

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202208-0271-23

Page: 1 of 691

Radio Test Report

FCC ID: 2AW68-D222AH

Report No. : TBR-C-202208-0271-23

Applicant: Shenzhen SDMC Technology Co., Ltd.

Equipment Under Test (EUT)

EUT Name : D222AH Tri-band Wi-Fi 6E Extender

Model No. : D222AH

Series Model No. : ----

Brand Name : Altice Labs

Sample ID : 202208-0271-2-1#&202208-0271-2-2#

Receipt Date : 2022-09-20

Test Date : 2022-09-21 to 2023-03-08

Issue Date : 2023-03-09

Standards : FCC Part 15 Subpart E 15.407

Test Method : ANSI C63.10: 2013

KDB 662911 D01 Multiple Transmitter Output v02r01

KDB 987594 D01 U-NIİ 6GHz General Requirements v01r02 KDB 987594 D02 U-NII 6GHz EMC Measurement v01r01

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Witness Engineer :

Engineer Supervisor :

Engineer Manager :

Wari Su Ray Lai

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

COI	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	6
	1.1 Client Information	6
	1.2 General Description of EUT (Equipment Under Test)	6
	1.3 Block Diagram Showing the Configuration of System Tested	10
	1.4 Description of Support Units	10
	1.5 Description of Test Mode	
	1.6 Description of Test Software Setting	12
	1.7 Measurement Uncertainty	14
	1.8 Test Facility	
2.	TEST SUMMARY	
3.	TEST SOFTWARE	15
4.	TEST EQUIPMENT	16
5.	CONDUCTED EMISSION TEST	17
	5.1 Test Standard and Limit	
	5.2 Test Setup	17
	5.3 Test Procedure	17
	5.4 Deviation From Test Standard	18
	5.5 EUT Operating Mode	18
	5.6 Test Data	18
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	19
	6.1 Test Standard and Limit	19
	6.2 Test Setup	20
	6.3 Test Procedure	22
	6.4 Deviation From Test Standard	23
	6.5 EUT Operating Mode	23
	6.6 Test Data	23
7.	RESTRICTED BANDS REQUIREMENT	24
	7.1 Test Standard and Limit	
	7.2 Test Setup	24
	7.3 Test Procedure	25
	7.4 Deviation From Test Standard	
	7.5 EUT Operating Mode	25
	7.6 Test Data	25

Report No.: TBR-C-202208-0271-23 Page: 3 of 691

8.	BANDWIDTH TEST	26
	8.1 Test Standard and Limit	
	8.2 Test Setup	26
	8.3 Test Procedure	26
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Mode	27
	8.6 Test Data	27
9.	MAXIMUM E.I.R.P.	28
	9.1 Test Standard and Limit	28
	9.2 Test Setup	28
	9.3 Test Procedure	28
	9.4 Deviation From Test Standard	28
	9.5 EUT Operating Mode	28
	9.6 Test Data	
10.	E.I.R.P. SPECTRAL DENSITY TEST	29
	10.1 Test Standard and Limit	
	10.2 Test Setup	29
	10.3 Test Procedure	30
	10.4 Deviation From Test Standard	30
	10.5 Antenna Connected Construction	30
	10.6 Test Data	
11.	IN-BAND EMISSION(MASK)	31
	11.1 Test Standard and Limit	
	11.2 Test Setup	31
	11.3 Test Procedure	32
	11.4 Deviation From Test Standard	32
	11.5 Antenna Connected Construction	32
	11.6 Test Data	32
12.	CONTENTION-BASED PROTOCOL	33
	12.1 Test Standard and Limit	33
	12.2 Test Setup	33
	12.3 Test Procedure	
	12.4 Deviation From Test Standard	34
	12.5 Antenna Connected Construction	34
	12.6 Test Data	34
13.	FREQUENCY STABILITY	35
	13.1 Test Standard and Limit	35
	13.2 Test Setup	

Report No.: TBR-C-202208-0271-23 Page: 4 of 691

	13.3 Test Procedure	35
	13.4 Deviation From Test Standard	36
	13.5 Antenna Connected Construction	36
	13.6 Test Data	36
14.	OPERATIONAL RESTRICTIONS FOR 6GHZ U-NII DEVICES	37
	14.1 Test Standard and Limit	37
	14.2 Deviation From Test Standard	37
	14.3 Antenna Connected Construction	37
	14.4 Test Data	
15.	ANTENNA REQUIREMENT	38
	15.1 Test Standard and Limit	38
	15.2 Deviation From Test Standard	38
	15.3 Antenna Connected Construction	38
	15.4 Test Data	38
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	39
	ACHMENT BUNWANTED EMISSIONS DATA	
ATT	ACHMENT CRESTRICTED BANDS REQUIREMENT DATA	382
ATT	ACHMENT DBANDWIDTH TEST DATA	418
ATT	ACHMENT EMAXIMUM E.I.R.P. AND E.I.R.P. SPECTRAL DENSITY	579
ATT	ACHMENT FCONTENTION-BASED PROTOCOL	662
	ACHMENT GFREQUENCY STABILITY	
۸ТТ	ACUMENT LI DUTY CYCLE	677

Report No.: TBR-C-202208-0271-23 Page: 5 of 691

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202208-0271-23	Rev.01	Initial issue of report	2023-03-09
and the same	333	TURE TO THE	
	$\omega_{0R_{T}}$		
and the		Dis Comments	
	COURT -		
		TOWN TO	
		TOWN TOWN	
	CODY.	1000	
TO THE REAL PROPERTY.			

Page: 6 of 691

1. General Information about EUT

1.1 Client Information

W. W. V.		
Applicant	Shenzhen SDMC Technology Co., Ltd.	
Address Room 1022, Floor 10, Building A, Customs Building, No. 2, 3rd Road, Dalang Community, Xin'an Street, Bao'an District Shenzhen, China		
Manufacturer : Shenzhen SDMC Technology Co., Ltd.		Shenzhen SDMC Technology Co., Ltd.
Address	<u> </u>	Room 1022, Floor 10, Building A, Customs Building, No. 2, Xin'an 3rd Road, Dalang Community, Xin'an Street, Bao'an District, Shenzhen, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	1	D222AH Tri-band Wi-Fi 6E Extender				
HVIN/Models No.	8:	D222AH				
Model Different	:	N/A				
0000		U-NII-5: 5955MHz~	Operation Frequency: U-NII-5: 5955MHz~6415MHz, U-NII-6: 6435MHz~6515MHz U-NII-7: 6535MHz~6875MHz, U-NII-8: 6895MHz~7095MHz			
4000		Antenna Gain:	See antenna information			
033		Modulation Type:	802.11a: OFDM (QPSK, BPSK, 16QAM, 64QAM) 802.11ax: OFDMA (BPSK, QPSK,16QAM, 64QAM, 256QAM, 1024QAM)			
Product		Beamforming Function:	⊠With Beamforming			
Description			☐Without Beamforming			
		Device Type:	⊠Indoor Access Point	Subordinate		
A UU			☐Indoor Client	☐Standard Power		
A Aller			☐Dual Client	☐Access Point		
4000			☐Fixed Client	☐Standard Client		
Power Rating		AC Adapter (Model: S024-1D120200VU): Input: 100-240V~, 50/60Hz, 0.6A Output: 12.0V=2.0A				
Software Version		N/A				
Hardware Version	ë	N/A	A			
		The same of the sa				

(1)The provided by the applicant, the verified for the RF conduction test provided by TOBY test lab. Antenna information provided by the applicant.(2)For a more detailed features description, please refer to the manufacturer's specifications

or the User's Manual.

Report No.: TBR-C-202208-0271-23 Page: 7 of 691

(3)Channel List:

	5955-6415MHz(U-NII-5 band)						
Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)			
	1	5955	49	6195			
	5	5975	53	6215			
	9	5995	57	6235			
	13	6015	61	6255			
	17	6035	65	6275			
802.11a&ax(HE20)	21	6055	69	6295			
002. Πα α αχ(ΠΕ20)	25	6075	73	6315			
	29	6095	77	6335			
	33	6115	81	6355			
	37	6135	85	6375			
	41	6155	89	6395			
	45	6175	93	6415			
Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)			
	3	5965	51	6205			
	11	6005	59	6245			
802.11ax(HE40)	19	6045	67	6285			
002.11ax(11L40)	27	6085	75	6325			
	35	6125	83	6365			
	43	6165	91	6405			
Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)			
	7	5985	55	6225			
802.11ax(HE80)	23	6065	71	6305			
	39	6145	87	6385			
Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)			
802.11ax(HE160)	15	6025	79	6345			

Report No.: TBR-C-202208-0271-23 Page: 8 of 691

6425-6525MHz(U-NII-6 band)						
Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)		
	97	6435	109	6495		
802.11a&ax(HE20)	101	6455	113	6515		
	105	6475				
Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)		
000 11 av/LIE 10\	99	6445	*115	6525		
802.11ax(HE40)	107	6485				
Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)		
802.11ax(HE80)	103	6465	*119	6545		
Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)		
802.11ax(HE160)	*111	6505				
*mean this is straddle channel.						

