
y
s
r
v
_
1
a
7
b
e

s
y
s
r
v
_
b
a
5
1
8

s
y
s
r
v
_
8
9
6
f
d

s
y
s
r
v
_
0
b
c
a
3

t
e
a
m
t
n
t
_
7
8
f
9
2

t
e
a
m
t
n
t
_
a
2
2
c
2

t
e
a
m
t
n
t
_
d
5
8
7
0

t
e
a
m
t
n
t
_
a
c
b
b
4

w
a
t
c
h
d
o
g
_
d
5
4
1
5

w
a
t
c
h
d
o
g
_
e
d
1
e
4

w
a
t
c
h
d
o
g
_
6
f
2
8
2

x
m
r
i
g
_
a
3
4
a
e

x
m
r
i
g
_
7
5
7
9
f

x
m
r
i
g
_
e
e
4
a
1

x
m
r
i
g
_
e
f
1
1
c

x
m
r
i
g
_
b
2
e
5
1

x
m
r
i
g
_
e
7
f
4
0

x
m
r
i
g
_
6
a
b
d
d

x
m
r
i
g
_
1
4
8
9
c

x
m
r
i
g
_
4
2
8
3
4

x
m
r
i
g
_
3
d
2
e
8

x
m
r
i
g
_
4
4
8
4
a

x
m
r
i
g
_
c
d
3
7
f

x
m
r
i
g
_
f
7
2
b
a

x
m
r
i
g
_
b
1
a
5
a

x
m
r
i
g
_
6
5
2
9
6

x
m
r
i
g
_
e
b
1
0
8

x
m
r
i
g
_
7
5
2
5
3

kinsing_af3cc

kinsing_dd603

kinsing_63643

mexalz_dcc52

mexalz_ed2ae

mexalz_b7a5e

mexalz_7c3a8

mexalz_7edff

omelette_0eaa4

omelette_e2964

omelette_71604

sysrv_62ba6

sysrv_18bc0

sysrv_7e765

sysrv_5f809

sysrv_8bc38

sysrv_40d2a

sysrv_afb6e

sysrv_17fbc

sysrv_d5ce8

sysrv_b8fe2

sysrv_322cc

sysrv_59737

sysrv_72483

sysrv_c42e5

sysrv_6750e

sysrv_21f57

sysrv_8f921

sysrv_47183

sysrv_3e66b

sysrv_e627a

sysrv_2d5de

sysrv_d3196

sysrv_ba469

sysrv_6eaab

sysrv_3bcbd

sysrv_f487b

sysrv_f640c

sysrv_77a9f

sysrv_feb38

sysrv_61e35

sysrv_875f0

sysrv_d93af

sysrv_9df43

sysrv_658bd

sysrv_d5086

sysrv_46276

sysrv_a392a

sysrv_427cc

sysrv_2d9c1

sysrv_1ebfd

sysrv_63162

sysrv_35213

sysrv_8c8ee

sysrv_f8472

sysrv_d429a

sysrv_0cca2

sysrv_f425f

sysrv_dfeaf

sysrv_6ed86

sysrv_0d3b0

sysrv_1a7be

sysrv_ba518

sysrv_896fd

sysrv_0bca3

teamtnt_78f92

teamtnt_a22c2

teamtnt_d5870

teamtnt_acbb4

watchdog_d5415

watchdog_ed1e4

watchdog_6f282

xmrig_a34ae

xmrig_7579f

xmrig_ee4a1

xmrig_ef11c

xmrig_b2e51

xmrig_e7f40

xmrig_6abdd

xmrig_1489c

xmrig_42834

xmrig_3d2e8

xmrig_4484a

xmrig_cd37f

xmrig_f72ba

xmrig_b1a5a

xmrig_65296

xmrig_eb108

xmrig_75253

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Code-based and string-based similarity between cryptominer samples after unpacking (lighter color/lower distance
corresponds to higher similarity).

16 | Exposing Malware in Linux-Based Multi-Cloud Environments

When we ordered the samples by similarity, not by
time, the clusters became even more evident, as
shown in Figure 8. In particular, the similarity
between some TeamTNT samples, Mexalz and
XMRig, as well as the similarities between WatchDog
and XMRig, are clearly emphasized.

