
cSRX Deployment Guide for Bare-Metal
Linux Server

Published

2020-03-30

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc. in
the United States and other countries. All other trademarks, service marks, registered marks, or registered service marks
are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

cSRX Deployment Guide for Bare-Metal Linux Server
Copyright © 2020 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use with)
Juniper Networks software. Use of such software is subject to the terms and conditions of the EndUser License Agreement
(“EULA”) posted at https://support.juniper.net/support/eula/. By downloading, installing or using such software, you
agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

About the Documentation | v

Documentation and Release Notes | v

Documentation Conventions | v

Documentation Feedback | viii

Requesting Technical Support | viii

Self-Help Online Tools and Resources | ix

Creating a Service Request with JTAC | ix

Overview1
Understanding cSRX with a Bare-Metal Linux Server | 11

cSRX Overview | 11

cSRX Benefits and Uses | 15

Docker Overview | 16

cSRX Scale-Up Performance | 17

Junos OS Features Supported on cSRX | 18

Supported SRX Series Features on cSRX | 18

SRX Series Features Not Supported on cSRX | 21

Installing cSRX2
Requirements for Deploying cSRX on a Bare-Metal Linux Server | 28

Host Requirements | 28

cSRX Basic Configuration Settings | 29

Interface Naming and Mapping | 29

Installing cSRX in a Bare-Metal Linux Server | 31

Before You Deploy | 31

Confirming Docker Installation | 32

Loading the cSRX Image | 33

Creating the Linux Bridge Network for the cSRX | 35

Launching the cSRX Container | 36

iii

Managing cSRX Containers3
cSRX Environment Variables Overview | 41

Specifying an Initial Root Password for Logging into a cSRXContainer in a LinuxDocker
Environment | 43

Changing the Size of a cSRX Container | 44

Configuring Traffic Forwarding on a cSRX Container | 45

Configuring Routing Mode | 46

Configuring Secure-Wire Mode | 49

Specifying the Packet I/O Driver for a cSRX Container | 50

Specifying the Poll Mode Driver | 51

Specifying the Interrupt Mode Driver | 52

Configuring CPU Affinity for a cSRX Container | 52

Enabling Persistent Log File Storage to a Linux Host Directory | 53

Managing cSRX Containers | 53

Pausing/Resuming Processes within a cSRX Container | 54

Viewing Container Processes on a Running cSRX Container | 55

Removing a cSRX Container or Image | 55

Configuring cSRX4
cSRX Configuration and Management Tools | 58

Understanding the Junos OS CLI and Junos Scripts | 58

Understanding cSRX with Contrail and Openstack Orchestration | 58

Configuring cSRX Using the Junos OS CLI | 59

iv

About the Documentation

IN THIS SECTION

Documentation and Release Notes | v

Documentation Conventions | v

Documentation Feedback | viii

Requesting Technical Support | viii

Use this guide to install the cSRX Container Firewall in a Linux bare-metal server environment that is
running Ubuntu, RedHat Enterprise Linux (RHEL), or CentOS. This guide also includes basic cSRX container
configuration and management procedures.

After completing the installation, management, and basic configuration procedures covered in this guide,
refer to the Junos OS documentation for information about further software configuration.

Documentation and Release Notes

To obtain the most current version of all Juniper Networks® technical documentation, see the product
documentation page on the Juniper Networks website at https://www.juniper.net/documentation/.

If the information in the latest release notes differs from the information in the documentation, follow the
product Release Notes.

Juniper Networks Books publishes books by Juniper Networks engineers and subject matter experts.
These books go beyond the technical documentation to explore the nuances of network architecture,
deployment, and administration. The current list can be viewed at https://www.juniper.net/books.

Documentation Conventions

Table 1 on page vi defines notice icons used in this guide.

v

https://www.juniper.net/documentation/
https://www.juniper.net/books

Table 1: Notice Icons

DescriptionMeaningIcon

Indicates important features or instructions.Informational note

Indicates a situation that might result in loss of data or hardware
damage.

Caution

Alerts you to the risk of personal injury or death.Warning

Alerts you to the risk of personal injury from a laser.Laser warning

Indicates helpful information.Tip

Alerts you to a recommended use or implementation.Best practice

Table 2 on page vi defines the text and syntax conventions used in this guide.

Table 2: Text and Syntax Conventions

ExamplesDescriptionConvention

To enter configuration mode, type
the configure command:

user@host> configure

Represents text that you type.Bold text like this

user@host> show chassis alarms

No alarms currently active

Represents output that appears on
the terminal screen.

Fixed-width text like this

• A policy term is a named structure
that defines match conditions and
actions.

• Junos OS CLI User Guide

• RFC 1997, BGP Communities
Attribute

• Introduces or emphasizes important
new terms.

• Identifies guide names.

• Identifies RFC and Internet draft
titles.

Italic text like this

vi

Table 2: Text and Syntax Conventions (continued)

ExamplesDescriptionConvention

Configure the machine’s domain
name:

[edit]
root@# set system domain-name
domain-name

Represents variables (options for
which you substitute a value) in
commands or configuration
statements.

Italic text like this

• To configure a stub area, include
the stub statement at the [edit
protocols ospf area area-id]
hierarchy level.

• The console port is labeled
CONSOLE.

Represents names of configuration
statements, commands, files, and
directories; configuration hierarchy
levels; or labels on routing platform
components.

Text like this

stub <default-metric metric>;Encloses optional keywords or
variables.

< > (angle brackets)

broadcast | multicast

(string1 | string2 | string3)

Indicates a choice between the
mutually exclusive keywords or
variables on either side of the symbol.
The set of choices is often enclosed
in parentheses for clarity.

| (pipe symbol)

rsvp { # Required for dynamic MPLS
only

Indicates a comment specified on the
same line as the configuration
statement to which it applies.

(pound sign)

community name members [
community-ids]

Encloses a variable for which you can
substitute one or more values.

[] (square brackets)

[edit]
routing-options {
static {
route default {
nexthop address;
retain;

}
}

}

Identifies a level in the configuration
hierarchy.

Indention and braces ({ })

Identifies a leaf statement at a
configuration hierarchy level.

; (semicolon)

GUI Conventions

vii

Table 2: Text and Syntax Conventions (continued)

ExamplesDescriptionConvention

• In the Logical Interfaces box, select
All Interfaces.

• To cancel the configuration, click
Cancel.

Represents graphical user interface
(GUI) items you click or select.

Bold text like this

In the configuration editor hierarchy,
select Protocols>Ospf.

Separates levels in a hierarchy of
menu selections.

> (bold right angle bracket)

Documentation Feedback

We encourage you to provide feedback so that we can improve our documentation. You can use either
of the following methods:

• Online feedback system—Click TechLibrary Feedback, on the lower right of any page on the Juniper
Networks TechLibrary site, and do one of the following:

• Click the thumbs-up icon if the information on the page was helpful to you.

• Click the thumbs-down icon if the information on the page was not helpful to you or if you have
suggestions for improvement, and use the pop-up form to provide feedback.

• E-mail—Send your comments to techpubs-comments@juniper.net. Include the document or topic name,
URL or page number, and software version (if applicable).

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance Center (JTAC).
If you are a customer with an active Juniper Care or Partner Support Services support contract, or are

viii

https://www.juniper.net/documentation/index.html
https://www.juniper.net/documentation/index.html
mailto:techpubs-comments@juniper.net?subject=

covered under warranty, and need post-sales technical support, you can access our tools and resources
online or open a case with JTAC.

• JTAC policies—For a complete understanding of our JTAC procedures and policies, review the JTACUser
Guide located at https://www.juniper.net/us/en/local/pdf/resource-guides/7100059-en.pdf.

• Productwarranties—For productwarranty information, visit https://www.juniper.net/support/warranty/.

• JTAC hours of operation—The JTAC centers have resources available 24 hours a day, 7 days a week,
365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online self-service portal called
the Customer Support Center (CSC) that provides you with the following features:

• Find CSC offerings: https://www.juniper.net/customers/support/

• Search for known bugs: https://prsearch.juniper.net/

• Find product documentation: https://www.juniper.net/documentation/

• Find solutions and answer questions using our Knowledge Base: https://kb.juniper.net/

• Download the latest versions of software and review release notes:
https://www.juniper.net/customers/csc/software/

• Search technical bulletins for relevant hardware and software notifications:
https://kb.juniper.net/InfoCenter/

• Join and participate in the Juniper Networks Community Forum:
https://www.juniper.net/company/communities/

• Create a service request online: https://myjuniper.juniper.net

To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE) Tool:
https://entitlementsearch.juniper.net/entitlementsearch/

Creating a Service Request with JTAC

You can create a service request with JTAC on the Web or by telephone.

• Visit https://myjuniper.juniper.net.