	6525-	6885MHz(U-NII-7	band)			
Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)		
	117	6535	153	6715		
	121	6555	157	6735		
	125	6575	161	6755		
	129	6595	165	6775		
802.11a&ax(HE20)	133	6615	169	6795		
	137	6635	173	6815		
	141	6655	177	6835		
	145	6675	181	6855		
	149	6695	*185	6875		
Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)		
	123	6565	163	6765		
	131	6605	171	6805		
802.11ax(HE40)	139	6645	179	6845		
	147	6685	*187	6885		
	155	6725				
Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)		
802.11ax(HE80)	135	6625	167	6785		
002.11ax(11L00)	151	6705	*183	6865		
Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)		
802.11ax(HE160)	143	6665	*175	6825		
*mean this is strado	dle channel.		•			

Page: 9 of 691

6875-7125MHz(U-NII-8 band)						
Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)		
	189	6895	213	7015		
	193	6915	217	7035		
902 11a2 av/UE20\	197	6935	221	7055		
802.11a&ax(HE20)	201	6955	225	7075		
	205	6975	229	7095		
	209	6995				
Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)		
	195	6925	219	7045		
802.11ax(HE40)	203	6965	227	7085		
	211	7005				
Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)		
802.11ax(HE80)	199	6945	215	7025		
Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)		
802.11ax(HE160)	207	6985	1	1		

(4)Antenna Information:

Band		Antenna	Gain(dBi)	
	Antenna 1	Antenna 2	Antenna 3	Antenna 4
U-NII-5	4.54	6.16	5.73	4.62
U-NII-6	4.54	6.16	5.73	4.62
U-NII-7	4.54	6.16	5.73	4.62
U-NII-8	4.54	6.16	5.73	4.62

Note:

For Power:

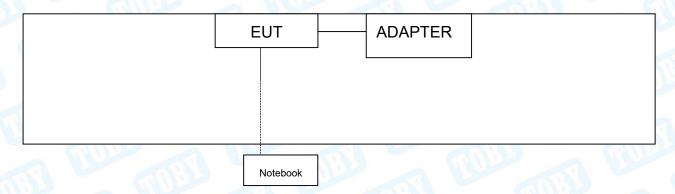
Beamforming Mode:

Directional gain = $10 \log[(10^{\text{Chain0/20}} + 10^{\text{Chain1/20}} + 10^{\text{Chain2/20}} + 10^{\text{Chain3/20}})^2 / 4]$

CDD Mode use max. antenna Gain

For PSD:

CDD/Beamforming Mode:


Directional gain = $10 \log[(10^{\text{Chain0/20}} + 10^{\text{Chain1/20}} + 10^{\text{Chain2/20}} + 10^{\text{Chain3/20}})^2 / 4]$

Page: 10 of 691

1.3 Block Diagram Showing the Configuration of System Tested

1.4 Description of Support Units

Equipment Information								
Name	Model	FCC ID/VOC	Manufacturer	Used "√"				
Notebook	Inspiron 5493	and the second	DELL	√				
		Cable Information						
Number	Shielded Type	Ferrite Core	Length	Note				
Cable 1	Yes	NO	1.0M	Accessory				

Page: 11 of 691

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

		For Conducted Test	
Final Test Mode Mode 1		Description	
		TX ax Mode(6115MHz)	
		For Radiated Test Below 1GHz	
Final Test Mode Mode 2		Description	
		TX ax Mode(6115MHz)	
	For Radiate	ed Above 1GHz and RF Conducted Test	
Test Band	Final Test Mode	Description	
3.0	Mode 3	TX Mode 802.11a Mode Channel 01/45/93	
	Mode 4	TX Mode 802.11ax(HE20) Mode Channel 01/45/93	
U-NII-5	Mode 5	TX Mode 802.11ax (HE40) Mode Channel 03/43/91	
A B. Com	Mode 6	TX Mode 802.11ax (HE80) Mode Channel 07/39/87	
	Mode 7	TX Mode 802.11ax (HE160) Mode Channel 15/47/79	
	Mode 8	TX Mode 802.11a Mode Channel 97/105/113	
	Mode 9	TX Mode 802.11ax(HE20) Mode Channel 97/105/113	
U-NII-6	Mode 10	TX Mode 802.11ax (HE40) Mode Channel 99/107/115	
	Mode 11	TX Mode 802.11ax (HE80) Mode Channel 103/119	
	Mode 12	TX Mode 802.11ax (HE160) Mode Channel 111	
	Mode 13	TX Mode 802.11a Mode Channel 117/149/181/185	
1	Mode 14	TX Mode 802.11ax(HE20) Mode Channel 117/149/181/185	
U-NII-7	Mode 15	TX Mode 802.11ax (HE40) Mode Channel 123/155/178/187	
	Mode 16	TX Mode 802.11ax (HE80) Mode Channel 135/151/167/183	
13.1	Mode 17	TX Mode 802.11ax (HE160) Mode Channel 143/175	
	Mode 18	TX Mode 802.11a Mode Channel 189/209/229	
	Mode 19	TX Mode 802.11ax(HE20) Mode Channel 189/209/229	
U-NII-8	Mode 20	TX Mode 802.11ax (HE40) Mode Channel 195/211/227	
	Mode 21	TX Mode 802.11ax (HE80) Mode Channel 199/215	
	Mode 22	TX Mode 802.11ax (HE160) Mode Channel 207	

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

(2) During the testing procedure, the continuously transmitting with the maximum power

mode was programmed by the customer.

Mode	Data Rate
A Mode-CDD	6Mbps
AX(HE20) Mode- BF	HE0NSS4
AX(HE40) Mode- BF	HE0NSS4
AX(HE80) Mode- BF	HE0NSS4
AX(HE160) Mode- BF	HE0NSS4
AX(HE20) Mode-CDD	HE0NSS1
AX(HE40) Mode-CDD	HE0NSS1
AX(HE80) Mode-CDD	HE0NSS1
AX(HE160) Mode-CDD	HE0NSS1

(3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 12 of 691

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

6411	Test Software: acce	essMtool	
	U-NII-5		
Mode	Frequency(MHz)	Param	
MIOGE	1 requericy(Wi12)	CDD Mode	BF Mode
	5955	40	
802.11a	6175	40	
	6415	40	
	5955	32	44
802.11ax(HE20)	6175	32	48
A VIII	6415	32	48
	5965	56	60
802.11ax(HE40)	6165	58	60
	6405	60	60
	5985	70	74
802.11ax(HE80)	6145	72	74
	6385	76	80
	6025	68	70
802.11ax(HE160)	6185	68	70
	6345	72	76
	U-NII-6		
Mode	Frequency(MHz)	Param	neters
Wiode	Frequency(WHZ)	CDD Mode	BF Mode
	6435	44	
802.11a	6475	44	
	6515	44	
	6435	32	48
802.11ax(HE20)	6475	32	48
	6515	36	48
	6445	64	60
802.11ax(HE40)	6485	64	60
	6525	64	60
802.11ax(HE80)	6465	80	80
	6545	80	80
802.11ax(HE160)	6505	72	78

Report No.: TBR-C-202208-0271-23 Page: 13 of 691

	U-NII-7		
Mode	Frequency(MHz)	Paran	neters
Wiode	Frequency(WHZ)	CDD Mode	BF Mode
	6535	44	
802.11a	6695	44	1
802.11a	6855	44	
	6875	44	
	6535	36	48
902 11av/UE20)	6695	36	48
802.11ax(HE20)	6855	36	48
	6875	36	48
THE STATE OF THE S	6565	64	60
902 44 ov/UE40)	6685	64	60
802.11ax(HE40)	6845	64	60
	6885	64	60
	6625	80	80
902 44 av/UE90)	6705	80	80
802.11ax(HE80)	6785	80	78
	6865	80	78
902 44 av/UE460)	6665	72	78
802.11ax(HE160)	6825	72	78
	U-NII-8		
Mada	F(8411)	Parameters	
Mode	Frequency(MHz)	CDD Mode	BF Mode
	6895	44	
802.11a	6995	44	
	7095	44	
	6895	36	48
802.11ax(HE20)	6995	36	48
	7095	36	48
	6925	64	60
802.11ax(HE40)	6965	64	62
THUS.	7085	64	62
000 44 cv/UE00\	6945	76	78
802.11ax(HE80)	7025	76	78
802.11ax(HE160)	6985	72	78

Page: 14 of 691

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U_1$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2_1$ providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB
RF Power-Conducted		±0.95 dB
Power Spectral Density- Conducted	1 181	±3dB
Occupied Bandwidth		±3.8%
Unwanted Emission- Conducted	1	±2.72 dB

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Page: 15 of 691

2. Test Summary

Standard Section	Test Item	Test Sample(s)	Test Mode	Judgment
15.407(b)(8)	Conducted Emission	202208-0271-2-1#	802.11ax BF	PASS
15.407(b)(5)(8)	Radiated Spurious Emission	202208-0271-2-1#	802.11a/ax CDD 802.11ax BF	PASS
15.407(b)(5)(8)	Conducted Spurious Emission	202208-0271-2-2#	802.11ax CDD	PASS
15.407(b)(6)	In-Band Emission(Mask)	202208-0271-2-2#	802.11ax CDD	PASS
15.407(a)(4/5/6/7/8)	Max E.I.R.P.	202208-0271-2-2#	802.11a/ax CDD 802.11ax BF	PASS
15.407(a)(10)	Emission Bandwidth Measurement	202208-0271-2-2#	802.11a/ax CDD	PASS
15.407(a)(4/5/6/7/8)	E.I.R.P Spectral Density	202208-0271-2-2#	802.11a/ax CDD 802.11ax BF	PASS
15.407(d)(6)	Contention-based Protocol	202208-0271-2-2#		PASS
15.407(g)	Frequency Stability	202208-0271-2-2#	802.11a/ax CDD	PASS
15.407(d)	Operational restrictions for 6GHz U-NII devices	202208-0271-2-2#	WORL)	PASS
15.203	Antenna Requirement	202208-0271-2-2#	1 1 1 1 1 1	PASS
1 10	On Time and Duty Cycle	202208-0271-2-2#	802.11a/ax CDD 802.11ax BF	

Note: (1) N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	EZ-EMC	EZ	FA-03A2RE+
RF Test System	JS1120-3	Tonscend	V3.2.22

⁽²⁾ Some test items only test the CDD test mode.

