#### Apple Inc. # Apple corecrypto Module v11.1 [Apple silicon, Kernel, Software] FIPS 140-3 Non-Proprietary Security Policy document version: 1.3 November, 2022 #### Prepared by: atsec information security corporation 9130 Jollyville Road, Suite 260 Austin, TX 78759 www.atsec.com #### **Trademarks** Apple's trademarks applicable to this document are listed in https://www.apple.com/legal/intellectual-property/trademark/appletmlist.html. Other company, product, and service names may be trademarks or service marks of others. #### **Table of Contents** | 1. | General | 5 | |------------|------------------------------------------------------------------------------------|-----| | 2. | Cryptographic Module Specification | 6 | | 3. | Cryptographic Module Interfaces | 12 | | 4. | Roles, services, and authentication | 13 | | 5. | Software/Firmware security | .19 | | | 5.1. Integrity Techniques | 19 | | | 5.2. On-Demand Integrity Test | 19 | | 6. | Operational Environment | .20 | | | 6.1. Applicability | 20 | | <i>7</i> . | Physical Security | 21 | | 8. | Non-invasive Security | .22 | | 9. | Sensitive Security Parameter Management | .23 | | | 9.1. Random Number Generation | | | | 9.2. Key / SSP Generation | 25 | | ! | 9.3. Keys/SSPs Establishment | 25 | | | 9.4. Keys/SSPs Import/Export | 25 | | | 9.5. Keys/SSPs Storage | 25 | | ! | 9.6. Keys/SSPs Zeroization | 25 | | 10 | ). Self-tests | .26 | | | 10.1.Pre-operational Software Integrity Test | 26 | | , | 10.2.Conditional Self-Tests 10.2.1.Conditional Cryptographic Algorithm Self-Tests | 26 | | , | 10.3.Error Handling | | | 11 | . Life-cycle assurance | .28 | | | 11.1.Delivery and Operation | 28 | | | 11.2.Crypto Officer Guidance | 28 | | 12 | 2. Mitigation of other attacks | .29 | #### **List of Tables** | Table 1 - Security Levels | 5 | |---------------------------------------------------------------------------------|----| | Table 2 - Tested Operational Environments | 6 | | Table 3 - Vendor Affirmed Operational Environments | 7 | | Table 4 - Approved Algorithms | g | | Table 5 - Non-Approved Algorithms Not Allowed in the Approved Mode of Operation | 1′ | | Table 6 - Interfaces | 12 | | Table 7 - Approved Services | 15 | | Table 8 - Non-Approved Services | 18 | | Table 9 - SSPs | 24 | | Table 10 - Non-Deterministic Random Number Generation Specification | 25 | | Table 11 - Pre-Operational Cryptographic Algorithm Self-Tests | 27 | | Table 12 - Frror Indicators | 27 | #### 1. General This document is the non-proprietary FIPS 140-3 Security Policy for Apple corecrypto Module v11.1 [Apple silicon, Kernel, Software] cryptographic module. It contains the security rules under which the module must operate and describes how this module meets the requirements as specified in FIPS PUB 140-3 (Federal Information Processing Standards Publication 140-3) for a Security Level 1 module. This document provides all tables and diagrams (when applicable) required by NIST SP 800-140B. The column names of the tables follow the template tables provided in NIST SP 800-140B. Table 1 describes the individual security areas of FIPS 140-3, as well as the Security Levels of those individual areas. | ISO/IEC 24759 Section<br>6.[Number Below] | FIPS 140-3 Section Title | Security Level | |-------------------------------------------|-----------------------------------------|----------------| | 1 | General | 1 | | 2 | Cryptographic Module Specification | 1 | | 3 | Cryptographic Module Interfaces | 1 | | 4 | Roles, Services, and Authentication | 1 | | 5 | Software/Firmware Security | 1 | | 6 | Operational Environment | 1 | | 7 | Physical Security | Not Applicable | | 8 | Non-invasive Security | Not Applicable | | 9 | Sensitive Security Parameter Management | 1 | | 10 | Self-tests | 1 | | 11 | Life-cycle Assurance | 1 | | 12 | Mitigation of Other Attacks | Not Applicable | Table 1 - Security Levels ### 2. Cryptographic Module Specification The Apple corecrypto Module v11.1 [Apple silicon, Kernel, Software] cryptographic module (hereafter referred to as "the module") is a software module running on a multi-chip standalone general-purpose computing platform. The version of module is 11.1, written as v11.1. The module provides implementations of low-level cryptographic primitives to the Device OS's (iOS 14, iPadOS 14, watchOS 7, tvOS14, TXFW 11 and macOS Big Sur 11) Security Framework and Common Crypto. The module has been tested by atsec CST lab on the following platforms with and without PAA: | # | Operating System | Hardware Platform | Processor | PAA/Acceleration | |----|----------------------|----------------------------------------|----------------------------|------------------| | 1 | iPadOS 14.2 | iPad (5 <sup>th</sup> generation) | Apple A Series A9 | NEON | | 2 | iPadOS 14.2 | iPad Pro 9.7-inch | Apple A Series A9X | NEON | | 3 | iPadOS 14.2 | iPad (7 <sup>th</sup> generation) | Apple A Series A10 Fusion | NEON | | 4 | iPadOS 14.2 | iPad Pro 10.5 inch | Apple A Series A10X Fusion | NEON | | 5 | iPadOS 14.2 | iPad mini (5 <sup>th</sup> generation) | Apple A Series A12 Bionic | NEON | | 6 | iPadOS 14.2 | iPad Pro 11-inch (1st generation) | Apple A Series A12X Bionic | NEON | | 7 | iPadOS 14.2 | iPad Pro 11in (2nd generation) | Apple A Series A12Z Bionic | NEON | | 8 | iPadOS 14.2 | iPad Air (4 <sup>th</sup> generation) | Apple A Series A14 Bionic | NEON | | 9 | iOS 14.2 | iPhone 6S | Apple A Series A9 | NEON | | 10 | iOS 14.2 | iPhone 7 Plus | Apple A Series A10 Fusion | NEON | | 11 | iOS 14.2 | iPhone X | Apple A Series A11 Bionic | NEON | | 12 | iOS 14.2 | iPhone XS Max | Apple A Series A12 Bionic | NEON | | 13 | iOS 14.2 | iPhone 11 Pro | Apple A Series A13 Bionic | NEON | | 14 | iOS 14.2 | iPhone 12 | Apple A Series A14 Bionic | NEON | | 15 | watch OS 7.1 | Apple Watch Series S3 | Apple S Series S3 | NEON | | 16 | watch OS 7.1 | Apple Watch Series S4 | Apple S Series S4 | NEON | | 17 | watch OS 7.1 | Apple Watch Series S5 | Apple S Series S5 | NEON | | 18 | watch OS 7.1 | Apple Watch Series S6 | Apple S Series S6 | NEON | | 19 | tvOS 14.2 | Apple TV 4K | Apple A Series A10X Fusion | NEON | | 20 | TxFW 11.0.1 | Apple Security Chip T2 | Apple T Series T2 | NEON | | 21 | macOS Big Sur 11.0.1 | MacBook Air | Apple M Series M1 | NEON | Table 2 - Tested Operational Environments In addition to the platforms listed in Table 2, Apple Inc. has also tested the module on the following platforms and claims vendor affirmation on them: | # | Operating<br>System | Hardware Platform | Processor | Model | |---|---------------------|--------------------|--------------------|--------------| | 1 | iPadOS 14.2 | iPad Pro 12.9-inch | Apple A Series A9X | A1584, A1652 | © 2022 Apple Inc., All rights reserved. | 2 | iPadOS 14.2 | iPad (6 <sup>th</sup> generation) | Apple A Series A10 Fusion | A1893, A1954 | |----|----------------------|-------------------------------------------------|-------------------------------|---------------------------------------------| | 3 | iPadOS 14.2 | iPad Pro 12.9-inch (2 <sup>nd</sup> generation) | Apple A Series A10X<br>Fusion | A1670, A1671, A1821 | | 4 | iPadOS 14.2 | iPad Air (3 <sup>rd</sup> generation) | Apple A Series A12 Bionic | A2152, A2154, A2123, A2153 | | 5 | iPadOS 14.2 | iPad (8 <sup>th</sup> generation) | Apple A Series A12 Bionic | A2270, A2428, A2429, A2430 | | 6 | iPadOS 14.2 | iPad Pro 12.9-inch (3 <sup>rd</sup> generation) | Apple A Series A12X Bionic | A1876, A2014, A1895, A1983 | | 7 | iPadOS 14.2 | iPad Pro 12.9-inch (4 <sup>th</sup> generation) | Apple A Series A12Z Bionic | A2229, A2232, A2069, A2233 | | 8 | iOS 14.2 | iPhone SE | Apple A Series A9 | A1662, A1723, A1724 | | 9 | iOS 14.2 | iPhone 6S Plus | Apple A Series A9 | A1634, A1687, A1690, A1699 | | 10 | iOS 14.2 | iPhone 7 | Apple A Series A10 Fusion | A1660, A1779, A1780, A1778 | | 11 | iOS 14.2 | iPhone 8 | Apple A Series A11 Bionic | A1863, A1906, A1907, A1905 | | 12 | iOS 14.2 | iPhone 8 Plus | Apple A Series A11 Bionic | A1864, A1898, A1899, A1897 | | 13 | iOS 14.2 | iPhone XS | Apple A Series A12 Bionic | A1920, A2097, A2098, A2099,<br>A2100 | | 14 | iOS 14.2 | iPhone XR | Apple A Series A12 Bionic | A1984, A2105, A2106, A2107,<br>A2108 | | 15 | iOS 14.2 | iPhone 11 | Apple A Series A13 Bionic | A2111, A2221, A2223 | | 16 | iOS 14.2 | iPhone 11 Pro Max | Apple A Series A13 Bionic | A2161, A2220, A2218, A2219 | | 17 | iOS 14.2 | iPhone SE (2 <sup>nd</sup> generation) | Apple A Series A13 Bionic | A2275, A2296, A2297, A2298 | | 18 | iOS 14.2 | iPhone 12 mini | Apple A Series A14 Bionic | A2176, A2398, A2399, A2400 | | 19 | iOS 14.2 | iPhone 12 Pro | Apple A Series A14 Bionic | A2341, A2406, A2407, A2408 | | 20 | iOS 14.2 | iPhone 12 Pro Max | Apple A Series A14 Bionic | A2342, A2410, A2411, A2412 | | 21 | watch OS 7.1 | Apple Watch SE | Apple S Series S5 | A2351, A2352, A2353, A2354,<br>A2355, A2356 | | 22 | macOS Big Sur 11.0.1 | MacBook Pro 13" | Apple M Series M1 | A2338 | | 23 | macOS Big Sur 11.0.1 | Mac mini | Apple M Series M1 | A2348 | | | | <u> </u> | | | Table 3 - Vendor Affirmed Operational Environments The CMVP makes no statement as to the correct operation of the module or the security strengths of the generated keys when so ported if the specific operational environment is not listed on the validation certificate. The table below lists all Approved or Vendor-affirmed security functions of the module, including specific key size(s) employed for approved services, and implemented modes of operation. The module is in the Approved mode of operation when the module utilizes the services that use the security functions listed in the table below. The Approved mode of operation is configured in the system by default and can only be transitioned into the non-Approved mode by calling one of the non-Approved services listed in Table 8 - Non-Approved Services. If the device starts up successfully, then the module has passed all self-tests and is operating in the Approved mode. | CAVP Cert. | Algorithm and<br>Standard | Mode / Method | Description / Key<br>Size(s) | Use /<br>Function | |----------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------| | A943 (vng_asm) | CTR_DRBG<br>[SP800-90A] | AES-128, AES-256 Derivation Function Enabled No Prediction Resistance | Key Length: 128, 256 | Random<br>Number<br>Generation | | A945 (c_asm) | CTR_DRBG<br>[SP800-90A] | AES-128, AES-256 Derivation Function Enabled No Prediction Resistance | Key Length: 128, 256 | Random<br>Number<br>Generation | | A942 (vng_ltc) | HMAC_DRBG<br>[SP800-90A] | SHA-1, SHA-224, SHA-256,<br>SHA-384, SHA-512<br>No Prediction Resistance | Key Length: 112 bits or<br>greater | Random<br>Number<br>Generation | | A944 (c_ltc) | HMAC_DRBG<br>[SP800-90A] | SHA-384, SHA-512<br>No Prediction Resistance | Key Length: 112 bits or<br>greater | Random<br>Number<br>Generation | | A945 (c_asm) | AES<br>[FIPS 197]<br>[SP 800-38A] | CBC, ECB, CFB128, CFB8, OFB, CTR | Key Length: 128, 192, 256 | Symmetric<br>Encryption and<br>Decryption | | A946 (asm_arm) | AES<br>[FIPS 197]<br>[SP 800-38A] | CBC, CFB128,<br>ECB, OFB | Key Length: 128, 192, 256 | Symmetric<br>Encryption and<br>Decryption | | A946 (asm_arm) | AES<br>[FIPS 197]<br>[SP 800-38E] | XTS | Key Length: 128, 256 | Symmetric<br>Encryption and<br>Decryption | | A943 (vng_asm) | AES [FIPS 197] [SP 800-38A] [SP 800-38C] [SP 800-38D] | ECB, CCM, CTR, GCM | Key Length: 128, 192, 256 | Symmetric<br>Encryption and<br>Decryption | | A945 (c_asm) | KTS (AES)<br>[SP 800-38F] | AES-KW | Key Length: 128, 192, 256 | Key Wrapping<br>and<br>Unwrapping | | A942 (vng_ltc) | RSA<br>[FIPS 186-4] | Signature Generation (PKCS#1 v1.5) and (PKCS PSS) | Modulus: 2048, 3072,<br>4096 | Digital<br>Signature<br>Generation | | A942 (vng_ltc) | RSA<br>[FIPS 186-4] | Signature Verification PKCS#1 v1.5) and (PKCS PSS) | Modulus: 1024, 2048,<br>3072, 4096 | Digital<br>Signature<br>Verification | | A942 (vng_ltc) | ECDSA<br>ANSI X9.62<br>[FIPS 186-4] | Key Pair Generation (CKG). The module's CKG uses the method described in Section 5.1 of SP 800-133. The seeds used for generating the asymmetric keys are obtained from the output of an approved random bit generator. | Curve: P-224, P-256,<br>P-384, P-521 | Asymmetric<br>Key<br>Generation | © 2022 Apple Inc., All rights reserved. | CAVP Cert. | Algorithm and<br>Standard | Mode / Method | Description / Key<br>Size(s) | Use /<br>Function | |-----------------|---------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------| | A942 (vng_ltc) | ECDSA<br>ANSI X9.62<br>[FIPS 186-4] | Public Key Validation (PKV) | Curve: P-224, P-256,<br>P-384, P-521 | Asymmetric<br>Key Validation | | A942 (vng_ltc) | ECDSA<br>ANSI X9.62<br>[FIPS 186-4] | Signature Generation | Curve: P-224, P-256,<br>P-384, P-521 | Digital<br>Signature<br>Generation | | A942 (vng_ltc) | ECDSA<br>ANSI X9.62<br>[FIPS 186-4] | Signature Verification | Curve: P-224, P-256,<br>P-384, P-521 | Digital<br>Signature<br>Verification | | A942 (vng_ltc) | SHS<br>[FIPS 180-4] | SHA-1, SHA-224, SHA-256,<br>SHA-384, SHA-512, SHA-512/256 | N/A | Message<br>Digest | | A944 (c_ltc) | SHS<br>[FIPS 180-4] | SHA-384, SHA-512,<br>SHA-512/256 | N/A | Message<br>Digest | | A947 (vng_neon) | SHS<br>[FIPS 180-4] | SHA-256 for all CPUs in Table 2 except S3) | N/A | Message<br>Digest | | A942 (vng_ltc) | HMAC<br>[FIPS 198] | SHA-1, SHA-224, SHA-256,<br>SHA-384, SHA-512, SHA-512/256 | Key Length: 112 bits or greater | Keyed Hash | | A944 (c_ltc) | HMAC<br>[FIPS 198] | SHA-384, SHA-512, SHA-512/256 | Key Length: 112 bits or greater | Keyed Hash | | A947 (vng_neon) | HMAC<br>[FIPS 198] | SHA-256 (for all CPUs in Table 2 except S3) | Key Length: 112 bits or greater | Keyed Hash | | N/A | ENT (P)<br>[SP800-90B]<br>ENT (NP)<br>[SP800-90B] | N/A | Seeding for the DRBG.