k
i
n
s
i
n
g
_
a
f
3
c
c

k
i
n
s
i
n
g
_
d
d
6
0
3

k
i
n
s
i
n
g
_
6
3
6
4
3

m
e
x
a
l
z
_
d
c
c
5
2

m
e
x
a
l
z
_
e
d
2
a
e

m
e
x
a
l
z
_
b
7
a
5
e

m
e
x
a
l
z
_
7
e
d
f
f

m
e
x
a
l
z
_
7
c
3
a
8

t
e
a
m
t
n
t
_
7
8
f
9
2

w
a
t
c
h
d
o
g
_
6
f
2
8
2

x
m
r
i
g
_
e
e
4
a
1

x
m
r
i
g
_
e
f
1
1
c

x
m
r
i
g
_
6
a
b
d
d

x
m
r
i
g
_
1
4
8
9
c

x
m
r
i
g
_
e
7
f
4
0

x
m
r
i
g
_
4
4
8
4
a

t
e
a
m
t
n
t
_
d
5
8
7
0

x
m
r
i
g
_
b
1
a
5
a

x
m
r
i
g
_
c
d
3
7
f

s
y
s
r
v
_
5
9
7
3
7

s
y
s
r
v
_
c
4
2
e
5

s
y
s
r
v
_
6
7
5
0
e

s
y
s
r
v
_
2
1
f
5
7

s
y
s
r
v
_
8
f
9
2
1

s
y
s
r
v
_
4
7
1
8
3

s
y
s
r
v
_
2
d
5
d
e

s
y
s
r
v
_
d
3
1
9
6

s
y
s
r
v
_
9
d
f
4
3

s
y
s
r
v
_
6
e
a
a
b

s
y
s
r
v
_
3
e
6
6
b

s
y
s
r
v
_
e
6
2
7
a

s
y
s
r
v
_
3
b
c
b
d

s
y
s
r
v
_
f
6
4
0
c

s
y
s
r
v
_
7
7
a
9
f

s
y
s
r
v
_
f
e
b
3
8

s
y
s
r
v
_
6
1
e
3
5

s
y
s
r
v
_
8
7
5
f
0

s
y
s
r
v
_
6
5
8
b
d

s
y
s
r
v
_
d
9
3
a
f

s
y
s
r
v
_
4
6
2
7
6

s
y
s
r
v
_
a
3
9
2
a

s
y
s
r
v
_
6
e
d
8
6

s
y
s
r
v
_
0
d
3
b
0

s
y
s
r
v
_
1
a
7
b
e

s
y
s
r
v
_
b
a
5
1
8

s
y
s
r
v
_
8
9
6
f
d

s
y
s
r
v
_
0
b
c
a
3

s
y
s
r
v
_
4
2
7
c
c

s
y
s
r
v
_
2
d
9
c
1

s
y
s
r
v
_
1
e
b
f
d

s
y
s
r
v
_
6
3
1
6
2

s
y
s
r
v
_
f
8
4
7
2

s
y
s
r
v
_
3
5
2
1
3

s
y
s
r
v
_
8
c
8
e
e

s
y
s
r
v
_
d
4
2
9
a

s
y
s
r
v
_
0
c
c
a
2

s
y
s
r
v
_
f
4
2
5
f

s
y
s
r
v
_
d
f
e
a
f

s
y
s
r
v
_
d
5
0
8
6

s
y
s
r
v
_
6
2
b
a
6

s
y
s
r
v
_
7
e
7
6
5

s
y
s
r
v
_
5
f
8
0
9

s
y
s
r
v
_
4
0
d
2
a

s
y
s
r
v
_
8
b
c
3
8

s
y
s
r
v
_
a
f
b
6
e

s
y
s
r
v
_
1
7
f
b
c

s
y
s
r
v
_
d
5
c
e
8

s
y
s
r
v
_
b
8
f
e
2

s
y
s
r
v
_
3
2
2
c
c

s
y
s
r
v
_
1
8
b
c
0

t
e
a
m
t
n
t
_
a
2
2
c
2

t
e
a
m
t
n
t
_
a
c
b
b
4

w
a
t
c
h
d
o
g
_
d
5
4
1
5

w
a
t
c
h
d
o
g
_
e
d
1
e
4

x
m
r
i
g
_
a
3
4
a
e

x
m
r
i
g
_
6
5
2
9
6

x
m
r
i
g
_
7
5
7
9
f

x
m
r
i
g
_
b
2
e
5
1

x
m
r
i
g
_
4
2
8
3
4

x
m
r
i
g
_
3
d
2
e
8

x
m
r
i
g
_
f
7
2
b
a

x
m
r
i
g
_
e
b
1
0
8

x
m
r
i
g
_
7
5
2
5
3

o
m
e
l
e
t
t
e
_
0
e
a
a
4

o
m
e
l
e
t
t
e
_
e
2
9
6
4

o
m
e
l
e
t
t
e
_
7
1
6
0
4

s
y
s
r
v
_
7
2
4
8
3

s
y
s
r
v
_
b
a
4
6
9

s
y
s
r
v
_
f
4
8
7
b

kinsing_af3cc

kinsing_dd603

kinsing_63643

mexalz_dcc52

mexalz_ed2ae

mexalz_b7a5e

mexalz_7edff

mexalz_7c3a8

teamtnt_78f92

watchdog_6f282

xmrig_ee4a1

xmrig_ef11c

xmrig_6abdd

xmrig_1489c

xmrig_e7f40

xmrig_4484a

teamtnt_d5870

xmrig_b1a5a

xmrig_cd37f

sysrv_59737

sysrv_c42e5

sysrv_6750e

sysrv_21f57

sysrv_8f921

sysrv_47183

sysrv_2d5de

sysrv_d3196

sysrv_9df43

sysrv_6eaab

sysrv_3e66b

sysrv_e627a

sysrv_3bcbd

sysrv_f640c

sysrv_77a9f

sysrv_feb38

sysrv_61e35

sysrv_875f0

sysrv_658bd

sysrv_d93af

sysrv_46276

sysrv_a392a

sysrv_6ed86

sysrv_0d3b0

sysrv_1a7be

sysrv_ba518

sysrv_896fd

sysrv_0bca3

sysrv_427cc

sysrv_2d9c1

sysrv_1ebfd

sysrv_63162

sysrv_f8472

sysrv_35213

sysrv_8c8ee

sysrv_d429a

sysrv_0cca2

sysrv_f425f

sysrv_dfeaf

sysrv_d5086

sysrv_62ba6

sysrv_7e765

sysrv_5f809

sysrv_40d2a

sysrv_8bc38

sysrv_afb6e

sysrv_17fbc

sysrv_d5ce8

sysrv_b8fe2

sysrv_322cc

sysrv_18bc0

teamtnt_a22c2

teamtnt_acbb4

watchdog_d5415

watchdog_ed1e4

xmrig_a34ae

xmrig_65296

xmrig_7579f

xmrig_b2e51

xmrig_42834

xmrig_3d2e8

xmrig_f72ba

xmrig_eb108

xmrig_75253

omelette_0eaa4

omelette_e2964

omelette_71604

sysrv_72483

sysrv_ba469

sysrv_f487b

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8: Cryptominers ordered based on string similarity (instead of
family and time), showing the dendrograms that cluster together similar
samples (lighter color/lower distance corresponds to higher similarity).

In addition to unpacking the cryptominer samples,
we also monitored their execution in our sandbox.
We found that a subset of the samples was
de-obfuscating and executing additional code at
runtime. We extracted these code fragments and
analyzed their similarity against the model we built
for the existing cryptominers. Note that the similarity
is based only on the strings. The dynamically
generated code is not in ELF format, therefore
telfhash cannot be applied. This further shows that
TF-IDF analysis on strings is an effective and flexible
approach with wider applicability than telfhash.

The results of the analysis are shown in Figure 9. It
shows that the generated code has a few clusters
that represent small variations of the deployed code.

o
m
e
l
e
t
t
e
_
4
3
c
2
2

s
y
s
r
v
_
e
4
e
7
6

t
e
a
m
t
n
t
_
d
9
e
3
b

s
y
s
r
v
_
9
7
f
9
5

s
y
s
r
v
_
2
5
5
f
8

s
y
s
r
v
_
9
8
0
b
8

s
y
s
r
v
_
5
6
c
6
4

s
y
s
r
v
_
b
5
e
c
c

s
y
s
r
v
_
d
5
4
0
7

s
y
s
r
v
_
9
e
c
3
8

s
y
s
r
v
_
0
9
7
8
3

s
y
s
r
v
_
6
e
e
8
0

s
y
s
r
v
_
3
1
4
1
e

s
y
s
r
v
_
3
7
3
c
3

s
y
s
r
v
_
7
7
6
d
0

s
y
s
r
v
_
7
b
7
0
e

s
y
s
r
v
_
e
9
5
1
b

s
y
s
r
v
_
0
4
9
8
d

s
y
s
r
v
_
e
6
4
f
8

s
y
s
r
v
_
d
0
e
1
b

s
y
s
r
v
_
d
1
3
d
3

s
y
s
r
v
_
9
6
e
6
2

s
y
s
r
v
_
e
5
7
3
2

s
y
s
r
v
_
a
1
b
c
5

s
y
s
r
v
_
f
a
7
2
f

s
y
s
r
v
_
f
e
0
5
9

s
y
s
r
v
_
8
8
d
1
d

s
y
s
r
v
_
f
6
f
8
9

s
y
s
r
v
_
8
d
6
d
1

s
y
s
r
v
_
a
5
b
b
7

s
y
s
r
v
_
8
6
2
7
a

s
y
s
r
v
_
7
6
d
6
1

s
y
s
r
v
_
e
9
d
5
a

s
y
s
r
v
_
3
2
a
a
0

s
y
s
r
v
_
e
1
9
b
2

s
y
s
r
v
_
f
d
e
3
1

s
y
s
r
v
_
8
d
1
b
0

s
y
s
r
v
_
0
7
e
f
1

s
y
s
r
v
_
0
8
f
6
a

s
y
s
r
v
_
d
2
7
c
1

s
y
s
r
v
_
3
f
1
9
9

s
y
s
r
v
_
e
1
0
6
e

s
y
s
r
v
_
6
4
2
2
5

t
e
a
m
t
n
t
_
0
3
d
7
e

omelette_43c22

sysrv_e4e76

teamtnt_d9e3b

sysrv_97f95

sysrv_255f8

sysrv_980b8

sysrv_56c64

sysrv_b5ecc

sysrv_d5407

sysrv_9ec38

sysrv_09783

sysrv_6ee80

sysrv_3141e

sysrv_373c3

sysrv_776d0

sysrv_7b70e

sysrv_e951b

sysrv_0498d

sysrv_e64f8

sysrv_d0e1b

sysrv_d13d3

sysrv_96e62

sysrv_e5732

sysrv_a1bc5

sysrv_fa72f

sysrv_fe059

sysrv_88d1d

sysrv_f6f89

sysrv_8d6d1

sysrv_a5bb7

sysrv_8627a

sysrv_76d61

sysrv_e9d5a

sysrv_32aa0

sysrv_e19b2

sysrv_fde31

sysrv_8d1b0

sysrv_07ef1

sysrv_08f6a

sysrv_d27c1

sysrv_3f199

sysrv_e106e

sysrv_64225

teamtnt_03d7e

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9: Similarity analysis of dynamically generated code.

https://blogs.vmware.com/networkvirtualization/2021/12/introducing-darth-distributed-analysis-for-research-and-threat-hunting.html/

17 | Exposing Malware in Linux-Based Multi-Cloud Environments

Characterizing behavior

We also used CAPA to examine the behaviors of cryptomining samples. The malicious behaviors of the
cryptomining samples are shown in Figure 10. Similar to the behaviors observed in the ransomware samples,
defense evasion is the most commonly used technique by cryptominers. In terms of the encryption methods
associated with defense evasion, it appears the techniques cryptominers use to obfuscate data are more
diversified (Figure 10 (B)) in comparison to the ransomware samples discussed earlier (Figure 3 (B)).

aes, 18.5% (37)
base64, 18.5% (37)
rc4 prga, 10.0% (20)
xor, 10.0% (20)
rc4 ksa, 9.5% (19)
curve25519, 8.5% (17)
salsa20 or chacha, 6.5% (13)
blowfish, 6.0% (12)
camelia, 6.0% (12)
stackstrings, 6.0% (12)
upx, 0.5% (1)

(A)

(B)

Defense Evasion::Obfuscated Files or Information -
T1027.005, 57.6% (200)

Discovery::System Information Discovery - T1082,
15.0% (52)

Discovery::System Network Configuration
Discovery - T1016, 6.9% (24)

Execution::Shared Modules - T1129, 6.3% (22)

Defense Evasion::Deobfuscate/Decode Files or
Information - T1140, 5.5% (19)

Impact::Resource Hijacking - T1496, 5.5% (19)

Discovery::File and Directory Discovery - T1083,
3.2% (11)

Figure 10: Malicious behaviors of the cryptominer samples in the dataset: (A) Typical MITRE ATT&CK tactics and techniques
leveraged by the samples; (B) Various encryption/obfuscation techniques used for defense evasion.

Detecting and mitigating the threat

A cryptojacking attack might result in higher energy bills, stalled operations, or higher cloud computing costs.
Unfortunately, these attacks can be tricky to detect because they do not completely disrupt the operations of
cloud environments, like ransomware does, or raise alarms, like a data breach might when unauthorized or
anomalous access to sensitive data is detected.

The best way to detect cryptojacking attacks is to use network traffic analytics (NTA) to identify internal hosts
that are communicating the results of mining work to the outside, as this communication is required to monetize
the attack. The communications to look for are connections to mining pools. However, many cryptomining

18 | Exposing Malware in Linux-Based Multi-Cloud Environments

malware samples connect to a command-and-control host that acts as a network proxy to avoid being detected.
In these cases, more sophisticated anomaly detection techniques are necessary to identify the threat. EDR
solutions may be able to identify abnormal CPU usage patterns that can be directly associated with the
calculations related to blockchain mining. Once again, the concerted monitoring of cloud environments using
both host-based and network-based detection techniques can help keep these attacks at bay.

Methodology

Static and dynamic analysis

Linux programs, malicious or not, can be analyzed with a number of different techniques that can be
categorized into two classes: static and dynamic analysis.

Static analysis looks at Linux binaries without executing them. These techniques either extract the meta-
information provided by the ELF binary format or investigate the code and data segments that are part of the
binary (e.g., looking for strings used by the program). For example, pyelftools21 is a Python library that can
extract information from ELF files. Another example is the FLIRT technology provided by the IDA Pro
disassembler22 that enables the identification of specific libraries in statically linked, stripped binaries, where all
the symbols associated with the source code have been removed. Another interesting tool is redress,23 which
can be used to analyze Linux programs written in the Go language.

The advantage of static analysis techniques is that they are typically fast and don’t require the execution of the
program’s code, which might include malicious actions. For example, the CAPA tool24 can extract interesting
behaviors without having to execute a sample. However, the main disadvantage of static analysis is that it is
relatively easy to foil, using layers of obfuscation, packing and encryption. For example, the most used code-
similarity function for ELF files, telfhash,25 is of limited effectiveness when the files are packed.