⁽³⁾ CDD: Cyclic Delay Diversity mode; BF: Beamforming Mode

Report No.: TBR-C-202208-0271-23 Page: 16 of 691

4. Test Equipment

Conducted Emission	Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 23, 2022	Jun. 22, 2023
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 23, 2022	Jun. 22, 2023
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 22, 2022	Jun. 21, 2023
LISN	Rohde & Schwarz	ENV216	101131	Jun. 22, 2022	Jun. 21, 2023
Radiation Emission T	est				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 01, 2022	Aug. 31, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 23, 2023	Feb. 22, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep. 01, 2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep. 01, 2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep. 01, 2022	Aug. 31, 2023
Pre-amplifier	HP	8449B	3008A00849	Feb. 23, 2023	Feb. 22, 2024
Antenna Conducted I	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 23, 2022	Jun. 22, 2023
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 01, 2022	Aug. 31, 2023
Spectrum Analyzer	KEYSIGT	N9020B	MY60110172	Sep. 01, 2022	Aug. 31, 2023
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 01, 2022	Aug. 31, 2023
Analog Signal Generator	Agilent	N5181A	MY48180463	Sep. 01, 2022	Aug. 31, 2023
Vector Signal Generator	KEYSIGT	N5182B	MY59101429	Sep. 01, 2022	Aug. 31, 2023
Analog Signal Generator	KEYSIGHT	N5173B	MY61252685	Sep. 01, 2022	Aug. 31, 2023
Frequency Extender	KEYSIGHT	N5182BX07	MY59360126	Sep. 01, 2022	Aug. 31, 2023
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep. 01, 2022	Aug. 31, 2023
Temperature and Humidity Chamber	ZhengHang	ZH-QTH-1500	ZH2107264	Jun. 22, 2022	Jun. 21, 2023

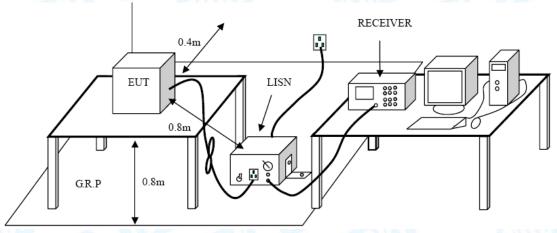
Page: 17 of 691

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.207


5.1.2 Test Limit

Evenuency	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- ●Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- ●LISN at least 80 cm from nearest part of EUT chassis.
- The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

Page: 18 of 691

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

Page: 19 of 691

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.407(b)

6.1.2 Test Limit

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table:

General field strength limits at frequencies Below 30MHz				
Frequency Field Strength (MHz) (microvolt/meter)		Measurement Distance (meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		

Note: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

General field strength limits at frequencies above 30 MHz				
Frequency (MHz)	Field strength (µV/m at 3 m)	Measurement Distance (meters)		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

General field strength limits at frequencies Above 1000MHz				
Frequency	Frequency Distance of 3m (dBuV/m)			
(MHz)	Peak	Average		
Above 1000	74	54		
Note:				

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

Limits of unwanted emission out of the restricted bands

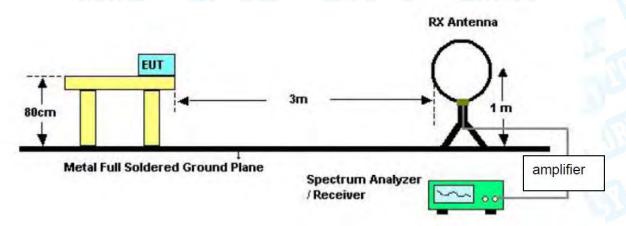
	Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
3	5925~7125	Peak: -7	88.2
		AVG: -27	68.2

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \text{ uV/m, where P is the eirp (Watts)}$$

For above 1000MHz E[dBuV/m]=EIRP[dBm]+95.2, for d=3

Note: For above 1000 MHz. Unwanted emissions outside of restricted bands are measured with a RMS detector. In addition, 15.35(b) applies where the peak emissions must be limited to no more than 20 dB above the average limit.

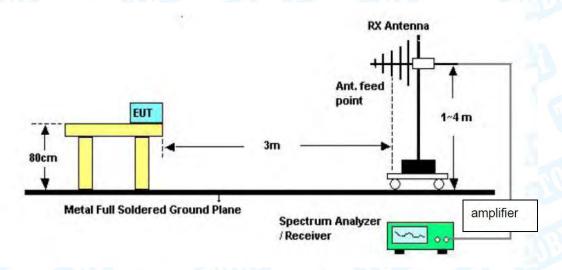

Page: 20 of 691

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part 15, must also comply with the radiated emission limits specified in Section 15.209(a).

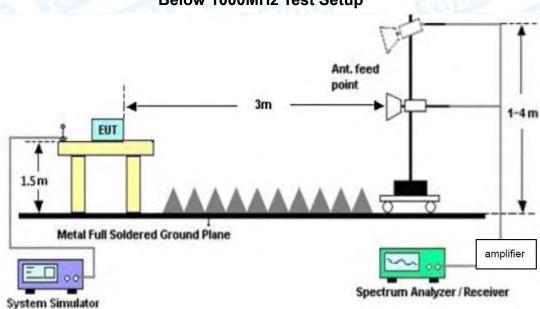
The state of the s		0000.011 10.200(0.).
Frequency	Frequency	Frequency
(MHz)	(MHz)	(GHz)
16.42 - 16.423	399.9 - 410	4.5 - 5.15
16.69475 - 16.69525	608 - 614	5.35 - 5.46
16.80425 - 16.80475	960 - 1240	7.25 - 7.75
25.5 - 25.67	1300 - 1427	8.025 - 8.5
37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
74.8 - 75.2	1660 - 1710	10.6 - 12.7
108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
123 - 138	2200 - 2300	14.47 - 14.5
149.9 - 150.05	2310 - 2390	15.35 - 16.2
156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
156.7 - 156.9	2690 - 2900	22.01 - 23.12
162.0125 - 167.17	3260 - 3267	23.6 - 24.0
167.72 - 173.2	3332 - 3339	31.2 - 31.8
240 - 285	3345.8 - 3358	36.43 - 36.5
322 - 335.4	3600 - 4400	(2)
	Frequency (MHz) 16.42 - 16.423 16.69475 - 16.69525 16.80425 - 16.80475 25.5 - 25.67 37.5 - 38.25 73 - 74.6 74.8 - 75.2 108 - 121.94 123 - 138 149.9 - 150.05 156.52475 - 156.52525 156.7 - 156.9 162.0125 - 167.17 167.72 - 173.2 240 - 285 322 - 335.4	Frequency (MHz) Frequency (MHz) 16.42 - 16.423 399.9 - 410 16.69475 - 16.69525 608 - 614 16.80425 - 16.80475 960 - 1240 25.5 - 25.67 1300 - 1427 37.5 - 38.25 1435 - 1626.5 73 - 74.6 1645.5 - 1646.5 74.8 - 75.2 1660 - 1710 108 - 121.94 1718.8 - 1722.2 123 - 138 2200 - 2300 149.9 - 150.05 2310 - 2390 156.52475 - 156.52525 2483.5 - 2500 156.7 - 156.9 2690 - 2900 162.0125 - 167.17 3260 - 3267 167.72 - 173.2 3332 - 3339 240 - 285 3345.8 - 3358 322 - 335.4 3600 - 4400

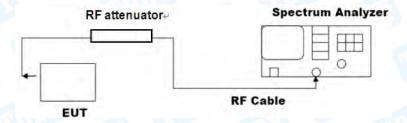
6.2 Test Setup

Radiated measurement



Below 30MHz Test Setup




Page: 21 of 691

Below 1000MHz Test Setup

Above 1GHz Test Setup Conducted measurement

Page: 22 of 691

6.3 Test Procedure

---Radiated measurement

● The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.

- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

--- Conducted measurement

■ Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Page: 23 of 691

Note that the channel found to contain the maximum PSD level can be used to establish the reference level

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

 Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report.

Conducted measurement please refer to the Attachment B.

Page: 24 of 691

7. Restricted Bands Requirement

7.1 Test Standard and Limit

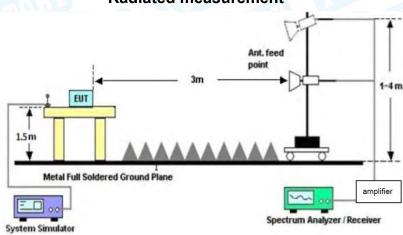
7.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.407(b)(5)

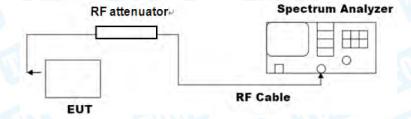
7.1.2 Test Limit

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
E00E . 740E	Peak: -7	88.2
5925~7125	AVG: -27	68.2

NOTE:


The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \text{ uV/m, where P is the eirp (Watts)}$$


Note: For above 1000 MHz. Unwanted emissions outside of restricted bands are measured with a RMS detector. In addition, 15.35(b) applies where the peak emissions must be limited to no more than 20 dB above the average limit.

7.2 Test Setup

Radiated measurement

Conducted measurement

Page: 25 of 691

7.3 Test Procedure

---Radiated measurement

● Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

● The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna

are set to make measurement.

- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- ●The Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

--- Conducted measurement

- a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level

determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).

c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies

≤30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for

frequencies > 1000 MHz).

- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

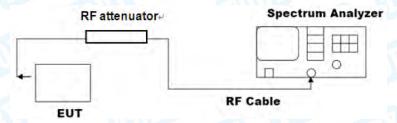
Please refer to the description of test mode.

7.6 Test Data

Please refer to the Attachment C.

