Artificial Intelligence
NetApp Solutions

NetApp
October 27, 2021

This PDF was generated from https://docs.netapp.com/us-en/netapp-

solutionshttps://www.netapp.com/pdf.html?item=/media/19432-nva-1151-design.pdf on October 27, 2021.
Always check docs.netapp.com for the latest.

Table of Contents

Artificial Intelligence
Al Converged Infrastructures
Data Pipelines, Data Lakes and Management
Use Cases

83

Artificial Intelligence

Al Converged Infrastructures
ONTAP Al with NVIDIA

EF-Series Al with NVIDA

Data Pipelines, Data Lakes and Management

NetApp Al Control Plane

NetApp Al Control Plane

Mike Oglesby, NetApp

Companies and organizations of all sizes and across many industries are turning to artificial intelligence (Al),
machine learning (ML), and deep learning (DL) to solve real-world problems, deliver innovative products and
services, and to get an edge in an increasingly competitive marketplace. As organizations increase their use of
Al, ML, and DL, they face many challenges, including workload scalability and data availability. This document
demonstrates how you can address these challenges by using the NetApp Al Control Plane, a solution that
pairs NetApp data management capabilities with popular open-source tools and frameworks.

This report shows you how to rapidly clone a data namespace. It also shows you how to seamlessly replicate
data across sites and regions to create a cohesive and unified AlI/ML/DL data pipeline. Additionally, it walks you
through the defining and implementing of Al, ML, and DL training workflows that incorporate the near-instant
creation of data and model baselines for traceability and versioning. With this solution, you can trace every
model training run back to the exact dataset that was used to train and/or validate the model. Lastly, this
document shows you how to swiftly provision Jupyter Notebook workspaces with access to massive datasets.

Note: For HPC style distributed training at scale involving a large number of GPU servers that require shared
access to the same dataset, or if you require/prefer a parallel file system, check out TR-4890. This technical
report describes how to include NetApp’s fully supported parallel file system solution BeeGFS as part of the
NetApp Al Control Plane. This solution is designed to scale from a handful of NVIDIA DGX A100 systems, up
to a full blown 140 node SuperPOD.

The NetApp Al Control Plane is targeted towards data scientists and data engineers, and, thus, minimal
NetApp or NetApp ONTAP® expertise is required. With this solution, data management functions can be
executed using simple and familiar tools and interfaces. If you already have NetApp storage in your
environment, you can test drive the NetApp Al Control plane today. If you want to test drive the solution but you
do not have already have NetApp storage, visit cloud.netapp.com, and you can be up and running with a
cloud-based NetApp storage solution in minutes. The following figure provides a visualization of the solution.

https://www.netapp.com/pdf.html?item=/media/31317-tr-4890.pdf
https://blog.netapp.com/solution-support-for-beegfs-and-e-series/
http://cloud.netapp.com/

- - - -
Data Data Data Data
scientist scientist scientist engineer
° o ® o]
Jupyter Jjupyter 21001010
Web-based workspace Web-based workspace Automated pipelines

NetApp® Data Science Toolkit

r X O M

Kubeflow iﬁﬁﬁﬂf kubernetes TRIDENT

NetApp Al Control Plane

Data fabric powered by NetApp

Core

Next: Concepts and Components

Concepts and Components

Artificial Intelligence

Al is a computer science discipline in which computers are trained to mimic the cognitive functions of the
human mind. Al developers train computers to learn and to solve problems in a manner that is similar to, or
even superior to, humans. Deep learning and machine learning are subfields of Al. Organizations are
increasingly adopting Al, ML, and DL to support their critical business needs. Some examples are as follows:
» Analyzing large amounts of data to unearth previously unknown business insights
* Interacting directly with customers by using natural language processing

» Automating various business processes and functions

Modern Al training and inference workloads require massively parallel computing capabilities. Therefore, GPUs
are increasingly being used to execute Al operations because the parallel processing capabilities of GPUs are
vastly superior to those of general-purpose CPUs.

Containers

Containers are isolated user-space instances that run on top of a shared host operating system kernel. The
adoption of containers is increasing rapidly. Containers offer many of the same application sandboxing benefits
that virtual machines (VMs) offer. However, because the hypervisor and guest operating system layers that
VMs rely on have been eliminated, containers are far more lightweight. The following figure depicts a
visualization of virtual machines versus containers.

Containers also allow the efficient packaging of application dependencies, run times, and so on, directly with
an application. The most commonly used container packaging format is the Docker container. An application
that has been containerized in the Docker container format can be executed on any machine that can run
Docker containers. This is true even if the application’s dependencies are not present on the machine because
all dependencies are packaged in the container itself. For more information, visit the Docker website.

Application A Application B

Dependencies Dependencies

Dependencies

Guest Operating System Guest Operating System

Physical Infrastructure Physical Infrastructure

Vitual Machines (VMs) Containers

Kubernetes

Kubernetes is an open source, distributed, container orchestration platform that was originally designed by
Google and is now maintained by the Cloud Native Computing Foundation (CNCF). Kubernetes enables the
automation of deployment, management, and scaling functions for containerized applications. In recent years,
Kubernetes has emerged as the dominant container orchestration platform. Although other container
packaging formats and run times are supported, Kubernetes is most often used as an orchestration system for
Docker containers. For more information, visit the Kubernetes website.

NetApp Trident

Trident is an open source storage orchestrator developed and maintained by NetApp that greatly simplifies the
creation, management, and consumption of persistent storage for Kubernetes workloads. Trident, itself a
Kubernetes-native application, runs directly within a Kubernetes cluster. With Trident, Kubernetes users
(developers, data scientists, Kubernetes administrators, and so on) can create, manage, and interact with
persistent storage volumes in the standard Kubernetes format that they are already familiar with. At the same
time, they can take advantage of NetApp advanced data management capabilities and a data fabric that is
powered by NetApp technology. Trident abstracts away the complexities of persistent storage and makes it

https://www.docker.com
https://kubernetes.io

simple to consume. For more information, visit the Trident website.

NVIDIA DeepOps

DeepOps is an open source project from NVIDIA that, by using Ansible, automates the deployment of GPU
server clusters according to best practices. DeepOps is modular and can be used for various deployment
tasks. For this document and the validation exercise that it describes, DeepOps is used to deploy a Kubernetes
cluster that consists of GPU server worker nodes. For more information, visit the DeepOps website.

Kubeflow

Kubeflow is an open source Al and ML toolkit for Kubernetes that was originally developed by Google. The
Kubeflow project makes deployments of Al and ML workflows on Kubernetes simple, portable, and scalable.
Kubeflow abstracts away the intricacies of Kubernetes, allowing data scientists to focus on what they know
best—data science. See the following figure for a visualization. Kubeflow has been gaining significant traction
as enterprise IT departments have increasingly standardized on Kubernetes. For more information, visit the
Kubeflow website.

‘!“ Al/ML workloads

Kubeflow

Orchestration

kubernetes

@ Persistent storage

TRIDENT

A

Automation

? Compute/Cloud

NetApp Data Fabric

Kubeflow Pipelines

Kubeflow Pipelines are a key component of Kubeflow. Kubeflow Pipelines are a platform and standard for
defining and deploying portable and scalable Al and ML workflows. For more information, see the official

https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://github.com/NVIDIA/deepops
http://www.kubeflow.org/
https://www.kubeflow.org/docs/components/pipelines/pipelines/

Kubeflow documentation.

Jupyter Notebook Server

A Jupyter Notebook Server is an open source web application that allows data scientists to create wiki-like
documents called Jupyter Notebooks that contain live code as well as descriptive test. Jupyter Notebooks are
widely used in the Al and ML community as a means of documenting, storing, and sharing Al and ML projects.
Kubeflow simplifies the provisioning and deployment of Jupyter Notebook Servers on Kubernetes. For more
information on Jupyter Notebooks, visit the Jupyter website. For more information about Jupyter Notebooks
within the context of Kubeflow, see the official Kubeflow documentation.

Apache Airflow

Apache Airflow is an open-source workflow management platform that enables programmatic authoring,
scheduling, and monitoring for complex enterprise workflows. It is often used to automate ETL and data
pipeline workflows, but it is not limited to these types of workflows. The Airflow project was started by Airbnb
but has since become very popular in the industry and now falls under the auspices of The Apache Software
Foundation. Airflow is written in Python, Airflow workflows are created via Python scripts, and Airflow is
designed under the principle of "configuration as code.” Many enterprise Airflow users now run Airflow on top
of Kubernetes.

Directed Acyclic Graphs (DAGS)

In Airflow, workflows are called Directed Acyclic Graphs (DAGs). DAGs are made up of tasks that are executed
in sequence, in parallel, or a combination of the two, depending on the DAG definition. The Airflow scheduler
executes individual tasks on an array of workers, adhering to the task-level dependencies that are specified in
the DAG definition. DAGs are defined and created via Python scripts.

NetApp ONTAP 9

NetApp ONTAP 9 is the latest generation of storage management software from NetApp that enables
businesses like yours to modernize infrastructure and to transition to a cloud-ready data center. With industry-
leading data management capabilities, ONTAP enables you to manage and protect your data with a single set
of tools regardless of where that data resides. You can also move data freely to wherever you need it: the
edge, the core, or the cloud. ONTAP 9 includes numerous features that simplify data management, accelerate
and protect your critical data, and future-proof your infrastructure across hybrid cloud architectures.

Simplify Data Management

Data management is crucial for your enterprise IT operations so that you can use appropriate resources for
your applications and datasets. ONTAP includes the following features to streamline and simplify your
operations and reduce your total cost of operation:

* Inline data compaction and expanded deduplication. Data compaction reduces wasted space inside
storage blocks, and deduplication significantly increases effective capacity.

* Minimum, maximum, and adaptive quality of service (QoS). Granular QoS controls help maintain
performance levels for critical applications in highly shared environments.

* ONTAP FabricPool. This feature provides automatic tiering of cold data to public and private cloud storage
options, including Amazon Web Services (AWS), Azure, and NetApp StorageGRID object-based storage.

Accelerate and Protect Data

ONTAP delivers superior levels of performance and data protection and extends these capabilities with the
following features:

https://www.kubeflow.org/docs/components/pipelines/pipelines/
http://www.jupyter.org/
https://www.kubeflow.org/docs/components/jupyter/

* High performance and low latency. ONTAP offers the highest possible throughput at the lowest possible
latency.

* NetApp ONTAP FlexGroup technology. A FlexGroup volume is a high-performance data container that
can scale linearly to up to 20PB and 400 billion files, providing a single namespace that simplifies data
management.

» Data protection. ONTAP provides built-in data protection capabilities with common management across
all platforms.

* NetApp Volume Encryption. ONTAP offers native volume-level encryption with both onboard and external
key management support.

Future-Proof Infrastructure

ONTAP 9 helps meet your demanding and constantly changing business needs:

» Seamless scaling and nondisruptive operations. ONTAP supports the nondisruptive addition of
capacity to existing controllers and to scale-out clusters. You can upgrade to the latest technologies, such
as NVMe and 32Gb FC, without costly data migrations or outages.

* Cloud connection. ONTAP is one of the most cloud-connected storage management software, with
options for software-defined storage (ONTAP Select) and cloud-native instances (NetApp Cloud Volumes
Service) in all public clouds.

* Integration with emerging applications. By using the same infrastructure that supports existing
enterprise apps, ONTAP offers enterprise-grade data services for next-generation platforms and
applications such as OpenStack, Hadoop, and MongoDB.

NetApp Snapshot Copies

A NetApp Snapshot copy is a read-only, point-in-time image of a volume. The image consumes minimal
storage space and incurs negligible performance overhead because it only records changes to files create
since the last Snapshot copy was made, as depicted in the following figure.

Snapshot copies owe their efficiency to the core ONTAP storage virtualization technology, the Write Anywhere
File Layout (WAFL). Like a database, WAFL uses metadata to point to actual data blocks on disk. But, unlike a
database, WAFL does not overwrite existing blocks. It writes updated data to a new block and changes the
metadata. It's because ONTAP references metadata when it creates a Snapshot copy, rather than copying
data blocks, that Snapshot copies are so efficient. Doing so eliminates the seek time that other systems incur
in locating the blocks to copy, as well as the cost of making the copy itself.

You can use a Snapshot copy to recover individual files or LUNs or to restore the entire contents of a volume.
ONTAP compares pointer information in the Snapshot copy with data on disk to reconstruct the missing or
damaged object, without downtime or a significant performance cost.

Blocksin Blocks on
a File the Disk
/_‘”‘“‘\

SnapShot
Copy 1

Blocks in Blocks on
a File the Disk

XK

B1

SnapShot SnapShot
Copy 1 Copy 2

A Snapshot copy records only changes to the active file

system since the last Snapshot copy.

NetApp FlexClone Technology

NetApp FlexClone technology references Snapshot metadata to create writable, point-in-time copies of a
volume. Copies share data blocks with their parents, consuming no storage except what is required for
metadata until changes are written to the copy, as depicted in the following figure. Where traditional copies can
take minutes or even hours to create, FlexClone software lets you copy even the largest datasets almost
instantaneously. That makes it ideal for situations in which you need multiple copies of identical datasets (a
development workspace, for example) or temporary copies of a dataset (testing an application against a

production dataset).

Traditional Copy FlexClone Copy

Original Original

FlexClone copies share data blocks with their parents, consuming no
storage except what is required for metadata.

NetApp SnapMirror Data Replication Technology

NetApp SnapMirror software is a cost-effective, easy-to-use unified replication solution across the data fabric. It
replicates data at high speeds over LAN or WAN. It gives you high data availability and fast data replication for
applications of all types, including business critical applications in both virtual and traditional environments.
When you replicate data to one or more NetApp storage systems and continually update the secondary data,
your data is kept current and is available whenever you need it. No external replication servers are required.
See the following figure for an example of an architecture that leverages SnapMirror technology.

SnapMirror software leverages NetApp ONTAP storage efficiencies by sending only changed blocks over the
network. SnapMirror software also uses built-in network compression to accelerate data transfers and reduce
network bandwidth utilization by up to 70%. With SnapMirror technology, you can leverage one thin replication
data stream to create a single repository that maintains both the active mirror and prior point-in-time copies,
reducing network traffic by up to 50%.

A o -
k s -: Kub:w @ ‘3 (f ‘#J .;‘\;\‘_R}

— w\-lil;l_bernetes Kobetlow s
=) — }'\\‘w—
-1 S
m @

> . S
TRIDENT

TRIDENT

ANSIBLE

ONTAP

B===

NetApp SnapMirror®
Cloud Sync /SnapMrror
Dev/Test or burst in cloud

NetApp Snapshof™ copies Snapshot c opies

N etApp@ Data Fab ric Dataset/modelkode versions Datasetimodelik ode versions

AB testing AMB testing

Edge Core Cloud

NetApp Cloud Sync

Cloud Sync is a NetApp service for rapid and secure data synchronization. Whether you need to transfer files
between on-premises NFS or SMB file shares, NetApp StorageGRID, NetApp ONTAP S3, NetApp Cloud
Volumes Service, Azure NetApp Files, AWS S3, AWS EFS, Azure Blob, Google Cloud Storage, or IBM Cloud
Object Storage, Cloud Sync moves the files where you need them quickly and securely.

After your data is transferred, it is fully available for use on both source and target. Cloud Sync can sync data
on-demand when an update is triggered or continuously sync data based on a predefined schedule.
Regardless, Cloud Sync only moves the deltas, so time and money spent on data replication is minimized.

Cloud Sync is a software as a service (SaaS) tool that is extremely simple to set up and use. Data transfers
that are triggered by Cloud Sync are carried out by data brokers. Cloud Sync data brokers can be deployed in
AWS, Azure, Google Cloud Platform, or on-premises.

NetApp XCP

NetApp XCP is client-based software for any-to-NetApp and NetApp-to-NetApp data migrations and file system
insights. XCP is designed to scale and achieve maximum performance by utilizing all available system
resources to handle high-volume datasets and high-performance migrations. XCP helps you to gain complete
visibility into the file system with the option to generate reports.

NetApp XCP is available in a single package that supports NFS and SMB protocols. XCP includes a Linux
binary for NFS data sets and a windows executable for SMB data sets.

NetApp XCP File Analytics is host-based software that detects file shares, runs scans on the file system, and
provides a dashboard for file analytics. XCP File Analytics is compatible with both NetApp and non-NetApp
systems and runs on Linux or Windows hosts to provide analytics for NFS and SMB-exported file systems.

NetApp ONTAP FlexGroup Volumes

A training dataset can be a collection of potentially billions of files. Files can include text, audio, video, and
other forms of unstructured data that must be stored and processed to be read in parallel. The storage system
must store large numbers of small files and must read those files in parallel for sequential and random 1/O.

A FlexGroup volume is a single namespace that comprises multiple constituent member volumes, as shown in
the following figure. From a storage administrator viewpoint, a FlexGroup volume is managed and acts like a
NetApp FlexVol volume. Files in a FlexGroup volume are allocated to individual member volumes and are not
striped across volumes or nodes. They enable the following capabilities:

* FlexGroup volumes provide multiple petabytes of capacity and predictable low latency for high-metadata
workloads.
» They support up to 400 billion files in the same namespace.

» They support parallelized operations in NAS workloads across CPUs, nodes, aggregates, and constituent
FlexVol volumes.

HA PAIR HA PAIR

%__f FlexGroup

Next: Hardware and Software Requirements

Hardware and Software Requirements

The NetApp Al Control Plane solution is not dependent on this specific hardware. The
solution is compatible with any NetApp physical storage appliance, software-defined
instance, or cloud service, that is supported by Trident. Examples include a NetApp AFF
storage system, Azure NetApp Files, NetApp Cloud Volumes Service, a NetApp ONTAP
Select software-defined storage instance, or a NetApp Cloud Volumes ONTAP instance.
Additionally, the solution can be implemented on any Kubernetes cluster as long as the
Kubernetes version used is supported by Kubeflow and NetApp Trident. For a list of
Kubernetes versions that are supported by Kubeflow, see the see the official Kubeflow
documentation. For a list of Kubernetes versions that are supported by Trident, see the
Trident documentation. See the following tables for details on the environment that was
used to validate the solution.

Infrastructure Quantity Details Operating System
Component

Deployment jump host 1 VM Ubuntu 20.04.2 LTS

10

https://www.kubeflow.org/docs/started/getting-started/
https://www.kubeflow.org/docs/started/getting-started/
https://netapp-trident.readthedocs.io/

Infrastructure Quantity
Component

Kubernetes master nodes 1
Kubernetes worker nodes 2

Kubernetes GPU worker 2
nodes

Storage 1 HA Pair

Software Component
Apache Airflow

Apache Airflow Helm Chart
Docker

Kubeflow

Kubernetes

NetApp Trident

NVIDIA DeepOps

Support

Details

VM
VM

NVIDIA DGX-1 (bare-
metal)

NetApp AFF A220

Version
2.0.1
8.0.8
19.03.12
1.2
1.18.9
21.01.2

Operating System

Ubuntu 20.04.2 LTS
Ubuntu 20.04.2 LTS

NVIDIADGX OS 4.0.5
(based on Ubuntu 18.04.2
LTS)

NetApp ONTAP 9.7 P6

Trident deployment functionality from master branch
as of commit 61898cdfda; All other functionality from

version 21.03

NetApp does not offer enterprise support for Apache Airflow, Docker, Kubeflow, Kubernetes, or NVIDIA
DeepOps. If you are interested in a fully supported solution with capabilities similar to the NetApp Al Control
Plane solution, contact NetApp about fully supported Al/ML solutions that NetApp offers jointly with partners.

Next: Kubernetes Deployment.

Kubernetes Deployment

This section describes the tasks that you must complete to deploy a Kubernetes cluster in
which to implement the NetApp Al Control Plane solution. If you already have a
Kubernetes cluster, then you can skip this section as long as you are running a version of
Kubernetes that is supported by Kubeflow and NetApp Trident. For a list of Kubernetes
versions that are supported by Kubeflow, see the see the official Kubeflow
documentation. For a list of Kubernetes versions that are supported by Trident, see the

Trident documentation.

For on-premises Kubernetes deployments that incorporate bare-metal nodes featuring NVIDIA GPU(s),
NetApp recommends using NVIDIA's DeepOps Kubernetes deployment tool. This section outlines the

deployment of a Kubernetes cluster using DeepOps.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already

11

https://github.com/NVIDIA/deepops/tree/61898cdfdaa0c59c07e9fabf3022945a905b148e/docs/k8s-cluster
https://www.netapp.com/us/contact-us/index.aspx?for_cr=us
https://www.kubeflow.org/docs/started/getting-started/
https://www.kubeflow.org/docs/started/getting-started/
https://netapp-trident.readthedocs.io/

performed the following tasks:
1. You have already configured any bare-metal Kubernetes nodes (for example, an NVIDIA DGX system that
is part of an ONTAP Al pod) according to standard configuration instructions.

2. You have installed a supported operating system on all Kubernetes master and worker nodes and on a
deployment jump host. For a list of operating systems that are supported by DeepOps, see the DeepOps
GitHub site.

Use NVIDIA DeepOps to Install and Configure Kubernetes

To deploy and configure your Kubernetes cluster with NVIDIA DeepOps, perform the following tasks from a
deployment jump host:

1. Download NVIDIA DeepOps by following the instructions on the Getting Started page on the NVIDIA
DeepOps GitHub site.

2. Deploy Kubernetes in your cluster by following the instructions on the Kubernetes Deployment Guide page
on the NVIDIA DeepOps GitHub site.

Next: NetApp Trident Deployment and Configuration Overview

NetApp Trident Deployment and Configuration

This section describes the tasks that you must complete to install and configure NetApp
Trident in your Kubernetes cluster.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already
performed the following tasks:

1. You already have a working Kubernetes cluster, and you are running a version of Kubernetes that is
supported by Trident. For a list of supported versions, see the Trident documentation.

2. You already have a working NetApp storage appliance, software-defined instance, or cloud storage
service, that is supported by Trident.

Install Trident

To install and configure NetApp Trident in your Kubernetes cluster, perform the following tasks from the
deployment jump host:

1. Deploy Trident using one of the following methods:

o If you used NVIDIA DeepOps to deploy your Kubernetes cluster, you can also use NVIDIA DeepOps to
deploy Trident in your Kubernetes cluster. To deploy Trident with DeepOps, follow the Trident
deployment instructions on the NVIDIA DeepOps GitHub site.

o If you did not use NVIDIA DeepOps to deploy your Kubernetes cluster or if you simply prefer to deploy
Trident manually, you can deploy Trident by following the deployment instructions in the Trident
documentation. Be sure to create at least one Trident Backend and at least one Kubernetes
StorageClass. For more information about Backends and StorageClasses, see the Trident
documentation.

12

https://github.com/NVIDIA/deepops
https://github.com/NVIDIA/deepops
https://github.com/NVIDIA/deepops/tree/master/docs
https://github.com/NVIDIA/deepops/tree/master/docs/k8s-cluster
https://netapp-trident.readthedocs.io/
https://github.com/NVIDIA/deepops/tree/master/docs/k8s-cluster#netapp-trident
https://github.com/NVIDIA/deepops/tree/master/docs/k8s-cluster#netapp-trident
https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/

If you are deploying the NetApp Al Control Plane solution on an ONTAP Al pod, see Example
Trident Backends for ONTAP Al Deployments for some examples of different Trident Backends

@ that you might want to create and Example Kubernetes Storageclasses for ONTAP Al
Deployments for some examples of different Kubernetes StorageClasses that you might want to
create.

Next: Example Trident Backends for ONTAP Al Deployments

NetApp Trident Deployment and Configuration

This section describes the tasks that you must complete to install and configure NetApp
Trident in your Kubernetes cluster.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already
performed the following tasks:

1. You already have a working Kubernetes cluster, and you are running a version of Kubernetes that is
supported by Trident. For a list of supported versions, see the Trident documentation.

2. You already have a working NetApp storage appliance, software-defined instance, or cloud storage
service, that is supported by Trident.

Install Trident

To install and configure NetApp Trident in your Kubernetes cluster, perform the following tasks from the
deployment jump host:

1. Deploy Trident using one of the following methods:

o If you used NVIDIA DeepOps to deploy your Kubernetes cluster, you can also use NVIDIA DeepOps to
deploy Trident in your Kubernetes cluster. To deploy Trident with DeepOps, follow the Trident
deployment instructions on the NVIDIA DeepOps GitHub site.

o If you did not use NVIDIA DeepOps to deploy your Kubernetes cluster or if you simply prefer to deploy
Trident manually, you can deploy Trident by following the deployment instructions in the Trident
documentation. Be sure to create at least one Trident Backend and at least one Kubernetes
StorageClass. For more information about Backends and StorageClasses, see the Trident
documentation.

If you are deploying the NetApp Al Control Plane solution on an ONTAP Al pod, see Example
Trident Backends for ONTAP Al Deployments for some examples of different Trident Backends

@ that you might want to create and Example Kubernetes Storageclasses for ONTAP Al
Deployments for some examples of different Kubernetes StorageClasses that you might want to
create.

Next: Example Trident Backends for ONTAP Al Deployments

Example Trident Backends for ONTAP Al Deployments

Before you can use Trident to dynamically provision storage resources within your
Kubernetes cluster, you must create one or more Trident Backends. The examples that
follow represent different types of Backends that you might want to create if you are

13

https://netapp-trident.readthedocs.io/
https://github.com/NVIDIA/deepops/tree/master/docs/k8s-cluster#netapp-trident
https://github.com/NVIDIA/deepops/tree/master/docs/k8s-cluster#netapp-trident
https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/

deploying the NetApp Al Control Plane solution on an ONTAP Al pod. For more
information about Backends, see the Trident documentation.

1. NetApp recommends creating a FlexGroup-enabled Trident Backend for each data LIF (logical network
interface that provides data access) that you want to use on your NetApp AFF system. This will allow you
to balance volume mounts across LIFs

The example commands that follow show the creation of two FlexGroup-enabled Trident Backends for two
different data LIFs that are associated with the same ONTAP storage virtual machine (SVM). These
Backends use the ontap-nas-flexgroup storage driver. ONTAP supports two main data volume types:
FlexVol and FlexGroup. FlexVol volumes are size-limited (as of this writing, the maximum size depends on
the specific deployment). FlexGroup volumes, on the other hand, can scale linearly to up to 20PB and 400
billion files, providing a single namespace that greatly simplifies data management. Therefore, FlexGroup
volumes are optimal for Al and ML workloads that rely on large amounts of data.

If you are working with a small amount of data and want to use FlexVol volumes instead of FlexGroup
volumes, you can create Trident Backends that use the ontap-nas storage driver instead of the ontap-
nas-flexgroup storage driver.

$ cat << EOF > ./trident-backend-ontap-ai-flexgroups-ifacel.json

{

"version": 1,

"storageDriverName": "ontap-nas-flexgroup",
"backendName": "ontap-ai-flexgroups-ifacel",
"managementLIF": "10.61.218.100",

"dataLIF": "192.168.11.11",

"svm": "ontapai nfs",

"username": "admin",

"password": "ontapai"

}

EOF

$ tridentctl create backend -f ./trident-backend-ontap-ai-flexgroups-
ifacel.json -n trident

o o
e tomm fom - +
| NAME | STORAGE DRIVER |

UUID | STATE | VOLUMES |
o e

e e tomm - fomm - +

| ontap-ai-flexgroups-ifacel | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-
b263-b6dabdecObdd | online | 0 |

$ cat << EOF > ./trident-backend-ontap-ai-flexgroups-iface2.json

{

"version": 1,
"storageDriverName": "ontap-nas-flexgroup",
"backendName": "ontap-ai-flexgroups-iface2",

14

https://netapp-trident.readthedocs.io/

"managementLIF": "10.61.218.100",

"dataLIF": "192.168.12.12",
"svm": "ontapai nfs",
"username": "admin",
"password": "ontapai"

}

EOF

$ tridentctl create backend -f ./trident-backend-ontap-ai-flexgroups-
iface2.json -n trident

o o
e tomm fom - +
| NAME | STORAGE DRIVER |

UUID | STATE | VOLUMES |
o o
e tomm tom - +

| ontap-ai-flexgroups-iface2 | ontap-nas-flexgroup | 61814d48-c770-436b-
9cbd-cf7ee661274d | online | 0 |

| ontap-ai-flexgroups-ifacel | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-

b263-bodacdecO0bdd | online | 0 |

| ontap-ai-flexgroups-iface2 | ontap-nas-flexgroup | 61814d48-c770-436b-
9cbd-cf7ee661274d | online | 0 |

——_ fo—————_————
o to—mm———— e +

2. NetApp also recommends creating one or more FlexVol- enabled Trident Backends. If you use FlexGroup
volumes for training dataset storage, you might want to use FlexVol volumes for storing results, output,
debug information, and so on. If you want to use FlexVol volumes, you must create one or more FlexVol-
enabled Trident Backends. The example commands that follow show the creation of a single FlexVol-
enabled Trident Backend that uses a single data LIF.

15

$ cat << EOF >
{

"version": 1,
"storageDriverName":
"backendName": "ontap-ai-f
"managementLIF": "10.61.21
"dataLIF": "192.168.11.11"
"svm": "ontapai nfs",
"username": "admin",
"password": "ontapai"

}
EQOF
$ tridentctl create backend -f

trident

I e e +
o
| NAME |
| STATE | VOLUMES |

e e e +
o

| ontap-ai-flexvols |

a9cl-52a69657fabe | online |

o - +
o
$ tridentctl get backend -n tr
o - +
o
| NAME |
| STATE | VOLUMES |

o - +
o
| ontap-ai-flexvols |
a9cl-52a69657fabe | online |

| ontap-ai-flexgroups-ifacel |
b263-bodacdecObdd | online |

| ontap-ai-flexgroups-iface2 |
9cbd-cf7ee661274d | online |

o - +

./trident-backend-ontap-ai-flexvols.json

"ontap-nas",

lexvols",
8.100",

14

./trident-backend-ontap-ai-flexvols.json -n

————————— fom e
STORAGE DRIVER | UulD
————————— fo——
ontap-nas | 52bdb3bl1-13a5-4513-
0 |
————————— fom
ident
————————— o ———— ¢
STORAGE DRIVER | UuID
————————— 1
ontap-nas | 52bdb3bl-13a5-4513-
0 |
ontap-nas-flexgroup | b74cbddb-e0b8-40b7-
0 |
ontap-nas-flexgroup | 61814d48-c770-436b-
0 |
————————— fom e ——— ¢

Next: Example Kubernetes Storageclasses for ONTAP Al Deployments

Example Kubernetes StorageClasses for ONTAP Al Deployments

Before you can use Trident to dynamically provision storage resources within your

16

Kubernetes cluster, you must create one or more Kubernetes StorageClasses. The
examples that follow represent different types of StorageClasses that you might want to
create if you are deploying the NetApp Al Control Plane solution on an ONTAP Al pod.
For more information about StorageClasses, see the Trident documentation.

1. NetApp recommends creating a separate StorageClass for each FlexGroup-enabled Trident Backend that
you created in the section Example Trident Backends for ONTAP Al Deployments, step 1. These granular
StorageClasses enable you to add NFS mounts that correspond to specific LIFs (the LIFs that you
specified when you created the Trident Backends) as a particular Backend that is specified in the
StorageClass spec file. The example commands that follow show the creation of two StorageClasses that
correspond to the two example Backends that were created in the section Example Trident Backends for
ONTAP Al Deployments, step 1. For more information about StorageClasses, see the Trident
documentation.

So that a persistent volume isn’t deleted when the corresponding PersistentVolumeClaim (PVC) is deleted,
the following example uses a reclaimPolicy value of Retain. For more information about the
reclaimPolicy field, see the official Kubernetes documentation.

17

https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/
https://kubernetes.io/docs/concepts/storage/storage-classes/

$ cat << EOF > ./storage-class-ontap-ai-flexgroups-retain-ifacel.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: ontap-ai-flexgroups-retain-ifacel
provisioner: netapp.io/trident
parameters:

backendType: "ontap-nas-flexgroup"

storagePools: "ontap-ai-flexgroups-ifacel:.*"
reclaimPolicy: Retain
EOF
$ kubectl create -f ./storage-class-ontap-ai-flexgroups-retain-
ifacel.yaml
storageclass.storage.k8s.io/ontap-ai-flexgroups-retain-ifacel created
$ cat << EOF > ./storage-class-ontap-ai-flexgroups-retain-iface2.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: ontap-ai-flexgroups-retain-iface?2
provisioner: netapp.io/trident
parameters:

backendType: "ontap-nas-flexgroup"

storagePools: "ontap-ai-flexgroups-iface2:.*"
reclaimPolicy: Retain
EQF
$ kubectl create -f ./storage-class-ontap-ai-flexgroups-retain-
iface2.yaml
storageclass.storage.k8s.io/ontap-ai-flexgroups-retain-iface2 created
$ kubectl get storageclass

NAME PROVISIONER AGE
ontap-ai-flexgroups-retain-ifacel netapp.io/trident Om
ontap-ai-flexgroups-retain-iface? netapp.io/trident Om

2. NetApp also recommends creating a StorageClass that corresponds to the FlexVol-enabled Trident
Backend that you created in the section Example Trident Backends for ONTAP Al Deployments, step 2.
The example commands that follow show the creation of a single StorageClass for FlexVol volumes.

In the following example, a particular Backend is not specified in the StorageClass definition file because

only one FlexVol-enabled Trident backend was created. When you use Kubernetes to administer volumes
that use this StorageClass, Trident attempts to use any available backend that uses the ontap-nas driver.

18

$ cat << EOF > ./storage-class-ontap-ai-flexvols-retain.yaml

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: ontap-ai-flexvols-retain
provisioner: netapp.io/trident
parameters:

backendType: "ontap-nas"
reclaimPolicy: Retain
EQOF

$ kubectl create -f ./storage-class-ontap-ai-flexvols-retain.yaml
storageclass.storage.k8s.io/ontap-ai-flexvols-retain created

$ kubectl get storageclass

NAME
ontap-ai-flexgroups-retain-ifacel
ontap-ai-flexgroups-retain-iface?
ontap-ai-flexvols-retain

PROVISIONER

netapp.io/trident
netapp.io/trident
netapp.io/trident

AGE
1m
Im

Om

3. NetApp also recommends creating a generic StorageClass for FlexGroup volumes. The following example

commands show the creation of a single generic StorageClass for FlexGroup volumes.

Note that a particular backend is not specified in the StorageClass definition file. Therefore, when you use

Kubernetes to administer volumes that use this StorageClass, Trident attempts to use any available

backend that uses the ontap-nas-flexgroup driver.

$ cat << EOF > ./storage-class-ontap-ai-flexgroups-retain.yaml

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:

name: ontap-ai-flexgroups-retain
provisioner: netapp.io/trident
parameters:

backendType: "ontap-nas-flexgroup"
reclaimPolicy: Retain
EQF

$ kubectl create -f ./storage-class-ontap-ai-flexgroups-retain.yaml
storageclass.storage.k8s.io/ontap-ai-flexgroups-retain created

$ kubectl get storageclass

NAME

ontap-ai-flexgroups-retain
ontap-ai-flexgroups-retain-ifacel
ontap-ai-flexgroups-retain-iface?
ontap-ai-flexvols-retain

PROVISIONER

netapp.io/trident
netapp.io/trident
netapp.io/trident
netapp.io/trident

AGE
Om
2m
2m

1m

19

Next: Kubeflow Deployment Overview

Kubeflow Deployment

This section describes the tasks that you must complete to deploy Kubeflow in your
Kubernetes cluster.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already
performed the following tasks:

1. You already have a working Kubernetes cluster, and you are running a version of Kubernetes that is
supported by Kubeflow. For a list of supported versions, see the official Kubeflow documentation.

2. You have already installed and configured NetApp Trident in your Kubernetes cluster as outlined in Trident
Deployment and Configuration.

Set Default Kubernetes StorageClass

Before you deploy Kubeflow, you must designate a default StorageClass within your Kubernetes cluster. The
Kubeflow deployment process attempts to provision new persistent volumes using the default StorageClass. If
no StorageClass is designated as the default StorageClass, then the deployment fails. To designate a default
StorageClass within your cluster, perform the following task from the deployment jump host. If you have
already designated a default StorageClass within your cluster, then you can skip this step.

1. Designate one of your existing StorageClasses as the default StorageClass. The example commands that
follow show the designation of a StorageClass named ontap-ai- flexvols-retain as the default
StorageClass.

The ontap-nas-flexgroup Trident Backend type has a minimum PVC size that is fairly

(D large. By default, Kubeflow attempts to provision PVCs that are only a few GBs in size.
Therefore, you should not designate a StorageClass that utilizes the ontap-nas-flexgroup
Backend type as the default StorageClass for the purposes of Kubeflow deployment.

$ kubectl get sc

NAME PROVISIONER AGE
ontap-ai-flexgroups-retain csi.trident.netapp.io 25h
ontap-ai-flexgroups-retain-ifacel csi.trident.netapp.io 25h
ontap-ai-flexgroups-retain-iface? csi.trident.netapp.io 25h
ontap-ai-flexvols-retain csi.trident.netapp.io 3s

$ kubectl patch storageclass ontap-ai-flexvols-retain -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}"'
storageclass.storage.k8s.io/ontap-ai-flexvols-retain patched

$ kubectl get sc

NAME PROVISIONER AGE
ontap-ai-flexgroups-retain csi.trident.netapp.io 25h
ontap-ai-flexgroups-retain-ifacel csi.trident.netapp.io 25h
ontap-ai-flexgroups-retain-iface? csi.trident.netapp.io 25h
ontap-ai-flexvols-retain (default) csi.trident.netapp.io 54s

20

https://www.kubeflow.org/docs/started/getting-started/

Use NVIDIA DeepOps to Deploy Kubeflow

NetApp recommends using the Kubeflow deployment tool that is provided by NVIDIA DeepOps. To deploy
Kubeflow in your Kubernetes cluster using the DeepOps deployment tool, perform the following tasks from the
deployment jump host.

