
Interface description PROFINET IO
Development Kits V4.7.0 10/2020

Programming and Operating Manual

10/2020
A5E33638878-AG

Preface

Introduction 1
Overview of PROFINET
IO device software 2
Software creation for
PROFINET IO devices 3

Interface description 4

POSIX system adaptation 5

Appendix A

 Siemens AG
Digital Industries
Postfach 48 48
90026 NÜRNBERG
GERMANY

A5E33638878-AG
Ⓟ 11/2020 Subject to change

Copyright © Siemens AG 2014 - 2020.
All rights reserved

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

 DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

 WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

 CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

 NOTICE

indicates that property damage can result if proper precautions are not taken.
If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

 WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 3

Preface

Purpose of the manual
This user documentation describes the software functionality of the development kit for a
PROFINET IO device.

Target group for the manual
This manual is intended for software and application developers who want to use the
development kit for new products on various real-time platforms. Developers receive a
software package with the complete source code of the IO stack, the documentation, an
application example and an example platform porting.

This manual applies to ERTEC and standard Ethernet-based platforms.

Structure of the manual
This manual describes the PROFINET IO Device Development Kit and its usage It is structured
as follows:

• Section 1: Introduction

• Section 2: Overview of PROFINET IO device software

• Section 3: Software creation for PROFINET IO devices

• Section 4: Interface description

• Appendices: Abbreviations / Glossary of terms, References

This manual includes the description of the PROFINET IO stack for the supported development
kit at the time of release. We reserve the right to update the user documentation regarding
new product releases.

Guide
The manual contains various navigation aids that allow you to find specific information more
quickly:

• A table of contents is provided at the beginning of the manual.

• In the appendix you will find list of abbreviations and a glossary, which define important
technical terms used in this manual.

• References to other documents are indicated by the document reference number enclosed
in slashes ("/No./"). The complete title of the document can be obtained from the
references in the appendix of the manual.

Preface

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

4 Programming and Operating Manual, 10/2020, A5E33638878-AG

Conventions
Read the following highlighted information:

 Note

A note contains important information regarding the described product, or its handling, or
draws special attention to a section of the documentation.

Additional support
If you have questions regarding the described development kit that are not addressed in the
documentation, please contact your local representative at the Siemens office nearest you.

Please send questions, comments and suggestions regarding this manual in writing to the
specified e-mail address.

In addition, you will find general information, current product information, FAQs and
downloads that can be useful on the Internet
(https://support.industry.siemens.com/cs/products/6es7195-3be00-0ya0).

Technical Contact worldwide

Siemens Sanayi ve Ticaret A.Ş. E-mail:

(mailto:profinet.devkits.industry@siemens.com)
Office address:
Yakacık Caddesi No 111
34870 Istanbul, Turkey

Technical contact for the USA

PROFI Interface Center
(https://profiinterfacecenter.com/)

Phone: +1 (423) 262- 2576
E-mail: (mailto:PIC.industry@siemens.com)

Office address:
Siemens Industry, Inc.
C/O The PROFI Interface Center
One Internet Plaza
Johnson City, TN 37604

Technical Contact for China

The PROFI Interface Center China Phone: +86 (10) 6476-4725

E-mail: (mailto:Profinet.cn@siemens.com)
Office address:
7, Wangjing Zhonghuan Nanlu
100102 Beijing

https://support.industry.siemens.com/cs/products/6es7195-3be00-0ya0
mailto:profinet.devkits.industry@siemens.com
https://profiinterfacecenter.com/
mailto:PIC.industry@siemens.com
mailto:Profinet.cn@siemens.com

 Preface

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 5

Recycling and disposal
For ecologically sustainable recycling and disposal of your old device, contact a certificated
disposal service for electronic scrap or dispose of the device in accordance with the
regulations in your country.

Security Information
Siemens provides products and solutions with industrial security functions that support the
secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is
necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial
security concept. Siemens’ products and solutions only form one element of such a concept.

Customers are responsible for preventing unauthorized access to their plants, systems,
machines, networks. Such systems, machines and components should only be connected to
an enterprise network or the internet if and to the extent such a connection is necessary and
only when appropriate security measures (e.g. firewalls and/or network segmentation) are in
place.

For additional information on industrial security measures that may be implemented, please
visit (https://www.siemens.com/industrialsecurity).

Siemens' products and solutions undergo continuous development to make them more
secure. Siemens strongly recommends that product updates are applied as soon as they are
available and that the latest product versions are used. Use of product versions that are no
longer supported, and failure to apply the latest updates may increase customers' exposure to
cyber threats.

To stay informed about product updates, follow us on Twitter (@ProductCERT), register to our
advisory mailing list or subscribe to the Siemens Industrial Security RSS Feed under
(https://new.siemens.com/global/en/products/services/cert.html#Subscriptions).

Open Source Software
The product/system described in this document may use Open Source Software or any similar
software of a third party (hereinafter referred to as “OSS”). The OSS is listed in the
Readme_OSS-file of the product.

The purchaser of the product/system described in this document (hereinafter referred to as
“the Customer”) is responsible for the right to use OSS that is required for the product to
operate safely and without any problems in accordance with the respective license conditions
of the OSS.

Disclaimer for third-party software updates
This product includes third-party software. Siemens AG only provides a warranty for
updates/patches of the third-party software, if these have been officially released by Siemens
AG. Otherwise, updates/patches are undertaken at your own risk.

https://www.siemens.com/industrialsecurity
https://new.siemens.com/global/en/products/services/cert.html#Subscriptions

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

6 Programming and Operating Manual, 10/2020, A5E33638878-AG

Table of contents

 Preface ... 3

1 Introduction ... 12

1.1 Content and target audience of this interface description ... 12

1.2 Example platforms ... 13

1.3 Other information.. 13

2 Overview of PROFINET IO device software .. 14

2.1 Software architecture .. 14
2.1.1 System environment and properties ... 15
2.1.1.1 Using the POSIX application interface ... 15
2.1.1.2 Using the native eCos application interface .. 16

2.2 Components of the PROFINET IO stack ... 17
2.2.1 EDDP/EDDI (Ethernet Device Driver for ERTEC 200P/ERTEC 200) .. 17
2.2.2 ACP (Acyclic Communication Protocol) ... 18
2.2.3 CM (Context Manager)... 18
2.2.4 CLRPC (Connectionless Remote Procedure Call) .. 18
2.2.5 DCP (Dynamic Configuration Protocol) ... 18
2.2.6 GSY (Generic Sync Module) .. 18
2.2.7 LLDP (Link Layer Discovery Protocol) .. 19
2.2.8 MRP (Media Redundancy Protocol) ... 19
2.2.9 NARE (Name Address Resolution) ... 19
2.2.10 OHA (Object Handler) .. 19
2.2.11 POF (Polymeric optical fiber) .. 19
2.2.12 SOCK (socket interface) ... 19
2.2.13 TCP/IP stack ... 20
2.2.14 System adaptation (SYS, LSAS, TSKMA) .. 20
2.2.15 OS Abstraction Layer (OS Adapt) .. 20
2.2.16 BSP Adapt (Board support package adaptation) .. 20
2.2.17 GDMA, EVMA (for ERTEC 200P only) ... 20
2.2.18 PNDV ... 21
2.2.19 PNPB ... 21

2.3 Additional software components.. 21
2.3.1 Operating system .. 21
2.3.2 Board support package (BSP).. 21

2.4 Application examples ... 22
2.4.1 General structure of the application examples .. 23
2.4.2 Isochronous applications with IRT, T_Input and T_Output evaluation 25
2.4.3 App1: SI-based example for RT and IRT ... 26
2.4.4 App2: DBAI-based example for RT and IRT .. 26
2.4.5 App3: SI-based example for IRT with a synchronized application ... 27
2.4.6 App4: XHIF example for communication with external host .. 27

2.5 Miscellaneous services ... 28

 Table of contents

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 7

2.5.1 Dynamic reconfiguration.. 28
2.5.2 I&M5 data .. 30
2.5.3 Asset Management Record (AMR) .. 31

3 Software creation for PROFINET IO devices ... 32

3.1 Directory structure of the PROFINET IO source code .. 32

3.2 Files for the application examples and system .. 35
3.2.1 Files for App1_STANDARD .. 35
3.2.2 Files for App2_DBAI ... 36
3.2.3 Files for App3_IsoApp .. 36
3.2.4 Files for App4_XHIF ... 36
3.2.5 Files for App_common ... 36
3.2.6 Files for App4_XHIF_Host (BBB) .. 37
3.2.7 Application interface .. 38
3.2.8 Operating system interface modules to be adapted .. 39
3.2.9 Modules of the BSP interface .. 39
3.2.10 Storage of retentive data ... 40
3.2.11 Files for system adaptation .. 40

3.3 Important constraints for integrating an application ... 41

3.4 Porting the PROFINET IO software to another platform ... 41
3.4.1 Porting to customer hardware with the same microcontroller and the same OS 41
3.4.2 Use of other compilers/linkers .. 42
3.4.2.1 Tool chain selection ... 42
3.4.2.2 Big Endian / Little Endian .. 42
3.4.2.3 Data alignment requirements ... 42
3.4.2.4 Data processing capacity .. 43
3.4.2.5 Memory management ... 43
3.4.3 Use of other operating systems .. 43

3.5 Typical sequence of an IO device user program .. 44
3.5.1 Initialization phase ... 44
3.5.2 Productive operation .. 46
3.5.3 Completion phase .. 49

3.6 Basic data traffic in the IO device user interface .. 50

3.7 Cyclic IO data traffic of the IO device user interface .. 50
3.7.1 Cyclic writing with status ... 51
3.7.2 Cyclic reading with status... 52
3.7.3 Cyclic data communication using the optional DBA interface .. 52

3.8 IO data exchange for IRT class 3 ... 53

3.9 Managing diagnostic data .. 53
3.9.1 Channel diagnostic data ... 53
3.9.2 Manufacturer-specified diagnostic data .. 54

3.10 Special features when inserting and removing modules during productive operation 56
3.10.1 Special features with "Return of submodule" .. 57

3.11 Callback mechanism .. 57

4 Interface description ... 59

4.1 Upper layer interface functions for the application ... 59

Table of contents

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

8 Programming and Operating Manual, 10/2020, A5E33638878-AG

4.1.1 Functions for system startup .. 60
4.1.1.1 PNIO_init ... 60
4.1.1.2 PNIO_setup.. 60
4.1.1.3 PNIO_device_open ... 61
4.1.1.4 PNIO_async_appl_rdy .. 61
4.1.1.5 PNIO_device_close ... 62
4.1.1.6 PNIO_CP_register_cbf .. 62
4.1.1.7 PNIO_PDEV_setup() ... 62
4.1.2 Setting the device name and IP suite .. 63
4.1.2.1 PNIO_cbf_save_station_name .. 63
4.1.2.2 PNIO_cbf_save_ip_addr.. 64
4.1.2.3 PNIO_cbf_report_new_ip_addr ... 64
4.1.2.4 PNIO_change_ip_suite ... 64
4.1.2.5 PNIO_change_device_name ... 65
4.1.2.6 PNIO_cbf_start_led_blink() ... 65
4.1.2.7 PNIO_cbf_stop_led_blink ... 65
4.1.2.8 PNIO_cbf_reset_factory_settings .. 66
4.1.3 Storage of retentive data (REMA) ... 66
4.1.3.1 PNIO_cbf_store_rema_mem ... 66
4.1.3.2 PNIO_cbf_restore_rema_mem .. 67
4.1.3.3 PNIO_cbf_report_ARFSU_record ... 67
4.1.4 IO device configuration .. 67
4.1.4.1 PNIO_sub_plug .. 67
4.1.4.2 PNIO_sub_plug_list .. 68
4.1.4.3 PNIO_sub_pull ... 68
4.1.4.4 PNIO_cbf_new_plug_ind () .. 69
4.1.4.5 PNIO_cbf_new_pull_ind ().. 69
4.1.5 Storing diagnostic data in the subslot ... 69
4.1.5.1 PNIO_diag_channel_add .. 69
4.1.5.2 PNIO_diag_channel_remove .. 70
4.1.5.3 PNIO_ext_diag_channel_add .. 70
4.1.5.4 PNIO_ext_diag_channel_remove .. 71
4.1.5.5 PNIO_diag_generic_add ... 72
4.1.5.6 PNIO_diag_generic_remove ... 72
4.1.6 Sending and receiving alarms .. 73
4.1.6.1 PNIO_process_alarm_send ... 73
4.1.6.2 PNIO_status_alarm_send ... 73
4.1.6.3 PNIO_upload_retrieval_alarm_send .. 74
4.1.6.4 PNIO_ret_of_sub_alarm_send .. 74
4.1.6.5 PNIO_cbf_dev_alarm_ind()... 75
4.1.7 Acknowledgment of asynchronous functions ... 75
4.1.7.1 PNIO_cbf_async_req_done ... 75
4.1.7.2 PNIO_trigger_pndv_ds_rw_done().. 75
4.1.8 Reading and writing records... 76
4.1.8.1 PNIO_cbf_rec_read .. 77
4.1.8.2 PNIO_cbf_rec_write ... 78
4.1.8.3 PNIO_rec_set_rsp_async .. 79
4.1.8.4 PNIO_rec_read_rsp .. 79
4.1.8.5 PNIO_rec_write_rsp ... 79
4.1.8.6 PNIO_cbf_substval_out_read .. 80
4.1.8.7 PNIO_cbf_data_read_IOxS_only() ... 80
4.1.8.8 PNIO_cbf_data_write_IOxS_only() .. 81

 Table of contents

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 9

4.1.9 Cyclic data exchange using standard interface (SI) .. 81
4.1.9.1 PNIO_initiate_data_read, PNIO_initiate_data_write ... 81
4.1.9.2 PNIO_cbf_data_write, PNIO_cbf_data_read .. 82
4.1.9.3 PNIO_get_last_apdu_status .. 83
4.1.10 Cyclic data exchange by means of the optional DBA interface ... 83
4.1.10.1 Cyclic data exchange by means of the optional DBA interface ... 83
4.1.10.2 PNIO_dbai_enter .. 85
4.1.10.3 PNIO_dbai_exit .. 85
4.1.10.4 PNIO_dbai_buf_lock ... 85
4.1.10.5 PNIO_dbai_buf_unlock ... 86
4.1.11 Receiving events and alarms .. 86
4.1.11.1 PNIO_cbf_ar_connect_ind .. 86
4.1.11.2 PNIO_cbf_ar_ownership_ind .. 87
4.1.11.3 PNIO_cbf_ar_indata_ind ... 87
4.1.11.4 PNIO_cbf_ar_disconn_ind .. 88
4.1.11.5 PNIO_cbf_param_end_ind .. 88
4.1.11.6 PNIO_cbf_ready_for_input_update_ind .. 89
4.1.12 Control functions ... 89
4.1.12.1 PNIO_set_dev_state ... 89
4.1.12.2 PNIO_device_start .. 90
4.1.12.3 PNIO_device_stop .. 90
4.1.12.4 PNIO_device_ar_abort .. 90
4.1.13 Hardware comparators for isochronous mode .. 90
4.1.13.1 Hardware comparators for isochronous mode .. 90
4.1.13.2 PNIO_IsoActivateIsrObj .. 92
4.1.13.3 PNIO_IsoActivateGpioObj ... 92
4.1.13.4 PNIO_IsoActivateTransEndObj .. 93
4.1.13.5 PNIO_IsoFreeObj .. 93
4.1.13.6 PNIO_IsoObjCheck() ... 93
4.1.14 Error handling.. 94
4.1.14.1 PNIO_get_last_error ... 94
4.1.14.2 PNIO_Log .. 94
4.1.14.3 PNIO_set_iops .. 95
4.1.15 Other functions ... 96
4.1.15.1 PNIO_printf .. 96
4.1.15.2 PNIO_TrcPrintf ... 96
4.1.15.3 PNIO_get_version .. 96

4.2 Lower layer interface functions for the Board support package ... 97
4.2.1 BSP functions for all platforms .. 97
4.2.1.1 Bsp_Init ... 97
4.2.1.2 Bsp_GetMacAddr ... 97
4.2.1.3 Bsp_GetPortMacAddr ... 97
4.2.1.4 Bsp_EbSetLed (implementation mandatory for DCP flashing) .. 97
4.2.2 Storage of non-volatile data ... 98
4.2.2.1 Bsp_nv_data_clear ... 98
4.2.2.2 Bsp_nv_data_store ... 98
4.2.2.3 Bsp_nv_data_restore .. 99
4.2.2.4 Bsp_nv_data_memfree .. 99
4.2.3 Adaptation of the ERTEC switch interrupts .. 99
4.2.4 GPIO connection .. 100
4.2.4.1 Bsp_ReadGPIOin_0_to_31 .. 100
4.2.4.2 Bsp_SetGPIOout_0_to_31 .. 100

Table of contents

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

10 Programming and Operating Manual, 10/2020, A5E33638878-AG

4.2.4.3 Bsp_ClearGPIOout_0_to_31 ... 100
4.2.5 The generic flash interface ... 101
4.2.5.1 The generic flash interface ... 101
4.2.5.2 OsFlashInit .. 101
4.2.5.3 OsFlashErase ... 102
4.2.5.4 OsFlashProgram .. 102
4.2.5.5 OsFlashRead .. 102
4.2.6 SPI flash interface .. 102
4.2.6.1 spi_flash_init ... 103
4.2.6.2 spi_flash_program ... 103
4.2.6.3 spi_flash_read ... 103
4.2.6.4 spi_flash_erase .. 103
4.2.6.5 spi_flash_chip_erase .. 104
4.2.6.6 spi_flash_erase_verify .. 104
4.2.6.7 spi_flash_verify .. 104
4.2.7 Hardware watchdog .. 104
4.2.7.1 Bsp_hw_watchdog_init .. 104
4.2.7.2 Bsp_hw_watchdog_start .. 105
4.2.7.3 Bsp_hw_watchdog_stop .. 105
4.2.7.4 Bsp_hw_watchdog_trigger (void) ... 105

4.3 Interface to the operating system ... 106
4.3.1 Interface to the operating system ... 106
4.3.2 Managing resources .. 106
4.3.3 Description of the OS functions to be ported .. 106
4.3.3.1 OsInit() .. 106
4.3.3.2 OsAllocFX() ... 106
4.3.3.3 OsFreeX() .. 107
4.3.3.4 OsAllocTimer() ... 107
4.3.3.5 OsStartTimer() ... 108
4.3.3.6 OsStopTimer() ... 108
4.3.3.7 OsFreeTimer() ... 108
4.3.3.8 OsEnterX()... 108
4.3.3.9 OsExitX.. 109
4.3.3.10 OsEnterShort ... 109
4.3.3.11 OsExitShort ... 109
4.3.3.12 OsAllocSemB ... 109
4.3.3.13 OsFreeSemB .. 109
4.3.3.14 OsTakeSemB .. 110
4.3.3.15 OsGiveSemB .. 110
4.3.3.16 OsSetThreadPrio .. 110
4.3.3.17 OsCreateThread ... 110
4.3.3.18 OsStartThread ... 111
4.3.3.19 OsWaitOnEnable() ... 111
4.3.3.20 OsGetThreadId() .. 111
4.3.3.21 OsCreateMsgQueue() .. 112
4.3.3.22 OsWait_ms() .. 112
4.3.3.23 OsGetTime_us() ... 112
4.3.3.24 OsGetUnixTime() ... 112
4.3.3.25 OsReadMessageBlocked() .. 113
4.3.3.26 OsReadMessageBlockedX() .. 113
4.3.3.27 OsSendMessage() .. 113
4.3.3.28 OsSendMessageX() .. 114

 Table of contents

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 11

4.3.3.29 __InterlockedDecrement() ... 114
4.3.3.30 __InterlockedIncrement() ... 114
4.3.3.31 OsIntDisable() .. 114
4.3.3.32 OsIntEnable() .. 115
4.3.4 Encapsulation of standard library function calls .. 115
4.3.5 OS functions called by the application example .. 116

4.4 Important notes and limitations ... 116
4.4.1 Number of IO devices... 116
4.4.2 Number of modules and submodules ... 116
4.4.3 Maximum amount of user data for a device .. 116
4.4.4 Functional limitations .. 117

5 POSIX system adaptation .. 118

5.1 POSIX adaptation files .. 119

5.2 POSIX configuration ... 120

5.3 Integration of POSIX interface .. 120

5.4 Subset of POSIX ... 121
5.4.1 Standard IO ... 121
5.4.2 Inter-process communication ... 122
5.4.3 Synchronization mechanisms ... 123
5.4.4 Multithreading ... 124
5.4.5 Settings of Scheduler ... 126
5.4.6 Timers ... 126
5.4.7 Process memory .. 127
5.4.8 Asynchronous events ... 127
5.4.9 Memory operations.. 128
5.4.10 String operations ... 128
5.4.11 Math operations .. 129
5.4.12 Byte orders operation... 130

A Appendix.. 131

A.1 Abbreviations/Glossary of terms ... 131

A.2 References ... 132

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

12 Programming and Operating Manual, 10/2020, A5E33638878-AG

 Introduction 1

PROFINET is an automation concept for implementing modular, distributed applications.
PROFINET allows you to create automation solutions, which are familiar to you from
PROFIBUS. PROFINET is implemented by the PROFINET standard for automation devices and
by the engineering tool (STEP 7, TIA Portal). This means you have the same application view
in engineering regardless of whether you are configuring PROFINET devices or PROFIBUS
devices. As a result, programming of the user program is almost identical for PROFINET and
PROFIBUS.

A software stack is offered for PROFINET. PROFINET IO device instances can be created on this
basis. As a result, the user does not have to create the complete communication software.

The functionality includes:

• Cyclic and acyclic data exchange with one or more PROFINET IO controllers

• Sending and receiving of diagnostic and hardware interrupts, pull/plug interrupts

• Assignment of IP addresses and device names via Ethernet (DCP)

The stack is supplied in the source code and can be ported to any hardware and operating
system platform. Necessary adaptations are encapsulated in defined interfaces to the
hardware and operating system, thus enabling the stack to be ported as simply and cost-
effectively as possible.

A good knowledge of PROFINET IO is required to implement the software stack.

1.1 Content and target audience of this interface description
This document is intended for developers of PROFINET IO devices.
It contains:

• Overview of the structure of the software stack

• Description of the PROFINET IO stack interface

• Description of the network and operating system connection of the PROFINET stack

• Description of the user example

This documentation does not include:

• Overview of PROFINET

• Description of the PROFINET protocol

• Detailed description of the PROFINET IO stack structure and processes

 Introduction
 1.2 Example platforms

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 13

1.2 Example platforms
This documentation applies to the following platforms:

• Evaluation Kit ERTEC 200P, operating system eCos 3.0, with Evaluation Board EB 200P-2 or
Minimal Design VAR2/VAR3

1.3 Other information
When porting the software to other platforms, we recommend that you do not modify the
central components of the PROFINET IO stack (see section 2.2 (Page 17)). This will make it
simpler to update to future versions.

The application examples were tested on the respective platforms (see section 1.2
(Page 13)).

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

14 Programming and Operating Manual, 10/2020, A5E33638878-AG

 Overview of PROFINET IO device software 2
2.1 Software architecture

The figures in the following subchapters show, how the PROFINET stack is embedded into
different platform environments. The software of the PROFINET evaluation kits consists of the
following components:

• PROFINET IO protocol software

• System adaptation and implementation of the application interface

• Real-time operating system

• Board support package (BSP) of the operating system

• Platform-specific adaptation layer

• Device application

• Trace system

The PROFINET IO components are shown in blue and are provided by Siemens, as well as the
trace system. The green components are generally supplied by the manufacturer of the
operating system or microcontroller. Only the green to blue components must be adapted to
the platform by the user (OS Adapt, BSP Adapt). The other components can normally be used
without modification. Example code is included in the PROFINET IO software stack for the
adaptation of the dark green components. It is suitable for the respective example platforms.

The other components can be used without modification.

Migrating the stack to other platforms is a common use case for the standard Ethernet
development kit. However, the ERTEC development kits include a ready-to-use adaptation
layer to eCos, so there is no need for the customer to make changes. If the customer’s
hardware differs from the minimum HW design for the ERTEC that is provided by Siemens,
then modifications may be necessary in the BSP of the operating system.

 Overview of PROFINET IO device software
 2.1 Software architecture

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 15

2.1.1 System environment and properties

2.1.1.1 Using the POSIX application interface

Red arrows Application interface
Orange arrows Operating system abstraction interface (OS Adapt)
Light orange
arrows

Hardware abstraction interface (BSP Adapt)

Figure 2-1 POSIX OS adaption

This platform has the following properties:

• Complete solution for PROFINET including Interniche IP stack

• SNMP Agent (MIB2, SNMP-MIB) contained in the stack

• Implemented for POSIX interface on eCos platform

See also
Porting to customer hardware with the same microcontroller and the same OS (Page 41)

Overview of PROFINET IO device software
2.1 Software architecture

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

16 Programming and Operating Manual, 10/2020, A5E33638878-AG

2.1.1.2 Using the native eCos application interface

Red arrows Application interface
Orange arrows Operating system abstraction interface (OS Adapt)
Light orange
arrow

Hardware abstraction interface (BSP Adapt)

Figure 2-2 Native eCos OS adaptation

This platform has the following properties:

• Complete solution for PROFINET including Interniche IP stack

• SNMP Agent (MIB2, SNMP-MIB) contained in the stack

• Implemented for native interface on eCos platform

See also
Porting to customer hardware with the same microcontroller and the same OS (Page 41)

 Overview of PROFINET IO device software
 2.2 Components of the PROFINET IO stack

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 17

2.2 Components of the PROFINET IO stack
The following subsection provides a brief overview of the components in the PROFINET IO
stack. The components of the stack can basically be broken down into the following
categories:

• System-independent basic packages with a uniform interface structure
These include ACP, CM, CLRPC, DCP, EDD, GSY, POF, LLDP, MRP, NARE, OHA, TCP/IP Stack
and SOCK. The basic packages merely provide a function library of sorts, which does not
become an actual, executable system implementation until combined with the system
integration.

• System adaptation (SYS, LSAS, TSKMA) for all included software packages
This forms the interface between the system-independent basic packages and the
operating system services, such as memory management, task management, interprocess
communication, and time management. System adaptation also implements the software
structure of the IO stack, i.e. which basic packages are executed in which tasks and which
mechanisms the tasks use to communicate with each other.

• OS abstraction layer (OS Adapt)
This forms a low-layer abstraction interface between the system adaptation and a specific
operating system. As a result, when the software is ported to a different operating system,
only the OS abstraction layer has to be adapted.

• OS abstraction layer (BSP Adapt)
This forms a low-layer abstraction interface between the system adaptation and HW
board-specific functionality.

• GDMA, EVMA
These include the interface modules for interrupt handling and DMA (Direct Memory
Access) handling.

• PNDV
This includes the implementation of the generic parts of the device application.

• PNPB
This forms the PROFINET IO device user interface for the customer application.

2.2.1 EDDP/EDDI (Ethernet Device Driver for ERTEC 200P/ERTEC 200)
The EDDP/EDDI provides mechanisms for:

• Independent sending and receiving of cyclic real-time message frames.

• Sending and receiving of acyclic real-time message frames.

• Sending and receiving of non-real-time message frames.

The EDDP/EDDI has a uniform LSA interface to higher-level clients (ACP, DCP, GSY, LLDP, MRP,
etc.).

Overview of PROFINET IO device software
2.2 Components of the PROFINET IO stack

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

18 Programming and Operating Manual, 10/2020, A5E33638878-AG

2.2.2 ACP (Acyclic Communication Protocol)
Processing of:

• Diagnostic alarms

• Alarms

• Return of submodule alarms

• Upload/retrieval alarms (parameter server)

The ACP generates the alarm message frames and monitors the correct functioning of the
associated Ethernet protocol (alarm acknowledgments, timeout).

2.2.3 CM (Context Manager)
• Establishing and managing communication links between IO device and IO controller

– Requests for establishment of communication links are sent by remote IO controllers to
the context manager using "Connectionless Remote Procedure Calls" via UDP and
CLRPC.

• Management of the actual configuration (inserted modules and submodules)

• Interface to the upper layer (PNDV)

2.2.4 CLRPC (Connectionless Remote Procedure Call)
• Implementation of the connectionless RPC protocol

2.2.5 DCP (Dynamic Configuration Protocol)
• Assignment of IP addresses and device names via Ethernet

• Reading readiness information, for example:

– Which PROFINET devices are active on the network

– Which PROFINET device has the following device name

– Hello message for Fast StartUp signals readiness to establish a connection after power
on

2.2.6 GSY (Generic Sync Module)
• Processing the synchronization message frames from the sync master

• Line length measurement

• Synchronization monitoring

 Overview of PROFINET IO device software
 2.2 Components of the PROFINET IO stack

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 19

2.2.7 LLDP (Link Layer Discovery Protocol)
• Protocol for the exchange of neighborhood information for topology discovery

• Cyclic sending of LLDP packets with the own station data (chassis ID, port ID, etc.)

• Receipt of LLDP packets from other stations and local storage

• Provides received data with the associated port ID

• Receive monitoring and notification to the user in the event of a change or loss of the
LLDP data

2.2.8 MRP (Media Redundancy Protocol)
• Media redundancy for PROFINET devices

• An MRP client is supported.

2.2.9 NARE (Name Address Resolution)
• Allocation of IP parameters (IP address / subnet mask / default router) to an IO device

• IP address resolution with the help of ARP

2.2.10 OHA (Object Handler)
• Information functions for the application

• Generation of change messages for the application

• "Application" for DCP server and LLDP

• SNMP connection (agent) via SOCK

2.2.11 POF (Polymeric optical fiber)
• Support for optical transmission media POF and PCF (polymeric cladded fiber, not

currently available for all platforms)

2.2.12 SOCK (socket interface)
• Internal adaptation interface for handling UDP-based services in the PROFINET stack

Overview of PROFINET IO device software
2.2 Components of the PROFINET IO stack

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

20 Programming and Operating Manual, 10/2020, A5E33638878-AG

2.2.13 TCP/IP stack
• Implementation of TCP and UDP functionality (PROFINET only uses UDP)

• Based on Interniche TCP/IP stack

• Sending and receiving of raw Ethernet IP message frames

• Internal adaptation interface to PROFINET stack-internal SNMP MIB agents (MIB2, LLDP
MIB)

2.2.14 System adaptation (SYS, LSAS, TSKMA)
• Shared implementation of the system adaptation of the individual basic packages

• Routing of operating system services for memory management, task and timer handling,
and interprocess communication to the OS abstraction layer

• Implementation of tasks and communication between tasks

2.2.15 OS Abstraction Layer (OS Adapt)
• Operating system abstraction interface for PNIO

• PNIO components never directly access an operating system call; rather, access is via the
OS abstraction layer only.

• Maps all requirements of the system adaptation onto simple operating system services,
which are implemented almost 1:1 in a service call for most real-time operating systems.

– This facilitates simple adaptability to another real-time operating system

2.2.16 BSP Adapt (Board support package adaptation)
• Forms a low-layer abstraction interface between the system adaptation and HW board-

specific functionality

• For ERTEC 200P an SPI driver for SPI flash memories is included. It can be used for Adesto
AT45DB321E 32Mbit flash and Winbond W25q64FV 64Mbit flash.

2.2.17 GDMA, EVMA (for ERTEC 200P only)
• EVMA: interface module for interrupt handling

• GDMA: interface module for DMA (Direct Memory Access) handling

 Overview of PROFINET IO device software
 2.3 Additional software components

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 21

2.2.18 PNDV
• Implementation of generic parts of the device application

• Starting and initializing the PROFINET stack

• Generation of tasks and communication channels within the PROFINET stack

• Communicates with higher-level layers via a stack-internal memory interface

2.2.19 PNPB
• Implementation of PROFINET IO device user interface for the customer application

• Communicates with the PNDV via an internal interface

2.3 Additional software components

2.3.1 Operating system
The real-time operating system is not part of the PROFINET IO software stack. It is generally
procured from a third-party vendor. The supplied application example is customized for each
example platform; see section Example platforms (Page 13).

2.3.2 Board support package (BSP)
The board support package (BSP) encapsulates the hardware-specific operating system calls
for a specified platform. A platform-specific BSP is generally provided by the manufacturer of
the operating system.

For the ERTEC-based evaluation board EB 200P, a BSP for the employed operating system is
included in the evaluation kit product package. This can be used as an example template for
adapting a BSP to a customer-specific platform.

For the ERTEC-based development kits eCos is used as an operating system. Like many
other realtime OS, eCos also provides a POSIX interface, to make software porting easy.

The ERTEC 200P kit provides 2 different system adaptations:

• Adaptation to the native OS application interface

• Adaptation to the POSIX application interface

 Note

The ERTEC 200P customer may decide which interface shall be used. Use either the native OS-
API or the POSIX-API.