<br>(is provided by the<br>underlying operational<br>environment) | Random<br>Number<br>Generation | Table 4 - Approved Algorithms This module does not have any non-Approved algorithms used in the Approved mode of operation (with or without security claimed). The table below lists the non-Approved algorithms and security functions that are used in the non-Approved mode of operation: | Algorithm/Functions | Use / Function | Notes | |-------------------------------|-------------------------------------------------------------|--------------| | RSA<br>Signature Generation | PKCS#1 v1.5 and PSS Signature Generation<br>Key Size < 2048 | Non-Approved | | RSA<br>Signature Verification | PKCS#1 v1.5 and PSS Signature Verification Key Size < 1024 | Non-Approved | | RSA Key Wrapping | OAEP, PKCS#1 v1.5 and -PSS schemes | Non-Approved | | E-105540 | V A | Nice Accessed | |---------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------| | Ed25519 | Key Agreement | Non-Approved | | | Key Generation | | | | Signature Verification | | | | Signature Verification | | | ANSI X9.63 KDF | Hash based Key Derivation Function | Non-Approved | | RFC6637 | Key Derivation Function | Non-Approved | | HKDF [SP800-56C] | Key Derivation Function | Non-Approved | | DES | Encryption / Decryption | Non-Approved | | | Key Size 56-bits | | | CAST5 | Encryption / Decryption | Non-Approved | | | Key Sizes 40 to 128-bits in 8-bit increments | | | RC4 | Encryption / Decryption | Non-Approved | | | Key Sizes 8 to 4096-bits | | | RC2 | Encryption / Decryption | Non-Approved | | | Key Sizes 8 to 1024-bits | | | MD2 | Message Digest | Non-Approved | | | Digest size 128-bit | | | MD4 | Message Digest | Non-Approved | | | Digest size 128-bit | | | MD5 | Message Digest | Non-Approved | | | Digest size 128-bit | | | RIPEMD | Message Digest | Non-Approved | | | Digest size 160-bits | | | ECDSA | PKG: Curve P-192 | Non-Approved due to the small curve | | | PKV: Curve P-192 | size | | | Signature Generation: Curve P-192 | | | | Signature Verification: Curve P-192 | | | | Key Pair Generation for compact point representation of points | Non-Approved | | Integrated Encryption Scheme on elliptic curves (ECIES) | Encryption / Decryption | Non-Approved | | Blowfish | Encryption / Decryption | Non-Approved | | OMAC (One-Key CBC MAC) | MAC generation | Non-Approved | | Triple-DES [SP 800-67] | CBC, ECB | Encryption/Decryption | | | | Note: The module does not enforce the limit of 2 <sup>16</sup> encryptions with the same Triple-DES key, as required by FIPS 140-3 IG C.G. | Table 5 - Non-Approved Algorithms Not Allowed in the Approved Mode of Operation $\ @$ 2022 Apple Inc., All rights reserved. The Apple corecrypto Module v11.1 [Apple silicon, Kernel, Software] executes within the kernel space of the computing platforms and operating systems listed in Table 2 - Tested Operational Environments. Figure 1 below shows the logical block diagram<sup>1</sup> representing the following information: - The location of the logical object of the module with respect to the operating system, other supporting applications, and the cryptographic boundary so that all the logical and physical layers between the logical object and the cryptographic boundary are clearly defined; and - The interactions of the logical object of the module with the operating system and other supporting applications resident within the cryptographic boundary. Figure 1 - logical block diagram <sup>&</sup>lt;sup>1</sup> KEXT stands for Kernel Extension. A kernel extension (or kext) is a bundle that performs low-level tasks. KEXTs run in kernel space, which gives them elevated privileges and the ability to perform tasks that user-space apps can't. #### 3. Cryptographic Module Interfaces As a software-only module, the module does not have physical ports. For the purpose of the FIPS 140-3 validation, the physical ports are interpreted to be the physical ports of the hardware platform on which it runs. The underlying logical interfaces of the module are the C language Kernel Interfaces (KPIs). In detail these interfaces are described in (Table 6): | Logical Interface | Data that passes over port/interface | |-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Data Input | Data inputs are provided in the variables passed in the KPI and callable service invocations, generally through caller-supplied buffers | | Data Output | Data outputs are provided in the variables passed in the KPI and callable service invocations, generally through caller-supplied buffers | | Control Input | Control inputs which control the mode of the module are provided through dedicated parameters, namely the kernel module plist whose information is supplied to the module by the kernel module loader. | | Control Output | Not Applicable | | Status Output | Status output is provided in return codes and through messages. Documentation for each KPI lists possible return codes. A complete list of all return codes returned by the C language KPIs within the module is provided in the header files and the KPI documentation. Messages are also documented in the KPI documentation. | Table 6 - Interfaces The module is optimized for library use within the Device OS kernel space and does not contain any terminating assertions or exceptions. It is implemented as a Device OS dynamically loadable library. The dynamically loadable library is loaded into the Device OS kernel and its cryptographic functions are made available to Device OS kernel services only. Any internal error detected by the module is reflected back to the caller with an appropriate return code. The calling Device OS kernel service must examine the return code and act accordingly. The module communicates any error status synchronously through the use of its documented return codes, thus indicating the module's status. It is the responsibility of the caller to handle exceptional conditions in a FIPS 140-3 appropriate manner. Caller-induced or internal errors do not reveal any sensitive material to callers. Cryptographic bypass capability is not supported by the module. #### 4. Roles, services, and authentication The module supports a single instance of one authorized role: The Crypto Officer. No support is provided for multiple concurrent operators or a Maintenance Operator. FIPS 140-3 does not require an authentication mechanism for level 1 modules. Therefore, the module does not implement an authentication mechanism for Crypto Officer. The Crypto Officer role is authorized to access all services provided by the module (see Table 7 - Approved Services and Table 8 - Non-Approved Services below). The module implements a dedicated KPI function to indicate if a requested service utilizes an approved