Dynamic analysis looks at the actual execution of a program, usually in a controlled environment, such as a
sandbox. These techniques are often resource-intensive and require extreme care to avoid the “spill out” of
malicious actions or the fingerprinting of the analysis environment. However, the main advantage of dynamic
analysis techniques is that they have the potential to expose the hidden behavior of malicious programs (e.g.,
encrypted portions of code).

The Linux kernel has recently introduced a technology, called eBPF,26 that allows for the monitoring of
programs with minimal overhead. Tools built on top of eBPF, such as Tracee,27 can identify specific malicious
behaviors, such as the unpacking of code or the presence of suspicious sequences of system calls.

In this report, we have applied a composition of static and dynamic techniques to characterize various families
of malware observed on Linux-based systems.

Malware datasets

As part of this report, we are releasing a curated dataset of metadata associated with Linux binaries. All the
samples in this dataset are public and therefore they can be easily accessed using VirusTotal28 or various
websites of major Linux distributions.

https://github.com/aquasecurity/tracee
https://www.virustotal.com/

19 | Exposing Malware in Linux-Based Multi-Cloud Environments

We started by collecting more than 11,000 benign samples from several Linux distributions, namely Ubuntu,
Debian, Mint, Fedora, CentOS and Kali. We then collected a dataset of samples for two classes of threats,
namely ransomware and cryptominers. These datasets have been manually labeled and vetted. This is a
resource-intensive process that provides better labels than the ones provided by most automated analysis
tools, which can be noisy and imprecise. Finally, we collected a dataset of malicious ELF binaries from
VirusTotal that we used as a test malicious dataset. We started collecting the dataset in June 2021 and
concluded in November 2021.

For each sample in each dataset, we looked at the general characteristics of the program, such as the
architecture, the type of linking (static or dynamic), the presence or absence of symbols, the use of UPX for
packing, and other traits. Figure 11 displays the characteristics of the files in our datasets, which show how
different the characteristics of each group are.

Figure 11: Characteristics of the samples in the datasets.

20 | Exposing Malware in Linux-Based Multi-Cloud Environments

Remote access tools – Implants
An important aspect of an adversary’s activity is how they compromise systems to gain control. This control
allows them to persist within the environment, establishing a staging server they can use to pivot and target
additional systems. Once an adversary has gained initial access to an environment, they enter the most difficult
portion of the attack. They will need to find a way to leverage this limited access to gain a stronger foothold,
while attempting to map out and find resources to accomplish their goal.

Attackers look to install an implant on a compromised system that gives them partial control of the machine.
An implant, also known as a beacon, is what is generally regarded as the malware component of an attack. Its
goal is to simply make regular network connections out to the command-and-control (C2) server to obtain new
commands to execute and pass along the results.

In the context of an attack, what is an implant? Malware, webshells, remote access Trojans, and even known-
good RATs can all be implants that install themselves on a compromised system to allow for remote access. An
implant is deployed in a persistent manner to allow an adversary to keep control of that infected system. This is
typically done in two ways: passive and active. A passive implant awaits an external connection, such as a
webshell on a compromised server. Conversely, an active implant will continually try to send beacon messages
to a preset C2 server and await further instructions. Analysis of RATs in the wild shows that most act as active
implants that will communicate with known C2 servers to gather further instructions. Very few RATs make use
of passive implants that rely on a service to listen for commands. While such malware could create its own
listener, often they install a component into an existing service, such as a web server, to piggyback on existing
network connectivity. However, the adversary would need to perform additional research of the infected
system and face the risk of insufficient account privileges to install. Because a passive implant has no guarantee
that the system will allow incoming connections, an active implant is the preferred tactic for malware.

From a malware analysis perspective, what is interesting is determining the number of implants that interact via
well-known HTTP protocols, and those that create their own specialized protocols. An implant’s purpose is far-
reaching, depending on its author. Many are used for very simplistic purposes, such as to show files on the
system, download new files, upload existing files, or execute commands.

Others allow for more advanced tactics, such as mapping out the local network and pivoting from the infected
system into new systems on the network. Overall, depending on the adversary and their ability, an implant can
contain a great amount of functionality, as documented in Figure 12.

21 | Exposing Malware in Linux-Based Multi-Cloud Environments

Server

Computer

Encrypts send
and receive

data/file

Elevate
privileges

Keylogging

Steal victim’s
credential

Malicious implant
in victim’s machine

Deploy additional malicious payload
to all system/network

Main

Communicate with C2 server
using HTTP, HTTPS or other custom protocol

Collect and gather
system information

Install/execute itself as
legitimate process/services or

load itself into memory

Connect with C2 server

Computer

Exfiltration Reconnaissance

Entrenchment

Credential Theft

Lateral
Movement

Figure 12: Malicious implant diagram.

Tactics used by implants

Implants often perform reconnaissance on systems in the area. For instance, they may scan an entire set of IP
addresses to collect systems information and grab TCP port banner data. This can also allow the implant to
collect IP addresses, hostnames, active user accounts, and specific operating systems and software versions of
all the systems it detects.

Implants also rely on their ability to entrench themselves within their infected systems to persist. Their hope is
to become background noise within a typical day’s activity, showing up as just another Windows service or
application to operate undetected. They can hide themselves in various ways, but on Linux-based multi-cloud
environments, we often see their activities performed as routine cron jobs. Like the Scheduled Tasks within
Windows, cron allows Linux, macOS and Unix environments to schedule processes to be executed at regular
intervals. In this way, malware can implant itself onto a compromised system with a restart frequency of 15
minutes, so it can relaunch if it is ever terminated.

22 | Exposing Malware in Linux-Based Multi-Cloud Environments

One of the more advanced tactics used by implants is that of lateral movement.
Also known as pivoting, this allows an adversary to install additional implants
within the environment, allowing them to jump to another system internally.
From here, they can start gathering additional data about the environment from
systems that may have additional access. In incident responses seen in the past,
there are specific systems that have higher privileges to connect into protected
enclaves for more sensitive data. These protected enclaves do not have remote
access but could be accessed via multiple pivots, allowing a patient and careful
adversary the ability to test access and find the weak center of the infrastructure.

Implants could be active for weeks, or even months, as the adversary figures out
how best to carry out their objectives. In a typical smash-and-grab ransomware
scenario, the actor may get lucky—they could sit dormant on a Windows server
they’ve compromised and scan logons for just a few days before they catch a
domain administrator. Once they’ve got these stolen credentials, they can
quickly pivot and use them to force ransomware across an entire environment
using built-in PowerShell scripting capabilities. However, this task is more
difficult in a multi-cloud environment. The actor typically must remain quiet and
unnoticed for as long as possible while they discover all the required resources.

Implants are also invaluable for collecting and exfiltrating data. Unlike large-
scale data collection, which is typically done through tools such as rclone,
implants may have the ability to exfiltrate directory listings of existing files and
individual files. This allows a malware operator to collect superficial data for a
malicious analyst to identify critical assets to steal.

Attack stages

These implants allow for additional stages of attack. While a first stage may be to
exploit a vulnerability and install an implant, a second stage may be to download
additional malware. This is often seen in Windows attacks via malware, such as
TrickBot and QBot. The same exists in multi-cloud environments, as adversaries
tend to specialize their toolsets based on functionality. The initial implant may
have very specific capabilities, but it can be leveraged to download and execute
ransomware or a cryptomining application, such as those mentioned earlier in
this report.

Within the data center, adversaries may have to juggle access and connections
to a variety of operating systems and services. In some cases, it could be
necessary to pivot between systems instead of making direct connections,
especially if some services are virtually segmented and only allow connections
from a hard-coded set of systems. Lucky for them, it is completely possible to

Implants used by threat actors

Cobalt Strike and
Vermilion Strike
Cobalt Strike is one of the most
well-known and well-regarded
red team tools on the market, sold
as a legitimate service to select
businesses. It uses HTTP, HTTPS
and DNS to exfil information
from a compromised network.
Vermilion Strike is an open source
threat emulation software based
on Cobalt Strike’s protocols,
making it compatible with Cobalt
Strike servers.

Merlin
Merlin74 is a post-exploit C2 tool
that communicates using the
HTTP/1.1, HTTP/2 and HTTP/3
protocols. The server and
implant are written in Go, so they
can be cross-compiled to run on
any OS platform.

https://github.com/Ne0nd0g/merlin

23 | Exposing Malware in Linux-Based Multi-Cloud Environments

traverse an environment using simple command lines and built-in accessibility
tools, such as SSH. However, mapping out an environment, as well as the
resources found on each system, is difficult for someone using direct connection
techniques. This creates the need for an attack management tool.

Attack management tools

Attack management tools are good for both attackers and red team operations.
They provide the ability to graphically organize assets, store collections of notes,
and easily transmit properly structured commands to multiple compromised
systems. At a basic level, they allow the actor to map out accessible IP addresses
and hostnames within an environment and identify their operating systems. The
actor can then target specific systems for exploitation, track legitimate user
accounts and credentials, and document which systems have what assets.

A deeper look at Cobalt Strike – Vermilion Strike

The primary implant that this report focuses on is Cobalt Strike and its recent
Linux-based variant, Vermilion Strike. To fully understand its impact on a multi-
cloud environment, this report will dive into the implant’s capabilities and
methods of operation.

Cobalt Strike is a commercial penetration testing and red team tool. It allows a
red team to simulate real attacks during their testing. Unfortunately, threat
actors have found the tool useful, as well, thanks to its robust feature set, which
makes it easy to remotely control victim machines once they are infected. Cobalt
Strike uses an implant named beacon that, once deployed on a machine, will
phone home to retrieve tasks to execute. Many threat actors simply use the
Cobalt Strike beacon for their final payload delivery. The beacon implant is a
Windows-only application.

