Q)

- The Portland Group

—

i
(

While every precaution has been taken in the preparation of this document, The Portland Group® (PGI®), a wholly-owned subsidiary of STMicroelectronics, Inc., makes no
warranty for the use of its products and assumes no responsibility for any errors that may appear, or for damages resulting from the use of the information contained herein.
The Portland Group retains the right to make changes to this information at any time, without notice. The software described in this document is distributed under license from
STMicroelectronics and/or The Portland Group and may be used or copied only in accordance with the terms of the license agreement ("EULA").

PGI Workstation, PGI Server, PGI Accelerator, PGF95, PGF90, PGFORTRAN, and PGI Unified Binary are trademarks; and PGI, PGHPE, PGF77, PGCC, PGC++, PGI Visual Fortran,
PVE PGI CDK, Cluster Development Kit, PGPROE, PGDBG, and The Portland Group are registered trademarks of The Portland Group Incorporated.

No part of this document may be reproduced or transmitted in any form or by any means, for any purpose other than the purchaser's or the end user's personal use without the
express written permission of STMicroelectronics and/or The Portland Group.

PGI® User’'s Guide
Copyright © 1998 — 2000 The Portland Group, Inc.
Copyright © 2000 — 2010 STMicroelectronics, Inc.
All rights reserved.

Printed in the United States of America
First Printing: Release 1.7, Jun 1998
Second Printing: Release 3.0, Jan 1999
Third Printing: Release 3.1, Sep 1999
Fourth Printing: Release 3.2, Sep 2000
Fifth Printing: Release 4.0, May 2002
Sixth Printing: Release 5.0, Jun 2003
Seventh Printing: Release 5.1, Nov 2003
Eight Printing: Release 5.2, Jun 2004
Ninth Printing: Release 6.0, Mar 2005
Tenth Printing: Release 6.1, Dec 2005
Eleventh Printing: Release 6.2, August 2006
Twelfth printing: Release 7.0, December, 2006
Thirteenth printing: Release 7.1, October, 2007
Fourteenth printing: Release 7.2, May, 2008
Fourteenth printing: Release 8.0, November, 2008
Fifteenth printing: Release 9.0, June, 2009
Sixteenth printing: Release 2010, November, 2009
Seventeenth printing: Release 2010, 10.2, February, 2010
Eighteenth printing: Release 2010, 10.3, March, 2010
Nineteenth printing: Release 2010, 10.4, April, 2010
Twentieth printing: Release 2010, 10.5, May, 2010
Thirteenth printing: Release 2010, 10.6, June, 2010

Technical support: trs@pgroup.com
Sales: sales@pgroup.com
Web: www.pgroup.com

ID: 101521351

Contents

PLEEACE ..o xxi
AUAIENCE DESCIIPLONvviiieiieiie ettt sttt ettt eneeenee e Xxi
Compatibility and Conformance to Standardscocvviiiiiiiiininiiiicc Xxi
OFZANIZALIONeveieiiiiii ettt e e e e e e e XXii
Hardware and Software CONSELAINLSccveruieriiiieriieie ettt XXiv
CONVEILIONSeeeiiiiiieeiiiit ettt et ettt e e sttt e e et e e e e st et e e st e e e et XXiv
Related PUDLCALONSooviiiiiiiiiiic et e XXVi

1. GettiNG STATTEMc.oviiiiiiiicc s 1
OVEIVIEW ..eeiiiiiiiiiiiet ettt e e ettt e e e sttt e e e s sttt e e s e s st reeeeeeens 1
Invoking the Command-level PGI COMPILETSccoooviiiriiniriiiiiiiiiccccc e 2

CommANd-HNE SYNLAXc.oovviriiiiiiiiiiiiiiii e 2
COMMANA-TINE OPLONSevveiieeiieiieitieie ettt sttt ebe e e 3
Fortran Directives and C/C++ Pragmascoocveiiriiriirieniniiinieieeenese e 3
Filename CONVEMHONSooiuriiiiiiieiiieitie ettt ettt ettt e b e 4
INPUL FILES ... 4
OUEPUL FILES ...ttt ettt et et et sreebeene s 6
Fortran, C, and C++ DAtad TYPEScvveriieriiiiiiiieie ettt ettt ettt enee st 7
Parallel Programming Using the PGI COMPIETSccoevviriiriiriiniiiiiiicicieeccse e 7
Running SMP Parallel Programsccccooviiiiiiiiiniiiiiiiiicicnectecsec e 8
Running Data Parallel HPF Programsccccocoviriiiiiiiiiinieniie et 8
Platform-specific CONSIAEIAONSc.eeviiiiiiiiiiiiie ettt era e e 0
Using the PGI Compilers 0N LINUXcc.oovviiieriiiieiieiieiesiieie et 9
Using the PGI Compilers on WINAOWSccoerieririiiiiiniiiiiieieeesese e, 10
PGI on the Windows DeSKLOPcc.ooviiiiiiiiiiiiieiecie e 12
Using the PGI Compilers 0n Mac OS Xcocveriiiiiiiiniiiiiiciicceece e 13
Site-specific Customization of the COMPIIETSccceeriiiiiiiieiiiie e 14
USING SIEIC FILESoovviiiiiiiiiiciiiii e 14
USING USET TC FAleScuviiiiiiiiiiiiiiiii it 14
Common Development TASKSccovuiiieriiiiiiieie et 15

2. Using Command Line OPtionscccoccoeviininininieicceseeees 17

Command Line Option OVEIVIEWccuerieriiiiiniiniiiiieiieittete ettt 17

Command-line OPtiONS SYNLAXoouveruiiriiieiiiieie et 17

Command-line SUDOPLONScc.coviriiiiiiiiiiii e 18
Command-line Conflicting OPONScoveruiriiriiiiiiiiiietere s 18

Help with Command-line OPtionSccooviiriiiiiiiiniiii e 18
Getting Started with Performanceccoooviiiiiiiiiiii e 19
Using —fast and —fastsse OPHONScoeruiriiiiiiiiiierieite et 20
Other Performance-related OPHONScccooeririiiiiiiiiiieee s 20
Targeting Multiple Systems - Using the -tp OPtioncoceeviiiiiriiiniiiiiiciceeeee 21
Frequently-used OPHONScc.oviiriiiiiiieieiie et 21
3. Optimizing & Parallelizing ... 23
Overview Of OPHMIZALONcoveitiiiiiiiitiiieete et 24
LOCAl OPUMIZALONc.vevviiiiniieiiciitee et 24
Global OPHMIZALONcoviiiiiiiiiiiiieit e 24

Loop Optimization: Unrolling, Vectorization, and Parallelizationc.cccooiiiiin, 24
Interprocedural Analysis (IPA) and OPHMIZAHONcovevveriereniriniiiiicieeeeee e 24
Function INHNINGc.ooviiiiiiiiiiii e 24
Profile-Feedback Optimization (PFO)cccovieriiiiiiiieie oo 25
Getting Started with OPtHMIZAONScocviriiiiiiiiieir e 25
Common Compiler Feedback Format (CCFF)ccooviiiiiriiiriiiieiicie e 27
Local and Global Optimization USING -0coevviriiriiiiiiieice e 27
Scalar SSE Code GeNerationcocoevverieriiiiiiieniieieneeie e 28
Loop Unrolling using —Munrollcc.cocuiiiiniiiiiiiiiiic s 29
Vectorization using —MVECEcccciiiiiiiiiiiiiiiiii 30
Vectorization SUD-OPHONSc..ccoviiiiiiiiiiiii e 30
Vectorization Example Using SSE/SSE2 INStIUCHONScccvevviviiriieniiniiniiciciicnecic e, 32
Auto-Parallelization using -MCONCULcocviiiiiiiiiiiiii et 35
Auto-parallelization SUD-OPHONScciriiiriiiiiiiiii e 35
Loops That Fail to Parallelizec..cocooiiiiiiiiiiiiiiii e 36
Processor-Specific Optimization & the Unified BIinarycocoooiviiiiiiiinininnces 38
Interprocedural Analysis and Optimization uSing —MiPac..covevvieriiiiniiiniiieee e 39
Building a Program Without IPA — Single Stepc.cccoeviiiiiiiiiiiiice 39
Building a Program Without IPA - Several Stepsccccevvieniiiiiiiieniiiiiiccccce, 40
Building a Program Without IPA Using Makecocooiiiiiiiniiiniiiiiciccccen 40
Building a Program with IPAcc.ooiiiiiiiiiii e 41
Building a Program with IPA - Single Stepcocooviriiiiiiiiiinic 41
Building a Program with IPA - Several Stepsc..cccovvviriiiiniiniiiiceec e 42
Building a Program with IPA Using Makec.cccocoviiiiiiiiiiiniiiiccciceccccee 42
QuEStIONS ADOUL TPAooiiiiiiiiii it 42
Profile-Feedback Optimization using —Mpfi/—MpPfococeviriiiiiiiiiiii e, 44
Default Optimization LEVELSccoveriiiiiiiiiiiiiiiiccee e 44
Local Optimization Using Directives and Pragmascocovivviiriininiinieniienienceicsee 45
Execution Timing and Instruction COUNLNGcovvviriiniiiiinieiiiicne e 45
Portability of Multi-Threaded Programs on LINUXcccooeririniniiiniiiiieeccee e 46
BDPGDING ... 46
JIDIUMA ..o et 47

PGI® User's Guide

4. Using Function INJining ..o 49
Invoking Function INHNINGccueeiiiiiiiiiiiiiieiie et 49
Using an Inline LiDIATYcccoooiiiiiiiiiiiii e 50
Creating an Inlne LIDTALYccoooiiiiiiiiiiiiiii et 51
Working with Inline LiDIATIesc.cooiiiiiiiiiiiiiiiee e 52
Updating Inline Libraries - Makefilescccocooviiiiiiiiiiiiiiic e 52
Error Detection during InHNINGcccooiiiiiiiiiiiiiiii e 53
T 11) [PSR P PP OPSPP 53
Restrictions on INHNINGoooviiiiiiiiiiiiiiii e 53
5. USING OPENMP ..ot 55
OPENMP OVEIVIEWeeeiiiiiieiiiiiie e ettt e ettt ettt e et e e et e e e sttt e e ettt e e ettt e e e s sntbeeeeannbreeas 55
OpenMP Shared-Memory Parallel Programming Modelccooivinininiiniiniiiiicenes 55
TELMINOLOZYvevveviviiesieti ettt ettt ettt ettt ettt ettt b bt ebe b sbese b b ese s s 56
OPENMP EXAMPIEoovviiiiiiiiiiiieciie ettt ettt e beestaeenbeesare s 57

TASK OVEIVIEWevveiienteeiee ettt ettt et ettt et nt e bt et st et e bt e e e 58
Fortran Parallelization DIiFECHVEScccuerieriiiiiiieieiiesiiete et 59
C/C++ Parallelization Pragmascccueruiiiiiiiaiiiiesiieie ettt 59
Directive and Pragma RECOZNILONcc.coiriiiiiiiiiiiieicec e 60
Directive and Pragma Summary Tablecoccocooiiiiiiiiiiiiiii 60
Directive and Pragma CLAUSESccueriiriiriiriiiiiiiiieiet et 62
Run-time LIDrary ROULNESc.eovrveuiiiiiiiietiieiciiee et e 05
Environment VAriablescooioiiiiiiiiiiiiiiie et 70
0. USING MPIcooiiiiiiiiii e 73
MPI OVEIVIEWeeiiieiiiiiiiiiiiiie ettt ettt e e e sttt e e e e s st eeeeeeeenaes 73
Compiling and Linking MPI APPliCAtIONScocvevviviiriiniiiiiiiciceceeeccee e 74
Debugging MPI APPIICALIONSovuviriiiiiiiiiiiiciie et 74
Profiling MPT APPIICAtONSc.veveriiiiiiiiiiiiiieiieeee e 75
Using MPICH-1 0n LINUXooooiiiiiiiiiiiiiiii i, 75
USing MPICH-2 0N LIUXcuvovitiiinietiiteieisie ettt sttt 76
USING MVAPICH ON LINUXvevvetitiienietieteieic ettt 76
Using HP-MPI 0n LINUXoooiiiiiiiiiiiiiiiiiii i 77
Using OpenMPI on LIUXcooooiiiiiiiiiiiiiii 77
Compiling using OPENMPIc.ooiiiiiiiiiiiiiiiee e 77
Generate MPI Profile DAtocoviiieriiiiiiieiece et 78
Using MSMPI 00 WINAOWScc.viiiiiiiiiiiiiiiiit ittt 78
MSMPI EQVIFONMENLEvvvviiiieiiiiiiiiieiiee e ettt e et e sttt e e e e s reeeeeees 78
Compiling USING MSMPIc.ooiiiiiiiiiiiii et 78
Generate MPI Profile DAtccoviiieriiiiiiieie et 78
Using OpenMPI on Mac OS Xoooiiiiiiiiiiiiiiiiiii 79
Compiling using OPENMPIooiiiiiiiiiiiiiiite e 79
Generate MPI Profile DAAcoooveeeeeeieie e e 79
Site-Specific CUSIOMIZAIONccveriieiieiieiieie ettt see e 79
Use Alternate MPICH INStAIIAONvuveeeeeeeeieiteteee e 79

Use Alternate MVAPICH Installationccocooviiiiiiiiiiiiiiiiiiiccccecee e 80

Vi

Use Alternate HPMPI INSEALALIONceeeiieeeieie e e e e e e e e 80

Use Alternate MSMPI Installationcc.cocooviiiiiiiiniiiiiicccce e 80

7. USING AN ACCELEIALOLcooovoiiiiiiiicie e 83
OVEIVIEW ..eeeiiiiiiiiie ettt ettt e e ettt e e e e s sttt e e e s e s ettt eeeessnneetnneeeas 83
COMPONEIILSovviiiiiiiiiiiiiiiii e 83
AVAHIADILILY ..o 84
User-directed Accelerator Programmingcoccoceevieriinienieniiniieniecneeneeee e 84
Features Not Covered or Implementedccooieiiiniiiniiniiiiiiee e 84
TErMINOLOZYc.veoviiiieiieie e 84
SYStEM REQUITEIMENLSevviutintiiiie ittt bbbttt 86
Supported Processors and GPUSccooiiiiiiiniiiiiiieiiciene e 86
Installation and LICENSINGc..coverueriiriiriiriiitiii et 86
REQUITEA FIlESc..oiiiiiiiiiiiiie e 86
Command Line FIagc.cooviiiiiiiiiiiiii e 87
EXECULION MOAELoovviiiiiiiiiiie e 87
HOSE FUNCHONS ..ot e s e e 87
Levels of ParalleliSmmccooviiiiiiiiiiiiiiis e 88
MeMOTY MOAEL ...t 88
Separate Host and Accelerator Memory Considerationsccoevvvevveniviienienennennenne. 88
ACCELETAOr MEMOTYeeuieiiiieiie ittt ettt ettt e e sttt e 89
Cache MANAGEMENLEc..ieiiiiiiieiie ittt ettt et e b 89
Running an Accelerator Programccccocieiiiiiiinieniiiiiiecccst e 89
ACCELErAtOr DITECHVES ...cooeveeieiiiieieieie e 90
Enable ACCelerator DIFECHVEScooveveeeeeeieeeiee e 90
0310 N 90

(O3 D) (T 5 L (< TSR 91
Free-Form FOrtran Dir€CtiVESoviveniiiiiiie et 91
Fixed-FOIm FOrtran DITECHVESuuuueeeeeereeeeeeetseeeeeeeaeesaeeeeesessseeesanesaseaeessseeeeeeneseeenennes 92
Accelerator Directive SUMMATYcccoooiuieiiiiiiianiieiie ettt 92
Accelerator DIreCtive CLAUSEScoovvvviiiiiiieiiie e 95
PGI Accelerator Compilers Runtime LiDIariesccccoooieiiiiiiiiiiiiiiiiee e 97
Runtime Library Definitionsccoririiiiiiiiiiiiiieie e 97
Runtime Library ROUNEScccoeiiiiiiiiiiiiiie it 98
Environment VALIADIESccoooeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 08
Applicable Command Line OPONSc.cccoviviiriiriiiiiiieniiiiee e 99
PGI Unified Binary for ACCELEratorsccooviiiiiiriiriiieiiii et 100
Multiple ProceSSOr TATZELSc..coveriieiiriiiiieieiiee ittt 101
Profiling Accelerator Kernelscocooiiiiiiiiiiiiiieics e 102
Related Accelerator Programming TOOLSccccooviiiiiiiiiiniiiic e 102
PGPROF PGCOLLECE ..ottt e 102
NVIDIA CUDA PIOfileooovviiiiiiiiiiiiiee et 102

TAU - Tuning and Analysis ULccooieriiiiiiiiiiii e 103
SUPPOTLEd INIIINSICS ...eovviiiiiieiiiiit ettt 103
Supported Fortran Intrinsics Summary Tableccocooiiiiiniiiiiiiniic, 103
Supported C Intrinsics Summary Tablecccooiiiiiiiiiiii 104

PGI® User's Guide

References related to ACCEIEratorsoouiriiiiiiiiiiiiiiieee e 106
8. Using Directives and Pragmascococooviinininininncceeceee e 107
PGI Proprietary Fortran DIreCtivescccccooviiiiiiiiiiii 107
PGI Proprietary G and C++ Pragmasc..occevieriiiiiiiiiiieiieitecseecee e 108
PGI Proprietary Optimization Directive and Pragma Summarycccoovveviniinienenieneenenn. 108
Scope of Fortran Directives and Command-Line Optionscoceveriiiriiierienienenenesieeeeias 110
Scope of C/C++ Pragmas and Command-Line OPHONSccevveriereniiiriiiiieieeenese i 111
Prefetch Directives and Pragmascocoviviiiiiriininiiiiie st 113
Prefetch DIreCtive SYITAXc.ooovirieriiriiiiiiiiiit e 114
Prefetch Directive Format ReqUIr€MeNntscooevververierienininieieieenene e 114
Sample Usage of Prefetch DIreCtiveccooeriiiiiiiiiiieieesese e 114
Prefetch Pragma SYNEAXccoviriiiiiiiiiiiiiec e 115
Sample Usage of Prefetch Pragmacccocoviiiiiiiiiiieniieeeee e 115
IDECS DEFECHVESvveeveeeee ettt ettt et ettt et ettt ettt e et e et e et e et e et e e s e e eesateeeaeas 115
Format ReqUirementscccceeiiiiiiiiiiiiiiiii 115
SUMMATY TADIE ..ottt 115
CEPRAGMA C ..ottt ettt ettt bt ettt b bbbt be b ens b e 116
9. Creating and Using Libraries ..., 117
Using builtin Math FUnctions in C/C++ooviriiiiiiiiiiiiiiii e 117
Using System Library ROULNEScoeeiiriiniiiiiiiiiiiicie e 118
Creating and Using Shared Object Files on LiInUXcccoceviiviiniiiniiiiniicccccce, 118
Creating and Using Dynamic Libraries on Mac OS Xccovivviiiiiiniiiiiiiiiiicnicncececee 120
PGI Runtime Libraries on WindOWScocooriiiiiiiiiiiiiiiiiiicseise e 120
Creating and Using Static Libraries on Windowscccccooveviiiiniiiniiiiiicccee 121
A0 COMMANG ...ttt ettt 121
ranlib commAndc..ooiiiiiiiiii 122
Creating and Using Dynamic-Link Libraries on Windowscccccoceniieniniiniieniniiniccee, 122
USING LIB3E ...ttt bbb 130
LAPACK, BLAS Q0d FETSooiiiiiiiiiii ittt ettt 130
The C++ Standard Template LiDraryccccoooeviiiiiiiiniii 130
10. Using Environment Variables ..., 131
Setting Environment VAriablesc..cooiiiiiiiiiiiiiiniiiice e 131
Setting Environment Variables on LinUXcccoceiiiiiiiiiniiiiccc 131
Setting Environment Variables on Windowscccccooiniiiiiniiniiniii 132
Setting Environment Variables on Mac OSXc.cccoviiiviiiiiiniiiiiiinicccccc 132
PGI-Related Environment Variablescoccooiiiiiniiiiiiiiiiiiii e 133
PGI Environment Variablesccocooiiiiiiiiiiiiiiiiiic e 134
FLEXLM_BATCHcooiiiiiiiiiiitie ettt 135
FORTRANOPToiiiiiiiiiti ittt 135
GMON_OUT_PREFIXccoiiiiiiiiiiiiiieiiiit ettt 135
LD_LIBRARY_PATHoooiiiiiiiiiiiiiiee it 135
LM_LICENSE_FILEcoiiiiiiiiiiiiiiie ettt e e e 136
MANPATH ..ot bbbttt 136

viii

IMP_BIND .ttt bbb b 136
MP_BLIST ..ot e ettt e e e e ettt e e e e e e et aeaee e e 137

P PN e 137
IMP_WARN .ottt 137
INCPUS ettt ettt ettt ettt et ettt e et e e e et e e e e eeae e 137
NCPUS_MAX .. 138
NO_STOP_MESSAGEooiiiiiiiieiii e e et e e e e e 138
PATH ...ttt ettt e e e e e ettt e e e e e e ettt e e e e e e e et raee s 138

PGL 138
PGI_CONTINUE ...ttt ettt e e e e s ettt e e e e e e s e nnansneeeeas 139
PGI_OBJSUFFIXootiiiiiiiiiiiiiiiiiiiiii ittt e e e et e e e e et e eeeeeeeeeeeeeees 139
PGI_STACK _USAGEouiiiiiieeiiiii ettt e e et e e e e e e aanaeeaeeeeas 139
PGI_TERMcooiiiiiiiiiiiiiee ettt e ettt e e e e e ettt e e e e e e e s ntbbbaeeeeeeens 139
PGI_TERM_DEBUGcceeeiiiiiiiiiiiiieee ettt e ettt e e e e e s enabbeaeeaaeeeeanes 141

PWD 141
STATIC_RANDOM_SEEDccoiiiiiiiiiiiieeee ettt e et e e e s aeeeeas 141

TP et e e e e ettt e e e e e e sttt e e e e e e e nrerees 142
TMPDIRooeieiiiieeee ettt e e e ettt e e e e e e ettt e e e e e e et aeaee e e e e nnrrrees 142
Using Environment Modules 0n LINUXcccoooviiiiiiiiiniiiiiecccc e 142
Stack Traceback and JIT Debuggingccccovveviiiiiiiiiiiiiiiiiiiiiii e 143
11. Distributing Files - Deploymentcccccooooviniiiiniiiceeeecs 145
Deploying APpLCations 0N LIMUXcccuiiriieiiiiiienieiiieiee ettt et sieesiee e ssbeeaeesnne s 145
Runtime Library ConSiderationscccevieriiiiriiiieiienieie et 145
04-bit Linux CONSIAEIAONSevevieviierieriiteiere ettt 146
Linux RediStributable FIlesc.ccvoiiiiiriiiiiiiiieeeee e 146
Restrictions on Linux POrtabilityccoovieviiiiiiiiiiiiniiiie e 146
Installing the Linux Portability PACKagecccocoeviiiiiiiiiiiiieee e 146
Licensing for Redistributable Filesccoocoriiiiiiiiiiiiiiiecee e 147
Deploying Applications 0n WINAOWSccceeruiiiiiiiniiiiiiieiiie e 147
PGI RediStriDUADIESc..oovviiiiiiiiiieiiieie e 147
Microsoft RediStributablescccoiiiiiieiiieeee et 147
Code Generation and Processor ArChiteCtureccovvveriiriiieniieneiieee e 148
Generating Generic X80 COMEcevvevirvirieieiiiieiete ettt e 148
Generating Code for a Specific ProCeSSOTcocoviiiiiiiriiiiiiieicc e 148
Generating One Executable for Multiple Types 0f PrOCESSOTSccvvervveiiierieiiieniieiiiesire e, 148
PGI Unified Binary Command-line SWIitChesocceviieriiiiniiniiiciieceee 149

PGI Unified Binary Directives and Pragmascccocoeviiiienieneniienieneiieseee e 149

12. Inter-language Calling ... 151
Overview of Calling CONVENLONSccveriiiiiiiiiiieiiieieite et 151
Inter-language Calling ConsSiderationscocevieriiiiiniiniiiiiecc e 152
Functions and SUDTOULNEScoceiiiiiiiiiiiiiiie et 152
Upper and Lower Case Conventions, UNAEISCOTESccuevuieriiiiiieniiniieniie e 153
Compatible DAt TYPESoovevririiiiiiiiii et 153

PGI® User's Guide

Fortran Named Common BIOCKScccooiiiiniiiiiiiiice 154
Argument Passing and Return VAIUesccccooviiiiiiiiiiiiiiiicccecce e 155
Passing by Value (90VAL)coeviiiriiiiiiiiiiiiieiteie et 155
Character Return VAIUESccoouiiiiiiiiiiiiiiiie e 155
Complex RN VALUESccoovviriiriiiiiiiiiiiiiiciieieee ettt 156
ALTAY TOAICES ...ttt 156
EXQAMPLES ... e 157
Example - Fortran Calling Cc..ooooiiiiiiiiiiiiii e 157
Example - C Calling FOTtranccccocieiiiiiiiiniiiiicnccice e 158
Example - C++ Calling Coovviiiiiiiiiiie e 159
Example - C Calling G+ ..oovvoiiiiiiiiiii e 159
Example - Fortran Calling C++oooiiiiiiiiiiiiiiecicc e 160
Example - C++ Calling FOTtranccooviviiiiiiniiniicie e 161
Win32 Calling CONVENTONSc..cveiirtiiiiiitiitiiiteie ettt 162
Win32 Fortran Calling CONVENtionsccovvierieriiiiiniiniieieniecece e 162
Symbol Name Construction and Calling EXamplecooceviiiiniiiiiniicicee 163
Using the Default Calling CONVENtONcoeiviiiiriiiiniiiiiiteeeeee e 164
Using the STDCALL Calling CONVENtiONcoeveiiierieniiriiniiiiiiiieeieee e 164
Using the G Calling CONVENHONooveuiriiiieieiiitiiieieie et 165
Using the UNIX Calling CONVENtIONcveuiiuiieriitiitenieniete ettt 165
Using the CREF Calling CONVENtONceiuirieriiiiieieiiiieieiisie et 165

13. Programming Considerations for 64-Bit Environmentsc...c...ccocooo..... 167
Data Types in the 64-Bit ENVIFONMENEccoovviiiiiiriiiriitiitecie et 167
C/CH+ DAL TYPES ..ottt ettt ettt ettt eaeene e 168
FOItran Datad TYPESocveiiiiririiriitiete ettt ettt ettt se ettt ebeeve e ensaneas 168
Large Static DAta N LINUXc.ooviiviiiiiiiieiiiiieieiee ettt eveete v ss s 168
Large Dynamically Allocated DAtaccoeviiiiiiieiiiiiiieiie et 168
04-Bit ArTaY INAEXINGevevieviieiiesietieieiet ettt ettt ettt es ettt ettt ese b e 168
Compiler Options for 64-bit Programimingccc.evveirierieirierieieenieieeeesieneeresieeee e 169
Practical Limitations of Large Array Programmingccoocveruverieerieniieeneenineennesneennnesnnes 170
Medium Memory Model and Large Array in €cooevirierieiienienciienceese e 171
Medium Memory Model and Large Array in FOItrancccccoverieniiiiiniiniieiiecee e, 172
Large Array and Small Memory Model in FOtrancoccoviviiinieniiieiienciicceec e 173
14. C/C++ Inline Assembly and INtrinsicsccocooooovviiriinininiinses 175
Inline ASSEMDIYooviiiiiiiiiiii e 175
Extended Inline ASSEMDIYccooviiiiiiiiiiiieiit e 176
OUIPUE OPETANMS ...ttt 177
INPUE OPEIANAS ...ttt e 179
CLODDET LISt ..ottt ettt et 180
Additional CONSLIAINLSccuvieriiiiiieiiie ittt 181
OPErand ALIASEScvveiieiiiiiiiitie e 187
Assembly String MOGIErSccoviiiiiiiiiiiei e 187
Extended ASI MACLOSooovvviiieiiiiiiiiie e 189
1114)0 (0 190

15. Fortran, C, and C++ Data TYPESccocoviiviiiiiiciecee e, 191

FOTTran DAtd TYPESevveeiiiiiieeiiiiit et e et e st e e et e e e 191
FOTTEAN SCAIALSovviiiiiiiiiii e 191
FORTRAN 77 Aggregate Data Type EXIeNSIONSccovvvirieiniiieeeniiiieeiiiiiceeiiieee e 193
Fortran 90 Aggregate Data Types (Derived TYPES)c.eevvevveririiieiierieeieeiesie e eiee e 194

G aNd G+ DAL TYPES o.vvevieriierieieeie ettt ettt ettt ettt et e s be e st e eteebeeseeeneeseenae e 194
C AN Gt SCALATS ...ovvieiiiiei s 194
G and C++ Aggregate Datad TYPESceoveeiieiiiiiiieiiie ittt ettt 196
Class and Object DAta LAYOULooovieiiieiiieiiieii ettt 196
AgEregate ALIGNMENEccouiiiiiiiieiiieitie ettt ettt et e beesiee e e nnee s 197
Bit-field AHGNMENTccuviiiiiiiiiiie e 198
Other Type Keywords in C and C++oovveviviiiieiiiiiieiie e 198

16. Command-Line Options Reference ..o 199

PGI Compiler Option SUMMALYccoerviiiiriiaieiieitiete et 199
Build-Related PGT OPHONSc.eiuieriiiiiiiieiieie ettt 199
PGI Debug-Related Compiler OPtONSc.ocveriiiiiiieniiiieiieie e 202
PGI Optimization-Related Compiler OPHONScccevieriiiieiieriiiienieeee e 203
PGI Linking and Runtime-Related Compiler OPHONSccoverieiierieienieniiie e 203

C and C++ COMPILEr OPONSc.veeiiiieiieieiie ittt 204

Generic PGI Compiler OPONSocviiiiiiieiieiiie ittt ettt baesaee e 207

C and C++ -specific Compiler OPONScceeriiiieriiiieiieiieie e 248

—M OPHONS DY CAEGOTY ...ttt ettt 259
Code Generation CONIOLScoviiieriieieiieiti ettt 260
C/C++ LanGUAE CONLIOLScvovivirieriieiieietieteiet ettt 264
ENVIronment CONEIOLSooveviriiviieiieeiieieie sttt e 266
Fortran Language CONIOLScceeriiiiiiieniiiieiitete ettt 267
INlNING CONIOLS ...eovviiiiiieiieiiieett et 270
OPHMIZAEON CONELOLSiivvieiieeiiieiie ettt ettt e ettt eerbeebaeennes 272
MisCellaneous CONLIOLScviiuviriieiiiieiiieti ettt 282

17. OpenMP Reference Information ..., 289

TASKS oo 289
Task CharacteristicsS and ACHVILIEScoeeeeereeeeeee e, 289
Task Scheduling POINLScoouiiiiiiiiiiiiiie e 289
bR Q0 1T 1 o A 290

Parallelization Directives and Pragmascccooieiiiiiiiiiiiiiieiie et 292

ATOMIC aNd AEOIMUC ..oeevvviiiiiiiiiiiieee e, 292

BARRIER ANA DALTIELeevetieeieeieieeetet ettt seaanennne 293

CRITICAL ... END CRITICAL and CritiCalcccccovviiiiiiieiiieeiie e 293

CEDOACROSS ..ottt ettt ettt ettt et ettt ettt ettt ettt 295

DO...END DO Q00 0T .oeeeeeieeeeieeee ettt e e e e e e e 296

FLUSH and fIUshc.oooiviiiiiiii et 298

MASTER ... END MASTER and MASIErccoovvviiieiieiieieeeieeeee e, 298

ORDERED and OTAETEAcoooeeeieeeieeeeeeee e 299

PARALLEL ... END PARALLEL and parallelcccooiiiiiiiiiiiiecee e 300

PGI® User's Guide

PARALLEL DO .o 301
PARALLEL SECTIONS and parallel SECHONScooviriiriiiiinieiiiiinieieeiee e 302
PARALLEL WORKSHARE ... END PARALLEL WORKSHAREooovviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeee, 303
SECTIONS ... END SECTIONS and SECHONScc.veruveiiriieniieiiiiieniieie e sieeie et 304
SINGLE ... END SINGLE and Singleccccocueriiiiiiiiiiiieiieneeie e 305
TASK ANA tASK .ooveiee e 306
TASKWAIT and tASKWALoouviiiiiiiitiiieiiet e 307
THREADPRIVATE and threadpriVateccoiiiiiiiiiiiiniiiieiieicec et 308
WORKSHARE ... END WORKSHAREcccooiiiiiiiiiiiiiiieie et 309
Directive and Pragma ClAUSEScceeiiiiiiieriieiiieniie et eriee ettt e nite e iee b et srreeaeeenbeeeees 309
COLLAPSE (11) ...tevteutentite ettt bbbt ettt ettt ettt eneene s 309
COPYIN (JSE) +.vvevveeveteett ettt ettt ettt ettt ettt ettt n e s 310
COPYPRIVATE(LISE) ... ettt 310
DEFAULT ..ottt ettt ettt ettt ettt ettt ettt et 310
FIRSTPRIVATE(JISE) ... vvevvvevviivreiteeie ettt ettt ettt ettt e e ae e 311

TE() oottt bt bt h sttt sttt et neeneene s 311
LASTPRIVATE (LISE)e.vevtetiitieiietieiet ettt 311
NOWAIT ...ttt ettt ettt ettt et ettt et se et e e 311
NUM_THREADSooiiiiiiiiiieeit ettt e e st e s ibee s 311
ORDERED ..ottt ettt et 311
PRIVATE ..ottt ettt st 312
REDUCTIONcootiiieittiiieitt ettt ettt 312
SCHEDULEcooiiiiiiiiiiiiet ettt e e ettt e e e e s st eeeeeas 313
SHARED ...ttt et 314
UNTIED ...ttt ettt ettt ettt e 314
OpenMP Environment VATIADIESccoveiiiiiiiiiiiiiiiiieiie ettt 314
OMP_DYNAMIC ...ttt ettt ettt ettt et 314
OMP_NESTED ...cooiuiiiiiiiiiiiteeet et e ettt e et e e s 314
OMP_MAX_ACTIVE_LEVELSoiiiiiiiiiiiieiiiiit e 314
OMP_NUM_THREADSooiiiiiiiiiiieeiiiiee ettt e s 314
OMP_SCHEDULEcottiiiiiiiiiiiiiite et e sttt e e e e st e e e e e e ans 315
OMP_STACKSIZEooutiiiiiieitieitt ettt ettt 315
OMP_THREAD_LIMITccoiiiiiiiiiiiiieeiiiiie ettt ettt e s ssine e 315
OMP_WAIT _POLICYeeetiiiiieeiiiiite ettt ettt ettt e et e st e e enibee e e e 316

18. PGI Accelerator Compilers Reference ..., 317
PGI ACCEIEIALOr DITECHVESveiuiieiiiiiieitie ettt et 317
Accelerator Compute Region DIf€CHVec.covveruiiiirieniiiinieiieicreeseee e 318
Accelerator Data Region DIreCHVEcoouiiuiiiiiiiiiiie it 319
Accelerator Loop Mapping DIr€Ctivec..couiviiiieiiiiiinieiiiieieecsese e 320
COMDINEd DIFECHVEoouvieiiiiiieiiit ettt et 321
Accelerator Declarative Data DIr€CHVEcccuerviiiiiiiiiiiiiiiiieiie e 321
Accelerator Update DITECHVEc.coieiiiiiriiiiiiiiiieie et 322

PGI Accelerator DIreCtive ClAUSESccovieriiiiiiiiiiiiieeiie et 323
I (CONAIEON) .ot eaaee s 323
DA CIAUSES ...ttt ettt 324