• Call 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, see
https://support.juniper.net/support/requesting-support/.

ix

https://www.juniper.net/us/en/local/pdf/resource-guides/7100059-en.pdf
https://www.juniper.net/support/warranty/
https://www.juniper.net/customers/support/
https://prsearch.juniper.net/
https://www.juniper.net/documentation/
https://kb.juniper.net/
https://www.juniper.net/customers/csc/software/
https://kb.juniper.net/InfoCenter/
https://www.juniper.net/company/communities/
https://myjuniper.juniper.net
https://entitlementsearch.juniper.net/entitlementsearch/
https://myjuniper.juniper.net
https://support.juniper.net/support/requesting-support/

1
CHAPTER

Overview

Understanding cSRX with a Bare-Metal Linux Server | 11

Junos OS Features Supported on cSRX | 18

Understanding cSRX with a Bare-Metal Linux Server

IN THIS SECTION

cSRX Overview | 11

cSRX Benefits and Uses | 15

Docker Overview | 16

cSRX Scale-Up Performance | 17

The cSRX Container Firewall is a containerized version of the SRX Series Services Gateway with a low
memory footprint. cSRX provides advanced security services, including content security, AppSecure, and
unified threat management in a container form factor. By using a Docker container in a bare-metal Linux
server, the cSRX can substantially reduce overhead because each container shares the Linux host’s OS
kernel. Regardless of howmany containers a Linux server hosts, only oneOS instance is in use. And because
of the containers’ lightweight quality, a server can host many more container instances than it can virtual
machines (VMs), yielding tremendous improvements in utilization. With its small footprint and Docker as
a container management system, the cSRX Container Firewall enables agile, high-density security service
deployment.

This section includes the following topics:

cSRX Overview

The cSRX Container Firewall runs as a single container on a Linux bare-metal server. It uses a Linux
bare-metal server as the hosting platform for the Docker container environment. The cSRX container
packages all of the dependent processes (daemons) and libraries to support the different Linux host
distribution methods (Ubuntu, Red Hat Enterprise Linux, or CentOS). You use standard Docker commands
to manage the cSRX container. cSRX is built on the Junos operating system (Junos OS) and delivers
networking and security features similar to those available on the software releases for the SRX Series.

When the cSRX container runs, there are several daemons inside the Docker container that launch
automatically when the cSRX becomes active. Some daemons support Linux features, providing the same
service as if they are running on a Linux host (for example, sshd, rsyslogd, monit, and so on). Other daemons
are compiled and ported from Junos OS to perform configuration and control jobs for security service (for
example, MGD, NSD, UTM, IDP, AppID, and so on). srxpfe is the data-plane daemon that receives and
sends packets from the revenue ports of a cSRX container. The cSRX uses srxpfe for Layer 2 through 3

11

forwarding functions (secure-wire forwarding or static routing forwarding) as well as for Layer 4 through
7 network security services.

The cSRX Container Firewall enables advanced security at the network edge in a multitenant virtualized
environment. cSRX provides Layer 4 through 7 advanced security features such as firewall, IPS, and
AppSecure. The cSRX container also provides an additional interface to manage the cSRX. When cSRX is
operating in Layer 2 secure wire mode, incoming Layer 2 frames from one interface go through Layer 4
through 7 processing based on the configured cSRX services. cSRX then sends the frames out of the other
interface.

Launch the cSRX instance in secure-wire mode using the following command:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_FORWARD_MODE="wire" --name=<csrx-container-name> <csrx-image-name>

NOTE: As part of your Docker container configuration, you must connect the cSRX container
to three virtual networks: one virtual network for out-of-band management sessions, the other
two virtual networks to receive and transmit data traffic. See “Installing cSRX in a Bare-Metal
Linux Server” on page 31.

Figure 1 on page 13 illustrates the cSRX operating in secure-wire mode. It is an example of how a cSRX
container is bridged with an external network. In this illustration, cSRX eth1 is bridged with host physical
NIC eth1 and cSRX eth2 is bridged with host physical NIC eth2.

12

Figure 1: cSRX in Secure-Wire Mode

g2
00

09
4

Docker cSRX Instance

srxpfe Process

L4-7 Services (NAT/UTM/...)

Secure-wire Mode

eth1-br eth2-br

eth1 eth2

ge-0/0/0 ge-0/0/1

eth1 eth2

Virtual
Ethernet

Virtual
Ethernet

Interface
Pair

Figure 2 on page 14 illustrates the cSRX operating in routing mode.

13

Figure 2: cSRX Container in Routing Mode

g0
43

63
9

USER SPACE

KERNEL SPACE

Other Linux
Daemons...

Docker cSRX Instance

Docker Engine

eth0-br

eth0

eth0

Dependent Libraries/Binaries/Files

srxpfe Process

L4-7 Services (NAT/UTM/...)

Junos Control Daemons
(mgd/nsd/idpd/utmd/...)

Linux Daemons
(sshd/rsyslogd/...)

Static Routing

Interface
Pair

Virtual
Ethernet

Virtual
Ethernet

Virtual
Ethernet

Virtual
Ethernet

Virtual
Ethernet

Virtual
Ethernet

ge-0/0/15ge-0/0/0

eth1-br

eth1

eth1 eth16eth3

eth2-br eth16-breth4-br

eth2 eth3 eth16

ge-0/0/1 ge-0/0/3

eth2 eth4

ge-0/0/2

eth3-br

eth4

Starting in Junos OS Release 19.2R1, in routing mode, the default number of interfaces supported are
three and maximum of 17 interfaces (1 management and 16 data interfaces).

Prior to JunosOS Release 19.2R1, in routingmode, eth0wasmapped as out of bandmanagement interface,
eth1 as ge-0/0/1, and eth2 as ge-0/0/0.

Starting in Junos OS Release 19.2R1, in routing mode, with this increase in the number of supported
interfaces, the mapping of ge interfaces are reordered as:

• eth0 - out of band management interface

• eth1 - ge-0/0/0

• eth2 - ge-0/0/1

• eth3 - ge-0/0/2

• eth4 - ge-0/0/3 and so on

14

cSRX Benefits and Uses

The cSRX Container Firewall enables you to quickly introduce new firewall services, deliver customized
services to customers, and scale security services based on dynamic needs. The cSRX container differs
from VMs in several important ways. It runs with no guest OS overhead, has a notably smaller footprint,
and is easier to migrate or download. The cSRX container uses less memory, and its spin-up timemeasures
in subseconds—all leading to higher density at a lower cost. The boot time is reduced from several minutes
with a VM-based environment to less than a few seconds for the cSRX container. The cSRX is ideal for
public, private, and hybrid cloud environments.

Some of the key benefits of cSRX in a containerized private or public cloud multitenant environment
include:

• Stateful firewall protection at the tenant edge.

• Faster deployment of containerized firewall services into new sites.

• With a small footprint and minimum resource reservation requirements, the cSRX can easily scale to
keep up with customers’ peak demand.

• Provides significantly higher density without requiring resource reservation on the host than what is
offered by VM-based firewall solutions.

• Flexibility to run on a bare-metal Linux server or Juniper Networks Contrail.

• In the Contrail Networking cloud platform, cSRX can be used to provide differentiated Layer 4 through
7 security services for multiple tenants as part of a service chain.

• With the Contrail orchestrator, cSRX can be deployed as a large scale security service.

• Application security features (including IPS and AppSecure).

• UTMcontent security features (including antispam, Sophos Antivirus, web filtering, and content filtering).

• Authentication and integrated user firewall features.

NOTE: While the security services features between cSRX and vSRX are similar, there are
scenarios in which each product is the optimal option in your environment. For example, the
cSRX does not support routing instances and protocols, switching features,MPLS LSPs andMPLS
applications, chassis cluster, and software upgrade features. For environments that require
routing or switching, a vSRX VM provides the best feature set. For environments focused on
security services in a Docker containerized deployment, cSRX is a better fit.

See “JunosOS Features Supported on cSRX” on page 18 for a summary of the feature categories
supported on cSRX, and also for a summary of features not supported on cSRX.

15

You can deploy the cSRX Container Firewall in the following scenarios:

• Cloud CPE–For service providers (SPs) and managed security service providers (MSSPs) where there is
a large subscriber base of branch offices or residential subscribers. MSSPs can offer differentiated
services to individual subscribers.

• Contrail microsegmentation–Within a Contrail environment running mixed workloads of VMs and
containers, cSRX can provide security for Layer 4 through 7 traffic, managed by Security Director.

• Private clouds–cSRX can provide security services in a private cloud running containerized workloads
and can include Contrail integration.

Docker Overview

Docker is an open source software platform that simplifies the creation, management, and teardown of a
virtual container that can run on any Linux server. A Docker container is an open source software
development platform, with its main benefit being to package applications in “containers” to allow them
to be portable among any system running the Linux operating system (OS). A container provides anOS-level
virtualization approach for an application and associated dependencies that allow the application to run
on a specific platform. Containers are not VMs, rather they are isolated virtual environments with dedicated
CPU, memory, I/O, and networking.

A container image is a lightweight, standalone, executable package of a piece of software that includes
everything required to run it: code, runtime, system tools, system libraries, settings, and so on. Because
containers include all dependencies for an application, multiple containers with conflicting dependencies
can run on the same Linux distribution. Containers use the host OS Linux kernel features, such as groups
and namespace isolation, to allow multiple containers to run in isolation on the same Linux host OS. An
application in a container can have a small memory footprint because the container does not require a
guest OS, which is required with VMs, because it shares the kernel of its Linux host’s OS.