In September 2021, Intezer reported53 that they had discovered malware that
appeared to be a Linux re-implementation of the Cobalt Strike beacon implant.
Open source versions of Cobalt Strike’s beacon implant exist, such as Geacon54
and CrossC2,55 but Vermilion Strike appears to be the first re-implementation of
the Cobalt Strike protocol in the wild. Because Cobalt Strike is such a ubiquitous
threat on Windows, its expansion to other operating systems, such as Linux, is
notable. It demonstrates the desire of threat actors to use readily available
remote-control tools to target as many platforms as possible.

Vermilion Strike appears to be implemented against version 3 of the Cobalt
Strike team server. Its C2 configuration and communication appear to be the
same as Cobalt Strike, but it only supports a handful of commands. These
commands are explained in more detail in the technical analysis in Figure 13.

Implants used by threat actors

SSH backdoor implant
An SSH backdoor implant75 can
be loaded when a malicious actor
exploits a control web panel
(CWP) server administration web
application and downloads a
sshins installer binary. This drops a
malicious shared library,
/lib64/libs.so, and writes the
name of the dropped file in the
directory as /etc/ld.so.preload.
When the OpenSSH service
restarts, the malicious library will
load and have the ability to inject
its own code whenever sshd calls
bind(). It then uses this hook to
periodically beacon to the C2
server and exfiltrate sensitive data,
such as CPU and OS information,
OpenSSH configuration, and other
critical data.

Linux C2 malware – RedXOR
RedXOR76 masquerades as
a polkit daemon. It is named
for its network data encoding
scheme, which is based on
XOR. It communicates with a
C2 server over a TCP socket
and makes the traffic look like
HTTP traffic. The C2 server sends
commands to the implant via a
command code that is returned
in a JSESSIONID cookie. These
commands can include collect
system information, upload file,
open file, execute shell command,
and other tasks.

https://www.intezer.com/blog/malware-analysis/vermilionstrike-reimplementation-cobaltstrike/
https://github.com/darkr4y/geacon
https://github.com/gloxec/CrossC2
https://blogs.juniper.net/en-us/threat-research/linux-servers-hijacked-to-implant-ssh-backdoor
https://securityboulevard.com/2021/04/detect-c2-redxor-with-state-based-functionality/

24 | Exposing Malware in Linux-Based Multi-Cloud Environments

File Name : 294b8db1f2702b60fb2e42fdc50c2cee-
6a5046112da9a5703a548a4fa50477bc

File Size : 89,416 bytes

MD5 : 3db3e55b16a7b1b1afb970d5e77c5d98

SHA256 : 294b8db1f2702b60fb2e42fdc50c2cee-
6a5046112da9a5703a548a4fa50477bc

Fuzzy : 1536:tMCIVGxHiGZsz9ZLTSKKTrcAFgtzgrSWUnCTOPS:tMCIVUbi
z9VT1KTwAFgtzgrFO

Magic : ELF 64-bit LSB executable, x86-64, version 1 (SYSV),
dynamically linked, interpreter /lib64/
ld-linux-x86-64.so.2, for GNU/Linux 2.6.32, BuildID[s
ha1]=2322a87e5a86ac36f71d745a4b290772f4b3614e,
stripped

Figure 13: Analysis of Vermilion Strike file on Linux.

Vermilion Strike configuration details

The malware has multiple encoded blocks of data that it loads at start-up. The
first is a 4,096-byte block of data that is XOR-encoded with the key 0x69. After
decoding this first block, we can see that it is a group of type-length-value (TLV)
encoded values consistent with a Cobalt Strike beacon. The use of the 0x69
decryption key implies that this beacon might be similar to Cobalt Strike 3.x
beacons. Cobalt Strike 4.x beacons make use of the 0x2e key to decrypt.

Next, the malware decodes five separate blocks of string data. These chunks of
data have 12 bytes of a header and a variable length chunk of XOR-encoded
data. As shown in Figures 14 and 15, the first 4 bytes always appear to be “80
80 00 00”. The second 4 bytes make up a 4-byte key to be used with XORing
the encrypted data. The third 4 bytes indicate the length of the data. In the
example shown in Figure 14 and 15, we can see a key of “e2 16 a2 de” used
to decode 181 (0xb5) bytes of data.

Implants used by threat actors

ACBackdoor malware
ACBackdoor77 provides
arbitrary execution of shell
commands, arbitrary binary
execution, persistence, and
the ability to update malware
on a compromised system. It
communicates with a C2 server
using the HTTPS protocol to send
the information it collects as a
Base64-encoded payload.

BlackTech – ELF_Plead
ELF_Plead78 is a Linux version of
a RAT used by the threat actor
BlackTech. The configuration
is RC4-encrypted, and a
32-byte encryption key can be
found before the encrypted
configuration. It uses a custom
protocol to communicate with
a C2 server. The data sent to
the C2 server is RC4-encrypted
and then LZO-compressed.
The ELF_Plead command can
provide arbitrary shell command
execution and send/receive files,
among other things.

https://www.intezer.com/blog/research/acbackdoor-analysis-of-a-new-multiplatform-backdoor/

25 | Exposing Malware in Linux-Based Multi-Cloud Environments

00000000 80 80 00 00 e2 16 a2 de b5 00 00 00 cd 75 c3 fe |....â.¢Þµ...ÍuÃþ|

00000010 cd 49 fd ab 96 7b 8c b9 8b 70 82 f1 92 7f da bb |ÍIý«.{.¹.p.ñ..Ú»|

00000020 8e 38 c5 b7 84 36 8d b9 cc 66 cb a6 87 7a 82 f1 |.8Å·.6.¹ÌfË¦.z.ñ|

00000030 86 79 d6 f0 85 7f c4 fe cd 63 d2 ba 83 62 c7 ad |.yÖð..ÄþÍcÒº.bÇ.|

00000040 cc 64 d1 ad c2 39 c4 a9 8e 7f cc b5 c2 39 c1 b3 |ÌdÑ.Â9Ä©..ÌµÂ9Á³|

00000050 c2 39 c1 a6 c2 39 d2 b7 9a 73 ce fe cd 7b c3 aa |Â9Á¦Â9Ò·.sÎþÍ{Ãª|

00000060 81 7e 82 f1 94 7f d1 b7 96 38 c8 ad c2 39 ce b1 |.~.ñ..Ñ·.8È.Â9Î±|

00000070 83 72 82 f1 92 63 d1 b6 c2 39 d2 aa 88 36 8d b4 |.r.ñ.cÑ¶Â9Òª.6.´|

00000080 cc 77 c6 fe cd 71 c3 f0 88 65 82 f1 87 78 fd 8b |ÌwÆþÍqÃð.e.ñ.xý.|

00000090 b1 39 c3 b2 8e 38 c8 ad c2 39 c3 bd 96 7f d4 b7 |±9Ã².8È.Â9Ã½..Ô·|

000000a0 96 6f 82 f1 ab 53 9b 9d 8d 7b d2 bf 96 40 cb bb |.o.ñ«S...{Ò¿.@Ë»|

000000b0 95 5a cb ad 96 |.ZË..|

 Figure 14: Vermilion Strike encrypted string data.

00000000 2f 63 61 20 2f 64 70 69 78 65 6c 20 2f 5f 5f 75 |/ca /dpixel /__u|

00000010 74 6d 2e 67 69 66 20 2f 70 69 78 65 6c 2e 67 69 |tm.gif /pixel.gi|

00000020 66 20 2f 67 2e 70 69 78 65 6c 20 2f 64 6f 74 2e |f /g.pixel /dot.|

00000030 67 69 66 20 2f 75 70 64 61 74 65 73 2e 72 73 73 |gif /updates.rss|

00000040 20 2f 66 77 6c 69 6e 6b 20 2f 63 6d 20 2f 63 78 | /fwlink /cm /cx|

00000050 20 2f 70 69 78 65 6c 20 2f 6d 61 74 63 68 20 2f | /pixel /match /|

00000060 76 69 73 69 74 2e 6a 73 20 2f 6c 6f 61 64 20 2f |visit.js /load /|

00000070 70 75 73 68 20 2f 70 74 6a 20 2f 6a 2e 61 64 20 |push /ptj /j.ad |

00000080 2f 67 61 2e 6a 73 20 2f 65 6e 5f 55 53 2f 61 6c |/ga.js /en_US/al|

00000090 6c 2e 6a 73 20 2f 61 63 74 69 76 69 74 79 20 2f |l.js /activity /|

000000a0 49 45 39 43 6f 6d 70 61 74 56 69 65 77 4c 69 73 |IE9CompatViewLis|

000000b0 74 2e 78 6d 6c |t.xml|

 Figure 15: Vermilion Strike decrypted string data.

These five chunks of data are either separated by a space or comma, and contain the rest of the configuration
data the malware uses when communicating with its C2 server:

• DNS servers

• GET URLs

• POST URLs

• Subdomains to use with DNS C2 traffic

Finally, the malware parses the beacon configuration. Although the malware uses the same structure as a real
Cobalt Strike beacon, it only loads the configuration types shown in Table 3 from the beacon data.

26 | Exposing Malware in Linux-Based Multi-Cloud Environments

Type Name Description

01 BeaconType How to communicate with the C2

02 Port What port to use when communicating with the C2

03 SleepTime How often to check in with the C2

07 PublicKey An RSA public key used to encrypt communication with the C2

08 C2Server A list of server names and GET URL paths to use to check in

09 UserAgent The User-Agent string to use in HTTP communication

10 HttpPostUri The POST URL to use to send responses to the C2

13 HttpPost_Metadata Additional data to set in POST requests to the C2

Table 3: Vermilion Strike configuration types.