Xii

COPY (JESE) oottt ettt b et nne e e 325

COPYIN (JESE) +oevveeeeeie ettt ettt ettt ettt et et e te et e et e be et eeaeeas 325
COPYOUL (JESE) .ottt 325
LOCAL (ZESE) oo e e e, 326
IUITOT (JST) v ettt ettt et 326
updateinlupdateout (JISE)occooveiviiiiiiieieeee et 326
Loop Scheduling Clausescocoviiiiiiiiiiiiiiice e 327
CACRE (JIST) .o 328

ROSE [UEAED) | e, 328
INAEPENACNLeveiiieiii it 328
KEIIIEL .ottt 329
parallel [(UIAID)] ..ooovooiee e s 329
PIVALE (JESE) .vevvieiieie ettt ettt ettt ettt ettt ene 329

SEQ [(WIAD)| ..o 330
UNTOIL [(UEAID) | oo e 330
e (0 S K Q7777 /7)) TSP PRPRP 330
Declarative Data Directive CIAUSEScccuveieiiiivieeeiiiiieeeeceiiee e 330
PELECRA (JESE) oo et 331
Update Directive CLAUSEScovevuiiiiriiiiiiieiiei e 331
EVICE (JIST) .ottt 331

ROSE (JEST) oot 331

PGI Accelerator RUNtime ROULINESvvvviiiiiiiiiiiiiiiiiee ettt et 332
ACC_GEL_AVICE ...vveeiieiiit et e 332
ACC_Get_@VICE_MUMooiiiiiiiiiii ittt 332
ACC_GEt_MUM_AEVICESovviiiiiiiiieiie ittt 333

Lo O 111 L T 333
ACC_SCE_ABVICE .oooeiiiiiiiiiiii e 334
ACC_SEE_AOVICE UM ...t eseeesenene 335

P o) 1 L111410) 4 ¢ R 335
ACC_ON_ABVICE .o e e ettt 336
Accelerator Environment VALIADIESoovvvuvriiiiiiiiiiiiiiiiiieeee ettt 336
PO O D) AT (0] 337
ACC_DEVICE _NUM ...ttt e e 337
ACC_NOTIFY oo et e e e et 337
PECUAAINTL UHILYovvivieiieitiiit et 338
19. C++ Name Man@ling ... 339
TYPES Of MANGLNGoovviviiiiiiiiiiicie ettt e e sae e raesae e b 340
MaNGUNG SUMMALYveivviiiiiiiiiiet ettt ettt et e b e esaeeseessesaeesbeanaesae s 340
Type Name MANGLNGcc.oovviiiiiiiiiitieis ettt eaa e 340
Nested Class Name Manglingccccooerieriiiieiiiniiieniee e 341
Local Class Name Manglingcccooueeruieiiioiiieiieeiiesieesieesieeieesreesiee e e sieesnneeene s 341
Template Class Name Manglingcc.cccveviiiiriieniiioiiienieeieenee et see e e siee e e siaesnaeens 341

20. Directives and Pragmas Reference ..., 343
PGI Proprietary Fortran Directive and C/C++ Pragma SUummaryccccoocveriveniniieniennicniennnn 343

PGI® User's Guide

altcode (NOAICOR)cvvvviiiieiiiie e 344
ASSOC (TMOASSOC) .vvveiieeiieee ettt e ettt ettt e e et e e ettt e e e ettt e e e e ettt e e s eeaaaeeeeeraaeeeeans 345
bounds (NODOUNAS)coovvviiiiiiiiii et 345
CNCAL (NOCNCAIL) ©..veiiiiiiiice e 345
CONCUL (INOCOMCUL) .vvvveeeeieeeeeee ettt e e ettt e e e ettt e e e e et et e e e eaat e e e e etaeeeeseraaeeeseentaeeeseinaaeeeaa 345
depchk (NOAEPCHK)oovviviiiiiiiiiict e 345
eqvChK (N0eqVChK)ooviiiiiiiiic e 345

fCON (MOFCON) ..vvviiiii e 346
IVarif (NOINVATIE)c.ooiiiiiiiiie e 346
IVAED . 346
ISEVAL (NOISEVAL)vvvviieeiiiiee et 346
PLEELCR ..o 346

1 OO OO TOUROPRPTPOUPPRRI 346

SAE (NOSALE) ... 347

SATE TASIVAL ..t 347
SAfeptr (NOSALEPLL)oovveeiiiiiiiie e 348
SINGle (NOSINGIE)eviiiiiiiiiti et 349

L1 TP P TP PR UPPRR PP 349
UNLOLl (NOUNTOIL) ...vvvviiiiiiie et 349
A0 (0 G 0110 = ot 10)) PP SPURRPRTRPR 350
1)L 1103711 15 0 SRRSO 350
Prefetch Directives and Pragmascoccoviviiiiriininiiiiit st 350
IDECS DEFECHVESvveeveeeee ettt ettt ettt et ettt e et et e et e et e e et e et e e st e e saeesateeeaeas 350
ALTAS DIFECEIVE .oevvviiiiiiiiiiiiiiiii 350
ATTRIBUTES DIIECHVEccvvvieieriieiiiieeeiiee ettt e et e et e e e ite et e e eessbaeesnvaeestbeeenaeeennnee e 351
DECORATE DiTECHVEuuuuuuiiiiiiiiiiiiierenininenanerenanenenanesenesanenenenesenenenenenensnenenensnenenenenmnes 352
DISTRIBUTE DAFECHVEcoevvviiiiiiiiiiiiiiiceeee 352
IGNORE_TKR DILECHVEccevviiiiiiiiiiiiiiiiie e 352

21. Run-time EnVIirOmmentcccocooviiiiiiiiiiiee s 355
Linux86 and Win32 Programming MOdelccoocevieiriirieiiiiiieiei e 355
Function Calling SEQUENCEccvieiiiiiiieiiieiieiie ettt 355
FUNCHON REMUN VAIUESoeovviiiiiiiiieiiie ettt bae s 358
ArgUMENt PASSINGevvviiiiieiiiiii e e 359
Linux86-64 Programming MOMelccooviiviiiiiiiiiiieieie et 361
Function Calling SEQUENCEccuieiiiiiiieiiieiieiie ettt 362
FUNCHON REMUIN VAIUESooovviiiiiiiiieiiie ettt ettt aae s 364
APGUMENE PASSINGvvoviieiieriietiete ettt ettt ettt ettt et et et eveeaeeveeasensenes 365
Linux86-64 Fortran SUPPIEMENLEcceeveiiiiiiiriiriiteeteere ettt 367
Win64 Programming MOlc.ccvviriiiiiiieieieiiieiete ettt 372
Function Calling SEQUENCEccvieiiiiiiiiiiieiieiie ettt 372
FUNCHON REMUN VAIUESooovviiiiiiiiieiiie ettt aae s 374
ArGUMENE PASSING ..ot 375
Win64 Fortran SUPPIEMENLEcocviviiiiiiiiiiireere et ettt 377

22. C++ Dialect SUpPOrtedcccovviiniiiiiiiieeec e, 383

Extensions Accepted in Normal C++ MOdecocveriiniiiiiiiiiniiiiccc e 383

cfront 2.1 Compatibility MOAEcocviiiiiiiiiiiiii e 384
cfront 2.1/3.0 Compatibility MOAEcoiiiiiiiiiiiiiice e 3860

23. Fortran Module/Library Interfaces for Windowsccccoooviiiininninnn, 387
SOULCE FALES ...ttt 387

DIALA TYPES ettt e st e st e e e 387
Using DFLIB and DFPORTcccoiiiiiiiiiieiit ettt ettt ettt 388
DELIB ...ttt e e ettt e e sttt e e e e eeeee s 388

DEFPORT ...ttt et e e s e et e e s s 389

Using the DFWIN MOAUIEc.cooiiiiiiiiiiiie it 395
Supported Libraries and MOAULESccoooviiiiiiiiiiiiieiie e 395
AAVAPIZZ ..ottt ettt e e e nbe e 395

COMUAIZA2 .ottt ettt 397

GEWDASE ..o 397

AEWINLY ©ooeeiiee e et 398

BI32 oottt 398

KEINCIZ2 ...ttt 401

SREIIZ2 .. 409

USEI32 ottt ettt ettt bbb bbbttt bbbt b et 410

WITIVET ...ttt ettt ettt s e ettt b e bbbttt s ettt b bbbttt 414

WSOCKZ2 .ttt ettt 414

24. C/C++ MMX/SSE Inline INtrinsicsccccooovviiviiiiiiiieieeeceeee e, 417
Using INtrinsic fUNCHONScc.veiivieiiiiiiiiie ettt ebeestaeennae s 417
Required Header FIlecccooiiiiiiiiiiieiiei e 417

INLrNSIC DAA TYPES ..vovvvevrievierieie ettt ettt ettt ettt e teesbe e ease s 418

INtrinSiC EXAMPIEveovviiviiiiiiieiiicii ettt 418

MMEX INELINSICS .vvvvevverientete ettt ettt ettt ettt sttt et s e st e st et e b e nbesbeebeeneas 418

SSE TILLINSICS .. vvveveerietiesiete ettt ettt ettt bttt se s ettt be sttt se s est et e benbeebeene s 420

ABM TNELINSICS +v.vvevveeveveteetteteetient ettt et ettt est ettt e et ebe ettt es e ese e st e s e sbenbeebenbeebeeneaneas 424

25, MESSAZES ...t 425
DiagnoStic MESSAZESvvvveiiieiiiiiiiiiiiiiee ettt s et e sttt e e e 425
Phase INVOCAON MESSAZESecueeuierieriiaieaiienteeteetesteesieetee it entesnee bt eneesteebeeneesseeneeenee e 426
Fortran Compiler EXror MESSAZEScccuieiiiiiiiiiiiiiieiiie ettt 426
MESSAZE FOTINALc.voviviriirietiiesiete ettt ettt ettt b b se bbb se b sbesseneesess 426

MESSAZE LSEvevvviverieteeteiet ettt ettt ettt ettt ettt ettt er s 426

Fortran Run-time Error MESSAZEScooouvvviiiiiieiiiiiiiiiiiiie ettt 451
MESSAZE FOTMNALovviiiiiiiieiieiie ettt ettt e 451

MESSAZE LISt ...ttt ettt ettt 451

IACX ..o 455

Xiv

Figures

15.1. Internal Padding in @ StrUCKULEc..coiviriiiriiiiiiieieeee e

15.2. Tail Padding in a Structure

XV

XVi

Tables

1. PGI Compilers and COMMANGScocveriiiiiiiiiiieiiet s XXV
1.1. Stop-after Options, INPULS ANA OULPULSeveevirriiriieiiiieitieie et 6
1.2. Examples of Using siterc and USer 1€ FIleScocerieriiiiiniiiriiiieiieiccescee e 14
2.1. Commonly Used Command Line OPHONSccuerveriirieiieniiiieiienieaiesieee e 21
3.1. Optimization and —0, —g and —M<OPt> OPONSceerviiiiiieriieriiie et 44
5.1. Directive and Pragma Summary TADIecccoriiiiiiiniiiiiiecc e 61
5.2. Directive and Pragma Clauses Summary Tablecccoocoviiiiiiiiniiiniiiecc e 62
5.3. Run-time Library ROULNES SUMMALYcceiiiiiiiiriiiiiiieiiiiesie e 05
5.4. OpenMP-related Environment Variable Summary Tableccocoviiiiiiiiininiie e 70
6.1. MPI Implementation OPLONSc.cvvervirriiriireerieteereeeetestesreereereereeseessessetestesreeveereereassessesnas 74
0.2. MPI Profiling OPHONSccveeviiiiiriiiierietieiete ettt ettt ettt et et va e b et eae e v ans 75
7.1. PGI Accelerator Directive SUmmAry TabIecccoeviriiriiniiieniiciie e 93
7.2. Directive Clauses SUMMALYcoviriiiiiiiiiiiieitee ettt 95
7.3. Accelerator Runtime Library ROULNEScocoiieriiiiiiiiiiiiiciieiceie e 98
7.4. Accelerator Environment VAriablesccccoiviiiiiiioieieieie sttt 99
7.5. Supported FOrtran INEINSICScc.vevirieriieiiiie ittt 103
7.6. Supported C Intrinsic DOuble FUNCHONSc.cooveiiiiiiieiiiiieiet e 105
7.7. Supported C Intrinsic Float FUNCHONScc.eiveiiiiriiiiiiieieiiesiec e 105
8.1. Proprietary Optimization-Related Fortran Directive and C/C++ Pragma Summaryc.oc...... 109
8.2. IDEC$ Directives SUMmAIy TADIEccoovirviiiriiiiiiiiieiecetee ettt 116
10.1. PGI-Related Environment Variable SUmMmarycccocooviiiiniiiiniiniiccccee e 133
10.2. Supported PGI_TERM VAIUEScocuiriiiiiieiiiiieiie ittt 140
12.1. Fortran and C/C++ Data Type COMPAtiDIlityc.ccovveiiiiiriiiiiiiiiiiiiece e 153
12.2. Fortran and C/C++ Representation of the COVMPLEX TYPEccvvevviiiieniiiiieiieeiiecreeiie e 154
12.3. Calling Conventions Supported by the PGI Fortran Compilersccccovivveriininiieniiniiiennnn 163
13.1. 64-bit ComPiler OPLONSc.eciiriiiiiiiiiteet ettt ettt ettt eb e eaeens s 169
13.2. Effects of Options on Memory and Array SiZeSccoeevveeriieriieeriieniieiiieiie e see e 170
13.3. 64-Bit LIMGAHONSovvivieiiieieiieteieiett ettt ettt ettt ess s s eseebe st s seneebe e 170
14.1. SIMPle CONSLLANESveevviiviiireieeeteeteeste et e et e et e ste et eteesteesseeteesbeesbeeteesbeesseereesbeessesaeeseas 182
14.2. X86/X86_64 MACKINE CONSILANLSeeeeeeeeeeeeeeee et e e e e e e e e e e e e e e eeeea 183
14.3. Multiple Alternative CONSIIAINLScoverviiierieereiieiteeie et e et ie e e ste e sre e ereesreesaeesee s 185
14.4. Constraint Modifier ChATACLETScoveiviiiiiiiiiiiiieee et 186
14.5. Assembly String Modifier CRATACLETSc.eoviviiiiiiiiiiieieieeee e 188

Xviii

14.6. Intrinsic Header File Organizationccocveverierierierierienieeieeieeeeeeeeie et see e eseenis 190

15.1. Representation of FOrtran DAta TYPESccververueriiriiriiiiieieieiee ettt 191
15.2. Real Data TYPE RANGESc.vevuviiiiiiiiiiiiieiiet ettt 192
15.3. Scalar Type AZNMENLco.eoviiiiiiiiiiieit ettt 192
15.4. C/C++ SCAlAr DAA TYPEScvvveveeiieiierieeiieeie ettt ettt sttt e st e teereesteenbeeneenbeaneas 194
15.5. SClar AIRZOMENTcc.eiiiiiiiiiiiie ittt ettt 195
16.1. PGI Build-Related Compiler OPHONSceiverieiriiieieiieierieiet et 200
16.2. PGI Debug-Related Compiler OPHONSccerieviiiirieriiiiiieietieieiee e 202
16.3. Optimization-Related PGI Compiler OPLiONScccoveuiiiiririeiiriiieiiieeeeie et 203
16.4. Linking and Runtime-Related PGI Compiler OPtionscccerveiririeiieiiieieiiesieeeie e 203
16.5. C and C++ -specific COMPIlEr OPLONSc.eoveieriiiirierietiiteieit ettt 204
16.6. Subgroups for —help OPHONccooviiiiiiiieii e 216
16.7. =M OPHONS SUMMALYo.veuiitinierieteiteeett ettt sttt ettt ettt ettt es et st e st ase bt ene b eens 222
16.8. Optimization and —0, —g, —Mvect, and —Mconcur OPtONSc.eeeerererrerierierierierienreereereenss 231
17.1. Initialization of REDUCTION VAriablescccccciiiiiiiiriiniiniiieiit it 312
20.1. IGNORE_TKR EXAMPIEoouiiiiiiiiiiiiiiiit ettt 353
21.1. Re@ISter ALIOCALONc.veviiiiiiiiiiitieii ettt bbbt 356
21.2. Standard StACK FrAMEccoiiiiiiiiiiiiieicce e 356
21.3. Stack Contents for Functions Returning StruCt/UMIONocuereerieiienierieeienieeieseeneeee e 359
21.4. Integral and Pointer ATGUMENLScoiiieriiiiiieieieient ettt 359
21.5. Floating-point ATGUIMENLScc.erririiiiirreniiet ittt ettt ettt e 359
21.6. Structure and Union ATGUMENESc.eeueruerirtirreiateeteiastetenieseeteseeseese et eese et seesesnesbeeene e 360
21.7. ReGIStEr ALIOCALONc.viviiiitiiiiitieit ettt 362
21.8. Standard StaCK FrAMEcceiiiiiiiiiiiiiiece e 362
21.9. Register Allocation for EXAmple A-2cccooiiiiiiiiiiiiiiicicse e 366
21.10. Linux86-64 Fortran Fundamental TYPEScceoveririirieieiniiiaiieieiet et 368
21.11. Fortran and C/C++ Data Type Compatibilityccovvieviiiiniiiniiiiicce 369
21.12. Fortran and C/C++ Representation of the COMPLEX TYPec.coevvevirininiiiiiiienenciciee 370
21.13. ReGiSter ALLOCALONeeviiiiiiiiiiieiiieit ettt 372
21.14. Standard Stack FrAmeccooiiiiiiiiiiiiiiiiiiii e 373
21.15. Register Allocation for EXAMPle A-4c.ccocoiiiiiiiiiiie s 376
21.16. Win64 Fortran Fundamental TYPESccoiirieiiiiiiiieiiiieiee e e 377
21.17. Fortran and C/C++ Data Type Compatibilityccovvieriniiniiiniiiiiiiicc 379
21.18. Fortran and C/C++ Representation of the COMPLEX TYPec..cocevveviririniiiiicienencieiee 380
23.1. Fortran Data Type Mappingsccccoovuiiiiiiiiiiiiiiiiiiii e 387
23.2. DFLIB Function SUMIMALYcoooiiiiiiiiiiiiiiiiiii i 388
23.3. DFPORT FUNCHOMNSeetieiiiiiiiiiiiiieeeeieiiiiet et e e e e e ettt e e e e e e sttt e e e e e e s snetbbaeeeeeeessannenbneeeeens 389
23.4. DFWIN advapi32 FUNCHONScc.eoviiiieiieiieiieniieieeiieeieete sttt et nee st eneesneeseeeneesneenaeaneeas 395
24.1. MMX Intrinsics (Mmuintrin.i)oc.oooviiiiiiiii e 419
24.2. SSE Intrinsics (XMMUNELIN.N) o.ooovvviiiiiiiiiiii e 420
24.3. SSE2 Intrinsics (eMMUNELIN.N)oooiiiiiiiiiiiiie e 421
24.4. SSE3 Intrinsics (PMMINtrin.h)coooviiiiiiiiiiiiiii e 423
24.5. SSSE3 Intrinsics (dmmintrin.dl)ooooviiiiiiiiii i 423
24.6. SSE4a Intrinsics (AMMUNTIN.N) ...ooiiiiiiiiiiiiieiec e 424
24.7. ABM Intrinsics (INEFINJ) coovvviiiiiice e 424

Examples

1.1, HELO PIOZIAMovvieiiiiiiieiie ettt ettt ettt ettt e et et e e s e et e esbeestbeenbeesaeeesbeenteeenseenes 2
2.1. Makefiles With OPHONScccviiiiiiiiiiiieiie ettt srbeesaeeennas 18
3.1, DOt PrOAUCE COAEvevieniiiiieiieiiecie e et 30
3.2. Unrolled Dot Product COAEcc.eouiriiiriiiiiiiieiiaie ettt 30
3.3. Vector operation using SSE iNSLIUCLIONScoieiiiiiiiiiiiiiiieiiiiiii e 33
3.4. Using SYSTEM_CLOCK cOde fragmentcoooveieierierierieiiiie ittt 46
4.1, Sample MAKEFIIEceoiviiiiiiiiici et 52
5.1. OpenMP LOOP EXAMPLEcc.oeiiiiiiiiiiiiiiiiite ettt ettt 57
6.1. MPI Hello World EXAMPIEcocoviiiiiiiiiiticiteece ettt 76
7.1. Accelerator Kernel Timing DAtAcocouiiiiiiiriiiiiiiiie et 102
8.1. PrefetCh DIreCtiVe USEcvirieierieieieiieite ettt ettt ettt ettt sbe et eneens 114
8.2. Prefetch Pragma in €c.ooiiiiiiiiiiiiiie ettt et 115
9.1. BUild @ DLL: FOTEIANoviivieiieiienieieieete ettt bbbt 124
0.2, BUILA @ DLL: € ..ottt 125
9.3. Build DLLs Containing Circular Mutual IMports: €cocvevviviiniiniiieiieiceieseece e 126
9.4. Build DLLs Containing Mutual Imports: FOTraNcocoveierierierieneieiieieieieieiesese e 127
9.5. Import a Fortran module from @ DLLcccoooiiiiiiiiiiiieiieccie e 129
12.1. Character Return PATAMELELSecoviiiertieiiiireitieie sttt ettt ettt sttt sie e 156
12.2. COMPLEX RetUIN VAIUESc.ooviverierieiiierieiieieiest ettt ettt ettt ettt st ene b teseen e 156
12.3. Fortran Main Program f2c_main.fcocoeiiiiiiiiiiiii e 157
12.4. C TUNCHON £2C UNC_ oveeeeeeee ettt e e e e 157
12.5. C Main Program C2f MaIN.Ccoviiiiiiiiiiiieiie et 158
12.6. Fortran Subroutine C2f SUD.Looiiiiieee ettt 158
12.7. C++ Main Program cp2c_main.C Calling a C FUNCHONccoovvieviiiiiieniieiieenieeeeniee e 159
12.8. Simple C Function C2CP_fUNC.Coviiviiiiiiiieiiieciie ettt 159
12.9. C Main Program c2cp_main.c Calling @ C++ FUNCHONcovvevviiiiiiniiiiiieie e 159
12.10. Simple C++ Function c2cp_func.C with EXtern Ccccoovvieviiiiiiiniiiiiecie e 160
12.11. Fortran Main Program f2cp_main.f calling a C++ functionccccoevvvieniiiiiiinieiiienieenns 160
12.12. C++ function f2Cp_func.Cccoovviiiviiiiiicicc e 161
12.13. C++ main program cP2f_mMain.Cc.ooovviiiiiiiiieiieiie e 161
12.14. Fortran Subroutine cp2f func.fcccooiiiiiiiiii 162
13.1. Medium Memory Model and Large Array in Cccceoeeiirieniinienienieie e 171
13.2. Medium Memory Model and Large Array in FOTtrancccevveriiiiienieneniienienccie e 172

XX

13.3. Large Array and Small Memory Model in FOrtranccccoocveviiniiiiniiniiiiniccceccns 173

17.1. OpenMP Task C EXAMPIEccooriiiiiiiiiiiiiiicit e 291
17.2. OpenMP Task Fortran EXAmplecccooiiiiiiiiiiiiiiiiiccc e 291
21.1. C Program Calling an Assembly-language ROUtINEc.ccoeiiiniiniiiiniiiiiiccc 361
21.2. PArameter PASSINGccveiiiiriiitiitiiti ittt ettt 366
21.3. C Program Calling an Assembly-language ROUtINEc.ccoeviiniiiniiiiiniiiniii 367
21.4. PArameter PASSINGccveiiiiriiitiitiitt ettt ettt 375
21.5. C Program Calling an Assembly-language ROUtINec.ccoeviiniiniiiiniiiniiiccc 377

Preface

This guide is part of a set of manuals that describe how to use The Portland Group (PGI) Fortran, C, and

C++ compilers and program development tools. These compilers and tools include the PGF77, PGF95,
PGFORTRAN, PGHPF, PGC++, and PGCC ANSI C compilers, the PGPROF profiler, and the PGDBG debugger.
They work in conjunction with an x86 or x64 assembler and linker. You can use the PGI compilers and tools
to compile, debug, optimize, and profile serial and parallel applications for x86 (Intel Pentium II/ITI/4/M, Intel
Centrino, Intel Xeon, AMD Athlon XP/MP) or x64 (AMD Athlon64/Opteron/Turion, Intel EM64T, Intel Core
Duo, Intel Core 2 Duo, Barcelona) processor-based systems.

The PGI User's Guide provides operating instructions for the PGI command-level development environment. It
also contains details concerning the PGI compilers' interpretation of the Fortran language, implementation of
Fortran language extensions, and command-level compilation. Users are expected to have previous experience
with or knowledge of the Fortran programming language.

Audience Description

This manual is intended for scientists and engineers using the PGI compilers. To use these compilers, you
should be aware of the role of high-level languages, such as Fortran, C, and C++, as well as assembly-language
in the software development process; and you should have some level of understanding of programming. The
PGI compilers are available on a variety of x86 or x64 hardware platforms and operating systems. You need to
be familiar with the basic commands available on your system.

Compatibility and Conformance to Standards

Your system needs to be running a properly installed and configured version of the compilers. For information
on installing PGI compilers and tools, refer to the Release Notes and Installation Guide included with your
software.

For further information, refer to the following:

* American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

* [SO/IEC 1539-1 : 1991, Information technology — Programming Languages — Fortran, Geneva, 1991
(Fortran 90).

* [SO/IEC 1539-1 : 1997, Information technology — Programming Languages — Fortran, Geneva, 1997
(Fortran 95).

XXi

Organization

e Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press, Cambridge, Mass, 1997.

e High Performance Fortran Language Specification, Revision 1.0, Rice University, Houston, Texas (1993),
http://www.crpc.rice.edu/HPFF.

e High Performance Fortran Language Specification, Revision 2.0, Rice University, Houston, Texas (1997),
http://www.crpc.rice.edu/HPFF.

o OpenMP Application Program Interface, Version 2.5, May 2005, http://www.openmp.org.
* Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).
* [BM VS Fortran, IBM Corporation, Rev. GC26-4119.

e Military Standard, Fortran, DOD Supplement to American National Standard Programming Language
Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

* American National Standard Programming Language C, ANSI X3.159-1989.
e ISO/IEC 9899:1999, Information technology — Programming Languages — C, Geneva, 1999 (C99).

Organization

XXii

Users typically begin by wanting to know how to use a product and often then find that they need more
information and facts about specific areas of the product. Knowing how as well as why you might use certain
options or perform certain tasks is key to using the PGI compilers and tools effectively and efficiently. However,
once you have this knowledge and understanding, you very likely might find yourself wanting to know much
more about specific areas or specific topics.

To facilitate ease of use, this manual is divided into the following two parts:

e Part I, Compiler Usage, contains the essential information on how to use the compiler.

e Part IT, Reference Information, contains more detailed reference information about specific aspects of the
compiler, such as the details of compiler options, directives, and more.

Part I, Compiler Usage, contains these chapters:

Chapter 1, “Getting Started” provides an introduction to the PGI compilers and describes their use and
overall features.

Chapter 2, “Using Command Line Options” provides an overview of the command-line options as well as
task-related lists of options.

Chapter 3, “Optimizing & Parallelizing” describes standard optimization techniques that, with little effort,
allow users to significantly improve the performance of programs.

Chapter 4, “Using Function Inlining” describes how to use function inlining and shows how to create an
inline library.

Chapter 5, “Using OpenMP” provides a description of the OpenMP Fortran parallelization directives and of the
OpenMP C and C++ parallelization pragmas and shows examples of their use.

Chapter 6, “Using MPI " describes how to use MPI with PGI Workstation and PGI server.

Preface

Chapter 7, “Using an Accelerator” describes how to use the PGI Accelerator compilers.

Chapter 8, “Using Directives and Pragmas” provides a description of each Fortran optimization directive and
C/C++ optimization pragma, and shows examples of their use.

Chapter 9, “Creating and Using Libraries” discusses PGI support libraries, shared object files, and
environment variables that affect the behavior of the PGI compilers.

Chapter 10, * Using Environment Variables” describes the environment variables that affect the behavior of
the PGI compilers.

Chapter 11, “Distributing Files - Deployment” describes the deployment of your files once you have built,
debugged and compiled them successfully.

Chapter 12, “Inter-language Calling” provides examples showing how to place C Language calls in a Fortran
program and Fortran Language calls in a C program.

Chapter 13, “Programming Considerations for 64-Bit Environments” discusses issues of which
programmers should be aware when targeting 64-bit processors.

Chapter 14, “C/C++ Inline Assembly and Intrinsics” describes how to use inline assembly code in C and C+
+ programs, as well as how to use intrinsic functions that map directly to x86 and x64 machine instructions.

Part II, Reference Information, contains these chapters:

Chapter 15, “Fortran, C, and C++ Data Types” describes the data types that are supported by the PGI Fortran,
C, and C++ compilers.

Chapter 16, “Command-Line Options Reference” provides a detailed description of each command-line
option.

Chapter 17, “OpenMP Reference Information” contains detailed descriptions of each of the OpenMP
directives and pragmas that PGI supports.

Chapter 18, “PGI Accelerator Compilers Reference "contains detailed descriptions of each of the PGI
Accelerator directives, runtime routines, and environment variables that PGI supports.

Chapter 19, “C++ Name Mangling” describes the name mangling facility and explains the transformations of
names of entities to names that include information on aspects of the entity’s type and a fully qualified name.

Chapter 20, “Directives and Pragmas Reference” contains detailed descriptions of PGI's proprietary
directives and pragmas.

Chapter 21, “Run-time Environment” describes the assembly language calling conventions and examples of
assembly language calls.

Chapter 22, “C++ Dialect Supported” lists more details of the version of the C++ language that PGC++
supports.

Chapter 23, “Fortran Module/Library Interfaces for Windows” provides a description of the Fortran module
library interfaces that PVF supports, describing each property available.

XXiii

Hardware and Software Constraints

Chapter 24, “C/C++ MMX/SSE Inline Intrinsics” provides tables that list the MMX Inline Intrinsics
(mmintrin.h), the SSE1 inline intrinsics (xmmintrin.h), and SSE2 inline intrinsics (emmintrin.h).

Chapter 25, “Messages” provides a list of compiler error messages.

Hardware and Software Constraints

This guide describes versions of the PGI compilers that produce assembly code for x86 and x64 processor-
based systems. Details concerning environment-specific values and defaults and system-specific features or
limitations are presented in the release notes delivered with the PGI compilers.

Conventions

The PGI User's Guide uses the following conventions:

italic
Italic font is for emphasis.

Constant Wdth

Constant width font is for commands, filenames, directories, examples and for language statements in the
text, including assembly language statements.

[item1]
Square brackets indicate optional items. In this case item1 is optional.

{ item? | item 3}
Braces indicate that a selection is required. In this case, you must select either item2 or item3.

filename...

Ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this example, multiple
filenames are allowed.

FORTRAN

Fortran language statements are shown in the text of this guide using upper-case characters and a reduced
point size.

The PGI compilers and tools are supported on both 32-bit and 64-bit variants of Linux, Mac OS X, and
Windows operating systems on a variety of x86-compatible processors. There are a wide variety of releases
and distributions of each of these types of operating systems. Further, The PGI User’s Guide uses a number
of terms with respect to these platforms. For a complete definition of these terms and other terms in

this guide with which you may be unfamiliar, PGI provides a glossary of terms which you can access at
www.pgroup.com/support/definitions.htm.

AMDG64 linux86 0sx86 static linking
barcelona linux86-64 0sx86-64 Win32

DLL Mac 0S X shared library Win64
driver -mcmodel=small SSE Windows
dynamic library -mcmodel=medium SSE1 x04

XXiv

Preface

EM64T MPI SSE2 x86
hyperthreading (HT) ~ |MPICH SSE3 x87
[1A32 multi-core SSE4A and ABM

Large arrays NUMA SSSE3

The following table lists the PGI compilers and tools and their corresponding commands:

Table 1. PGl Compilers and Commands

Compiler or Tool |Language or Function Command

PGF77 FORTRAN 77 pgf77

PGF95 Fortran 90/95 pgf95

PGFORTRAN PGI Fortran pgfortran

PGHPF High Performance Fortran pghpf

PGCC C ANSI €99 and K&R C pgcc

PGC++ ANSI C++ with cfront features | pgcpp on Windows
pgCC on Linux

PGDBG Source code debugger pgdbg

PGPROF Performance profiler pgprof

Note

The commands pgf95 and pgfortran are equivalent.

In general, the designation PGI Fortran is used to refer to The Portland Group’s Fortran 90/95 compiler, and
pgfortran is used to refer to the command that invokes the compiler. A similar convention is used for each of
the PGI compilers and tools.

For simplicity, examples of command-line invocation of the compilers generally reference the pgfortran
command, and most source code examples are written in Fortran. Usage of the PGF77 compiler, whose
features are a subset of PGF95 or PGFORTRAN, is similar. Usage of PGHPE, PGC++, and PGCC is consistent
with PGF95, PGFORTRAN, and PGF77, though there are command-line options and features of these compilers
that do not apply to PGF95, PGFORTRAN, and PGF77, and vice versa.

There are a wide variety of x86-compatible processors in use. All are supported by the PGI compilers and
tools. Most of these processors are forward-compatible, but not backward-compatible, meaning that code
compiled to target a given processor will not necessarily execute correctly on a previous-generation processor.

A table listing the processor options that PGI supports is available in the Release Notes. The table also includes
the features utilized by the PGI compilers that distinguish them from a compatibility standpoint.

In this manual, the convention is to use "x86" to specify the group of processors that are "32-bit" but not "64-
bit." The convention is to use "x64" to specify the group of processors that are both "32-bit" and "64-bit." x86
processor-based systems can run only 32-bit operating systems. x64 processor-based systems can run either

XXV

Related Publications

32-bit or 64-bit operating systems, and can execute all 32-bit x86 binaries in either case. x64 processors
have additional registers and 64-bit addressing capabilities that are utilized by the PGI compilers and tools
when running on a 64-bit operating system. The prefetch, SSE1, SSE2 and SSE3 processor features further
distinguish the various processors. Where such distinctions are important with respect to a given compiler
option or feature, it is explicitly noted in this manual.

Note

The default for performing scalar floating-point arithmetic is to use SSE instructions on targets that
support SSE1 and SSE2.

Related Publications

The following documents contain additional information related to the x86 and x64 architectures, and the
compilers and tools available from The Portland Group.

* PGl Fortran Reference manual describes the FORTRAN 77, Fortran 90/95, and HPF statements, data
types, input/output format specifiers, and additional reference material related to use of the PGI Fortran
compilers.

o System VApplication Binary Interface Processor Supplement by AT&T UNIX System Laboratories, Inc.
(Prentice Hall, Inc.).

o System V Application Binary Interface X86-64 Architecture Processor Supplement, www.x86-64.org/
abi.pdf.

e Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press, Cambridge, Mass, 1997.

* Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).

e [BM VS Fortran, IBM Corporation, Rev. GC26-4119.

e The C Programming Language by Kernighan and Ritchie (Prentice Hall).

* (: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall, 1987).

e The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT&T Bell Laboratories,
Inc. (Addison-Wesley Publishing Co., 1990).

* OpenMP Application Program Interface, Version 2.5 May 2005 (OpenMP Architecture Review Board,
1997-2005).

XXVi

Part |. Compiler Usage

Users typically begin by wanting to know how to use a product and often then find that they need more information
and facts about specific areas of the product. Knowing how as well as why you might use certain options or perform
certain tasks is key to using the PGI compilers and tools effectively and efficiently. In the chapters in this part of the
guide you learn how to:

Get started using the PGI compilers, as described in Chapter 1, “Getting Started” on page 1.

Use the most common command line options and learn why specific ones are especially beneficial for you to use,
as described in Chapter 2, “Using Command Line Options” on page 17.

Use optimization and parallelization to increase the performance of your program, as described in Chapter 3,
“Optimizing & Parallelizing” on page 23.

Invoke function inlining and create an inline library, as described in Chapter 4, “Using Function Inlining” on
page 49.

Use OpenMP directives, pragmas, run-time libraries, and environment variables, as described in Chapter 5, “Using
OpenMP” on page 55.