@ Alternatively, you can deploy Kubeflow manually by following the installation instructions in the
official Kubeflow documentation

1. Deploy Kubeflow in your cluster by following the Kubeflow deployment instructions on the NVIDIA
DeepOps GitHub site.

2. Note down the Kubeflow Dashboard URL that the DeepOps Kubeflow deployment tool outputs.

$./scripts/k8s/deploy kubeflow.sh -x

INFO[0007] Applied the configuration Successfully!
filename="cmd/apply.go:72"

Kubeflow app installed to: /home/ai/kubeflow

It may take several minutes for all services to start. Run 'kubectl get
pods -n kubeflow' to verify

To remove (excluding CRDs, istio, auth, and cert-manager), run:
./scripts/k8s deploy kubeflow.sh -d

To perform a full uninstall : ./scripts/k8s deploy kubeflow.sh -D
Kubeflow Dashboard (HTTP NodePort): http://10.61.188.111:31380

3. Confirm that all pods deployed within the Kubeflow namespace show a STATUS of Running and confirm
that no components deployed within the namespace are in an error state. It may take several minutes for
all pods to start.

$ kubectl get all -n kubeflow

NAME READY
STATUS RESTARTS AGE
pod/admission-webhook-bootstrap-stateful-set-0 1/1
Running 0 95s
pod/admission-webhook-deployment-6b89c84c98-vrtbh 1/1
Running 0 91s

pod/application-controller-stateful-set-0 1/1
Running 0 98s

pod/argo-ui-5dcf5d8b4 f-m2wn4 1/1
Running 0 97s

pod/centraldashboard-cf4874ddc-7hcr8 1/1
Running 0 97s
pod/jupyter-web-app-deployment-685b455447-gjhh7 1/1
Running 0 96s

pod/katib-controller-88c97d85c-kgg66 1/1
Running 1 95s

21

https://www.kubeflow.org/docs/started/getting-started/
https://github.com/NVIDIA/deepops/blob/master/docs/k8s-cluster/kubeflow.md

22

pod/katib-db-8598468fd8-5jw2c

Running 0 95s
pod/katib-manager-574c8c67f9-wtrf5

Running 1 95s
pod/katib-manager-rest-778857c989-fjbzn

Running 0 95s
pod/katib-suggestion-bayesianoptimization-65df4d7455-gthmw
Running 0 94 s
pod/katib-suggestion-grid-56bf69f597-98vwn
Running 0 94s
pod/katib-suggestion-hyperband-7777b76cb9-9védg
Running 0 93s
pod/katib-suggestion-nasrl-77f6£9458c-2gzxq
Running 0 93s
pod/katib-suggestion-random-77b88b5c79-164739
Running 0 93s
pod/katib-ui-7587c5b967-nd629

Running 0 95s

pod/metacontroller-0

Running 0 96s
pod/metadata-db-5dd459cc-swzkm

Running 0 94s
pod/metadata-deployment-6cf77db994-69fk7

Running 3 93s
pod/metadata-deployment-6¢cf77db994-mpbjt

Running 3 93s
pod/metadata-deployment-6cf77db994-xg7tz

Running 3 94s
pod/metadata-ui-78f5b59%b56-gbokr

Running 0 94s
pod/minio-758b769d67-11vdr

Running 0 91s
pod/ml-pipeline-5875b9db95-g8t2k

Running 0 91s
pod/ml-pipeline-persistenceagent-9069ddd46-bt9r9
Running 0 90s
pod/ml-pipeline-scheduledworkflow-7b8d756c76-7x56s
Running 0 90s
pod/ml-pipeline-ui-79ffd9c76-fcwpd

Running 0 90s
pod/ml-pipeline-viewer-controller-deployment-5fdc87f58-b2t9r
Running 0 90s
pod/mysql-657£87857d-15k9z

Running 0 91s
pod/notebook-controller-deployment-56b4f59bbf-8bvnr
Running 0 92s

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

pod/profiles-deployment-6bc745947-mrdkh

Running 0 90s
pod/pytorch-operator-77c97f4879-hmlrv
Running 0 92s
pod/seldon-operator-controller-manager-0
Running 1 91s
pod/spartakus-volunteer-5fdfddb779-17gkm
Running 0 92s
pod/tensorboard-6544748d94-nh8b2

Running 0 92s
pod/tf-job-dashboard-56£79c59dd-6w59t
Running 0 92s
pod/tf-job-operator-79cbfdedbc-rb58c
Running 0 91s
pod/workflow-controller-db644d554-cwrnb
Running 0 97s

NAME

CLUSTER-IP EXTERNAL-TP PORT (S)
service/admission-webhook-service
10.233.51.169 <none> 443/TCP
service/application-controller-service
10.233.4.54 <none> 443/TCP
service/argo-ui

10.233.47.191 <none> 80:31799/TCP

service/centraldashboard
10.233.8.36 80/TCP
service/jupyter-web—-app-service

<none>

10.233.1.42 <none> 80/TCP
service/katib-controller

10.233.25.226 <none> 443/TCP
service/katib-db

10.233.33.151 <none> 3306/TCP
service/katib-manager

10.233.46.239 <none> 6789/TCP
service/katib-manager-rest
10.233.55.32 <none> 80/TCP

service/katib-suggestion-bayesianoptimization

10.233.49.191 <none> 6789/TCP
service/katib-suggestion-grid
10.233.9.105 <none> 6789/TCP

service/katib-suggestion-hyperband

10.233.22.2 <none> 6789/TCP
service/katib-suggestion-nasrl
10.233.63.73 <none> 6789/TCP

service/katib-suggestion-random

10.233.57.210 <none> 6789/TCP

TYPE
AGE
ClusterIP
97s
ClusterIP
98s
NodePort
97s
ClusterIP
97s
ClusterIP
97s
ClusterIP
96s
ClusterIP
97s
ClusterIP
96s
ClusterIP
96s
ClusterIP
95s
ClusterIP
95s
ClusterIP
95s
ClusterlIP
95s
ClusterIP
95s

2/2

1/1

1/1

1/1

1/1

1/1

1/1

1/1

23

24

service/katib-ui

10.233.6.116 <none> 80/TCP
service/metadata-db

10.233.31.2 <none> 3306/TCP
service/metadata-service

10.233.27.104 <none> 8080/TCP
service/metadata-ui

10.233.57.177 <none> 80/TCP
service/minio-service

10.233.44.90 <none> 9000/TCP

service/ml-pipeline
10.233.41.201

service/ml-pipeline-tensorboard-ui

<none>

10.233.36.207 <none> 80/TCP
service/ml-pipeline-ui

10.233.61.150 <none> 80/TCP
service/mysql

10.233.55.117 <none> 3306/TCP

service/notebook-controller-service

10.233.10.166 <none> 443/TCP
service/profiles-kfam

10.233.33.79 <none> 8081/TCP
service/pytorch-operator

10.233.37.112 <none> 8443/TCP

service/seldon-operator-controller-manager—-service

10.233.30.178 <none> 443/TCP
service/tensorboard

10.233.58.151 <none> 9000/TCP
service/tf-job-dashboard

10.233.4.17 <none> 80/TCP
service/tf-job-operator

10.233.60.32 <none> 8443 /TCP
service/webhook-server-service
10.233.32.167 <none> 443/TCP
NAME

TO-DATE AVAILABLE AGE

deployment.apps/admission-webhook-deployment
1 97s
deployment.apps/argo-ui

1 97s
deployment.apps/centraldashboard
1 97s

deployment.apps/jupyter-web-app-deployment
1 97s
deployment.apps/katib-controller

1 96s

8888/TCP,8887/TCP

ClusterIP
96s
ClusterIP
96s
ClusterIP
96s
ClusterIP
96s
ClusterIP
94s
ClusterlIP
94s
ClusterIP
93s
ClusterIP
93s
ClusterlIP
94s
ClusterIP
95s
ClusterIP
92s
ClusterIP
95s
ClusterIP
92s
ClusterIP
94s
ClusterIP
94s
ClusterIP
94s
ClusterIP
87s

READY

1/1

1/1

1/1

1/1

1/1

UbP-

deployment.

1

deployment.

1

deployment.

1

deployment.

1

deployment.

1

deployment.

1

deployment.

1

deployment.

1

deployment.

1

deployment.

1

deployment.

3

deployment.

1

deployment.

1

deployment.

1

deployment.

1

deployment.

1
deployment
1

deployment.

1

deployment.

1

deployment.

1

deployment.

1

deployment.

1

deployment.

1

apps/katib-db
97s
apps/katib-manager
96s
apps/katib-manager-rest
96s
apps/katib-suggestion-bayesianoptimization
95s
apps/katib-suggestion-grid
95s
apps/katib-suggestion-hyperband
95s
apps/katib-suggestion-nasrl
95s
apps/katib-suggestion-random
95s
apps/katib-ui
96s
apps/metadata-db
96s
apps/metadata-deployment
96s
apps/metadata-ui
96s
apps/minio
94s
apps/ml-pipeline
94s
apps/ml-pipeline-persistenceagent
93s
apps/ml-pipeline-scheduledworkflow
93s

.apps/ml-pipeline-ui

93s
apps/ml-pipeline-viewer-controller-deployment
93s
apps/mysqgl
94s
apps/notebook-controller-deployment
95s
apps/profiles-deployment
92s
apps/pytorch-operator
95s
apps/spartakus-volunteer
94s

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

3/3

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

25

deployment.apps/tensorboard 1/1
1 94s

deployment.apps/tf-job-dashboard 1/1
1 94s

deployment.apps/tf-job-operator 1/1
1 94s

deployment.apps/workflow-controller 1/1
1 97s

NAME

DESIRED CURRENT READY AGE
replicaset.apps/admission-webhook-deployment-6089c84c98
1 1 97s
replicaset.apps/argo-ui-5dcf5d8b4f

1 1 97s
replicaset.apps/centraldashboard-cf4874ddc
1 1 97s

replicaset.apps/jupyter-web-app-deployment-685b455447
1 1 97s
replicaset.apps/katib-controller-88c97d85¢c

1 1 96s
replicaset.apps/katib-db-8598468fd8

1 1 97s
replicaset.apps/katib-manager-574c8c67f9

1 1 96s
replicaset.apps/katib-manager-rest-778857c989
1 1 96s

replicaset.apps/katib-suggestion-bayesianoptimization-65df4d7455
1 1 95s
replicaset.apps/katib-suggestion-grid-56bf69£597

1 1 95s
replicaset.apps/katib-suggestion-hyperband-7777b76cb9
1 1 95s
replicaset.apps/katib-suggestion-nasrl-77f6f9458c

1 1 95s
replicaset.apps/katib-suggestion-random-77b88b5c79

1 1 95s
replicaset.apps/katib-ui-7587c5b967

1 1 96s
replicaset.apps/metadata-db-5dd459cc

1 1 96s
replicaset.apps/metadata-deployment-6¢cf77db994
3 3 96s
replicaset.apps/metadata-ui-78f5b59b56

1 1 96s

replicaset.apps/minio-758b769d67
1 1 93s

replicaset.apps/ml-pipeline-5875b9db95

1 1 93s
replicaset.apps/ml-pipeline-persistenceagent-9b69ddd46

1 1 92s
replicaset.apps/ml-pipeline-scheduledworkflow-7b8d756c76

1 1 91s

replicaset.apps/ml-pipeline-ui-79f£fd9c76

1 1 91s
replicaset.apps/ml-pipeline-viewer-controller-deployment-5£fdc87£58
1 1 91s

replicaset.apps/mysgql-657£87857d

1 1 92s
replicaset.apps/notebook-controller-deployment-56b4£f59bbf

1 1 94s
replicaset.apps/profiles-deployment-6bc745947

1 1 91s

replicaset.apps/pytorch-operator-77c97£4879

1 1 94s
replicaset.apps/spartakus-volunteer-5fdfddb779

1 1 94s

replicaset.apps/tensorboard-6544748d94

1 1 93s

replicaset.apps/tf-job-dashboard-56£79c59dd

1 1 93s

replicaset.apps/tf-job-operator-79cbfdedbc

1 1 93s
replicaset.apps/workflow-controller-db644d554

1 1 97s

NAME READY
statefulset.apps/admission-webhook-bootstrap-stateful-set 1/1
statefulset.apps/application-controller-stateful-set 1/1
statefulset.apps/metacontroller 1/1
statefulset.apps/seldon-operator-controller—-manager 1/1

$ kubectl get pvc -n kubeflow

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS

katib-mysqgl Bound pvc-b07£293e-d028-11e9-9b9d-00505681a82d
10G1 RWO ontap-ai-flexvols-retain 27m
metadata-mysql Bound pvc-b0f3£f032-d028-11e9-9b9d-00505681a82d
10G1i RWO ontap-ai-flexvols-retain 27m
minio-pv-claim Bound pvc-b22727ee-d028-11e9-9b9d-00505681a82d
20G1i RWO ontap-ai-flexvols-retain 27m
mysgl-pv-claim Bound pvc-b2429afd-d028-11e9-9b9d-00505681a82d
20G1i RWO ontap-ai-flexvols-retain 27m

AGE
97s
98s
98s
92s

4. In your web browser, access the Kubeflow central dashboard by navigating to the URL that you noted

27

down in step 2.

The default username is admin@kubeflow.org, and the default password is 12341234. To create
additional users, follow the instructions in the official Kubeflow documentation.

L {7~ Kubeflow Central Dashboard ~ x +

s C (¥ © NotSecure | 10.61.218.131:3138C r @ a Hens

-
‘F Kubeflow (¥ Select namespace ~
Dashboard Activity
Quick shorteuts Recent Notebooks Documentation
Upload a pipeline Cheose a namespace to see Noteboo Getting Started with Kubeflow
4 Pipelines Get your machine-leaming workflow up-and [
running on Kubeflow
4 View all pipeline runs Recent Pipelines MiniKF
Pipelines A fast and easy way to deploy Kubeflow Z
locally
4 Create a new Notebook server o [sample] Basic - Exit Handler i
Motebook Servers Greated 9/5/2019, 6:01:55 PM Microks for Kubeflow -2
Quickly get Kubeflaw running locally on |—_|
native hypervisors
4 View Katib Studies «ff [Sample] Basic - Conditional execution
Katib Created 9/5/2019, 6:01:54 PM Minikube for Kubeflow 0
Quickly get Kubeflaw running locally
View Metadata Artifacts o2 [sample] Basic - Parallel execution
umer Artifact Store Created 9/5/2019, 6:01:52 PM Kubeflow on GCP
g Running Kubeflow on Kubernetes Engine and Z
of [sample] Basic - Sequential execution Google Cloud Platfarm

Created 9/5/2019, 6:01:51 PM

o2 [Sample] ML - TFX - Taxi Tip Prediction...

Created 9/5/2019, 6:01:50 PM

Requirements for Kubeflow

tion about using Z

Recent Pipeline Runs

Next: Example Kubeflow Operations and Tasks

Example Kubeflow Operations and Tasks

This section includes examples of various operations and tasks that you may want to
perform using Kubeflow.

Next: Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use

Example Kubeflow Operations and Tasks

This section includes examples of various operations and tasks that you may want to
perform using Kubeflow.

Next: Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use

28

https://www.kubeflow.org/docs/components/multi-tenancy/

Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use

Kubeflow is capable of rapidly provisioning new Jupyter Notebook servers to act as data scientist workspaces.
To provision a new Jupyter Notebook server with Kubeflow, perform the following tasks. For more information
about Jupyter Notebooks within the Kubeflow context, see the official Kubeflow documentation.

1. From the Kubeflow central dashboard, click Notebook Servers in the main menu to navigate to the Jupyter
Notebook server administration page.

@ {7 Kubeflow Central Dashboard x +

L C { @ NotSecure | 10.61.218.131:31380/?ns=kubeflow-an

:& Kubeflow (P kubeflow-anonymous
F 3

Quick shortcuts

* Upload a pipeline

Fipelines

+ View all pipeline runs

Fipelines

+ Create a new Motebook server

Motebook Servers

+ View Katib Studies
Katib

View Metadata Artifacts

Artifact Store

2. Click New Server to provision a new Jupyter Notebook server.

29

https://www.kubeflow.org/docs/components/notebooks/

3.

30

L {7 Kubeflow Central Dashboard % +

<« > C { @ NotSecure | 10.61.218.131:31380/_/jupyter/?ns=kubeflow-anc
= {E; Kubeflow @ kubeflow-anonymous ~
Notebook Servers -+ NEW SERVER
Status Name Age Image CcPU Memory Volumes

Give your new server a name, choose the Docker image that you want your server to be based on, and
specify the amount of CPU and RAM to be reserved by your server. If the Namespace field is blank, use
the Select Namespace menu in the page header to choose a namespace. The Namespace field is then
auto-populated with the chosen namespace.

In the following example, the kubeflow-anonymous namespace is chosen. In addition, the default values
for Docker image, CPU, and RAM are accepted.

L {7 Kubeflow Central Dashboard % e

&€ =5 C ft A NotSecure | 10.61.218.131:31380
= {Eo‘ Kubeflow @ kubeflow-anonymous ~
B Name

Specify the name of the Notebook Server and the Namespace it will belong to

Narme Mamespace
mike kubeflow-anonymous
@ Image

A starter Jupyter Docker Image with a baseline deployment and typical ML packages.

[} Custom Image

Image

ger.io/kubeflow-images-public/tensorflow-1.13.1-notebook-cpu:v0.5.0

3 CPU / RAM

Specify the total amount of CPU and RAM reserved by your Notebook Server. For CPU-intensive workloads, you can choose
more than 1 CPU (e.g. 1.5).

CPU Memaory

0.5 1.0Gi

4. Specify the workspace volume details. If you choose to create a new volume, then that volume or PVC is
provisioned using the default StorageClass. Because a StorageClass utilizing Trident was designated as
the default StorageClass in the section Kubeflow Deployment, the volume or PVC is provisioned with
Trident. This volume is automatically mounted as the default workspace within the Jupyter Notebook
Server container. Any notebooks that a user creates on the server that are not saved to a separate data
volume are automatically saved to this workspace volume. Therefore, the notebooks are persistent across
reboots.

L Workspace Volume

Configure the Volume to be mounted as your personal Workspace.

[C] Don't use Persistent Storage for User's home
Type MName Size Mode

- A

workspace-mike 10Gi ReadWriteOnce

5. Add data volumes. The following example specifies an existing PVC named 'pb-fg-all' and accepts the
default mount point.

31

am Data Volumes

Configure the Volumes to be mounted as your Datasets.

- ADD VOLUME
Type MName Size Mode Mount Paint
Existing ed pb-fg-all 10Gi ReadWriteOnce ¥ /home/jovyan/data-vol-1 &

6. Optional: Request that the desired number of GPUs be allocated to your notebook server. In the following

example, one GPU is requested.

= Configurations

Extra layers of configurations that will be applied to the new Notebook. (e.g. Insert credentials as Secrets, set Environment
Variables.)

Configurations d

02 Extra Resources

Specify extra resoucres that might be needed in the Notebook Server.

@) Enable Shared Memory

Extra Resources *
{"nvidia.com/gpu": 1}

Extra Resources available in the cluster {ex. NVIDIA GPUs)

oo [

7. Click Launch to provision your new notebook server.

8. Wait for your notebook server to be fully provisioned. This can take several minutes if you have never

32

provisioned a server using the Docker image that you specified because the image needs to be
downloaded. When your server has been fully provisioned, you see a green check mark in the Status
column on the Jupyter Notebook server administration page.

{7 Kubeflow Central Dashboard

£+ A NotSecure | 10.61.218.131:31380/_/jupyter/?ns=kubeflow-anonym

= {Eo‘ Kubeflow P kubeflow-anonymous ~
Notebook Servers -+ NEW SERVER
Status Name Age Image CPU Memory Volumes
Q mike 12 mins ago tensorflow-1.13.1-notebook-cpu:v0.5.0 0.5 1.0Gi : CONNECT i'

9. Click Connect to connect to your new server web interface.

10. Confirm that the dataset volume that was specified in step 6 is mounted on the server. Note that this
volume is mounted within the default workspace by default. From the perspective of the user, this is just
another folder within the workspace. The user, who is likely a data scientist and not an infrastructure
expert, does not need to possess any storage expertise in order to use this volume.

Home

{ @ NotSecure | 10.61.218.131:31380/n0ote

— Jupyter Quit
Files Running Clusters
Select items to perform actions on them. Upload | New - | &
Jo |~ | mf Name ¥ Last Modified File size
1 [D data-vol-1 a day ago

33

[%" Kubeflow Central Dashboard

< C { @ NotSecure | 10.61.218.131

— Jupyter

Files

Aunning Clusters

Select items to perform actions on them.

1.0

~ | B/ data-vol-1

blas_folder
collected_trace
comtainer
datassat
fio_test
parabricks

banking.csv

data-vol-1/

Name ¥

Upload New~ | &

Last Modified File size
seconds ago
2 months ago
2 months ago
3 months age
5 hours ago
3 months ago
7 months ago

amenthage 4.88 MB

11. Open a Terminal and, assuming that a new volume was requested in step 5, execute df -h to confirm that
a new Trident-provisioned persistent volume is mounted as the default workspace.

34

The default workspace directory is the base directory that you are presented with when you first access the
server’s web interface. Therefore, any artifacts that you create by using the web interface are stored on this
Trident-provisioned persistent volume.

{ @ NotSecure | 10.61.218.131

— Jupyter

Files

Running Clusters

Select items to perform actions on them.

Mo

~ | B/ data-vol-1

blas_folder
collected_trace
cortainer
datasst
fio_test
parabricks

banking.csv

data-vol-1/

Name ¥

Quit

Upload | New~| &
Notebaok: .
Python 2
Python 3

Orther
Text File
Folder
Terminal

5 hours ago
3 months ago
¥ months ago

amonthago 4.88 MB

{7 Kubeflow Central Dashboard X . data-vol-1/ x »>— 10.61.218.131:31380/notebook X =+

N —

ot Secure ,61.218.131:31380/notebook/kubeflow-anonymous/mikeft... a = & A [H
A Nots 10.61.218.131: 31380/ kfkubef mike/! w [- | .

' Jupyter

$ df -h

Filesystem Used Avail

Use% Mounted on

overlay 3826
9% /

tmpfs 64M
0% /dev

tmpfs 252G
0% /sys/fs/cgroup

/dev/sda2 382G
0% = oo

192.168.11.11:/trident_pvc_3dcfe7e5_d5a9_11e9 9b9d 00505681a82d lO:J

1% /home/jovyan
mpis
0% /dev/shm
192.168.11.11: /pb_£g_all
100% /home/jovyan/data-vol-1
tmpfs
1% /run/secrets/kubernetes.io/serviceaccount
tmpfs
1% /proc/driver/nvidia
tmpfs
1% /run/nvidia-persistenced/socket
udev
0% /dev/nvidia5
tmpfs
0% /proc/acpi
tmpfs
0% /proc/sesi
tmpfs
0% /sys/firmware

1

12. Using the terminal, run nvidia-smi to confirm that the correct number of GPUs were allocated to the
notebook server. In the following example, one GPU has been allocated to the notebook server as
requested in step 7.

{7/ Kubeflow Central Dashboard x | — Home X _ 10.61.218.131:31380/noteboak X e

C 1t A NotSecure | 10.61.218.131:31380/notebook/kubeflow-anonymous/mikeft.. 3 @ a4 u B @®

$ nvidia-smi
Fri sep 13 13:52:15 2019

NVIDIA-SMI 410.104 Driver Version: 410.104 CUDA Version: N/A
i et it F—— s
Persistence-M| Disp.A | Volatile Uncorr. ECC |
Fan Temp Perf Pwr:Usage/Cap]| Memory-Usage | GPU-Util

= === ===y

0 Tesla V100-~SXMZ... On | 00000000:86:00.0 Off |
PO 46W / 300W | OMiB / 32480MiB | 0%

Type Process

No running processes found

Example Notebooks and Pipelines

Example Notebooks and Pipelines

The NetApp Data Science Toolkit for Kubernetes can be used in conjunction with
Kubeflow. Using the NetApp Data Science Toolkit with Kubeflow provides the following
benefits:

» Data scientists can perform advanced NetApp data management operations directly from within a Jupyter
Notebook.

« Advanced NetApp data management operations can be incorporated into automated workflows using the
Kubeflow Pipelines framework.

Refer to the Kubeflow Examples section within the NetApp Data Science Toolkit GitHub repository for details
on using the toolkit with Kubeflow.

Next: Apache Airflow Deployment

Apache Airflow Deployment

NetApp recommends running Apache Airflow on top of Kubernetes. This section
describes the tasks that you must complete to deploy Airflow in your Kubernetes cluster.

@ It is possible to deploy Airflow on platforms other than Kubernetes. Deploying Airflow on
platforms other than Kubernetes is outside of the scope of this solution.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already
performed the following tasks:
1. You already have a working Kubernetes cluster.

2. You have already installed and configured NetApp Trident in your Kubernetes cluster as outlined in the
section “NetApp Trident Deployment and Configuration.”

Install Helm

Airflow is deployed using Helm, a popular package manager for Kubernetes. Before you deploy Airflow, you
must install Helm on the deployment jump host. To install Helm on the deployment jump host, follow the
installation instructions in the official Helm documentation.

Set Default Kubernetes StorageClass

Before you deploy Airflow, you must designate a default StorageClass within your Kubernetes cluster. The
Airflow deployment process attempts to provision new persistent volumes using the default StorageClass. If no
StorageClass is designated as the default StorageClass, then the deployment fails. To designate a default
StorageClass within your cluster, follow the instructions outlined in the section Kubeflow Deployment. If you
have already designated a default StorageClass within your cluster, then you can skip this step.

Use Helm to Deploy Airflow

To deploy Airflow in your Kubernetes cluster using Helm, perform the following tasks from the deployment jump
host:

36

https://github.com/NetApp/netapp-data-science-toolkit/tree/main/Kubernetes
https://github.com/NetApp/netapp-data-science-toolkit/tree/main/Kubernetes/Examples/Kubeflow
https://helm.sh/docs/intro/install/

1. Deploy Airflow using Helm by following the deployment instructions for the official Airflow chart on the
Artifact Hub. The example commands that follow show the deployment of Airflow using Helm. Modify, add,
and/or remove values in the custom- values.yaml file as needed depending on your environment and
desired configuration.

$ cat << EOF > custom-values.yaml
iFgsstsas s Eas I Ea LA EEEEEEEE SR
Airflow - Common Configs
igdstassstdasataaaa A AAA AR LA EAEER
airflow:
the airflow executor type to use
##
executor: "CeleryExecutor"
environment variables for the web/scheduler/worker Pods (for
airflow configs)
##
#
iigdstagsstdasatdaaa AR AR AR LA REERRE
Airflow - WebUI Configs
FHAFH AR H A AR A H AR S R SHEHH
web:
configs for the Service of the web Pods
#4
service:
type: NodePort
FHAFH AR H AR A AR AR
Airflow - Logs Configs
FHAFH A H AR
logs:
persistence:
enabled: true
FHA#H AR H A AR A H AR S RS SHH S
Airflow - DAGs Configs
FHAFH A H A
dags:
configs for the DAG git repository & sync container
#4
gitSync:
enabled: true
url of the git repository
#4
repo: "git@github.com:mboglesby/airflow-dev.git"
the branch/tag/shal which we clone
#4
branch: master
revision: HEAD

37

https://artifacthub.io/packages/helm/airflow-helm/airflow

the name of a pre-created secret containing files for ~/.ssh/

i

NOTE:

- this is ONLY RELEVANT for SSH git repos

- the secret commonly includes files: id rsa, id rsa.pub,

known hosts
- known hosts is NOT NEEDED if ‘git.sshKeyscan' is true

#4

sshSecret: "airflow-ssh-git-secret"

the name of the private key file in your ‘git.secret’
#4

NOTE:

- this is ONLY RELEVANT for PRIVATE SSH git repos

#4

sshSecretKey: id rsa
the git sync interval in seconds
#4
syncWait: 60
EOF
$ helm install airflow airflow-stable/airflow -n airflow --version 8.0.8

--values ./custom-values.yaml

Congratulations. You have just deployed Apache Airflow!
1. Get the Airflow Service URL by running these commands:
export NODE PORT=$ (kubectl get --namespace airflow -o
jsonpath="{.spec.ports[0] .nodePort}" services airflow-web)
export NODE IP=$ (kubectl get nodes —--namespace airflow -o
Jjsonpath="{.items[0] .status.addresses[0] .address}")
echo http://$NODE_IP:$NODE PORT/
2. Open Airflow in your web browser

2. Confirm that all Airflow pods are up and running. It may take a few minutes for all pods to start.

$ kubectl -n airflow get pod

NAME READY STATUS RESTARTS AGE
airflow-flower-b5656d44f-h8qgjk 1/1 Running 0 2h
airflow-postgresqgl-0 1/1 Running 0 2h
airflow-redis-master-0 1/1 Running 0 2h
airflow-scheduler-9d95fcdf9-clfib 2/2 Running 2 2h
airflow-web-59¢c94db9c5-z7rg4 1/1 Running 0 2h
airflow-worker-0 2/2 Running 2 2h

3. Obtain the Airflow web service URL by following the instructions that were printed to the console when you
deployed Airflow using Helm in step 1.

38

$ export NODE PORT=S$ (kubectl get --namespace airflow -o

jsonpath="{.spec.ports[0] .nodePort}" services airflow-web)

$ export NODE IP=$ (kubectl get nodes --namespace airflow -o

jsonpath="{.items[0] .status.addresses[0] .address}")
$ echo http://SNODE_IP:SNODE_PORT/

4. Confirm that you can access the Airflow web service.

® © ® ¥ Airflow - DAGs x +

< C (@ A NotSecure | 10.61.188.112:30366/admin/

DAGs Browse v Admin v

¥ Airflow

Data Profiling v

DAGs

(i} DAG Schedule
() Em ai_training_run m
() m create_data_scientist_workspace m
() E example_bash_operator [00+++]
() E example_branch_dop_operator_v3 WA
(] E example_branch_operator
@ [f example_complex [None |
() m example_external_task_marker_child m
(] m example_external_task_marker_parent m
(] m example_http_operator
(] E example_kubernetes_executor_config m
() E example_nested_branch_dag @daily
(] E example_passing_params_via_test_command
() m example_pig_operator [None |
() m example_python_operator [None |
() E example_short_circuit_operator
() E example_skip_dag

¥ Qo= A0 @@

Docs v About v 2020-10-05 19:17:46 UTC

Search:
Last
Run
Owner Recent Tasks @ e DAG Runs @ Links

NetApp OPHIBNA=4=ECO
NetApp OP¥INA= 4 =CO
Airflow OPHIMiA= +=0

Airflow OPHIMA=4=ECO
Airflow OPHIMA=4=CO
airflow OPHIMA= 4 =CO
airflow OPHINA=4=ECO
airflow OPHINA=4=ECO
Airflow O IMiIA= +=C0
Airflow OPHIMA=4=CO
airflow OPHIMA=4=CO
airflow OPHIMA=4=ECO
Airflow OPHIMA=4=CO
Airflow OPHINA= 4 =ECO
Airflow OP kML= 4 =0

Airflow OPHIMA= 4 =ECO

Next: Example Apache Airflow Workflows

Example Apache Airflow Workflows

The NetApp Data Science Toolkit for Kubernetes can be used in conjunction with Airflow.

Using the NetApp Data Science Toolkit with Airflow enables you to incorporate NetApp
data management operations into automated workflows that are orchestrated by Airflow.

Refer to the Airflow Examples section within the NetApp Data Science Toolkit GitHub repository for details on

using the toolkit with Airflow.

39

https://github.com/NetApp/netapp-data-science-toolkit/tree/main/Kubernetes
https://github.com/NetApp/netapp-data-science-toolkit/tree/main/Kubernetes/Examples/Airflow

Next: Example Trident Operations

Example Trident Operations

This section includes examples of various operations that you may want to perform with
Trident.

Import an Existing Volume

If there are existing volumes on your NetApp storage system/platform that you want to mount on containers
within your Kubernetes cluster, but that are not tied to PVCs in the cluster, then you must import these
volumes. You can use the Trident volume import functionality to import these volumes.

The example commands that follow show the importing of the same volume, named pb_fg all, twice, once
for each Trident Backend that was created in the example in the section Example Trident Backends for ONTAP
Al Deployments, step 1. Importing the same volume twice in this manner enables you to mount the volume (an
existing FlexGroup volume) multiple times across different LIFs, as described in the section Example Trident
Backends for ONTAP Al Deployments, step 1. For more information about PVCs, see the official Kubernetes
documentation. For more information about the volume import functionality, see the Trident documentation.

An accessModes value of ReadOnlyMany is specified in the example PVC spec files. For more information
about the accessMode field, see the official Kubernetes documentation.

The Backend names that are specified in the following example import commands correspond to
the Backends that were created in the example in the section Example Trident Backends for

@ ONTAP Al Deployments, step 1. The StorageClass names that are specified in the following
example PVC definition files correspond to the StorageClasses that were created in the example
in the section Example Kubernetes StorageClasses for ONTAP Al Deployments, step 1.

$ cat << EOF > ./pvc-import-pb fg all-ifacel.yaml
kind: PersistentVolumeClaim
apiVersion: vl
metadata:

name: pb-fg-all-ifacel

namespace: default
spec:

accessModes:

- ReadOnlyMany

storageClassName: ontap-ai-flexgroups-retain-ifacel
EQF
$ tridentctl import volume ontap-ai-flexgroups-ifacel pb fg all -f ./pvc-
import-pb fg all-ifacel.yaml -n trident

o fomm
o fomm -

e it fomm - pomm - +

| NAME | SIZE | STORAGE CLASS

| PROTOCOL | BACKEND UUID | STATE |
MANAGED |

e atata e TR tomm

40

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://netapp-trident.readthedocs.io/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

| default-pb-fg-all-ifacel-7d9f1 | 10 TiB | ontap-ai-flexgroups-retain-

ifacel | file | b74cbddb-e0b8-40b7-b263-b6dat6decO0bdd | online | true
|

- o

R it e e F——

e et ettt o t——— +

$ cat << EOF > ./pvc-import-pb fg all-iface2.yaml
kind: PersistentVolumeClaim
apiVersion: vl
metadata:

name: pb-fg-all-iface?2

namespace: default
spec:

accessModes:

- ReadOnlyMany

storageClassName: ontap-ai-flexgroups-retain-iface?
EQOF
$ tridentctl import volume ontap-ai-flexgroups-iface2 pb fg all -f ./pvc-—
import-pb fg all-iface2.yaml -n trident

e e
o pomm -

e e fomm - +

| NAME | SIZE | STORAGE CLASS

| PROTOCOL | BACKEND UUID | STATE |
MANAGED |

e tom
e pomm -

e it et T e fom - +

| default-pb-fg-all-iface2-85aee | 10 TiB | ontap-ai-flexgroups-retain-

iface2 | file | 61814d48-c770-436b-9cbd-cf7ee661274d | online | true
|

o fom——————

o fom -
e tommmm e +

fessssssssssssssessososssss=ss=ssos fememe===s

e it R

fessmssee s se s o s s s e e fremem==== fossmmm=== I

| NAME | SIZE | STORAGE CLASS

| PROTOCOL | BACKEND UUID | STATE | MANAGED |
femssssess s s s oo s s ms s Fremmmemm=s

R fem========

e e e e e e L fro e +

| default-pb-fg-all-ifacel-7d9fl | 10 TiB | ontap-ai-flexgroups-retain-

41

ifacel | file | b74cbddb-e0b8-40b7-b263-b6dabdecObdd | online | true
|

| default-pb-fg-all-iface2-85aee | 10 TiB | ontap-ai-flexgroups-retain-
iface2 | file | 61814d48-c770-436b-9cbd-cf7ee661274d | online | true
|

B e TP fomm—— -
o pommm -

o fomm————— e +

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

pb-fg-all-ifacel Bound default-pb-fg-all-ifacel-7d9f1l
10995116277760 ROX ontap-ai-flexgroups-retain-ifacel 25h
pb-fg-all-iface2 Bound default-pb-fg-all-iface2-85aee
10995116277760 ROX ontap-ai-flexgroups-retain-iface? 25h

Provision a New Volume

You can use Trident to provision a new volume on your NetApp storage system or platform. The following
example commands show the provisioning of a new FlexVol volume. In this example, the volume is provisioned
using the StorageClass that was created in the example in the section Example Kubernetes StorageClasses
for ONTAP Al Deployments, step 2.

An accessModes value of ReadWriteMany is specified in the following example PVC definition file. For more
information about the accessMode field, see the official Kubernetes documentation.

42

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

$ cat << EOF > ./pvc-tensorflow-results.yaml
kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: tensorflow-results
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 1Gi
storageClassName: ontap-ai-flexvols-retain
EQOF
$ kubectl create -f ./pvc-tensorflow-results.yaml
persistentvolumeclaim/tensorflow-results created
$ kubectl get pvc

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE
pb-fg-all-ifacel Bound default-pb-fg-all-ifacel-7d9fl
10995116277760 ROX ontap-ai-flexgroups-retain-ifacel 26h
pb-fg-all-iface2 Bound default-pb-fg-all-iface2-85aee
10995116277760 ROX ontap-ai-flexgroups-retain-iface? 26h
tensorflow-results Bound default-tensorflow-results-
2£d60 1073741824 RWX ontap-ai-flexvols-retain

25h

Next: Example High-Performance Jobs for ONTAP Al Deployments Overview

Example High-performance Jobs for ONTAP Al Deployments

This section includes examples of various high-performance jobs that can be executed
when Kubernetes is deployed on an ONTAP Al pod.