Vermilion Strike setup

After loading the configuration, the malware proceeds to initialize the additional values it needs to
communicate with the C2. These steps are similar to what a real Cobalt Strike beacon does.56 The setup
consists of the following steps:

1. Generate an array of 16 random bytes

2. Generate a SHA256 of the bytes

3. Use the first half of the SHA256 for AES keys

4. Use the second half of the SHA256 for HMAC keys

5. Load the RSA key from the beacon configuration

6. Collect and encrypt victim machine information:

 –Random number

 –PID

 –OS name

 – IP address

 –User name

 –Host name

 –Malware version number

The version number used in this specific sample of the malware is 1.0.1.LR.

27 | Exposing Malware in Linux-Based Multi-Cloud Environments

Cobalt Strike/Vermilion Strike C2 communication

After loading the configuration and performing the additional setup, the malware enters its main processing
loop. Each time through the main loop, the malware will attempt to check in with the C2 server and then go to
sleep for the time specified in the SleepTime beacon configuration. Depending on the BeaconType value,
as previously mentioned, the C2 communication method will change. The malware currently supports hybrid
HTTP DNS, HTTPS, and HTTP communication. There is an additional ICMP communication method in
the code but no configuration option to select it. As Intezer noted, this might indicate this code is under
development.

In the case of HTTP or HTTPS communications, a GET request is made to the server to check in. A cookie value
is set with Base64-encoded data collected from the victim machine. The server responds to the GET request
with any queued-up commands. The commands shown in Table 4 are supported by the malware.

Command Name Description

02 shell Execute the command

04 sleep Change how often the beacon calls home

05 cd Change directory on host

10 upload Upload a file to host (first chunk)

11 download Download a file

19 cancel Cancels a download that is currently in progress

39 pwd Displays the current working directory

53 ls List files in a folder

55 drives List drives on current system

67 upload Upload a file to host (subsequent chunks)

Table 4: Vermilion Strike supported commands.

The malware will execute the commands sent to it from the server and then send a POST request back with the
requested information.

https://www.intezer.com/blog/malware-analysis/vermilionstrike-reimplementation-cobaltstrike/

28 | Exposing Malware in Linux-Based Multi-Cloud Environments

File Name : 7129434afc1fec276525acfeee5bb08923ccd9b32269638a54c7b452f5493492

File Size : 238,080 bytes

MD5 : 4baec501cd3c6318c8bceb4cf5c8b394

SHA256 : 7129434afc1fec276525acfeee5bb08923ccd9b32269638a54c7b452f5493492

Compiled Time : Wed Jun 26 02:59:19 2019 UTC

PE Sections (5) : Name Size MD5

.text 165,888 856639ce9212eb1329c8a59f89f0f97e

.rdata 51,200 590ccfa17cf705285509a4ae3ae50f38

.data 7,168 bfcb5a68d595cf49d2b372f35bbaacc5

.rsrc 512 09a004fff9ae1f2b5ff7ded5bcfaf389

.reloc 12,288 f6d8de448cad7e9a2587b75d8894c69d

Original DLL : gigabigsvc.dll

DLL Exports (1) : Ordinal Name

1 ServiceMain

Magic : PE32 executable (DLL) (GUI) Intel 80386, for MS Windows

 Figure 16: Vermilion Strike Windows file.

Vermilion Strike Windows and Linux differences

As an aside, the Windows version of the malware is almost identical to the Linux version with only a few
differences. For instance, when collecting and encrypting victim machine information, the Windows version
uses the following malware version numbers:

• 1.0.1.WR

• W1.0.1

Additionally, before entering the main loop, the Windows version will start a thread that attempts to read
information from a named pipe and send the data to the C2 server using standard communication methods.
Table 5 shows three additional commands the Windows version understands that are not available in the Linux
variant due to differences in how the two operating systems manage named pipes.

Command Name Description

20 create_pipe Create a named pipe

21 resume_pipe ResumeThread on the named pipe thread

23 suspend_pipe SuspendThread on the named pipe thread

Table 5: Vermilion Strike commands for named pipes.

These additional commands and threads seem to be related to Cobalt Strike functionality that allows the
beacon to be injected into other processes and use a named pipe to communicate back to the main beacon
when sending responses to the C2. Although the commands exist for controlling the named pipe thread in
Linux, there doesn’t seem to be any ability for the beacon to inject itself into other processes.

29 | Exposing Malware in Linux-Based Multi-Cloud Environments

Metadata

The Windows version also provides additional metadata that might be useful. First is a PDB path, shown
below. A PDB value is a file path stored within a Windows executable that has debugging enabled. This refers
back to the original path on the malware developer’s computer where the malware was compiled, which can
provide insightful clues to the actor.

C:\workspace\spy\cobaltstrike-client-vc2008\Release\gigabigsvc.pdb

Second is the compilation timestamps of the beacons and stager binaries. The following unique timestamps
are seen on the Windows binaries:

• 2019-06-26 02:59:19

• 2019-06-26 02:59:26

• 2020-09-12 14:35:36

• 2020-09-12 14:36:10

The fact that a lot of the compilation timestamps of the samples come from 2019 is a clue that this Cobalt Strike
clone might have been written to be compatible with version 3.x.

Vermilion Strike compatibility with Cobalt Strike team server

Based on the analysis of malware samples, it appears this malware is most compatible with Cobalt Strike 3.x.
After testing, a sample can connect and retrieve commands from the server but does not properly send back
responses. There appears to be two problems.

The first problem is even though the beacon configuration is read and the POST URI decoded, the malware does
not use this value. Instead, it selects at random from an array of POST URIs, which are loaded from the .rodata
section. When sending responses to the server, it most often gets a 404 error returned, as seen in Figure 17.

Figure 17: C2 POST error.

30 | Exposing Malware in Linux-Based Multi-Cloud Environments

The second issue is that the POST URI is supposed to include a session ID, but the malware just uses a random
number for this session ID. The result is that, even if the correct POST URI is picked at random, the server
doesn’t process the results because the session ID is unknown.

The VMware Threat Analysis Unit Cobalt Strike threat intelligence collection

Security practitioners often rely on the reputation of IP addresses to determine if traffic to and from that
indicator of compromise (IOC) is malicious. However, the reputation is not effective for catching fresh
malware C2 servers. In the example shown in Figure 18, antivirus (AV) engines detected an IP address as
harmless (0/87)57 on VirusTotal in September 2021, but in the VMware Threat Analysis Unit, we were able to
identify it as a Cobalt Strike team server (C2).

Figure 18: VirusTotal result against one IP address.

We looked at the DNS protocol, which we had reversed, and saw the protocols of high-profile malware
families were emulated, especially those used for cyberespionage to discover real-time C2 instances on the
internet. We utilized this intelligence to not only detect the threats but to also support incident response cases.
The following section describes our findings on these Cobalt Strike threats.

Protocol overview and our approach

Cobalt Strike is split into a client and server component called a team server. An operator using a client GUI
program connects to a team server after authenticating with a password through the TLS protocol.

A Cobalt Strike stager then downloads a main RAT module, the beacon, from the team server. The beacon will
receive task (command) information from the team server and send back the results of the executed command.
Both stager and beacon protocols for C2 communications are implemented in HTTP/HTTPS/DNS.

Additionally, Cobalt Strike allows third-party programs to act as a communication layer for the beacon’s
payload. In those cases, the beacon session is forwarded to a team server’s External C258 service function,
using a third-party client and controller. (For more Cobalt Strike protocol details, please see our presentation59
for the Japan Security Analyst Conference (JSAC) 2021.)

https://www.virustotal.com/gui/ip-address/52.157.171.98
https://www.cobaltstrike.com/help-externalc2
https://jsac.jpcert.or.jp/archive/2021/pdf/JSAC2021_201_haruyama_jp.pdf

31 | Exposing Malware in Linux-Based Multi-Cloud Environments

Beacon Download
(HTTP/HTTPS/DNS)

Stager
(Downloader)

Task Execution
(HTTP/HTTPS/DNS)

Beacon (RAT)

Team Server

External C2
(TCP)

Third-Party
Command & Control

Client Authentication
(TLS)

Client
(Operator)

Third-Party
Controller

Third-Party
Client

Named
Pipe

Figure 19: Cobalt Strike protocols overview.

To identify Cobalt Strike team servers, we
focused on the staging process of each protocol,
(HTTP/HTTPS/DNS/External C2) to ensure we:

• Did not circumvent any technological measure,
such as authentication for the discovery.
The client authentication protocol was not in
our options because the emulation could be a
login attempt by an unauthorized user to the
team servers.

• Avoided false positives. Previous research
(e.g., Fox-IT60 and ZoomEye61) didn’t
differentiate the Cobalt Strike team servers and
NanoHTTPD servers because they rely solely
on the HTTP response header data. Similarly,
we obtained responses from the team servers
by sending requests based on the beacon
protocol, such as HTTP/HTTPS GET requests,
with the correct URI paths or arbitrary DNS A
record queries. The team servers answered with a 200 OK status code in HTTP/HTTPS or a dns_idle value in
DNS. However, we knew that a simple confirmation, without RSA/AES encryption in the beacon protocol
would produce many false positives.

• Discovered team servers silently. We emulated the beacon session encryption and then downloaded task
information from the servers. However, once the emulation code checked in at the servers, an entry was
created on the Cobalt Strike GUI console. Such a noticeable method is unfavorable for this purpose.