Use MPJ, including compiling, linking and generating MPI profile data, as described in Chapter 6, “Using MPI” on
page 73.

Using PGI Accelerator compilers, as described in Chapter 7, “Using an Accelerator” on page 83.
Use PGI directives and pragmas, as described in Chapter 8, “Using Directives and Pragmas” on page 107.
Create and use libraries, as described in Chapter 9, “Creating and Using Libraries” on page 117.

Create and use environment variables to control the behavior of PGI software, as described in Chapter 10, “Using
Environment Variables” on page 131.

Distribute files and deploy your applications, as described in Chapter 11, “Distributing Files - Deployment” on
page 145.

Make inter-language calls, as described in Chapter 12, “Inter-language Calling” on page 151.

Incorporate programming considerations for 64-bit environments, as described in Chapter 13, “Programming
Considerations for 64-bit Environments™ on page 167.

Properly use C/C++ inline assembly instructions and intrinsics, as described in Chapter 14, “C/C++ Inline
Assembly and Intrinsics” on page 175.

Chapter 1. Getting Started

This chapter describes how to use the PGI compilers.

The command used to invoke a compiler, such as the pgfortran command, is called a compiler driver. The
compiler driver controls the following phases of compilation: preprocessing, compiling, assembling, and
linking. Once a file is compiled and an executable file is produced, you can execute, debug, or profile the
program on your system. Executables produced by the PGI compilers are unconstrained, meaning they can be
executed on any compatible x86 or x64 processor-based system, regardless of whether the PGI compilers are
installed on that system.

Overview

In general, using a PGI compiler involves three steps:

1. Produce a program source code in a file containing a . f extension or another appropriate extension, as
described in “Input Files,” on page 4. This program may be one that you have written or one that you
are modifying.

2. Compile the program using the appropriate compiler command.

3. Execute, debug, or profile the executable file on your system.

You might also want to deploy your application, though this is not a required step.

The PGI compilers allow many variations on these general program development steps. These variations
include the following:

e Stop the compilation after preprocessing, compiling or assembling to save and examine intermediate
results.

e Provide options to the driver that control compiler optimization or that specify various features or
limitations.

e Include as input intermediate files such as preprocessor output, compiler output, or assembler output.

Invoking the Command-level PGl Compilers

Invoking the Command-level PGl Compilers

To translate and link a Fortran, G, or C++ program, the pgf77, pgf95, pgfortran, pghpf, pgcc, and pgepp
commands do the following:

1. Preprocess the source text file.
2. Check the syntax of the source text.
3. Generate an assembly language file.

4. Pass control to the subsequent assembly and linking steps.

Example 1.1. Hello program

Let’s look at a simple example of using the PGI compiler to create, compile, and execute a program that prints
hello.

Step 1: Create your program.

For this example, suppose you enter the following simple Fortran program in the file hel | o. f

print *, "hello"
end

Step 2: Compile the program.

When you created your program, you called it hel | o. f . In this example, we compile it from a shell
command prompt using the default pgfortran driver option. Use the following syntax:

PG $ pgfortran hello.f
PA $

By default, the executable output is placed in the file a. out , or, on Windows platforms, in a filename based on
the name of the first source or object file on the command line. However, you can specify an output file name
by using the —o option.

To place the executable output in the file hel | o, use this command:

PA $ pgfortran -o hello hello.f
PG $

Step 3: Execute the program.

To execute the resulting hello program, simply type the filename at the command prompt and press the Return
or Enter key on your keyboard:

PA$ hello

hel |l o
PG $

Command-line Syntax

The compiler command-line syntax, using pgfortran as an example, is:

pgfortran [options] [path]filename [...]

Chapter 1. Getting Started

Where:

options
is one or more command-line options, all of which are described in detail in Chapter 2, “Using
Command Line Options”.

path
is the pathname to the directory containing the file named by filename. If you do not specify the path for a
filename, the compiler uses the current directory. You must specify the path separately for each filename
not in the current directory.

filename
is the name of a source file, preprocessed source file, assembly-language file, object file, or library to be
processed by the compilation system. You can specify more than one [path]filename.

Command-line Options

The command-line options control various aspects of the compilation process. For a complete alphabetical
listing and a description of all the command-line options, refer to Chapter 2, “Using Command Line
Options”.

The following list provides important information about proper use of command-line options.

e (ase is significant for options and their arguments.

e The compiler drivers recognize characters preceded by a hyphen (-) as command-line options. For
example, the —M i st option specifies that the compiler creates a listing file.

Note

The convention for the text of this manual is to show command-line options using a dash instead of
a hyphen; for example, you see —M i st .

 The PGC++ command recognizes a group of characters preceded by a plus sign (+) as command-line
options.

e The order of options and the filename is flexible. That is, you can place options before and after the
filename argument on the command line. However, the placement of some options is significant, such as the
—I option, in which the order of the filenames determines the search order.

Note

If two or more options contradict each other, the /ast one in the command line takes precedence.

Fortran Directives and C/C++ Pragmas

You can insert Fortran directives and C/C++ pragmas in program source code to alter the effects of certain
command-line options and to control various aspects of the compilation process for a specific routine or a
specific program loop. For more information on Fortran directives and C/C++ pragmas, refer to Chapter 5,
“Using OpenMP” and Chapter 8, “Using Directives and Pragmas”.

Filename Conventions

Filename Conventions

The PGI compilers use the filenames that you specify on the command line to find and to create input and
output files. This section describes the input and output filename conventions for the phases of the compilation
process.

Input Files

You can specify assembly-language files, preprocessed source files, Fortran/C/C++ source files, object files,
and libraries as inputs on the command line. The compiler driver determines the type of each input file by
examining the filename extensions.

Note

For systems with a case-insensitive file system, use the —Mpreprocess option, described in Chapter 16,
“Command-Line Options Reference”, under the commands for Fortran preprocessing.

The drivers use the following conventions:

filename.f
indicates a Fortran source file.

filename.F
indicates a Fortran source file that can contain macros and preprocessor directives (to be preprocessed).

filename.FOR
indicates a Fortran source file that can contain macros and preprocessor directives (to be preprocessed).

filename.F95
indicates a Fortran 90/95 source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.f00
indicates a Fortran 90/95 source file that is in freeform format.

filename.f95
indicates a Fortran 90/95 source file that is in freeform format.

filename.cuf
indicates a Fortran 90/95 source file in free format with CUDA Fortran extensions.

filename.CUF
indicates a Fortran 90/95 source file in free format with CUDA Fortran extensions and that can contain
macros and preprocessor directives (to be preprocessed).

filename.hpf
indicates an HPF source file.

filename.c
indicates a C source file that can contain macros and preprocessor directives (to be preprocessed).

filename.C
indicates a C++ source file that can contain macros and preprocessor directives (to be preprocessed).

Chapter 1. Getting Started

filename.i
indicates a preprocessed C or C++ source file.

filename.cc
indicates a C++ source file that can contain macros and preprocessor directives (to be preprocessed).

filename.s
indicates an assembly-language file.

filename.o
(Linux and Mac OS X) indicates an object file.

filename.obj
(Windows systems only) indicates an object file.

filename.a
(Linux and Mac OS X) indicates a library of object files.

filename.lib
(Windows systems only) indicates a statically-linked library of object files or an import library.

filename.so
(Linux only) indicates a library of shared object files.

filename.dll
(Windows systems only) indicates a dynamically-linked library.

filename.dylib
(Mac OS X systems only) indicates a dynamically-linked library.

The driver passes files with . s extensions to the assembler and files with .o, .obj, .so, .dll, .a and .lib
extensions to the linker. Input files with unrecognized extensions, or no extension, are also passed to the
linker.

Files with a . F (Capital F) or . FOR suffix are first preprocessed by the Fortran compilers and the output is
passed to the compilation phase. The Fortran preprocessor functions like cpp for C/C++ programs, but is
built in to the Fortran compilers rather than implemented through an invocation of cpp. This design ensures
consistency in the preprocessing step regardless of the type or revision of operating system under which you're
compiling.

Any input files not needed for a particular phase of processing are not processed. For example, if on

the command line you specify an assembly-language file (filename.s) and the —S option to stop before

the assembly phase, the compiler takes no action on the assembly language file. Processing stops after
compilation and the assembler does not run. In this scenario, the compilation must have been completed in
a previous pass which created the . s file. For a complete description of the —S option, refer to the following
section:“Output Files”.

In addition to specifying primary input files on the command line, code within other files can be compiled
as part of include files using the | NCLUDE statement in a Fortran source file or the pr epr ocessor
#i ncl ude directive in Fortran source files that use a . F extension or C and C++ source files.

Filename Conventions

When linking a program with a library, the linker extracts only those library components that the program
needs. The compiler drivers link in several libraries by default. For more information about libraries, refer to
Chapter 9, “Creating and Using Libraries”.

Output Files

By default, an executable output file produced by one of the PGI compilers is placed in the file a.out, or, on
Windows, in a filename based on the name of the first source or object file on the command line. As the
example in the preceding section shows, you can use the —o option to specify the output file name.

If you use one of the options: —F (Fortran only), —P (C/C++ only), —S or —c, the compiler produces a file
containing the output of the last completed phase for each input file, as specified by the option supplied. The
output file will be a preprocessed source file, an assembly-language file, or an unlinked object file respectively.
Similarly, the —E option does not produce a file, but displays the preprocessed source file on the standard
output. Using any of these options, the —o option is valid only if you specify a single input file. If no errors
occur during processing, you can use the files created by these options as input to a future invocation of any of
the PGI compiler drivers. The following table lists the stop-after options and the output files that the compilers
create when you use these options. It also describes the accepted input files.

Table 1.1. Stop-after Options, Inputs and Outputs

Option |Stop after Input Output
—E preprocessing | Source files. preprocessed file to standard out
—F preprocessing |Source files. This option is not valid |preprocessed file (.f)
for pgcc or pgepp.
-P preprocessing |Source files. This option is not valid |preprocessed file (.i)
for pgf77, pgf9s, pgfortran or pghpf.
=S compilation Source files or preprocessed files. assembly-language file (.s)
—C assembly Source files, preprocessed files or |unlinked object file (.0 or .obj)
assembly-language files.
none linking Source files, preprocessed files, executable file (a.out or .exe)
assembly-language files, object files
or libraries.

If you specify multiple input files or do not specify an object filename, the compiler uses the input filenames
to derive corresponding default output filenames of the following form, where filename is the input filename
without its extension:

filename.f
indicates a preprocessed file, if you compiled a Fortran file using the —F option.

filename.i
indicates a preprocessed file, if you compiled using the —P option.

filename.lst
indicates a listing file from the —M i st option.

Chapter 1. Getting Started

filename.o or filename.obj
indicates an object file from the —c option.

filename.s
indicates an assembly-language file from the —S option.

Note

Unless you specify otherwise, the destination directory for any output file is the current working
directory. If the file exists in the destination directory, the compiler overwrites it.

The following example demonstrates the use of output filename extensions.
$ pgfortran -c proto.f protol.F

This produces the output files proto.o and proto1.0, or, on Windows, proto.obj and proto1.obj all of which
are binary object files. Prior to compilation, the file proto1.F is preprocessed because it has a .F filename
extension.

Fortran, C, and C++ Data Types

The PGI Fortran, C, and C++ compilers recognize scalar and aggregate data types. A scalar data type holds
a single value, such as the integer value 42 or the real value 112.6. An aggregate data type consists of one or
more scalar data type objects, such as an array of integer values.

For information about the format and alignment of each data type in memory, and the range of values each
type can have on x86 or x64 processor-based systems running a 32-bit operating system, refer to Chapter 15,
“Fortran, C, and C++ Data Types”.

For more information on x86-specific data representation, refer to the System V Application Binary Interface
Processor Supplement by AT&T UNIX System Laboratories, Inc. (Prentice Hall, Inc.).

This manual specifically does not address x64 processor-based systems running a 64-bit operating system,
because the application binary interface (ABI) for those systems is still evolving. For the latest version of this
ABI, see www.x86-64.org/abi.pdf.

Parallel Programming Using the PGI Compilers
The PGI compilers support three styles of parallel programming;

e Automatic shared-memory parallel programs compiled using the —Mconcur option to pgf77, pgf95,
pgfortran, pgce, or pgepp — parallel programs of this variety can be run on shared-memory parallel
(SMP) systems such as dual-core or multi-processor workstations.

e OpenMP shared-memory parallel programs compiled using the —np option to pgf77, pgf95, pgfortran,
pgcc, or pgepp — parallel programs of this variety can be run on SMP systems. Carefully coded user-
directed parallel programs using OpenMP directives can often achieve significant speed-ups on dual-core
workstations or large numbers of processors on SMP server systems. Chapter 5, “Using OpenMP” contains
complete descriptions of user-directed parallel programming.

e Data parallel shared- or distributed-memory parallel programs compiled using the PGHPF High
Performance Fortran compiler — parallel programs of this variety can be run on SMP workstations or

Parallel Programming Using the PGI Compilers

servers, distributed-memory clusters of workstations, or clusters of SMP workstations or servers. Coding
a data parallel version of an application can be more work than using OpenMP directives, but has the
advantage that the resulting executable is usable on all types of parallel systems regardless of whether
shared memory is available. See the PGHPF User’s Guide for a complete description of how to build and
execute data parallel HPF programs.

In this manual, the first two types of parallel programs are collectively referred to as SMP parallel programs.
The third type is referred to as a data parallel program, or simply as an HPF program.

On a single silicon die, some newer CPUs incorporate two or more complete processor cores - functional
units, registers, level 1 cache, level 2 cache, and so on. These CPUs are known as multi-core processors. For
purposes of HPF, threads, or OpenMP parallelism, these cores function as two or more distinct processors.
However, the processing cores are on a single chip occupying a single socket on a system motherboard. For
purposes of PGI software licensing, a multi-core processor is treated as a single CPU.

Running SMP Parallel Programs

When you execute an SMP parallel program, by default it uses only one processor. To run on more than one
processor, set the NCPUS environment variable to the desired number of processors, subject to 2 maximum
of four for PGI's workstation-class products. For information on how to set environment variables, refer
to“Setting Environment Variables,” on page 131

Note

If you set NCPUS to a number larger than the number of physical processors, your program may
execute very slowly.

Running Data Parallel HPF Programs

When you execute an HPF program, by default it will use only one processor. If you wish to run on more than
one processor, use the -pghpf -np run-time option. For example, to compile and run the hello.f example
defined in “Hello program,” on page 2 on one processor, you would issue the following commands:

% pghpf -0 hello hello.f

Li nki ng:

% hel | o

hel | o
%

To execute it on two processors, you would issue the following commands:
% hell o - pghpf -np 2

hel | o
%

Note

If you specify 2 number larger than the number of physical processors, your program will execute
very slowly.

You still only see a single "hello" printed to your screen. This is because HPF is a single-threaded model,
meaning that all statements execute with the same semantics as if they were running in serial. However,

Chapter 1. Getting Started

parallel statements or constructs operating on explicitly distributed data are in fact executed in parallel.

The programmer must manually insert compiler directives to cause data to be distributed to the available
processors. See the PGHPF User’s Guide and The High Performance Fortran Handbook for more details on
constructing and executing data parallel programs on shared-memory or distributed-memory cluster systems
using PGHPE

Platform-specific considerations

The following list are the platforms supported by the PGI Workstation and PGI Server compilers and tools:

e 32-bit Linux — supported on 32-bit Linux operating systems running on either a 32-bit x86 compatible or an
x64 compatible processor.

* 4-bit/32-bit Linux — includes all features and capabilities of the 32-bit Linux version, and is also supported
on 64-bit Linux operating systems running on an x64 compatible processor.

* 32-bit Windows — supported on 32-bit Windows operating systems running on either a 32-bit x86
compatible or an x64-compatible processor.

e 04-bit/32-bit Windows — includes all features and capabilities of the 32-bit Windows version; also supported
on 64-bit Windows operating systems running an x64- compatible processor.

e 32-bit Mac OS X — supported on 32-bit Mac OS X operating systems running on either a 32-bit or 64-bit
Intel-based Mac system.

e 04-bit Mac OS X — supported on 64-bit Mac OS X operating systems running on a 64-bit Intel-based Mac
system.

The following sections describe the specific considerations required to use the PGI compilers on the various
platforms: Linux, Windows, and Mac OS X.

Using the PGI Compilers on Linux

Linux Header Files

The Linux system header files contain many GNU gcc extensions. PGI supports many of these extensions, thus
allowing the PGCC C and C++ compilers to compile most programs that the GNU compilers can compile. A few
header files not interoperable with the PGI compilers have been rewritten. These files are included in $PG /

| i nux86/ i ncl ude, such as si gset . h, asni byt eor der . h, st ddef . h, asnf posi x_t ypes. h and
others. Also, PGI's version of st dar g. h supports changes in newer versions of Linux.

If you are using the PGCC C or C++ compilers, please make sure that the supplied versions of these include
files are found before the system versions. This hierarchy happens by default unless you explicitly add a —I
option that references one of the system i ncl ude directories.

Running Parallel Programs on Linux

You may encounter difficulties running auto-parallel or OpenMP programs on Linux systems when the
per-thread stack size is set to the default (2MB). If you have unexplained failures, please try setting the
environment variable OVP_STACKSI ZE to a larger value, such as 8MB. For information on setting
environment variables, refer to “Setting Environment Variables,” on page 131.

Platform-specific considerations

If your program is still failing, you may be encountering the hard 8 MB limit on main process stack sizes in
Linux. You can work around the problem by issuing the following command in csh:

%limt stacksize unlimted
in bash, sh, zsh, or ksh, use:

$ulimt -s unlimted

Using the PGI Compilers on Windows

PGI on the Windows Start Menu

PGI provides a Start menu entry that provides access to different versions of PGI command shells as well as
easy access to the PGI Debugger, the PGI Profiler, documentation, and licensing. The following sections provide
a quick overview of the menu selections.

To access the main PGI menu, from the Start menu, select Start | All Programs | PGI Workstation.

Command Shell Submenus

From the PGI Workstation menu, you have access to PGI command shells for each version of PGI installed on
your system. For example, if you have PGI 10.1 and PGI 10.2 installed, then you have a submenu for each of
these versions.

The PGI submenus for each version include the following:

* PGI Bash (64) — Select this option to launch a Cygwin bash shell in which the environment is pre-
initialized to use the 64-bit PGI compilers and tools. The default environment variables are already set and
available. (Available only on x64 systems with Cygwin installed.)

 PGI Bash — Select this option to launch a Cygwin bash shell in which the environment is pre-initialized
to use the 32-bit PGI compilers and tools. The default environment variables are already set and available.
(Available only on systems with Cygwin installed.)

e PGI Cmd (64) — Select this option to launch a Microsoft command shell in which the environment is pre-
initialized to use the 64-bit PGI compilers and tools. The default environment variables are already set and
available. (Available only on x64 systems.)

e PGI Cmd — Select this option to launch a Microsoft command shell in which the environment is pre-
initialized to use the 32-bit PGI compilers and tools. The default environment variables are already set and
available.

The command window launched by PGI Workstation can be customized using the "Properties” selection on the
menu accessible by right-clicking the window's title bar.

Debugger & Profiler Submenu

10

From the Debugger & Profiler menu, you have access to the PGI debugging and profiling tools. PGDBG is a
symbolic debugger for Fortran, C, C++ and assembly language programs. It provides debugger features, such
as execution control using breakpoints, single-stepping, and examination and modification of application
variables, memory locations, and registers.

Chapter 1. Getting Started

PGDBG Debugger (64) — Select this option to launch the PGI debugger, PGDBG, for use with 64-bit
applications.

PGDBG Debugger — Select this option to launch the PGI debugger, PGDBG, for use with 32-bit
applications.

PGPROF Performance Profiler — Select this option to launch the PGPROF Performance Profiler. PGPROF
provides a way to visualize and diagnose the performance of the components of your program, and provides
features for helping you to understand why certain parts of your program have high execution times.

Documentation Submenu

From the Documentation menu, you have access to all PGI documentation that is useful for PGI users. The
documentation that is available includes the following:

AMD Core Math Library— Select this option to display documentation that describes elements of the
AMD Core Math Library, a software development library released by AMD that includes a set of useful
mathematical routines optimized for AMD processors.

CUDA Fortran Reference— Select this option to display the CUDA Fortran Programming Guide and
Reference. This document describes CUDA Fortran, a small set of extensions to Fortran that support and
build upon the CUDA computing architecture.

Fortran Language Reference— Select this option to display the PGI Fortran Reference. This document
describes The Portland Group's implementation of the FORTRAN 77 and Fortran 90/95 languages and
presents the Fortran language statements, intrinsics, and extension directives.

Installation Guide— Select this option to display the PGI Server and Workstation Installation Guide.
This document provides an overview of the steps required to successfully install and license PGI Server and
PGI Workstation.

Release Notes— Select this option to display the latest PGI Server and Workstation Release Notes. This
document describes changes between previous releases and the current release.

Tools Guide— Select this option to display the PGI Tools Guide. This guide describes how to use the
PGPROF profiler and PGDBG debugger to tune and debug serial and parallel applications built with PGI
compilers. It contains information about how to use the tools, as well as detailed reference information on
commands and graphical interfaces.

User’s Guide— Select this option to display the PGI User's Guide. This document provides operating
instructions for the PGI command-level development environment as well as details concerning the PGI
compilers' interpretation of the Fortran language, implementation of Fortran language extensions, and
command-level compilation.

Licensing Submenu

From the Licensing menu, you have access to the PGI License Agreement and an automated license generating
tool:

Generate License— Select this option to display the PGI License Setup dialog that walks you through the
steps required to download and install a license for PGI Workstation or PGI Server. To complete this process
you need an internet connection.

11

Platform-specific considerations

* License Agreement— Select this option to display the license agreement that is associated with use of PGI
software.

PGl on the Windows Desktop

By default, a PGI Workstation installation creates a shortcut on the Windows desktop. This shortcut launches
a Cygwin bash shell if Cygwin is installed; otherwise it launches a Microsoft command shell. The environment
for this shell is pre-configured to use PGI compilers and tools. On 64-bit systems, the 64-bit compilers are
targeted, while on 32-bit systems, the 32-bit compilers are targeted.

BASH Shell Environment (Cygwin)

A UNIX-like shell environment, Cygwin, is bundled with PGI compilers and tools for Windows to provide a
familiar development environment for Linux or UNIX users.

After installation of PGI Workstation or PGI Server, you have a PGI Workstation icon on your Windows desktop.
Double-left-click on this icon to launch an instance of the Cygwin bash command shell window. Working
within BASH is very much like working within the sh or ksh shells on a Linux system; yet BASH has a command
history feature similar to csh and several other unique features. Shell programming is fully supported.

The BASH shell window is pre-initialized for usage of the PGI compilers and tools, so there is no need to set
environment variables or modify your command path when the command window comes up. In addition to the
PGI compiler commands, within BASH you have access to over 100 common commands and utilities, including
but not limited to the following:

vi gzip / gunzip ftp

tar / untar grep / egrep / fgrep awk

sed cksum cp

cat dift du

date kill Is

find mv printenv / env
more / less touch wC

rm / rmdir make

If you are familiar with program development in a Linux environment, editing, compiling, and executing
programs within bash will be very comfortable. If you have not previously used such an environment, you
might want to familiarize yourself with v7 or other editors and with makef i | es. The Web has an extensive
online tutorial available for the vi editor as well as a number of thorough introductions to the construction and
use of makefil es.

ar or ranlib

For library compatibility, PGI provides versions of ar and ranlib that are compatible with native Windows
object-file formats. For more information on these commands, refer to “Creating and Using Static Libraries on
Windows,” on page 121.

12

Chapter 1. Getting Started

Using the PGI Compilers on Mac OS X

PGI Workstation 10.0 for Mac OS X supports most of the features of the 32-and 64-bit versions for linux86 and
linux86-64 environments. Typically the PGI compilers and tools on Mac OS X function identically to their Linux
counterparts.

Mac OS X Header Files

The Mac OS X header files contain numerous non-standard extensions. PGI supports many of these extensions,
thus allowing the PGCC C and C++ compilers to compile most programs that the GNU compilers can compile.
A few header files not interoperable with the PGI compilers have been rewritten. These files are included in
$PGI/0sx86/10.0/include or $PGI/0sx86-64/10.0/include. These files are: stdarg.h, stddef.h, and others.

If you are using the PGCC C or C++ compilers, please make sure that the supplied versions of these include
files are found before the system versions. This will happen by default unless you explicitly add a —I option that
references one of the system include directories.

Mac OS Debugging Requirements

Both the —g and —Mkeepobj switches play important roles when compiling a program on Apple Mac OS for
debugging.

¢ To debug a program with symbol information on the Mac OS, files must be compiled with the -g switch to
keep the program's object files, the files with a ".0" extension. Further, these object files must remain in the
same directory in which they were created.

e If a program is built with separate compile and link steps, by compiling with the -c switch which generates
the ".0" object files, then using the —g switch guarantees the required object files are available for
debugging.

Use the following command sequence to compile and then link your code.

To compile the programs, use these commands:

pgcc -c -g main.cpgcc -¢c -g foo.cpgcc -c -g bar.c

To link, use this command:

pgcc -g main.o foo.o bar.o

Linking on Mac OS X

On the Mac OS X, the PGI Workstation 10.0 compilers do not support static linking of user binaries. For
compatibility with future Apple updates, the compilers support dynamic linking of user binaries. For more
information on dynamic linking, refer to “Creating and Using Dynamic Libraries on Mac OS X,” on page 120.

Running Parallel Programs on Mac OS X

You may encounter difficulties running auto-parallel or OpenMP programs on Mac OS X systems when
the per-thread stack size is set to the default (8MB). If you have unexplained failures, please try setting
the environment variable OMP_STACKSIZE to a larger value, such as 16MB. For information on how to set
environment variables, refer to “Setting Environment Variables,” on page 131.

13

Site-specific Customization of the Compilers

Site-specific Customization of the Compilers

If you are using the PGI compilers and want all your users to have access to specific libraries or other files,
there are special files that allow you to customize the compilers for your site.

Using siterc Files

The PGI compiler drivers utilize a file named si t er c to enable site-specific customization of the behavior of
the PGI compilers. The si t er c file is located in the bi n subdirectory of the PGI installation directory. Using
si t er c, you can control how the compiler drivers invoke the various components in the compilation tool
chain.

Using User rc Files

14

In addition to the siterc file, user r c files can reside in a given user’s home directory, as specified by the user’s
HOME environment variable. You can use these files to control the respective PGI compilers. All of these files
are optional.

On Linux and Mac OS X, these files are named . nypgf 77r ¢, . nypgf 90r ¢, . mypgccrc, . mypgcpprc,
and . mypghpfrec.

On Windows, these files are named nypgf 77rc, nypgf90rc, nypgf95rc, nypgfortranrc,
nmypgccrc, mypgeppr c, and mypghpfrec.

The following examples show how these r ¢ files can be used to tailor a given installation for a particular
purpose.

Table 1.2. Examples of Using siterc and User rc Files

To do this... Add the line shown to the indicated file

Make available to all linux86-64 set S| TELI B=/ opt/ new i bs/ 64;
compilations the libraries found in
[opt/ new i bs/ 64

Make available to all linux86 set SI TELI B=/ opt/ newl i bs/ 32;

compilations the libraries found in
/opt/ new i bs/ 32

to/ opt/pgi/linux86-64/10.0/bin/siterc

to/opt/pgi/linux86/10.0/bin/siterc

Add to all linux86-64 compilations append S| TELI B=/opt/| ocal / f ast ;

a new library path: to/ opt/ pgi /i nux86- 64/ 10. 0/ bi n/ si terc
/opt/local/fast

Make available to all compilations set SITEINC=/ opt/acni /i ncl ude;

the include path

to /opt/pgi/linux86/10.0/bin/siterc and
[opt/pgi/linux86-64/10.0/bin/siterc

With linux86-64 compilations, set Pl LI BDI R=/ opt/ nynpi / 64;
change —-Mmpi to link in set Pl LI BNAVE=Ni x;

-1/opt/acm /include

Chapter 1. Getting Started

To do this... Add the line shown to the indicated file

Have linux86-64 compilations set S| TEDEF=I S64BI T AMD;

always add to/ opt/ pgi /1 i nux86- 64/ 10. 0/ bi n/ si terc
—DI S64BI T —DAVD

Build an F90 or F95 executable for set RPATH=./REDI ST ;

linux86-64 or linux80 that resolves
PGI shared objects in the relative
directory . / REDI ST Note. This only affects the behavior of PGFORTRAN for
the given user.

to~/ . nmypgfortranrc

Common Development Tasks

Now that you have a brief introduction to the compiler, let’s look at some common development tasks that you
might wish to perform.

e When you compile code you can specify a number of options on the command line that define specific
characteristics related to how the program is compiled and linked, typically enhancing or overriding the
default behavior of the compiler. For a list of the most common command line options and information on
all the command line options, refer to Chapter 2, “Using Command Line Options”.

* Code optimization and parallelization allows the compiler to organize your code for efficient execution.
While possibly increasing compilation time and making the code more difficult to debug, these techniques
typically produce code that runs significantly faster than code that does not use them. For more information
on optimization and parallelization, refer to Chapter 3, “Optimizing & Parallelizing”.

* Function inlining, a special type of optimization, replaces a call to a function or a subroutine with the body
of the function or subroutine. This process can speed up execution by eliminating parameter passing and
the function or subroutine call and return overhead. In addition, function inlining allows the compiler
to optimize the function with the rest of the code. However, function inlining may also result in much
larger code size with no increase in execution speed. For more information on function inlining, refer to
Chapter 4, “Using Function Inlining”.

e Directives and pragmas allow users to place hints in the source code to help the compiler generate
better assembly code. You typically use directives and pragmas to control the actions of the compiler in a
particular portion of a program without affecting the program as a whole. You place them in your source
code where you want them to take effect. A directive or pragma typically stays in effect from the point where
included until the end of the compilation unit or until another directive or pragma changes its status. For
more information on directives and pragmas, refer to Chapter 5, “Using OpenMP” and Chapter 8, “Using
Directives and Pragmas’.

e Alibrary is a collection of functions or subprograms used to develop software. Libraries contain "helper”
code and data, which provide services to independent programs, allowing code and data to be shared and
changed in 2 modular fashion. The functions and programs in a library are grouped for ease of use and
linking. When creating your programs, it is often useful to incorporate standard libraries or proprietary
ones. For more information on this topic, refer to Chapter 9, “Creating and Using Libraries”.

e Environment variables define a set of dynamic values that can affect the way running processes behave on a
computer. It is often useful to use these variables to set and pass information that alters the default behavior

15

Common Development Tasks

16

of the PGI compilers and the executables which they generate. For more information on these variables,
refer to Chapter 10, “ Using Environment Variables”.

Deployment, though possibly an infrequent task, can present some unique issues related to concerns
of porting the code to other systems. Deployment, in this context, involves distribution of a specific file
or set of files that are already compiled and configured. The distribution must occur in such a way that
the application executes accurately on another system which may not be configured exactly the same as
the system on which the code was created. For more information on what you might need to know to
successfully deploy your code, refer to Chapter 11, “Distributing Files - Deployment”.

e An intrinsic is a function available in a given language whose implementation is handled specially by the

compiler. Intrinsics make using processor-specific enhancements easier because they provide a C/C++
language interface to assembly instructions. In doing so, the compiler manages details that the user would
normally have to be concerned with, such as register names, register allocations, and memory locations
of data. For C/C++ programs, PGI provides support for MMX and SSE/SSE2/SSE3 intrinsics. For more
information on these intrinsics, refer to Chapter 24, “C/C++ MMX/SSE Inline Intrinsics”.

Chapter 2. Using Command Line
Options

A command line option allows you to control specific behavior when a program is compiled and linked. This
chapter describes the syntax for properly using command-line options and provides a brief overview of a few
of the more common options.

Note

For a complete list of command-line options, their descriptions and use, refer to Chapter 16,
“Command-Line Options Reference,” on page 199.

Command Line Option Overview

Before looking at all the command-line options, first become familiar with the syntax for these options. There
are a large number of options available to you, yet most users only use a few of them. So, start simple and
progress into using the more advanced options.

By default, the PGI compilers generate code that is optimized for the type of processor on which compilation is
performed, the compilation host. Before adding options to your command-line, review the sections “Help with
Command-line Options,” on page 18 and “Frequently-used Options,” on page 21.

Command-line Options Syntax

On a command-line, options need to be preceded by a hyphen (-). If the compiler does not recognize an
option, it passes the option to the linker.

This document uses the following notation when describing options:
[item]
Square brackets indicate that the enclosed item is optional.

{item | item}
Braces indicate that you must select one and only one of the enclosed items. A vertical bar (1) separates
the choices.

17

Help with Command-line Options

Horizontal ellipses indicate that zero or more instances of the preceding item are valid.

NOTE

Some options do not allow a space between the option and its argument or within an argument. When
applicable, the syntax section of the option description in Chapter 16, “Command-Line Options
Reference,” on page 199 contains this information.

Command-line Suboptions

Some options accept several suboptions. You can specify these suboptions either by using the full option
statement multiple times or by using a comma-separated list for the suboptions.

The following two command lines are equivalent:
pgf ortran - M/ect =sse - Mvect =noal t code

pgfortran - M/ect =sse, noal t code

Command-line Conflicting Options

Some options have an opposite or negated counterpart. For example, both—-Mrect and —Mhovect are
available. -Mvect enables vectorization and —vnovect disables it. If you used both of these commands on a
command line, they would conflict.

Note

Rule: When you use conflicting options on a command line, the last encountered option takes
precedence over any previous one.

This rule is important for a2 number of reasons.

 Some options, such as —f ast , include other options. Therefore, it is possible for you to be unaware that
you have conflicting options.

* You can use this rule to create makefiles that apply specific flags to a set of files, as shown in Example 2.1.
Example 2.1. Makefiles with Options

In this makefile fragment, CCFLAGS uses vectorization. CCNOVECTFLAGS uses the flags defined for CCFLAGS but
disables vectorization.

CCFLAGS=c - Mvect =sse
CCNOVECTFLAGS=$(CCFLAGS) - Mhovect

Help with Command-line Options

If you are just getting started with the PGI compilers and tools, it is helpful to know which options are
available, when to use them, and which options most users find effective.

Using —help

The —hel p option is useful because it provides information about all options supported by a given compiler.
You can use —hel p in one of three ways:

18

Chapter 2. Using Command Line Options

e Use —hel p with no parameters to obtain a list of all the available options with a brief one-line description
of each.

e Add a parameter to —hel p to restrict the output to information about a specific option. The syntax for this
usage is this:

—hel p <conmand |ine option>

Suppose you use the following command to restrict the output to information about the - f ast option:
$ pgfortran -help -fast

The output you see is similar to this:

-fast Conmon optim zations; includes -G -Minroll=c:1 -Moframe -Mre

In the following example, we add the —hel p parameter to restrict the output to information about the
help command. The usage information for —hel p shows how groups of options can be listed or examined
according to function.
$ pgfortran -help -help
- hel p[=gr oups| asnj debug| | anguage| | i nker | opt | ot her |

overal | | phase| prepro| suffi x| switch|target|vari abl e]

Show conpi | er switches

* Add a parameter to —hel p to restrict the output to a specific set of options or to a building process. The
syntax for this usage is this:

- hel p=<subgr oup>

By using the command pgf ortran - hel p - hel p, as previously shown, we can see output that shows
the available subgroups. You can use the following command to restrict the output on the —hel p command
to information about only the options related to only one group, such as debug information generation.

$ pgfortran -hel p=debug

The output you see is similar to this:

Debuggi ng swi t ches:

-M no] bounds Generate code to check array bounds

- Mchkf pst k Check consistency of floating point stack at subprogramcalls
(32-bit only)

-Mchkst k Check for sufficient stack space upon subprogramentry
-Mcof f Generate COFF fornmat object

-Miwar f 1 Generate DWARF1 debug information with -g

- Miwar f 2 Generate DWARF2 debug information with -g

- Midwar f 3 Gener ate DWARF3 debug information with -g

-Mel f Generate ELF format object

-g Generate information for debugger

-gopt Generate information for debugger without disabling
optim zations

For a complete description of subgroups, refer to “~help ,” on page 215.