Next: Execute a Single-Node Al Workload

Example High-performance Jobs for ONTAP Al Deployments

This section includes examples of various high-performance jobs that can be executed
when Kubernetes is deployed on an ONTAP Al pod.

Next: Execute a Single-Node Al Workload

Execute a Single-Node Al Workload

To execute a single-node Al and ML job in your Kubernetes cluster, perform the following
tasks from the deployment jump host. With Trident, you can quickly and easily make a
data volume, potentially containing petabytes of data, accessible to a Kubernetes

43

workload. To make such a data volume accessible from within a Kubernetes pod, simply
specify a PVC in the pod definition. This step is a Kubernetes-native operation; no
NetApp expertise is required.

@ This section assumes that you have already containerized (in the Docker container format) the
specific Al and ML workload that you are attempting to execute in your Kubernetes cluster.

1. The following example commands show the creation of a Kubernetes job for a TensorFlow benchmark
workload that uses the ImageNet dataset. For more information about the ImageNet dataset, see the
ImageNet website.

This example job requests eight GPUs and therefore can run on a single GPU worker node that features
eight or more GPUs. This example job could be submitted in a cluster for which a worker node featuring
eight or more GPUs is not present or is currently occupied with another workload. If so, then the job
remains in a pending state until such a worker node becomes available.

Additionally, in order to maximize storage bandwidth, the volume that contains the needed training data is
mounted twice within the pod that this job creates. Another volume is also mounted in the pod. This second
volume will be used to store results and metrics. These volumes are referenced in the job definition by
using the names of the PVCs. For more information about Kubernetes jobs, see the official Kubernetes
documentation.

An emptyDir volume with a medium value of Memory is mounted to /dev/shm in the pod that this
example job creates. The default size of the /dev/shm virtual volume that is automatically created by the
Docker container runtime can sometimes be insufficient for TensorFlow’s needs. Mounting an emptyDir
volume as in the following example provides a sufficiently large /dev/shm virtual volume. For more
information about emptyDir volumes, see the official Kubernetes documentation.

The single container that is specified in this example job definition is given a securityContext >
privileged value of true. This value means that the container effectively has root access on the host.
This annotation is used in this case because the specific workload that is being executed requires root
access. Specifically, a clear cache operation that the workload performs requires root access. Whether or
not this privileged: true annotation is necessary depends on the requirements of the specific
workload that you are executing.

$ cat << EOF > ./netapp-tensorflow-single-imagenet.yaml
apiVersion: batch/vl
kind: Job
metadata:
name: netapp-tensorflow-single-imagenet
spec:
backoffLimit: 5
template:
spec:
volumes:
- name: dshm
emptyDir:
medium: Memory
- name: testdata-ifacel
persistentVolumeClaim:

44

http://www.image-net.org
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/storage/volumes/

claimName: pb-fg-all-ifacel
- name: testdata-iface?2
persistentVolumeClaim:
claimName: pb-fg-all-iface?2
- name: results
persistentVolumeClaim:
claimName: tensorflow-results
containers:
- name: netapp-tensorflow-py?2
image: netapp/tensorflow-py2:19.03.0

"

command: ["python", "/netapp/scripts/run.py", "--
dataset dir=/mnt/mount 0/dataset/imagenet", "--dgx version=dgxl", "--
num devices=8"]
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- mountPath: /dev/shm
name: dshm
- mountPath: /mnt/mount O
name: testdata-ifacel
- mountPath: /mnt/mount 1
name: testdata-iface?
- mountPath: /tmp
name: results
securityContext:
privileged: true
restartPolicy: Never
EQOF
$ kubectl create -f ./netapp-tensorflow-single-imagenet.yaml
job.batch/netapp-tensorflow-single-imagenet created
$ kubectl get Jjobs
NAME COMPLETIONS DURATION AGE

netapp-tensorflow-single-imagenet 0/1 24s 24s

2. Confirm that the job that you created in step 1 is running correctly. The following example command
confirms that a single pod was created for the job, as specified in the job definition, and that this pod is
currently running on one of the GPU worker nodes.

$ kubectl get pods -o wide

NAME READY STATUS
RESTARTS AGE

IP NODE NOMINATED NODE
netapp-tensorflow-single-imagenet-m7x92 1/1 Running 0

3m 10.233.68.01 10.61.218.154 <none>

3. Confirm that the job that you created in step 1 completes successfully. The following example commands
confirm that the job completed successfully.

$ kubectl get Jjobs

NAME COMPLETIONS DURATION
AGE

netapp-tensorflow-single-imagenet 1/1 5m42s

10m

$ kubectl get pods

NAME READY STATUS
RESTARTS AGE

netapp-tensorflow-single-imagenet-m7x92 0/1 Completed
0 1lm

$ kubectl logs netapp-tensorflow-single-imagenet-m7x92
[netapp-tensorflow-single-imagenet-m7x92:00008] PMIX ERROR: NO-
PERMISSIONS in file gds dstore.c at line 702
[netapp-tensorflow-single-imagenet-m7x92:00008] PMIX ERROR: NO-
PERMISSIONS in file gds dstore.c at line 711

Total images/sec = 6530.59125

================ (Clean Cache !!! ==================

mpirun -allow-run-as-root -np 1 -H localhost:1 bash -c 'sync; echo 1 >
/proc/sys/vm/drop caches'

mpirun -allow-run-as-root -np 8 -H localhost:8 -bind-to none -map-by
slot —-x NCCL DEBUG=INFO -x LD LIBRARY PATH -x PATH python
/netapp/tensorflow/benchmarks 190205/scripts/tf cnn benchmarks/tf cnn be
nchmarks.py —--model=resnet50 --batch size=256 --device=gpu
-—-force gpu compatible=True --num intra threads=1 --num inter threads=48
--variable update=horovod --batch group size=20 --num batches=500
-—nodistortions —--num gpus=1 --data format=NCHW --use fpl6=True

--use tf layers=False --data name=imagenet --use datasets=True

--data dir=/mnt/mount 0O/dataset/imagenet

-—datasets parallel interleave cycle length=10

-—-datasets sloppy parallel interleave=False --num mounts=2

--mount prefix=/mnt/mount %d --datasets prefetch buffer size=2000
-—datasets use prefetch=True --datasets num private threads=4

-—-horovod device=gpu >

/tmp/20190814 105450 tensorflow horovod rdma resnet50 gpu 8 256 b500 ima
genet nodistort fpl6 rl0 m2 nockpt.txt 2>&l1

4. Optional: Clean up job artifacts. The following example commands show the deletion of the job object that
was created in step 1.

When you delete the job object, Kubernetes automatically deletes any associated pods.

46

Kubemetes {k3s) Cluster

$ kubectl get jobs

NAME

AGE

netapp-tensorflow-single-imagenet

10m

$ kubectl get pods

NAME

RESTARTS AGE
netapp-tensorflow-single-imagenet-m7x92
0 11lm

COMPLETIONS
1/1
READY
0/1

$ kubectl delete Jjob netapp-tensorflow-single-imagenet

job.batch "netapp-tensorflow-single-imagenet" deleted

$ kubectl get Jjobs
No resources found.
$ kubectl get pods
No resources found.

Next: Execute a Synchronous Distributed Al Workload

Execute a Synchronous Distributed Al Workload

DURATION

5m42s

STATUS

Completed

To execute a synchronous multinode Al and ML job in your Kubernetes cluster, perform
the following tasks on the deployment jump host. This process enables you to take
advantage of data that is stored on a NetApp volume and to use more GPUs than a
single worker node can provide. See the following figure for a depiction of a synchronous
distributed Al job.

Synchronous distributed jobs can help increase performance and training accuracy compared
with asynchronous distributed jobs. A discussion of the pros and cons of synchronous jobs
versus asynchronous jobs is outside the scope of this document.

T, =y

Kube API

Data Data
4

Master Node

Data Data

1. The following example commands show the creation of one worker that participates in the synchronous
distributed execution of the same TensorFlow benchmark job that was executed on a single node in the
example in the section Execute a Single-Node Al Workload. In this specific example, only a single worker

47

48

is deployed because the job is executed across two worker nodes.

This example worker deployment requests eight GPUs and thus can run on a single GPU worker node that
features eight or more GPUs. If your GPU worker nodes feature more than eight GPUs, to maximize
performance, you might want to increase this number to be equal to the number of GPUs that your worker
nodes feature. For more information about Kubernetes deployments, see the official Kubernetes
documentation.

A Kubernetes deployment is created in this example because this specific containerized worker would
never complete on its own. Therefore, it doesn’t make sense to deploy it by using the Kubernetes job
construct. If your worker is designed or written to complete on its own, then it might make sense to use the
job construct to deploy your worker.

The pod that is specified in this example deployment specification is given a hostNetwork value of true.
This value means that the pod uses the host worker node’s networking stack instead of the virtual
networking stack that Kubernetes usually creates for each pod. This annotation is used in this case
because the specific workload relies on Open MPI, NCCL, and Horovod to execute the workload in a
synchronous distributed manner. Therefore, it requires access to the host networking stack. A discussion
about Open MPI, NCCL, and Horovod is outside the scope of this document. Whether or not this
hostNetwork: true annotation is necessary depends on the requirements of the specific workload that
you are executing. For more information about the hostNetwork field, see the official Kubernetes
documentation.

$ cat << EOF > ./netapp-tensorflow-multi-imagenet-worker.yaml
apiVersion: apps/vl
kind: Deployment
metadata:
name: netapp-tensorflow-multi-imagenet-worker
spec:
replicas: 1
selector:
matchLabels:
app: netapp-tensorflow-multi-imagenet-worker
template:
metadata:
labels:
app: netapp-tensorflow-multi-imagenet-worker
spec:
hostNetwork: true
volumes:
- name: dshm
emptyDir:
medium: Memory
- name: testdata-ifacel
persistentVolumeClaim:
claimName: pb-fg-all-ifacel
- name: testdata-iface?2
persistentVolumeClaim:
claimName: pb-fg-all-iface?2

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/

- name: results
persistentVolumeClaim:
claimName: tensorflow-results
containers:
- name: netapp-tensorflow-py2
image: netapp/tensorflow-py2:19.03.0

command: ["bash", "/netapp/scripts/start-slave-multi.sh",
"22122"M]
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- mountPath: /dev/shm
name: dshm
- mountPath: /mnt/mount O
name: testdata-ifacel
- mountPath: /mnt/mount 1
name: testdata-iface?
- mountPath: /tmp
name: results
securityContext:
privileged: true
EOF

$ kubectl create -f ./netapp-tensorflow-multi-imagenet-worker.yaml
deployment.apps/netapp-tensorflow-multi-imagenet-worker created

$ kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE
AVAILABLE AGE

netapp-tensorflow-multi-imagenet-worker 1 1 1

1 4s

2. Confirm that the worker deployment that you created in step 1 launched successfully. The following
example commands confirm that a single worker pod was created for the deployment, as indicated in the
deployment definition, and that this pod is currently running on one of the GPU worker nodes.

$ kubectl get pods -o wide

NAME READY

STATUS RESTARTS AGE

IP NODE NOMINATED NODE
netapp-tensorflow-multi-imagenet-worker-654fc7£486-v6725 1/1

Running 0 60s 10.61.218.154 10.61.218.154 <none>

$ kubectl logs netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725
22122

3. Create a Kubernetes job for a master that kicks off, participates in, and tracks the execution of the

50

synchronous multinode job. The following example commands create one master that kicks off, participates
in, and tracks the synchronous distributed execution of the same TensorFlow benchmark job that was
executed on a single node in the example in the section Execute a Single-Node Al Workload.

This example master job requests eight GPUs and thus can run on a single GPU worker node that features
eight or more GPUs. If your GPU worker nodes feature more than eight GPUs, to maximize performance,
you might want to increase this number to be equal to the number of GPUs that your worker nodes feature.

The master pod that is specified in this example job definition is given a hostNetwork value of true, just
as the worker pod was given a hostNetwork value of true in step 1. See step 1 for details about why
this value is necessary.

$ cat << EOF > ./netapp-tensorflow-multi-imagenet-master.yaml
apiVersion: batch/vl
kind: Job
metadata:
name: netapp-tensorflow-multi-imagenet-master
spec:
backoffLimit: 5
template:
spec:
hostNetwork: true
volumes:
- name: dshm
emptyDir:
medium: Memory
- name: testdata-ifacel
persistentVolumeClaim:
claimName: pb-fg-all-ifacel
- name: testdata-iface?2
persistentVolumeClaim:
claimName: pb-fg-all-iface?2
- name: results
persistentVolumeClaim:
claimName: tensorflow-results
containers:
- name: netapp-tensorflow-py?2
image: netapp/tensorflow-py2:19.03.0
command: ["python", "/netapp/scripts/run.py", "--
dataset dir=/mnt/mount 0/dataset/imagenet", "--port=22122", "--
num devices=16", "--dgx version=dgxl", "--
nodes=10.61.218.152,10.61.218.154"]
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:
- mountPath: /dev/shm

name: dshm
- mountPath: /mnt/mount O
name: testdata-ifacel
- mountPath: /mnt/mount 1
name: testdata-iface?
- mountPath: /tmp
name: results
securityContext:
privileged: true
restartPolicy: Never
EQF
$ kubectl create -f ./netapp-tensorflow-multi-imagenet-master.yaml
job.batch/netapp-tensorflow-multi-imagenet-master created
$ kubectl get jobs
NAME COMPLETIONS DURATION AGE

netapp-tensorflow-multi-imagenet-master 0/1 25s 25s

4. Confirm that the master job that you created in step 3 is running correctly. The following example command
confirms that a single master pod was created for the job, as indicated in the job definition, and that this
pod is currently running on one of the GPU worker nodes. You should also see that the worker pod that you
originally saw in step 1 is still running and that the master and worker pods are running on different nodes.

$ kubectl get pods -o wide

NAME READY
STATUS RESTARTS AGE

IP NODE NOMINATED NODE
netapp-tensorflow-multi-imagenet-master-ppwwj 1/1
Running 0 45s 10.61.218.152 10.61.218.152 <none>
netapp-tensorflow-multi-imagenet-worker-654fc7£486-v6725 1/1
Running 0 26m 10.61.218.154 10.61.218.154 <none>

5. Confirm that the master job that you created in step 3 completes successfully. The following example
commands confirm that the job completed successfully.

$ kubectl get Jjobs

NAME COMPLETIONS DURATION AGE
netapp-tensorflow-multi-imagenet-master 1/1 5m50s 9ml18s
$ kubectl get pods

NAME READY

STATUS RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppww]j 0/1
Completed 0 9m38s

netapp-tensorflow-multi-imagenet-worker-654fc7£486-v6725 1/1
Running 0 35m
$ kubectl logs netapp-tensorflow-multi-imagenet-master-ppww]j

51

6.

52

[10.61.218.152:00008] WARNING: local probe returned unhandled
shell:unknown assuming bash

rm: cannot remove '/lib': Is a directory

[10.61.218.154:00033] PMIX ERROR: NO-PERMISSIONS in file gds dstore.c at
line 702

[10.61.218.154:00033] PMIX ERROR: NO-PERMISSIONS in file gds dstore.c at
line 711

[10.61.218.152:00008] PMIX ERROR: NO-PERMISSIONS in file gds dstore.c at
line 702

[10.61.218.152:00008] PMIX ERROR: NO-PERMISSIONS in file gds dstore.c at
line 711

Total images/sec = 12881.33875

================ (Clean Cache !!! ==================

mpirun -allow-run-as-root -np 2 -H 10.61.218.152:1,10.61.218.154:1 -mca
pml obl -mca btl “openib -mca btl tcp if include enpls0f0 -mca

plm rsh agent ssh -mca plm rsh args "-p 22122" bash -c 'sync; echo 1 >
/proc/sys/vm/drop caches'

mpirun -allow-run-as-root -np 16 -H 10.61.218.152:8,10.61.218.154:8
-bind-to none -map-by slot -x NCCL DEBUG=INFO -x LD LIBRARY PATH -x PATH
-mca pml obl -mca btl "“openib -mca btl tcp if include enplsO0f0 -x
NCCL_IB HCA=mlx5 -x NCCL NET GDR READ=1 -x NCCL_IB SL=3 -x

NCCL IB GID INDEX=3 -x

NCCL_SOCKET IFNAME=enp5s0.3091,enpl2s0.3092,enpl32s0.3093,enpl39s0.3094
-x NCCL_ IB CUDA SUPPORT=1 -mca orte base help aggregate 0 -mca

plm rsh agent ssh -mca plm rsh args "-p 22122" python
/netapp/tensorflow/benchmarks 190205/scripts/tf cnn benchmarks/tf cnn be
nchmarks.py —--model=resnet50 --batch size=256 --device=gpu
-—-force gpu compatible=True --num intra threads=1 --num inter threads=48
--variable update=horovod --batch group size=20 --num batches=500
-—-nodistortions —--num gpus=1 --data format=NCHW --use fpl6=True

--use tf layers=False --data name=imagenet --use datasets=True

--data dir=/mnt/mount 0O/dataset/imagenet

-—datasets parallel interleave cycle length=10

-—-datasets sloppy parallel interleave=False --num mounts=2

--mount prefix=/mnt/mount %d --datasets prefetch buffer size=2000 --
datasets use prefetch=True --datasets num private threads=4

--horovod device=gpu >

/tmp/20190814 161609 tensorflow horovod rdma resnet50 gpu 16 256 b500 im
agenet nodistort fpl6é rl0 m2 nockpt.txt 2>&l

Delete the worker deployment when you no longer need it. The following example commands show the
deletion of the worker deployment object that was created in step 1.

When you delete the worker deployment object, Kubernetes automatically deletes any associated worker
pods.

$ kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE
AVATLABLE AGE

netapp-tensorflow-multi-imagenet-worker 1 1 1

1 43m

$ kubectl get pods

NAME READY

STATUS RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1

Completed 0 17m

netapp-tensorflow-multi-imagenet-worker-654fc7£486-v6725 1/1

Running 0 43m

S kubectl delete deployment netapp-tensorflow-multi-imagenet-worker
deployment.extensions "netapp-tensorflow-multi-imagenet-worker" deleted
$ kubectl get deployments

No resources found.

$ kubectl get pods

NAME READY STATUS
RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1 Completed 0
18m

7. Optional: Clean up the master job artifacts. The following example commands show the deletion of the
master job object that was created in step 3.

When you delete the master job object, Kubernetes automatically deletes any associated master pods.

$ kubectl get Jjobs

NAME COMPLETIONS DURATION AGE
netapp-tensorflow-multi-imagenet-master 1/1 5m50s 19m
$ kubectl get pods

NAME READY STATUS
RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1 Completed 0
19m

$ kubectl delete Jjob netapp-tensorflow-multi-imagenet-master
job.batch "netapp-tensorflow-multi-imagenet-master" deleted
$ kubectl get jobs

No resources found.

$ kubectl get pods

No resources found.

Next: Performance Testing

Performance Testing

We performed a simple performance comparison as part of the creation of this solution.
We executed several standard NetApp Al benchmarking jobs by using Kubernetes, and
we compared the benchmark results with executions that were performed by using a
simple Docker run command. We did not see any noticeable differences in performance.
Therefore, we concluded that the use of Kubernetes to orchestrate containerized Al
training jobs does not adversely affect performance. See the following table for the results
of our performance comparison.

Benchmark Dataset Docker Run Kubernetes
(images/sec) (images/sec)

Single-node TensorFlow Synthetic data 6,667.2475 6,661.93125

Single-node TensorFlow ImageNet 6,570.2025 6,530.59125

Synchronous distributed Synthetic data 13,213.70625 13,218.288125

two-node TensorFlow

Synchronous distributed ImageNet 12,941.69125 12,881.33875

two-node TensorFlow
Next: Conclusion

Conclusion

Companies and organizations of all sizes and across all industries are turning to artificial intelligence (Al),
machine learning (ML), and deep learning (DL) to solve real-world problems, deliver innovative products and
services, and to get an edge in an increasingly competitive marketplace. As organizations increase their use of
Al, ML, and DL, they face many challenges, including workload scalability and data availability. These
challenges can be addressed through the use of the NetApp Al Control Plane solution.

This solution enables you to rapidly clone a data namespace. Additionally, it allows you to define and
implement Al, ML, and DL training workflows that incorporate the near-instant creation of data and model
baselines for traceability and versioning. With this solution, you can trace every single model training run back
to the exact dataset(s) that the model was trained and/or validated with. Lastly, this solution enables you to
swiftly provision Jupyter Notebook workspaces with access to massive datasets.

Because this solution is targeted towards data scientists and data engineers, minimal NetApp or NetApp
ONTAP expertise is required. With this solution, data management functions can be executed using simple and
familiar tools and interfaces. Furthermore, this solution utilizes fully open-source and free components.
Therefore, if you already have NetApp storage in your environment, you can implement this solution today. If
you want to test drive this solution but you do not have already have NetApp storage, visit cloud.netapp.com,
and you can be up and running with a cloud-based NetApp storage solution in no time.

MLRun Pipeline

TR-4834: NetApp and Iguazio for MLRun Pipeline

Rick Huang, David Arnette, NetApp
Marcelo Litovsky, Iguazio

This document covers the details of the MLRun pipeline using NetApp ONTAP Al, NetApp Al Control Plane,

54

http://cloud.netapp.com/

NetApp Cloud Volumes software, and the Iguazio Data Science Platform. We used Nuclio serverless function,
Kubernetes Persistent Volumes, NetApp Cloud Volumes, NetApp Snapshot copies, Grafana dashboard, and
other services on the Iguazio platform to build an end-to-end data pipeline for the simulation of network failure
detection. We integrated Iguazio and NetApp technologies to enable fast model deployment, data replication,
and production monitoring capabilities on premises as well as in the cloud.

The work of a data scientist should be focused on the training and tuning of machine learning (ML) and artificial
intelligence (Al) models. However, according to research by Google, data scientists spend ~80% of their time
figuring out how to make their models work with enterprise applications and run at scale, as shown in the
following image depicting model development in the AlI/ML workflow.

Because Model Development is

Just the First Step

o e Sy W g

+ ; ; + } =
Develop & Test
Locally Package Scale-out Tune Instrument Automate
Dependencies Load-balance Parallelism Maonitoring CIICD
Parameters Data partitions GPU support Logging Workflows
Run scripts Model distribution Query tuning Versioning Rolling upgrades
Build AutoML Caching Security AB testing
Weeks Il Months |
with one data scientist with a large team of developers,
or developer scientists, data engineers and DevOps

To manage end-to-end Al/ML projects, a wider understanding of enterprise components is needed. Although
DevOps have taken over the definition, integration, and deployment these types of components, machine
learning operations target a similar flow that includes AlI/ML projects. To get an idea of what an end-to-end
AI/ML pipeline touches in the enterprise, see the following list of required components:

» Storage

* Networking

» Databases

* File systems

» Containers

» Continuous integration and continuous deployment (CI/CD) pipeline

» Development integrated development environment (IDE)

» Security

» Data access policies

* Hardware

55

* Cloud
* Virtualization
 Data science toolsets and libraries
In this paper, we demonstrate how the partnership between NetApp and Iguazio drastically simplifies the

development of an end-to-end Al/ML pipeline. This simplification accelerates the time to market for all of your
Al/ML applications.

Target Audience

The world of data science touches multiple disciplines in information technology and business.

» The data scientist needs the flexibility to use their tools and libraries of choice.
» The data engineer needs to know how the data flows and where it resides.
* A DevOps engineer needs the tools to integrate new Al/ML applications into their CI/CD pipelines.

» Business users want to have access to Al/ML applications. We describe how NetApp and Iguazio help
each of these roles bring value to business with our platforms.

Solution Overview

This solution follows the lifecycle of an Al/ML application. We start with the work of data scientists to define the
different steps needed to prep data and train and deploy models. We follow with the work needed to create a
full pipeline with the ability to track artifacts, experiment with execution, and deploy to Kubeflow. To complete
the full cycle, we integrate the pipeline with NetApp Cloud Volumes to enable data versioning, as seen in the
following image.

Experiment \
Tracking /
Create
base Docker Data load Data Data prep
images simulation Snapshot and exploration
- Model
~~\ > Training > Deployment
I | § |

Cloud Volumes ONTAP

Next: Technology Overview

56

Technology Overview

NetApp Overview

NetApp is the data authority for the hybrid cloud. NetApp provides a full range of hybrid cloud data services
that simplify management of applications and data across cloud and on-premises environments to accelerate
digital transformation. Together with our partners, NetApp empowers global organizations to unleash the full
potential of their data to expand customer touch points, foster greater innovation, and optimize their operations.

NetApp ONTAP Al

NetApp ONTAP Al, powered by NVIDIA DGX systems and NetApp cloud-connected all-flash storage,
streamlines the flow of data reliably and speeds up analytics, training, and inference with your data fabric that
spans from edge to core to cloud. It gives IT organizations an architecture that provides the following benefits:

 Eliminates design complexities
 Allows independent scaling of compute and storage
* Enables customers to start small and scale seamlessly

» Offers a range of storage options for various performance and cost pointsNetApp ONTAP Al offers
converged infrastructure stacks incorporating NVIDIA DGX-1, a petaflop-scale Al system, and NVIDIA
Mellanox high-performance Ethernet switches to unify Al workloads, simplify deployment, and accelerate
ROI. We leveraged ONTAP Al with one DGX-1 and NetApp AFF A800 storage system for this technical
report. The following image shows the topology of ONTAP Al with the DGX-1 system used in this
validation.

100GbE- RoCE and NFS
100GbE- NFS only

NVIDIA DGX-1 systems

Cisco Nexus = &
3232C

AN
i
N'

MMM
"
‘:" , .
G

AN

)

()

o
]

NetApp AFF AS00
48 X SSD-NVMe

()

W
‘:'6
\/

R
-
=7
(>
=)
-
D
-
=7
(>
=7
o
.ﬂ-
-

AN
0
X
()

\/
\/
\

0
4
0

\
\
i
'A

:
)
$
4
4

NetApp Al Control Plane

The NetApp Al Control Plane enables you to unleash Al and ML with a solution that offers extreme scalability,
streamlined deployment, and nonstop data availability. The Al Control Plane solution integrates Kubernetes
and Kubeflow with a data fabric enabled by NetApp. Kubernetes, the industry-standard container orchestration
platform for cloud-native deployments, enables workload scalability and portability. Kubeflow is an open-source
machine-learning platform that simplifies management and deployment, enabling developers to do more data
science in less time. A data fabric enabled by NetApp offers uncompromising data availability and portability to
make sure that your data is accessible across the pipeline, from edge to core to cloud. This technical report
uses the NetApp Al Control Plane in an MLRun pipeline. The following image shows Kubernetes cluster

57

management page where you can have different endpoints for each cluster. We connected NFS Persistent
Volumes to the Kubernetes cluster, and the following images show an Persistent Volume connected to the
cluster, where NetApp Trident offers persistent storage support and data management capabilities.

Kubernetes Clusters

4 Kubernetes Clusters

58

% kubernetes
https://3.20.111.39:6443 rr v1.15.5
Cluster Endpoint D Cluster Version

.@. kubernetes

https://172.31.14.31:6443 rr v1.15.5
Cluster Endpoint D Cluster Version

Persistent Volumes for Kubernetes

Connected with Kubernetes Cluster

@ 19.07.1
Trident Version

@ 19.07.1
Trident Version

Cloud Volumes ONTAP is connected to 1 Kubernetes cluster. View Cluster

)

)

Q, Discover Cluster

0

Wworking Environments

1

Wworking Environments

You can connect another Kubernetes cluster to this Cloud Volumes ONTAP system. If the Kubernetes cluster is in a different

network than Cloud Volumes ONTAP, specify a custom export policy to provide access to clients.

Kubernetes Cluster

Select Kubernetes Cluster

kubernetes

Set as default storage class

« NFS i5C5|

Custom Export Policy (Optional)

Custom Export Policy

172.31.0.0/16

Cancel

https://www.netapp.com/us/media/ds-netapp-project-trident.pdf

@ demo

Volumes Instances Cost Replications Syncte 53
N
Volumes
4 Volumes | 300 GB Allocated 1.43 GB Total Used
i
e :
E@ kubernetes_trident_pvc_551720fa_3758_461... W ONLINE
INFO CAPACITY
e e]
Disk Type GP2 m1.25GB
Tiering Policy None 100 GB EAS Usee
Allocated
DaCKUup OFF

Iguazio Overview

The Iguazio Data Science Platform is a fully integrated and secure data- science platform as a service (PaaS)
that simplifies development, accelerates performance, facilitates collaboration, and addresses operational
challenges. This platform incorporates the following components, and the Iguazio Data Science Platform is
presented in the following image:

« A data-science workbench that includes Jupyter Notebooks, integrated analytics engines, and Python
packages

* Model management with experiments tracking and automated pipeline capabilities

Managed data and ML services over a scalable Kubernetes cluster
* Nuclio, a real-time serverless functions framework

* An extremely fast and secure data layer that supports SQL, NoSQL, time-series databases, files (simple
objects), and streaming

Integration with third-party data sources such as NetApp, Amazon S3, HDFS, SQL databases, and
streaming or messaging protocols

Real-time dashboards based on Grafana

59

Pipeline
Orchestration

il N

=

~ o8 Frnsorow nuclio (O pyTorch spar
Serverless % _%> . /

Automation 3 3
kubernetes | Shared GPU/CPU Resources

Real-Time Real-Time Multi-Model

Data layer Data Layer External Data Sources

Next: Software and Hardware Requirements

Software and Hardware Requirements

Network Configuration

The following is the network configuration requirement for setting up in the cloud:

» The Iguazio cluster and NetApp Cloud Volumes must be in the same virtual private cloud.
* The cloud manager must have access to port 6443 on the Iguazio app nodes.

* We used Amazon Web Services in this technical report. However, users have the option of deploying the
solution in any Cloud provider.For on-premises testing in ONTAP Al with NVIDIA DGX-1, we used the
Iguazio hosted DNS service for convenience.

Clients must be able to access dynamically created DNS domains. Customers can use their own DNS if
desired.

Hardware Requirements

You can install Iguazio on-premises in your own cluster. We have verified the solution in NetApp ONTAP Al
with an NVIDIA DGX-1 system. The following table lists the hardware used to test this solution.

Hardware Quantity
DGX-1 systems 1
NetApp AFF A800 system 1 high-availability (HA) pair, includes 2 controllers and

48 NVMe SSDs (3.8TB or above)

Cisco Nexus 3232C network switches 2

The following table lists the software components required for on-premise testing:

60

Software Version or Other Information

NetApp ONTAP data management software 9.7

Cisco NX-OS switch firmware 7.0(3)16(1)
NVIDIADGX OS 4.4 - Ubuntu 18.04 LTS
Docker container platform 19.03.5

Container version 20.01-tf1-py2

Machine learning framework TensorFlow 1.15.0
Iguazio Version 2.8+

ESX Server 6.5

This solution was fully tested with Iguazio version 2.5 and NetApp Cloud Volumes ONTAP for AWS. The
Iguazio cluster and NetApp software are both running on AWS.

Software Version or Type
Iguazio Version 2.8+
App node MS5.4xlarge

Data node 13.4xlarge

Next: Network Device Failure Prediction Use Case Summary

Network Device Failure Prediction Use Case Summary

This use case is based on an Iguazio customer in the telecommunications space in Asia. With 100K enterprise
customers and 125k network outage events per year, there was a critical need to predict and take proactive
action to prevent network failures from affecting customers. This solution provided them with the following
benefits:

* Predictive analytics for network failures

* Integration with a ticketing system

» Taking proactive action to prevent network failuresAs a result of this implementation of Iguazio, 60% of

failures were proactively prevented.

Next: Setup Overview

Setup Overview

Iguazio Installation

Iguazio can be installed on-premises or on a cloud provider. Provisioning can be done as a service and
managed by Iguazio or by the customer. In both cases, Iguazio provides a deployment application (Provazio)
to deploy and manage clusters.

For on-premises installation, please refer to NVA-1121 for compute, network, and storage setup. On-premises

deployment of Iguazio is provided by Iguazio without additional cost to the customer. See this page for DNS
and SMTP server configurations. The Provazio installation page is shown as follows.

61

https://www.netapp.com/us/media/nva-1121-design.pdf
https://www.iguazio.com/docs/latest-release/intro/setup/howto/

X New System (dev)

. Installation Scenario {‘} General @ cClusters @

D Bare metal / virtual machines
Installs the system on bare-metal or virtual-machine instances, pre-provisioned with prarequ...

AWS

Creates applicable compute/networking resources in AWS and installs the system onthein..

O Azure

Creates applicable compute/networking resources in Azure and installs the system on thei...
O AWS (pre-provisioned)

Installs the system on Amazon Web Services instances, manually provisioned beforshand
O AzZure (pre-provisioned)

Installs the system on Microsoft Azure Instances, manually provisioned beforehand
0 Advanced

Show advanced options in the next sleps

MNEXT

Next: Configuring Kubernetes Cluster

Configuring Kubernetes Cluster

This section is divided into two parts for cloud and on-premises deployment respectively.

Cloud Deployment Kubernetes Configuration

Through NetApp Cloud Manager, you can define the connection to the Iguazio Kubernetes cluster. Trident
requires access to multiple resources in the cluster to make the volume available.

1. To enable access, obtain the Kubernetes config file from one the Iguazio nodes. The file is located under
/home/Iguazio/.kube/config. Download this file to your desktop.

2. Go to Discover Cluster to configure.

62

Kubernetes Clusters Y Discover Cluster

4 Kubernetes Clusters

.@. kubermetes

El ||LL|;.'J:.'.'3_Z:_'| 11 1. 350445 rlr_l ¥1.15.5 1...-@ 19047
Clgster Endpaint - ClgTaT VarTion RS Trirent varsinn

.@. kubemetes
1T 514 31 6aa3 REE
htpsdFi72 31,1431 6243 rﬁj w155
p— Clustir Endpgint Oleisler Waram

i @

3. Upload the Kubernetes config file. See the following image.

Upload Kubernetes Configuration File

Upload the Kubernetes configuration file (kubeconfig) so Cloud Manager can install Trident on

the Kubernetes cluster.

Connecting Cloud Volumes ONTAF with a Kubernetes cluster enables users to request and
manage persistent volumes using native Kubernetes interfaces and constructs. Users can take
advantage of ONTAP's advanced data management features without having to know anything
about it. Storage provisioning is enabled by using MNetApp Trident.

Learn more about Trident for Kubernetes.

Upload File

4. Deploy Trident and associate a volume with the cluster. See the following image on defining and assigning

a Persistent Volume to the Iguazio cluster.This process creates a Persistent Volume (PV) in Iguazio’s
Kubernetes cluster. Before you can use it, you must define a Persistent Volume Claim (PVC).

63

Persistent Volumes for Kubernetes

Connected with Kubernetes Cluster

Cloud Volumes ONTAP is connected to 1 Kubernetes cluster. View Cluster

You can connect another Kubernetes cluster to this Cloud Volumes ONTAP system. If the Kubernetes cluster is in a different
network than Cloud Volumes ONTAP, specify a custom export policy to provide access to clients.

Kubernetes Cluster Custom Export Policy (Optional)
Select Kubernetes Cluster Custom Export Policy
kubernetes b 172.31.0.0/16

Set as default storage class

= NFS iSCs|

On-Premises Deployment Kubernetes Configuration

For on-premises installation of NetApp Trident, see TR-4798 for details. After configuring your Kubernetes
cluster and installing NetApp Trident, you can connect Trident to the Iguazio cluster to enable NetApp data
management capabilities, such as taking Snapshot copies of your data and model.

Next: Define Persistent Volume Claim

Define Persistent Volume Claim

1. Save the following YAML to a file to create a PVC of type Basic.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: basic
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 100Gi
storageClassName: netapp-file

64

https://www.netapp.com/us/media/tr-4798.pdf

2. Apply the YAML file to your Iguazio Kubernetes cluster.

Kubectl -n default-tenant apply -f <your yaml file>

Attach NetApp Volume to the Jupyter Notebook

Iguazio offers several managed services to provide data scientists with a full end-to-end stack for development
and deployment of Al/ML applications. You can read more about these components at the Iguazio Overview of
Application Services and Tools.

One of the managed services is Jupyter Notebook. Each developer gets its own deployment of a notebook
container with the resources they need for development. To give them access to the NetApp Cloud Volume,
you can assign the volume to their container and resource allocation, running user, and environment variable
settings for Persistent Volume Claims is presented in the following image.

For an on-premises configuration, you can refer to TR-4798 on the Trident setup to enable NetApp ONTAP
data management capabilities, such as taking Snapshot copies of your data or model for versioning control.
Add the following line in your Trident back- end config file to make Snapshot directories visible:

"defaults": {
"snapshotDir": "true"

You must create a Trident back- end config file in JSON format, and then run the following Trident command to
reference it:

tridentctl create backend -f <backend-file>

& Enobled Flavor Fufl stock without GRU -
am 10m th zh ih
Inaet ity wincow ;

Spark upark, -
Resources
tor more information about the resource parameters, see

Environment Variables
Tha mernaty and P sanfigurations ane apglisd 16 each replica

FRaquegr Limit

Perslstent Volume Claims (PVCs)

oRL > mllicpy = S owlepe = @ Maunt Path

Name (2

Running User * basic o inetapp

Next: Deploying the Application

65

https://www.iguazio.com/docs/intro/latest-release/ecosystem/app-services/
https://www.iguazio.com/docs/intro/latest-release/ecosystem/app-services/
https://www.netapp.com/us/media/tr-4798.pdf
https://netapp-trident.readthedocs.io/en/stable-v18.07/kubernetes/operations/tasks/backends.html

Deploying the Application
The following sections describe how to install and deploy the application.