Page: 26 of 691

8. Bandwidth Test


- 8.1 Test Standard and Limit
 - 8.1.1 Test Standard

FCC Part 15.407(a)(10)

8.1.2 Test Limit

The maximum transmitter channel bandwidth for U–NII devices in the 5.925–7.125 GHz band is 320 MHz.

8.2 Test Setup

8.3 Test Procedure

---Emission bandwidth

- The procedure for this method is as follows:
- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

NOTE—The automatic bandwidth measurement capability of a spectrum analyzer or an EMI receiver may be employed if it implements the functionality described in the preceding items.

Page: 27 of 691

---DTS bandwidth

- The steps for the first option are as follows:
- a) Set RBW = 100 kHz.
- b) Set the VBW≥[3*RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

---occupied bandwidth

- The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Mode

Please refer to the description of test mode.

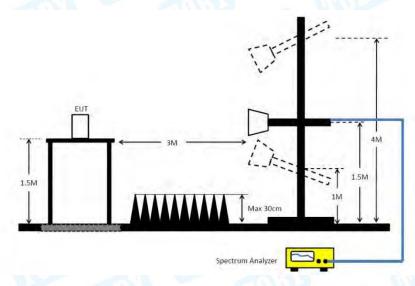
8.6 Test Data

Please refer to the Attachment D.

Page: 28 of 691

9. Maximum E.I.R.P.

9.1 Test Standard and Limit


9.1.1 Test Standard

FCC Part 15.407(a)

9.1.2 Test Limit

FCC Part 15 Subpart E(15.407) Limit					
Frequency	Device Type	e.i.r.p. spectral density	e.i.r.p.		
	indoor access point	not exceed 5dBm/MHz	not exceed 30dBm		
5925-7125MHz	subordinate device operating under the control of an indoor access point	not exceed -1dBm/MHz	not exceed 24dBm		
5925–6425MHz and 6525–6875 MHz	client devices, except for fixed client devices	not exceed 17dBm/MHz	not exceed 30dBm; no more than 6 dB below its associated standard power		
5925-7125MHz	client devices operating under the control of an indoor access point	not exceed -1dBm/MHz	not exceed 24dBm		

9.2 Test Setup

9.3 Test Procedure

- For radiated measurement. Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1GHz.
- 9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Mode

Please refer to the description of test mode.

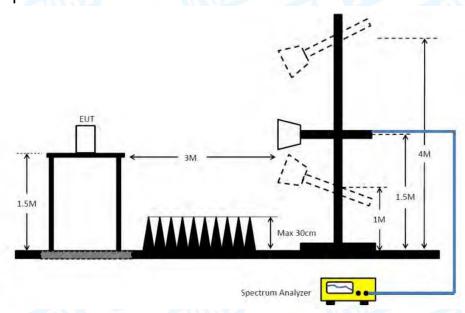
9.6 Test Data

Please refer to the Attachment E.

Page: 29 of 691

10. E.I.R.P. Spectral Density Test

10.1 Test Standard and Limit


10.1.1 Test Standard

FCC Part 15.407(a)

10.1.2 Test Limit

FCC Part 15 Subpart E(15.407) Limit						
Frequency	Device Type	e.i.r.p. spectral density	e.i.r.p.			
	indoor access point	not exceed 5dBm/MHz	not exceed 30dBm			
5925-7125MHz	subordinate device operating under the control of an indoor access point	not exceed -1dBm/MHz	not exceed 24dBm			
5925–6425MHz and 6525–6875 MHz	client devices, except for fixed client devices	not exceed 17dBm/MHz	not exceed 30dBm; no more than 6 dB below its associated standard power			
5925-7125MHz	client devices operating under the control of an indoor access point	not exceed -1dBm/MHz	not exceed 24dBm			

10.2 Test Setup

Page: 30 of 691

10.3 Test Procedure

■Notwithstanding that some regulatory requirements refer to peak power spectral density (PPSD), in some cases the intent is to measure the maximum value of the time average of the power spectral density during a period of continuous transmission. The procedure for this method is as follows:

a) Create an average power spectrum for the EUT operating mode being tested by following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power..." (This procedure is required even if the maximum conducted output power measurement was performed using the power meter method

b) Use the peak search function on the instrument to find the peak of the spectrum.

c) Make the following adjustments to the peak value of the spectrum, if applicable:

1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum.

2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.

d) The result is the PPSD.

- e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities.95 This requirement also permits use of resolution bandwidths less than 1 MHz"provided that the measured power is integrated to show the total power over the measurement bandwidth"(i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 1 MHz bandwidth, the following adjustments to the procedures apply:
- 1) Set RBW≥1 / T, where T is defined in 12.2 a). 2) Set VBW ≥ [3*RBW].

3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle. For radiated measurement. Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1GHz.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

10.6 Test Data

Please refer to the Attachment E.

Page: 31 of 691

11. In-Band Emission(Mask)

11.1 Test Standard and Limit

11.1.1 Test Standard

FCC Part 15.407(b)(6)

11.1.2 Test Limit

Power spectral density must be suppressed by 20 dB at 1 MHz outside of channel edge, by 28 dB at one channel bandwidth from the channel center, and by 40 dB at one- and one-half times the channel bandwidth away from channel center.

At frequencies between one megahertz outside an unlicensed device's channel edge and one channel bandwidth from the center of the channel, the limits must be linearly interpolated between 20 dB and 28 dB suppression, and at frequencies between one and one- and onehalf times an unlicensed device's channel bandwidth, the limits must be linearly interpolated between 28 dB and 40dB suppression.

Emissions removed from the channel center by more than one- and one-half times the channel bandwidth must be suppressed by at least 40 dB.

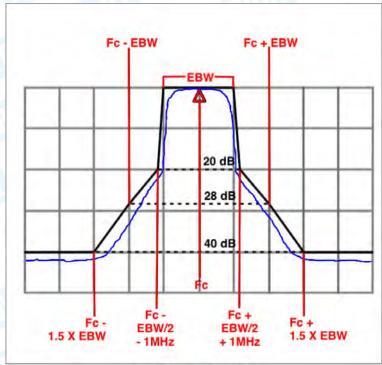
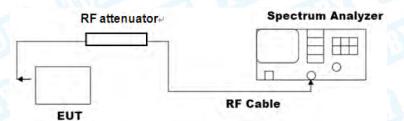



Figure 5. Generic Emission Mask

11.2 Test Setup

Page: 32 of 691

11.3 Test Procedure

1. Connect output of the antenna port to a spectrum analyzer or EMI receiver, with appropriate attenuation, as to not damage the instrumentation.

- 2. Set the reference level of the measuring equipment in accordance with procedure 4.1.5.2 of ANSI C63.10-2013.
- 3. Measure the 26 dB EBW using the test procedure 12.4.1 of ANSI C63.10-2013. (This will be used to determine the channel edge.)
- 4. Measure the power spectral density (which will be used for emissions mask reference) using the following procedure:
 - a) Set the span to encompass the entire 26 dB EBW of the signal.
 - b) Set RBW = same RBW used for 26 dB EBW measurement.
 - c) Set VBW ≥ 3 X RBW
 - d) Number of points in sweep ≥ [2 X span / RBW].
 - e) Sweep time = auto.
 - f) Detector = RMS (i.e., power averaging)
 - g) Trace average at least 100 traces in power averaging (rms) mode.
 - h) Use the peak search function on the instrument to find the peak of the spectrum.
- 5. For the purposes of developing the emission mask, the channel bandwidth is defined as the 26 dB EBW.
- 6. Using the measuring equipment limit line function, develop the emissions mask based on the following requirements. The emissions power spectral density must be reduced below the peak power spectral density (in dB) as follows:
 - a. Suppressed by 20 dB at 1 MHz outside of the channel edge. (The channel edge is defined as the 26-dB point on either side of the carrier center frequency.)
 - b. Suppressed by 28 dB at one channel bandwidth from the channel center.
 - c. Suppressed by 40 dB at one- and one-half times the channel bandwidth from the channel center.
- 7. Adjust the span to encompass the entire mask as necessary.
- 8. Clear trace.
- 9. Trace average at least 100 traces in power averaging (rms) mode.
- 10. Adjust the reference level as necessary so that the crest of the channel touches the top of the emission mask.

11.4 Deviation From Test Standard

No deviation

11.5 Antenna Connected Construction

Please refer to the description of test mode.

11.6 Test Data

Please refer to the Attachment G.

Page: 33 of 691

12. Contention-based Protocol

12.1 Test Standard and Limit

12.1.1 Test Standard

FCC Part 15.407(d)(6)

12.1.2 Test Limit

EUT can detect an AWGN signal with 90% (or better) level of certainty.

12.2 Test Setup

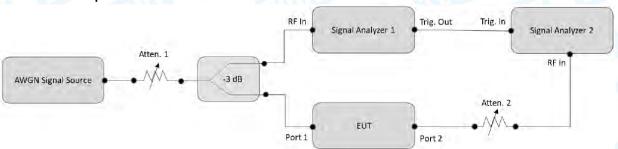


Figure 2. Contention-based protocol test setup, conducted method Step-by-Step Procedure, Conducted Setup

12.3 Test Procedure

To ensure the EUT is capable of detecting co-channel energy, the first step is to configure the EUT to transmit with a constant duty cycle. To simulate an incumbent signal, a signal generator (or similar source) that is capable of generating band-limited additive white Gaussian noise (AWGN) is required. Depending on the EUT antenna configuration, the AWGN signal can be provided to the EUT receiver via a conducted method (Figure 2) or a radiated method (Figure 3). Figure 2 shows the conducted test setup where a band-limited AWGN signal is generated at a very low power level and injected into the EUT's antenna port. The AWGN signal power level is then incrementally increased while the EUT transmission is monitored on a signal analyzer 2 to verify if the EUT can sense the AWGN signal and can subsequently cease its transmission. A triggered measurement, as shown in Figure 2, is optional, and assists with determining the time it takes the EUT to cease transmission (or vacate the channel) upon detecting RF energy. If the EUT has only one antenna port, then an AWGN signal source can be connected to the same antenna port.