Overview of PROFINET IO device software
2.4 Application examples

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

22 Programming and Operating Manual, 10/2020, A5E33638878-AG

2.4 Application examples
Various application examples have been integrated into the development kit to optimally
adapt PROFINET to a wide variety of requirements. They include examples of how to use the
API and can be used as templates for your own implementation.

The following access mechanisms have been implemented in the PROFINET stack for IO data
access:

• Standard Interface (SI): universally applicable, for simple handling of RT and IRT.

• Direct Buffer Access Interface (DBAI): offers performance advantages when there is a large
number of modules/submodules and can be used for RT and IRT.

With respect to IO data access, the application examples included in the development kit are
each based on one of the interfaces listed above. Access to acyclic services like PROFINET
stack startup, connection establishment, reading and writing records or interrupt handling is
identical for the interfaces listed above. Additional information on the interfaces and acyclic
services is available in section Important constraints for integrating an application (Page 41).

When creating your own application, we recommend that you start with the supplied
application examples. The following table provides points of reference for selecting the best
suited application example.

Application Description Properties
App1_Standard Universal example, based on the

standard interface (SI).
• Recommended template for most applications
• Simple and fast implementation
• Used for RT and IRT (DK_SW only RT)
• Independently manages multiple ARs
• Module/submodule-oriented view from the application onto

the IO data, which means it need not know about the ARs or
IOCRs.

• Data consistency is automatically guaranteed by means of
buffered access

App2_DBAI Direct Buffer Access Interface • Performance advantages compared to SI (only) if a large
number of modules/submodules is used

• Used for RT and IRT (DK_SW only RT)
• Example shared device is not implemented
• Data consistency is automatically guaranteed by means of

buffered access

 Overview of PROFINET IO device software
 2.4 Application examples

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 23

Application Description Properties
App3_IsoApp Isochronous application for IRT

(not for DK_SW)
• Structure similar to "App1_Standard", which means the same

access method for IO data and acyclic services
• Employs IO modules that require IRT, which means it can

only be used in IRT mode
• Manages ISO record index 0x8030 for specifying T_Input,

T_Output and cycle time
• Triggers interrupts or hardware signals GPIO 5-7 at the time

T_Input and T_Output

App4_XHIF Application example, based on the
XHIF interface

• Used for RT and IRT
• Independently manages multiple ARs
• Module/submodule-oriented view from the application onto

the IO data, which means it need not know about the ARs or
IOCRs.

• Data consistency is automatically guaranteed by means of
buffered access

2.4.1 General structure of the application examples
The general software architecture of the PNIO stack has already been introduced in section
Software architecture (Page 14). Application examples have a largely identical structure.

The application is mainly comprised of the following components:

• Main task (entry function "mainAppl()")
This task starts by initializing the PROFINET stack. Then the task waits in an endless loop
for keypad input via the function "OsGetChar()". Typical commands can thus be executed
from a terminal connected to the RS232 interface, for example, sending interrupts,
pulling/plugging modules during operation.

• IO_Cycle task
This task cyclically executes an IO data exchange between the PROFINET stack and the
application. The cyclic trigger here is either an event derived from the ERTEC (the so-called
"TRANS_END" event = point in time at which the current output data in the device is made
available) or a fixed wait time.
The "TRANS_END" event (not for DK_SW) signals the end of the transmission phase of
cyclic data for IRT, which means all provider IOCRs have been sent and all consumer IOCRs
have been received. However, it can also be used for RT, in which case it signals that all
local provider IOCRs were sent. If a fixed waiting period is used as trigger instead, there is
no synchronization between application cycle and bus cycle.

• Event handler
The callback functions of the PROFINET stack are called here to inform the application
about important events, such as the establishment and termination of a connection, the
reading and writing of records, "TRANS_END", etc. The event handlers run in the context
of the PROFINET IO stack.

The figure below shows the implemented task structure; it applies to all application
examples. The large arrows indicate where the tasks are created and started.

Overview of PROFINET IO device software
2.4 Application examples

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

24 Programming and Operating Manual, 10/2020, A5E33638878-AG

Figure 2-3 Tasks of the PROFINET IO application example

Directory structure of the source code for the application examples
All application examples are located under a common "(...)\pn_ioddevkits\src\application"
directory. It contains a separate subdirectory for each application example. Functions and
header files that are used by all application examples are located in the "\App_common"
subdirectory.

A description of the directory structure of the complete PROFINET stack, including the
application examples, can be found in section Directory structure of the PROFINET IO source
code (Page 32).

The selection of the application example to be compiled is made in the
"(...)\pn_ioddevkits\src\application\App_common\usrapp_cfg.h" header file by means of the
following entry:

#define EXAMPL_DEV_CONFIG_VERSION 1 // the number 1..n specifies the selected example

You can therefore easily add your own application examples under a new number. This
means you can copy and modify the delivered examples without changing the originals.

 Overview of PROFINET IO device software
 2.4 Application examples

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 25

2.4.2 Isochronous applications with IRT, T_Input and T_Output evaluation
IRT communication can basically be performed with all IO modules. The standard modules
used in the application example (ID = 30h, 31h in the example GSD file) can be configured for
both RT and IRT mode.

Modules can also be defined in the GSD file that can only be configured for IRT mode (ID =
50h, 51h in the example GSD file). For these modules, an additional parameter startup record
is transmitted from the IO controller to the device during connection establishment
(IsochronousModeData record, index 8030H). It contains additional information about the IRT
time constraints, such as T_IO_Input, T_IO_Output, T_IO_InputValid, and T_IO_OutputValid.
The figure below from the PROFINET specification clarifies the relationships:

Figure 2-4 IO data exchange concept in isochronous applications

It is possible to precisely specify the times for the reading of inputs and the activation of
outputs with this information and thus control highly dynamic processes.

The application examples evaluate this record and display the values listed above on the
console.

Additionally, GPIOs 5 and 7 can be configured in such a way that each emits a short pulse at
the time T_IO_Input or T_IO_Output. The sync signal edge arrives at the bus at the beginning
of each send cycle, which means without taking into account a possible reduction ratio value.

Overview of PROFINET IO device software
2.4 Application examples

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

26 Programming and Operating Manual, 10/2020, A5E33638878-AG

The selection of the application example to be compiled for this is made in the
"(...)\pn_ioddevkits\src\application\App_common\usrapp_cfg.h" header file by means of the
following entry:

#define EXAMPL_DEV_CONFIG_VERSION 3 // the number 1..n specifies the selected example

Additional information on this topic is also available in the PROFINET specification /1a/ and
/1b/.

2.4.3 App1: SI-based example for RT and IRT

Area of application
This is the standard application example which can be used for most applications. The SI can
be used for RT and IRT (DK_SW only RT) and has a uniform user interface for both operating
modes. The application need not be concerned with the structure of the IOCR in the data
frame; this is undertaken by the PNIO stack. The management of multiple ARs ("Shared
Device" function) is also independently performed by the stack. The application generally
only has a view of the IO modules, independently of the AR. As a result, it is easy to
implement an application for the SI.

Description of IO data access
IO data access occurs granularly at the submodule level by means of callback functions. The
application initiates cyclic IO data exchange by calling "PNIO_initiate_data_read()" or
"PNIO_initiate_data_write()". The PNIO stack then calls the callback function
"PNIO_cbf_data_read()" for the output data coming from the IO controller of every single
submodule; the callback function "PNIO_cbf_data_write()" is called for each submodule for
the input data of the device. In it, the application must write or read the IO data for precisely
one submodule. Here, the provider status of the output data from the IO controller and the
provider/consumer status of the device input data are passed as transfer parameters or return
values of the callback.

2.4.4 App2: DBAI-based example for RT and IRT

Area of application
This application example will offer possible performance advantages in comparison to the
standard interface (SI), if a very large number of submodules is configured (e.g., with a
proxy). The DBAI can be used for both RT and IRT (DK_SW only RT), and has a uniform user
interface for both operating modes. During data access, the application operates on a single
buffered image of the IOCR, where it directly accesses the IO data and the IOPS/IOCS
provider/consumer status. This means the application establishes the IOCRs itself, but must
for this reason know and manage their structure. The necessary information for this is passed
when a connection is established to the device application in the Connect and the Ownership
indication.

 Overview of PROFINET IO device software
 2.4 Application examples

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 27

Description of IO data access
For each access to an IOCR, the application first calls the "PNIO_dbai_buf_lock" function. It
thereby receives a pointer to a buffered and consistent IOCR. The application then makes
direct read/write access to the submodule IO data contained in the IOCR and to the IOPS/IOCS
(depending on the direction of data transfer: provider IOCR for input data, consumer IOCR for
output data).

After processing, the buffer is released again by calling "PNIO_dbai_buf_unlock()". With a
provider IOCR (which means input data on the device), the new IOCR image is now activated
on the bus.

2.4.5 App3: SI-based example for IRT with a synchronized application

Area of application
This application is very similar to App1 “SI-based example for RT and IRT” but uses different
IO-modules that can be used only in an IRT communication with synchronized application.
That means, in the TIA project T-input and T-output are configured and during startup they
are handed over to the user application with the record index 0x8030. See also section
“Isochronous applications with IRT, T_Input and T_Output evaluation” (Page 25) for more
information.

This example shows also, how to configure GPIOs as a trigger signal with a specified delay to
the moment of NewCycle or execute a software code at that point in time. In that way, GPIOs
can be used for triggering T-input and T-output. Configuring these signals or callback-
functions can be activated in this example by console command ‘W’ and deactivated with ‘w’.

Description of IO data access
Data access itself works in the same way as App1 “SI-based example for RT and IRT”.

2.4.6 App4: XHIF example for communication with external host

Area of application
The application example is the same as App1_Standard, but it is running on the
BeagleBoneBlack (BBB) board instead of the ERTEC 200P board. A proxy/stub software
transfers the user interface from the ERTEC to the BBB, so that the same application interface
functions are accessible on the BBB. Transferring the commands and function parameters
between BBB and the ERTEC system is done with the XHIF interface that uses a memory range
in the SDRAM for the transfer.

On the BBB an RT Linux distribution from Texas Instruments is running, based on Linux kernel
4.19.94.

For this example, the MinimalDesign ERTEC 200P_VAR3 board is necessary, but not the
evaluation board EB200P. The MinimalDesign ERTEC 200P_VAR3 is a reference design, which
contains MinimalDesign ERTEC 200P_VAR2, adapter board and BBB. The VAR2 and VAR3

Overview of PROFINET IO device software
2.5 Miscellaneous services

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

28 Programming and Operating Manual, 10/2020, A5E33638878-AG

boards are not purchasable but they are available as an EAGLE CAD project on the ERTEC
200P kit CD.

Find more information about this example in the file
"(...)\doc\SW\Guideline_EvalKit_ERTEC200P_ V4.7.0.pdf" which is available on the CD
"SIMATIC EK-ERTEC 200P PN IO V4.7.0”.

Description of IO data access
Data access from user application on BBB works in the same way as App1 “SI-based example
for RT and IRT”.

2.5 Miscellaneous services

2.5.1 Dynamic reconfiguration
With dynamic reconfiguration a module or submodule can be added, removed or changed
during a running application relation (AR). The IO data exchange of the not affected modules
and submodules is not disturbed, because the AR does not break down when the
configuration is changed. That means, dynamic reconfiguration provides a bump-free change
of the configuration.

The concept of dynamic reconfiguration works in the following way: While one AR is running,
a second AR with the new configuration is established, that will run in backup mode at first.
Then a switchover from AR1 to AR2 is executed, so that afterwards AR1 will run in backup
mode and AR2 in primary mode. At the end, the backup AR1 is deleted and only AR2 is
running.

Dynamic reconfiguration (DR) can be used in non-redundant and redundant systems. The
following figure shows as an example the concept of dynamic reconfiguration in a non-
redundant environment.

 Overview of PROFINET IO device software
 2.5 Miscellaneous services

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 29

Figure 2-5 Concept of dynamic reconfiguration in a non redundant environment

For more information about dynamic reconfiguration see the PROFINET specification /1a/ and
/1b/.

In the software stack DR can be switched on or off in file

\pn_ioddevkits\src\application\App_common\iod_conf.h.

#define IOD_INCLUDE_DR 1 // 1: enabled 0: disabled

Pulling and plugging of IO modules is simulated by App1_Standard and App4_XHIF:

Figure 2-6 Pull of IO module

Overview of PROFINET IO device software
2.5 Miscellaneous services

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

30 Programming and Operating Manual, 10/2020, A5E33638878-AG

Figure 2-7 Plug of IO module

PCS7 CiR Configuration
• Documentation for PCS 7 V9.0 – Process automation with the SIMATIC PCS 7 CPU 410-5H

controller (https://support.industry.siemens.com/cs/ww/en/view/96839331) chapter
Configuration modifications in operation – CiR/H-CiR

• System Manual – SIMATIC PCS 7 Process Control System CPU 410 Process Automation
(https://support.industry.siemens.com/cs/ww/en/view/109748473) chapter Plant changes
during redundant operation - H-CiR

2.5.2 I&M5 data
While I&M0 data describe the properties of the PROFINET modules and submodules in a
customer’s device, the I&M5 data describe similar information for the used PROFINET
technology platform. The I&M5 data are handled completely inside the PROFINET stack, so it
is “don’t care” for the application. Nevertheless, I&M5 support can be enabled or disabled at
compile level.

In the software stack, I&M5 can be switched on or off in file

\pn_ioddevkits\src\application\App_common\iod_conf.h.

#define IOD_INCLUDE_IM5 1 // 1: enabled 0: disabled

https://support.industry.siemens.com/cs/ww/en/view/96839331
https://support.industry.siemens.com/cs/ww/en/view/109748473

 Overview of PROFINET IO device software
 2.5 Miscellaneous services

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 31

2.5.3 Asset Management Record (AMR)
Asset management is an additional concept to get information about orderable units, which
are not related to the PROFINET device- and address model. AMR can be read by sending an
appropriate data read (read record (index = 0xF880) request to any slot or subslot of the
device. The AMR is assigned to the complete device, but can be read out from every subslot
on the device. It will return always the same AMR data record, which includes all asset
management data of all affected submodules in one record. The structure of the asset
management record is shown in the following table:

Table 2- 1 Structure of the Asset Management Record (AMR)

Structure Element SubElement Example value
 Number of entries 2
AMR Block 1 IM Unique Identifier Random number
 AM Location Format 2 : Slot 1 subslot 1
 IM Annotation “Insert Description here “
 IM Order ID “xxx -yyyy-zzzz”
 AM Software Revision
 AM Hardware Revision
 IM Serial Number “123456789012 “
 IM Software Revision “Vx.y.z”
 AM Device Identification Device SUB ID 0x0000
 Device ID 0x0000
 Vendor ID 0x0000
 Organization 0x0000
 AM Type Identification 0x0000
 IM Hardware Revision 0x0000
AMR Block 2 IM Unique Identifier Random number
 AM Location Format 2 : Slot 2 subslot 1
 IM Annotation “Insert Description here “
 IM Order ID “xxx -yyyy-zzzz”
 AM Software Revision
 AM Hardware Revision
 IM Serial Number “123456789012 “
 IM Software Revision “Vx.y.z”
 AM Device Identification Device SUB ID 0x0000
 Device ID 0x0000
 Vendor ID 0x0000
 Organization 0x0000
 AM Type Identification 0x0000
 IM Hardware Revision 0x0000

The implementation of the AMR, i.e. the handling of the AMR record is done in the
application, based on the service function PNIO_cbf_rec_read(). This service function is
available in all application examples App1 to App4.

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

32 Programming and Operating Manual, 10/2020, A5E33638878-AG

 Software creation for PROFINET IO devices 3

The following subsections describe among other things the directory structure of the
software, the interfaces, and the application examples. The modules in the subdirectories
that are indicated in boldface can be adapted by the user. Those that are not indicated in
boldface should only be changed in exceptional cases.

3.1 Directory structure of the PROFINET IO source code
The allocation of the source code to various subdirectories is geared toward the software
structure of the IO stack for PNIO devices. The following table provides an overview.

Directories Files Description
{Install_Path}
\pn_ioddevkits\src\source\
appl_startup

\src\ main_xx.c Entry point into the PROFINET IO soft-
ware. Start the IO main task, main-
Appl()

{Install_Path}
\pn_ioddevkits\src\ appli-
cation

\ App1_Standard *.c Standard application example for RT
and IRT, uses the standard interface
(SI) for IO data access

 \ App2_DBAI *.c, *.h Direct buffer access (DBAI) applica-
tion example for RT and IRT

 \ App3_IsoAppI *.c Application example for synchro-
nized IRT application (not DK_SW)

 \ App4_XHIF *.c Application example for external
host communication with XHIF be-
tween ERTEC200P_VAR3 board and
external host

 \ App_Common *.c, *.h Common modules, used by the vari-
ous application examples.

{Install_Path}
\pn_run\src\acp

\src\ common\
 inc\

*.h Global and internal header files of the
basic package

\ src\ src\ *.c Source code files of the basic package
{Install_Path}
\pn_run\src\clrpc

\src\ common\
 inc\

*.h Global and internal header files of the
basic package

\src\ src\ *.c Source code files of the basic package
{Install_Path}
\pn_run\src\cm

\src\ common\
 inc\

*.h Global and internal header files of the
basic package

\src\ src\ *.c Source code files of the basic package
{Install_Path}
\pn_run\src\dcp

\src\ common\
 inc\

*.h Global and internal header files of the
basic package

\src\ core\ *.c Source code files of the basic package
{Install_Path}
\pn_run\src\eddp

\src\ common\
 inc\

*.h Global header files of the basic package

\src\ xxx \ *.c Source code and other internal subdi-
rectories of the basic package, here
summarized as \xxx\

 Software creation for PROFINET IO devices
 3.1 Directory structure of the PROFINET IO source code

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 33

{Install_Path}
\pn_ioddevkits\src\source\
eep

\ common\
 inc\

*.h Global and internal header files of the
component

\ src *.c Source code files of the eeprom han-
dling

{Install_Path}
\pn_ioddevkits\src\source\
evma

\ common\
 inc\

*.h Global and internal header files of the
component

\ src *.c event manager
{Install_Path}
\pn_ioddevkits\src\source\
gdma

\ common\
 inc\

*.h Global header files of the component

\ src *.c GDMA controller handling
{Install_Path}
\pn_run\src\gsy

\src\ common\
 inc\

*.h Global and internal header files of the
basic package

\src\ core\ *.c Source code files of the basic package
{Install_Path}
\pn_ioddevkits\src\source\i
om

\ common\
 inc_com \

*.h Global header files of the basic package

\ src\ *.c Source code files of the basic package
{Install_Path}
\pn_run\src\lldp

\src\ common\
 inc_com \

*.h Global and internal header files of the
basic

\src\ src\ *.c Source code files of the basic package
{Install_Path}
\pn_ioddevkits\src\source\l
sa

\ common\ *.h Global LSA header of the basic packag-
es

{Install_Path}
\pn_ioddevkits\src\source\l
sas

\ common\
 inc\

*.h Global header files of the basic package

\ Adapt\ *.c Source code for the system adaptation
(configuration) of the individual basic
packages

\ Adapt_h\ *.h Header files for the system adaptation
(configuration) of the individual basic
packages

\ src\ *.c Source code files of the basic package
{Install_Path}
 \pn_run\src\mrp

\src\ common\
 inc\

*.h Global and internal header files of the
basic package

\src\ src\ *.c Source code files of the basic package
{Install_Path}
 \pn_run\src\nare

\src\ common\
 inc_com \

*.h Global and internal header files of the
basic package

\src\ src\ *.c Source code files of the basic package
{Install_Path}
 \pn_run\src\oha

\src\ common\
 inc\

*.h Global and internal header files of the
basic package

\src\ src\ *.c Source code files of the basic package
{Install_Path}
\pn_ioddevkits\src\source\
pcpnio_lsa

\ inc\ *.h Adaptation of the trace interface for
the (PNIO stack-internal) debugging

{Install_Path}
\pn_ioddevkits\src\source\
Platform

\ EB200p_ecos\
EB200p_posix_ecos\

*.h Header files for the selection of the
platform

{Install_Path}
\pn_ioddevkits\src\source\
pndv

\ common \
inc\

*.h Global and internal header files of the
basic package

\ src *.c Source code files of the basic package
{Install_Path}
 \pn_run\src\pnio

\src\ common\
 inc\

*.h Global and internal header files

\src\ src\ *.c Version entry for software stack of the
evaluation kit

Software creation for PROFINET IO devices
3.1 Directory structure of the PROFINET IO source code

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

34 Programming and Operating Manual, 10/2020, A5E33638878-AG

{Install_Path}
\pn_ioddevkits\src\source\
pnio_api_inc

\ common\ *.h Header files for the PROFINET IO appli-
cation programming interface

{Install_Path}
\pn_ioddevkits\src\source\
pnpb

\ common\
inc\

*.h Global and internal header files of the
basic package

\ src\ *.c Source code files of the basic package
{Install_Path}
 \pn_run\src\pof

\src\ common\
 inc_com \

*.h Global and internal header files of the
basic package

\src\ dmi \ *.c, *.h Source code and internal header files
of the basic package

\src\ edd \ *.c, *.h Source code and internal header files
of the basic package

\src\ prm *.c, *.h Source code and internal header files
of the basic package

\src\ base *.c Source code of the basic package
{Install_Path}
 \pn_run\src\sock

\src\ common\
 inc_com \

*.h Global and internal header files of the
basic package

\src\ src\ *.c Source code files of the basic package
{Install_Path}
 \pn_run\src\sys

\ cfg \ *.h Configuration files for ERTEC, LSAS,
PNDV, TRACE and more

\ inc \ *.h Header files for the basic package
\ src *.c Source code files of the basic package

{Install_Path}
\pn_ioddevkits\src\source
\sysadapt1

\ cfg \ *.c, *.h Modules to be adapted by the user:
abstraction layer for OS and other
platform specific functionality

\ inc \ *.h Global header files for the system ad-
aptation

\ src \ *.c Source code of the system adaptation
that can generally be used without
modification

{Install_Path}
 \pn_run\src\tcpip

\src\ common\
 inc\

*.h Global and internal header files of the
basic package

\src\ src *.c Source code files of the basic package
 \src_

iniche
_core\

allports \ *.c, *.h Source code / header files of the pack-
age

 \src_

iniche
_core\

h\ *.h Header files of the IP protocol

 \src_

iniche
_core\

ip\ *.c, *.h Source code / header files of the IP
protocol

 \src_

iniche
_core\

ipmc \ *.c, *.h Source code / header files of the IPMC
protocol

 \src_

iniche
_core\

misclib\ *.c Source code for the checksum calcula-
tion

 Software creation for PROFINET IO devices
 3.2 Files for the application examples and system

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 35

 \src_

iniche
_core\

net\ *.c, *.h Source code / header files lower layer
adaptation

 \src_

iniche
_core\

snmp\ *.c, *.h Source code / header files of the SNMP
protocol

 \src_

iniche
_core\

snmpv1\ *.c Source code of the SNMP protocol

 \src_

iniche
_core\

tcp\ *.c, *.h Source code / header files of the TCP
protocol

{Install_Path}
\pn_ioddevkits\src\source\t
race_dk

\ inc\ *.h Storage of error messages in a circular
buffer or output to the terminal pro-
gram (connected via the RS232 inter-
face) as a debugging aidHeader files
for trace mechanism.

\ \src *.c, Output of the alarms to the TeraTerm
consoleSource codes for trace mecha-
nism.

{Install_Path}
\pn_ioddevkits\src\source\t
skma

\ common\
 inc\

*.h Global header files of the task manager

\ src\ *.c Source code and internal header files
of the task manager

3.2 Files for the application examples and system

3.2.1 Files for App1_STANDARD

Module Content Description
usriod_main.c Main program for RT

and IRT
Example

Standard application example, main program for RT and IRT.
Startup of the IO stack, main loop with functions initiated by keyboard for
an RT application

iodapi_event.c Signaling of events to
the application

Event handlers for the application examples Standard RT and IRT.
Contains functions that the IO stack calls when events occur such as the
establishment/termination of connections, reception of alarms, etc., and
thereby notifies the application of their occurrence.
Users must implement these functions according to their requirements.

Software creation for PROFINET IO devices
3.2 Files for the application examples and system

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

36 Programming and Operating Manual, 10/2020, A5E33638878-AG

3.2.2 Files for App2_DBAI

Module Content Description
usriod_main_dbai.c Main program for

the DBA example
DBAI application example main program
Start of the IO stack, main loop with functions initiated by keyboard for a
DBA application (Direct Buffer Access)

usriod_main_dbai.h Header file Header file for usriod_main_dbai.c
iodapi_event_dbai.c Signaling of events

to the application
Event handler, only for the application example in usriod_main_dbai.c.

3.2.3 Files for App3_IsoApp

Module Content Description
usriod_main_isoapp.c Main program for

RT and IRT example
Standard application example, the main program for IRT Class 3 with isoch-
ronous IO submodules

iodapi_event_isoapp.c Signaling of events
to the application

Event handler for user examples standard IRT C3 with isochronous IO sub-
modules.

Activate the ERTEC comparators for handling T_Input and T_Output times
according to the data in record index 0x8030. The required configurations
of GPIOs (5, 7) are performed using the "PNIO_IsoActivateGpioObj()" func-
tion in this case.
 Note: Time-controlled interrupts can be enabled using
"PNIO_IsoActivateIsrObj()". You can find an example for this in
"usrio_main_isoapp.c", "W" or "w" key on the console.

3.2.4 Files for App4_XHIF

Module Content Description
usriod_main_xhif.c Main program for

XHIF example
Startup of the IO stack, startup of the XHIF stub

iodapi_event_xhif.c Signaling of events
to the application

Event handlers for App4_XHIF

3.2.5 Files for App_common

Table 3- 1 Files for the application example

Module Content Description
iod_cfg.h Header file Defines for the configuration of the device
iodapi_event.h Header file Header file for iodapi_event.c, may be adopted unchanged.

 Software creation for PROFINET IO devices
 3.2 Files for the application examples and system

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 37

Module Content Description
iodapi_log.c Logging of debug and

error messages
Central signaling of errors and notes to the application, logging for debug
purposes or initiation of error handling routines. The functions are called by
the stack and must be implemented by users according to their require-
ments. Empty functions can also be implemented.

iodapi_rema.c Retentive data Transfer of retentive data (PDEV records) from the PNIO stack to the appli-
cation for the purpose of storing them in non-volatile memory.

Perform_measure.c Measuring the proces-
sor load

Optional performance measurement in the Idle Task (only intended for user
example, not for a real device).

Perform_measure.h Measuring the proces-
sor load

Header file for perform_measure.c

PnUsr_Api.c Subroutines Subroutines for the user example. The functions contained can be used as a
function library in the customer application, if needed.

PnUsr_Api.h Subroutines Header file for PnUsr_Api.c
PnUsr_xhif.c Subroutines Implementation of the PNIO user API stub
PnUsr_xhif.h Subroutines Header file for PnUsr_xhif.c
Tcp_flash_fw.c FW download via TCP Main program for TCP-based services for transferring and flashing a new

firmware.
TCP_IF.c FW download via TCP TCP-based services for the transfer of new firmware.
Tcp_IF.h FW download via TCP Header file for tcp_if.c
usrapp_cfg.h Selection of a user

example
A define is used to select the corresponding user example (RT, IRT Class 3,
DBA Interface).

usriod_cfg.h Configuration of the
example

Defines for the configuration of the device

usriod_diag.c Application program
for diagnostics

Example for the handling of standard channel diagnostics including diag-
nostic alarm.

usriod_diag.h Header file Header file for usriod_diag.c, contains data structure definitions for the
standard channel diagnostics, among other things

usriod_im_func.c optional I&M handling
in application

Template for handling the I&M functions in application. This is optional,
because the default setting is that I&M handling is included completely
inside the PN-stack and we recommend using the default setting here.

usriod_im_func.h optional I&M handling
in application

Header file for usriod_im_func.c

usriod_PE.c PROFIenergy Application example for the handling of a PROFIenergy record
usriod_PE.h PROFIenergy Header file for usriod_PE.c
usriod_AMR.c AMR Application example for then handling of Asset management record
Usriod_AMR.h AMR Header file for usriod_AMR.c
usriod_utils.c Utilities Utilities to measure the system load for debugging purposes
usriod_utils.h Header file Header file for usriod_utils.c

3.2.6 Files for App4_XHIF_Host (BBB)

Module Content Description
iod_cfg.h Header file Defines for the configuration of the device
Iodapi_event.c Signaling of events to

the application
Handling of PNIO callbacks

nv_data.c Nv data storage Non-volatile storage if data are stored in Host
Nv_data.h Header file Header for non-volatile storage

Software creation for PROFINET IO devices
3.2 Files for the application examples and system

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

38 Programming and Operating Manual, 10/2020, A5E33638878-AG

Module Content Description
Pnio_types.h Header file Definition of types
Pnpb_gpio_lib.c PNPB LIB Core Handling of GPIO pins controlling XHIF interface
Pnpb_gpio_lib.h Header file Header for Pnpb_gpio_lib.c
Pnpb_lib_acyc.c PNPB LIB Core Handling of acyclic messages through XHIF interface
Pnpb_lib_acyc.h Header file Header for Pnpb_lib_acyc.h
Pnpb_lib_int.c PNPB LIB Core Handling of cyclic messages through XHIF interface
Pnpb_lib_int.h Header file Header for Pnpb_lib_int.h
Pnpb_lib_main.c PNPB LIB Core Intialization, configuration and startup of memory Interface
Pnpb_lib_mem_int.c PNPB LIB Core Lower function for XHIF memory interface
Pnpb_lib_mem_int.h Header file Header for Pnpb_lib_mem_int.h
Pnpb_lib.h Header file Internal defines for pnpb lib core
Usriod_AMR.c AMR Application example for the handling of Asset management record
Usriod_AMR.h AMR Header file for usriod_AMR.c
Usriod_im_func.c Optional I&M handling

in application
Template for handling the I&M functions in application. This is optional,
because the default setting is that I&M handling is included completely
inside the PN-stack and we recommend using the default setting here.

Usriod_im_func.h Optional I&M handling
in application

Header file for usriod_im_func.c

Usriod_main.c Main program for RT,
IRT Example with XHIF
Interface

Startup of the IO stack, startup of the XHIF interface and main application
loop

Usriod_PE.c PROFIenergy Application example for the handling of a PROFIenergy record
Usriod_PE.h PROFIenergy Header file for usriod_PE.c

3.2.7 Application interface
The header files that define the application interface are stored in the
"(...)\pn_ioddevkits\src\source\pnio_api_inc\common" subdirectory. These files must not be
changed.

Table 3- 2 Header files for the application interface

Module Content Description
pniousrd.h Macros and definitions Contains global structures and definitions for the PROFINET IO application

programming interface.
pniobase.h Macros and definitions Contains data types, constants and function declarations for the IO controller

functionality of the IO application programming interface.
pnioerrx.h Macros and definitions Contains the error codes.
pnio_trace.h Macros and definitions Trace interface (redirection to the LSA trace).
iodapi_rema.h Macros and definitions Contains data types and constants of the REMA interface.

 Software creation for PROFINET IO devices
 3.2 Files for the application examples and system

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 39

3.2.8 Operating system interface modules to be adapted

Table 3- 3 Files for the operating system abstraction interface in "(...)\pn_ioddevkits\src\source\sysadapt1\cfg"

Module Content Description
xxx_os.c OS services Abstraction interface for operating system service calls, where xxx stands for

the platform (for example, eCos). The mapping of PNIO calls to platform-
dependent operating system functions occurs here.

os_cfg.h OS configuration System configurations for PNIO: Definition of system resources for PNIO (e.g.
Mutex).

os_taskprio.h OS configuration System configurations for PNIO: Setting of task priorities
compiler.h Compiler-specific

definitions
Definition of compiler-specific settings

compiler_stdlibs.h Integration of stand-
ard header files

Definition of standard header files to be included

For the ERTEC 200P an additional POSIX interface is included, it can be used optionally
instead of the interface of the operating system. In the POSIX interface the different features
like message handling, thread handling, memory allocation handling etc. are divided up into
different smaller software modules, so this is a little different from native implementation.
The following table describes the POSIX adaptation modules:

Table 3- 4 Files for the optional POSIX operating system abstraction interface in
"(...)\pn_ioddevkits\src\source\sysadapt1\cfg"

Module Content Description
posix_dat.c Internal data interface Internal data interface of POSIX layer
posix_memory.c Memory adaptation Implementation of OsAlloc- and OsFree functions for POSIX
posix_os.c OS interface startup Implementation of OsInit() for POSIX
posix_print.c Message print- and

console input func-
tions

Implementation of print-related functions like PNIO_printf, PNIO_sprintf ...,
also console input functions like OsGetChar(), OsKeyScan32(),

posix_queue.c Message queues Implementation of OS message handling for POSIX adaptation
posix_sync.c Synchronization

mechanisms
Implementation of semaphore- and mutex-handling for POSIX adaptation like
OsEnter, OsExit, OsAllocSemB, OsFreeSemB,…

posix_thread.c Threads Thread handling for POSIX adaptation like OsCreateThread, OsStartThread,..
posix_timer.c Timer Timer handling for POSIX adaptation like OsAllocTimer, OsStartTimer,
posix_utilis.c Miscellaneous data

handling
String handling, copy and compare memory, data conversion big/little endian,
ASCII-integer conversion, ... for POSIX adaptation

3.2.9 Modules of the BSP interface

Table 3- 5 Example files for adaptation to the board support package in "(...)\pn_ioddevkits\src\source\sysadapt1\cfg"

Module Content Description
xx_bspadapt.c BSP adaptation Interface from the IO stack to the platform
xx_ledadapt.c Flash LED User-specific implementation of a flash LED that can be started from the

engineering system via DCP services.