Next: Get Code from GitHub.

Get Code from GitHub

Now that the NetApp Cloud Volume or NetApp Trident volume is available to the Iguazio
cluster and the developer environment, you can start reviewing the application.

Users have their own workspace (directory). On every notebook, the path to the user directory is /User. The
Iguazio platform manages the directory. If you follow the instructions above, the NetApp Cloud volume is

available in the /netapp directory.

Get the code from GitHub using a Jupyter terminal.

File Edit Miew Run Kernmel Git Tabs Settings Help

B Ly t ¢ ¢ | BN /User X | ® at18k.ipynb X | [03-nuclio-predictionipynb X
-/ 12:58:17 | ~ § []
) MName -
B nfs -
B schedules
4 3o
m workshop
LA get-demas ipynb
[get-demossh
% [igz-tutorials-getsh
O LICENSE
% [netopstargz
M README.md
Oy runs

3|

| snapshot.ipynb

sUpport-services

3 [J

| Untitled.ipynhb
At the Jupyter terminal prompt, clone the project.

cd /User
git clone

You should now see the netops- netapp folder on the file tree in Jupyter workspace.

Next: Configure Working Environment

Configure Working Environment

Copy the Notebook set env-Example.ipynb as set env.ipynb. Open and edit
set _env.ipynb. This notebook sets variables for credentials, file locations, and

66

execution drivers.
If you follow the instructions above, the following steps are the only changes to make:
1. Obtain this value from the Iguazio services dashboard: docker registry
Example: docker-registry.default-tenant.app.clusterqg.iguaziodev.com:80
2. Change admin to your Iguazio username:
IGZ CONTAINER PATH = '/users/admin'

The following are the ONTAP system connection details. Include the volume name that was generated
when Trident was installed. The following setting is for an on-premises ONTAP cluster:

ontapClusterMgmtHostname = '0.0.0.0"'
ontapClusterAdminUsername = 'USER'
ontapClusterAdminPassword = 'PASSWORD'
sourceVolumeName = 'SOURCE VOLUME'

The following setting is for Cloud Volumes ONTAP:

MANAGER=ontapClusterMgmtHostname
svm="svm'

email="email'
password=ontapClusterAdminPassword
weid="weid"

volume=sourceVolumeName

Create Base Docker Images

Everything you need to build an ML pipeline is included in the Iguazio platform. The developer can define the
specifications of the Docker images required to run the pipeline and execute the image creation from Jupyter
Notebook. Open the notebook create- images.ipynb and Run All Cells.

This notebook creates two images that we use in the pipeline.

* iguazio/netapp. Used to handle ML tasks.

Create image for training pipeline

fn.build config{image=docker_reglstrys’ figuazie/netapp’, commands=["pip install
vilo_frames Fsspocr=8.3.3 PyYaMi==5.1.2 pyarrows==2.15.1 pandas=«a.25.3 matplotlibh seaborn yollowh
fn.deplay()

* netapp/pipeline. Contains utilities to handle NetApp Snapshot copies.

67

Create image for Ontap utilitites

bl :-I__-: ::-.“."{.'.—uuu:llu;luv_lrugl.ﬂ iy CineCEppplpel lneg: TaleEt " 0 :I'-'.tIIIJ'I.'E "t y update”, plip Lnstall '-"l'..:_ frasss Nalsp; _mnl #p'
fn.deplayl)

Review Individual Jupyter Notebooks

The following table lists the libraries and frameworks we used to build this task. All these components have
been fully integrated with Iguazio’s role- based access and security controls.

Libraries/Framework Description

MLRun An managed by Iguazio to enable the assembly,
execution, and monitoring of an ML/AI pipeline.

Nuclio A serverless functions framework integrated with
Iguazio. Also available as an open-source project
managed by Iguazio.

Kubeflow A Kubernetes-based framework to deploy the pipeline.
This is also an open-source project to which Iguazio
contributes. It is integrated with Iguazio for added
security and integration with the rest of the

infrastructure.

Docker A Docker registry run as a service in the Iguazio
platform. You can also change this to connect to your
registry.

NetApp Cloud Volumes Cloud Volumes running on AWS give us access to

large amounts of data and the ability to take Snapshot
copies to version the datasets used for training.

Trident Trident is an open-source project managed by
NetApp. It facilitates the integration with storage and
compute resources in Kubernetes.

We used several notebooks to construct the ML pipeline. Each notebook can be tested individually before
being brought together in the pipeline. We cover each notebook individually following the deployment flow of
this demonstration application.

The desired result is a pipeline that trains a model based on a Snapshot copy of the data and deploys the
model for inference. A block diagram of a completed MLRun pipeline is shown in the following image.

68

netapp-cloud-volu. .. <@

— | T

describe < data-prep < deploy-features-fu._. <
xgh-train <@
deploy-model <@

Deploy Data Generation Function

This section describes how we used Nuclio serverless functions to generate network device data. The use
case is adapted from an Iguazio client that deployed the pipeline and used Iguazio services to monitor and
predict network device failures.

We simulated data coming from network devices. Executing the Jupyter notebook data- generator.ipynb
creates a serverless function that runs every 10 minutes and generates a Parquet file with new data. To deploy
the function, run all the cells in this notebook. See the Nuclio website to review any unfamiliar components in
this notebook.

A cell with the following comment is ignored when generating the function. Every cell in the notebook is
assumed to be part of the function. Import the Nuclio module to enable $nuclio magic.

nuclio: ignore

import nuclio

In the spec for the function, we defined the environment in which the function executes, how it is triggered, and
the resources it consumes.

69

https://nuclio.io/

spec = nuclio.ConfigSpec(config={"spec.triggers.inference.kind":"cron",

"spec.triggers.inference.attributes.interval”™ :"10m",
"spec.readinessTimeoutSeconds" : 60,
"spec.minReplicas" : 1}, ...

The init context function is invoked by the Nuclio framework upon initialization of the function.

def init context (context):

Any code not in a function is invoked when the function initializes. When you invoke it, a handler function is
executed. You can change the name of the handler and specify it in the function spec.

def handler (context, event):

You can test the function from the notebook prior to deployment.

$%time

nuclio: ignore

init context (context)

event = nuclio.Event (body="")
output = handler (context, event)
output

The function can be deployed from the notebook or it can be deployed from a CI/CD pipeline (adapting this
code).

addr = nuclio.deploy file(name='generator',6 project="netops', spec=spec,
tag='vl.1l")

Pipeline Notebooks

These notebooks are not meant to be executed individually for this setup. This is just a review of each
notebook. We invoked them as part of the pipeline. To execute them individually, review the MLRun
documentation to execute them as Kubernetes jobs.

shap_cv.ipynb

This notebook handles the Cloud Volume Snapshot copies at the beginning of the pipeline. It passes the name
of the volume to the pipeline context. This notebook invokes a shell script to handle the Snapshot copy. While
running in the pipeline, the execution context contains variables to help locate all files needed for execution.

70

While writing this code, the developer does not have to worry about the file location in the container that
executes it. As described later, this application is deployed with all its dependencies, and it is the definition of
the pipeline parameters that provides the execution context.

command = os.path.join(context.get param('APP DIR'),"snap cv.sh")

The created Snapshot copy location is placed in the MLRun context to be consumed by steps in the pipeline.

context.log result ('snapVolumeDetails', snap path)

The next three notebooks are run in parallel.

data-prep.ipynb

Raw metrics must be turned into features to enable model training. This notebook reads the raw metrics from
the Snapshot directory and writes the features for model training to the NetApp volume.

When running in the context of the pipeline, the input DATA DIR contains the Snapshot copy location.

metrics table = os.path.join(str (mlruncontext.get input ('DATA DIR',
os.getenv ('DATA DIR','/netpp'))),

mlruncontext.get param('metrics table',
os.getenv('metrics table', 'netops metrics parquet')))

describe.ipynb

To visualize the incoming metrics, we deploy a pipeline step that provides plots and graphs that are available
through the Kubeflow and MLRun Uls. Each execution has its own version of this visualization tool.

ax.set title("features correlation™)
plt.savefig(os.path.join (base path, "plots/corr.png"))

context.log artifact (PlotArtifact ("correlation", body=plt.gcf()),
local path="plots/corr.html")

deploy-feature-function.ipynb

We continuously monitor the metrics looking for anomalies. This notebook creates a serverless function that
generates the features need to run prediction on incoming metrics. This notebook invokes the creation of the
function. The function code is in the notebook data- prep.ipynb. Notice that we use the same notebook as
a step in the pipeline for this purpose.

training.ipynb

After we create the features, we trigger the model training. The output of this step is the model to be used for
inferencing. We also collect statistics to keep track of each execution (experiment).

71

For example, the following command enters the accuracy score into the context for that experiment. This value
is visible in Kubeflow and MLRun.

context.log result (‘accuracy’, score)

deploy-inference-function.ipynb

The last step in the pipeline is to deploy the model as a serverless function for continuous inferencing. This
notebook invokes the creation of the serverless function defined in nuclio-inference- function.ipynb.

Review and Build Pipeline

The combination of running all the notebooks in a pipeline enables the continuous run of experiments to
reassess the accuracy of the model against new metrics. First, open the pipeline.ipynb notebook. We take
you through details that show how NetApp and Iguazio simplify the deployment of this ML pipeline.

We use MLRun to provide context and handle resource allocation to each step of the pipeline. The MLRun API

service runs in the Iguazio platform and is the point of interaction with Kubernetes resources. Each developer
cannot directly request resources; the APl handles the requests and enables access controls.

MLRun API connection definition
mlconf.dbpath = 'http://mlrun-api:8080"

The pipeline can work with NetApp Cloud Volumes and on-premises volumes. We built this demonstration to
use Cloud Volumes, but you can see in the code the option to run on-premises.

72

Initialize the NetApp snap fucntion once for all functions in a notebook

if [NETAPP CLOUD VOLUME] :

snapfn =

code_to function('snap',project='NetApp',6 kind='job',filename="snap cv.ipyn

b") .apply (mount v3io())
snap params = {

"metrics table" : metrics table,

"NETAPP MOUNT PATH" : NETAPP MOUNT PATH,

'MANAGER' : MANAGER,

svm svm,
'email': email,
'password': password ,

'weid': weid,

'volume': volume,
"APP DIR" : APP DIR
}
else:
snapfn =

code_to function('snap',project="'NetApp',6kind='job',6 filename="snapshot.ipy

nb") .apply (mount v3io())

snapfn.spec.image = docker registry + '/netapp/pipeline:latest’

snapfn.spec.volume mounts =

[snapfn.spec.volume mounts[0],netapp volume mounts]

snapfn.spec.volumes = [snapfn.spec.volumes[0],netapp volumes]

The first action needed to turn a Jupyter notebook into a Kubeflow step is to turn the code into a function. A
function has all the specifications required to run that notebook. As you scroll down the notebook, you can see

that we define a function for every step in the pipeline.

Part of the Notebook

<code_to_function>
(part of the MLRun module)

image

volume_mounts & volumes

We also define parameters for the steps.

Description

Name of the function:

Project name. used to organize all project artifacts.
This is visible in the MLRun UlI.

Kind. In this case, a Kubernetes job. This could be
Dask, mpi, sparkk8s, and more. See the MLRun
documentation for more details.

File. The name of the notebook. This can also be a
location in Git (HTTP).

The name of the Docker image we are using for this
step. We created this earlier with the create-
image.ipynb notebook.

Details to mount the NetApp Cloud Volume at run
time.

73

params={ "FEATURES TABLE":FEATURES TABLE,
"SAVE _TO" : SAVE TO,
"metrics table" : metrics table,
"FROM TSDB': 0,
'PREDICTIONS TABLE': PREDICTIONS TABLE,

'TRAIN ON LAST': 'ld',

'TRAIN_SIZE':O.7,

'NUMBER OF SHARDS' : 4,

'"MODEL FILENAME' : 'netops.v3.model.pickle',
'"APP_DIR' : APP DIR,

'"FUNCTION NAME' : 'netops-inference',
'"PROJECT NAME' : 'netops',

'"NETAPP SIM' : NETAPP SIM,

'NETAPP MOUNT PATH': NETAPP MOUNT PATH,
'"NETAPP_PVC CLAIM' : NETAPP PVC CLAIM,
'IGZ CONTAINER PATH' : IGZ CONTAINER PATH,
'IGZ MOUNT PATH' : IGZ MOUNT PATH

}

After you have the function definition for all steps, you can construct the pipeline. We use the kfp module to
make this definition. The difference between using MLRun and building on your own is the simplification and
shortening of the coding.

The functions we defined are turned into step components using the as_step function of MLRun.

Snapshot Step Definition

Initiate a Snapshot function, output, and mount v3io as source:

snap = snapfn.as step (NewTask (handler="'handler', params=snap params),
name="'NetApp Cloud Volume Snapshot',outputs=['snapVolumeDetails', 'training
_parquet file']) .apply(mount v3io())
Parameters Details
NewTask NewTask is the definition of the function run.
(MLRun module) Handler. Name of the Python function to invoke. We
used the name handler in the notebook, but it is not
required.

params. The parameters we passed to the execution.
Inside our code, we use context.get_param
(‘PARAMETER’) to get the values.

74

Parameters

as_step

Details

Name. Name of the Kubeflow pipeline step.

outputs. These are the values that the step adds to
the dictionary on completion. Take a look at the
snap_cv.ipynb notebook.

mount_v3io(). This configures the step to mount /User
for the user executing the pipeline.

prep = data prep.as_ step (name='data-prep',

handler="handler', params=params,
inputs = {'DATA DIR':
snap.outputs|['snapVolumeDetails']}

out path=artifacts path) .apply (mount v3io()) .after (snap)
Parameters Details
inputs You can pass to a step the outputs of a previous step.
In this case, snap.outputs['snapVolumeDetails'] is the
name of the Snapshot copy we created on the snap
step.
out_path A location to place artifacts generating using the

MLRun module log_artifacts.

You can run pipeline. ipynb from top to bottom. You can then go to the Pipelines tab from the Iguazio
dashboard to monitor progress as seen in the Iguazio dashboard Pipelines tab.

75

“a

Because we logged the accuracy of training step in every run, we have a record of accuracy for each

Pipelines

Experiments > NetAppXGB

& @ xgb_pipeline 2020-03-24 18-51-08

Graph

Run output

describe

experiment, as seen in the record of training accuracy.

Run name

xgb_pipeline 2020-03-24 18-51-...

xgb_pipeline 2020-03-19 13-31-...

xgb_pipeline 2020-03-18 12-56-...

xgb_pipeline 2020-03-17 19-49-...

xgb_pipeline 2020-03-17 18-34-...

xgb_pipeline 2020-03-17 17-34-...

xgb_pipeline 2020-03-17 17-01-...

xgb_pipeline 2020-03-16 16-47-...

O00000O0O0O02D

xgb_pipeline 2020-03-16 13-57-...

If you select the Snapshot step, you can see the name of the Snapshot copy that was used to run this

experiment.

76

Status

<]

O 0 60 0 6 6 0 o

Duration

0:08:43

0:08:14

0:08:11

0:08:03

0:05:54

0:04:48

0:05:25

0:06:08

0:05:18

Pipeline Version

[View pipeline]

[View pipeline]

[View pipeline]

[View pipeline]

[View pipeline]

[View pipeline]

[View pipeline]

[View pipeline]

[View pipeline]

Config

Recurring ...

Start time

3/24/2020

3/19/2020

3/18/2020

3/17/2020

3/17/2020

3/17/2020

3/17/2020

3/16/2020

3/16/2020

netapp-cloud-volu...

data-prep

, 2:51:09 PM

, 9:31:19 AM

, 8:56:08 AM

, 3:49:31 PM

, 2:34:56 PM

, 1:34:16 PM

, 1:01:58 PM

, 12:47:19 ..

, 9:57:03 AM

accuracy

0.985

0.980

0.990

0.985

0.980

0.982

0.987

0.983

0.980

X netops-trainign-pipeline-with-netapp-volume-cloning-rtxdl-2910983943

cloud- @

netapp:coud-yol... Artifacts Input/Output Volumes Manifest Logs

Input artracts
l _--..‘----

Output parameters

data-prep]
netapp-cloud-volume-snapshot- /netapp/.snapshot/kfp 20200324 185122
snapVolumeDetails
netapp-cloud-volume-snapshot- Inetapp/.snapshot/kfp_20200324_18512...
training_parquet_file

xgb-train @ Qutput artifacts

The described step has visual artifacts to explore the metrics we used. You can expand to view the full plot as
seen in the following image.

X netops-trainign-pipeline-with-netapp-volume-cloning-rtxd|-2
Artifacts Input/Output Volumes Manifest Logs
/ Static HTML A

describe]
Class Balance for 48,008

40000

The MLRun API database also tracks inputs, outputs, and artifacts for each run organized by project. An
example of inputs, outputs, and artifacts for each run can be seen in the following image.

77

Projects
NetApp default describe
¥ Jobs ﬁ Artifacts ¥ Jobs BArllEacLs W Jobs BAriiIacis

For each job, we store additional details.

Name
describe

deploy-model E9. 4
24 Mar, 14:56:03 ...bche38e 24 Mar, 14:52:45
xgb_train e Info Inputs Artifacts Results Logs
24 Mar, 14:53:18 ...5¢85949

uiD 66ef22187efb4ad89e8da8433c2a460e
data-prep
24 Mar, 14:52:46 ...126dc73

, Start time 24 Mar, 14:52:45

describe
24 Mar, 14:52:45 ..c2a460e
deploy-features- . Parameters Completed
function =
24 Mar, 14:52:43 ...50d8b83
NetApp_Cloud_Volume_Sna Results !,:_class_label... - _,-"i {I_.key: summary ' label_colu.. % |

A

- -

24 Mar, 14:31:22 ..3108eb2

There is more information about MLRun than we can cover in this document. Al artifacts, including the
definition of the steps and functions, can be saved to the API database, versioned, and invoked individually or
as a full project. Projects can also be saved and pushed to Git for later use. We encourage you to learn more
at the MLRun GitHub site.

Next: Deploy Grafana Dashboard

Deploy Grafana Dashboard

After everything is deployed, we run inferences on new data. The models predict failure on network device
equipment. The results of the prediction are stored in an Iguazio TimeSeries table. You can visualize the
results with Grafana in the platform integrated with Iguazio’s security and data access policy.

You can deploy the dashboard by importing the provided JSON file into the Grafana interfaces in the cluster.

78

https://github.com/mlrun/mlrun

1. To verify that the Grafana service is running, look under Services.

Services

O Mame Running User Version < CPU (cores) Memory AF
dockerregi —

O apdoskerredsin - o 27 96 _/\.n' \ 1.67 GB [
—— H1

2 Y 0610 369y /“\ 795.19 MB l

B R 2, 6.6.0 1m f_f\f‘_/\/_ 38.39 MB
. — e

Bl e admin 1.0.2 &im 3.27CB

O &

2. Ifitis not present, deploy an instance from the Services section:
a. Click New Service.
b. Select Grafana from the list.
c. Accept the defaults.
d. Click Next Step.
e. Enter your user ID.
f. Click Save Service.
g. Click Apply Changes at the top.

3. To deploy the dashboard, download the file NetopsPredictions-Dashboard. json through the Jupyter
interface.

79

M| deploy-features-function.ipynb 21 hours ago

M| deploy-inference-functionipynb 21 hours ago
M| describedpynb a day ago
& describepy a day ago
Y: mirunpipe.yamil 19 hours ago
M| nuclio-inference-function.ipynb 8 Open
[pip_install.sh Open With
W pipelineipynb + Open in New Browser Tab
M| set_env-Exampleipynb # Bename
M| set_envipynb X Delete
M| snap_cvipynb K Cut
[snap_cv.sh O Copy

] Duplicate

M| snapshotipynb

L % Download
M| training.ipynb -

B Shut Down Kernel

4. Open Grafana from the Services section and import the dashboard.

Create

8% Dashboard
& Folder

"% Import

9. Click Upload * . json File and select the file that you downloaded earlier (NetopsPredictions-—
Dashboard. json). The dashboard displays after the upload is completed.

80

B8 netops_predictions -

prediction

Deploy Cleanup Function

When you generate a lot of data, it is important to keep things clean and organized. To do so, deploy the
cleanup function with the cleanup. ipynb notebook.

Benefits

NetApp and Iguazio speed up and simplify the deployment of Al and ML applications by building in essential
frameworks, such as Kubeflow, Apache Spark, and TensorFlow, along with orchestration tools like Docker and
Kubernetes. By unifying the end-to-end data pipeline, NetApp and Iguazio reduce the latency and complexity
inherent in many advanced computing workloads, effectively bridging the gap between development and
operations. Data scientists can run queries on large datasets and securely share data and algorithmic models
with authorized users during the training phase. After the containerized models are ready for production, you
can easily move them from development environments to operational environments.

Next: Conclusion

Conclusion

When building your own Al/ML pipelines, configuring the integration, management,
security, and accessibility of the components in an architecture is a challenging task.
Giving developers access and control of their environment presents another set of
challenges.

The combination of NetApp and Iguazio brings these technologies together as managed services to accelerate
technology adoption and improve the time to market for new Al/ML applications.

Next: Where to Find Additional Information

Where to Find Additional Information

To learn more about the information that is described in this document, see the following

81

resources.

* NetApp Al Control Plane:
> NetApp Al Control Plane Technical Report

https://www.netapp.com/us/media/tr-4798.pdf

* NetApp persistent storage for containers:
o NetApp Trident

https://netapp.io/persistent-storage-provisioner-for-kubernetes/

* ML framework and tools:
o TensorFlow: An Open-Source Machine Learning Framework for Everyone https://www.tensorflow.org/

> Docker
https://docs.docker.com

> Kubernetes
https://kubernetes.io/docs/home/

o Kubeflow
http://www.kubeflow.org/

o Jupyter Notebook Server
http://www.jupyter.org/

* Iguazio Data Science Platform

o Iguazio Data Science Platform Documentation
https://www.iguazio.com/docs/

> Nuclio serverless function
https://nuclio.io/

o MLRun opensource pipeline orchestration framework
https://www.iguazio.com/open-source/mlrun/

* NVIDIA DGX-1 systems
> NVIDIA DGX-1 systems

https://www.nvidia.com/en-us/data-center/dgx-1/
> NVIDIA Tesla V100 Tensor core GPU
https://www.nvidia.com/en-us/data-center/tesla-v100/

> NVIDIA GPU Cloud

82

https://www.netapp.com/us/media/tr-4798.pdf
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://www.tensorflow.org/
https://docs.docker.com
https://kubernetes.io/docs/home/
http://www.kubeflow.org/
http://www.jupyter.org/
https://www.iguazio.com/docs/
https://nuclio.io/
https://www.iguazio.com/open-source/mlrun/
https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/tesla-v100/

https://www.nvidia.com/en-us/gpu-cloud/

* NetApp AFF systems
o AFF datasheet

https://www.netapp.com/us/media/ds-3582.pdf
> NetApp Flash Advantage for AFF
https://www.netapp.com/us/media/ds-3733.pdf
o ONTAP 9.x documentation
https://mysupport.netapp.com/documentation/productlibrary/index.html?productiD=62286
> NetApp FlexGroup technical report
https://www.netapp.com/us/media/tr-4557 .pdf

* NetApp ONTAP Al
o ONTAP Al with DGX-1 and Cisco Networking Design Guide

https://www.netapp.com/us/media/nva-1121-design.pdf

o ONTAP Al with DGX-1 and Cisco Networking Deployment Guide
https://www.netapp.com/us/media/nva-1121-deploy.pdf

o ONTAP Al with DGX-1 and Mellanox Networking Design Guide
https://www.netapp.com/us/media/nva-1138-design.pdf

* ONTAP Al networking
o Cisco Nexus 3232C Series Switches

https://www.cisco.com/c/en/us/products/switches/nexus-3232c-switch/index.html
o Mellanox Scale-Out SN2000 Ethernet Switch Series

https://www.mellanox.com/page/products_dyn?product_family=251&mtag=sn2000

Use Cases

Sentiment analysis with NetApp Al

TR-4910: Sentiment Analysis from Customer Communications with NetApp Al

Rick Huang, Sathish Thyagarajan, and David Arnette, NetApp
Diego Sosa-Coba, SFL Scientific

This technical report provides design guidance for customers to perform sentiment analysis in an enterprise-

level global support center by using NetApp data management technologies with an NVIDIA software
framework using transfer learning and conversational Al. This solution is applicable to any industry wanting to

83

https://www.nvidia.com/en-us/gpu-cloud/
https://www.netapp.com/us/media/ds-3582.pdf
https://www.netapp.com/us/media/ds-3733.pdf
https://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286
https://www.netapp.com/us/media/tr-4557.pdf
https://www.netapp.com/us/media/nva-1121-design.pdf
https://www.netapp.com/us/media/nva-1121-deploy.pdf
https://www.netapp.com/us/media/nva-1138-design.pdf
https://www.cisco.com/c/en/us/products/switches/nexus-3232c-switch/index.html
https://www.mellanox.com/page/products_dyn?product_family=251&mtag=sn2000

gain customer insights from recorded speech or text files representing chat logs, emails, and other text or
audio communications. We implemented an end-to-end pipeline to demonstrate automatic speech recognition,
real-time sentiment analysis, and deep-learning natural-language- processing model- retraining capabilities on
a GPU-accelerated compute cluster with NetApp cloud-connected all flash storage. Massive, state-of-the-art
language models can be trained and optimized to perform inference rapidly with the global support center to
create an exceptional customer experience and objective, long-term employee performance evaluations.

Sentiment analysis is a field of study within Natural Language Processing (NLP) by which positive, negative, or
neutral sentiments are extracted from text. Conversational Al systems have risen to a near global level of
integration as more and more people come to interact with them. Sentiment analysis has a variety of use
cases, from determining support center employee performance in conversations with callers and providing
appropriate automated chatbot responses to predicting a firm’s stock price based on the interactions between
firm representatives and the audience at quarterly earnings calls. Furthermore, sentiment analysis can be used
to determine the customer’s view on the products, services, or support provided by the brand.

This end-to-end solution uses NLP models to perform high level sentiment analysis that enables support-
center analytical frameworks. Audio recordings are processed into written text, and sentiment is extracted from
each sentence in the conversation. Results, aggregated into a dashboard, can be crafted to analyze
conversation sentiments, both historically and in real-time. This solution can be generalized to other solutions
with similar data modalities and output needs. With the appropriate data, other use cases can be
accomplished. For example, company earnings calls can be analyzed for sentiment using the same end-to-end
pipeline. Other forms of NLP analyses, such as topic modeling and named entity recognition (NER), are also
possible due to the flexible nature of the pipeline.

These Al implementations were made possible by NVIDIA RIVA, the NVIDIA TAO Toolkit, and the NetApp
DataOps Toolkit working together. NVIDIA’s tools are used to rapidly deploy highly performant Al solutions
using prebuilt models and pipelines. The NetApp DataOps Toolkit simplifies various data management tasks to
speed up development.

Customer value

Businesses see value from an employee-assessment and customer-reaction tool for text, audio, and video
conversation for sentiment analysis. Managers benefit from the information presented in the dashboard,
allowing for an assessment of the employees and customer satisfaction based on both sides of the
conversation.

Additionally, the NetApp DataOps Toolkit manages the versioning and allocation of data within the customer’s
infrastructure. This leads to frequent updates of the analytics presented within the dashboard without creating
unwieldy data storage costs.

Next: Use cases.

Use cases

Previous: Support center analytics.

Due to the number of calls that these support centers process, assessment of call performance could take
significant time if performed manually. Traditional methods, like bag-of-words counting and other methods, can
achieve some automation, but these methods do not capture more nuanced aspects and semantic context of
dynamic language. Al modeling techniques can be used to perform some of these more nuanced analyses in
an automated manner. Furthermore, with the current state of the art, pretrained modeling tools published by
NVIDIA, AWS, Google, and others, an end-to-end pipeline with complex models can be now stood up and
customized with relative ease.

An end-to-end pipeline for support center sentiment analysis ingests audio files in real time as employees

84

converse with callers. Then, these audio files are processed for use in the speech-to-text component which
converts them into a text format. Each sentence in the conversation receives a label indicating the sentiment
(positive, negative, or neutral).

Sentiment analysis can provide an essential aspect of the conversations for assessment of call performance.

These sentiments add an additional level of depth to the interactions between employees and callers. The Al-
assisted sentiment dashboard provides managers with a real-time tracking of sentiment within a conversation,
along with a retrospective analysis of the employee’s past calls.

There are prebuilt tools that can be combined in powerful ways to quickly create an end-to-end Al pipeline to
solve this problem. In this case, the NVIDIA RIVA library can be used to perform the two in-series tasks: audio
transcription and sentiment analysis. The first is a supervised learning signal processing algorithm and the
second is a supervised learning NLP classification algorithm. These out-of-the-box algorithms can be fine-
tuned for any relevant use case with business-relevant data using the NVIDIA TAO Toolkit. This leads to more
accurate and powerful solutions being built for only a fraction of the cost and resources. Customers can
incorporate the NVIDIA Maxine framework for GPU-accelerated video conferencing applications in their
support center design.

The following use cases are at the core of this solution. Both use cases use the TAO Toolkit for model fine-
tuning and RIVA for model deployment.

» Speech-to-text

» Sentiment analysis

To analyze support center interactions between employees and customers, each customer conversation in the
form of audio calls can be run through the pipeline to extract sentence-level sentiments. Those sentiments can
then be verified by a human to justify the sentiments or adjust them as needed. The labeled data is then
passed onto the fine-tuning step to improve sentiment predictions. If labeled sentiment data already exists,
then model fine-tuning can be expedited. In either case, the pipeline is generalizable to other solutions that
require the ingestion of audio and the classification of sentences.

<Employee Name> .
- . —

<Employee Info> . -

B m _ = B m =

Current call

Previous month calls 25% 15% 50%

Negative Sentiment Neutral Sentiment Positive Sentiment

85

https://developer.nvidia.com/maxine

Al sentiment outputs are either uploaded to an external cloud database or to a company- managed storage
system. The sentiment outputs are transferred from this larger database into local storage for use within the
dashboard that displays the sentiment analysis for managers. The dashboard’s primary functionality is to
interface with the customer service employee in real time. Managers can assess and provide feedback on
employees during their calls with live updates of the sentiment of each sentence, as well as an historic review
of the employee’s past performance or customer reactions.

RIVA A Y Sentiment
Inference |——— ((QECEELDD) Analysis |—— » Dashbolard
Pipeline o’ Dashboard Visuals
Object Storage
4 9 powered by NetApp DataOps Toolkit
> A _

Azure Google Cloud

Public Cloud Storage

The NetApp DataOps Toolkit can continue to manage data storage systems even after the RIVA inference
pipeline generates sentiment labels. Those Al results can be uploaded to a data storage system managed by
the NetApp DataOps Toolkit. The data storage systems must be capable of managing hundreds of inserts and
selects every minute. The local device storage system queries the larger data storage in real-time for
extraction. The larger data storage instance can also be queried for historical data to further enhance the
dashboard experience. The NetApp DataOps Toolkit facilitates both these uses by rapidly cloning data and
distributing it across all the dashboards that use it.

Target Audience

The target audience for the solution includes the following groups:

« Employee managers
» Data engineers/data scientists

* IT administrators (on-premises, cloud, or hybrid)

Tracking sentiments throughout conversations is a valuable tool for assessing employee performance. Using
the Al-dashboard, managers can see how employees and callers change their feelings in real time, allowing for
live assessments and guidance sessions. Moreover, businesses can gain valuable customer insights from
customers engaged in vocal conversations, text chatbots, and video conferencing. Such customer analytics
uses the capabilities of multimodal processing at scale with modern, state-of-the-art Al models and workflows.

On the data side, a large number of audio files are processed daily by the support center. The NetApp
DataOps Toolkit facilitates this data handling task for both the periodic fine-tuning of models and sentiment
analysis dashboards.

IT administrators also benefit from the NetApp DataOps Toolkit as it allows them to move data quickly between

deployment and production environments. The NVIDIA environments and servers must also be managed and
distributed to allow for real time inference.

86

https://github.com/NetApp/netapp-dataops-toolkit/releases/tag/v2.0.0

Next: Architecture.

Architecture

Previous: Use cases.

The architecture of this support center solution revolves around NVIDIA’s prebuilt tools and the NetApp
DataOps Toolkit. NVIDIA’s tools are used to rapidly deploy high-performance Al-solutions using prebuilt models
and pipelines. The NetApp DataOps Toolkit simplifies various data management tasks to speed up
development.

Solution technology

NVIDIA RIVA is a GPU-accelerated SDK for building multimodal conversational Al applications that deliver
real-time performance on GPUs. The NVIDIA Train, Adapt, and Optimize (TAO) Toolkit provides a faster, easier
way to accelerate training and quickly create highly accurate and performant, domain-specific Al models.

The NetApp DataOps Toolkit is a Python library that makes it simple for developers, data scientists, DevOps

engineers, and data engineers to perform various data management tasks. This includes near-instantaneous
provisioning of a new data volume or JupyterLab workspace, near-instantaneous cloning of a data volume or
JupyterLab workspace, and near-instantaneous snapshotting of a data volume or JupyterLab workspace for

traceability and baselining.

Architectural Diagram

The following diagram shows the solution architecture. There are three main environment categories: the
cloud, the core, and the edge. Each of the categories can be geographically dispersed. For example, the cloud
contains object stores with audio files in buckets in different regions, whereas the core might contain
datacenters linked via a high-speed network or NetApp Cloud Sync. The edge nodes denote the individual
human agent’s daily working platforms, where interactive dashboard tools and microphones are available to
visualize sentiment and collect audio data from conversations with customers.

In GPU-accelerated datacenters, businesses can use the NVIDIA RIVA framework to build conversational Al
applications, to which the Tao Toolkit connects for model finetuning and retraining using transfer L-learning
techniques. These compute applications and workflows are powered by the NetApp DataOps Toolkit, enabling
the best data management capabilities ONTAP has to offer. The toolkit allows corporate data teams to rapidly
prototype their models with associated structured and unstructured data via snapshots and clones for
traceability, versioning, A/B testing, thus providing security, governance, and regulatory compliance. See the
section "Storage Design" for more details.

This solution demonstrates the audio file processing, NLP model training, transfer learning, and data

management detail steps. The resulting end-to-end pipeline generates a sentiment summary that displays in
real-time on human support agents’ dashboards.

87

https://developer.nvidia.com/riva
https://docs.nvidia.com/deeplearning/riva/user-guide/docs/index.html
https://developer.nvidia.com/tao
https://github.com/NetApp/netapp-dataops-toolkit

VISION Al CONVERSATIONAL Al

TAO
TAO UI*

' Audio
file TAO TOOLKIT**
volumes

Jupyter Notebooks

Data Prep & Augmentation Train

amazon
N

Human agents’ audio

MTurk collected by microphones

data CUDA-X

labeling . E
NVIDIA Containers RT TensorRT h%

Sentiment
Dashboards

Cloud Sync

Proce "
training, and
transfer learning | i

Labeled audio
file repository

Sentiment
Summary

Edge nodes

ONTAP Al

Hardware requirements

The following table lists the hardware components that are required to implement the solution. The hardware
components that are used in any particular implementation of the solution might vary based on customer
requirements.

Response latency tests Time (milliseconds)
Data processing 10
Inferencing 10

These response-time tests were run on 50,000+ audio files across 560 conversations. Each audio file was
~100KB in size as an MP3 and ~1 MB when converted to WAV. The data processing step converts MP3s into
WAV files. The inference steps convert the audio files into text and extract a sentiment from the text. These
steps are all independent of one another and can be parallelized to speed up the process.

Taking into account the latency of transferring data between stores, managers should be able to see updates
to the real time sentiment analysis within a second of the end of the sentence.

NVIDIA RIVA hardware

Hardware Requirements

oS Linux x86_64

GPU memory (ASR) Streaming models: ~5600 MB
Non-streaming models: ~3100 MB

GPU memory (NLP) ~500MB per BERT model

88

NVIDIA TAO Toolkit hardware

Hardware Requirements

System RAM 32GB

GPU RAM 32GB

CPU 8 core

GPU NVIDIA (A100, V100 and RTX 30x0)
SSD 100GB

Flash storage system

NetApp ONTAP 9

ONTAP 9.9, the latest generation of storage management software from NetApp, enables businesses to
modernize infrastructure and transition to a cloud-ready data center. Leveraging industry-leading data
management capabilities, ONTAP enables the management and protection of data with a single set of tools,
regardless of where that data resides. You can also move data freely to wherever it is needed: the edge, the
core, or the cloud. ONTAP 9.9 includes numerous features that simplify data management, accelerate, and
protect critical data, and enable next generation infrastructure capabilities across hybrid cloud architectures.

NetApp Cloud Sync

Cloud Sync is a NetApp service for rapid and secure data synchronization that allows you to transfer files
between on-premises NFS or SMB file shares to any of the following targets:

* NetApp StorageGRID

* NetApp ONTAP S3

* NetApp Cloud Volumes Service

* Azure NetApp Files

* Amazon Simple Storage Service (Amazon S3)

* Amazon Elastic File System (Amazon EFS)

* Azure Blob

* Google Cloud Storage

* IBM Cloud Object Storage
Cloud Sync moves the files where you need them quickly and securely. After your data is transferred, it is fully
available for use on both the source and the target. Cloud Sync continuously synchronizes the data, based on
your predefined schedule, moving only the deltas, so that time and money spent on data replication is
minimized. Cloud Sync is a software as a service (SaaS) tool that is simple to set up and use. Data transfers

that are triggered by Cloud Sync are carried out by data brokers. You can deploy Cloud Sync data brokers in
AWS, Azure, Google Cloud Platform, or on-premises.