security function. For services listed in Table 7 - Approved Services, the indicator function returns 1. For services listed in Table 8 - Non-Approved Services, the indicator function returns 0. The table below lists all approved services that can be used in the approved mode of operation. The abbreviations of the access rights to keys and SSPs have the following interpretation: **G** = **Generate**: The module generates or derives the SSP. **R** = **Read**: The SSP is read from the module (e.g., the SSP is output). **W** = **Write**: The SSP is updated, imported, or written to the module. **E** = **Execute**: The module uses the SSP in performing a cryptographic operation. **Z** = **Zeroise**: The module zeroises the SSP. N/A= The service does not access any SSP during its operation | Service | Description and Input/<br>Output | Approved Security<br>Functions | Keys and/or<br>SSPs | Roles | Access<br>rights to<br>Keys<br>and/or<br>SSPs | Indicator | |--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------|-------|-----------------------------------------------|-----------| | AES Encryption /<br>Decryption | Input for Encryption: key and plain text Output for Encryption: cipher text Input for Decryption: key and cipher text Output for Decryption: plain text | AES-CBC, AES-ECB,<br>AES-CFB128, AES-<br>CFB8, AES-OFB, AES-<br>CTR, AES-XTS, AES-<br>GCM, AES-CCM | AES key | СО | W, E | 1 | | AES Key<br>Wrapping | Input: key-encryption key and key to be wrapped Output: wrapped key | AES-KW | AES key-<br>encryption<br>key | СО | W, E | 1 | | Secure Hash<br>Generation | Input:<br>message<br>Output:<br>Hash value | Message Digest:<br>SHA-1, SHA-224,<br>SHA-256, SHA-384,<br>SHA-512,<br>SHA-512/256 | none | СО | N/A | 1 | | Service | Description and Input/<br>Output | Approved Security<br>Functions | Keys and/or<br>SSPs | Roles | Access<br>rights to<br>Keys<br>and/or<br>SSPs | Indicator | |------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------|-------|-----------------------------------------------|-----------| | HMAC<br>generation and<br>verification | Input for Generation: HMAC key and message Output: keyed Hash value Input for Verification: HMAC key, message, and keyed hash value Output: True or False | HMAC Keyed Hash | HMAC key | СО | W, E | 1 | | RSA signature<br>generation and<br>verification | Input for Signature Generation: RSA private key and message Output: signature Input for Signature Verification: RSA public key and signature Output: True or False | RSA Signature<br>Generation,<br>RSA Signature<br>Verification | RSA key pair | СО | W, E | 1 | | ECDSA<br>signature<br>generation and<br>verification | Input for Signature Generation: ECDSA private key and message Output: signature Input for Signature Verification: ECDSA public key and signature Output: True or False | ECDSA Signature<br>Generation,<br>ECDSA Signature<br>Verification | ECDSA key<br>pair | СО | W, E | 1 | | Random number<br>generation | Input: Entropy input string, nonce Output: Random numbers | HMAC_DRBG,<br>CTR_DRBG | Entropy Input<br>String, Seed,<br>V value and<br>Key | со | G, R, E, Z | 1 | | ECDSA key pair<br>generation | Input: curve size Output: generated private and public key pair | Key Pair Generation:<br>ECDSA KeyGen | ECDSA key<br>pair | СО | G, R, E | 1 | | Release all<br>resources of<br>symmetric<br>crypto function<br>context | Input: handler of symmetric crypto function context Output: zeroised and released memory space | N/A | AES key | СО | Z | 1 | | Service | Description and Input/<br>Output | Approved Security<br>Functions | Keys and/or<br>SSPs | Roles | Access rights to Keys and/or SSPs | Indicator | |----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------|-----------------------------------|-----------| | Release all<br>resources of<br>hash context | Input: handler of hash context Output: released memory space | N/A | HMAC key | СО | Z | 1 | | Release of all<br>resources of<br>asymmetric<br>crypto function<br>context | Input: handler of asymmetric crypto function context Output: zeroised and released memory space | N/A | RSA/ECDSA<br>keys | СО | Z | 1 | | Self-test | Input:<br>power<br>Output:<br>Pass/Fail status | AES-CCM, AES-GCM,<br>AES-XTS, AES-CBC,<br>AES-ECB,<br>HMAC_DRBG,<br>CTR_DRBG, HMAC,<br>RSA Signature<br>Generation, RSA<br>Signature Verification,<br>ECDSA Signature<br>Generation, ECDSA<br>Signature Verification | Software<br>integrity key | СО | ш | 1 | | Show Status | Input: KPI invocation Output: Operational/Error status | N/A | None | СО | N/A | None | | Show Module<br>Info | Input: KPI invocation Output: Module Base Name + Module Version Number | N/A | None | СО | N/A | None | Table 7 - Approved Services The table below lists all non-Approved services that can only be used in the non-Approved mode of operation. | Service | Description and Input/Output | Algorithms Accessed | Role | Indicator | |------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------|-----------| | Triple-DES encryption / decryption | Module does not meet FIPS 140-3 IG C.G because it does not have a control over the number of blocks to be encrypted under the same Triple-DES key. Input for Encryption: key and plaintext data Output for Encryption: cipher text Input for Decryption: key and ciphertext data Output for Decryption: plaintext data | Triple-DES | СО | 0 | | RSA Key Wrapping | The CAST does not perform the full KTS, only the raw RSA encrypt/decrypt. Input (RSA encrypt): RSA public key and key to be wrapped Output(RSA encrypt): wrapped key Input (RSA decrypt): RSA private key and key to be unwrapped Output(RSA decrypt): plaintext key | RSA encrypt/decrypt | со | 0 | | RSA Signature<br>Generation | PKCS#1 v1.5 and PSS Signature Generation Key Size < 2048 Input: private key and message Output: signature | RSA Signature Generation | со | 0 | | RSA Signature<br>Verification | PKCS#1 v1.5 and PSS Signature Verification Key Size < 1024 Input: RSA public key and signature Output: True or False | RSA Signature Verification | со | 0 | | ECDSA PKG and PKV | ECDSA PKG and PKV using curve P-192 Input for PKG: curve size (P-192) Output for PKG: generated (P-192) key pair Input for PKV: public key Output for PKG: True or False | ECDSA Key Generation,<br>ECDSA Key Validation | со | 0 | | ECDSA Signature<br>Generation | Input: (P-192) private key and message Output: signature | ECDSA Signature Generation | со | 0 | | Service | Description and Input/Output | Algorithms Accessed | Role | Indicator | |----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------|-----------| | ECDSA Signature<br>Verification | Input: (P-192) public key and signature Output: True or False | ECDSA Signature Verification | СО | 0 | | ECDSA Key Pair<br>Generation for<br>compact point<br>representation of<br>points | Key Pair Generation for compact point