
Junos® OS

Ansible for Junos OS Developer Guide

Published

2021-04-22

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc. in
the United States and other countries. All other trademarks, service marks, registered marks, or registered service marks
are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Junos® OS Ansible for Junos OS Developer Guide
Copyright © 2021 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use with)
Juniper Networks software. Use of such software is subject to the terms and conditions of the EndUser License Agreement
(“EULA”) posted at https://support.juniper.net/support/eula/. By downloading, installing or using such software, you
agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

About the Documentation | viii

Documentation and Release Notes | viii

Documentation Conventions | viii

Documentation Feedback | xi

Requesting Technical Support | xi

Self-Help Online Tools and Resources | xii

Creating a Service Request with JTAC | xii

Disclaimer1
Ansible for Junos OS Disclaimer | 14

Ansible Overview2
Understanding Ansible for Junos OS | 16

Ansible for Junos OS Overview | 16

Benefits of Ansible and Ansible for Junos OS | 17

Additional Resources | 17

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 19

Understanding Ansible Collections, Roles, and Modules for Managing Devices Running Junos
OS | 19

How to Execute Modules on Devices Running Junos OS | 20

Juniper Networks juniper.device Collection | 23

Juniper Networks Juniper.junos Role | 24

Understanding the Ansible Inventory File When Managing Devices Running
Junos OS | 26

Creating and Executing Ansible Playbooks to Manage Devices Running Junos OS | 28

Creating a Playbook | 29

Executing the Playbook | 33

iii

Installing Ansible for Junos OS3
Ansible for Junos OS Server Requirements | 35

Prerequisite Software | 36

Installing the juniper.device Collection and the Juniper.junos Role | 36

Using the Ansible for Junos OS Docker Image | 37

Setting up Ansible for Junos OS Managed Nodes | 38

Enabling NETCONF on Devices Running Junos OS | 39

Satisfying Requirements for SSHv2 Connections | 39

Configuring Telnet Service on Devices Running Junos OS | 40

Using Ansible to Connect to Devices Running Junos OS4
Connecting to Devices Running Junos OS Using Ansible | 43

Connection Methods Overview | 43

Understanding Local and Persistent Ansible Connections | 45

Connecting to a Device Using SSH | 46

Connecting to a Device Using Telnet | 49

Connecting to a Device Using a Serial Console Connection | 50

Authenticating Users Executing Ansible Modules on Devices Running Junos OS | 51

Authentication Overview | 51

Understanding the Default Values for Juniper Networks Modules | 53

How to Define Authentication Parameters in the vars: Section for Local and Persistent
Connections | 54

How to Define the provider Parameter in Juniper.junos Modules | 55

How to Authenticate the User Using SSH Keys | 57

Generating and Configuring the SSH Keys | 57

Using SSH Keys in Ansible Playbooks | 58

How to Authenticate the User Using a Playbook or Command-Line Password Prompt | 59

How to Authenticate the User Using an Ansible Vault-Encrypted File | 61

How to Authenticate Through a Console Server | 63

iv

Using Ansible to Manage Device Operations5
Using Ansible to Retrieve Facts from Devices Running Junos OS | 66

Using Ansible to Execute Commands and RPCs on Devices Running Junos OS | 70

How to Execute Commands with the Juniper Networks Modules | 71

How to Execute RPCs with the Juniper Networks Modules | 72

Understanding the Module Response | 74

How to Specify the Format for the Command or RPC Output | 75

How to Save the Command or RPC Output to a File | 76

UsingAnsiblewith Junos PyEZTables to RetrieveOperational Information fromDevices
Running Junos OS | 79

Module Overview | 80

Understanding Junos PyEZ Tables | 80

How to Use the Juniper Networks Ansible Modules with Junos PyEZ Tables | 81

Specifying RPC Arguments | 84

Using Ansible to Halt, Reboot, or Shut Down Devices Running Junos OS | 86

Using Ansible to Halt, Reboot, or Shut Down Devices | 86

How to Perform a Halt, Reboot, or Shut Down with a Delay or at a Specified Time | 88

How to Specify the Target Routing Engine | 89

How to Reboot a VM Host | 90

Example: Using Ansible to Reboot Devices Running Junos OS | 91

Using Ansible to Install Software on Devices Running Junos OS | 98

Using Ansible to Install Software | 98

How to Specify the Software Image Location | 99

Installation Process Overview | 101

How to Specify Timeout Values | 103

How to Specify Installation Options That Do Not Have an Equivalent Module Argument | 104

How to Perform a VM Host Upgrade | 105

How to Perform a Unified ISSU or NSSU | 105

Example: Using Ansible to Install Software | 107

v

Using Ansible to Restore a Device Running Junos OS to the Factory-Default
Configuration Settings | 116

How to Use Ansible to Restore the Factory-Default Configuration Settings | 116

Example: Using Ansible to Restore the Factory-Default Configuration Settings | 118

Using Junos Snapshot Administrator in Python (JSNAPy) in Ansible Playbooks | 125

Module Overview | 126

Taking and Comparing Snapshots | 129

Performing Snapcheck Operations | 132

Understanding the jsnapy and juniper_junos_jsnapy Module Output | 133

Enabling the jsnapy Callback Plugin | 135

Example: Using Ansible to Perform a JSNAPy Snapcheck Operation | 136

Using Ansible to Manage the Configuration6
Using Ansible to Retrieve or Compare Junos OS Configurations | 156

How to Specify the Source Database for the Configuration Data | 157

How to Specify the Scope of the Configuration Data to Return | 158

How to Specify the Format of the Configuration Data to Return | 160

How to Retrieve Configuration Data for Third-Party YANG Data Models | 161

How to Specify Options That Do Not Have an Equivalent Module Argument | 163

How to Save Configuration Data To a File | 164

How to Compare the Active Configuration to a Previous Configuration | 166

Using Ansible to Configure Devices Running Junos OS | 169

Module Overview | 170

How to Specify the Configuration Mode | 171

How to Specify the Load Action | 173

How to Specify the Format of the Configuration Data to Load | 173

How to Load Configuration Data as Strings | 174

How to Load Configuration Data from a Local or Remote File | 176

How to Load Configuration Data Using a Jinja2 Template | 178

How to Load the Rescue Configuration | 181

How to Roll Back the Configuration | 182

How to Commit the Configuration | 183

How to Ignore Warnings When Configuring Devices | 186

Example: Using Ansible to Configure Devices Running Junos OS | 187

vi

Troubleshooting Ansible for Junos OS7
Troubleshooting Junos PyEZ (junos-eznc) Install Errors for Ansible Modules | 197

Troubleshooting Ansible Collection, Role, andModule ErrorsWhenManaging Devices
Running Junos OS | 198

Troubleshooting Ansible Connection Errors When Managing Devices Running
Junos OS | 200

Troubleshooting Failed or Invalid Connection Errors | 201

Troubleshooting Unknown Host Errors | 202

Troubleshooting Refused Connection Errors | 202

Troubleshooting Ansible Authentication Errors When Managing Devices Running
Junos OS | 203

Troubleshooting ConnectAuthError Issues | 204

Troubleshooting Attribute conn_type Errors | 204

Troubleshooting Ansible Errors When Configuring Devices Running Junos OS | 206

Troubleshooting Configuration Timeout Errors | 207

Troubleshooting Configuration Lock Errors | 207

Troubleshooting Configuration Load Errors | 208

Troubleshooting Commit Errors | 208

vii

About the Documentation

IN THIS SECTION

Documentation and Release Notes | viii

Documentation Conventions | viii

Documentation Feedback | xi

Requesting Technical Support | xi

Use this guide to automate the provisioning and management of devices running Junos OS with Ansible
software.

Documentation and Release Notes

To obtain the most current version of all Juniper Networks® technical documentation, see the product
documentation page on the Juniper Networks website at https://www.juniper.net/documentation/.

If the information in the latest release notes differs from the information in the documentation, follow the
product Release Notes.

Juniper Networks Books publishes books by Juniper Networks engineers and subject matter experts.
These books go beyond the technical documentation to explore the nuances of network architecture,
deployment, and administration. The current list can be viewed at https://www.juniper.net/books.

Documentation Conventions

Table 1 on page ix defines notice icons used in this guide.

viii

https://www.juniper.net/documentation/
https://www.juniper.net/books

Table 1: Notice Icons

DescriptionMeaningIcon

Indicates important features or instructions.Informational note

Indicates a situation that might result in loss of data or hardware
damage.

Caution

Alerts you to the risk of personal injury or death.Warning

Alerts you to the risk of personal injury from a laser.Laser warning

Indicates helpful information.Tip

Alerts you to a recommended use or implementation.Best practice

Table 2 on page ix defines the text and syntax conventions used in this guide.

Table 2: Text and Syntax Conventions

ExamplesDescriptionConvention

To enter configuration mode, type
the configure command:

user@host> configure

Represents text that you type.Bold text like this

user@host> show chassis alarms

No alarms currently active

Represents output that appears on
the terminal screen.

Fixed-width text like this

• A policy term is a named structure
that defines match conditions and
actions.

• Junos OS CLI User Guide

• RFC 1997, BGP Communities
Attribute

• Introduces or emphasizes important
new terms.

• Identifies guide names.

• Identifies RFC and Internet draft
titles.

Italic text like this

ix

Table 2: Text and Syntax Conventions (continued)

ExamplesDescriptionConvention

Configure the machine’s domain
name:

[edit]
root@# set system domain-name
domain-name

Represents variables (options for
which you substitute a value) in
commands or configuration
statements.

Italic text like this

• To configure a stub area, include
the stub statement at the [edit
protocols ospf area area-id]
hierarchy level.

• The console port is labeled
CONSOLE.

Represents names of configuration
statements, commands, files, and
directories; configuration hierarchy
levels; or labels on routing platform
components.

Text like this

stub <default-metric metric>;Encloses optional keywords or
variables.

< > (angle brackets)

broadcast | multicast

(string1 | string2 | string3)

Indicates a choice between the
mutually exclusive keywords or
variables on either side of the symbol.
The set of choices is often enclosed
in parentheses for clarity.

| (pipe symbol)

rsvp { # Required for dynamic MPLS
only

Indicates a comment specified on the
same line as the configuration
statement to which it applies.

(pound sign)

community name members [
community-ids]

Encloses a variable for which you can
substitute one or more values.

[] (square brackets)

[edit]
routing-options {
static {
route default {
nexthop address;
retain;

}
}

}

Identifies a level in the configuration
hierarchy.

Indention and braces ({ })

Identifies a leaf statement at a
configuration hierarchy level.

; (semicolon)

GUI Conventions

x

Table 2: Text and Syntax Conventions (continued)

ExamplesDescriptionConvention

• In the Logical Interfaces box, select
All Interfaces.

• To cancel the configuration, click
Cancel.

Represents graphical user interface
(GUI) items you click or select.

Bold text like this

In the configuration editor hierarchy,
select Protocols>Ospf.

Separates levels in a hierarchy of
menu selections.

> (bold right angle bracket)

Documentation Feedback

We encourage you to provide feedback so that we can improve our documentation. You can use either
of the following methods:

• Online feedback system—Click TechLibrary Feedback, on the lower right of any page on the Juniper
Networks TechLibrary site, and do one of the following:

• Click the thumbs-up icon if the information on the page was helpful to you.

• Click the thumbs-down icon if the information on the page was not helpful to you or if you have
suggestions for improvement, and use the pop-up form to provide feedback.

• E-mail—Send your comments to techpubs-comments@juniper.net. Include the document or topic name,
URL or page number, and software version (if applicable).

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance Center (JTAC).
If you are a customer with an active Juniper Care or Partner Support Services support contract, or are

xi

https://www.juniper.net/documentation/index.html
https://www.juniper.net/documentation/index.html
mailto:techpubs-comments@juniper.net?subject=

covered under warranty, and need post-sales technical support, you can access our tools and resources
online or open a case with JTAC.

• JTAC policies—For a complete understanding of our JTAC procedures and policies, review the JTACUser
Guide located at https://www.juniper.net/us/en/local/pdf/resource-guides/7100059-en.pdf.

• Productwarranties—For productwarranty information, visit https://www.juniper.net/support/warranty/.

• JTAC hours of operation—The JTAC centers have resources available 24 hours a day, 7 days a week,
365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online self-service portal called
the Customer Support Center (CSC) that provides you with the following features:

• Find CSC offerings: https://www.juniper.net/customers/support/

• Search for known bugs: https://prsearch.juniper.net/

• Find product documentation: https://www.juniper.net/documentation/

• Find solutions and answer questions using our Knowledge Base: https://kb.juniper.net/

• Download the latest versions of software and review release notes:
https://www.juniper.net/customers/csc/software/

• Search technical bulletins for relevant hardware and software notifications:
https://kb.juniper.net/InfoCenter/

• Join and participate in the Juniper Networks Community Forum:
https://www.juniper.net/company/communities/

• Create a service request online: https://myjuniper.juniper.net

To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE) Tool:
https://entitlementsearch.juniper.net/entitlementsearch/

Creating a Service Request with JTAC

You can create a service request with JTAC on the Web or by telephone.

• Visit https://myjuniper.juniper.net.

• Call 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, see
https://support.juniper.net/support/requesting-support/.

xii

https://www.juniper.net/us/en/local/pdf/resource-guides/7100059-en.pdf
https://www.juniper.net/support/warranty/
https://www.juniper.net/customers/support/
https://prsearch.juniper.net/
https://www.juniper.net/documentation/
https://kb.juniper.net/
https://www.juniper.net/customers/csc/software/
https://kb.juniper.net/InfoCenter/
https://www.juniper.net/company/communities/
https://myjuniper.juniper.net
https://entitlementsearch.juniper.net/entitlementsearch/
https://myjuniper.juniper.net
https://support.juniper.net/support/requesting-support/

1
CHAPTER

Disclaimer

Ansible for Junos OS Disclaimer | 14

Ansible for Junos OS Disclaimer

Use of the Ansible for Junos OS software implies acceptance of the terms of this disclaimer, in addition
to any other licenses and terms required by Juniper Networks.

Juniper Networks is willing to make the Ansible for Junos OS software available to you only upon the
condition that you accept all of the terms contained in this disclaimer. Please read the terms and conditions
of this disclaimer carefully.

The Ansible for Junos OS software is provided as is. Juniper Networks makes no warranties of any kind
whatsoever with respect to this software. All express or implied conditions, representations andwarranties,
including any warranty of non-infringement or warranty of merchantability or fitness for a particular
purpose, are hereby disclaimed and excluded to the extent allowed by applicable law.

In no event will Juniper Networks be liable for any direct or indirect damages, including but not limited to
lost revenue, profit or data, or for direct, special, indirect, consequential, incidental or punitive damages
however caused and regardless of the theory of liability arising out of the use of or inability to use the
software, even if Juniper Networks has been advised of the possibility of such damages.

14

2
CHAPTER

Ansible Overview

Understanding Ansible for Junos OS | 16

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 19

Understanding the Ansible Inventory File When Managing Devices Running
Junos OS | 26

Creating and Executing Ansible Playbooks toManageDevices Running JunosOS | 28

Understanding Ansible for Junos OS

IN THIS SECTION

Ansible for Junos OS Overview | 16

Benefits of Ansible and Ansible for Junos
OS | 17

Additional Resources | 17

SUMMARY

You can use Ansible to deploy and manage devices
running Junos OS.

Ansible for Junos OS Overview

Ansible is an IT automation framework that is used for infrastructure configuration management. Ansible
supports automating the network infrastructure in addition to the compute and cloud infrastructure, and
Juniper Networks supports using Ansible to manage devices running Junos OS. You can use Ansible to
perform operational and configuration tasks on devices running Junos OS, including retrieving information,
managing the configuration, installing and upgrading Junos OS, and resetting, rebooting, or shutting down
managed devices.

Ansible comes in several varieties. You can use the following applications to manage devices running
Junos OS:

• Ansible Core—Free, open-source, base version of Ansible

• Red Hat Ansible Tower—Commercial application that is a superset of Ansible Core with additional
features such as a visual dashboard, role-based access control, job scheduling, and graphical inventory
management

• AWX—Open-source upstream project for Ansible Tower

Ansible uses a client-server architecture. You install the Ansible software on the control node, which is a
Unix-like system that performs operations on one or more managed nodes. Ansible uses an agentless
architecture and thus does not require installing any Ansible-specific software on the managed devices.
Although Ansible typically requires Python on the managed nodes, it is not required to manage devices
running Junos OS. Instead, Ansible for Junos OS requires all tasks to run locally on the Ansible control
node and uses the Junos XML API over NETCONF to interface with devices running Junos OS.

Ansible typically uses a push model in which the server sends state information to the managed nodes on
demand. Ansible modules, which are discrete units of code, perform the requested functions on a node.

16

The managed node executes the job and returns the result to the server. In general, Ansible modules are
idempotent such that executing the same playbook or operation multiple times yields the same result,
because the modules only apply a change if it’s required.

Juniper Networks and Ansible provide modules that enable you to manage devices running Junos OS. The
Juniper Networks modules are distributed through collections or roles, depending on the Ansible release.
For more information about the available collections, roles, and modules, see “Understanding the Ansible
for Junos OS Collections, Roles, and Modules” on page 19.

Ansible is written in Python, but it uses simple YAML syntax to express automation jobs. Thus, Ansible
users can get started quickly, because they do not require extensive knowledge of Python to use Ansible.
Ansible also leverages the Jinja2 templating language to enable dynamic expressions and access to variables.

Benefits of Ansible and Ansible for Junos OS

• Use a simple, easy-to-learn syntax

• Accelerate the time to deploy new network devices and applications

• Provide an efficient and scalable solution for managing large numbers of devices

• Increase operational efficiency by automating tasks and reducing the manual configuration and
management of devices

• Minimize risk and errors through standardization

• Improve change management processes

Additional Resources

This documentation assumes that the reader is familiar with the Ansible framework. Table 3 on page 17
provides resources for using Ansible to manage devices running Junos OS.

Table 3: Ansible for Junos OS Resources

URLDescriptionResource

https://www.juniper.net/documentation/product/en_US/
ansible-for-junos-os

Documentation detailing
how to use Ansible to
manage devices running
Junos OS.

Ansible for
Junos OS
documentation

17

https://www.juniper.net/documentation/product/en_US/ansible-for-junos-os
https://www.juniper.net/documentation/product/en_US/ansible-for-junos-os

Table 3: Ansible for Junos OS Resources (continued)

URLDescriptionResource

“Understanding the Ansible for Junos OS Collections, Roles, and
Modules” on page 19

Documentation that
outlines the different
modules available for
managing devices running
Junos OS.

Ansible for
Junos OS
modules
overview

https://galaxy.ansible.com

https://galaxy.ansible.com/Juniper

Ansible Galaxy website
and Juniper Networks
Ansible Galaxy content

Ansible Galaxy

https://www.ansible.com

https://docs.ansible.com/

Official Ansible website
and documentation.

Ansiblewebsite
and
documentation

https://github.com/Juniper/ansible-junos-stdlib/Public repository for the
Ansible for Junos OS
project. This repository
includes themost current
source code, installation
instructions, and release
note summaries for all
releases.

GitHub
repository

http://groups.google.com/group/junos-python-ezForum that addresses
questions and provides
general support for
Ansible for Junos OS.

Google Groups
forum

https://galaxy.ansible.com/juniper/device

https://ansible-juniper-collection.readthedocs.io/en/latest/

https://github.com/Juniper/ansible-junos-stdlib/tree/master/Samples

Download site, API
referencedocumentation,
and sample playbooks for
the Juniper Networks
juniper.device collection.

Juniper
Networks
juniper.device
collection

https://galaxy.ansible.com/juniper/junos

https://junos-ansible-modules.readthedocs.io/en/latest/

Download site and API
reference documentation
for the Juniper Networks
Juniper.junos role.

Juniper
Networks
Juniper.junos
role

18

https://galaxy.ansible.com
https://galaxy.ansible.com/Juniper
https://www.ansible.com
https://docs.ansible.com/
https://github.com/Juniper/ansible-junos-stdlib/
http://groups.google.com/group/junos-python-ez
https://galaxy.ansible.com/juniper/device
https://ansible-juniper-collection.readthedocs.io/en/latest/
https://github.com/Juniper/ansible-junos-stdlib/tree/master/Samples
https://galaxy.ansible.com/juniper/junos
https://junos-ansible-modules.readthedocs.io/en/latest/

RELATED DOCUMENTATION

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 19

Ansible for Junos OS Server Requirements | 35

Setting up Ansible for Junos OS Managed Nodes | 38

Creating and Executing Ansible Playbooks to Manage Devices Running Junos OS | 28

Understanding the Ansible for Junos OS Collections,
Roles, and Modules

IN THIS SECTION

Understanding Ansible Collections, Roles, and
Modules for Managing Devices Running Junos
OS | 19

How to Execute Modules on Devices Running
Junos OS | 20

Juniper Networks juniper.device
Collection | 23

Juniper Networks Juniper.junos Role | 24

SUMMARY

Juniper Networks provides Ansible modules that you
can use to manage devices running Junos OS.

Understanding Ansible Collections, Roles, and Modules for Managing
Devices Running Junos OS

Ansible is an IT automation framework that is used for infrastructure configuration management. You use
Ansible modules, which are discrete units of code, to perform specific functions on a managed node. You
can execute individual modules on remote hosts to perform ad-hoc tasks, or you can execute modules
through playbooks.

Ansible and Juniper Networks provide Ansible modules that you can use to manage devices running Junos
OS. The Juniper Networks Ansible modules are grouped and distributed through Ansible roles and
collections, which are hosted in the Ansible Galaxy repository. Table 4 on page 20 outlines the different
content sets available for managing devices running Junos OS.

19

https://galaxy.ansible.com

Table 4: Ansible Content Sets for Managing Devices Running Junos OS

Ansible ReleasesDescriptionContent Set

Ansible 2.1 through
Ansible 2.9

Ansible modules included in the Ansible base installation.

In Ansible 2.10, the core modules moved from the base
installation into Ansible’s junipernetworks.junos collection.

Ansible core modules

Ansible 2.10 and laterCollection for managing devices running Junos OS, which
Juniper Networks provides and manages as an open-source
project.

juniper.device collection

Ansible 2.1 and laterRole for managing devices running Junos OS, which Juniper
Networks provides, maintains, and supports.

This role is superseded by the juniper.device collection.

Juniper.junos role

Ansible 2.10 and laterCollection for managing devices running Junos OS, which
Ansible provides, maintains, and supports.

junipernetworks.junos
collection

An Ansible role is a set of tasks and supporting variables, files, templates, and modules for configuring a
host. Starting in Ansible 2.10, Ansible supports Ansible Content Collections, a format for distributing
Ansible content that is not included as part of the Ansible base installation. Ansible collections can include
a wider range of content, including modules, playbooks, plugins, and roles. Ansible collections also have
their own repositories and can be developed and released independently from the Ansible base installation.

In Ansible 2.9 and earlier, you can manage devices running Junos OS by using the modules provided in
the Juniper Networks Juniper.junos role or by using the core modules provided as part of the Ansible base
installation. Starting in Ansible 2.10, the Juniper.junos role and the Ansible core modules are superseded
by the corresponding collection.With the introduction of Juniper Networks’ juniper.device collection, the
modules in the Juniper.junos role were duplicated under new names in the collection and thus retain the
same functionality and parameters as the original modules, with the exception of the provider parameter.
Although the Juniper.junos role can coexist with the juniper.device collection andwill work in later releases,
we recommend that you use the juniper.device collection, because new features are only being added to
the collection going forward.

How to Execute Modules on Devices Running Junos OS

To use collections and roles that are hosted in the Ansible Galaxy repository, you must first install Ansible
on the control node and then install the collection or role. For more information about installing the
juniper.device collection or Juniper.junos role, see “Ansible for JunosOS Server Requirements” on page 35.

20

https://docs.ansible.com/ansible/2.9/modules/list_of_network_modules.html#junos
https://galaxy.ansible.com/juniper/device
https://galaxy.ansible.com/juniper/junos
https://galaxy.ansible.com/junipernetworks/junos

Ansible modules can perform operations on a managed node. Typically, the Ansible control node sends a
module to a managed node, where it is executed and then removed. In this scenario, the managed node
must have the ability to execute the module. Because most Ansible modules are written in Python, Ansible
typically requires Python on the managed node.

The Juniper Networks modules in the juniper.device collection and the Juniper.junos role, however, do
not require Python on the managed nodes. In contrast to the typical operation, you execute the modules
locally on theAnsible control node, and themodules use Junos PyEZ and the Junos XMLAPI overNETCONF
to interface with the managed node. This method of execution enables you to use Ansible to manage any
supported device running Junos OS. Figure 1 on page 21 illustrates the communication between the
Ansible control node and a managed device running Junos OS.

Figure 1: Ansible Communication with Devices Running Junos OS

g2
00

22
0

Ansible Control Machine

Ansible Orchestration Engine

Modules Results

Playbooks

Inventory

Module
Repository

Python

Execute

NETCONF NETCONF

RPCs

Managed Node Running Junos OS

RPC
Responses

To use the juniper.device or Juniper.junos modules, the playbook or command must:

• Specify the collection or role—To specify the collection or role, include the collections or roles key in
the play. Alternatively, you can omit the collections key and instead reference collection content by its
fully qualified collection name (FQCN).

• Execute the modules locally on the control node—To run Ansible modules locally, you define the
connection parameter as local, for example, by including connection: local in your playbook or including
--connection local on the command line.

NOTE: When you use connection: local, Ansible establishes a separate connection to the
device for each task in the play that requires a connection. The juniper.device collection
modules also support using connection: juniper.device.pyez, which still executes the modules
locally but instead establishes a single, persistent connection to a device for all tasks in a play.

21

• Provide appropriate connection and authentication information to connect to the managed device—For
more information, see:

• Connecting to Devices Running Junos OS Using Ansible on page 43

• Authenticating Users Executing Ansible Modules on Devices Running Junos OS on page 51

You can execute Ansible modules using any user account that has access to the managed device running
Junos OS.When you execute Ansible modules, Junos OS user account access privileges are enforced, and
the class configured for the Junos OS user account determines the permissions. Thus, if a user executes
a module that loads configuration changes onto a device, the user must have permissions to change the
relevant portions of the configuration.

The following playbook executes the juniper.device collection’s facts module to retrieve the device facts
and save them to a file. The example uses existing SSH keys in the default location to authenticate with
the device and thus does not explicitly provide credentials in the playbook.

- name: Get Device Facts

 hosts: dc1

connection: local

 gather_facts: no

collections:

 - juniper.device

 tasks:

 - name: Retrieve facts from device running Junos OS

 facts:

 savedir: "{{ playbook_dir }}"

 - name: Print version

 debug:

 var: junos.version

Alternatively, you can also reference collection content by its fully qualified collection name, for example:

- name: Get Device Facts

 hosts: dc1

connection: local

 gather_facts: no

 tasks:

 - name: Retrieve facts from device running Junos OS

juniper.device.facts:

 savedir: "{{ playbook_dir }}"

22

 - name: Print version

 debug:

 var: junos.version

Similarly, the following playbook executes the Juniper.junos role’s juniper_junos_factsmodule to perform
the same operation.

- name: Get Device Facts

 hosts: dc1

connection: local

 gather_facts: no

roles:

 - Juniper.junos

 tasks:

 - name: Retrieve facts from device running Junos OS

 juniper_junos_facts:

 savedir: "{{ playbook_dir }}"

 - name: Print version

 debug:

 var: junos.version

You can also perform ad-hoc operations on the command line. The following command executes the
juniper.device collection’s facts module and retrieves device facts from hosts in inventory group dc1.

user@host$ ansible --connection local -i production dc1 -m juniper.device.facts

Juniper Networks juniper.device Collection

Juniper Networks provides the juniper.device Ansible Content Collection, which is hosted on the Ansible
Galaxy website and includes Ansible modules that enable you to manage devices running Junos OS.

Table 5 on page 24 outlines the modules in the juniper.device collection. In the collection’s initial release,
the collection modules retain the same functionality and parameters as the corresponding module in the
Juniper.junos role, with the exception of the provider parameter, which is not supported for the collection
modules.

For the most current list, documentation, and usage examples for the modules, see
https://ansible-juniper-collection.readthedocs.io/en/latest/.

23

https://galaxy.ansible.com/juniper/device
https://galaxy.ansible.com
https://galaxy.ansible.com
https://ansible-juniper-collection.readthedocs.io/en/latest/

Table 5: juniper.device Collection Modules

Description
juniper.device Module
Name

Execute CLI commands on the device running Junos OS and save the output locally.command

Manage the configuration of devices running Junos OS.config

Retrieve device-specific information from the remote host, including the Junos OS
version, serial number, and hardware model number.

facts

Execute Junos Snapshot Administrator in Python (JSNAPy) tests from Ansible.jsnapy

Execute the ping command on devices running Junos OS.ping

Perform path MTU discovery on devices running Junos OS.pmtud

Execute Junos OS RPCs.rpc

Install a Junos OS software package and reboot a device running Junos OS.software

Perform system operations on devices running JunosOS, including resetting, rebooting,
or shutting down the device.

system

Create an SRX Series chassis cluster for cluster-capable SRX Series Services Gateways
running Junos OS.

srx_cluster

Use Junos PyEZ operational Tables and Views to retrieve operational information from
devices running Junos OS.

table

Juniper Networks Juniper.junos Role

Juniper Networks provides the Juniper.junos Ansible role, which is hosted on the Ansible Galaxy website
and includes Ansible modules that enable you to manage devices running Junos OS. Starting in Ansible
2.10, the juniper.device collection supersedes the Juniper.junos role. The modules in the collection have
the same functionality and parameters as the modules in the role, with the exception of the provider
parameter. Although the collection and role can coexist on the same platform and you can continue to use
the Juniper.junos modules in later releases, we recommend that you use the juniper.device collection,
because new features are only being added to the collection going forward.

24

https://galaxy.ansible.com/Juniper/junos/
https://galaxy.ansible.com

Table 6 on page 25 summarizes the modules in the Juniper.junos role. For the most current list,
documentation, and usage examples for the modules, see
https://junos-ansible-modules.readthedocs.io/en/latest/.

NOTE: Starting in Juniper.junos Release 2.0.0, the Juniper.junos role includes an enhanced set
of modules. Each new module replaces the functionality of one or more existing modules. The
enhanced modules support a common set of connection and authentication parameters, aliases
that enable you to specify the same connection and authentication-related options as the core
modules, and the ability to specify the parameters inside a provider dictionary.

Table 6: Juniper.junos Role Modules

Deprecated Modules as
of Release 2.0.0DescriptionModule Name

junos_cliExecute CLI commands on the device running JunosOS
and save the output locally.

juniper_junos_command

junos_commit

junos_get_config

junos_install_config

junos_rollback

Manage the configuration of devices running Junos OS.juniper_junos_config

junos_get_factsRetrieve device-specific information from the remote
host, including the JunosOS version, serial number, and
hardware model number.

juniper_junos_facts

junos_jsnapyExecute Junos Snapshot Administrator in Python
(JSNAPy) tests from Ansible.

juniper_junos_jsnapy

junos_pingExecute the ping command on devices running Junos
OS.

juniper_junos_ping

junos_pmtudPerform path MTU discovery on devices running Junos
OS.

juniper_junos_pmtud

junos_rpcExecute Junos OS RPCs.juniper_junos_rpc

junos_install_osInstall a JunosOS software package and reboot a device
running Junos OS.

juniper_junos_software

25

https://junos-ansible-modules.readthedocs.io/en/latest/

Table 6: Juniper.junos Role Modules (continued)

Deprecated Modules as
of Release 2.0.0DescriptionModule Name

junos_shutdown

junos_zeroize

Perform system operations on devices running Junos
OS, including resetting, rebooting, or shutting down the
device.

juniper_junos_system

junos_srx_clusterCreate an SRX Series chassis cluster for cluster-capable
SRX Series Services Gateways running Junos OS.

juniper_junos_srx_cluster

junos_get_tableUse Junos PyEZ operational Tables andViews to retrieve
operational information from devices running JunosOS.

juniper_junos_table

Release History Table

DescriptionRelease

Starting in Juniper.junos Release 2.0.0, the Juniper.junos role includes an enhanced
set of modules.

2.0.0

RELATED DOCUMENTATION

Understanding Ansible for Junos OS | 16

Authenticating Users Executing Ansible Modules on Devices Running Junos OS | 51

Connecting to Devices Running Junos OS Using Ansible | 43

Understanding the Ansible Inventory File When
Managing Devices Running Junos OS

The Ansible inventory file defines the hosts and groups of hosts upon which commands, modules, and
tasks in a playbook operate. The file can be in one of many formats depending on your Ansible environment
and plugins. Common formats include INI and YAML. The default location for the inventory file is
/etc/ansible/hosts. You can also create project-specific inventory files in alternate locations.

The inventory file can list individual hosts or user-defined groups of hosts. This enables you to define
groups of devices running Junos OS with similar roles upon which to perform the same operational and

26

configuration tasks. For example, if you are managing one or more data centers, you can create Ansible
groups for those switches that require the same set of operations, such as upgrading JunosOS and rebooting
the device.