NetApp StorageGRID

The StorageGRID software-defined object storage suite supports a wide range of use cases across public,
private, and hybrid multi-cloud environments seamlessly. With industry leading innovations, NetApp
StorageGRID stores, secures, protect, and preserves unstructured data for multi-purpose use including

89

https://docs.netapp.com/us-en/occm/concept_cloud_sync.html

automated lifecycle management for long periods of time. For more information, see the NetApp StorageGRID

site.

Software requirements

The following table lists the software components that are required to implement this solution. The software
components that are used in any particular implementation of the solution might vary based on customer

requirements.

Host machine

RIVA (formerly JARVIS)

TAO Toolkit (formerly Transfer Learning Toolkit)

ONTAP
DGX OS
DOTK

NVIDIA RIVA Software

Software

Docker

NVIDIA Driver

Container OS
CUDA
CuBLAS
cuDNN
NCCL
TensorRT

Triton Inference Server

NVIDIA TAO Toolkit software

Software

Ubuntu 18.04 LTS
python

docker-ce

docker-API
nvidia-container-toolkit

nvidia-container-runtime

90

Requirements
1.4.0

3.0

9.9.1

5.1

2.0.0

Requirements

>19.02 (with nvidia-docker installed)>=19.03 if not
using DGX

465.19.01+
418.40+, 440.33+, 450.51+, 460.27+ for Data Center
GPUs

Ubuntu 20.04
11.3.0
11.5.1.101
8.2.0.41

296

7.2.3.4

29.0

Requirements
18.04

>=3.6.9
>19.03.5

1.40

>1.3.0-1
3.4.0-1

https://www.netapp.com/data-storage/storagegrid/documentation/

Software Requirements

nvidia-docker2 2.5.0-1
nvidia-driver >455
python-pip >21.06
nvidia-pyindex Latest version

Use case details

This solution applies to the following use cases:

* Speech-to-text

» Sentiment analysis

Audio Files Process Agtzzgﬂc | Text .| Sentiment Dashboard
Audi T » . . > Analysi :
udio Recognition Classification| nalysis Visuals

Conversion

Separate
Sentences

ASR
Model
Y
NetApp AO
DataOps Toolkit

Toolkit

TC
Mo

The speech-to-text use case begins by ingesting audio files for the support centers. This audio is then
processed to fit the structure required by RIVA. If the audio files have not already been split into their units of
analysis, then this must be done before passing the audio to RIVA. After the audio file is processed, it is
passed to the RIVA server as an API call. The server employs one of the many models it is hosting and returns
a response. This speech-to-text (part of Automatic Speech Recognition) returns a text representation of the
audio. From there, the pipeline switches over to the sentiment analysis portion.

For sentiment analysis, the text output from the Automatic Speech Recognition serves as the input to the Text
Classification. Text Classification is the NVIDIA component for classifying text to any number of categories. The

91

sentiment categories range from positive to negative for the support center conversations. The performance of
the models can be assessed using a holdout set to determine the success of the fine-tuning step.

Audio Files

Speech to
Text Labels

TAO
Jk Toolkit >~

Text Files

ASR
Model

RIVA
™ Server

AO
(F Toolkit >

Sentiment
Labels

Data Fine-Tune Model Export &
Processin (Speech- Evaluation Deploy
9 to-Text) Model

Data (somiment Mode! Sepioy
Processing Analysis) Evaluation Model

—>—

A similar pipeline is used for both the speech-to-text and sentiment analysis within the TAO Toolkit. The major
difference is the use of labels which are required for the fine-tuning of the models. The TAO Toolkit pipeline
begins with the processing of the data files. Then the pretrained models (coming from the NVIDIA NGC
Catalog) are fine-tuned using the support center data. The fine-tuned models are evaluated based on their
corresponding performance metrics and, if they are more performant than the pretrained models, are deployed

to the RIVA server.

Next: Design considerations.

Design considerations

Previous: Architecture.

Network and compute design

Depending on the restrictions on data security, all data must remain within the customer’s infrastructure or a

secure environment.

NVIDIA DGX systems

NVIDIA Mellanox
SN3700V

NetApp AFF A400

92

\
i
W
"
\

g
;
§
A

-
.-.-0;‘

0-0-—._:.‘-—.—-
’_".’“

o)

4
""""
W
""'
W
W
1

AN
WA
S
A:A't't
J
A;t
A

@
—
Il

)
'
A

W
&':

)
4

DO
)

w——100GbE

o
t"':-

https://ngc.nvidia.com/catalog
https://ngc.nvidia.com/catalog

Storage design

The NetApp DataOps Toolkit serves as the primary service for managing storage systems. The DataOps
Toolkit is a Python library that makes it simple for developers, data scientists, DevOps engineers, and data
engineers to perform various data management tasks, such as near-instantaneous provisioning of a new data
volume or JupyterLab workspace, near-instantaneous cloning of a data volume or JupyterLab workspace, and
near-instantaneous snapshotting of a data volume or JupyterLab workspace for traceability or baselining. This
Python library can function as either a command line utility or a library of functions that can be imported into
any Python program or Jupyter Notebook.

RIVA best practices

NVIDIA provides several general best data practices for using RIVA:

* Use lossless audio formats if possible. The use of lossy codecs such as MP3 can reduce quality.

« Augment training data. Adding background noise to audio training data can initially decrease accuracy
and yet increase robustness.

 Limit vocabulary size if using scraped text. Many online sources contain typos or ancillary pronouns
and uncommon words. Removing these can improve the language model.

* Use a minimum sampling rate of 16kHz if possible. However, try not to resample, because doing so
decreases audio quality.

In addition to these best practices, customers must prioritize gathering a representative sample dataset with
accurate labels for each step of the pipeline. In other words, the sample dataset should proportionally reflect
specified characteristics exemplified in a target dataset. Similarly, the dataset annotators have a responsibility
to balance accuracy and the speed of labeling so that the quality and quantity of the data are both maximized.
For example, this support center solution requires audio files, labeled text, and sentiment labels. The
sequential nature of this solution means that errors from the beginning of the pipeline are propagated all the
way through to the end. If the audio files are of poor quality, the text transcriptions and sentiment labels will be
as well.

This error propagation similarly applies to the models trained on this data. If the sentiment predictions are
100% accurate but the speech-to-text model performs poorly, then the final pipeline is limited by the initial
audio- to- text transcriptions. It is essential that developers consider each model’s performance individually and
as a component of a larger pipeline. In this particular case, the end goal is to develop a pipeline that can
accurately predict the sentiment. Therefore, the overall metric on which to assess the pipeline is the accuracy
of the sentiments, which the speech-to-text transcription directly affects.

93

https://docs.nvidia.com/deeplearning/riva/user-guide/docs/best-practices.html

NetApp rov@iuc:ﬁ:endaigra e
DataOps P g

Toolkit

Automated instant

Snapshot / Clone Quality

Data

New Data
Labeled »| Quality > I;/aerg?ogﬂta
Data Check 9 |

A

Data for
Review

The NetApp DataOps Toolkit complements the data quality-checking pipeline through the use of its near-
instantaneous data cloning technology. Each labeled file must be assessed and compared to the existing
labeled files. Distributing these quality checks across various data storage systems ensures that these checks
are executed quickly and efficiently.

Next: Deploying support-center sentiment analysis.

Deploying support center sentiment analysis
Previous: Design considerations.
Deploying the solution involves the following components:

1. NetApp DataOps Toolkit
. NGC Configuration

. NVIDIA RIVA Server

. NVIDIA TAO Toolkit

2
3
4
5. Export TAO models to RIVA

To perform deployment, complete the following steps:

NetApp DataOps Toolkit: Support center sentiment analysis

To use the NetApp DataOps Toolkit, complete the following steps:

1. Pip install the toolkit.
python3 -m pip install netapp-dataops-traditional

2. Configure the data management

94

https://github.com/NetApp/netapp-dataops-toolkit

netapp dataops cli.py config

NGC configuration: Support center sentiment analysis

To set up NVIDIA NGC, complete the following steps:

1. Download the NGC.

wget -0 ngccli linux.zip
https://ngc.nvidia.com/downloads/ngccli linux.zip && unzip -o
ngccli linux.zip && chmod u+x ngc

2. Add your current directory to path.

echo "export PATH=\"\S$PATH:$ (pwd)\"" >> ~/.bash profile && source
~/.bash profile

3. You must configure NGC CLI for your use so that you can run the commands. Enter the following
command, including your API key when prompted.

ngc config set

For operating systems that are not Linux-based, visit here.

NVIDIA RIVA server: Support center sentiment analysis

To set up NVIDIA RIVA, complete the following steps:

1. Download the RIVA files from NGC.

ngc registry resource download-version
nvidia/riva/riva quickstart:1.4.0-beta

2. Initialize the RIVA setup (riva init.sh).

3. Start the RIVA server (riva start.sh).

4. Start the RIVAclient (riva_start client.sh).

5. Within the RIVA client, install the audio processing library (FFMPEG)

apt-get install ffmpeg

https://ngc.nvidia.com/setup/installers/cli
https://ngc.nvidia.com/setup/installers/cli
https://docs.nvidia.com/deeplearning/riva/user-guide/docs/quick-start-guide.html
https://ffmpeg.org/download.html

6. Start the Jupyter server.
7. Run the RIVA Inference Pipeline Notebook.

NVIDIA TAO Toolkit: Support center sentiment analysis

To set up NVIDIA TAO Toolkit, complete the following steps:

1. Prepare and activate a virtual environment for TAO Toolkit.

N

. Install the required packages.

w

. Manually pull the image used during training and fine-tuning.

docker pull nvcr.io/nvidia/tao/tao-toolkit-pyt:v3.21.08-py3

N

. Start the Jupyter server.
. Run the TAO Fine-Tuning Notebook.

($)]

Export TAO models to RIVA: Support center sentiment analysis

To use TAO Toolkit models in RIVA, complete the following steps:

1. Save models within the TAO Fine-Tuning Notebook.
2. Copy TAO trained models to the RIVA model directory.

3. Start the RIVA server (riva_start.sh).

Deployment roadblocks

Here are a few things to keep in mind as you develop your own solution:

* The NetApp DataOps Toolkit is installed first to ensure that the data storage system runs optimally.

* NVIDIA NGC must be installed before anything else because it authenticates the downloading of images
and models.

* RIVA must be installed before the TAO Toolkit. The RIVA installation configures the docker daemon to pull
images as needed.

* DGX and docker must have internet access to download the models.

Next: Validation results.

Validation results

Previous: Deploying support-center sentiment analysis.

As mentioned in the previous section, errors are propagated throughout the pipeline whenever there are two or
more machine learning models running in sequence. For this solution, the sentiment of the sentence is the
most important factor in measuring the firm'’s stock risk level. The speech-to-text model, although essential to
the pipeline, serves as the preprocessing unit before the sentiments can be predicted. What really matters is
the difference in sentiment between the ground truth sentences and the predicted sentences. This serves as a
proxy for the word error rate (WER). The speech-to-text accuracy is important, but the WER is not directly used
in the final pipeline metric.

96

https://jupyter-server.readthedocs.io/en/latest/
https://docs.python.org/3/library/venv.html
https://docs.nvidia.com/tao/tao-toolkit/text/tao_toolkit_quick_start_guide.html
https://jupyter-server.readthedocs.io/en/latest/
https://docs.nvidia.com/tao/tao-toolkit/text/riva_tao_integration.html

PIPELINE SENTIMENT METRIC = MEAN (DIFF (GT sentiment, ASR sentiment))

These sentiment metrics can be calculated for the F1 Score, Recall, and Precision of each sentence. The
results can be then aggregated and displayed within a confusion matrix, along with the confidence intervals for
each metric.

The benefit of using transfer learning is an increase in model performance for a fraction of data requirements,
training time, and cost. The fine-tuned models should also be compared to their baseline versions to ensure
the transfer learning enhances the performance instead of impairing it. In other words, the fine-tuned model
should perform better on the support center data than the pretrained model.

Pipeline assessment

Test case Details
Test number Pipeline sentiment metric
Test prerequisites Fine-tuned models for speech-to-text and sentiment

analysis models

Expected outcome The sentiment metric of the fine-tuned model performs
better than the original pretrained model.

Pipeline sentiment metric

1. Calculate the sentiment metric for the baseline model.
2. Calculate the sentiment metric for the fine-tuned model.
3. Calculate the difference between those metrics.

4. Average the differences across all sentences.

Next: Videos and demos.

Videos and demos

Previous: Validation results.

There are two notebooks that contain the sentiment analysis pipeline: “Support-Center-Model-Transfer-
Learning-and-Fine-Tuning.ipynb” and “Support-Center-Sentiment-Analysis-Pipeline.ipynb”. Together, these
notebooks demonstrate how to develop a pipeline to ingest support center data and extract sentiments from
each sentence using state-of-the-art deep learning models fine-tuned on the user’s data.

Support Center - Sentiment Analysis Pipeline.ipynb

This notebook contains the inference RIVA pipeline for ingesting audio, converting it to text, and extracting
sentiments for use in an external dashboard. Dataset are automatically downloaded and processed if this has
not already been done. The first section in the notebook is the Speech-to-Text which handles the conversion of
audio files to text. This is followed by the Sentiment Analysis section which extracts sentiments for each text
sentence and displays those results in a format similar to the proposed dashboard.

@ This notebook must be run before the model training and fine-tuning because the MP3 dataset
must be downloaded and converted into the correct format.

97

https://nbviewer.jupyter.org/github/NetAppDocs/netapp-solutions/blob/main/media/Support-Center-Model-Transfer-Learning-and-Fine-Tuning.ipynb
https://nbviewer.jupyter.org/github/NetAppDocs/netapp-solutions/blob/main/media/Support-Center-Model-Transfer-Learning-and-Fine-Tuning.ipynb
https://nbviewer.jupyter.org/github/NetAppDocs/netapp-solutions/blob/main/media/Support-Center-Sentiment-Analysis-Pipeline.ipynb

Call Center - Sentiment Analysis Pipeline

This notebook demonstrates how to build a pipeline for sentiment analysis of call center conversations. The goal of this pipeline
is to develop sentiment analysis for use within an external dashboard.

This tutorial will guide you through the use of NVIDIA's RIVA for automatic speech recognition and text classification. This tutorial
uses NetApp cloud storage for data storage and a pre-trained RIVA model.

Channels

These are the channels on which RIVA is hosting models.

* speech: 51051
* voice: 61051

These channels must be aligned with riva speech api port and riva vision api port within config.sh

In [4]: speech channel = "localhost:51051"
voice channel = "localhost:61051"
Speech-To-Text

Automatic Speech Recognition (ASR) takes as input an audio stream or audio buffer and returns one or more text transcripts,
along with additional optional metadata. ASR represents a full speech recognition pipeline that is GPU accelerated with
optimized performance and accuracy. ASR supports synchronous and streaming recognition modes.

For more information on NVIDIA RIVA's Automatic Speech Recognition, visit here.

Constants
Use these constants to affect different aspects of this pipeline:

* DATA DIR: base folder where data is stored
¢ DATASET NAME :name of the call center dataset
¢ COMPANY DATE : folder name identifying the particular call center conversation

Support Center - Model Training and Fine-Tuning.ipynb

The TAO Toolkit virtual environment must be set up before executing the notebook (see the TAO Toolkit section
in the Commands Overview for installation instructions).

This notebook relies on the TAO Toolkit to fine-tune deep learning models on the customers data. As with the
previous notebook, this one is separated into two sections for the Speech-to-Text and Sentiment Analysis
components. Each section goes through data processing, model training and fine-tuning, evaluation of results,
and model export. Finally, there is an end section for deploying both your fine-tuned models for use in RIVA.

98

Call Center - Model Transfer Learning and Fine-Tuning

TAO Toolkit is a python based Al toolkit for taking purpose-built pre-trained Al models and customizing them with your own data.
Transfer learning extracts learned features from an existing neural network to a new one. Transfer learing is often used when
creating a large training dataset is not feasible in order to enhance the base performance of state-of-the-art models.

For this call center solution, the speech-to-text and sentiment analysis models are fine-tuned on call center data to augment the
model performance on business specific terminology.

For more information on the TAO Toolkit, please visit here.

Q&
S TAO UI*

’ Pre-trained
modeals

O
Custorn Al

TAO TOOLKIT** .

Jupyter Notebooks
% —_—
Custom

Dataset Data Prep & Augmentation Train

CUDA«

TRAINING PLATFORMS INFERENCE PLATFORMS

HUQIE

Jetson Ampere

Workstation Cloud

* Caming Sean ** Formerly Tranaler Learning Toolket

Installing necessary dependencies

For ease of use, please install TAO Toolkit inside a python virtual environment. We recommend performing this step first and
then launching the notebook from the virtual environment. Please refer to the README for these instructions.

Next: Conclusion.

Conclusion

Previous: Videos and demos.

As customer experience has become increasingly regarded as a key competitive battleground, an Al-
augmented global support center becomes a critical component that companies in almost every industry
cannot afford to neglect. The solution proposed in this technical report has been demonstrated to support the
delivery of such exceptional customer experiences, and the challenge now is to ensure businesses are taking
actions to modernize their Al infrastructure and workflows.

The best implementations of Al in customer service are not to replace human agents. Rather, Al can empower

them to create exceptional customer experiences via real-time sentiment analysis, dispute escalation, and
multimodal affective computing to detect verbal, non-verbal, and facial cues with which comprehensive Al

99

models can make recommendations at scale and supplement what an individual human agent might be
lacking. Al can also provide a better match between a particular customer with currently available agents.
Using Al, businesses can extract valuable customer sentiment regarding their thoughts and impressions of the
provider’s products, services, and brand image.

The solution can also be used to construct time-series data for support agents to serve as an objective
performance evaluation metric. Conventional customer satisfaction surveys often lack sufficient responses. By

collecting long-term employee and customer sentiment, employers can make informed decisions regarding
support agents’ performance.

The combination of NetApp, SFL Scientific, opens-source orchestration frameworks, and NVIDIA brings the

latest technologies together as managed services with great flexibility to accelerate technology adoption and
improve the time to market for new Al/ML applications. These advanced services are delivered on-premises
that can be easily ported for cloud-native environment as well as hybrid deployment architectures.

Next: Where to find additional information.

Where to find additional information

Previous: Conclusion.

To learn more about the information that is described in this document, review the following documents and/or
websites:

3D interactive demos
www.netapp.com/ai

» Connect directly with a NetApp Al specialist
https://www.netapp.com/artificial-intelligence/

* NVDIA Base Command Platform with NetApp solution brief

https://www.netapp.com/pdf.html?item=/media/32792-DS-4145-NVIDIA-Base-Command-Platform-with-
NetApp.pdf

» NetApp for Al 10 Good Reasons infographic

https://www.netapp.com/us/media/netapp-ai-10-good-reasons.pdf

Al in Healthcare: Deep learning to identify COVID-19 lesions in lung CT scans white paper

https://www.netapp.com/pdf.html?item=/media/31240-WP-7342.pdf

Al in Healthcare: Monitoring face mask usage in healthcare settings white paper

https://www.netapp.com/pdf.html?item=/media/37490-NA-611-Monitoring-face-mask-usage-in-healthcare-
settings.pdf

Al in Healthcare: Diagnostic Imaging Technical Report
https://www.netapp.com/pdf.html?item=/media/7395-tr4811.pdf

« Al for Retail: NetApp Conversational Al using NVIDIA RIVA

100

http://www.netapp.com/ai
https://www.netapp.com/artificial-intelligence/
https://www.netapp.com/pdf.html?item=/media/32792-DS-4145-NVIDIA-Base-Command-Platform-with-NetApp.pdf
https://www.netapp.com/pdf.html?item=/media/32792-DS-4145-NVIDIA-Base-Command-Platform-with-NetApp.pdf
https://www.netapp.com/us/media/netapp-ai-10-good-reasons.pdf
https://www.netapp.com/pdf.html?item=/media/31240-WP-7342.pdf
https://www.netapp.com/pdf.html?item=/media/37490-NA-611-Monitoring-face-mask-usage-in-healthcare-settings.pdf
https://www.netapp.com/pdf.html?item=/media/37490-NA-611-Monitoring-face-mask-usage-in-healthcare-settings.pdf
https://www.netapp.com/pdf.html?item=/media/7395-tr4811.pdf

https://docs.netapp.com/us-en/netapp-solutions/ai/cainvidia_executive_summary.htmi

* NetApp ONTAP Al solution brief
https://www.netapp.com/pdf.html?item=/media/6736-sb-3939.pdf

* NetApp DataOps Toolkit solution brief
https://www.netapp.com/pdf.html?item=/media/21480-SB-4111-1220-NA-Data-Science-Toolkit.pdf

* NetApp Al Control Plane solution brief
https://www.netapp.com/pdf.html?item=/media/6737-sb-4055.pdf

* Transforming Industry with Data Drive Al eBook
https://www.netapp.com/us/media/na-337.pdf

* NetApp EF-Series Al solution brief
https://www.netapp.com/pdf.html?item=/media/26708-SB-4136-NetApp-Al-E-Series.pdf

* NetApp Al and Lenovo ThinkSystem for Al Inferencing solution brief
https://www.netapp.com/pdf.html?item=/media/25316-SB-4129.pdf

* NetApp Al and Lenovo ThinkSystem for enterprise Al and ML solution brief
https://www.netapp.com/pdf.html?item=/media/25317-SB-4128.pdf

* NetApp and NVIDIA — Redefining What is Possible with Al video

https://www.youtube.com/watch?v=38xw65SteUc

Distributed training in Azure - Click-Through Rate Prediction

TR-4904: Distributed training in Azure - Click-Through Rate Prediction

Rick Huang, Verron Martina, Muneer Ahmad, NetApp

The work of a data scientist should be focused on the training and tuning of machine learning (ML) and artificial
intelligence (Al) models. However, according to research by Google, data scientists spend approximately 80%
of their time figuring out how to make their models work with enterprise applications and run at scale.

To manage end-to-end Al/ML projects, a wider understanding of enterprise components is needed. Although
DevOps have taken over the definition, integration, and deployment, these types of components, ML
operations target a similar flow that includes Al/ML projects. To get an idea of what an end-to-end Al/ML
pipeline touches in the enterprise, see the following list of required components:

« Storage

* Networking

* Databases

* File systems

101

https://docs.netapp.com/us-en/netapp-solutions/ai/cainvidia_executive_summary.html
https://www.netapp.com/pdf.html?item=/media/6736-sb-3939.pdf
https://www.netapp.com/pdf.html?item=/media/21480-SB-4111-1220-NA-Data-Science-Toolkit.pdf
https://www.netapp.com/pdf.html?item=/media/6737-sb-4055.pdf
https://www.netapp.com/us/media/na-337.pdf
https://www.netapp.com/pdf.html?item=/media/26708-SB-4136-NetApp-AI-E-Series.pdf
https://www.netapp.com/pdf.html?item=/media/25316-SB-4129.pdf
https://www.netapp.com/pdf.html?item=/media/25317-SB-4128.pdf
https://www.youtube.com/watch?v=38xw65SteUc

» Containers

» Continuous integration and continuous deployment (CI/CD) pipeline
* Integrated development environment (IDE)

» Security

» Data access policies

* Hardware

¢ Cloud

* Virtualization

e Data science toolsets and libraries

Target audience

The world of data science touches multiple disciplines in IT and business:

* The data scientist needs the flexibility to use their tools and libraries of choice.

» The data engineer needs to know how the data flows and where it resides.

» A DevOps engineer needs the tools to integrate new Al/ML applications into their CI/CD pipelines.
* Cloud administrators and architects need to be able to set up and manage Azure resources.

» Business users want to have access to Al/ML applications.

In this technical report, we describe how Azure NetApp Files, RAPIDS Al, Dask, and Azure help each of these
roles bring value to business.

Solution overview

This solution follows the lifecycle of an Al/ML application. We start with the work of data scientists to define the
different steps needed to prepare data and train models. By leveraging RAPIDS on Dask, we perform
distributed training across the Azure Kubernetes Service (AKS) cluster to drastically reduce the training time
when compared to the conventional Python scikit-learn approach. To complete the full cycle, we integrate the
pipeline with Azure NetApp Files.

Azure NetApp Files provides various performance tiers. Customers can start with a Standard tier and scale out
and scale up to a high-performance tier nondisruptively without moving any data. This capability enables data
scientists to train models at scale without any performance issues, avoiding any data silos across the cluster,
as shown in figure below.

102

" R
" BRI
IEIIE

E) Kubernetes Services
|

= = B

X 11 X 1l I x 1l

][] [l =

L Azure NetA
run: pNode > R
ai Files
Pods Multiple concurrent
TRIDENT nodes/pods access

N, /

Next: Technology overview.

Technology overview

Previous: Introduction.

Microsoft and NetApp

Since May 2019, Microsoft has delivered an Azure native, first-party portal service for enterprise NFS and SMB
file services based on NetApp ONTAP technology. This development is driven by a strategic partnership
between Microsoft and NetApp and further extends the reach of world-class ONTAP data services to Azure.

Azure NetApp Files

The Azure NetApp Files service is an enterprise-class, high-performance, metered file storage service. Azure
NetApp Files supports any workload type and is highly available by default. You can select service and
performance levels and set up Snapshot copies through the service. Azure NetApp Files is an Azure first-party
service for migrating and running the most demanding enterprise-file workloads in the cloud, including
databases, SAP, and high-performance computing applications with no code changes.

This reference architecture gives IT organizations the following advantages:

 Eliminates design complexities
» Enables independent scaling of compute and storage
* Enables customers to start small and scale seamlessly

» Offers a range of storage tiers for various performance and cost points

Dask and NVIDIA RAPIDS overview

Dask is an open-source, parallel computing tool that scales Python libraries on multiple machines and provides
faster processing of large amounts of data. It provides an API similar to single-threaded conventional Python
libraries, such as Pandas, Numpy, and scikit-learn. As a result, native Python users are not forced to change
much in their existing code to use resources across the cluster.

NVIDIA RAPIDS is a suite of open-source libraries that makes it possible to run end-to-end ML and data

103

analytics workflows entirely on GPUs. Together with Dask, it enables you to easily scale from GPU workstation
(scale up) to multinode, multi-GPU clusters (scale out).

For deploying Dask on a cluster, you could use Kubernetes for resource orchestration. You could also scale up
or scale down the worker nodes as per the process requirement, which in-turn can help to optimize the cluster
resource consumption, as shown in the following figure.

Single CPU core In-memory data

RAPIDS and Others Dask + RAPIDS

a@| Accelerated on single GPU Multi-GPU '
5 7
B NumPy -> cuPy On single Node (DGX) :
o Pandas -> cuDF Or across a cluster DASK
0 Scikit-Learn -> cuML
Q| Many more ...
<
—
Q. pyData Dask
S y
2 NumPy, Pandas, SCIkIt Learn and many Multi-core and Distributed PyData
©| more

[
8 N:, NumPy

NumPy -> Dask Array ,
Pandas -> Dask DataFrame [/,
Scikit-Learn -> Dask-ML

Il-l Pandqs .. -> Dask Futures DASK

Scale Out / Parallelize

Next: Software requirements.

Software requirements

Previous: Technology overview.

The following table lists the software requirements needed for this solution.

Software Version
Azure Kubernetes Service 1.18.14
RAPIDS and Dask container image Repository: "rapidsai/rapidsai”
Tag: 0.17-cuda11.0-runtime-ubuntu18.04
NetApp Trident 20.01.1
Helm 3.0.0

Next: Cloud resource requirements.

Cloud resource requirements

Previous: Software requirements.

104

Configure Azure NetApp Files

Configure Azure NetApp Files as described in QuickStart: Set up Azure NetApp Files and create an NFS
volume.

You can proceed past the section “Create NFS volume for Azure NetApp Files” because you are going to
create volumes through Trident. Before continuing, complete the following steps:

1. Register for Azure NetApp Files and NetApp Resource Provider (through the Azure Shell) (link).

2. Create an account in Azure NetApp Files (link).

3. Set up a capacity pool (a minimum 4TB Standard or Premium, depending on your need) (link).The
following table lists the network configuration requirements for setting up in the cloud. The Dask cluster and
Azure NetApp Files must be in the same Azure Virtual Network (VNet) or a peered VNet.

Resources Typelversion

Azure Kubernetes Service 1.18.14

Agent node 3x Standard_DS2 v2
GPU node 3x Standard_NC6s_v3
Azure NetApp Files Standard capacity pool
Capacity in TB 4

Next: Click-through rate prediction use case summary.

Click-through rate prediction use case summary
Previous: Cloud resource requirements.

This use case is based on the publicly available Terabyte Click Logs dataset from Criteo Al Lab. With the
recent advances in ML platforms and applications, a lot of attention is now on learning at scale. The click-
through rate (CTR) is defined as the average number of click-throughs per hundred online ad impressions
(expressed as a percentage). It is widely adopted as a key metric in various industry verticals and use cases,
including digital marketing, retail, e-commerce, and service providers. Examples of using CTR as an important
metric for potential customer traffic include the following:

 Digital marketing: In Google Analytics, CTR can be used to gauge how well an advertiser or merchant’s
keywords, ads, and free listings are performing. A high CTR is a good indication that users find your ads
and listings helpful and relevant. CTR also contributes to your keyword’s expected CTR, which is a
component of Ad Rank.

* E-commerce: In addition to leveraging Google Analytics, there are at least some visitor statistics in an e-
commerce backend. Although these statistics might not seem useful at first glance, they are typically easy
to read and might be more accurate than other information. First-party datasets composed of such
statistics are proprietary and are therefore the most relevant to e-commerce sellers, buyers, and platforms.
These datasets can be used for setting benchmarks, comparing results to last year and yesterday by
constructing a time-series for further analysis.

* Retail: Brick-and-mortar retailers can correlate the number of visitors and the number of customers to the
CTR. The number of customers can be seen from their point-of-sale history. The CTR from retailers'
websites or ad traffic might result in the aforementioned sales. Loyalty programs are another use case,
because customers redirected from online ads or other websites might join to earn rewards. Retailers can
acquire customers via loyalty programs and record behaviors from sales histories to build a
recommendation system that not only predicts consumer buying behaviors in different categories but also

105

https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes?tabs=azure-portal
https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes?tabs=azure-portal
https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-register
https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-create-netapp-account
https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-set-up-capacity-pool
http://labs.criteo.com/2013/12/download-terabyte-click-logs/
https://ailab.criteo.com/
https://support.google.com/google-ads/answer/2615875?hl=en
https://support.google.com/google-ads/answer/1752122?hl=en
https://analytics.google.com/analytics/web/provision/#/provision

personalizes coupons and decreases churn.

» Service providers: Telecommunication companies and internet service providers have an abundance of
first-party user telemetry data for insightful Al, ML, and analytics use cases. For example, a telecom can
leverage its mobile subscribers’ web browsing top level domain history logs daily to fine-tune existing
models to produce up-to-date audience segmentation, predict customer behavior, and collaborate with
advertisers to place real-time ads for better online experience. In such data-driven marketing workflow,
CTR is an important metric to reflect conversions.

In the context of digital marketing, Criteo Terabyte Click Logs are now the dataset of reference in assessing the
scalability of ML platforms and algorithms. By predicting the click-through rate, an advertiser can select the
visitors who are most likely to respond to the ads, analyze their browsing history, and show the most relevant
ads based on the interests of the user.

The solution provided in this technical report highlights the following benefits:

* Azure NetApp Files advantages in distributed or large-scale training
* RAPIDS CUDA-enabled data processing (cuDF, cuPy, and so on) and ML algorithms (cuML)

» The Dask parallel computing framework for distributed training

An end-to-end workflow built on RAPIDS Al and Azure NetApp Files demonstrates the drastic improvement in
random forest model training time by two orders of magnitude. This improvement is significant comparing to
the conventional Pandas approach when dealing with real-world click logs with 45GB of structured tabular data
(on average) each day. This is equivalent to a DataFrame containing roughly twenty billion rows. We will
demonstrate cluster environment setup, framework and library installation, data loading and processing,
conventional versus distributed training, visualization and monitoring, and compare critical end-to-end runtime
results in this technical report.

Next: Install and set up the aks cluster.

Setup

Install and set up the AKS cluster

Previous: Click-through rate prediction use case summary.

To install and set up the AKS cluster, see the webpage Create an AKS Cluster and then complete the following
steps:
1. When selecting the type of node (system [CPU] or worker [GPU] nodes), select the following:
a. Primary system nodes should be Standard DS2v2 (agentpool default three nodes).

b. Then add the worker node Standard_NC6s_v3 pool (three nodes minimum) for the user group (for
GPU nodes) named gpupool.

Add node pool

Name Node count Node size

Standard_DS2_v2

Standard_NCés_v

106

http://labs.criteo.com/2013/12/download-terabyte-click-logs/
https://docs.microsoft.com/azure/aks/kubernetes-walkthrough-portal

2. Deployment takes 5 to 10 minutes. After it is complete, click Connect to Cluster.

3. To connect to the newly created AKS cluster, install the following from your local environment (laptop/pc):
a. The Kubernetes command-line tool using the instructions provided for your specific OS
b. The Azure CLI as described in the document, Install the Azure CLI

4. To access the AKS cluster from the terminal, enter az login and enter the credentials.

5. Run the following two commands:

az account set —--subscription XXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXXXX

aks get-credentials --resource-group resourcegroup --name aksclustername

6. Enter Azure CLI: kubectl get nodes.

7. If all six nodes are up and running, as shown in the following example, your AKS cluster is ready and
connected to your local environment

verronmartina@verron-mac—8 ~ % kubectl get nodes

NAME STATUS ROLES VERSION
aks—agentpool-34613862—-vmssBRB008 Ready agent vi.18.14
aks—agentpool-34613862-vmasBB00081 Ready agent v1.1B.14
aks—agentpool-34613862-vmssBBBEE2 Ready agent v1.1B.14

aks—gpupool-34613862-vmssBB0808 Ready agent vi.18.14
aks—gpupool-3446138462-vmssBB80881 Ready agent vl.18.14
aks—gpupool-34613862-vmssB80802 Ready agent vi.18.14&
verronmartina@verron-mac-8 ~ % I

Next: Create a delegated subnet for Azure NetApp Files.

Create a delegated subnet for Azure NetApp Files

Previous: Install and set up the AKS cluster.

To create a delegated subnet for Azure NetApp Files, complete the following steps:

1. Navigate to Virtual Networks within the Azure portal. Find your newly created virtual network. It should
have a prefix such as aks-vnet.

2. Click the name of the VNet.

107

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.microsoft.com/cli/azure/install-azure-cli

Microsoft Azure P Search resources, services, and docs (G+/)

Dashboard >

Virtual networks = X
seanlucelive (Default Directory)
+ Add £33 Manageview ~ () Refresh | ExporttaCSV %5 Open query D Assign tags D Feedback
Filter by name... | Subscription == AzureSub01 Resource group == all X Location == all X T Add filter
Showing 1 to 5 of 5 records. No grouping ~ List view N
|:| Name T. Resource group Ty Location T Subscription T
D 4> aks-vnet-22885919 MC_sluce.rg_TridentDemo_eastus2 EastUS 2 AzureSub01 e

3. Click Subnets and click +Subnet from the top toolbar.

£ Search resources, services, and docs (G+/)

Dashboard > Virtual networks > aks-vnet-22885919

¢.» aks-vnet-22885919 | Subnets X

Virtual network

£ Search (Ctrl+/) « + Gateway subnet () Refresh Ra Manage users [ii] C

3 Overview

£ Search subnets

B Activity log
Ra Access control (IAM) Name Ty 1Pvd Ty IPv6E (many availab... T, Delegatedto T4 Security group Ty
@ Tags aks-subnet 10.240.0.0/16 (65530 av... - E aks-agentpool-2288581... =

ﬁ Diagnose and solve problems

Settings
* Address space

Connected devices

4. Provide the subnet with a name such as ANF . sn and, under the Subnet Delegation heading, select
Microsoft.Netapp/volumes. Do not change anything else. Click OK.

108

Add subnet X

Name *
[ANF.sn |

Subnet address range * ®
| 100.00/24]
10.0.0.0 - 10.0.0.255 (251 + 5 Azure reserved addresses)

D Add IPv6 address space (O

NAT gateway @

I None %]

Network security group

I None v]
Route table
I None v]

SERVICE ENDPOINTS

Create service endpoint policies to allow traffic to specific azure resources from your virtual network
over service endpoints. Learn more

Services (1)

0 selected v

SUBNET DELEGATION

Delegate subnet to a service O

| Microsoft.Netapp/volumes v

Azure NetApp Files volumes are allocated to the application cluster and are consumed as persistent volume
claims (PVCs) in Kubernetes. In turn, this process provides you the flexibility to map them to different services,
such as Jupyter notebooks, serverless functions, and so on.

Users of services can consume storage from the platform in many ways. As this technical report discusses
NFSs, the main benefits of Azure NetApp Files are:

* Providing users with the ability to use Snapshot copies.
« Enabling users to store large quantities of data on Azure NetApp Files volumes.

+ Using the performance benefits of Azure NetApp Files volumes when running their models on large sets of
files.

Next: Peer AKS vnet and Azure NetApp Files vnet.

109

Peer AKS VNet and Azure NetApp Files VNet

Previous: Create a delegated subnet for Azure NetApp Files.
To peer the AKS VNet to the Azure NetApp Files VNet, complete the following steps:

1. Enter Virtual Networks in the search field.
2. Select vnet aks-vnet-name. Click it and enter Peerings in the search field.
3. Click +Add.
4. Enter the following descriptors:
a. The peering link name is aks-vnet-name to_ anf.
b. subscriptionID and Azure NetApp Files VNet as the VNet peering partner.
c. Leave all the nonasterisk sections with the default values.
5. Click Add.

For more information, see Create, change, or delete a virtual network peering.

Next: Install Trident.