representation of points Input: key size Output: generated private and public key pair | ECDSA Key Generation | СО | 0 | | Ed25519 Key<br>Generation | Ed25519 Key Generation Input: none Output: generated Curve25519 private and public key pair | Ed25519 Key Generation | со | 0 | | Ed25519 Signature<br>Generation | EdDSA Signature Generation over Curve25519 Input: (Curve25519) private key and message Output: signature | Ed25519 Sig Generation | со | 0 | | Ed25519 Signature<br>Verification | EdDSA Signature Verification over Curve25519 Input: (Curve25519) public key and signature Output: True or False | Ed25519 Sig Verification | со | 0 | | Ed25519 Key<br>Agreement | Ed25519 Key Agreement Input: peer public key and own private key Output: shared secret | Ed25519 Key Agreement | СО | 0 | | ECIES | Elliptic Curve encrypt/decrypt Input for encryption: peer public key, plaintext Output for encryption: public key, ciphertext (with authentication tag) Input for decryption: authentication tag, ciphertext, own private key Output for decryption: plaintext message or error | ECIES Encrypt/Decrypt | со | 0 | | ANSI X9.63 Key<br>Derivation | SHA-1 hash-based key derivation function Input: key derivation key Output: derived key | SHA-1 | со | 0 | | Service | Description and Input/Output | Algorithms Accessed | Role | Indicator | |-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|-----------| | SP800-56C Key<br>Derivation (HKDF) | SHA-256 hash-based key derivation function<br>Input:<br>key derivation key<br>Output:<br>derived key | SHA-256 | СО | 0 | | RFC 6637 Key<br>Derivation | SHA hash based key derivation function Input: key derivation key Output: derived key | SHA-256, SHA-512, AES-128,<br>AES-256 | со | 0 | | OMAC Message<br>Authentication Code<br>Generation and<br>Verification | One-Key CBC MAC using 128-bit key Input: message and key Output: message authentication code | OMAC | со | 0 | | Message digest generation. | Input: message Output: message digest | MD2, MD4, MD5, RIPEMD | СО | 0 | | (other) symmetric<br>encryption /<br>decryption | They are non-approved encryption algorithms. Input for Encryption: key and plaintext data Output for Encryption: ciphertext data Input for Decryption: key and ciphertext data Output for Decryption: plaintext data | Blowfish, CAST5, DES, RC2,<br>RC4 | со | 0 | Table 8 - Non-Approved Services #### 5. Software/Firmware security #### 5.1. Integrity Techniques The Apple corecrypto Module v11.1 [Apple silicon, Kernel, Software], which is made up of a single component, is provided in the form of binary executable code. A software integrity test is performed on the runtime image of the module. The HMAC-SHA256 implemented in the module is used as an approved algorithm for the integrity test. If the test fails, the module enters an error state where no cryptographic services are provided, and data output is prohibited i.e., the module is not operational. #### 5.2. On-Demand Integrity Test Integrity tests are performed as part of the Pre-Operational Self-Tests. It is automatically executed at power-on. It can also be invoked by self-test service or powering-off and reloading the module. ## 6. Operational Environment ### 6.1. Applicability The Apple corecrypto Module v11.1 [Apple silicon, Kernel, Software] operates in a modifiable operational environment per FIPS 140-3 level 1 specifications. The module is supplied as part of Device OS, a commercially available general-purpose operating system executing on the computing platforms specified in section 2. # 7. Physical Security The FIPS 140-3 physical security requirements do not apply to the Apple corecrypto Module v11.1 [Apple silicon, Kernel, Software], since it is a software module. ## 8. Non-invasive Security Currently, the non-invasive security is not required by FIPS 140-3 (see NIST SP 800-140F). The requirements of this area are not applicable to the module. ## 9. Sensitive Security Parameter Management The following table summarizes the keys and Sensitive Security Parameters (SSPs) that are used by the cryptographic services implemented in the module: | Key/SSP<br>Name /<br>Type | Strength | Security<br>Function and<br>Cert. Number | Generat-<br>ion | Import<br>/<br>Export | Establi<br>-<br>shme<br>nt | Storage | Zeroisation | Use and related keys | |----------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------| | AES Keys | 128 to<br>256 bits | AES Encryption/<br>Decryption<br>A943 (vng_asm),<br>A945 (c_asm),<br>A946 (asm_arm) | N/A | Import<br>from<br>calling<br>applicati<br>on<br>No<br>Export | N/A | N/A: The<br>module does<br>not provide<br>persistent<br>keys/SSPs<br>storage. | Automatic<br>zeroisation<br>when structure<br>is deallocated<br>or when the<br>system is<br>powered down | Symmetric<br>Encryption<br>and<br>Decryption | | AES Key-<br>encryption<br>Keys | 128 to<br>256 bits | AES Key Wrapping<br>A945 (c_asm) | N/A | Import<br>from<br>calling<br>applicati<br>on<br>No<br>Export | N/A | N/A: The<br>module does<br>not provide<br>persistent<br>keys/SSPs<br>storage. | Automatic<br>zeroisation<br>when structure<br>is deallocated<br>or when the<br>system is<br>powered down | Key<br>Transport | | HMAC Keys | Min: 112<br>bits | HMAC generation<br>and verification<br>A942 (vng_ltc),<br>A944 (c_ltc),<br>A947 (vng_neon) | N/A | Import<br>from<br>calling<br>applicati<br>on<br>No<br>Export | N/A | N/A: The<br>module does<br>not provide<br>persistent<br>keys/SSPs<br>storage. | Automatic<br>zeroisation<br>when structure<br>is deallocated<br>or when the<br>system is<br>powered down | Keyed<br>Hash | | ECDSA Key<br>Pair<br>(including<br>intermediate<br>keygen<br>values) | 112 to 256 bits | ECDSA signature generation and verification A942 (vng_ltc) | The key pairs are generated conformant to SP800-133 r2 (CKG) using FIPS186-4 Key Generation method, and the random value used in the key generation is generated using SP800-90A DRBG | Import<br>and<br>Export<br>to<br>calling<br>applicati<br>on.<br>Interme<br>diate<br>keygen<br>values<br>are not<br>output. | N/A | N/A: The<br>module does<br>not provide<br>persistent<br>keys/SSPs<br>storage. | Automatic zeroisation when structure is deallocated or when the system is powered down. Intermediate keygen values are zeroized before the module returns from the key generation function. | Digital<br>Signature | | RSA Key Pair | 112 to 150<br>bits | RSA signature<br>generation and<br>verification<br>A942 (vng_ltc) | N/A | Import<br>from<br>calling<br>applicati<br>on<br>No<br>Export.