Getting Started with Performance

One of the top priorities of most users is performance and optimization. This section provides a quick
overview of a few of the command-line options that are useful in improving performance.

19

Getting Started with Performance

Using —fast and —fastsse Options

PGI compilers implement a wide range of options that allow users a fine degree of control on each
optimization phase. When it comes to optimization of code, the quickest way to start is to use the options
—f ast and —f ast sse. These options create a generally optimal set of flags for targets that support SSE/
SSE2 capability. They incorporate optimization options to enable use of vector streaming SIMD (SSE/SSE2)
instructions for 64-bit targets. They enable vectorization with SSE instructions, cache alignment, and SSE
arithmetic to flush to zero mode.

Note

The contents of the —f ast and —f ast sse options are host-dependent. Further, you should use these
options on both compile and link command lines.

e —fast and —f ast sse typically include these options:

—02 Specifies a code optimization level of 2.

—Munroll=c:1 Unrolls loops, executing multiple instances of the loop during each
iteration.

—Mnoframe Indicates to not generate code to set up a stack frame.

—Milre Indicates loop-carried redundancy elimination.

—Mpre Indicates partial redundancy elimination.

e These additional options are also typically available when using —f ast for 64-bit targets or —f ast sse for
both 32- and 64-bit targets:
—Mvect=sse Generates SSE instructions.
—Mscalarsse Generates scalar SSE code with xmm registers; implies —Mflushz.
—Mcache_align Aligns long objects on cache-line boundaries.
—Mflushz Sets SSE to flush-to-zero mode.

—M[no]vect Controls automatic vector pipelining.

Note

For best performance on processors that support SSE instructions, use the PGFORTRAN compiler,
even for FORTRAN 77 code, and the —f ast option.

To see the specific behavior of —f ast for your target, use the following command:

$ pgfortran -help -fast

Other Performance-related Options

20

While —f ast and - f ast sse are options designed to be the quickest route to best performance, they are
limited to routine boundaries. Depending on the nature and writing style of the source code, the compiler
often can perform further optimization by knowing the global context of usage of a given routine. For instance,
determining the possible value range of actual parameters of a routine could enable a loop to be vectorized;
similarly, determining static occurrence of calls helps to decide which routine is beneficial to inline.

Chapter 2. Using Command Line Options

These types of global optimizations are under control of Interprocedural Analysis (IPA) in PGI compilers.
Option - M pa enables Interprocedural Analysis. - Mpi =f ast is the recommended option to get best
performances for global optimization. You can also add the suboption i nl i ne to enable automatic global
inlining across files. You might consider using —M pa=f ast , i nl i ne. This option for interprocedural
analysis and global optimization can improve performance.

You may also obtain further performance improvements by experimenting with the —M<pgf | ag> options
described in the section “—M Options by Category,” on page 259. These options include, but are not

limited to, —-Mconcur ,—Mvect , —Munr ol | , =M nl i ne, and —Mpf i / —Mpf o. However, performance
improvements using these options are typically application- and system-dependent. It is important to time your
application carefully when using these options to ensure no performance degradations occur.

For more information on optimization, refer to Chapter 3, “Optimizing & Parallelizing,” on page 23. For
specific information about these options, refer to “Optimization Controls,” on page 272.

Targeting Multiple Systems - Using the -tp Option

The —t p option allows you to set the target architecture. By default, the PGI compiler uses all supported
instructions wherever possible when compiling on a given system. As a result, executables created on a given
system may not be usable on previous generation systems. For example, executables created on a Pentium 4
may fail to execute on a Pentium III or Pentium II.

Processor-specific optimizations can be specified or limited explicitly by using the - t p option. Thus, it is
possible to create executables that are usable on previous generation systems. With the exception of k8-64,
k8-64e, p7-64, and x64, any of these sub-options are valid on any x86 or x64 processor-based system. The
k8-64, k8-64e, p7-64 and x64 options are valid only on x64 processor-based systems

For more information about the - t p option, refer to “—tp <target> [target...],” on page 241.

Frequently-used Options

In addition to overall performance, there are a number of other options that many users find useful when
getting started. The following table provides a brief summary of these options.

For more information on these options, refer to the complete description of each option available in
Chapter 16, “Command-Line Options Reference,” on page 199. Also, there are a number of suboptions
available with each of the —~Moptions listed. For more information on those options, refer to “—~M Options by
Category,” on page 259.

Table 2.1. Commonly Used Command Line Options

Option Description
—fast These options create a generally optimal set of flags for targets that
_fastsse support SSE/SSE2 capability. They incorporate optimization options

to enable use of vector streaming SIMD instructions (64-bit targets)
and enable vectorization with SEE instructions, cache aligned and
flushz.

21

Frequently-used Options

22

Option Description

-g Instructs the compiler to include symbolic debugging information in
the object module.

—gopt Instructs the compiler to include symbolic debugging information
in the object file, and to generate optimized code identical to that
generated when —g is not specified.

—help Provides information about available options.

—mcmodel=medium

Enables medium=model core generation for 64-bit targets; useful
when the data space of the program exceeds 4GB.

—Mconcur Instructs the compiler to enable auto-concurrentization of loops. If
specified, the compiler uses multiple processors to execute loops
that it determines to be parallelizable; thus, loop iterations are split
to execute optimally in a multithreaded execution context.

—Minfo Instructs the compiler to produce information on standard error.

—Minline Enables function inlining.

—Mipa=fast,inline

Enables interprocedural analysis and optimization. Also enables
automatic procedure inlining.

—Mpfi or —Mpfo

Enable profile feedback driven optimizations.

—Mkeepasm Keeps the generated assembly files.

—Munroll Invokes the loop unroller to unroll loops, executing multiple
instances of the loop during each iteration. This also sets the
optimization level to 2 if the level is set to less than 2, or if no —O or
—g options are supplied.

—M|[no]vect Enables/Disables the code vectorizer.

--[no_]exceptions

Removes exception handling from user code.

For C++, declares that the functions in this file generate no C++
exceptions, allowing more optimal code generation.

—0

Names the output file.

—O<level>

Specifies code optimization level where <level> is 0, 1, 2, 3, or 4.

—tp <target> [target...]

Specify the target processor(s); for the 64-bit compilers, more than
one target is allowed, and enables generation of PGI Unified Binary
executables.

Chapter 3. Optimizing & Parallelizing

Source code that is readable, maintainable, and produces correct results is not always organized for efficient
execution. Normally, the first step in the program development process involves producing code that executes
and produces the correct results. This first step usually involves compiling without much worry about
optimization. After code is compiled and debugged, code optimization and parallelization become an issue.

Invoking one of the PGI compiler commands with certain options instructs the compiler to generate optimized
code. Optimization is not always performed since it increases compilation time and may make debugging
difficult. However, optimization produces more efficient code that usually runs significantly faster than code
that is not optimized.

Note

PGI provides a profiler, PGPROF, that provides a way to visualize the performance of the components
of your program. Using tables and graphs, PGPROF associates execution time and resource utilization
data with the source code and instructions of your program, allowing you to see where execution time
is spent. Through resource utilization data and compiler analysis information, PGPROF helps you to
understand why certain parts of your program have high execution times.

The compilers optimize code according to the specified optimization level. You can use a number of options
to specify the optimization levels, including —O, —~Mvect , —M pa, and —Mconcur . In addition, you can use
several of the —M<pgflag> switches to control specific types of optimization and parallelization.

This chapter describes the optimization options displayed in the following list.

—f ast —M nline —Mpf i —Mrect
—Mconcur —M pa=f ast —Mof o -0
-M nfo —Mnegi nfo —Munr ol | —Msaf eptr

This chapter also describes how to choose optimization options to use with the PGI compilers. This overview
will help if you are just getting started with one of the PGI compilers, or wish to experiment with individual
optimizations. Complete specifications of each of these options is available in Chapter 16, “Command-Line
Options Reference’.

23

Overview of Optimization

Overview of Optimization

In general, optimization involves using transformations and replacements that generate more efficient

code. This is done by the compiler and involves replacements that are independent of the particular target
processor’s architecture as well as replacements that take advantage of the x86 or x64 architecture, instruction
set and registers. For the discussion in this and the following chapters, optimization is divided into the
following categories:

Local Optimization

This optimization is performed on a block-by-block basis within a program’s basic blocks. A basic block is
a sequence of statements in which the flow of control enters at the beginning and leaves at the end without
the possibility of branching, except at the end. The PGI compilers perform many types of local optimization
including: algebraic identity removal, constant folding, common sub-expression elimination, redundant load
and store elimination, scheduling, strength reduction, and peephole optimizations.

Global Optimization

This optimization is performed on a program unit over all its basic blocks. The optimizer performs control-
flow and data-flow analysis for an entire program unit. All loops, including those formed by IFs and GOTOs,
are detected and optimized. Global optimization includes: constant propagation, copy propagation, dead store
elimination, global register allocation, invariant code motion, and induction variable elimination.

Loop Optimization: Unrolling, Vectorization, and Parallelization

The performance of certain classes of loops may be improved through vectorization or unrolling options.
Vectorization transforms loops to improve memory access performance and make use of packed SSE
instructions which perform the same operation on multiple data items concurrently. Unrolling replicates the
body of loops to reduce loop branching overhead and provide better opportunities for local optimization,
vectorization and scheduling of instructions. Performance for loops on systems with multiple processors may
also improve using the parallelization features of the PGI compilers.

Interprocedural Analysis (IPA) and Optimization

Interprocedural analysis (IPA) allows use of information across function call boundaries to perform
optimizations that would otherwise be unavailable. For example, if the actual argument to a function is in fact
a constant in the caller, it may be possible to propagate that constant into the callee and perform optimizations
that are not valid if the dummy argument is treated as a variable. A wide range of optimizations are enabled

or improved by using IPA, including but not limited to data alignment optimizations, argument removal,
constant propagation, pointer disambiguation, pure function detection, FO0/F95 array shape propagation, data
placement, vestigial function removal, automatic function inlining, inlining of functions from pre-compiled
libraries, and interprocedural optimization of functions from pre-compiled libraries.

Function Inlining

This optimization allows a call to a function to be replaced by a copy of the body of that function. This
optimization will sometimes speed up execution by eliminating the function call and return overhead. Function
inlining may also create opportunities for other types of optimization. Function inlining is not always beneficial.
When used improperly it may increase code size and generate less efficient code.

24

Chapter 3. Optimizing & Parallelizing

Profile-Feedback Optimization (PFO)

Profile-feedback optimization (PFO) makes use of information from a trace file produced by specially
instrumented executables which capture and save information on branch frequency, function and subroutine
call frequency, semi-invariant values, loop index ranges, and other input data dependent information that
can only be collected dynamically during execution of a program. By definition, use of profile-feedback
optimization is a two-phase process: compilation and execution of a specially-instrumented executable,
followed by a subsequent compilation which reads a trace file generated during the first phase and uses the
information in that trace file to guide compiler optimizations.

Getting Started with Optimizations

Your first concern should be getting your program to execute and produce correct results. To get your
program running, start by compiling and linking without optimization. Use the optimization level —Q0 or select
—g to perform minimal optimization. At this level, you will be able to debug your program easily and isolate
any coding errors exposed during porting to x86 or x64 platforms.

If you want to get started quickly with optimization, a good set of options to use with any of the PGI compilers
is—fast —M pa=f ast . For example:

$ pgfortran -fast -M pa=fast prog.f

For all of the PGI Fortran, C, and C++ compilers, the —f ast —M pa=f ast options generally produce code
that is well-optimized without the possibility of significant slowdowns due to pathological cases.

» The —f ast option is an aggregate option that includes a number of individual PGI compiler options; which
PGI compiler options are included depends on the target for which compilation is performed.

e The —M pa=f ast option invokes interprocedural analysis including several IPA suboptions.

* For C++ programs, add - M nl i ne=l evel s: 10 --no_except i ons as shown here:

$ pgcpp -fast -M pa=fast -Mnline=level s:10 --no_excepti ons prog.cc

Note

A C++ program compiled with - - no_except i ons fails if the program uses exception handling.

By experimenting with individual compiler options on a file-by-file basis, further significant performance gains
can sometimes be realized. However, depending on the coding style, individual optimizations can sometimes
cause slowdowns, and must be used carefully to ensure performance improvements. In addition to - f ast , the
optimization flags most likely to further improve performance are - O3, - Mpf i , - Mpf 0, - M nl i ne; and on
targets with multiple processors, you can use - Mconcur .

In addition, the —Msaf ept r option can significantly improve performance of C/C++ programs in which there
is known to be no pointer aliasing. For obvious reasons this command-line option must be used carefully.

Three other extremely useful options are - hel p, - M nf o, and - dr yr un.

25

Getting Started with Optimizations

—help

As described in “Help with Command-line Options,” on page 18, you can see a specification of any command-
line option by invoking any of the PGI compilers with - hel p in combination with the option in question,
without specifying any input files.

For example, you might want information on - O
$ pgfortran -help -O

The resulting output is similar to this:
Readi ng rcfile /usr/pgi/linux86-64/7.0/bin/.pgfortranrc
- <n>] Set optimzation level, - to -O4, default -Q2

Or you can see the full functionality of - hel p itself, which can return information on either an individual
option or groups of options:

$ pgfortran -help -help

The resulting output is similar to this:

Reading rcfile /usr/pgi_rel/linux86-64/7.0/bin/.pgfortranrc
- hel p[=gr oups| asmn| debug| | anguage| | i nker | opt | ot her | overal | |
phase| prepro| suffi x| swi tch|target]|variabl e]

—Minfo

You can use the - M nf o option to display compile-time optimization listings. When this option is used, the
PGI compilers issue informational messages to stderr as compilation proceeds. From these messages, you
can determine which loops are optimized using unrolling, SSE instructions, vectorization, parallelization,
interprocedural optimizations and various miscellaneous optimizations. You can also see where and whether
functions are inlined.

For more information on —M nf o, refer to “Optimization Controls,” on page 272.

—Mneginfo

You can use the - Mnegi nf o option to display informational messages listing why certain optimizations are
inhibited.

For more information on —Mhegi nf o, refer to “Optimization Controls,” on page 272.

—dryrun

26

The —dr yr un option can be useful as a diagnostic tool if you need to see the steps used by the compiler driver
to preprocess, compile, assemble and link in the presence of a given set of command line inputs. When you
specify the —dr yr un option, these steps will be printed to stderr but are not actually performed. For example,
you can use this option to inspect the default and user-specified libraries that are searched during the link
phase, and the order in which they are searched by the linker.

The remainder of this chapter describes the —0 options, the loop unroller option —Munr ol | , the vectorizer
option —Mvect , the auto-parallelization option —~Mconcur , the interprocedural analysis optimization —M pa,
and the profile-feedback instrumentation (—Mpf i) and optimization (—Mpf o) options. You should be able to
get very near optimal compiled performance using some combination of these switches.

Chapter 3. Optimizing & Parallelizing

Common Compiler Feedback Format (CCFF)

Using the Common Compiler Feedback Format (CCFF), PGI compilers save information about how your
program was optimized, or why a particular optimization was not made, in the executable file. To append this
information to the object file, use the compiler option—M nf o=ccf f .

If you choose to use PGPROF to aid with your optimization, PGPROF can extract this information and associate
it with source code and other performance data, allowing you to view all of this information simultaneously in
one of the available profiler panels.

Local and Global Optimization using -O

Using the PGI compiler commands with the —Olevel option (the capital O is for Optimize), you can specify any
of the following optimization levels:

-00
Level zero specifies no optimization. A basic block is generated for each language statement.

-01
Level one specifies local optimization. Scheduling of basic blocks is performed. Register allocation is
performed.

-02
Level two specifies global optimization. This level performs all level-one local optimization as well as level-
two global optimization. If optimization is specified on the command line without a level, level 2 is the
default.

-03
Level three specifies aggressive global optimization. This level performs all level-one and level-two
optimizations and enables more aggressive hoisting and scalar replacement optimizations that may or may
not be profitable.

—04
Level four performs all level-one, level-two, and level-three optimizations and enables hoisting of guarded
invariant floating point expressions.

Note

If you use the —Ooption to specify optimization and do not specify a level, then level-two optimization
(-2) is the default.

Level-zero optimization specifies no optimization (—~00). At this level, the compiler generates a basic block for
each statement. Performance will almost always be slowest using this optimization level. This level is useful for
the initial execution of a program. It is also useful for debugging, since there is a direct correlation between
the program text and the code generated.

Level-one optimization specifies local optimization (—~OL). The compiler performs scheduling of basic blocks
as well as register allocation. Local optimization is a good choice when the code is very irregular, such as code
that contains many short statements containing IF statements and does not contain loops (DO or DO WHILE

27

Local and Global Optimization using -O

statements). Although this case rarely occurs, for certain types of code, this optimization level may perform
better than level-two (—C2).

The PGI compilers perform many different types of local optimizations, including but not limited to:

- Algebraic identity removal - Peephole optimizations
- Constant folding - Redundant load and store elimination
- Common subexpression elimination - Strength reductions

- Local register optimization

Level-two optimization (—O2 or —O) specifies global optimization. The —f ast option generally will specify
global optimization; however, the —f ast switch varies from release to release, depending on a reasonable
selection of switches for any one particular release. The —O or —02 level performs all level-one local
optimizations as well as global optimizations. Control flow analysis is applied and global registers are allocated
for all functions and subroutines. Loop regions are given special consideration. This optimization level is a
good choice when the program contains loops, the loops are short, and the structure of the code is regular.

The PGI compilers perform many different types of global optimizations, including but not limited to:

- Branch to branch elimination - Global register allocation
- Constant propagation - Invariant code motion
- Copy propagation - Induction variable elimination

- Dead store elimination

You can explicitly select the optimization level on the command line. For example, the following command line
specifies level-two optimization which results in global optimization:

$ pgfortran -2 prog. f

Specifying —O on the command-line without a level designation is equivalent to —CO2. The default optimization
level changes depending on which options you select on the command line. For example, when you select
the —g debugging option, the default optimization level is set to level-zero (—00). However, if you need to
debug optimized code, you can use the - gopt option to generate debug information without perturbing
optimization. Refer to “Default Optimization Levels,” on page 44 for a description of the default levels.

As noted previously, the —f ast option includes —C2 on all x86 and x64 targets. If you want to override the
default for—f ast with —C38 while maintaining all other elements of —f ast , simply compile as follows:

$ pgfortran -fast -@B prog.f

Scalar SSE Code Generation

28

For all processors prior to Intel Pentium 4 and AMD Opteron/Athlon64, for example Intel Pentium III and
AMD AthlonXP/MP processors, scalar floating-point arithmetic as generated by the PGI Workstation compilers
is performed using x87 floating-point stack instructions. With the advent of SSE/SSE2 instructions on Intel
Pentium 4/Xeon and AMD Opteron/Athlon64, it is possible to perform all scalar floating-point arithmetic using
SSE/SSE2 instructions. In most cases, this is beneficial from a performance standpoint.

The default on 32-bit Intel Pentium II/IIT (options —t p p6, -t p piii,and so on) or on AMD AthlonXP/
MP (option —tp k7) isto use x87 instructions for scalar floating-point arithmetic. The default on Intel

Chapter 3. Optimizing & Parallelizing

Pentium 4/Xeon or Intel EMO4T running a 32-bit operating system (-t p p7), AMD Opteron/Athlon64
running a 32-bit operating system (-t p k8- 32), or AMD Opteron/Athlon64 or Intel EM64T processors
running a 64-bit operating system (using —t p k8- 64 and —t p p7- 64 respectively) is to use SSE/SSE2
instructions for scalar floating-point arithmetic. The only way to override this default on AMD Opteron/
Athlon64 or Intel EM64T processors running a 64-bit operating system is to specify an older 32-bit target. For
example, you canuse -t p k7 or—tp piii.

Note

There can be significant arithmetic differences between calculations performed using x87 instructions
versus SSE/SSE2.

By default, all floating-point data is promoted to IEEE 80-bit format when stored on the x87 floating-point
stack, and all x87 operations are performed register-to-register in this same format. Values are converted back
to IEEE 32-bit or IEEE 64-bit when stored back to memory (for REAL/float and DOUBLE PRECISION/double
data respectively). The default precision of the x87 floating-point stack can be reduced to IEEE 32-bit or IEEE
04-bit globally by compiling the main program with the —pc { 32| 64} option to the PGI compilers, which

is described in detail in Chapter 2, “Using Command Line Options”. However, there is no way to ensure

that operations performed in mixed precision will match those produced on a traditional load-store RISC/
UNIX system which implements IEEE 64-bit and IEEE 32-bit registers and associated floating-point arithmetic
instructions.

In contrast, arithmetic results produced on Intel Pentium 4/Xeon, AMD Opteron/Athlon64 or Intel EM64T
processors will usually closely match or be identical to those produced on a traditional RISC/UNIX system if
all scalar arithmetic is performed using SSE/SSE2 instructions. You should keep this in mind when porting
applications to and from systems which support both x87 and full SSE/SSE2 floating-point arithmetic. Many
subtle issues can arise which affect your numerical results, sometimes to several digits of accuracy.

Loop Unrolling using —-Munroll

This optimization unrolls loops, executing multiple instances of the loop during each iteration. This reduces
branch overhead, and can improve execution speed by creating better opportunities for instruction scheduling.
A loop with a constant count may be completely unrolled or partially unrolled. A loop with a non-constant
count may also be unrolled. A candidate loop must be an innermost loop containing one to four blocks of
code.

The following example shows the use of the —Munr ol | option:

$ pgfortran -Munrol |l prog.f

The —Munr ol | option is included as part of —f ast on all x86 and x64 targets. The loop unroller expands the
contents of a loop and reduces the number of times a loop is executed. Branching overhead is reduced when

a loop is unrolled two or more times, since each iteration of the unrolled loop corresponds to two or more
iterations of the original loop; the number of branch instructions executed is proportionately reduced. When a
loop is unrolled completely, the loop’s branch overhead is eliminated altogether.

Loop unrolling may be beneficial for the instruction scheduler. When a loop is completely unrolled or unrolled
two or more times, opportunities for improved scheduling may be presented. The code generator can take
advantage of more possibilities for instruction grouping or filling instruction delays found within the loop.

29

Vectorization using —Mvect

Example 3.1, “Dot Product Code”and Example 3.2, “Unrolled Dot Product Code” show the effect of code
unrolling on a segment that computes a dot product.

Example 3.1. Dot Product Code Example 3.2. Unrolled Dot Product Code
REAL*4 A(100), B(100), Z REAL*4 A(100), B(100), Z
| NTEGER | | NTEGER |
DO I=1, 100 DO I=1, 100, 2
Z=2z+Ai) * B(i) Z=2z+Ai) * B(i)
END DO Z =2z + A(i+1) * B(i+1)
END END DO
END

Using the —~M nf o option, the compiler informs you when a loop is being unrolled. For example, a message
similar to the following, indicating the line number, and the number of times the code is unrolled, displays

when a loop is unrolled:
dot :
5, Loop unrolled 5 tinmes

Using the c:<m> and n:<m> sub-options to —Munr ol | , or using —Mnounr ol | , you can control whether
and how loops are unrolled on a file-by-file basis. Using directives or pragmas as specified in Chapter 8,
“Using Directives and Pragmas”, you can precisely control whether and how a given loop is unrolled. For a
detailed description of the —Munr ol | option, refer to Chapter 2, “Using Command Line Options”.

Vectorization using —-Mvect

The —~Mvect option is included as part of —f ast on all x86 and x64 targets. If your program contains
computationally-intensive loops, the —Mvect option may be helpful. If in addition you specify —M nf o,
and your code contains loops that can be vectorized, the compiler reports relevant information on the
optimizations applied.

When a PGI compiler command is invoked with the —Mvect option, the vectorizer scans code searching for
loops that are candidates for high-level transformations such as loop distribution, loop interchange, cache
tiling, and idiom recognition (replacement of a recognizable code sequence, such as a reduction loop, with
optimized code sequences or function calls). When the vectorizer finds vectorization opportunities, it internally
rearranges or replaces sections of loops (the vectorizer changes the code generated; your source code’s loops
are not altered). In addition to performing these loop transformations, the vectorizer produces extensive data
dependence information for use by other phases of compilation and detects opportunities to use vector or
packed Streaming SIMD Extensions (SSE) instructions on processors where these are supported.

The —Mvect option can speed up code which contains well-behaved countable loops which operate on large
REAL, REAL*4, REAL*8, INTEGER*4, COMPLEX or COMPLEX DOUBLE arrays in Fortran and their C/C++
counterparts. However, it is possible that some codes will show a decrease in performance when compiled
with the —Mvect option due to the generation of conditionally executed code segments, inability to determine
data alignment, and other code generation factors. For this reason, it is recommended that you check carefully
whether particular program units or loops show improved performance when compiled with this option
enabled.

Vectorization Sub-options

The vectorizer performs high-level loop transformations on countable loops. A loop is countable if the
number of iterations is set only before loop execution and cannot be modified during loop execution. Some

30

Chapter 3. Optimizing & Parallelizing

of the vectorizer transformations can be controlled by arguments to the -Mvect command line option. The
following sections describe the arguments that affect the operation of the vectorizer. In addition, some of these
vectorizer operations can be controlled from within code using directives and pragmas. For details on the use
of directives and pragmas, refer to Chapter 8, “Using Directives and Pragmas,” on page 107.

The vectorizer performs the following operations:

* Loop interchange

e Loop splitting

e Loop fusion

e Memory-hierarchy (cache tiling) optimizations

¢ Generation of SSE instructions on processors where these are supported

* Generation of prefetch instructions on processors where these are supported
e Loop iteration peeling to maximize vector alignment

e Alternate code generation

By default, -Mrect without any sub-options is equivalent to:

- Mrect =assoc, cachesi ze=c
where c is the actual cache size of the machine.

This enables the options for nested loop transformation and various other vectorizer options. These defaults
may vary depending on the target system.

Assoc Option

The option —Mrect =assoc instructs the vectorizer to perform associativity conversions that can change
the results of a computation due to a round-off error (-Mvect =noassoc disables this option). For
example, a typical optimization is to change one arithmetic operation to another arithmetic operation that
is mathematically correct, but can be computationally different and generate faster code. This option is
provided to enable or disable this transformation, since a round-off error for such associativity conversions
may produce unacceptable results.

Cachesize Option

The option —Mrect =cachesi ze: n instructs the vectorizer to tile nested loop operations assuming a data
cache size of n bytes. By default, the vectorizer attempts to tile nested loop operations, such as matrix multiply,
using multi-dimensional strip-mining techniques to maximize re-use of items in the data cache.

SSE Option

The option —Mrect =sse instructs the vectorizer to automatically generate packed SSE (Streaming SIMD
Extensions), SSE2, and prefetch instructions when vectorizable loops are encountered. SSE instructions, first
introduced on Pentium III and AthlonXP processors, operate on single-precision floating-point data, and hence
apply only to vectorizable loops that operate on single-precision floating-point data. SSE2 instructions, first

31

Vectorization using -Mvect

introduced on Pentium 4, Xeon and Opteron processors, operate on double-precision floating-point data.
Prefetch instructions, first introduced on Pentium III and AthlonXP processors, can be used to improve the
performance of vectorizable loops that operate on either 32-bit or 64-bit floating-point data. Refer to the PGI
Release Notes for a concise list of processors that support SSE, SSE2 and prefetch instructions.

Note

Program units compiled with —~Mvect =sse will not execute on Pentium, Pentium Pro, Pentium II or
first generation AMD Athlon processors. They will only execute correctly on Pentium III, Pentium 4,
Xeon, EM64T, AthlonXP, Athlon64 and Opteron systems running an SSE-enabled operating system.

Prefetch Option

The option —Mvect =pr ef et ch instructs the vectorizer to automatically generate prefetch instructions when
vectorizable loops are encountered, even in cases where SSE or SSE2 instructions are not generated. Usually,
explicit prefetching is not necessary on Pentium 4, Xeon and Opteron because these processors support
hardware prefetching; nonetheless, it sometimes can be worthwhile to experiment with explicit prefetching.
Prefetching can be controlled on a loop-by-loop level using prefetch directives, which are described in detail
in “Prefetch Directives and Pragmas,” on page 113.

Note

Program units compiled with —~Mvect =pr ef et ch will not execute correctly on Pentium, Pentium
Pro, or Pentium II processors. They will execute correctly only on Pentium III, Pentium 4, Xeon,
EM64T, AthlonXP, Athlon64 or Opteron systems. In addition, the pr ef et ch instruction is only
supported on AthlonXP, Athlon64 or Opteron systems and can cause instruction faults on non-AMD
processors. For this reason, the PGI compilers do not generate pr ef et ch instructions by default on
any target.

In addition to these sub-options to —Mvect , several other sub-options are supported. Refer to the description
of —M[no]vect in Chapter 16, “Command-Line Options Reference” for a detailed description of all available
sub-options.

Vectorization Example Using SSE/SSE? Instructions

32

One of the most important vectorization options is - Mrect =sse. When you use this option, the compiler
automatically generates SSE and SSE2 instructions, where possible, when targeting processors on which these
instructions are supported. This process can improve performance by up to a factor of two compared with the
equivalent scalar code. All of the PGI Fortran, C and C++ compilers support this capability. The PGI Release
Notes show which x86 and x64 processors support these instructions.

Prior to release 7.0, - Mrect =sse was omitted from the compiler switch - f ast but was included in the
switch - f ast sse. Since release 7.0 , - f ast is synonymous with - f ast sse; therefore, both options include
- Mrect =sse.

In the program in Example 3.3, “Vector operation using SSE instructions”, the vectorizer recognizes the vector
operation in subroutine 'loop' when either the compiler switch - Mrect =sse or - f ast is used. This example
shows the compilation, informational messages, and run-time results using the SSE instructions on an AMD
Opteron processor-based system, along with issues that affect SSE performance.

Chapter 3. Optimizing & Parallelizing

First note that the arrays in Example 3.3 are single-precision and that the vector operation is done using a
unit stride loop. Thus, this loop can potentially be vectorized using SSE instructions on any processor that
supports SSE or SSE2 instructions. SSE operations can be used to operate on pairs of single-precision floating-
point numbers, and do not apply to double-precision floating-point numbers. SSE2 instructions can be used
to operate on quads of single-precision floating-point numbers or on pairs of double-precision floating-point
numbers.

Loops vectorized using SSE or SSE2 instructions operate much more efficiently when processing vectors that
are aligned to a cache-line boundary. You can cause unconstrained data objects of size 16 bytes or greater
to be cache-aligned by compiling with the —~Mcache_al i gn switch. An unconstrained data object is a data
object that is not a common block member and not a member of an aggregate data structure.

Note

For stack-based local variables to be properly aligned, the main program or function must be
compiled with —~Mcache_al i gn.

The —Mcache_al i gn switch has no effect on the alignment of Fortran allocatable or automatic arrays. If
you have arrays that are constrained, such as vectors that are members of Fortran common blocks, you must
specifically pad your data structures to ensure proper cache alignment. You can use —Mcache_al i gn for
only the beginning address of each common block to be cache-aligned.

The following examples show the results of compiling the sample code in Example 3.3 both with and without
the option —-Mvect =sse.

Example 3.3. Vector operation using SSE instructions

pr ogr am vect or _op
paraneter (N = 9999)

real 4 x(N, y(N, z(N, WN
n

doi =1,
y(i) =i
z(i) = 2%i
wWi) = 4%i

enddo

do j =1, 200000
call loop(x,y,z,w 1.0e0, N)

enddo

print *, x(1),x(771),x(3618), x(6498), x(9999)

end

subroutine | oop(a,b,c,d,s,n)

integer i, n
real *4 a(n), b(n), c(n), d(n),s
doi =1, n
a(i) =b(i) +c(i) - s * d(i)
enddo
end

Assume the preceding program is compiled as follows, where - Mrect =nosse disables SSE vectorization:

% pgfortran -fast -Mect=nosse -Mnfo vadd. f

vect or _op:
4, Loop unrolled 4 tinmes
| oop:

18, Loop unrolled 4 tines

33

Vectorization using —Mvect

34

The following output shows a sample result if the generated executable is run and timed on a standalone AMD
Opteron 2.2 Ghz system:
% /bin/time vadd

-1. 000000 -771.000 -3618.000 -6498.00 -9999.00
5. 39user 0.00system 0: 05. 40el apsed 99%CP

Now, recompile with SSE vectorization enabled, and you see results similar to these:

% pgfortran -fast -Mnfo vadd.f -o vadd

vect or _op:

4, Unrolled inner loop 8 tines

Loop unrolled 7 times (conpletely unroll ed)

| oop:

18, Generated 4 alternate | oops for the inner |oop
Gener at ed vector sse code for inner |oop

Generated 3 prefetch instructions for this |oop

Notice the informational message for the loop at line 18.

e The first two lines of the message indicate that the loop was vectorized, SSE instructions were generated,
and four alternate versions of the loop were also generated. The loop count and alignments of the arrays
determine which of these versions is executed.

e The last line of the informational message indicates that prefetch instructions have been generated for three
loads to minimize latency of data transfers from main memory.

Executing again, you should see results similar to the following:

% /bin/time vadd

-1. 000000 -771. 000 -3618.00 -6498. 00

-9999.0

3. 59user 0. 00system 0: 03. 59el apsed 100%CPU
The result is a 50% speed-up over the equivalent scalar, that is, the non-SSE, version of the program.

Speed-up realized by a given loop or program can vary widely based on a number of factors:

e When the vectors of data are resident in the data cache, performance improvement using vector SSE or SSE2
instructions is most effective.

o If data is aligned properly, performance will be better in general than when using vector SSE operations on
unaligned data.

e If the compiler can guarantee that data is aligned properly, even more efficient sequences of SSE
instructions can be generated.

* The efficiency of loops that operate on single-precision data can be higher. SSE2 vector instructions can
operate on four single-precision elements concurrently, but only two double-precision elements.

Note

Compiling with —~Mvect =sse can result in numerical differences from the executables generated
with less optimization. Certain vectorizable operations, for example dot products, are sensitive

to order of operations and the associative transformations necessary to enable vectorization (or
parallelization).

Chapter 3. Optimizing & Parallelizing

Auto-Parallelization using -Mconcur

With the - Mconcur option the compiler scans code searching for loops that are candidates for auto-
parallelization. - Mconcur must be used at both compile-time and link-time. When the parallelizer finds
opportunities for auto-parallelization, it parallelizes loops and you are informed of the line or loop being
parallelized if the - M nf o option is present on the compile line. See “Optimization Controls,” on page 272,
for a complete specification of - Mconcur .

Aloop is considered parallelizable if doesn't contain any cross-iteration data dependencies. Cross-iteration
dependencies from reductions and expandable scalars are excluded from consideration, enabling more loops
to be parallelizable. In general, loops with calls are not parallelized due to unknown side effects. Also, loops
with low trip counts are not parallelized since the overhead in setting up and starting a parallel loop will likely
outweigh the potential benefits. In addition, the default is to not parallelize innermost loops, since these often
by definition are vectorizable using SSE instructions and it is seldom profitable to both vectorize and parallelize
the same loop, especially on multi-core processors. Compiler switches and directives are available to let you
override most of these restrictions on auto-parallelization.

Auto-parallelization Sub-options

The parallelizer performs various operations that can be controlled by arguments to the —~Mconcur command
line option. The following sections describe these arguments that affect the operation of the vectorizer. In
addition, these vectorizer operations can be controlled from within code using directives and pragmas.

For details on the use of directives and pragmas, refer to Chapter 8, “Using Directives and Pragmas”.

By default, -Mconcur without any sub-options is equivalent to:

- Mconcur =di st : bl ock

This enables parallelization of loops with blocked iteration allocation across the available threads of execution.
These defaults may vary depending on the target system.