Containers have a high spin-up speed and can take much less time to boot up as compared to VMs. This
enables you to install, run, and upgrade applications quickly and efficiently.

Figure 3 on page 17 provides an overview of a typical Docker container environment.

16

Figure 3: Docker Container Environment

Containers are
created with Linux,
but share a kernel
with almost any
type of host OS.

Containers are
isolated, but share
bins and libraries
where possible to
improve efficiency.

Server

Host Operating System

Docker Engine

App 2 App 3 App 3 App 3App 1

Bins /
Libraries

Bins /
Libraries

Bins /Libraries

Containers

g2
00

10
0

cSRX Scale-Up Performance

You can scale the performance and capacity of a cSRX container by increasing the allocated amount of
virtual memory or the number of flow sessions. Table 3 on page 17 shows the cSRX scale-up performance
applied to a cSRX container based on its supported sizes: small, medium, and large. The default size for a
cSRX container is large.

NOTE: See “Changing the Size of a cSRX Container” on page 44 for the procedure on how to
scale the performance and capacity of a cSRX container by changing the container size.

Table 3: cSRX Scale Up Performance

Release IntroducedNumber of Flow SessionsPhysicalMemoryOverheadcSRX Size

JunosOSRelease 18.1R18K256MSmall

64K1GMedium

512K4GLarge

17

RELATED DOCUMENTATION

Docker Overview

What is Docker?

What is a Container?

Get Started With Docker

Junos OS Features Supported on cSRX

IN THIS SECTION

Supported SRX Series Features on cSRX | 18

SRX Series Features Not Supported on cSRX | 21

cSRX provides Layer 4 through 7 secure services in a containerized environment.

This section presents an overview of the Junos OS features on cSRX.

Supported SRX Series Features on cSRX

Table 4 on page 18 provides a high-level summary of the feature categories supported on cSRX and any
feature considerations.

To determine the Junos OS features supported on cSRX, use the Juniper Networks Feature Explorer, a
Web-based application that helps you to explore and compare Junos OS feature information to find the
right software release and hardware platform for your network. See Feature Explorer.

Table 4: SRX Series Features Supported on cSRX

ConsiderationsFeature

Application Firewall OverviewApplication Firewall (AppFW)

Understanding Application Identification TechniquesApplication Identification (AppID)

Understanding AppTrackApplication Tracking (AppTrack)

18

https://docs.docker.com/engine/docker-overview/
https://www.docker.com/what-docker
https://www.docker.com/what-container
https://docs.docker.com/get-started/
https://pathfinder.juniper.net/feature-explorer/
https://www.juniper.net/documentation/en_US/junos/topics/concept/application-firewall-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/services-application-identification-techniques-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/app-track-understanding.html

Table 4: SRX Series Features Supported on cSRX (continued)

ConsiderationsFeature

Understanding Security BasicsBasic firewall policy

Brute force attack mitigation

CLI only. No J-Web support.Central management

DoS Attack OverviewDDoS protection

DoS Attack OverviewDoS protection

A cSRX container supports 17 interfaces:

• 1 Out-of-band management Interface (eth0)

• 16 In-band interfaces (ge-0/0/0 to ge-0/0/15).

Network Interfaces

Interfaces

For SRX Series IPS configuration details, see:

Understanding Intrusion Detection and Prevention for SRX Series

IntrusionDetection and Prevention
(IDP)

Understanding IPv4 Addressing

Understanding IPv6 Address Space

IPv4 and IPv6

Understanding Jumbo Frames Support for Ethernet InterfacesJumbo frames

Malformed packet protection

Includes support for all NAT functionality on the cSRX platform, such as:

• Source NAT

• Destination NAT

• Static NAT

• Persistent NAT and NAT64

• NAT hairpinning

• NAT for multicast flows

For SRX Series NAT configuration details, see:

Introduction to NAT

NetworkAddress Translation (NAT)

19

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-basic-zone-interface.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-attack-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-attack-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/general/interface-security-network.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-idp-policy.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/interface-security-logical-property-ipv4-addressing-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/ipv6-flow-ipv6-address-types.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/jumbo-ethernet-interfaces-security.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-nat.html

Table 4: SRX Series Features Supported on cSRX (continued)

ConsiderationsFeature

Basic Layer 3 forwarding with VLANs.

Layer 2 through 3 forwarding functions: secure-wire forwarding or static
routing forwarding

Routing

Understanding SYN Cookie ProtectionSYN cookie protection

Starting in Junos OS Release 20.1R1, you can monitor traffic using system
logs and RTlogs.

System Logs and Real-Time Logs

Includes support for all user firewall functionality on the cSRX platform, such
as:

• Policy enforcement with matching source identity criteria

• Logging with source identity information

• Integrated user firewall with active directory

• Local authentication

For SRX Series user firewall configuration details, see:

Overview of Integrated User Firewall

User Firewall

Includes support for all UTM functionality on the cSRX platform, such as:

• Antispam

• Sophos Antivirus

• Web filtering

• Content filtering

For SRX Series UTM configuration details, see:

Unified Threat Management Overview

For SRX Series UTM antispam configuration details, see:

Antispam Filtering Overview

Unified ThreatManagement (UTM)

Understanding IP SpoofingZones and zone-based IP spoofing

20

https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-network-syn-cookie-protection-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/userfw-ad-overview.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-utm-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/utm-antispam-filter-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/reconnaissance-deterrence-attack-evasion-ip-spoof-understanding.html

SRX Series Features Not Supported on cSRX

Table 5 on page 21 lists SRX Series features that are not applicable in a containerized environment, that
are not currently supported, or that have qualified support on cSRX.

Table 5: SRX Series Features Not Supported on cSRX

SRX Series Feature

Application Layer Gateways

Avaya H.323

Authentication with IC Series Devices

Layer 2 enforcement in UAC deployments

NOTE: UAC-IDP andUAC-UTMalso are not supported.

Class of Service

High-priority queue on SPC

Tunnels

Data Plane Security Log Messages (StreamMode)

TLS protocol

Diagnostics Tools

Flow monitoring cflowd version 9

Ping Ethernet (CFM)

Traceroute Ethernet (CFM)

DNS Proxy

Dynamic DNS

Ethernet Link Aggregation

LACP in standalone or chassis cluster mode

Layer 3 LAG on routed ports

21

Table 5: SRX Series Features Not Supported on cSRX (continued)

SRX Series Feature

Static LAG in standalone or chassis cluster mode

Ethernet Link Fault Management

Physical interface (encapsulations)

ethernet-ccc
ethernet-tcc

extended-vlan-ccc
extended-vlan-tcc

Interface family

ccc, tcc

ethernet-switching

Flow-Based and Packet-Based Processing

End-to-end packet debugging

Network processor bundling

Services offloading

Interfaces

Aggregated Ethernet interface

IEEE 802.1X dynamic VLAN assignment

IEEE 802.1X MAC bypass

IEEE 802.1X port-based authentication control with
multisupplicant support

Interleaving using MLFR

PoE

PPP interface

22

Table 5: SRX Series Features Not Supported on cSRX (continued)

SRX Series Feature

PPPoE-based radio-to-router protocol

PPPoE interface

Promiscuous mode on interfaces

IP Security and VPNs

Acadia - Clientless VPN

DVPN

Hardware IPsec (bulk crypto) Cavium/RMI

IPsec tunnel termination in routing instances

Multicast for AutoVPN

Suite B implementation for IPsec VPN

IPv6 Support

DS-Lite concentrator (also known as AFTR)

DS-Lite initiator (also known as B4)

Log File Formats for System (Control Plane) Logs

Binary format (binary)

WELF

Miscellaneous

AppQoS

Chassis cluster

GPRS

Hardware acceleration

23

Table 5: SRX Series Features Not Supported on cSRX (continued)

SRX Series Feature

High availability

J-Web

Logical systems

MPLS

Outbound SSH

Remote instance access

RESTCONF

Sky ATP

SNMP

Spotlight Secure integration

USB modem

Wireless LAN

MPLS

CCC and TCC

Layer 2 VPNs for Ethernet connections

Network Address Translation

Maximize persistent NAT bindings

Packet Capture

Packet capture

NOTE: Only supported on physical interfaces and tunnel
interfaces, such as gr, ip, and st0. Packet capture is not
supported on a redundant Ethernet interface (reth).

24

Table 5: SRX Series Features Not Supported on cSRX (continued)

SRX Series Feature

Routing

BGP extensions for IPv6

BGP Flowspec

BGP route reflector

Bidirectional Forwarding Detection (BFD) for BGP

CRTP

Switching

Layer 3 Q-in-Q VLAN tagging

cSRX does not support all the log functions supported
on other SRX devices or vSRX instances due to limited
CPU power and disk capacity.

Unsupported system logs and real-time log functions on
cSRX are:

• The binary log

• On box logs (the LLMD daemon is not ported.)