<br>Interme<br>diate<br>keygen<br>values<br>are not<br>output. | N/A | N/A: The<br>module does<br>not provide<br>persistent<br>keys/SSPs<br>storage. | Automatic zeroisation when structure is deallocated or when the system is powered down. Intermediate keygen values are zeroized before the module returns from the key generation function. | Digital<br>Signature | |-----------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------| | Entropy Input<br>String | 256 bits | Random Number<br>Generation<br>ENT (P) and ENT<br>(NP) | Obtained<br>from two<br>entropy<br>sources | Import<br>from OS<br>No<br>Export | N/A | N/A: The<br>module does<br>not provide<br>persistent<br>keys/SSPs<br>storage. | Automatic<br>zeroisation<br>when structure<br>is deallocated<br>or when the<br>system is<br>powered down | Random<br>Number<br>Generation | | DRBG Seed,<br>internal<br>state: V value<br>and Key | 256 bits | Random Number<br>Generation<br>A942 (vng_ltc)<br>A943 (vng_asm)<br>A944 (c_ltc)<br>A945 (c_asm) | Derived<br>from<br>entropy<br>input string<br>as defined<br>by<br>SP800-90A | N/A | N/A | N/A: The<br>module does<br>not provide<br>persistent<br>keys/SSPs<br>storage. | Automatic<br>zeroisation<br>when structure<br>is deallocated<br>or when the<br>system is<br>powered down | Random<br>Number<br>Generation | | Software<br>integrity key | N/A | HMAC SHA-256<br>A942 (vng_ltc),<br>A944 (c_ltc),<br>A947 (vng_neon) | N/A | N/A | N/A | Stored in the<br>module<br>binary<br>computed<br>during build. | N/A | Self-Test | Table 9 - SSPs #### 9.1. Random Number Generation A NIST approved deterministic random bit generator based on a block cipher as specified in NIST [SP 800-90A] is used. The default Approved DRBG used for random number generation is a CTR\_DRBG using AES-256 with derivation function and without prediction resistance. The random numbers used for key generation are all generated by CTR\_DRBG in this module. Per section 10.2.1.1 of [SP 800-90A], the internal state of CTR\_DRBG is the value V and Key. The module also employs a HMAC\_DRBG for random number generation. The HMAC\_DRBG is only used at the early boot time of Device OS kernel for memory randomization. The output of HMAC\_DRBG is not used for key generation. Per section 10.1.2.1 of [SP 800-90A], the internal state of HMAC\_DRBG is the value V and Key . The deterministic random bit generators are seeded by "read\_random". The read\_random is the Kernel Space interface. Two entropy sources (one non-physical entropy source and one physical entropy source) residing within the TOEPP provide the random bits. The output of entropy pool provides 256-bits of entropy to seed and reseed SP800-90B DRBG during initialization (seed) and reseeding (reseed). | Entropy Source | Minimum number of bits of entropy | Details | |-----------------------------------------|-----------------------------------|------------------------------------------------------------------------------| | NIST SP800-90B compliant<br>ENT (P) and | 256 | The seed is provided by post-processed entropy data from two entropy sources | | NIST SP800-90B compliant<br>ENT (NP) | | | Table 10 - Non-Deterministic Random Number Generation Specification #### 9.2. Key / SSP Generation The module generates Keys and SSPs in accordance with FIPS 140-3 IG D.H. The cryptographic module performs Cryptographic Key Generation (CKG) for asymmetric keys as per [SP800-133r2] (vendor affirmed), compliant with [FIPS186-4], and using DRBG compliant with [SP800-90A]. A seed (i.e., the random value) used in asymmetric key generation is obtained from [SP800-90A] DRBG. The key generation service for ECDSA as well as the [SP 800-90A] DRBG have been ACVT tested with algorithm certificates found in Table 4. #### 9.3. Keys/SSPs Establishment The module provides the following key/SSP establishment services in the Approved mode: AES-Key Wrapping The module implements a Key Transport Scheme (KTS) using AES-KW compliant to [SP800-38F]. The SSP establishment methodology provides between 128 and 256 bits of encryption strength. #### 9.4. Keys/SSPs Import/Export All keys and SSPs that are entered from, or output to module, are entered from or output to the invoking application running on the same device. Keys/ SSPs entered into the module are electronically entered in plain text form. Keys/SSPs are output from the module in plain text form if required by the calling application. The module allows the output of plaintext CSPs (i.e., ECDSA Key Pair). To prevent inadvertent output of sensitive information, the module performs the following two independent internal actions: - 1. The module will internally request the random number generation service to obtain the random numbers and verify that the service completed without errors. - 2. Once the keys are generated the module will perform the pairwise consistency test and verify that the test is completed without errors. Only after successful completion of both these actions, are the generated CSPs output via the KPI output parameter in plaintext. ## 9.5. Keys/SSPs Storage The Apple corecrypto Module v11.1 [Apple silicon, Kernel, Software] stores ephemeral keys/SSPs in memory only. They are received for use or generated by the module only at the command of the calling application. The module does not provide persistent keys/SSPs storage. The module protects all keys/SSPs through the memory separation and protection mechanisms provided by the operating system. No process other than the module itself can access the keys/SSPs in its process' memory. ## 9.6. Keys/SSPs Zeroization Keys and SSPs are zeroised when the appropriate context object is destroyed or when the system is powered down. Input and output interfaces are inhibited while zeroisation is performed. #### 10. Self-tests This section specifies the pre-operational and conditional self-tests performed by the module. The pre-operational and conditional self-tests ensure that the module is not corrupted and that the cryptographic algorithms work as expected. The module does not implement a bypass mode nor security functions critical to the secure operation of the cryptographic module and thus, does not implement neither a pre-operational bypass test nor pre-operational critical functions test. While the module is executing the self-tests, services are not available, and input and output are inhibited. If the test fails either pre-operational and conditional self-tests, the module reports an error message indicating the cause of the failure and enters the Error State. See section 10.3. The module permits operators to initiate the pre-operational or conditional self-tests on demand for periodic testing of the module by rebooting the system (i.e., power-cycling). #### 10.1. Pre-operational Software Integrity Test The module performs a pre-operational software integrity automatically when the module is loaded into memory (i.e., at power on) before the module transitions to the operational state. A software integrity test is performed on the runtime image of the Apple corecrypto Module v11.1 [Apple silicon, Kernel, Software] with HMAC-SHA256 used to perform the approved integrity technique. Prior