Software creation for PROFINET IO devices
3.2 Files for the application examples and system

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

40 Programming and Operating Manual, 10/2020, A5E33638878-AG

3.2.10 Storage of retentive data

Table 3- 6 Files for the adaptation to retentive data in "(...)\pn_ioddevkits\src\source\sysadapt1\cfg"

Module Content Description
xx_flash.c Read/write NOR flash Interface with basic functions for writing, reading and erasing of the

flash memory. The functions are only used in the example application
and system adaptation and not in the stack itself.

xx_fw_update.c Firmware update via
TCP/IP

Functions for the firmware update via TCP/IP (for ERTEC-based kits).
These are not used in the DK_SW, because platform manufacturers usual-
ly provide a solution themselves.

xx_nv_data.c Storage of retentive
data

Interface for structuring and storing non-volatile data such as device
name, IP suite, REMA data. The basic functions in xx_flash.c are used to
store the data itself.

xx_flash.h Storage of retentive
data

Header files with function declarations for handling of the flash. Changes
are usually not necessary.

xx_bsp_spi_flash.c Read/write SPI flash Interface with basic functions for writing, reading and erasing of the SPI
flash memory (specified Adesto and Winbond flashes, for more infor-
mation see the document "(...)\doc\SW\Guideline_EvalKit_ERTEC200P_
V4.7.0.pdf" which is available on the software package "SIMATIC EK-
ERTEC 200P PN IO V4.7.0"). The functions are only used in the example
application and system adaptation and not in the stack itself.

xx_bsp_spi.c Basic SPI functions Basic SPI functions, to handle the SPI flash memory (see above)

3.2.11 Files for system adaptation

Table 3- 7 Other files for system adaptation in pn_ioddevkits\src\source\sysadapt1\cfg

Module Content Description
hamaport.c GPIO settings Functions for configuring the GPIOs. Changes are usually not necessary.
xx_os_debug.c Optional tools Advanced information about the used resources of the operating system

(tasks, memory, etc.). Can only be implemented for the eCos platform.
The functions are optional and are only used in the example application,
not in the stack itself.

Os_utils.c, Os_utils.h Optional tools Optional tools to manage a circular buffer, which can be used for debug-
ging purposes. The functions are optional and are not used in the stack
itself.

 Software creation for PROFINET IO devices
 3.3 Important constraints for integrating an application

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 41

3.3 Important constraints for integrating an application
When integrating the PROFINET IO stack into a customer application, the following
constraints have to be observed:

1. In a "PNIO_cbf_xxxx()" callback function, the application code to be performed should be as
short as possible, because all callback events arriving from the CM are sequenced in a
message queue, and the application code is called in the context of a PNPB interface task.
This means a callback function cannot be called until the preceding callback function has
finished.

2. No "PNIO_xxxx()" API functions should be called in a "PNIO_cbf_xxxx()" callback function.
Permitted exceptions are "PNIO_rec_set_rsp_async()", "PNIO_get_last_error()", "PNIO_printf
(debugging)" and plug/pull submodules in the context of the ownership indication.

3. Each user task from the context of which PROFINET IO service functions "PNIO_xxxx()" are
called, must be created by "OsCreateThread()" and be started with "OsStartThread()". A
message queue is thereby automatically assigned to the thread, which is used for (and
exclusively reserved for) communication with the stack.

4. Task priorities of the PROFINET IO stack are specified in "os_taskprio.h". Platform-dependent
changes are necessary here. However, the priority hierarchy among the PROFINET IO tasks
may not be changed. Application tasks should be lower than the stack priorities, if possible.
 With higher priority application tasks, it must be noted that the runtime performance of
the stack can be influenced negatively.

3.4 Porting the PROFINET IO software to another platform
For an ERTEC-based platform, porting to other operating systems is usually not necessary. We
recommend using the eCos operating system platform that is already adapted, if possible.
 Porting is a typical use case for standard Ethernet controller-based platforms. The following
section deals with adapting the PROFINET IO software to platforms of any kind. The
application itself is not considered here, because it must be replaced in any case by a
customer application (based on the application example). Depending on the component
being replaced, different changes must be made in the software.
 Basically, the following variants can be considered here:

• Replacement of the evaluation board with customer hardware based on the same
microcontroller and the same operating system (simplest case) (see section 3.4.1
(Page 41))

• Use of other compilers (see section 3.4.2 (Page 42))

• Use of other operating systems (see section 3.4.3 (Page 43))

3.4.1 Porting to customer hardware with the same microcontroller and the same
OS

To port the software to your own hardware platform without changing the operating system,
you must adapt the board support package (BSP) to your hardware. Other changes to the OS
adaption, BSP adaption or the example application (see Figure 2-2 (Page 16)) are usually not
necessary.

Software creation for PROFINET IO devices
3.4 Porting the PROFINET IO software to another platform

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

42 Programming and Operating Manual, 10/2020, A5E33638878-AG

3.4.2 Use of other compilers/linkers
The configuration of the compiler is done in the "auto_platform_select.h" file. A separate
copy of this file exists in the "(...)\pn_ioddevkits\src\source\Platform" subdirectory for each
platform. Only one "auto_platform_select.h" is included at a time by selecting the Include
path. The auto_platform_select.h file is included in compiler.h.

3.4.2.1 Tool chain selection
As of development kit version 4.1, the selection of the platform is centrally mapped to
a Define:

#define PNIOD_PLATFORM_xxxxx

wherebywhere xxxxx corresponds to the platform. The values for the defines are defined in
the form of a bitmask, where each bit represents exactly one platform. This makes it possible
to easily form parent defines, for example, for platforms with similar properties (example:
platforms which all use the same operating system or the same compiler). Source code is
made visible or hidden with:

#if (PNIOD_PLATFORM & PNIOD_PLATFORM_xxxxxxxxxxx)

 ….

#endif

The definition is made in the auto_platform_select.h file.

3.4.2.2 Big Endian / Little Endian

 Note

In the current version of the development kit, only the little endian platform is officially
tested and released

The definition is also made in the compiler.h file.

#define PNIO_BIG_ENDIAN 0 // Little Endian, e. g. ERTEC platform
#define PNIO_BIG_ENDIAN 1 // Big Endian

3.4.2.3 Data alignment requirements
The definition of the data alignment is often handled differently in different compilers. Some
compilers use a #pragmapack() or #pragma unpack() instruction, whereby all definitions
between two instructions are packed accordingly.

 Software creation for PROFINET IO devices
 3.4 Porting the PROFINET IO software to another platform

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 43

Other compilers expect a corresponding definition for each data structure that is located
before or after the actual definition (depending again on the compiler).
 For all three cases mentioned, the following mechanisms have been implemented in the PN
stack:

• #include "sys_pckx.h", #include "sys_unpck.h"

• #define ATTR_PNIO_PACKED_PRE

• #define ATTR_PNIO_PACKED

Select just one of these options depending on the compiler. The other two should be
implemented as an empty macro or empty header file. The ATTR_PNIO_PACKED or
ATTR_PNIO_PACKED_PRE macros are implemented in the
"(...)\pn_ioddevkits\src\source\sysadapt1\cfg\compiler.h" file; the #pragma pack/unpack
instructions, on the other hand, are implemented in the file
"(...)\pn_ioddevkits\src\source\sysadapt1\inc\sys_pckx.h" or "sys_unpck.h".

3.4.2.4 Data processing capacity
The software has only been ported for 32-bit microcontrollers. All data and address pointers
are also 32 bits in length.

3.4.2.5 Memory management
For the IO stack, there are no particular specifications for memory management. This means
the IO stack can be located as desired, taking into account the alignment and memory
management requirements of the hardware. Because some LSA layers require an 8-byte
alignment, an 8-byte alignment was implemented for "OsAllocX" and "OsFreeX" in the
example system adaptation. This requirement is thereby met even for operating systems
which themselves do not support this requirement.

For dynamic memory management, various memory pools can in principle be defined in the
system adaptation in "os.h"; these are referenced in the software when memory is allocated.
This mechanism is currently not used in the example portings, only the following pool has
been defined:

#define MEMPOOL_DEFAULT 0 // may be cached

3.4.3 Use of other operating systems
The task priorities of the PROFINET IO tasks can be set in "os_taskprio.h". In so doing, the
sequence of ascending priorities must not be changed. It must be noted that in some
operating systems the lowest numeric value (priority = 0) represents the highest priority,
while in others the reverse applies.

Software creation for PROFINET IO devices
3.5 Typical sequence of an IO device user program

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

44 Programming and Operating Manual, 10/2020, A5E33638878-AG

The file "xx_OS.C" contains an operating system abstraction interface, which the user must
adapt to the particular operating system. The functions of the operating system interface are
described in detail in section Interface to the operating system (Page 106).

 Note

If your operating systems include a POSIX-API, we recommend using that one.

The ERTEC 200P kit already includes an adaptation to the POSIX interface, so it can be
migrated with less effort to the POSIX-API of another OS.

3.5 Typical sequence of an IO device user program

Overview
The typical sequence of an IO device user program is divided into 3 phases:

• Initialization phase

• Productive operation

• Completion phase

IO data access:

• "Normal" IO data access in the RT or IRT mode (RT_CLASS3)

• IO data access from an isochronous application, only in IRT mode (RT_CLASS3)

Refer to the detailed information below.

3.5.1 Initialization phase

Description
The initialization phase is subdivided into several steps. Here, a distinction must be made
between function calls that are made by the IO device user program and callback calls that
are made by the IO interface.

Table 3- 8 API functions to be called during the startup phase

Step Action Objective
System startup
0 System starts up and calls its main()

function
Here, the first user task (usually the main() function) is called at the
end of the system procedure from within the operating system.

1 PNIO_init() "PNIO_init" initializes the OS interface, among other things, and
must therefore be called once before all other PNIO functions.

 Software creation for PROFINET IO devices
 3.5 Typical sequence of an IO device user program

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 45

Step Action Objective
2 OsCreateThread(MainAppl)

OsCreateMsgQueue
OsStartThread

With "OsCreateThread" the first PNIO user task, "MainAppl()", is
started; it needs an OS message queue to communicate with the
PNIO stack.
Note:
All additional PNIO API calls must be made from "MainAppl()" or
from another task that has also been created by "OsCre-
ateThread()".

PROFINET stack startup
3 PNIO_setup() Required defaults for the PNIO stack
4 PNIO_PDEV_setup Function call: Application > IO Stack, synchronous
Creating instances for devices, APIs, modules, submodules
5 PNIO_device_open() Startup of the PNIO stack, startup of all PNIO tasks and allocation of

resources, creation of a device instance
6 PNIO_sub_plug_list() Insertion of the PROFINET IO submodules of the IO device accord-

ing to a prescribed list.
Note:
All submodules for the PDEV and the DAP must be included in this
list.
IO submodules, on the other hand, can either be included in this
list or later in list form (with PNIO_sub_plug_list) or plugged in later
individually (with PNIO_sub_plug).

7 PNIO_set_dev_state() Set device into OPERATE mode
Wait for establishment of connection by the IO controller
8 Wait for a call of the

PNIO_cbf_ar_connect_ind() callback
function.

This callback is called by the IO interface as soon as an IO controller
has established a connection to the IO device user program.
When this callback is invoked, application relation global parame-
ters are transferred to the IO device user program to provide infor-
mation.

9 Wait for a call of the PNIO_cbf_ar_
ownership_ind() callback function.

The Ownership indication is called after the Connect indication
disappears. Here, the application is passed a list of all submodules
as well as their properties (slot, module/submodule ID, OwnerSes-
sionKey, etc.). The OwnerSessionKey is set to 0 in this callback
function only, if the application declines the ownership of a sub-
slot, and thus does not want to process the submodule. Otherwise,
the OwnerSessionKey (typically) remains unchanged. If an incor-
rect, incompatible submodule is plugged, the application must set
the IsWrongSubmod parameter to PNIO_TRUE.

Parameter assignment of the submodules
10 React to a call of the

PNIO_cbf_rec_write() callback function.
This callback is invoked from the IO interface when an IO controller
transfers a parameter assignment record for a submodule.
When this callback is called, any parameter assignment data for
each submodule is transferred to the IO device user program.

11 Wait for a call of the
PNIO_cbf_param_end_ind() callback
function.

This callback is called by the IO interface of each configured sub-
module as soon as an IO controller signals the end of the parame-
ter assignment phase. In the return value, the application reports
on whether the module is working correctly. The last of all
PNIO_cbf_param_end_ind () calls is signaled using the MoreFollows
= PNIO_FALSE parameter.

12 Wait for a call of the
PNIO_cbf_ready_for_input_update()
callback function.

In this PNIO_cbf_param_ end_ind() function, a one-time data ex-
change must be initiated using PNIO_initiate_data_write() and
PNIO_initiate_data_read() (or similarly via the DBA interface). Refer
to the description of the PNIO_cbf_ready_for_input_update() func-
tion for details.

Software creation for PROFINET IO devices
3.5 Typical sequence of an IO device user program

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

46 Programming and Operating Manual, 10/2020, A5E33638878-AG

Step Action Objective
13 PNIO_initiate_data_write() With this call, the user program initiates a call of the

"PNIO_CBF_DATA_WRITE()" callback so that the IO device user pro-
gram can initialize the input data of the functional submodules and
set the local status values to "GOOD". The local status values must
be set to "BAD" for all non-functional submodules.
Note:
The PROFINET IO standard requires that the output data for all
functional submodules are set to valid values, and that the local
provider status for each one is set to "GOOD" before sending the
ApplicationReady signal. This is achieved by a one-time call of
PNIO_initiate_data_write in the PNIO_cbf_param_end_ind function
(see above)

14 PNIO_initiate_data_read() With this call, the user program initiates a call of the
"PNIO_CBF_DATA_READ()" callback so it can set the local status
values to "GOOD" for all output data of the functional submodules.
The local status values must be set to "BAD" for all non-functional
submodules.
Note:
The PROFINET IO standard requires that the local consumer status
values be set to "GOOD" for all functional submodules before send-
ing the ApplicationReady signal.

15 Wait for a call of the PNIO_cbf_ar_
indata_ind() callback function

This callback is called by the IO interface as soon as an IO controller
has transferred IO data for the first time.
Signaling the start of cyclic data exchange

3.5.2 Productive operation

Overview
During productive operation, data is exchanged with the IO controller. This means:

• Reading/writing IO data (see also sections 4.1.9 (Page 81) and 4.1.10 (Page 83),
respectively)

• Processing a read/write record request from the PNIO controller (see also section 4.1.8
(Page 76))

• Sending alarms to PNIO controllers and receiving their acknowledgments (see also
sections 4.1.6 (Page 73) and 4.1.7 (Page 75))

• Callback events during the establishment/termination of connections at the IO device (see
also section 3.11 (Page 57))

Details of the data traffic are explained below.

 Software creation for PROFINET IO devices
 3.5 Typical sequence of an IO device user program

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 47

Reading RT and IRT IO data
IO data (output data from the perspective of the PNIO controller) are read in three steps:

Table 3- 9 API functions to be called for reading RT and IRT IO data

Step Action Objective
1 Wait for the

PNIO_CP_CBE_TRANS_END_IND event
User program which stops sending the input data on the Ethernet.
The associated callback function (here
PNIO_cbf_trigger_io_exchange) is registered once by the applica-
tion using "PNIO_CP_cbf_register_cbf".
Note: Alternatively, the IO data exchange with the application can
be performed asynchronously with RT and IRT, i.e. without syn-
chronization by means of the TRANS_END event

2 PNIO_initiate_data_read() Signals read request to the IO interface. This causes the IO inter-
face to perform Step 3. This call returns only after all submodules
have been processed in Step 3.

3 PNIO_cbf_data_read() The IO interface calls this callback function for each submodule
with output data and thereby transfers information such as the
pointer to a data buffer containing the output data received from
the IO controller.

4 PNIO_cbf_data_read_IOxS_only() Function call: IO stack > Application, synchronous

Writing RT and IRT IO data
IO data (input data from the perspective of the PNIO controller) are written in three steps:

Table 3- 10 API functions to be called for writing RT and IRT IO data

Step Action Objective
1 Wait for the

PNIO_CP_CBE_TRANS_END_IND event
With this event, the IO interface signals to the device application
program the end of IO data transfer on the Ethernet. The associ-
ated callback function is registered once by the application by
means of "PNIO_CP_cbf_register_cbf".
Note: Alternatively, the IO data exchange with the application can
be performed asynchronously with RT and IRT, i.e. without syn-
chronization by means of the TRANS_END event

2 PNIO_initiate_data_write() Signals a write request to the IO interface. This causes the IO
interface to perform Step 3. This call returns only after all sub-
modules have been processed in Step 3.

3 PNIO_cbf_data_write() The IO interface calls this callback function for each submodule
with input data and thereby transfers information such as the
pointer to a data buffer to which the input data for the controller
should be copied.

4 PNIO_cbf_data_write_IOxS_only() Function call: IO stack > Application, synchronous

Processing a read/write record request from the PNIO controller
Processing a read record request
As soon as the IO interface receives a read record request from the IO controller, it invokes
the callback function PNIO_cbf_rec_read(). The application can either provide the record data
inside the callback function or can deliver it asynchronously at a later point in time.

• Synchronous reading of record data:

Software creation for PROFINET IO devices
3.5 Typical sequence of an IO device user program

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

48 Programming and Operating Manual, 10/2020, A5E33638878-AG

Table 3- 11 API functions to be called for synchronous reading of record data

Step Action Objective
1 PNIO_cbf_rec_read() Read record request to the application. The application provides

the data inside the callback function. After returning from the
callback function, the request is completed from the application
point of view.

• Asynchronous reading of record data:

Table 3- 12 API functions to be called for asynchronous reading of record data

Step Action Objective
1 PNIO_cbf_rec_read() Read record request from the stack to the application. The

application would like to provide the data asynchronously.
2 PNIO_rec_set_rsp_async() The application notifies the stack that the response will

occur asynchronously. "PNIO_rec_set_rsp_async" must be
called inside the callback function.

3 PNIO_rec_read_rsp() The application asynchronously transfers the requested
record data to the stack. "PNIO_rec_read_rsp" can be called
from any user task.

Processing a write record request
As soon as the IO interface receives a write record request from the IO controller, it invokes
the callback function "PNIO_cbf_rec_write()". The application can signal to the stack of the
completion of the write process synchronously when exiting the callback function or
asynchronously at a later time.

• Synchronous writing of record data:

Table 3- 13 API functions to be called for synchronous writing of record data

Step Action Objective
1 PNIO_cbf_rec_write() Write record request to the application. The application

processes the data inside the callback function. After re-
turning from the callback function, the request is complet-
ed from the application point of view.

• Asynchronous writing of record data:

Table 3- 14 API functions to be called for asynchronous writing of record data

Step Action Objective
1 PNIO_cbf_rec_write() Write record request from the stack to the application. The

application would like to provide the response asynchro-
nously.

2 PNIO_rec_set_rsp_async() The application notifies the stack that the response will
occur asynchronously. "PNIO_rec_set_rsp_async" must be
called inside the callback function.

3 PNIO_rec_write_rsp() The application asynchronously signals to the stack about
the completion of the request and includes status infor-
mation. "PNIO_rec_write_rsp" can be called from any user
task.

 Software creation for PROFINET IO devices
 3.5 Typical sequence of an IO device user program

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 49

Sending alarms and receiving their alarm acknowledgments
Each time an alarm is sent, the IO device user program receives an alarm acknowledgment;
this occurs when the IO interface calls the "PNIO_cbf_async_req_done()" function. The
assignment of an acknowledgment to a given alarm is made with the type of alarm and the
fault location "AR number/API/Slot/Subslot."

 Note

Alarms can only be sent by the IO device user program when the PNIO_cbf_param_end()
function is completed.

Callback events during the establishment/termination of connections at the IO device
When a connection is established, information is made available by the IO interface by means
of a callback.

The table below lists the “flagged information” and the associated callback names.

Table 3- 15 API callback functions for establishing/terminating a connection

Callback name Flagged information
PNIO_cbf_ar_connect_ind Connection establishment request from the IO controller
PNIO_cbf_ar_ownership_ind Specified configuration of the PNIO device, RT Class (RT Class 1/3)

and other submodule properties
PNIO_cbf_rec_write_ind Write a parameter record for a subslot
PNIO_cbf_param_end_ind End of parameter assignment by PNIO controller
PNIO_cbf_indata_ind Following the connection establishment, the valid output data from

the PNIO controller is received for the first time.
PNIO_cbf_disconn_ind DisconnectEvent – Close connection
PNIO_cbf_report_ARFSU_record Notifies to device, if ARUUID has been changed/parameterization

has been changed in engineering

 Note

All these callbacks are called by the PROFINET library, generally in response to PROFINET IO
controller actions.

3.5.3 Completion phase
(The shutdown of the PROFINET IO stack is currently not implemented.)

Software creation for PROFINET IO devices
3.6 Basic data traffic in the IO device user interface

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

50 Programming and Operating Manual, 10/2020, A5E33638878-AG

3.6 Basic data traffic in the IO device user interface

Description
The IO device functions have two basic mechanisms for data traffic:

Cyclic IO data traffic:

• Writing IO data

• Reading IO data

The IO data traffic is also accompanied by status information. This particular feature is
described in the following section.

Acyclic data traffic:

• Reading and writing records

• Sending alarms and receiving their acknowledgements

Additional information on this topic can be found in section Callback mechanism (Page 57).

3.7 Cyclic IO data traffic of the IO device user interface

Basic mode of operation
When IO data are written or read by the IO device user program, only the local process image
on the device is written or read; in doing so, no data are sent over the network.

Data traffic between the local process image and the IO controller is independently and
cyclically processed by the underlying stack functions or the by the hardware. The details of
this data traffic are specified in the configuration.

 Note

The IO device user program is not required to read or write IO data in every bus cycle.

 Note

The IO device user program is not required to access the process image more often than the
configured cycle.

 Note

The data of a submodule are always transferred consistently. According to the PROFINET IO
standard, a PROFINET device (controller and device) must be able to consistently transfer at
least 254 bytes. This should be taken into consideration in conjunction with a PROFINET IO
controller.

 Software creation for PROFINET IO devices
 3.7 Cyclic IO data traffic of the IO device user interface

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 51

IO data and data status
The quality of the IO data is described by the data status, which can take the values "GOOD"
or "BAD".

Two data states are exchanged with every read or write:

• Local status (status of your IO device user program)

• Remote status (status of the communication partner)

3.7.1 Cyclic writing with status

Sequence of the write operation to the process image
The IO device user program initiates the write operation by calling the
"PNIO_initiate_data_write()" function. The IO interface then calls the "PNIO_cbf_data_write"
callback for each submodule that has been placed in service by the IO controller. The input
data and the associated local provider status of this data are written into the local process
image in this function.

Local status
Normally, the IO device user program sets the local provider status of the input data to
"GOOD".

If the input data is corrupt or invalid, the IO device user program must set the local provider
status to "BAD".
The communication partner could then, for example, output configured substitute values.

Remote status of the communication partner
The communication partner uses the "remote consumer status" to signal whether it was able
to process the input data ("good"), or whether a fault is present in the communication
partner.

When using the standard interface (IO data exchange initiated by "PNIO_initiate_data_read"
and "PNIO_initiate_data_write"), this information is not transmitted to the application
because it is usually not needed there. The remote consumer status of the input data can be
read from the IOCR data with the DBA interface.

Software creation for PROFINET IO devices
3.7 Cyclic IO data traffic of the IO device user interface

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

52 Programming and Operating Manual, 10/2020, A5E33638878-AG

3.7.2 Cyclic reading with status

Sequence of the "PNIO_cbf_data_read()" function
The IO device user program initiates the read operation by calling the
"PNIO_initiate_data_read()" function. Then the IO interface calls the "PNIO__cbf_data_read()"
callback function for each submodule with output data that has been placed in service by the
IO controller. With the call of the callback function, the output data and the associated
remote provider status of the communication partner is read from the local process image
(stack-internal) and transferred to the application.
In addition, the communication partner writes the local consumer status for these output
data to the local process image.
Two states are thus involved in cyclic read operations:

Table 3- 16 Function "PNIO_cbf_data_read()": Status

Communication direction Values
From the communication partner • Output data

• Remote provider status

To the communication partner Local consumer status

Remote status of the communication partner
The communication partner uses the remote provider status to signal the quality of the
output data ("GOOD" or "BAD").

If the communication partner reports the provider status "BAD", IO data in the IO device user
program cannot be further processed; the IO device user program could then, for example,
output substitute values.

Local status
Normally, the IO device user program sets the local consumer status to "GOOD".

However, if the IO device user program cannot continue processing the supplied output data,
the local status must be set to "BAD". As soon as the communication partner receives this
status, it can determine whether the output data it sent was able to be processed further.

3.7.3 Cyclic data communication using the optional DBA interface
The IO data can also be exchanged by using an optional DBA (Direct Buffer Access) interface.
The application gains direct access to the IOCR and can directly write/read IO data and the
IOxS to/from the individual submodules. This functionality provides performance advantages
when there are a large number of submodules, because it is not necessary to execute a
callback for every submodule. For more information, refer to section Cyclic data exchange by
means of the optional DBA interface (Page 83).

The DBA interface can be used in all RT classes (RT, IRT).

 Software creation for PROFINET IO devices
 3.8 IO data exchange for IRT class 3

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 53

3.8 IO data exchange for IRT class 3
The user interface is the same for RT and IRT. In both cases, the IO data exchange can be
synchronized at startup by the registered callback function for the TRANS_END event (here
PNIO_cbf_trigger_io_exchange).

3.9 Managing diagnostic data

Description
Diagnostics can be reported in the following ways with PROFINET IO:

• Standard channel diagnostics

• Extended channel diagnostics

• Manufacturer-specific diagnostics

The PROFINET stack automatically sends an entry "Diagnostic alarm - incoming" to the
PROFINET IO controller when a new diagnostic entry is received. When the diagnostic entry is
cleared, the corresponding "Diagnostic alarm - outgoing" is sent.

 Note

Read the current diagnostic guidelines issued by the PROFIBUS/PROFINET User Organization
and available for download from their website. This document
("PNIO_Diagnosis_7142_V15_Feb20.pdf") is also available in the subdirectory "(...)\doc\PNO
documents".

3.9.1 Channel diagnostic data
In PROFINET IO , a submodule can consist of several channels. Multiple “channel diagnostic
data" can exist for each channel. The IO device user program can create them in the
submodule using the "PNIO_diag_channel_add()" function.

If "channel diagnostic data" is no longer valid, the IO device user program must clear the
diagnostic entry from the submodule using the "PNIO_diag_channel_remove()" function.

The following functions are available for managing diagnostic data:

Table 3- 17 API functions to be called for the creation of a diagnostic record

Function Objective
PNIO_diag_channel_add() Stores the channel diagnostic data in the subslot
PNIO_diag_channel_remove() Removes the channel diagnostic data from the

subslot

Software creation for PROFINET IO devices
3.9 Managing diagnostic data

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

54 Programming and Operating Manual, 10/2020, A5E33638878-AG

Function Objective
PNIO_ext_diag_channel_add() Stores the extended channel diagnostic data in

the subslot
PNIO_ext_diag_channel_remove() Removes the extended channel diagnostic data

from the subslot

Setting channel diagnostic data
Channel diagnostic data is set in two steps:

Table 3- 18 API functions to be called for the activation of a created diagnostic record

Step Action Objective
1 PNIO_diag_channel_add() Stores the channel diagnostic data in the

submodule. The stack automatically gener-
ates a "Diagnostic alarm - incoming" for the
IO controller.

2 PNIO_cbf_async_req_done() "Diagnostic alarm - incoming" - evaluate
acknowledgment.

Clearing channel diagnostic data
Channel diagnostic data is cleared in two steps:

Table 3- 19 API functions to be called for the removal of a diagnostic record

Step Action Objective
1 PNIO_diag_channel_remove() Clears the channel diagnostic data from the

submodule. The stack automatically gener-
ates a "Diagnostic alarm - outgoing" for the
IO controller.

2 PNIO_cbf_async_req_done() "Diagnostic alarm - outgoing" - evaluate
acknowledgment.

3.9.2 Manufacturer-specified diagnostic data
"Manufacturer-specific diagnostic data" offers the IO device user program the option of
storing its own manufacturer-specific diagnostic data for a submodule. There is no structure
definition within the "manufacturer-specific diagnostic data". (see References (Page 132) /5/)

 Note

It is strongly recommended to use the standard or extended diagnostics rather than the
manufacturer-specific diagnostics.

 Software creation for PROFINET IO devices
 3.9 Managing diagnostic data

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 55

The following functions are available for managing this diagnostic data:

Table 3- 20 API functions to be called for the creation of a generic diagnostic record

Function Objective
PNIO_diag_generic_add() Stores the manufacturer-specific diagnostic data

in the subslot. The stack automatically generates
a "Generic alarm - incoming" for the IO controller.

PNIO_diag_generic_remove() Removes the manufacturer-specific diagnostic
data from the subslot. The stack automatically
generates a "Generic alarm - outgoing" for the IO
controller.

Setting manufacturer-specific diagnostic data
Manufacturer-specific diagnostic data is set in two steps:

Table 3- 21 API functions to be called for the activation of a generic diagnostic record

Step Action Objective
1 PNIO_diag_generic_add() Stores the manufacturer-specific diagnostic

data in the subslot. The stack automatically
generates a "Generic alarm - incoming" for
the IO controller.

2 PNIO_cbf_ async_req_done() Generic alarm- incoming - evaluate ac-
knowledgment.

Clearing manufacturer-specific diagnostic data
Manufacturer-specific diagnostic data is cleared in two steps:

Table 3- 22 API functions to be called for the removal of a generic diagnostic record

Step Action Objective
1 PNIO_diag_generic_remove() Removes the manufacturer-specific diag-

nostic data from the submodule. The stack
automatically generates a "Generic alarm -
outgoing" for the IO controller.

2 PNIO_cbf_ async_req_done() Generic alarm - outgoing - evaluate ac-
knowledgment.

Software creation for PROFINET IO devices
3.10 Special features when inserting and removing modules during productive operation

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

56 Programming and Operating Manual, 10/2020, A5E33638878-AG

3.10 Special features when inserting and removing modules during
productive operation

Alarm for pulling submodules
The PROFINET stack generates a PROFINET IO pull alarm as soon as the IO device user
program pulls a module or a submodule with the following functions:

• PNIO_sub_pull()

Alarm for plugging submodules
The IO interface generates a PROFINET IO plug alarm as soon as the IO device user program
plugs in a module or a submodule with the following functions:

• PNIO_sub_plug()

 Note

Modules may not be plugged or pulled during the time between the conclusion of
"PNIO_cbf_ar_ownership_ind" and the conclusion of the "PNIO_cbf_param_end_ind"
function.

Reassignment of parameters after plugging
The IO controller reassigns parameters for the associated submodule after each
"PNIO_sub_plug()". This means that the PNIO stack calls the "PNIO_cbf_rec_write()" function
for each parameter assignment record transferred by the IO controller.

The IO interface signals the end of parameter assignment by calling the
"PNIO_cbf_param_end()" function.

After parameter assignment, the IO device user program determines whether the inserted
submodule is functional with the transferred parameter assignment.

• If "YES", the IO device user program must set the input data to be sent and the local status
for the inputs and outputs of this submodule to "GOOD". After this, the IO device user
program must close the "PNIO_cbf_param_end()" function with Return
(PNIO_SUBMOD_STATE_RUN).

• If "NO", the IO device user program must set the local status for the inputs and outputs of
this submodule to "BAD" and then close the "PNIO_cbf_param_end()" function with Return
(PNIO_SUBMOD_STATE_STOP). If the module can provide valid data for the running AR at
a later point, the status must be set to "GOOD" and a return-of-submodule alarm triggered
(see next section).