• On box reports (the LLMD daemon is not ported.)

• TLS is not supported for sending streammode security
log to remote log server.

• LSYS and Tenant related functions.

Unsupported System Logs and Real-Time log functions

Transparent Mode

UTM

Unified Threat Management

Express AV

Kaspersky AV

Upgrading and Rebooting

Autorecovery

25

Table 5: SRX Series Features Not Supported on cSRX (continued)

SRX Series Feature

Boot instance configuration

Boot instance recovery

Dual-root partitioning

OS rollback

User Interfaces

NSM

SRC application

Junos Space Virtual Director

Application Security

SSL proxy

26

2
CHAPTER

Installing cSRX

Requirements for Deploying cSRX on a Bare-Metal Linux Server | 28

Installing cSRX in a Bare-Metal Linux Server | 31

Launching the cSRX Container | 36

Requirements for Deploying cSRX on a Bare-Metal
Linux Server

IN THIS SECTION

Host Requirements | 28

cSRX Basic Configuration Settings | 29

Interface Naming and Mapping | 29

This section presents an overview of requirements for deploying a cSRX container on a bare-metal Linux
server:

Host Requirements

Table 6 on page 28 lists the Linux host requirement specifications for deploying a cSRX container on a
bare-metal Linux server.

NOTE: The cSRX can run either on a physical server or virtual machine. For scalability and
availability reasons, we recommended using a physical server to deploy the cSRX container.

Table 6: Host Requirement Specifications for cSRX

Release IntroducedSpecificationComponent

Junos OS Release
18.1R1

CentOS 6.5 or laterLinux OS support

Red Hat Enterprise Linux (RHEL) 7.0 or later

Ubuntu 14.04.2 or later

Docker Engine 1.9 or later installed on a Linux hostDocker Engine

28

Table 6: Host Requirement Specifications for cSRX (continued)

Release IntroducedSpecificationComponent

Contrail 3.2 with OpenStack Liberty or OpenStack
Mitaka

Contrail Cloud Platform

2 CPU coresvCPUs

8 GBMemory

40 GB hard driveDisk space

x86_64 multicore CPUHost processor type

1 Ethernet port (minimum)Network interface

cSRX Basic Configuration Settings

The cSRX container requires the following basic configuration settings:

• Interfaces must be assigned IP addresses.

• Policies must be configured between zones to permit or deny traffic.

Interface Naming and Mapping

A cSRX container supports 17 interfaces:

• 1 Out-of-band management Interface (eth0)

• 16 In-band interfaces (ge-0/0/0 to ge-0/0/15).

Table 7 on page 29 lists the cSRX interface assignments with Docker.

Table 7: cSRX Interface Assignment

Docker InterfacescSRX Interfaces
Interface
Number

eth0eth01

29

Table 7: cSRX Interface Assignment (continued)

Docker InterfacescSRX Interfaces
Interface
Number

eth1ge-0/0/02

eth2ge-0/0/13

eth3ge-0/0/24

eth5ge-0/0/46

eth6ge-0/0/57

eth7ge-0/0/68

eth8ge-0/0/79

eth9ge-0/0/810

eth10ge-0/0/911

eth11ge-0/0/1012

eth12ge-0/0/1113

eth13ge-0/0/1214

eth14ge-0/0/1315

eth15ge-0/0/1416

eth16ge-0/0/1517

30

Installing cSRX in a Bare-Metal Linux Server

IN THIS SECTION

Before You Deploy | 31

Confirming Docker Installation | 32

Loading the cSRX Image | 33

Creating the Linux Bridge Network for the cSRX | 35

This section outlines the steps to install the cSRX container in a Linux bare-metal server environment that
is running Ubuntu, Red Hat Enterprise Linux (RHEL) , or CentOS. The cSRX container is packaged in a
Docker image and runs in the Docker Engine on the Linux host.

This section includes the following topics:

Before You Deploy

Before you deploy the cSRX Container Firewall as an advanced security service in a Linux container
environment, ensure that you:

• Review “Requirements for Deploying cSRX on a Bare-Metal Linux Server” on page 28 to verify the
system software requirement specifications for the Linux server required to deploy the cSRX container.

• Install and configure Docker on your Linux host platform to implement the Linux container environment.
Docker installation requirements vary based on the platform and the host OS (Ubuntu, RedHat Enterprise
Linux (RHEL), or CentOS). Install Docker. You can also use the script at: https://get.docker.com/ to
install docker easily. You need to execute this script on shell.

For docker installation instructions on the different supported Linux host operating systems, see:

• Centos/Redhat—https://docs.docker.com/install/linux/docker-ce/centos/

• Debian—https://docs.docker.com/install/linux/docker-ce/debian/

• Fedora—https://docs.docker.com/install/linux/docker-ce/fedora/

• Ubuntu—https://docs.docker.com/install/linux/docker-ce/ubuntu/

• Centos/Redhat—https://docs.docker.com/install/linux/docker-ce/centos/

• Centos/Redhat—https://docs.docker.com/install/linux/docker-ce/centos/

31

https://docs.docker.com/engine/installation/
https://get.docker.com/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/debian/
https://docs.docker.com/install/linux/docker-ce/fedora/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/

Confirming Docker Installation

Before you load the cSRX image, confirm that Docker is properly installed on the Linux host and that the
Docker Engine is running.

To confirm Docker installation:

1. Confirm that Docker is installed and running on the Linux server by using the service docker status
command.

root@csrx-ubuntu3:~# service docker status

docker start/running, process 701

You should also be able to run docker run hello-world and see a similar response.

root@csrx-ubuntu3:~# docker run hello-world

 Hello from Docker!

 This message shows that your installation appears to be working correctly.

• If Docker is not installed, see Install Docker for installation instructions.

• If Docker is not running, see Configure and troubleshoot the Docker daemon.

2. Verify the installed Docker Engine version by using the docker version command.

NOTE: Ensure that Docker version 1.9.0 or later is installed on the Linux host.

root@csrx-ubuntu3:~# docker version

Client:

Docker version 17.05.0-ce-rc1, build 2878a85

API Version: 1.30

Go version: go1.8.3

Git commit: 02cid87

Built: Fri June 23 21:17:13 2017

32

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/admin/

OS/Arch: linux/amd64

Server:

Docker version 17.05.0-ce-rc1, build 2878a85

API Version: 1.30 (minimum version 1.12)

Go version: go1.8.3

Git commit: 02cid87

Built: Fri June 23 21:17:13 2017

OS/Arch: linux/amd64

Experimental: False

Loading the cSRX Image

The cSRX image is available as a cSRX Docker file from the Juniper Internal Docker registry.

Once the Docker Engine has been installed on the host, perform the following to download and start using
the cSRX image:

1. Login to the Juniper Internal Docker registry using the login name and password that you received as
part of the sales fulfillment process when ordering cSRX.

root@csrx-ubuntu3:~csrx# docker login hub.juniper.net -u < username> -p < password>

2. To browse the existing images from the Juniper Internal Docker registry for a cSRX image, use the curl
CLI command:

root@csrx-ubuntu3:~csrx# curl -u < < username>> -X GET
https://hub.juniper.net/v2/security/csrx/tags/list

Enter host password for user '<<username>>:

{ "name":"security/csrx","tags":["18.1R1.9","18.2R1.9"]}

root@csrx-ubuntu3:~csrx#

33

https://hub.juniper.net/v2/security/csrx/tags/list

NOTE: To browse the existing images from the Juniper Internal Docker registry by using a
Web browser instead of using the curl CLI command, you can launch a Web browser with
https://hub.juniper.net/v2/security/csrx/tags/list. Use the login name and password that
you received as part of the sales fulfillment process.

3. Pull the cSRX image from the Juniper Internal Docker registry.

root@csrx-ubuntu3:~csrx# docker pull hub.juniper.net/security/csrx:< version>

For example, to pull cSRX image version 18.2R1.9:

root@csrx-ubuntu3:~csrx# docker pull hub.juniper.net/security/csrx:18.2R1.9

4. After the cSRX image loads, confirm that it is listed in the repository of Docker images.

root@csrx-ubuntu3:~/csrx# docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

csrx 18.1R1.0 6fcdebe006e4 Less than a second ago 585MB

root@csrx-ubuntu3:~/csrx#

34

https://hub.juniper.net/v2/security/csrx/tags/list

Creating the Linux Bridge Network for the cSRX

A Linux bridge is a virtual switch implemented as a kernel module. This Linux bridge is used within a Linux
host to emulate a hardware bridge. Docker allows you to create a Linux bridge network and connect the
cSRX container to this network to implement management and data processing sessions. The interfaces
are created with the Linux VETH driver and are used to communicate with the Linux kernel.

This procedure describes how to create a three-bridge network for the cSRX container that includes:
mgt_bridge (eth0), left_bridge (eth1), and right_bridge (eth2). The mgt_bridge is used by the cSRX for
out-of-bandmanagement to accept management sessions and traffic, and the left_bridge and right_bridge
are both used by the cSRX as the revenue ports to process in-band data traffic.