Therefore, we took the same approach as the one used by the Cobalt Strike developers62 to emulate the stager
protocol. Our implementation downloads beacon executables from Cobalt Strike team servers, and then
decodes and parses their configuration blocks to obtain further information. The protocol requires no
authentication, and the method will not lead to any false positives. We recognize that some security
researchers and organizations analyze the Cobalt Strike team servers in the wild, using the stager protocol, but
that doesn’t cover DNS and External C2 protocols, and threat actors tend to prefer them to HTTP/HTTPS.

Additionally, since version 3.5.1, Cobalt Strike has an option to disable the hosting of payload stages for HTTP/
HTTPS/DNS protocols (except External C2). Specifically, users are able to disable the stager protocol by just
setting a line in the Malleable C2 Profile:63

When disabled, it is impossible to detect the server by our method, but it gives Cobalt Strike users an
alternative mechanism to deliver their beacons.

set host_stage "false";

https://blog.fox-it.com/2019/02/26/identifying-cobalt-strike-team-servers-in-the-wild/
https://80vul.medium.com/identifying-cobalt-strike-team-servers-in-the-wild-by-using-zoomeye-part-2-acace5cc612c
https://blog.cobaltstrike.com/2019/02/19/cobalt-strike-team-server-population-study/
https://www.cobaltstrike.com/help-malleable-c2

32 | Exposing Malware in Linux-Based Multi-Cloud Environments

Observations since February 2020

Between February 2020 to November 2021, we discovered more than 14,000 active Cobalt Strike team
servers on the internet.

Populations by protocol, version and customer ID

The percentage of each stager/beacon protocol is shown in Figure 20. The most popular protocol is HTTPS;
the HTTP ratio increased 31 percent in January 2021 to 37 percent in November. We hypothesize Cobalt Strike
users try to avoid a detection technique based on TLS
handshakes, called JARM.64

Our discovery system guesses Cobalt Strike versions based
on the collected beacon’s configuration values. For
example, if a SETTING_WATERMARK value (i.e., the
customer ID65) is included in the configuration, the version
must be 3.9 and later at minimum. In addition, a SETTING_
DOMAIN_STRATEGY value indicates that the version is 4.3
and later. From our sample datasets, we found that close to
90 percent are version 4 and later (Figure 21). Regarding
customer IDs, we found at least five customer Cobalt Strike
IDs were cracked and leaked:

• 1873433027

• 305419896

• 16777216

• 1359593325

• 0 (trial)

HTTPS
54%

HTTP
37%

DNS
8%

External C2
1%

Figure 20: Population by protocol.

4.1 and
later
49%

4.0
39%

3.14
10%

3.8 and below
0%

3.9-3.13
2%

Figure 21: Cobalt Strike server population by version.

305419896

3.9-3.13
2%

25%

16%

8%6%

1%

44%
Others

0 (trial and cracked)

1359593325

1873433027
16777216

Figure 22: Population by customer ID.

https://github.com/salesforce/jarm
https://www.cobaltstrike.com/help-authorization-files

33 | Exposing Malware in Linux-Based Multi-Cloud Environments

As shown in Figure 22, the total percentage of cracked and leaked customer IDs is 56 percent. This means that
more than half of the observed Cobalt Strike users are using illegitimately obtained versions of the
commercial software.

Additionally, it should be noted that cracked trial license cases are increasing lately. Since Cobalt Strike version
3.6, the encryption of the beacon protocol is disabled66 in the trial license. It can be checked by looking at the
config value SETTING_CRYPTO_SCHEME. If it's 1, it's disabled. However, we noticed there are a lot of team
servers with the value 0, even if the customer ID is 0 and the version is newer than 3.6, such as in the following
parsed config output:

We counted these servers as a part of the cracked customer IDs in Figure 22.

Change in the number of team servers obtained by a single scan

We discovered Cobalt Strike team servers targeting multiple protocols and ports. In Figure 23, we display the
changes in the result of a single scan, which focuses on typical ports (HTTPS/443, HTTP/80, DNS/53 and
ExternalC2/2222), and a scan that covers other ports as well.

0

100

200

300

400

500

600

700

800

900

Feb-20 Mar-20 Apr-20 May-20 Jun-20 Jul-20 Aug-20 Sep-20 Oct-20 Nov-20 Dec-20 Jan-21 Feb-21 Mar-21 Apr-21 May-21 Jun-21 Jul-21 Aug-21 Sep-21 Oct-21 Nov-21

HTTPS/443 HTTP/80 DNS/53 ExternalC2/2222

Figure 23: Change in the result of a single scan.

Since December 2020, the numbers look to decrease. However, we understand a part of Cobalt Strike users
just disabled the stager protocol, rather than halting its usage. Security researchers should pay attention to the
stager-disabled team servers to detect any changes.

...
word CRYPTO_SCHEME (1 = disable encryption) at 0x746: 0 (0x0)
...
dword WATERMARK at 0x798: 0 (0x0)
...

https://blog.cobaltstrike.com/2015/10/14/the-cobalt-strike-trials-evil-bit/

34 | Exposing Malware in Linux-Based Multi-Cloud Environments

Domain fronting observation (e.g., Microsoft Azure, Fastly)

Domain fronting67 is a technique that obfuscates the intended destination of HTTPS traffic. Domain fronting
takes advantage of routing schemes in content delivery networks (CDNs) and other services.

Specifically, the Cobalt Strike beacon configuration has different hostnames in C2 hostname (SETTING_
DOMAINS) and HOST header values. Users can set the header values in either of two locations: in the
HTTP config or the GUI menu. The Malleable C2 Profile68 setting is part of the HTTP transform data
of the config, while the config value SETTING_HOST_HEADER is part of the GUI menu setting.
The latter setting will overwrite the former one.

We found the most popular CDN abused by Cobalt Strike was Microsoft Azure, followed by Fastly.

CDN Host header value C2 hostname examples

Microsoft Azure *.azureedge.net *.microsoft.com, *.msn.com, *.skype.com, *.visualstudio.com, *.azure.com

Fastly *.global.prod.fastly.net *nytimes.com, *yelp.com, *bbc.com, *usatoday.com, *forbes.com,
*theguardian.com, *cnn.com, *stackexchange.com, *reddit.com

Table 6: Azure/Fastly domain fronting settings observed in Cobalt Strike team servers.

0 20 40 60 80 100 120 140 160

Microsoft Azure
(until Jan. 2021)

Microsoft Azure
(since Feb. 2021)

Fastly
(until Jan. 2021)

Fastly
(since Feb. 2021)

Figure 24: The change in number of new domain-fronted team servers.

We found multiple Azure-fronted team
servers with cracked and leaked customer
IDs that were likely to be managed by
threat actors, not red teamers. VMware
researchers worked directly with Microsoft
in January 2021 and, two months later,
Microsoft stated69 that the company
decided to make a change to their policy
to ensure that domain fronting will be
stopped and prevented within Azure.
Since then, the new Azure-fronted cases
have been on a downward slope. From
August to October 2021, they have been
reduced to zero. Based on our monitoring,
we hypothesize that Cobalt Strike users
that were using Azure have migrated to
Fastly or other services hiding a real IP
address, such as Cloudflare Workers.

https://attack.mitre.org/techniques/T1090/004/
https://blog.cobaltstrike.com/2017/02/06/high-reputation-redirectors-and-domain-fronting/
https://www.microsoft.com/security/blog/2021/03/26/securing-our-approach-to-domain-fronting-within-azure/

35 | Exposing Malware in Linux-Based Multi-Cloud Environments

Attribution to the specific threat actors

We parsed configuration blocks of beacons downloaded from team servers to categorize them into clusters
based on config values. The clusters could be attributed to specific threat actors or campaigns. We primarily
focused on two values in the configuration for this purpose: SETTING_PUBKEY and SETTING_WATERMARK.

SETTING_PUBKEY is an RSA public key in a DER format utilized in the beacon protocol encryption. The RSA
key pair is created as a file, .cobaltstrike.beacon_keys, when starting and logging on to a team server for the
first time. After that, if the team server directory is copied to another host, the copied one will have the same
key pair file and the public key will be reused. Therefore, the two servers, whose beacons have the same
public key, are likely to be managed by the same person or organization, unless the key pair file is leaked. If
the file is leaked, the number of servers using the same public key can be huge.70 We can exclude such a key
for clustering.

SETTING_WATERMARK is a customer ID extracted from the authorization file, cobaltstrike.auth on a team
server. According to Cobalt Strike’s developers,71 the ID is assigned to every team server of Cobalt Strike,
version 3.9 and later, and is changed when running the update program. If a team server’s WATERMARK is
matched with another one, it means they are operated by a single actor. Even if the software package is not
valid (leaked or cracked), the activities utilizing an invalid package are probably malicious. This is how we can
differentiate servers managed by valid customers and ones abused by criminals.

Other than these values, some values in the configuration, such as HTTP header information, and the jar path
hash value (SETTING_PROCINJ_STUB) may be beneficial for attribution work.

The undisclosed team servers owned by the threat actors (e.g., APT41)

Based on the SETTING_PUBKEY sharing, we were able to identify the undisclosed team servers owned by
APT41 in the two attack campaigns.

Case 1: Campaign ColunmTK

Group-IB72 discovered and shared a cyberattack on Air India and attributed it with moderate confidence to
APT41 in June 2021. The campaign was codenamed ColunmTK. Based on the published network indicators, we
found two undisclosed Cobalt Strike team servers.