Install Trident

Previous: Peer AKS VNet and Azure NetApp Files VNet.
To install Trident using Helm, complete the following steps:

1. Install Helm (for installation instructions, visit the source).

2. Download and extract the Trident 20.01.1 installer.

Swget
Star -xf trident-installer-21.01.1.tar.gz

3. Change the directory to trident-installer.

Scd trident-installer

4. Copy tridentctl to a directory in your system $PATH.

$sudo cp ./tridentctl /usr/local/bin

5. Install Trident on the Kubernetes (K8s) cluster with Helm (source):

a. Change the directory to the he1m directory.

Scd helm

110

https://docs.microsoft.com/azure/virtual-network/virtual-network-manage-peering
https://helm.sh/docs/intro/install/
https://scaleoutsean.github.io/2021/02/02/trident-21.01-install-with-helm-on-netapp-hci.html

b. Install Trident.

Shelm install trident trident-operator-21.01.1.tgz --namespace
trident --create-namespace

c. Check the status of Trident pods.

Skubectl -n trident get pods

If all the pods are up and running, then Trident is installed and you can move forward.

6. Set up the Azure NetApp Files backend and storage class for AKS.
a. Create an Azure Service Principle.

The service principal is how Trident communicates with Azure to manipulate your Azure NetApp Files
resources.

Saz ad sp create-for-rbac --name ""

The output should look like the following example:

{

"appId": "XXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX",
"displayName": "netapptrident",

"name" . " ",

"password": "XXXXXXXXXXXXKKX.XXXXXXXXXXXXXX",
"tenant": "XXXXXXXX-XKXX-XKXKX-XXXK-XXXXKXXXXKX"

}

7. Create a Trident backend json file, example name anf-backend. json.

8. Using your preferred text editor, complete the following fields inside the anf-backend. json file:

1M

"version": 1,

"storageDriverName": "azure-netapp-files",
"subscriptionID": "fakec765-4774-fake-ae98-a72ladd4fake",
"tenantID": "fakef836-edcl-fake-bff9-b2d865eefake",
"clientID": "fakeOf63-bf8e-fake-8076-8de%9le57fake",
"clientSecret": "SECRET",

"location": "westeurope",

"serviceLevel": "Standard",

"virtualNetwork": "anf-vnet",

"subnet": "default",

"nfsMountOptions": "vers=3,proto=tcp",
"limitVolumeSize": "500Gi",

"defaults": {

"exportRule": "0.0.0.0/0",

"size": "200Gi"

9. Substitute the following fields:
° subscriptionID. Your Azure subscription ID.
° tenantID. Your Azure Tenant ID from the output of az ad sp in the previous step.
° clientID. Your applD from the output of az ad sp in the previous step.
° clientSecret. Your password from the output of az ad sp in the previous step.

10. Instruct Trident to create the Azure NetApp Files backend in the trident namespace using anf-
backend. json as the configuration file:

Stridentctl create backend -f anf-backend.json -n trident

| azurenetappfiles 86181 | azure-netapp-files | 2ca85462-59ac-4946-be05-c03f5575a2ad | online |
=l T ——. e —— il A .-e?ehy . e +

11. Create a storage class. Kubernetes users provision volumes by using PVCs that specify a storage class by
name. Instruct K8s to create a storage class azurenetappfiles that references the Trident backend
created in the previous step.

12. Create a YAML (anf-storage-class.yaml) file for storage class and copy.

112

apiVersion: storage.k8s.io/vl

kind: StorageClass

metadata:

name: azurenetappfiles

provisioner: netapp.io/trident
parameters:

backendType: "azure-netapp-files"
Skubectl create -f anf-storage-class.yaml

13. Verify that the storage class was created.

kubectl get sc azurenetappfiles

PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION AGE

azurenetappfiles csi.trident.netapp.io Delete Immediate false 98s

Next: Set up Dask with RAPIDS deployment on AKS using Helm.

Set up Dask with RAPIDS deployment on AKS using Helm

Previous: Install Trident.
To set up Dask with RAPIDS deployment on AKS using Helm, complete the following steps:

1. Create a namespace for installing Dask with RAPIDS.

kubectl create namespace rapids-dask

2. Create a PVC to store the click-through rate dataset:

a. Save the following YAML content to a file to create a PVC.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: pvc-criteo-data
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 1000Gi
storageClassName: azurenetappfiles

113

b. Apply the YAML file to your Kubernetes cluster.

kubectl -n rapids-dask apply -f <your yaml file>
3. Clone the rapidsai git repository (https://github.com/rapidsai/helm-chart).
git clone https://github.com/rapidsai/helm-chart helm-chart

4. Modify values.yaml and include the PVC created earlier for workers and Jupyter workspace.

a. Go to the rapidsai directory of the repository.
cd helm-chart/rapidsai
b. Update the values.yaml file and mount the volume using PVC.

dask:

worker:

name: worker

mounts:
volumes:
- name: data
persistentVolumeClaim:
claimName: pvc-criteo-data
volumeMounts:
- name: data
mountPath: /data

Jjupyter:
name: jupyter

mounts:
volumes:
- name: data
persistentVolumeClaim:
claimName: pvc-criteo-data
volumeMounts:
- name: data
mountPath: /data

114

https://github.com/rapidsai/helm-chart

5. Go to the repository’s home directory and deploy Dask with three worker nodes on AKS using Helm.

el o
helm dep update rapidsai

helm install rapids-dask --namespace rapids-dask rapidsai

Next: Azure NetApp Files performance tiers.

Azure NetApp Files performance tiers

Previous: Set up Dask with RAPIDS deployment on AKS using Helm.

You can change the service level of an existing volume by moving the volume to another capacity pool that

uses the service level you want for the volume. This solution enables customers to start with a small dataset
and small number of GPUs in Standard Tier and scale out or scale up to Premium Tier as the amount of data
and GPUs increase. The Premium Tier offers four times the throughput per terabyte as the Standard Tier, and

scale up is performed without having to move any data to change the service level of a volume.

Dynamically change the service level of a volume

To dynamically change the service level of a volume, complete the following steps:

1. On the Volumes page, right-click the volume whose service level you want to change. Select Change Pool.

MFSw3 10.28.254 4:/norootfor
MNFSv4.1 MNAS-T35a.docs.lab:/fo
MFSv4.1 MAS-T35a.docs. lab/krt
MFSv3 10.28.254.4:;/movemel
| MNFSw3 10.28.254.4:/placeholds

2. In the Change Pool window, select the capacity pool to which you want to move the volume.

Standard

Premium

Premium:----

Premium

Premium

pooll
Resize
Edit
Change pool
Delete

115

Change pool X

Pools

pooll -~

poall

service level: Standard

pooll

service level: Standard

pool2

service level: Premium

pool3

service level: Standard

3. Click OK.

Automate performance tier change

The following options are available to automate performance tier changes:

» Dynamic Service Level change is still in Public Preview at this time and not enabled by default. To enable
this feature on the Azure Subscription, see this documentation about how to Dynamically change the
service level of a volume.

* Azure CLI volume pool change commands are provided in volume pool change documentation and in the
following example:

az netappfiles volume pool-change -g mygroup --account-name myaccname
--pool-name mypoolname --name myvolname --new-pool-resource-id

mynewresourceid

» PowerShell: The Set-AzNetAppFilesVolumePool cmdlet changes the pool of an Azure NetApp Files volume
and is shown in the following example:

116

https://docs.microsoft.com/azure/azure-netapp-files/dynamic-change-volume-service-level
https://docs.microsoft.com/azure/azure-netapp-files/dynamic-change-volume-service-level
https://docs.microsoft.com/en-us/cli/azure/netappfiles/volume?view=azure-cli-latest&viewFallbackFrom=azure-cli-latest%20-%20az_netappfiles_volume_pool_change
https://docs.microsoft.com/powershell/module/az.netappfiles/set-aznetappfilesvolumepool?view=azps-5.8.0

Set-AzNetAppFilesVolumePool

—ResourceGroupName "MyRG"

—-AccountName "MyAnfAccount"

-PoolName "MyAnfPool"

-Name "MyAnfVolume"

-NewPoolResourcelId 7d6e4069-6c78-6c6l-7bf6-c60968e45fbf

Next: Libraries for data processing and model training.

Click through rate prediction data processing and model training

Libraries for data processing and model training

Previous: Azure NetApp Files performance tiers.

The following table lists the libraries and frameworks that were used to build this task. All these components
have been fully integrated with Azure’s role-based access and security controls.

Libraries/framework Description

Dask cuML For ML to work on GPU, the cuML library provides
access to the RAPIDS cuML package with Dask.
RAPIDS cuML implements popular ML algorithms,
including clustering, dimensionality reduction, and
regression approaches, with high-performance GPU-
based implementations, offering speed-ups of up to
100x over CPU-based approaches.

Dask cuDF cuDF includes various other functions supporting
GPU-accelerated extract, transform, load (ETL), such
as data subsetting, transformations, one-hot
encoding, and more. The RAPIDS team maintains a
dask-cudf library that includes helper methods to use
Dask and cuDF.

Scikit Learn Scikit-learn provides dozens of built-in machine
learning algorithms and models, called estimators.
Each estimator can be fitted to some data using its fit
method.

We used two notebooks to construct the ML pipelines for comparison; one is the conventional Pandas scikit-
learn approach, and the other is distributed training with RAPIDS and Dask. Each notebook can be tested
individually to see the performance in terms of time and scale. We cover each notebook individually to
demonstrate the benefits of distributed training using RAPIDS and Dask.

Next: Load Criteo Click Logs day 15 in Pandas and train a scikit-learn random forest model.

Load Criteo Click Logs day 15 in Pandas and train a scikit-learn random forest model

Previous: Libraries for data processing and model training.

This section describes how we used Pandas and Dask DataFrames to load Click Logs data from the Criteo

117

https://github.com/rapidsai/cuml/tree/main/python/cuml/dask
https://github.com/rapidsai/cudf/tree/main/python/dask_cudf
https://scikit-learn.org/stable/glossary.html#term-estimators
https://scikit-learn.org/stable/glossary.html#term-fit

Terabyte dataset. The use case is relevant in digital advertising for ad exchanges to build users’ profiles by
predicting whether ads will be clicked or if the exchange isn’t using an accurate model in an automated
pipeline.

We loaded day 15 data from the Click Logs dataset, totaling 45GB. Running the following cell in Jupyter
notebook CTR-PandasRF-collated.ipynb creates a Pandas DataFrame that contains the first 50 million
rows and generates a scikit-learn random forest model.

%%time

import pandas as pd

import numpy as np

header = ['col'+str (i) for i in range (1,41)] #note that according to
criteo, the first column in the dataset is Click Through (CT). Consist of
40 columns

first row taken = 50 000 000 # use this in pd.read csv () if your compute
resource is limited.

total number of rows in dayl5 is 20B

take 50M rows

Read data & display the following metrics:

1. Total number of rows per day

2. df loading time in the cluster

3. Train a random forest model

df = pd.read csv(file, nrows=first row taken, delimiter='\t',
names=header)

take numerical columns

df sliced = df.iloc[:, 0:14]

split data into training and Y

Y = df sliced.pop('coll') # first column is binary (click or not)
change df sliced data types & fillna

df sliced = df sliced.astype(np.float32).fillna(0)

from sklearn.ensemble import RandomForestClassifier

Random Forest building parameters

n streams = 8 # optimization

max depth = 10

n bins = 16

n trees = 10

rf model = RandomForestClassifier (max depth=max depth,

n _estimators=n trees)

rf model.fit (df sliced, Y)

To perform prediction by using a trained random forest model, run the following paragraph in this notebook. We
took the last one million rows from day 15 as the test set to avoid any duplication. The cell also calculates
accuracy of prediction, defined as the percentage of occurrences the model accurately predicts whether a user
clicks an ad or not. To review any unfamiliar components in this notebook, see the official scikit-learn
documentation.

118

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

testing data, last 1M rows in dayl5b
test file = '/data/day 15 test'
with open(test file) as g:

print (g.readline ())

dataFrame processing for test data

test df = pd.read csv(test file, delimiter='\t', names=header)
test df sliced = test df.iloc[:, 0:14]

test Y = test df sliced.pop('coll')

test df sliced = test df sliced.astype(np.float32).fillna(0)

prediction & calculating error

pred df = rf model.predict (test df sliced)

from sklearn import metrics

Model Accuracy

print ("Accuracy:",metrics.accuracy score(test Y, pred df))

Next: Load Day 15 in Dask and train a Dask cuML random forest model.

Load Day 15 in Dask and train a Dask cuML random forest model

Previous: Load Criteo Click Logs day 15 in Pandas and train a scikit-learn random forest model.

In a manner similar to the previous section, load Criteo Click Logs day 15 in Pandas and train a scikit-learn
random forest model. In this example, we performed DataFrame loading with Dask cuDF and trained a random
forest model in Dask cuML. We compared the differences in training time and scale in the section “Training
time comparison.”

criteo_dask_RF.ipynb

This notebook imports numpy, cuml, and the necessary dask libraries, as shown in the following example:

import cuml

from dask.distributed import Client, progress, wait

import dask cudf

import numpy as np

import cudf

from cuml.dask.ensemble import RandomForestClassifier as cumlDaskRF
from cuml.dask.common import utils as dask utils

Initiate Dask Client().

client = Client ()

If your cluster is configured correctly, you can see the status of worker nodes.

119

client

workers = client.has what () .keys ()
n workers = len(workers)
n streams = 8 # Performance optimization

In our AKS cluster, the following status is displayed:

Client Cluster

Scheduler: tcp://rapidsai-scheduler:8786 Workers: 3
Dashboard: /proxy/rapidsai-scheduler:8787/status Cores: 3
Memory: 354.55 GB

Note that Dask employs the lazy execution paradigm: rather than executing the processing code instantly,
Dask builds a Directed Acyclic Graph (DAG) of execution instead. DAG contains a set of tasks and their
interactions that each worker needs to run. This layout means the tasks do not run until the user tells Dask to
execute them in one way or another. With Dask you have three main options:

» Call compute() on a DataFrame. This call processes all the partitions and then returns results to the
scheduler for final aggregation and conversion to cuDF DataFrame. This option should be used sparingly
and only on heavily reduced results unless your scheduler node runs out of memory.

 Call persist() on a DataFrame. This call executes the graph, but, instead of returning the results to the
scheduler node, it maintains them across the cluster in memory so the user can reuse these intermediate
results down the pipeline without the need for rerunning the same processing.

 Call head() on a DataFrame. Just like with cuDF, this call returns 10 records back to the scheduler node.
This option can be used to quickly check if your DataFrame contains the desired output format, or if the
records themselves make sense, depending on your processing and calculation.

Therefore, unless the user calls either of these actions, the workers sit idle waiting for the scheduler to initiate
the processing. This lazy execution paradigm is common in modern parallel and distributed computing
frameworks such as Apache Spark.

The following paragraph trains a random forest model by using Dask cuML for distributed GPU-accelerated
computing and calculates model prediction accuracy.

120

Adsft
Random Forest building parameters

n streams = 8 # optimization
max depth = 10
n bins = 16

n trees = 10

cuml model = cumlDaskRF (max depth=max depth, n estimators=n trees,
n bins=n bins, n streams=n streams, verbose=True, client=client)
cuml model.fit (gdf sliced small, Y)

Model prediction

pred df = cuml model.predict (gdf test)

calculate accuracy

cu_score = cuml.metrics.accuracy score(test y, pred df)

Next: Monitor Dask using native Task Streams dashboard.

Monitor Dask using native Task Streams dashboard

Previous: Load Day 15 in Dask and train a Dask cuML random forest model.
The Dask distributed scheduler provides live feedback in two forms:

» An interactive dashboard containing many plots and tables with live information

» A progress bar suitable for interactive use in consoles or notebooks

In our case, the following figure shows how you can monitor the task progress, including Bytes Stored, the
Task Stream with a detailed breakdown of the number of streams, and Progress by task names with
associated functions executed. In our case, because we have three worker nodes, there are three main chunks
of stream and the color codes denote different tasks within each stream.

— [9%

s
a — total: 205, | y: 3, 0, walting: 0, erred: 202

Bytes stored: 8.66 GB Task Stream

oo 160 G 20 GE oGy MOay Mocs Poc

Tasks Processing

t +
o oz oA s o8

You have the option to analyze individual tasks and examine the execution time in milliseconds or identify any
obstacles or hindrances. For example, the following figure shows the Task Streams for the random forest
model fitting stage. There are considerably more functions being executed, including unique chunk for
DataFrame processing, _construct_rf for fitting the random forest, and so on. Most of the time was spent on

12

=y

https://docs.dask.org/en/latest/scheduling.html

DataFrame operations due to the large size (45GB) of one day of data from the Criteo Click Logs.

iz, Status Workers Tasks System Profile Graph Info

Bytes stored: 8.97 GB Task Stream

. 1 t
%o "Soan Roay YFoa

Tasks Processing

287 / 450
288 /450
147 /177
147 1177

29 /864
e
len-agg ol
; tln ": len-chunk-un... o1

Next: Training time comparison.

Training time comparison

Previous: Monitor Dask using native Task Streams dashboard.

This section compares the model training time using conventional Pandas compared to Dask. For Pandas, we
loaded a smaller amount of data due to the nature of slower processing time to avoid memory overflow.
Therefore, we interpolated the results to offer a fair comparison.

The following table shows the raw training time comparison when there is significantly less data used for the
Pandas random forest model (50 million rows out of 20 billion per day15 of the dataset). This sample is only
using less than 0.25% of all available data. Whereas for Dask-cuML we trained the random forest model on all
20 billion available rows. The two approaches yielded comparable training time.

Approach Training time

Scikit-learn: Using only 50M rows in day15 as the 47 minutes and 21 seconds
training data

RAPIDS-Dask: Using all 20B rows in day15 as the 1 hour, 12 minutes, and 11 seconds
training data

If we interpolate the training time results linearly, as shown in the following table, there is a significant
advantage to using distributed training with Dask. It would take the conventional Pandas scikit-learn approach
13 days to process and train 45GB of data for a single day of click logs, whereas the RAPIDS-Dask approach
processes the same amount of data 262.39 times faster.

Approach Training time

Scikit-learn: Using all 20B rows in day15 as the 13 days, 3 hours, 40 minutes, and 11 seconds
training data

RAPIDS-Dask: Using all 20B rows in day15 as the 1 hour, 12 minutes, and 11 seconds
training data

122

In the previous table, you can see that by using RAPIDS with Dask to distribute the data processing and model
training across multiple GPU instances, the run time is significantly shorter compared to conventional Pandas
DataFrame processing with scikit-learn model training. This framework enables scaling up and out in the cloud
as well as on-premises in a multinode, multi-GPU cluster.

Next: Monitor Dask and RAPIDS with Prometheus and Grafana.

Monitor Dask and RAPIDS with Prometheus and Grafana

Previous: Training time comparison.

After everything is deployed, run inferences on new data. The models predict whether a user clicks an ad
based on browsing activities. The results of the prediction are stored in a Dask cuDF. You can monitor the
results with Prometheus and visualize in Grafana dashboards.

For more information, see this RAPIDS Al Medium post.

Next: Dataset and Model Versioning using NetApp DataOps Toolkit.

Dataset and model versioning using NetApp DataOps Toolkit

Previous: Monitor Dask and RAPIDS with Prometheus and Grafana.

The NetApp DataOps Toolkit for Kubernetes abstracts storage resources and Kubernetes workloads up to the
data-science workspace level. These capabilities are packaged in a simple, easy-to-use interface that is
designed for data scientists and data engineers. Using the familiar form of a Python program, the Toolkit
enables data scientists and engineers to provision and destroy JupyterLab workspaces in just seconds. These
workspaces can contain terabytes, or even petabytes, of storage capacity, enabling data scientists to store all
their training datasets directly in their project workspaces. Gone are the days of separately managing
workspaces and data volumes.

For more information, visit the Toolkit's GitHub repository.

Next: Conclusion.

Jupyter notebooks for reference

Previous: Dataset and Model Versioning using NetApp DataOps Toolkit.
There are two Jupyter notebooks associated with this technical report:

» CTR-PandasRF-collated.ipynb. This notebook loads Day 15 from the Criteo Terabyte Click Logs dataset,
processes and formats data into a Pandas DataFrame, trains a Scikit-learn random forest model, performs
prediction, and calculates accuracy.

« criteo_dask_RF.ipynb. This notebook loads Day 15 from the Criteo Terabyte Click Logs dataset,
processes and formats data into a Dask cuDF, trains a Dask cuML random forest model, performs
prediction, and calculates accuracy. By leveraging multiple worker nodes with GPUs, this distributed data
and model processing and training approach is highly efficient. The more data you process, the greater the
time savings versus a conventional ML approach. You can deploy this notebook in the cloud, on-premises,
or in a hybrid environment where your Kubernetes cluster contains compute and storage in different
locations, as long as your networking setup enables the free movement of data and model distribution.

Next: Conclusion.

123

https://medium.com/rapids-ai/monitoring-dask-rapids-with-prometheus-grafana-96eaf6b8f3a0
https://github.com/NetApp/netapp-data-science-toolkit
https://nbviewer.jupyter.org/github/NetAppDocs/netapp-solutions/blob/main/media/CTR-PandasRF-collated.ipynb
https://nbviewer.jupyter.org/github/NetAppDocs/netapp-solutions/blob/main/media/criteo_dask_RF.ipynb

Conclusion

Previous: Dataset and Model Versioning using NetApp DataOps Toolkit.

Azure NetApp Files, RAPIDS, and Dask speed up and simplify the deployment of large-scale ML processing
and training by integrating with orchestration tools such as Docker and Kubernetes. By unifying the end-to-end
data pipeline, this solution reduces the latency and complexity inherent in many advanced computing
workloads, effectively bridging the gap between development and operations. Data scientists can run queries
on large datasets and securely share data and algorithmic models with other users during the training phase.
When building your own Al/ML pipelines, configuring the integration, management, security, and accessibility of
the components in an architecture is a challenging task. Giving developers access and control of their
environment presents another set of challenges.

By building an end-to-end distributed training model and data pipeline in the cloud, we demonstrated two
orders of magnitude improvement in total workflow completion time versus a conventional, open-source
approach that did not leverage GPU-accelerated data processing and compute frameworks.

The combination of NetApp, Microsoft, opens-source orchestration frameworks, and NVIDIA brings the latest
technologies together as managed services with great flexibility to accelerate technology adoption and improve
the time to market for new Al/ML applications. These advanced services are delivered in a cloud-native
environment that can be easily ported for on-premises as well as hybrid deployment architectures.

Next: Where to find additional information.

Where to find additional information

Previous: Conclusion.
To learn more about the information that is described in this document, see the following resources:

* Azure NetApp Files:

> Solutions architecture page for Azure NetApp Files
https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-solution-architectures

* Trident persistent storage for containers:

o Azure NetApp Files and Trident
https://netapptrident.readthedocs.io/en/stablev20.07/kubernetes/operations/tasks/backends/anf.html

» Dask and RAPIDS:
o Dask

https://docs.dask.org/en/latest/
o Install Dask
https://docs.dask.org/en/latest/install.html
> Dask API

https://docs.dask.org/en/latest/api.html

124

https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-solution-architectures
https://netapptrident.readthedocs.io/en/stablev20.07/kubernetes/operations/tasks/backends/anf.html
https://docs.dask.org/en/latest/
https://docs.dask.org/en/latest/install.html
https://docs.dask.org/en/latest/api.html

o Dask Machine Learning
https://fexamples.dask.org/machine-learning.html

o Dask Distributed Diagnostics
https://docs.dask.org/en/latest/diagnostics-distributed.html

* ML framework and tools:

o TensorFlow: An Open-Source Machine Learning Framework for Everyone
https://www.tensorflow.org/

o Docker
https://docs.docker.com

Kubernetes

o

https://kubernetes.io/docs/home/

o

Kubeflow

http://www.kubeflow.org/

o

Jupyter Notebook Server

http://www.jupyter.org/

Next: Version history.

Version history

Previous: Where to find additional information.

Version Date Document version history

Version 1.0 August 2021 Initial release.

TR-4896: Distributed training in Azure: Lane detection - Solution design

Muneer Ahmad and Verron Martina, NetApp
Ronen Dar, RUN:AI

Since May 2019, Microsoft delivers an Azure native, first-party portal service for enterprise NFS and SMB file
services based on NetApp ONTAP technology. This development is driven by a strategic partnership between
Microsoft and NetApp and further extends the reach of world-class ONTAP data services to Azure.

NetApp, a leading cloud data services provider, has teamed up with RUN: Al, a company virtualizing Al
infrastructure, to allow faster Al experimentation with full GPU utilization. The partnership enables teams to
speed up Al by running many experiments in parallel, with fast access to data, and leveraging limitless
compute resources. RUN: Al enables full GPU utilization by automating resource allocation, and the proven
architecture of Azure NetApp Files enables every experiment to run at maximum speed by eliminating data
pipeline obstructions.

125

https://examples.dask.org/machine-learning.html
https://docs.dask.org/en/latest/diagnostics-distributed.html
https://www.tensorflow.org/
https://docs.docker.com/
https://kubernetes.io/docs/home/
http://www.kubeflow.org/
http://www.jupyter.org/

NetApp and RUN: Al have joined forces to offer customers a future-proof platform for their Al journey in Azure.
From analytics and high-performance computing (HPC) to autonomous decisions (where customers can
optimize their IT investments by only paying for what they need, when they need it), the alliance between
NetApp and RUN: Al offers a single unified experience in the Azure Cloud.

Solution overview

In this architecture, the focus is on the most computationally intensive part of the Al or machine learning (ML)
distributed training process of lane detection. Lane detection is one of the most important tasks in autonomous
driving, which helps to guide vehicles by localization of the lane markings. Static components like lane
markings guide the vehicle to drive on the highway interactively and safely.

Convolutional Neural Network (CNN)-based approaches have pushed scene understanding and segmentation
to a new level. Although it doesn’t perform well for objects with long structures and regions that could be
occluded (for example, poles, shade on the lane, and so on). Spatial Convolutional Neural Network (SCNN)
generalizes the CNN to a rich spatial level. It allows information propagation between neurons in the same
layer, which makes it best suited for structured objects such as lanes, poles, or truck with occlusions. This
compatibility is because the spatial information can be reinforced, and it preserves smoothness and continuity.

Thousands of scene images need to be injected in the system to allow the model learn and distinguish the
various components in the dataset. These images include weather, daytime or nighttime, multilane highway
roads, and other traffic conditions.

For training, there is a need for good quality and quantity of data. Single GPU or multiple GPUs can take days
to weeks to complete the training. Data-distributed training can speed up the process by using multiple and
multinode GPUs. Horovod is one such framework that grants distributed training but reading data across
clusters of GPUs could act as a hindrance. Azure NetApp Files provides ultrafast, high throughput and
sustained low latency to provide scale-out/scale-up capabilities so that GPUs are leveraged to the best of their
computational capacity. Our experiments verified that all the GPUs across the cluster are used more than 96%
on average for training the lane detection using SCNN.

Target audience

Data science incorporates multiple disciplines in IT and business, therefore multiple personas are part of our
targeted audience:

» Data scientists need the flexibility to use the tools and libraries of their choice.

« Data engineers need to know how the data flows and where it resides.

« Autonomous driving use-case experts.

 Cloud administrators and architects to set up and manage cloud (Azure) resources.

» A DevOps engineer needs the tools to integrate new Al/ML applications into their continuous integration
and continuous deployment (CI/CD) pipelines.

» Business users want to have access to Al/ML applications.

In this document, we describe how Azure NetApp Files, RUN: Al, and Microsoft Azure help each of these roles
bring value to business.

Solution technology

This section covers the technology requirements for the lane detection use case by implementing a distributed
training solution at scale that fully runs in the Azure cloud. The figure below provides an overview of the
solution architecture.

126

The elements used in this solution are:

* Azure Kubernetes Service (AKS)

* Azure Compute SKUs with NVIDIA GPUs
* Azure NetApp Files

* RUN: Al

* NetApp Trident

Links to all the elements mentioned here are listed in the Additional information section.

. + <ANVIDIA _.... \

=[] (=[] = DD

- : =T L Kubernetes Services

ol Toul=l; O e —

A [o=[e] =[] B ,
‘Azure NetApp

Persistent Persistent I
3 GPU Nodes - 1 5 .
= Volume Claim Volume ___ Files
@ run: Pods @ i Multiple concurrent

al nod/pod access

e K Storage Class(es) /

Data
Scientist(s)

»

Cloud resources and services requirements

The following table lists the hardware components that are required to implement the solution. The cloud
components that are used in any implementation of the solution might vary based on customer requirements.

Cloud Quantity

AKS Minimum of three system nodes and three GPU
worker nodes

Virtual machine (VM) SKU system nodes Three Standard_DS2_v2

VM SKU GPU worker nodes Three Standard_NC6s_v3

Azure NetApp Files 4TB standard tier

Software requirements

The following table lists the software components that are required to implement the solution. The software
components that are used in any implementation of the solution might vary based on customer requirements.

Software Version or other information
AKS - Kubernetes version 1.18.14
RUN:AI CLI v2.2.25

RUN:AI Orchestration Kubernetes Operator version 1.0.109

127

Software Version or other information

Horovod 0.21.2
NetApp Trident 20.01.1
Helm 3.0.0

Lane detection — Distributed training with RUN:AI

This section provides details on setting up the platform for performing lane detection distributed training at
scale using the RUN: Al orchestrator. We discuss installation of all the solution elements and running the
distributed training job on the said platform. ML versioning is completed by using NetApp SnapshotTM linked
with RUN: Al experiments for achieving data and model reproducibility. ML versioning plays a crucial role in
tracking models, sharing work between team members, reproducibility of results, rolling new model versions to
production, and data provenance. NetApp ML version control (Snapshot) can capture point-in-time versions of
the data, trained models, and logs associated with each experiment. It has rich API support making it easy to
integrate with the RUN: Al platform; you just have to trigger an event based on the training state. You also have
to capture the state of the whole experiment without changing anything in the code or the containers running
on top of Kubernetes (K8s).

Finally, this technical report wraps up with performance evaluation on multiple GPU-enabled nodes across
AKS.

Distributed training for lane detection use case using the TuSimple dataset

In this technical report, distributed training is performed on the TuSimple dataset for lane detection. Horovod is
used in the training code for conducting data distributed training on multiple GPU nodes simultaneously in the
Kubernetes cluster through AKS. Code is packaged as container images for TuSimple data download and
processing. Processed data is stored on persistent volumes allocated by NetApp Trident plug- in. For the
training, one more container image is created, and it uses the data stored on persistent volumes created during
downloading the data.

To submit the data and training job, use RUN: Al for orchestrating the resource allocation and management.
RUN: Al allows you to perform Message Passing Interface (MPI) operations which are needed for Horovod.
This layout allows multiple GPU nodes to communicate with each other for updating the training weights after
every training mini batch. It also enables monitoring of training through the Ul and CLI, making it easy to
monitor the progress of experiments.

NetApp Snapshot is integrated within the training code and captures the state of data and the trained model for
every experiment. This capability enables you to track the version of data and code used, and the associated
trained model generated.

AKS setup and installation

For setup and installation of the AKS cluster go to Create an AKS Cluster. Then, follow these series of steps:

1. When selecting the type of nodes (whether it be system (CPU) or worker (GPU) nodes), select the
following:

a. Add primary system node named agentpool at the Standard DS2 v2 size. Use the default three
nodes.

b. Add worker node gpupool with the Standard NCés_v3 pool size. Use three nodes minimum for
GPU nodes.

128

https://docs.microsoft.com/azure/aks/kubernetes-walkthrough-portal

Add node pool

Name Node count Node size

Standard_D5S2_v2

Standard_NCés_v

@ Deployment takes 5—10 minutes.

2. After deployment is complete, click Connect to Cluster. To connect to the newly created AKS cluster, install
the Kubernetes command-line tool from your local environment (laptop/PC). Visit Install Tools to install it as
per your OS.

3. Install Azure CLI on your local environment.
4. To access the AKS cluster from the terminal, first enter az login and put in the credentials.

5. Run the following two commands:

az account set --subscription XXXXXXX—XXXX—XXXX—XXKXX—XXXXXXXXXKXXXXX

aks get-credentials --resource-group resourcegroup --name aksclustername
6. Enter this command in the Azure CLI:

kubectl get nodes

@ If all six nodes are up and running as seen here, your AKS cluster is ready and connected to
your local environment.

verronmartina@verron-mac-0 ~ % kubectl get nodes

NAME STATUS ROLES VERSION
aks—-agentpool-34613062-vmssP00000 Ready agent vi.18.14
aks—-agentpool-34613062-vmss000001 Ready agent vi.18.14
aks-agentpool-34613062-vmss000002 Ready agent vl.18.14

aks—-gpupool-34613062-vmssB00000 Ready agent v1i.18.14
aks-gpupool-34613062-vmssB00001 Ready agent vi.18.14
aks—-gpupool-34613062-vmss@00002 Ready agent v1.18.14
verronmartina@verron-mac-@ ~ % j§

Create a delegated subnet for Azure NetApp Files

To create a delegated subnet for Azure NetApp Files, follow this series of steps:

1. Navigate to Virtual networks within the Azure portal. Find your newly created virtual network. It should have
a prefix such as aks-vnet, as seen here. Click the name of the virtual network.

129

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.microsoft.com/cli/azure/install-azure-cli

= Microsoft Azure £ Search resources, services, and docs (G+/) P é’ﬁ

Dashboard

Virtual networks = X

seanlucelive (Default Directony)

-+ Add 55!' Manage view O Refresh & Exportto CSV 5 Open query €2 Assign tag 7 Feedback
Filter by name Subscription == AzureSub0l Resource group == all Location ==-all X Yo Add filter
Showing 1 te 5 of 5 records Mo grouping || List view b
| Mame Ty Resource group TL Location T Subscription T
_| & aks-vner-22885919 MC_shucerg TridemDemo_eastus2 East US 2 ArureSub0l LLL

2. Click Subnets and select +Subnet from the top toolbar.

B Search redarnoes. setveced. and docs (G= /1

Dashboard ¥ Wirtual networks > als-wnet-22865919

<. aks-vnet-22885919 | Subnets *
Virtaal nirtwork
T Sparch (O) & + Gatewsysubnet () Refresh
* Ohvervew - =
B acomary g =
B Access conral AM) Name T} IPvd T§ IPvé {many availab... T, Delegated to T4 Security groop T4
’ Tags ey-sulbinet TR240.0.00 16 {63530 av. . aki-agenipool-2283531, ===
& Duanose and 1obve probilems

Seltings
Address space

& Connected devices

3. Provide the subnet with a name such as ANF . sn and under the Subnet Delegation heading, select
Microsoft.NetApp/volumes. Do not change anything else. Click OK.

130

Add subnet X

MName *

AMNFsn o

Subnet address range ™ O
10.0.0.0/24
10.0.0.0 - 10.0.0.255 (251 + 5 Azure reserved addresses)

[] Add IPv6 address space (@

NAT gateway (O

MNone W

MNetwork security group

Nane A¥4
Route table
Mone LV

SERVICE ENDPOINTS

Create service endpoint policies to allow traffic to specific azure resources from your virtual netwaork
over service endpoints. Learn more

services (0

0 selected b

SUBNET DELEGATION

Delegate subinet to a service &)

| Micrasoft. Metapp/volumes “

Azure NetApp Files volumes are allocated to the application cluster and are consumed as persistent volume
claims (PVCs) in Kubernetes. In turn, this allocation provides us the flexibility to map volumes to different
services, be it Jupyter notebooks, serverless functions, and so on

Users of services can consume storage from the platform in many ways. The main benefits of Azure NetApp
Files are:

* Provides users with the ability to use snapshots.

» Enables users to store large quantities of data on Azure NetApp Files volumes.

* Procure the performance benefits of Azure NetApp Files volumes when running their models on large sets
of files.

131

Azure NetApp Files setup

To complete the setup of Azure NetApp Files, you must first configure it as described in Quickstart: Set up
Azure NetApp Files and create an NFS volume.

However, you may omit the steps to create an NFS volume for Azure NetApp Files as you will create volumes
through Trident. Before continuing, be sure that you have:

1. Registered for Azure NetApp Files and NetApp Resource Provider (through the Azure Cloud Shell).
2. Created an account in Azure NetApp Files.

3. Set up a capacity pool (minimum 4TiB Standard or Premium depending on your needs).

Peering of AKS virtual network and Azure NetApp Files virtual network
Next, peer the AKS virtual network (VNet) with the Azure NetApp Files VNet by following these steps:
1. In the search box at the top of the Azure portal, type virtual networks.

2. Click VNet aks- vnet-name, then enter Peerings in the search field.

3. Click +Add and enter the information provided in the table below:

Field Value or description
Peering link name aks-vnet-name_to_anf
SubscriptionID Subscription of the Azure NetApp Files VNet to
which you're peering
VNet peering partner Azure NetApp Files VNet
@ Leave all the nonasterisk sections on default

4. Click ADD or OK to add the peering to the virtual network.

For more information, visit Create, change, or delete a virtual network peering.

Trident

Trident is an open-source project that NetApp maintains for application container persistent storage. Trident
has been implemented as an external provisioner controller that runs as a pod itself, monitoring volumes and
completely automating the provisioning process.

NetApp Trident enables smooth integration with K8s by creating and attaching persistent volumes for storing
training datasets and trained models. This capability makes it easier for data scientists and data engineers to
use K8s without the hassle of manually storing and managing datasets. Trident also eliminates the need for
data scientists to learn managing new data platforms as it integrates the data management-related tasks
through the logical API integration.