The trusted and untrusted interfaces required by a cSRX connector are connected to this Linux bridge on
eth1 and eth2. In this example, the untrusted interface (eth1) is connected to Linux bridge Br1 and the
trusted interface (eth2) is connected to Linux bridge Br2. By default, the cSRX boots in Layer 3 mode
where it performs forwarding between the trusted and untrusted interfaces.

NOTE: Docker automatically connects the management interface (eth0) to the Linux bridge and
assigns an IP address. Interfaces eth1 and eth2 are for the inband traffic and you must assign a
trusted and untrusted interface to the two revenue interfaces. cSRX must be bound with the
Linux bridge to pass traffic.

To create a three-bridge network for a cSRX in the Linux host:

1. Create the management bridge in the network.

root@csrx-ubuntu3::~/csrx# docker network create --driver bridge mgt_bridge

3228844986eae1d1a8d367b34b54b31b130842be072b9dcdf7da3601c95b7130

2. Create the left bridge in the network (untrusted interface (eth1)).

root@csrx-ubuntu3::~/csrx# docker network create --driver bridge left_bridge

f1324b0a9072c55ababbcc51d83c83658084b67513811e13829172cccbc08e5d

3. Create the right bridge in the network (trusted interface (eth2)).

root@csrx-ubuntu3::~/csrx# docker network create --driver bridge right_bridge

196bd039f7c2401df4c117ea684114548a3df0b9d406cf3cf8f17338fab96774

35

RELATED DOCUMENTATION

Docker commands

Launching the cSRX Container

You are now ready to launch the cSRX container that is running in Docker on the Linux bare-metal server.
When you start the cSRX image, you have a running container of the image. You can stop and restart the
cSRX container (see “Managing cSRX Containers” on page 53), and the container will retain all settings
and file system changes unless those changes are explicitly deleted. However, the cSRX will lose anything
in memory and all processes will be restarted.

You have a series of cSRX environment variables that enable you to modify operating characteristics of
the cSRX container when it is launched. You can modify:

• Initial root account password to log in to the cSRX container using SSH

• Traffic forwarding mode (static route or secure-wire)

• cSRX container size (small, medium, or large)

• Packet I/O driver (polled or interrupt)

• CPU affinity for cSRX control and data daemons

• Address Resolution Protocol (ARP) and Neighbor Discovery Protocol (NDP) entry timeout values

• Number of interfaces you need to add to container. Default is 3 and maximum is 17 (which means 1
management interfaces and 16 data interfaces).

NOTE: Specification of an environment variable is not mandatory when launching the cSRX
container; most environment variables have a default value as shown in “cSRX Environment
Variables Overview” on page 41. You can launch the cSRX using the default environment variable
settings.

To launch the cSRX container:

36

https://docs.docker.com/engine/reference/commandline/docker/

1. Use the docker run command to launch the cSRX container. You include themgt_bridgemanagement
bridge to connect the cSRX to a network. If you intend to log into the cSRX container using SSH, you
must specify an initial root password when launching the cSRX.

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_ROOT_PASSWORD=<password> --name=<csrx-container-name>
hub.juniper.net/security/<csrx-image-name>

For example, to launch csrx2 using cSRX software image csrx:18.21R1.9 and root password root123
enter:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_ROOT_PASSWORD=root123 —name=csrx2 hub.juniper.net/security/csrx:18.2R1.9

NOTE: Youmust include the --privileged flag in the docker run command to enable the cSRX
container to run in privileged mode.

2. Connect the left and right bridges to the Docker network.

root@csrx-ubuntu3:~/csrx# docker network connect left_bridge csrx2

root@csrx-ubuntu3:~/csrx#

root@csrx-ubuntu3:~/csrx# docker network connect right_bridge csrx2

root@csrx-ubuntu3:~/csrx#

3. Confirm that the three-bridge network has been created for the cSRX container.

root@csrx-ubuntu3:~/csrx# docker network ls

NETWORK ID NAME DRIVER SCOPE

80bea9207560 bridge bridge local

619da6736359 host host local

112ab00aab1a left_bridge bridge local

1484998f41bb mgt_bridge bridge local

daf7a5a477bd none null local

e409a4f54237 right_bridge bridge local

4. Confirm that the cSRX container is listed as a running Docker container.

37

hub.juniper.net/security/
hub.juniper.net/security/csrx:18.2R1.9

root@csrx-ubuntu3:~/csrx# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

35e33e8aa4af csrx "/etc/rc.local init" 7 minutes ago Up 7 minutes 22/tcp, 830/tcp csrx2

5. Confirm that the cSRX container is up and running. You should see the expected Junos OS processes,
such as nsd, srxpfe, and mgd.

root@csrx-ubuntu3:~/csrx# docker top csrx2

UID PID PPID C

 STIME TTY TIME CMD

root 318 305 0

 09:13 pts/1 00:00:00 bash

root 27423 27407 0

 Mar30 pts/0 00:00:00 /bin/bash -e

/etc/rc.local init

root 27867 27423 0

 Mar30 ? 00:08:16 /usr/sbin/rsyslogd

 -M/usr/lib/rsyslog

root 27880 27423 0

 Mar30 ? 00:00:00 /usr/sbin/sshd

root 27882 27423 0

 Mar30 ? 00:00:00 /usr/sbin/nstraced

root 27907 27423 0

 Mar30 ? 00:00:08 /usr/sbin/mgd

root 27963 27423 0

 Mar30 pts/0 00:34:50 /usr/bin/monit -I

root 27979 27423 0

 Mar30 ? 00:01:10 /usr/sbin/nsd

root 27989 27423 0

 Mar30 ? 00:00:02 /usr/sbin/appidd

 -N

root 28023 27423 0

 Mar30 ? 00:00:21 /usr/sbin/idpd -N

root 28040 27423 0

 Mar30 ? 00:09:21 /usr/sbin/wmic -N

root 28048 27423 0

 Mar30 ? 00:52:50 /usr/sbin/useridd

 -N

root 28126 27423 2

 Mar30 ? 1-05:21:47 /usr/sbin/srxpfe

 -a -d

38

root 28186 27423 0

 Mar30 ? 00:01:37 /usr/sbin/utmd -N

root 28348 27423 0

 Mar30 ? 00:02:44 /usr/sbin/kmd

6. Confirm the IP address of the management interface of the cSRX container.

root@csrx-ubuntu3:~/csrx# docker inspect csrx2 | grep IPAddress

 "SecondaryIPAddresses": null,

 "IPAddress": "",

 "IPAddress": "172.19.0.2",

 "IPAddress": "172.18.0.2",

 "IPAddress": "172.20.0.2",

RELATED DOCUMENTATION

Docker commands

39

https://docs.docker.com/engine/reference/commandline/docker/

3
CHAPTER

Managing cSRX Containers

cSRX Environment Variables Overview | 41

Specifying an Initial Root Password for Logging into a cSRX Container in a Linux
Docker Environment | 43

Changing the Size of a cSRX Container | 44

Configuring Traffic Forwarding on a cSRX Container | 45

Specifying the Packet I/O Driver for a cSRX Container | 50

Configuring CPU Affinity for a cSRX Container | 52

Enabling Persistent Log File Storage to a Linux Host Directory | 53

Managing cSRX Containers | 53

cSRX Environment Variables Overview

Docker allows you to store data such as configuration settings as environment variables. At runtime, the
environment variables are exposed to the application inside the container. You can set any number of
parameters to take effect when the cSRX image launches. You set an environment variable by specifying
the docker run -e VARIABLE=VALUE ... key.

A series of cSRX environment variables enables you to modify the characteristics of the cSRX instance
when it is launched. The specification of an environment variable is not mandatory; most environment
variables have a default value as shown in Table 8 on page 41. If desired, you can launch the cSRX using
the default environment variable settings.

For example, to launch a cSRX instance with an initial root account password, in secure-wire forwarding
mode, and using the middle size cSRX configuration:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_ROOT_PASSWORD=<password> -e CSRX_SIZE="middle" -e CSRX_FORWARD_MODE="wire"
--name=<csrx-container-name> <csrx-image-name>

NOTE: You must include the --privileged flag in the docker run command to enable the cSRX
container to run in privileged mode.

Table 8 on page 41 summarizes the list of available cSRX environment variables along with a link to the
topic that outlines its usage.

Table 8: Summary of cSRX Environment Variables

TopicDefaultValuesDescriptionVariable

“Changing the
Size of a cSRX
Container” on
page 44

"large""small" |
"middle" |
"large"

cSRX size.CSRX_SIZE

“Configuring
Traffic
Forwarding
on a cSRX
Container” on
page 45

"routing""routing" |
"wire"

Traffic forwarding mode.CSRX_FORWARD_MODE

41

Table 8: Summary of cSRX Environment Variables (continued)

TopicDefaultValuesDescriptionVariable

“Specifying
the Packet
I/O Driver for
a cSRX
Container” on
page 50

"poll""poll" |
"interrupt"

Packet I/O driver.CSRX_PACKET_DRIVER

“Specifying an
Initial Root
Password for
Logging into a
cSRX
Container in a
Linux Docker
Environment”
on page 43

No
default
root
password

stringInitial root account password to log in to
the cSRX container using SSH.