- 1. Configure the EUT to transmit with a constant duty cycle.
- 2. Set the operating parameters of the EUT including power level, operating frequency, modulation and bandwidth.
- 3. Set the signal analyzer center frequency to the nominal EEUT channel center frequency. The span range of the signal analyzer shall be between two times and five times the OBW of the EUT. Connect the output port of the EUT to the signal analyzer 2, as shown in Figure 2. Ensure that the attenuator 2 provides enough attenuation to not overload the signal analyzer 2 receiver.
- 4. Monitoring the signal analyzer 2, verify the EUT is operating and transmitting with the parameters set at step two.
- 5. Using an AWGN signal source, generate (but do not transmit, i.e., RF OFF) a 10 MHz-wide AWGN signal. Use Table 1 to determine the center frequency of the 10 MHz AWGN signal relative to the EUT's channel bandwidth and center frequency.
- 6. Set the AWGN signal power to an extremely low level (more than 20 dB below the -62 dBm threshold). Connect the AWGN signal source, via a 3-dB splitter, to the signal analyzer 1 and the EUT as shown in Figure 2.
- 7. Transmit the AWGN signal (RF ON) and verify its characteristics on the signal analyzer 1.
- 8. Monitor the signal analyzer 2 to verify if the AWGN signal has been detected and the

Page: 34 of 691

EUT has ceased transmission. If the EUT continues to transmit, then incrementally increase the AWGN signal power level until the EUT stops transmitting.

- 9. (Including all losses in the RF paths) Determine and record the AWGN signal power level (at the EUT's antenna port) at which the EUT ceased transmission. Repeat the procedure at least 10 times to verify the EUT can detect an AWGN signal with 90% (or better) level of certainty.
- 10. Refer to Table 1 to determine number of times the detection threshold testing needs to be repeated. If testing is required more than once, then go back to step 5, choose a different center frequency for the AWGN signal and repeat the process.

12.4 Deviation From Test Standard

No deviation

12.5 Antenna Connected Construction

Please refer to the description of test mode.

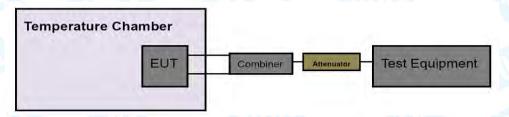
12.6 Test Data

Please refer to the Attachment F.

Page: 35 of 691

13. Frequency Stability

13.1 Test Standard and Limit


13.1.1 Test Standard

FCC Part 15.407(g)

13.1.2 Test Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

13.2 Test Setup

13.3 Test Procedure

Frequency stability with respect to ambient temperature

- a) Supply the EUT with a nominal ac voltage or install a new or fully charged battery in the EUT. If possible, a dummy load shall be connected to the EUT because an antenna near the metallic walls of an environmental test chamber could affect the output frequency of the EUT. If the EUT is equipped with a permanently attached, adjustable-length antenna, then the EUT shall be placed in the center of the chamber with the antenna adjusted to the shortest length possible. Turn ON the EUT and tune it to one of the number of frequencies shown in 5.6.
- b) Couple the unlicensed wireless device output to the measuring instrument by connecting an antenna to the measuring instrument with a suitable length of coaxial cable and placing the measuring antenna near the EUT (e.g., 15 cm away), or by connecting a dummy load to the measuring instrument, through an attenuator if necessary.
- NOTE—An instrument that has an adequate level of accuracy as specified by the procuring or regulatory agency is the recommended measuring instrument.
- c) Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument but is strong enough to allow measurement of the operating or fundamental frequency of the EUT).
- d) Turn the EUT OFF and place it inside the environmental temperature chamber. For devices that have oscillator heaters, energize only the heater circuit.
- e) Set the temperature control on the chamber to the highest specified in the regulatory requirements for the type of device and allow the oscillator heater and the chamber temperature to stabilize.
- f) While maintaining a constant temperature inside the environmental chamber, turn the EUT ON and record the operating frequency at startup, and at 2 minutes, 5 minutes, and 10 minutes after the EUT is energized. Four measurements in total are made.
- g) Measure the frequency at each of frequencies specified in 5.6.
- h) Switch OFF the EUT but do not switch OFF the oscillator heater.
- i) Lower the chamber temperature by not more that 10° C, and allow the temperature inside the chamber to stabilize.
- j) Repeat step f) through step i) down to the lowest specified temperature.

Page: 36 of 691

Frequency stability when varying supply voltage

Unless otherwise specified. these tests shall be made at ambient room temperature (+15 $^{\circ}$ C to +25 $^{\circ}$ C). An antenna shall be connected to the antenna output terminals of the EUT if possible. If the EUT is equipped with or uses an adjustable-length antenna, then it shall be fully extended.

a) Supply the EUT with nominal voltage or install a new or fully charged battery in the EUT. Turn ON the EUT and couple its output to a frequency counter or other frequency-measuring instrument.

NOTE—An instrument that has an adequate level of accuracy as specified by the procuring or regulatory agency is the recommended measuring instrument.

- b) Tune the EUT to one of the number of frequencies required in 5.6. Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument but is strong enough to allow measurement of the operating or fundamental frequency of the EUT).
- c) Measure the frequency at each of the frequencies specified in 5.6.
- d) Repeat the above procedure at 85% and 115% of the nominal supply voltage as described in 5.13.
- 13.4 Deviation From Test Standard
 No deviation
- 13.5 Antenna Connected Construction

 Please refer to the description of test mode.
- 13.6 Test Data

Please refer to the Attachment G.

Report No.: TBR-C-202208-0271-23

Page: 37 of 691

14. Operational restrictions for 6GHz U-NII devices

14.1 Test Standard and Limit

14.1.1 Test Standard

FCC Part 15.407(d)

14.1.2 Test Limit

For FCC:

- (1) Operation of indoor access points / subordinate modes in the 5.925-7.125 GHz band is prohibited on oil platforms, cars, trains, boats, and aircraft, except that indoor access points / subordinate modes are permitted to operate in the 5.925-6.425 GHz bands in large aircraft while flying above 10,000 feet.
- (2) Operation of transmitters in the 5.925-7.125 GHz band is prohibited for control of or communications with unmanned aircraft systems.
- (3) Transmitters operating under indoor access point / subordinate modes is limited to indoor locations.
- (4) In the 5.925-7.125 GHz band, indoor access points / subordinate modes must bear the following statement in a conspicuous location on the device and in the user's manual: FCC regulations restrict operation of this device to indoor use only. The operation of this device is prohibited on oil platforms, cars, trains, boats, and aircraft, except that operation of this device is permitted in large aircraft while flying above 10,000 feet.
- (5) In the 5.925-7.125 GHz band, Access points may connect to other access points or subordinate devices.
- (6) Indoor access points / subordinate modes operating in the 5.925-7.125 GHz band must employ a contention-based protocol.

14.2 Deviation From Test Standard

No deviation

14.3 Antenna Connected Construction

Please refer to the description of test mode.

14.4 Test Data

Device is an indoor access point, / subordinate modes all restrictions are meet the FCC 15.407 (d).

Report No.: TBR-C-202208-0271-23

Page: 38 of 691

15. Antenna Requirement

15.1 Test Standard and Limit

15.1.1 Test Standard

FCC Part 15.203

15.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.2 Deviation From Test Standard

No deviation

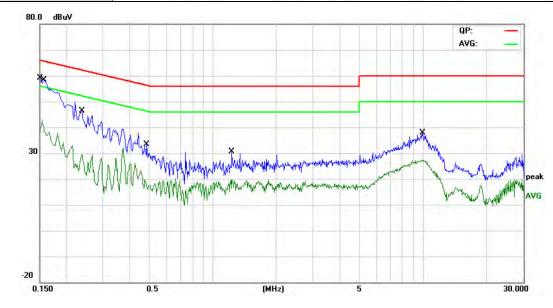
15.3 Antenna Connected Construction

The gains of the antenna used for transmitting is Ant.1: 4.54dBi, Ant.2: 6.16dBi, Ant.3: 5.73dBi, Ant.4: 4.62dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

15.4 Test Data

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

	Antenna Type	
755	☐Permanent attached antenna	
J Line	⊠Unique connector antenna	
	☐Professional installation antenna	MODE



Page: 39 of 691

Attachment A-- Conducted Emission Test Data

Ę	Temperature:	23.4℃	Relative Humidity:	45%
\ B	Test Voltage:	AC 120V 60Hz	4000	
	Terminal:	Line		THE STATE OF
	Test Mode:	Mode 1		
	Remark:	Only worse case is reporte	ed.	