 Software creation for PROFINET IO devices
 3.11 Callback mechanism

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 57

3.10.1 Special features with "Return of submodule"

Description
When a fault occurs in an inserted submodule, the IO device user program must leave the
local status for the inputs and outputs as "BAD". As a result, the input and output data are no
longer valid for the user program on the assigned IO controller.

If the submodule is functional again, the IO device user program must set the local status for
the inputs and outputs to "GOOD". Then the IO device user program must signal the
transition from "BAD" to "GOOD" to the IO controller by calling the
"PNIO_ret_of_sub_alarm_send()" function. The IO controller does not reassign parameters for
the submodule due to the "Return of submodule" alarm.

The submodule is thus functional again.

3.11 Callback mechanism

Operating principle
Callback functions are specified by the PNPB component of the PNIO stack.

A callback event is an asynchronous event that is started by the PNIO stack. It interrupts the
flow of the user program, and starts the callback function in a separate thread.
Synchronization techniques are therefore required.

Callback functions in the IO device
The table below shows the callback events and callback event types in the IO device. It also
shows how you can register a callback function and how a callback event is triggered.

Table 3- 23 Overview of the callback functions in the IO device

Callback event
(asynchronous)

Callback event type Triggered by ...

Reading data PNIO_cbf_data_read User program by calling
PNIO_initiate_data_read

Writing data PNIO_cbf_data_write User program by calling
 PNIO_initiate_data_write

Reading a record PNIO_cbf_rec_read IO controller
Writing a record PNIO_cbf_rec_write IO controller
Acknowledgment for an alarm
send request

PNIO_cbf_async_req_done User program by calling:
• PNIO_process_alarm_send
• PNIO_diag_channel_add
• PNIO_ext_diag_channel_add
• PNIO_ret_of_sub_alarm_send
• PNIO_upload_retrieval_alarm_send

Software creation for PROFINET IO devices
3.11 Callback mechanism

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

58 Programming and Operating Manual, 10/2020, A5E33638878-AG

Callback event
(asynchronous)

Callback event type Triggered by ...

Alarm from IO controller to
device

PNIO_cbf_dev_alarm_ind Alarms from IO controller to the device
(reserved, currently not implemented)

Comparison of the specified
configuration

PNIO_cbf_check_ind Alarms from IO controller to the device
(currently not implemented)

Connection establishment step
1

PNIO_cbf_ar_connect_ind PNPB

Connection establishment step
2

PNIO_cbf_ar_ownership_ind PNPB

Connection termination PNIO_cbf_ar_disconn_ind PNPB
Parameter assignment phase
completed

PNIO_cbf_param_end_ind PNPB

Initial reading of output data
from the controller

PNIO_cbf_ready_for_input_update_ind PNPB

Start LED flashing PNIO_cbf_start_led_blink PNPB
Stop LED flashing PNIO_cbf_stop_led_blink PNPB
Save new IP suite retentively PNIO_cbf_save_ip_addr PNPB
Report IP suite change to ap-
plication

PNIO_cbf_report_new_ip_addr PNPB

Report change of FSU parame-
ters

PNIO_cbf_report_ARFSU_record PNPB

Save new station name reten-
tively

PNIO_cbf_save_station_name PNPB

Save REMA data PNIO_cbf_store_rema_mem PNPB
Cyclic data transfer completed PNIO_CP_CBE_TRANS_END_IND PNDV

 Note

When compiling your user program, link standard libraries with multi-threading capability.

 Note

Function calls within a callback function are prohibited, if they lead to a call of the same
callback function.

This means the functions of the IO device applications programming interface described here,
for example, cannot be called unless explicitly allowed.

Runtime coordination for callbacks
A callback function can interrupt the IO device user program at any time. Callback functions
for different events can also interrupt one another. A callback function must therefore be
designed for multiple simultaneous processing (reentrant) because it can be called from
various threads. In practice, this means that the writing and reading of shared tags must
be protected by synchronization mechanisms.

Avoid waits in callback functions, particularly when entering critical sections. This can block a
subsequent call to this and other callback functions. Instead, you should keep your stored
data separate.

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 59

 Interface description 4
4.1 Upper layer interface functions for the application

Functions to be implemented by the user
All functions with the designation "Function call: IO stack > Application" are not called by the
application; instead they are called by the stack and must be implemented by the user. All of
these functions have names starting with the prefix "PNIO_cbf_" because, logically speaking,
a callback function is involved. For all of these functions, a simple example implementation is
available under example applications which generally must be extended.

Table 4- 1 Functions to be implemented by the user

Function See section ...
Setting the device name and IP suite
PNIO_cbf_save_station_name() 4.1.2.1 (Page 63)
PNIO_cbf_save_ip_addr() 4.1.2.2 (Page 64)
PNIO_cbf_report_new_ip_addr() 4.1.2.3 (Page 64)
Storage of retentive data (REMA)
PNIO_cbf_store_rema_mem() 4.1.3.1 (Page 66)
IO device configuration
PNIO_cbf_new_plug_ind() 4.1.4.4 (Page 69)
PNIO_cbf_new_pull_ind() 4.1.4.5 (Page 69)
Sending and receiving alarms
PNIO_cbf_dev_alarm_ind() 4.1.6.4 (Page 75)
Acknowledgment of asynchronous functions
PNIO_cbf_async_req_done() 4.1.7.1 (Page 75)
Reading and writing records
PNIO_cbf_rec_read() 4.1.8.1 (Page 77)
PNIO_cbf_rec_write() 4.1.8.2 (Page 78)
PNIO_cbf_data_read_IOxS_only() 4.1.8.7 (Page 80)
PNIO_cbf_data_write_IOxS_only() 4.1.8.8 (Page 81)
Cyclic data exchange using standard interface (SI)
PNIO_cbf_data_write(), PNIO_cbf_data_read() 4.1.9.1 (Page 81)
Receiving events and alarms
PNIO_cbf_ar_connect_ind() 4.1.11.1 (Page 86)
PNIO_cbf_ar_ownership_ind() 4.1.11.2 (Page 87)
PNIO_cbf_ar_indata_ind() 4.1.11.3 (Page 87)
PNIO_cbf_ar_disconn_ind() 4.1.11.4 (Page 88)
PNIO_cbf_param_end_ind() 4.1.11.5 (Page 88)
PNIO_cbf_ready_for_input_update_ind() 4.1.11.6 (Page 89)

Interface description
4.1 Upper layer interface functions for the application

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

60 Programming and Operating Manual, 10/2020, A5E33638878-AG

Function See section ...
Error handling
PNIO_Log() 4.1.14.2 (Page 94)
Other functions
PNIO_printf() 4.1.15.1 (Page 96)
PNIO_TrcPrintf() 4.1.15.2 (Page 96)

Synchronous and asynchronous functions
In the case of a synchronous function, execution is already completed when the function
returns.

In the case of asynchronous functions, however, completion of the execution is indicated by
means of a callback function.

Whether a function operates synchronously or asynchronously is indicated in the description
for the individual functions.

4.1.1 Functions for system startup

4.1.1.1 PNIO_init

PNIO_init() Function call: Application > IO Stack, synchronous
This function initializes the adaptation interface from the PNIO stack to the operating system (OS) interface and the BSP
interface. It must therefore be called first during startup once before any other PNIO function is called, for example, before
the first PNIO task is created by "OsCreateThread()".
Input - -
Output - -

4.1.1.2 PNIO_setup

PNIO_setup() Function call: Application > IO Stack, synchronous
Starts the IO stack. This function is called once during startup from the PNIO task that had to be created by "OsCre-
ateThread()".
Station name, station type and IP suite (IP address, subnet mask, default router address) must be specified as transfer pa-
rameters.
Input

PNIO_INT8* pStationName Pointer to the station name (may be a non-NULL-terminated string)
PNIO_UINT32 StationNameLen Length of the station name string
PNIO_INT8* pStationType Pointer to the station type (NULL-terminated string)
PNIO_UINT32 IpAddr IP address of the device
PNIO_UINT32 SubnetMask IP subnet mask
PNIO_UINT32 DefRouterAddr IP default router

Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

 Interface description
 4.1 Upper layer interface functions for the application

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 61

4.1.1.3 PNIO_device_open

PNIO_device_open() Function call: Application > IO Stack, synchronous
Creates a device instance. The function is called once during startup (after "PNIO_setup()") for each device instance. The
following parameters are transferred: device ID, vendor ID, instance ID, max. number of ARs, the device annotation and
(optionally for reasons of interface compatibility to the EB 200P and CP1616, configurable using "#define" in compiler.h) a
list of callback functions. The stack creates a handle for the device and writes it to the address specified by "pDevHndl". The
device handle must be saved in the application and specified as a parameter for most of the "PNIO_" functions.
Note: The multi-device functionality is currently not implemented; however, the handle must still be specified correctly.
Input

PNIO_UINT16 VendorId Vendor ID for the device; must be requested from the PROFIBUS user
organization.

PNIO_UINT16 DeviceId Device ID; must be unique within a vendor's PNIO products.
PNIO_UINT16 InstanceId Instance ID for the device (currently only InstanceId = 1 is permitted)
PNIO_ANNOTATION* pDevAnnotation Annotation structure; contains device type, article number, product

version, etc.
PNIO_SNMP_LLDP* pSnmpPar Pointer of type "PNIO_SNMP_LLDP" to SNMP objects that are regis-

tered in the LLDP MIB.
PNIO_BOOL MrpCapabilityAc-

tive
"PNIO_TRUE": MRP capability activated, "PNIO_FALSE": MRP capabil-
ity disabled.

PNIO_UINT32* pDevHndl Pointer to address in which the IO stack returns the device handle to
the application.

Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

4.1.1.4 PNIO_async_appl_rdy

PNIO_async_appl_rdy() Function call: Application > IO Stack, synchronous
The "PNIO_async_appl_rdy()" function is only required if the ApplicationReady for a submodule should be delayed, because
the parameter assignment for this submodule is not yet complete.
Normally, the information regarding whether or not a submodule has started correctly after parameter assignment is al-
ready passed to the PNIO stack in the return value of the callback function "PNIO_cbf_param_end_ind()". For this, the appli-
cation returns "PNIO_SUBMOD_STATE_RUN" (submodule OK) or "PNIO_SUBMOD_STATE_STOP" (submodule not OK) in the
return value. The stack can then automatically generate an ApplicationReady frame for the PNIO controller and include it in
the Moduldiffblock contained in the frame in the event of an error.
However, if the parameter assignment of a submodule takes longer and the "PNIO_cbf_param_end_ind()" callback function
should not be delayed, the ApplicationReady for this module can also be sent later. For this, "PNIO_cbf_param_end_ind()"
first supplies the return value "PNIO_SUBMOD_STATE_APPL_RDY_FOLLOWS". Once the parameter assignment is complete,
this information is "sent later" to the affected submodules using "PNIO_async_appl_rdy()".
Input

PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
PNIO_UINT16 ArNum Number of the affected AR
PNIO_UINT32 Api API number
PNIO_UINT16 SlotNum Slot number
PNIO_UINT16 SubslotNum Subslot number
PNIO_SUBMOD_STATE SubState Defines whether or not the module has started correctly. Possible

values are:
• "PNIO_SUBMOD_STATE_RUN"
• "PNIO_SUBMOD_STATE_STOP"

Interface description
4.1 Upper layer interface functions for the application

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

62 Programming and Operating Manual, 10/2020, A5E33638878-AG

PNIO_async_appl_rdy() Function call: Application > IO Stack, synchronous
PNIO_BOOL MoreFollows • "PNIO_TRUE": The "PNIO_async_appl_rdy()" calls for additional

submodules of this AR follow. The requests are only cached in
the PNIO stack.

• "PNIO_FALSE": There are no further "PNIO_async_appl_rdy()"
calls. All previous cached requests (MoreFollows = PNIO_TRUE)
in the PNIO stack are processed, and the ApplicationReady
frame for the PNIO controller is generated and sent.

Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

4.1.1.5 PNIO_device_close

PNIO_device_close() Function call: Application > IO Stack, synchronous
Not yet supported.
Input PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
Output PNIO_UINT32 Execution status: "PNIO_OK"

4.1.1.6 PNIO_CP_register_cbf

PNIO_CP_register_cbf() Function call: Application > IO Stack, synchronous
Callback functions can be registered for cyclic events in the PNIO stack with "PNIO_register_cbf()" to synchronize the appli-
cation with the data transfer on the bus.
Currently the event "PNIO_CP_CBE_TRANS_END_IND" is implemented. This function notifies the application that the data
transfer for the current IO cycle has finished. The application can now access the IO data using "PNIO_initiate_data_read()"
or "PNIO_initiate_data_write()".
Input PNIO_CP_CBE_TYPE CbeType Specifies the event for which the callback is called. Currently the

event "PNIO_CP_CBE_TRANS_END_IND" is implemented.
 PNIO_CP_CBF pCbf Start address of the application function to be called by the PNIO

stack when the above-named event occurs.
Output PNIO_UINT32 Execution status: "PNIO_OK"

4.1.1.7 PNIO_PDEV_setup()

PNIO_pdev_setup () Function call: Application > IO Stack, synchronous
Setup of PDEV parameters.
Input

PNIO_SUB_LIST_ENTRY
*

pStationName Pointer to the plugged submodules, including PDEV

PNIO_UINT32 StationNameLen number of entries in pPioSubList
Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

 Interface description
 4.1 Upper layer interface functions for the application

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 63

4.1.2 Setting the device name and IP suite
The Ethernet parameters (IP address, subnet mask, default router address) of the IO device
can be set by a PROFINET IO controller via Ethernet. The station name of the device must
have been set beforehand with the configuration tool.

For transferring this information to the application, functions which the user must implement
are called by the IO stack. The application must store these data in non-volatile memory (NV
RAM, Flash EPROM, etc.). The data is transferred again to the stack at the next system startup
by means of the following function

• "PNIO_setup()"

To transfer the station name a function frame is placed in "iodapi_event.c" for the following
function, which must be implemented by the user:

• "PNIO_cbf_save_station_name()"

Setting of the Ethernet parameters is basically performed in the same way by calling the
function

• "PNIO_cbf_save_ip_addr()"

A blinking function can be started in the engineering tool. The addressed IO device is
identified visually by a flashing LED. Activation of the LED is platform-dependent and,
therefore, not contained directly in the IO stack. In this case, the IO stack calls the following
functions, which the user must implement accordingly:

• "PNIO_cbf_start_led_blink" (flash frequency)

• "PNIO_cbf_stop_led_blink()"

With the following function, the factory settings must be restored:

• "PNIO_cbf_reset_factory_settings()"

In development kit version V4.5 and higher the IP suite and the device name optionally can
be set also from the application. In this case IP suite and device name are set non-remanent.

To store them retentively, the application has to store them in NV memory.

To change temporarily the IP address or device name, the application has to call

• "PNIO_change_ip_suite()"

• “PNIO_change_device_name“

4.1.2.1 PNIO_cbf_save_station_name

PNIO_cbf_save_station_name() Function call: IO stack > Application, synchronous
If a new station name for the device has to be assigned for the device via Ethernet, the "PNIO_cbf_save_station_name()"
function is called by the IO stack. The application now must store the transferred station name in non-volatile memory, if
the retentive parameter is not equal to 0. The value is read by the application from the non-volatile memory at the next
system startup and transferred to the stack again with the "PNIO_setup()" function.
Input PNIO_INT8* pStationName Pointer to the string that contains the station name. (The station

name does not necessarily have to be null-terminated.)
PNIO_UINT16 NameLength Length of the string in bytes

Interface description
4.1 Upper layer interface functions for the application

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

64 Programming and Operating Manual, 10/2020, A5E33638878-AG

PNIO_cbf_save_station_name() Function call: IO stack > Application, synchronous
PNIO_UINT8 Remanent <> 0: Data must be stored retentively

== 0: Value cannot be saved retentively and a name already stored
must be deleted

Output PNIO_UINT32 return "PNIO_OK", "PNIO_NOT_OK"

4.1.2.2 PNIO_cbf_save_ip_addr

PNIO_cbf_save_ip_addr() Function call: IO stack > Application, synchronous
f the IP suite stored in flash has to be changed, then "PNIO_cbf_save_ip_addr()" function is called by the PN stack.
This happens if the IP suite data in the non-volatile memory (NV-memory) either has to be updated or to be deleted (set to
ZERO). For example, according to the PN specification the IP suite in NV-memory has to be set to ZERO, if a DcpSetIP request
with option non-remanent has been received on Ethernet.
If PNIO_cbf_save_ip_addr() is executed, the application only has to store the new IP suite data into the NV-memory.
Note: PNIO_cbf_save_ip_addr will be called only if a modification of the IP suite in NV-data is necessary. However the func-
tion PNIO_cbf_report_new_ip_addr() is called additionally at every IP suite change, to notify the application about that
event.
The values from NV-memory are read back by the application at the next system startup and transferred to the stack again
with the "PNIO_set_eth_par()" function, so the PN stack can start up with the correct IP parameters.
Input PNIO_UINT32 NewIpAddr New IP address

PNIO_UINT32 SubnetMask New value for subnet mask
PNIO_UINT32 DefRouterAddr New value for default router
PNIO_UINT8 Remanent <> 0: Data must be stored retentively in NV-memory

== 0: Values already stored must be deleted (set to ZERO)
Output PNIO_UINT32 return "PNIO_OK," "PNIO_NOT_OK"

4.1.2.3 PNIO_cbf_report_new_ip_addr

PNIO_cbf_report_new_ip_addr() Function call: IO stack > Application, synchronous
This function will be called by the PN stack if a new IP suite has to be activated in the IP stack. It always contains the new IP
suite data.
This is only a report function, that means from the PROFINET point of view no more action by the application is required
and the implementation may contain only a return statement.
Note: The function PNIO_cbf_save_ip_addr() may be called additionally, depending on whether the IP-suite data in the NV-
memory has to be updated or not.
Input PNIO_UINT32 NewIpAddr New IP address

PNIO_UINT32 SubnetMask New value for subnet mask
PNIO_UINT32 DefRouterAddr New value for default router

Output PNIO_UINT32 return "PNIO_OK," "PNIO_NOT_OK"

4.1.2.4 PNIO_change_ip_suite

PNIO_change_ip_suite() Function call: Application > IO Stack, synchronous
Temporarily changes the IP suite inside the PROFINET stack.
The new values are not stored inside the NV-data. The function will be executed only if no AR is running, otherwise
PNIO_NOT_OK will be returned.

 Interface description
 4.1 Upper layer interface functions for the application

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 65

PNpInput PNIO_UINT32 NewIpAddr New IP address
PNIO_UINT32 SubnetMask New value for subnet mask
PNIO_UINT32 DefRouterAddr New value for default router
PNIO_UINT32 return "PNIO_OK," "PNIO_NOT_OK"

Output

4.1.2.5 PNIO_change_device_name

PNIO_change_device_name() Function call: Application > IO Stack, synchronous
Temporarily changes the device name inside the PROFINET stack.
The new value is not stored inside the NV data. The function will be executed only if no AR is running, otherwise
PNIO_NOT_OK will be returned.
Input PNIO_INT8* pStationName Pointer to the string that contains the station name. (The station

name does not necessarily have to be null-terminated.)
PNIO_UINT16 NameLength Length of the string in bytes
Output PNIO_UINT32 return

Output PNIO_UINT32 return must be "PNIO_OK"

4.1.2.6 PNIO_cbf_start_led_blink()

PNIO_cbf_start_led_blink() Function call: IO stack > BSP, synchronous
If the flashing function is started in the engineering tool, the IO stack calls this function. The application can then put an
LED (if present) into flashing mode at the specified frequency. The flashing process lasts about 3 seconds, and then the
stack automatically calls "PNIO_cbf_stop_led_blink()" which ends the flashing process.
Input PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".

PNIO_UINT32 PortNum Port number (1 to n)
PNIO_UINT32 Frequency Specified flashing frequency, in Hertz

Output PNIO_UINT32 return must be "PNIO_OK"

4.1.2.7 PNIO_cbf_stop_led_blink

PNIO_cbf_stop_led_blink() Function call: IO stack > BSP, synchronous
Turns the flashing mode of the LED off again.
Input PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
 PNIO_UINT32 PortNum Port number (1 to n)
Output PNIO_UINT32 return Must be "PNIO_OK"

Interface description
4.1 Upper layer interface functions for the application

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

66 Programming and Operating Manual, 10/2020, A5E33638878-AG

4.1.2.8 PNIO_cbf_reset_factory_settings

PNIO_cbf_reset_factory_settings() Function call: IO stack > BSP, synchronous
Reset to factory settings The application must reset all non volatile parameters (device name, IP suite, REMA data, etc.) to
factory settings. After this the system must be restarted by the application so that the PNIO stack will reset its internal data.
Input PNIO_UINT32 DevHndl Device handle created by the stack using

"PNIO_device_open()".
Output PNIO_UINT32 return Must be "PNIO_OK"

4.1.3 Storage of retentive data (REMA)
In addition to the device name and IP suite, the records of the physical device (PDEV records)
must be stored on the device in non-volatile memory. After the creation of the AR, the PDEV
records are transferred from the PNIO controller to the device by means of "Record-Write"
functions.

The records are temporarily stored by the PNIO stack and processed there. When all PDEV
records have been received, they are recorded by the PNIO stack in a contiguous memory
area and transferred to the application for persistent storage by means of a single call. The
application therefore need not interpret the PDEV records, but only has to accept the entire
data block and store it in non-volatile memory. The transfer of the PDEV data block from the
PNIO stack is performed with the function

• "PNIO_cbf_store_rema_mem()".

A pointer to the data and the data length are passed as call parameters.

The next time the device starts up, the PNIO stack queries this information from the
application. For this, the stack calls the function

• "PNIO_cbf_restore_rema_mem()"

The address of a pointer (**ppMem) is passed as a call parameter. The application enters the
actual address of the REMA data there. A pointer to the data length is also passed, the
application enters the actual data length there. It should be noted that the REMA data is not
copied in this case and must therefore remain valid (static data) even after
"PNIO_cbf_restore_rema_mem()" is completed.

4.1.3.1 PNIO_cbf_store_rema_mem

PNIO_cbf_store_rema_mem() Function call: IO stack > Application, synchronous
Here all received PDEV records are transferred to the application in a contiguous data block for non-volatile storage. The
application need only store the data block without change or interpretation in non-volatile memory and transfer it back to
the stack at the next startup using "PNIO_restore_rema_mem()".
Input PNIO_UINT32 MemSize Size of the data block in bytes

PNIO_UINT8* pMem Pointer to the data block
Output PNIO_UINT32 return "PNIO_OK", "PNIO_NOT_OK"

 Interface description
 4.1 Upper layer interface functions for the application

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 67

4.1.3.2 PNIO_cbf_restore_rema_mem

PNIO_cbf_restore_rema_mem() Function call: Application > IO Stack, synchronous
With this function the application transfers the PDEV record data block, which has been stored in non-volatile memory, back
to the PNIO stack. This function must be called once during application startup, after the stack has started up, and the PDEV
modules have been inserted.
Input PNIO_UINT32* pMemSize Pointer to the data block size in bytes, the application must enter

the actual data length here.
PNIO_UINT8** ppMem Address of the pointer to the data block. The application enters the

actual address of the REMA data here. The REMA data must be
static, which means it must remain valid even after
"PNIO_cbf_restore_rema_mem" is completed.

Output PNIO_UINT32 return "PNIO_OK", "PNIO_NOT_OK"

4.1.3.3 PNIO_cbf_report_ARFSU_record

PNIO_cbf_restore_rema_mem() Function call: Application > IO Stack, synchronous
This function is called from the PN-stack, when a new ARFSU write record has been received from the CPU. It notifies the
application, if FSU has been enabled and if the ARFSU_UUID, stored in the NV-Data, has been changed or not. Additionally,
the PN-stack stores the new received ARFSU-UUID in the non-volatile data by calling Bsp_nv_data_store.
Input PNIO_UINT8 ARFSU_enabled PNIO_ARFSU_ENABLED, PNIO_ARFSU_DISABLED

PNIO_UINT8 ARFSU_changed PNIO_ARFSU_CHANGED, PNIO_ARFSU_NOT_CHANGED
Output -- -- -

4.1.4 IO device configuration

4.1.4.1 PNIO_sub_plug

PNIO_sub_plug() Function call: Application > IO Stack, synchronous
Insertion of a new submodule into a subslot. The function is called during startup to specify the current configuration to the
IO stack. It can also be called during operation in the event of changes to the current configuration, which means when a
submodule that has failed or has been removed is once again functional. In this case, a plug alarm automatically sent by the
IO stack to the IO controller.
A list of modules can be inserted by setting the parameter "MoreFollows" = "PNIO_TRUE". In this case, the modules can be
stored temporarily in PNDV and passed later to the CM at the next insertion call with "MoreFollows PNIO_TRUE =". The feed-
back in "pError" is therefore only valid thereafter and can then be queried by the application.
Note: During startup, the DAP and PDEV data "PNIO_sub_plug_list()" must be inserted first. Only then may additional
modules be plugged in, either as additional entries in the "pIoSublist" submodule list or individually using the
"PNIO_sub_plug()" function.
Input PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".

PNIO_UINT32 Api API number (default API is 0)
PNIO_DEV_ADDR* pAddr Pointer to the insertion address (slot/subslot) of the submodule. Slot

numbers 1 to n are permitted; the maximum slot number was speci-
fied in "PNIO_setup()". "PNIO_ADDR_GEO" must be entered as the
type.

PNIO_UINT32 ModIdent Module identifier (stored in the GSD file)

Interface description
4.1 Upper layer interface functions for the application

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

68 Programming and Operating Manual, 10/2020, A5E33638878-AG

PNIO_sub_plug() Function call: Application > IO Stack, synchronous
PNIO_UINT32 SubIdent Submodule identifier (stored in the GSD file)
PNIO_UINT32 InputDataLen Length of Input data
PNIO_UINT32 OutputDataLen Length of Output data
PNIO_IM0_SUPP_ENU
M

Im0Support Specifies whether IM0 is supported and in which form, see enum
"PNIO_IM0_SUPP_ENUM" in the "pniousrd.h" file.

IM0_DATA* plm0Dat If the module supports IM0 (Im0Support <> PNIO_IM0_NOTHING),
there is a pointer to the IM0 data here. Further handling of the IM0
data is perform internally in the stack.

PNIO_UINT8 IopsIniVal For submodules without IO data (e.g. PDEV submodules), the initial
IOPS value for input modules is passed here (according to the PNIO
standard, a submodule without data reacts like an input module
with a data length of 0).

Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

4.1.4.2 PNIO_sub_plug_list

PNIO_sub_plug_list() Function call: Application > IO Stack, synchronous
Insert a list of submodules in subslots. The function is called during startup to specify the current configuration to the IO
stack. It can also be called during runtime in case the current configuration is changed. In this case, plug alarm are automat-
ically sent by the IO stack to the IO controller.
Note: During startup, the DAP and PDEV data must be inserted first with the "PNIO_sub_plug_list()". Only then may addi-
tional modules be plugged in, either as additional entries in the "pIoSublist" submodule list or individually using the
"PNIO_sub_plug()" function. Either the DAP or the interface (subslot 0x8000) must serve as an IM0 proxy for the device,
which means it must have its own IM0 data and the element "Im0Support" = (PNIO_IM0_SUBMODULE + PNIO_IM0_DEVICE)
needs to be set in the submodule list. You can find an application example of this in file "usriod_main.c", structure "Io-
SubList []".
Input PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".

PNIO_SUB_LIST_ENTRY
*

pIoSubList List of submodules of the type "PNIO_SUB_LIST_ENTRY". It includes
the slot number, module and submodule IDs, IM0 support yes/no.

PNIO_UINT32 NumOfSublistEn-
tries

Number of entries in the list of submodules.

PNIO_IM0_LIST_ENTRY
*

pIm0List List of IM0 data for submodules that have their own IM0 data.

PNIO_UINT32 NumOfIm0ListEn
tries

Number of entries in the list of IM0 data.

PNIO_UINT32* pStatusList List of status feedback ("PNIO_OK", "PNIO_NOT_OK") for each sub-
module in "pIoSubList". The status list therefore has the same num-
ber of entries as the submodule list.

Output PNIO_UINT32 return Group status: "PNIO_OK" if all individual feedback messages in
"pStatusList" also contain "PNIO_OK"; otherwise "PNIO_NOT_OK" is
reported back.

4.1.4.3 PNIO_sub_pull

PNIO_sub_pull() Function call: Application > IO Stack, synchronous
Removal of an inserted submodule. In this case, a pull alarm is automatically sent by the IO stack to the IO controller.
Input PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".

PNIO_UINT32 Api API number (default API is 0)

 Interface description
 4.1 Upper layer interface functions for the application

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 69

PNIO_sub_pull() Function call: Application > IO Stack, synchronous
PNIO_DEV_ADDR* pAddr Pointer to the insertion address (slot/subslot) of the submodule. Slot

numbers 1 to n are permitted; the maximum slot number was speci-
fied in "PNIO_setup()". "PNIO_ADDR_GEO" must be entered as the
type.

Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

4.1.4.4 PNIO_cbf_new_plug_ind ()

PNIO_cbf_new_plug_ind () Function call: IO stack > Application, synchronous
The Plug Indication of a module
Input PNIO_DEV_ADDR * pAddr Pointer to the insertion address (slot/subslot) of the submodule.

Slot numbers 1 to n are permitted
PNIO_UINT32 InputDataLen submodule input data length
PNIO_UINT32 OutputDataLen submodule output data length

Output PNIO_VOID return

4.1.4.5 PNIO_cbf_new_pull_ind ()

PNIO_cbf_new_pull_ind () Function call: IO stack > Application, synchronous
The Pull Indication of a module
Input PNIO_DEV_ADDR * pAddr Pointer to the insertion address (slot/subslot) of the submodule.

Slot numbers 1 to n are permitted
Output PNIO_VOID return

4.1.5 Storing diagnostic data in the subslot

4.1.5.1 PNIO_diag_channel_add

PNIO_diag_channel_add() Function call: Application > IO Stack, synchronous
Downloads a diagnostic record into a subslot. If the device is the owner of this subslot in an AR, a "Diagnostic alarm - incom-
ing" is automatically sent to the IO controller. The diagnostic record can be removed with the
"PNIO_diag_channel_remove()" function once the problem is rectified. The value DiagTag is a user defined value <> 0, that
distinguishes different alarms for one subslot, that are valid at the same time. So it must be always unique inside one sub-
slot. If only one alarm at a time can be available, a fix value (e.g. 1) can be used. Otherwise the application has to manage
the DiagTag values and has to take care, that inside this subslot the DiagTag is always unique.
Input

PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
PNIO_UINT32 Api API number (default API is 0)
PNIO_DEV_ADDR* pAddr Pointer to the insertion address (slot/subslot) of the submodule.

"PNIO_ADDR_GEO" must be entered as the type.
PNIO_UINT16 ChannelNum Channel number, content, and structure; see also "ChannelNumber"

in /1/
PNIO_UINT16 ErrorNum Error number, see also /1/

Interface description
4.1 Upper layer interface functions for the application

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

70 Programming and Operating Manual, 10/2020, A5E33638878-AG

 DIAG_CHANPROP_DIR ChainDir Data direction (IN/OUT/INOUT), see enum "DIAG_CHANPROP_DIR" in
the file "pniousrd.h"

DIAG_CHANPROP_TYPE ChanType Data type (1-bit, 2-bit, ... BYTE, WORD, DWORD), see enum
"DIAG_CHANPROP_TYPE" in the file "pniousrd.h"

PNIO_BOOL MaintenanceReq PNIO_TRUE: Maintenance required, else PNIO_FALSE
PNIO_BOOL Mainte-

nanceDem
PNIO_TRUE: Maintenance demanded, else PNIO_FALSE

PNIO_UINT16 DiagTag User defined diag tag <> 0, must be unique at a time for one subslot
Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

4.1.5.2 PNIO_diag_channel_remove

PNIO_diag_channel_remove() Function call: Application > IO Stack, synchronous
Deletion of a diagnostic record that was downloaded with "PNIO_diag_channel_add()". The same values must be given for
referencing as in the corresponding "PNIO_diag_channel_add" call. If the device is the owner in an AR for this subslot, a
"Diagnostic alarm - outgoing" is sent to the IO controller automatically. The parameter AlarmState specifies, if more diagno-
sis entries are available for the same channel. If ChannelNum == 0x8000, the diagnosis entry is valid for the complete sub-
module and the value of AlarmState also is valid for the complete submodule.
Input

PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
PNIO_UINT32 Api API number (default API is 0)
PNIO_DEV_ADDR* pAddr Pointer to the insertion address (slot/subslot) of the submodule.