The identification procedure is simple:

1. Search for the known IP addresses/domains in our datasets.

2. Obtain customer ID and public key MD5 values from the records.

3. Search for other IP addresses sharing the same values.

In this case, we utilized the four public key MD5 values extracted from three known servers. The customer IDs
were not available for clustering as they were all cracked and leaked.

https://blog.nviso.eu/2021/10/21/cobalt-strike-using-known-private-keys-to-decrypt-traffic-part-1/
https://www.cobaltstrike.com/help-authorization-files
https://blog.group-ib.com/colunmtk_apt41

36 | Exposing Malware in Linux-Based Multi-Cloud Environments

C2 IP address Protocol/port First seen Last seen Customer ID Public key MD5

104.224.169.214 HTTP and
DNS/5353,
HTTP/80,
HTTPS/443,
DNS/53

2020/03/16 2020/09/03 0 (trial and
cracked),
305419896
(cracked and
leaked)

90419b03b90efe0c2c708294
b40ced50,

64e69b07e15940bdb21e44bd
3d7d9da4

185.118.164.198 HTTPS/443 2021/01/12 2021/01/12 305419896
(cracked and
leaked)

99683533be317f513a70f40fb-
db61cd6

185.118.166.66 HTTPS/443,
HTTPS/8443

2020/12/06 2021/04/09 305419896
(cracked and
leaked)

9cdb3fca6156c6cbed2f01d6
431b3dfb

Table 7: Known team servers reported by Group-IB and observed by the VMware Threat Analysis Unit system.

By using the public key MD5 values, we obtained two undisclosed server IPs, which are shown in Table 8. We
were able to even catch a new server (45.144.31.31) deployed after the Group-IB report publication.

C2 IP address Protocol/port First seen Last seen Public key MD5

149.248.62.83 HTTPS/443 2020/04/04 2020/04/04 90419b03b90efe0c2c708294b40ced50

45.144.31.31 HTTPS/8443 2021/06/14 2021/06/14 9cdb3fca6156c6cbed2f01d6431b3dfb

Table 8: Two undisclosed servers sharing the public keys.

Case 2: Cobalt Strike loader used by APT41

LAC,73 a cybersecurity company in Japan, reported the campaign by APT41 using Cobalt Strike loaders in May
2021. Our system detected seven other servers, which are likely to be managed by the same actor.

C2 IP address Protocol/port First seen Last seen Customer ID Public key MD5

104.168.30.164 HTTPS/443,
HTTP/80

2020/12/04 2020/12/18 305419896
(cracked and
leaked)

531c720aae6e053b9db
9be8e7b56f78f

185.118.166.205 DNS/53 2020/12/12 2021/09/11 305419896
(cracked and
leaked)

df50953714f29628a7f6a6c
97eb0bc2e

Table 9: Known team servers reported by LAC and observed by the Threat Analysis Unit system.

https://www.lac.co.jp/lacwatch/report/20210521_002618.html

37 | Exposing Malware in Linux-Based Multi-Cloud Environments

C2 IP address Protocol/port First seen Last seen

45.144.29.242 HTTPS/443, HTTP/80 2021/05/20 2021/06/03

185.250.151.18 HTTP/80 2020/12/31 2020/12/31

45.142.214.242 HTTPS/443, HTTP/80, HTTPS/8443, DNS/53 2021/04/25 2021/07/02

45.142.214.56 HTTPS/443, HTTP/80 2021/06/18 2021/07/19

45.67.229.168 HTTPS/443 2020/12/03 2020/12/03

45.153.231.194 DNS/53 2021/02/03 2021/02/03

194.156.98.214 HTTP/80 2021/01/26 2021/01/26

Table 10: Seven undisclosed servers sharing the public key 531c720aae6e053b9db9be8e7b56f78f.

Moreover, it should be noted that the earliest server was active at least six months ahead of both reports. The
team server discovery, using protocol emulations, enables us to take proactive countermeasures.

Identifying potential targets

We collected manual proxy settings of the beacon configurations from team servers. The number of settings is
small; however, they can be useful for identifying the victim organizations, based on the internal domain name,
username and password. The victim information, based on the proxy settings, is listed in Table 11.

Victim industry Victim country Time period Cracked/leaked customer ID?

Financial services ES 2020/03-2020/06 No

Vertical transportation CH 2020/04 No

Automotive DE 2020/04-2020/08 No

Energy (oil and gas) NL 2020/06 No

Airport - 2020/06 Yes

Insurance JP 2020/09 No

Networking equipment FI 2020/09-2020/12 No

Insurance US 2020/11 No

Financial services FI 2020/12 No

Insurance HK 2020/12-2021/01 Yes

Telecommunications HK 2021/01-2021/03 Yes

Government - 2021/03-2021/08 Yes

Financial services GB 2021/05 No

Financial services US 2021/06-2021/07 No

Hydrocarbon exploration US 2021/08 No

Table 11: Victim information included in the manual proxy configuration.

38 | Exposing Malware in Linux-Based Multi-Cloud Environments

Most team servers with the settings were likely to be owned by red teams, judging from the customer IDs. We
contacted the victims and shared our findings – the team server had a cracked/leaked customer ID and was
active at that time – so they could take steps to address the ongoing attack that was happening.

Detecting and mitigating the threat

RATs, such as Cobalt Strike and Vermilion Strike, pose a significant threat to enterprises. They are often used
as the first stage of an attack, delivering additional information or even malware that allows threat actors to
pivot and spread to other internal infrastructure. RATs typically gain an initial foothold via simple attacks, such
as phishing emails.

We have discovered Cobalt Strike team servers in the wild for more than a year and a half. The fact that more
than half of the servers have cracked and leaked customer IDs tells us that Cobalt Strike has become a
commodity tool among criminals. A robust combination of NDR software and EDR solutions can help stop
these attacks before they begin.

Looking for unknown applications executing in the environment or abnormal network connections is often
an indicator of something larger going on. By actively monitoring and locking down the environment with NDR
and EDR solutions, these malicious applications can be stopped before they have a chance to do real harm.

39 | Exposing Malware in Linux-Based Multi-Cloud Environments

VMware recommendations
Organizations need to think of security as an inherent and distributed part of the modern enterprise, which
must be incorporated into all aspects of the environment. Protecting multi-cloud environments starts with
complete visibility into all workloads with detailed system context that makes it easier to understand and
prioritize mitigation efforts. Information from all sources must be combined in an intelligent fashion that adds
value, while enabling the sharing of this contextual data across teams to reduce silos.

This requires an EDR solution that can monitor the actions performed by processes on cloud workloads and
implement effective segmentation to contain risks. In addition, organizations need an NDR system that can
recognize network-based evidence of attacks and malicious lateral movements to ideally block the malware
before it can take hold of the target hosts.

A secure multi-cloud environment requires securing all workload access and communications, both inside and
across multiple clouds. Easily operationalizing security across clouds requires a scale-out architecture with
software that gives the underlying infrastructure—firewalls, network detection and response, meshes, and load
balancers—the same elasticity as modern, distributed applications.

A Zero Trust strategy can help organizations embed security throughout their infrastructure. Zero Trust offers a
connected approach—joining users, devices, workloads and networks—to help organizations systematically
address the threat vectors that make up their attack surface. Organizations can ensure they are implementing
control points and distributing security across the infrastructure to better protect data and operations. With
visibility, context, actionable insights, and control points embedded throughout the environment, organizations
can start to spot and stop many of today’s threats before they can even get started.

How VMware can help

VMware can deliver security as a built-in distributed service across your control points of users, devices,
workloads and networks. With VMware, you can implement Zero Trust with fewer tools and silos, and scale
response with confidence, speed and accuracy. When security becomes intrinsic, you reduce your attack
surface to mitigate security risk, ensure compliance, and simplify security operations.

With VMware Security, you can deliver the speed and security required of the modern enterprise. You can
transition to next-gen systems and modern applications, without increasing security complexity, and with
dramatically fewer blind spots or choke points. Through vendor, agent and tool consolidation, you can achieve
better security outcomes and deliver better employee and customer experiences, while spending less time on
administrative tasks.

40 | Exposing Malware in Linux-Based Multi-Cloud Environments

With VMware, you operationalize more of your security through your IT and development teams by creating a
common source of truth and dramatically increasing your capacity to protect and defend your infrastructure.
The authoritative context from the visibility, depth and accuracy of VMware’s data collection enables security
teams to confidently respond to events occurring within the organization’s assets. This allows an organization’s
most critical assets—its people—to focus on high-value activities, using VMware’s intelligent risk correlation
with proactive prevention, detection and response capabilities.

VMware Security provides many capabilities to protect organizations from advanced threats targeting
multi-cloud environments, such as ransomware, cryptominers, and remote access tools, as described in this
threat report:

• Organizations focusing on protecting end-user solutions can utilize VMware Workspace ONE®, VMware
Horizon®, and VMware Carbon Black Cloud™ to stop advanced threats from entering the environment.

• VMware vSphere®, VMware NSX® Advanced Threat Prevention™, VMware Carbon Black Cloud,
CloudHealth® Secure State™, VMware Tanzu®, VMware vRealize® Suite, and VMware NSX provide
organizations with robust capabilities to protect against, detect and respond to advanced threats in multi-
cloud environments.

By partnering with VMware, organizations can capitalize on enterprise modernization efforts, continuously
incorporating security into all aspects of the technology stack to accelerate Zero Trust strategies and achieve a
more effective security posture.

41 | Exposing Malware in Linux-Based Multi-Cloud Environments

References
1 W3Techs. “Usage statistics of operating systems for web sites.” Dec. 2021.

2 Microsoft. "HAFNIUM targeting Exchange Servers." March 2, 2021.

3 Cybersecurity and Infrastructure Security Agency. "Alert (AA21-291A BlackMatter Ransomware." Oct. 18, 2021.

4 CBT Nuggets. "Why Linux runs 90 percent of the public cloud workload." August 10, 2018.

5 Federal Bureau of Investigation. "Ransomware Actors Use Significant Financial Events and Stock Valuation to Facilitate Targeting and Extortion
of Victims.” Nov. 1, 2021.