In order to manage devices running Junos OS using Ansible, you must have a Junos OS login account with
appropriate access privileges on each device where Ansible modules are executed. You must ensure that
usernames and passwords or access keys exist for each host in the file.

The following INI-formatted sample inventory file defines an individual host, host1, and two groups of
hosts, routers and switches:

host1.example.net

[routers]

router1.example.net

router2.example.net

[switches]

switch1.example.net

switch2.example.net

For more information about the Ansible inventory file, see the official Ansible documentation at
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html .

RELATED DOCUMENTATION

Understanding Ansible for Junos OS | 16

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 19

Authenticating Users Executing Ansible Modules on Devices Running Junos OS | 51

Creating and Executing Ansible Playbooks to Manage Devices Running Junos OS | 28

Troubleshooting Ansible Connection Errors When Managing Devices Running Junos OS | 200

27

https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html

Creating and Executing Ansible Playbooks toManage
Devices Running Junos OS

IN THIS SECTION

Creating a Playbook | 29

Executing the Playbook | 33

SUMMARY

You can create Ansible playbooks that execute Juniper
Networks modules to perform operational and
configuration tasks on devices running Junos OS.

Juniper Networks supports using Ansible to manage devices running Junos OS, and Ansible and Juniper
Networks provide Ansible modules that enable you to perform operational and configuration tasks on the
devices. This topic outlines how to create a simple Ansible playbook to execute Juniper Networksmodules
on devices running Junos OS.

You create Ansible playbooks to handle more complex management tasks. Playbooks consist of one or
more plays, or groups of tasks, that operate on a set of defined hosts. Ansible hosts that are referenced
in the playbookmust be defined in the Ansible inventory file, which by default resides at /etc/ansible/hosts.
Each play must specify:

• The hosts on which the tasks operate

• The list of tasks to execute on each host

• Any required variables or module parameters, including authentication parameters, if these are not
defined elsewhere

The Juniper Networks Ansible modules are distributed through the juniper.device collection and the
Juniper.junos role, which are hosted on Ansible Galaxy. To use the Juniper Networks modules in your
playbook, you must install the collection or role on the Ansible control node and include the collection or
role in the playbook. For more information about the Juniper Networks collection, role, and modules, see
“Understanding the Ansible for Junos OS Collections, Roles, and Modules” on page 19.

The Juniper Networks modules do not require Python on devices running Junos OS, because they use
Junos PyEZ and the Junos XML API over NETCONF to interface with the device. Therefore, to perform
operations on devices running Junos OS, youmust run modules locally on the Ansible control node, where
Python is installed. You can run the modules locally by including connection: local in the playbook play.
When you use connection: local, Ansible establishes a separate connection to the host for each task in
the play that requires a connection. The juniper.device collection modules also support

28

https://galaxy.ansible.com

connection: juniper.device.pyez, which still executes the modules locally on the Ansible control node but
instead establishes a connection to the host that persists over the execution of all tasks in a play.

By default, Ansible plays automatically gather system facts from the remote host. However, when you
execute the plays locally, Ansible gathers the facts from the Ansible control node instead of the remote
host. To avoid gathering facts for the control node, include gather_facts: no in the playbook.

When you execute the Juniper Networks modules using a NETCONF session over SSH, which is the
default, you must have NETCONF enabled on the device running Junos OS. We recommend that you
create a simple task in the playbook that explicitly tests whether NETCONF is enabled on each device
before executing other tasks. If this task fails for any host, by default, Ansible does not execute the remaining
tasks for this host. Without this test, you might get a generic connection error during playbook execution
that does not indicate whether this or another issue is the cause of any failures.

Playbooks are expressed in YAML. Because YAML is white-space sensitive and indentation is significant,
you should always use spaces rather than tabs when creating playbooks. In YAML, items preceded by a
hyphen (-) are considered list items, and the key: value notation represents a hash. For detailed information
about creating Ansible playbooks, refer to the official Ansible documentation at
https://docs.ansible.com/ansible/latest/user_guide/playbooks.html .

The following sections outline the steps for creating and running a simple playbook that executes Ansible
modules on a device running Junos OS.

Creating a Playbook

To create a simple playbook to perform tasks on devices running Junos OS:

1. In your favorite editor, create a new file with a descriptive playbook name that uses the .yaml file
extension.

2. Include three dashes to indicate the start of the YAML document.

3. Provide a descriptive name for the play.

- name: Get Device Facts

4. Define a colon-delimited list of the hosts or groups of hosts on which the modules will operate, or
specify all to indicate all hosts in the inventory file.

29

https://docs.ansible.com/ansible/latest/user_guide/playbooks.html

Any hosts or groups referenced in the playbook must be defined in the Ansible inventory file.

- name: Get Device Facts

 hosts: dc1

5. Instruct Ansible to execute the play’s tasks locally on the Ansible control nodewhere Python is installed,
because there is no requirement for Python on devices running Junos OS.

• Include connection: local to execute tasks locally but establish a separate connection to the host for
each task in the play that requires a connection.

- name: Get Device Facts

 hosts: dc1

 connection: local

• Include connection: juniper.device.pyez to execute tasks locally but establish a persistent connection
to the host that persists over the execution of all tasks in the play. This connection type is only
supported by the juniper.device collection modules.

- name: Get Device Facts

 hosts: dc1

 connection: juniper.device.pyez

The remaining steps use connection: local. To use the juniper.device collectionmoduleswith a persistent
connection, update the final playbook to use connection: juniper.device.pyez.

6. (Optional) Include gather_facts: no to avoid gathering facts for the target host, which for local
connections is the Ansible control node.

- name: Get Device Facts

 hosts: dc1

 connection: local

 gather_facts: no

7. Include the juniper.device collection or the Juniper.junos role, as appropriate for your Ansible setup.

• OnAnsible control nodes running Ansible 2.10 or later that have the juniper.device collection installed,
include the collection.

30

- name: Get Device Facts

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

NOTE: You can omit the collections key and instead reference collection content by its
fully qualified collection name (FQCN),

• On Ansible control nodes that have the Juniper.junos role installed, include the role.

- name: Get Device Facts

 hosts: dc1

 connection: local

 gather_facts: no

 roles:

 - Juniper.junos

The remaining steps use the juniper.device collection and module names. To use the Juniper.junos
role, update the final playbook to use the role and role module names.

8. Define a tasks section, and include one or more tasks as list items.

- name: Get Device Facts

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

9. (Optional) As an additional check, create a task to verify NETCONF connectivity for each device running
Junos OS.

31

- name: Get Device Facts

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Checking NETCONF connectivity

 wait_for:

 host: "{{ inventory_hostname }}"

 port: 830

 timeout: 5

10.Create tasks that use the Juniper Networks modules, and provide any necessary connection or
authentication parameters.

This example uses existing SSH keys in the default location and does not explicitly provide credentials
for the facts module in the playbook.

- name: Get Device Facts

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Checking NETCONF connectivity

 wait_for:

 host: "{{ inventory_hostname }}"

 port: 830

 timeout: 5

 - name: Retrieving information from devices running Junos OS

 facts:

 savedir: "{{ playbook_dir }}/output"

 - name: Print version

32

 debug:

 var: junos.version

11. (Optional) Define additional plays as needed by repeating steps 3 through 10.

Executing the Playbook

To execute the playbook:

• Issue the ansible-playbook command on the control node, and provide the playbook path and any desired
options.

user@ansible-cn:~$ ansible-playbook junos-get-facts.yaml

PLAY [Get Device Facts] ***

TASK [Checking NETCONF connectivity] **************************************

ok: [dc1a.example.net]

TASK [Retrieving information from devices running Junos OS] ***************

ok: [dc1a.example.net]

TASK [Print version] **

ok: [dc1a.example.net] => {

 "junos.version": "19.4R1.10"

}

PLAY RECAP **

dc1a.example.net : ok=3 changed=0 unreachable=0 failed=0 skipped=0

 rescued=0 ignored=0

RELATED DOCUMENTATION

Understanding Ansible for Junos OS | 16

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 19

Understanding the Ansible Inventory File When Managing Devices Running Junos OS | 26

Authenticating Users Executing Ansible Modules on Devices Running Junos OS | 51

33

3
CHAPTER

Installing Ansible for Junos OS

Ansible for Junos OS Server Requirements | 35

Setting up Ansible for Junos OS Managed Nodes | 38

Ansible for Junos OS Server Requirements

Juniper Networks supports using Ansible to manage devices running Junos OS and provides Ansible
modules that you can use to perform operational and configuration tasks on the devices. The Juniper
Networks modules are distributed through the following Ansible collections and roles that are hosted on
the Ansible Galaxy website:

• juniper.device collection

• Juniper.junos role

Ansible supports Ansible Content Collections, or collections, starting in Ansible 2.10.With the introduction
of the juniper.device collection, the modules in the Juniper.junos role were duplicated under new names
in the collection and thus retain the same functionality and parameters as the original modules, with the
exception of the provider parameter. Although the Juniper.junos role can coexist with the juniper.device
collection andwill work in later releases, new features are only being added to the juniper.device collection
going forward.

You install Ansible on a control node with a Unix-like operating system. You can install Ansible and the
Juniper Networks collection or role directly on the control node or you can use a Docker container. The
Juniper Networks juniper/pyez-ansible Docker image is a lightweight, self-contained system that bundles
Ansible, the Juniper Networks modules, and all dependencies into a single portable container. The Docker
container enables you to quickly run Ansible in interactive mode or as an executable package on any
platform that supports Docker.

Tomanually install Ansible, the juniper.device collection or Juniper.junos role, and any prerequisite software
on the Ansible control node, see the following sections:

• Prerequisite Software on page 36

• Installing the juniper.device Collection and the Juniper.junos Role on page 36

35

https://galaxy.ansible.com
https://galaxy.ansible.com/juniper/device
https://galaxy.ansible.com/juniper/junos
https://hub.docker.com/r/juniper/pyez-ansible/tags/

To use the Ansible for Junos OS Docker image, see the following section:

• Using the Ansible for Junos OS Docker Image on page 37

Prerequisite Software

Before you install the Juniper Networks juniper.device collection or Juniper.junos role and begin using
Ansible to manage devices running Junos OS, ensure that the Ansible control node has the following
software installed:

• Python 3.7 or later (Recommended version is Python 3.8)

• Ansible 2.5 or later (Ansible 2.10 or later is required to use Ansible collections)

• Junos PyEZ (junos-eznc) Release 2.6.0 or later.

For installation instructions and current information about Junos PyEZ, see:

• Junos PyEZ documentation

• Junos PyEZ GitHub repository

• The jxmlease Python module.

• The xmltodict Python module (required for the juniper.device collection).

• Junos Snapshot Administrator in Python (JSNAPy) Release 1.3.6 or later (required to use the jsnapy and
juniper_junos_jsnapy modules).

For installation instructions and current information about JSNAPy, see:

• JSNAPy GitHub repository

• Junos Snapshot Administrator in Python Documentation

Installing the juniper.device Collection and the Juniper.junos Role

Ansible control nodes running Ansible 2.9 or earlier only support installing the Juniper.junos role. On
Ansible control nodes running Ansible 2.10 or later, you can install and use the juniper.device collection
or the Juniper.junos role. However, we recommend migrating playbooks to use the collection.

• To install the juniper.device collection from the Ansible Galaxy website, issue the ansible-galaxy
collection install command and specify the juniper.device collection.

user@ansible-cn:~$ ansible-galaxy collection install juniper.device

36

https://www.juniper.net/documentation/product/en_US/junos-pyez
https://github.com/Juniper/py-junos-eznc
https://pypi.org/project/jxmlease/
https://pypi.org/project/xmltodict/
https://github.com/Juniper/jsnapy#installation
https://www.juniper.net/documentation/en_US/junos-snapshot1.0/information-products/pathway-pages/product/1.0/index-python.html
https://galaxy.ansible.com/

Starting galaxy collection install process

Process install dependency map

Starting collection install process

Installing 'juniper.device:1.0.0' to

'/home/user/.ansible/collections/ansible_collections/juniper/device'

Downloading https://galaxy.ansible.com/download/juniper-device-1.0.0.tar.gz to

 /home/user/.ansible/tmp/ansible-local-23916uzdfbjsk/tmp4nhxnw3v

juniper.device (1.0.0) was installed successfully

• To install the Juniper.junos role from the Ansible Galaxy website, issue the ansible-galaxy install
command and specify the Juniper.junos role.

user@ansible-cn:~$ sudo ansible-galaxy install Juniper.junos

- downloading role 'junos', owned by Juniper

- downloading role from

https://github.com/Juniper/ansible-junos-stdlib/archive/2.4.3.tar.gz

- extracting Juniper.junos to /etc/ansible/roles/Juniper.junos

- Juniper.junos (2.4.3) was installed successfully

Using the Ansible for Junos OS Docker Image

Docker is a software container platform that is used to package and run an application and its dependencies
in an isolated container. Juniper Networks provides Docker images, which are automatically built for every
new release of the Juniper Networks modules. The Docker image includes Python 3, Ansible, Junos PyEZ,
the Juniper.junos role and the juniper.device collection (depending on the release), and Junos Snapshot
Administrator in Python along with any required dependencies. You can run the container in interactive
mode or use the container as an executable to run your playbooks.

To use the Ansible for Junos OS Docker image on your Ansible control node:

1. Install Docker.

See the Docker website at https://www.docker.com for instructions on installing and configuring
Docker on your specific operating system.

2. Download the juniper/pyez-ansible Docker image from Docker Hub.

• To download the latest image, issue the following command:

user@host:~$ docker pull juniper/pyez-ansible

37

https://galaxy.ansible.com/
https://hub.docker.com/r/juniper/pyez-ansible/tags/
https://www.docker.com
https://hub.docker.com/r/juniper/pyez-ansible/tags/

NOTE: The latest Ansible for Junos OS Docker image is built using the most recently
committed code in the Juniper/ansible-junos-stdlib GitHub source repository, which is
under active development and might not be stable.

• To download a specific image, append the appropriate release tag to the image name, for example,
2.0.0.

user@host:~$ docker pull juniper/pyez-ansible:tag

3. Run the container.

For instructions on running the container, see the official usage examples at
https://github.com/Juniper/ansible-junos-stdlib/blob/master/README.md#docker.

RELATED DOCUMENTATION

Setting up Ansible for Junos OS Managed Nodes | 38

Understanding Ansible for Junos OS | 16

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 19

Setting up Ansible for Junos OS Managed Nodes

Juniper Networks supports using Ansible to manage devices running Junos OS and provides Ansible
modules that you can use to perform operational and configuration tasks on the devices. You do not need
to install any client software on the remote nodes in order to use Ansible to manage the devices. Also,
Python is not required on the managed devices running Junos OS, because the Juniper Networks modules
are executed locally on theAnsible control node and use Junos PyEZ and the Junos XMLAPI overNETCONF
to perform the corresponding operational and configuration tasks.

You can execute Ansible for Junos OS modules using any user account that has access to the managed
device running Junos OS. When you execute Ansible modules, Junos OS user account access privileges
are enforced. The class configured for the Junos OS user account determines the permissions. Thus, if a
user executes a module that loads configuration changes onto a device, the user must have permissions
to change the relevant portions of the configuration. For information about configuring user accounts on
devices running Junos OS, see the User Access and Authentication Administration Guide.

38

https://github.com/Juniper/ansible-junos-stdlib
https://github.com/Juniper/ansible-junos-stdlib/blob/master/README.md#docker

Juniper Networks provides modules that enable you to connect to devices running Junos OS using
NETCONFover SSHor telnet. Tomanage devices through aNETCONF session over SSH, youmust enable
the NETCONF service over SSH on the managed device and ensure that the device meets requirements
for SSHv2 connections. The modules also enable you to telnet to the device’s management interface or
to a console server that is directly connected to the device’s CONSOLE port. To use Ansible to telnet
directly to the device’s management interface, you must configure the Telnet service on the managed
device.

The following sections outline the requirements and required configuration on devices running Junos OS
when you use Ansible to access the device using the different connection protocols.

1. Enabling NETCONF on Devices Running Junos OS | 39

2. Satisfying Requirements for SSHv2 Connections | 39

3. Configuring Telnet Service on Devices Running Junos OS | 40

Enabling NETCONF on Devices Running Junos OS

To enable NETCONF over SSH on the default port (830) on a device running Junos OS:

1. Configure the NETCONF-over-SSH service.

[edit system services]
user@host# set netconf ssh

2. Commit the configuration.

[edit system services]
user@host# commit

Satisfying Requirements for SSHv2 Connections

The NETCONF server communicates with client applications within the context of a NETCONF session.
The server and client explicitly establish a connection and session before exchanging data, and close the
session and connection when they are finished. The Ansible for Junos OS modules access the NETCONF
server using the SSH protocol and standard SSH authentication mechanisms. When you use Ansible to
manage devices running Junos OS, the most convenient way to access a device is to configure SSH keys.

39

To establish an SSHv2 connection with a device running Junos OS, you must ensure that the following
requirements are met:

• TheNETCONF service over SSH is enabled on each devicewhere aNETCONF sessionwill be established.

• The client application has a user account and can log in to each device where a NETCONF session will
be established.

• The login account used by the client application has an SSH public/private key pair or a text-based
password configured.

• The client application can access the public/private keys or text-based password.

For information about enabling NETCONF on a device running Junos OS and satisfying the requirements
for establishing an SSH session, see the NETCONF XML Management Protocol Developer Guide.

Configuring Telnet Service on Devices Running Junos OS

The Juniper Networks Ansible modules can telnet directly to a device running Junos OS. To telnet to a
device running Junos OS, you must configure the Telnet service on the device. Configuring Telnet service
for a device enables unencrypted, remote access to the device.

NOTE: Because telnet uses clear-text passwords (therefore creating a potential security
vulnerability), we recommend that you use SSH.

To enable the Telnet service:

1. Configure the service.

[edit system services]
user@host# set telnet

2. (Optional) Configure the connection limit, rate limit, and order of authentication, as necessary.

[edit system services]
user@host# set telnet connection-limit connection-limit
user@host# set telnet rate-limit rate-limit
user@host# set telnet authentication-order [radius tacplus password]

3. Commit the configuration.

40

[edit system services]
user@host# commit

RELATED DOCUMENTATION

Ansible for Junos OS Server Requirements | 35

Understanding Ansible for Junos OS | 16

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 19

41

4
CHAPTER

Using Ansible to Connect to Devices
Running Junos OS

Connecting to Devices Running Junos OS Using Ansible | 43

AuthenticatingUsers Executing AnsibleModules onDevices Running JunosOS | 51

Connecting to Devices Running Junos OS Using
Ansible

IN THIS SECTION

Connection Methods Overview | 43

Understanding Local and Persistent Ansible
Connections | 45

Connecting to a Device Using SSH | 46

Connecting to a Device Using Telnet | 49

Connecting to a Device Using a Serial Console
Connection | 50

SUMMARY

Juniper Networks’ Ansible modules enable you to
connect to devices running JunosOS using SSH, telnet,
or serial console connections.

Juniper Networks provides Ansible modules that you can use to manage devices running Junos OS. The
Juniper Networksmodules are distributed through the juniper.device collection and the Juniper.junos role,
which are hosted on Ansible Galaxy. Themodules can connect to devices running JunosOS using different
protocols and Ansible connections, which are described in this document.

Connection Methods Overview

The Juniper Networks Ansible modules enable you to connect to a device running Junos OS using SSH,
telnet, or a serial console connection. You must use a serial console connection when your terminal or
laptop is physically connected to the CONSOLE port on a device running Junos OS. You can use SSH or
telnet to connect to the device’s management interface or to a console server that is directly connected
to the device’s CONSOLE port.

New or zeroized devices that have factory-default configurations require access through a console
connection. Thus, you can use Ansible to initially configure a device that is not yet configured for remote
access by using either a serial console connection when you are directly connected to the device or by
using telnet or SSH through a console server that is directly connected to the device.

By default, the Juniper Networks modules use SSH to connect to a device. To use telnet or a serial console
connection, set themodule’smode parameter to the appropriate value. To telnet to a device, set themode
argument equal to "telnet". To use a serial console connection, set the mode argument equal to "serial".

43

https://galaxy.ansible.com/juniper/device
https://galaxy.ansible.com/juniper/junos
https://galaxy.ansible.com/Juniper

Table 7 on page 44 summarizes the connection modes, their default values for certain parameters, any
required JunosOS configuration, and the Juniper.junos release in which support for that connectionmode
was first introduced. The juniper.device modules support all connection modes as of their initial release.

Table 7: Connection Modes for the Juniper Networks Ansible Modules

First Supported
Release
(Juniper.junos)

Required Junos OS
ConfigurationDefault Port

Value of
mode
ArgumentConnection Mode

1.0.0[edit systemservices]
netconf {
ssh;

}

830–NETCONF over SSH (default)

2.0.0–/dev/ttyUSB0serialSerial console connection

2.2.0–22–SSH through a console server

1.4.0

Default port added in
2.0.0

[edit system
services]

telnet;

23telnetTelnet to device running
Junos OS

1.4.0–23telnetTelnet through a console
server

NOTE: Before you can access the management interface using telnet or NETCONF over SSH,
youmust first enable the appropriate service at the [edit system services] hierarchy level. Because
telnet uses clear-text passwords (therefore creating a potential security vulnerability), we
recommend that you use SSH.

When you execute the Juniper Networks modules to manage a device running Junos OS, the remote
device must be able to authenticate the Ansible user using credentials appropriate for the given protocol.
For more information, see “Authenticating Users Executing Ansible Modules on Devices Running Junos
OS” on page 51.

The JuniperNetworksmodules support different Ansible connectionswhen connecting to devices running
Junos OS, including local (per-task) connections and persistent (per-play) connections. The Ansible
connection determines whether Ansible establishes a separate connection to the host for each task in the
play or whether it establishes a single connection to a host that persists over all tasks in the play. For
information about specifying the Ansible connection, see “Understanding Local and Persistent Ansible
Connections” on page 45.

44

Understanding Local and Persistent Ansible Connections

The Juniper Networks modules do not require Python on devices running Junos OS because they use
Junos PyEZ and the Junos XML API over NETCONF to interface with the device. Therefore, to perform
operations on devices running Junos OS, youmust run modules locally on the Ansible control node, where
Python is installed. You can run the modules locally by including connection: local in the playbook play.
When you use connection: local, Ansible establishes a separate connection to the host for each task in
the play that performs operations on the host.

The juniper.device collection modules also support connection: juniper.device.pyez for establishing a
persistent connection to a host. When you use a persistent connection, Ansible still executes the modules
locally on the control node, but it only establishes and maintains a single connection to each host, which
persists over the execution of all tasks in the play. Establishing a persistent connection to a host can be
more efficient for executing multiple tasks than establishing a separate connection to the host for every
task in the play.

Table 8 on page 45 summarizes the Ansible connections and the content sets that support them.

Table 8: Ansible Connections Supported By Juniper Networks Modules

Content Set SupportDescriptionAnsible connection

juniper.device collection

Juniper.junos role

Execute the modules locally on the Ansible control
node but establish a separate connection to a host
for each task in the play that performs operations on
the host.

connection: local

juniper.device collectionExecute the modules locally on the Ansible control
node but establish a persistent connection to a host
that persists over the execution of all tasks in the play.

connection: juniper.device.pyez

NOTE: Ansible has deprecated connection: local. Therefore, when you use the juniper.device
collectionmodules, we recommend that you use connection: juniper.device.pyez in your playbook
to avoid issues in the event that Ansible removes support for local connections in a later release.

When you use connection: local, Ansible establishes a separate connection to a host for each module,
which means you can define module-specific connection and authentication parameters in the module’s
argument list. By contrast, when you use connection: juniper.device.pyez, the connection persists across
all tasks in the play, and thus you must define the connection and authentication parameters globally for
all modules. You can define the parameters in the vars: section of a play, in addition to providing them
through othermeans, for example, in an SSH configuration file or in the Ansible inventory file. For additional
details, see “Authenticating Users Executing Ansible Modules on Devices Running Junos OS” on page 51.

45

The following playbook establishes a persistent connection to each host that is used for all tasks in the
play. The user’s credentials, which are stored in an Ansible vault file, are defined in the play’s vars: section.

- name: Get Device Information

 hosts: dc1

 connection: juniper.device.pyez

 gather_facts: no

 collections:

 - juniper.device

 vars:

 user: "{{ admin_username }}"

 passwd: "{{ admin_password }}"

 vars_files:

 - vault-vars.yaml

 tasks:

 - name: Retrieve facts from devices running Junos OS

 facts:

 savedir: "{{ playbook_dir }}"

 - name: Get hardware inventory

 command:

 commands: "show chassis hardware"

 dest_dir: "{{ playbook_dir }}"

Connecting to a Device Using SSH

The Juniper Networks Ansible modules support using SSH to connect to a device running Junos OS. You
can establish a NETCONF session over SSH on the device’s management interface or you can establish
an SSH connection with a console server that is directly connected to the device’s CONSOLE port. The
SSH server must be able to authenticate the user using standard SSH authentication mechanisms, as
described in “Authenticating Users Executing AnsibleModules on Devices Running Junos OS” on page 51.
To establish a NETCONF session over SSH, you must also satisfy the requirements outlined in “Setting up
Ansible for Junos OS Managed Nodes” on page 38.

The Juniper Networks modules automatically query the default SSH configuration file at ~/.ssh/config, if
one exists, unless the ssh_config parameter specifies a different configuration file. When using SSH to
connect to a device running Junos OS or to a console server connected to the device, the modules first
attempt SSH public key-based authentication and then try password-based authentication. When

46

password-based authentication is used, the supplied password is used as the device password.When SSH
keys are in use, the supplied password is used as the passphrase for unlocking the private key. If the SSH
private key has an empty passphrase, then a password is not required. However, SSH private keys with
empty passphrases are not recommended.

The following playbook establishes a NETCONF session over SSH with a device running Junos OS and
retrieves the device facts. The playbook uses SSH keys in the default location.

- name: Get Device Facts

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Retrieve facts from devices running Junos OS

 facts:

 savedir: "{{ playbook_dir }}"

 - name: Print version

 debug:

 var: junos.version

The Juniper Networks Ansible modules also enable you to connect to a device running Junos OS through
an SSH connection to a console server. In this case, you must specify the login credentials for both the
device running JunosOS and the console server. Use the user and passwd parameters to specify the Junos
OS login credentials, and use the cs_user and cs_passwd parameters to specify the console server
credentials. When SSH keys are in use, cs_passwd is the passphrase for the private key.

The following playbook prompts for the user’s credentials for the console server and the device running
Junos OS. The module authenticates with the console server and then the device running Junos OS. If
authentication is successful, the playbook then retrieves the device facts from the managed node and
prints the Junos OS version.

- name: Get Device Facts

 hosts: dc1_con

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 vars_prompt:

47

 - name: "CS_USER"

 prompt: "Console server username"

 private: no

 - name: "CS_PASSWORD"

 prompt: "Console server password"

 private: yes

 - name: "JUNOS_USER"

 prompt: "Junos OS username"

 private: no

 - name: "JUNOS_PASSWORD"

 prompt: "Junos OS password"

 private: yes

 tasks:

 - name: Retrieve facts from devices running Junos OS

 facts:

 cs_user: "{{ CS_USER }}"

 cs_passwd: "{{ CS_PASSWORD }}"

 user: "{{ JUNOS_USER }}"

 passwd: "{{ JUNOS_PASSWORD }}"

 savedir: "{{ playbook_dir }}"

 - name: Print version

 debug:

 var: junos.version

The JuniperNetworksmodules automatically query the default SSH client configuration file at ~/.ssh/config,
if it exists. You can use a different SSH configuration file by including the ssh_config parameter and
specifying the location of the configuration file. For example:

- name: Get Device Facts

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Retrieve facts from devices running Junos OS

 facts:

ssh_config: "/home/admin/.ssh/config_dc"

 savedir: "{{ playbook_dir }}"

 - name: Print version

48

 debug:

 var: junos.version

Connecting to a Device Using Telnet

The Juniper Networks modules enable you to connect to a device running Junos OS using telnet, which
provides unencrypted access to the network device. You can telnet to the device’s management interface
or to a console server that is directly connected to the device’s CONSOLE port. Accessing the device
through a console server enables you to initially configure a newor zeroized device that is not yet configured
for remote access. To telnet to the management interface, you must configure the Telnet service at the
[edit system services] hierarchy level on all devices that require access to the interface.

To telnet to the remote device, set themode parameter to "telnet" and optionally include the port parameter
to specify a port. When you setmode to "telnet" but omit the port parameter, the value for port defaults
to 23. For persistent connections, define mode and port under the vars: section. For local connections,
you can define the parameters either under the vars: section or as module arguments.

The following playbook telnets to a device running Junos OS using port 7016, retrieves the device facts,
and saves them to a file. The module uses the default user and prompts for the login password.

- name: Get Device Facts

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 vars_prompt:

 - name: "DEVICE_PASSWORD"

 prompt: "Device password"

 private: yes

 tasks:

 - name: Retrieve facts from devices running Junos OS

 facts:

 passwd: "{{ DEVICE_PASSWORD }}"

 mode: "telnet"

 port: "7016“

 savedir: "{{ playbook_dir }}"

 - name: Print version

49

 debug:

 var: junos.version

Connecting to a Device Using a Serial Console Connection

The Juniper Networks modules enable you to connect to a device running Junos OS using a serial console
connection, which is useful when you must initially configure a new or zeroized device that is not yet
configured for remote access. To use this connection method, your terminal or laptop must be physically
connected to the device running Junos OS through the CONSOLE port. For detailed instructions about
connecting to the CONSOLE port on a device running Junos OS, see the hardware documentation for
your specific device.

To connect to a device running Junos OS through a serial console connection, set the module’s mode
parameter to "serial", and optionally include the port parameter to specify a port. When you setmode to
"serial" but omit the port parameter, the value for port defaults to /dev/ttyUSB0. For persistent connections,
definemode and port under the vars: section. For local connections, you can define the parameters either
under the vars: section or as module arguments.

The following playbook connects to a device running Junos OS through theCONSOLE port and then loads
and commits an initial configuration. Themodule uses the default user and prompts for the login password.

- name: Load Initial Configuration

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 vars_prompt:

 - name: "DEVICE_PASSWORD"

 prompt: "Device password"

 private: yes

 tasks:

 - name: Load initial configuration and commit

 config:

 passwd: "{{ DEVICE_PASSWORD }}"

 mode: "serial"

 load: "merge"

 src: "configs/junos.conf"

50

 register: response

 - name: Print the response

 debug:

 var: response

RELATED DOCUMENTATION

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 19

Authenticating Users Executing Ansible Modules on Devices Running Junos OS | 51

Authenticating Users Executing Ansible Modules on
Devices Running Junos OS

IN THIS SECTION

Authentication Overview | 51

Understanding the Default Values for Juniper Networks Modules | 53

How to Define Authentication Parameters in the vars: Section for Local and Persistent Connections | 54

How to Define the provider Parameter in Juniper.junos Modules | 55

How to Authenticate the User Using SSH Keys | 57

How to Authenticate the User Using a Playbook or Command-Line Password Prompt | 59

How to Authenticate the User Using an Ansible Vault-Encrypted File | 61

How to Authenticate Through a Console Server | 63

Authentication Overview

Juniper Networks provides Ansible modules that you can use to manage devices running Junos OS. The
Juniper Networks modules are distributed through the juniper.device collection and the Juniper.junos
role, which are hosted on Ansible Galaxy.

51

https://galaxy.ansible.com/Juniper

The Juniper Networks modules enable you to directly connect to and manage devices running Junos OS
using SSH, telnet, or a serial console connection. The modules also support connecting to the device
through an SSH or telnet connection to a console server that is connected to the device’s CONSOLE port.
The remote device must be able to authenticate the user using a password or other standard SSH
authentication mechanisms, depending on the connection protocol.

When you use Ansible tomanage devices running JunosOS, themost convenient way to access the device
is to configure SSH keys. SSH keys enable the remote device to identify trusted users. Alternatively, you
can provide a username and password when you execute modules and playbooks.

For SSH connections, the Juniper Networks modules first attempt SSH public key-based authentication
and then try password-based authentication. When SSH keys are in use, the supplied password is used as
the passphrase for unlocking the private SSH key. When password-based authentication is used, the
supplied password is used as the device password. If SSH public key-based authentication is being used
and the SSH private key has an empty passphrase, then a password is not required. However, SSH private
keys with empty passphrases are not recommended. To retrieve a password for password-based
authentication or password-protected SSH keys, you can prompt for the password from the playbook or
command-line, or you can create a vault-encrypted data file that securely stores the password.

You can specify connection and authentication parameters for the Juniper Networks modules in the
followingways. If you do not explicitly define the values, default values are used in some cases, as described
in “Understanding theDefault Values for JuniperNetworksModules” on page 53. If you define a parameter’s
value inmultiple places, Ansible selects the value based on variable precedence, as outlined in Understanding
variable precedence in the official Ansible docs.

• Ansible variables—You can specify the connection and authentication parameter values by using normal
Ansible variables, for example, variables defined in inventory or vault files, in host or group variables, or
using command-line options.

• SSH client configuration file—For SSH connections, the Juniper Networks modules automatically query
the default SSH configuration file at ~/.ssh/config, if one exists, unless you define the ssh_config option
to specify a different configuration file. The modules use any relevant settings in the SSH configuration
file for the given connection, unless you explicitly define variables that override the setting.