Altcode Option

The option —Mconcur =al t code instructs the parallelizer to generate alternate serial code for parallelized
loops. If altcode is specified without arguments, the parallelizer determines an appropriate cutoff length

and generates serial code to be executed whenever the loop count is less than or equal to that length. If

al t code: n is specified, the serial altcode is executed whenever the loop count is less than or equal to n. If
noal t code is specified, no alternate serial code is generated.

Dist Option

The option —Mconcur =di st : { bl ock]| cycl i c} option specifies whether to assign loop iterations to the
available threads in blocks or in a cyclic (round-robin) fashion. Block distribution is the default. If cyclic is
specified, iterations are allocated to processors cyclically. That is, processor 0 performs iterations 0, 3, 6, etc.;
processor 1 performs iterations 1, 4, 7, etc.; and processor 2 performs iterations 2, 5, 8, etc.

Cncall Option

The option —Mconcur =cncal | specifies that it is safe to parallelize loops that contain subroutine or function
calls. By default, such loops are excluded from consideration for auto-parallelization. Also, no minimum loop

35

Auto-Parallelization using -Mconcur

count threshold must be satisfied before parallelization will occur, and last values of scalars are assumed to be
safe.

The environment variable NCPUS is checked at run-time for a parallel program. If NCPUS is set to 1, a
parallel program runs serially, but will use the parallel routines generated during compilation. If NCPUS is

set to a value greater than 1, the specified number of processors will be used to execute the program. Setting
NCPUS to a value exceeding the number of physical processors can produce inefficient execution. Executing a
program on multiple processors in an environment where some of the processors are being time-shared with
another executing job can also result in inefficient execution.

As with the vectorizer, the - Mconcur option can speed up code if it contains well-behaved countable loops
and/or computationally intensive nested loops that operate on arrays. However, it is possible that some codes
will show a decrease in performance on multi-processor systems when compiled with - Mconcur due to
parallelization overheads, memory bandwidth limitations in the target system, false-sharing of cache lines, or
other architectural or code-generation factors. For this reason, it is recommended that you check carefully
whether particular program units or loops show improved performance when compiled using this option.

If the compiler is not able to successfully auto-parallelize your application, you should refer to Chapter 5,
“Using OpenMP". 1t is possible that insertion of explicit parallelization directives or pragmas, and use of the
compiler option —np might enable the application to run in parallel.

Loops That Fail to Parallelize

In spite of the sophisticated analysis and transformations performed by the compiler, programmers may notice
loops that are seemingly parallel, but are not parallelized. In this subsection, we look at some examples of
common situations where parallelization does not occur.

Innermost Loops

As noted earlier in this chapter, the PGI compilers will not parallelize innermost loops by default, because it is
usually not profitable. However, you can override this default using the -Mconcur =i nner nost command-
line option.

Timing Loops

36

Often, loops occur in programs that are similar to timing loops. The outer loop in the following example is one
such loop.
doj =1, 2

doi =1, n

a(i) = b(i) + c(i)

1 enddo
enddo

The outer loop in the preceding example is not parallelized because the compiler detects a cross-iteration
dependence in the assignment to a(i) . Suppose the outer loop were parallelized. Then both processors
would simultaneously attempt to make assignments into a(1: n) . Now in general the values computed by each
processor for a(1: n) will differ, so that simultaneous assignment into a(1: n) will produce values different
from sequential execution of the loops.

In this example, values computed for a(1: n) don’t depend on j , so that simultaneous assignment by both
processors will not yield incorrect results. However, it is beyond the scope of the compilers’ dependence

Chapter 3. Optimizing & Parallelizing

analysis to determine that values computed in one iteration of a loop don’t differ from values computed in
another iteration. So the worst case is assumed, and different iterations of the outer loop are assumed to
compute different values for a(1: n) . Is this assumption too pessimistic? If j doesn’t occur anywhere within
a loop, the loop exists only to cause some delay, most probably to improve timing resolution. It is not usually
valid to parallelize timing loops; to do so would distort the timing information for the inner loops.

Scalars

Quite often, scalars will inhibit parallelization of non-innermost loops. There are two separate cases that
present problems. In the first case, scalars appear to be expandable, but appear in non-innermost loops, as in
the following example.
doj =1, n
x = b(j)
doi =1, n
a(i,j) =x +c(i,j)
enddo
enddo

There are a number of technical problems to be resolved in order to recognize expandable scalars in non-
innermost loops. Until this generalization occurs, scalars like x in the preceding code segment inhibit
parallelization of loops in which they are assigned. In the following example, scalar k is not expandable, and it
is not an accumulator for a reduction.

2 if (i .gt. nf2) k =n - (i - n/2)
enddo

If the outer loop is parallelized, conflicting values are stored into k by the various processors. The variable k
cannot be made local to each processor because its value must remain coherent among the processors. It is
possible the loop could be parallelized if all assignments to k are placed in critical sections. However, it is not
clear where critical sections should be introduced because in general the value for k could depend on another
scalar (or on k itself), and code to obtain the value of other scalars must reside in the same critical section.

In the previous example, the assignment to k within a conditional at label 2 prevents k from being recognized
as an induction variable. If the conditional statement at label 2 is removed, k would be an induction variable
whose value varies linearly with j , and the loop could be parallelized.

Scalar Last Values

During parallelization, scalars within loops often need to be privatized, that is, each execution thread has its
own independent copy of the scalar. Problems can arise if a privatized scalar is accessed outside the loop. For
example, consider the following loop:
for (i =1; i<N i++){
if(f(x[i]) >5.0) t = x[i];
}
v = t;
The value of t may not be computed on the last iteration of the loop. Normally, if a scalar is assigned within
a loop and used following the loop, the PGI compilers save the last value of the scalar. However, if the loop

37

Processor-Specific Optimization & the Unified Binary

is parallelized and the scalar is not assigned on every iteration, it may be difficult, without resorting to costly
critical sections, to determine on what iteration t is last assigned. Analysis allows the compiler to determine
that a scalar is assigned on each iteration and hence that the loop is safe to parallelize if the scalar is used later,
as illustrated in the following example.

for (i =1; i <n; i++) {
if (x[i] >0.0) {

t = 2.0;

}

el se {

t = 3.0;

yli] = ...t;

}

}

vV = t;

where t is assigned on every iteration of the loop. However, there are cases where a scalar may be privatizable,
but if it is used after the loop, it is unsafe to parallelize. Examine the following loop in which each use of t
within the loop is reached by a definition from the same iteration.
for (i =1; i <N i++){

if(x[i] > 0.0){

t =x[i];

< g -

=t;

Here t is privatizable, but the use of t outside the loop may yield incorrect results, since the compiler may
not be able to detect on which iteration of the parallelized loop t is last assigned. The compiler detects

the previous cases. When a scalar is used after the loop but is not defined on every iteration of the loop,
parallelization does not occur.

When the programmer knows that the scalar is assigned on the last iteration of the loop, the programmer

may use a directive or pragma to let the compiler know the loop is safe to parallelize. The Fortran directive
saf e_| ast val informs the compiler that, for a given loop, all scalars are assigned in the last iteration of the
loop; thus, it is safe to parallelize the loop. We could add the following line to any of our previous examples.
cpgi $I safe_l astval

The resulting code looks similar to this:
cpgi 8l safe_| astval
for (i =1; i<N i++){
if(f(x[i]) >50) t = x[i];
}
vV = t;
In addition, a command-line option —Msafe_lastval, provides this information for all loops within the routines
being compiled, which essentially provides global scope.

Processor-Specific Optimization & the Unified Binary

Different processors have differences, some subtle, in hardware features such as instruction sets and cache
size. The compilers make architecture-specific decisions about things such as instruction selection, instruction

38

Chapter 3. Optimizing & Parallelizing

scheduling, and vectorization. By default, the PGI compilers produce code specifically targeted to the type

of processor on which the compilation is performed. That is, the default is to use all supported instructions
wherever possible when compiling on a given system. As a result, executables created on a given system may
not be usable on previous generation systems. For example, executables created on a Pentium 4 may fail to
execute on a Pentium III or Pentium IL

All PGI compilers have the capability of generating unified binaries, which provide a low-overhead means for
generating a single executable that is compatible with and has good performance on more than one hardware
platform.

You can use the —t p option to control compilation behavior by specifying the processor or processors with
which the generated code is compatible. The compilers generate and combine into one executable multiple
binary code streams, each optimized for a specific platform. At run-time, the one executable senses the
environment and dynamically selects the appropriate code stream. For specific information on the —t p option,
refer to —tp <target> [target...].

Executable size is automatically controlled via unified binary culling. Only those functions and subroutines
where the target affects the generated code have unique binary images, resulting in a code-size savings of from
10% to 90% compared to generating full copies of code for each target.

Programs can use the PGI Unified Binary even if all of the object files and libraries are not compiled as unified
binaries. Like any other object file, you can use PGI Unified Binary object files to create programs or libraries.
No special start up code is needed; support is linked in from the PGI libraries.

The —M pa option disables generation of PGI Unified Binary. Instead, the default target auto-detect rules for
the host are used to select the target processor.

Interprocedural Analysis and Optimization using —Mipa

The PGI Fortran, C and C++ compilers use interprocedural analysis (IPA) that results in minimal changes

to makefiles and the standard edit-build-run application development cycle. Other than adding —M pa to

the command line, no other changes are required. For reference and background, the process of building a
program without IPA is described later in this section, followed by the minor modifications required to use
IPA with the PGI compilers. While the PGCC compiler is used here to show how IPA works, similar capabilities
apply to each of the PGI Fortran, C and C++ compilers.

Note

The examples use Linux file naming conventions. On Windows, ‘.0’ files would be *.obj’ files, and
‘a.out’ files would be ‘.exe’ files.

Building a Program Without IPA — Single Step

Using the pgcc command-level compiler driver, multiple source files can be compiled and linked into a single
executable with one command. The following example compiles and links three source files:
% pgcc -0 a.out filel.c file2.c file3.c

In actuality, the pgcc driver executes several steps to produce the assembly code and object files corresponding
to each source file, and subsequently to link the object files together into a single executable file. This
command is roughly equivalent to the following commands performed individually:

39

Interprocedural Analysis and Optimization using —-Mipa

% pgcc -S -o filel.s filel.c

%as -o filel.o filel.s

% pgcc -S -0 file2.s file2.c

%as -o file2.0 file2.s

% pgcc -S -o file3.s file3.c

%as -o file3.0 file3.s

% pgcc -0 a.out filel.o file2.0 file3.0

If any of the three source files is edited, the executable can be rebuilt with the same command line:

% pgcc -0 a.out filel.c file2.c file3.c

Note

This always works as intended, but has the side-effect of recompiling all of the source files, even
if only one has changed. For applications with a large number of source files, this can be time-
consuming and inefficient.

Building a Program Without IPA - Several Steps

It is also possible to use individual pgcc commands to compile each source file into a corresponding object
file, and one to link the resulting object files into an executable:

% pgcc -c filel.c
% pgcc -c file2.c
% pgcc -c file3.c
% pgcc -0 a.out filel.o file2.0 file3.0

The pgcc driver invokes the compiler and assembler as required to process each source file, and invokes
the linker for the final link command. If you modify one of the source files, the executable can be rebuilt by
compiling just that file and then relinking:

% pgcc -c filel.c
% pgcc -0 a.out filel.o file2.0 file3.o0

Building a Program Without IPA Using Make

The program compilation and linking process can be simplified greatly using the make utility on systems
where it is supported. Suppose you create a makef i | e containing the following lines:
a.out: filel.o file2.0 file3.0
pgcc $(OPT) -0 a.out filel.o file2.0 file3.0
filel.o: filel.c
pgcc $(OPT) -c filel.c
file2.0: file2.c
pgcc $(OPT) -c file2.c
file3.0: file3.c
pgcc $(OPT) -c file3.c

It is then possible to type a single make command:

% make
The make utility determines which object files are out of date with respect to their corresponding source files,
and invokes the compiler to recompile only those source files and to relink the executable. If you subsequently

edit one or more source files, the executable can be rebuilt with the minimum number of recompilations using
the same single rake command.

40

Chapter 3. Optimizing & Parallelizing

Building a Program with IPA

Interprocedural analysis and optimization (IPA) by the PGI compilers alters the standard and make utility
command-level interfaces as little as possible. IPA occurs in three phases:

* Collection: Create a summary of each function or procedure, collecting the useful information for
interprocedural optimizations. This is done during the compile step if the —M pa switch is present on the
command line; summary information is collected and stored in the object file.

e Propagation: Process all the object files to propagate the interprocedural summary information across
function and file boundaries. This is done during the link step, when all the object files are combined, if the
—M pa switch is present on the link command line.

* Recompile/Optimization: Recompile each of the object files with the propagated interprocedural
information, producing a specialized object file. This process is also performed during the link step when
the —M pa switch is present on the link command line.

When linking with —M pa, the PGI compilers automatically regenerate IPA-optimized versions of each object
file, essentially recompiling each file. If there are IPA-optimized objects from a previous build, the compilers
will minimize the recompile time by reusing those objects if they are still valid. They will still be valid if the IPA-
optimized object is newer than the original object file, and the propagated IPA information for that file has not
changed since it was optimized.

After each object file has been recompiled, the regular linker is invoked to build the application with the IPA-
optimized object files. The IPA-optimized object files are saved in the same directory as the original object files,
for use in subsequent program builds.

Building a Program with IPA - Single Step

By adding the —M pa command line switch, several source files can be compiled and linked with
interprocedural optimizations with one command:

% pgcc -M pa=fast -0 a.out filel.c file2.c file3.c

Just like compiling without —M pa, the driver executes several steps to produce the assembly and object files
to create the executable:

% pgcc -Mpa=fast -S -o filel.s filel.c

%as -o filel.o filel.s

% pgcc -Mpa=fast -S -o file2.s file2.c

%as -o file2.0 file2.s

% pgcc -Mpa=fast -S -o file3.s file3.c

%as -o file3.0 file3.s

% pgcc -Mpa=fast -0 a.out filel.o file2.0 file3.0

In the last step, an IPA linker is invoked to read all the IPA summary information and perform the
interprocedural propagation. The IPA linker reinvokes the compiler on each of the object files to recompile
them with interprocedural information. This creates three new objects with mangled names:

filel ipa5_a.out.o00.0, file2 ipa5_a.out.o00.0, file2_ ipa5_a.out.o00.0

The system linker is then invoked to link these IPA-optimized objects into the final executable. Later, if one of
the three source files is edited, the executable can be rebuilt with the same command line:

% pgcc -M pa=fast -0 a.out filel.c file2.c file3.c

41

Interprocedural Analysis and Optimization using —-Mipa

This will work, but again has the side-effect of compiling each source file, and recompiling each object file at
link time.

Building a Program with IPA - Several Steps

Just by adding the —M pa command-line switch, it is possible to use individual pgcc commands to compile
each source file, followed by a command to link the resulting object files into an executable:

% pgcc -M pa=fast -c filel.c

% pgcc -Mpa=fast -c file2.c
% pgcc -Mpa=fast -c file3.c
% pgcc -Mpa=fast -0 a.out filel.o file2.0 file3.0

The pgcc driver invokes the compiler and assembler as required to process each source file, and invokes the
IPA linker for the final link command. If you modify one of the source files, the executable can be rebuilt by
compiling just that file and then relinking:

% pgcc -M pa=fast -c filel.c
% pgcc -Mpa=fast -0 a.out filel.o file2.0 file3.0

When the IPA linker is invoked, it will determine that the IPA-optimized object for fi | el. o

(filel_i pa5_a.out. 00. 0) is stale, since it is older than the object filel.0, and hence will need to be
rebuilt, and will reinvoke the compiler to generate it. In addition, depending on the nature of the changes

to the source file file1.c, the interprocedural optimizations previously performed for file2 and file3 may now
be inaccurate. For instance, IPA may have propagated a constant argument value in a call from a function
infilel.ctoafunctioninfil e2. c;if the value of the argument has changed, any optimizations based
on that constant value are invalid. The IPA linker will determine which, if any, of any previously created IPA-
optimized objects need to be regenerated, and will reinvoke the compiler as appropriate to regenerate them.
Only those objects that are stale or which have new or different IPA information will be regenerated, which
saves on compile time.

Building a Program with IPA Using Make

As in the previous two sections, programs can be built with IPA using the make utility. Just add the command-
line switch —M pa, as shown here:

OPT=-M pa=fast a.out: filel.o file2.0 file3.0
pgcc $(OPT) -0 a.out filel.o file2.0 file3.0
filel.o: filel.c

pgcc $(OPT) -c filel.c

file2.0: file2.c

pgcc $(OPT) -c file2.c

file3.0: file3.c

pgcc $(OPT) -c file3.c

Using the single rake command invokes the compiler to generate any object files that are out-of-date, then
invokes pgcc to link the objects into the executable; at link time, pgcc calls the IPA linker to regenerate any
stale or invalid IPA-optimized objects.

% make

Questions about IPA

42

1. Why s the object file so large?

Chapter 3. Optimizing & Parallelizing

An object file created with —M pa contains several additional sections. One is the summary information
used to drive the interprocedural analysis. In addition, the object file contains the compiler internal
representation of the source file, so the file can be recompiled at link time with interprocedural
optimizations. There may be additional information when inlining is enabled. The total size of the object
file may be 5-10 times its original size. The extra sections are not added to the final executable.

What if I compile with —M pa and link without -M pa?

The PGI compilers generate a legal object file, even when the source file is compiled with —M pa. If
you compile with —M pa and link without —M pa, the linker is invoked on the original object files. A
legal executable will be generated; while this will not have the benefit of interprocedural optimizations,
any other optimizations will apply.

What if I compile without —M pa and link with —-M pa?

At link time, the IPA linker must have summary information about all the functions or routines used

in the program. This information is created only when a file is compiled with —M pa. If you compile

a file without —M pa and then try to get interprocedural optimizations by linking with —M pa, the IPA
linker will issue a message that some routines have no IPA summary information, and will proceed to
run the system linker using the original object files. If some files were compiled with —M pa and others
were not, it will determine the safest approximation of the IPA summary information for those files not
compiled with —M pa, and use that to recompile the other files using interprocedural optimizations.

Can I build multiple applications in the same directory with —M pa?

Yes. Suppose you have three source files: mai n1. c, mai n2. c, and sub. c, where sub. c is shared
between the two applications. Suppose you build the first application with —M pa, using this command:

% pgcc -M pa=fast -o appl nminl.c sub.c
The the IPA linker creates two IPA-optimized object files:
mai n1_i pa4_appl. o sub_i pa4_appl. oo

It uses them to build the first application. Now suppose you build the second application using this
command:

% pgcc -M pa=fast -0 app2 nmi n2.c sub.c
The IPA linker creates two more IPA-optimized object files:

mai Nn2_i pa4_app2. oo sub_i pad4_app2. oo

Note

There are now three object files for sub. c: the original sub. o, and two IPA-optimized
objects, one for each application in which it appears.

How is the mangled name for the IPA-optimized object files generated?

The mangled name has '_ipa' appended, followed by the decimal number of the length of the
executable file name, followed by an underscore and the executable file name itself. The suffix is
changed to .00 (on Linux or Mac OS X) or .oobj (on Windows) so linking *.0 or *.obj does not pull
in the IPA-optimized objects. If the IPA linker determines that the file would not benefit from any

43

Profile-Feedback Optimization using -Mpfi/~Mpfo

interprocedural optimizations, it does not have to recompile the file at link time and uses the original
object.

Profile-Feedback Optimization using —Mpfi/-Mpfo

The PGI compilers support many common profile-feedback optimizations, including semi-invariant value
optimizations and block placement. These are performed under control of the —Vpf i /~Mpf o command-line
options.

When invoked with the —Mpf i option, the PGI compilers instrument the generated executable for collection
of profile and data feedback information. This information can be used in subsequent compilations that
include the —Vpf o optimization option. —Vpf i must be used at both compile-time and link-time. Programs
compiled with —Mpf i include extra code to collect run-time statistics and write them out to a trace file. When
the resulting program is executed, a profile feedback trace file pgf i . out is generated in the current working
directory.

Note

Programs compiled and linked with —Mpf i execute more slowly due to the instrumentation and data
collection overhead. You should use executables compiled with —Mpf i only for execution of training
runs.

When invoked with the —Mpf o option, the PGI compilers use data from a pgf i . out profile feedback
tracefile to enable or enhance certain performance optimizations. Use of this option requires the presence of a
pgfi . out trace file in the current working directory.

Default Optimization Levels

The following table shows the interaction between the —O<level> , —g, and —M<opt > options. In the table,
level can be 0, 1, 2, 3 or 4, and <opt> can be vect , concur, unrol | ori pa. The default optimization level
is dependent upon these command-line options.

Table 3.1. Optimization and -0, —g and —-M<opt> Options

Optimize Option Debug Option -M<opt> Option Optimization Level
none none none 1

none none —M<opt> 2

none -g none 0

-0 none or —g none 2

—Olevel none or —g none level

—Olevel <=2 none or —g —M<opt> 2

Code that is not optimized yet compiled using the option —Q0 can be significantly slower than code generated
at other optimization levels. The —M<opt > option, where <opt> is vect , concur, unrol | ori pa, sets

44

Chapter 3. Optimizing & Parallelizing

the optimization level to 2 if no —O options are supplied. Both the —f ast and the —f ast sse options set the
optimization level to a target-dependent optimization level if no —Ooptions are supplied.

Local Optimization Using Directives and Pragmas

Command-line options let you specify optimizations for an entire source file. Directives supplied within a
Fortran source file and pragmas supplied within a C or C++ source file provide information to the compiler
and alter the effects of certain command-line options or the default behavior of the compiler. (Many directives
have a corresponding command-line option.)

While 2 command line option affects the entire source file that is being compiled, directives and pragmas let
you do the following:

* Apply, or disable, the effects of a particular command-line option to selected subprograms or to selected
loops in the source file (for example, an optimization).

e Globally override command-line options.

* Tune selected routines or loops based on your knowledge or on information obtained through profiling.

Chapter 8, “Using Directives and Pragmas” provides details on how to add directives and pragmas to your
source files.

Execution Timing and Instruction Counting

As this chapter describes, once you have a program that compiles, executes and gives correct results, you may
optimize your code for execution efficiency.

Selecting the correct optimization level requires some thought and may require that you compare several
optimization levels before arriving at the best solution. To compare optimization levels, you need to measure
the execution time for your program. There are several approaches you can take for timing execution.

* You can use shell commands that provide execution time statistics.
* You can include function calls in your code that provide timing information.

* You can profile sections of code.
Timing functions available with the PGI compilers include these:

¢ 3F timing routines
* The SECNDS pre-declared function in PGF77, PGF95, or PGFORTRAN
¢ The SYSTEM_CLOCK or CPU_CLOCK intrinsics in PGF95 or PGHPE

In general, when timing a program, you should try to eliminate or reduce the amount of system level activities
such as 1/0, program loading, and task switching.

The following example shows a fragment that indicates how to use SYSTEM_CLOCK effectively within an F90,
F95 or HPF program unit.

45

Portability of Multi-Threaded Programs on Linux

Example 3.4. Using SYSTEM_CLOCK code fragment

integer :: nprocs, hz, clockO, clockl
real :: time
integer, allocatable :: t(:)

L hpf$ distribute t(cyclic)
#if defined (HPF)

al l ocate (t(number_of processors()))
#elif defined (_OPENWP)

al l ocate (t(OVWP_GET_NUM THREADS()))
#el se

allocate (t(1))
#endi f

call system clock (count_rate=hz)
|

call system cl ock(count=cl ock0)
< do wor k>

call system cl ock(count =cl ockl)
|

-t = (clockl - cl ock0)
time = real (sum(t)) / (real(hz) * size(t))

Portability of Multi-Threaded Programs on Linux

PGI has created two libraries - libpgbind and libnuma - to handle the variations between various
implementations of Linux.

Some older versions of Linux are lacking certain features that support multi-processor and multi-core systems,
in particular, the system call 'sched_setaffinity' and the numa library libnuma. The PGI run-time library uses
these features to implement some —Mconcur and —np operations.

These variations have led to the creation of two PGI libraries, libpgbind and libnuma. These libraries are used
on all 32-bit and 64-bit Linux systems, but are not needed on Windows or Mac 0S X.

When a program is linked with the system libnuma library, the program depends on the libnuma library in
order to run. On systems without a system libnuma library, the PGI version of libnuma provides the required
stubs so that the program links and executes properly.

If the program is linked with libpgbind and libnuma, the differences between systems is masked by the
different versions of libpgbind and libnuma. In particular, PGI provides two versions of libpgbind: one for
systems with working support for sched_setaffinity and another for systems that do not.

When a program is deployed to the target system, the proper set of libraries, real or stub, should be deployed
with the program.

This facility requires that the program be dynamically linked with libpgbind and libnuma.

libpgbind

On some versions of Linux, the system call sched_setaffinity does not exist or does not work. The library
libpgbind is used to work around this problem.

46

Chapter 3. Optimizing & Parallelizing

During installation, a small test program is compiled, linked, and executed. If the test program compiles, links,
and executes successfully, the installed version of libpgbind calls the system sched_setaffinity, otherwise the
stub version is installed.

libnuma

Not all systems have libnuma. Typically, only numa systems will have this library. PGI supplies a stub version of
libnuma which satisfies the calls from the PGI run-time to libnuma. Note that libnuma is a shared library that is
linked dynamically at run-time.

The reason to have a numa library on all systems is to allow multi-threaded programs, such as programs
compiled with —~Mconcur or —np , to be compiled, linked, and executed without regard to whether the host
or target systems has a numa library. When the numa library is not available, a multi-threaded program still
runs because the calls to the numa library are satisfied by the PGI stub library.

During installation, the installation procedure checks for the existence of a real libnuma among the system
libraries. If the real library is not found, the PGI stub version is substituted.

47

48

Chapter 4. Using Function Inlining

Function inlining replaces a call to a function or a subroutine with the body of the function or subroutine. This
can speed up execution by eliminating parameter passing and function/subroutine call and return overhead.

It also allows the compiler to optimize the function with the rest of the code. Note that using function inlining
indiscriminately can result in much larger code size and no increase in execution speed.

The PGI compilers provide two categories of inlining:

* Automatic inlining - During the compilation process, a hidden pass precedes the compilation pass.
This hidden pass extracts functions that are candidates for inlining. The inlining of functions occurs as the
source files are compiled.

e Inline libraries - You create inline libraries, for example using the pgfortran compiler driver and the —o
and —Mext r act options. There is no hidden extract pass but you must ensure that any files that depend on
the inline library use the latest version of the inline library.

There are important restrictions on inlining. Inlining only applies to certain types of functions. Refer to
“Restrictions on Inlining,” on page 53 for more details on function inlining limitations.

This chapter describes how to use the following options related to function inlining:
—Mext r act

—M nli ne

—M ecursi ve

Invoking Function Inlining

To invoke the function inliner, use the - M nl i ne option. If you do not specify an inline library, the compiler

performs a special prepass on all source files named on the compiler command line before it compiles any of
them. This pass extracts functions that meet the requirements for inlining and puts them in a temporary inline
library for use by the compilation pass.

Several - M nl i ne suboptions let you determine the selection criteria for functions to be inlined. These
suboptions include:

49

Invoking Function Inlining

except:f unc
Inlines all eligible functions except f unc, a function in the source text. you can use a comma-separated
list to specify multiple functions.

[name:]f unc
Inlines all functions in the source text whose name matches f unc. you can use a comma-separated list to
specify multiple functions.

[size:|n
Inlines functions with a statement count less than or equal to n, the specified size.

Note

The size n may not exactly equal the number of statements in a selected function,; the size
parameter is merely a rough gauge.

levels:n
Inlines n level of function calling levels. The default number is one (1). Using a level greater than one
indicates that function calls within inlined functions may be replaced with inlined code. This approach
allows the function inliner to automatically perform a sequence of inline and extract processes.

[lib:]fi 1 e. ext
Instructs the inliner to inline the functions within the library file f i | e. ext . If no inline library is
specified, functions are extracted from a temporary library created during an extract prepass.

Tip

Create the library file using the - Mext r act option.

If you specify both a function name and a size n, the compiler inlines functions that match the function name
or have n or fewer statements.

If a name is used without a keyword, then a name with a period is assumed to be an inline library and a name
without a period is assumed to be a function name. If a number is used without a keyword, the number is
assumed to be a size.

In the following example, the compiler inlines functions with fewer than approximately 100 statements in the
source file mypr og. f and writes the executable code in the default output file a. out .

$ pgfortran -M nline=size: 100 nyprog. f

Refer to “—M Options by Category,” on page 259 for more information on the - M nl i ne options.

Using an Inline Library

50

If you specify one or more inline libraries on the command line with the - M nl i ne option, the compiler does
not perform an initial extract pass. The compiler selects functions to inline from the specified inline library.

If you also specify a size or function name, all functions in the inline library meeting the selection criteria are
selected for inline expansion at points in the source text where they are called.

If you do not specify a function name or a size limitation for the - M nl i ne option, the compiler inlines every
function in the inline library that matches a function in the source text.

Chapter 4. Using Function Inlining

In the following example, the compiler inlines the function pr oc from the inline library | i b. i | and writes
the executable code in the default output file a. out .

$ pgfortran -Mnline=nanme:proc,lib:lib.il mnyprog.f

The following command line is equivalent to the preceding line, with the exception that in the following
example does not use the keywords nane: and | i b: . You typically use keywords to avoid name conflicts
when you use an inline library name that does not contain a period. Otherwise, without the keywords, a period
informs the compiler that the file on the command line is an inline library.

$ pgfortran -Mnline=proc,lib.il nyprog.f

Creating an Inline Library

You can create or update an inline library using the - Mext r act command-line option. If you do not specify
selection criteria with the - Mext r act option, the compiler attempts to extract all subprograms.

Several - Mext r act options let you determine the selection criteria for creating or updating an inline library.
These selection criteria include:

func
Extracts the function f unc. you can use a comma-separated list to specify multiple functions.

[name:]f unc
Extracts the functions whose name matches f unc, a function in the source text.

[size:|n
Limits the size of the extracted functions to functions with a statement count less than or equal to n, the
specified size.

Note

The size n may not exactly equal the number of statements in a selected function; the size
parameter is merely a rough gauge.

[lib:]lext . 1ib
Stores the extracted information in the library directory ext . 1'i b.

If no inline library is specified, functions are extracted to a temporary library created during an extract
prepass for use during the compilation stage.

When you use the - Mext r act option, only the extract phase is performed; the compile and link phases

are not performed. The output of an extract pass is a library of functions available for inlining. This output is
placed in the inline library file specified on the command line with the —o filename specification. If the library
file exists, new information is appended to it. If the file does not exist, it is created. You can use a command
similar to the following:

$ pgfortran -Mextract=lib:lib.il myfunc.f

You can use the - M nl i ne option with the - Mext r act option. In this case, the extracted library of functions
can have other functions inlined into the library. Using both options enables you to obtain more than one
level of inlining. In this situation, if you do not specify a library with the —~M nl i ne option, the inline process

51

Creating an Inline Library

consists of two extract passes. The first pass is a hidden pass implied by the —M nl i ne option, during which
the compiler extracts functions and places them into a temporary library. The second pass uses the results of
the first pass but puts its results into the library that you specify with the —o option.

Working with Inline Libraries

An inline library is implemented as a directory with each inline function in the library stored as a file using an
encoded form of the inlinable function.

A special file named TOC in the inline library directory serves as a table of contents for the inline library.
This is a printable, ASCII file which you can examine to locate information about the library contents, such
as names and sizes of functions, the source file from which they were extracted, the version number of the
extractor which created the entry, and so on.

Libraries and their elements can be manipulated using ordinary system commands.
e Inline libraries can be copied or renamed.

e Elements of libraries can be deleted or copied from one library to another.

e Thel s ordi r command can be used to determine the last-change date of a library entry.

Dependencies

When a library is created or updated using one of the PGI compilers, the last-change date of the library
directory is updated. This allows a library to be listed as a dependence in a makefile and ensures that the
necessary compilations are performed when a library is changed.

Updating Inline Libraries - Makefiles

52

If you use inline libraries you must be certain that they remain up-to-date with the source files into which they
are inlined. One way to assure inline libraries are updated is to include them in 2 makefile.

The makefile fragment in the following example assumes the file uti I s. f contains a number of small
functions used in the files par ser . f and al | oc. f.

This portion of the makefile:

e Maintains the inline libraryutils.il.
e Updates the library whenever you change ut i | s. f or one of the include files it uses.

e Compiles par ser. f and al | oc. f whenever you update the library.

Example 4.1. Sample Makefile

SRC = nydir

FC = pgfortran

FFLAGS = -2

mai n. o: $(SRC)/mmin. f $(SRC)/ gl obal . h

$(FC) $(FFLAGS) -c $(SRO)/ mi n. f

utils.o: $(SRC)/utils.f $(SRC)/global .h $(SRC)/utils.h
$(FC) $(FFLAGS) -c $(SRO)/utils.f

Chapter 4. Using Function Inlining

utils.il: $(SRO)/utils.f $(SRC)/global.h $(SRC)/utils.h
$(FC) $(FFLAGS) -Mextract=15 -o utils.il utils.f
parser.o: $(SRC)/parser.f $(SRC)/global.h utils.il

$(FC) $(FFLAGS) -Mnline=utils.il -c $(SRC)/parser.f
alloc.o: $(SRO)/alloc.f $(SRC)/global.h utils.il
$(FC) $(FFLAGS) -Mnline=utils.il -c $(SRC)/alloc. f

myprog: main.o utils.o parser.o alloc.o
$(FO -0 nyprog main.o utils.o parser.o alloc.o

Error Detection during Inlining

You can specify the —M nf o=i nl i ne option to request inlining information from the compiler when you
invoke the inliner. For example:

$ pgfortran -Mnline=nylib.il -Mnfo=inline nyext.f

Examples

Assume the program dhry consists of a single source file dhry. f . The following command line builds an
executable file for dhr y in which proc7 is inlined wherever it is called:

$ pgfortran dhry.f -Mnline=proc?7

The following command lines build an executable file for dhr y in which proc7 plus any functions of
approximately 10 or fewer statements are inlined (one level only).

Note

The specified functions are inlined only if they are previously placed in the inline library, t enp. i I ,
during the extract phase.

$ pgfortran dhry.f -Mextract=lib:tenp.il
$ pgfortran dhry.f -Mnline=10, proc7,tenp.il

Using the same source file dhr y. f , the following example builds an executable for dhr y in which all
functions of roughly ten or fewer statements are inlined. Two levels of inlining are performed. This means
that if function A calls function B, and B calls C, and both B and C are inlinable, then the version of B which is
inlined into A will have had C inlined into it.

$ pgfortran dhry.f -Mnline=size: 10, evel s: 2

Restrictions on Inlining

The following Fortran subprograms cannot be extracted:

Main or BLOCK DATA programs.

Subprograms containing alternate return, assigned GO TO, DATA, SAVE, or EQUIVALENCE statements.

Subprograms containing FORMAT statements.

Subprograms containing multiple entries.

53

Restrictions on Inlining

54

A Fortran subprogram is not inlined if any of the following applies:

o It is referenced in a statement function.

* A common block mismatch exists; in other words, the caller must contain all common blocks specified in
the callee, and elements of the common blocks must agree in name, order, and type (except that the caller's
common block can have additional members appended to the end of the common block).

* An argument mismatch exists; in other words, the number and type (size) of actual and formal parameters
must be equal.

* A name clash exists, such as a call to subroutine xyz in the extracted subprogram and a variable named
xyz in the caller.

The following types of C and C++ functions cannot be inlined:

e Functions containing switch statements
¢ Functions which reference a static variable whose definition is nested within the function

e Function which accept a variable number of arguments
Certain C/C++ functions can only be inlined into the file that contains their definition:

o Static functions
¢ Functions which call a static function

¢ Functions which reference a static variable

Chapter 5. Using OpenMP

The PGF77, PGF95, and PGFORTRAN Fortran compilers support the OpenMP Fortran Application Program
Interface. The PGCC ANSI C and C++ compilers support the OpenMP C/C++ Application Program Interface.