CSRX_ROOT_PASSWORD

“Configuring
CPU Affinity
for a cSRX
Container” on
page 52

No CPU
affinity

hex valueCPU mask, indicating which CPU is
running the cSRX control plane daemons
(such as nsd, mgd, nstraced, utmd, and so
on).

CSRX_CTRL_CPU

“Configuring
CPU Affinity
for a cSRX
Container” on
page 52

No CPU
affinity

hex valueCPU mask, indicating which CPU is
running the cSRX data plane daemon
(srxpfe).

CSRX_DATA_CPU

“Configuring
Traffic
Forwarding
on a cSRX
Container” on
page 45

Same as
the Linux
host

decimal valueARP entry timeout value for the control
plane ARP learning or response.

CSRX_ARP_TIMEOUT

“Configuring
Traffic
Forwarding
on a cSRX
Container” on
page 45

Same as
the Linux
host

decimal valueNDP entry timeout value for the control
plane NDP learning or response.

CSRX_NDP_TIMEOUT

42

Table 8: Summary of cSRX Environment Variables (continued)

TopicDefaultValuesDescriptionVariable

3Default is 3,
maximum is
17 (which
means 1
management
interfaces
and 16 data
interfaces)

Number of interfaces you need to add to
container.

Example: docker run -d --privileged
--net=none -e CSRX_PORT_NUM=17 -e
CSRX_ROOT_PASSWORD=<password>
-e CSRX_SIZE=large -e
CSRX_HUGEPAGES=no -e
CSRX_PACKET_DRIVER=interrupt -e
CSRX_FORWARD_MODE=routing
--name=<csrx-container-name>
<csrx-image-name>

CSRX_PORT_NUM

Specifying an Initial Root Password for Logging into
a cSRX Container in a Linux Docker Environment

If you intend to log into the cSRX container using SSH, specify an initial root password when launching
the cSRX. When a cSRX container is launched, remote access using SSH will be enforced with username
and password.

NOTE: After the cSRX container is started, change the password and, if desired, the authentication
method for the root-level user.

43

To specify an initial root password for logging into the cSRX container:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_ROOT_PASSWORD=<password> --name=<csrx-container-name> <csrx-image-name>

Changing the Size of a cSRX Container

Based on your specific cSRX deployment requirements, scale requirements, and resource availability, you
can scale the performance and capacity of a cSRX instance by specifying a specific size (small, middle, or
large). Each cSRX size has certain characteristics and can be applicable to certain deployments. By default,
the cSRX container launches using the large size configuration.

Table 9 on page 44 compares the scale requirements of a cSRX instance depending on the specified size.

Table 9: cSRX Size Comparison

cSRX: Large Size (Default)cSRX: Middle SizecSRX: Small SizeSpecification

4G1G256MPhysical Memory
Overhead

512K64K8KNumber of Flow
Sessions

To assign a specific size for a cSRX instance, include the CSRX_SIZE environment variable in the docker
run command.

44

For example, to launch a cSRX instance using the middle size configuration to scale performance and
capacity:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e CSRX_SIZE="middle"
--name=<csrx-container-name> <csrx-image-name>

Configuring Traffic Forwarding on a cSRX Container

IN THIS SECTION

Configuring Routing Mode | 46

Configuring Secure-Wire Mode | 49

You can change the traffic forwarding mode of the cSRX container as a means to facilitate security service
provisioning when running the cSRX. For example, if you deploy a cSRX container inline of protected
segments, the cSRX should be transparent to avoid changing the virtual network topology. In other
deployments, the cSRX container should be able to specify the next-hop address of egress traffic. To
address variations in cSRX network deployment, you can configure the traffic forwarding mode of the
cSRX to operate in routing mode (static routing only) or secure-wire mode.

NOTE: The cSRX uses routing as the default environment variable for traffic forwarding mode.

45

This section includes the following topics:

Configuring Routing Mode

When running the cSRX container in routing mode, the cSRX uses a static route to forward traffic for
routes destined to interfaces ge-0/0/0 and ge-0/0/1. You will need to create a static route and specify
the next-hop address.

When you start the cSRX container, you need to specify port number in the environment using the variable
CSRX_PORT_NUM to define the number of interfaces you need to add to container in routing mode.

For example, to launch cSRX instance in routing mode with 17 interfaces:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --net=none -e CSRX_PORT_NUM=17 -e
CSRX_ROOT_PASSWORD=<password> -e CSRX_SIZE=large -e CSRX_HUGEPAGES=no -e
CSRX_PACKET_DRIVER=interrupt -eCSRX_FORWARD_MODE=routing --name=<srx-container-name>
<csrx-image-name>

NOTE: The interfaces specified in the CSRX_PORT_NUM environment variable (default value
is 3) must be added to a network after instantiation of the cSRX. Unless all the interfaces are
added to the bridge or the macvlan networks, the PFE will not be launched on the cSRX, and
the ge-x/y/z interfaces will remain down.

Include the -e CSRX_FORWARD_MODE=routing environment variable in the docker run command to
instruct the cSRX to run in static route forwarding mode.

To configure the cSRX container to run in static routing mode:

1. Launch the cSRX container in routing forwarding mode:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_FORWARD_MODE="routing" --name=<csrx-container-name> <csrx-image-name>

2. After you start the cSRX container, log in to it and configure static routes.

root@csrx# cli

root@csrx> configure

[edit]

46

root@csrx# show | display set

root@csrx# set interfaces ge-0/0/0 unit 0 family inet address 1.0.0.1/8

root@csrx# set interfaces ge-0/0/1 unit 0 family inet address 2.0.0.1/8

root@csrx# set routing-options static route 3.0.0.0/28 next-hop 1.0.0.10/32

3. View the forwarding table to verify the static routes.

root@csrx> show route forwarding-table

Routing table: default.inet

Internet:

Destination Type RtRef Next hop Type Index NhRef Netif

0.0.0.0 perm 0 dscd 517 1

1.0.0.1 perm 0 1.0.0.1 locl 2006 1

1.0.0.10 perm 0 1.0.0.10 ucast 5501 1

1.255.255.255 perm 0 bcst 2007 1

1/8 perm 0 rslv 2009 1

2.0.0.1 perm 0 2.0.0.1 locl 2001 1

2.0.0.10 perm 0 2.0.0.10 ucast 5500 1

2.255.255.255 perm 0 bcst 2002 1

2/8 perm 0 rslv 2004 1

224.0.0.1 perm 0 mcst 515 1

224/4 perm 0 mdsc 516 1

3.0.0.0/28 perm 0 1.0.0.10 ucast 5501 1

Routing table: default.inet6

Internet6:

Destination Type RtRef Next hop Type Index NhRef Netif

:: perm 0 dscd 527 1

ff00::/8 perm 0 mdsc 526 1

ff02::1 perm 0 mcst 525 1

4. Specify a route for the management interface. Static routes can only configure routes destined for
interfaces ge-0/0/0 and ge-0/0/1. The route destined for the management interfaces (eth0) must be
added by using the Linux route shell command.

root@csrx% route add -net 10.10.10.0/24 gw 172.31.12.1

root@csrx% route -n

47

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 0.0.0.0 0.0.0.0 U 0 0 0 pfe_tun

1.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 tap1

2.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 tap0

3.0.0.0 1.0.0.10 255.255.255.240 UG 0 0 0 tap1

10.10.10.0 172.31.12.1 255.255.255.0 UG 0 0 0 eth0

172.31.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth0

5. If required for your network environment, you can configure an IPv6 static route for the cSRX using
the set routing-options rib inet6.0 static route command.

[edit routing-options]

root@csrx# set routing-options rib inet6.0 static route 3000::0/64 next-hop 1000::10/128

[edit interfaces]

root@csrx# commit

root@csrx# show routing-options rib inet6.0

static {

route 3000::0/64 next-hop 1000::10/128;

}

6. Under routing mode, the control plane ARP/NDP learning/response is provided by the Linux kernel
through the TAP 0 and TAP 1 interfaces created to host the traffic for eth1 and eth2 through srxpfe.
You can view ARP entries by using the Linux arp shell command.

NOTE: While there are multiple interfaces created inside the cSRX container, only two
interfaces, ge-0/0/0 and ge-0/0/1, are visible in srxpfe.

root@csrx% arp -a

? (2.0.0.10) at 6e:81:38:41:5e:0e [ether] on tap0

? (1.0.0.10) at 96:33:66:a1:e5:03 [ether] on tap1

? (172.31.12.1) at 02:c4:39:fa:0a:0d [ether] on eth0

48

The default ARP/NDP entries timeout is set to 1200 seconds. You can adjust this value by modifying
either theARP_TIMEOUT orNDP_TIMEOUT environment variablewhen launching the cSRX container.
For example:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_FORWARD_MODE="routing" -e CSRX_ARP_TIMEOUT=<seconds> -e
CSRX_NDP_TIMEOUT=<seconds> --name=<csrx-container-name> <csrx-image-name>

The maximum ARP entry number is controlled by the Linux host kernel. If there are a large number of
neighbors, you might need to adjust the ARP or NDP entry limitations on the Linux host. There are
options in the sysctl command on the Linux host to adjust the ARP or NDP entry limitations.