• Module arguments—The juniper.device and Juniper.junos modules support specifying connection and
authentication-related options for local connections (connection: local) as top-level module arguments.
Additionally, Juniper.junos modules support using a provider dictionary in the module arguments as
described in “How to Define the provider Parameter in Juniper.junos Modules” on page 55.

• vars: section—The juniper.device modules support specifying connection and authentication-related
options for local and persistent connections in a play’s vars: section, which is described in “How toDefine
Authentication Parameters in the vars: Section for Local and Persistent Connections” on page 54.

This document discusses the different aspects of authenticationwhen using the Juniper Networksmodules
to manage devices running Junos OS.

52

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#understanding-variable-precedence
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#understanding-variable-precedence

Understanding the Default Values for Juniper Networks Modules

You can explicitly define the connection and authentication parameters for modules that manage devices
running Junos OS. If you do not define a parameter, the module uses a default value in some cases.
Table 9 on page 53 outlines the default values and variable precedence for common connection parameters
for modules in the juniper.device collection and Juniper.junos role. For information about the arguments
accepted for the individual modules, see the API reference documentation for that module.

Table 9: Default Values and Variable Precedence for Connection Parameters

Default Value and Variable
PrecedenceDescription

Parameter
AliasesParameter Name

{{ inventory_hostname }}Hostname or IP address of the remote
device with which the connection should
be established.

hostname

ip

host

1. ANSIBLE_NET_PASSWORD
environment variable

2. Value specified for -k or
--ask-pass command-line
option

The user’s password or SSH key passphrase
used to authenticate with the managed
device.

passwordpasswd

~/.ssh/configPath to an SSH client configuration file.

If you omit this parameter, the modules
uses the SSH configuration file in the
default location, if one exists.

–ssh_config

1. ANSIBLE_NET_SSH_KEYFILE
environment variable

2. Value specified for
--private-key or --key-file
command-line option

3. none

Path to the SSH private key file used to
authenticate with the remote device.

If you do not explicitly specify the path and
no default value is found, then the module
uses the SSH private key file specified in
the user’s SSH configuration or the
operating-system-specific default.

ssh_keyfilessh_private_key_file

1. ANSIBLE_NET_USERNAME
environment variable

2. remote_user as defined by
Ansible

3. USER environment variable

Username that is used to authenticatewith
the managed node.

usernameuser

53

When executing Juniper Networks modules, the host argument is always required for a connection.
However, you do not have to explicitly specify the host, because it defaults to {{ inventory_hostname }}.

You can execute Juniper Networks modules using any user account that has access to themanaged device
running Junos OS.When you execute the modules, Junos OS user account access privileges are enforced,
and the class configured for the Junos OS user account determines the permissions. If you do not specify
a user, the user is set according to the algorithm described for user in Table 9 on page 53. See the Ansible
documentation for the precedence used to define remote_user, which can be defined in a number of ways,
including:

• -u or --user command line option

• ANSIBLE_REMOTE_USER environment variable

• remote_user configuration setting

How to Define Authentication Parameters in the vars: Section for Local
and Persistent Connections

You can define connection and authentication parameters for the juniper.device modules in the play’s
vars: section, in addition to defining them as you normally would through other variables, for example, in
the SSH configuration file, in the Ansible inventory file, as command-line arguments, or asmodule arguments.
The vars: section enables you to define common connection parameters in a single location that all modules
in the play can use to connect to a host. Additionally, certain Ansible connections require using the vars:
section when you define the parameters within the play, as described here.

The juniper.device modules support the following Ansible connections types:

• local connections, which are defined by using connection: local

• persistent connections, which are defined by using connection: juniper.device.pyez

For both local and persistent connections, Ansible executes modules locally on the control node. When
you use connection: local, Ansible establishes a separate connection to the host for each task in the play
that requires a connection. By contrast, when you use connection: juniper.device.pyez, Ansible establishes
a single, persistent connection to a host, which persists over the execution of all tasks in the play.

NOTE: Ansible has deprecated connection: local. Therefore, when you use the juniper.device
collectionmodules, we recommend that you use connection: juniper.device.pyez in your playbook
to avoid issues in the event that Ansible removes support for local connections in a later release.

54

You use the same connection and authentication parameters for persistent connections as you do for local
connections, and the default parameter values discussed in “Understanding the Default Values for Juniper
NetworksModules” on page 53 apply to both types of connections. However, when you define connection
and authentication parameters within a play for persistent connections, you must define the parameters
in the vars: section as opposed to defining the parameters as top-level module arguments in each task
because there is only a single connection, and thus the parameters must apply to all tasks in that play. For
local connections, you can define the parameters either in the vars: section or as module arguments. If
you define the parameters in both places, the module arguments take precedence.

The following playbook executes two juniper.device modules on each host in the inventory group. The
play defines the Ansible connection as juniper.device.pyez, which establishes a connection to each host
that persists over the execution of all tasks in the play. The authentication parameters for the persistent
connection are defined within the play’s vars: section. The user and passwd values reference variables
defined in the vault-vars.yaml vault file.

- name: Get Device Facts

 hosts: dc1

 connection: juniper.device.pyez

 gather_facts: no

 vars:

 user: "{{ admin_username }}"

 passwd: "{{ admin_password }}"

 vars_files:

 - vault-vars.yaml

 tasks:

 - name: Retrieve facts from devices running Junos OS

 juniper.device.facts:

 savedir: "{{ playbook_dir }}"

 - name: Get hardware inventory

 juniper.device.command:

 commands: "show chassis hardware"

 dest_dir: "{{ playbook_dir }}"

How to Define the provider Parameter in Juniper.junos Modules

Starting in Juniper.junos Release 2.0.0, the Juniper.junos modules support the provider parameter in
addition to supporting individual top-level module arguments for each of the connection and

55

authentication-related parameters. The provider parameter enables you to define the connection and
authentication parameters for multiple modules in one place and easily pass those values to the modules
that use them. Additionally, if you need to update the parameters later, you only need to make the update
in a single location.

NOTE: The juniper.device collection modules do not support using the provider parameter.

The provider argument accepts a dictionary that contains the connection details required to connect to
and authenticate with a device. The host argument is always required for a connection, but you do not
have to explicitly specify a value if the module uses the default value for host. The dictionary can optionally
define additional parameters required for the connection, including user, passwd, and ssh_private_key_file,
among others. For information about the arguments accepted for the individual modules, see the API
reference documentation for that module.

In the following example, the credentials variable is a dictionary that defines the host, user, and passwd
parameters:

vars:

 credentials:

 host: "{{ inventory_hostname }}"

 user: "{{ ansible_user }}"

 passwd: "{{ ansible_password }}"

The following sample playbook uses the single provider argument to pass the connection details to the
juniper_junos_factsmodule instead of defining individual module arguments. As you add additional tasks
that use the Juniper.junos modules, you can then reference the same dictionary for each module.

- name: Get Device Facts

 hosts: dc1

 connection: local

 gather_facts: no

 roles:

 - Juniper.junos

 vars:

 credentials:

 host: "{{ inventory_hostname }}"

 user: "{{ ansible_user }}"

 passwd: "{{ ansible_password }}"

56

 tasks:

 - name: Retrieve facts from devices running Junos OS

 juniper_junos_facts:

 provider: "{{ credentials }}"

 savedir: "{{ playbook_dir }}"

 - name: Print version

 debug:

 var: junos.version

How to Authenticate the User Using SSH Keys

IN THIS SECTION

Generating and Configuring the SSH Keys | 57

Using SSH Keys in Ansible Playbooks | 58

The Juniper Networks juniper.device and Juniper.junos modules enable you to use SSH keys to connect
to a device running Junos OS or to a console server that is connected to the device. To authenticate a user
using SSH keys, first generate the keys on the Ansible control node and then configure the keys on the
device to which the module will connect, either the managed device running Junos OS or the console
server connected to the device running Junos OS.

Generating and Configuring the SSH Keys

To generate SSH keys on the Ansible control node and configure the public key on the remote device:

1. On the Ansible control node, generate the public and private SSH key pair for the desired user, and
provide any required options, for example:

[user@localhost]$ cd ~/.ssh
[user@localhost .ssh]$ ssh-keygen -t rsa -b 4096
Enter file in which to save the key (/home/user/.ssh/id_rsa): id_rsa_dc
Enter passphrase (empty for no passphrase): *****
Enter same passphrase again: *****

2. (Optional) Load the key into the native SSH key agent. For example:

57

[user@localhost .ssh]$ ssh-add ~/.ssh/id_rsa_dc

3. Configure the public key on each device to which themodules will connect, which could include devices
running Junos OS or a console server connected to a device running Junos OS.

The easiest method to configure the public key on a device running Junos OS is to load a file that
contains the public key under the appropriate user account.

[edit]
[user@router]# set system login user username authentication load-key-file URL
[user@router]# commit

4. Verify that the key works by logging in to the device using the key.

[user@localhost]$ ssh -i ~/.ssh/id_rsa_dc router.example.com
Enter passphrase for key '/home/user/.ssh/id_rsa_dc':
user@router>

Using SSH Keys in Ansible Playbooks

After generating the SSH key pair and configuring the public key on the remote device, you can use the
key to connect to the device. The Juniper Networks modules automatically query the default SSH
configuration file at ~/.ssh/config, if one exists, unless you define the ssh_config option to specify a
different configuration file. The modules use any relevant settings in the SSH configuration file for the
given connection, unless you explicitly define variables that override the setting. In addition, the modules
automatically look for keys in the default location and keys that are actively loaded in an SSH key agent.

To define specific settings for SSH keys, you can include the appropriate arguments in your Ansible
playbook. Define the arguments in the location appropriate for your set of modules and Ansible connection,
for example, in the vars: section for plays that use the juniper.devicemodules with a persistent connection.
The arguments to include are determined by the location of the key, whether the key is actively loaded
into an SSH key agent, whether the key is password-protected, and whether the user’s SSH configuration
file already defines settings for that host.

• To connect to a device running Junos OS using SSH keys that are actively loaded into the native SSH
key agent or that are in the default location and do not have password protection, you do not need to
define any connection or authentication-related arguments, unless they differ from the default.

 juniper.device.facts:

 savedir: "{{ playbook_dir }}"

58

• To connect to a device running Junos OS using SSH keys that are not in the default location and do not
have password protection, set the ssh_private_key_file argument to the path of the SSH private key
file. For example:

 juniper.device.facts:

 ssh_private_key_file: "/home/user/.ssh/id_rsa_alternate"

 savedir: "{{ playbook_dir }}"

Alternatively, you can specify the path of the SSH private key by defining it in the SSH configuration
file; by setting the ANSIBLE_NET_SSH_KEYFILE environment variable; or by defining the --private-key
or --key-file command-line option when you execute the playbook.

• To connect to a device running Junos OS using a password-protected SSH key file, which is the
recommendedmethod, you can reference the SSH key file passphrase in the passwd argument or provide
the password by using normal Ansible variables or command-line options.

It is the user's responsibility to obtain the SSH key file passphrase in a secure manner appropriate for
their environment. It is best practice to either prompt for it during each invocation of the playbook or
store the variables using an encrypted vault rather than storing the credentials in an unencrypted format.
For example, you can execute the playbook with the --ask-pass command-line option and provide the
SSH key file passphrase when prompted, as shown here:

 juniper.device.facts:

 ssh_private_key_file: "/home/user/.ssh/id_rsa_dc"

 savedir: "{{ playbook_dir }}"

[user@localhost]$ ansible-playbook playbook.yaml --ask-pass

SSH password:

Formore information about using a prompt or encrypted vault file for the SSH key passphrase, see “How
to Authenticate the User Using a Playbook or Command-Line Password Prompt” on page 59 and “How
to Authenticate the User Using an Ansible Vault-Encrypted File” on page 61.

For instructions on using SSH keys to connect to a console server, see “How to Authenticate Through a
Console Server” on page 63.

HowtoAuthenticate theUserUsing aPlaybookorCommand-LinePassword
Prompt

To authenticate a user executing Ansible modules, you can prompt for the user’s credentials when you
execute the playbook. For example, you can define an interactive prompt in the playbook, or you can

59

execute the playbook with the -k or --ask-pass command-line option to prompt for the password. When
SSH keys are in use, the supplied password is used as the passphrase for unlocking the private SSH key.
When password-based authentication is used, the supplied password is used as the device password.

To define an interactive prompt in the playbook to obtain the user’s password or SSH key passphrase:

1. Include code under vars_prompt: that prompts for the user’s password or SSH key passphrase (and
optionally the username) and stores the value in a variable.

- name: Get Device Facts

 hosts: all

 connection: local

 gather_facts: no

 vars_prompt:

 - name: "USERNAME"

 prompt: "Username"

 private: no

 - name: "DEVICE_PASSWORD"

 prompt: "Device password"

 private: yes

2. Set the user and passwd parameters so each references its respective variable.

 tasks:

 - name: Retrieve facts from devices running Junos OS

 juniper.device.facts:

 user: "{{ USERNAME }}"

 passwd: "{{ DEVICE_PASSWORD }}"

 savedir: "{{ playbook_dir }}"

 - name: Print facts

 debug:

 var: junos.version

3. Execute the playbook, which prompts for the username and password and does not echo the password
on the command line, because the variable is set to private: yes.

[user@localhost]$ ansible-playbook playbook.yaml

User name: user

Device password:

60

Alternatively, you can execute a playbook with the -k or --ask-pass command-line option to prompt for
the password or passphrase. Consider the following playbook, which uses the default username:

- name: Get Device Facts

 hosts: all

 connection: local

 gather_facts: no

 tasks:

 - name: Retrieve facts from devices running Junos OS

 juniper.device.facts:

 savedir: "{{ playbook_dir }}"

 - name: Print facts

 debug:

 var: junos.version

Execute the playbook, and include the -k or --ask-pass command-line option, which prompts for the
password and does not echo the password on the command line.

[user@localhost]$ ansible-playbook playbook.yaml --ask-pass

SSH password:

PLAY [Get Device Facts] ***

...

How to Authenticate the User Using an Ansible Vault-Encrypted File

You can create an Ansible vault that securely stores saved passwords and other sensitive connection and
authentication values in an vault-encrypted data file. Your playbook can then reference those variables in
the location appropriate for your set of modules and Ansible connection type, for example, in the play’s
vars: section or as module arguments.

To create and use an Ansible vault file containing required variables, including passwords:

1. Create a vault-encrypted data file, and specify the password required to encrypt, decrypt, edit, and use
the data file.

[root@localhost]# ansible-vault create vault-vars.yaml

61

Vault password:
Confirm Vault password:

2. Define the required variables in the file and save it.

[root@localhost]# ansible-vault edit vault-vars.yaml
Vault password:

Vault variables

root_username: root

root_password: password

3. Verify that the file is encrypted.

[root@localhost]# cat vault-vars.yaml

$ANSIBLE_VAULT;1.1;AES256

31415961343966623035373532313264333633663764353763393066643131306565636463326634

3730326165666565356665343137313161234569336336640a653939633331663935376362376666

65653737653262363235353261626135312345663665396262376339623737366238653436306663

6430376633306339360a343065363331313532633036343866376330623634653538353132314159

3835

4. In the playbook, include the vault-encrypted variable file, and reference the required variables in the
location appropriate for your modules and Ansible connection type.

- name: Get Device Facts

 hosts: dc1

 connection: local

 gather_facts: no

 vars_files:

 - vault-vars.yaml

 tasks:

 - name: Retrieve facts from devices running Junos OS

 juniper.device.facts:

 user: "{{ root_username }}"

 passwd: "{{ root_password }}"

 savedir: "{{ playbook_dir }}"

62

 - name: Print version

 debug:

 var: junos.version

NOTE: If you instead define the actual user and passwd variables in the vault, the modules
pick them up automatically, and you do not need to explicitly define them in the playbook.

5. Execute the playbook with the --ask-vault-pass option, which prompts for the vault password.

[root@localhost]# ansible-playbook playbook-name.yaml --ask-vault-pass

Vault password:

PLAY [Get Device Facts] ***

...

How to Authenticate Through a Console Server

The Juniper Networks Ansiblemodules can connect to devices running JunosOS through a console server.
For SSH connections through a console server, you need to provide the authentication credentials for
both the console server and the device running Junos OS. You can provide either a device password or a
password-protected SSH key file for the console server authentication.

To connect to a device running Junos OS through a console server, you must provide the following
parameters in your playbook, if there is no default value or the default value is not appropriate:

• host—Console server hostname or IP address

• user and passwd—Junos OS login credentials

• cs_user—Console server username

• cs_passwd—Device password or SSH key file passphrase required to authenticate with the console
server

In the following example, the credentials for the Junos OS user and the console server user are defined
in an Ansible vault file. The vault variables are then referenced in the playbook. In this case, the cs_passwd
argument is the passphrase for the SSH key specified in the ssh_private_key_file argument.

63

- name: Get Device Facts

 hosts: dc1_con

 connection: local

 gather_facts: no

 vars_files:

 - vault-vars.yaml

 tasks:

 - name: Retrieve facts from devices running Junos OS

 juniper.device.facts:

 host: "{{ inventory_hostname }}"

 user: "{{ junos_username }}"

 passwd: "{{ junos_password }}"

 cs_user: "{{ cs_username }}"

 cs_passwd: "{{ cs_key_password }}"

 ssh_private_key_file: "/home/user/.ssh/id_rsa_dc"

 savedir: "{{ playbook_dir }}"

RELATED DOCUMENTATION

Troubleshooting Ansible Authentication Errors When Managing Devices Running Junos OS | 203

Connecting to Devices Running Junos OS Using Ansible | 43

Understanding Ansible for Junos OS | 16

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 19

64

5
CHAPTER

Using Ansible to Manage Device
Operations

Using Ansible to Retrieve Facts from Devices Running Junos OS | 66

Using Ansible to Execute Commands and RPCs on Devices Running Junos OS | 70

Using Ansible with Junos PyEZ Tables to Retrieve Operational Information from
Devices Running Junos OS | 79

Using Ansible to Halt, Reboot, or Shut Down Devices Running Junos OS | 86

Using Ansible to Install Software on Devices Running Junos OS | 98

Using Ansible to Restore a Device Running Junos OS to the Factory-Default
Configuration Settings | 116

Using Junos Snapshot Administrator in Python (JSNAPy) in Ansible Playbooks | 125

UsingAnsible to Retrieve Facts fromDevices Running
Junos OS

Juniper Networks supports using Ansible to manage devices running Junos OS and provides Ansible
modules that enable you to perform operational and configuration tasks on the devices. The modules do
not require Python on the managed device because they use Junos PyEZ and the Junos XML API over
NETCONF to interface with the device. Therefore, when you use Ansible to perform operations on devices
running Junos OS, you must execute the Ansible modules locally on the control node. As a result, Ansible
defaults to gathering facts from the Ansible control node instead of the managed node.

JuniperNetworks providesmodules that enable you to gather device facts, including the active configuration,
from devices running Junos OS. Table 10 on page 66 outlines the available modules. The modules use the
Junos PyEZ fact gathering system to retrieve the device facts. For more information about the Junos PyEZ
fact gathering system and the complete list of returned dictionary keys, see jnpr.junos.facts.

Table 10: Modules to Gather Facts

Module NameContent Set

factsjuniper.device collection

juniper_junos_factsJuniper.junos role

The facts and juniper_junos_facts modules return the device facts in the ansible_facts.junos dictionary.
Themodules also enable you to save the returned data in a file on the local Ansible control node. To specify
the directory in which to save the retrieved information, include the savedirmodule argument, and define
the path to the target directory. When you include the savedir argument, the playbook generates the
following files for each device, where hostname is the value of the hostname fact retrieved from the device,
which might be different from the hostname passed to the module:

• hostname-facts.json—Device facts in JSON format

• hostname-inventory.xml—Device’s hardware inventory in XML format

66

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.facts.html
https://ansible-juniper-collection.readthedocs.io/en/latest/facts.html
https://galaxy.ansible.com/juniper/device
https://junos-ansible-modules.readthedocs.io/en/latest/juniper_junos_facts.html
https://galaxy.ansible.com/juniper/junos

For example, the following playbook retrieves the device facts for each device in the inventory group and
saves the data for each device in separate files in the playbook directory on the Ansible control node.
Because the playbook runs the Juniper Networks module locally, Ansible defaults to gathering facts from
the control node. The playbook includes the gather_facts: no argument to prevent Ansible from gathering
facts from the control node and instead uses the facts module in the juniper.device collection to retrieve
the facts from the managed device. To authenticate with the device, the example uses existing SSH keys
in the default location and thus does not explicitly provide credentials for the factsmodule in the playbook.

- name: Get device facts

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Retrieve device facts and save to file

 facts:

 savedir: "{{ playbook_dir }}"

67

By default, the facts and juniper_junos_facts modules do not return the device configuration. To return
the active configuration for a device, in addition to the device facts, include the config_format option, and
specify the format in which to return the configuration. Acceptable format values are 'json', 'set', 'text'
and 'xml'. The requested format must be supported by the Junos OS release running on the device.

When you include the config_format option, the ansible_facts.junos dictionary in the module response
includes the config key with the configuration in the specified format in a single multi-line string. If the
savedir option is included, the configuration data is not written to the file.

TIP: To use Ansible to retrieve configuration data from a device running Junos OS and save the
data to a file, use the config or juniper_junos_config module instead of the facts or
juniper_junos_facts module. For more information, see “Using Ansible to Retrieve or Compare
Junos OS Configurations” on page 156.

The playbook in the next example performs the following operations:

• Retrieves the device facts and active configuration for each device in the inventory group

• Saves the facts and hardware inventory for each device in separate files in the playbook directory on
the Ansible control node

• Prints the configuration for each device to standard output

- name: Get device facts and configuration

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Retrieve device facts and configuration and save facts to file

 facts:

 savedir: "{{ playbook_dir }}"

 config_format: "xml"

 register: result

 - name: Print configuration

 debug:

 var: result.ansible_facts.junos.config

user@ansible-cn:~$ ansible-playbook facts.yaml

68

PLAY [Get device facts and configurations] **********************************

TASK [Retrieve device facts and configuration and save facts to file] *******

ok: [dc1a.example.net]

TASK [Print configuration] **

ok: [dc1a.example.net] => {

 "result.ansible_facts.junos.config": "<configuration

commit-seconds=\"1605564153\" commit-localtime=\"2020-11-16 14:02:33 PST\"

commit-user=\"admin\">\n <version>20191212.201431_builder.r1074901</version>\n

[...output truncated...]

</configuration>\n"

}

PLAY RECAP **

dc1a.example.net : ok=2 changed=0 unreachable=0 failed=0 skipped=0

 rescued=0 ignored=0

RELATED DOCUMENTATION

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 19

Using Ansible to Execute Commands and RPCs on Devices Running Junos OS | 70

Using Ansible with Junos PyEZ Tables to RetrieveOperational Information fromDevices Running Junos
OS | 79

69

Using Ansible to Execute Commands and RPCs on
Devices Running Junos OS

IN THIS SECTION

How to Execute Commands with the Juniper
Networks Modules | 71

How to Execute RPCs with the Juniper
Networks Modules | 72

Understanding the Module Response | 74

How to Specify the Format for the Command
or RPC Output | 75

How to Save the Command or RPC Output to
a File | 76

SUMMARY

Use the Juniper Networks Ansiblemodules to execute
operational mode commands and RPCs on devices
running Junos OS.

Juniper Networks supports using Ansible to manage devices running Junos OS and provides Ansible
modules that enable you to execute operational mode commands and remote procedure calls (RPCs) on
the devices. Table 11 on page 70 outlines the modules.

Table 11: Command and RPC Modules

Module NameContent Set

command

rpc

juniper.device collection

juniper_junos_command

juniper_junos_rpc

Juniper.junos role

The following sections discuss how to the use the modules, parse the module response, specify the output
format, and save the output to a file.

70

https://ansible-juniper-collection.readthedocs.io/en/latest/command.html
https://ansible-juniper-collection.readthedocs.io/en/latest/rpc.html
https://galaxy.ansible.com/juniper/device
https://junos-ansible-modules.readthedocs.io/en/latest/juniper_junos_command.html
https://junos-ansible-modules.readthedocs.io/en/latest/juniper_junos_rpc.html
https://galaxy.ansible.com/juniper/junos

NOTE: To more easily extract targeted data from operational output, you can also use the table
or juniper_junos_table module with custom or predefined Junos PyEZ operational tables. For
more information, see “Using Ansible with Junos PyEZ Tables to RetrieveOperational Information
from Devices Running Junos OS” on page 79.

How to Execute Commands with the Juniper Networks Modules

The command and juniper_junos_commandmodules enable you to execute operational mode commands
on devices running Junos OS. The modules require one argument, commands, which is a list of one or
more Junos OS operational mode commands to execute on the device.

NOTE: Starting in Juniper.junos Release 2.0.0, the juniper_junos_command module replaces
the functionality of the junos_cli module.

The following playbook executes two operational mode commands on each device in the inventory group
and displays themodule response in standard output. In this example, the commandmodule authenticates
with the device by using SSH keys in the default location.

- name: Get device information

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Get software and uptime information

 command:

 commands:

 - "show version"

 - "show system uptime"

 register: junos_result

 - name: Print response

71

 debug:

 var: junos_result

For information about themodule’s response and output format, see “Understanding theModule Response”
on page 74 and “How to Specify the Format for the Command or RPC Output” on page 75.

How to Execute RPCs with the Juniper Networks Modules

The Junos XML API is an XML representation of Junos OS configuration statements and operational mode
commands. It defines an XML equivalent for all statements in the Junos OS configuration hierarchy and
many of the operational mode commands that you issue in the Junos OS CLI. Each operational mode
command with a Junos XML counterpart maps to a request tag element and, if necessary, a response tag
element. Request tags are used in remote procedure calls (RPCs) within NETCONF or Junos XML protocol
sessions to request information from a device running Junos OS. The server returns the response using
Junos XML elements enclosed within the response tag element.

The rpc and juniper_junos_rpc modules enable you to execute RPCs on devices running Junos OS. The
modules require one argument, rpcs, which is a list of one or more JunosOS RPCs to execute on the device.

NOTE: Starting in Juniper.junos Release 2.0.0, the juniper_junos_rpc module replaces the
functionality of the junos_rpc module.

The following playbook executes the get-interface-information RPC, which is equivalent to the show
interfaces operational mode command, on each device in the inventory group and displays the module
response in standard output. In this example, the rpc module authenticates with the device by using SSH
keys in the default location.

- name: Execute RPC

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Get interface information

 rpc:

72

 rpcs: "get-interface-information"

 register: junos_result

 - name: Print response

 debug:

 var: junos_result

NOTE: For information about mapping CLI commands to RPC request tags, see the Junos XML
API Explorer for operational tags.

For information about themodule’s response and output format, see “Understanding theModule Response”
on page 74 and “How to Specify the Format for the Command or RPC Output” on page 75.

The rpc and juniper_junos_rpcmodules support the kwargs option, which enables you to specify keyword
arguments and values for the RPCs. The value of kwargs can be a single dictionary of keywords and values,
or it can be a list of dictionaries that supply arguments for multiple RPCs. There must be a one-to-one
correspondence between the items in the kwargs list and the RPCs in the rpcs list. If you execute multiple
RPCs, and an RPC does not require any arguments, set the corresponding list item equal to an empty
dictionary {}. If an individual RPC argument does not require a value, set its value equal to True.

NOTE: You must use underscores in RPC arguments in place of hyphens, which can cause
exceptions or errors in certain circumstances.

The following playbook executes the specified RPCs on each device in the inventory group and displays
the module response in standard output. The get-interface-information RPC requests terse level output
for the lo0.0 interface, and the get-lldp-interface-neighbors RPC requests information for the ge-0/0/0
interface. The get-software-information RPC uses an empty dictionary to execute the RPC with no
additional arguments.

- name: Get Device Information

 hosts: dc1a

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

73

https://apps.juniper.net/xmlapi/operTags.jsp
https://apps.juniper.net/xmlapi/operTags.jsp

 - name: Get device information

 rpc:

 rpcs:

 - "get-interface-information"

 - "get-lldp-interface-neighbors"

 - "get-software-information"

 kwargs:

 - interface_name: "lo0.0"

 terse: True

 - interface_device: "ge-0/0/0"

 - {}

 register: junos_result

 - name: Print response

 debug:

 var: junos_result

Understanding the Module Response

The Juniper Networks command and RPC modules store the RPC reply from the device within several
different keys in the module response. The data for each key is structured as follows:

• stdout—RPC reply is a single multi-line string.

• stdout_lines—RPC reply is a list of single line strings.

• parsed_output—RPC reply is parsed into a JavaScript Object Notation (JSON) data structure. This key
is only returned when the format of the data is XML or JSON.

If the module executes a single command or RPC, the module’s response places the returned keys at the
top level. If the module executes multiple commands or RPCs, the module’s response instead includes a
results key, which is a list of dictionaries. Each element in the list corresponds to a single command or RPC
and includes all the keys that would be returned for that command or RPC.

In some instances, command or RPC output can be extensive, and it might be necessary to suppress the
output in the module’s response. To omit the output keys in the module’s response, include
return_output: false in that module’s argument list.

74

How to Specify the Format for the Command or RPC Output

The Juniper Networks command and RPC modules store the RPC reply from the device within several
different keys in the module response: stdout, stdout_lines, and parsed_output. The parsed_output key,
which is only present when the command or RPC output format is XML or JSON, contains data that is
parsed into a JSON data structure.

The stdout and stdout_lines keys contain data in the default format defined for the module. By default,
the command and juniper_junos_command modules return the command output in text format, and the
rpc and juniper_junos_rpc modules return the RPC output in XML format. To specify a different output
format, include the formats argument, and set the value equal to the desired format. To request text
format, Junos XML elements, or JSON format, use 'text', 'xml', or 'json' respectively. The requested format
must be supported by the device on which the command or RPC is executed.

The formats parameter takes either a string or a list of strings. When you execute multiple commands or
RPCs and only specify a single format, the output format is the same for all executed commands and RPCs.
To specify a different format for the output of each command or RPC, set the formats argument to a list
of the desired formats. The list must specify the same number of formats as there are commands or RPCs.

The following playbook executes two RPCs on each device in the inventory group and requests text format
for the output of all executed RPCs:

- name: Get device information

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Get software and system uptime information

 rpc:

 rpcs:

 - "get-software-information"

 - "get-system-uptime-information"

 formats: "text"

 register: junos_result

 - name: Print response

 debug:

 var: junos_result

75

When the playbook is executed, the stdout and stdout_lines keys in the module response contain the RPC
reply in text format.

The following playbook executes two RPCs on each device in the inventory group and requests the output
for the first RPC in text format and the output for the second RPC in JSON format:

- name: Get device information

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Get software and system uptime information

 rpc:

 rpcs:

 - "get-software-information"

 - "get-system-uptime-information"

 formats:

 - "text"

 - "json"

 register: junos_result

 - name: Print response

 debug:

 var: junos_result

How to Save the Command or RPC Output to a File

When you use the Juniper Networks modules to execute a command or RPC on a device, you can save
the returned data in a file on the local Ansible control node by including the dest or dest_dir module
arguments. Whereas the dest_dir option saves the output for each command or RPC in separate files for
a device, the dest option saves the output for all commands and RPCs in the same file for a device. If an
output file already exists with the target name, the module overwrites the file.

To specify the directory on the local Ansible control node where the retrieved data is saved, include the
dest_dir argument, and define the path to the target directory. The module stores the output for each
command or RPC executed on a device in a separate file named hostname_name.format where:

• hostname—Hostname of the device on which the command or RPC is executed.

76

• name—Name of the command or RPC executed on the managed device. The module replaces spaces in
the command name with underscores (_).

• format—Format of the output, which can be json, text, or xml.

The following playbook executes two RPCs on each device in the inventory group and saves the output
for each RPC for each device in a separate file in the playbook directory on the Ansible control node:

- name: Get device information

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Get software and uptime information

 rpc:

 rpcs:

 - "get-software-information"

 - "get-system-uptime-information"

 dest_dir: "{{ playbook_dir }}"

The resulting output files for host dc1a.example.net are:

• dc1a.example.net_get-software-information.xml

• dc1a.example.net_get-system-uptime-information.xml

Similarly, the following playbook executes the equivalent commands on each device in the inventory group
and saves the output for each command for each device in a separate file in the playbook directory on the
Ansible control node:

- name: Get device information

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Get software and uptime information

 command:

77

 commands:

 - "show version"

 - "show system uptime"

 dest_dir: "{{ playbook_dir }}"

The resulting output files for host dc1a.example.net are:

• dc1a.example.net_show_version.text

• dc1a.example.net_show_system_uptime.text

To specify the path and filename to which all command or RPC output for a target node is saved on the
local Ansible control node, include the dest argument, and define the filename or the full path of the file.
If you include the dest argument, but omit the directory, the files are saved in the playbook directory. If
you execute commands or RPCs on multiple devices, the dest argument must include a variable such as
{{ inventory_hostname }} to differentiate the filename for each device. If you do not differentiate the
filenames, the output file for each device will overwrite the output file of the other devices.