"PNIO_ADDR_GEO" must be entered as the type.
PNIO_UINT16 ChannelNum Channel number, content, and structure; see also "ChannelNumber"

in /1/
PNIO_UINT16 ErrorNum Error number, see also /1/
DIAG_CHANPROP_DIR ChanDir Data direction (IN/OUT/INOUT), see enum "DIAG_CHANPROP_DIR" in

the file "pniousrd.h"
DIAG_CHANPROP_TYPE ChanTyp Data type (1-bit, 2-bit, ... BYTE, WORD, DWORD), see enum

"DIAG_CHANPROP_TYPE" in the file "pniousrd.h"
PNIO_UINT16 DiagTag Diag tag that has been specified at the appropriate call of

PNIO_diag_channel_add
 PNIO_UINT16 AlarmState DIAG_CHANPROP_SPEC_ERR_DISAPP,

DIAG_CHANPROP_SPEC_ERR_DISAPP_MORE, if more diagnosis en-
tries are available.

Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

4.1.5.3 PNIO_ext_diag_channel_add

PNIO_ext_diag_channel_add() Function call: Application > IO Stack, synchronous
Downloads an extended diagnostic record into a subslot. If the device is the owner of this subslot in an AR, an extended
"Diagnostic alarm - incoming" is automatically sent to the IO controller. The diagnostic record can be removed with the
"PNIO_ext_channel_remove()" function once the problem is rectified. The value DiagTag is a user defined value <> 0, that
distinguishes different alarms for one subslot, that are valid at the same time. So it must be always unique inside one sub-
slot. If only one alarm at a time can be available, a fix value (e.g. 1) can be used. Otherwise the application has to manage
the DiagTag values and has to take care, that inside this subslot the DiagTag is always unique.
Input

PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
PNIO_UINT32 Api API number (default API is 0)
PNIO_DEV_ADDR* pAddr Pointer to the insertion address (slot/subslot) of the submodule.

"PNIO_ADDR_GEO" must be entered as the type.

 Interface description
 4.1 Upper layer interface functions for the application

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 71

PNIO_UINT16 ChanNum Channel number, content, and structure; see also "Channel-
Number" in /1/

PNIO_UINT16 ErrorNum Error number, see also /1/
DIAG_CHANPROP_DIR ChanDir Data direction (IN/OUT/INOUT), see enum "DIAG_CHANPROP_DIR"

in the file "pniousrd.h"
DIAG_CHANPROP_TYPE ChanTyp Data type (1-bit, 2-bit, ... BYTE, WORD, DWORD), see enum

"DIAG_CHANPROP_TYPE" in the file "pniousrd.h"
PNIO_UINT16 ExtChannelErrType Extended channel error type, content and structure; see also "Ex-

tChannelErrorType" in /1/
PNIO_UINT32 ExtChannelAd-

dValue
Additional value, content, and structure; see also "ExtChannelAd-
dValue" in /1/

PNIO_BOOL MaintenanceReg PNIO_TRUE: Maintenance required, else PNIO_FALSE
PNIO_BOOL MaintenanceDem PNIO_TRUE: Maintenance demanded, else PNIO_FALSE
PNIO_UINT16 DiagTag User defined diag tag <> 0, must be unique at a time for one sub-

slot
Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

4.1.5.4 PNIO_ext_diag_channel_remove

PNIO_ext_diag_channel_remove() Function call: Application > IO Stack, synchronous
Deletion of a diagnostic record that was downloaded with "PNIO_ext_diag_channel_add()". If the device is the owner in an
AR for this subslot, an extended "Diagnostic alarm - outgoing" is sent to the IO controller automatically. The parameter
AlarmState specifies, if more diagnosis entries are available for the same channel. If ChannelNum == 0x8000, the diagnosis
entry is valid for the complete submodule and the value of AlarmState also is valid for the complete submodule.
Input

PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
PNIO_UINT32 Api API number (default API is 0)
PNIO_DEV_ADDR* pAddr Pointer to the insertion address (slot/subslot) of the submodule.

"PNIO_ADDR_GEO" must be entered as the type.
PNIO_UINT16 ChannelNum Channel number, content, and structure; see also "Channel-

Number" in /1/
PNIO_UINT16 ErrorNum Error number, see also /1/
DIAG_CHANPROP_DIR ChanDir Data direction (IN/OUT/INOUT), see enum "DIAG_CHANPROP_DIR"

in the file "pniousrd.h"
DIAG_CHANPROP_TYPE ChanTyp Data type (1-bit, 2-bit, ... BYTE, WORD, DWORD), see enum

"DIAG_CHANPROP_TYPE" in the file "pniousrd.h"
PNIO_UINT16 ExtChannelErrType Extended channel error type, content and structure; see also "Ex-

tChannelErrorType" in /1/
PNIO_UINT32 ExtChannelAd-

dValue
Additional value, content, and structure; see also "ExtChannelAd-
dValue" in /1/

PNIO_UINT16 DiagTag Diag tag that has been specified at the appropriate call of
PNIO_ext_diag_channel_add

 PNIO_UINT16 AlarmState DIAG_CHANPROP_SPEC_ERR_DISAPP,
DIAG_CHANPROP_SPEC_ERR_DISAPP_MORE, if more diagnosis
entries are available.

Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

Interface description
4.1 Upper layer interface functions for the application

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

72 Programming and Operating Manual, 10/2020, A5E33638878-AG

4.1.5.5 PNIO_diag_generic_add

PNIO_diag_generic_add() Function call: Application > IO Stack, synchronous
Downloads a manufacturer-specific diagnostic record into a subslot. The diagnostic data can be read out by means of a
special record call (see /1/), for example, by a diagnostic tool. Multiple diagnostic records that are referenced by a user-
specifiable tag can be downloaded to a subslot. The diagnostic record can be removed with the
"PNIO_diag_generic_remove()" function by means of this reference. If the device is the owner in an AR for this subslot, a
"manuf. specific incoming alarm" is sent to the IO controller automatically.
Input

PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
PNIO_UINT32 Api API number (default API is 0)
PNIO_DEV_ADDR* pAddr Pointer to the insertion address (slot/subslot) of the submodule.

"PNIO_ADDR_GEO" must be entered as the type.
PNIO_UINT16 ChannelNum Channel number
DIAG_CHANPROP_DIR ChanDir Data direction (IN/OUT/INOUT), see enum "DIAG_CHANPROP_DIR" in

the file "pniousrd.h"
DIAG_CHANPROP_TYPE ChanTyp Data type (1-bit, 2-bit, ... BYTE, WORD, DWORD), see enum

"DIAG_CHANPROP_TYPE" in the file "pniousrd.h"
PNIO_UINT16 DiagTag User defined diag tag <> 0, must be unique at a time for one subslot
PNIO_UINT16 UserStructIdent User structure identifier; see /1/:

 0..7fff: Manufacturer-specific data in "pInfoData"
PNIO_UINT8* pInfoData Pointer to the diagnostic data
PNIO_UINT32 InfoDataLen Length of the diagnostic data in bytes
PNIO_BOOL MaintenanceReq PNIO_TRUE: Maintenance required, else PNIO_FALSE
PNIO_BOOL Mainte-

nanceDem
PNIO_TRUE: Maintenance demanded, else PNIO_FALSE

Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

4.1.5.6 PNIO_diag_generic_remove

PNIO_diag_generic_remove() Function call: Application > IO Stack, synchronous
Deletion of a diagnostic record that was downloaded with "PNIO_diag_generic_add()". If the device is the owner in an AR
for this subslot, a "manuf. specific outgoing alarm" is sent to the IO controller automatically.
Input

PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
PNIO_UINT32 Api API number (default API is 0)
PNIO_DEV_ADDR* pAddr Pointer to the insertion address (slot/subslot) of the submodule.

"PNIO_ADDR_GEO" must be entered as the type.
PNIO_UINT16 ChanNum Channel number
DIAG_CHANPROP_DIR ChanDir Data direction (IN/OUT/INOUT), see enum "DIAG_CHANPROP_DIR" in

the file "pniousrd.h"
DIAG_CHANPROP_TYPE ChanTyp Data type (1-bit, 2-bit, ... BYTE, WORD, DWORD), see enum

"DIAG_CHANPROP_TYPE" in the file "pniousrd.h"
PNIO_UINT16 DiagTag Diag tag that has been specified at the appropriate call of

PNIO_diag_generic_add
PNIO_UINT16 UserStructIdent User structure identifier; see /1/:

 0..7fff: Manufacturer-specific data in "pInfoData"
Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

 Interface description
 4.1 Upper layer interface functions for the application

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 73

4.1.6 Sending and receiving alarms
The following subslot-specific alarms can be triggered by means of the IOD API:

• Process alarms (optional)

• Status alarms (optional)

• Diagnostic alarms (optional)

• "Return of submodule" alarms (mandatory)

Process, status and diagnostic alarms can be triggered by the application if it has detected a
relevant event. Process and status alarms are thereby initiated directly by the application;
however, diagnostic alarms are triggered automatically by the PROFINET stack when a
diagnostic entry is made by the application. "Return of submodule" alarms must be triggered
by the application if the user-data accompanying elements (IOPS, IOCS) change from "BAD" to
"GOOD" during operation.

Implementation of the alarm functions is asynchronous, which means the function does not
wait for the alarm to be acknowledged by the IO controller. Instead, after receipt of the alarm
acknowledgment, the IO stack calls the "PNIO_cbf_async_req_done()" callback function which
must be implemented by the user.

4.1.6.1 PNIO_process_alarm_send

PNIO_process_alarm_send() Function call: Application > IO Stack, asynchronous
Sends a (submodule-specific) process alarm to an IO controller. The accompanying data are contained in the alarm frame to
the IO controller, but are not stored locally in the submodule. This means a remove function is not required.
Input

PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
PNIO_UINT32 Api API number (default API is 0)
PNIO_DEV_ADDR* pAddr Pointer to the insertion address (slot/subslot) of the submodule.

"PNIO_ADDR_GEO" must be entered as the type.
PNIO_UINT8* pData Pointer to alarm data
PNIO_UINT32 DataLen Length of alarm data, in bytes
PNIO_UINT16 UserStructIdent User structure identifier; see /1/:

 0..7fff: Manufacturer-specific data in "pData"
PNIO_UINT32 UserHndl Reserved in the current version.

Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

4.1.6.2 PNIO_status_alarm_send

PNIO_status_alarm_send() Function call: Application > IO Stack, asynchronous
Sends a (submodule-specific) status alarm to an IO controller. The accompanying data are contained in the alarm frame to
the IO controller, but are not stored locally in the submodule. This means a remove function is not required.
Input PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".

PNIO_UINT32 Api API number (default API is 0)
PNIO_DEV_ADDR* pAddr Pointer to the insertion address (slot/subslot) of the submodule.

"PNIO_ADDR_GEO" must be entered as the type.
PNIO_UINT8* pData Pointer to alarm data
PNIO_UINT32 DataLen Length of alarm data, in bytes

Interface description
4.1 Upper layer interface functions for the application

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

74 Programming and Operating Manual, 10/2020, A5E33638878-AG

PNIO_UINT16 UserStructIdent User structure identifier; see /1/:
 0..7fff: Manufacturer-specific data in "pData"

PNIO_UINT32 UserHndl Reserved in the current version.
Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

4.1.6.3 PNIO_upload_retrieval_alarm_send

PNIO_upload_retrieval_alarm_send() Function call: Application > IO Stack, asynchronous
With an upload/retrieval alarm, an event is sent to a central parameter server (iPar server). This event causes the iPar server
to read a set of parameters from the device by means of a record read service or to transfer a set of parameters to the de-
vice by means of a record write service. A header that is part of the alarm data stores which record index is used and
whether the data is to be read or written.
You will find an iPar server example code for STEP7 and TIA Portal on the customer support websites of Siemens on request.
Input PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".

PNIO_UINT32 Api API number (default API is 0)
PNIO_DEV_ADDR* *pAddr Pointer to the insertion address (slot/subslot) of the submodule.

"PNIO_ADDR_GEO" must be entered as the type.
PNIO_UINT8* *pData Pointer to alarm data.

The data starts with a 24-byte long header. It determines the direction
of transmission, the data length and the record index used. The struc-
ture of the header is defined in the PNIO specification. A user example
is included in the application code, see "usriod_main.c" file, "Up-
loadAlarmDate[]" and "RetrievalAlarmData[]" data structures.

PNIO_UINT32 DataLen Length of alarm data, in bytes.
PNIO_UINT32 UserHndl Reserved in the current version.

Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

4.1.6.4 PNIO_ret_of_sub_alarm_send

PNIO_ret_of_sub_alarm_send() Function call: Application > IO Stack, asynchronous
Sends a "Return of submodule" alarm to the IO controller. The alarm must be issued by the device if the status of the user
data-accompanying IOPS/IOCS changes from "BAD" to "GOOD" status. The response on the IO controller is similar to the
response in the event of a plug alarm; however, the submodule does not have its parameters reassigned by the IO control-
ler in the case of "PNIO_ret_of_sub_alarm_send()".
Note: If, on the other hand, IOPS/IOCS changes from "GOOD" to "BAD", no alarm must be triggered.
Input

PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
PNIO_UINT32 Api API number (default API is 0)
PNIO_DEV_ADDR* pAddr Pointer to the insertion address (slot/subslot) of the submodule.

"PNIO_ADDR_GEO" must be entered as the type.
PNIO_UINT32 UserHndl Reserved in the current version

Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

 Interface description
 4.1 Upper layer interface functions for the application

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 75

4.1.6.5 PNIO_cbf_dev_alarm_ind()

PNIO_cbf_dev_alarm_ind() Function call: IO stack > Application, synchronous
With this function, the application is notified of an alarm that has been received by the IO controller.
Note: Not implemented; currently the controller does not send alarms to the device that are passed on to the application).
Input

PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
PNIO_DEV_ALARM_DA
TA*

pAlarm Pointer to alarm data of type "PNIO_DEV_ALARM_DATA". Other
information about the alarm are supplied in these data.

Output - - -

4.1.7 Acknowledgment of asynchronous functions

4.1.7.1 PNIO_cbf_async_req_done

PNIO_cbf_async_req_done() Function call: IO stack > Application, synchronous
If an asynchronous request was issued to the stack by the application, the acknowledgement takes place by calling the
"PNIO_cbf_async_req_done" function. In addition to the status (OK/not OK), a UserHandle, which has been assigned by the
application, is transferred as a transfer parameter. This enables the application to assign the acknowledgement to the cor-
responding request if multiple requests were issued to the IO stack in parallel.
If the appropriate submodule, the alarm has been assigned to, is not included in a running application relation (AR), then
ArNum = 0 is returned (dummy-acknowledgement, to simplify handling in application).
Presently, only the alarms are implemented as asynchronous requests.
Input

PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
PNIO_UINT32 ArNum AR numbers (1 to N), 0: no AR available for this subslot
PNIO_ALARM_TYPE AlarmType Alarm type (PNIO_ALM_CHAN_DIAG, PNIO_ALM_EXT_CHAN_DIAG,

...), see enum "PNIO_ALARM_TYPE" in the file "pniousrd.h"
PNIO_UINT32 Api API number (Application Process Identifier)
PNIO_DEV_ADDR* pAddr Slot/subslot
PNIO_UINT32 Status "PNIO_OK"

"PNIO_NOT_OK"
PNIO_UINT16 DiagTag DiagTag, returned as a reference to the appropriate diag-add function

for channel-diagnosis, ext-channel-diagnosis and generic-diagnosis.
Otherwise “don’t care”.

Output - -

4.1.7.2 PNIO_trigger_pndv_ds_rw_done()

PNIO_trigger_pndv_ds_rw_done() Function call: Application > IO Stack, synchronous
Triggering of stack from HOST controller in case of asynchronous requests

Input

PNIO_ERR_STAT* PnioStat Result
PNIO_UINT32 bufLen Length of data

Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

Interface description
4.1 Upper layer interface functions for the application

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

76 Programming and Operating Manual, 10/2020, A5E33638878-AG

4.1.8 Reading and writing records
In addition to the synchronous handling (which means complete handling of a read/write
record request inside the callback function "PNIO_cbf_rec_read()" or "PNIO_cbf_rec_write()"),
an asynchronous handling of read or write record requests is also possible. In this case, the
application notifies the stack inside the callback function that the response will be delayed,
which means it is executed asynchronously.

The scenario for a synchronous read record request is as follows:

Figure 4-1 Synchronous read record handling

• A read record request from the IO controller is received and evaluated by the IO stack.

• The IO stack calls "PNIO_cbf_rec_read".

• The application provides the requested record data and error state inside the callback
function and writes them to the addresses specified by the IO stack.

• After returning from the callback function, the request is completed from the point of
view of the application.

The scenario for an asynchronous read record request is as follows:

 Interface description
 4.1 Upper layer interface functions for the application

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 77

Figure 4-2 Asynchronous read record handling

• A read record request from the IO controller is received and evaluated by the IO stack.

• The IO stack calls "PNIO_cbf_rec_read()".

• The application calls "PNIO_rec_set_rsp_async()" from inside the callback function, and
thereby notifies the stack that the request will be processed asynchronously and need not
be (but can be) finished within the callback function. As a return value, a request handle is
transferred to the application to reference this request during subsequent transfer of the
data to the stack. The addresses specified by the IO stack for record data and the error
status will be not further used by the application.

• The application provides the requested record data, the length of the data, and the error
status from within any task context to any memory address.

• The application calls "PNIO_rec_read_rsp()" and in doing so transfers the record data, data
length, and error status to the stack.

Synchronous and asynchronous write record requests are handled in the same way.

4.1.8.1 PNIO_cbf_rec_read

PNIO_cbf_rec_read() Function call: IO stack > Application, synchronous
This function is called by the IO stack if the IO controller has sent a read record data request to the device. A record is ad-
dressed by means of SlotNumber - SubslotNumber - Index. The application reads the requested data from the subslot and
writes it to the address specified by "pBuf". The maximum permitted data length, in bytes, is transferred from the stack in
"*pBufLen"; the actual transferred byte count is likewise reported back by the application in "*pBufLen".
"PNIO_cbf_rec_read()" is called by the IO stack only for inserted submodules.
Input

PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
PNIO_UINT32 Api Application Process Identifier, specifies a profile
PNIO_UINT16 ArNum AR number

Interface description
4.1 Upper layer interface functions for the application

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

78 Programming and Operating Manual, 10/2020, A5E33638878-AG

PNIO_UINT16 SessionKey Session Key
PNIO_UINT32 SequenceNum Sequence number (gaps in the numbering are possible).

It can be used at the application level for handling multiple quasi-
simultaneous requests.

PNIO_DEV_ADDR* pAddr Pointer to the insertion address (slot/subslot) of the submodule.
"PNIO_ADDR_GEO" must be entered as the type.

PNIO_UINT32 RecordIndex Record index of the data to be read
PNIO_UINT32* pBufLen (only for synchronous operation, has no use with asynchronous

mode)
Pointer to the quantity of record data, in bytes. Here the stack trans-
fers the maximum permitted record data length; the application re-
turns the actual amount that was written. The maximum data length
specified by the stack must not be exceeded under any circum-
stances.

PNIO_UINT8* pBuffer (only for synchronous operation, has no use with asynchronous
mode)
Pointer to where the application must copy the record data that has
been read.

PNIO_ERR_STAT* pPnioState (only for synchronous operation, has no use with asynchronous
mode)
Pointer to 4-byte PNIO status, contains ErrCode, ErrDecode, ErrCode1,
ErrCode2, AddValue 1, AddValue 2 per IEC 61158, see /2/

Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

4.1.8.2 PNIO_cbf_rec_write

PNIO_cbf_rec_write() Function call: IO stack > Application, synchronous
This function is called by the IO stack if the IO controller has sent a write record data request to the device. A record is ad-
dressed by means of SlotNumber - SubslotNumber - Index. The application accepts the record data starting from the ad-
dress assigned with "pBuf". The data length in bytes is passed by the stack in "*pBufLen"; the actual transferred byte count is
likewise reported back by the application in "*pBufLen".
"PNIO_cbf_rec_write()" is called by the IO stack only for inserted submodules.
Input

PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
PNIO_UINT32 Api Application Process Identifier, specifies a profile
PNIO_UINT16 ArNum AR number
PNIO_UINT16 SessionKey Session Key
PNIO_UINT32 SequenceNum Sequence number (gaps in the numbering are possible).

It can be used at the application level for handling multiple quasi-
simultaneous requests.

PNIO_DEV_ADDR* pAddr Pointer to the insertion address (slot/subslot) of the submodule.
"PNIO_ADDR_GEO" must be entered as the type.

PNIO_UINT32 RecordIndex Record index of the data to be read
PNIO_UINT32* pBufLen Pointer to the quantity of record data, in bytes. Here the stack trans-

fers the maximum permitted record data length. In synchronous mode
the application returns the actual amount that was written. The max-
imum data length specified by the stack must not be exceeded
under any circumstances.

PNIO_UINT8* pBuffer Pointer to the record data.
PNIO_ERR_STAT* pPnioState (Only for synchronous operation, has no use with asynchronous

mode)
Pointer to 4-byte PNIO status, contains ErrCode, ErrDecode, ErrCode1,
ErrCode2, AddValue 1, AddValue 2 per IEC 61158, see /2/

 Interface description
 4.1 Upper layer interface functions for the application

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 79

Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

4.1.8.3 PNIO_rec_set_rsp_async

PNIO_rec_set_rsp_asnyc() Function call: Application > IO stack

(may be called only from "PNIO_cbf_rec_read" or
"PNIO_cbf_rec_write")

With this function, called from inside the callback functions "PNIO_cbf_rec_read()" or "PNIO_cbf_rec_write()", the applica-
tion signals that the provision of the data will occur asynchronously.
If "PNIO_rec_set_rsp_async()" is not called, the stack assumes synchronous processing; the interface is thus compatible with
older versions of the development kit.
Input - -
Output PNIO_VOID* return Handle to reference the request later when data is transferred to the

stack

4.1.8.4 PNIO_rec_read_rsp

PNIO_rec_read_rsp Function call: Application > IO stack
In the case of asynchronous mode only, a read record request is completed using "PNIO_rec_read_rsp()". In doing so, the
following is transferred to the stack: the data, the error state, and the length of the data actually read from the submodule.
The function can be called from any user task.
Input

PNIO_VOID* pRqHnd The handle for referencing the request was transferred to the applica-
tion as a return value from the previous call of
"PNIO_rec_set_rsp_async()".

PNIO_UINT8* pDat Pointer to the data provided by the application. In asynchronous mode
the memory for the record data is provided by the application, and not
(as in synchronous mode) by the IO stack.

PNIO_UINT32 NettoDatLength Length of the record data that was actually read from the submodule
PNIO_ERR_STAT* pPnioState Pointer to the data provided; consists of 4-byte PNIO status (contains

ErrCode, ErrDecode, ErrCode1, ErrCode2) as well as 2 bytes each for
AddValue 1 and AddValue 2 according to IEC 61158, see /2/.
In asynchronous mode the memory for the error status data is provid-
ed by the application and not (as in synchronous mode) by the IO
stack.

Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

4.1.8.5 PNIO_rec_write_rsp

PNIO_rec_write_rsp Function call: Application > IO stack
In the case of asynchronous mode, a write record request is completed using "PNIO_rec_write_rsp()". In doing so, the fol-
lowing is transferred to the stack: the error status and the length of the data actually written to the submodule. The func-
tion can be called from any user task.
Input PNIO_VOID* pRqHnd The handle for referencing the request was transferred to the applica-

tion as a return value from the previous call of
"PNIO_rec_set_rsp_async()".

PNIO_UINT32 NettoDatLength Length of the record data that was actually written to the submodule

Interface description
4.1 Upper layer interface functions for the application

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

80 Programming and Operating Manual, 10/2020, A5E33638878-AG

PNIO_rec_write_rsp Function call: Application > IO stack
PNIO_ERR_STAT* pPnioState Pointer to the data provided; consists of 4-byte PNIO status (contains

ErrCode, ErrDecode, ErrCode1, ErrCode2) as well as 2 bytes each for
AddValue 1 and AddValue 2 according to IEC 61158, see /2/.
In asynchronous mode the memory for the error status data is provid-
ed by the application and not (as in synchronous mode) by the IO
stack.

Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

4.1.8.6 PNIO_cbf_substval_out_read

PNIO_cbf_substval_out_read Function call: IO stack -> Application
In order to independently process a read record request to index 0x8028 (read input data) and 0x8029 (read output data)
in the PNIO stack, the stack of the application requires the substitute values set for the outputs for this. These are fetched
from the stack by the application using PNIO_cbf_substval_out_read.
Note: Optionally, the handling of the above-mentioned records can be shifted completely to the application.
For this, #define INCLUDE_REC8028_8029_HANDLING 0 must be set in the iod_cfg2.h file.
 PNIO_cbf_substval_out_read is then no longer called. Instead, record read requests (index 0x8028, 0x8029) are passed to
the application for processing using PNIO_rec_read().
Input PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".

PNIO_DEV_ADDR* pAddr Pointer to the insertion address (slot/subslot) of the submodule.
"PNIO_ADDR_GEO" must be entered as the type.

PNIO_UINT32 BufLen Length of substitute value data in bytes.
PNIO_UINT8* pBuffer Pointer to the data buffer into which the application must copy the

substitute values. The data length specified in "DataLen" must not
be exceeded under any circumstances.

PNIO_UINT16* pSubstMode Pointer to substitution mode; this is pre-assigned by the stack and can
be changed by the application:
0: ZERO, 0 is returned as the substitute value (default)
1: LastValue: The last valid values received by the IOC are output as
substitute values
2: Replacement : The substitute values stored under pBuffer are out-
put.

PNIO_UINT16* pSubstActive This value is pre-assigned by the stack and can be changed by the
application:
0 = Normal operation (default used if IOPS and IOCS = GOOD).
1 = Substitute value output active

Output PNIO_IOXS Iops Status value for the substitute values. The application should enter
GOOD as a return value here.

4.1.8.7 PNIO_cbf_data_read_IOxS_only()

PNIO_cbf_data_read_IOxS_only() Function call: IO stack > Application, synchronous
Update only IOxS for read
Input

PNIO_UINT32 DevHndl Device handle
PNIO_DEV_ADDR * pAddr Geographical or logical address

 PNIO_IOXS Iops Remote provider status
Output PNIO_IOXS return consumer state (of local io device)

 Interface description
 4.1 Upper layer interface functions for the application

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 81

4.1.8.8 PNIO_cbf_data_write_IOxS_only()

PNIO_cbf_data_write_IOxS_only() Function call: IO stack > Application, synchronous
Update only IOxS for write
Input

PNIO_UINT32 DevHndl Device handle
PNIO_DEV_ADDR * pAddr Geographical or logical address

 PNIO_IOXS Iops Remote provider status
Output PNIO_UINT32 return Return local provider state

4.1.9 Cyclic data exchange using standard interface (SI)

4.1.9.1 PNIO_initiate_data_read, PNIO_initiate_data_write

PNIO_initiate_data_read() Function call: Application > IO Stack, synchronous
This function performs one-time exchange of IO output data (data transfer direction: IO controller > device) between the IO
stack and the application for all ARs (RT, IRT). The PN stack reserves a data buffer. The IO stack then calls the
"PNIO_cbf_data_read()" function for all submodules with output data for which an active IO-AR to an IO controller exists.
The application is therein requested to read the relevant IO output data from the IO stack and write it to the outputs of the
submodule. The IO consumer status and IO provider status are also exchanged.
"PNIO_initiate_data_read()" behaves synchronously, which means "PNIO_initiate_data_read()" does not return until after all
"PNIO_cbf_data_read()" calls are called. The updated IO data are sent to the IO controller with the next transfer cycle.
The user does not have to be concerned about buffer handling; the PN stack takes care of this. The user only has to imple-
ment the "PNIO_cbf_data_read()" function. A function body for this is located in the "iodapi_event.c" module..
Data consistency is ensured by locking mechanisms (max. 254 bytes consistent).
Input PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

PNIO_initiate_data_write() Function call: Application > IO Stack, synchronous
This function performs one-time exchange of IO input data (data transfer direction: device > IO controller) between the IO
stack and the application for all ARs (RT, IRT). The PN stack initially reserves a data buffer. The IO stack the calls the
"PNIO_cbf_data_write()" function for all submodules with input data for which an active IO-AR to an IO controller exists. The
application is therein requested to read the relevant IO input data from the submodule and write it to the buffer assigned
by the IO stack. The IO consumer status and IO provider status are also exchanged.
"PNIO_initiate_data_write()" behaves synchronously, which means "PNIO_initiate_data_write()" does not return until after
all "PNIO_cbf_data_write()" calls are called.
The user does not have to be concerned about buffer handling; the PN stack takes care of this. The user only has to imple-
ment the "PNIO_cbf_data_write()" function. A function body for this is located in the "iodapi_event.c" module..
Data consistency is ensured by locking mechanisms (max. 254 bytes consistent).
Input PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

Interface description
4.1 Upper layer interface functions for the application

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

82 Programming and Operating Manual, 10/2020, A5E33638878-AG

4.1.9.2 PNIO_cbf_data_write, PNIO_cbf_data_read

PNIO_cbf_data_write() Function call: IO stack > Application, synchronous
Reads in the physical input data from the submodule and writes it to the buffer specified by the IO stack. The function is
called by the IO stack after the application has initiated a data communication with "PNIO_initiate_data_write()".
The application must read the physical inputs of the submodule inserted in the slot/subslot and copy them to the buffer
address specified by the stack.
Caution: The length specified with "DataLen" must not be exceeded under any circumstances. The user is responsible
for ensuring this.
Input

PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
PNIO_DEV_ADDR* pAddr Pointer to the insertion address (slot/subslot) of the submodule.

"PNIO_ADDR_GEO" must be entered as the type.
PNIO_UINT32 BufLen Length of data, in bytes.
PNIO_UINT8* pBuffer Pointer to data buffer to which the application must copy the IO input

data. The data length specified in "DataLen" must not be exceeded
under any circumstances.

PNIO_IOXS Iocs Remote consumer status, was sent by the IO controller together with
the output data. Currently defined in "iodapi.h": "PNIO_S_GOOD",
"PNIO_S_BAD"; for more information see /1/ and /2/.

Output PNIO_IOXS Iops IO Provider Status. Currently defined in "iodapi.h": "PNIO_S_GOOD",
"PNIO_S_BAD"; for more information see /1/ and /2/.

PNIO_cbf_data_read() Function call: IO stack > Application, synchronous
Writes the IO output data to the physical outputs of the submodule.
The function is called by the IO stack once the application has initiated a data communication with
"PNIO_initiate_data_read()".
The application must read the output data specified in "pData" and output it to the physical outputs of the specified sub-
module. The consumer status is reported back to the stack in the return value of the function. This consumer status is
transmitted to the IO controller in the next cyclic RT message frame and can be evaluated there.
Input

PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
PNIO_DEV_ADDR* pAddr Pointer to the insertion address (slot/subslot) of the submodule.

"PNIO_ADDR_GEO" must be entered as the type.
PNIO_UINT32 BufLen Length of data, in bytes.
PNIO_UINT8* pBuffer Pointer to data buffer from which the application must read the IO

output data.
PNIO_IOXS Iops Remote provider status, was sent by the IO controller together with

the output data. Currently defined in "iodapi.h": "PNIO_S_GOOD",
"PNIO_S_BAD"; for more possible values see /1/ and /2/.

Output PNIO_IOXS Iocs IO Consumer Status. Currently defined in "iodapi.h": "PNIO_S_GOOD",
"PNIO_S_BAD"; for more possible values see /1/ and /2/.

 Interface description
 4.1 Upper layer interface functions for the application

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 83

4.1.9.3 PNIO_get_last_apdu_status

PNIO_get_last_apdu_status() Function call: Application > IO Stack, synchronous
If the application reads output data from the IO controller using the standard interface ("PNIO_initiate_data_read()" func-
tion), the corresponding APDU status is cached in the PN stack. This value can be read from the application using
"PNIO_get_last_apdu_status()".
In addition to various status bits, the APDU status also contains the cycle counter of IO data normalized to the base value of
31.25 μs.
Example: If the cycle counter of two consecutive "PNIO_initiate_data_read ()" calls has changed by the value 64, the time
interval between these IO data is 2 ms (64 x 31.25 μs = 2 ms).
Since the APDU status is AR-specific, the number of the AR must be specified here as the transfer parameter.
Input PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".

PNIO_UINT32 ArNum Number of the AR (1...N)
Output PNIO_UINT32 return Value of the 4-byte long APDU status (see also PNIO specification

/1b/). This contains:
• Byte 0, 1: Cycle Counter (Big Endian format)
• Byte 2: APDU status byte, see define

PNIO_APDU_STATUSBYTE_MASK
• Byte 3: Transfer status

4.1.10 Cyclic data exchange by means of the optional DBA interface

4.1.10.1 Cyclic data exchange by means of the optional DBA interface
As an alternative to the standard callback interface (SCI), IO data and provider/consumer
status can also be exchanged via the Direct Buffer Access (DBA) interface. In this case, the
complete IOCR data block, including IO data, IOPS and IOCS of the submodules, is provided to
the application. The application extracts IO data, IOPS and IOCS for every submodule from
this IOCR. An IOCR is either an input CR (device> IO controller) or output CR (IO controller >
device).