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∨	dB	dBu∀	dBu∨	dB	Detector
1	0.1500	43.83	11.11	54.94	65.99	-11.05	QP
2	0.1500	26.65	11.11	37.76	55.99	-18.23	AVG
3 *	0.1580	44.74	11.09	55.83	65.56	-9.73	QP
4	0.1580	28.99	11.09	40.08	55.56	-15.48	AVG
5	0.2380	33.10	10.94	44.04	62.16	-18.12	QP
6	0.2380	18.90	10.94	29.84	52.16	-22.32	AVG
7	0.4860	12.28	10.93	23.21	56.24	-33.03	QP
8	0.4860	4.32	10.93	15.25	46.24	-30.99	AVG
9	1.2340	11.78	10.64	22.42	56.00	-33.58	QP
10	1.2340	7.36	10.64	18.00	46.00	-28.00	AVG
11	9.9540	21.08	10.14	31.22	60.00	-28.78	QP
12	9.9540	16.48	10.14	26.62	50.00	-23.38	AVG

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Temperature	23.4	${\mathbb C}$		Relative I	Humidity:	45%	6
Test Voltage:	: AC	120V 60Hz	~ W	History		A. S.	
Terminal:	Neu	tral	33		1105		A PINO
Test Mode:	Mod	e 1		511	6	M'S	
Remark:	Only	worse case	e is reported	d.	A B		ATT I
30.0 dBuV		Wylpponypmin,	of the of the other than the other than	party de the many and protection and and a second	make the Modelle Model	1 12	P: VG: Peal
0.150	0.5		(MHz)	5			30.000
	o.s Freq.	Reading Level	(MHz) Correct Factor	Measure- ment	Limit	Over	30.000
0.150		_	Correct	Measure-	Limit dBuV	Over	30.000 Detector
0.150	Freq.	Level	Correct Factor	Measure- ment		dB	
0.150 No. Mk.	Freq.	Level dBu/	Correct Factor	Measure- ment	dBu∨	dB 10.39	Detector
0.150 No. Mk.	Freq. MHz 0.1539	Level dBu√ 44.29	Correct Factor dB 11.10	Measure- ment dBuV 55.39	dBu∨ 65.78 -	dB 10.39 16.20	Detector QP
0.150 No. Mk.	Freq. MHz 0.1539 0.1539	Level dBu√ 44.29 28.48	Correct Factor dB 11.10 11.10	Measure- ment dBuV 55.39 39.58	dBu∨ 65.78 - 55.78 -	dB 10.39 16.20 20.63	Detector QP AVG
0.150 No. Mk. 1 * 2 3	Freq. MHz 0.1539 0.1539 0.2300	Level dBu√ 44.29 28.48 30.86	Correct Factor dB 11.10 11.10	Measure- ment dBuV 55.39 39.58 41.82	dBuV 65.78 - 55.78 -	dB 10.39 16.20 20.63 26.30	Detector QP AVG QP
0.150 No. Mk. 1 * 2 3 4	Freq. MHz 0.1539 0.1539 0.2300 0.2300	Level dBuV 44.29 28.48 30.86 15.19	Correct Factor dB 11.10 11.10 10.96 10.96	Measure- ment dBuV 55.39 39.58 41.82 26.15	dBuV 65.78 - 55.78 - 62.45 - 52.45 -	dB 10.39 16.20 20.63 26.30 17.87	Detector QP AVG QP AVG
0.150 No. Mk. 1 * 2 3 4 5	Freq. MHz 0.1539 0.1539 0.2300 0.2300 0.2300	Level dBuV 44.29 28.48 30.86 15.19 31.77	Correct Factor dB 11.10 11.10 10.96 10.96	Measure- ment dBuV 55.39 39.58 41.82 26.15 42.63	dBuV 65.78 - 55.78 - 62.45 - 52.45 - 60.50 -	dB 10.39 16.20 20.63 26.30 17.87 16.27	Detector QP AVG QP AVG QP
0.150 No. Mk. 1 * 2 3 4 5 6	Freq. MHz 0.1539 0.1539 0.2300 0.2300 0.2300 0.2909	Level dBuV 44.29 28.48 30.86 15.19 31.77 23.37	Correct Factor dB 11.10 11.10 10.96 10.86 10.86	Measure- ment dBuV 55.39 39.58 41.82 26.15 42.63 34.23	dBuV 65.78 - 55.78 - 62.45 - 52.45 - 60.50 - 50.50 -	dB 10.39 16.20 20.63 26.30 17.87 16.27 17.88	Detector QP AVG QP AVG QP AVG
0.150 No. Mk. 1 * 2 3 4 5 6 7	Freq. MHz 0.1539 0.1539 0.2300 0.2300 0.2909 0.2909 0.3180	Level dBuV 44.29 28.48 30.86 15.19 31.77 23.37 31.01	Correct Factor dB 11.10 11.10 10.96 10.86 10.86 10.87	Measure- ment dBuV 55.39 39.58 41.82 26.15 42.63 34.23 41.88	dBuV 65.78 - 55.78 - 62.45 - 52.45 - 50.50 - 59.76 -	dB 10.39 16.20 20.63 26.30 17.87 16.27 17.88 14.77	Detector QP AVG QP AVG QP AVG QP AVG
0.150 No. Mk. 1 * 2 3 4 5 6 7 8	Freq. MHz 0.1539 0.1539 0.2300 0.2300 0.2909 0.2909 0.3180 0.3180	Level dBuV 44.29 28.48 30.86 15.19 31.77 23.37 31.01 24.12	Correct Factor dB 11.10 11.10 10.96 10.86 10.86 10.87	Measure- ment dBuV 55.39 39.58 41.82 26.15 42.63 34.23 41.88 34.99	dBuV 65.78 - 55.78 - 62.45 - 52.45 - 60.50 - 50.50 - 49.76 -	dB 10.39 16.20 20.63 26.30 17.87 16.27 17.88 14.77 35.35	Detector QP AVG QP AVG QP AVG QP AVG
0.150 No. Mk. 1 * 2 3 4 5 6 7 8 9	Freq. MHz 0.1539 0.1539 0.2300 0.2300 0.2909 0.2909 0.3180 0.3180 1.0220	Level dBuV 44.29 28.48 30.86 15.19 31.77 23.37 31.01 24.12 9.97	Correct Factor dB 11.10 11.10 10.96 10.96 10.86 10.87 10.87	Measure- ment dBuV 55.39 39.58 41.82 26.15 42.63 34.23 41.88 34.99 20.65	dBuV 65.78 - 55.78 - 62.45 - 52.45 - 60.50 - 59.76 - 49.76 - 56.00 -	dB 10.39 16.20 20.63 26.30 17.87 16.27 17.88 14.77 35.35 31.52	Detector QP AVG QP AVG QP AVG QP AVG QP AVG

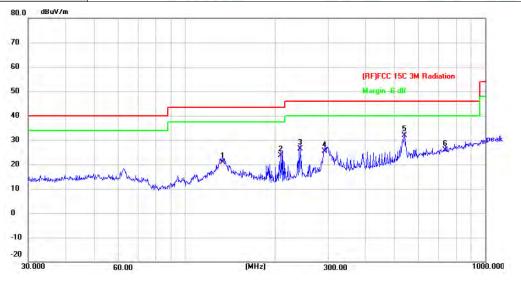
- Remark:
 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Report No.: TBR-C-202208-0271-23

Page: 41 of 691

Attachment B--Unwanted Emissions Data

---Radiated Unwanted Emissions


9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

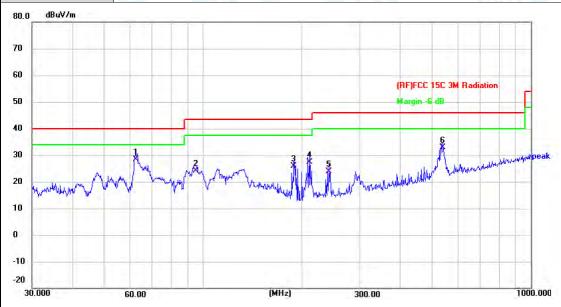
Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

30MHz~1GHz

Temperature:	24.3℃	Relative Humidity:	45%
Test Voltage:	AC 120V 60Hz		
Ant. Pol.	Horizontal		
Test Mode:	Mode 2	1000	
Remark:	Only worse case is reported		LAND.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	133.6188	43.33	-22.44	20.89	43.50	-22.61	QP	Р
2	208.5803	47.41	-23.80	23.61	43.50	-19.89	QP	Р
3	241.6763	48.89	-22.51	26.38	46.00	-19.62	QP	Р
4	292.0583	46.37	-20.91	25.46	46.00	-20.54	QP	Р
5 *	537.5891	46.59	-14.70	31.89	46.00	-14.11	QP	Р
6	734.4913	36.90	-11.14	25.76	46.00	-20.24	QP	Р

^{*:}Maximum data x:Over limit !:over margin


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 42 of 691

	Temperature:	24.3℃	Relative Humidity:	45%
1	Test Voltage:	AC 120V 60Hz	W. S.	
V	Ant. Pol.	Vertical	WO NO	
	Test Mode:	Mode 2		
	Remark:	Only worse case is reporte	ed.	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	62.4314	52.14	-23.78	28.36	40.00	-11.64	QP	Р
2	94.7601	50.09	-25.86	24.23	43.50	-19.27	QP	Р
3	189.0743	49.31	-23.55	25.76	43.50	-17.74	QP	Р
4	211.5265	51.05	-23.69	27.36	43.50	-16.14	QP	Р
5	241.6763	46.29	-22.51	23.78	46.00	-22.22	QP	Р
6	537.5891	47.48	-14.70	32.78	46.00	-13.22	QP	Р

^{*:}Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. QuasiPeak (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Report No.: TBR-C-202208-0271-23

Page: 43 of 691

Above 1GHz

Temperature:	23.2°C	Relative Humidity:	48%
Test Voltage:	AC 120V/60Hz	W. S.	
Test Mode:	TX 802.11a Mode 5955M	1Hz (U-NII-5) -CDD	

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	11910.523	50.96	8.88	59.84	74.00	-14.16	peak	Р
2 *	11910.645	41.14	8.88	50.02	54.00	-3.98	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11910.421	50.05	8.88	58.93	74.00	-15.07	peak	Р
2 *	11910.735	40.98	8.88	49.86	54.00	-4.14	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 44 of 691

Temperature:	23.2°C	Relative Humidity:	48%
Test Voltage:	AC 120V/60Hz	W. Carlotte	
Test Mode:	TX 802.11a Mode 6175M	1Hz (U-NII-5) -CDD	