OpenMP is a specification for a set of compiler directives, an applications programming interface (API), and

a set of environment variables that can be used to specify shared memory parallelism in FORTRAN and C/C++
programs. OpenMP may be used to obtain most of the parallel performance you can expect from your code, or
it may serve as a stepping stone to parallelizing an entire application with MPL.

This chapter provides information on OpenMP as it is supported by PGI compilers.

Use the - np compiler switch to enable processing of the OMP pragmas listed in this chapter. C++ applications
will also compile with thread-safe versions of STL header files. Users must link with the - np switch to link the
OpenMP runtime library, and for C++, the thread-safe Standard Template Library.

Note

The C++ Standard Template library has been made thread-safe to extent allowed in the STLport code:
simultaneous accesses to distinct containers are safe, simultaneous reads to shared containers are
also safe. However, simultaneous writes to shared containers must be protected by #pragma omp
critical sections.

This chapter describes how to use the following options related to using OpenMP:
—np

OpenMP Overview

Let’s look at the OpenMP shared-memory parallel programming model and some common OpenMP
terminology.

OpenMP Shared-Memory Parallel Programming Model

The OpenMP shared-memory programming model is a collection of compiler directives or pragmas, library
routines, and environment variables that can be used to specify shared-memory parallelism in Fortran and C/C
++ programs.

99

OpenMP Overview

Fortran directives and C/C++ pragmas
Allow users to mark sections of code that can be executed in parallel when the code is compiled using the
—np switch. When this switch is not present, the compiler ignores these directives and pragmas.

OpenMP Fortran directives begin with ! $OVP , CSOVP, or * $OVP, beginning in column 1. OpenMP
pragmas for C/C++ begin with #pr agma onp. This format allows the user to have a single source for
use with or without the —np switch, as these lines are then merely viewed as comments when —np is not
present or the compilers are not capable of handling directives or C/C++ pragmas.

These directives and pragmas allow the user to create task, loop, and parallel section work-sharing
constructs and synchronization constructs. They also allow the user to define how data is shared or copied
between parallel threads of execution.

Fortran directives and C/C++ pragmas include a parallel region construct for writing coarse grain SPMD
programs, work-sharing constructs which specify that DO loop iterations or C/C++ for loop iterations
should be split among the available threads of execution, and synchronization constructs.

Note

The data environment is controlled either by using clauses on the directives or pragmas, or with
additional directives or pragmas.

Run-time library routines
Are available to query the parallel run-time environment, for example to determine how many threads are
participating in execution of a parallel region.

Environment variables
Are available to control the execution behavior of parallel programs. For more information on OpenMP,
see www.openmp.org.

Macro substitution

C and C++ omp pragmas are subject to macro replacement after #pr agma onp.

Terminology

For OpenMP 3.0 there are a number of terms for which it is useful to have common definitions.
Thread
An execution entity with a stack and associated static memory, called threadprivate memory.
* An OpenMP thread is a thread that is managed by the OpenMP runtime system.

* A thread-safe routine is a routine that performs the intended function even when executed concurrently,
that is, by more than one thread.

Region
All code encountered during a specific instance of the execution of a given construct or of an OpenMP
library routine. A region includes any code in called routines as well as any implicit code introduced by
the OpenMP implementation.

56

Chapter 5. Using OpenMP

Regions are nested if one region is (dynamically) enclosed by another region, that is, a region is
encountered during the execution of another region. PGI currently does not support nested parallel
regions.

Parallel region
In OpenMP 3.0 there is a distinction between a parallel region and an active parallel region. A parallel
region can be either inactive or active.

* An inactive parallel region is executed by a single thread.

* An active parallel region is a parallel region that is executed by a team consisting of more than one
thread.

Note

The definition of an active parallel region changed between OpenMP 2.5 and OpenMP 3.0. In
OpenMP 2.5, the definition was a parallel region whose IF clause evaluates to true. To examine
the significance of this change, look at the following example:

program t est
| ogi cal onp_in_parallel

| $onp parall el
print *, onp_in_parallel()
I $onp end parall el

st op
end

Suppose we run this program with OMP_NUM_THREADS set to one. In OpenMP 2.5, this
program yields T while in OpenMP 3.0, the program yields F. In OpenMP 3.0, execution is not
occurring by more than one thread. Therefore, change in this definition may mean previous
programs require modification.

PGI currently does not support nested parallel regions so currently has only one level of active parallel
regions.

Task
A specific instance of executable code and its data environment, generated when a thread encounters a
task construct or a parallel construct.

OpenMP Example
Look at the following simple OpenMP example involving loops.

Example 5.1. OpenMP Loop Example

PROGRAM MAI N
INTEGER |, N, QOVP_GET_THREAD NUM
REAL*8 V(1000), GSUM LSUM

GSUM = 0. 0D0
N = 1000

o7

Task Overview

DOl =1, N
V(1) = DBLE(1)
ENDDO

1 $OVP PARALLEL PRI VATE(I, LSUM) SHARED(V, GSUM N)
LSUM = 0. 0DO0
1 $OVP DO
DOl =1, N
LSUM = LSUM + V(1)
ENDDO
1 $OMP END DO
1 $OVMP CRI Tl CAL
print *, "Thread ", OW_GET_THREAD NUM)," local sum ", LSUM
GSUM = GSUM + LSUM
1 $OVMP END CRI Tl CAL
1 $OMP END PARALLEL

PRINT *, "G obal Sum ", GSUM

STOP
END

If you execute this example with the environment variable OMP_NUM_THREADS set to 4, then the output looks
similar to this:

Thr ead 0 local sum 31375. 00000000000
Thr ead 1 local sum 93875. 00000000000
Thr ead 2 local sum 156375. 0000000000
Thr ead 3 local sum 218875. 0000000000
d obal Sum 500500. 0000000000
FORTRAN STOP

Task Overview

Every part of an OpenMP program is part of a task. A task, whose execution can be performed immediately or
delayed, has these characteristics:

¢ Code to execute
e A data environment - that is, it owns its data

* An assigned thread that executes the code and uses the data.
There are two activities associated with tasks: packaging and execution.

e Packaging: Each encountering thread packages a new instance of a task - code and data.

¢ Execution: Some thread in the team executes the task at some later time.
In the following sections, we use this terminology:

Task
The package of code and instructions for allocating data created when a thread encounters a task
construct. A task can be implicit or explicit.

* An explicit task is a task generated when a task construct is encountered during execution.

e An implicit task is a task generated by the implicit parallel region or generated when a parallel
construct is encountered during execution.

58

Chapter 5. Using OpenMP

Task construct
A task directive plus a structured block

Task region

The dynamic sequence of instructions produced by the execution of a task by a thread.

Fortran Parallelization Directives

Parallelization directives are comments in a program that are interpreted by the PGI Fortran compilers when
the option —np is specified on the command line. The form of a parallelization directive is:

sentinel directive_nane [cl auses]

With the exception of the SGI-compatible DOACROSS directive, the sentinel must comply with these rules:

Be one of these: '$OMP, CSOMP, or *$OMP.

Must start in column 1 (one).

Must appear as a single word without embedded white space.

The sentinel marking a DOACROSS directive is C$.

The directive_name can be any of the directives listed in Table 5.1, “Directive and Pragma Summary Table,”
on page 61. The valid clauses depend on the directive. Chapter 17, “OpenMP Reference Information”
provides a list of directives and their clauses, their usage, and examples.

In addition to the sentinel rules, the directive must also comply with these rules:

e Standard Fortran syntax restrictions, such as line length, case insensitivity, and so on, apply to the directive
line.

e Initial directive lines must have a space or zero in column six.

e Continuation directive lines must have a character other than a space or a zero in column six. Continuation
lines for CSDOACROSS directives are specified using the C$& sentinel.

e Directives which are presented in pairs must be used in pairs.
Clauses associated with directives have these characteristics:

e The order in which clauses appear in the parallelization directives is not significant.

e Commas separate clauses within the directives, but commas are not allowed between the directive name and
the first clause.

e (Clauses on directives may be repeated as needed, subject to the restrictions listed in the description of each
clause.

C/C++ Parallelization Pragmas

Parallelization pragmas are #pragma statements in a C or C++ program that are interpreted by the PGCC C and
C++ compilers when the option -mp is specified on the command line. The form of a parallelization pragma
is:

59

Directive and Pragma Recognition

#pragma onp pragma_nane [cl auses]

The format for pragmas include these standards:

e The pragmas follow the conventions of the C and C++ standards.

» Whitespace can appear before and after the #.

e Preprocessing tokens following the #pragma omp are subject to macro replacement.
e The order in which clauses appear in the parallelization pragmas is not significant.

e Spaces separate clauses within the pragmas.

e (Clauses on pragmas may be repeated as needed subject to the restrictions listed in the description of each
clause.

For the purposes of the OpenMP pragmas, a C/C++ structured block is defined to be a statement or compound
statement (a sequence of statements beginning with { and ending with }) that has a single entry and a single
exit. No statement or compound statement is a C/C++ structured block if there is a jump into or out of that
statement.

Directive and Pragma Recognition

The compiler option —np enables recognition of the parallelization directives and pragmas. The use of this
option also implies:

—M eent rant
Local variables are placed on the stack and optimizations, such as - Mhof r ane, that may result in non-
reentrant code are disabled.

—M onut ex
For directives, critical sections are generated around Fortran I/O statements.

For pragmas, calls to I/0 library functions are system-dependent and are not necessarily guaranteed to be

thread-safe. 1/0 library calls within parallel regions should be protected by critical regions, as shown in the
examples in Chapter 17, “OpenMP Reference Information”, to ensure they function correctly on all systems.

Directive and Pragma Summary Table

The following table provides a brief summary of the directives and pragmas that PGI supports. For complete
information on these statements and examples, refer to Chapter 17, “OpenMP Reference Information”.

Note

In the table, the values in uppercase letters are Fortran directives while the names in lowercase letters
are C/C++ pragmas.

60

Chapter 5. Using OpenMP

Table 5.1. Directive and Pragma Summary Table

Fortran Directive and C/C++
Pragma

Description

ATOMIC and atomic Semantically equivalent to enclosing a single statement in the
CRITCIAL...END CRITICAL directive or critical pragma. Note:
Only certain statements are allowed.

BARRIER and barrier Synchronizes all threads at a specific point in a program so

that all threads complete work to that point before any thread
continues.

CRITICAL ... END CRITICAL and
critical

Defines a subsection of code within a parallel region, a critical
section, which is executed one thread at a time.

DO...END DO and for

Provides a mechanism for distribution of loop iterations across
the available threads in a parallel region.

C$DOACROSS Specifies that the compiler should parallelize the loop to which it
applies, even though that loop is not contained within a parallel
region.

FLUSH and flush When this appears, all processor-visible data items, or, when a

list is present (FLUSH [list]), only those specified in the list, are
written to memory, thus ensuring that all the threads in a team
have a consistent view of certain objects in memory.

MASTER ... END MASTER and
master

Designates code that executes on the master thread and that is
skipped by the other threads.

ORDERED and ordered

Defines a code block that is executed by only one thread at a
time, and in the order of the loop iterations; this makes the
ordered code block sequential, while allowing parallel execution
of statements outside the code block.

PARALLEL DO and parallel for

Enables you to specify which loops the compiler should
parallelize.

PARALLEL ... END PARALLEL and
parallel

Supports a fork/join execution model in which a single thread
executes all statements until a parallel region is encountered.

PARALLEL SECTIONS and parallel
sections

Defines a non-iterative work-sharing construct without the need
to define an enclosing parallel region.

PARALLEL WORKSHARE ... END
PARALLEL WORKSHARE

Provides a short form method for including a WORKSHARE
directive inside a PARALLEL construct.

SECTIONS ... END SECTIONS and
sections

Defines a non-iterative work-sharing construct within a parallel
region.

SINGLE ... END SINGLE and
single

Designates code that executes on a single thread and that is
skipped by the other threads.

TASK and task

Defines an explicit task.

61

Directive and Pragma Clauses

Fortran Directive and C/C++ |Description

Pragma

TASKWAIT and taskwait Specifies a wait on the completion of child tasks generated since
the beginning of the current task.

THREADPRIVATE and When a common block or variable that is initialized appears in

threadprivate this directive or pragma, each thread’s copy is initialized once
prior to its first use.

WORKSHARE ... END Provides 2 mechanism to effect parallel execution of non-

WORKSHARE iterative but implicitly data parallel constructs.

Directive and Pragma Clauses

Some directives and pragmas accept clauses that further allow a user to control the scope attributes of
variables for the duration of the directive or pragma. Not all clauses are allowed on all directives, so the
clauses that are valid are included with the description of the directive and pragma.

The following table provides a brief summary of the clauses associated with OPENMP directives and pragmas

that PGI supports.
Table 5.2. Directive and Pragma Clauses Summary Table
This clause Applies to this directive |Applies to this |Has this functionality
pragma

“COLLAPSE (n)” DO...END DO parallel for Specifies how many loops
PARALLEL DO are associated with the loop
PARALLEL WORKSHARE construct.

“COPYIN (list)” PARALLEL parallel Allows threads to access the
PARALLEL DO parallel for master thread's value, for a
PARALLEL SECTIONS threadprivate variable. You assign
PARALLEL WORKSHARE the same value to threadprivate

variables for each thread in

the team executing the parallel
region. Then, for each variable
specified, the value of the
variable in the master thread

of the team is copied to the
threadprivate copies at the
beginning of the parallel region.

62

Chapter 5. Using OpenMP

This clause Applies to this directive |Applies to this |Has this functionality
pragma
“COPYPRIVATE(list)” |SINGLE single Specifies that one or more
variables should be shared
among all threads. This clause
provides a mechanism to use
a private variable to broadcast
a value from one member of a
team to the other members.
“DEFAULT” PARALLEL parallel Specifies the behavior of
PARALLEL DO parallel for unscoped variables in a parallel
PARALLEL SECTIONS region, such as the data-sharing
PARALLEL WORKSHARE attributes of variables.
“FIRSTPRIVATE (list)” |DO for Specifies that each thread
PARALLEL parallel should have its own instance of a
PARALLEL DO parallel for variable, and that each variable
PARALLEL SECTIONS sections in the list should be initialized
PARALLEL WORKSHARE |single with the value of the original
SECTIONS variable, because it exists before
SINGLE the parallel construct.
“IF()” PARALLEL ... END PARALLEL parallel Specifies whether a loop should
PARALLEL DO ... parallel for be executed in parallel or in
END PARALLEL DO parallel sections |serial.
PARALLEL SECTIONS ...
END PARALLEL SECTIONS
PARALLEL WORKSHARE
“LASTPRIVATE(list)” | DO parallel Specifies that the enclosing
PARALLEL DO ... parallel for context's version of the variable
END PARALLEL DO parallel sections |is set equal to the private version
PARALLEL SECTIONS ... sections of whichever thread executes
END PARALLEL SECTIONS the final iteration of a for-loop
SECTIONS construct or last section of
#pragma sections.
“NOWAIT” DO ... END DO for Overrides the barrier implicit in a
SECTIONS sections directive.
SINGLE single
WORKSHARE ...
END WORKSHARE

63

Directive and Pragma Clauses

64

This clause Applies to this directive |Applies to this |Has this functionality
pragma
“NUM_THREADS” PARALLEL parallel Sets the number of threads in a
PARALLEL DO ... parallel for thread team.
END PARALLEL DO parallel sections
PARALLEL SECTIONS ...
END PARALLEL SECTIONS
PARALLEL WORKSHARE
“ORDERED” DO...END DO parallel for Required on a parallel FOR
PARALLEL DO... statement if an ordered directive
END PARALLEL DO is used in the loop.
“PRIVATE” DO for Specifies that each thread
PARALLEL parallel should have its own instance of a
PARALLEL DO ... parallel for variable.
END PARALLEL DO parallel sections
PARALLEL SECTIONS ... sections
END PARALLEL SECTIONS |single
PARALLEL WORKSHARE
SECTIONS
SINGLE
“REDUCTION”({ opetB©Oor for Specifies that one or more
| intrinsic } : |PARALLEL parallel variables that are private to
list) PARALLEL DO ... parallel for each thread are the subject of a
END PARALLEL DO parallel sections |reduction operation at the end of
PARALLEL SECTIONS ... sections the parallel region.
END PARALLEL SECTIONS
PARALLEL WORKSHARE
SECTIONS
“SCHEDULE”(type |DO ... END DO for Applies to the FOR directive,
[, chunk]) PARALLEL DO... parallel for allowing the user to specify
END PARALLEL DO the chunking method for
parallelization. Work is assigned
to threads in different manners
depending on the scheduling type
or chunk size used.
“SHARED” PARALLEL parallel Specifies that one or more
PARALLEL DO ... parallel for variables should be shared
END PARALLEL DO parallel sections |among all threads. All threads
PARALLEL SECTIONS ... within a team access the same
END PARALLEL SECTIONS storage area for shared variables
PARALLEL WORKSHARE

Chapter 5. Using OpenMP

This clause Applies to this directive |Applies to this |Has this functionality
pragma
“UNTIED” TASK task Specifies that any thread in the
TASKWAIT taskwait team can resume the task region

after a suspension.

For complete information on these clauses, refer to the OpenMP documentation available on the WorldWide

Web.

Run-time Library Routines

User-callable functions are available to the programmer to query and alter the parallel execution environment.

Any C/C++ program unit that invokes these functions should include the statement #include <omp.h>.
The onp. h include file contains definitions for each of the C/C++ library routines and the required type
definitions. For example, to use the onp_get _num t hr eads function, use this syntax:

#i ncl ude <onp. h>
i nt onp_get _num t hreads(voi d);

Note

Unlimited OpenMP thread counts are available in all PGI configurations. The number of threads is
unlicensed in the OpenMP run-time libraries - up to the hard limit of 64 threads.

The following table summarizes the run-time library calls.

Note

The Fortran call is shown first followed by the equivalent C/C++ call.

Table 5.3. Run-time Library Routines Summary

Run-time Library Routines with Examples

omp_get_num_threads

Returns the number of threads in the team executing the parallel region from which it is called. When
called from a serial region, this function returns 1. A nested parallel region is the same as a single
parallel region.

By default, the value returned by this function is equal to the value of the environment variable
OVP_NUM_THREADS or to the value set by the last previous call to omp_set_num_threads().

Fortran

i nteger function onp_get_numthreads()

C/C++

int onp_get_num t hreads(voi d);

65

Run-time Library Routines

66

Run-time Library Routines with Examples

omp_set_num_threads

Sets the number of threads to use for the next parallel region.

This subroutine or function can only be called from a serial region of code. If it is called from
within a parallel region, or from within a subroutine or function that is called from within a parallel
region, the results are undefined. Further, this subroutine or function has precedence over the
OVP_NUM_THREADS environment variable.

Fortran

subroutine onp_set_num t hreads(scal ar _i nt eger _exp)

C/C++

voi d onp_set_numthreads(int numthreads);

omp_get_thread_num

Returns the thread number within the team. The thread number lies between 0 and
omp_get_num_threads()-1. When called from a serial region, this function returns 0. A nested
parallel region is the same as a single parallel region.

Fortran

i nteger function onp_get _thread num()

C/C++

int onp_get _thread_nun{void);

omp_get_ancestor_thread_num

Returns, for a given nested level of the current thread, the thread number of the ancestor.

Fortran i nteger function onp_get ancestor_thread_nun(l evel)
i nteger |evel
C/C++ int onp_get _ancestor_thread_nun(int |evel);

omp_get_active_level

Returns the number of enclosing active parallel regions enclosing the task that contains the call. PGI
currently supports only one level of active parallel regions, so the return value currently is 1.

Fortran

i nteger function onp_get_active_l evel ()

C/C++

int onp_get active_ | evel (void);

omp_get_level

Returns the number of parallel regions enclosing the task that contains the call.

Fortran

i nteger function onp_get_|evel ()

C/C++

int onp_get_|evel (void);

omp_get_max_threads

Returns the maximum value that can be returned by calls to omp_get_num_threads().

If omp_set_num_threads() is used to change the number of processors, subsequent calls to
omp_get_max_threads() return the new value. Further, this function returns the maximum value
whether executing from a parallel or serial region of code.

Fortran

i nteger function onp_get_max_threads()

C/C++

voi d onp_get _max_t hreads(voi d);

Chapter 5. Using OpenMP

Run-time Library Routines with Examples

omp_get_num_procs

Returns the number of processors that are available to the program

Fortran i nteger function onp_get_num procs()

C/C++ int onp_get_num procs(void);

omp_get_stack_size

Returns the value of the OpenMP internal control variable that specifies the size that is used to create a
stack for a newly created thread.

This value may 7ot be the size of the stack of the current thread.

Fortran lonp_get _stack_size interface

function onp_get _stack_size ()

use onp_lib_kinds

i nteger (ki nd=OVP_STACK_SI ZE_KI ND)
onp_get _stack_si ze

end function onp_get_stack_si ze

end interface

C/C++ size_t onp_get_stack_size(void);

omp_set_stack_size

Changes the value of the OpenMP internal control variable that specifies the size to be used to create a
stack for a newly created thread.

The integer argument specifies the stack size in kilobytes. The size of the stack of the current thread
cannot be changed. In the PGI implementation, all OpenMP or auto-parallelization threads are created
just prior to the first parallel region; therefore, only calls to onp_set _st ack_si ze() that occur
prior to the first region have an effect.

Fortran subroutine onp_set _stack_si ze(integer (Kl ND=OVWP_STACK_SI ZE _KI ND))

C/C++ voi d onp_set _stack_size(size_t);

omp_get_team_size

Returns, for a given nested level of the current thread, the size of the thread team to which the ancestor
belongs.

Fortran i nteger function onp_get teamsize (Ilevel)
i nteger |evel

C/C++ i nteger onp_get teamsize(int |evel);

omp_in_parallel

Returns whether or not the call is within a parallel region.

Returns . TRUE. for directives and non-zero for pragmas if called from within a parallel region and

. FALSE. for directives and zero for pragmas if called outside of a parallel region. When called
from within a parallel region that is serialized, for example in the presence of an IF clause evaluating
. FALSE. for directives and zero for pragmas, the function returns . FALSE. for directives and zero
for pragmas.

Fortran | ogi cal function onp_in_parallel()

67

Run-time Library Routines

68

Run-time Library Routines with Examples

C/C++ int onp_in_parallel(void);

omp_set_dynamic

Allows automatic dynamic adjustment of the number of threads used for execution of parallel regions.

This function is recognized, but currently has no effect.

Fortran subroutine onp_set _dynani c(scal ar _| ogi cal _exp)

C/C++ voi d onp_set _dynam c(int dynam c_t hreads);

omp_get_dynamic

Allows the user to query whether automatic dynamic adjustment of the number of threads used for
execution of parallel regions is enabled.

This function is recognized, but currently always returns . FALSE. for directives and zero for pragmas.

Fortran | ogi cal function onp_get_dynam c()

C/C++ voi d onp_get _dynami c(voi d);

omp_set_nested

Allows enabling/disabling of nested parallel regions.

This function is recognized, but currently has no effect.

Fortran subroutine onp_set _nest ed(nest ed)
| ogi cal nested

C/C++ voi d onp_set _nested(int nested);

omp_get_nested

Allows the user to query whether dynamic adjustment of the number of threads available for execution
of parallel regions is enabled.

This function is recognized, but currently always returns . FALSE. for directives and zero for pragmas.

Fortran | ogi cal function onp_get_nested()

C/C++ int onp_get _nested(void);

omp_set_schedule

Set the value of the run_sched_var.

Fortran subroutine onp_set_schedul e(kind, nodifier)
i ncl ude ‘onp_lib_kinds.h’

i nt eger (ki nd=onp_sched_ki nd) ki nd

i nteger nodifier

C/C++ doubl e onp_set _schedul e()

omp_get_schedule

Retrieve the value of the run_sched_var.

Fortran subrouti ne onp_get _schedul e(ki nd, nodifier)
i ncl ude ‘onp_lib_kinds. h’

i nt eger (ki nd=onp_sched_ki nd) ki nd

i nteger nodifier

Chapter 5. Using OpenMP

Run-time Library Routines with Examples

C/C++

doubl e onp_get schedul e()

omp_get_wtime

Returns the elapsed wall clock time, in seconds, as a DOUBLE PRECISION value for directives and as a

floating-point double value for pragmas.

Times returned are per-thread times, and are not necessarily globally consistent across all threads.

Fortran

doubl e precision function onp_get_wtinme()

C/C++

doubl e onp_get_wti ne(voi d)

omp_get_wtick

Returns the resolution of omp_get_wtime(), in seconds, as a DOUBLE PRECISION value for Fortran
directives and as a floating-point double value for C/C++ pragmas.

Fortran

doubl e precision function onp_get_wtick()

C/C++

doubl e onp_get_wt i ck()

omp_init_lock

Initializes a lock associated with the variable lock for use in subsequent calls to lock routines.

The initial state of the lock is unlocked. If the variable is already associated with a lock; it is illegal to
make a call to this routine.

Fortran subroutine onp_init_|ock(l ock)

i nclude ‘onp_lib_kinds.h

i nt eger (ki nd=onp_I ock_ki nd) | ock
C/C++ void onp_init_|ock(onp_l ock t *Iock);

voi d onp_init_nest | ock(onp_nest _lock t *Iock);

omp_destroy_lock

Disassociates a lock associated with the variable.

Fortran subroutine onp_destroy_| ock(!| ock)

i nclude ‘onp_lib_Kkinds.h

i nt eger (ki nd=onp_I| ock_ki nd) | ock
C/C++ voi d onp_destroy_| ock(onp_l ock_t *I ock);

voi d onp_destroy_nest | ock(onp_nest | ock_t *I| ock);

omp_set_lock

Causes the calling thread to wait until the specified lock is available.

The thread gains ownership of the lock when it is available. If the variable is not already associated with

a lock, it is illegal to make a call to this routine.

Fortran subroutine onp_set _| ock(l ock)

i nclude ‘onp_lib_kinds.h

i nt eger (ki nd=onp_I ock_ki nd) | ock
C/C++ voi d onp_set | ock(onp_l ock_t *I ock);

voi d onp_set _nest _| ock(onp_nest _| ock_t *Iock);

69

Environment Variables

Run-time Library Routines with Examples

omp_unset_lock

Causes the calling thread to release ownership of the lock associated with i nt eger _var.

If the variable is not already associated with a lock, it is illegal to make a call to this routine.

Fortran subroutine onp_unset _| ock(l ock)
i nclude ‘onp_lib_Kkinds.h’
i nt eger (ki nd=onp_I ock_ki nd) | ock

C/C++ #i ncl ude <onp. h> voi d onp_unset _| ock(onp_| ock_t *I ock);
voi d onp_unset _nest _| ock(onp_nest | ock_t *I ock);

omp_test_lock
Causes the calling thread to try to gain ownership of the lock associated with the variable.
The function returns . TRUE. for directives and non-zero for pragmas if the thread gains ownership

of the lock; otherwise it returns . FALSE. for directives and zero for pragmas. If the variable is not
already associated with a lock, it is illegal to make a call to this routine.

Fortran | ogi cal function onp_test | ock(l ock)
i ncl ude ‘onp_lib_kinds. h’
i nt eger (ki nd=onp_| ock_ki nd) | ock

C/C++ int onp_test_|ock(onmp_lock_t *|ock);
int onp_test_nest_| ock(onp_nest _|ock_ t *Iock);

Environment Variables

You can use OpenMP environment variables to control the behavior of OpenMP programs. These environment
variables allow you to set and pass information that can alter the behavior of directives and pragmas.

The following summary table is a quick reference for the OpenMP environment variables that PGI uses. For
detailed descriptions of each of these variables, refer to “OpenMP Environment Variables,” on page 314.

Table 5.4. OpenMP-related Environment Variable Summary Table

Environment Variable Default Description

OMP_DYNAMIC FALSE Currently has no effect. Typically enables (TRUE) or
disables (FALSE) the dynamic adjustment of the number of
threads.

OMP_NESTED Currently has no effect. Typically specifies the maximum
number of nested parallel regions.

OMP_MAX_ACTIVE_LEVELS |FALSE Currently has no effect. Typically enables (TRUE) or
disables (FALSE) nested parallelism.

OMP_NUM_THREADS 1 Specifies the number of threads to use during execution of
parallel regions.

70

Chapter 5. Using OpenMP

Environment Variable

Default

Description

OMP_SCHEDULE

STATIC with
chunk size of
1

Specifies the type of iteration scheduling and optionally the
chunk size to use for omp for and omp parallel for 1oops
that include the run-time schedule clause. The supported
schedule types, which can be specified in upper- or lower-
case are static, dynamic, guided, and auto.

OMP_STACKSIZE

Overrides the default stack size for a newly created thread.

OMP_THREAD_LIMIT 64 Specifies the absolute maximum number of threads that can
be used in a program.
OMP_WAIT_POLICY ACTIVE Sets the behavior of idle threads, defining whether they spin

or sleep when idle. The values are ACTIVE and PASSIVE.

71

72

Chapter 6. Using MPI

Message Passing Interface (MPI) is an industry-standard application programming interface designed for
rapid data exchange between processors in a cluster application. MPI is computer software used in computer
clusters that allows the processes of a parallel application to communicate with one another.

PGI provides MPI support with PGI compilers and tools. PGI compilers provide explicit support to build MPI
applications on Windows using Microsoft’s implementation of MPI, MSMPI, on Mac OS X using OpenMPI, and
on Linux using MPICH-1, MPICH-2, MVAPICH, OpenMPI, and HP-MPL. Of course, you may always build using
an arbitrary version of MPI; to do this, use the - 1, - L, or - | option.

PGI Workstation on Linux includes MPICH-1; PGI Workstation on Mac OS X includes OpenMPI; and PGI CDK
on Linux includes MPICH-1, MPICH-2, and MVAPICH. This chapter describes how to use these capabilities and
how to configure PGI compilers so these capabilities can be used with custom MPI installations.

The debugger and profiler are enabled to support MPI applications running locally with a limited number of
processes. The PGI Tools Guide describes the MPI-enabled tools in detail:

* PGPROF graphical MPI/OpenMP/multi-thread performance profiler.
* PGDBG graphical MPI/OpenMP/multi-thread symbolic debugger.

MPI Overview

This section contains general information applicable to various MPI implementations. For specific information,
refer to the implementation-specific sections later in this chapter.

Note

Due to complexities in the OpenMPI implementation, the - Mrpi =opennpi is not supported for
OpenMPL. To build using OpenMPI, use the OpenMPI-supplied wrappers mpicc, mpic++, mpif77, or
mpif90 to compile and link. On Windows, configure these compiler wrappers to use PGI compilers,
as described in the OpenMPI documentation and the PGI Installation Guide. On Mac OS X use the
compiler wrapper provided with PGI software.

MPI is a set of function calls and libraries that are used to send messages between multiple processes. These
processes can be located on the same system or on a collection of distributed servers. Unlike OpenMP, the
distributed nature of MPI allows it to work in almost any parallel environment.

73

MPI Overview

Compiling and Linking MPI Applications

The PGI compilers provide an option, - Mpi =, to make building MPI applications more convenient by adding
the MPI include and library directories to the compiler's include and library search paths. The compiler
determines the location of these directories using various mechanisms described in the MPI implementation-
specific sections later in this chapter.

Table 6.1 lists the - Mpi = suboptions for each of the supported implementations.

Table 6.1. MPI Implementation Options

This MPI Requires this option...

implementation...

MPICH-1 - Mmpi =npi chl

MPICH-2 - Mpi =npi ch2

MVAPICH - Mpi =nmvapi chl

HP-MPI - Mpi =hpnpi

MSMPI - Mmpi =nsnpi

OpenMPI - Mpi not supported. Use compiler wrappers.
Note

When you use these options to build an MPI application, you must use them in both the compile and
link steps.

Debugging MPI Applications

74

The PGI debugger, PGDBG, provides support for symbolic debugging of MPI applications. In PGI Workstation,
this support is limited in two ways:

e The application processes must run on a system where PGI Workstation is installed.

 The number of processes is limited, controlled by the license key.

For all implementations of MPI except MPICH-1, you use the PGDBG command to initiate an MPI debugging
session. For example, you might invoke an HP-MPI session as follows:

% pgdbg - npi :/opt/ hpnpi/bin/ mpirun -np 4 ny_npi _app

For specific information on how to initiate a debugging session for your instance of MPI, refer to the
implementation-specific sections available later in this chapter.

PGDBG can display the contents of message queues for instances of MPI that have been configured to support
that feature. The version of MPICH-1 provided with PGI Workstation as well as HP-MPI function properly. If
you are using MPICH-2 or MVAPICH, these must be built and configured correctly. Further, MSMPI does not
support displaying message queue contents.

For more information on MPI and displaying message queues, refer to the documentation for your specific
implementation.

Chapter 6. Using MPI

Profiling MPI Applications

The PGI performance profiler, PGPROE, provides support for profiling MPI applications. The number of
processes that can be profiled is limited by your license. PGPROF instrumentation is inserted into the program
by the compiler, and after the program is executed, the PGPROF profiler can display MPI message count
statistics as they relate to the source code of the application and the time spent in those portions of the
application.

To create and view a performance profile of your MPI application, you must first build an instrumented version
of the application using the - Mpr of = option to specify one of the MPI implementations. The - Mpr of = option
requires that you use another profiling sub-option in conjunction with the MPI implementation suboptions,
listed in Table 6.2.

Note

When you build an MPI application for profiling, you must use these options in both the compile and
link steps.

Table 6.2. MPI Profiling Options

This MPI implementation... |Requires this profiling option...
MPICH-1 - Mor of =npi chl, {func| hwct s| | i nes|ti e}
MPICH-2 - Mor of =npi ch2, {func| hwct s| | i nes|ti me}
MVAPICH - Mor of =nvapi chl, {func| hwct s| | i nes| ti me}
HP-MPI - Mor of =hpnpi , {func| hwct s| i nes|ti e}
MSMPI - Mor of =nsnpi , {func| | i nes}
OpenMPI Use OpenMPI compiler wrappers with

- Mprof ={func| hwects|lines|tinme}

For example, you can use the following command to compile for profiling with MPICH-2:
% pgfortran -fast -Mrof=npich2, func nmy_npi _app. f 90

Note

The default versions of the compilation scripts, such as npi cc and npi f 90, that are provided by
some MPI distributions, do not correctly support the - Mpr of option. For best results, use the PGI
compiler drivers in place of these scripts.

For OpenMPI, refer to the PGI Workstation Installation Guide for more information on configuring the
OpenMPI compiler wrappers to work with the PGI compilers on your system.

Once you have built an instrumented version of your MPI application, running it produces the profile data. For
specific details on using PGPROF to view the profile data, refer to the PGI Tools Guide.

Using MPICH-1 on Linux

PGI Workstation and CDK for Linux includes MPICH-1 libraries, tools, and licenses required to compile,
execute, profile, and debug MPI programs. PGI Workstation can be installed on a single system, and that

75

Using MPICH-2 on Linux

system can be treated as if it is a small cluster. The MPI profiler and debugger are limited to processes on a
single system in PGI Workstation. The PGI CDK supports general development on clusters.

Example

Example 6.1. MPI Hello World Example

The following MPI “hello world” example program uses MPICH-1.

% cd ny_exanpl e_dir

%cp -r $PA /1 inux86/10. 0- 0/ EXAMPLES/ MPI / npi hel | o .
% cd npi hello

% pgf 77 -o npi hell o npi hell o. f - Mmpi =npi chl

% npi run npi hell o
Hello world! |I'm node O

% npirun -np 4 npi hello

Hello world! |I'm node O
Hello world! |I'm node 2
Hello world! |I'm node 1
Hello world! |I'm node 3

If you want to build your MPI application using the instance of MPICH-1 installed with the PGI compilers, just
use the - Mpi =npi ch1l option, or the - Mpr of =npi ch1 option to instrument for MPICH-1 profiling.

To use a different instance of MPICH-1, set the MPI DI R environment variable before invoking the compiler.
MPI DI R specifies the location of the instance of MPI to use. For example, set MPI DI Rto the root of the
MPICH-1 installation directory that you want to use, that is, the directory that contains bi n, i ncl ude, | i b,
and so on.