The DBA interface includes the following functions:

PNIO_dbai_enter() Disables the call of PNIO_cbf functions and the write access to

internal AR management data, for example, when canceling AR
PNIO_dbai_buf_lock() Requests an IOCR buffer (either input IOCR or output IOCR)
PNIO_dbai_buf_unlock() Releases a previously allocated IOCR buffer after processing
PNIO_dbai_exit() Releases the stack internal semaphore that was allocated with

"PNIO_dbai_enter()"

For calling "PNIO_dbai_buf_lock()" and for extraction of the IO data and IOPS/IOCS
information from the IOCR, the application needs additional data that is transferred from the
stack to the application when the "PNIO_cbf_ar_ownership_ind()" callback function is called
and must be saved there. They are valid until the AR is terminated again.

Interface description
4.1 Upper layer interface functions for the application

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

84 Programming and Operating Manual, 10/2020, A5E33638878-AG

The following data is transferred when "PNIO_dbai_buf_lock" is called:

• Pointer to the relevant IOCR (application may read from the IOCR pointer contained in
"PNIO_cbf_ar_ownership_ind()", if this is protected with "PNIO_dbai_enter()". Therefore, it
need not retain a copy of this data.)

• Transfer direction of the IOCR (input/output)

The following data is required to access the submodule-specific IO data and IOPS/IOCS of an
input IOCR (data transfer direction device > IO controller):

• Slot number, subslot number of the configured input and output submodules

• IO data location (offset, length) of the configured input submodules

• Location (offset) of the (local) IOPS of the configured input modules

• Location (offset) of the (local) IOCS of the configured output modules

The following data is required to access the submodule-specific IO data and IOPS/IOCS of an
output IOCR (data transfer direction IO controller > device):

• Slot number, subslot number of the configured input and output submodules

• IO data location (offset, length) of the configured output submodules

• Location (offset) of the (local) IOPS of the configured output modules

• Location (offset) of the (remote) IOCS of the configured input modules

For a buffer access to an IOCR (input or output), the application must perform the following
steps:
PNIO_dbai_enter()
Check whether the IOCR is still valid
If valid
 PNIO_dbai_buf_lock()
 Process the buffer
 PNIO_dbai_buf_unlock()
PNIO_dbai_exit()

Several IOCRs can also be processed between the calls for "PNIO_dbai_enter()" and
"PNIO_dbai_exit()", i.e.:
PNIO_dbai_enter()
Check whether the IOCR is still valid
If valid
 PNIO_dbai_buf_lock(input CR)
 Process buffer for input CR
 PNIO_dbai_buf_unlock(input CR)

 PNIO_dbai_buf_lock(output CR)
 Process buffer for output CR
 PNIO_dbai_buf_unlock(output CR)
PNIO_dbai_exit()

 Interface description
 4.1 Upper layer interface functions for the application

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 85

4.1.10.2 PNIO_dbai_enter

PNIO_dbai_enter() Function call: Application > IO Stack, synchronous
This function must be called before "PNIO_dbai_buf_lock()", both to lock the calling of "PNIO_cbf_xxx" callback functions
and to lock the modification of AR management data by the stack. This is necessary so that these data is not deleted due to
a sudden termination of the AR while the application is still accessing them.
By using this lock mechanism, the application can read directly from the pointers that are transferred with the AR Info indi-
cation which remain valid until the termination of the AR.
Input - - -
Output - - -

4.1.10.3 PNIO_dbai_exit

PNIO_dbai_exit() Function call: Application > IO Stack, synchronous
Releases the PNIO stack resources that were locked with "PNIO_dbai_enter()". This function must be called after the buffer
has been released again with "dbai_buf_unlock()".
Note: No "PNIO_cbf_xxx()" callback functions are called by the stack between "PNIO_dbai_enter" and "PNIO_dbai_exit". The
buffer processing by the application should therefore be as brief as possible.
Input - - -
Output - - -

4.1.10.4 PNIO_dbai_buf_lock

PNIO_dbai_buf_lock() Function call: Application > IO Stack, synchronous
Requests an IOCR buffer from the PNIO stack. This buffer contains the current IO data, IOPS, and IOCS of the configured
submodules. The data is transferred using a structure of type "PNIO_BUFFER_LOCK_TYPE". The application receives the input
elements of this structure by means of "PNIO_cbf_ar_ownership_ind()". The pointer to the buffer and the cycle counter
from the ADPU status are transferred as output parameters. This cycle counter can be used with IRT, for example, to deter-
mine the phase in which the IO data is actually transferred when the configured reduction ratio is greater than 1.
Input PNIO_BUFFER_LOCK_T

YPE*
pLock Pointer to structure that contains:

• AR Handle
• Session Key
• Transfer direction ("PNIO_IOCR_TYPE_ENUM" IocrType)
• Offset in the IOCR of the IO data to be locked (with length >

255 bytes, otherwise 0)
• Length of the data to be locked (EB 200P: max. 254 bytes at a

time)
• [out] pBuf pointer to the IOCR buffer
• [out] APDU status, contains the cycle counter (bits 0 to 15)

Output PNIO_UINT32 return "PNIO_OK", "PNIO_NOT_OK"

Interface description
4.1 Upper layer interface functions for the application

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

86 Programming and Operating Manual, 10/2020, A5E33638878-AG

4.1.10.5 PNIO_dbai_buf_unlock

PNIO_dbai_buf_unlock() Function call: Application > IO Stack, synchronous
With this function, a buffer that was requested with "PNIO_dbai_buf_lock()" is returned to the stack after processing by the
application.
Input PNIO_BUFFER_LOCK_T

YPE*
pLock Pointer to same data from "PNIO_dbai_buf_lock"

Output PNIO_UINT32 return "PNIO_OK", "PNIO_NOT_OK"

4.1.11 Receiving events and alarms

4.1.11.1 PNIO_cbf_ar_connect_ind

PNIO_cbf_ar_connect_ind() Function call: IO stack > Application, synchronous
The function signals the application that a new connection has been made to an IO controller.
Input PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".

PNIO_UINT32 ArType See "cm_ar_type_enum" structure, possible values are:
• "CM_AR_TYPE_SINGLE"
• "CM_AR_TYPE_SINGLE_RTC3"
• "CM_AR_TYPE_SINGLE_SYSRED" (currently not implemented)
• "CM_AR_TYPE_SUPERVISOR" (currently not implemented)

PNIO_UINT32 ArNum AR numbers (1 to N)
PNIO_UINT16 SendClock configured Sendclock of the AR
PNIO_UINT16 RedRatioIocrIn configured reduction ratio for all submodules of the input-CR
PNIO_UINT16 RedRatioIocrOut configured reduction ratio for all submodules of the output-CR

Output - - -

 Interface description
 4.1 Upper layer interface functions for the application

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 87

4.1.11.2 PNIO_cbf_ar_ownership_ind

PNIO_cbf_ar_ownership_ind() Function call: IO stack > Application, synchronous
This function is used to inform the application of the specified configuration of the modules/submodules in the configura-
tion. A data structure of type "PNIO_EXP" is passed for this. It contains a list of all configured submodules. The following is
listed for each submodule: The slot (API/slot/subslot), the module and submodule ID, the IO properties (in, out, in-out) as
well as the offsets for the input or output data of the submodule, and their provider and consumer states.
Assumption of the ownership
The submodules of the target configuration must be assigned before the data exchange with the AR, otherwise no valid
data can be exchanged with this submodule via the AR.
If the device application should NOT assume the AR ownership for a submodule (i.e. no valid IO data for this submodule
should be exchanged), the OwnSessionKey element must be set to 0. Otherwise, which means when the application wants
to exchange valid data for this submodule, OwnSessionKey must remain unchanged.
Each subslot can be assigned a maximum of one AR, which means only one AR can assume ownership for a subslot when
there are several ARs. For more ARs, this submodule is then marked as "superordinated locked".
Verification of the target/actual configuration by application
The application must also verify that the target configuration matches the actual configuration. If a wrong submodule is
plugged into a slot/subslot (which means an incompatible submodule that therefore cannot be part of the data exchange),
the element "IsWrongSubmod" = "PNIO_TRUE" must be set in the "PNIO_EXP_SUB" structure. If the correct submodule or a
compatible replacement module has been plugged, however, the value of "IsWrongSubmod" remains unchanged (the de-
fault setting is "PNIO_FALSE").
Input PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".

PNIO_UINT32 ArNum AR numbers (1 to N)
PNIO_EXP* pOwnSub Pointer to data structure that contains a list of all configured submod-

ules and their properties (slot, data type, module/submodule ID, off-
sets of data and IOXS in the IOCR)

Output PNIO_VOID pOwnSub ->
Sub[i].
OwnSessionKey

Session key unchanged: Ownership for submodule is assumed
SessionKey = 0: Ownership declined

PNIO_VOID pOwnSub ->
Sub[i].
IsWrongSubmod

= PNIO_TRUE when an incompatible submodule has been plugged,
and therefore no data exchange is possible
Leave unchanged (PNIO_FALSE) when the correct module (identical
module/submodule ID) or a compatible replacement module has been
plugged so that data exchange is possible.

4.1.11.3 PNIO_cbf_ar_indata_ind

PNIO_cbf_ar_indata_ind() Function call: IO stack > Application, synchronous
By means of an "AR-InData" indication, the stack notifies the application that the cyclic data communication was started,
which means a first IO data frame was received from the IO controller after ApplicationReady.
Input PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".

PNIO_UINT16 ArNum Specifies the AR number (1...N), see also "PNIO_cbf_ar_connect_ind()"
and "PNIO_cbf_ar_ownership_ind()".

PNIO_UINT16 SessionKey Session Key
Output - - -

Interface description
4.1 Upper layer interface functions for the application

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

88 Programming and Operating Manual, 10/2020, A5E33638878-AG

4.1.11.4 PNIO_cbf_ar_disconn_ind

PNIO_cbf_ar_disconn_ind() Function call: IO stack > Application, synchronous
The stack notifies the application that a Disconnect event has occurred. A Disconnect event occurs if an existing connection
is alarmed or explicitly terminated by the IO controller or device.
Input

PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
PNIO_UINT16 ArNum Specifies the AR number (1...N), see also "PNIO_cbf_ar_connect_ind()"

and "PNIO_cbf_ar_ownership_ind()".
PNIO_UINT16 SessionKey Session Key
PNIO_AR_REASON ReasonCode Describes the reason for the termination of the connection; possible

reason codes for a termination are located in the "iodapi.h" file, in the
enum type definition "PNIO_AR_REASON{..}".

Output - - -

4.1.11.5 PNIO_cbf_param_end_ind

PNIO_cbf_param_end_ind() Function call: IO stack > Application, synchronous
The stack notifies the application that the parameter assignment of all modules has been completed. The application
acknowledges this function by returning "PNIO_TRUE". This causes the "ApplicationReady" message to be automatically
transmitted from the stack to the IO controller. In this case, "PNIO_async_appl_rdy()" may not be called by the application.
However, if the application is not yet ready at this time, it can acknowledge with a return value of "PNIO_FALSE". It must
then call the "PNIO_async_appl_rdy()" function itself at a later time.
"PNIO_async_appl_rdy()" may and must only be called for the submodules for which the "PNIO_cbf_param_end_ind()"
function has been completed with the return value "PNIO_SUBMOD_STATE_APPL_RDY_FOLLOWS".
Input PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".

PNIO_UINT16 ArNum Specifies the AR number (1...N), see also "PNIO_cbf_ar_connect_ind()"
and "PNIO_cbf_ar_ownership_ind()".

PNIO_UINT16 SessionKey Session Key
PNIO_UINT32 Api API number (only valid, when SubslotNum is not equal to 0)
PNIO_UINT16 SlotNum Slot number (only valid, when SubslotNum is not equal to 0)
PNIO_UINT16 SubslotNum • == 0: ParamEnd for all modules,

• <> 0: ParamEnd only for the specified module

PNIO_BOOL MoreFollows • "PNIO_TRUE": More "PNIO_cbf_param_end_ind()" calls for addi-
tional subslots follow

• "PNIO_FALSE": This is the last of all "PNIO_cbf_param_end_ind()"
calls

Output PNIO_SUBMOD_ST
ATE

return • "PNIO_SUBMOD_STATE_RUN", if the submodule can supply valid
data

• "PNIO_SUBMOD_STATE_STOP", if the submodule cannot supply
valid data

• "PNIO_SUBMOD_STATE_APPL_RDY_FOLLOWS" if the submodule
startup is not yet complete and this information is passed later to
the stack by "PNIO_async_appl_rdy()".

 Interface description
 4.1 Upper layer interface functions for the application

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 89

4.1.11.6 PNIO_cbf_ready_for_input_update_ind

PNIO_cbf_ready_for_input_update_ind() Function call: IO stack > Application, synchronous
The stack notifies the application that valid input data must be written once to the controller after a connection is estab-
lished or valid input data must be written once after plugging and re-configuring a submodule in operation before "Applica-
tion Ready" is reported to the participating submodules.
For the application, this simply means that the input data must be written once to the controller (with standard interface
(SI) or DBA interface) in this callback function . For example, "PNIO_initiate_data_write()" must be called for this when the SI
is used.
Input

PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
PNIO_UINT16 ArNum Specifies the AR number (1...N), see also "PNIO_cbf_ar_connect_ind()"

and "PNIO_cbf_ar_ownership_ind()".
PNIO_INP_UPDATE
_STATE

InputUpdState Input update status:
• "PNIO_AR_STARTUP":

First input update required after AR connection establishment
• "PNIO_AR_INDATA":

AR is already in data exchange, input update required due a sub-
sequently plugged submodule

Output - - -

4.1.12 Control functions

4.1.12.1 PNIO_set_dev_state

PNIO_set_dev_state() Function call: Application > IO Stack, synchronous
Sets the state of the device to "OPERATE/CLEAR".
The function must be called once during startup to set the device to the "OPERATE" state. A subsequent reset using
PNIO_DEVSTAT_CLEAR causes all IO submodules to remain in the state "superordinated locked", until another call to
PNIO_set_dev_state (OPERATE) is invoked and cancels this state. An ongoing AR is terminated by each call of
PNIO_set_dev_state.
Note: Resetting to CLEAR can signal a critical device error, causing valid IO data no longer to be processed. However, we
recommend that you first check the use of submodule-specific method (i.e., set the IO status of affected submodules to
BAD and generate a diagnostic entry), and only to use PNIO_set_dev_state (PNIO_DEVSTAT_CLEAR) in exceptional cases
when the submodule-specific method is not suitable.
Input PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".

PNIO_UINT32 DevState New status of the device.
Possible values are
• "PNIO_DEVSTAT_OPERATE"
• "PNIO_DEVSTAT_CLEAR"

Output PNIO_UINT32 return • "PNIO_OK":
Request was executed without problems

• "PNIO_NOT_OK":
Error occurred during request execution

Interface description
4.1 Upper layer interface functions for the application

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

90 Programming and Operating Manual, 10/2020, A5E33638878-AG

4.1.12.2 PNIO_device_start

PNIO_device_start() Function call: Application > IO Stack, synchronous
This function activates the device for accepting a connection request from the PROFINET IO-controller. A connection can
only be established after this function has been called.
Input PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
Output PNIO_UINT32 return • "PNIO_OK":

 Request was executed without problems
• "PNIO_NOT_OK":

 Error occurred during request execution

4.1.12.3 PNIO_device_stop

PNIO_device_stop() Function call: Application > IO Stack, synchronous
This function stops all running PROFINET connections. To reactivate the device, call PNIO_device_start () again.
Input PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
Output PNIO_UINT32 return • "PNIO_OK":

 Request was executed without problems
• "PNIO_NOT_OK":

 Error occurred during request execution

4.1.12.4 PNIO_device_ar_abort

PNIO_device_ar_abort () Function call: Application > IO Stack, synchronous
This function aborts a running application relation to a PROFINET controller. As a result, the connection between the IO-
controller and the IO-device is terminated.
Input PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".
 PNIO_UINT16 ArNum Specifies the AR number (1...N), see also

"PNIO_cbf_ar_connect_ind()" and "PNIO_cbf_ar_ownership_ind()".
Output PNIO_UINT32 return • "PNIO_OK":

 Request was executed without problems
• "PNIO_NOT_OK":

 Error occurred during request execution

4.1.13 Hardware comparators for isochronous mode

4.1.13.1 Hardware comparators for isochronous mode
Functions have been implemented for isochronous real-time (IRT), specifically for the
handling of isochronous applications. These functions can control GPIO signals or call callback
functions when events occur during the IO cycle.

 Interface description
 4.1 Upper layer interface functions for the application

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 91

Such events may include:

• A predetermined delay for the start of the cycle

• IO data transfer on the bus stopped (TRANS_END)

The configuration for this is stored in the so-called ISO objects. An ISO object contains the
type of the event (time stamp/TRANS_END), the required parameters, such as delay time or
callback function pointer, as well as ERTEC-internal resources required for the object (timers,
multiplexers, ISRs, GPIOs).

A total of six different time marks and a TRANS_END event can be defined at a given time.
Depending on the configuration of the times, ISRs and GPIOs, more than seven ISO objects
can be activated in total by using multiple ERTEC-internal resources. The absolute number
depends on the configuration.

Sequence context of the user callback function
The callback functions of EVMA events are executed on the interrupt or system level of the
operating system. They are set in the "ecos_bspadapt_ertec.c" file in the system adaptation.
The functions "Bsp_EVMA_ISR()" and "Bsp_EVMA_DSR()" are implemented there for eCos.
They have been installed as eCos ISR or DSR handlers for the corresponding EVMA events.
When an EVMA interrupt event occurs, the operating system first calls the "Bsp_EVMA_ISR()"
function. If the ISR is invoked with Return (CYC_ISR_HANDLED | CYG_ISR_CALL_DSR),
"Bsp_EVMA_DSR()" is also executed. Otherwise, it is not.

The setting which determines whether the user callback function is executed in the ISR or
DSR context, can be simply configured using

#define USER_CONTEXT_ISR 1 or
#define USER_CONTEXT_ISR 0

Additional changes to "Bsp_EVMA_DSR" and "Bsp_EVMA_ISR" by the user are usually
unnecessary.

 Note

The callback functions should be as short as possible due to the high priority class. Keep in
mind the permitted conditions of the operating system when running user code in the ISR or
DSR state. In the DSR state, for example, no pending operating system service calls are
permitted; in the ISR state absolutely no operating system service calls are permitted.

The EVMA functions are primarily intended for isochronous IRT functions, but they can also
be used in RT mode if necessary.

Interface description
4.1 Upper layer interface functions for the application

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

92 Programming and Operating Manual, 10/2020, A5E33638878-AG

4.1.13.2 PNIO_IsoActivateIsrObj

PNIO_IsoActivateIsrObj() Function call: Application > IO Stack, synchronous
Sets a comparator that invokes a callback function at a specified time. The point in time is a programmable delay time for
the start of the cycle (NewCycle).
Input PNIO_VOID

(PNIO_VOID*)
pIsrCbf Callback function that is invoked at the time (NewCycle + Delay-

Tim_ns). The execution level (ISR or DSR) can be set in the system
adaptation.

PNIO_UINT32 DelayTim_ns Specified delay time in ns for the start of the cycle (NewCycle).
Permitted values are 0 ... send clock.
A reduction ratio is ignored.

PNIO_ISO_OBJ_HNDL* pObjHnd The function returns a handle at the given address, which must be
specified when deleting the object using "PNIO_IsoFreeObj()". If no
ISO object can be created, "zero" is returned.

Output PNIO_UINT32 return • "PNIO_OK":
Request was executed without problems

• "PNIO_NOT_OK":
Error occurred during request execution

4.1.13.3 PNIO_IsoActivateGpioObj

PNIO_IsoActivateGpioObj() Function call: Application > IO Stack, synchronous
Sets a comparator, which outputs a pulse at a predetermined GPIO at a specified point in time. The point in time is a pro-
grammable delay time for the start of the cycle (NewCycle). The GPIO is set here to the data direction "output" in the func-
tion in addition to the corresponding alternate function (PNPLL_OUT).
Input PNIO_UINT32 Gpio GPIO number on ERTEC.

GPIO 0 to 7 are permitted.
PNIO_UINT32 DelayTim_ns Specified delay time in ns for the start of the cycle (NewCycle).

Permitted values are 0 ... send clock.
Any configured reduction ratio is ignored.

PNIO_ISO_GPIO_LEVEL
_TYPE

GpioLevelType Specifies whether the output is high or low active. Permitted are
"ISO_GPIO_LOW_ACTIVE", "ISO_GPIO_HIGH_ACTIVE".

PNIO_ISO_OBJ_HNDL* pObjHnd The function returns a handle at the given address, which must be
specified when deleting the object using "PNIO_IsoFreeObj()". If no
ISO object can be created, "zero" is returned.

Output PNIO_UINT32 return • "PNIO_OK":
Request was executed without problems

• "PNIO_NOT_OK":
Error occurred during request execution

 Interface description
 4.1 Upper layer interface functions for the application

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 93

4.1.13.4 PNIO_IsoActivateTransEndObj

PNIO_IsoActivateTransEndObj() Function call: Application > IO Stack, synchronous
Sets a comparator that invokes a callback function after the transfer cycle has ended (TRANS_END event) on the bus. The
point in time is a programmable delay time for the start of the cycle (NewCycle).
Input PNIO_VOID

(PNIO_VOID*)
pIsrCbf Callback function that is invoked at the time (NewCycle + Delay-

Tim_ns). The execution level (ISR or DSR) can be set in the system
adaptation.

PNIO_ISO_OBJ_HNDL* pObjHnd The function returns a handle at the given address, which must be
specified when deleting the object using "PNIO_IsoFreeObj()". If no
ISO object can be created, "zero" is returned.

Output PNIO_UINT32 return • "PNIO_OK":
Request was executed without problems

• "PNIO_NOT_OK":
Error occurred during request execution

4.1.13.5 PNIO_IsoFreeObj

PNIO_IsoFreeObj() Function call: Application > IO Stack, synchronous
Delete a previously generated ISO object.
Note: A GPIO configured with "PNIO_IsoActivateGpioObj()" is not reconfigured. If this GPIO is to be subsequently allocated
to another function, (e.g. as GPIO input), the application must perform this switch itself using "Bsp_SetGpioMode".
Input PNIO_ISO_OBJ_HNDL ObjHnd Object handle, which was previously created by

"PNIO_IsoActivatexxxxx()".
Output PNIO_UINT32 return • "PNIO_OK":

Request was executed without problems
• "PNIO_NOT_OK":

Error occurred during request execution

4.1.13.6 PNIO_IsoObjCheck()

PNIO_IsoObjCheck() Function call: Application > IO Stack, synchronous
Check of Iso object occupation
Input PNIO_ISO_OBJ_HNDL ObjHnd Iso object
Output PNIO_UINT32 return Execution status: "PNIO_OK", "PNIO_NOT_OK"

Interface description
4.1 Upper layer interface functions for the application

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

94 Programming and Operating Manual, 10/2020, A5E33638878-AG

4.1.14 Error handling

4.1.14.1 PNIO_get_last_error

PNIO_get_last_error() Function call: Application > IO Stack, synchronous
Reads the last error that occurred when a "PNIO_xxxx()" function was called and that was signaled by CM in the response
and makes it available to the application. Because most of the functions return only an aggregate error information (OK,
NOT_OK), a detailed error information can be requested here, if required.
If an error occurred, it is stored and kept until a new error occurs. A function call of "PNIO_xxxxx" that completed correctly
and with "PNIO_OK" does not delete the stored error value, which means "PNIO_get_last_error" should only be called if the
previous request was acknowledged with an error, that is a value other than PNIO_OK.
Input - - -
Output PNIO_ERR_ENUM return The possible values are stored in the enum type definition

"PNIO_ERR_ENUM" in the file "pnioerrx.h":
• "PNIO_OK"
• "PNIO_ERR_xxxxxx"

The definition "PNIO_ERR_ENUM" is located in the file "pnioerrx.h".

4.1.14.2 PNIO_Log

PNIO_Log() Function call: IO stack > Application, synchronous
With this function, the stack notifies the application that an error or logging request has taken place. The error class (fatal
error, error, logging, etc.) is communicated as well as a reference to the source file (Package ID, Module ID) and the line
number in the code. The application can, for example, initiate error handling depending on the error class.
Input PNIO_UINT32 DevHndl Device handle created by the stack using "PNIO_device_open()".

PNIO_UINT32 ErrLevel Designates the error class. The logging levels are subdivided into the
following levels:
• "PNIO_LOG_DEACTIVATED"
• "PNIO_LOG_CHAT"
• "PNIO_LOG_CHAT_HIGH"
• "PNIO_LOG_NOTE"
• "PNIO_LOG_NOTE_HIGH"
• "PNIO_LOG_WARNING"
• "PNIO_LOG_WARNING_HIGH"
• "PNIO_LOG_ERROR"
• "PNIO_LOG_ERROR_FATAL"

 Interface description
 4.1 Upper layer interface functions for the application

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 95

PNIO_Log() Function call: IO stack > Application, synchronous
PNIO_UINT32 PackID Designates the packet in which the error occurred.

Defined values are:
• "PNIO_PACKID_ACP"
• "PNIO_PACKID_BSPADAPT"
• "PNIO_PACKID_CLRPC"
• "PNIO_PACKID_CM"
• "PNIO_PACKID_DCP"
• "PNIO_PACKID_EDD"
• "PNIO_PACKID_GSY"
• "PNIO_PACKID_LLDP"
• "PNIO_PACKID_LSAS"
• "PNIO_PACKID_MRP"
• "PNIO_PACKID_NARE"
• "PNIO_PACKID_OHA"
• "PNIO_PACKID_OS"
• "PNIO_PACKID_PNPB"
• "PNIO_PACKID_PNDV"
• "PNIO_PACKID_POF"
• "PNIO_PACKID_SOCK"
• "PNIO_PACKID_TSKMA"
• "PNIO_PACKID_OTHERS"

PNIO_UINT32 ModID Together with PackID, designates the module in which the error oc-
curred. Module ID is unique within a packet.

PNIO_UINT32 LineNum Number of the line in which the error occurred.
Output - - -

4.1.14.3 PNIO_set_iops

PNIO_set_iops() Function call: Application > IO Stack, synchronous
With this function, the application can optionally set the provider status (IOPS) for submodules that have no IO data and
therefore for which an IOPS update as part of cyclic data exchange is not possible. This applies, for example, to the Ethernet
interface and the Ethernet ports, which are modeled via subslot numbers >=0x8000. The set status is transferred to the
controller with the next call of "PNIO_initiate_data_write" and is retained until it is overwritten by another call of
"PNIO_set_iops".
Input PNIO_UINT32 Api API number

PNIO_UINT32 SlotNum Slot number
PNIO_UINT32 SubNum Subslot number
PNIO_UINT8 lops IOPS value to be set ("PNIO_S_GOOD", "PNIO_S_BAD")

Output PNIO_UINT32 return "PNIO_OK," "PNIO_NOT_OK"

Interface description
4.1 Upper layer interface functions for the application

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

96 Programming and Operating Manual, 10/2020, A5E33638878-AG

4.1.15 Other functions

4.1.15.1 PNIO_printf

PNIO_printf() Function call: IO stack > Application, synchronous /

Application > Application, synchronous
Central substitute for a "printf()" function. To allow forwarding of the variable parameters, they are converted into a format
string and an argument list of type "va_list" and then passed to the lower-level and central output function "PNIO_print()".
Input PNIO_INT8* fmt Format string, as in "printf"

... x, y, etc. Variable argument list as in "printf()"
Output - - -

4.1.15.2 PNIO_TrcPrintf

PNIO_TrcPrintf() Function call: IO stack > Application, synchronous /

 Application > Application, synchronous
Central output of messages to "PNIO_print()" or to a circular buffer for later analysis as ASCII characters. To allow them to be
forwarded, variable parameters are converted into format string and an argument list of type "va_list" and then passed to
the lower-level and central output function.
The user can analyze the circular buffer in the debugger or can export it as desired using functions to be implemented by
the user (e.g., via TCP/IP or similar).
Input PNIO_INT8* fmt Format string, as in "printf"

... x, y, etc. Variable argument list as in "printf()"
Output - - -

4.1.15.3 PNIO_get_version

PNIO_get_version() Function call: Application > IO Stack, synchronous
Read the version ID of the Development Package.
Input PNIO_DK_VERSION* pVersion Pointer to a version ID of type "PNIO_VERSION". This function cop-

ies the version to the specified address.
Output PNIO_UINT32 return "PNIO_OK"

 Interface description
 4.2 Lower layer interface functions for the Board support package

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 97

4.2 Lower layer interface functions for the Board support package

4.2.1 BSP functions for all platforms

4.2.1.1 Bsp_Init

Bsp_Init() Function call: IO stack > BSP, synchronous
"Init" function, called by the PNIO stack during startup before the tasks of the PNIO stack have started. The user may add any
necessary initialization for the BSP adaptation interface here.
Input - - -
Output PNIO_UINT32 return "PNIO_OK"

4.2.1.2 Bsp_GetMacAddr

Bsp_GetMacAddr() Function call: IO stack > BSP, synchronous
Reads the local device MAC address of the IO controller
Input PNIO_UINT8* pDevMacAddr Buffer for the MAC address with a length of 6 bytes. The function

subsequently writes the MAC address to the designated buffer.
Output PNIO_UINT32 return "PNIO_OK", "PNIO_NOT_OK"

4.2.1.3 Bsp_GetPortMacAddr

Bsp_GetPortMacAddr() Function call: IO stack > BSP, synchronous
Reads the local port MAC address of the IO controller. In addition to the device MAC address, every port must have its own
port MAC address in PROFINET.
Input PNIO_UINT8* pPortMacAddr Buffer for the MAC address with a length of 6 bytes. The function

subsequently writes the MAC address to the designated buffer.
PNIO_UINT32 PortNum Port number (1…N, N = number of ports) for which the port MAC

address should be read.
Output PNIO_UINT32 return "PNIO_OK", "PNIO_NOT_OK"

4.2.1.4 Bsp_EbSetLed (implementation mandatory for DCP flashing)

Bsp_EbSetLed() Function call: IO stack > BSP, synchronous
Function for toggling between various standard LEDs (if available) on the device. This makes it possible, for example, to
have LEDs, for example, for Maintenance, Error, Run, DCP flashing, etc. directly controlled by the PN stack. The implementa-
tion of DCP flashing (i.e. LED = PNIO_LED_BLINK) is mandatory, the implementation of the other LEDs is optional.
Input PNIO_LEDTYPE Led Specifies the LED number, see enum "PNIO_LEDTYPE" in the file

"bspadapt.h".
PNIO_UINT32 Val 1: LED on, 0: LED off

Output PNIO_UINT32 return "PNIO_OK", "PNIO_NOT_OK"

Interface description
4.2 Lower layer interface functions for the Board support package

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

98 Programming and Operating Manual, 10/2020, A5E33638878-AG

4.2.2 Storage of non-volatile data
The following data (non-volatile data types) must be stored on a PNIO device in non-volatile
memory:

• Device name

• IP suite (IP address, subnet mask, default router address)

• Records of the physical device (PDEV) that have been transferred from the PNIO controller
during the connection phase.

• I&M 1 to 4 (Identification and Maintenance data, see /1/) for at least one subslot,
specifically for DAP or PDEV. Optionally, additional I&M 1 to 4 records are stored for more
submodules.

These NV data types are read from non-volatile memory at the next startup and transferred to
the PROFINET IO stack.

The following functions are available in the PROFINET application example for this:

Bsp_nv_data_clear() Resets all NV data types to factory setting
Bsp_nv_data_store() Saves an NV data type to non-volatile memory
Bsp_nv_data_restore() Reads an NV data type back from non-volatile memory
Bsp_nv_data_memfree Releases the memory that was allocated by Bsp_nv_data_restore

The functions named above are not used by the PROFINET stack itself, but only inside the
application example for the handling of non-volatile data. Users can integrate the NV data
interface into their own software as an example template and then redesign it in a
completely different way.