6 VMware. "Deconstructing Defray777 Ransomware." Threat Analysis Unit. March 11, 2021.

7 Mandiant. "Shining a Light on Darkside Ransomware Operations.” Jordan Nuce, Jeremy Kennelly, Kimberly Goody, Andrew Moore,Brendan
McKeague, Jared Wilson. May 11, 2021.

8 VMware. “HelloKitty: The Victim’s Perspective.” Threat Analysis Unit. Sept. 9, 2021.

9 VMware. "Moving Left of the Ransomware Boom." Oct. 11, 2021.

10 Github. "trendmicro / telfhash."

11 Github. "mandiant / capa."

12 Security Affairs. "HelloKitty ransomware now targets VMware ESXi servers." Pierluigi Paganini. July 15, 2021.

13 Intezer. “Operation ElectroRAT: Attacker Creates Fake Companies to Drain Your Crypto Wallets.” Avigayil Mechtinger. Jan. 5, 2021.

14 Wired. "Hack Brief: Hackers Enlisted Tesla's Public Cloud to Mine Cryptocurrency." Lily Hay Newman. Feb. 20, 2018.

15 Palo Alto Networks. "Highlights from the Unit 42 Cloud Threat Report, 2H 2020." Oct. 6, 2020.

16 Investopedia. “The 6 Most Private Cryptocurrencies.” Shobhit Seth. July 4, 2021.

17 Miner Daily. "How Much Does it Cost to Mine a Bitcoin?" Sam Ling. May 4, 2021.

18 Github. "xmrig / xmrig."

19 hex-rays. "IDA F.L.I.R.T. Technology: In-Depth."

20 Github. "goretk / redress."

21 Github. "eliben / pyelftools"

22 hex-rays. "F.L.I.R.T."

23 Github. "goretk / redress"

24 Github. "mandiant / capa"

25 Github. "trendmicro / telfhash."

26 ebpf.io.

27 Github. "aquasecurity / tracee."

28 virustotal.com

29 Bleeping Computer. “REvil ransomware’s new Linux encryptor targets ESXi virtual machines.” Lawrence Abrams. June 28, 2021.

30 ARS Technica. "FBI, others crush REvil using ransomware gang's favorite tactic against it.” Tim De Chant. Oct. 22, 2021.

31 Crowdstrike. "Hypervisor Jackpotting, Part 1: CARBON SPIDER and SPRITE SPIDER Target ESXi Servers with Ransomware to Maximize Impact."
Eric Loui-Sergei Frankoff. Feb. 26, 2021.

32 VMware. "Critical Infrastructure Remains at Risk Following Ransomware Attack.” Rick McElroy. May 11, 2021.

33 Mandiant. "Shining a Light on Darkside Ransomware Operations." Jordan Nuce, Jeremy Kennelly, Kimberly Goody, Andrew Moore, Brendan
McKeague, Jared Wilson. May 11, 2021.

34 Insikt Group. "BlackMatter Ransomware Emerges as Successor to DarkSide, REvil." July 27, 2021.

35 VMware. "Deconstructing Defray777 Ransomware." Threat Analysis Unit. March 11, 2021.

36 Bleeping Computer. “RansomEXX Ransomware Linux encryptor may damage victims’ files.” Lawrence Abrams. Sept. 30, 2021.

37 Security Affairs. "HelloKitty ransomware now targets VMware ESXi servers." Pierluigi Paganini. July 15, 2021.

38 HIPPAA Journal. "Vice Society Ransomware Gang Attacks United Health Centers of San Joaquin Valley." Sept. 27, 2021.

39 Trend Micro. “Erebus Resurfaces as Linux Ransomware.” Ziv Chang, Gilbert Sison, Jeanne Jocson. June 19, 2017.

40 Github. "tarcisio-marinho / GonnaCry."

41 Anomali Threat Research. "The eCh0raix Ransomware." July 10, 2019.

42 | Exposing Malware in Linux-Based Multi-Cloud Environments

42 Bleeping Computer. "New eCh0raix Ransomware Brute-Forces QNAP NAS Devices." Sergiu Gatlan. July 10, 2019.

43 Github. "xmrig / xmrig."

44 Cujo AI. “The Sysrv Botnet and How it Evolved.” September 22, 2021.

45 Sysdig. "THREAT ALERT: Crypto miner attack – Sysrv-Hello Botnet targeting WordPress pods." Stefano Chierici. August 26, 2021.

46 Palo Alto Networks. "Hildegard: New TeamTNT cryptojacking Malware Targeting Kubernetes." Jay Chen, Aviv Sasson, Ariel Zelivansky. Feb. 3,
2021.

47 Anomali Threat Research. “Inside TeamTNT’s Impressive Arsenal: A Look into a TeamTNT Server.” Tara Gould. Oct. 6, 2021,

48 hex-rays. "IDA F.L.I.R.T. Technology: In-Depth."

49 Bitdefender. “How We Tracked a Threat Group Running an Active Cryptojacking Campaign." July 14, 2021.

50 AT&T Business. “AT&T Alient Labs analysis of an active cryptomining work.” Fernando Dominguez. Jan. 9, 2020.

51 Unit 42, Palo Alto Networks. "Exposing a Cryptojacking Campaign That's Operated for Two Years." Nathaniel Quist. Feb. 17, 2021.

52 Aqua Security. “Kinsing Malware Attacks Container Environments.” Gal Singer. April 3, 2020.

53 Intezer. "Vermilion Strike: Linux and Windows Re-implementation of Cobalt Strike." Avigayil Mechtinger, Ryan Robinson, Joakim Kennedy. Sept.
13, 2021.

54 Github. "darkr4y / geacon."

55 Github. "gloxec / CrossC2."

56 NCC Group. “Striking Back at Retired Cobalt Strike: A look at a legacy vulnerability.” June 15, 2020.

57 virustotal.com. "52.157.171.98."

58 Cobalt Strike User Guide. "External C2."

59 VMware Carbon Black. “Knock, knock, Neo. Active C2 Discovery Using Protocol Emulation.” Takahiro Haruyama,

60 Fox IT. "Identifying Cobalt Strike team servers in the wild." Feb. 26, 2019.

61 Medium. “Identifying Cobalt Strike team servers in the wild by using ZoomEye (Part 2)." heige, KnownSec 404 Team. April 10, 2020.

62 Cobalt Strike. "Cobalt Strike Team Server Population Study." Raphael Mudge. Feb. 19, 2019.

63 Cobalt Strike User Guide. “Malleable Command and Control.”

64 Github. "Salesforce / jarm."

65 Cobalt Strike User Guide. "License Authorization Files."

66 Cobalt Strike. “Cobalt Strike Trial’s Evil Bit.” Raphael Mudge. Oct. 14, 2015.

67 MITRE ATT&CK. “Proxy: Domain Fronting.”.

68 Cobalt Strike. “High-reputation Redirectors and Domain Fronting.” Raphael Mudge.Feb. 6, 2017.

69 Microsoft. "Securing our approach to domain fronting within Azure." Eric Doerr. March 26, 2021.

70 NVISO Labs. “Cobalt Strike: Using Known Private Keys to Decrypt Traffic – Part 1." Didier Stevens. Oct. 21, 2021.

71 Cobalt Strike User Guide. “License Authorization Files.”

72 Group IB. “Big airline heist.” Nikita Rostovcev. Oct. 6, 2021.

73 LAC Watch. “Targeted attack by "Cobalt Strike loader" that abuses Microsoft's digital signature ~ Attacker group APT41." Yoshihiro Ishikawa. May
21, 2021.

74 Github. "Ne0nd0g / merlin."

75 Juniper Networks. “Linux Servers Hijacked to Implant SSH Backdoor.” Asher Langton. April 26, 2021.

76 Security Boulevard. "Detect C2 ‘RedXOR’ with state-based functionality.” Ben Reardon. April 20, 2021.

77 Intezer. “ACBackdoor: Analysis of a New Multiplatform Backdoor.” Ignacio Sanmillan. Nov. 18, 2019.

78 JPCERT CC. “ELF_PLEAD – Linux MalwareUsed by BlackTech.” Nov. 16, 2020.

This report may contain hyperlinks to non-VMware websites that are created and maintained by third parties who are solely responsible for the content
on such websites.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Copyright © 2022 VMware, Inc. All rights reserved. VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001
VMware and the VMware logo are registered trademarks or trademarks of VMware, Inc. and its subsidiaries in the United States and other jurisdictions. All other marks and names
mentioned herein may be trademarks of their respective companies. VMware products are covered by one or more patents listed at vmware.com/go/patents.
Item No: Exposing Malware in Linux-based Multi-Cloud Environments 2/22

	Executive summary
	Key findings
	Ransomware and cryptominers
	Ransomware
	Ransomware families
	Characterizing similarity
	Characterizing behavior
	Detecting and mitigating the threat

	Cryptominers
	Characterizing similarity
	Characterizing behavior
	Detecting and mitigating the threat

	Methodology
	Static and dynamic analysis
	Malware datasets

	Remote access tools – Implants
	Tactics used by implants
	Attack stages
	Attack management tools

	A deeper look at Cobalt Strike – Vermilion Strike
	Vermilion Strike configuration details
	Vermilion Strike setup
	Cobalt Strike/Vermilion Strike C2 communication
	Vermilion Strike Windows and Linux differences
	Metadata
	Vermilion Strike compatibility with Cobalt Strike team server

	The VMware Threat Analysis Unit Cobalt Strike threat intelligence collection
	Protocol overview and our approach
	Observations since February 2020
	Attribution to the specific threat actors
	Identifying potential targets
	Detecting and mitigating the threat

	VMware recommendations