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	12350.567	51.04	8.82	59.86	74.00	-14.14	peak	Р
2 *	12350.712	41.14	8.82	49.96	54.00	-4.04	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	12350.164	50.74	8.82	59.56	74.00	-14.44	peak	Р
2 *	12350.635	41.30	8.82	50.12	54.00	-3.88	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 45 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz	THU THE THE				
Test Mode:	TX 802.11a Mode 6415MHz (U-NII-5) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	12830.523	50.59	9.27	59.86	88.20	-28.34	peak	Р
2 *	12830.637	41.06	9.27	50.33	68.20	-17.87	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	12830.637	50.06	9.27	59.33	88.20	-28.87	peak	Р
2 *	12830.836	40.85	9.27	50.12	68.20	-18.08	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 46 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz					
Test Mode:	TX 802.11ax(HE20) Mode 5955MHz (U-NII-5) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11910.575	49.58	8.88	58.46	74.00	-15.54	peak	Р
2 *	11910.784	40.65	8.88	49.53	54.00	-4.47	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11910.712	50.05	8.88	58.93	74.00	-15.07	peak	Р
2 *	11910.835	40.78	8.88	49.66	54.00	-4.34	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 47 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz					
Test Mode:	TX 802.11ax(HE20) Mode 6175MHz (U-NII-5) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector	P/F
1 *	12350.214	41.51	8.82	50.33	54.00	-3.67	AVG	Р
2	12350.747	50.54	8.82	59.36	74.00	-14.64	peak	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	12350.354	49.94	8.82	58.76	74.00	-15.24	peak	Р
2 *	12350.825	41.00	8.82	49.82	54.00	-4.18	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 48 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz	W. S.				
Test Mode:	TX 802.11ax(HE20) Mode 6415MHz (U-NII-5) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	12830.285	40.51	9.27	49.78	68.20	-18.42	AVG	Р
2	12830.524	49.98	9.27	59.25	88.20	-28.95	peak	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	12830.572	40.89	9.27	50.16	68.20	-18.04	AVG	Р
2	12830.635	50.58	9.27	59.85	88.20	-28.35	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 49 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz					
Test Mode:	TX 802.11ax(HE40) Mode 5965MHz (U-NII-5) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11930.127	50.60	8.96	59.56	74.00	-14.44	peak	Р
2 *	11930.367	41.18	8.96	50.14	54.00	-3.86	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	11930.578	49.80	8.96	58.76	74.00	-15.24	peak	Р
2 *	11930.635	40.89	8.96	49.85	54.00	-4.15	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 50 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz					
Test Mode:	TX 802.11ax(HE40) Mode 6165MHz (U-NII-5) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	12330.178	50.35	8.90	59.25	74.00	-14.75	peak	Р
2 *	12330.235	41.14	8.90	50.04	54.00	-3.96	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	12330.125	41.21	8.90	50.11	54.00	-3.89	AVG	Р
2	12330.534	50.62	8.90	59.52	74.00	-14.48	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 51 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz	THE PARTY OF THE P				
Test Mode:	TX 802.11ax(HE40) Mode 6405MHz (U-NII-5) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	12810.257	40.24	9.34	49.58	68.20	-18.62	AVG	Р
2	12810.635	49.94	9.34	59.28	88.20	-28.92	peak	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	12810.114	50.42	9.34	59.76	88.20	-28.44	peak	Р
2 *	12810.357	40.34	9.34	49.68	68.20	-18.52	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 52 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz					
Test Mode:	TX 802.11ax(HE80) Mode 5985MHz (U-NII-5) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	11970.137	50.77	9.09	59.86	74.00	-14.14	peak	Р
2 *	11970.388	40.49	9.09	49.58	54.00	-4.42	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	11970.389	40.77	9.09	49.86	54.00	-4.14	AVG	Р
2	11970.714	50.76	9.09	59.85	74.00	-14.15	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 53 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz					
Test Mode:	TX 802.11ax(HE80) Mode 6145MHz (U-NII-5) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	12290.117	40.91	9.02	49.93	54.00	-4.07	AVG	Р
2	12290.863	50.61	9.02	59.63	74.00	-14.37	peak	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	12290.375	40.81	9.02	49.83	54.00	-4.17	AVG	Р
2	12290.567	50.50	9.02	59.52	74.00	-14.48	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 54 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz		The same			
Test Mode:	TX 802.11ax(HE80) Mode 6385MHz (U-NII-5) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	12770.397	40.38	9.45	49.83	68.20	-18.37	AVG	Р
2	12770.828	50.18	9.45	59.63	88.20	-28.57	peak	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	12770.112	40.13	9.45	49.58	68.20	-18.62	AVG	Р
2	12770.865	50.10	9.45	59.55	88.20	-28.65	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 55 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz					
Test Mode:	TX 802.11ax(HE160) Mode 6025MHz (U-NII-5) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	12050.425	39.46	9.29	48.75	54.00	-5.25	AVG	Р
2	12050.685	50.27	9.29	59.56	74.00	-14.44	peak	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	12050.566	49.27	9.29	58.56	74.00	-15.44	peak	Р
2 *	12050.825	40.28	9.29	49.57	54.00	-4.43	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 56 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz					
Test Mode:	TX 802.11ax(HE160) Mode 6185MHz (U-NII-5) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	12370.412	50.88	8.75	59.63	74.00	-14.37	peak	Р
2 *	12370.435	39.78	8.75	48.53	54.00	-5.47	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	12370.163	40.83	8.75	49.58	54.00	-4.42	AVG	Р
2	12370.825	50.87	8.74	59.61	74.00	-14.39	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 57 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz					
Test Mode:	TX 802.11ax(HE160) Mode 6345MHz (U-NII-5) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	12690.457	38.88	9.64	48.52	54.00	-5.48	AVG	Р
2	12690.635	49.29	9.64	58.93	74.00	-15.07	peak	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector	P/F
1 *	12690.588	38.80	9.64	48.44	54.00	-5.56	AVG	Р
2	12690.616	48.88	9.64	58.52	74.00	-15.48	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 58 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz	W. S.				
Test Mode:	TX 802.11a Mode 6435MHz (U-NII-6) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	12870.635	40.63	9.13	49.76	68.20	-18.44	AVG	Р
2	12870.812	50.50	9.13	59.63	88.20	-28.57	peak	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	12870.134	41.05	9.14	50.19	68.20	-18.01	AVG	Р
2	12870.632	50.55	9.13	59.68	88.20	-28.52	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 59 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz					
Test Mode:	TX 802.11a Mode 6475MHz (U-NII-6) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	12950.255	48.81	9.31	58.12	88.20	-30.08	peak	Р
2 *	12950.652	40.47	9.31	49.78	68.20	-18.42	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	12950.125	50.06	9.31	59.37	88.20	-28.83	peak	Р
2 *	12950.823	40.55	9.31	49.86	68.20	-18.34	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 60 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz	NU P				
Test Mode:	TX 802.11a Mode 6515MHz (U-NII-6) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	13030.223	49.26	9.67	58.93	88.20	-29.27	peak	Р
2 *	13030.367	39.49	9.67	49.16	68.20	-19.04	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	13030.124	40.43	9.66	50.09	68.20	-18.11	AVG	Р
2	13030.255	49.22	9.67	58.89	88.20	-29.31	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 61 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz	W. S.				
Test Mode:	TX 802.11ax(HE20) Mode 6435MHz (U-NII-6) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	12870.117	50.49	9.14	59.63	88.20	-28.57	peak	Р
2 *	12870.457	40.73	9.13	49.86	68.20	-18.34	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	12870.421	41.08	9.13	50.21	68.20	-17.99	AVG	Р
2	12870.635	50.39	9.13	59.52	88.20	-28.68	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 62 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz					
Test Mode:	TX 802.11ax(HE20) Mode 6475MHz (U-NII-6) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	12950.457	40.80	9.31	50.11	68.20	-18.09	AVG	Р
2	12950.576	50.24	9.31	59.55	88.20	-28.65	peak	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	12950.575	40.75	9.31	50.06	68.20	-18.14	AVG	Р
2	12950.638	50.27	9.31	59.58	88.20	-28.62	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 63 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz					
Test Mode:	TX 802.11ax(HE20) Mode 6515MHz (U-NII-6) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	I	Margin (dB)	Detector	P/F
1	13030.196	49.96	9.67	59.63	88.20	-28.57	peak	Р
2 *	13030.572	40.43	9.68	50.11	68.20	-18.09	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	13030.658	40.54	9.68	50.22	68.20	-17.98	AVG	Р
2	13030.752	50.00	9.68	59.68	88.20	-28.52	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 64 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz					
Test Mode:	TX 802.11ax(HE40) Mode 6445MHz (U-NII-6) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	12890.114	50.45	9.07	59.52	88.20	-28.68	peak	Р
2 *	12890.278	40.78	9.07	49.85	68.20	-18.35	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	12890.114	50.48	9.07	59.55	88.20	-28.65	peak	Р
2 *	12890.635	40.49	9.07	49.56	68.20	-18.64	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 65 of 691