4.2.2.1 Bsp_nv_data_clear

 Bsp_nv_data_clear() Function call: IO stack > BSP, synchronous
This function is called from the customer application, if all non-volatile data types must be reset to the factory settings. This
function may be directly called in the "PNIO_reset_factory_settings" function, for example, so that it is automatically exe-
cuted when an engineering system requests a reset to factory settings. This function must be implemented by the user.
Input - - -
Output PNIO_UINT32 return "PNIO_OK", "PNIO_NOT_OK"

4.2.2.2 Bsp_nv_data_store

 Bsp_nv_data_store() Function call: IO stack > BSP, synchronous
This function is called by the PNIO stack (within the context of the I&M data) or by the customer application when an NV
data type must be saved in non-volatile memory. This may be, for example, a device name, IP suite, or the sum of all PDEV
records. The data type, the pointer to the data that is to be saved, and the length of the data that is to be saved are includ-
ed. This function must be implemented by the user.
Input PNIO_NVDATA_TY

PE
NvDataType Specifies the NV data type; see enum "PNIO_NVDATA_TYPE"

PNIO_VOID* pMem Pointer to the data that is to be saved
PNIO_UINT32 MemSize Length of data that is to be saved

 Interface description
 4.2 Lower layer interface functions for the Board support package

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 99

 Bsp_nv_data_store() Function call: IO stack > BSP, synchronous
Output PNIO_UINT32 return "PNIO_OK", "PNIO_NOT_OK"

4.2.2.3 Bsp_nv_data_restore

 Bsp_nv_data_restore() Function call: IO stack > BSP, synchronous
This function is called by the PNIO stack (within the I&M data) or by the customer application during startup to read non-
volatile data, such as device name, IP suite, I&M 1...4 and PDEV records, back from NV memory and then transfer them to
the PNIO stack. This function always returns a valid data type. If no valid data is stored in NV memory, the factory settings
are returned.
This function returns a pointer to where it has copied the requested data. Because the calling program does not know the
length of these data in advance (e.g., with PDEV records), the memory is allocated by "Bsp_nv_data_restore()" using "OsAl-
loc". After use it must be released by the calling program (which means by the application) using "Bsp_nv_data_memfree".
Input PNIO_NVDATA_TY

PE
NvDataType Specifies the NV data type; see enum "PNIO_NVDATA_TYPE"

PNIO_VOID** ppMem Pointer to where the data was copied by "Bsp_nv_data_restore".
Memory is automatically allocated by the stack for each call of
"Bsp_nv_data_restore" and released again after use by the calling
program using "Bsp_nv_data_memfree()".

PNIO_UINT32* pMemSize Length of data that is to be saved
Output PNIO_UINT32 return "PNIO_OK", "PNIO_NOT_OK"

4.2.2.4 Bsp_nv_data_memfree

 Bsp_nv_data_memfree() Function call: IO stack > BSP, synchronous
This function must be called to release the data block that was received by calling "Bsp_nv_data_restore()" after it has been
used. This block must not be released with "OsFree()".
Input PNIO_VOID* pMem Pointer to the data that was received from "Bsp_nv_data_restore"
Output PNIO_UINT32 return "PNIO_OK", "PNIO_NOT_OK"

4.2.3 Adaptation of the ERTEC switch interrupts
The switch integrated in the ERTEC 200P or ERTEC 200 has one high-priority and one low-
priority interrupt, which must be connected to the PROFINET IO stack. The interrupts must be
adapted to the interrupt handler through operating system functions. The stack calls the
"Bsp_ErtecSwiIntConnect()" function for this.

To bind the handlers listed above to the interrupts, the stack calls the following interrupt
connect function which must be implemented by the user:

Bsp_ErtecSwiIntConnect() Function call: IO stack > BSP, synchronous
This function connects an interrupt handler to each high-priority and low-priority switch interrupt of the ERTEC. The func-
tion is called by the PROFINET IO stack. The function should be left unchanged.
Input PNIO_CBF_ERTEC_

SWI_INT_H
pErtecSwiIntH Address of the interrupt handler for the high-priority switch interrupt.

The pointer is of the type "PNIO_CBF_ERTEC_SWI_INT_H".
PNIO_CBF_ERTEC_
SWI_INT_L

pErtecSwiIntL Address of the interrupt handler for the low-priority switch interrupt.
The pointer is of the type "PNIO_CBF_ERTEC_SWI_INT_L".

Interface description
4.2 Lower layer interface functions for the Board support package

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

100 Programming and Operating Manual, 10/2020, A5E33638878-AG

Bsp_ErtecSwiIntConnect() Function call: IO stack > BSP, synchronous
Output PNIO_UINT32 return "PNIO_OK", "PNIO_NOT_OK"

4.2.4 GPIO connection

4.2.4.1 Bsp_ReadGPIOin_0_to_31

 Bsp_ReadGPIOin_0_to_31() Function call: Application > BSP, synchronous
Reads the values of GPIOs 0 ... 31 and makes them available in the 32-bit return value.
Input - - -

- - -
Output PNIO_UINT32 return Values of GPIOs 0 ... 31, bit-coded (GPIO0 in bit 0, GPIO1 in bit 1,

etc.).

4.2.4.2 Bsp_SetGPIOout_0_to_31

Bsp_SetGPIOout_0_to_31() Function call: Application > BSP, synchronous
Sets the values of GPIOs 0 ... 31 to "1". A bit mask can be used to select which GPIOs should be set and which should remain
unchanged.
Input PNIO_UINT32 OutMsk Bit-coded mask for the GPIOs 0 ... 31. This specifies whether each

GPIO should be set or remain unchanged.
• Bit = 1: GPIO is set
• Bit = 0: GPIO remains unchanged

Output - - -

4.2.4.3 Bsp_ClearGPIOout_0_to_31

Bsp_ClearGPIOout_0_to_31() Function call: Application > BSP, synchronous
Sets the values of GPIOs 0 ... 31 to "0". A bit mask can be used to select which GPIOs should be reset and which should re-
main unchanged.
Input PNIO_UINT32 OutMsk Bit-coded mask for the GPIOs 0 ... 31. This specifies whether each

GPIO should be reset or remain unchanged.
• Bit = 1: GPIO is reset
• Bit = 0: GPIO remains unchanged

Output - - -

 Interface description
 4.2 Lower layer interface functions for the Board support package

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 101

4.2.5 The generic flash interface

4.2.5.1 The generic flash interface
The generic flash interface provides basic software functions to erase and program a flash.
On the ERTEC 200P evaluation kit these flash functions work in 2 different use cases:

• Firmware and non-volatile data are stored in NOR flash (16 or 32 bit)

• Firmware and non-volatile data are stored in an SPI flash. In this case no NOR flash is
present.

On the ERTEC 200 evaluation kit these flash functions work on NOR flash only.

The following figure shows the structure of this interface:

The generic Flash driver selects automatically the correct flash. If the system has booted from
SPI flash, it sets up on the SPI flash driver, otherwise on the NOR Flash driver.

4.2.5.2 OsFlashInit

OsFlashInit () Function call: IO stack > BSP, synchronous
Initializes the generic flash driver
Input PNIO_UINT32 FlashSize Size of the flash in number of bytes
Output PNIO_UINT32 return PNIO_OK, PNIO_NOT_OK

Interface description
4.2 Lower layer interface functions for the Board support package

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

102 Programming and Operating Manual, 10/2020, A5E33638878-AG

4.2.5.3 OsFlashErase

OsFlashErase () Function call: IO stack > BSP, synchronous
Erases a specified number of bytes inside the flash. Start address and size of the block may be any, the driver itself considers
the affected flash sectors.
Input PNIO_UINT32 FlashStartOffset Byte offset inside the flash, where the block to erase starts.

PNIO_UINT32 DataSize Size of the block to erase (number of bytes)
PNIO_UINT32* pError FLASH_ERRNUM_OK (0) or error number of the lower layer driver (if

available)
Output PNIO_UINT32 return PNIO_OK, PNIO_NOT_OK

4.2.5.4 OsFlashProgram

OsFlashProgram () Function call: IO stack > BSP, synchronous
Programs a specified number of bytes inside the flash. Start address and size of the block may be any, the driver itself con-
siders the affected flash sectors.
Input PNIO_UINT32 FlashStartOffset Byte offset inside the flash, specify the begin of the block to write

PNIO_UINT32 pMemSrc8 Pointer to the source data, that have to be programmed into flash
PNIO_UINT32 DataSize Number of bytes to program
PNIO_UINT32* pError FLASH_ERRNUM_OK (0) or error number of the lower layer driver (if

available)
Output PNIO_UINT32 return PNIO_OK, PNIO_NOT_OK

4.2.5.5 OsFlashRead

OsFlashRead () Function call: IO stack > BSP, synchronous
Reads a specified number of bytes from the flash and copies them to the destination block in RAM.
Input PNIO_UINT32 FlashStartOffset Byte offset inside the flash, specify the begin of the block to write

PNIO_UINT32 pMemDst8 Pointer to the destination blockoutside the flash
PNIO_UINT32 DataSize Number of bytes to read
PNIO_UINT32* pError FLASH_ERRNUM_OK (0) or error number of the lower layer driver (if

available)
Output PNIO_UINT32 return PNIO_OK, PNIO_NOT_OK

4.2.6 SPI flash interface
The SPI flash driver is used by the generic Flash driver, if the system has booted from SPI
flash. The SPI flash driver is usable for the following SPI flash types:

• Adesto AT45DB321E 32Mbit

• Winbond W25q64FV 64Mbit

 Interface description
 4.2 Lower layer interface functions for the Board support package

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 103

4.2.6.1 spi_flash_init

spi_flash_init() Function call: Application > BSP, synchronous
Initializes SPI and evaluates the flash type.
Input - - -

- - -
Output - - -

4.2.6.2 spi_flash_program

spi_flash_program () Function call: Application > BSP, synchronous
Writes data to SPI flash
Input unsigned int flash_strt_addr Destination buffer, byte offset in SPI flash

unsigned char* transmit_addr Pointer to source data, that shall be written to flash
signed int data_size Number of bytes to write
unsigned int * pError Pointer to error return value from the lower layer flash routine (if

available)
Output int return 0: OK, 1: Error

4.2.6.3 spi_flash_read

spi_flash_read() Function call: Application > BSP, synchronous
Reads data from SPI flash
unsigned
int

flash_strt_addr Source buffer, byte
offset in SPI flash

unsigned char* receive_addr Pointer to data destination
signed int data_size Number of bytes to read
unsigned int * pError Pointer to error return value from the lower layer flash routine (if

available)
int return 0: Error, else num-

ber of read bytes

4.2.6.4 spi_flash_erase

spi_flash_erase() Function call: Application > BSP, synchronous
Dummy function for compatibility with firmware update process.
Note: The SPI flash write function already cares about erasing, so there is no need for implementation.
Input unsigned int flash_strt_addr Dummy

signed int data_size Dummy
unsigned int * pError 0

Output int return 0

Interface description
4.2 Lower layer interface functions for the Board support package

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

104 Programming and Operating Manual, 10/2020, A5E33638878-AG

4.2.6.5 spi_flash_chip_erase

spi_flash_chip_erase() Function call: Application > BSP, synchronous
Erases the complete SPI flash
Input - - -

- - -
Output int return 0

4.2.6.6 spi_flash_erase_verify

spi_flash_erase_erify() Function call: Application > BSP, synchronous
Dummy function for compatibility with firmware update process.
Input unsigned int flash_strt_addr dummy

signed int data_size dummy
Output int return 0

4.2.6.7 spi_flash_verify

spi_flash_verify() Function call: Application > BSP, synchronous
Compares data in buffer with data in SPI flash
Input unsigned int pFlash First buffer inside SPI flash to compare, byte offset in SPI flash

unsigned char* pBuf Second buffer outside SPI flash to compare, pointer to data buffer
int BufSize Number of bytes to verify

Output int return PNIO_OK, PNIO_NOT_OK

4.2.7 Hardware watchdog
The HW watchdog interface is implemented as set of functions, to configure enable, disable
and trigger the hardware watchdog of the ERTEC 200P. Triggering the HW watchdog is in
responsibility of the user application. The PROFINET stack itself does not trigger the hardware
watchdog.

4.2.7.1 Bsp_hw_watchdog_init

Bsp_hw_watchdog_init() Function call: Application > BSP, synchronous
Initialization of the HW watchdog and configuring the watchdog elapse time.

 Interface description
 4.2 Lower layer interface functions for the Board support package

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 105

Input unsigned int wd_time Time factor. The formula for the watchdog elapse time is

elapse time = wd_time * wd_granity

BSP_WD_GRANITY wd_granity Time base for evaluating the watchdog elapse times. Values are
BSP_WD_100MS,
BSP_WD_10MS,
BSP_WD_1MS,
BSP_WD_100US

Output -- --

4.2.7.2 Bsp_hw_watchdog_start

Bsp_hw_watchdog_start() Function call: Application > BSP, synchronous
Activation of the hardware watchdog. After activation the watchdog has to be triggered cyclically by calling
Bsp_hw_watchdog_trigger. If the trigger is missing for a time period greater than the configured elapse time, a hardware
reset is executed.
Input -- --
Output -- --

4.2.7.3 Bsp_hw_watchdog_stop

Bsp_hw_watchdog_stop() Function call: Application > BSP, synchronous
This function deactivates the HW watchdog, that has been activated before by calling Bsp_hw_watchdog_start.
Input -- --
Output -- --

4.2.7.4 Bsp_hw_watchdog_trigger (void)

Bsp_hw_watchdog_() Function call: Application > BSP, synchronous
After activation of the watchdog with function Bsp_hw_watchdog_start() it has to be triggered cyclically by calling
Bsp_hw_watchdog_trigger. If the trigger is missing for a time period greater than the configured elapse time, a hardware
reset is executed.
Input -- --
Output -- --

Interface description
4.3 Interface to the operating system

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

106 Programming and Operating Manual, 10/2020, A5E33638878-AG

4.3 Interface to the operating system

4.3.1 Interface to the operating system
The following interface functions abstract a specific operating system interface. They must be
adapted by the user to the particular operating system. In many cases, the call can be directly
mapped onto an operating system call. All operating system abstraction functions are
implemented in the "xxx_OS.C" module. All required interface definitions and defines for this
are included in "OS.H".

4.3.2 Managing resources
The management and referencing of resources is often designed very differently in operating
systems. For example, some return a pointer as a reference to a resource, such as a thread,
mailbox, etc., while others return an arbitrary index. For this reason, a few indices are
generated in the OS abstraction interface so that the actual operating system references are
transparent to the application. The generated IDs are in a consecutive range from 0 to N such
that the created ID can be used directly as a reference to the internal management block,
enabling simple and fast access.

4.3.3 Description of the OS functions to be ported

4.3.3.1 OsInit()

OsInit() Function call: IO stack > Operating system
This function is called once during startup of the IO stack to initialize the operating system abstraction interface. "OsInit()"
must finish before any of the other "Osxxx" functions is called.
Input - - -
Output PNIO_UINT32 return "PNIO_OK", "PNIO_NOT_OK"

4.3.3.2 OsAllocFX()

OsAllocFX() Function call: IO stack > Operating system
Allocation function for dynamic memory. The memory is not pre-assigned.
Input PNIO_VOID** ppMem Pointer to which the address of the allocated memory is to be written

PNIO_UINT32 Length Length of the memory in bytes

 Interface description
 4.3 Interface to the operating system

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 107

OsAllocFX() Function call: IO stack > Operating system
PNIO_UINT32 PoolID Various pools can be (optionally) specified for runtime optimization.

Possible defines are:
• "MEMPOOL_DEFAULT"
• "MEMPOOL_FAST"
• "MEMPOOL_CACHED"
• "MEMPOOL_UNCACHED"
• "MEMPOOL_RX_TX_BUF"
Note: All of the pools listed above may be cached in the system adap-
tation of the user example. "MEMPOOL_UNCACHED" and
"MEMPOOL_RX_TX_BUF" are currently not used.

Output PNIO_UINT32 return "PNIO_OK", "PNIO_NOT_OK"

4.3.3.3 OsFreeX()

OsFreeX() Function call: IO stack > Operating system
Releases allocated memory. Here the same pool must be specified that was used for the allocation.
Note: The "OsFree()" function is based on "OsFreeX()" and can be used without modification.
Input PNIO_VOID* pMem Address of the allocated memory

PNIO_UINT32 PoolID Pool ID that was used during allocation
Output PNIO_UINT32 return "LSA_OK", "LSA_NOT_OK"

4.3.3.4 OsAllocTimer()

OsAllocTimer() Function call: IO stack > Operating system
Assigns a timer. The timer can be configured as a cyclic timer or one-shot timer.
When the timer expires, the specified callback function is called. The timer can be started with "OsStartTimer()". Upon expi-
ration, the Timer ID and a User ID are transferred as parameters to the callback function. The User ID is specified in
"OsTimerStart()".
Input PNIO_UINT16* timer_id_ptr Address as of which the Timer ID is stored as a return parameter

PNIO_UINT16 timer_type Timer type (cyclic timer or one-shot timer). Possible values are:
• "LSA_TIMER_TYPE_ONE_SHOT"
• "LSA_TIMER_TYPE_CYCLIC"

PNIO_UINT16 timer_base Time base for the timer. Possible values are:
• "LSA_TIME_BASE_1MS"
• "LSA_TIME_BASE_10MS"
• "LSA_TIME_BASE_100MS"
• "LSA_TIME_BASE_1S"

PNIO_VOID* callback_timeout Callback function that is called when the timer expires. Transfer pa-
rameters for this are Timer ID and User ID. The Timer ID is assigned by
the stack in "OsAllocTimer()"; the User ID can be selected by the user.

Output PNIO_UINT32 return "LSA_OK", "LSA_RET_ERR_PARAM"

Interface description
4.3 Interface to the operating system

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

108 Programming and Operating Manual, 10/2020, A5E33638878-AG

4.3.3.5 OsStartTimer()

OsStartTimer() Function call: IO stack > Operating system
Input PNIO_UINT16 timer_id Reference to the timer to be started; was generated in "OsAl-

locTimer()" and is a transfer parameter of the callback function
that is called when the timer expires.

PNIO_UINT32 user_id User ID that can be assigned by the user; is likewise a transfer
parameter of the callback function

PNIO_UINT16 delay Determines the runtime of the timer; refers to the time base speci-
fied in "OsAllocTimer()". Example: With a time base of 10 ms and a
specified delay of 5, the callback function would be called after 50
ms.

Output PNIO_UINT32 return • "LSA_OK":
OK, timer was started

• "LSA_RET_ERR_PARAM":
Parameter assignment error

4.3.3.6 OsStopTimer()

OsStopTimer() Function call: IO stack > Operating system
Stops a running timer.
Input PNIO_UINT16 timer_id Reference to the timer
Output PNIO_UINT32 return • "LSA_OK":

OK, timer was stopped
• "LSA_RET_ERR_PARAM":

Parameter assignment error

4.3.3.7 OsFreeTimer()

OsFreeTimer() Function call: IO stack > Operating system
Releases a timer that was allocated with "OsAllocTimer".
Input PNIO_UINT16 timer_id Reference to the timer
Output PNIO_UINT32 return "LSA_OK", "LSA_RET_ERR_TIMER_IS_RUNNING"

4.3.3.8 OsEnterX()

OsEnterX() Function call: IO stack > Operating system
Assigns a mutex. A maximum of "MAXNUM_OF_NAMED_MUTEXES" can be assigned, which are managed by "xxx_os.c".
Input PNIO_UINT32 MutexId Identifier for the mutex. Possible values are:

• 0…. (MAXNUM_OF_NAMED_MUTEXES - 1)

Output - -

 Interface description
 4.3 Interface to the operating system

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 109

4.3.3.9 OsExitX

OsExit() Function call: IO stack > Operating system
Releases an assigned mutex.
Input PNIO_UINT32 MutexId Identifier for the mutex. Possible values are:

• 0…. (MAXNUM_OF_NAMED_MUTEXES - 1)

Output - - -

4.3.3.10 OsEnterShort

OsEnterShort() Function call: IO stack > Operating system
Note: Not used on ERTEC platforms; only for EDDS.
Input - - -
Output - - -

4.3.3.11 OsExitShort

OsExitShort() Function call: IO stack > Operating system
Note: Not used on ERTEC platforms; only for EDDS.
Input - - -
Output - - -

4.3.3.12 OsAllocSemB

OsAllocSemB() Function call: IO stack > Operating system
Generates a binary semaphore. The semaphore must be empty in its initial state.
Input PNIO_UINT32* pSemId Pointer as of which the semaphore ID is returned.
Output PNIO_UINT32 return "PNIO_OK", "PNIO_NOT_OK"

4.3.3.13 OsFreeSemB

OsFreeSemB() Function call: IO stack > Operating system
Deletes a semaphore that was previously created by "OsAllocSemB()".
Input PNIO_UINT32 SemId Semaphore ID that was created by "OsAllocSemB()".
Output PNIO_UINT32 return "PNIO_OK", "PNIO_NOT_OK"

Interface description
4.3 Interface to the operating system

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

110 Programming and Operating Manual, 10/2020, A5E33638878-AG

4.3.3.14 OsTakeSemB

OsTakeSemB() Function call: IO stack > Operating system
Occupies a binary semaphore. If the semaphore has already been occupied, the function is blocking.
Input PNIO_UINT32 SemId Semaphore ID that was created by "OsAllocSemB()".
Output PNIO_UINT32 return "PNIO_OK", "PNIO_NOT_OK"

4.3.3.15 OsGiveSemB

OsGiveSemB() Function call: IO stack > Operating system
Releases a semaphore that was occupied "OsTakeSemB()".
Input PNIO_UINT32 SemId Semaphore ID that was created by "OsAllocSemB()".
Output PNIO_UINT32 return "PNIO_OK", "PNIO_NOT_OK"

4.3.3.16 OsSetThreadPrio

OsSetThreadPrio() Function call: IO stack > Operating system
Note: Not used on ERTEC platforms; only available for DK_SW with EDDS.
Changes the task priority. This causes the thread priority of the EDD low context thread to be temporarily increased in the
IO stack to prevent it from being interrupted by the EDD high context thread.
"OsSetThreadPrio" is used for this purpose in the output macros "EDD_ENTER_HIGH" and "EDD_EXIT_HIGH". The priority of
the task is temporarily increased there to "TASK_PRIO_HIGHEST".
Input PNIO_UINT32 ThreadId ID of the thread, the priority of which is to be changed.

PNIO_UINT32 NewThreadPrio New priority value to be set
Output PNIO_UINT32 return "LSA_OK", "LSA_NOT_OK"

 Note

Synchronization of the EDDS High Thread and EDDS Low Thread is provided via
"OsSetThreadPrio()", so that the EDDS Low Context cannot be interrupted by the EDDS High
Context. The high thread, on the other hand, cannot be interrupted by the low thread
because of its higher start priority.

4.3.3.17 OsCreateThread

OsCreateThread() Function call: IO stack > Operating system
Creates a thread (task). All tasks run in the same address space.
Input PNIO_VOID* pThreadEntry Entry address for the task.

PNIO_UINT8* pThreadName Specification of a name for the thread. This name is intended for
debugging purposes only and can be omitted if the operating system
does not support debugging.

 Interface description
 4.3 Interface to the operating system

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 111

OsCreateThread() Function call: IO stack > Operating system
PNIO_UINT32 ThreadPrio Priority of task.

Note: The priorities of the tasks of the IO stack are set in the
"os_cfg.h" file.

PNIO_UINT32* pThreadId The address of the returned thread ID is specified here.
Output PNIO_UINT32 return "LSA_OK", "LSA_NOT_OK"

4.3.3.18 OsStartThread

OsStartThread() Function call: IO stack > Operating system
Starts the thread created by "OsCreateThread()".
Note: For some operating systems, the thread is automatically started with the Create call; in others, an additional start call
is required. For standardization, the model used here provides an extra start call. If, for example, the operating system starts
the task automatically, the task can be held in a waiting state using a Wait flag until "OsStartThread()" is executed.
Input PNIO_UINT32 ThreadId Thread ID; was transferred as a return parameter in "OsCre-

ateThread()"
Output PNIO_UINT32 return "LSA_OK", "LSA_NOT_OK"

4.3.3.19 OsWaitOnEnable()

OsWaitOnEnable() Function call: IO stack > Operating system
This function enables a created task to be kept in a waiting state until an "OsStartThread()" is executed. "OsWaitOnEnable()"
should thus be executed as the first call in a created task.
Input - - -
Output PNIO_UINT32 return "LSA_OK", "LSA_NOT_OK"

4.3.3.20 OsGetThreadId()

OsGetThreadId() Function call: IO stack > Operating system
Reads the Thread ID for the current task.
It does not directly return the Thread ID that was provided by the operating system, but rather a reference (table index) that
is generated by the OS package. For tasks that are unknown to the OS, the value of "TskIdPost" is returned.
Note: In the context of the LSA timer, "OsGetThreadId()" can also be called by system tasks or ISRs, depending on the im-
plementation of the OS timer functions. In such cases, no Thread ID would have been assigned by the OS, because system
tasks or ISRs are certainly not created by "OsCreateThread". For users, this simply means that they have to return the Thread
ID of the post thread (TskIdPost) as a dummy Thread ID.
Input - - -
Output PNIO_UINT32 return Thread ID of the current task. For unknown threads, which means

threads that were not created by "OsCreateThread()", the value of
"TskIdPost" must be returned.

Interface description
4.3 Interface to the operating system

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

112 Programming and Operating Manual, 10/2020, A5E33638878-AG

4.3.3.21 OsCreateMsgQueue()

OsCreateMsgQueue() Function call: IO stack > Operating system
Creates a message queue. Here a message queue is always retentively assigned to a thread. At most one message queue
may be assigned to a thread.
Each message contains 2 pointers as data. Thus, for a pointer width of 4 bytes, a message is 8 bytes in length. The reason
for this is that the "OsCreateMsgQueue" function in the system adaptation of the IO stack is frequently used to call a func-
tion in a different thread context.
Example: To call the "fx (pData)" function in the thread context "Thread_1", "OsSendMessageX (Thread_1, fx, pdata,
OS_MBX_PRIO_NORM)" is called.
Input PNIO_UINT32 ThreadId ID of the thread to which the message queue is to be assigned.
Output PNIO_UINT32 return • "LSA_OK":

Message queue could be assigned
• "LSA_NOT_OK":

Error occurred.

4.3.3.22 OsWait_ms()

OsWait_ms() Function call: IO stack > Operating system
Waits a specified time.
Input PNIO_UINT32 PauseTime_ms Wait time in milliseconds.
Output - - -

4.3.3.23 OsGetTime_us()

OsGetTime_us() Function call: IO stack > Operating system
Reads the current time, in microseconds, since the last system start.
Input - - -
Output PNIO_UINT32 return Current time in microseconds.

4.3.3.24 OsGetUnixTime()

OsGetUnixTime() Function call: IO stack > Operating system
Reads the current time, in seconds. The number of seconds since the system start are indicated here.
Input - - -
Output PNIO_UINT32 return Current time in seconds.

 Interface description
 4.3 Interface to the operating system

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 113

4.3.3.25 OsReadMessageBlocked()

OsReadMessageBlocked() Function call: IO stack > Operating system
This function performs blocked reading of a 4-byte long message for the specified thread that was sent by "OsSendMes-
sage()". The message contains one pointer. The thread ID is required as management information to optimize performance
during operation. Thus, every thread should read its Thread ID once with "OsGetThreadId()" and remember it.
Note: As of version 3.0.0 of the development kit, the time critical communication internal to the stack has been converted
from 8-byte to 4-byte messages. This was also done to set up in a time-optimized manner on operating systems that only
support 4-byte messages instead of 8-byte messages.
Input PNIO_VOID** ppMessage PtrPtr to the message

PNIO_UINT32 ThreadId ID of the receiving thread (and thus this thread's own ID)
Output PNIO_UINT32 return "LSA_OK", "LSA_NOT_OK"

4.3.3.26 OsReadMessageBlockedX()

OsReadMessageBlockedX() Function call: IO stack > Operating system
This function performs blocked reading of a 8-byte long message for the specified thread that was sent by "OsSendMes-
sageX()". The message always contains 2 pointers. The thread ID is required as management information to optimize per-
formance during operation. Thus, every thread should read its Thread ID once with "OsGetThreadId()" and remember it.
Input PNIO_VOID** ppMessage1 PtrPtr to Message1

PNIO_VOID** ppMessage2 PtrPtr to Message2
PNIO_UINT32 ThreadId ID of the receiving thread (and thus this thread's own ID)

Output PNIO_UINT32 return "LSA_OK", "LSA_NOT_OK"

4.3.3.27 OsSendMessage()

OsSendMessage() Function call: IO stack > Operating system
This function sends a message with only one pointer (instead of two). On the receiving end, the message is received with
"OsReadMessageBlocked()".
Input PNIO_UINT32 ThreadId ID of the receiver thread

PNIO_VOID* pMessage Pointer to the actual message
PNIO_UINT32 MsgPrio A priority can be assigned to the message. Within the system imple-

mentation of the PNIO thread, all messages have the same priority.
However, the parameter can be used in the context of adapting the
IO stack to a specific platform if it is advantageous to do so.

Output PNIO_UINT32 return "LSA_OK", "LSA_NOT_OK"

Interface description
4.3 Interface to the operating system

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

114 Programming and Operating Manual, 10/2020, A5E33638878-AG

4.3.3.28 OsSendMessageX()

OsSendMessageX() Function call: IO stack > Operating system
An extended "OsSendMessage" function: Sends a message with 2 pointers. On the receiving end, the message is received
with "OsReadMessageBlockedX()".
This enables 2 separate messages to be transmitted with a single "OsSendMessageX()" call. For the rationale, see the de-
scription of the "OsCreateMsgQueue()" function.
Input PNIO_UINT32 ThreadId ID of the receiver thread

PNIO_VOID* pMessage1 Pointer to actual message 1
PNIO_VOID* pMessage2 Pointer to actual message 2
PNIO_UINT32 MsgPrio A priority can be assigned to the message. Within the system imple-

mentation of the PNIO thread, all messages have the same priority.
However, the parameter can be used in the context of adapting the
IO stack to a specific platform if it is advantageous to do so.

Output PNIO_UINT32 return "LSA_OK", "LSA_NOT_OK"

4.3.3.29 __InterlockedDecrement()

__InterlockedDecrement() Function call: IO stack > Operating system
Decrement a long value under interrupt lock.
Input PNIO_INT32 pVal Address of the value to decrement
Output PNIO_INT32* pVal The value from the specified address is decremented.

PNIO_INT32 return In addition, the result ("*pVal") is also sent as a return value.

4.3.3.30 __InterlockedIncrement()

__InterlockedIncrement() Function call: IO stack > Operating system
Increment a long value under interrupt lock.
Input PNIO_INT32 pVal Address of the value to increment
Output PNIO_INT32* pVal The value from the specified address is incremented.

 PNIO_INT32 return In addition, the result ("*pVal") is also sent as a return value.

4.3.3.31 OsIntDisable()

OsIntDisable() Function call: IO stack > Operating system
Locks the interrupts of the system.
Input - - -
Output - - -

 Interface description
 4.3 Interface to the operating system

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 115

4.3.3.32 OsIntEnable()

OsIntEnable() Function call: IO stack > Operating system
Releases the interrupts of the system.
Input - - -
Output - - -

4.3.4 Encapsulation of standard library function calls
In order to achieve the greatest possible degree of platform independence, no standard
library functions are directly called in the PNIO stack. Instead, they are accessed via the OS
abstraction interface. Consequently, the associated standard library header files should only
be included in a few of the modules of the Development Package.

Calls of the abstraction interface are generally routed unchanged to the standard library so
that a detailed description of these functions is not necessary.

The following functions of the OS interface were defined for this purpose:

• OsAtoi

• OsHtons, OsHtonl

• OsNtohs, OsNtohl

• OsMemCpy

• OsMemMove

• OsMemSet

• OsMemCmp

• OsStrCmp

• OsStrnCmp

• OsStrCpy

• OsStrnCpy

• OsStrChr

• OsStrLen

• OsRand

• OsSrand

The functions listed above can as a rule be used without modification, because they are
supported in the same way by almost all platforms.

Additional functions not listed here, that are contained in "xx_OS.C", can likewise be used
without modification because they do not directly access operating system functions. Thus,
for example, "OsAlloc()" is redirected to "OsAllocX()" with "PoolId=DEFAULT" and does not
have be adapted.

Interface description
4.4 Important notes and limitations

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

116 Programming and Operating Manual, 10/2020, A5E33638878-AG

4.3.5 OS functions called by the application example
In order to achieve the greatest possible degree of platform independence, platform-specific
calls by the application example were also integrated into the OS abstraction layer "xx_os.c"
("xx" stands for the platform name).

The functions described in this section are not called by the PROFINET IO stack itself, but
rather only by the application example.

• "OsGetChar" reads an ASCII character from the standard console

• "OsKeyScan32" reads a 32-bit numeric value from the standard console

• "OsReboot" performs a system restart

4.4 Important notes and limitations

4.4.1 Number of IO devices
• The present implementation of the system adaptation allows only one device instance.

Multidevice functionality is not implemented in the system adaptation.