to using HMAC-SHA-256, a Conditional Cryptographic Algorithm Self-Tests (CAST) is performed. If the CAST on the HMAC-SHA-256 is successful, The HMAC value of the runtime image is recalculated and compared with the stored HMAC value pre-computed at compilation time. #### 10.2. Conditional Self-Tests Conditional self-tests are be performed by a cryptographic module when the conditions specified for the following tests occur: Cryptographic Algorithm Self-Test, Pair-Wise Consistency Test. The module does not implement any functions requiring a Software/Firmware Load Test, Manual Entry Test, Conditional Bypass Test nor Conditional Critical Functions Test; therefore, these tests are not performed by the module. The following sub-sections describe the conditional tests supported by the Apple corecrypto Module v11.1 [Apple silicon, Kernel, Software]. ## 10.2.1. Conditional Cryptographic Algorithm Self-Tests In addition to the pre-operational software integrity test described in Section 10.1, the Apple corecrypto Module v11.1 [Apple silicon, Kernel, Software] also runs the Conditional Cryptographic Algorithm Self-Tests (CAST) for all cryptographic functions of each approved cryptographic algorithm implemented by the module during power-up as well. All CASTs are performed prior to the first operational use of the cryptographic algorithm. These tests are detailed in the table below. | Cryptographic Algorithm | Notes | |--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------| | HMAC-SHA256 | Used for module integrity test | | AES implementations selected by the module for the corresponding environment AES-CCM, AES-GCM, AES-XTS, AES-CBC, AES-ECB using 128-bit key | Separate encryption / decryption operations are performed | | CTR_DRBG and HMAC_DRBG | Each DRBG mode tested separately | | HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-512 | KAT | | SHA-1, SHA-256, SHA-512 | Covered by high level HMAC self-test | | RSA, 2048-bit modulus with SHA-256 | Separate Signature generation/ verification KAT are performed | | Cryptographic Algorithm | Notes | |---------------------------------|---------------------------------------------------------------| | ECDSA, P-256 curve with SHA-256 | Separate Signature generation/ verification KAT are performed | Table 11 - Pre-Operational Cryptographic Algorithm Self-Tests #### 10.2.2. Conditional Pairwise Consistency Test The Apple corecrypto Module v11.1 [Apple silicon, Kernel, Software] does generate asymmetric ECDSA keys and performs the required ECDSA pair-wise consistency tests on the newly generated key pairs. #### 10.3. Error Handling If any of the self-tests described in Sections 10.1, 10.2.1 or 10.2.2 fail, the module reports the cause of the error and enters an error state. In the Error State, no cryptographic services are provided, and data output is prohibited. The only method to recover from the error state is to power cycle the device which results in the module being reloaded into memory and reperforming the pre-operational software integrity test and the Conditional CASTs. The module will only enter into the operational state after successfully passing the pre-operational software integrity test and the Conditional CASTs. The table below shows the different causes that lead to the Error State and the status indicators reported. | Cause of Error | Error Indicator | |------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------| | Failed Pre-operational Software Integrity Test | print statement "FAILED: fipspost_post_integrity" to stdout | | Failed Conditional CAST | print statement "FAILED: <event>" to stdout (<event> refers to any of the cryptographic functions listed in Table 11.)</event></event> | | Failed Conditional PCT | Error code "CCEC_GENERATE_KEY_CONSISTENCY" returned | Table 12 - Error Indicators #### 11. Life-cycle assurance #### 11.1. Delivery and Operation The module is built into iOS 14, iPadOS 14, watchOS 7, tvOS 14, TXFW 11 and macOS Big Sur 11.1 and delivered with Device OS. There is no standalone delivery of the module as a software library. The vendor's internal development process guarantees that the correct version of module goes with its intended Device OS version. For additional assurance, the module is digitally signed by vendor, and it is verified during the integration into Device OS. This digital signature-based integrity protection during the delivery/integration process is not to be confused with the HMAC-256 based integrity check performed by the module itself as part of its pre-operational self-tests. #### 11.2. Crypto Officer Guidance The Approved mode of operation is configured in the system by default and can only be transitioned into the non-Approved mode by calling one of the non-Approved services listed in Table 8 - Non-Approved Services. If the device starts up successfully, then the module has passed all self-tests and is operating in the Approved mode. A Crypto Officer Role Guide is provided by Apple which offers IT System Administrators with the necessary technical information to ensure FIPS 140-3 Compliance of the deployed systems. This guide walks the reader through the system's assertion of cryptographic module integrity and the steps necessary if module integrity requires remediation. A link to the Guide can be found on the Product security, validations, and guidance page found in [Device OS]. The Crypto Officer shall consider the following requirements and restrictions when using the module - o AES-GCM IV is constructed in compliance with IG C.H scenario 1. The GCM IV generation follows RFC 4106 and shall only be used for the IPsec protocol version 3. When the IV in RFC 4106 exhausts the maximum number of possible values for a given security association, either party to the security association that encounters this condition triggers a rekeying with IKEv2 to establish a new encryption key for the security association. The module uses RFC 7296 compliant IKEv2 to establish the shared secret SKEYSEED from which the AES-GCM encryption keys are derived. In case the module's power is lost and then restored, the key used for the AES GCM encryption/decryption shall be re-distributed. This condition is not enforced by the module. - o AES-XTS mode is only approved for hardware storage applications. The length of the AES-XTS data unit does not exceed 2<sup>20</sup> blocks. The module checks explicitly that Key\_1 ≠ Key\_2 before using the keys in the XTS-Algorithm to process data with them compliant with IG C.I. # 12. Mitigation of other attacks The module does not claim mitigation of other attacks. #### A. Glossary and Abbreviations AES Advanced Encryption Standard CAVP Cryptographic Algorithm Validation Program CAST Cryptographic Algorithm Self-Test CAST5 A symmetric-key 64-bit block cipher with 128-bit key CBC Cipher Block Chaining