The following playbook executes RPCs on each device in the inventory group. The output for all RPCs is
stored in a separate file for each device, and the file is placed in the playbook directory on the Ansible
control node. Each file is uniquely identified by the device hostname.

- name: Get device information

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Get software and uptime information

 rpc:

 rpcs:

 - "get-software-information"

 - "get-system-uptime-information"

 dest: "{{ inventory_hostname }}-system-information.xml"

For example, the resulting output file for host dc1a.example.net is dc1a.example.net-system-information.xml
and contains the output for all RPCs executed on the device.

If you are saving the data to a file and do notwant to duplicate the command or RPC output in themodule’s
response, you can you can optionally include return_output: false in the module’s argument list. Setting
return_output to false causes the module to omit the output keys in the module’s response. Doing this
might be necessary if the devices return a significant amount of data.

78

Release History Table

DescriptionRelease

Starting in Juniper.junos Release 2.0.0, the juniper_junos_command module replaces the
functionality of the junos_cli module.

2.0.0

Starting in Juniper.junos Release 2.0.0, the juniper_junos_rpc module replaces the
functionality of the junos_rpc module.

2.0.0

RELATED DOCUMENTATION

Using Ansible with Junos PyEZ Tables to RetrieveOperational Information fromDevices Running Junos
OS | 79

Using Ansible to Retrieve Facts from Devices Running Junos OS | 66

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 19

Using Ansible with Junos PyEZ Tables to Retrieve
Operational Information fromDevices Running Junos
OS

IN THIS SECTION

Module Overview | 80

Understanding Junos PyEZ Tables | 80

How to Use the Juniper Networks Ansible Modules with Junos PyEZ Tables | 81

Specifying RPC Arguments | 84

79

Module Overview

Junos PyEZ operational (op) Tables provide a simple and efficient way to extract information from complex
operational command output. Juniper Networks provides Ansible modules that enable you to leverage
Junos PyEZ op Tables from within Ansible playbooks. Table 12 on page 80 outlines the modules.

Table 12: Junos PyEZ Table Modules

Module NameContent Set

tablejuniper.device collection

juniper_junos_tableJuniper.junos role

NOTE: Starting in Juniper.junos Release 2.0.0, the juniper_junos_table module replaces the
functionality of the junos_get_table module.

NOTE: The modules do not work with configuration Tables and Views.

Understanding Junos PyEZ Tables

Junos PyEZ is a microframework for Python that enables you to manage and automate devices running
Junos OS. Junos PyEZ supports using simple YAML definitions, which are referred to as Tables and Views,
to retrieve and filter operational command output and configuration data from devices running Junos OS.

Junos PyEZ operational (op) Tables extract information from the output of operational commands or RPCs.
The Junos PyEZ jnpr.junos.op modules contain predefined Table and View definitions for some common
RPCs. You can also create custom Tables and Views.

When you use Ansible to manage devices running Junos OS, the table and juniper_junos_table modules
can use Junos PyEZ Tables to retrieve data from a device. The modules can reference the predefined
operational Tables and Views that are included with the Junos PyEZ distribution, or they can reference
user-defined Tables and Views that reside on the Ansible control node.

For general information about Junos PyEZ Tables and Views, see the following sections and related
documentation in the Junos PyEZ Developer Guide:

• Understanding Junos PyEZ Tables and Views

80

https://ansible-juniper-collection.readthedocs.io/en/latest/table.html
https://galaxy.ansible.com/juniper/device
https://junos-ansible-modules.readthedocs.io/en/latest/juniper_junos_table.html
https://galaxy.ansible.com/juniper/junos
https://www.juniper.net/documentation/product/en_US/junos-pyez
https://www.juniper.net/documentation/en_US/junos-pyez/information-products/pathway-pages/junos-pyez-developer-guide.html
https://www.juniper.net/documentation/en_US/junos-pyez/topics/concept/junos-pyez-tables-and-views-overview.html

• Junos PyEZ Predefined Operational Tables and Views

How toUse the JuniperNetworksAnsibleModuleswith Junos PyEZTables

The table and juniper_junos_table modules can include the following arguments to specify the Table to
use:

• file—Filename of the YAML file that defines the Junos PyEZ Table and View.

• path—(Optional) Path to the directory containing the YAML file with the Table and View definitions.
The default file path is the location of the predefined Junos PyEZ op Tables, which reside in the Junos
PyEZ install path under the jnpr/junos/op directory.

• table—(Optional) Name of the Table that will be used to retrieve the data. This option is only required
when a file contains multiple Table definitions or the file contains a single Table that does not include
"Table" in its name.

For example, the following task retrieves data by using a custom table named FPCTable, which is defined
in the fpc.yaml file located in the playbook directory:

 tasks:

 - name: Get FPC info

 table:

 file: "fpc.yaml"

 path: "{{ playbook_dir }}"

 table: "FPCTable"

The module’s response includes the resource key, which contains a list of items returned by the Table.
Each list item is a dictionary containing the field names defined by the View and the value extracted from
the data for each of the corresponding fields.

Consider the following predefined Table and View, ArpTable and ArpView, in the arp.yml file of the Junos
PyEZ distribution.ArpTable executes the <get-arp-table-information>RPCwith the <no-resolve/> option,
which is equivalent to the show arp no-resolve CLI command. The corresponding View extracts the MAC
address, IP address, and interface name for each <arp-table-entry> item in the response.

ArpTable:

 rpc: get-arp-table-information

 args:

 no-resolve: True

 item: arp-table-entry

81

https://www.juniper.net/documentation/en_US/junos-pyez/topics/reference/general/junos-pyez-tables-op-predefined.html

 key: mac-address

 view: ArpView

ArpView:

 fields:

 mac_address: mac-address

 ip_address: ip-address

 interface_name: interface-name

The following Ansible playbook executes the table module, which uses ArpTable to retrieve Address
Resolution Protocol (ARP) information from devices running Junos OS. Because ArpTable is included with
the Junos PyEZ distribution and resides in the default directory for the predefined Junos PyEZ op Tables,
the pathmodule argument is not required to specify the file location. In addition, because ArpTable is the
only Table defined in the file and includes ”Table" in its name, the table argument is not required to specify
the Table.

- name: Get ARP information

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Get ARP information using Junos PyEZ Table

 table:

 file: "arp.yml"

 register: result

 - name: Print response

 debug:

 var: result

The playbook output, which is truncated for brevity, includes the corresponding fields, as defined by the
View, for each <arp-table-entry> item returned by the device.

TASK [Print response] ***

ok: [dc1a.example.net] => {

 "result": {

 "changed": false,

 "failed": false,

82

 "msg": "Successfully retrieved 2 items from ArpTable.",

 "resource": [

 {

 "interface_name": "em0.0",

 "ip_address": "10.0.0.5",

 "mac_address": "02:01:00:00:00:05"

 },

 {

 "interface_name": "fxp0.0",

 "ip_address": "198.51.100.10",

 "mac_address": "30:7c:5e:48:4b:40"

 },

]

 }

}

The following Ansible playbook leverages the predefined Junos PyEZ operational Table,OspfInterfaceTable
to retrieve information about OSPF interfaces on devices running Junos OS. The ospf.yml file defines
multiple Tables and Views, so the module call includes the table argument to specify which Table to use.

- name: Get OSPF information

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Get OSPF interface information

 table:

 file: "ospf.yml"

table: "OspfInterfaceTable"

 register: result

 - name: Print response

 debug:

 var: result

83

Specifying RPC Arguments

Junos PyEZ operational Tables have an optional args key that defines the default command options and
arguments for the RPC executed by that Table. The application executes the RPC with the default options
unless the user overrides the defaults. In Junos PyEZ applications, you can override the default command
options or pass additional options and arguments to the RPC when calling the get() method.

The table and juniper_junos_table modules also enable you to override the default command options
defined in the Table or pass additional options and arguments to the RPC by using the kwargs argument.
The kwargs value is a dictionary of command options and values, which must be supported by the RPC
and the device on which the RPC is executed.

For example, the predefined Junos PyEZ op Table EthPortTable in the ethport.yml file executes the
<get-interface-information>RPCwith themedia command option and returns information for all interfaces
that match the given regular expression for the interface name.

EthPortTable:

 rpc: get-interface-information

 args:

 media: True

 interface_name: '[afgxe][et]-*'

 args_key: interface_name

 item: physical-interface

 view: EthPortView

The following Ansible playbook uses EthPortTable to extract information about the interfaces on devices
running Junos OS. The kwargs argument includes interface_name: "ge-1/0/0", which overrides the
EthPortTable default for interface_name and instructs themodule to retrieve the requested fields for only
the ge-1/0/0 interface.

- name: Get interface information

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Get interface information for Ethernet interfaces

 table:

 file: "ethport.yml"

 kwargs:

84

 interface_name: "ge-1/0/0"

 register: result

 - name: Print response

 debug:

 var: result

For more information about the default and user-supplied command options and arguments in Junos PyEZ
Tables, see Defining Junos PyEZ Operational Tables and Using Junos PyEZ Operational Tables and Views.

Release History Table

DescriptionRelease

Starting in Juniper.junos Release 2.0.0, the juniper_junos_table module replaces the
functionality of the junos_get_table module.

2.0.0

RELATED DOCUMENTATION

Using Ansible to Execute Commands and RPCs on Devices Running Junos OS | 70

Using Ansible to Retrieve Facts from Devices Running Junos OS | 66

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 19

85

https://www.juniper.net/documentation/en_US/junos-pyez/topics/task/program/junos-pyez-tables-op-defining.html
https://www.juniper.net/documentation/en_US/junos-pyez/topics/task/program/junos-pyez-tables-op-data-retrieving-manipulating.html

Using Ansible to Halt, Reboot, or Shut Down Devices
Running Junos OS

IN THIS SECTION

Using Ansible to Halt, Reboot, or Shut Down
Devices | 86

How to Perform a Halt, Reboot, or Shut Down
with a Delay or at a Specified Time | 88

How to Specify the Target Routing Engine | 89

How to Reboot a VM Host | 90

Example: Using Ansible to Reboot Devices
Running Junos OS | 91

SUMMARY

Use the Juniper Networks Ansible modules to halt,
reboot, or shut down devices running Junos OS.

Using Ansible to Halt, Reboot, or Shut Down Devices

Juniper Networks supports using Ansible to manage devices running Junos OS and provides Ansible
modules that enable you to halt, reboot, or shut down a device. Table 13 on page 86 outlines the available
modules.

Table 13: Modules to Halt, Reboot, or Shut Down Devices

Module NameContent Set

systemjuniper.device collection

juniper_junos_systemJuniper.junos role

NOTE: Starting in Juniper.junos Release 2.0.0, the juniper_junos_system module replaces the
functionality of the junos_shutdown and junos_zeroize modules.

86

https://ansible-juniper-collection.readthedocs.io/en/latest/system.html
https://galaxy.ansible.com/juniper/device
https://junos-ansible-modules.readthedocs.io/en/latest/juniper_junos_system.html
https://galaxy.ansible.com/juniper/junos

You can use the modules to request the following operations on devices running Junos OS. By default,
the modules immediately execute the requested operation and perform the operation on all Routing
Engines in a dual Routing Engine or Virtual Chassis setup.

• An immediate system halt, reboot, or shutdown

• A halt, reboot, or shutdown operation with an optional delay

• A halt, reboot, or shutdown operation scheduled at a specific date and time

The system and juniper_junos_system modules require one argument, action, which defines the action
that the module performs. Table 14 on page 87 defines the action parameter value that is required to halt,
reboot, or shut down a device and provides a brief description of each action as well as the corresponding
CLI command. For information about the "zeroize" action, see “Using Ansible to Restore a Device Running
Junos OS to the Factory-Default Configuration Settings” on page 116.

Table 14: system and juniper_junos_system action Parameter Values

Equivalent CLI CommandDescription
Value of action
Parameter

request system haltGracefully shut down the Junos OS software but
maintain system power

"halt"

request system rebootReboot the Junos OS software"reboot"

request system power-offGracefully shut down the Junos OS software and
power off the Routing Engines

"shutdown"

The following Ansible playbook uses the system module with action: "reboot" to immediately reboot all
Routing Engines on the hosts in the specified inventory group.

- name: Reboot devices running Junos OS

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Reboot all REs on the device

 system:

 action: "reboot"

87

How toPerformaHalt, Reboot, or ShutDownwith aDelay or at a Specified
Time

To delay the halt, reboot, or shut down operation by a specified number ofminutes, set the optional in_min
parameter to the number of minutes that the system should wait before executing the operation. The
following task requests a reboot of all Routing Engines in 30 minutes:

- name: Reboot devices running Junos OS

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Reboot all REs in 30 minutes

 system:

 action: "reboot"

 in_min: 30

To schedule the halt, reboot, or shutdown at a specific time, include the at parameter, which takes a string
that can be specified in one of the following ways:

• now—Immediately initiate the halt, reboot, or shut down of the software.

• +minutes—Number of minutes from now when the requested action is initiated.

• yymmddhhmm—Absolute time at which to initiate the requested action, specified as year, month, day,
hour, and minute.

• hh:mm—Absolute time on the current day at which to initiate the requested action, specified in 24-hour
time.

The following task schedules a system shutdown of all Routing Engines at 22:30 on the current day:

 tasks:

 - name: Shut down all REs at 22:30 on the current day

 system:

 action: "shutdown"

 at: "22:30"

88

How to Specify the Target Routing Engine

By default, the system and juniper_junos_systemmodules perform the requested operation on all Routing
Engines in a dual Routing Engine or Virtual Chassis setup. You can also instruct the modules to perform
the operation on only the Routing Engine to which the application is connected or to perform the operation
on all Routing Engines except the one to which the application is connected.

To specify the Routing Engines, you use the all_re and other_re parameters. Table 15 on page 89 summarizes
the all_re and other_re values that are required to execute the requested operation on specific Routing
Engines.

Table 15: Parameters for Specifying Routing Engines

other_re Parameterall_re ParameterAffected Routing Engines

–Omit or set to TrueAll Routing Engines (default)

–Set to FalseOnly the connected Routing Engine

Set to True–All Routing Engines except the Routing Engine to which
the application is connected

To explicitly indicate that the operation should be performed on all Routing Engines in a dual Routing
Engine or Virtual Chassis setup, include the all_re: True argument, which is the default.

- name: Reboot devices running Junos OS

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Reboot all Routing Engines

 system:

 action: "reboot"

 all_re: True

89

To perform the requested action on only the Routing Engine to which the application is connected, include
the all_re: False argument.

 tasks:

 - name: Reboot only the connected Routing Engine

 system:

 action: "reboot"

 all_re: False

To perform the requested action on all Routing Engines in the system except for the Routing Engine to
which the application is connected, include the other_re: True argument.

 tasks:

 - name: Shut down all other Routing Engines

 system:

 action: "shutdown"

 other_re: True

How to Reboot a VM Host

On devices that have Routing Engines with VM host support, Junos OS runs as a virtual machine (VM)
over a Linux-based host (VM host). The system and juniper_junos_system modules support the vmhost
argument, which enables you to reboot a VMHost.When you include the action: "reboot" and vmhost: True
arguments, the system reboots the host OS and compatible Junos OS on all Routing Engines by executing
the <request-vmhost-reboot> RPC, which corresponds to the request vmhost reboot operational mode
command.

The following playbook performs a VM host reboot, which reboots both the host OS and the guest Junos
OS.

- name: Reboot VM Hosts

 hosts: vm_hosts

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Reboot VM host

90

 system:

 action: "reboot"

 vmhost: True

 all_re: False

Example: Using Ansible to Reboot Devices Running Junos OS

IN THIS SECTION

Requirements | 91

Overview | 91

Configuration | 92

Executing the Playbook | 95

Verification | 97

The system module in the juniper.device collection enables you to halt, reboot, or shut down a device
running Junos OS. This example uses the system module to reboot a device running Junos OS.

Requirements

This example uses the following hardware and software components:

• Configurationmanagement server running Ansible 2.10 or later with the juniper.device collection installed

• Device running Junos OS with NETCONF enabled and a user account configured with appropriate
permissions

• SSH public/private key pair configured for the appropriate user on the Ansible control node and device
running Junos OS

• Existing Ansible inventory file with required hosts defined

Overview

This example presents an Ansible playbook that uses the systemmodule to reboot a device running Junos
OS. The value of the module’s action argument defines the operation to execute on the host.

91

When calling the module from a playbook, we recommend that you use an interactive prompt to confirm
that the user does intend to reboot the specified devices. If a user unintentionally runs the playbook and
there is no check, it could adversely affect any networks that require the impacted devices. As a precaution,
this playbook uses an interactive prompt to verify that the user intends to reboot the devices and requires
that the user manually type 'yes' on the command line to execute the module. If the Confirmation check
task fails, the Ansible control node skips the other tasks in the play for that device.

This playbook includes the Checking NETCONF connectivity task, which utilizes the wait_for module to
try to establish a NETCONF session with the device running Junos OS using the default NETCONF port
830. If the control node fails to establish a NETCONF session with the device during playbook execution,
then it skips the remaining tasks in the play for that device.

The task that reboots the device executes the systemmodule provided that the confirmation andNETCONF
checks were successful. The action argument is set to the value "reboot", which indicates that the software
should be rebooted. The in_min: 2 argument instructs the module to wait for the specified number of
minutes before executing the reboot command. This provides time for any users to log out of the system.

The task stores the module result in the result variable and notifies two handlers. The pause_for_reboot
handler waits a specified amount of time after the reboot operation is initiated to prevent thewait_reboot
handler from falsely detecting that the device is online before the reboot takes place. The wait_reboot
handler then tries to establish a session with the device to verify that the device comes back online after
the reboot. Thewait_time_after_reboot variable defines the length of time that the control node attempts
to reconnect with the device.

Configuration

Creating and Executing the Ansible Playbook

Step-by-Step Procedure
To create a playbook that uses the system module to reboot a device running Junos OS:

1. Include the boilerplate for the playbook and this play, which executes the modules locally and includes
the juniper.device collection.

- name: Reboot devices running Junos OS

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

2. Define or import any necessary variables.

92

 vars:

 wait_time_after_reboot: 300

 netconf_port: 830

3. Create an interactive prompt to prevent users from accidentally executing the module without first
understanding the implications.

 vars_prompt:

 - name: "reboot_confirmation"

 prompt: "This playbook reboots devices. Enter 'yes' to continue"

 private: no

4. Create the task that confirms the user’s intent.

 tasks:

 - name: Confirmation check

 fail: msg="Playbook run confirmation failed"

 when: reboot_confirmation != "yes"

5. (Optional) Create a task to verify NETCONF connectivity.

 - name: Checking NETCONF connectivity

 wait_for:

 host: "{{ inventory_hostname }}"

 port: "{{ netconf_port }}"

 timeout: 5

6. Create the task to reboot the device after a specified number of minutes and then notify the handlers.

 - name: Reboot all Routing Engines on the device running Junos OS

 system:

 action: "reboot"

 in_min: 2

 all_re: True

 register: result

 notify:

 - pause_for_reboot

 - wait_reboot

93

7. (Optional) Create a task to print the response.

 - name: Print response

 debug:

 var: result

8. Create the handler that pauses after rebooting and the handler that verifies that the device comes back
online after rebooting.

The handler names should be the same as those referenced in the reboot task.

 handlers:

 - name: pause_for_reboot

 pause:

 seconds: 180

 when: result.reboot

 - name: wait_reboot

 wait_for:

 host: "{{ inventory_hostname }}"

 port: "{{ netconf_port }}"

 timeout: "{{ wait_time_after_reboot }}"

 when: result.reboot

Results

On the Ansible control node, review the completed playbook. If the playbook does not display the intended
code, repeat the instructions in this example to correct the playbook.

- name: Reboot devices running Junos OS

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 vars:

 wait_time_after_reboot: 300

 netconf_port: 830

 vars_prompt:

 - name: "reboot_confirmation"

94

 prompt: "This playbook reboots devices. Enter 'yes' to continue"

 private: no

 tasks:

 - name: Confirmation check

 fail: msg="Playbook run confirmation failed"

 when: reboot_confirmation != "yes"

 - name: Checking NETCONF connectivity

 wait_for:

 host: "{{ inventory_hostname }}"

 port: "{{ netconf_port }}"

 timeout: 5

 - name: Reboot all Routing Engines on the device running Junos OS

 system:

 action: "reboot"

 in_min: 2

 all_re: True

 register: result

 notify:

 - pause_for_reboot

 - wait_reboot

 - name: Print response

 debug:

 var: result

 handlers:

 - name: pause_for_reboot

 pause:

 seconds: 180

 when: result.reboot

 - name: wait_reboot

 wait_for:

 host: "{{ inventory_hostname }}"

 port: "{{ netconf_port }}"

 timeout: "{{ wait_time_after_reboot }}"

 when: result.reboot

Executing the Playbook

Step-by-Step Procedure

95

To execute the playbook:

• Issue the ansible-playbook command on the control node, and provide the playbook path and any desired
options.

user@ansible-cn:~/ansible$ ansible-playbook ansible-pb-junos-reboot.yaml

This playbook reboots devices. Enter 'yes' to continue: yes

PLAY [Reboot devices running Junos OS] **

TASK [Confirmation check] ***

skipping: [dc1a.example.net]

TASK [Checking NETCONF connectivity] **

ok: [dc1a.example.net]

TASK [Reboot all Routing Engines on the device running Junos OS] **************

changed: [dc1a.example.net]

TASK [Print response] ***

ok: [dc1a.example.net] => {

 "result": {

 "action": "reboot",

 "all_re": true,

 "changed": true,

 "failed": false,

 "media": false,

 "msg": "reboot successfully initiated. Response got Shutdown at Fri Dec

 11 17:36:50 2020. [pid 11595]",

 "other_re": false,

 "reboot": true,

 "vmhost": false

 }

}

RUNNING HANDLER [pause_for_reboot] **

Pausing for 180 seconds

(ctrl+C then 'C' = continue early, ctrl+C then 'A' = abort)

ok: [dc1a.example.net]

RUNNING HANDLER [wait_reboot] ***

ok: [dc1a.example.net]

PLAY RECAP **

96

dc1a.example.net : ok=5 changed=1 unreachable=0 failed=0 skipped=1

 rescued=0 ignored=0

Verification

Verifying the Reboot

Purpose
Verify that the device running Junos OS successfully rebooted.

Action
When you execute the playbook, review the output of the wait_reboot task for each device.

RUNNING HANDLER [wait_reboot] ***

ok: [dc1a.example.net]

Meaning
The wait_reboot result indicates whether the control node successfully established a session with the
device after it rebooted. If the result indicates success, the device is online.

Release History Table

DescriptionRelease

Starting in Juniper.junos Release 2.0.0, the juniper_junos_system module replaces the
functionality of the junos_shutdown and junos_zeroize modules.

2.0.0

RELATED DOCUMENTATION

Using Ansible to Restore aDevice Running JunosOS to the Factory-Default Configuration Settings | 116

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 19

97

Using Ansible to Install Software on Devices Running
Junos OS

IN THIS SECTION

Using Ansible to Install Software | 98

How to Specify the Software Image
Location | 99

Installation Process Overview | 101

How to Specify Timeout Values | 103

How to Specify Installation Options That Do
NotHave anEquivalentModuleArgument | 104

How to Perform a VM Host Upgrade | 105

How to Perform a Unified ISSU or NSSU | 105

Example: UsingAnsible to Install Software | 107

SUMMARY

Use the Juniper Networks Ansible modules to install
software on devices running Junos OS.

Using Ansible to Install Software

Juniper Networks supports using Ansible to manage devices running Junos OS and provides modules that
enable you to install or upgrade the software image on a device. Table 16 on page 98 outlines themodules.

Table 16: Software Modules

Module NameContent Set

softwarejuniper.device collection

juniper_junos_softwareJuniper.junos role

NOTE: Starting in Juniper.junos Release 2.0.0, the juniper_junos_softwaremodule replaces the
functionality of the junos_install_os module.

98

https://ansible-juniper-collection.readthedocs.io/en/latest/software.html
https://galaxy.ansible.com/juniper/device
https://junos-ansible-modules.readthedocs.io/en/latest/juniper_junos_software.html
https://galaxy.ansible.com/juniper/junos

The following sections discuss how to specify the software image location and the general software
installation process and options when using the modules to install software packages on devices running
JunosOS. They also discuss how to performmore specialized upgrade scenarios such as a VMhost upgrade,
a unified in-service software upgrade (unified ISSU), or a nonstop software upgrade (NSSU) on devices
that support these features.

• How to Specify the Software Image Location on page 99

• Installation Process Overview on page 101

• How to Specify Timeout Values on page 103

• How to Specify Installation Options That Do Not Have an Equivalent Module Argument on page 104

• How to Perform a VM Host Upgrade on page 105

• How to Perform a Unified ISSU or NSSU on page 105

How to Specify the Software Image Location

When you use the software or juniper_junos_software module to install software on devices running
Junos OS, you can download the software package to the Ansible control node, and the modules, by
default, copy the package to the target device before performing the installation. Formixed Virtual Chassis
environments, the packagesmust reside on the Ansible control node. For standalone devices or non-mixed
Virtual Chassis environments, you can also instruct the module to install a software image that already
resides on the target device running Junos OS or resides at a URL that is reachable from the target device.

Table 17 on page 100 outlines themodule arguments that youmust set depending on the software package
location. Themodulemust always include either the local_package, pkg_set, or remote_package argument.
The no_copy argument defaults to false, which instructs the module to copy the software package from
the specified location on the control node to the target device.

99

Table 17: Module Arguments for Software Package Location

remote_package Parameterlocal_package or pkg_set Parameter
no_copy
Parameter

Software
Package
Location

(Optional) File path on the target device
to which the software package is copied.
The default directory is /var/tmp.

If remote_package includes a filename, it
must match the filename specified in
local_package.

For standalone devices or non-mixed
Virtual Chassis environments:

Set local_package to the file path,
including the filename, of the software
package on the local control node. File
paths are relative to the playbook
directory.

Omit or set
to false

Ansible
control node

–For mixed Virtual Chassis environments:

Set pkg_set to a list of the file paths,
including the filenames, of one or more
software packages on the local control
node. File paths are relative to the
playbook directory.

URL from the perspective of the target
device running Junos OS from which the
software package is installed.

––Remote
Location

File path on the target device where the
software package must already reside.
The default directory is /var/tmp.

–Set to trueTarget device

If the software package resides on the Ansible control node, include the local_package argument to install
software on a standalone device running Junos OS or on members in a non-mixed Virtual Chassis, or
include the pkg_set argument to install software on the members in a mixed Virtual Chassis. The module
argument specifies the absolute or relative file path to the software package or packages on the local
control node.

The local_package argument is a single string specifying the software image path. The pkg_set argument
contains a list of strings that specify the necessary software image paths, in no particular order, for the
various Virtual Chassis members. For example:

pkg_set:

 - 'software/jinstall-qfx-5-13.2X51-D35.3-domestic-signed.tgz'

 - 'software/jinstall-ex-4300-13.2X51-D35.3-domestic-signed.tgz'

100

By default, when you include the local_package or pkg_set argument, the module copies any software
packages to the /var/tmp directory on the target device running Junos OS (individual device or Virtual
Chassis primary device). If you want to copy the local_package image to a different directory, define the
remote_package argument and specify the target directory. If the remote_package argument includes a
filename, the filenames of the local_package and remote_package arguments must be identical, or the
module generates an error.

If the software package already resides on the target device running Junos OS, the module must include
the no_copy: True argument as well the remote_package argument, which specifies the file path to an
existing software package on the target device. If remote_package does not specify a directory, the default
is /var/tmp.

If the software package resides at a location other than the Ansible control node or target device, the
module must include the remote_package argument and specify the location of the software package.
The value of remote_package is a URL from the perspective of the target device running Junos OS. For
information about acceptable URL formats, see Format for Specifying Filenames and URLs in Junos OS
CLI Commands.

Installation Process Overview

To use Ansible to install a software package on a device running Junos OS, execute the software or
juniper_junos_software module, and provide any necessary arguments. For example:

- name: Perform a Junos OS software upgrade

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Upgrade Junos OS

 software:

 local_package: "software/jinstall-ppc-17.3R1.10-signed.tgz"

 no_copy: false

 validate: True

 register: response

 - name: Print the response

 debug:

 var: response

101

https://www.juniper.net/documentation/en_US/junos/topics/concept/junos-software-formats-filenames-urls.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/junos-software-formats-filenames-urls.html
https://ansible-juniper-collection.readthedocs.io/en/latest/software.html
https://junos-ansible-modules.readthedocs.io/en/stable/juniper_junos_software.html

When you execute the software or juniper_junos_softwaremodule, it performs the following operations:

1. Compares the Junos OS version specified in the version argument, or in the software package filename
if the version argument is omitted, to the installed version on the managed device. If the installed and
desired versions are identical, the module skips the remaining installation steps and sets changed and
failed to false.

2. If the software package is located on the Ansible control node, and the no_copy parameter is omitted
or set to False, the module performs the following operations:

• Computes the checksum of the local software package or packages using the algorithm specified in
the checksum_algorithm argument, if the checksum is not already provided in the checksum argument.
Acceptable checksum_algorithm values are md5, sha1, and sha256. The default is md5.

• Performs a storage cleanup on the target device to create space for the software package, unless
the cleanfs argument is set to false.

• SCP or FTP copies any packages to the target device.

When the module includes local_package, the package is copied to the remote_package directory,
or if remote_package is not specified, to the /var/tmp directory, if a file with the same name and
checksum does not already reside in the target location on the device. When the module includes
pkg_set, the packages are always copied to the /var/tmp directory on the Virtual Chassis primary
device.

NOTE: If the cleanfs argument is omitted or set to true, the module copies the software
package to the device even if it already exists in the target location, because the storage
cleanup operation removes the existing file. If cleanfs: false is present and the file already
resides at the target location, the module skips the file copy operation.

• Computes the checksum of each remote file and compares it to the value of the local file.

Once the software package is on the target device, whether downloaded there initially or copied over by
the module, the module then performs the following operations:

3. Validates the configuration against the new package if the validate parameter is set to true.

NOTE: By default, the software and juniper_junos_software modules do not validate the
software package or bundle against the existing configuration as a prerequisite to adding the
software package. To ensure that the active configuration will work with the new software
image, set the validate argument to true.

102

4. Installs the package on each individual Routing Engine, unless all_re is set to false.

5. Reboots each upgraded Routing Engine, unless the reboot argument is set to false.

The software and juniper_junos_software modules enable you to log the progress of the installation by
including the logfile module argument. By default, only messages of severity level WARNING or higher
are logged. To log messages of severity level INFO or higher, which is required to log messages for the
general installation process, execute the playbook with the -v or --verbose command-line option.

How to Specify Timeout Values

The Juniper Networks software modules perform operations over a NETCONF session. The default time
for a NETCONF RPC to time out is 30 seconds. During the installation process, certain operations increase
the RPC timeout interval as follows:

• Copying and installing the package on the device—1800 seconds (30 minutes)

• Computing the checksum—300 seconds (5 minutes)

• Performing a storage cleanup—300 seconds (5 minutes)

In some cases, the installation process, checksum calculation, or storage cleanup might exceed these time
intervals. You can change the timeout value for these operations by setting the install_timeout,
checksum_timeout, and cleanfs_timeout arguments to the required number of seconds in the module’s
argument list. For example:

 - name: Upgrade Junos OS

 software:

 local_package: "software/jinstall-ppc-17.3R1.10-signed.tgz"

 validate: True

 install_timeout: 2000

 checksum_timeout: 420

 cleanfs_timeout: 600

103

HowtoSpecify InstallationOptionsThatDoNotHave anEquivalentModule
Argument

When you use the software or juniper_junos_softwaremodule to install software on a device, the module
invokes the appropriate RPC for the given installation arguments, for example, the <request-package-add>
RPC for standard Junos OS installations, the <request-vmhost-package-add> RPC for VM host upgrades,
the <request-package-in-service-upgrade>RPC for unified ISSU scenarios, and so on. Themodules support
explicit arguments for many of the installation options, for example, the validate option. The modules also
support the kwargs argument, which enables you to include any additional options that are supported by
the RPC but which do not have an equivalent module argument. The kwargs argument takes a dictionary
of key/value pairs of additional supported options.

For the current list of options supported by the modules, see the API reference documentation for that
module. For a list of all available options for a specific RPC, see the documentation for the equivalent
command or search for the RPC’s request tag in the Junos XML API Explorer.

NOTE: The modules should only include installation options that are supported on the target
device running Junos OS.

In the following playbook, the software module installs a new software image on the target hosts. The
module includes the kwargs argument with unlink: True. This argument, which removes the software
package from the directory after a successful upgrade, is equivalent to including the <unlink/> option in
the <request-package-add> RPC.

- name: Perform a Junos OS software upgrade

 hosts: router1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Upgrade Junos OS

 software:

 local_package: "software/jinstall-ppc-17.3R1.10-signed.tgz"

 kwargs:

 unlink: True

 register: response

 - name: Print the response

104

https://apps.juniper.net/xmlapi/operTags.jsp

 debug:

 var: response

How to Perform a VM Host Upgrade

On devices that have Routing Engines with VM host support, Junos OS runs as a virtual machine (VM)
over a Linux-based host (VM host). A VM host upgrade, which upgrades the host OS and compatible Junos
OS, requires a VMHost Installation Package (junos-vmhost-install-x.tgz) and is performed using the request
vmhost software add operational mode command, which corresponds to the
<request-vmhost-package-add> RPC.