Install Trident

To install Trident software, complete the following steps:

1. First install helm.

2. Download and extract the Trident 21.01.1 installer.

132

https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes
https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes
https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-register
https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-create-netapp-account
https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-set-up-capacity-pool
https://docs.microsoft.com/azure/virtual-network/tutorial-connect-virtual-networks-portal
https://helm.sh/docs/intro/install/

wget

https://github.com/NetApp/trident/releases/download/v21.01.1/trident-
installer-21.01.1.tar.gz

tar -xf trident-installer-21.01.1.tar.gz
3. Change the directory to trident-installer.

cd trident-installer

4. Copy tridentctl to a directory in your system $PATH.
cp ./tridentctl /usr/local/bin

5. Install Trident on K8s cluster with Helm:

a. Change directory to helm directory.

cd helm
b. Install Trident.

helm install trident trident-operator-21.01.1.tgz --namespace trident
--Ccreate-namespace

c. Check the status of Trident pods the usual K8s way:

kubectl -n trident get pods

d. If all the pods are up and running, Trident is installed and you are good to move forward.

Set up Azure NetApp Files back-end and storage class
To set up Azure NetApp Files back-end and storage class, complete the following steps:

1. Switch back to the home directory.

cd ~

2. Clone the project repository lane-detection-SCNN-horovod.

3. Go to the trident-config directory.

133

https://github.com/dedmari/lane-detection-SCNN-horovod.git

cd ./lane-detection-SCNN-horovod/trident-config

4. Create an Azure Service Principle (the service principle is how Trident communicates with Azure to access

5.

your Azure NetApp Files resources).

az ad sp create-for-rbac --name

The output should look like the following example:

"appId": "XXXXX-XXXXTXXXX-XXXX-XXXXXXXXXXXX",

"displayName": "netapptrident",
"name": "http://netapptrident",

"password": "XXXXXXXXXXXXXXX.XXXXXXXXXXXXxXX",

"tenant": "XXXXXXXX—XXXX-XXXX-XXXX—XXXXXXXXKXKXX"

Create the Trident backend json file.

6. Using your preferred text editor, complete the following fields from the table below inside the anf-

134

backend. json file.

Field
subscriptionID

tenantlD

clientID

clientSecret

The file should look like the following example:

Value
Your Azure Subscription ID

Your Azure Tenant ID (from the output of az ad sp in
the previous step)

Your applD (from the output of az ad sp in the
previous step)

Your password (from the output of az ad sp in the
previous step)

"version": 1,

"storageDriverName": "azure-netapp-files",
"subscriptionID": "fakec765-4774-fake-ae98-a72ladd4fake",
"tenantID": "fakef836-edcl-fake-bff9-b2d865eefake",
"clientID": "fakeOf63-bf8e-fake-8076-8de%9le57fake",
"clientSecret": "SECRET",

"location": "westeurope",

"servicelevel”": "Standard",

"virtualNetwork": "anf-vnet",

"subnet": "default",

"nfsMountOptions": "vers=3,proto=tcp",
"limitVolumeSize": "500Gi",

"defaults": {

"exportRule": "0.0.0.0/0",

"size": "200Gi"

7. Instruct Trident to create the Azure NetApp Files back- end in the trident namespace, using anf-
backend. json as the configuration file as follows:

tridentctl create backend -f anf-backend.json -n trident

8. Create the storage class:

a. K8 users provision volumes by using PVCs that specify a storage class by name. Instruct K8s to create
a storage class azurenetappfiles that will reference the Azure NetApp Files back end created in
the previous step using the following:

kubectl create -f anf-storage-class.yaml

b. Check that storage class is created by using the following command:

kubectl get sc azurenetappfiles

The output should look like the following example:

PROVISIONER RECLATMPOLICY VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION AGE

azurenetappfiles csi.trident.netapp.io Delete Immediate false 98s

Deploy and set up volume snapshot components on AKS

If your cluster does not come pre-installed with the correct volume snapshot components, you may manually
install these components by running the following steps:

135

@ AKS 1.18.14 does not have pre-installed Snapshot Controller.

1. Install Snapshot Beta CRDs by using the following commands:

kubectl create -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
3.0/client/config/crd/snapshot.storage.k8s.io volumesnapshotclasses.yaml
kubectl create -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
3.0/client/config/crd/snapshot.storage.k8s.io volumesnapshotcontents.yam
1

kubectl create -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-
3.0/client/config/crd/snapshot.storage.k8s.io volumesnapshots.yaml

2. Install Snapshot Controller by using the following documents from GitHub:

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-3.0/deploy/kubernetes/snapshot-
controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-
csi/external-snapshotter/release-3.0/deploy/kubernetes/snapshot-
controller/setup-snapshot-controller.yaml

3. Set up K8s volumesnapshotclass: Before creating a volume snapshot, a volume snapshot class must
be set up. Create a volume snapshot class for Azure NetApp Files, and use it to achieve ML versioning by
using NetApp Snapshot technology. Create volumesnapshotclass netapp-csi-snapclass and set
it to default "volumesnapshotclass "as such:

kubectl create -f netapp-volume-snapshot-class.yaml

The output should look like the following example:

volumesnapshotclass.snapshot.storage.k8s.io/netapp-csi-snapclass created

4. Check that the volume Snapshot copy class was created by using the following command:

kubectl get volumesnapshotclass

The output should look like the following example:

NAME DRIVER DELETIONPOLICY AGE

netapp-csi-snapclass csi.trident.netapp.io Delete 63s

136

https://netapp-trident.readthedocs.io/en/stable-v20.01/kubernetes/concepts/objects.html

RUN:AI installation

To install RUN:AI, complete the following steps:

1. Install RUN:AI cluster on AKS.

2. Go to app.runai.ai, click create New Project, and name it lane-detection. It will create a namespace on a
K8s cluster starting with runai- followed by the project name. In this case, the namespace created would
be runai-lane-detection.

New Project

Basics Basics
Node AFfinity Dpria o pian e
Froject Name
Time Limit lane-detection
Assigned GPUs
3| -

Over-quota for project

Allow over-guota

3. Install RUN:AI CLI.

4. On your terminal, set lane-detection as a default RUN: Al project by using the following command:
‘runai config project lane-detection’

The output should look like the following example:

Project lane-detection has been set as default project

137

https://docs.run.ai/Administrator/Cluster-Setup/cluster-install/
https://docs.run.ai/Administrator/Cluster-Setup/cluster-install/

5. Create ClusterRole and ClusterRoleBinding for the project namespace (for example, 1ane-detection)
so the default service account belonging to runai-lane-detection namespace has permission to
perform volumesnapshot operations during job execution:

a. List namespaces to check that runai-lane-detection exists by using this command:
kubectl get namespaces

The output should appear like the following example:

NAME STATUS
default Active
kube-node-lease Active
kube-public Active

kube-system Active
runai Active
runai-lane-detection Active
trident Active

6. Create ClusterRole netappsnapshot and ClusterRoleBinding netappsnapshot using the following
commands:

“kubectl create -f runai-project-snap-role.yaml’
“kubectl create -f runai-project-snap-role-binding.yaml’

Download and process the TuSimple dataset as RUN:AIl job

The process to download and process the TuSimple dataset as a RUN: Al job is optional. It involves the
following steps:

1. Build and push the docker image, or omit this step if you want to use an existing docker image (for
example, muneer7589/download-tusimple:1.0)

a. Switch to the home directory:

cd ~

b. Go to the data directory of the project 1ane-detection-SCNN-horovod:

cd ./lane-detection-SCNN-horovod/data

C. Modify build image. sh shell script and change docker repository to yours. For example, replace
muneer 7589 with your docker repository name. You could also change the docker image name and

138

TAG (such as download-tusimple and 1.0):

#!/bin/bash

#

A simple script to build the Docker image.
#

$ build image.sh

set -ex

IMAGE: muneer7589/download-tusimple
TAG=1.v

Build image

echo "Building image: "$IMAGE

docker build . -f Dockerfile \
--tag "${IMAGE}:${TAG}"

echo "Finished building image:

Push image

echo "Pushing image: "$IMAGE

docker push "S{IMAGE}:${TAG}"

echo "Finished pushing image: "$IMAGE

d. Run the script to build the docker image and push it to the docker repository using these commands:

chmod +x build image.sh
./build image.sh

2. Submit the RUN: Al job to download, extract, pre-process, and store the TuSimple lane detection dataset in
a pvc, which is dynamically created by NetApp Trident:

a. Use the following commands to submit the RUN: Al job:

runai submit
-—-name download-tusimple-data
--pvc azurenetappfiles:100Gi:/mnt

-—-image muneer7589/download-tusimple:1.0

139

b. Enter the information from the table below to submit the RUN:AI job:

Field Value or description
-name Name of the job
-pvc PVC of the format

[StorageClassName]:Size:ContainerMountPath

In the above job submission, you are creating an
PVC based on-demand using Trident with storage
class azurenetappfiles. Persistent volume capacity
here is 100Gi and it's mounted at path /mnt.

-image Docker image to use when creating the container
for this job

The output should look like the following example:

The job 'download-tusimple-data' has been submitted successfully

You can run ‘runai describe job download-tusimple-data -p lane-detection’ to check the job status

c. List the submitted RUN:AI jobs.

runai list jobs

Showing jebs for project lane-detection

STATUS AGE NODE TMAGE TYPE PROJECT USER GPUs Allocated (Requested)
[Running (Pending) SERVICE URL(S)

download-tusimple-data ContainerCreating 1m aks-sgentpool-34613062-vmss0@@00s muneer7589/download-tusimple:1.8 Train lane-detection verronmartina @ (@)

1 (@)

d. Check the submitted job logs.

runai logs download-tusimple-data -t 10

751150K . 20m37s
751200K - 20m37s
751250K seee .o . 20m36s
751300K ‘ 20m36s
751350K - 20m36s

751400K - 20m36s
751450K . 20m3és
751500K : 20m36s
751550K - 20m36s
751600K .cavassininn wovinnsses ‘e . . ' 20m36s

e. List the pvc created. Use this pve command for training in the next step.

kubectl get pvc | grep download-tusimple-data

The output should look like the following example:

140

pvc—download-tusimple-data—@ Bound pvc—bbB3b74d-2c17-4Bc4-a445-79f3deBd146d5 10861 azurenetappfiles 4m47s

f. Check the job in RUN: Al Ul (or app.run.ai).

rer: runalaks < Mune com NetApp

Job Name Status User Project Total Run Time Creation Time Type GPU Utilization Used CPU

HI

Perform distributed lane detection training using Horovod

Performing distributed lane detection training using Horovod is an optional process. However, here are the
steps involved:

1. Build and push the docker image, or skip this step if you want to use the existing docker image (for
example, muneer7589/dist-lane-detection:3.1) :

a. Switch to home directory.

cd ~

b. Go to the project directory 1ane-detection-SCNN-horovod.

cd ./lane-detection-SCNN-horovod

C. Modify the build image.sh shell script and change docker repository to yours (for example, replace
muneer7589 with your docker repository name). You could also change the docker image name and
TAG (dist-lane-detectionand 3.1, for example).

141

#!/bin/bash

=

A simple script to build the distributed Docker image.
#

$ build image.sh

set -ex

IMAGE: muneer7589/dist-lane-detection
TAG=3.U0

Build image
echo "Building image: "SIMAGE
docker build . -f Dockerfile \
--tag "${IMAGE)}:${TAG}"
echo "Finished building image: "$IMAGE

Push image

echo "Pushing image: "$IMAGE

docker push "${IMAGE}:S${TAG)}"

echo "Finished pushing image: "S$IMAGE

d. Run the script to build the docker image and push to the docker repository.

chmod +x build image.sh
./build image.sh

2. Submit the RUN: Al job for carrying out distributed training (MPI):

a. Using submit of RUN: Al for automatically creating PVC in the previous step (for downloading data)
only allows you to have RWO access, which does not allow multiple pods or nodes to access the same
PVC for distributed training. Update the access mode to ReadWriteMany and use the Kubernetes
patch to do so.

b. First, get the volume name of the PVC by running the following command:

kubectl get pvc | grep download-tusimple-data

root@ai-w-gpu-2:/mnt/ai_data/anf_runai/lane-detection-SCNN-horovod# kubectl aet pve | grep download-tusimple-data

-9 Bound ve-bb03brdd-2c17-40cd-0445-79f3deBdlbaS 10061 RWX azurenetappfiles 2ddh

c. Patch the volume and update access mode to ReadWriteMany (replace volume name with yours in the
following command):

kubectl patch pv pvc-bb03b74d-2cl17-40c4-a445-79f3de8d16d5 -p
'{"spec":{"accessModes": ["ReadWriteMany"]}}"'

142

d. Submit the RUN: Al MPI job for executing the distributed training™ job using information from the table

below:

runai submit-mpi

--name dist-lane-detection-training

--large-shm

—-—-processes=3

-—-gpu 1

--pvc pvc-download-tusimple-data-0:/mnt

--image muneer7589/dist-lane-detection:3.1

-e USE WORKERS="true"

- NUM WORKERS=4

-e BATCH SIZE=33

-e USE VAL="false"

-e VAL BATCH SIZE=99

-e ENABLE SNAPSHOT="true"

-e PVC NAME="pvc-download-tusimple-data-0"

Field
name

large shm

processes

gpu

pvc

image

Value or description
Name of the distributed training job

Mount a large /dev/shm device

It is a shared file system mounted on RAM and
provides large enough shared memory for multiple
CPU workers to process and load batches into
CPU RAM.

Number of distributed training processes

Number of GPUs/processes to allocate for the job

In this job, there are three GPU worker processes
(--processes=3), each allocated with a single GPU

(--gpu 1)

Use existing persistent volume (pvc-download-
tusimple-data-0) created by previous job
(download-tusimple-data) and it is mounted at
path /mnt

Docker image to use when creating the container
for this job

Define environment variables to be set in the container

USE_WORKERS

NUM_WORKERS
BATCH_SIZE

Setting the argument to true turns on multi-
process data loading

Number of data loader worker processes

Training batch size

143

144

Field Value or description

USE_VAL Setting the argument to true allows validation

VAL BATCH_SIZE Validation batch size

ENABLE_SNAPSHOT Setting the argument to true enables taking data
and trained model snapshots for ML versioning
purposes

PVC_NAME Name of the pvc to take a snapshot of. In the

above job submission, you are taking a snapshot
of pvc-download-tusimple-data-0, consisting of
dataset and trained models

The output should look like the following example:

The job 'dist-lane-detection-training' has been submitted successfully

You can run "runai describe job dist-lane-detection-training -p lane-detection” to check the

. List the submitted job.

runai list jobs

NAME STATUS AGE NODE TMAGE TYPE PROJECT USER GPUs Allocoted (Requested) PODs
SERVICE URL(S)

download-tusimple-dota Succeeded 1d muneer?589/downlood-tusimple:1.@ Train lone-detection wverrommartina - (@) [)]

dist-lane-detection-training Init:@/1 Zm <multiple> muneer7?589/dist-lane-detection:3.1 Train lone-detection root (3 8y

. Submitted job logs:

runai logs dist-lane-detection-training

root@ai-w-gpu-2:~/runai# runai logs dist-lane-detection-training

Running with 3 workers
.158449: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.18.1
e-detection-training-worker-8

+ fopt/kube/kubectl cp Jopt/kube/hosts dist-lane-detection-troining-worker-2:/etc/hosts_of_nodes
+ POD_NAME=dist-lane-detection-training-worker-1

. Check training job in RUN: Al GUI (or app.runai.ai); RUN: Al Dashboard, as seen in the figures below.

The first figure details three GPUs allocated for the distributed training job spread across three nodes
on AKS, and the second RUN:AI jobs:

NetApp

= Indicators
GPU Nodes Total GPUs Allocated GPUs Acta Prefaces
- Cluster Load
. GPU Uniliradien TGP Marmory Utilzaton
o . i
: GO% \ cz% \
CPU Uulization RAM Lnilization
- —
S =
R e 46.1% \ e 5.44% \

- Queuring

NetApp

dob Mamse User Prajact Total fun Time

General Pods. GPUs Graphs

(- T Hode Utilization GPU Mamory Used GPU Memary

h. After the training is finished, check the NetApp Snapshot copy that was created and linked with RUN:
Al job.

runai logs dist-lane-detection-training --tail 1

1,8]<stdout>:5napshot snap-pvc-download-tusimple-data-@-dist-lane-detection-training-launcher-2821-83-05-16-23-42 created 1n namespace runai-lane-detection

kubectl get volumesnapshots | grep download-tusimple-data-0

145

Restore data from the NetApp Snapshot copy

To restore data from the NetApp Snapshot copy, complete the following steps:

1. Switch to home directory.

cd ~

2. Go to the project directory lane-detection-SCNN-horovod.

cd ./lane-detection-SCNN-horovod

3. Modify restore-snaphot-pvc.yaml and update dataSource name field to the Snapshot copy from
which you want to restore data. You could also change PVC name where the data will be restored to, in
this example its restored-tusimple.

apiVersion: vl
kind: PersistentVolumeClaim
metadata:

name: restored-tusimple

spec:
storageClassName: azurenetappfiles
dataSource:

name: snap-pvc-download-tusimple-data-@-dist-lane-detection-training-launcher-2021-03-05-16-23-42
kind: VolumeSnapshot
apiGroup: snapshot.storage.k8s.io
accessModes:
- ReadWriteMany
resources:
reguests:
storage: 100Gi

4. Create a new PVC by using restore-snapshot-pvc.yaml.

kubectl create -f restore-snapshot-pvc.yaml

The output should look like the following example:

persistentvolumeclaim/restored-tusimple created

5. If you want to use the just restored data for training, job submission remains the same as before; only
replace the PVC_NAME with the restored PVC_NAME when submitting the training job, as seen in the
following commands:

146

runai submit-mpi

--name dist-lane-detection-training
--large-shm

--processes=3

-—-gpu 1

--pvc restored-tusimple:/mnt
-—-image muneer7589/dist-lane-detection:3.1
—-e USE WORKERS="true"

-e NUM WORKERS=4

-e BATCH ST ZE=33

-e USE VAL="false"

-e VAL BATCH SIZE=99

—-e ENABLE SNAPSHOT="true"

-e PVC NAME="restored-tusimple"

Performance evaluation

To show the linear scalability of the solution, performance tests have been done for two scenarios: one GPU
and three GPUs. GPU allocation, GPU and memory utilization, different single- and three- node metrics have
been captured during the training on the TuSimple lane detection dataset. Data is increased five- fold just for
the sake of analyzing resource utilization during the training processes.

The solution enables customers to start with a small dataset and a few GPUs. When the amount of data and
the demand of GPUs increase, customers can dynamically scale out the terabytes in the Standard Tier and
quickly scale up to the Premium Tier to get four times the throughput per terabyte without moving any data.
This process is further explained in the section, Azure NetApp Files service levels.

Processing time on one GPU was 12 hours and 45 minutes. Processing time on three GPUs across three
nodes was approximately 4 hours and 30 minutes.

The figures shown throughout the remainder of this document illustrate examples of performance and
scalability based on individual business needs.

The figure below illustrates 1 GPU allocation and memory utilization.

147

NetApp

5 15 B2 General / Anslytics T) 7610309 1 1:32:60 40 20F1-03:10 DO 34T
® = Clusier
== OPU Aflorstion GPU Utiration 10
in
L
e -
ELA
a
. 98.5% 97.4% Tm. mm um, mm tm wm w0 e omm onm, mm me
o = G Aormen — G Unilzases
fou] GPU Memary Afiscation GFU Misenary Lhilization 0

' 98.5% 95.6% n e um m me Ww. Wm We Um me hw mEW De e
- U Mamny Kl emen G Sy WPt O
CPU Aflocation CPU Usiration 15
(31.7% 30.8% "Thw um um we we om ws wm mm am mm am o

The figure below illustrates single node GPU utilization.

D

~ Nodes
GPU Utilization / Node (click on a Node name to filter)
150%
100% e
50%
0%
12:00 14:00 16:00 18:00 20000 2200 00:00

== aks-gpupool-34613062-vmss00000i aks-gpupool-34613062-vmss00000j
aks-gpupool-34613062-vmss00000k == aks-gpupool-34613062-vmss000001
== aks-gpupool-34613062-vymss00000m == aks-gpupool-34613062-vmss00000n

The figure below illustrates single node memory size (16GB).

148

GPU Memory Size / Node

100 GB
75GB
50 GB

25GB

omMB
12:00 14:00 16:00 18:00 20:00 22:00 00:00

== aks-gpupool-34613062-vmss00000f == aks-gpupool-34613062-vmss00000j
== aks-gpupool-34613062vmss00000k = aks-gpupool-34613062-vmss000001
== aks-gpupool-34613062-vmss00000m == aks-gpupool34613062-vmss00000n == Total

The figure below illustrates single node GPU count (1).

GPU Count / Node
B
6
4
2
0
12:00 14:00 16:00 18:00 20:00 22:00 00:00

= aks-gpupool-34613062-vmss00000i = aks-gpupool-34613062-vmss00000)
== aks-gpupool-34613062-vmss00000k == aks-gpupool-34613062-vmss000001
== aks-gpupool-34613062-vmss00000m == aks-gpupool-34613062-vmss00000n == Tolal

The figure below illustrates single node GPU allocation (%).

GPU Allocation / Node
150%
100%
50%
0%
12:00 14:00 16:00 18:00 20:00 22:00 00:00

= aks-gpupool-34613062-vmss00000|

The figure below illustrates three GPUs across three nodes — GPUs allocation and memory.

149

!" 2 General / Analytics (51 30212304 1ET600 n S0T1-03-04 232097 -

® = Chusinr
U ABecaton P Uniiewtion 0
th
99 3% 96.8% Tuse vie soim st 7% 30 40
= L At CU U aneey
o G Mhamery Alssation GPU Mamaory Usilpation
ch
99.3% 96.9% w0 == v
%) Wy Al e TP Meay | AL e
P ABccation CPU Uniaation L
‘26.5% 36.5% L e i A

The figure below illustrates three GPUs across three nodes utilization (%).

~ Nodes

GPU Utilization / Node (click on a Node name to filter)

400%
300%
200%
100%

0%
19:00 20:00 21:00 22:00 23:00

== aks-gpupool-34613062-vmss000006 aks-gpupool-34613062-vmss000007
aks-gpupool-34613062-vnss000008

The figure below illustrates three GPUs across three nodes memory utilization (%).

150

GPU Memory Utilization / Node (click on a Node name to filter)

400%

300%

200%

100% -

0%’

19:00 20:00 21:00 22:00

23.00

== aks-gpupooal-34613062-vmss000006 = aks-gpupocl-34613062-vmss000007

« aks-gpupool-34613062-vmss000008

Azure NetApp Files service levels

You can change the service level of an existing volume by moving the volume to another capacity pool that
uses the service level you want for the volume. This existing service-level change for the volume does not

require that you migrate data. It also does not affect access to the volume.

Dynamically change the service level of a volume

To change the service level of a volume, use the following steps:

1. On the Volumes page, right-click the volume whose service level you want to change. Select Change Pool.

NFSv3 10.28.254.4:/norootfor
NFSv4.1 NAS-735a.docs.lab:/fot
NFSv4.1 NAS-735a.docs.lab:/krt
NFSv3 10.28.254.4;/moveme(
NFSv3 10.28.254.4:/placehold

2. In the Change Pool window, select the capacity pool you want to move the volume to. Then, click OK.

Standard

Premium. - --.

Premium

Premium

Premium

pool0
Resize
Edit
Change pool
Delete

e

151

https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-service-levels

Change pool X

Pools

pool0 ~

pool0

service level: Standard

pool1

service level: Standard

pool2

service level: Premium

pool3

service level: Standard

Automate service level change

Dynamic Service Level change is currently still in Public Preview, but it is not enabled by default. To enable this
feature on the Azure subscription, follow these steps provided in the document “ Dynamically change the
service level of a volume.”

* You can also use the following commands for Azure: CLI. For more information about changing the pool
size of Azure NetApp Files, visit az netappfiles volume: Manage Azure NetApp Files (ANF) volume
resources.

az netappfiles volume pool-change -g mygroup
—--account-name myaccname

-pool-name mypoolname

-—-name myvolname

-—-new-pool-resource-id mynewresourceid

* The set- aznetappfilesvolumepool cmdlet shown here can change the pool of an Azure NetApp
Files volume. More information about changing volume pool size and Azure PowerShell can be found by
visiting Change pool for an Azure NetApp Files volume.

152

file:///C:\Users\crich\Downloads\•%09https:\docs.microsoft.com\azure\azure-netapp-files\dynamic-change-volume-service-level
file:///C:\Users\crich\Downloads\•%09https:\docs.microsoft.com\azure\azure-netapp-files\dynamic-change-volume-service-level
https://docs.microsoft.com/cli/azure/netappfiles/volume?view=azure-cli-latest-az_netappfiles_volume_pool_change
https://docs.microsoft.com/cli/azure/netappfiles/volume?view=azure-cli-latest-az_netappfiles_volume_pool_change
https://docs.microsoft.com/powershell/module/az.netappfiles/set-aznetappfilesvolumepool?view=azps-5.8.0

Set-AzNetAppFilesVolumePool

—ResourceGroupName "MyRG"

—-AccountName "MyAnfAccount"

-PoolName "MyAnfPool"

-Name "MyAnfVolume"

-NewPoolResourcelId 7d6e4069-6c78-6c6l-7bf6-c60968e45fbf

Conclusion

NetApp and RUN: Al have partnered in the creation of this technical report to demonstrate the unique
capabilities of the Azure NetApp Files together with the RUN: Al platform for simplifying orchestration of Al
workloads. This technical report provides a reference architecture for streamlining the process of both data
pipelines and workload orchestration for distributed lane detection training.

In conclusion, with regard to distributed training at scale (especially in a public cloud environment), the
resource orchestration and storage component is a critical part of the solution. Making sure that data managing
never hinders multiple GPU processing, therefore results in the optimal utilization of GPU cycles. Thus, making
the system as cost effective as possible for large- scale distributed training purposes.

Data fabric delivered by NetApp overcomes the challenge by enabling data scientists and data engineers to
connect together on-premises and in the cloud to have synchronous data, without performing any manual
intervention. In other words, data fabric smooths the process of managing Al workflow spread across multiple
locations. It also facilitates on demand-based data availability by bringing data close to compute and

performing analysis, training, and validation wherever and whenever needed. This capability not only enables
data integration but also protection and security of the entire data pipeline.

Additional information

To learn more about the information that is described in this document, review the following documents and/or
websites:

» Dataset: TuSimple
https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection

» Deep Learning Network Architecture: Spatial Convolutional Neural Network
https://arxiv.org/abs/1712.06080

* Distributed deep learning training framework: Horovod
https://horovod.ai/

* RUN: Al container orchestration solution: RUN: Al product introduction
https://docs.run.ai’/home/components/

* RUN: Al installation documentation

https://docs.run.ai/Administrator/Cluster-Setup/cluster-install/#step-3-install-runai
https://docs.run.ai/Administrator/Researcher-Setup/cli-install/#runai-cli-installation

153

https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection
https://arxiv.org/abs/1712.06080
https://horovod.ai/
https://docs.run.ai/home/components/
https://docs.run.ai/Administrator/Cluster-Setup/cluster-install/#step-3-install-runai
https://docs.run.ai/Administrator/Researcher-Setup/cli-install/

« Submitting jobs in RUN: Al CLI
https://docs.run.ai/Researcher/cli-reference/runai-submit/
https://docs.run.ai/Researcher/cli-reference/runai-submit-mpi/

» Azure Cloud resources: Azure NetApp Files
https://docs.microsoft.com/azure/azure-netapp-files/

» Azure Kubernetes Service
https://azure.microsoft.com/services/kubernetes-service/-features

* Azure VM SKUs
https://azure.microsoft.com/services/virtual-machines/

* Azure VM with GPU SKUs
https://docs.microsoft.com/azure/virtual-machines/sizes-gpu

* NetApp Trident
https://github.com/NetApp/trident/releases

» Data Fabric powered by NetApp
https://www.netapp.com/data-fabric/what-is-data-fabric/

* NetApp Product Documentation

https://www.netapp.com/support-and-training/documentation/

TR-4841: Hybrid Cloud Al Operating System with Data Caching

Rick Huang, David Arnette, NetApp
Yochay Ettun, cnvrg.io

The explosive growth of data and the exponential growth of ML and Al have converged to create a zettabyte
economy with unique development and implementation challenges.

Although it is a widely known that ML models are data-hungry and require high-performance data storage
proximal to compute resources, in practice, it is not so straight forward to implement this model, especially with
hybrid cloud and elastic compute instances. Massive quantities of data are usually stored in low-cost data
lakes, where high-performance Al compute resources such as GPUs cannot efficiently access it. This problem
is aggravated in a hybrid-cloud infrastructure where some workloads operate in the cloud and some are
located on-premises or in a different HPC environment entirely.

In this document, we present a novel solution that allows IT professionals and data engineers to create a truly
hybrid cloud Al platform with a topology-aware data hub that enables data scientists to instantly and
automatically create a cache of their datasets in proximity to their compute resources, wherever they are
located. As a result, not only can high-performance model training be accomplished, but additional benefits are
created, including the collaboration of multiple Al practitioners, who have immediate access to dataset caches,
versions, and lineages within a dataset version hub.

154

https://docs.run.ai/Researcher/cli-reference/runai-submit/
https://docs.run.ai/Researcher/cli-reference/runai-submit-mpi/
https://docs.microsoft.com/azure/azure-netapp-files/
https://azure.microsoft.com/services/kubernetes-service/-features
https://azure.microsoft.com/services/virtual-machines/
https://docs.microsoft.com/azure/virtual-machines/sizes-gpu
https://github.com/NetApp/trident/releases
https://www.netapp.com/data-fabric/what-is-data-fabric/
https://www.netapp.com/support-and-training/documentation/

Next: Use Case Overview and Problem Statement

Use Case Overview and Problem Statement

Datasets and dataset versions are typically located in a data lake, such as NetApp
StorageGrid object-based storage, which offers reduced cost and other operational
advantages. Data scientists pull these datasets and engineer them in multiple steps to
prepare them for training with a specific model, often creating multiple versions along the
way. As the next step, the data scientist must pick optimized compute resources (GPUs,
high-end CPU instances, an on-premises cluster, and so on) to run the model. The
following figure depicts the lack of dataset proximity in an ML compute environment.

[EGpu
o GPU 1111
o cPU I

ol foure
o CRUIIN
o cpuli[o cPu nI]

Datasets

| 01011101010011130103011 y \ ~

A0 1 La 000 11101088111 1101
01011 1OL0N00T 11100810
Q1011 101a1001 111610 1
3 1A TOLO0A1 T

Data Lake located
In the cloud or on-prem

|e GPU Ii1i}jecru I
lecru Il|[oGPU TN

Private Cloud [
On-prem

However, multiple training experiments must run in parallel in different compute environments, each of which
require a download of the dataset from the data lake, which is an expensive and time-consuming process.
Proximity of the dataset to the compute environment (especially for a hybrid cloud) is not guaranteed. In
addition, other team members that run their own experiments with the same dataset must go through the same
arduous process. Beyond the obvious slow data access, challenges include difficulties tracking dataset
versions, dataset sharing, collaboration, and reproducibility.

Customer Requirements

Customer requirements can vary in order to achieve high- performance ML runs while efficiently using
resources; for example, customers might require the following:

» Fast access to datasets from each compute instance executing the training model without incurring
expensive downloads and data access complexities

* The use any compute instance (GPU or CPU) in the cloud or on-premises without concern for the location

155

of the datasets

* Increased efficiency and productivity by running multiple training experiments in parallel with different
compute resources on the same dataset without unnecessary delays and data latency

* Minimized compute instance costs

 Improved reproducibility with tools to keep records of the datasets, their lineage, versions, and other
metadata details

* Enhanced sharing and collaboration so that any authorized member of the team can access the datasets
and run experiments

To implement dataset caching with NetApp ONTAP data management software, customers must perform the
following tasks:

» Configure and set the NFS storage that is closest to the compute resources.

» Determine which dataset and version to cache.

« Monitor the total memory committed to cached datasets and how much NFS storage is available for
additional cache commits (for example, cache management).

» Age out of datasets in the cache if they have not been used in certain time. The default is one day; other
configuration options are available.

Next: Solution Overview

Solution Overview

This section reviews a conventional data science pipeline and its drawbacks. It also
presents the architecture of the proposed dataset caching solution.

Conventional Data Science Pipeline and Drawbacks

A typical sequence of ML model development and deployment involves iterative steps that include the
following:
* Ingesting data
« Data preprocessing (creating multiple versions of the datasets)
* Running multiple experiments involving hyperparameter optimization, different models, and so on
* Deployment

» Monitoringcnvrg.io has developed a comprehensive platform to automate all tasks from research to
deployment. A small sample of dashboard screenshots pertaining to the pipeline is shown in the following
figure.

156

w % |

Fythvam et py -opocha 1% woich e EEDE ooxds Pasdiee
Prituon mnist gy -epocha 13, -4ach 118 Sl ooxlwmet 2asdiom
Fyshan it py et 1) b EIEDN oGxiimsn Zangupm
Pythan mhit sy —es0chs 13 ST SGrimg LanEem = e
#yhan iy EEDN coaes ieuanm
Fythond mit gy ~epechs 15 -SachIsE D ooXlwest MSNem =M
Pethon it £ -wiehe 15 a5 EZEEN cGuiems FdRO%em
Pynd moist oy T oolmed Paddlem = gap
Pyttand meial gy wpenha 13 SennIM I caxiwg 181100
Syonand mr 7y —epoct 1 et SO oaxiwws #25akem
e h it py -epechs 15 a0 EZEEN ocriwe 1iANem
Byihanl it 5w ~eechn 1L Sach LI ST cowme D4 =
PyONGAD ML By e [BT BTN oGriwmed Fawdtem
Pyl meict 5y ~soncha 15 B D odxdwest 1037wm Sa
cnvrg. lo Eapartmards pav page | Showtng 1 10 15 of 152 euparumant: c1104863

Data
Preprocessing

Deployment

Exim"ngnt 11
A .Y .II.'.l‘r-I.\J
- BTN

- L
L Experiment13
L Bxperiment14]
T
| Bperiment16]
| Boperiment17]
f—
S ——.
| _______ ExperimentN
4

Experiment 16

It is very common to have multiple datasets in play from public repositories and private data. In addition, each
dataset is likely to have multiple versions resulting from dataset cleanup or feature engineering. A dashboard
that provides a dataset hub and a version hub is needed to make sure collaboration and consistency tools are
available to the team, as can be seen in the following figure.

157

ONTAP Datasets 6 290.2 3 1.07/360.77 cs
Datasets B MFS Connected Used by cached commits

+ MNew Dataset

@; @Padmas

[£] PROJECTS
i 22
& DATASETS
. fraud_jun fraud_may consumer_imgl public_set12
% AlLIBRARY
MIVEDY)] SIV) 0 o O 0 0
iy DASHBOARD
2 Cached Commlts 0 Cached Cammiits @ Cached Commits 1 Cached Commits
& COMPUTE
%92 TEAM &
=5 SETTNGS M B=
fraud_sim_base misc_basel
00 doo
,| Docs 1 Cached Cammits 0 Cached Commits
() Feedback

cnvrg.io

The next step in the pipeline is training, which requires multiple parallel instances of training models, each
associated with a dataset and a certain compute instance. The binding of a dataset to a certain experiment
with a certain compute instance is a challenge because it is possible that some experiments are performed by
GPU instances from Amazon Web Services (AWS), while other experiments are performed by DGX-1 or DGX-
2 instances on- premises. Other experiments might be executed in CPU servers in GCP, while the dataset
location is not in reasonable proximity to the compute resources performing the training. A reasonable
proximity would have full 10GbE or more low-latency connectivity from the dataset storage to the compute
instance.

It is a common practice for data scientists to download the dataset to the compute instance performing the
training and execute the experiment. However, there are several potential problems with this approach:

* When the data scientist downloads the dataset to a compute instance, there are no guarantees that the
integrated compute storage is high performance (an example of a high-performance system would be the
ONTAP AFF A800 NVMe solution).

* When the downloaded dataset resides in one compute node, storage can become a bottleneck when
distributed models are executed over multiple nodes (unlike with NetApp ONTAP high-performance
distributed storage).

» The next iteration of the training experiment might be performed in a different compute instance due to
queue conflicts or priorities, again creating significant network distance from the dataset to the compute
location.

« Other team members executing training experiments on the same compute cluster cannot share this
dataset; each performs the (expensive) download of the dataset from an arbitrary location.

« If other datasets or versions of the same dataset are needed for the subsequent training jobs, the data
scientists must again perform the (expensive) download of the dataset to the compute instance performing
the training.NetApp and cnvrg.io have created a new dataset caching solution that eliminates these

158

hurdles. The solution creates accelerated execution of the ML pipeline by caching hot datasets on the
ONTAP high- performance storage system. With ONTAP NFS, the datasets are cached once (and only
once) in a data fabric powered by NetApp (such as AFF A800), which is collocated with the compute. As
the NetApp ONTAP NFS high-speed storage can serve multiple ML compute nodes, the performance of
the training models is optimized, bringing cost savings, productivity, and operational efficiency to the
organization.

Solution Architecture

This solution from NetApp and cnvrg.io provides dataset caching, as shown in the following figure. Dataset
caching allows data scientists to pick a desired dataset or dataset version and move it to the ONTAP NFS
cache, which lies in proximity to the ML compute cluster. The data scientist can now run multiple experiments
without incurring delays or downloads. In addition, all collaborating engineers can use the same dataset with
the attached compute cluster (with the freedom to pick any node) without additional downloads from the data
lake. The data scientists are offered a dashboard that tracks and monitors all datasets and versions and
provides a view of which datasets were cached.