4.4.2 Number of modules and submodules
• The total number of modules and submodules and the maximum values for slot and

subslot numbers are defined in the "iod_cfg2.h" file in the
"(...)\pn_ioddevkits\src\source\sysadapt1\cfg" subdirectory.

• Gaps are permitted in the sequence of slot numbers and subslot numbers. Thus, the full
specification as defined in the value range of the PNIO slot and subslot numbers is usable
whereas the maximum number of submodules is limited.

4.4.3 Maximum amount of user data for a device
• The maximum amount of process data is determined by the maximum frame size

(1440 bytes net) and the number of physical subslots with input or output data (a
parameter in the GSD file). The maximum data length in bytes is:

• Maximum number of input bytes = MaxInputLength - 4 - (number of input subslots) –
(number of output subslots)

• Maximum number of output bytes = MaxOutputLength - 4 - (number of input subslots) –
(number of output subslots)

• A submodule containing both input and output data is therefore counted as both an input
subslot as well as an output subslot.

• "MaxInputLength" and "MaxOutputLength" are attributes in the GSD file. Both values
should be set to 1440 bytes for ERTEC 200P (ERTEC 200: max 256 bytes), for example.

 Interface description
 4.4 Important notes and limitations

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 117

4.4.4 Functional limitations
The following functions are not included in the current version:

• Takeover of modules by a supervisor

• Multicast communication

• RT over UDP

• Shared input

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

118 Programming and Operating Manual, 10/2020, A5E33638878-AG

 POSIX system adaptation 5

Figure 5-1 POSIX OS adaptation

The OS adaptation layer consists of 2 different adaptation solutions, which can be used
alternatively:

• eCos native interface, which is identical to the previous versions of development kit as of
V4.3.

• POSIX interface, which simplifies portability of the development kit firmware to another
operating system.

The POSIX interface of the OS adaptation layer has the same functionality and the same set of
functions as the eCos native interface.

 POSIX system adaptation
 5.1 POSIX adaptation files

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 119

5.1 POSIX adaptation files
Posix_memory.c

• Contains OS adaptation for process memory operations

• OsAllocFX, OsAllocF, OsAllocX, OsAlloc, OsFreeX, OsFree

Posix_queue.c

• Contains OS adaptation for message handling between threads

• OsMessageQueuesInit, OsMessageQueuesDestroy, OsCreateMsgQueueId,
OsCreateMsgQueue, OsGetNumOfMessages, OsReadMessageBlocked,
OsReadMessageBlockedX, OsSendMessage, OsSendMessageX

Posix_utils.c

• Contains OS adaptation for string, memory, endian and math operations

• OsHtonl, OsHtons, OsNtohl, OsNtohs, OsMemCpy, OsMemMove, OsMemSet, OsMemCmp,
OsStrCmp, OsStrnCmp, OsStrCpy, OsStrnCpy, OsStrLen, OsStrChr, OsRand, OsSrand,
OsAtoi, PNIO_log10, PNIO_pow

Posix_sync.c

• Contains OS adaptation for synchronization mechanism of threads

• OsCreateSem, OsAllocSemB, OsTakeSemB, OsGiveSemB, OsFreeSemB, OsCreateMutex,
OsEnterX, OsExitX, OsEnter, OsExit, OsEnterShort, OsExitShort

Posix_print.c

• Contains OS adaptation for terminal IO handling

• PNIO_printf, PNIO_ConsoleLog, PNIO_TrcPrintf, PNIO_vsprintf, PNIO_snprintf,
PNIO_sprintf, PNIO_ConsolePrintf, OsPrintTaskProp, OsKeyScan32, OsGetChar,
OsStoreTraceBuffer

Posix_timer.c

• Contains OS adaptation which offers software timer’s interface and time functions

• OsAllocTimer, OsStartTimer, OsStopTimer, OsFreeTimer, OsWait_us, OsWait_ms,
OsGetTime_us, OsGetTime_ms, OsGetUnixTime

Posix_thread.c

• Contains OS adaptation for thread management

• OsWaitOnEnable, OsSetMainThreadId, OsGetThreadId, OsGetThreadName,
OsCreateThread, OsStartThread

Posix_os.c

• Contains initialization of POSIX OS layer adaptation

• OsInit

Posix_dat.c, Posix_dat.h

• Internal data structures of POSIX adaptation

Posix_os.h

• Declaration of internal functions which are used inside POSIX adaptation

POSIX system adaptation
5.2 POSIX configuration

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

120 Programming and Operating Manual, 10/2020, A5E33638878-AG

5.2 POSIX configuration
The POSIX interface can be configured, if some header or function is not implemented in the
target operating system. The implementation is already done for for the platform ecos_ertec.
To add a new POSIX platform implementation, the current one with name “ecos_ertec” can be
used as a template. Define a name for your platform and use this name as a prefix in the
following way: The additional files <my_platform>_os_utils.c and <my_platform>_os_utils.h,
which have to be present, if POSIX calls shall be used.

<my_platform>_utils.h

• The header file must be declared in compiler_stdlibs.h under the appropriate PLATFORM
macro

• Using this macro supported header files are selected in POSIX interface and this macro
fulfills OS function interface which are not covered within POSIX adaptation layer.

Example for using stdio.h:

/* stdio.h library is used */

#define HAVE_STDIO_H

<my_platform>_os_utils.c

Additional functions which are not part of the POSIX API, have to be implemented here.

These are:

• OsIntDisable

• OsIntEnable

• OsReboot

• OsRebootService

5.3 Integration of POSIX interface
Additional configuration settings for the POSIX interface have to be done in

• compiler.h

• compiler_stdlibs.h

compiler.h

• New platform macro for target operating system has to be added

#define PNIOD_PLATFORM_POSIX_<myplatform> 0xXXXXXXXX

• The new platform macro has to be added to derived platform definition

#define PNIOD_PLATFORM_POSIX

 (PNIOD_PLATFORM_POSIX_EB200P|PNIOD_PLATFORM_POSIX_<my_platform>)

compiler_stdlibs.h

The file <my_platform>_os_utils.h has to be added here in such a way that it will be covered
by preprocessor condition

 POSIX system adaptation
 5.4 Subset of POSIX

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 121

#if (PNIOD_PLATFORM & PNIOD_PLATFORM_POSIX_<my_platform>)

 …

 …

 #include "<my_platform>_os_utils.h"

#endif

5.4 Subset of POSIX

5.4.1 Standard IO

Limitation & Recommendation
It has to support error codes which are defined in errno.h

Functions
#include <stdio.h>

int printf(const char *restrict format, ...);

#include <stdarg.h>

#include <stdio.h>

int vsprintf(char *restrict s, const char *restrict format, va_list ap);

#include <stdarg.h>

#include <stdio.h>

int vprintf(const char *restrict format, va_list ap);

#include <stdio.h>

int scanf(const char *restrict format, ...);

#include <stdio.h>

int getchar(void);

#include <stdarg.h>

POSIX system adaptation
5.4 Subset of POSIX

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

122 Programming and Operating Manual, 10/2020, A5E33638878-AG

void va_start(va_list ap, argN);

#include <stdarg.h>

void va_end(va_list ap);

#include <stdio.h>

int fflush (FILE * stream);

5.4.2 Inter-process communication

Limitation & Recommendation
• It has to support error codes which are defined in errno.h

• Permissions of message queues are set to: O_RDWR | O_CREAT, S_IRUSR | S_IWUSR |
S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH

• Operation system has to support at least :

– Maximum number of messages in queue : 360

– Length of message : 4 bytes

– Max number of message queues : 40

Functions
#include <mqueue.h>

mqd_t mq_open(const char *name, int oflag, ...);

#include <mqueue.h>

ssize_t mq_receive (mqd_t mqdes, char *msg_ptr, size_t msg_len, unsigned *msg_prio);

#include <mqueue.h>

int mq_send(mqd_t mqdes, const char *msg_ptr, size_t msg_len, unsigned msg_prio);

#include <mqueue.h>

int mq_close(mqd_t mqdes);

#include <mqueue.h>

int mq_unlink(const char *name);

 POSIX system adaptation
 5.4 Subset of POSIX

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 123

#include <mqueue.h>

int mq_setattr(mqd_t mqdes, const struct mq_attr *restrict mqstat, struct mq_attr *restrict
omqstat);

#include <mqueue.h>

int mq_getattr(mqd_t mqdes, struct mq_attr *mqstat);

5.4.3 Synchronization mechanisms

Limitation & Recommendation
• It has to support error codes, which are defined in errno.h

• It is necessary to use only mutexes, which are PTHREAD_MUTEX_RECURSIVE or
PTHREAD_MUTEX_ERRORCHECK.

• It is necessary to use priority inheritance of mutexes set by PTHREAD_PRIO_INHERIT

• Operation system has to support at least :

– Maximum number of semaphores : 30

– Maximum number of mutexes : 48

Functions
#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned value);

#include <semaphore.h>

int sem_post(sem_t *sem);

#include <semaphore.h>

int sem_wait(sem_t *sem);

#include <semaphore.h>

int sem_destroy(sem_t *sem);

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *restrict mutex,const pthread_mutexattr_t *restrict
attr);

POSIX system adaptation
5.4 Subset of POSIX

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

124 Programming and Operating Manual, 10/2020, A5E33638878-AG

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);

#include <pthread.h>

int pthread_mutex_trylock(pthread_mutex_t *mutex);

#include <pthread.h>

int pthread_mutex_unlock(pthread_mutex_t *mutex);

#include <pthread.h>

int pthread_mutex_destroy(pthread_mutex_t *mutex);

#include <pthread.h>

int pthread_mutexattr_init(pthread_mutexattr_t *attr);

#include <pthread.h>

int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);

#include <pthread.h>

int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);

#include <pthread.h>

int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr, int protocol);

5.4.4 Multithreading

Limitation & Recommendation
• It has to support error codes which are defined in errno.h

• Each thread is configured by PTHREAD_EXPLICIT_SCHED, in order to not inherit scheduler
from parent thread.

• The scope of each thread has to be whole operation system which is defined by
PTHREAD_SCOPE_SYSTEM

• Scheduler of each thread has to be set to priority round robin scheduler which is defined
by SCHED_RR

 POSIX system adaptation
 5.4 Subset of POSIX

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 125

• Operation system has to support at least :

• Maximum number of threads : 40

Functions
#include <pthread.h>

int pthread_create(pthread_t *restrict thread,const pthread_attr_t *restrict attr, void
*(*start_routine)(void*), void *restrict arg);

#include <pthread.h>

pthread_t pthread_self(void);

#include <pthread.h>

pthread_attr_init(pthread_attr_t *attr);

#include <pthread.h>

int pthread_attr_destroy(pthread_attr_t *attr);

#include <pthread.h>

int pthread_attr_setinheritsched(pthread_attr_t *attr,int inheritsched);

#include <pthread.h>

int pthread_attr_setstackaddr(pthread_attr_t *attr, size_t * addr);

#include <pthread.h>

int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize);

#include <pthread.h>

int pthread_attr_setscope(pthread_attr_t *attr, int contentionscope);

#include <pthread.h>

int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

#include <pthread.h>

int pthread_attr_setschedparam(pthread_attr_t *restrict attr,const struct sched_param
*restrict param);

POSIX system adaptation
5.4 Subset of POSIX

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

126 Programming and Operating Manual, 10/2020, A5E33638878-AG

5.4.5 Settings of Scheduler

Limitation & Recommendation
• It has to support error codes which are defined in errno.h

• Scheduler has to be set to priority round robin scheduler which is defined by SCHED_RR

Functions
#include <pthread.h>

int sched_get_priority_min(int policy);

#include <pthread.h>

int sched_get_priority_max(int policy);

#include <sched.h>

int sched_setscheduler(pid_t pid, int policy, const struct sched_param *param);

5.4.6 Timers

Limitation & Recommendation
• It has to support error codes which are defined in errno.h

• It is necessary that the settings of the clock support CLOCK_REALTIME.

• Handling of timer has to be done by behavior which is done by SIGEV_SIGNAL

Functions
#include <signal.h>

#include <time.h>

int timer_create(clockid_t clockid, struct sigevent *restrict evp, timer_t *restrict timerid);

#include <time.h>

int timer_settime(timer_t timerid, int flags, const struct itimerspec *restrict value, struct
itimerspec *restrict ovalue);

#include <time.h>

int timer_getoverrun(timer_t timerid);

 POSIX system adaptation
 5.4 Subset of POSIX

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 127

#include <time.h>

int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);

#include <time.h>

int clock_gettime(clockid_t clock_id, struct timespec *tp);

5.4.7 Process memory

Limitation & Recommendation
• It has to support error codes which are defined in errno.h

Functions
#include <stdlib.h>

void *malloc(size_t size);

#include <stdlib.h>

void free(void *ptr);

5.4.8 Asynchronous events

Limitation & Recommendation
• It has to support error codes which are defined in errno.h

• Signal SIGUSR1 has to be supported.

Functions
#include <signal.h>

int sigwait(const sigset_t *restrict set, int *restrict sig);

#include <signal.h>

int sigemptyset(sigset_t *set);

#include <signal.h>

POSIX system adaptation
5.4 Subset of POSIX

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

128 Programming and Operating Manual, 10/2020, A5E33638878-AG

int sigaddset(sigset_t *set, int signo);

#include <signal.h>

int pthread_sigmask(int how, const sigset_t *restrict set, sigset_t *restrict oset);

#include <signal.h>

int pthread_kill(pthread_t thread, int sig);

5.4.9 Memory operations

Limitation & Recommendation
• It has to support error codes which are defined in errno.h

Functions
#include <string.h>

void *memcpy(void *restrict s1, const void *restrict s2, size_t n);

#include <string.h>

void *memmove(void *s1, const void *s2, size_t n);

#include <string.h>

void *memset(void *s, int c, size_t n);

#include <string.h>

int memcmp(const void *s1, const void *s2, size_t n);

5.4.10 String operations

Limitation & Recommendation
• It has to support error codes which are defined in errno.h

Functions
#include <string.h>

 POSIX system adaptation
 5.4 Subset of POSIX

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 129

int strcmp(const char *s1, const char *s2);

#include <string.h>

int strncmp(const char *s1, const char *s2, size_t n);

#include <string.h>

char *strcpy(char *restrict s1, const char *restrict s2);

#include <string.h>

char *strncpy(char *restrict s1, const char *restrict s2, size_t n);

#include <string.h>

size_t strlen(const char *);

#include <string.h>

char *strchr(const char *s, int c);

#include <string.h>

int atoi(const char *str);

5.4.11 Math operations

Limitation & Recommendation
• It has to support error codes which are defined in errno.h

Functions
#include <math.h>

double log10(double x);

#include <math.h>

double pow(double x, double y);

POSIX system adaptation
5.4 Subset of POSIX

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

130 Programming and Operating Manual, 10/2020, A5E33638878-AG

5.4.12 Byte orders operation

Limitation & Recommendation
• It has to support error codes which are defined in errno.h

Functions
#include <arpa/inet.h>

uint32_t htonl(uint32_t hostlong);

#include <arpa/inet.h>

uint16_t htons(uint16_t hostshort);

#include <arpa/inet.h>

uint32_t ntohl(uint32_t netlong);

#include <arpa/inet.h>

uint16_t ntohs(uint16_t netshort);

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 131

 Appendix A
A.1 Abbreviations/Glossary of terms

ACP Acyclic Communication Protocol, refers to one of the basic software packages of the IO

stack
AMR Asset Management Record
API Application Process Identifier
AR Application Relationship
BSP Board Support Package
CLRPC Connectionless Remote Procedure Call, refers to one of the basic software packages of

the IO stack
CM Context Management, refers to one of the basic software packages of the IO stack
DAP Device Access Point, specific entry in the GSD file
DBAI Direct Buffer Access Interface
DCP Discovery and basic Configuration Protocol, refers to one of the basic software packages

of the IO stack
DK Development Kit (development kit for platforms)
DK_SW Development Kit software (development kit for platforms based on standard Ethernet

controllers)
DMA Direct Memory Access
DR Dynamic Reconfiguration
eCos Embedded Configurable Operating System
EK Evaluation Kit (evaluation kit for platforms)
EB Evaluation Board for ERTEC-based evaluation kits
EDD Ethernet Device Driver, general term for EDDI, EDDP, EDDS
EDDI Ethernet Device Driver for IRTE switch in the ERTEC 200 (earlier versions: EDD_ERTEC)
EDDP Ethernet Device Driver for PN switch in the ERTEC 200P
EDDS Ethernet Device Driver for Standard Ethernet controller (earlier versions: EDD_soft)
ERTEC Enhanced Real Time Ethernet Controller
EVMA Evolvable Virtual Machine Architecture
GDMA Generic Direct Memory Access
GSD Generic Station Description
GSDML GSD Markup Language
GSY Generic Sync module, refers to one of the basic software packages of the IO stack
I&M Identification and Maintenance data
IOCR Input/Output Communication Relationship
IOCS Input/Output Object Consumer Status
IOPS Input/OutputObject Provider Status
IRT Isochronous RealTime, Class 2 (IRT Class 2) or Class 3 (IRT Class 3)
LLDP Link Layer Discovery Protocol (IEEE 802.1AB, allows stations to exchange chassis and

port information)
LSA Layer Structure Architecture
LW Drive

Appendix
A.2 References

 Interface description PROFINET IO Development Kits V4.7.0 10/2020

132 Programming and Operating Manual, 10/2020, A5E33638878-AG

MIB Management Information Base. Database for SNMP services
MRP Media Redundancy Protocol
NARE Name Address Resolution
NRT Non Realtime is a generic term for all non-real-time frames (not type 0x8892)
NV Non-volatile
OHA Object Handler
OS Operating System, refers here to the abstraction layer for any operating system to which

the IO stack is to be ported.
PCF Polymeric Cladded Fiber (optical communication medium)
PDEV Physical Device
PI PROFIBUS/PROFINET International, collective national organizations of the PNO
PN-IO PROFINET IO
PNO PROFIBUS/PROFINET User Organization
POF Polymeric Optical Fiber (optical communication medium)
POSIX Portable Operating System Interface, a family of standards (UNIX based), defined by

IEEE for interface compatibility on different OS -platforms.
RT Real Time is a generic term for acyclic and cyclic real-time
RT Class RealTime class according to the PROFINET IO specification
SI Standard Interface
SNMP Simple Network Management Protocol
SOCK UDP Socket Interface for PROFINET IO, refers to one of the basic software packages of

the IO stack
SPI Serial Peripheral Interface
TAP Test Access Port
UDP User Datagram Protocol
UUID Universal Unique Identifier

A.2 References
/1a/
PROFINET IO Specification IEC 61158 – part5

PROFINET IO Application Layer Service Specification

(Can be downloaded from the PNO website (http://www.profibus.com))

/1b/
PROFINET IO Specification IEC 61158 – part6

PROFINET IO Application Layer Protocol Specification

(Can be downloaded from the PNO website (http://www.profibus.com))

/2/
GSDML Specification for PROFINET IO

Version 2.41, Article no.: 2.352

PROFIBUS User Organization e.V.

http://www.profibus.com/
http://www.profibus.com/

 Appendix
 A.2 References

Interface description PROFINET IO Development Kits V4.7.0 10/2020

Programming and Operating Manual, 10/2020, A5E33638878-AG 133

(Can be downloaded from the PNO website (http://www.profibus.com))

/3/
Industrial Communication with PROFINET

Manfred Popp

PROFIBUS User Organization e.V.

Article number 4.182

/4/
PROFINET Technology and Application

System Description

(Can be downloaded from the PNO website (http://www.profibus.com))

/5/
Diagnostics for PROFINET IO

Version 1.5

Date April 2020

Article no.: 7.142

http://www.profibus.com/
http://www.profibus.com/

	Interface description PROFINET IO Development Kits V4.7.0 10/2020
	Legal information
	Preface
	Table of contents
	1 Introduction
	1.1 Content and target audience of this interface description
	1.2 Example platforms
	1.3 Other information

	2 Overview of PROFINET IO device software
	2.1 Software architecture
	2.1.1 System environment and properties
	2.1.1.1 Using the POSIX application interface
	2.1.1.2 Using the native eCos application interface

	2.2 Components of the PROFINET IO stack
	2.2.1 EDDP/EDDI (Ethernet Device Driver for ERTEC 200P/ERTEC 200)
	2.2.2 ACP (Acyclic Communication Protocol)
	2.2.3 CM (Context Manager)
	2.2.4 CLRPC (Connectionless Remote Procedure Call)
	2.2.5 DCP (Dynamic Configuration Protocol)
	2.2.6 GSY (Generic Sync Module)
	2.2.7 LLDP (Link Layer Discovery Protocol)
	2.2.8 MRP (Media Redundancy Protocol)
	2.2.9 NARE (Name Address Resolution)
	2.2.10 OHA (Object Handler)
	2.2.11 POF (Polymeric optical fiber)
	2.2.12 SOCK (socket interface)
	2.2.13 TCP/IP stack
	2.2.14 System adaptation (SYS, LSAS, TSKMA)
	2.2.15 OS Abstraction Layer (OS Adapt)
	2.2.16 BSP Adapt (Board support package adaptation)
	2.2.17 GDMA, EVMA (for ERTEC 200P only)
	2.2.18 PNDV
	2.2.19 PNPB

	2.3 Additional software components
	2.3.1 Operating system
	2.3.2 Board support package (BSP)

	2.4 Application examples
	2.4.1 General structure of the application examples
	2.4.2 Isochronous applications with IRT, T_Input and T_Output evaluation
	2.4.3 App1: SI-based example for RT and IRT
	2.4.4 App2: DBAI-based example for RT and IRT
	2.4.5 App3: SI-based example for IRT with a synchronized application
	2.4.6 App4: XHIF example for communication with external host

	2.5 Miscellaneous services
	2.5.1 Dynamic reconfiguration
	2.5.2 I&M5 data
	2.5.3 Asset Management Record (AMR)

	3 Software creation for PROFINET IO devices
	3.1 Directory structure of the PROFINET IO source code
	3.2 Files for the application examples and system
	3.2.1 Files for App1_STANDARD
	3.2.2 Files for App2_DBAI
	3.2.3 Files for App3_IsoApp
	3.2.4 Files for App4_XHIF
	3.2.5 Files for App_common
	3.2.6 Files for App4_XHIF_Host (BBB)
	3.2.7 Application interface
	3.2.8 Operating system interface modules to be adapted
	3.2.9 Modules of the BSP interface
	3.2.10 Storage of retentive data
	3.2.11 Files for system adaptation

	3.3 Important constraints for integrating an application
	3.4 Porting the PROFINET IO software to another platform
	3.4.1 Porting to customer hardware with the same microcontroller and the same OS
	3.4.2 Use of other compilers/linkers
	3.4.2.1 Tool chain selection
	3.4.2.2 Big Endian / Little Endian
	3.4.2.3 Data alignment requirements
	3.4.2.4 Data processing capacity
	3.4.2.5 Memory management

	3.4.3 Use of other operating systems

	3.5 Typical sequence of an IO device user program
	3.5.1 Initialization phase
	3.5.2 Productive operation
	3.5.3 Completion phase

	3.6 Basic data traffic in the IO device user interface
	3.7 Cyclic IO data traffic of the IO device user interface
	3.7.1 Cyclic writing with status
	3.7.2 Cyclic reading with status
	3.7.3 Cyclic data communication using the optional DBA interface

	3.8 IO data exchange for IRT class 3
	3.9 Managing diagnostic data
	3.9.1 Channel diagnostic data
	3.9.2 Manufacturer-specified diagnostic data

	3.10 Special features when inserting and removing modules during productive operation
	3.10.1 Special features with "Return of submodule"

	3.11 Callback mechanism

	4 Interface description
	4.1 Upper layer interface functions for the application
	4.1.1 Functions for system startup
	4.1.1.1 PNIO_init
	4.1.1.2 PNIO_setup
	4.1.1.3 PNIO_device_open
	4.1.1.4 PNIO_async_appl_rdy
	4.1.1.5 PNIO_device_close
	4.1.1.6 PNIO_CP_register_cbf
	4.1.1.7 PNIO_PDEV_setup()

	4.1.2 Setting the device name and IP suite
	4.1.2.1 PNIO_cbf_save_station_name
	4.1.2.2 PNIO_cbf_save_ip_addr
	4.1.2.3 PNIO_cbf_report_new_ip_addr
	4.1.2.4 PNIO_change_ip_suite
	4.1.2.5 PNIO_change_device_name
	4.1.2.6 PNIO_cbf_start_led_blink()
	4.1.2.7 PNIO_cbf_stop_led_blink
	4.1.2.8 PNIO_cbf_reset_factory_settings

	4.1.3 Storage of retentive data (REMA)
	4.1.3.1 PNIO_cbf_store_rema_mem
	4.1.3.2 PNIO_cbf_restore_rema_mem
	4.1.3.3 PNIO_cbf_report_ARFSU_record

	4.1.4 IO device configuration
	4.1.4.1 PNIO_sub_plug
	4.1.4.2 PNIO_sub_plug_list
	4.1.4.3 PNIO_sub_pull
	4.1.4.4 PNIO_cbf_new_plug_ind ()
	4.1.4.5 PNIO_cbf_new_pull_ind ()

	4.1.5 Storing diagnostic data in the subslot
	4.1.5.1 PNIO_diag_channel_add
	4.1.5.2 PNIO_diag_channel_remove
	4.1.5.3 PNIO_ext_diag_channel_add
	4.1.5.4 PNIO_ext_diag_channel_remove
	4.1.5.5 PNIO_diag_generic_add
	4.1.5.6 PNIO_diag_generic_remove

	4.1.6 Sending and receiving alarms
	4.1.6.1 PNIO_process_alarm_send
	4.1.6.2 PNIO_status_alarm_send
	4.1.6.3 PNIO_upload_retrieval_alarm_send
	4.1.6.4 PNIO_ret_of_sub_alarm_send
	4.1.6.5 PNIO_cbf_dev_alarm_ind()

	4.1.7 Acknowledgment of asynchronous functions
	4.1.7.1 PNIO_cbf_async_req_done
	4.1.7.2 PNIO_trigger_pndv_ds_rw_done()

	4.1.8 Reading and writing records
	4.1.8.1 PNIO_cbf_rec_read
	4.1.8.2 PNIO_cbf_rec_write
	4.1.8.3 PNIO_rec_set_rsp_async
	4.1.8.4 PNIO_rec_read_rsp
	4.1.8.5 PNIO_rec_write_rsp
	4.1.8.6 PNIO_cbf_substval_out_read
	4.1.8.7 PNIO_cbf_data_read_IOxS_only()
	4.1.8.8 PNIO_cbf_data_write_IOxS_only()

	4.1.9 Cyclic data exchange using standard interface (SI)
	4.1.9.1 PNIO_initiate_data_read, PNIO_initiate_data_write
	4.1.9.2 PNIO_cbf_data_write, PNIO_cbf_data_read
	4.1.9.3 PNIO_get_last_apdu_status

	4.1.10 Cyclic data exchange by means of the optional DBA interface
	4.1.10.1 Cyclic data exchange by means of the optional DBA interface
	4.1.10.2 PNIO_dbai_enter
	4.1.10.3 PNIO_dbai_exit
	4.1.10.4 PNIO_dbai_buf_lock
	4.1.10.5 PNIO_dbai_buf_unlock

	4.1.11 Receiving events and alarms
	4.1.11.1 PNIO_cbf_ar_connect_ind
	4.1.11.2 PNIO_cbf_ar_ownership_ind
	4.1.11.3 PNIO_cbf_ar_indata_ind
	4.1.11.4 PNIO_cbf_ar_disconn_ind
	4.1.11.5 PNIO_cbf_param_end_ind
	4.1.11.6 PNIO_cbf_ready_for_input_update_ind

	4.1.12 Control functions
	4.1.12.1 PNIO_set_dev_state
	4.1.12.2 PNIO_device_start
	4.1.12.3 PNIO_device_stop
	4.1.12.4 PNIO_device_ar_abort

	4.1.13 Hardware comparators for isochronous mode
	4.1.13.1 Hardware comparators for isochronous mode
	4.1.13.2 PNIO_IsoActivateIsrObj
	4.1.13.3 PNIO_IsoActivateGpioObj
	4.1.13.4 PNIO_IsoActivateTransEndObj
	4.1.13.5 PNIO_IsoFreeObj
	4.1.13.6 PNIO_IsoObjCheck()

	4.1.14 Error handling
	4.1.14.1 PNIO_get_last_error
	4.1.14.2 PNIO_Log
	4.1.14.3 PNIO_set_iops

	4.1.15 Other functions
	4.1.15.1 PNIO_printf
	4.1.15.2 PNIO_TrcPrintf
	4.1.15.3 PNIO_get_version

	4.2 Lower layer interface functions for the Board support package
	4.2.1 BSP functions for all platforms
	4.2.1.1 Bsp_Init
	4.2.1.2 Bsp_GetMacAddr
	4.2.1.3 Bsp_GetPortMacAddr
	4.2.1.4 Bsp_EbSetLed (implementation mandatory for DCP flashing)

	4.2.2 Storage of non-volatile data
	4.2.2.1 Bsp_nv_data_clear
	4.2.2.2 Bsp_nv_data_store
	4.2.2.3 Bsp_nv_data_restore
	4.2.2.4 Bsp_nv_data_memfree

	4.2.3 Adaptation of the ERTEC switch interrupts
	4.2.4 GPIO connection
	4.2.4.1 Bsp_ReadGPIOin_0_to_31
	4.2.4.2 Bsp_SetGPIOout_0_to_31
	4.2.4.3 Bsp_ClearGPIOout_0_to_31

	4.2.5 The generic flash interface
	4.2.5.1 The generic flash interface
	4.2.5.2 OsFlashInit
	4.2.5.3 OsFlashErase
	4.2.5.4 OsFlashProgram
	4.2.5.5 OsFlashRead

	4.2.6 SPI flash interface
	4.2.6.1 spi_flash_init
	4.2.6.2 spi_flash_program
	4.2.6.3 spi_flash_read
	4.2.6.4 spi_flash_erase
	4.2.6.5 spi_flash_chip_erase
	4.2.6.6 spi_flash_erase_verify
	4.2.6.7 spi_flash_verify

	4.2.7 Hardware watchdog
	4.2.7.1 Bsp_hw_watchdog_init
	4.2.7.2 Bsp_hw_watchdog_start
	4.2.7.3 Bsp_hw_watchdog_stop
	4.2.7.4 Bsp_hw_watchdog_trigger (void)

	4.3 Interface to the operating system
	4.3.1 Interface to the operating system
	4.3.2 Managing resources
	4.3.3 Description of the OS functions to be ported
	4.3.3.1 OsInit()
	4.3.3.2 OsAllocFX()
	4.3.3.3 OsFreeX()
	4.3.3.4 OsAllocTimer()
	4.3.3.5 OsStartTimer()
	4.3.3.6 OsStopTimer()
	4.3.3.7 OsFreeTimer()
	4.3.3.8 OsEnterX()
	4.3.3.9 OsExitX
	4.3.3.10 OsEnterShort
	4.3.3.11 OsExitShort
	4.3.3.12 OsAllocSemB
	4.3.3.13 OsFreeSemB
	4.3.3.14 OsTakeSemB
	4.3.3.15 OsGiveSemB
	4.3.3.16 OsSetThreadPrio
	4.3.3.17 OsCreateThread
	4.3.3.18 OsStartThread
	4.3.3.19 OsWaitOnEnable()
	4.3.3.20 OsGetThreadId()
	4.3.3.21 OsCreateMsgQueue()
	4.3.3.22 OsWait_ms()
	4.3.3.23 OsGetTime_us()
	4.3.3.24 OsGetUnixTime()
	4.3.3.25 OsReadMessageBlocked()
	4.3.3.26 OsReadMessageBlockedX()
	4.3.3.27 OsSendMessage()
	4.3.3.28 OsSendMessageX()
	4.3.3.29 __InterlockedDecrement()
	4.3.3.30 __InterlockedIncrement()
	4.3.3.31 OsIntDisable()
	4.3.3.32 OsIntEnable()

	4.3.4 Encapsulation of standard library function calls
	4.3.5 OS functions called by the application example

	4.4 Important notes and limitations
	4.4.1 Number of IO devices
	4.4.2 Number of modules and submodules
	4.4.3 Maximum amount of user data for a device
	4.4.4 Functional limitations

	5 POSIX system adaptation
	5.1 POSIX adaptation files
	5.2 POSIX configuration
	5.3 Integration of POSIX interface
	5.4 Subset of POSIX
	5.4.1 Standard IO
	5.4.2 Inter-process communication
	5.4.3 Synchronization mechanisms
	5.4.4 Multithreading
	5.4.5 Settings of Scheduler
	5.4.6 Timers
	5.4.7 Process memory
	5.4.8 Asynchronous events
	5.4.9 Memory operations
	5.4.10 String operations
	5.4.11 Math operations
	5.4.12 Byte orders operation

	A Appendix