The software and juniper_junos_software modules support the vmhost: True argument for performing a
VM host upgrade. When the argument is present, the module performs the installation using the
<request-vmhost-package-add> RPC.

The following playbook upgrades and reboots the Junos OS and host OS on the devices:

- name: Upgrade VM Hosts

 hosts: vm_hosts

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Perform a VM host upgrade

 software:

 local_package: "junos-vmhost-install-qfx-x86-64-18.1R1.9.tgz"

 vmhost: True

 register: response

 - name: Print the response

 debug:

 var: response

How to Perform a Unified ISSU or NSSU

The software and juniper_junos_software modules support performing a unified in-service software
upgrade (unified ISSU) or a nonstop software upgrade (NSSU) on devices that support the feature and

105

meet the necessary requirements. For more information about the unified ISSU and NSSU features, see
the software documentation for your product.

The unified ISSU feature enables you to upgrade between two different JunosOS releaseswith no disruption
on the control plane andwithminimal disruption of traffic. To perform a unified in-service software upgrade,
the software or juniper_junos_software module must include the issu: True argument. For example:

- name: Perform a Junos OS software upgrade

 hosts: mx1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Perform a unified ISSU

 software:

 local_package: "junos-install-mx-x86-64-17.2R1.13.tgz"

 issu: True

 register: response

 - name: Print the response

 debug:

 var: response

The NSSU feature enables you to upgrade the Junos OS software running on a switch or Virtual Chassis
with redundant Routing Engines withminimal disruption to network traffic. To perform a nonstop software
upgrade, the software or juniper_junos_software module must include the nssu: True argument. For
example:

- name: Perform a Junos OS software upgrade

 hosts: ex1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Perform an NSSU

 software:

 local_package: "jinstall-ex-4300–17.3R1.10-signed.tgz"

 nssu: True

 register: response

106

 - name: Print the response

 debug:

 var: response

Example: Using Ansible to Install Software

IN THIS SECTION

Requirements | 107

Overview | 107

Configuration | 108

Executing the Playbook | 111

Verification | 113

This example uses the software module in the juniper.device collection to install a software image on a
device running Junos OS.

Requirements

This example uses the following hardware and software components:

• Configurationmanagement server running Ansible 2.10 or later with the juniper.device collection installed

• Device running Junos OS with NETCONF enabled and a user account configured with appropriate
permissions

• SSH public/private key pair configured for the appropriate user on the Ansible control node and device
running Junos OS

• Existing Ansible inventory file with required hosts defined

Overview

This example presents an Ansible playbook that uses the software module to upgrade Junos OS on the
hosts in the specified inventory group. In this example, the software image resides on the Ansible control
node, and the module copies the image to the target device before installing it. The module does not

107

explicitly define a host argument, so the module operates on the default host, which is
{{ inventory_hostname }}.

This playbook includes the Checking NETCONF connectivity task, which utilizes the wait_for module to
try to establish a NETCONF session with the device running Junos OS using the default NETCONF port
830. If the control node fails to establish a NETCONF session with a device during playbook execution,
then it skips the remaining tasks in the play for that device.

The Install Junos OS package task executes the softwaremodule provided that the NETCONF check was
successful. The version argument defines the desired Junos OS version as it would be reported by the
show version command on the device running Junos OS. During playbook execution, the module first
checks that the requested version is not already installed on the device. If the requested version is different
from the currently installed version, the module installs the requested version.

The local_package argument defines the path of the Junos OS software package on the Ansible control
node. During the installation, themodule performs a storage cleanup operation on the target device, copies
the software image to the /var/tmp directory on the device, verifies the file’s checksum, validates the new
software against the active configuration, and then installs the software on each Routing Engine on the
target host. By default, the softwaremodule reboots each Routing Engine after the installation completes;
however, this task explicitly sets reboot: True for clarity.

The task stores the module result in the response variable and notifies one handler. If the user does not
execute the playbook using check mode, the wait_reboot handler then tries to establish a session with
the device to verify that the device is back online. The wait_time variable defines the length of time that
the control node attempts to reconnect with the device.

This example includes the logfile parameter to log the progress of the installation. This is important for
debugging purposes should the installation fail as well as for logging the dates and times of installations
on the devices. The user executing the playbook must have permissions to write to the specified log file.
By default, only messages of severity level WARNING or higher are logged. In this example, the playbook
is executed with the -v option to log messages of severity level INFO or higher to monitor the installation.

Configuration

Creating the Ansible Playbook

Step-by-Step Procedure
To create a playbook that uses the softwaremodule to install a software image on a device running Junos
OS:

1. Include the boilerplate for the playbook and this play, which executes the modules locally and includes
the juniper.device collection.

- name: Install Junos OS

108

 hosts: mx1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

2. Define or import any necessary variables, which for this example, includes the desired Junos OS version
and the path to the new image, among others.

 vars:

 OS_version: "20.3R1.8"

 OS_package: "junos-install-mx-x86-64-20.3R1.8.tgz"

 pkg_dir: "software"

 log_dir: "{{ playbook_dir }}"

 netconf_port: 830

 wait_time: 3600

3. (Optional) Create a task to verify NETCONF connectivity.

 tasks:

 - name: Checking NETCONF connectivity

 wait_for:

 host: "{{ inventory_hostname }}"

 port: "{{ netconf_port }}"

 timeout: 5

4. Create the task to install the Junos OS package on the device and notify the handler.

 - name: Install Junos OS package

 software:

 version: "{{ OS_version }}"

 local_package: "{{ pkg_dir }}/{{ OS_package }}"

 reboot: True

 validate: True

 logfile: "{{ log_dir }}/software.log"

 register: response

 notify:

 - wait_reboot

5. (Optional) Create a task to print the module response.

109

 - name: Print response

 debug:

 var: response

6. Create the handler that verifies that the device comes back online after rebooting.

The handler name should be the same as that referenced in the installation task.

 handlers:

 - name: wait_reboot

 wait_for:

 host: "{{ inventory_hostname }}"

 port: "{{ netconf_port }}"

 timeout: "{{ wait_time }}"

 when: not response.check_mode

Results

On the Ansible control node, review the completed playbook. If the playbook does not display the intended
code, repeat the instructions in this example to correct the playbook.

- name: Install Junos OS

 hosts: mx1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 vars:

 OS_version: "20.3R1.8"

 OS_package: "junos-install-mx-x86-64-20.3R1.8.tgz"

 pkg_dir: "software"

 log_dir: "{{ playbook_dir }}"

 netconf_port: 830

 wait_time: 3600

 tasks:

 - name: Checking NETCONF connectivity

 wait_for:

 host: "{{ inventory_hostname }}"

 port: "{{ netconf_port }}"

 timeout: 5

110

 - name: Install Junos OS package

 software:

 version: "{{ OS_version }}"

 local_package: "{{ pkg_dir }}/{{ OS_package }}"

 reboot: True

 validate: True

 logfile: "{{ log_dir }}/software.log"

 register: response

 notify:

 - wait_reboot

 - name: Print response

 debug:

 var: response

 handlers:

 - name: wait_reboot

 wait_for:

 host: "{{ inventory_hostname }}"

 port: "{{ netconf_port }}"

 timeout: "{{ wait_time }}"

 when: not response.check_mode

Executing the Playbook

Step-by-Step Procedure

111

To execute the playbook:

• Issue the ansible-playbook command on the control node, and provide the playbook path and any desired
options.

user@ansible-cn:~/ansible$ ansible-playbook -v ansible-pb-junos-install-os.yaml

Using /etc/ansible/ansible.cfg as config file

PLAY [Install Junos OS]

TASK [Checking NETCONF connectivity]

**

ok: [mx1a.example.com] => {"changed": false, "elapsed": 0, "match_groupdict":

{}, "match_groups": [], "path": null, "port": 830, "search_regex": null, "state":

 "started"}

TASK [Install Junos OS package]

changed: [mx1a.example.com] => {"changed": true, "check_mode": false, "msg":

"Package /home/user/ansible/software/junos-install-mx-x86-64-20.3R1.8.tgz

successfully installed. Response from device is: \nVerified

junos-install-mx-x86-64-20.3R1.8 signed by PackageProductionECP256_2020 method

ECDSA256+SHA256\n

[...output truncated...]

NOTICE: 'pending' set will be activated at next reboot... Reboot successfully

initiated. Reboot message: Shutdown NOW! [pid 83918]"}

TASK [Print response]

ok: [mx1a.example.com] => {

 "response": {

 "changed": true,

 "check_mode": false,

 "failed": false,

 "msg": "Package

/home/user/ansible/software/junos-install-mx-x86-64-20.3R1.8.tgz successfully

installed. Response from device is: \nVerified junos-install-mx-x86-64-20.3R1.8

 signed by PackageProductionECP256_2020 method ECDSA256+SHA256\nVerified manifest

 signed by PackageProductionECP256_2020 method ECDSA256+SHA256\n

[...output truncated...]

NOTICE: 'pending' set will be activated at next reboot... Reboot successfully

initiated. Reboot message: Shutdown NOW! [pid 83918]"

 }

}

112

RUNNING HANDLER [wait_reboot]

ok: [mx1a.example.com] => {"changed": false, "elapsed": 209, "match_groupdict":

 {}, "match_groups": [], "path": null, "port": 830, "search_regex": null, "state":

 "started"}

PLAY RECAP

**

mx1a.example.com : ok=4 changed=1 unreachable=0 failed=0 skipped=0

 rescued=0 ignored=0

Verification

Verifying the Installation

Purpose
Verify that the software installation was successful.

Action
The playbook output should indicate any failed tasks. However, you can also review the contents of the
log file defined in the playbook for details about the installation. Sample log file output is shown here.
Some output has been omitted for brevity.

user@ansible-cn:~/ansible$ cat software.log

2020-12-11 00:24:49,478 - paramiko.transport - INFO - Connected (version 2.0,

client OpenSSH_7.5)

2020-12-11 00:24:49,632 - paramiko.transport - INFO - Authentication (publickey)

successful!

2020-12-11 00:24:57,923 - jnpr.ansible_module.software - INFO - [mx1a.example.com]

 b'junos-install-mx-x86-64-20.3R1.8.tgz': 344145920 / 3441301038 (10%)

2020-12-11 00:25:05,976 - jnpr.ansible_module.software - INFO - [mx1a.example.com]

 b'junos-install-mx-x86-64-20.3R1.8.tgz': 688275456 / 3441301038 (20%)

2020-12-11 00:25:13,949 - jnpr.ansible_module.software - INFO - [mx1a.example.com]

 b'junos-install-mx-x86-64-20.3R1.8.tgz': 1032404992 / 3441301038 (30%)

2020-12-11 00:25:22,051 - jnpr.ansible_module.software - INFO - [mx1a.example.com]

 b'junos-install-mx-x86-64-20.3R1.8.tgz': 1376534528 / 3441301038 (40%)

2020-12-11 00:25:30,357 - jnpr.ansible_module.software - INFO - [mx1a.example.com]

 b'junos-install-mx-x86-64-20.3R1.8.tgz': 1720664064 / 3441301038 (50%)

2020-12-11 00:25:38,360 - jnpr.ansible_module.software - INFO - [mx1a.example.com]

 b'junos-install-mx-x86-64-20.3R1.8.tgz': 2064793600 / 3441301038 (60%)

113

2020-12-11 00:25:46,575 - jnpr.ansible_module.software - INFO - [mx1a.example.com]

 b'junos-install-mx-x86-64-20.3R1.8.tgz': 2408923136 / 3441301038 (70%)

2020-12-11 00:25:54,983 - jnpr.ansible_module.software - INFO - [mx1a.example.com]

 b'junos-install-mx-x86-64-20.3R1.8.tgz': 2753052672 / 3441301038 (80%)

2020-12-11 00:26:03,066 - jnpr.ansible_module.software - INFO - [mx1a.example.com]

 b'junos-install-mx-x86-64-20.3R1.8.tgz': 3097182208 / 3441301038 (90%)

2020-12-11 00:26:11,330 - jnpr.ansible_module.software - INFO - [mx1a.example.com]

 b'junos-install-mx-x86-64-20.3R1.8.tgz': 3441301038 / 3441301038 (100%)

2020-12-11 00:26:11,331 - jnpr.ansible_module.software - INFO - [mx1a.example.com]

 after copy, computing checksum on remote package:

/var/tmp/junos-install-mx-x86-64-20.3R1.8.tgz

...

2020-12-11 00:26:27,623 - jnpr.ansible_module.software - INFO - [mx1a.example.com]

 checksum check passed.

2020-12-11 00:26:27,623 - jnpr.ansible_module.software - INFO - [mx1a.example.com]

 validating software against current config, please be patient ...

...

2020-12-11 00:30:55,725 - jnpr.ansible_module.software - INFO - [mx1a.example.com]

 software validate package-result: 0

Output:

Removing /packages/sets/previous

Verified junos-install-mx-x86-64-20.3R1.8 signed by PackageProductionECP256_2020

method ECDSA256+SHA256

Verified manifest signed by PackageProductionECP256_2020 method ECDSA256+SHA256

Checking PIC combinations

Adding junos-mx-x86-64-20.3R1.8 ...

...

Validating against /config/juniper.conf.gz

mgd: commit complete

Validation succeeded

2020-12-11 00:30:55,725 - jnpr.ansible_module.software - INFO - [mx1a.example.com]

 installing software on RE0 ... please be patient ...

...

2020-12-11 00:33:56,203 - jnpr.ansible_module.software - INFO - [mx1a.example.com]

 software pkgadd package-result: 0

Output:

Verified junos-install-mx-x86-64-20.3R1.8 signed by PackageProductionECP256_2020

method ECDSA256+SHA256

...

2020-12-11 00:33:56,250 - jnpr.ansible_module.software - INFO - [mx1a.example.com]

 installing software on RE1 ... please be patient ...

...

2020-12-11 00:37:18,562 - jnpr.ansible_module.software - INFO - [mx1a.example.com]

114

 software pkgadd package-result: 0

Output:

Pushing /var/tmp/junos-install-mx-x86-64-20.3R1.8.tgz to

re1:/var/tmp/junos-install-mx-x86-64-20.3R1.8.tgz

Verified junos-install-mx-x86-64-20.3R1.8 signed by PackageProductionECP256_2020

method ECDSA256+SHA256

...

<?xml version="1.0" encoding="UTF-8"?><nc:rpc

xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"

message-id="urn:uuid:f6f6a59c-fedd-49fc-9cb3-9848f419a5b7">

<request-reboot><both-routing-engines/><in>0</in></request-reboot></nc:rpc>]]>]]>

2020-12-11 00:37:19,880 - ncclient.operations.rpc - INFO - [host mx1a.example.com

 session-id 46151]

 Requesting 'CloseSession'

Meaning
The log file contents indicate that the imagewas successfully copied and installed on both Routing Engines
on the target device.

Release History Table

DescriptionRelease

Starting in Juniper.junos Release 2.0.0, the juniper_junos_softwaremodule replaces the
functionality of the junos_install_os module.

2.0.0

RELATED DOCUMENTATION

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 19

Using Ansible to Halt, Reboot, or Shut Down Devices Running Junos OS | 86

Using Ansible to Restore aDevice Running JunosOS to the Factory-Default Configuration Settings | 116

115

Using Ansible to Restore a Device Running Junos OS
to the Factory-Default Configuration Settings

IN THIS SECTION

How to Use Ansible to Restore the
Factory-Default Configuration Settings | 116

Example: Using Ansible to Restore the
Factory-Default Configuration Settings | 118

SUMMARY

Use the Juniper Networks Ansible modules to restore
a device running Junos OS to its factory-default
configuration settings.

How to Use Ansible to Restore the Factory-Default Configuration Settings

Juniper Networks supports using Ansible to manage devices running Junos OS and provides modules that
enable you to restore a device to its factory-default configuration settings. Table 18 on page 116 outlines
the modules.

Table 18: Modules to Zeroize Devices

Module NameContent Set

systemjuniper.device collection

juniper_junos_systemJuniper.junos role

To use the system or juniper_junos_systemmodule to restore a device to its factory-default configuration
settings, set the module’s action argument to 'zeroize'. After a device is restored to the factory-default
configuration settings, you must log in through the console as root in order to access the device.

NOTE: Starting in Juniper.junos Release 2.0.0, the juniper_junos_system module replaces the
functionality of the junos_shutdown and junos_zeroize modules.

The action: "zeroize" argument causes the module to execute the request system zeroize operational
command on the target host. This command removes all configuration information on the specified Routing
Engines, resets all key values on the device, and then reboots the device and resets it to the factory-default

116

https://ansible-juniper-collection.readthedocs.io/en/latest/system.html
https://galaxy.ansible.com/juniper/device
https://junos-ansible-modules.readthedocs.io/en/latest/juniper_junos_system.html
https://galaxy.ansible.com/juniper/junos

configuration settings. The zeroize operation removes all data files, including customized configuration
and log files, by unlinking the files from their directories, and it also removes all user-created files from
the system including all plain-text passwords, secrets, and private keys for SSH, local encryption, local
authentication, IPsec, RADIUS, TACACS+, and SNMP. For more information about the request system
zeroize command, see request system zeroize.

The following Ansible playbook uses the juniper.device collection’s systemmodule with action: "zeroize"
to reset all Routing Engines on each host in the inventory group to the factory-default configuration
settings.

- name: Restore devices running Junos OS to factory-default configuration

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Restore all Routing Engines to factory-default configuration

 system:

 action: "zeroize"

By default, the action: "zeroize" operation resets all Routing Engines in a dual Routing Engine or Virtual
Chassis setup to the factory-default configuration settings. You can also instruct the module to perform
the operation on only the Routing Engine to which the application is connected.

To explicitly indicate that the operation should be performed on all Routing Engines in a dual Routing
Engine or Virtual Chassis setup, include the all_re: True argument, which is the default.

 tasks:

 - name: Restore all Routing Engines to factory-default configuration

 system:

 action: "zeroize"

 all_re: True

To perform the requested action on only the Routing Engine to which the application is connected, include
the all_re: False argument.

 tasks:

 - name: Restore connected Routing Engine to factory-default configuration

 system:

117

https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/request-system-zeroize.html

 action: "zeroize"

 all_re: False

To instruct the module to also scrub all memory and media, in addition to removing all configuration and
log files, include themedia: True argument. Including themedia: True argument is equivalent to executing
the request system zeroize media operational mode command. The media option scrubs every storage
device attached to the system, including disks, flash memory devices, removable USBs, and so on. The
duration of the scrubbing process is dependent on the size of the media being erased.

 tasks:

 - name: Restore device to the factory-default configuration and scrub media

 system:

 action: "zeroize"

 media: True

Example: Using Ansible to Restore the Factory-Default Configuration
Settings

IN THIS SECTION

Requirements | 119

Overview | 119

Configuration | 119

Executing the Playbook | 122

Verification | 123

This example demonstrates how to use the system module in the juniper.device collection to restore a
device running Junos OS to its factory-default configuration settings. You can execute the module using
any type of connection; however, once you reset the device, you can only access it again as root through
a console server or the CONSOLE port. This example connects to the devices through a console server.

118

Requirements

This example uses the following hardware and software components:

• Configurationmanagement server running Ansible 2.10 or later with the juniper.device collection installed

• Device running Junos OS that has access to the console port through a console server and has a user
account configured with appropriate permissions

• Existing Ansible inventory file with required hosts defined

Overview

This example presents an Ansible playbook that uses the systemmodule to reset each host in the inventory
group to its factory-default configuration settings. The value of the module’s action argument defines the
operation to execute on the host. Setting action to "zeroize" executes the request system zeroize command
on each host. This command removes all configuration information on the Routing Engines, resets all key
values on the device, and then reboots the device and resets it to the factory-default configuration settings.

NOTE: The request system zeroize command removes all data files, including customized
configuration and log files, by unlinking the files from their directories. The command also removes
all user-created files from the system including all plain-text passwords, secrets, and private keys
for SSH, local encryption, local authentication, IPsec, RADIUS, TACACS+, and SNMP.

When calling the module from a playbook, we recommend that you use an interactive prompt to confirm
that the user does intend to reset the devices. If a user unintentionally runs the playbook and there is no
check, it could inadvertently revert devices back to factory-default configurations and disrupt any networks
that require those devices. As a precaution, this playbook uses an interactive prompt to verify that the
user intends to reset the devices and requires that the user manually type 'yes' on the command line in
order to execute the module. If the Confirmation check task fails, the Ansible control node skips the other
tasks in the play for that device.

The task that restores the hosts to the factory-default configuration executes the systemmodule provided
that the confirmation checkwas successful. Themode: "telnet" and port: 23 arguments instruct themodule
to telnet to port 23 of the console server. The password parameter is set to the value of the password
variable, which the playbook prompts for during execution. After the reboot, you must log in through the
console as root in order to access the device.

Configuration

Creating and Executing the Ansible Playbook

Step-by-Step Procedure

119

To create a playbook that uses the systemmodule to restore a device running JunosOS to its factory-default
configuration settings:

1. Include the boilerplate for the playbook and this play, which executes the modules locally and includes
the juniper.device collection.

- name: Restore devices running Junos OS to factory-default configuration settings

 hosts: dc1_console

 connection: local

 gather_facts: no

 collections:

 - juniper.device

2. Create an interactive prompt for the password variable, if the user credentials are not already passed
in through some other means.

 vars_prompt:

 - name: "device_password"

 prompt: "Device password"

 private: yes

3. Create an interactive prompt to prevent the accidental execution of the module.

 - name: reset_confirmation

 prompt: >

 This playbook resets hosts to factory-default configurations!

 Enter 'yes' to continue.

 default: "no"

 private: no

4. Create the task that confirms the users intent.

 tasks:

 - name: Confirmation check

 fail: msg="Playbook run confirmation failed"

 when: reset_confirmation != "yes"

5. Create the task to reset all Routing Engines on the device to the factory-default configuration settings.

120

 - name: Restore all Routing Engines to factory-default configuration

 system:

 password: "{{ device_password }}"

 mode: "telnet"

 port: 23

 action: "zeroize"

 timeout: 120

 register: result

6. (Optional) Create a task to print the response.

 - name: Print response

 debug:

 var: result

Results

On the Ansible control node, review the completed playbook. If the playbook does not display the intended
code, repeat the instructions in this example to correct the playbook.

- name: Restore devices running Junos OS to factory-default configuration settings

 hosts: dc1_console

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 vars_prompt:

 - name: "device_password"

 prompt: "Device password"

 private: yes

 - name: reset_confirmation

 prompt: >

 This playbook resets hosts to factory-default configurations!

 Enter 'yes' to continue.

 default: "no"

 private: no

 tasks:

 - name: Confirmation check

121

 fail: msg="Playbook run confirmation failed"

 when: reset_confirmation != "yes"

 - name: Restore all Routing Engines to factory-default configuration

 system:

 password: "{{ device_password }}"

 mode: "telnet"

 port: 23

 action: "zeroize"

 timeout: 120

 register: result

 - name: Print response

 debug:

 var: result

Executing the Playbook

Step-by-Step Procedure

122

To execute the playbook:

• Issue the ansible-playbook command on the control node, and provide the playbook path and any desired
options.

root@ansible-cn:~/ansible# ansible-playbook ansible-pb-junos-zeroize.yaml

Device password:

This playbook resets hosts to factory-default configurations! Enter 'yes' to

continue.

 [no]: yes

PLAY [Restore devices running Junos OS to factory-default configuration settings]

TASK [Confirmation check] **

skipping: [dc1a-console.example.net]

TASK [Restore all Routing Engines to factory-default configuration] ****

changed: [dc1a-console.example.net]

TASK [Print response] **

ok: [dc1a-console.example.net] => {

 "result": {

 "action": "zeroize",

 "all_re": true,

 "changed": true,

 "failed": false,

 "media": false,

 "msg": "zeroize successfully initiated.",

 "other_re": false,

 "reboot": false

 "vmhost": false

 }

}

PLAY RECAP **

dc1a-console.example.net : ok=2 changed=1 unreachable=0 failed=0

skipped=1 rescued=0 ignored=0

Verification

Verifying Playbook Execution

Purpose

123

Verify that the devices running Junos OS were successfully reset to the factory-default configuration.

Action

Access the device through the console port as root. The device should now be in Amnesiac state.

Amnesiac <ttyd0>

login:

Meaning
The Amnesiac prompt is indicative of a device that is booting from a factory-default configuration and
that does not have a hostname configured.

Release History Table

DescriptionRelease

Starting in Juniper.junos Release 2.0.0, the juniper_junos_system module replaces the
functionality of the junos_shutdown and junos_zeroize modules.

2.0.0

RELATED DOCUMENTATION

Using Ansible to Halt, Reboot, or Shut Down Devices Running Junos OS | 86

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 19

124

Using Junos Snapshot Administrator in Python
(JSNAPy) in Ansible Playbooks

IN THIS SECTION

Module Overview | 126

Taking and Comparing Snapshots | 129

Performing Snapcheck Operations | 132

Understanding the jsnapy and
juniper_junos_jsnapy Module Output | 133

Enabling the jsnapy Callback Plugin | 135

Example: Using Ansible to Perform a JSNAPy
Snapcheck Operation | 136

SUMMARY

Execute JSNAPy tests as part of an Ansible playbook
to capture and audit runtime environment snapshots
of devices running Junos OS.

Junos® Snapshot Administrator in Python (JSNAPy) enables you to capture and audit runtime environment
snapshots of your network devices running Junos OS. You can capture and verify the configuration and
operational status of a device and verify changes to a device. Juniper Networks provides Ansible modules
that enable you to execute JSNAPy tests against devices running Junos OS as part of an Ansible playbook.
Table 13 on page 86 outlines the available modules.

Table 19: JSNAPy Modules

Module NameContent Set

jsnapyjuniper.device collection

juniper_junos_jsnapyJuniper.junos role

You must install Junos Snapshot Administrator in Python on the Ansible control node in order to use the
modules. For installation instructions and information about creating JSNAPy configuration and test files,
see the Junos Snapshot Administrator in Python Documentation.

125

https://ansible-juniper-collection.readthedocs.io/en/latest/jsnapy.html
https://galaxy.ansible.com/juniper/device
http://junos-ansible-modules.readthedocs.io/en/latest/juniper_junos_jsnapy.html
https://galaxy.ansible.com/juniper/junos
https://www.juniper.net/documentation/en_US/junos-snapshot1.0/information-products/pathway-pages/product/1.0/index-python.html

NOTE: Starting in Juniper.junos Release 2.0.0, the juniper_junos_jsnapy module replaces the
functionality of the junos_jsnapy module.

The following sections discuss how to use the modules in Ansible playbooks.

Module Overview

The jsnapy and juniper_junos_jsnapymodules enable you to execute many of the same JSNAPy functions
from an Ansible playbook as you can execute using JSNAPy on the command line, including:

• capturing and saving a runtime environment snapshot

• comparing two snapshots

• capturing a snapshot and immediately evaluating it

The modules require specifying the action argument and either the config_file or the test_files argument.
The action argument specifies the JSNAPy action to perform. Table 20 on page 126 outlines the valid action
values and the equivalent JSNAPy commands.

Table 20: jsnapy and juniper_junos_jsnapy action Argument Values

Equivalent JSNAPy CommandDescriptionaction Value

jsnapy --checkCompare two existing snapshots based on the given test
cases, or if no test cases are supplied, compare the
snapshots node by node.

check

jsnapy --snapTake snapshots for the commands or RPCs specified in the
test files after making changes on the given devices.

snap_post

jsnapy --snapTake snapshots for the commands or RPCs specified in the
test files prior to making changes on the given devices.

snap_pre

jsnapy --snapcheckTake snapshots of the commands or RPCs specified in the
test files and immediately evaluate the snapshots against
pre-defined criteria in the test cases.

snapcheck

When you execute JSNAPy on the command line, JSNAPy performs the requested action on the hosts
specified in the hosts section of the configuration file. In contrast, the Ansible modules execute the
requested action on the hosts in the Ansible inventory group defined in the playbook. As a result, the

126

module can either reference a configuration file, ignoring the hosts section, or it can directly reference
one or more test files.

Thus, in addition to the action argument, the jsnapy and juniper_junos_jsnapymodules also require either
the config_file or the test_files argument to specify the JSNAPy configuration file or the JSNAPy test files
to use for the given action. Table 21 on page 127 outlines the config_file and test_files arguments.

Table 21: jsnapy and juniper_junos_jsnapy File Arguments

Additional InformationValue
Module
argument

If the path is relative, the module checks for the configuration file in
the following locations and in the order indicated:

• Ansible playbook directory

• dir argument directory, if provided

• /etc/jsnapy/testfiles directory (only if the dir argument is omitted)

If the configuration file references test files by using a relative file
path, themodule first checks for the test files in the playbook directory
and then checks for the test files in the default testfiles directory,
which will vary depending on the JSNAPy release and your
environment.

Absolute or relative file path
to a JSNAPy configuration
file.

config_file

For each test file that specifies a relative path, the module checks for
the file in the following locations and in the order indicated:

• Ansible playbook directory

• dir argument directory, if provided

• /etc/jsnapy/testfiles directory (only if the dir argument is omitted)

Absolute or relative file path
to a JSNAPy test file. This can
be a single file path or a list of
file paths.

test_files

The config_file and test_files arguments can take an absolute or relative file path. When using a relative
file path, you can optionally include the dir module argument to specify the directory in which the files
reside. If a config_file or test_files argument uses a relative file path, the module first checks for the file
under the Ansible playbook directory, even if the dir argument is present. If the file does not exist under
the playbook directory, the module checks under the dir argument directory, if it is specified, or under the
/etc/jsnapy/testfiles directory, if the dir argument is omitted. The playbook generates an error message
if the file is not found.

The following sample playbook performs the snap_pre action using the configuration_interface_status.yaml
configuration file. If the configuration file does not exist in the playbook directory, the module checks for
the file in the user’s home directory under the jsnapy/testfiles subdirectory.

- name: Junos Snapshot Administrator tests

127

 hosts: dc1a

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Take a pre-maintenance snapshot of the interfaces

 jsnapy:

 action: "snap_pre"

 dir: "~/jsnapy/testfiles"

 config_file: "configuration_interface_status.yaml"

NOTE: Starting in Junos Snapshot Administrator in Python Release 1.3.0, the default location
for configuration and test files is ~/jsnapy/testfiles. However, the default location inside a virtual
environment or for earlier releases is /etc/jsnapy/testfiles.

The module performs the requested action on the hosts specified in the Ansible playbook, even if the
module references a configuration file that includes a hosts section. The module reports failed if it
encounters an error and fails to execute the JSNAPy tests. It does not report failed if one or more of the
JSNAPy tests fail. To check the JSNAPy test results, register the module’s response, and use the assert
module to verify the expected result in the response.

Junos Snapshot Administrator in Python logs information regarding its operations to the
/var/log/jsnapy/jsnapy.log file by default. The jsnapy and juniper_junos_jsnapy modules can optionally
include the logfile argument, which specifies the path to a writable file on the Ansible control node where
information for the particular task is logged. The level of information logged in the file is determined by
Ansible’s verbosity level and debug options. By default, only messages of severity level WARNING or
higher are logged. To log messages equal to or higher than severity level INFO or severity level DEBUG,
execute the playbook with the -v or -vv command-line option, respectively.

When you execute JSNAPy tests in an Ansible playbook, you can enable the jsnapy callback plugin to
capture and summarize information for failed JSNAPy tests. To enable the callback plugin, add the
callback_whitelist = jsnapy statement to the Ansible configuration file. For more information, see “Enabling
the jsnapy Callback Plugin” on page 135.

128

Taking and Comparing Snapshots

JSNAPy enables you to capture runtime environment snapshots of your network devices running Junos
OS before and after a change and then compare the snapshots to verify the expected changes or identify
unexpected issues. The jsnapy and juniper_junos_jsnapyAnsible modules enable you to take and compare
JSNAPy snapshots as part of an Ansible playbook. The modules save each snapshot for each host in a
separate file in the default JSNAPy snapshot directory using a predetermined filename. Formore information
about the output files, see “Understanding the jsnapy and juniper_junos_jsnapyModuleOutput” on page 133.

To take baseline snapshots of one or more devices prior to making changes, set the module’s action
argument to snap_pre, and specify a configuration file or one or more test files.

The following playbook saves PRE snapshots for each device in the Ansible inventory group. The task
references the configuration_interface_status.yaml configuration file in the ~/jsnapy/testfiles directory
and logs messages to the jsnapy_tests.log file in the playbook directory.

- name: Junos Snapshot Administrator tests

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Take a pre-maintenance snapshot of the interfaces

 jsnapy:

 action: "snap_pre"

 dir: "~/jsnapy/testfiles"

 config_file: "configuration_interface_status.yaml"

 logfile: "jsnapy_tests.log"

To take a snapshot of one or more devices after performing changes, set the module’s action argument
to snap_post, and specify a configuration file or one or more test files.

The following playbook saves POST snapshots for each device in the Ansible inventory group. The task
references the same configuration_interface_status.yaml configuration file in the ~/jsnapy/testfiles
directory and logs messages to the jsnapy_tests.log file in the playbook directory.