For example, to adjust the maximum ARP entries to 4096:

sysctl -w net.ipv4.neigh.default.gc_thresh1=1024

sysctl -w net.ipv4.neigh.default.gc_thresh2=2048

sysctl -w net.ipv4.neigh.default.gc_thresh3=4096

For example, to adjust the maximum NDP entries to 4096:

sysctl -w net.ipv6.neigh.default.gc_thresh1=1024

sysctl -w net.ipv6.neigh.default.gc_thresh1=2048

sysctl -w net.ipv6.neigh.default.gc_thresh1=4096

Configuring Secure-Wire Mode

When operating in secure-wire mode, all traffic that arrives on a specific interface, ge-0/0/0 or ge-0/0/1,
will be forwarded unchanged through the interface. This mapping of interfaces, called secure wire, allows
the cSRX to be deployed in the path of network traffic without requiring a change to routing tables or a
reconfiguration of neighboring devices. A cross-connection is set up between interface pairs ge-0/0/0
and ge-0/0/1 to steer traffic from one port to the other port based on the Interworking and Interoperability
Function (IIF) as the input key.

Include the -eCSRX_FORWARD_MODE=wire environment variable in the docker run command to instruct
the cSRX to run in secure-wire forwarding mode.

49

NOTE: When you launch the cSRX container in secure-wire mode, the cSRX instance
automatically creates a default secure-wire named csrx_sw in the srxpfe process, and the ge-0/0/0
and ge-0/0/1 interface pair are added into the secure-wire.

Launch the cSRX instance in secure-wire mode using the following command:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_FORWARD_MODE="wire" --name=<csrx-container-name> <csrx-image-name>

Specifying the Packet I/ODriver for a cSRXContainer

IN THIS SECTION

Specifying the Poll Mode Driver | 51

Specifying the Interrupt Mode Driver | 52

The cSRX container exchanges packets by using the Linux host user space driver over the VETH interface.
The setting of the packet I/O driver can impact the forwarding performance and scalability of a cSRX
container. You can launch a cSRX to use either the poll mode driver (default seting) or interrupt mode
driver to define how packets are exchanged.

NOTE: Poll mode is the default setting for the CSRX_PACKET_DRIVER environment variable.

Table 10 on page 50 compares the two packet I/O drivers supported by cSRX.

Table 10: cSRX Poll and Interrupt Mode Driver Comparison

Interrupt Mode DriverPoll Mode DriverSpecification

Lower forwarding performance per
cSRX.

Higher forwarding performance per cSRX.Performance

50

Table 10: cSRX Poll and Interrupt Mode Driver Comparison (continued)

Interrupt Mode DriverPoll Mode DriverSpecification

Improved scalability; support formultiple
cSRX containers per vCPU.

Reduced scalability; support for a single
cSRX per vCPU.

Scalability

Deployment of a cSRX supporting a large
number of concurrent security services.

Deployment of a cSRX supporting a
virtualized network function (VNF).

Scenario

This section includes the following topics:

Specifying the Poll Mode Driver

The poll mode driver uses a PCAP-based DPDK driver to poll packets from the Linux VETH driver. Packets
are exchanged between user and kernel space by using a Berkeley Packet Filter (BPF). The poll mode driver
can obtain the best performance for a single cSRX container (for example, as a VNF).

NOTE: When using the poll mode driver, the srxpfe process will always keep a CPU core at
100% utilization, even when the cSRX has no traffic to process.

To configure the cSRX container to use the poll mode driver, include the -e CSRX_PACKET_DRIVER="poll"
environment variable in the docker run command.

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_FORWARD_MODE="routing" -e CSRX_PACKET_DRIVER="poll" -e CSRX_CTRL_CPU="0x1" -e
CSRX_DATA_CPU="0x6" --name=<csrx-container-name> <csrx-image-name>

51

Specifying the Interrupt Mode Driver

The interrupt mode driver receives and transmits packets using the packet socket on user space. By using
the epoll mechanism provided by the Linux operating system, the interrupt mode driver can aid the srxpfe
process in waiting until packets arrive on the VETH interfaces. If no packets load on the revenue ports of
a cSRX instance, the srxpfe process remains in a sleep state as a means to help preserve CPU resources.
With the support of the epoll mechanism, the Linux server can then sustain a large number of cSRX
instances, in particular when there are multiple cSRX instances per CPU. In this case, the scheduler keeps
track of which srxpfe process is busy and allocates CPU resources to that srxpfe process.

When you launch start a cSRX instance, you can include the CSRX_CTRL_CPU and CSRX_DATA_CPU
environmental variables to specify a specific CPU to run control plane and data plane tasks. The CPU will
schedule the srxpfe process among those CPUs according to their CPU status. See“Configuring CPU
Affinity for a cSRX Container” on page 52 for details on the CSRX_CTRL_CPU and CSRX_DATA_CPU
environmental variables.

To configure the cSRX container to use the interrupt mode driver, include the -e
CSRX_PACKET_DRIVER="interrupt" environment variable in the docker run command.

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_FORWARD_MODE="routing" -eCSRX_PACKET_DRIVER="interrupt" -eCSRX_CTRL_CPU="0x1"
-e CSRX_DATA_CPU="0x6" --name=<csrx-container-name> <csrx-image-name>

Configuring CPU Affinity for a cSRX Container

A cSRX instance requires two CPU cores in the Linux server. To help schedule the Linux server tasks and
adjust performance of the cSRX container running on a Linux host, you can launch the cSRX container and
assign its control and data processes (or daemons) to a specific CPU. In a cSRX container, srxpfe is the
data plane daemon and all other daemons (such as nsd, mgd, nstraced, utmd, and so on) are control plane
daemons.

CPU affinity ensures that the cSRX control and data plane daemons are pinned to a specific physical CPU,
which can improve the cSRX container performance by using the CPU cache efficiently. By default, there
is not a defined CPU affinity for the cSRX control and data plane daemons; the CPU on which the control
and data plane daemons run depends on Linux kernel scheduling.

To assign cSRX container control and data daemons to a specific CPU, include the environment variables
CSRX_CTRL_CPU and CSRX_DATA_CPU in the docker run command.

52

For example, to configure the cSRX container to launch the control plane daemons on CPU 1 and the data
plane daemon on CPU 2:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -eCSRX_CTRL_CPU="0x1"
-e CSRX_DATA_CPU="0x2" --name=<csrx-container-name> <csrx-image-name>

Enabling Persistent Log File Storage to a Linux Host
Directory

In a cSRX container, log files are stored in the /var/log directory. By default, if there are no external volumes
mounted for the /var/log directory, the log files will be maintained only for this cSRX container. If, at a
future point, the cSRX container is deleted, those log files will be lost. You can enable persistent log file
storage to a Linux host directory as a means to directly mount a directory from a Linux host to the cSRX
container when the cSRX is launched.

To configure the cSRX container to enable persistent log file storage to a Linux host directory, use the
following command.

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e
CSRX_FORWARD_MODE="routing" -e CSRX_PACKET_DRIVER="poll" –e CSRX_CTRL_CPU="0x1" –e
CSRX_DATA_CPU="0x6" -v <path-log-directory-on-host>:/var/log --name=<csrx-container-name>
<csrx-image-name>

Managing cSRX Containers

IN THIS SECTION

Pausing/Resuming Processes within a cSRX Container | 54

Viewing Container Processes on a Running cSRX Container | 55

Removing a cSRX Container or Image | 55

53

This section outlines basic Docker commands that you can use with a running cSRX container. It includes
the following topics:

Pausing/Resuming Processes within a cSRX Container

You can suspend or resume all processes within one or more cSRX containers. On Linux, this task is
performed using the cgroups freezer process.