		6,411.				
Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz	W. S.				
Test Mode:	TX 802.11ax(HE40) Mode 6485MHz (U-NII-6) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	12970.113	40.16	9.42	49.58	68.20	-18.62	AVG	Р
2	12970.546	49.51	9.42	58.93	88.20	-29.27	peak	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	12970.144	50.14	9.42	59.56	88.20	-28.64	peak	Р
2 *	12970.658	40.69	9.43	50.12	68.20	-18.08	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 66 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz					
Test Mode:	TX 802.11ax(HE40) Mode 6525MHz (U-NII-6) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	13050.445	48.97	9.72	58.69	88.20	-29.51	peak	Р
2 *	13050.566	38.87	9.72	48.59	68.20	-19.61	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	13050.115	50.16	9.71	59.87	88.20	-28.33	peak	Р
2 *	13050.897	39.97	9.72	49.69	68.20	-18.51	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 67 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz					
Test Mode:	TX 802.11ax(HE80) Mode 6465MHz (U-NII-6) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	12930.114	49.51	9.21	58.72	88.20	-29.48	peak	Р
2 *	12930.725	39.55	9.21	48.76	68.20	-19.44	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	12930.637	49.91	9.21	59.12	88.20	-29.08	peak	Р
2 *	12930.711	39.31	9.21	48.52	68.20	-19.68	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 68 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz					
Test Mode:	TX 802.11ax(HE80) Mode 6545MHz (U-NII-6) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	13090.225	38.68	9.82	48.50	68.20	-19.70	AVG	Р
2	13090.267	49.70	9.82	59.52	88.20	-28.68	peak	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	13090.525	38.13	9.82	47.95	68.20	-20.25	AVG	Р
2	13090.752	48.70	9.82	58.52	88.20	-29.68	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 69 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz					
Test Mode:	TX 802.11ax(HE160) Mode 6505MHz (U-NII-6) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	13010.235	40.01	9.62	49.63	68.20	-18.57	AVG	Р
2	13010.443	49.91	9.62	59.53	88.20	-28.67	peak	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	13010.645	38.90	9.62	48.52	68.20	-19.68	AVG	Р
2	13010.754	49.93	9.62	59.55	88.20	-28.65	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 70 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz					
Test Mode:	TX 802.11a Mode 6535MHz (U-NII-7)-CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	13070.257	40.09	9.77	49.86	68.20	-18.34	AVG	Р
2	13070.532	49.86	9.77	59.63	88.20	-28.57	peak	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	13070.117	49.75	9.77	59.52	88.20	-28.68	peak	Р
2 *	13070.638	38.98	9.77	48.75	68.20	-19.45	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 71 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz	W. S.				
Test Mode:	TX 802.11a Mode 6695MHz (U-NII-7) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	13390.137	49.52	10.14	59.66	74.00	-14.34	peak	Р
2 *	13390.145	40.11	10.14	50.25	54.00	-3.75	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	13390.244	40.03	10.14	50.17	54.00	-3.83	AVG	Р
2	13390.555	49.75	10.14	59.89	74.00	-14.11	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 72 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz	William I				
Test Mode:	TX 802.11a Mode 6855MHz (U-NII-7) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	13710.274	49.60	10.28	59.88	88.20	-28.32	peak	Р
2 *	13710.376	40.35	10.28	50.63	68.20	-17.57	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector	P/F
1	13710.443	49.63	10.28	59.91	88.20	-28.29	peak	Р
2 *	13710.758	39.78	10.28	50.06	68.20	-18.14	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 73 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz					
Test Mode:	TX 802.11a Mode 6875MHz (U-NII-7) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	13750.113	49.65	10.21	59.86	88.20	-28.34	peak	Р
2 *	13750.765	40.01	10.21	50.22	68.20	-17.98	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	13750.523	48.58	10.21	58.79	88.20	-29.41	peak	Р
2 *	13750.568	39.57	10.21	49.78	68.20	-18.42	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 74 of 691

Temperature:	23.2°C	Relative Humidity:	48%					
Test Voltage:	AC 120V/60Hz	THE PARTY OF THE P						
Test Mode:	TX 802.11ax(HE20) Mod	TX 802.11ax(HE20) Mode 6535MHz (U-NII-7)-CDD						

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	13070.198	39.79	9.77	49.56	68.20	-18.64	AVG	Р
2	13070.576	49.48	9.77	59.25	88.20	-28.95	peak	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	13070.267	49.48	9.77	59.25	88.20	-28.95	peak	Р
2 *	13070.568	40.37	9.77	50.14	68.20	-18.06	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 75 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz					
Test Mode:	TX 802.11ax(HE20) Mode 6695MHz (U-NII-7) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	13390.578	49.71	10.14	59.85	74.00	-14.15	peak	Р
2 *	13390.633	39.63	10.14	49.77	54.00	-4.23	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	13390.441	49.22	10.14	59.36	74.00	-14.64	peak	Р
2 *	13390.635	39.91	10.14	50.05	54.00	-3.95	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 76 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz	W. S.				
Test Mode:	TX 802.11ax(HE20) Mode 6855MHz (U-NII-7) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	13710.297	49.50	10.28	59.78	88.20	-28.42	peak	Р
2 *	13710.563	39.28	10.28	49.56	68.20	-18.64	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	13710.227	49.48	10.28	59.76	88.20	-28.44	peak	Р
2 *	13710.635	39.60	10.28	49.88	68.20	-18.32	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 77 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz	HULL				
Test Mode:	TX 802.11ax(HE20) Mode 6875MHz (U-NII-7) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	13750.288	48.75	10.21	58.96	88.20	-29.24	peak	Р
2 *	13750.637	39.64	10.21	49.85	68.20	-18.35	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	13750.569	49.61	10.21	59.82	88.20	-28.38	peak	Р
2 *	13750.677	39.37	10.21	49.58	68.20	-18.62	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 78 of 691

Temperature:	23.2°C	Relative Humidity:	48%				
Test Voltage:	AC 120V/60Hz						
Test Mode:	TX 802.11ax(HE40) Mod	TX 802.11ax(HE40) Mode 6565MHz (U-NII-7) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	13130.635	40.01	9.84	49.85	68.20	-18.35	AVG	Р
2	13130.825	50.03	9.84	59.87	88.20	-28.33	peak	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector	P/F
1	13130.122	50.04	9.83	59.87	88.20	-28.33	peak	Р
2 *	13130.520	40.29	9.83	50.12	68.20	-18.08	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 79 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz	W. S.				
Test Mode:	TX 802.11ax(HE40) Mode 6685MHz (U-NII-7) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	13370.407	40.02	10.06	50.08	54.00	-3.92	AVG	Р
2	13370.457	49.57	10.06	59.63	74.00	-14.37	peak	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	I	Margin (dB)	Detector	P/F
1 *	13370.447	39.76	10.06	49.82	54.00	-4.18	AVG	Р
2	13370.612	48.93	10.06	58.99	74.00	-15.01	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 80 of 691

Temperature:	23.2°C	Relative Humidity:	48%				
Test Voltage:	AC 120V/60Hz	W. Carlotte					
Test Mode:	TX 802.11ax(HE40) Mod	TX 802.11ax(HE40) Mode 6845MHz (U-NII-7) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	13690.145	48.29	10.26	58.55	88.20	-29.65	peak	Р
2 *	13690.447	39.59	10.26	49.85	68.20	-18.35	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector	P/F
1	13690.124	49.32	10.26	59.58	88.20	-28.62	peak	Р
2 *	13690.836	38.31	10.26	48.57	68.20	-19.63	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 81 of 691

Temperature:	23.2°C	Relative Humidity:	48%			
Test Voltage:	AC 120V/60Hz					
Test Mode:	TX 802.11ax(HE40) Mode 6885MHz (U-NII-7) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	13770.058	39.91	10.17	50.08	68.20	-18.12	AVG	Р
2	13770.638	49.46	10.17	59.63	88.20	-28.57	peak	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	13770.265	39.68	10.17	49.85	68.20	-18.35	AVG	Р
2	13770.697	49.68	10.17	59.85	88.20	-28.35	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 82 of 691

Temperature:	23.2°C	Relative Humidity:	48%				
Test Voltage:	AC 120V/60Hz	W. S.					
Test Mode:	TX 802.11ax(HE80) Mode 6625MHz (U-NII-7) -CDD						

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	13250.027	39.46	9.79	49.25	54.00	-4.75	AVG	Р
2	13250.622	48.98	9.79	58.77	74.00	-15.23	peak	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	13250.289	38.79	9.79	48.58	54.00	-5.42	AVG	Р
2	13250.375	48.92	9.79	58.71	74.00	-15.29	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 83 of 691

Temperature:	23.2°C	Relative Humidity:	48%				
Test Voltage:	AC 120V/60Hz						
Test Mode:	TX 802.11ax(HE80) Mode 6705MHz (U-NII-7) -CDD						

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	13410.586	48.35	10.17	58.52	88.20	-29.68	peak	Р
2 *	13410.837	38.56	10.17	48.73	68.20	-19.47	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	13410.352	37.65	10.17	47.82	68.20	-20.38	AVG	Р
2	13410.557	47.85	10.17	58.02	88.20	-30.18	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 84 of 691

Temperature:	23.2°C	Relative Humidity:	48%				
Test Voltage:	AC 120V/60Hz						
Test Mode:	TX 802.11ax(HE80) Mod	TX 802.11ax(HE80) Mode 6785MHz (U-NII-7) -CDD					

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	13570.122	38.21	9.98	48.19	68.20	-20.01	AVG	Р
2	13570.532	47.85	9.98	57.83	88.20	-30.37	peak	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	13570.127	49.88	9.98	59.86	88.20	-28.34	peak	Р
2 *	13570.576	38.78	9.98	48.76	68.20	-19.44	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Page: 85 of 691

Temperature:	23.2°C	Relative Humidity:	48%	
Test Voltage:	AC 120V/60Hz	William I		
Test Mode:	TX 802.11ax(HE80) Mode 6865MHz (U-NII-7) -CDD			

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	13730.557	49.20	10.25	59.45	88.20	-28.75	peak	Р
2 *	13730.635	38.27	10.25	48.52	68.20	-19.68	AVG	Р

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1	13730.571	48.27	10.25	58.52	88.20	-29.68	peak	Р
2 *	13730.638	39.31	10.25	49.56	68.20	-18.64	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