- name: Junos Snapshot Administrator tests

 hosts: dc1

 connection: local

129

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Take a post-maintenance snapshot of the interfaces

 jsnapy:

 action: "snap_post"

 dir: "~/jsnapy/testfiles"

 config_file: "configuration_interface_status.yaml"

 logfile: "jsnapy_tests.log"

When the jsnapy or juniper_junos_jsnapy module performs a snap_pre action or a snap_post action, it
saves each snapshot for each host in a separate file using auto-generated filenames that contain a 'PRE'
or 'POST' tag, respectively. To compare the PRE and POST snapshots to quickly verify the updates or
identify any issues that might have resulted from the changes, set the module’s action argument to check,
and specify the same configuration file or test files that were used to take the snapshots.

When themodule performs a check action, the preexisting PRE and POST snapshots for each test on each
device are compared and evaluated against the criteria defined in the tests: section of the test files. If the
test files do not define any test cases, JSNAPy instead compares the snapshots node by node. To check
the test results, register the module’s response, and use the assert module to verify the expected result
in the response.

The following playbook compares the snapshots taken for previously executed snap_pre and snap_post
actions for every device in the Ansible inventory group. The results are evaluated using the criteria in the
test files that are referenced in the configuration file. The playbook registers the module’s response as
'test_result' and uses the assert module to verify that all tests passed on the given device.

- name: Junos Snapshot Administrator tests

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Compare PRE and POST snapshots

 jsnapy:

 action: "check"

 dir: "~/jsnapy/testfiles"

 config_file: "configuration_interface_status.yaml"

 logfile: "jsnapy_tests.log"

130

 register: test_result

 - name: Verify JSNAPy tests passed

 assert:

 that:

 - "test_result.passPercentage == 100"

When you run the playbook, the assertions quickly identify which devices failed the tests.

user@host:~$ ansible-playbook jsnapy-interface-check.yaml

PLAY [Junos Snapshot Administrator tests] *************************************

TASK [Compare PRE and POST snapshots] ***

ok: [dc1a.example.net]

ok: [dc1b.example.net]

TASK [Verify JSNAPy tests passed] ***

ok: [dc1b.example.net] => {

 "changed": false,

 "msg": "All assertions passed"

}

fatal: [dc1a.example.net]: FAILED! => {

 "assertion": "test_result.passPercentage == 100",

 "changed": false,

 "evaluated_to": false,

 "msg": "Assertion failed"

}

 to retry, use: --limit @/home/user/jsnapy-interface-check.retry

PLAY RECAP **

dc1b.example.net : ok=2 changed=0 unreachable=0 failed=0 skipped=0

 rescued=0 ignored=0

dc1a.example.net : ok=1 changed=0 unreachable=0 failed=1 skipped=0

 rescued=0 ignored=0

131

Performing Snapcheck Operations

JSNAPy enables you to take snapshots for the commands or RPCs specified in JSNAPy test files and
immediately evaluate the snapshots against pre-defined criteria in the test cases. The jsnapy and
juniper_junos_jsnapy Ansible modules enable you to perform a JSNAPy snapcheck operation as part of
an Ansible playbook.

To take a snapshot and immediately evaluate it based on the pre-defined set of criteria in the tests: section
of the test files, set the module’s action argument to snapcheck, and specify a configuration file or one or
more test files. To check the test results, register the module’s response, and use the assert module to
verify the expected result in the response.

For example, for each device in the Ansible inventory group, the following playbook saves a separate
snapshot for each command or RPC in the test files, registers the module’s response, and uses the assert
module to verify that all tests defined in the test files passed on that device.

- name: Junos Snapshot Administrator tests

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Take a snapshot and immediately evaluate it

 jsnapy:

 action: "snapcheck"

 dir: "~/jsnapy/testfiles/"

 test_files:

 - "test_interface_status.yaml"

 - "test_bgp_neighbor.yaml"

 logfile: "jsnapy_tests.log"

 register: test_result

 - name: Verify JSNAPy tests passed

 assert:

 that:

 - "test_result.passPercentage == 100"

132

Understanding the jsnapy and juniper_junos_jsnapy Module Output

When the jsnapy or juniper_junos_jsnapy module performs a snap_pre, snap_post, or snapcheck action,
it automatically saves the snapshots in the JSNAPy snapshots directory. The modules use the default
JSNAPy directories unless you modify the JSNAPy configuration file to specify a different location. The
module creates a separate file for each command or RPC executed on each device in the Ansible inventory
group. Table 22 on page 133 outlines the filenames of the snapshot files for each value of the action
argument.

NOTE: Starting in Junos Snapshot Administrator in Python Release 1.3.0, the default directories
for the JSNAPy test files and snapshots are ~/jsnapy/testfiles and ~/jsnapy/snapshots,
respectively. However, the default directories inside a virtual environment or for earlier releases
are /etc/jsnapy/testfiles and /etc/jsnapy/snapshots.

Table 22: JSNAPy Output Filenames

Output Filesaction value

hostname_PRE_hash_command.formatsnap_pre

hostname_POST_hash_command.formatsnap_post

hostname_snap_temp_hash_command.format
or
hostname_PRE_hash_command.format

snapcheck

where:

• hostname—Hostname of the device on which the command or RPC is executed.

• (PRE | POST | snap_temp)—Tag identifying the action. The snapcheck operation uses the PRE tag in
current releases; in earlier releases the operation uses the snap_temp tag.

• hash—Hash generated from kwargs for test files that include the rpc and kwargs keys.

If test files use the same RPC but include different arguments, and the RPCs are executed on the same
host, the hash ensures unique output filenames in those cases. If a test file defines the command key
or if a test file defines the rpc key but does not include the kwargs key, the hash is omitted.

• command—Command or RPC executed on the managed device. The module replaces whitespace and
special characters in the command or RPC name with underscores (_).

• format—Format of the output, for example, xml.

133

NOTE: The jsnapy and juniper_junos_jsnapymodules only differentiate the snapshot filenames
for a given action based on hostname and command or RPC. As a result, if the module takes
snapshots on the same device for the same action using test files that define the same command
or RPC, themodulewill generate snapshotswith the same filename, and the new file will overwrite
the old file.

For example, if the module includes action: "snap_pre" and references test files that execute the show
chassis fpc and show interfaces terse commands on devices dc1a.example.net and dc1b.example.net, the
resulting files are:

user@ansible-cn:~$ ls jsnapy/snapshots

dc1a.example.net_PRE_show_chassis_fpc.xml

dc1a.example.net_PRE_show_interfaces_terse.xml

dc1b.example.net_PRE_show_chassis_fpc.xml

dc1b.example.net_PRE_show_interfaces_terse.xml

If the module includes action: "snap_post" and references a test file that executes the
get-interface-information RPC with kwargs item interface_name: lo0 on device dc1a.example.net, the
resulting file is:

dc1a.example.net_POST_r1w59I99HXxC3u0VXXshbw==_get_interface_information.xml

In addition to generating the snapshot files, the jsnapy and juniper_junos_jsnapymodules can also return
the following keys in the module response:

• action—JSNAPy action performed by the module.

• changed—Indicates if the device’s state changed. Since JSNAPy only reports on state, the value is always
false.

• failed—Indicates if the playbook task failed.

• msg—JSNAPy test results.

134

Enabling the jsnapy Callback Plugin

When you execute JSNAPy tests against devices running Junos OS and one or more tests fail, it can be
difficult to identify and extract the failed tests if the output is extensive. The jsnapy callback plugin enables
you to easily extract and summarize the information for failed JSNAPy tests. When you enable the jsnapy
callback plugin and execute a playbook that includes JSNAPy tests, the plugin summarizes the information
for the failed JSNAPy tests after the playbook PLAY RECAP.

The jsnapy callback plugin is not enabled by default. To enable the jsnapy callback plugin, add the
callback_whitelist = jsnapy statement to the Ansible configuration file.

[defaults]

callback_whitelist = jsnapy

When you enable the jsnapy callback plugin and run a playbook, the plugin summarizes the failed JSNAPy
tests in a human-readable format. For example:

...

PLAY RECAP **

qfx10002-01 : ok=3 changed=0 unreachable=0 failed=1

qfx10002-02 : ok=3 changed=0 unreachable=0 failed=1

qfx5100-01 : ok=1 changed=0 unreachable=0 failed=1

JSNAPy Results for: qfx10002-01 ***

Value of 'peer-state' not 'is-equal' at '//bgp-information/bgp-peer' with

{"peer-as": "64502", "peer-state": "Active", "peer-address": "198.51.100.21"}

Value of 'peer-state' not 'is-equal' at '//bgp-information/bgp-peer' with

{"peer-as": "64510", "peer-state": "Idle", "peer-address": "192.168.0.1"}

Value of 'oper-status' not 'is-equal' at

'//interface-information/physical-interface[normalize-space(admin-status)='up' and

 logical-interface/address-family/address-family-name]' with {"oper-status":

"down", "name": "et-0/0/18"}

JSNAPy Results for: qfx10002-02 ***

Value of 'peer-state' not 'is-equal' at '//bgp-information/bgp-peer' with

{"peer-as": "64502", "peer-state": "Active", "peer-address": "198.51.100.21"}

135

Example: Using Ansible to Perform a JSNAPy Snapcheck Operation

IN THIS SECTION

Requirements | 136

Overview | 137

Configuration | 138

Executing the Playbook | 148

Verification | 151

Troubleshooting Ansible Playbook Errors | 152

The jsnapy module enables you to execute JSNAPy tests against devices running Junos OS as part of an
Ansible playbook. This examples uses the jsnapy module to perform a snapcheck action to verify the
operational state of devices running Junos OS after applying specific configuration changes.

Requirements

This example uses the following hardware and software components:

• Ansible control node running:

• Python 3.7 or later

• Ansible 2.10 or later with the juniper.device collection installed

• Junos PyEZ Release 2.6.0 or later

• Junos Snapshot Administrator in Python Release 1.3.6 or later

Before executing the Ansible playbook, be sure you have:

• Devices running Junos OS with NETCONF over SSH enabled and a user account configured with
appropriate permissions

• SSH public/private key pair configured for the appropriate user on the Ansible control node and device
running Junos OS

• Existing Ansible inventory file with required hosts defined

136

Overview

In this example, the Ansible playbook configures BGP peering sessions on three devices running Junos OS
and uses the jsnapymodule to verify that the BGP session is established for each neighbor address. If the
playbook verifies that the sessions are established on a device, it confirms the commit for the new
configuration. If the playbook does not confirm the commit, the device running Junos OS automatically
rolls back to the previously committed configuration. The Ansible project defines the group and host
variables for the playbook under the group_vars and host_vars directories, respectively.

The playbook has two plays. The first play, Load and commit BGP configuration, generates and assembles
the configuration, loads the configuration on the device, and commits it using a commit confirmed operation.
If the configuration is updated, one handler is notified. The play executes the following tasks:

Remove build directory—Deletes the existing build directory for the given device, if present.

Create build directory—Creates a new, empty build directory for the given device.

Build BGP configuration—Uses the templatemodule with the Jinja2 template and host variables to render
the BGP configuration for the given device and save it to a file in the device’s build directory.

Assemble configuration parts—Uses the assemblemodule to assemble the device configuration file from
the files in that device’s build directory.

In this example, only the BGP configuration file will be present, and thus the resulting configuration
file is identical to the BGP configuration file rendered in the previous task. If you later add new tasks
to generate additional configuration files from other templates, the assemblemodule will combine all
files into a single configuration.

Load and commit config, require confirmation—Loads the configuration onto the device running Junos
OS and commits the configuration using a commit confirmed operation, which requires explicit
confirmation for the commit to become permanent. If this task makes a change to the configuration,
it also notifies the handler that pauses playbook execution for a specified amount of time to allow the
BGP peers to establish connections before the second play is executed.

If the requested configuration is already present on the device, the config module does not load and
commit the configuration. In this case, the module returns changed: false, and thus does not notify
the handler.

The second play, Verify BGP, performs a JSNAPy snapcheck operation on each device using the tests in
the JSNAPy test files and confirms the commit, provided that all the tests pass. The play executes the
following tasks:

Execute snapcheck—Performs a JSNAPy snapcheck operation, which in this case, validates that the BGP
session is established for each of the device’s neighbors and that there are no down peers.

137

In this example, the playbook directly references JSNAPy test files by setting the test_files argument
equal to the list of JSNAPy test files. The dir argument specifies the directory where the test files are
stored.

Confirm commit—Executes a commit check operation, which confirms the previous commit operation,
provided that the first playbook play updated the configuration and that all of the JSNAPy tests passed.
If the playbook updates the configuration but does not confirm the commit, the device running Junos
OS automatically rolls the configuration back to the previously committed configuration.

NOTE: You can confirm the previous commit operation with either a commit check or commit
operation on the device, which corresponds to the check: true or commit: true argument,
respectively, in the config module.

Verify BGP configuration—(Optional) Explicitly indicates whether the JSNAPy tests passed or failed on
the given device. This task is not specifically required, but it more easily identifies when the JSNAPy
tests fail and on which devices.

Configuration

IN THIS SECTION

Define the Group Variables | 138

Define the Jinja2 Template and Host Variables | 139

Create the JSNAPy Test Files | 142

Create the Ansible Playbook | 143

Results | 146

Define the Group Variables

Step-by-Step Procedure
To define the group variables:

• In the group_vars/all file, define variables for the build directory and for the filenames of the
configuration and log files.

138

build_dir: "{{ playbook_dir }}/build_conf/{{ inventory_hostname }}"

junos_conf: "{{ build_dir }}/junos.conf"

logfile: "junos.log"

Define the Jinja2 Template and Host Variables

Step-by-Step Procedure
To create the Jinja2 template that is used to generate the BGP configuration:

1. Create a file named bgp-template.j2 in the project’s playbook directory.

2. Add the BGP configuration template to the file.

interfaces {

{% for neighbor in neighbors %}

 {{ neighbor.interface }} {

 unit 0 {

 description "{{ neighbor.name }}";

 family inet {

 address {{ neighbor.local_ip }}/30;

 }

 }

 }

{% endfor %}

 lo0 {

 unit 0 {

 family inet {

 address {{ loopback }}/32;

 }

 }

 }

}

protocols {

 bgp {

 group underlay {

 import bgp-in;

 export bgp-out;

 type external;

 local-as {{ local_asn }};

 multipath multiple-as;

{% for neighbor in neighbors %}

 neighbor {{ neighbor.peer_ip }} {

 peer-as {{ neighbor.asn }};

139

 }

{% endfor %}

 }

 }

 lldp {

{% for neighbor in neighbors %}

 interface "{{ neighbor.interface }}";

{% endfor %}

 }

}

routing-options {

 router-id {{ loopback }};

 forwarding-table {

 export bgp-ecmp;

 }

}

policy-options {

 policy-statement bgp-ecmp {

 then {

 load-balance per-packet;

 }

 }

 policy-statement bgp-in {

 then accept;

 }

 policy-statement bgp-out {

 then {

 next-hop self;

 accept;

 }

 }

}

Step-by-Step Procedure
To define the host variables that are used with the Jinja2 template to generate the BGP configuration:

1. In the project’s host_vars directory, create a separate file named hostname.yaml for each host.

2. Define the variables for host r1 in the r1.yaml file.

loopback: 192.168.0.1

140

local_asn: 64521

neighbors:

 - interface: ge-0/0/0

 name: to-r2

 asn: 64522

 peer_ip: 198.51.100.2

 local_ip: 198.51.100.1

 peer_loopback: 192.168.0.2

 - interface: ge-0/0/1

 name: to-r3

 asn: 64523

 peer_ip: 198.51.100.6

 local_ip: 198.51.100.5

 peer_loopback: 192.168.0.3

3. Define the variables for host r2 in the r2.yaml file.

loopback: 192.168.0.2

local_asn: 64522

neighbors:

 - interface: ge-0/0/0

 name: to-r1

 asn: 64521

 peer_ip: 198.51.100.1

 local_ip: 198.51.100.2

 peer_loopback: 192.168.0.1

 - interface: ge-0/0/1

 name: to-r3

 asn: 64523

 peer_ip: 198.51.100.10

 local_ip: 198.51.100.9

 peer_loopback: 192.168.0.3

4. Define the variables for host r3 in the r3.yaml file.

loopback: 192.168.0.3

local_asn: 64523

neighbors:

 - interface: ge-0/0/0

 name: to-r1

141

 asn: 64521

 peer_ip: 198.51.100.5

 local_ip: 198.51.100.6

 peer_loopback: 192.168.0.1

 - interface: ge-0/0/1

 name: to-r2

 asn: 64522

 peer_ip: 198.51.100.9

 local_ip: 198.51.100.10

 peer_loopback: 192.168.0.2

Create the JSNAPy Test Files

Step-by-Step Procedure
The jsnapymodule references JSNAPy test files in the ~/jsnapy/testfiles directory. To create the JSNAPy
test files:

1. Create the jsnapy_test_file_bgp_states.yaml file, which executes the show bgp neighbor command
and tests that the BGP peer state is established.

bgp_neighbor:

 - command: show bgp neighbor

 - ignore-null: True

 - iterate:

 xpath: '//bgp-peer'

 id: './peer-address'

 tests:

 # Check if peers are in the established state

 - is-equal: peer-state, Established

 err: "Test Failed!! peer <{{post['peer-address']}}> state is not

Established, it is <{{post['peer-states']}}>"

 info: "Test succeeded!! peer <{{post['peer-address']}}> state is

<{{post['peer-state']}}>"

2. Create the jsnapy_test_file_bgp_summary.yaml file, which executes the showbgp summary command
and asserts that the BGP down peers count must be 0.

bgp_summary:

 - command: show bgp summary

 - item:

 xpath: '/bgp-information'

 tests:

142

 - is-equal: down-peer-count, 0

 err: "Test Failed!! down-peer-count is not equal to 0. It is equal to

<{{post['down-peer-count']}}>"

 info: "Test succeeded!! down-peer-count is equal to

<{{post['down-peer-count']}}>"

Create the Ansible Playbook

Step-by-Step Procedure
To create the first play, which renders the configuration, loads it on the device, and commits the
configuration as a commit confirmed operation:

1. Include the boilerplate for the playbook and the first play, which executes the modules locally and
includes the juniper.device collection.

- name: Load and commit BGP configuration

 hosts: bgp_routers

 connection: local

 gather_facts: no

 collections:

 - juniper.device

2. Create the tasks that replace the existing build directory with an empty directory, which will store the
new configuration files.

 tasks:

 - name: Remove build directory

 file:

 path: "{{ build_dir }}"

 state: absent

 - name: Create build directory

 file:

 path: "{{ build_dir }}"

 state: directory

3. Create the task that renders the BGP configuration from the Jinja2 template file and host variables and
stores it in the bgp.conf file in the build directory for that host.

143

 - name: Build BGP configuration

 template:

 src: "{{ playbook_dir }}/bgp-template.j2"

 dest: "{{ build_dir }}/bgp.conf"

4. Create a task to assemble the configuration files in the build directory into the final junos.conf
configuration file.

 - name: Assemble configuration parts

 assemble:

 src: "{{ build_dir }}"

 dest: "{{ junos_conf }}"

5. Create the task that loads the configuration on the device, performs a commit operation that requires
confirmation, and notifies the given handler, provided the configuration was changed.

 - name: Load and commit config, require confirmation

 config:

 load: "merge"

 format: "text"

 src: "{{ junos_conf }}"

 confirm: 5

 comment: "config by Ansible"

 logfile: "{{ logfile }}"

 register: config_result

 # Notify handler, only if configuration changes.

 notify:

 - Waiting for BGP peers to establish connections

6. Create a handler that pauses playbook execution if the device configuration is updated, and set the
pause time to an appropriate value for your environment.

 handlers:

 - name: Waiting for BGP peers to establish connections

 pause: seconds=60

Step-by-Step Procedure

144

To create the second play, which performs a JSNAPy snapcheck operation and confirms the committed
configuration, provided that the configuration changed and the JSNAPy tests passed:

1. Include the boilerplate for the second play, which executes the modules locally and includes the
juniper.device collection.

- name: Verify BGP

 hosts: bgp_routers

 connection: local

 gather_facts: no

 collections:

 - juniper.device

2. Create a task to perform a JSNAPy snapcheck operation based on the tests in the given JSNAPy test
files, and register the module’s response.

 tasks:

 - name: Execute snapcheck

 jsnapy:

 action: "snapcheck"

 dir: "~/jsnapy/testfiles"

 test_files:

 - "jsnapy_test_file_bgp_states.yaml"

 - "jsnapy_test_file_bgp_summary.yaml"

 logfile: "{{ logfile }}"

 register: snapcheck_result

3. Create the task to confirm the commit provided that the given conditions are met.

 # Confirm commit only if configuration changed and JSNAPy tests pass

 - name: Confirm commit

 config:

 check: true

 commit: false

 diff: false

 logfile: "{{ logfile }}"

 when:

 - config_result.changed

 - "snapcheck_result.passPercentage == 100"

4. (Optional) Create a task that uses the assert module to assert that the JSNAPy tests passed.

145

 - name: Verify BGP configuration

 assert:

 that:

 - "snapcheck_result.passPercentage == 100"

 msg: "JSNAPy test on {{ inventory_hostname }} failed"

Results

On the Ansible control node, review the completed playbook. If the playbook does not display the intended
code, repeat the instructions in this section to correct the playbook.

- name: Load and commit BGP configuration

 hosts: bgp_routers

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Remove build directory

 file:

 path: "{{ build_dir }}"

 state: absent

 - name: Create build directory

 file:

 path: "{{ build_dir }}"

 state: directory

 - name: Build BGP configuration

 template:

 src: "{{ playbook_dir }}/bgp-template.j2"

 dest: "{{ build_dir }}/bgp.conf"

 - name: Assemble configuration parts

 assemble:

 src: "{{ build_dir }}"

 dest: "{{ junos_conf }}"

 - name: Load and commit config, require confirmation

 config:

146

 load: "merge"

 format: "text"

 src: "{{ junos_conf }}"

 confirm: 5

 comment: "config by Ansible"

 logfile: "{{ logfile }}"

 register: config_result

 # Notify handler, only if configuration changes.

 notify:

 - Waiting for BGP peers to establish connections

 handlers:

 - name: Waiting for BGP peers to establish connections

 pause: seconds=60

- name: Verify BGP

 hosts: bgp_routers

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Execute snapcheck

 jsnapy:

 action: "snapcheck"

 dir: "~/jsnapy/testfiles"

 test_files:

 - "jsnapy_test_file_bgp_states.yaml"

 - "jsnapy_test_file_bgp_summary.yaml"

 logfile: "{{ logfile }}"

 register: snapcheck_result

 # Confirm commit only if configuration changed and JSNAPy tests pass

 - name: Confirm commit

 config:

 check: true

 commit: false

 diff: false

 logfile: "{{ logfile }}"

 when:

 - config_result.changed

147

 - "snapcheck_result.passPercentage == 100"

 - name: Verify BGP configuration

 assert:

 that:

 - "snapcheck_result.passPercentage == 100"

 msg: "JSNAPy test on {{ inventory_hostname }} failed"

Executing the Playbook

Step-by-Step Procedure

148

To execute the playbook:

149

• Issue the ansible-playbook command on the control node, and provide the playbook path and any
desired options.

user@ansible-cn:~/ansible$ ansible-playbook ansible-pb-bgp-configuration.yaml

PLAY [Load and commit BGP configuration] *************************************

TASK [Remove build directory] **

changed: [r1]

changed: [r2]

changed: [r3]

TASK [Create build directory] **

changed: [r1]

changed: [r2]

changed: [r3]

TASK [Build BGP configuration] ***

changed: [r2]

changed: [r1]

changed: [r3]

TASK [Assemble configuration parts] **

changed: [r3]

changed: [r2]

changed: [r1]

TASK [Load and commit config, require confirmation] **************************

changed: [r2]

changed: [r1]

changed: [r3]

RUNNING HANDLER [Waiting for BGP peers to establish connections] *************

Pausing for 60 seconds

(ctrl+C then 'C' = continue early, ctrl+C then 'A' = abort)

ok: [r3]

PLAY [Verify BGP] **

TASK [Execute snapcheck] ***

ok: [r2]

ok: [r1]

ok: [r3]

150

TASK [Confirm commit] **

ok: [r2]

ok: [r1]

ok: [r3]

TASK [Verify BGP configuration] **

ok: [r1] => {

 "changed": false,

 "msg": "All assertions passed"

}

ok: [r2] => {

 "changed": false,

 "msg": "All assertions passed"

}

ok: [r3] => {

 "changed": false,

 "msg": "All assertions passed"

}

PLAY RECAP ***

r1 : ok=8 changed=5 unreachable=0 failed=0

skipped=0 rescued=0 ignored=0

r2 : ok=8 changed=5 unreachable=0 failed=0

skipped=0 rescued=0 ignored=0

r3 : ok=9 changed=5 unreachable=0 failed=0

skipped=0 rescued=0 ignored=0

Verification

Verify the BGP Neighbors

Purpose
Verify that the BGP session is established for each neighbor address.

The JSNAPy test files test that the BGP session is established for each neighbor address and that the there
are no down peers. The Verify BGP configuration task output enables you to quickly verify that the given
device passed all JSNAPy tests. If the JSNAPy passPercentage is equal to 100 percent, the task includes
"msg": "All assertions passed" in the task output.

Action

151

Review the Verify BGP configuration task output, and verify that each device returns the All assertions
passed message.

TASK [Verify BGP configuration] **

ok: [r1] => {

 "changed": false,

 "msg": "All assertions passed"

}

ok: [r2] => {

 "changed": false,

 "msg": "All assertions passed"

}

ok: [r3] => {

 "changed": false,

 "msg": "All assertions passed"

}

Meaning
The All assertions passed message indicates that the BGP sessions are successfully established on the
devices.

Troubleshooting Ansible Playbook Errors

IN THIS SECTION

Troubleshooting Configuration Load Errors | 152

Troubleshooting Failed JSNAPy Tests | 153

Troubleshooting Failed Commit Confirmations | 154

Troubleshooting Configuration Load Errors

Problem

The Ansible playbook generates a ConfigLoadError error indicating that it failed to load the configuration
on the device because of a syntax error.

152

fatal: [r1]: FAILED! => {"changed": false, "msg": "Failure loading the configuraton:

 ConfigLoadError(severity: error, bad_element: protocol, message: error: syntax

error\nerror: error recovery ignores input until this point)"}

Solution
The playbook renders the Junos OS configuration by using the Jinja2 template and the host variables
defined for that device in the host_vars directory. The playbook generates a syntax error when the Jinja2
template produces an invalid configuration. To correct this error, update the Jinja2 template to correct
the element identified by the bad_element key in the error message.

Troubleshooting Failed JSNAPy Tests

Problem
The Verify BGP configuration task output indicates that the assertion failed, because the JSNAPy
passPercentage was not equal to 100 percent.

TASK [Verify BGP configuration]

fatal: [r1]: FAILED! => {

 "assertion": "snapcheck_result.passPercentage == 100",

 "changed": false,

 "evaluated_to": false,

 "msg": "JSNAPy test on r1 failed"

}

The assertion fails when the device has not established the BGP session with its neighbor or the session
goes down. If the assertion fails, and the configuration for that device was updated in the first play, the
playbook does not confirm the commit for the new configuration on the device, and the device rolls the
configuration back to the previously committed configuration.

Solution

The JSNAPy tests might fail if the snapcheck operation is taken before the peers can establish the session
or because the BGP neighbors are not configured correctly. If the playbook output indicates that the
configuration was successfully loaded and committed on the device, try increasing the handler’s pause
interval to a suitable value for your environment and rerun the playbook.

 handlers:

 - name: Waiting for BGP peers to establish connections

 pause: seconds=75

153

If the tests still fail, verify that the Jinja2 template and the host variables for each device contain the correct
data and that the resulting configuration for each device is correct.

Troubleshooting Failed Commit Confirmations

Problem
The configuration was not confirmed on one or more devices.

TASK [Confirm commit]

skipping: [r2]

skipping: [r2]

skipping: [r3]

Solution
The playbook only confirms the configuration if it changed and the JSNAPy tests pass. If the Load and
commit config, require confirmation task output indicates that the configuration did not change, the
playbook does not execute the task to confirm the commit. If the configuration changed but was not
confirmed, then the JSNAPy tests failed. The JSNAPy testsmight fail if the BGP neighbors are not configured
correctly or if the playbook does not provide enough time between the plays for the devices to establish
the BGP session. For more information, see “Troubleshooting Failed JSNAPy Tests” on page 153.

Release History Table

DescriptionRelease

Starting in Juniper.junos Release 2.0.0, the juniper_junos_jsnapy module replaces the
functionality of the junos_jsnapy module.

2.0.0

154

6
CHAPTER

Using Ansible to Manage the
Configuration

Using Ansible to Retrieve or Compare Junos OS Configurations | 156

Using Ansible to Configure Devices Running Junos OS | 169

Using Ansible to Retrieve or Compare Junos OS
Configurations

IN THIS SECTION

How to Specify the Source Database for the
Configuration Data | 157

How to Specify the Scope of the Configuration
Data to Return | 158

How to Specify the Format of the Configuration
Data to Return | 160

How to Retrieve Configuration Data for
Third-Party YANG Data Models | 161

How to Specify Options That Do Not Have an
Equivalent Module Argument | 163

How to Save ConfigurationData To a File | 164

How to Compare the Active Configuration to
a Previous Configuration | 166

SUMMARY

Use the Juniper Networks Ansible modules to retrieve
or compare configurations on devices running Junos
OS.

Juniper Networks provides Ansible modules that enable you to manage the configuration on devices
running Junos OS. Table 23 on page 156 outlines the available modules, which enable you to retrieve or
compare Junos OS configurations.

Table 23: Modules to Retrieve or Compare Configurations

Module NameContent Set

configjuniper.device collection

juniper_junos_configJuniper.junos role

156

https://ansible-juniper-collection.readthedocs.io/en/latest/config.html
https://galaxy.ansible.com/juniper/device
https://junos-ansible-modules.readthedocs.io/en/latest/juniper_junos_config.html
https://galaxy.ansible.com/juniper/junos

NOTE: Starting in Juniper.junos Release 2.0.0, the juniper_junos_config module combines and
replaces the functionality of the junos_commit, junos_get_config, junos_install_config, and
junos_rollback modules.

You can use the modules to request the complete configuration or selected portions of the configuration
for both the native Junos OS configuration as well as for configuration data corresponding to third-party
YANG datamodels that have been added to the device. To retrieve the configuration from a device running
Junos OS, execute the config or juniper_junos_config module with the retrieve parameter. The module’s
response includes the configuration in text format in the config and config_lines keys, unless the
return_output option is set to false. You can also compare the active configuration with a previously
committed configuration.

The following sections discuss how to use the modules to retrieve or compare Junos OS configurations.

How to Specify the Source Database for the Configuration Data

When you use the config or juniper_junos_configmodule to retrieve the configuration, you must include
the retrieve parameter in the module’s argument list and specify the configuration database from which
to retrieve the data. You can retrieve data from the committed configuration database or from the candidate
configuration database by setting retrieve to 'committed' or 'candidate', respectively.

Committed Configuration Database

The following playbook retrieves the complete committed configuration in text format for each device in
the inventory group:

- name: "Get Junos OS configuration"

 hosts: junos-all

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: "Get committed configuration"

 config:

 retrieve: "committed"

157

 register: response

 - name: "Print result"

 debug:

 var: response

Candidate Configuration Database

The following playbook retrieves the complete candidate configuration in text format for each device in
the inventory group. The module returns an error if the database is locked or modified.

- name: "Get Junos OS configuration"

 hosts: junos-all

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: "Get candidate configuration"

 config:

 retrieve: "candidate"

 register: response

 - name: "Print result"

 debug:

 var: response

How to Specify the Scope of the Configuration Data to Return

In addition to retrieving the complete Junos OS configuration, you can use the config and
juniper_junos_configmodules to retrieve specific portions of the configuration by including the module’s
filter parameter. The filter parameter’s value is a string containing the subtree filter that selects the
configuration statements to return. The subtree filter returns the configuration data that matches the
selection criteria. When multiple hierarchies are requested, the value of filter must represent all levels of
the configuration hierarchy starting at the root (represented by the <configuration> element) down to
each element to display.

158

The following playbook retrieves and prints the configuration at the [edit interfaces] and [edit protocols]
hierarchy levels in the committed configuration database for each device:

- name: "Get Junos OS configuration hierarchies"

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: "Get selected configuration hierarchies"

 config:

 retrieve: "committed"

 filter: "<configuration><interfaces/><protocols/></configuration>"

 register: response

 - name: "Print result"

 debug:

 var: response

The following playbook retrieves and prints the configuration for the ge-1/0/1 interface:

- name: "Get Junos OS configuration hierarchies"

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: "Get selected configuration hierarchies"

 config:

 retrieve: "committed"

 filter: "<interfaces><interface>

 <name>ge-1/0/1</name></interface></interfaces>"

 register: response

 - name: "Print result"

 debug:

 var: response

The following playbook retrieves and prints the configuration committed at the [edit system services]
hierarchy level:

159

- name: "Get Junos OS configuration hierarchies."