Using MPICH-2 on Linux

PGI CDK for Linux includes MPICH-2 libraries, tools, and licenses required to compile, execute, profile, and
debug MPI programs.

If you want to build your MPI application using the instance of MPICH-2 installed with the PGI compilers, just
add the - Mpi =npi ch2 option to the compilation and link steps, or you can use the - Mpr of =npi ch2
option to instrument for MPICH-2 profiling. The - Mpi =npi ch2 option automatically sets up the include and
library paths to use the MPICH-2 headers and libraries. For example, you can use the following command to
compile for profiling with MPICH-2:

% pgf ortran -fast -Mrof=npich2,tinme ny_npi_app.f90

To use a different instance of MPICH-2, set the MPI DI R environment variable before invoking and linking with
- Mhpi =npi ch2. MPI DI R specifies the location of the instance of MPI to use. For example, set MPI DI R to
the root of the MPICH-2 installation directory that you want to use, that is, the directory that contains bi n,

i ncl ude, i b, and so on.

Using MVAPICH on Linux

76

PGI CDK for Linux includes MVAPICH libraries, tools, and licenses required to compile, execute, profile, and
debug MPI programs.

Chapter 6. Using MPI

If you want to build your MPI application using the instance of MVAPICH installed with the PGI compilers, just
add the - Mpi =nvapi ch1l option to the compilation and link steps, or you can use the - Mpr of =nvapi chl
option to instrument for MVAPICH profiling. The - Mhpi =mvapi ch1 option automatically sets up the include
and library paths to use the MVAPICH headers and libraries. For example, you can use the following command
to compile for profiling with MVAPICH:

% pgfortran -fast -Mrof=nvapichl,time ny_npi_app.f90

To use a different instance of MVAPICH, set the MPI DI R environment variable before invoking and linking with
- Mpi =nvapi chl1. MPI DI Rspecifies the location of the instance of MPI to use. For example, set MPI DI R
to the root of the MVAPICH installation directory that you want to use, that is, the directory that contains bi n,

i ncl ude, i b, and so on.

Using HP-MPI on Linux

If you have an instance of HP-MPI available on the Linux system on which you have the PGI compilers installed,
you can compile, run, debug, and profile locally on your system using that instance of HP-MPI.

HP-MPI Installation Directory

By default, HP-MPI on Linux is installed in / opt / hpnpi .

e If your instance of HP-MPI is installed in / opt / hpnpi , the default location, then compiling and linking
with the options - Mpi =hpnpi and - Mpr of =hpnpi automatically brings in the appropriate include files
and libraries.

e If your instance of HP-MPI is installed in a directory other than the default location, then you must set the
HP-MPI environment variable MPI _ROOT to the alternate directory where HP-MPI is installed. MPI _ROOT
specifies the location of the instance of HP-MPI to use when compiling your application.

Multi-threaded Application Support

The - Mpi =hpnpi and - Mpr of =hpnpi options use the non-thread-compliant version of HP-MPI. This
library is sufficient for applications that do not make MPI calls simultaneously from multiple threads.

The thread-compliant version is not supported by these options, although you can link to the library directly
using the - L and - | options.

For more information on using HP-MPI in a multi-threaded application, refer to the HP-MPI documentation.

Using OpenMPI on Linux

PGI does not include a version of OpenMPI on Linux that is preconfigured. However, you can configure your
system for OpenMPI by following the instructions in the PGI Workstation Installation Guide.

Compiling using OpenMPI

To build the application, use the OpenMPI compiler wrappers: mpicc, mpic++, mpif77, and mpif90. These
wrappers automatically set up the compiler commands with the correct include file search paths, library

"7

Using MSMPI on Windows

directories, and link libraries. Unlike other MPI distributions, the PGI compiler drivers do not directly support
the - Mipi =opennpi option for OpenMPIL.

Generate MPI Profile Data

To build an application that generates MPI profile data suitable for use with PGPROF, use the OpenMPI
compiler wrappers with the - Mpr of =f unc, - Mpr of =I i nes, or - Mpr of =t i e option. On linux86-64
configured with PAPI, you may also use - Mpr of =hwct s. For more information on profiling with PAPI, refer
to the PGI Tools Guide.

Unlike for other MPI distributions, the PGI compiler drivers do not directly support the - Mpr of =opennpi
option.

Using MSMPI on Windows

If you have an implementation of MSMPI available on the Windows system on which you have PGI Workstation
installed, you can compile, run, debug, and profile locally on your system using that instance of MSMPI.

In general these instructions apply to a system where the Microsoft HPC Pack 2008 SDK is installed as a
development tool, as opposed to an actual HPC Server system.

MSMPI Environment

When the Microsoft HPC Pack 2008 SDK is installed, some system environment variables are set. Further, there
are two environment variables available to help you specify directory locations associated with using MSMPI on
Windows: CCP_HOVE and CCP_SDK.

e CCP_HOME specifies the root directory of the Microsoft cluster management software for systems on which
the Microsoft HPC Pack 2008 is installed.

e CCP_SDX specifies the root directory of the MSMPI software for systems on which Microsoft’s HPC Pack
2008 SDK is installed.

If the appropriate environment variable is set for the version of MSMPI that you are using, then both the
options - Mpi =nmsnpi and - Mpr of =menpi automatically bring in the appropriate include files and
libraries.

Compiling using MSMPI

To compile the application, use the - Mpi =msnpi option. This option inserts options into the compile and
link lines to pick up the MSMPI headers and libraries.

Generate MPI Profile Data

78

To build an application that generates MPI profile data, use the - Mpr of =nmsnpi option. This option performs
MPICH-style profiling for Microsoft MPI.

The profile data generated by running an application built with the option - Mpr of =nsnpi contains
information about the number of sends and receives, as well as the number of bytes sent and received,
correlated with the source location associated with the sends and receives. You must use - Mpr of =nmsnpi in

Chapter 6. Using MPI

conjunction with - Mpr of =f unc or - Mpr of =I i nes. When invoked using this type of profile data, PGPROF
automatically displays MPI statistics.

Using OpenMPI on Mac OS X

PGI Workstation for Mac OS X includes a version of OpenMPI preconfigured for use with the PGI compilers.
Compiling using OpenMPI

To build the application, use the OpenMPI compiler wrappers: mpicc, mpic++, mpif77, and mpif90. These
wrappers automatically set up the compiler commands with the correct include file search paths, library
directories, and link libraries. Unlike other MPI distributions, the PGI compiler drivers do not directly support
the - Mpi =opennpi option for OpenMPI.

Generate MPI Profile Data

You build an application that generates MPI profile data suitable for use with PGPROF, use the OpenMPI
compiler wrappers with the - Mpr of =f unc or - Mpr of =l i nes option.

Note

- Mpr of =t i me and - Mpr of =hwect s are not supported on Mac OS X.

Unlike for other MPI distributions, the PGI compiler drivers do not directly support the - Mpr of =opennpi
option.

Site-specific Customization

You can configure MPI compilers to use custom MPI installations. The section “Site-specific Customization
of the Compilers,” on page 14 of Chapter 1, “Getting Started” describes how to use the si t er c file to
customize the compiler to add certain libraries as well as include paths. This section describes how you can
use the siterc file or environment variables to specify MPI installations other than the PGI-installed defaults.

* You set environment variables to change the MPI installation used by the PGI compilers for a single user or
a single build.

* You change the siterc file to change the defaults for anyone using a PGI installation.

Use Alternate MPICH Installation

Important

In this example, the location of your installation is / opt / npi .

To use an alternate mpich installation, do one of the following.

e Add the following line to the si t er c file:
set MPI UDI R=/ opt / npi ;

OR

79

Site-specific Customization

¢ Set the environment variable MPI DI R

setenv MPI DI R /opt/ npi
export MPI DI R=/ opt/ npi

Once you have done this, when compiling with - Mrpi with any library setting, these new settings are used
instead of the PGlI-installed default.

Use Alternate MVAPICH Installation

Important

In this example, the location of your mvapich installation is / opt / mvapi ch and openfabrics is
installed in / opt / of ed

To use an alternate mvapich installation, do the following.

Add the following lines to the si t er c file:

set MPI VDI R=/ opt / npi ;
set OFEDLI BDI R=/ opt/ of ed/ | i b;

Once you have done this, when compiling with - Mrpi =mvapi ch1 with any library setting, these new settings
are used instead of the PGI-installed default.

Use Alternate HPMPI Installation

Important

In this example, the location of your hpmpi installation is / opt / myhpnpi .
To use an alternate hpmpi installation, do the following.
* Add the following line to the si t er c file:
set MPI HPDI R=/ opt / myhpnpi ;
OR

o Set the environment variable MPI DI R

setenv MPI _ROOT / opt/ myhpnpi
export MPI _ROOT=/ opt/ myhpnpi

Once you have done this, the default setting is / opt / myhpnpi and this is the seeing that is used when
compiling with - Mhpi =hpnpi .

Use Alternate MSMPI Installation

To use an alternate MSMPI installation, do the following.

Important

In this example, the location of your MSMPI installation is C: \ nynsnpi .
80

Chapter 6. Using MPI

e Add the following lines to the si t er c file:

set MSMPI DI R=C: \ nynmsnpi
set MSMPI LI B32=C: \ mynsnpi \ | i b\i 386
set MSMPI LI B64=C: \ nynsnpi \ | i b\ and64

OR

o Set the MSMPI environment variables

set CCP_SDK=C: \ nynsnpi
set CCP_LIB32=C:\ nmynsnpi\lib\i 386
set CCP_LIB64=C:\ mynsnpi\lib\and64

Once you have done this, the default setting is / opt / myhpnpi and this is the setting that is used when
compiling with - Mhpi =hpnpi .

Note

To configure OpenMPI for use with PGI compilers, see the section on OpenMPI in the PGI Installation
Guide.

81

82

Chapter 7. Using an Accelerator

An accelerator is a special-purpose co-processor attached to a CPU and to which the CPU can offload data and
executable kernels to perform compute-intensive calculations. This chapter describes a collection of compiler
directives used to specify regions of code in Fortran and C programs that can be offloaded from a host CPU to
an attached accelerator.

Overview

The programming model and directives described in this chapter allow programmers to create high-level
host+accelerator programs without the need to explicitly initialize the accelerator, manage data or program
transfers between the host and accelerator, or initiate accelerator startup and shutdown. Rather, all of

these details are implicit in the programming model and are managed by the PGI Fortran and C accelerator
compilers.

The method described provides a model for accelerator programming that is portable across operating
systems and various host CPUs and accelerators. The directives allow a programmer to migrate applications
incrementally to accelerator targets using standards-compliant Fortran or C.

This programming model allows the programmer to augment information available to the compilers, including
specification of data local to an accelerator region, guidance on mapping of loops onto an accelerator, and
similar performance-related details.

Components

The PGI Accelerator compiler technology includes the following components:

PGF95 auto-parallelizing accelerator-enabled Fortran 90/95 compiler

PGCC auto-parallelizing accelerator-enabled ANSI C99 and K&R C compiler

NVIDIA CUDA Toolkit components

A simple command-line tool to detect whether the system has an appropriate GPU or accelerator card

No accelerator-enabled debugger is included with this release

83

Terminology

Availability

The PGI 10.0 Fortran & C Accelerator compilers are available only on x86 processor-based workstations and
servers with an attached NVIDIA CUDA-enabled GPU or Tesla card. These compilers target all platforms that
PGI supports except 64-bit Mac OS X. All examples included in this chapter are developed and presented on
such a platform. For a list of supported GPUs, refer to the Accelerator Installation and Supported Platforms list
in the latest PGI Release Notes.

User-directed Accelerator Programming

In user-directed accelerator programming the user specifies the regions of a host program to be targeted for
offloading to an accelerator device. The bulk of a user’s program, as well as regions containing constructs
that are not supported on the targeted accelerator, are executed on the host. This chapter concentrates on
specification of loops and regions of code to be offloaded to an accelerator.

Features Not Covered or Implemented

This chapter does not describe features or limitations of the host programming environment as a whole.
Further, it does not cover automatic detection and offloading of regions of code to an accelerator by a compiler
or other tool. While future versions of the PGI compilers may allow for automatic offloading or multiple
accelerators of different types, these features are not currently supported.

Terminology

Clear and consistent terminology is important in describing any programming model. This section provides
definitions of the terms required for you to effectively use this chapter and the associated programming model.

Accelerator

a special-purpose co-processor attached to a CPU and to which the CPU can offload data and executable
kernels to perform compute-intensive calculations.

Compute intensity
for a given loop, region, or program unit, the ratio of the number of arithmetic operations performed on
computed data divided by the number of memory transfers required to move that data between two levels
of a memory hierarchy.

Compute region
a region defined by an Accelerator compute region directive. A compute region is a structured block
containing loops which are compiled for the accelerator. A compute region may require device memory
to be allocated and data to be copied from host to device upon region entry, and data to be copied from
device to host memory and device memory deallocated upon exit. Compute regions may not contain other
compute regions or data regions.

CUDA
stands for Compute Unified Device Architecture; the CUDA environment from NVIDIA is a C-like
programming environment used to explicitly control and program an NVIDIA GPU.

Data region
a region defined by an Accelerator data region directive, or an implicit data region for a function or
subroutine containing Accelerator directives. Data regions typically require device memory to be allocated

84

Chapter 7. Using an Accelerator

and data to be copied from host to device memory upon entry, and data to be copied from device to host
memory and device memory deallocated upon exit. Data regions may contain other data regions and
compute regions.

Device
a general reference to any type of accelerator.

Device memory
memory attached to an accelerator which is physically separate from the host memory.

Directive
in G, a #pragma, or in Fortran, a specially formatted comment statement that is interpreted by a compiler
to augment information about or specify the behavior of the program.

DMA
Direct Memory Access, 2 method to move data between physically separate memories; this is typically
performed by a DMA engine, separate from the host CPU, that can access the host physical memory as well
as an 10 device or GPU physical memory.

GPU
a Graphics Processing Unit; one type of accelerator device.

GPGPU
General Purpose computation on Graphics Processing Units.

Host
the main CPU that in this context has an attached accelerator device. The host CPU controls the program
regions and data loaded into and executed on the device.

Loop trip count
the number of times a particular loop executes.

OpenCL - Open Compute Language
a proposed standard C-like programming environment similar to CUDA that enables portable low-level
general-purpose programming on GPUs and other accelerators.

Private data
with respect to an iterative loop, data which is used only during a particular loop iteration. With respect
to a more general region of code, data which is used within the region but is not initialized prior to the
region and is re-initialized prior to any use after the region.

Region
a structured block identified by the programmer or implicitly defined by the language. Certain actions may
occur when program execution reaches the start and end of a region, such as device memory allocation
or data movement between the host and device memory. Loops in a compute region are targeted for
execution on the accelerator.

Structured block
in C, an executable statement, possibly compound, with a single entry at the top and a single exit at the
bottom. In Fortran, a block of executable statements with a single entry at the top and a single exit at the
bottom.

85

System Requirements

Vector operation
a single operation or sequence of operations applied uniformly to each element of an array.

Visible device copy
a copy of a variable, array, or subarray allocated in device memory, that is visible to the program unit
being compiled.

System Requirements

To use the PGI Accelerator compiler features, you must install the NVIDIA drivers. You may download these
components from the NVIDIA website at
www. nvi di a. com cuda

These are not PGI products, and are licensed and supported by NVIDIA.

Note

You must be using an operating system that is supported by both the current PGI release and by the
CUDA software and drivers.

Supported Processors and GPUs

This PGI Accelerator compiler release supports all AMD64 and Intel 64 host processors supported by Release
9.0 or higher of the PGI compilers and tools. You can use the -t p <t ar get > flag as documented in the
release to specify the target processor.

Use the —t a=nvi di a flag to enable the accelerator directives and target the NVIDIA GPU. You can then use
the generated code on any system with CUDA installed that has a CUDA-enabled GeForce, Quadro, or Tesla
card.

For more information on these flags as they relate to accelerator technology, refer to “Applicable Command
Line Options,” on page 99.

For a complete list of supported GPUs, refer to the NVIDIA website at:
www. nvi di a. conf obj ect/ cuda_| ear n_pr oduct s. ht m

You can detect whether the system has CUDA properly installed and has an attached graphics card by running
the pgaccelinfo command, which is delivered as part of the PGI Accelerator compilers software package.

Installation and Licensing

Note

The PGI Accelerator compilers require a separate license key in addition to a normal PGI Workstation,
Server, or CDK license.

Required Files

Note

If you are installing on Windows, the required files are built for you.

86

Chapter 7. Using an Accelerator

The default NVIDIA Compute Capability for generated code is now both cc1.0 and cc1.3, enabling code
generation for both compute capabilities.

You can change the default to one or more of the supported compute capabilities by adding a line similar to
the following one to the si t envr c file. For example, adding the following line sets the compute capability to
enable code generation for all four of the supported compute capabilities. Notice that the compute capabilities
are separated by a space.

set COWPUTECAP=10 11 12 13;

You must place the si t envr c file in the following directory, where $PGI is the PGI installation directory,
which is typically / opt / pgi or/ usr/ pgi .

$PA /1 i nux86- 64/ 10. 6/ bi n/

Command Line Flag

After creating the si t envr c file and acquiring the PGI Accelerator compilers license key, you can use the
option —t a=nvi di a with the pgf or t r an or pgcc commands.

For more information on the —t a flag and the suboptions that relate to the target accelerators, refer to
“Applicable Command Line Options,” on page 99.

The compiler automatically invokes the necessary CUDA software tools to create the kernel code and embeds
the kernels in the Linux object file.

Note

To access the accelerator libraries, you must link an accelerator program with the —t a flag as well.

Execution Model

The execution model targeted by the PGI Accelerator compilers is host-directed execution with an attached
accelerator device, such as a GPU. The bulk of a user application executes on the host. Compute intensive
regions are offloaded to the accelerator device under control of the host. The accelerator device executes
kernels, which may be as simple as a tightly-nested loop, or as complex as a subroutine, depending on the
accelerator hardware.

Host Functions

Even in accelerator-targeted regions, the host must orchestrate the execution; it

e allocates memory on the accelerator device
e initiates data transfer

e sends the kernel code to the accelerator

e passes kernel arguments

e queues the kernel

87

Memory Model

* waits for completion
o transfers results back to the host

e deallocates memory

Note

In most cases, the host can queue a sequence of kernels to be executed on the device, one after the
other.

Levels of Parallelism

Most current GPUs support two levels of parallelism:

e an outer doall (fully parallel) loop level

e an inner synchronous (SIMD or vector) loop level

Each level can be multidimensional with 2 or 3 dimensions, but the domain must be strictly rectangular. The
synchronous level may not be fully implemented with SIMD or vector operations, so explicit synchronization is
supported and required across this level. No synchronization is supported between parallel threads across the
doall level.

The execution model on the device side exposes these two levels of parallelism and the programmer is
required to understand the difference between, for example, a fully parallel loop and a loop that is vectorizable
but requires synchronization across iterations. All fully parallel loops can be scheduled for either doall or
synchronous parallel execution, but by definition SIMD vector loops that require synchronization can only be
scheduled for synchronous parallel execution.

Memory Model

The most significant difference between a host-only program and a host+accelerator program is that the
memory on the accelerator can be completely separate from host memory, which is the case on most current
GPUs. For example:

e The host cannot read or write accelerator memory by reference because it is not mapped into the virtual
memory space of the host.

* All data movement between host memory and accelerator memory must be performed by the host through
runtime library calls that explicitly move data between the separate memories.

e It is not valid to assume the accelerator can read or write host memory, though this may be supported by
accelerators in the future.

Separate Host and Accelerator Memory Considerations

The concept of separate host and accelerator memories is very apparent in low-level accelerator programming
models such as CUDA or OpenCL, in which data movement between the memories dominates user code. In the
PGI Accelerator programming model, data movement between the memories is implicit and managed by the
compiler.

88

Chapter 7. Using an Accelerator

The programmer must be aware of the potentially separate memories for many reasons, including but not
limited to:

e Memory bandwidth between host memory and accelerator memory determines the compute intensity
required to effectively accelerate a given region of code.

e Limited size of accelerator memory may prohibit offloading of regions of code that operate on very large
amounts of data.

Accelerator Memory

On the accelerator side, current GPUs implement 2 weak memory model. In particular, they do not support
memory coherence between threads unless those threads are parallel only at the synchronous level and the
memory operations are separated by an explicit barrier. Otherwise, if one thread updates a memory location
and another reads the same location, or two threads store a value to the same location, the hardware does not
guarantee the results. While the results of running such a program might be inconsistent, it is not accurate to
say that the results are incorrect. By definition, such programs are defined as being in error. While a compiler
can detect some potential errors of this nature, it is nonetheless possible to write an accelerator region that
produces inconsistent numerical results.

Cache Management

Some current GPUs have a software-managed cache, some have hardware-managed caches, and most

have hardware caches that can be used only in certain situations and are limited to read-only data. In low-
level programming models such as CUDA or OpenCL, it is up to the programmer to manage these caches.
However, in the PGI Accelerator programming model, the compiler manages these caches using hints from the
programmer in the form of directives.

Running an Accelerator Program

Running a program that has accelerator directives and was compiled and linked with the - t a=nvi di a flag is
the same as running the program compiled without the - t a=nvi di a flag.

e The program looks for and dynamically loads the CUDA libraries. If the libraries are not available, or if
they are in a different directory than they were when the program was compiled, you may need to append
the CUDA library directory to your LD_LIBRARY_PATH environment variable on Linux or to the PATH
environment variable on Windows.

e On Linux, if you have no server running on your NVIDIA GPU, when your program reaches its first
accelerator region, there may be a 0.5 to 1.5 second pause to warm up the GPU from a power-off condition.
You can avoid this delay by running the pgcudai ni t program in the background, which keeps the GPU
powered on.

e If you run an accelerated program on a system without a CUDA-enabled NVIDIA GPU, or without the CUDA
software installed in a directory where the runtime library can find it, the program fails at runtime with an
error message.

e If you set the environment variable ACC_NOTI FY to a nonzero integer value, the runtime library prints a
line to standard error every time it launches a kernel.

89

Accelerator Directives

Accelerator Directives

This section provides an overview of the Fortran and C directives used to delineate accelerator regions and to
augment information available to the compiler for scheduling of loops and classification of data. For complete
descriptions of each accelerator directive, refer to “PGI Accelerator Directives,” on page 317.

Enable Accelerator Directives

PGI Accelerator compilers enable accelerator directives with the —t a command line option. For more
information on this option as it relates to the Accelerator, refer to “Applicable Command Line Options,” on
page 99.

Note

The syntax used to define directives allows compilers to ignore accelerator directives if support is
disabled or not provided.

_ACCEL macro

The _ACCEL macro name is defined to have a value yyyymmwhere yyyy is the year and nmis the month
designation of the version of the Accelerator directives supported by the implementation. For example, the

version for May, 2009 is 200905. This macro must be defined by a compiler when accelerator directives are
enabled.

Format
The specific format of the directive depends on the language and the format or form of the source.
Directives include a name and clauses, and the format of the directive depends on the type:

o (directives, described in “C Directives”
¢ Free-form Fortran directives, described in “Free-Form Fortran Directives”

e Fixed-form Fortran directives, described in “Fixed-Form Fortran Directives”

Note

This document uses free form for all PGI Accelerator compiler Fortran directive examples.
Rules
The following rules apply to all PGI Accelerator compiler directives:
e Only one directive-name can be specified per directive.
e The order in which clauses appear is not significant.

e Clauses may be repeated unless otherwise specified.

e For clauses that have a /ist argument, a list is 2 comma-separated list of variable names, array names, or, in
some cases, subarrays with subscript ranges.

90

Chapter 7. Using an Accelerator

C Directives

In C, PGI Accelerator compiler directives are specified using #pr agna

Syntax

The syntax of a PGI Accelerator compiler directive is:

Rules

#pragma acc directive-nanme [clause [,clause].] newline

In addition to the general directive rules, the following rules apply to PGI Accelerator compiler C directives:

Each directive starts with #pr agma acc.
The remainder of the directive follows the C conventions for pragmas.

White space may be used before and after the #; white space may be required to separate words in a
directive.

Preprocessing tokens following the #pr agna acc are subject to macro replacement.
C directives are case sensitive.

An Accelerator directive applies to the immediately following structured block or loop.

Free-Form Fortran Directives

PGI Accelerator compiler Fortran directives can be either Free-Form or Fixed-Form directives. Free-Form
Accelerator directives are specified with the ! $acc mechanism.

Syntax

The syntax of directives in free-form source files is:

Rules

I $acc directive-nane [clause [, clause].]

In addition to the general directive rules, the following rules apply to PGI Accelerator compiler Free-Form
Fortran directives:

The comment prefix (!) may appear in any column, but may only be preceded by white space (spaces and
tabs).

The sentinel (!$acc) must appear as a single word, with no intervening white space.
Line length, white space, and continuation rules apply to the directive line.
Initial directive lines must have a space after the sentinel.

Continued directive lines must have an ampersand (&) as the last nonblank character on the line, prior to
any comment placed in the directive.

Comments may appear on the same line as the directive, starting with an exclamation point and extending to
the end of the line.

91

Accelerator Directives

If the first nonblank character after the sentinel is an exclamation point, the line is ignored.

Directives are case-insensitive.

¢ Directives cannot be embedded within continued statements.

Statements must not be embedded within continued directives.

Fixed-Form Fortran Directives

Fixed-Form Accelerator directives are specified using one of three formats.

Syntax

Rules

The syntax of directives in fixed-form source files is one these three formats:
I $acc directive-nanme [clause [, clause].]

c$acc directive-nanme [clause [, clause].]
*$acc directive-nanme [clause [, clause].]

In addition to the general directive rules, the following rules apply to Accelerator Fixed-Form Fortran
directives:

* The sentinel (!acc, cacc, or *$acc) must occupy columns 1-5.
e Fixed form line length, white space, continuation, and column rules apply to the directive line.

e Initial directive lines must have a space or zero in column 6, and continuation directive lines must have a
character other than a space or zero in column 6.

e Comments may appear on the same line as a directive, starting with an exclamation point on or after
column 7 and continuing to the end of the line.

¢ Directives are case-insensitive.
¢ Directives cannot be embedded within continued statements.

o Statements must not be embedded within continued directives.

Accelerator Directive Summary

92

PGI currently supports these types of accelerator directives, which are defined in more detail in “PGI
Accelerator Directives,” on page 317:

Accelerator Compute Region Directive
Accelerator Loop Mapping Directive
Combined Directive

Accelerator Declarative Data Directive
Accelerator Update Directive

Table 7.1 lists and briefly describes each of the accelerator directives that PGI currently supports. For a
complete description of each directive, refer to “PGI Accelerator Directives,” on page 317.

Chapter 7. Using an Accelerator

Table 7.1. PGI Accelerator Directive Summary Table

This directive... Accepts these Has this functionality...
clauses...

Accelerator Compute |if(condition) Defines the region of the program that should be
Region Directive copy (list) compiled for execution on the accelerator device.
copyin(/ist)
copyout(/ist)
local(/ist)
updatein (/ist)
updateout(/ist)

C Syntax

#pragma acc region [clause [, clause].] newline
structured bl ock

Fortran Syntax

I'$acc region [clause [, clause].]
structured bl ock
I $acc end region

Accelerator Data copy (list) Defines data, typically arrays, that should be allocated in
Region Directive copyin(/ist) the device memory for the duration of the data region,
copyout(/ist) whether data should be copied from the host to the
local(/ist) device memory upon region entry, and copied from the
mirror (/ist) device to host memory upon region exit.
updatein(/ist)
updateout(/ist)
C Syntax

#pragma acc data region [clause [, clause].] newline
structured bl ock

Fortran Syntax

I $acc data region [clause [, clause].]
structured bl ock
I $acc end data region

93

Accelerator Directives

94

This directive... Accepts these Has this functionality...
clauses...
Accelerator Loop cache(list) Describes what type of parallelism to use to execute
Mapping Directive host [(width)] the loop and declare loop-private variables and arrays.
independent Applies to a loop which must appear on the following
kernel line.
parallel [(width)]
private(/ist)
seq [(width)]
unroll [(width)|
vector [(width) |

C Syntax

#pragma acc for [clause [,clause]...]newline
for |oop

Fortran Syntax

I $acc do [clause [,clause].]

do | oop
Combined Directive |Any clause that is Is a shortcut for specifying a loop directive nested
allowed on a region immediately inside an accelerator compute region
directive or a loop directive. The meaning is identical to explicitly specifying

directive is allowed on a |a region construct containing a loop directive.
combined directive.

C Syntax

#pragma acc region for [clause [, clause]...] newline
for |oop

Fortran Syntax

I'$acc region do [clause [, clause]...]

do | oop
Accelerator Declarative | copy (/ist) Specifies that an array or arrays are to be allocated in the
Data Directive copyin(/ist) device memory for the duration of the implicit data
copyout(/ist) region of a function, subroutine, or program.
local(Zist) Specifies whether the data values are to be transferred
mirror (/ist) from the host to the device memory upon entry to the
reflected(ist) implicit data region, and from the device to the host
memory upon exit from the implicit data region.
Creates a visible device copy of the variable or array.

C Syntax
#pragma acc decl cl ause [, decl cl ause]...newline

Fortran Syntax

I $acc decl cl ause [, decl cl ause]. ..

Chapter 7. Using an Accelerator

This directive... Accepts these Has this functionality...

clauses...
Accelerator Update host (Zist) Used within an explicit or implicit data region to update
Directive device(list) all or part of a host memory array with values from the

corresponding array in device memory, or to update all
or part of a device memory array with values from the
corresponding array in host memory.

C Syntax

#pragma acc updat e updatecl ause [, updat ecl ause]...newline

Fortran Syntax

I $acc updat e updat ecl ause [, updat ecl ause]. .

Accelerator Directive Clauses

Table 7.2 provides an alphabetical listing and brief description of each clause that is applicable for the various
Accelerator directives. The table also indicates for which directives the clause is applicable.

For more information on the restrictions and use of each clause, refer to “PGI Accelerator Directive Clauses,”
on page 323.

Table 7.2. Directive Clauses Summary

Use this clause... |In these directives... To do this...

cache (/ist) Accelerator Loop Mapping | Provides a hint to the compiler to try to move the
variables, arrays, or subarrays in the list to the highest
level of the memory hierarchy.

copy (/ist) Accelerator Data Region | Declares that the variables, arrays, or subarrays in the list
Declarative Data have values in the host memory that need to be copied to
the accelerator memory, and are assigned values on the
accelerator that need to be copied back to the host.

copyin (/ist) Accelerator Data Region | Declares that the variables, arrays or subarrays in the list
Declarative Data have values in the host memory that need to be copied to
the accelerator memory.

copyout (/ist) Accelerator Data Region |Declares that the variables, arrays, or subarrays in the list
Declarative Data are assigned or contain values in the accelerator memory
that need to be copied back to the host memory at the
end of the accelerator region.

device (/ist) Update Copies the variables, arrays, or subarrays in the list
argument from host memory to the visible device copy
of the variables, arrays, or subarrays in device memory.
Copy occurs before beginning execution of the compute
or data region.

95

Accelerator Directive Clauses

96

Use this clause...

In these directives...

To do this...

host (/ist)

Update

Copies the visible device copies of the variables, arrays,
or subarrays in the /ist argument to the associated host
memory locations. The copy occurs after completion of
the compute or data region.

host [(width) |

Accelerator Loop Mapping

Tells the compiler to execute the loop sequentially on the
host processor.

if (condition)

Accelerator Compute Data
Region

When present, tells the compiler to generate two copies of
the region - one for the accelerator, one for the host - and
to generate code to decide which copy to execute.

independent Accelerator Loop Mapping | Tells the compiler that the iterations of this loop are data-
independent of each other, thus allowing the compiler
to generate code to examine the iterations in parallel,
without synchronization.

kernel Accelerator Loop Mapping | Tells the compiler that the body of this loop is to be the

body of the computational kernel. Any loops contained
within the kernel loop are executed sequentially on the
accelerator.

local (Zist) Accelerator Data Region | Declares that the variables, arrays or subarrays in the
Declarative Data list need to be allocated in the accelerator memory, but
the values in the host memory are not needed on the
accelerator, and the values computed and assigned on the
accelerator are not needed on the host.
mirror (/ist) Accelerator Data Region | Declares that the arrays in the /ist need to mirror the
Declarative Data allocation state of the host array within the region. Valid

only in Fortran on Accelerator data region directive.

parallel [(width)]

Accelerator Loop Mapping

Tells the compiler to execute this loop in parallel mode
on the accelerator. There may be a target-specific limit
on the number of iterations in a parallel loop or on the
number of parallel loops allowed in a given kernel

private (/ist)

Accelerator Loop Mapping

Declares that the variables, arrays, or subarrays in the /ist
argument need to be allocated in the accelerator memory
with one copy for each iteration of the loop.

reflected (Zist)

Declarative Data

Declares that the actual argument arrays that are bound
to the dummy argument arrays in the /ist need to have a
visible copy at the call site.

seq [(width)]

Accelerator Loop Mapping

Tells the compiler to execute this loop sequentially on the
accelerator. There is no maximum number of iterations
for a seq schedule.

Chapter 7. Using an Accelerator

Use this clause... |In these directives... To do this...

unroll [(width)] |Accelerator Loop Mapping | Tells the compiler to unroll width iterations for
sequential execution on the accelerator. The width
argument must be a compile time positive constant
integer.

updatein (/ist) Accelerator Data Region | Copies the variables, arrays, or subarrays in the /is¢
argument from host memory to the visible device copy
of the variables, arrays, or subarrays in device memory,
before beginning execution of the compute or data
region.

updateout (/ist) |Accelerator Data Region |Copies the visible device copies of the variables, arrays,
or subarrays in the /ist argument to the associated host
memory locations, after completion of the compute or
data region.

vector [(width)] |Accelerator Loop Mapping |Tells the compiler to execute this loop in vector mode on
the accelerator.

PGI Accelerator Compilers Runtime Libraries

This section provides an overview of the user-callable functions and library routines that are available for use
by programmers to query the accelerator features and to control behavior of accelerator-enabled programs at
runtime.

Note

In Fortran, none of the PGI Accelerator compilers runtime library routines may be called from a PURE
or ELEMENTAL procedure.

Runtime Library Definitions
There are separate runtime library files for C and for Fortran.

C Runtime Library Files

In G, prototypes for the runtime library routines are available in a header file named accel . h. All the library
routines are ext er n functions with “C” linkage. This file defines:

e The prototypes of all routines in this section.

* Any data types used in those prototypes, including an enumeration type to describe types of accelerators.

Fortran Runtime Library Files

In Fortran, interface declarations are provided in a Fortran include file named accel _I i b. h andin a
Fortran module named accel _| i b. These files define:

o Interfaces for all routines in this section.

97

Environment Variables

* Integer parameters to define integer kinds for arguments to those routines.

* Integer parameters to describe types of accelerators.

e The integer parameter accel _ver si on with a value yyyynmmwhere yyyy and nmare the year and

month designations of the version of the Accelerator programming model supported. This value matches the

value of the preprocessor variable _ ACCEL.

Runtime Library Routines

Table 7.3 lists and briefly describes the supported PGI Accelerator compilers runtime library routines. For a

complete description of these routines, refer to “PGI Accelerator Runtime Routines,” on page 332.

Table 7.3. Accelerator Runtime Library Routines

This Runtime Library
Routine...

Does this...

acc_get_device

Returns the type of accelerator device used to run the next accelerator
region, if one is selected.

acc_get_device_num

Returns the number of the device being used to execute an accelerator
region.

acc_get_num_devices

Returns the number of accelerator devices of the given type attached to the
host.

acc_init

Connects to and initializes the accelerator device and allocates control
structures in the accelerator library.

acc_on_device

Tells the program whether it is executing on a particular device.

acc_set_device

Tells the runtime which type of device to use when executing an accelerator
compute region.

acc_set_device_num

Tells the runtime which device of the given type to use among those that are
attached.

acc_shutdown

Tells the runtime to shutdown the connection to the given accelerator
device, and free up any runtime resources.