To pause and restart a cSRX container:

1. Use the docker pause command to suspend all processes in a cSRX container.

hostOS# docker pause <csrx-container-name>

2. Use the docker unpause command to resume all processes in the cSRX container.

hostOS# docker unpause <csrx-container-name>

54

Viewing Container Processes on a Running cSRX Container

Use the docker exec command to view the details of the processes (applications, services and status)
running on a cSRX container.

hostOS# docker exec <csrx-container-name> ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.0 18048 1648 pts/8 Ss May15 0:00 /bin/bash -e

/etc/rc.local init

root 78 0.0 0.0 260072 968 ? Ssl May15 0:09 /usr/sbin/rsyslogd

 -M/usr/lib/rsyslog

root 97 0.0 0.0 61376 1304 ? Ss May15 0:00 /usr/sbin/sshd

root 118 0.0 0.0 108552 1304 ? Sl May15 34:12 /usr/bin/monit

root 124 0.0 0.0 723392 1516 ? Ss May15 0:00 /usr/sbin/nstraced

root 133 0.0 0.0 734084 4388 ? Ss May15 1:18 /usr/sbin/nsd

root 135 0.0 0.0 4440 644 ? S May15 0:00 /bin/sh

/etc/init.d/appidd start

root 141 0.0 0.2 752132 21184 ? Sl May15 0:02 /usr/sbin/appidd

 -N &

root 147 0.0 0.0 4440 652 ? S May15 0:00 /bin/sh

/etc/init.d/idpd start

root 153 0.0 0.0 730520 2768 ? S May15 0:25 /usr/sbin/idpd

-N &

root 170 0.0 0.1 1001088 12528 ? Sl May15 29:22 /usr/sbin/useridd

 -N

root 211 0.0 0.0 728448 2104 ? Ss May15 0:07 /usr/sbin/mgd

root 222 3.5 1.8 3943936 152920 ? Sl May15 1416:22 /usr/sbin/srxpfe

 -a -d

root 250 0.0 0.0 4440 648 ? S May15 0:00 /bin/sh

/etc/init.d/utmd start

root 256 0.0 0.0 725092 3880 ? S May15 1:36 /usr/sbin/utmd

-N &

root 267 0.0 0.0 731556 2472 ? Ss May15 2:39 /usr/sbin/kmd

root 301 0.0 0.0 18160 1916 pts/8 S+ May15 0:00 /bin/bash

root 324 0.0 0.0 853708 3324 ? Sl May15 6:13 /usr/sbin/wmic

-N

Removing a cSRX Container or Image

To remove a cSRX container or image:

55

NOTE: You must first stop and remove a cSRX container before you can remove a cSRX image.

1. Use the docker stop command to stop the cSRX container.

hostOS# docker stop <csrx-container-name>

2. Use the docker rm command to remove the cSRX container.

hostOS# docker rm <csrx-container-name>

NOTE: Include --force to force the removal of a running cSRX container.

3. Use the docker rmi command to remove one or more cSRX images from the Docker Engine.

NOTE: Include --force to force the removal a cSRX image.

hostOS# docker rmi <csrx-container-name>

RELATED DOCUMENTATION

Docker Engine User Guide

Docker commands

56

https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/reference/commandline/docker/

4
CHAPTER

Configuring cSRX

cSRX Configuration and Management Tools | 58

Configuring cSRX Using the Junos OS CLI | 59

cSRX Configuration and Management Tools

IN THIS SECTION

Understanding the Junos OS CLI and Junos Scripts | 58

Understanding cSRX with Contrail and Openstack Orchestration | 58

Understanding the Junos OS CLI and Junos Scripts

The Junos operating system command-line interface (JunosOSCLI) is a Juniper Networks specific command
shell that runs on top of a UNIX-based operating system kernel.

Built into Junos OS, Junos script automation is an onboard toolset available on all Junos OS platforms,
including routers, switches, and security instances.

You can use the JunosOS CLI and the JunosOS scripts to configure, manage, administer, and troubleshoot
the cSRX container.

Understanding cSRX with Contrail and Openstack Orchestration

The cSRX Container Firewall can provide security services in a software-defined networking (SDN)
environment. Juniper Networks Contrail is an open, standards-based software-defined networking (SDN)
platform that delivers network virtualization and service automation for federated cloud networks. You
use the Contrail Cloud Platform with open cloud orchestration systems such as OpenStack or CloudStack
to instantiate instances of cSRX in a containerized environment. Contrail Cloud Platform automates the
orchestration of compute, storage, and networking resources to create and scale open, intelligent, and
reliable OpenStack clouds that seamlessly merge and hybridize through highly intelligent secure networks.

cSRX can be deployed as a dedicated firewall compute node in a Contrail Cloud platform environment to
provide differentiated Layer 4 through 7 security services for multiple tenants as part of a service chain
in the Contrail cloud platform. In the Contrail networking environment, you can deploy the cSRX container
as a large-scale security service in a multicloud environment, and configure the cSRX to steer traffic from
a vRouter with vRouter interface (VIF). Traffic and health statistics are monitored by the Contrail service
orchestrator.

See cSRX Guide for Contrail for details on using cSRX with Juniper Networks Contrail.

58

/documentation/test/en_US/csrx/information-products/pathway-pages/security-csrx-contrail-guide-pwp.html

RELATED DOCUMENTATION

Introducing the Junos OS Command-Line Interface

Contrail Networks

Mastering Junos Automation Programming

Configuring cSRX Using the Junos OS CLI

This section provides basic CLI configurations that can be used for configuring cSRX containers. For more
details see, Introducing the Junos OS Command-Line Interface.

To configure the cSRX container using the Junos OS CLI:

1. Log in to the cSRX container using SSH.

root@csrx-ubuntu3:~/csrx#ssh 192.168.42.81

2. Start the CLI as root user.

NOTE: When a cSRX container is launched, if you specified to log into the cSRX container
with an initial root password, access to the cSRX container using SSH will be enforced with
user name and password.

root#cli
root@>

3. Verify the interfaces.

root@> show interfaces

Physical interface: ge-0/0/1, Enabled, Physical link is Up

 Interface index: 100

 Link-level type: Ethernet, MTU: 1514

 Current address: 02:42:ac:13:00:02, Hardware address: 02:42:ac:13:00:02

Physical interface: ge-0/0/0, Enabled, Physical link is Up

 Interface index: 200

59

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-cli/junos-cli.html
https://www.juniper.net/documentation/en_US/release-independent/contrail/information-products/pathway-pages/index.html
https://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/mastering-junos-automation/
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-cli/junos-cli.html

 Link-level type: Ethernet, MTU: 1514

 Current address: 02:42:ac:14:00:02, Hardware address: 02:42:ac:14:00:02

4. Enter configuration mode.

configure
[edit]
root@#

5. Set the root authentication password by entering a cleartext password, an encrypted password, or an
SSH public key string (DSA or RSA).

[edit]
root@# set system root-authentication plain-text-password
New password: password
Retype new password: password

6. Configure the hostname.

[edit]
root@# set system host-name host-name

7. Configure the two traffic interfaces.

NOTE: Docker automatically connects the fxp0 management interface (eth0) to the Linux
bridge and automatically assigns an IP address. If is not necessary for you to configure the
management interface for the cSRX container.

[edit]
root@# set interfaces ge-0/0/0 unit 0 family inet address 192.168.20.2/24
root@# set interfaces ge-0/0/1 unit 0 family inet address 192.168.10.2/24

8. Configure basic security zones for the public and private interfaces and bind them to traffic interfaces.

[edit]
root@# set security zones security-zone untrust interfaces ge-0/0/0.0

60

root@# set security zones security-zone trust interfaces ge-0/0/1.0
root@# set security policies default-policy permit-all

9. Verify the configuration.

[edit]
root@# commit check
configuration check succeeds

10.Commit the configuration to activate it on the cSRX instance.

[edit]
root@# commit
commit complete

11. (Optional) Use the show command to display the configuration to verify that it is correct.

RELATED DOCUMENTATION

Junos OS for SRX Series

Introducing the Junos OS Command-Line Interface

61

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/srx-series/index.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-cli/junos-cli.html

	Table of Contents
	About the Documentation
	Documentation and Release Notes
	Documentation Conventions
	Documentation Feedback
	Requesting Technical Support
	Self-Help Online Tools and Resources
	Creating a Service Request with JTAC

	Overview
	Understanding cSRX with a Bare-Metal Linux Server
	cSRX Overview
	cSRX Benefits and Uses
	Docker Overview
	cSRX Scale-Up Performance

	Junos OS Features Supported on cSRX
	Supported SRX Series Features on cSRX
	SRX Series Features Not Supported on cSRX

	Installing cSRX
	Requirements for Deploying cSRX on a Bare-Metal Linux Server
	Host Requirements
	cSRX Basic Configuration Settings
	Interface Naming and Mapping

	Installing cSRX in a Bare-Metal Linux Server
	Before You Deploy
	Confirming Docker Installation
	Loading the cSRX Image
	Creating the Linux Bridge Network for the cSRX

	Launching the cSRX Container

	Managing cSRX Containers
	cSRX Environment Variables Overview
	Specifying an Initial Root Password for Logging into a cSRX Container in a Linux Docker Environment
	Changing the Size of a cSRX Container
	Configuring Traffic Forwarding on a cSRX Container
	Configuring Routing Mode
	Configuring Secure-Wire Mode

	Specifying the Packet I/O Driver for a cSRX Container
	Specifying the Poll Mode Driver
	Specifying the Interrupt Mode Driver

	Configuring CPU Affinity for a cSRX Container
	Enabling Persistent Log File Storage to a Linux Host Directory
	Managing cSRX Containers
	Pausing/Resuming Processes within a cSRX Container
	Viewing Container Processes on a Running cSRX Container
	Removing a cSRX Container or Image

	Configuring cSRX
	cSRX Configuration and Management Tools
	Understanding the Junos OS CLI and Junos Scripts
	Understanding cSRX with Contrail and Openstack Orchestration

	Configuring cSRX Using the Junos OS CLI