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: "Get selected configuration hierarchies"

 config:

 retrieve: "committed"

 filter: "system/services"

 register: response

 - name: "Print result"

 debug:

 var: response

How to Specify the Format of the Configuration Data to Return

When you use the config or juniper_junos_configmodule to retrieve the configuration, themodule invokes
the Junos XML protocol <get-configuration> operation, which can return Junos OS configuration data as
formatted text, Junos XML elements, Junos OS set commands, or JavaScript Object Notation (JSON). By
default, the module returns configuration data as formatted text, which uses newlines, tabs and other
white space, braces, and square brackets to indicate the hierarchical relationships between the statements.

To specify the format in which to return the configuration data, set the format parameter equal to the
desired format. To explicitly request text format, or to request Junos XML elements, Junos OS set
commands, or JSON format, set the format value to 'text', 'xml', 'set', or 'json', respectively. The config
and config_lines keys contain the configuration in the requested format. If you request Junos XML or
JSON format, the config_parsed key contains the equivalent configuration in JSON format.

The following playbook retrieves the complete committed configuration for each device in the inventory
group in XML format:

- name: "Get Junos OS configuration."

 hosts: junos-all

 connection: local

 gather_facts: no

 collections:

160

 - juniper.device

 tasks:

 - name: "Get configuration in XML format"

 config:

 retrieve: "committed"

 format: "xml"

 register: response

 - name: "Print result"

 debug:

 var: response

How to Retrieve Configuration Data for Third-Party YANG Data Models

You can load standardized or custom YANG modules on devices running Junos OS to add data models
that are not natively supported by Junos OS but can be supported by translation. You configure nonnative
data models in the candidate configuration using the syntax defined for those models. When you commit
the configuration, the data model’s translation scripts translate that data and commit the corresponding
Junos OS configuration as a transient change in the checkout configuration.

The candidate and active configurations contain the configuration data for nonnative YANG data models
in the syntax defined by those models. You can use the config or juniper_junos_configmodule to retrieve
configuration data for standard (IETF, OpenConfig) and custom YANG datamodels in addition to retrieving
the native JunosOS configuration by including the appropriatemodule arguments. By default, configuration
data for third-party YANG data models is not included in the module’s reply.

To retrieve configuration data that is defined by a nonnative YANG data model in addition to retrieving
the Junos OS configuration, execute the module with the model parameter, and include the namespace
parameter when appropriate. The model argument takes one of the following values:

• custom—Retrieve configuration data that is defined by custom YANG data models. You must include
the namespace argument when retrieving data for custom YANG data models.

• ietf—Retrieve configuration data that is defined by IETF YANG data models.

• openconfig—Retrieve configuration data that is defined by OpenConfig YANG data models.

• True—Retrieve all configuration data, including the complete Junos OS configuration and data from any
YANG data models.

If you specify the ietf or openconfig value for the model argument, the module automatically uses the
appropriate namespace. If you retrieve data for a custom YANG data model by using model: "custom",
you must also include the namespace argument with the corresponding namespace.

161

If you include the model argument with the value custom, ietf, or openconfig and also include the filter
argument to return a specific XML subtree, JunosOS only returns thematching hierarchy from the nonnative
data model. If the Junos OS configuration contains a hierarchy of the same name, for example "interfaces",
it is not included in the reply. The filter option is not supported when using model: "True".

When you use the config or juniper_junos_config module to retrieve nonnative configuration data, you
can only specify the format of the returned data if you also include the filter parameter. If you omit the
filter parameter, you must specify format: "xml".

The following playbook retrieves the OpenConfig interfaces configuration hierarchy from the committed
configuration. If you omit the filter argument, the RPC returns the complete Junos OS and OpenConfig
configurations.

- name: "Retrieve OpenConfig configuration"

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: "Retrieve the OpenConfig interfaces configuration"

 config:

 retrieve: "committed"

 model: "openconfig"

 filter: "interfaces"

 format: "xml"

 register: response

 - name: "Print result"

 debug:

 var: response

The following task retrieves the l2vpn configuration hierarchy from the committed configuration for a
custom YANG data model with the given namespace:

 tasks:

 - name: "Retrieve custom configuration"

 config:

 retrieve: "committed"

 model: "custom"

 filter: "l2vpn"

 remove_ns: False

162

 namespace: "http://yang.juniper.net/customyang/l2vpn"

 format: "xml"

 register: response

The following task retrieves the complete Junos OS committed configuration as well as the configuration
data for other YANG data models that have been added to the device:

 tasks:

 - name: "Retrieve Junos OS and all third-party configuration data"

 config:

 retrieve: "committed"

 model: "True"

 format: "xml"

 register: response

How to SpecifyOptions ThatDoNotHave an EquivalentModuleArgument

When you use the config or juniper_junos_configmodule to retrieve the configuration, themodule invokes
the Junos XML protocol <get-configuration> operation. Themodules support explicit arguments for many
of the <get-configuration> attributes, for example, the format attribute. The modules also support the
options argument, which enables you to include any additional <get-configuration> attributes that do not
have an equivalent module argument. The options argument takes a dictionary of key/value pairs of any
attributes supported by the <get-configuration> operation.

For the complete list of attributes supported by the Junos XML protocol <get-configuration> operation,
see https://www.juniper.net/documentation/en_US/junos/topics/reference/tag-summary/
junos-xml-protocol-get-configuration.html.

For example, the modules retrieve data from the pre-inheritance configuration, in which the <groups>,
<apply-groups>, <apply-groups-except>, and <interface-range> tags are separate elements in the
configuration output. To retrieve data from the post-inheritance configuration, which displays statements
that are inherited from user-defined groups and ranges as children of the inheriting statements, you can
include the options argument with inherit: "inherit".

The following playbook retrieves the configuration data at the [edit system services] hierarchy level from
the post-inheritance committed configuration. In this case, if the configuration also contains statements
configured at the [edit groups global system services] hierarchy level, those statements would be inherited
under [edit systemservices] in the post-inheritance configuration and returned in the retrieved configuration
data.

163

https://www.juniper.net/documentation/en_US/junos/topics/reference/tag-summary/junos-xml-protocol-get-configuration.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/tag-summary/junos-xml-protocol-get-configuration.html

- name: "Get Junos OS configuration hierarchies"

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: "Get selected hierarchy from the post-inheritance configuration"

 config:

 retrieve: "committed"

 filter: "system/services"

 options:

 inherit: "inherit"

 register: response

 - name: "Print result"

 debug:

 var: response

How to Save Configuration Data To a File

When you use the config or juniper_junos_config module to retrieve the configuration, you can save the
returned configuration data in a file on the local Ansible control node by including the module’s dest_dir
or dest parameter. The dest_dir option just specifies a directory, and the dest option can specify both a
path and a filename. If an output file already exists with the target name, the module overwrites the file.

To specify the directory on the local Ansible control node where the retrieved configurations are saved,
include the dest_dir argument, and define the path to the target directory. The configuration for each
device is stored in a separate file named hostname.config.

The following playbook retrieves the committed configuration from all devices in the inventory group and
saves each device configuration to a separate file in the configs directory under the playbook directory
on the Ansible control node:

- name: "Get Junos OS configuration"

 hosts: junos-all

 connection: local

 gather_facts: no

 collections:

164

 - juniper.device

 tasks:

 - name: "Save configuration to a file"

 config:

 retrieve: "committed"

 dest_dir: "{{ playbook_dir }}/configs"

To specify the path and filename for the output files, include the dest argument, and define the absolute
or relative path of the file. If you include the dest argument, but omit the directory, the files are saved in
the playbook directory. If you retrieve the configuration for multiple devices, the dest argument must
include a variable such as {{ inventory_hostname }} to differentiate the filename for each device. If you do
not differentiate the filenames, the configuration file for each device will overwrite the configuration file
of the other devices.

The following playbook retrieves the [edit system services] hierarchy from the committed configuration
database on all devices in the inventory group and saves each device configuration to a separate file in
the playbook directory on the Ansible control node. Each file is uniquely identified by the device hostname.

- name: "Get Junos OS configuration"

 hosts: junos-all

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: "Get selected configuration hierarchies and save to file"

 config:

 retrieve: "committed"

 filter: "system/services"

 dest: "{{ inventory_hostname }}-system-config"

If you are saving the configuration data to files and do not want to duplicate the configuration data in the
module’s response, you can you can optionally include return_output: false in the module’s argument list.
Setting return_output to false causes the module to omit the config, config_lines, and config_parsed keys
in its response. Doing this might be necessary if the devices return a significant amount of configuration
data.

165

How to Compare the Active Configuration to a Previous Configuration

The config and juniper_junos_configmodules enable you to compare the active configuration to a previously
committed configuration, or rollback configuration. To compare the active configuration to a previous
configuration, include the following module arguments:

juniper.device.config:

 diff: true

 rollback: id

 check: false

 commit: false

By default, when you include the rollback: id argument, the module rolls back the configuration, performs
a commit check, and commits the changes. You must include the commit: false argument to only compare
the configurations and prevent themodule from loading and committing the rollback configuration. Including
the check: false argument prevents the unnecessary commit check operation.

The modules return the diff and diff_lines keys, which contain the configuration differences between the
active and previous configuration in diff or patch format.

• diff— dictionary that contains a single key named prepared and its value, which is a single multi-line
string containing the differences.

NOTE: Starting inJuniper.junos Release 2.2.0, the diff key returns a dictionary instead of a
string.

• diff_lines—list of single line strings containing the differences..

To save the differences to a file on the local Ansible control node, include the diffs_file argument, and
define the absolute or relative path of the output file. If you include the diffs_file argument but omit the
directory, the files are saved in the playbook directory. If you compare the configurations on multiple
devices, the diffs_file argument must include a variable such as {{ inventory_hostname }} to differentiate
the filename for each device. If you do not differentiate the filenames, the output file for each device will
overwrite the output file of the other devices.

The following playbook prompts for the rollback ID of a previously committed configuration, compares
the committed configuration to the specified rollback configuration, saves the comparison to a
uniquely-named file, and also prints the response to standard output:

- name: "Compare configurations"

166

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 vars_prompt:

 - name: "ROLLBACK"

 prompt: "Rollback ID to compare with active configuration"

 private: no

 tasks:

 - name: "Compare active to previous configuration"

 config:

 diff: true

 rollback: "{{ ROLLBACK }}"

 check: false

 commit: false

 diffs_file: "{{ inventory_hostname }}-diff-rollback-{{ ROLLBACK }}"

 register: response

 - name: "Print diff"

 debug:

 var: response

user@ansible-cn:~$ ansible-playbook configuration-compare-to-rollback.yaml

Rollback ID to compare with active configuration: 2

PLAY [Compare configurations] ***

TASK [Compare active to previous configuration] ******************************

changed: [dc1a.example.net]

TASK [Print diff] **

ok: [dc1a.example.net] => {

 "response": {

 "changed": true,

 "diff": {

 "prepared": "\n[edit system services]\n- netconf {\n- ssh;\n-

 }\n"

 },

 "diff_lines": [

 "",

167

 "[edit system services]",

 "- netconf {",

 "- ssh;",

 "- }"

],

 "failed": false,

 "msg": "Configuration has been: opened, rolled back, checked, diffed,

closed."

 }

}

PLAY RECAP **

dc1a.example.net : ok=2 changed=1 unreachable=0 failed=0 skipped=0

 rescued=0 ignored=0

user@ansible-cn:~$ cat dc1a.example.net-diff-rollback-2

[edit system services]

- netconf {

- ssh;

- }

Release History Table

DescriptionRelease

Starting inJuniper.junos Release 2.2.0, the diff key returns a dictionary instead of a string.2.2.0

Starting in Juniper.junosRelease 2.0.0, the juniper_junos_configmodule combines and replaces
the functionality of the junos_commit, junos_get_config, junos_install_config, and
junos_rollback modules.

2.0.0

RELATED DOCUMENTATION

Using Ansible to Configure Devices Running Junos OS | 169

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 19

168

UsingAnsible to ConfigureDevices Running JunosOS

IN THIS SECTION

Module Overview | 170

How to Specify the Configuration Mode | 171

How to Specify the Load Action | 173

How to Specify the Format of the Configuration
Data to Load | 173

How to Load Configuration Data as
Strings | 174

How to Load Configuration Data from a Local
or Remote File | 176

How to Load Configuration Data Using a Jinja2
Template | 178

How to Load the Rescue Configuration | 181

How to Roll Back the Configuration | 182

How to Commit the Configuration | 183

How to Ignore Warnings When Configuring
Devices | 186

Example: Using Ansible to Configure Devices
Running Junos OS | 187

SUMMARY

Use the Juniper Networks Ansible modules tomanage
the configuration on devices running Junos OS.

Juniper Networks provides Ansible modules that enable you to configure devices running Junos OS.
Table 24 on page 169 outlines the available modules. The user account that is used to make configuration
changes must have permissions to change the relevant portions of the configuration on each device.

Table 24: Modules to Manage the Configuration

Module NameContent Set

configjuniper.device collection

juniper_junos_configJuniper.junos role

169

https://ansible-juniper-collection.readthedocs.io/en/latest/config.html
https://galaxy.ansible.com/juniper/device
https://junos-ansible-modules.readthedocs.io/en/latest/juniper_junos_config.html
https://galaxy.ansible.com/juniper/junos

NOTE: Starting in Juniper.junos Release 2.0.0, the juniper_junos_config module combines and
replaces the functionality of the junos_commit, junos_get_config, junos_install_config, and
junos_rollback modules.

The following sections discuss how to use themodules to modify and commit the configuration on devices
running Junos OS.

Module Overview

The config and juniper_junos_configmodules enable you to perform the following operations on devices
running Junos OS:

• Load configuration data

• Commit the configuration

• Roll back the configuration

• Load the rescue configuration

To modify the configuration, the module’s argument list must include either the load parameter to load
new configuration data or the rollback parameter to revert to the rescue configuration or a previously
committed configuration. The basic process for making configuration changes is to lock the configuration,
load the configuration changes, commit the configuration to make it active, and then unlock the
configuration.

By default, the config and juniper_junos_config modules make changes to the candidate configuration
database using configure exclusive mode, which automatically locks and unlocks the candidate global
configuration. You can also make changes to a private copy of the candidate configuration. For more
information about specifying the configuration mode, see “How to Specify the Configuration Mode” on
page 171.

When loading new configuration data, in addition to specifying the configuration mode, you can also
specify the load operation and the source and format of the changes.

• Load operation—The load operation determines how the configuration data is loaded into the candidate
configuration. The functions support many of the same load operations that are available in the Junos
OS CLI. For more information, see “How to Specify the Load Action” on page 173.

• Format—You can configure devices running Junos OS using one of the standard, supported formats.
You can provide configuration data or Jinja2 templates as text, Junos XML elements, Junos OS set
commands, or JSON. For information about specifying the format of the configuration data, see “How
to Specify the Format of the Configuration Data to Load” on page 173.

170

• Configuration data source—You can load configuration data from a list of strings, a file on the local
Ansible control node, a Jinja2 template, or a URL reachable from the client device by including the lines,
src, template, or url parameter, respectively. For more information about specifying the source of the
configuration data, see the following sections:

• How to Load Configuration Data as Strings on page 174

• How to Load Configuration Data from a Local or Remote File on page 176

• How to Load Configuration Data Using a Jinja2 Template on page 178

The config and juniper_junos_configmodules also enable you to load and commit the rescue configuration
or roll the configuration back to a previously committed configuration. To load the rescue configuration
or a previously committed configuration, you must include the rollback module argument. For more
information, see the following sections:

• How to Load the Rescue Configuration on page 181

• How to Roll Back the Configuration on page 182

After modifying the configuration, you must commit the configuration to make it the active configuration
on the device. By default, the config and juniper_junos_config modules commit the changes to the
configuration. To alter this behavior or supply additional commit options, see “How to Commit the
Configuration” on page 183.

By default, when the config or juniper_junos_config module includes the load or rollback arguments to
change the configuration, the module automatically returns the configuration changes in diff or patch
format in themodule’s response. The differences are returned in the diff and diff_lines variables. To prevent
the module from calculating and returning the differences, set the diff module argument to false.

How to Specify the Configuration Mode

You can specify the configuration mode to use when modifying the candidate configuration database. By
default, the config and juniper_junos_configmodulesmake changes to the candidate configuration database
using configure exclusive mode. Configure exclusive mode locks the candidate global configuration (also
known as the shared configuration database) for as long as the module requires to make the requested
changes to the configuration. Locking the database prevents other users from modifying or committing
changes to the database until the lock is released.

To specify the mode, include the config_mode parameter in the module’s argument list. Supported modes
include exclusive and private. Both modes discard any uncommitted changes upon exiting.

The following playbook uses configure private mode to modify the configuration:

171

- name: "Configure Device"

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: "Configure op script"

 config:

config_mode: "private"

 load: "set"

 lines:

 - "set system scripts op file bgp.slax"

 register: response

 - name: "Print the config changes"

 debug:

 var: response.diff_lines

user@ansible-cn:~/ansible$ ansible-playbook configure-script.yaml

PLAY [Configure Device] ***

TASK [Configure op script] **

changed: [dc1a.example.net]

TASK [Print the config changes] ***

ok: [dc1a.example.net] => {

 "response.diff_lines": [

 "",

 "[edit system scripts op]",

 "+ file bgp.slax;"

]

}

PLAY RECAP **

dc1a.example.net : ok=2 changed=1 unreachable=0 failed=0 skipped=0

 rescued=0 ignored=0

172

How to Specify the Load Action

The config and juniper_junos_config modules support loading configuration changes using many of the
same load operations supported in the Junos OS CLI. You specify the load operation by including the load
parameter in the module’s argument list and setting it to the value of the corresponding load operation.
Table 25 on page 173 summarizes the parameter settings required for each type of load operation.

Table 25: Parameters for Specifying the Load Operation

Descriptionload ArgumentLoad Operation

Merge the loaded configuration with the existing configuration.load: "merge"load merge

Replace the entire configuration with the loaded configuration.load: "override"load override

Merge the loaded configuration with the existing configuration, but
replace statements in the existing configuration with those that specify
the replace: tag in the loaded configuration. If there is no statement in
the existing configuration, the statement in the loaded configuration is
added.

load "replace"load replace

Load configuration data from a patch file.load: "patch"load patch

Load configuration data that is in set format. The configuration data is
loaded line by line and can contain configuration mode commands such
as set, delete, and deactivate.

load: "set"load set

Compare the complete loaded configuration against the existing
configuration. Each configuration element that is different in the loaded
configuration replaces its corresponding element in the existing
configuration. During the commit operation, only system processes that
are affected by changed configuration elements parse the new
configuration.

load: "update"load update

How to Specify the Format of the Configuration Data to Load

The config and juniper_junos_config modules enable you to configure devices running Junos OS using
one of the standard, supported formats. You can provide configuration data as strings or files. Files can
contain either configuration data or Jinja2 templates. When providing configuration data within a string,
file, or Jinja2 template, supported formats for the data include text, Junos XML elements, Junos OS set
commands, and JSON.

173

NOTE: Starting in Junos OS Release 16.1R1, devices running Junos OS support loading
configuration data in JSON format.

The config and juniper_junos_config modules attempt to auto-detect the format of configuration data
supplied as strings using the lines argument. However, you can explicitly specify the format for strings by
including the format argument. When you provide configuration data in a file or Jinja2 template, you must
specify the format of the data either by adding the appropriate extension to the file or by including the
format argument.

Table 26 on page 174 summarizes the supported formats for the configuration data and the corresponding
value for the file extension and format parameter. If you include the format argument, it overrides both
the auto-detect format for strings and the format indicated by a file extension.

Table 26: Specifying the Format for Configuration Data

format ParameterFile ExtensionConfiguration Data Format

"text".confCLI configuration statements (text)

"json".jsonJavaScript Object Notation (JSON)

"set".setJunos OS set commands

"xml".xmlJunos XML elements

NOTE: When you set the module’s load argument to 'override' or 'update', you cannot use the
Junos OS set command format.

How to Load Configuration Data as Strings

The config and juniper_junos_configmodules enable you to load configuration data from a list of strings.
To load configuration data as strings, include the appropriate load argument and the lines argument. The
lines argument takes a list of strings containing the configuration data to load.

Themodules attempt to auto-detect the format of the lines configuration data. However, you can explicitly
specify the format by including the format argument. For information about specifying the format, see
“How to Specify the Format of the Configuration Data to Load” on page 173. If you include the format
parameter in the module’s argument list, it overrides the auto-detect format.

174

The following playbook configures and commits two op scripts. In this case, the load argument has the
value 'set', because the configuration data in lines uses Junos OS set statement format.

- name: "Load and commit configuration"

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: "Load configuration data using strings and commit"

 config:

 load: "set"

 lines:

 - "set system scripts op file bgp.slax"

 - "set system scripts op file bgp-neighbor.slax"

 register: response

 - name: "Print the response"

 debug:

 var: response

The following playbook configures the same statements using lineswith configuration data in text format.
In this case, load: "merge" is used.

- name: "Load and commit configuration"

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: "Load configuration data using strings and commit"

 config:

 load: "merge"

 lines:

 - |

 system {

 scripts {

 op {

 file bgp.slax;

175

 file bgp-neighbor.slax;

 }

 }

 }

 register: response

 - name: "Print the response"

 debug:

 var: response

How to Load Configuration Data from a Local or Remote File

The config and juniper_junos_config modules enable you to load configuration data from a file. The file
can reside in one of the following locations:

• Ansible control node

• Client device

• URL that is reachable from the client device

When you load configuration data from a file, you must indicate the format of the configuration data in
the file and the location of the file. Supported configuration data formats include text, Junos XML elements,
Junos OS set commands, and JSON. For information about loading files containing Jinja2 templates, see
“How to Load Configuration Data Using a Jinja2 Template” on page 178.

You can specify the format of the configuration data either by explicitly including the format parameter
in the module’s argument list or by adding the appropriate extension to the configuration data file. If you
specify the format parameter, it overrides the format indicated by the file extension. For information about
specifying the format, see “How to Specify the Format of the Configuration Data to Load” on page 173.
When the configuration data uses Junos XML format, you must enclose the data in the top-level
<configuration> tag.

NOTE: You do not need to enclose configuration data that is formatted as ASCII text, Junos OS
set commands, or JSON in <configuration-text>, <configuration-set>, or <configuration-json>
tags as required when configuring the device directly within a NETCONF session.

Table 27 on page 177 outlines the module parameters that you can include to specify the location of the
file.

176

Table 27: Specifying the Location of the Configuration File

DescriptionModule Parameter

Absolute or relative path to a file on the Ansible control node. The default directory is
the playbook directory.

src

Absolute or relative path to a file on the client device, or an FTP location, or a Hypertext
Transfer Protocol (HTTP) URL.

The default directory on the client device is the current working directory, which defaults
to the user’s home directory.

url

To load configuration data from a local file on the Ansible control node, set the src argument to the absolute
or relative path of the file containing the configuration data. For example:

- name: "Load and commit configuration"

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: "Load configuration from a local file and commit"

 config:

 load: "merge"

 src: "build_conf/{{ inventory_hostname }}/junos.conf"

 register: response

 - name: "Print the response"

 debug:

 var: response

To load configuration data from a file on the managed device running Junos OS, or from an FTP or HTTP
URL, use the url parameter and specify the path of the file that contains the configuration data to load.
For example:

- name: "Load and commit configuration"

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

177

 - juniper.device

 tasks:

 - name: "Load configuration from a remote file and commit"

 config:

 load: "merge"

 url: "/var/tmp/junos.conf"

 register: response

 - name: "Print the response"

 debug:

 var: response

The value for url can be an absolute or relative local file path, an FTP location, or a Hypertext Transfer
Protocol (HTTP) URL.

• A local filename can have one of the following forms:

• /path/filename—File on a mounted file system, either on the local flash disk or on hard disk.

• a:filename or a:path/filename—File on the local drive. The default path is / (the root-level directory).
The removable media can be in MS-DOS or UNIX (UFS) format.

• A filename for a file on an FTP server has the following form:

ftp://username:password@hostname/path/filename

• A filename for a file on an HTTP server has the following form:

http://username:password@hostname/path/filename

In each case, the default value for the path variable is the home directory for the user. To specify an
absolute path, the application starts the path with the characters %2F; for example,
ftp://username:password@hostname/%2Fpath/filename.

How to Load Configuration Data Using a Jinja2 Template

The config and juniper_junos_config modules enable you to render configuration data from a Jinja2
template file on the Ansible control node and load and commit the configuration on a device running Junos
OS. Jinja is a template engine for Python that enables you to generate documents frompredefined templates.
The templates, which are text files in the desired language, provide flexibility through the use of expressions
and variables. You can create Junos OS configuration data using Jinja2 templates in one of the supported
configuration formats, which includes ASCII text, Junos XML elements, Junos OS set commands, and

178

JSON. The Ansible modules use the Jinja2 template and a supplied dictionary of variables to render the
configuration data.

To load and commit configuration data using a Jinja2 template, include the template and vars parameters
in the module’s argument list.

• template—Path of the Jinja2 template file

• vars—Dictionary of keys and values that are required to render the Jinja2 template

You must also include the format parameter when the templates’s file extension does not indicate the
format of the data. For information about specifying the format, see “How to Specify the Format of the
Configuration Data to Load” on page 173.

For example, the interfaces-mpls.j2 file contains the following Jinja2 template:

interfaces {

 {% for item in interfaces %}

 {{ item }} {

 description "{{ description }}";

 unit 0 {

 family {{ family }};

 }

 } {% endfor %}

}

protocols {

 mpls {

 {% for item in interfaces %}

 interface {{ item }};

 {% endfor %}

 }

 rsvp {

 {% for item in interfaces %}

 interface {{ item }};

 {% endfor %}

 }

}

To use the config or juniper_junos_configmodule to load the Jinja2 template, set the template argument
to the path of the template file and define the variables required by the template in the vars dictionary.
The following playbook uses the Jinja2 template and the variables defined in vars to render the configuration
data and load and commit it on the target host. The format parameter indicates the format of the
configuration data in the template file.

179

- name: "Load and commit configuration"

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: "Load a configuration from a Jinja2 template and commit"

 config:

 load: "merge"

 template: "build_conf/templates/interfaces-mpls.j2"

 format: "text"

 vars:

 interfaces: ["ge-1/0/1", "ge-1/0/2", "ge-1/0/3"]

 description: "MPLS interface"

 family: "mpls"

 register: response

 - name: "Print the response"

 debug:

 var: response

The module generates the following configuration data, which is loaded into the candidate configuration
on the device and committed:

interfaces {

 ge-1/0/1 {

 description "MPLS interface";

 unit 0 {

 family mpls;

 }

 }

 ge-1/0/2 {

 description "MPLS interface";

 unit 0 {

 family mpls;

 }

 }

 ge-1/0/3 {

 description "MPLS interface";

 unit 0 {

 family mpls;

 }

180

 }

}

protocols {

 mpls {

 interface ge-1/0/1;

 interface ge-1/0/2;

 interface ge-1/0/3;

 }

 rsvp {

 interface ge-1/0/1;

 interface ge-1/0/2;

 interface ge-1/0/3;

 }

}

How to Load the Rescue Configuration

A rescue configuration allows you to define a knownworking configuration or a configurationwith a known
state that you can restore at any time. You use the rescue configuration when you need to revert to a
known configuration or as a last resort if the device configuration and the backup configuration files
become damaged beyond repair. When you create a rescue configuration, the device saves the most
recently committed configuration as the rescue configuration.

The config and juniper_junos_configmodules enable you to revert to an existing rescue configuration on
devices running Junos OS. To load and commit the rescue configuration on a device, include the module’s
rollback: "rescue" argument. For example:

- name: "Revert to rescue configuration"

 hosts: dc1a

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: "Load and commit rescue configuration"

 config:

 rollback: "rescue"

 register: response

 - name: "Print response"

181

 debug:

 var: response

How to Roll Back the Configuration

Devices running JunosOS store a copy of themost recently committed configuration and up to 49 previous
configurations, depending on the platform. You can roll back to any of the stored configurations. This is
useful when configuration changes cause undesirable results, and you want to revert back to a known
working configuration. Rolling back the configuration is similar to the process for making configuration
changes on the device, but instead of loading configuration data, you perform a rollback, which replaces
the entire candidate configuration with a previously committed configuration.

The config and juniper_junos_configmodules enable you to roll back to a previously committed configuration
on devices running Junos OS. To roll back the configuration and commit it, include the module’s rollback
argument, and specify the ID of the rollback configuration. Valid ID values are 0 (zero, for themost recently
committed configuration) through one less than the number of stored previous configurations (maximum
is 49).

The following playbook prompts for the rollback ID of the configuration to restore, rolls back the
configuration and commits it, and then prints the configuration changes to standard output.

- name: "Roll back the configuration"

 hosts: dc1a

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 vars_prompt:

 - name: "ROLLBACK"

 prompt: "Rollback ID of the configuration to restore"

 private: no

 tasks:

 - name: "Roll back the configuration and commit"

 config:

 rollback: "{{ ROLLBACK }}"

 register: response

 - name: "Print the configuration changes"

182

 debug:

 var: response.diff_lines

user@ansible-cn:~/ansible$ ansible-playbook configuration-rollback.yaml

Rollback ID of the configuration to restore: 1

PLAY [Roll back the configuration] **

TASK [Roll back the configuration and commit] *********************************

changed: [dc1a.example.net]

TASK [Print the configuration changes] ***************************************

ok: [dc1a.example.net] => {

 "response.diff_lines": [

 "",

 "[edit interfaces]",

 "- ge-0/0/0 {",

 "- unit 0 {",

 "- family mpls;",

 "- }",

 "- }"

]

}

PLAY RECAP **

dc1a.example.net : ok=2 changed=1 unreachable=0 failed=0 skipped=0

 rescued=0 ignored=0

How to Commit the Configuration

By default, when you use the config or juniper_junos_config module to modify the configuration using
either the load or the rollback argument, the module automatically performs a commit check and commits
the changes. To prevent the module from performing a commit check or from committing the changes,
set the check or commit argument to false, respectively.

You can also customize the commit operation with many of the same options that are available in the
Junos OS CLI. Table 28 on page 184 outlines the module arguments that you can use to specify different
commit options.

183

Table 28: Commit Options

Default value
for load and
rollback
operationsDescriptionModule Argument

TruePerform a commit check or confirm a previous confirmed
commit operation.

check: boolean

–Wait the specified number of seconds between the commit
check and the commit operation.

check_commit_wait: seconds

–Log a comment for that commit operation in the system log
file and in the device’s commit history.

comment: "string"

TrueCommit the configuration changes or confirm a previous
confirmed commit operation.

commit: boolean

FalseCommit the configuration changes even if there are no
differences between the candidate configuration and the
committed configuration.

commit_empty_changes: boolean

–Require that a commit operation be confirmed within a
specified amount of time after the initial commit. Otherwise,
roll back to the previously committed configuration.

Either the commit: true option or the check: true optionmust
be used to confirm the commit.

confirmed: minutes

When you commit the configuration, you can include a brief comment to describe the purpose of the
committed changes. To log a comment describing the changes, include the comment: "comment string"
argument with the message string.

By default, the config and juniper_junos_config modules execute both a commit check and a commit
operation. The check_commit_wait argument defines the number of seconds to wait between the commit
check and commit operations. Include this argument when you need to provide sufficient time for the
device to complete the commit check operation and release the configuration lock before initiating the
commit operation. If you omit this argument, there might be certain circumstances in which a device
initiates the commit operation before the commit check operation releases its lock on the configuration,
resulting in a CommitError and failed commit operation.

By default, if there are no differences between the candidate configuration and the committed configuration,
themodule does not commit the changes. To force a commit operation evenwhen there are no differences,
include the commit_empty_changes: true argument.

184

To require that a commit operation be confirmedwithin a specified amount of time after the initial commit,
include the confirmed: minutes argument. If the commit is not confirmed within the given time limit, the
configuration automatically rolls back to the previously committed configuration. The allowed range is 1
through 65,535 minutes. The confirmed commit operation is useful for verifying that a configuration
change works correctly and does not prevent management access to the device. If the change prevents
access or causes other errors, the automatic rollback to the previous configuration enables access to the
device after the rollback deadline passes. To confirm the commit operation, invoke the config or
juniper_junos_config module with the check: true or commit: true argument.

In the following playbook, the first task modifies the configuration, waits 10 seconds between the commit
check and the commit operation, and requires that the commit operation be confirmed within 5 minutes.
It also logs a comment for the commit. The second task issues a commit check operation to confirm the
commit. In a real-world scenario, you might perform validation tasks after the initial commit and only
execute the commit confirmation if the tasks pass certain validation criteria.

- name: "Load configuration and confirm within 5 minutes"

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: "Load configuration. Wait 10 seconds between check and commit. Confirm

within 5 min."

 config:

 load: "merge"

 format: "text"

 src: "build_conf/{{ inventory_hostname }}/junos.conf"

 check_commit_wait: 10

 confirmed: 5

 comment: "updated using Ansible"

 register: response

 - name: "Print the response"

 debug:

 var: response

 - name: "Confirm the commit with a commit check"

 config:

 check: true

 diff: false

 commit: false

 register: response

185

 - name: "Print the response"

 debug:

 var: response

How to Ignore Warnings When Configuring Devices

The config and juniper_junos_config modules enable you to modify and commit the configuration on
devices running JunosOS. In some cases, the RPC reply might contain <rpc-error> elements with a severity
level of warning or higher that cause the module to raise an RpcError exception, thus causing the load or
commit operation to fail.