Environment Variables

PGI supports environment variables that modify the behavior of accelerator regions. This section defines the

user-setable environment variables used to control behavior of accelerator-enabled programs at execution.
These environment variables must comply with these rules:

* The names of the environment variables must be upper case.

e The values assigned environment variables are case insensitive and may have leading and trailing white

space.

e The behavior is implementation-defined if the values of the environment variables change after the program

has started, even if the program itself modifies the values.

98

Chapter 7. Using an Accelerator

Table 7.4 lists and briefly describes the Accelerator environment variables that PGI supports.

Table 7.4. Accelerator Environment Variables

This environment variable... |Does this...

ACC_DEVICE Controls which accelerator device to use when executing accelerator
regions, if the program has been compiled to use more than one
different type of device. The value of this environment variable is
implementation-defined, and currently may be the string NVIDIA or
HOST.

ACC_DEVICE_NUM Controls the default device number to use when executing
accelerator regions. The value of this environment variable must
be a nonnegative integer between zero and the number of devices
attached to the host.

ACC_NOTIFY When set to 2 non-negative integer, indicates to print a message to
standard output when a kernel is executed on an accelerator.

Applicable Command Line Options

The following command line options are applicable specifically when working with accelerators.

—ta
Use this option to enable recognition of the !$ACC directives in Fortran, and #pragma acc directives in C.

—t p
Use this option to specify the target host processor architecture.

—M nf o or —-M nf o=accel
Use this option to see messages about the success or failure of the compiler in translating the accelerator
region into GPU kernels.

The —t a flag has the following accelerator-related suboptions:

nvidia
Select NVIDIA accelerator target. This option has a number of suboptions:
analysis Perform loop analysis only; do not generate GPU code.

ccl0, ccll, ccl12, Generate code for compute capability 1.0, 1.1, 1.2, 1.3, or 2.0
ccl3, cc20 respectively; multiple selections are valid.

cuda2.3 or 2.3 Specify the CUDA 2.3 version of the toolkit.
cuda3.0 or 3.0 Specify the CUDA 3.0 version of the toolkit.

fastmath Use routines from the fast math library.

keepbin Keep the binary (.bin) files.

keepgpu Keep the kernel source (.gpu) files.

keepptx Keep the portable assembly (.ptx) file for the GPU code.

99

PGl Unified Binary for Accelerators

maxregcount:n Specify the maximum number of registers to use on the GPU.
Leaving this blank indicates no limit.

mul24 Use 24-bit multiplication for subscripting.

nofma Do not generate fused multiply-add instructions.

time Link in a limited-profiling library, as described in “Profiling

Accelerator Kernels,” on page 102.

[no]wait Wait for each kernel to finish before continuing in the host program.

host
Select NO accelerator target. Generate PGI Unified Binary Code, as described in “PGI Unified Binary for
Accelerators,” on page 100.

The compiler automatically invokes the necessary CUDA software tools to create the kernel code and embeds
the kernels in the object file.

Note

To access accelerator libraries, you must /ink an accelerator program with the —t a flag.

PGI Unified Binary for Accelerators

100

Note

The information and capabilities described in this section are only supported for 64-bit systems.

PGI compilers support the PGI Unified Binary feature to generate executables with functions optimized

for different host processors, all packed into a single binary. This release extends the PGI Unified Binary
technology for accelerators. Specifically, you can generate a single binary that includes two versions of
functions:

e one is optimized for the accelerator

e one runs on the host processor when the accelerator is not available or when you want to compare host to

accelerator execution.

To enable this feature, use the extended —t a flag:

-ta=nvi di a, host

This flag tells the compiler to generate two versions of functions that have valid accelerator regions.

* A compiled version that targets the accelerator.

* A compiled version that ignores the accelerator directives and targets the host processor.

If you use the —M nf o flag, you get messages similar to the following:

sl:
12, PA Unified Binary version for -tp=barcel ona-64 -ta=host
18, Generated an alternate |oop for the inner |oop

Chapter 7. Using an Accelerator

Gener at ed vector sse code for inner |oop
Generated 1 prefetch instructions for this |oop
sl:
12, PA Unified Binary version for -tp=barcel ona-64 -ta=nvidia
15, Generating copy(b(:,2:90))
Gener ati ng copyin(a(:, 2:90))
16, Loop is parallelizable
18, Loop is parallelizable
Paral l eli zation requires privatization of array t(2:90)
Accel erat or kernel generated
16, !$acc do parall el
18, !$acc do parallel, vector(256)
Using register for t

The PGI Unified Binary message shows that two versions of the subprogram s 1 were generated:

¢ one for no accelerator (-t a=host)

¢ one for the NVIDIA GPU (-t a=nvi di a)

At run time, the program tries to load the NVIDIA CUDA dynamic libraries and test for the presence of a GPU. If
the libraries are not available or no GPU is found, the program runs the host version.

You can also set an environment variable to tell the program to run on the NVIDIA GPU. To do this, set
ACC_DEVICE to the value NVI DI A or nvi di a. Any other value of the environment variable causes the
program to use the host version.

Note

The only supported —t a targets for this release are nvi di a and host .

Multiple Processor Targets

With 64-bit processors, you can use the —t p flag with multiple processor targets along with the —t a flag. You
see the following behavior:

e If you specify one —t p value and one —t a value:

You see one version of each subprogram generated for that specific target processor and target accelerator.

e If you specify one —t p value and multiple —t a values:

The compiler generates two versions of subprograms that contain accelerator regions for the specified
target processor and each target accelerator.

e If you specify multiple —t p values and one —t a value:

If 2 or more —t p values are given, the compiler generates up to that many versions of each subprogram, for
each target processor, and each version also targets the selected accelerator.

e If you specify multiple —t p values and multiple —t a values:

With 'N' —t p values and two —t a values, the compiler generates up to N+1 versions of the subprogram. It
first generates up to N versions, for each —t p value, ignoring the accelerator regions, which is equivalent to
using —t a=host . It then generates one additional version with the accelerator target.

101

Profiling Accelerator Kernels

Profiling Accelerator Kernels

This release supports the command line option:
-ta=nvidia,tinme

The t i me suboption links in a timer library, which collects and prints out simple timing information about the
accelerator regions and generated kernels.

Example 7.1. Accelerator Kernel Timing Data

bb04. f 90
sl
15: region entered 1 times
tinme(us): total =1490738
init=1489138 regi on=1600
ker nel s=155 dat a=1445
wo init: total =1600 max=1600
m n=1600 avg=1600
18: kernel launched 1 tines
time(us): total =155 max=155 mi n=155 avg=155

In this example, 2 number of things are occurring:

e For each accelerator region, the file name / pr oj / ga/ t est s/ accel / bb04. f 90 and subroutine or
function name s 1 is printed, with the line number of the accelerator region, which in the example is 15.

e The library counts how many times the region is entered (1 in the example) and the microseconds spent in
the region (in this example 1490738), which is split into initialization time (in this example 1489138)
and execution time (in this example 1600).

o The execution time is then divided into kernel execution time and data transfer time between the host and
GPU.

e For each kernel, the line number is given, (18 in the example), along with a count of kernel launches, and
the total, maximum, minimum, and average time spent in the kernel, all of which are 155 in this example.

Related Accelerator Programming Tools

PGPROF pgcollect

The PGI profiler, PGPROF, has an Accelerator tab - that displays profiling information provided by the
accelerator. This information is available in the file pgpr of . out and is collected by using pgcollect on an
executable binary compiled for an accelerator target. For more information on pgcollect, refer to Chapter 22,
“pgcollect Reference,” of the PGI Tools Guide.

NVIDIA CUDA Profile

You can use the NVIDIA CUDA Profiler with PGI-generated code for the NVIDIA GPUs. You may download the
CUDA Profiler from the same website as the CUDA software:

www. nvi di a. conl cuda

102

Chapter 7. Using an Accelerator

Documentation and support is provided by NVIDIA.

TAU - Tuning and Analysis Utility

You can use the TAU (Tuning and Analysis Utility), version 2.18.1+, with PGI-generated accelerator code.
TAU instruments code at the function or loop level, and version 2.18.1 is enhanced with support to track
performance in accelerator regions. TAU software and documentation is available at this website:

http://tau. uoregon. edu

Supported Intrinsics

An intrinsic is a function available in a given language whose implementation is handled specifically by the
compiler. Typically, an intrinsic substitutes a sequence of automatically-generated instructions for the original
function call. Since the compiler has an intimate knowledge of the intrinsic function, it can better integrate it
and optimize it for the situation.

Intrinsics make the use of processor-specific enhancements easier because they provide a language interface
to assembly instructions. In doing so, the compiler manages things that the user would normally have to be
concerned with, such as register names, register allocations, and memory locations of data.

This section contains an overview of the Fortran and C intrinsics that the accelerator supports.

Supported Fortran Intrinsics Summary Table

Table 7.5 is an alphabetical summary of the supported Fortran intrinsics that the accelerator supports. These
functions are specific to Fortran 90/95 unless otherwise specified.

Note

For complete descriptions of these intrinsics, refer to the Chapter 6, “Fortran Intrinsics” of the PGI
Fortran Reference.

In most cases PGI provides support for all the data types for which the intrinsic is valid. When support is
available for only certain data types, the middle column of the table specifies which ones, using the following

codes:
I for integer C for single precision complex
S for single precision real Z for double precision complex
D for double precision real
Table 7.5. Supported Fortran Intrinsics

This intrinsic Returns this value ...

ABS LS,D |absolute value of the supplied argument.

ACOS arccosine of the specified value.

103

Supported Intrinsics

This intrinsic Returns this value ...

AINT truncation of the supplied value to a2 whole number.
ANINT nearest whole number to the supplied argument.
ASIN arcsine of the specified value.

ATAN arctangent of the specified value.

ATAN2 arctangent of the specified value.

0N S,D |cosine of the specified value.

COSH hyperbolic cosine of the specified value.

DBLE S,D conversion of the value to double precision real.
DPROD double precision real product.

EXP S,D exponential value of the argument.

IAND result of a bit-by-bit logical AND on the arguments.
IEOR result of a bit-by-bit logical exclusive OR on the arguments.
INT LS,D |conversion of the value to integer type.

IOR result of a bit-by-bit logical OR on the arguments.
LOG S,D |natural logarithm of the specified value.

LOG10 base-10 logarithm of the specified value.

MAX maximum value of the supplied arguments.

MIN minimum value of the supplied arguments.

MOD | remainder of the division.

NINT nearest integer to the real argument.

NOT result of a bit-by-bit logical complement on the argument.
REAL LS,D |conversion of the argument to real.

SIGN absolute value of A times the sign of B.

SIN S,D |value of the sine of the argument.

SINH hyperbolic sine of the argument.

SQRT S,.D square root of the argument.

TAN tangent of the specified value.

TANH hyperbolic tangent of the specified value.

Supported C Intrinsics Summary Table

104

This section contains two alphabetical summaries - one for double functions and a second for float functions.

These lists contain only those C intrinsics that the accelerator supports.

Chapter 7. Using an Accelerator

Table 7.6. Supported C Intrinsic Double Functions

This intrinsic |Returns this value ...
acos arccosine of the specified value.
asin arcsine of the specified value.
atan arctangent of the specified value.
atan2 arctangent of y/x, where y is the first argument, x the second.
oS cosine of the specified value.
cosh hyperbolic cosine of the specified value.
exp exponential value of the argument.
fabs absolute value of the argument.
fmax maximum value of the two supplied arguments
fmin minimum value of the two supplied arguments
log natural logarithm of the specified value.
log10 base-10 logarithm of the specified value.
pow value of the first argument raised to the power of the second argument.
sin value of the sine of the argument.
sinh hyperbolic sine of the argument.
sqrt square root of the argument.
tan tangent of the specified value.
tanh hyperbolic tangent of the specified value.
Table 7.7. Supported C Intrinsic Float Functions
This intrinsic |Returns this value ...
acosf arccosine of the specified value.
asinf arcsine of the specified value.
atanf arctangent of the specified value.
atan2f arctangent of y/x, where y is the first argument, x the second.
cosf cosine of the specified value.
coshf hyperbolic cosine of the specified value.
expf exponential value of the floating-point argument.
fabsf absolute value of the floating-point argument.
logf natural logarithm of the specified value.
log10f base-10 logarithm of the specified value.
powf value of the first argument raised to the power of the second argument.

105

References related to Accelerators

This intrinsic |Returns this value ...

sinf value of the sine of the argument.

sinhf hyperbolic sine of the argument.

sqrtf square root of the argument.

tanf tangent of the specified value.

tanhf hyperbolic tangent of the specified value.

References related to Accelerators

106

ISO/IEC 1539-1:1997, Information Technology - Programming Languages - Fortran, Geneva, 1997 (Fortran

95).

American National Standard Programming Language C, ANSI X3.159-1989 (ANSI C).
ISO/IEC 9899:1999, Information Technology - Programming Languages - C, Geneva, 1999 (C99).
PGI Tools Guide, The Portland Group, Release 10.0, November, 2009. Available online at http://

www.pgroup.com/doc/pgitools.pdf.

PGI Fortran Reference, The Portland Group, Release 10.0, November, 2009. Available online at http://

www.pgroup.com/doc/pgifortref.pdf

Chapter 8. Using Directives and
Pragmas

It is often useful to be able to alter the effects of certain command line options or default behavior of the
compiler. Fortran directives and C/C++ pragmas provide pragmatic information that control the actions of

the compiler in a particular portion of a program without affecting the program as a whole. That is, while a
command line option affects the entire source file that is being compiled, directives and pragmas apply, or
disable, the effects of a command line option to selected subprograms or to selected loops in the source file,
for example, to optimize a specific area of code. Use directives and pragmas to tune selected routines or loops.

PGI Proprietary Fortran Directives

PGI Fortran compilers support proprietary directives that may have any of the following forms:
I pgi $g directive

I pgi $r directive

I pgi $I directive

Ipgi $ directive

Note

If the input is in fixed format, the comment character must begin in column 1 and either * or C is
allowed in place of !.

The scope indicator controls the scope of the directive. This indicator occurs after the $. Some directives
ignore the scope indicator.

The valid scopes, shown in the previous forms of the directive, are these:

8

(global) indicates the directive applies to the end of the source file.
r

(routine) indicates the directive applies to the next subprogram.
1

(loop) indicates the directive applies to the next loop, but not to any loop contained within the loop body.
Loop-scoped directives are only applied to DOloops.

107

PGl Proprietary C and C++ Pragmas

blank
indicates that the default scope for the directive is applied.

The body of the directive may immediately follow the scope indicator. Alternatively, any number of blanks may
precede the name of the directive. Any names in the body of the directive, including the directive name, may
not contain embedded blanks. Blanks may surround any special characters, such as a comma or an equal
sign.

The directive name, including the directive prefix, may contain upper or lower case letters, and the case is not
significant. Case is significant for any variable names that appear in the body of the directive if the command
line option —Mupcase is selected. For compatibility with other vendors’ directives, the prefix cpgi $ may be
substituted with cdi r $ or cvd$.

PGI Proprietary C and C++ Pragmas

Pragmas may be supplied in a C/C++ source file to provide information to the compiler. Many pragmas have
a corresponding command-line option. Pragmas may also toggle an option, selectively enabling and disabling
the option.

The general syntax of a pragma is:
#pragma [scope] pragnma- body

The optional scope field is an indicator for the scope of the pragma; some pragmas ignore the scope indicator.

The valid scopes are:

global
indicates the pragma applies to the entire source file.

routine
indicates the pragma applies to the next function.

loop
indicates the pragma applies to the next loop (but not to any loop contained within the loop body). Loop-
scoped pragmas are only applied to for and while loops.

If a scope indicator is not present, the default scope, if any, is applied. Whitespace must appear after the
pragma keyword and between the scope indicator and the body of the pragma. Whitespace may also surround
any special characters, such as a comma or an equal sign. Case is significant for the names of the pragmas and
any variable names that appear in the body of the pragma.

PGI Proprietary Optimization Directive and Pragma Summary

108

The following table summarizes the supported Fortran directives and C/C++ pragmas. The following terms are
useful in understanding the table.

e Functionality is a brief summary of the way to use the directive or pragma. For a complete description, refer
to Chapter 20, “Directives and Pragmas Reference,” on page 343.

e Many of the directives and pragmas can be preceded by NO. The default entry indicates the default for the
directive or pragma. N/A appears if a default does not apply.

Chapter 8. Using Directives and Pragmas

e The scope entry indicates the allowed scope indicators for each directive or pragma, with L for loop, R for
routine, and Gfor global. The default scope is surrounded by parentheses and N/A appears if the directive
or pragma is not available in the given language.

Note

The "*" in the scope indicates this:

For routine-scoped directive
The scope includes the code following the directive or pragma until the end of the routine.

For globally-scoped directive

The scope includes the code following the directive or pragma until the end of the file rather

than for the entire file.

Note

The name of a directive or pragma may also be prefixed with —M

For example, you can use the directive —~Mbounds, which is equivalent to the directive bounds and
you can use —Mbpt , which is equivalent to opt . For pragmas, you can use the directive —~Mhoassoc,

which is equivalent to the pragma noassoc, and —Mvi nt r , which is equivalent to vi nt r .

Table 8.1. Proprietary Optimization-Related Fortran Directive and C/C++ Pragma Summary

Directive or Functionality Default Fortran C/C++
pragma Scope Scope
altcode Do/don’t generate alternate code for altcode (LRG (LRG
(noaltcode) vectorized and parallelized loops.
assoc (noassoc) |Do/don’t perform associative assoC (LRG (LRG
transformations.
bounds Do/don’t perform array bounds checking. [nobounds (R)G* R)G
(nobounds)
cncall (nocncall) |Loops are considered for parallelization, |nocncall (L)RG (L)RG
even if they contain calls to user-defined
subroutines or functions, or if their loop
counts do not exceed usual thresholds.
cncall (nocncall) |Loops are considered for parallelization, |nocncall (LRG (LRG
even if they contain calls to user-defined
subroutines or functions, or if their loop
counts do not exceed usual thresholds.
concur Do/don’t enable auto-concurrentization of | concur (LRG (LRG
(noconcur) loops.
depchk Do/don’t ignore potential data depchk (L)RG (L)RG
(nodepchk) dependencies.

109

Scope of Fortran Directives and Command-Line options

Directive or Functionality Default Fortran C/C++

pragma Scope Scope

eqvchk Do/don’t check EQUIVALENCE for data |eqvchk (L)RG N/A

(noeqvchk) dependencies.

fcon (nofcon) Do/don’t assume unsuffixed real constants | nofcon N/A R)G
are single precision.

invarif (noinvarif) |Do/don’t remove invariant if constructs | invarif (L)RG (L)RG
from loops.

ivdep Ignore potential data dependencies. ivdep (L)RG N/A

Istval (nolstval) Do/don’t compute last values. Istval (LRG (LRG

prefetch Control how prefetch instructions are
emitted

opt Select optimization level. N/A (R)G (R)G

safe (nosafe) Do/don’t treat pointer arguments as safe. |safe N/A (R)G

safe_lastval Parallelize when loop contains a scalar |not enabled (L) (L)
used outside of loop.

safeptr (nosafeptr) |Do/don’t ignore potential data nosafeptr N/A L(R)G
dependencies to pointers.

single (nosingle) |Do/don’t convert float parameters to nosingle N/A (R)G*
double.

tp Generate PGI Unified Binary code N/A (R)G (R)G
optimized for specified targets.

unroll (nounroll) |Do/don’t unroll loops. nounroll (LRG (LRG

vector (novector) |Do/don't perform vectorizations. vector (L)RG* (LRG

vintr (novintr) Do/don’t recognize vector intrinsics. vintr (LRG (LRG

Scope of Fortran Directives and Command-Line options

During compilation the effect of a directive may be to either turn an option on, or turn an option off. Directives
apply to the section of code following the directive, corresponding to the specified scope, which may include
the following loop, the following routine, or the rest of the program. This section presents several examples
that show the effect of directives as well as their scope.

Consider the following Fortran code:

integer maxtine, tine

paranmeter (n = 1000, maxtime = 10)

doubl e precision a(n,n), b(n,n), c(n,n)
do tinme = 1, maxtinme

doi =1, n
doj =1, n
c(i,j) =a(i,j) + b(i,j)
enddo
enddo
enddo
0oooo

110

Chapter 8. Using Directives and Pragmas

When compiled with —Mvect , both interior loops are interchanged with the outer loop.

$ pgfortran - MWect dirvectl.f

Directives alter this behavior either globally or on a routine or loop by loop basis. To assure that vectorization
is not applied, use the novect or directive with global scope.

cpgi $g novect or

i nteger maxtine, tine

paraneter (n = 1000, nmaxtinme = 10)

doubl e precision a(n,n), b(n,n), c(n,n)
do time = 1, maxtine

doi =1, n
doj =1, n
c(i,j) =a(i,j) + b(i,j)
enddo
enddo
enddo
end

In this version, the compiler disables vectorization for the entire source file. Another use of the directive
scoping mechanism turns an option on or off locally, either for a specific procedure or for a specific loop:

integer maxtine, tine
paraneter (n = 1000, nmaxtinme = 10)
doubl e precision a(n,n), b(n,n), c(n,n)
cpgi $I novect or
do time = 1, maxtine

doi =1, n
doj =1, n
c(i,j) =a(i,j) + b(i,j)
enddo
enddo
enddo
end

Loop level scoping does not apply to nested loops. That is, the directive only applies to the following loop.
In this example, the directive turns off vector transformations for the top-level loop. If the outer loop were a
timing loop, this would be a practical use for a loop-scoped directive.

Scope of C/C++ Pragmas and Command-Line Options

During compilation a pragma either turns an option on or turns an option off. Pragmas apply to the section
of code corresponding to the specified scope - either the entire file, the following loop, or the following or
current routine. This section presents several examples showing the effect of pragmas and the use of the
pragma scope indicators.

Note

In all cases, pragmas override a corresponding command-line option.

For pragmas that have only routine and global scope, there are two rules for determining the scope of the
pragma. We cover these special scope rules at the end of this section.

Consider the following program:

1M

Scope of C/C++ Pragmas and Command-Line Options

112

mai n() {
float a[100][2100], b[2100][100], c[100][100];
int tinme, maxtime, n, i, j;
maxt i me=10;
n=100;
for (tinme=0; tinme<maxtine;time++)
for (j=0; j<n;j++)
for (i=0; i<n;i++)
: c[i][il =alillil + bLi][il;

When this is compiled using the —~Mvect command-line option, both interior loops are interchanged with the
outer loop. Pragmas alter this behavior either globally or on a routine or loop by loop basis. To ensure that
vectorization is not applied, use the novect or pragma with global scope.

mai n() {
#pragma gl obal novect or
float a[100][100], b[2100][100], c[100][100];
int tinme, maxtime, n, i, j;
maxt i me=10;
n=100;
for (tinme=0; tinme<maxtine;tinme++)
for (j=0; j<n;j++)
for (i=0; i<n;i++)
! c[i][j] =a[i][j] + b[i][j];

In this version, the compiler does not perform vectorization for the entire source file. Another use of the
pragma scoping mechanism turns an option on or off locally either for a specific procedure or for a specific
loop. The following example shows the use of a loop-scoped pragma.

mai n() {
float a[100][100], b[2100][100], c[100][100];
int time, maxtime, n, i, j;
maxt i me=10;
n=100;
#pragma | oop novect or
for (tinme=0; tinme<maxtine;tinme++)
for (j=0; j<n;j++)
for (i=0; i<n;i++)
! c[i][il =alillil + bLi][il;

Loop level scoping does not apply to nested loops. That is, the pragma only applies to the following loop. In
this example, the pragma turns off vector transformations for the top-level loop. If the outer loop were a timing
loop, this would be a practical use for a loop-scoped pragma. The following example shows routine pragma
scope:

#i ncl ude "math. h"
funcl() {
#pragma routi ne novect or
float a[100][2100], b[2100][100];
float c[100][2100], d[2100][100];
int i,j;
for (i=0;i<100;i ++)
for (j=0;j<100;]j ++)
a[i][j] =a[i][j] + b[i
: c[i][j] =c[i]l[j] + b[i

func2() {

[Er—
——
[E——
* %

Chapter 8. Using Directives and Pragmas

float a[200][200], b[200][200];
float c[200][200], d[200][200];
int i,j;
for (i=0;i<200;i++)
for (j=0;j<200;]j++)
a[i][j] =a[i][j] + b[i][]]
: c[i][j] =c[i][j] + b[i][]j]

When this source is compiled using the -Mrect command-line option, func2 is vectorized but funcl1 is not
vectorized. In the following example, the global novector pragma turns off vectorization for the entire file.

#i ncl ude "nath. h"
funcl() {
#pragnma gl obal novect or

float a[100][100], b[100][100];

float c[100][100], d[2100][100];

int i,j;

for (i=0;i<100;i++)

for (j=0;j<100;]j++)
a[i][j] =ali][i] + bl[i]l[i] * c[illil;

! c[i][i]l =clillil + bLil[il * d[i][il;

func2() {
fl oat a[200][200], b[200][200];
float c[200][200], d[200][200];
int i,j;
for (i=0;i<200;i++)
for (j=0;j<200;j++)
a[i][j] =ali]llj] +bLil[j] * c[illjl;
clilljl =clillil + bLillj] * d[il[jl;

}

Special Scope Rules

Special rules apply for a pragma with loop, routine, and global scope. When the pragma is placed within a
routine, it applies to the routine from its point in the routine to the end of the routine. The same rule applies
for one of these pragmas with global scope.

However, there are several pragmas for which only routine and global scope applies and which affect code
immediately following the pragma:

e bounds and fcon — The bounds and fcon pragmas behave in a similar manner to pragmas with loop scope.
That is, they apply to the code following the pragma.

e opt and safe — When the opt, and safe pragmas are placed within a routine, they apply to the entire routine
as if they had been placed at the beginning of the routine.

Prefetch Directives and Pragmas

Today’s processors are so fast that it is difficult to bring data into them quickly enough to keep them busy.
Prefetch instructions can increase the speed of an application substantially by bringing data into cache so that
it is available when the processor needs it.

When vectorization is enabled using the -Mvect or —Mpr ef et ch compiler options, or an aggregate option
such as —f ast that incorporates —Mvect , the PGI compilers selectively emit instructions to explicitly prefetch

113

Prefetch Directives and Pragmas

data into the data cache prior to first use. You can control how these prefetch instructions are emitted by using
prefetch directives and pragmas.

For a list of processors that support prefetch instructions refer to the PGI Release Notes.

Prefetch Directive Syntax

The syntax of a prefetch directive is as follows:
c$mem prefetch <vari1>[, <var2>[,...]]

where <var n> is any valid variable, member, or array element reference.

Prefetch Directive Format Requirements

Note

The sentinel for prefetch directives is c$mem which is distinct from the cpgi $ sentinel used for
optimization directives. Any prefetch directives that use the cpgi $ sentinel are ignored by the PGI
compilers.

e The "c" must be in column 1.
e Either * or ! is allowed in place of c.
e The scope indicators g, r and | used with the cpgi $ sentinel are not supported.

e The directive name, including the directive prefix, may contain upper or lower case letters and is case
insensitive (case is not significant).

e If the command line option —Mupcase is used, any variable names that appear in the body of the directive
are case sensitive.

Sample Usage of Prefetch Directive

114

Example 8.1. Prefetch Directive Use

This example uses prefetch directives to prefetch data in a matrix multiplication inner loop where a row of one
source matrix has been gathered into a contiguous vector.

real *8 a(mn), b(n,p), c(mp), arow(n)

doj =1, p

c$mem prefetch arom 1), b(1,j)

c$mem prefetch arowm 5), b(5,])

c$mem prefetch arom 9), b(9,j)

do k =1, n, 4

c$mem prefetch arow k+12), b(k+12,j)
c(i,j) =c(i,j) + arowmk) * b(k,j)
c(i,j) =c(i,j) + arow(k+1) * b(k+1,j)
c(i,j) =c(i,j) + arow(k+2) * b(k+2,j)
c(i,j) =c(i,j) + arow(k+3) * b(k+3,j)
enddo

enddo

Chapter 8. Using Directives and Pragmas

This pattern of prefetch directives the compiler emits prefetch instructions whereby elements of ar owand b
are fetched into the data cache starting four iterations prior to first use. By varying the prefetch distance in this
way, it is sometimes possible to reduce the effects of main memory latency and improve performance.

Prefetch Pragma Syntax
The syntax of a prefetch pragma is as follows:
#pragma mem prefetch <var1>[, <var2>[,...]]

where <var n> is any valid variable, member, or array element reference.

Sample Usage of Prefetch Pragma

Example 8.2. Prefetch Pragmain C

This example uses the prefetch pragma to prefetch data from the source vector x for eight iterations beyond
chDe current iteration.

O0for (i=0; i<n; i++) {
#pragma nmem prefetch x[i +8]
ylil =yli] + a*x[i];

}

IDEC$ Directives

PGI Fortran compilers for Microsoft Windows support several de-facto standard Fortran directives that help

with inter-language calling and importing and exporting routines to and from DLLs. These directives all take
I DEC$ directive

Format Requirements

You must follow the following format requirements for the directive to be recognized in your program:

e The directive must begin in line 1 when the file is fixed format or compiled with —M i xed.

* The directive prefix ! DEC$ requires a space between the prefix and the directive keyword, such as
ATTRI BUTES.

e The ! must begin the prefix when compiling Fortran 90/95 free-form format.

¢ The characters C or * can be used in place of ! in either form of the prefix when compiling F77-style fixed-
form format.

e The directives are completely case insensitive.

Summary Table

The following table summarizes the supported 'DEC$ directives. For a complete description of each directive,
refer to the section “IDEC$ Directives,” on page 350 in Chapter 20, “Directives and Pragmas Reference”.

115

C$PRAGMA C

Table 8.2. IDEC$ Directives Summary Table

Directive Functionality

ALIAS Specifies an alternative name with which to resolve a routine.

ATTRIBUTES Lets you specify properties for data objects and procedures.

DECORATE Specifies that the name specified in the ALIAS directive should have the prefix

and postfix decorations performed on it that are associated with the calling
conventions that are in effect. This directive has no effect if ALIAS is not

specified.
DISTRIBUTE Tells the compiler at what point within a loop to split into two loops.
IGNORE_TKR Directs the compiler to ignore the type, kind, and/or rank (/TKR/) of specified

dummy arguments in a procedure interface.

C$SPRAGMA C

116

When programs are compiled using one of the PGI Fortran compilers on Linux, Win64, and OSX systems, an
underscore is appended to Fortran global names, including names of functions, subroutines, and common
blocks. This mechanism distinguishes Fortran name space from C/C++ name space.

You can use CSPRAGMA C in the Fortran program to call a C/C++ function from Fortran. The statement would
look similar to this:

C3PRAGVA C(nane[, nane]...)

NOTE

This statement directs the compiler to recognize the routine 'name’ as a C function, thus preventing
the Fortran compiler from appending an underscore to the routine name.

On Win32 systems the CSPRAGMA C as well as the attributes C and STDCALL may effect other changes on
argument passing as well as on the names of the routine. For more information on this topic, refer to “Win32
Calling Conventions,” on page 162.

Chapter 9. Creating and Using
Libraries

A library is a collection of functions or subprograms that are grouped for reference and ease of linking. This
chapter discusses issues related to PGI-supplied compiler libraries. Specifically, it addresses the use of C/C++
builtin functions in place of the corresponding libc routines, creation of dynamically linked libraries, known as
shared objects or shared libraries, and math libraries.

Note

This chapter does not duplicate material related to using libraries for inlining, described in “Creating
an Inline Library,” on page 51 or information related to run-time library routines available to OpenMP
programmers, described in “Run-time Library Routines,” on page 65.

PGI provides libraries that export C interfaces by using Fortran modules. It also provides additions to the
supported library functionality, specifically, NARGS, a run-time function included in DFLIB. NARGS returns
the total number of command-line arguments, including the command. The result is of type INTEGER(4). For
example, NARGS returns 4 for the command-line invocation of PROG1 -g -c -a.

This chapter has examples that include the following options related to creating and using libraries.

—Bdynam ¢ —def<file> —implib <file> —Mrakei mpli b
—Bstatic —dynam clib =l -0
—C —fpic —Mrakedl | —shar ed

Using builtin Math Functions in C/C++

The name of the math header file is mat h. h. Include the math header file in all of your source files that use a
math library routine as in the following example, which calculates the inverse cosine of pi/3.
#i ncl ude <mat h. h>

#define Pl 3.1415926535
voi d mai n()

117

Using System Library Routines

{
doubl e x, vy;
x = PlI/3.0;
y = acos(X);
}

Including mat h. h causes PGCC C and C++ to use builtin functions, which are much more efficient than
library calls. In particular, if you include mat h. h, the following intrinsics calls are processed using builtins:

abs atan atan2 Cos
exp fabs fmax fmaxf
fmin fminf log log10
pow sin sqrt tan

Using System Library Routines

Release 10.0 of the PGI run-time libraries makes use of Linux system libraries to implement, for example,
OpenMP and Fortran I/0. The PGI run-time libraries make use of several additional system library routines.

On 64-bit Linux systems, the system library routines that PGI supports include these:

aio_error aio_write pthread_mutex_init sleep
aio_read calloc pthread_mutex_lock

aio_return getrlimit pthread_mutex_unlock
aio_suspend pthread_attr_init setrlimit

On 32-bit Linux systems, the system library routines that PGI supports include these:

aio_error aio_suspend getrlimit sleep
aio_read aio_write pthread_attr_init
aio_return calloc setrlimit

Creating and Using Shared Object Files on Linux

All of the PGI Fortran, C, and C++ compilers support creation of shared object files. Unlike statically-linked
object and library files, shared object files link and resolve references with an executable at runtime via a
dynamic linker supplied with your operating system. The PGI compilers must generate position independent
code to support creation of shared objects by the linker. However, this is not the default. You must create
object files with position independent code and shared object files that will include them.

Procedure to create a use a shared object file
The following steps describe how to create and use a shared object file.

1. Create an object file with position independent code.

To do this, compile your code with the appropriate PGI compiler using the —f pi ¢ option, or one of the
equivalent options, such as —f PI C, —Kpi ¢, and —KPI C, which are supported for compatibility with other

118

Chapter 9. Creating and Using Libraries

systems. For example, use the following command to create an object file with position independent code
using pgfortran:

% pgfortran -c -fpic tobeshared.f
. Produce a shared object file.

To do this, use the appropriate PGI compiler to invoke the linker supplied with your system. It is customary
to name such files using a . so filename extension. On Linux, you do this by passing the —shar ed option
to the linker:

% pgfortran -shared -o tobeshared. so tobeshared. o

Note

Compilation and generation of the shared object can be performed in one step using both the —
f pi ¢ option and the appropriate option for generation of a shared object file.

. Use a shared object file.

To do this, use the appropriate PGI compiler to compile and link the program which will reference
functions or subroutines in the shared object file, and list the shared object on the link line, as shown here:

% pgfortran -o nmyprog nyprog.f tobeshared. so

. Make the executable available.

You now have an executable mypr og which does not include any code from functions or

subroutines in t obeshar ed. so, but which can be executed and dynamically linked to that code.

By default, when the program is linked to produce nypr og, no assumptions are made on the

location of t obeshar ed. so. Therefore, for mypr og to execute correctly, you must initialize the
environment variable LD_LI BRARY_PATH to include the directory containing t obeshar ed. so.

If LD _LI BRARY_PATH s already initialized, it is important not to overwrite its contents. Assuming

you have placed t obeshar ed. so in a directory / honme/ myuser nane/ bi n, you can initialize

LD_LI BRARY_PATH to include that directory and preserve its existing contents, as shown in the following:

% setenv LD _LI BRARY_PATH "$LD LI BRARY_PATH': / hone/ myuser nane/ bi n

If you know that t obeshar ed. so always resides in a specific directory, you can create the executable
mypr og in a form that assumes t