CCM Counter with Cipher Block Chaining-Message Authentication Code CFB Cipher Feedback CMVP Cryptographic Module Validation Program CSP Critical Security Parameter CTR Counter Mode DRBG Deterministic Random Bit Generator ECB Electronic Code Book ENT NIST SP 800-90B Compliant Entropy Source FIPS Federal Information Processing Standards Publication GCM Galois Counter Mode HMAC Hash Message Authentication Code KAT Known Answer Test KDF Key Derivation Function KEXT Kernel Extension KW AES Key Wrap MAC Message Authentication Code KPI Kernel Programming Interface NIST National Institute of Science and Technology OFB Output Feedback PAA Processor Algorithm Acceleration PKG Key-Pair Generation PKV Public Key Validation PSS Probabilistic Signature Scheme RSA Rivest, Shamir, Addleman SHA Secure Hash Algorithm SHS Secure Hash Standard TOEPP Tested Operational Environment Physical Perimeter XTS XEX-based Tweaked-codebook mode with cipher text Stealing © 2022 Apple Inc., All rights reserved. This document may be reproduced and distributed only in its original entirely without revision. #### B. References FIPS140-3 FIPS PUB 140-3 - Security Requirements for Cryptographic Modules March 2019 https://doi.org/10.6028/NIST.FIPS.140-3 SP 800-140x CMVP FIPS 140-3 Related Reference https://csrc.nist.gov/Projects/cryptographic-module-validation-program/fips-140-3standards FIPS140-3 IG Implementation Guidance for FIPS PUB 140-3 and the Cryptographic Module Validation Program September 2020 https://csrc.nist.gov/Projects/cryptographic-module-validation-program/fips-140-3-igannouncements FIPS140-3\_MM CMVP FIPS 140-3 Draft Management Manual https://csrc.nist.gov/CSRC/media/Projects/cryptographic-module-validation-program/ documents/fips%20140-3/Draft%20FIPS-140-3-CMVP%20Management%20Manual%2009-18-2020.pdf SP 800-140 FIPS 140-3 Derived Test Requirements (DTR) https://csrc.nist.gov/publications/detail/sp/800-140/final SP 800-140A **CMVP** Documentation Requirements https://csrc.nist.gov/publications/detail/sp/800-140a/final SP 800-140B **CMVP Security Policy Requirements** https://csrc.nist.gov/publications/detail/sp/800-140b/final SP 800-140C **CMVP Approved Security Functions** https://csrc.nist.gov/publications/detail/sp/800-140c/final SP 800-140D CMVP Approved Sensitive Security Parameter Generation and Establishment Methods https://csrc.nist.gov/publications/detail/sp/800-140d/final SP 800-140E CMVP Approved Authentication Mechanisms <a href="https://csrc.nist.gov/publications/">https://csrc.nist.gov/publications/</a> detail/sp/800-140e/final SP 800-140F CMVP Approved Non-Invasive Attack Mitigation Test Metrics https://csrc.nist.gov/ publications/detail/sp/800-140f/final FIPS180-4 **Secure Hash Standard (SHS)** http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf FIPS186-4 **Digital Signature Standard (DSS)** July 2013 http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf FIPS197 **Advanced Encryption Standard** November 2001 http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf FIPS198-1 The Keyed Hash Message Authentication Code (HMAC) July 2008 © 2022 Apple Inc., All rights reserved. http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1\_final.pdf PKCS#1 Public Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1 February 2003 http://www.ietf.org/rfc/rfc3447.txt RFC3394 Advanced Encryption Standard (AES) Key Wrap Algorithm September 2002 http://www.ietf.org/rfc/rfc3394.txt RFC5649 Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm September 2009 http://www.ietf.org/rfc/rfc5649.txt SP800-38A NIST Special Publication 800-38A - Recommendation for Block Cipher Modes of **Operation Methods and Techniques** December 2001 http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf SP800-38C NIST Special Publication 800-38C - Recommendation for Block Cipher Modes of Operation: the CCM Mode for Authentication and Confidentiality May 2004 http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf SP800-38D NIST Special Publication 800-38D - Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC November 2007 http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf SP800-38E NIST Special Publication 800-38E - Recommendation for Block Cipher Modes of Operation: The XTS AES Mode for Confidentiality on Storage Devices January 2010 http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf SP800-38F NIST Special Publication 800-38F - Recommendation for Block Cipher Modes of **Operation: Methods for Key Wrapping** December 2012 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf SP800-56Cr2 Recommendation for Key-Derivation Methods in Key-Establishment Schemes August 2020 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2.pdf SP800-57 NIST Special Publication 800-57 Part 1 Revision 5 - Recommendation for Key **Management Part 1: General** May 2020 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf SP800-67 **NIST Special Publication 800-67 Revision 1 - Recommendation for the Triple** **Data Encryption Algorithm (TDEA) Block Cipher** January 2012 http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf SP800-90Ar1 NIST Special Publication 800-90A - Revision 1 - Recommendation for Random Number Generation Using Deterministic Random Bit Generators June 2015 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf SP800-90B NIST Special Publication 800-90B - Recommendation for the Entropy Sources **Used for Random Bit Generation** January 2018 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf SP800-108 NIST Special Publication 800-108 - Recommendation for Key Derivation Using **Pseudorandom Functions (Revised)** October 2009 http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf SP800-131Ar2 Transitioning the Use of Cryptographic Algorithms and Key Lengths March 2019 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf SP800-133r2 **Recommendation for Cryptographic Key Generation** June 2020 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-133r2.pdf SP800-135 NIST Special Publication 800-135 Revision 1 - Recommendation for Existing **Application-Specific Key Derivation Functions** December 2011 http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-135r1.pdf Developer Device OS Technical Overview https://developer.apple.com SEC Apple Platform Security (February 2021) https://support.apple.com/guide/security/welcome/web https://manuals.info.apple.com/MANUALS/1000/MA1902/en\_US/apple-platform- security-guide.pdf Device OS Product security certifications for Device OS macOS: https://support.apple.com/HT201159 T2: https://support.apple.com/HT208675 iOS: https://support.apple.com/HT202739 iPadOS: <a href="https://support.apple.com/HT211006">https://support.apple.com/HT211006</a> watchOS: <a href="https://support.apple.com/HT208390">https://support.apple.com/HT208390</a> tvOS: https://support.apple.com/HT208389