In certain cases, it might be necessary or desirable to suppress the RpcError exceptions that are raised in
response towarnings for load and commit operations. You can instruct the config and juniper_junos_config
modules to suppress RpcError exceptions that are raised for warnings by including the ignore_warning
parameter in the module’s argument list. The ignore_warning argument takes a Boolean, a string, or a list
of strings.

To instruct the module to ignore all warnings for load and commit operations performed by the module,
include the ignore_warning: true argument. The following example ignores all warnings for load and commit
operations.

- name: Configure Device

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Configure op script

 config:

 config_mode: "private"

 load: "set"

 lines:

 - "set system scripts op file bgp.slax"

ignore_warning: true

 register: response

 - name: Print the response

 debug:

 var: response

186

If you include ignore_warning: true and all of the <rpc-error> elements have a severity level of warning,
the application ignores all warnings and does not raise an RpcError exception. However, any <rpc-error>
elements with higher severity levels will still raise exceptions.

To instruct the module to ignore specific warnings, set the ignore_warning argument to a string or a list
of strings containing the warnings to ignore. The following example ignores two specific warnings:

- name: Configure Device

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

 - juniper.device

 tasks:

 - name: Configure device running Junos OS and ignore warnings

 config:

 config_mode: "private"

 load: "merge"

 src: "build_conf/{{ inventory_hostname }}/junos.conf"

ignore_warning:

 - "Advertisement-interval is less than four times"

 - "Chassis configuration for network services has been changed."

 register: response

 - name: Print the response

 debug:

 var: response

The module suppresses RpcError exceptions if all of the <rpc-error> elements have a severity level of
warning and each warning in the response matches one or more of the specified strings.

Example: Using Ansible to Configure Devices Running Junos OS

IN THIS SECTION

Requirements | 188

Overview | 188

Configuration | 189

Executing the Playbook | 191

187

Verification | 192

Troubleshooting Playbook Errors | 193

The config module enables you to manage the configuration on devices running Junos OS. This example
uses the configmodule to make configuration changes on a device running Junos OS through NETCONF
over SSH.

Requirements

This example uses the following hardware and software components:

• Configurationmanagement server running Ansible 2.10 or later with the juniper.device collection installed

• Device running Junos OS with NETCONF enabled and a user account configured with appropriate
permissions

• SSH public/private key pair configured for the appropriate user on the Ansible controller and the device
running Junos OS

• Existing Ansible inventory file with required hosts defined

Overview

This example presents an Ansible playbook that uses the config module to enable a new op script in the
configuration of the target devices running Junos OS. The configuration data file, junos-config.conf,
contains the relevant configuration data formatted as text.

The playbook includes the Checking NETCONF connectivity task, which utilizes the wait_for Ansible
module to try to establish a NETCONF session with the target device using the NETCONF default port
(830). If the control node fails to establish a NETCONF session with a target device during playbook
execution, then it skips the remaining tasks in the play for that device.

The task to configure the device executes the config module provided that the NETCONF check was
successful. The load: "merge" module argument loads the new configuration data into the candidate
configuration using a load merge operation. By default, the configmodule commits configuration data on
a device for load and rollback operations. The module arguments include the comment argument, which
records a commit comment in the device’s system log file and commit history.

188

Configuration

IN THIS SECTION

Create the Configuration Data File | 189

Create the Ansible Playbook | 189

Results | 190

Create the Configuration Data File

Step-by-Step Procedure
To create the configuration data file that is used by the module:

1. Create a new file with the appropriate extension based on the format of the configuration data, which
in this example is text.

2. Include the desired configuration changes in the file.

user@ansible-cn:~/ansible$ cat build_conf/dc1a.example.net/junos-config.conf

system {

 scripts {

 op {

 file bgp.slax;

 }

 }

}

Create the Ansible Playbook

Step-by-Step Procedure
To create a playbook that uses the config module to make configuration changes on a device running
Junos OS:

1. Include the playbook boilerplate, which executes the modules locally and includes the juniper.device
collection.

- name: Load and commit configuration data on a device running Junos OS

 hosts: dc1

189

 connection: local

 gather_facts: no

 collections:

 - juniper.device

2. (Optional) Create a task to verify NETCONF connectivity.

 tasks:

 - name: Checking NETCONF connectivity

 wait_for:

 host: "{{ inventory_hostname }}"

 port: 830

 timeout: 5

3. Create the task to load the configuration onto the device and commit it.

 - name: Merge configuration data from a file and commit

 config:

 load: "merge"

 src: "build_conf/{{ inventory_hostname }}/junos-config.conf"

 comment: "Configuring op script with Ansible"

 register: response

4. (Optional) Create a task to print the response, which includes the configuration changes in diff format.

 - name: Print the response

 debug:

 var: response

Results

On the Ansible control node, review the completed playbook. If the playbook does not display the intended
code, repeat the instructions in this example to correct the playbook.

- name: Load and commit configuration data on a device running Junos OS

 hosts: dc1

 connection: local

 gather_facts: no

 collections:

190

 - juniper.device

 tasks:

 - name: Checking NETCONF connectivity

 wait_for:

 host: "{{ inventory_hostname }}"

 port: 830

 timeout: 5

 - name: Merge configuration data from a file and commit

 config:

 load: "merge"

 src: "build_conf/{{ inventory_hostname }}/junos-config.conf"

 comment: "Configuring op script with Ansible"

 register: response

 - name: Print the response

 debug:

 var: response

Executing the Playbook

Step-by-Step Procedure

191

To execute the playbook:

• Issue the ansible-playbook command on the control node, and provide the playbook path and any
desired options.

user@ansible-cn:~/ansible$ ansible-playbook ansible-pb-junos-config.yaml

PLAY [Load and commit configuration data on a device running Junos OS] ****

TASK [Checking NETCONF connectivity] **************************************

ok: [dc1a.example.net]

TASK [Merge configuration data from a file and commit] ********************

changed: [dc1a.example.net]

TASK [Print the response] ***

ok: [dc1a.example.net] => {

 "response": {

 "changed": true,

 "diff": {

 "prepared": "\n[edit system scripts op]\n+ file bgp.slax;\n"

 },

 "diff_lines": [

 "",

 "[edit system scripts op]",

 "+ file bgp.slax;"

],

 "failed": false,

 "file": "build_conf/dc1a.example.net/junos-config.conf",

 "msg": "Configuration has been: opened, loaded, checked, diffed,

committed, closed."

 }

}

PLAY RECAP **

dc1a.example.net : ok=3 changed=1 unreachable=0 failed=0 skipped=0

 rescued=0 ignored=0

Verification

Verifying the Configuration

Purpose
Verify that the configuration was correctly updated on the device running Junos OS.

192

Action

Review the Ansible playbook output to see whether the configuration task succeeded or failed. You can
also log in to the device running Junos OS and view the configuration, commit history, and log files to
verify the configuration and commit, for example:

user@dc1a> show configuration system scripts

op {

 file bgp.slax;

}

user@dc1a> show system commit

0 2020-12-17 15:33:50 PST by user via netconf

 Configuring op script with Ansible

user@dc1a> show log messages

Dec 17 15:33:39 dc1a mgd[33444]: UI_COMMIT: User 'user' requested 'commit'

operation (comment: Configuring op script with Ansible)

Dec 17 15:33:57 dc1a mgd[33444]: UI_COMMIT_COMPLETED: commit complete

Troubleshooting Playbook Errors

IN THIS SECTION

Troubleshooting Timeout Errors | 193

Troubleshooting Configuration Lock Errors | 194

Troubleshooting Configuration Change Errors | 195

Troubleshooting Timeout Errors

Problem

193

The playbook generates a TimeoutExpiredError error message and fails to update the device configuration.

ncclient.operations.errors.TimeoutExpiredError: ncclient timed out while waiting

for an rpc reply

The default time for a NETCONFRPC to time out is 30 seconds. Large configuration changesmight exceed
this value causing the operation to time out before the configuration can be uploaded and committed.

Solution
To accommodate configuration changes that might require a commit time that is longer than the default
RPC timeout interval, set the module’s timeout argument to an appropriate value and re-run the playbook.

Troubleshooting Configuration Lock Errors

Problem

The playbook generates a LockError error message indicating that the configuration cannot be locked.
For example:

FAILED! => {"changed": false, "msg": "Unable to open the configuration in exclusive

 mode: LockError(severity: error, bad_element: None, message: configuration database

 modified)"}

or

FAILED! => {"changed": false, "msg": "Unable to open the configuration in exclusive

 mode: LockError(severity: error, bad_element: lock-configuration, message:

permission denied)"}

A configuration lock error can occur for the following reasons:

• Another user has an exclusive lock on the configuration.

• Another user made changes to the configuration database but has not yet committed the changes.

• The user executing the Ansible module does not have permissions to configure the device.

Solution
The LockErrormessage string usually indicates the root cause of the issue. If another user has an exclusive
lock on the configuration or has modified the configuration, wait until the lock is released or the changes
are committed, and execute the playbook again. If the cause of the issue is that the user does not have
permissions to configure the device, either execute the playbook with a user who has the necessary

194

permissions, or if appropriate, configure the device running JunosOS to give the current user the necessary
permissions to make the changes.

Troubleshooting Configuration Change Errors

Problem

The playbook generates a ConfigLoadError error message indicating that the configuration cannot be
modified, because permission is denied.

FAILED! => {"changed": false, "msg": "Failure loading the configuraton:

ConfigLoadError(severity: error, bad_element: scripts, message: error: permission

 denied)"}

This error message is generated when the user executing the Ansible module has permission to alter the
configuration but does not have permission to alter the requested section of the configuration.

Solution
Either execute the playbook with a user who has the necessary permissions, or if appropriate, configure
the device running Junos OS to give the current user the necessary permissions to make the changes.

Release History Table

DescriptionRelease

Starting in Juniper.junosRelease 2.0.0, the juniper_junos_configmodule combines and replaces
the functionality of the junos_commit, junos_get_config, junos_install_config, and
junos_rollback modules.

2.0.0

RELATED DOCUMENTATION

Using Ansible to Retrieve or Compare Junos OS Configurations | 156

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 19

195

7
CHAPTER

Troubleshooting Ansible for Junos OS

Troubleshooting Junos PyEZ (junos-eznc) Install Errors for Ansible Modules | 197

TroubleshootingAnsible Collection, Role, andModule ErrorsWhenManagingDevices
Running Junos OS | 198

Troubleshooting Ansible Connection Errors When Managing Devices Running
Junos OS | 200

Troubleshooting Ansible Authentication Errors When Managing Devices Running
Junos OS | 203

Troubleshooting Ansible ErrorsWhen Configuring Devices Running Junos OS | 206

Troubleshooting JunosPyEZ (junos-eznc) Install Errors
for Ansible Modules

Problem
Description:

During execution of a juniper.devicemodule or a Juniper.junosmodule, the Ansible control node generates
an error that junos-eznc is not installed. For example:

"msg": "junos-eznc (aka PyEZ) >= 2.6.0 is required for this module. However,

junos-eznc does not appear to be currently installed. See

https://github.com/Juniper/py-junos-eznc#installation for details on installing

junos-eznc."

or

"msg": "junos-eznc is required but does not appear to be installed. It can be

installed using `pip install junos-eznc`"

Cause
The Juniper Networks Ansible modules in the juniper.device collection and Juniper.junos role use the
Junos PyEZ Python library to perform operations on devices running Junos OS. Ansible generates this
error if the library is not installed or if Ansible can’t locate the library, for example, if you run Ansible in a
virtual environment or in a non-standard system location and Ansible is searching in a different location.

Solution
Install Junos PyEZ on the Ansible control node and update any necessary environment variables. See
https://github.com/Juniper/py-junos-eznc#installation for more information.

If you run Ansible inside a virtual environment, you must:

• Install Junos PyEZ inside the virtual environment

• Specify the path to the Python interpreter in the virtual environment—for example, by setting the
interpreter_python variable in the Ansible configuration file or by defining the ansible_python_interpreter
variable for the appropriate devices in the Ansible inventory file.

To verify that Junos PyEZ is successfully installed on the control node, launch the Python interactive shell
and import the jnpr.junos package.

user@ansible-cn:~$ python3

197

https://github.com/Juniper/py-junos-eznc#installation

Python 3.6.9 (default, Oct 8 2020, 12:12:24)

[GCC 8.4.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

>>> import jnpr.junos

>>> jnpr.junos.__version__

'2.6.0'

If the jnpr.junos package is successfully imported and there is no error message, then Junos PyEZ is installed
on the Ansible control node.

RELATED DOCUMENTATION

Ansible for Junos OS Server Requirements | 35

Troubleshooting Ansible Authentication Errors When Managing Devices Running Junos OS | 203

Troubleshooting Ansible Collection, Role, and Module Errors When Managing Devices Running Junos
OS | 198

TroubleshootingAnsible Collection, Role, andModule
Errors When Managing Devices Running Junos OS

Problem
Description:

During execution of an Ansible playbook, the control node generates an error that the juniper.device
collection or Juniper.junos role was not found, that no action was detected in the task, or that the module
could not be resolved. For example:

ERROR! the role 'Juniper.junos' was not found in

/usr/share/ansible/roles:/etc/ansible/roles ...

or

ERROR! no action detected in task. This often indicates a misspelled module name,

 or incorrect module path.

or

198

ERROR! couldn't resolve module/action 'facts'. This often indicates a misspelling,

 missing collection, or incorrect module path.

Cause
TheAnsible control node cannot locate the juniper.device collection or the Juniper.junos role and associated
modules.

Solution
The juniper.device collection and Juniper.junos role are hosted on the Ansible Galaxy website. In order
to use the modules in the collection or role, you must install the collection or role on the Ansible control
node and also reference it in your playbook.

To install the juniper.device collection on the Ansible control node, execute the ansible-galaxy collection
install command, and specify juniper.device.

user@ansible-cn:~$ sudo ansible-galaxy collection install juniper.device

To install the Juniper.junos role on the Ansible control node, execute the ansible-galaxy install command,
and specify Juniper.junos.

user@ansible-cn:~$ sudo ansible-galaxy install Juniper.junos

NOTE: If you do not install the collection or role in the default location, youmight need to define
the path to it in your Ansible setup. For more information about installing collections and roles
and specifying the path, see the official Ansible documentation.

To enable the playbook to use the juniper.device collection modules, either include the collection in the
playbook play or use the fully qualified collection name when executing a module. For example:

- name: Get Device Facts

 hosts: junos-all

 connection: local

 gather_facts: no

199

https://docs.ansible.com/

 collections:

 - juniper.device

To enable the playbook to use the Juniper.junos role modules, include the role in the playbook play. For
example:

- name: Get Device Facts

 hosts: junos-all

 connection: local

 gather_facts: no

 roles:

 - Juniper.junos

RELATED DOCUMENTATION

Ansible for Junos OS Server Requirements | 35

Understanding the Ansible for Junos OS Collections, Roles, and Modules | 19

Troubleshooting Ansible Connection Errors When
Managing Devices Running Junos OS

IN THIS SECTION

Troubleshooting Failed or Invalid Connection Errors | 201

Troubleshooting Unknown Host Errors | 202

Troubleshooting Refused Connection Errors | 202

The following sections outline connection errors that you might encounter when using Ansible to manage
devices running Junos OS. These sections also present potential causes and solutions for each error.

200

Troubleshooting Failed or Invalid Connection Errors

Problem
Description:

During execution of a juniper.device or Juniper.junos module on a device running Junos OS, the Ansible
control node generates an error about a failed SSH connection or an unknown command. For example:

UNREACHABLE! => {"changed": false, "msg": "Failed to connect to the host via ssh:

 ", "unreachable": true}

or

unknown command: /bin/sh\r\n

Cause
These errors can arise when the module is not run locally on the Ansible control node.

Normally Ansible requires Python on the managed node, and the Ansible control node sends the module
to the node, where it is executed and then removed. The Juniper Networksmodules do not require Python
on devices running Junos OS, because they use Junos PyEZ and the Junos XML API over NETCONF to
interface with the device. Therefore, to perform operations on devices running Junos OS, you must run
the modules locally on the Ansible control node where Python is installed. If Ansible tries to execute a
module directly on the device running Junos OS, it generates an error.

Solution

To direct the Ansible control node to run the juniper.device or Juniper.junos modules locally, include
connection: local in the Ansible playbook, or include the --connection local command-line argument when
executing individual modules. For example:

- name: Get Device Facts

 hosts: junos

connection: local

 gather_facts: no

 collections:

 - juniper.device

201

Troubleshooting Unknown Host Errors

Problem
Description:

During execution of a juniper.device or Juniper.junos module, the Ansible control node generates a
ConnectUnknownHostError error.

"msg": "Unable to make a PyEZ connection: ConnectUnknownHostError(dc1a.example.net)"

Cause
The host is not defined in the Ansible inventory file or the Ansible control node is unable to resolve the
hostname.

When executing an Ansible module either directly or from a playbook, any host referenced in the module
arguments or the playbook must be defined in the Ansible inventory file. The default location for the
inventory file is /etc/ansible/hosts. If the inventory file references a hostname, the Ansible control node
must be able to resolve the hostname.

Solution
Update the Ansible inventory file to include the missing host, and ensure that DNS resolution is working
correctly.

For information about the Ansible inventory file, see “Understanding the Ansible Inventory File When
Managing Devices Running Junos OS” on page 26 as well as the official Ansible documentation at
https://www.ansible.com/.

Troubleshooting Refused Connection Errors

Problem
Description:

During execution of a juniper.device or Juniper.junos module, the Ansible control node generates a
ConnectRefusedError error. For example:

"msg": "Unable to make a PyEZ connection: ConnectRefusedError(dc1a.example.net)"

Cause

202

https://www.ansible.com/

The most likely cause for a refused connection error is that NETCONF over SSH is not enabled on the
device running Junos OS.

To quickly test whether NETCONF is enabled, verify that the user account executing the Ansible module
can successfully start a NETCONF session with the device.

[user@ansible-cn]$ ssh user@dc1a.example.net -p 830 -s netconf

If the user can successfully establish a NETCONF session with the device on either the default NETCONF
port (830) or a port that is specifically configured for NETCONF on your device, thenNETCONF is enabled.
Otherwise, you must enable NETCONF over SSH on the device.

Solution

Enable the NETCONF-over-SSH service on the device running Junos OS.

[edit]
user@host# set system services netconf ssh
user@host# commit

RELATED DOCUMENTATION

Setting up Ansible for Junos OS Managed Nodes | 38

Understanding the Ansible Inventory File When Managing Devices Running Junos OS | 26

Troubleshooting Ansible Authentication Errors When Managing Devices Running Junos OS | 203

TroubleshootingAnsibleAuthentication ErrorsWhen
Managing Devices Running Junos OS

IN THIS SECTION

Troubleshooting ConnectAuthError Issues | 204

Troubleshooting Attribute conn_type Errors | 204

203

The following sections outline authentication errors that you might encounter when using Ansible to
manage devices running Junos OS. These sections also present potential causes and solutions for each
error.

Troubleshooting ConnectAuthError Issues

Problem
Description:

During execution of a juniper.device or Juniper.junos module, the Ansible control node generates a
ConnectAuthError error for failed authentication. For example:

"msg": "Unable to make a PyEZ connection: ConnectAuthError(dc1a.example.net)"

Cause
The device running Junos OS might fail to authenticate the user for the following reasons:

• The user does not an have an account on the device running Junos OS.

• The user has an account with a text-based password configured on the device running Junos OS, but
the wrong password or no password is supplied for the user when executing the module.

• The user has an account on the device running Junos OS with SSH keys configured, but the SSH keys
are inaccessible on either the device or the control node.

Solution
Ensure that the user executing the modules has a Junos OS login account on all target devices running
Junos OS and that an SSH public/private key pair or text-based password is configured for the account.
If SSH keys are configured, verify that the user can access them. For more information, see “Authenticating
Users Executing Ansible Modules on Devices Running Junos OS” on page 51.

Troubleshooting Attribute conn_type Errors

Problem
Description:

During execution of a juniper.device module on a device running Junos OS, the Ansible control node
generates the following error:

204

AttributeError: 'JuniperJunosModule' object has no attribute 'conn_type'

Cause
Whereas the the Juniper Networks Juniper.junos modules support using a provider dictionary to define
connection and authentication parameters, the juniper.device modules do not support using a provider
dictionary and generate the aforementioned error if one is referenced.

Solution
If you supply connection and authentication parameters in the playbook’s play for the juniper.device
modules, the parameters must be defined in the location appropriate for the Ansible connection. For
persistent connections (connection: juniper.device.pyez), define the parameters under the vars: section.
For local connections (connection: local), define the parameters either under the vars: section or as top-level
module arguments. For example:

- name: Get device facts

 hosts: dc1

 connection: juniper.device.pyez

 gather_facts: no

 vars_prompt:

 - name: "DEVICE_PASSWORD"

 prompt: "Device password"

 private: yes

 vars:

 passwd: "{{ DEVICE_PASSWORD }}"

 tasks:

 - name: Get device facts

 juniper.device.facts:

 savedir: "{{ playbook_dir }}"

- name: Get device facts

 hosts: dc1

 connection: local

 gather_facts: no

 vars_prompt:

205

 - name: "DEVICE_PASSWORD"

 prompt: "Device password"

 private: yes

 tasks:

 - name: Get device facts

 juniper.device.facts:

 passwd: "{{ DEVICE_PASSWORD }}"

 savedir: "{{ playbook_dir }}"

RELATED DOCUMENTATION

Setting up Ansible for Junos OS Managed Nodes | 38

Authenticating Users Executing Ansible Modules on Devices Running Junos OS | 51

Troubleshooting Ansible Connection Errors When Managing Devices Running Junos OS | 200

Troubleshooting Ansible Errors When Configuring
Devices Running Junos OS

IN THIS SECTION

Troubleshooting Configuration Timeout Errors | 207

Troubleshooting Configuration Lock Errors | 207

Troubleshooting Configuration Load Errors | 208

Troubleshooting Commit Errors | 208

The following sections outline errors that you might encounter when using the config module in the
juniper.device collection or the juniper_junos_configmodule in the Juniper.junos role to configure devices
running Junos OS. These sections also present potential causes and solutions for each error.

206

Troubleshooting Configuration Timeout Errors

Problem
Description: The module generates a TimeoutExpiredError error message and fails to update the device
configuration.

ncclient.operations.errors.TimeoutExpiredError: ncclient timed out while waiting

for an rpc reply

Cause
The default time for a NETCONFRPC to time out is 30 seconds. Large configuration changesmight exceed
this value causing the operation to time out before the configuration can be uploaded and committed.

Solution
To accommodate configuration changes that might require a commit time that is longer than the default
RPC timeout interval, set the module’s timeout argument to an appropriate value and re-run the playbook.

Troubleshooting Configuration Lock Errors

Problem
Description:

The module generates an error message indicating that the configuration database cannot be locked. For
example:

FAILED! => {"changed": false, "msg": "Unable to open the configuration in exclusive

 mode: LockError(severity: error, bad_element: None, message: configuration database

 modified)"}

or

FAILED! => {"changed": false, "msg": "Unable to open the configuration in exclusive

 mode: LockError(severity: error, bad_element: lock-configuration, message:

permission denied)"}

Cause
A configuration lock error can occur for the following reasons:

• Another user has an exclusive lock on the configuration.

207

• Another user made changes to the configuration database but has not yet committed the changes.

• The user executing the Ansible module does not have permissions to configure the device.

Solution
The LockErrormessage string usually indicates the root cause of the issue. If another user has an exclusive
lock on the configuration or has modified the configuration, wait until the lock is released or the changes
are committed, and execute the playbook again. If the cause of the issue is that the user does not have
permissions to configure the device, either execute the playbook with a user who has the necessary
permissions, or if appropriate, configure the device running JunosOS to give the current user the necessary
permissions to make the changes.

Troubleshooting Configuration Load Errors

Problem
Description:

The module generates a ConfigLoadError error message indicating that the configuration cannot be
modified, because permission is denied.

FAILED! => {"changed": false, "msg": "Failure loading the configuraton:

ConfigLoadError(severity: error, bad_element: scripts, message: error: permission

 denied)"}

Cause
This error message is generated when the user executing the Ansible module has permission to modify
the configuration but does not have permission to alter the requested section of the configuration.

Solution
To solve this issue, either execute the playbook with a user who has the necessary permissions, or if
appropriate, configure the device running Junos OS to give the current user the necessary permissions to
make the changes.

Troubleshooting Commit Errors

Problem
Description:

The module generates a CommitError error message indicating that the commit operation failed due to a
configuration lock error.

208

FAILED! => {"changed": false, "msg": "Unable to commit configuration:

CommitError(edit_path: None, bad_element: None, message: error: remote

lock-configuration failed on re0\n\nnote: consider using 'commit synchronize force'

 to\nterminate remote edit sessions and force the commit)"}

Cause
A configuration lock error can occur for the reasons described in “Troubleshooting Configuration Lock
Errors” on page 207. However, a configuration lock failed message might be generated as part of a
CommitError instead of a LockError in the event that the task requests a commit check and a commit
operation, and the device initiates the commit operation before the commit check operation releases the
configuration lock.

Solution
To enable sufficient time for the device to complete the commit check operation and release the
configuration lock before initiating the commit operation, set themodule’s check_commit_wait parameter
to an appropriate value and re-run the playbook. The check_commit_wait value is the number of seconds
to wait between the commit check and commit operations.

The following sample task waits five seconds between the commit check and commit operations:

 - name: "Load configuration. Wait 5 seconds between check and commit"

 config:

 load: "merge"

 format: "text"

 src: "build_conf/{{ inventory_hostname }}/junos.conf"

check_commit_wait: 5

 comment: "updated using Ansible"

RELATED DOCUMENTATION

Using Ansible to Configure Devices Running Junos OS | 169

209

	Table of Contents
	About the Documentation
	Documentation and Release Notes
	Documentation Conventions
	Documentation Feedback
	Requesting Technical Support
	Self-Help Online Tools and Resources
	Creating a Service Request with JTAC

	Disclaimer
	Ansible for Junos OS Disclaimer

	Ansible Overview
	Understanding Ansible for Junos OS
	Ansible for Junos OS Overview
	Benefits of Ansible and Ansible for Junos OS
	Additional Resources

	Understanding the Ansible for Junos OS Collections, Roles, and Modules
	Understanding Ansible Collections, Roles, and Modules for Managing Devices Running Junos OS
	How to Execute Modules on Devices Running Junos OS
	Juniper Networks juniper.device Collection
	Juniper Networks Juniper.junos Role

	Understanding the Ansible Inventory File When Managing Devices Running Junos OS
	Creating and Executing Ansible Playbooks to Manage Devices Running Junos OS
	Creating a Playbook
	Executing the Playbook

	Installing Ansible for Junos OS
	Ansible for Junos OS Server Requirements
	Prerequisite Software
	Installing the juniper.device Collection and the Juniper.junos Role
	Using the Ansible for Junos OS Docker Image

	Setting up Ansible for Junos OS Managed Nodes
	Enabling NETCONF on Devices Running Junos OS
	Satisfying Requirements for SSHv2 Connections
	Configuring Telnet Service on Devices Running Junos OS

	Using Ansible to Connect to Devices Running Junos OS
	Connecting to Devices Running Junos OS Using Ansible
	Connection Methods Overview
	Understanding Local and Persistent Ansible Connections
	Connecting to a Device Using SSH
	Connecting to a Device Using Telnet
	Connecting to a Device Using a Serial Console Connection

	Authenticating Users Executing Ansible Modules on Devices Running Junos OS
	Authentication Overview
	Understanding the Default Values for Juniper Networks Modules
	How to Define Authentication Parameters in the vars: Section for Local and Persistent Connections
	How to Define the provider Parameter in Juniper.junos Modules
	How to Authenticate the User Using SSH Keys
	Generating and Configuring the SSH Keys
	Using SSH Keys in Ansible Playbooks

	How to Authenticate the User Using a Playbook or Command-Line Password Prompt
	How to Authenticate the User Using an Ansible Vault-Encrypted File
	How to Authenticate Through a Console Server

	Using Ansible to Manage Device Operations
	Using Ansible to Retrieve Facts from Devices Running Junos OS
	Using Ansible to Execute Commands and RPCs on Devices Running Junos OS
	How to Execute Commands with the Juniper Networks Modules
	How to Execute RPCs with the Juniper Networks Modules
	Understanding the Module Response
	How to Specify the Format for the Command or RPC Output
	How to Save the Command or RPC Output to a File

	Using Ansible with Junos PyEZ Tables to Retrieve Operational Information from Devices Running Junos OS
	Module Overview
	Understanding Junos PyEZ Tables
	How to Use the Juniper Networks Ansible Modules with Junos PyEZ Tables
	Specifying RPC Arguments

	Using Ansible to Halt, Reboot, or Shut Down Devices Running Junos OS
	Using Ansible to Halt, Reboot, or Shut Down Devices
	How to Perform a Halt, Reboot, or Shut Down with a Delay or at a Specified Time
	How to Specify the Target Routing Engine
	How to Reboot a VM Host
	Example: Using Ansible to Reboot Devices Running Junos OS
	Requirements
	Overview
	Configuration
	Creating and Executing the Ansible Playbook

	Executing the Playbook
	Verification
	Verifying the Reboot

	Using Ansible to Install Software on Devices Running Junos OS
	Using Ansible to Install Software
	How to Specify the Software Image Location
	Installation Process Overview
	How to Specify Timeout Values
	How to Specify Installation Options That Do Not Have an Equivalent Module Argument
	How to Perform a VM Host Upgrade
	How to Perform a Unified ISSU or NSSU
	Example: Using Ansible to Install Software
	Requirements
	Overview
	Configuration
	Creating the Ansible Playbook

	Executing the Playbook
	Verification
	Verifying the Installation

	Using Ansible to Restore a Device Running Junos OS to the Factory-Default Configuration Settings
	How to Use Ansible to Restore the Factory-Default Configuration Settings
	Example: Using Ansible to Restore the Factory-Default Configuration Settings
	Requirements
	Overview
	Configuration
	Creating and Executing the Ansible Playbook

	Executing the Playbook
	Verification
	Verifying Playbook Execution

	Using Junos Snapshot Administrator in Python (JSNAPy) in Ansible Playbooks
	Module Overview
	Taking and Comparing Snapshots
	Performing Snapcheck Operations
	Understanding the jsnapy and juniper_junos_jsnapy Module Output
	Enabling the jsnapy Callback Plugin
	Example: Using Ansible to Perform a JSNAPy Snapcheck Operation
	Requirements
	Overview
	Configuration
	Define the Group Variables
	Define the Jinja2 Template and Host Variables
	Create the JSNAPy Test Files
	Create the Ansible Playbook

	Executing the Playbook
	Verification
	Verify the BGP Neighbors

	Troubleshooting Ansible Playbook Errors

	Using Ansible to Manage the Configuration
	Using Ansible to Retrieve or Compare Junos OS Configurations
	How to Specify the Source Database for the Configuration Data
	How to Specify the Scope of the Configuration Data to Return
	How to Specify the Format of the Configuration Data to Return
	How to Retrieve Configuration Data for Third-Party YANG Data Models
	How to Specify Options That Do Not Have an Equivalent Module Argument
	How to Save Configuration Data To a File
	How to Compare the Active Configuration to a Previous Configuration

	Using Ansible to Configure Devices Running Junos OS
	Module Overview
	How to Specify the Configuration Mode
	How to Specify the Load Action
	How to Specify the Format of the Configuration Data to Load
	How to Load Configuration Data as Strings
	How to Load Configuration Data from a Local or Remote File
	How to Load Configuration Data Using a Jinja2 Template
	How to Load the Rescue Configuration
	How to Roll Back the Configuration
	How to Commit the Configuration
	How to Ignore Warnings When Configuring Devices
	Example: Using Ansible to Configure Devices Running Junos OS
	Requirements
	Overview
	Configuration
	Create the Configuration Data File
	Create the Ansible Playbook

	Executing the Playbook
	Verification
	Verifying the Configuration

	Troubleshooting Playbook Errors

	Troubleshooting Ansible for Junos OS
	Troubleshooting Junos PyEZ (junos-eznc) Install Errors for Ansible Modules
	Troubleshooting Ansible Collection, Role, and Module Errors When Managing Devices Running Junos OS
	Troubleshooting Ansible Connection Errors When Managing Devices Running Junos OS
	Troubleshooting Failed or Invalid Connection Errors
	Troubleshooting Unknown Host Errors
	Troubleshooting Refused Connection Errors

	Troubleshooting Ansible Authentication Errors When Managing Devices Running Junos OS
	Troubleshooting ConnectAuthError Issues
	Troubleshooting Attribute conn_type Errors

	Troubleshooting Ansible Errors When Configuring Devices Running Junos OS
	Troubleshooting Configuration Timeout Errors
	Troubleshooting Configuration Lock Errors
	Troubleshooting Configuration Load Errors
	Troubleshooting Commit Errors