The cnvrg.io platform auto-detects aged datasets that have not been used for a certain time and evicts them
from the cache, which maintains free NFS cache space for more frequently used datasets. It is important to
note that dataset caching with ONTAP works in the cloud and on-premises, thus providing maximum flexibility.

[eGru
o GPU IN1]
o cPU |||

o CPUIlIN
o cCPUIIN

Datasets

o0 O 100 G110
L 0101110100004 113000300

a1a
010
oOL L 10T L000 11101010 J
O0L0LLIODON0N1 111000
101116141061 115010
K 1910100111 i

Data Lake located : el
in the cloud or on-prem] o GPU I

o GFU I

Private Cloud [/
On-prem

Next: Concepts and Components

Concepts and Components

This section covers concepts and components associated with data caching in an ML
workflow.

159

Machine Learning

ML is rapidly becoming essential to many businesses and organizations around the world. Therefore, IT and
DevOps teams are now facing the challenge of standardizing ML workloads and provisioning cloud, on-
premises, and hybrid compute resources that support the dynamic and intensive workflows that ML jobs and
pipelines require.

Container-Based Machine Learning and Kubernetes

Containers are isolated user-space instances that run on top of a shared host operating system kernel. The
adoption of containers is rapidly increasing. Containers offer many of the same application sandboxing benefits
that virtual machines (VMs) offer. However, because the hypervisor and guest operating system layers that
VMs rely on have been eliminated, containers are far more lightweight.

Containers also allow the efficient packaging of application dependencies, run times, and so on directly with an
application. The most commonly used container packaging format is the Docker container. An application that
has been containerized in the Docker container format can be executed on any machine that can run Docker
containers. This is true even if the application’s dependencies are not present on the machine, because all
dependencies are packaged in the container itself. For more information, visit the Docker website.

Kubernetes, the popular container orchestrator, allows data scientists to launch flexible, container-based jobs
and pipelines. It also enables infrastructure teams to manage and monitor ML workloads in a single managed
and cloud-native environment. For more information, visit the Kubernetes website.

cnvrg.io

cnvrg.io is an Al operating system that transforms the way enterprises manage, scale, and accelerate Al and
data science development from research to production. The code-first platform is built by data scientists for
data scientists and offers flexibility to run on-premises or in the cloud. With model management, MLOps, and
continual ML solutions, cnvrg.io brings top- of- the- line technology to data science teams so they can spend
less time on DevOps and focus on the real magic—algorithms. Since using cnvrg.io, teams across industries
have gotten more models to production resulting in increased business value.

cnvrg.io Meta-Scheduler

cnvrg. io has a unique architecture that allows IT and engineers to attach different compute resources to the
same control plane and have cnvrg.io manage ML jobs across all resources. This means that IT can attach
multiple on-premises Kubernetes clusters, VM servers, and cloud accounts and run ML workloads on all
resources, as shown in the following figure.

Storage & Data (NFS)

|
g
1|

cnvrg.io Control Plane

= x| Al Workers Pool

) o = - y) IEsss ESss IIsSasss
o sEs ' i9

— ML Training © PyTorch ¥ emorfiow g el
DATASETS RESEARCH EXPERIMENT BUILD DEPLOY MONITOR
e

J
cnvrg meta-scheduler] e '.=. 11 - Data Prep @ oo sl
) /@@ [DeployedMadel © ki o @
] l.’lgﬂ.- ' Workspace & Interactive Development 4
11 | @ /@9 W Monitoring / Open Source Tools [Jewr ©Grotana
L 1' oeses
N
1SS
DGX A100 GPU Server GPU Server

160

https://www.docker.com/
https://kubernetes.io/

cnvrg.io Data Caching

cnvrg.io allows data scientists to define hot and cold dataset versions with its data-caching technology. By
default, datasets are stored in a centralized object storage database. Then, data scientists can cache a specific
data version on the selected compute resource to save time on download and therefor increase ML
development and productivity. Datasets that are cached and are not in use for a few days are automatically
cleared from the selected NFS. Caching and clearing the cache can be performed with a single click; no
coding, IT, or DevOps work is required.

cnvrg.io Flows and ML Pipelines

cnvrg.io Flows is a tool for building production ML pipelines. Each component in a flow is a script/code running
on a selected compute with a base docker image. This design enables data scientists and engineers to build a
single pipeline that can run both on-premises and in the cloud. cnvrg.io makes sure data, parameters, and
artifacts are moving between the different components. In addition, each flow is monitored and tracked for
100% reproducible data science.

cnvrg.io CORE

cnvrg.io CORE is a free platform for the data science community to help data scientists focus more on data
science and less on DevOps. CORE'’s flexible infrastructure gives data scientists the control to use any
language, Al framework, or compute environment whether on- premises or in the cloud so they can do what
they do best, build algorithms. cnvrg.io CORE can be easily installed with a single command on any
Kubernetes cluster.

NetApp ONTAP Al

ONTAP Al is a data center reference architecture for ML and deep learning (DL) workloads that uses NetApp
AFF storage systems and NVIDIA DGX systems with Tesla V100 GPUs. ONTAP Al is based on the industry-
standard NFS file protocol over 100Gb Ethernet, providing customers with a high-performance ML/DL
infrastructure that uses standard data center technologies to reduce implementation and administration
overhead. Using standardized network and protocols enables ONTAP Al to integrate into hybrid cloud
environments while maintaining operational consistency and simplicity. As a prevalidated infrastructure
solution, ONTAP Al reduces deployment time and risk and reduces administration overhead significantly,
allowing customers to realize faster time to value.

NVIDIA DeepOps

DeepOps is an open source project from NVIDIA that, by using Ansible, automates the deployment of GPU
server clusters according to best practices. DeepOps is modular and can be used for various deployment
tasks. For this document and the validation exercise that it describes, DeepOps is used to deploy a Kubernetes
cluster that consists of GPU server worker nodes. For more information, visit the DeepOps website.

NetApp Trident

Trident is an open source storage orchestrator developed and maintained by NetApp that greatly simplifies the
creation, management, and consumption of persistent storage for Kubernetes workloads. Trident itself a
Kubernetes-native application—it runs directly within a Kubernetes cluster. With Trident, Kubernetes users
(developers, data scientists, Kubernetes administrators, and so on) can create, manage, and interact with
persistent storage volumes in the standard Kubernetes format that they are already familiar with. At the same
time, they can take advantage of NetApp advanced data management capabilities and a data fabric that is
powered by NetApp technology. Trident abstracts away the complexities of persistent storage and makes it
simple to consume. For more information, visit the Trident website.

161

https://github.com/NVIDIA/deepops
https://netapp-trident.readthedocs.io/en/stable-v18.07/kubernetes/

NetApp StorageGRID

NetApp StorageGRID is a software-defined object storage platform designed to meet these needs by providing
simple, cloud-like storage that users can access using the S3 protocol. StorageGRID is a scale-out system
designed to support multiple nodes across internet-connected sites, regardless of distance. With the intelligent
policy engine of StorageGRID, users can choose erasure-coding objects across sites for geo-resiliency or
object replication between remote sites to minimize WAN access latency. StorageGrid provides an excellent
private-cloud primary object storage data lake in this solution.

NetApp Cloud Volumes ONTAP

NetApp Cloud Volumes ONTAP data management software delivers control, protection, and efficiency to user
data with the flexibility of public cloud providers including AWS, Google Cloud Platform, and Microsoft Azure.
Cloud Volumes ONTAP is cloud-native data management software built on the NetApp ONTAP storage
software, providing users with a superior universal storage platform that addresses their cloud data needs.
Having the same storage software in the cloud and on- premises provides users with the value of a data fabric
without having to train IT staff in all-new methods to manage data.

For customers that are interested in hybrid cloud deployment models, Cloud Volumes ONTAP can provide the
same capabilities and class-leading performance in most public clouds to provide a consistent and seamless
user experience in any environment.

Next: Hardware and Software Requirements

Hardware and Software Requirements

This section covers the technology requirements for the ONTAP Al solution.

Hardware Requirements

Although hardware requirements depend on specific customer workloads, ONTAP Al can be deployed at any
scale for data engineering, model training, and production inferencing from a single GPU up to rack-scale
configurations for large-scale ML/DL operations. For more information about ONTAP Al, see the ONTAP Al
website.

This solution was validated using a DGX-1 system for compute, a NetApp AFF A800 storage system, and
Cisco Nexus 3232C for network connectivity. The AFF A800 used in this validation can support as many as 10
DGX-1 systems for most ML/DL workloads. The following figure shows the ONTAP Al topology used for model
training in this validation.

162

https://www.netapp.com/us/products/ontap-ai.aspx
https://www.netapp.com/us/products/ontap-ai.aspx

100GbE- RoCE and NFS
100GbE- NFS only

NVIDIA DGX-1 systems

Cisco Nexus @'ﬁ i i e =2 ; S T -!
3232C

\d

()
[}
o
o

':'
WA
A
()

0
A

§
0
W
k"

Shs

NetApp AFF A800
48 X S5D-NVMe

AN
A

5

\
ol
‘t

O-'
D
o
el
.—'
(>
i

N
WK
K
""’
":"

§
[\
)
[

To extend this solution to a public cloud, Cloud Volumes ONTAP can be deployed alongside cloud GPU
compute resources and integrated into a hybrid cloud data fabric that enables customers to use whatever
resources are appropriate for any given workload.

Software Requirements

The following table shows the specific software versions used in this solution validation.

Component Version
Ubuntu 18.04.4 LTS
NVIDIA DGX OS 440
NVIDIA DeepOps 20.02.1
Kubernetes 1.15

Helm 3.1.0
cnvrg.io 3.0.0
NetApp ONTAP 9.6P4

For this solution validation, Kubernetes was deployed as a single-node cluster on the DGX-1 system. For
large-scale deployments, independent Kubernetes master nodes should be deployed to provide high
availability of management services as well as reserve valuable DGX resources for ML and DL workloads.

Next: Solution Deployment and Validation Details

Solution Deployment and Validation Details

The following sections discuss the details of solution deployment and validation.

Next: ONTAP Al Deployment

163

ONTAP Al Deployment

Deployment of ONTAP Al requires the installation and configuration of networking,
compute, and storage hardware. Specific instructions for deployment of the ONTAP Al
infrastructure are beyond the scope of this document. For detailed deployment
information, see NVA-1121-DEPLOY: NetApp ONTAP Al, Powered by NVIDIA.

For this solution validation, a single volume was created and mounted to the DGX-1 system. That mount point

was then mounted to the containers to make data accessible for training. For large-scale deployments, NetApp
Trident automates the creation and mounting of volumes to eliminate administrative overhead and enable end-
user management of resources.

Next: Kubernetes Deployment

Kubernetes Deployment

To deploy and configure your Kubernetes cluster with NVIDIA DeepOps, perform the
following tasks from a deployment jump host:

1. Download NVIDIA DeepOps by following the instructions on the Getting Started page on the NVIDIA
DeepOps GitHub site.

2. Deploy Kubernetes in your cluster by following the instructions on the Kubernetes Deployment Guide on
the NVIDIA DeepOps GitHub site.

@ For the DeepOps Kubernetes deployment to work, the same user must exist on all Kubernetes
master and worker nodes.

If the deployment fails, change the value of kubectl localhost to false in

deepops/config/group vars/k8s-cluster.yml and repeat step 2. The Copy kubectl binary to
ansible host task, which executes only when the value of kubectl localhost is true, relies on the fetch
Ansible module, which has known memory usage issues. These memory usage issues can sometimes cause
the task to fail. If the task fails because of a memory issue, then the remainder of the deployment operation
does not complete successfully.

If the deployment completes successfully after you have changed the value of kubectl localhost to
false, then you must manually copy the kubectl binary from a Kubernetes master node to the
deployment jump host. You can find the location of the kubectl binary on a specific master node by
running the which kubectl command directly on that node.

Next: Cnvrg.io Deployment
cnvrg.io Deployment

Deploy cnvrg CORE Using Helm

Helm is the easiest way to quickly deploy cnvrg using any cluster, on-premises, Minikube, or on any cloud
cluster (such as AKS, EKS, and GKE). This section describes how cnvrg was installed on an on-premises
(DGX-1) instance with Kubernetes installed.

Prerequisites

Before you can complete the installation, you must install and prepare the following dependencies on your

164

https://www.netapp.com/us/media/nva-1121-deploy.pdf
https://github.com/NVIDIA/deepops/blob/master/docs/getting-started.md
https://github.com/NVIDIA/deepops/blob/master/docs/kubernetes-cluster.md

local machine:

* Kubectl
* Helm 3.x

* Kubernetes cluster 1.15+

Deploy Using Helm

1. To download the most updated cnvrg helm charts, run the following command:

helm repo add cnvrg https://helm.cnvrg.io
helm repo update

2. Before you deploy cnvrg, you need the external IP address of the cluster and the name of the node on
which you will deploy cnvrg. To deploy cnvrg on an on-premises Kubernetes cluster, run the following
command:

helm install cnvrg cnvrg/cnvrg --timeout 1500s --wait \ --set
global.external ip=<ip of cluster> \ --set global.node=<name of node>

3. Run the helm install command. All the services and systems automatically install on your cluster. The
process can take up to 15 minutes.

4. The helm install command can take up to 10 minutes. When the deployment completes, go to the
URL of your newly deployed cnvrg or add the new cluster as a resource inside your organization. The
helm command informs you of the correct URL.

Thank you for installing cnvrg.io!
Your installation of cnvrg.io is now available, and can be reached via:
Talk to our team via email at

5. When the status of all the containers is running or complete, cnvrg has been successfully deployed. It
should look similar to the following example output:

165

NAME READY STATUS RESTARTS AGE

cnvrg-app-69fbb9df98-6xrgf 1/1 Running 0 2m
cnvrg-sidekig-b9d54d889-5x4fc 1/1 Running 0 2m
controller-65895b47d4-s96v6 1/1 Running 0 2m
init-app-vs-config-wv9c4 0/1 Completed 0 9m
init-gateway-vs-config-2zbpp 0/1 Completed 0 9m
init-minio-vs-config-cd2rg 0/1 Completed 0 9m
minio-0 1/1 Running 0 2m
postgres-0 1/1 Running 0 2m
redis-695c49c986-kcbt9 1/1 Running 0 2m
seeder-wh655 0/1 Completed 0 2m
speaker-5sghr 1/1 Running 0 2m

Computer Vision Model Training with ResNet50 and the Chest X-ray Dataset

cnvrg.io Al OS was deployed on a Kubernetes setup on a NetApp ONTAP Al architecture powered by the
NVIDIA DGX system. For validation, we used the NIH Chest X-ray dataset consisting of de-identified images of
chest x-rays. The images were in the PNG format. The data was provided by the NIH Clinical Center and is
available through the NIH download site. We used a 250GB sample of the data with 627, 615 images across
15 classes.

The dataset was uploaded to the cnvrg platform and was cached on an NFS export from the NetApp AFF A800
storage system.

Set up the Compute Resources

The cnvrg architecture and meta-scheduling capability allow engineers and IT professionals to attach different
compute resources to a single platform. In our setup, we used the same cluster cnvrg that was deployed for
running the deep-learning workloads. If you need to attach additional clusters, use the GUI, as shown in the
following screenshot.

166

https://nihcc.app.box.com/v/ChestXray-NIHCC

Resources

+ Add Resource

) default cluster A xubemees Cue 9 Compute Templates ([EITE

5 DGX-1 AnOnPremise Madhine 1 Compute Templates [N

- DGX2 ermise Machin 1 Compute Templates [[EENE

Load Data

To upload data to the cnvrg platform, you can use the GUI or the cnvrg CLI. For large datasets, NetApp
recommends using the CLI because it is a strong, scalable, and reliable tool that can handle a large number of
files.

To upload data, complete the following steps:

1. Download the cnvrg CLI.

2. navigate to the x-ray directory.

3. Initialize the dataset in the platform with the cnvrg data init command.
4

. Upload all contents of the directory to the central data lake with the cnvrg data sync command.After
the data is uploaded to the central object store (StorageGRID, S3, or others), you can browse with the GUI.
The following figure shows a loaded chest X-ray fibrosis image PNG file. In addition, cnvrg versions the
data so that any model you build can be reproduced down to the data version.

167

https://app.cnvrg.io/docs/cli/install.html

®-ray / Fibrosis / 00000232_000.png

Genera o OmerLiberman: (2020-03-11 13:45:32 +0200)

Queries

>_ Copy 53 Path

00000232_000.png

1

-]

w
o
=
>
=
(&)

Cach Data

To make training faster and avoid downloading 600k+ files for each model training and experiment, we used
the data-caching feature after data was initially uploaded to the central data-lake object store.

168

=]
-t
o
-
=
=1
w

After users click Cache, cnvrg downloads the data in its specific commit from the remote object store and

= X-RAY

1 Query..

Query Language Docs

This commit is not cached. Cleared by Gitta @ 17-Mar-2020, 11:35:30 AM

x-rayf

File Name

O Atelectasis

D cardiomegaly

[Consalidation

[CIEdema

O Effusion

[Emphysema

IFibrosis

i Hernia

Dinfiltration

EiMass

[No Finding

I Nodule

I Pleural_Thickening

CIPneumonia

Commit: b91b09628 @ 11-03-2020 13:45

N dated
e}
v-? . months ago
Cache Commit
maonths ago
Download the commit to the selected NFS making the data available
locally on the cluster. Read more manths ago
Commit: b91b0962 Status: manths aga
Commit size: 250 GB, 627615 files
maonths ago
Select NFS: | NetApp NFS Used storage: 64.56/1000 GB months ago
maonths ago
Cancel m months ago
- ‘about 2 months ago
about 2 months ago

about 2 months ago

about 2 months ago

about 2 months ago

about 2 months ago

New Oirectory

New File

C Revert

 View Commit

caches it on the ONTAP NFS volume. After it completes, the data is available for instant training. In addition, if
the data is not used for a few days (for model training or exploration, for example), cnvrg automatically clears

the cache.

Build an ML Pipeline with Cached Data

cnvrg flows allows you to easily build production ML pipelines. Flows are flexible, can work for any kind of ML
use case, and can be created through the GUI or code. Each component in a flow can run on a different
compute resource with a different Docker image, which makes it possible to build hybrid cloud and optimized

ML pipelines.

169

st

FFOW 14 versian 23 P] @ 7 o

B Ttk

m n “-trnln

minist_prgd

din

Building the Chest X-ray Flow: Setting Data

We added our dataset to a newly created flow. When adding the dataset, you can select the specific version
(commit) and indicate whether you want the cached version. In this example, we selected the cached commit

170

KBV e Image Classification with ResNet50 v - B B O % < vewtes v

. Create a Data Task

G Data task represents a dataset that
can be connected to other tasks in
the flow. By using data tasks, you

New Task can mount datasets to your other
tasks.
Dataset
ARWE In each data task, you may select
X 19 data commit, data query, mounting
options and more.
A-ray

x-ray-sample

=) cnvrg. o
© . Datasets

t_slug Read more

Delete Card @ Save CF

-]
e
o
| .
=
=
(%]

Building the Chest X-ray Flow: Setting Training Model: ResNet50

In the pipeline, you can add any kind of custom code you want. In cnvrg, there is also the Al library, a reusable
ML components collection. In the Al library, there are algorithms, scripts, data sources, and other solutions that
can be used in any ML or deep learning flow. In this example, we selected the prebuilt ResNet50 module. We
used default parameters such as batch_size:128, epochs:10, and more. These parameters can be viewed in
the Al Library docs. The following screenshot shows the new flow with the X-ray dataset connected to
ResNet50.

171

x-ray-model

Image Classification with ResNet50 uerize - ®» 8 © % <

New Task w

>
o
o
S
o
Z

Define the Compute Resource for ResNet50

Each algorithm or component in cnvrg flows can run on a different compute instance, with a different Docker
image. In our setup, we wanted to run the training algorithm on the NVIDIA DGX systems with the NetApp
ONTAP Al architecture. In The following figure, we selected gpu-real, which is a compute template and
specification for our on-premises cluster. We also created a queue of templates and selected multiple
templates. In this way, if the gpu-real resource cannot be allocated (if, for example, other data scientists are
using it), then you can enable automatic cloud-bursting by adding a cloud provider template. The following
screenshot shows the use of gpu-real as a compute node for ResNet50.

172

Araymodel Image Classification with ResNet50 vozonize - » © # b NewTask v

A resnet50b B resnetsob
FRTUeE Advanced i Task Is a component that runs a
single script. They can run as a
Compute single task in a flow or as part of a
pipeline of tasks in a flow.
1gpu-real = |

Each task can have multiple

gpux! - p2.xlarge i parameters defined (key - value
paired), and crwrg will calculate all
the different permutations and will
run them In paralel.

gpuxxl - p3.2xlarge

netapp ¢ 278 pp; true uste 9
Configurable Parameters:
/ gpu-real 1GPU4CPU16GB detault duster 3 g model
4pu 4GP 13CPU 55 GB gouid : [}
cnvrg. io
Compute

Delete Card @ Save Chang

Tracking and Monitoring Results

After a flow is executed, cnvrg triggers the tracking and monitoring engine. Each run of a flow is automatically
documented and updated in real time. Hyperparameters, metrics, resource usage (GPU utilization, and more),
code version, artifacts, logs, and so on are automatically available in the Experiments section, as shown in the
following two screenshots.

173

Crarmicisl X-ray train (ResNet50) | oo |

My & All Flow Expesimeis

R-riy REMatSl
i e sy wa = W
100 Thma: 22:Mar- 2020, 15537 M sunus: ([T Compuite: Koo Start Commit; (IRS4ET)
I, 43922 Mk Diusragioe: Tim image: tensofiow 2100 -py3 End Comma afiftddie
o Memory ek 10 [T GPU Memary
1 TR
| |
I ¥

Clamae i () 1 wnsarfiow Jocnl werklon: 200

i B
“Atwioctanrs”, “Edema®, *
“Toudh Bar
Pid pog
“Nodide”. "Emiptrysema]

G b B pdsir e sofimas ¥ v el

. width; §
w3 m! 03
it i iy LT A T
loss =
n

- L -,

&

¥

= o

———,— .
S e
——

Compare Experiments

loss =
o
] 1 :] ' . 7 ! i
Experiment 55 -+ Experiment 58 & Eaperiment 60 -+ Experiment 61 - Experiment 57
val_loss =

Next: Conclusion

174

Conclusion

NetApp and cnvrg.io have partnered to offer customers a complete data management
solution for ML and DL software development. ONTAP Al provides high-performance
compute and storage for any scale of operation, and cnvrg.io software streamlines data
science workflows and improves resource utilization.

Next: Acknowledgments

Acknowledgments

* Mike Oglesby, Technical Marketing Engineer, NetApp

» Santosh Rao, Senior Technical Director, NetApp

Next: Where to Find Additional Information

Where to Find Additional Information

To learn more about the information that is described in this document, see the following resources:

* Cnvrg.io (https://cnvrg.io):
o Cnvrg CORE (free ML platform)

https://cnvrg.io/platform/core
o Cnvrg docs
https://app.cnvrg.io/docs

* NVIDIA DGX-1 servers:
o NVIDIA DGX-1 servers

https://www.nvidia.com/en-us/data-center/dgx-1/
> NVIDIA Tesla V100 Tensor Core GPU
https://www.nvidia.com/en-us/data-center/tesla-v100/
> NVIDIA GPU Cloud (NGC)
https://www.nvidia.com/en-us/gpu-cloud/

* NetApp AFF systems:
o AFF datasheet

https://www.netapp.com/us/media/d-3582.pdf
> NetApp FlashAdvantage for AFF
https://www.netapp.com/us/media/ds-3733.pdf

o ONTAP 9.x documentation

175

https://cnvrg.io
https://cnvrg.io/platform/core
https://app.cnvrg.io/docs
https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://www.nvidia.com/en-us/gpu-cloud/
https://www.netapp.com/us/media/d-3582.pdf
https://www.netapp.com/us/media/ds-3733.pdf

http://mysupport.netapp.com/documentation/productlibrary/index.html?productlD=62286
o NetApp FlexGroup technical report
https://www.netapp.com/us/media/tr-4557 .pdf

* NetApp persistent storage for containers:
o NetApp Trident

https://netapp.io/persistent-storage-provisioner-for-kubernetes/

* NetApp Interoperability Matrix:
> NetApp Interoperability Matrix Tool

http://support.netapp.com/matrix

* ONTAP Al networking:
o Cisco Nexus 3232C Switches

https://www.cisco.com/c/en/us/products/switches/nexus-3232c-switch/index.html
o Mellanox Spectrum 2000 series switches
http://www.mellanox.com/page/products_dyn?product_family=251&mtag=sn2000

* ML framework and tools:
o DALI

https://github.com/NVIDIA/DALI

o TensorFlow: An Open-Source Machine Learning Framework for Everyone
https://www.tensorflow.org/

o Horovod: Uber’s Open-Source Distributed Deep Learning Framework for TensorFlow
https://eng.uber.com/horovod/

o Enabling GPUs in the Container Runtime Ecosystem
https://devblogs.nvidia.com/gpu-containers-runtime/

> Docker
https://docs.docker.com

> Kubernetes
https://kubernetes.io/docs/home/

o NVIDIA DeepOps

https://github.com/NVIDIA/deepops

176

http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286
https://www.netapp.com/us/media/tr-4557.pdf
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
http://support.netapp.com/matrix
https://www.cisco.com/c/en/us/products/switches/nexus-3232c-switch/index.html
http://www.mellanox.com/page/products_dyn?product_family=251&mtag=sn2000
https://github.com/NVIDIA/DALI
https://www.tensorflow.org/
https://eng.uber.com/horovod/
https://devblogs.nvidia.com/gpu-containers-runtime/
https://docs.docker.com
https://kubernetes.io/docs/home/
https://github.com/NVIDIA/deepops

> Kubeflow
http://www.kubeflow.org/

o Jupyter Notebook Server
http://www.jupyter.org/

» Dataset and benchmarks:

o NIH chest X-ray dataset
https://nihcc.app.box.com/v/ChestXray-NIHCC

o Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, Ronald Summers, ChestX-
ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and
Localization of Common Thorax Diseases, IEEE CVPR, pp. 3462-3471, 2017TR-4841-0620

NVA-1144: NetApp HCI Al Inferencing at the Edge Data Center with H615¢c and
NVIDIA T4

Arvind Ramakrishnan, NetApp

This document describes how NetApp HCI can be designed to host artificial intelligence (Al) inferencing
workloads at edge data center locations. The design is based on NVIDIA T4 GPU-powered NetApp HCI
compute nodes, an NVIDIA Triton Inference Server, and a Kubernetes infrastructure built using NVIDIA
DeepOps. The design also establishes the data pipeline between the core and edge data centers and
illustrates implementation to complete the data lifecycle path.

Modern applications that are driven by Al and machine learning (ML) have pushed the limits of the internet.
End users and devices demand access to applications, data, and services at any place and any time, with
minimal latency. To meet these demands, data centers are moving closer to their users to boost performance,
reduce back-and-forth data transfer, and provide cost-effective ways to meet user requirements.

In the context of Al, the core data center is a platform that provides centralized services, such as machine
learning and analytics, and the edge data centers are where the real-time production data is subject to
inferencing. These edge data centers are usually connected to a core data center. They provide end-user
services and serve as a staging layer for data generated by loT devices that need additional processing and
that is too time sensitive to be transmitted back to a centralized core.

This document describes a reference architecture for Al inferencing that uses NetApp HCI as the base
platform.

Customer Value

NetApp HCI offers differentiation in the hyperconverged market for this inferencing solution, including the
following advantages:

» A disaggregated architecture allows independent scaling of compute and storage and lowers the
virtualization licensing costs and performance tax on independent NetApp HCI storage nodes.

* NetApp Element storage provides quality of service (QoS) for each storage volume, which provides
guaranteed storage performance for workloads on NetApp HCI. Therefore, adjacent workloads do not
negatively affect inferencing performance.

+ A data fabric powered by NetApp allows data to be replicated from core to edge to cloud data centers,
which moves data closer to where application needs it.

177

http://www.kubeflow.org/
http://www.jupyter.org/
https://nihcc.app.box.com/v/ChestXray-NIHCC

« With a data fabric powered by NetApp and NetApp FlexCache software, Al deep learning models trained
on NetApp ONTAP Al can be accessed from NetApp HCI without having to export the model.

* NetApp HCI can host inference servers on the same infrastructure concurrently with multiple workloads,
either virtual-machine (VM) or container-based, without performance degradation.

* NetApp HCl is certified as NVIDIA GPU Cloud (NGC) ready for NVIDIA Al containerized applications.

* NGC-ready means that the stack is validated by NVIDIA, is purpose built for Al, and enterprise support is
available through NGC Support Services.

» With its extensive Al portfolio, NetApp can support the entire spectrum of Al use cases from edge to core to
cloud, including ONTAP Al for training and inferencing, Cloud Volumes Service and Azure NetApp Files for
training in the cloud, and inferencing on the edge with NetApp HCI.

Next: Use Cases

Use Cases

Although all applications today are not Al driven, they are evolving capabilities that allow
them to access the immense benefits of Al. To support the adoption of Al, applications
need an infrastructure that provides them with the resources needed to function at an
optimum level and support their continuing evolution.

For Al-driven applications, edge locations act as a major source of data. Available data can be used for training
when collected from multiple edge locations over a period of time to form a training dataset. The trained model
can then be deployed back to the edge locations where the data was collected, enabling faster inferencing
without the need to repeatedly transfer production data to a dedicated inferencing platform.

The NetApp HCI Al inferencing solution, powered by NetApp H615¢c compute nodes with NVIDIA T4 GPUs and
NetApp cloud-connected storage systems, was developed and verified by NetApp and NVIDIA. NetApp HCI
simplifies the deployment of Al inferencing solutions at edge data centers by addressing areas of ambiguity,
eliminating complexities in the design and ending guesswork.
This solution gives IT organizations a prescriptive architecture that:

« Enables Al inferencing at edge data centers

* Optimizes consumption of GPU resources

» Provides a Kubernetes-based inferencing platform for flexibility and scalability

 Eliminates design complexities
Edge data centers manage and process data at locations that are very near to the generation point. This
proximity increases the efficiency and reduces the latency involved in handling data. Many vertical markets

have realized the benefits of an edge data center and are heavily adopting this distributed approach to data
processing.

The following table lists the edge verticals and applications.

Vertical Applications

Medical Computer-aided diagnostics assist medical staff in
early disease detection

Oil and gas Autonomous inspection of remote production facilities,
video, and image analytics

178

Vertical Applications

Aviation Air traffic control assistance and real-time video feed
analytics

Media and entertainment Audio/video content filtering to deliver family-friendly
content

Business analytics Brand recognition to analyze brand appearance in
live-streamed televised events

E-Commerce Smart bundling of supplier offers to find ideal
merchant and warehouse combinations

Retail Automated checkout to recognize items a customer
placed in cart and facilitate digital payment

Smart city Improve traffic flow, optimize parking, and enhance
pedestrian and cyclist safety

Manufacturing Quiality control, assembly-line monitoring, and defect
identification

Customer service Customer service automation to analyze and triage

inquiries (phone, email, and social media)

Agriculture Intelligent farm operation and activity planning, to
optimize fertilizer and herbicide application

Target Audience
The target audience for the solution includes the following groups:
+ Data scientists
* IT architects
* Field consultants
 Professional services

* IT managers

* Anyone else who needs an infrastructure that delivers IT innovation and robust data and application
services at edge locations

Next: Architecture

Architecture

Solution Technology

This solution is designed with a NetApp HCI system that contains the following components:
» Two H615c compute nodes with NVIDIA T4 GPUs
» Two H410c compute nodes

* Two H410s storage nodes

* Two Mellanox SN2010 10GbE/25GbE switches

179

Architectural Diagram

The following diagram illustrates the solution architecture for the NetApp HCI Al inferencing solution.

H410C
Compute Nodes

Physical Network
Mellanox SN2010
Switches

H4108
Storage Nodes

NetApp HCI Architecture design for Al Inferencing

VMware vCenter

Management Cluster

H615C

Compute Nodes w/
NVIDIA T4 GPUs

Legend

A oot b ot Hobbel -

25G ISL

Management -4 & B

N

o s Bl il

Management - A & B

25G - Mgmt, Storage
& vMotion to Switch A

25G - Mgmt, Storage
& vMotion to Switch B

— 250 - Storage to Switch A

e 256 - Storage to Switch B

The following diagram illustrates the virtual and physical elements of this solution.

ESXi Cluster

VMware vCenter

el =

NetApp® Deployment Engine

ESXi Server 1
H410c

H410c

ESXi Server 2

Deployment Jump VM -
* Ansible
* NVIDIA DeepOps
* NetApp® Trident

Virtual Machines

K8 Master 1

K8 Master 2 K8 Master 2

NetApp HCI Element® software - Datastore for VMs

H615c K8 Worker Node 1

NVIDIA T4 GPUs

H615c K8 Worker Node 2

NVIDIA T4 GPUs

A VMware infrastructure is used to host the management services required by this inferencing solution. These
services do not need to be deployed on a dedicated infrastructure; they can coexist with any existing
workloads. The NetApp Deployment Engine (NDE) uses the H410c and H410s nodes to deploy the VMware

infrastructure.

180

After NDE has completed the configuration, the following components are deployed as VMs in the virtual

infrastructure:

* Deployment Jump VM. Used to automate the deployment of NVIDIA DeepOps. See NVIDIA DeepOps
and storage management using NetApp Trident.

* ONTAP Select. An instance of ONTAP Select is deployed to provide NFS file services and persistent
storage to the Al workload running on Kubernetes.

» Kubernetes Masters. During deployment, three VMs are installed and configured with a supported Linux
distribution and configured as Kubernetes master nodes. After the management services have been set
up, two H615c compute nodes with NVIDIA T4 GPUs are installed with a supported Linux distribution.
These two nodes function as the Kubernetes worker nodes and provide the infrastructure for the

inferencing platform.

Hardware Requirements

The following table lists the hardware components that are required to implement the solution. The hardware
components that are used in any particular implementation of the solution might vary based on customer

requirements.

Layer Product Family Quantity
Compute H615¢c 2

H410c 2
Storage H410s 2
Network Mellanox SN2010 2

Software Requirements

Details

3 NVIDIA Tesla T4 GPUs
per node

Compute nodes for
management
infrastructure

Storage for OS and
workload

10G/25G switches

The following table lists the software components that are required to implement the solution. The software
components that are used in any particular implementation of the solution might vary based on customer

requirements.

Layer

Storage

NetApp HCI engine

Hypervisor

Inferencing Platform

Software

NetApp Element software
ONTAP Select

NetApp Trident

NDE

Hypervisor

Hypervisor Management System
NVIDIA DeepOps

NVIDIA GPU Operator

Ansible

Version

12.0.0.333

9.7

20.07

1.8

VMware vSphere ESXi 6.7U1
VMware vCenter Server 6.7U1
20.08

1.1.7

295

181

https://docs.netapp.com/us-en/netapp-solutions/ai/hciaiedge_design_considerations.html#nvidia-deepops

Layer Software Version

Kubernetes 1.17.9

Docker Docker CE 18.09.7
CUDA Version 10.2

GPU Device Plugin 0.6.0

Helm 3.1.2

NVIDIA Tesla Driver 440.64.00

NVIDIA Triton Inference Server 2.1.0 — NGC Container v20.07

K8 Master VMs Linux Any supported distribution across
NetApp IMT, NVIDIA DeepOps, and
GPUOperator

Ubuntu 18.04.4 LTS was used in
this solution
Kernel version: 4.15

Host OS/ K8 Worker Nodes Linux Any supported distribution across
NetApp IMT, NVIDIA DeepOps, and
GPUOperator

Ubuntu 18.04.4 LTS was used in
this solution
Kernel version: 4.15

Next: Design Considerations

Design Considerations

Network Design

The switches used to handle the NetApp HCI traffic require a specific configuration for successful deployment.

Consult the NetApp HCI Network Setup Guide for the physical cabling and switch details. This solution uses a
two-cable design for compute nodes. Optionally, compute nodes can be configured in a six-node cable design
affording options for deployment of compute nodes.

The diagram under Architecture depicts the network topology of this NetApp HCI solution with a two-cable
design for the compute nodes.

Compute Design

The NetApp HCI compute nodes are available in two form factors, half-width and full-width, and in two rack unit
sizes, 1 RU and 2 RU. The 410c nodes used in this solution are half-width and 1 RU and are housed in a
chassis that can hold a maximum of four such nodes. The other compute node that is used in this solution is
the H615c, which is a full-width node, 1 RU in size. The H410c nodes are based on Intel Skylake processors,
and the H615¢c nodes are based on the second-generation Intel Cascade Lake processors. NVIDIA GPUs can
be added to the H615c nodes, and each node can host a maximum of three NVIDIA Tesla T4 16GB GPUs.

The H615c¢ nodes are the latest series of compute nodes for NetApp HCI and the second series that can
support GPUs. The first model to support GPUs is the H610c¢ node (full width, 2RU), which can support two

182

https://docs.netapp.com/us-en/netapp-solutions/ai/hciaiedge_architecture.html

NVIDIA Tesla M10 GPUs.
In this solution, H615¢ nodes are preferred over H610c nodes because of the following advantages:

* Reduced data center footprint, critical for edge deployments
» Support for a newer generation of GPUs designed for faster inferencing
* Reduced power consumption

* Reduced heat dissipation

NVIDIA T4 GPUs

The resource requirements of inferencing are nowhere close to those of training workloads. In fact, most
modern hand-held devices are capable of handling small amounts of inferencing without powerful resources
like GPUs. However, for mission-critical applications and data centers that are dealing with a wide variety of
applications that demand very low inferencing latencies while subject to extreme parallelization and massive
input batch sizes, the GPUs play a key role in reducing inference time and help to boost application
performance.

The NVIDIA Tesla T4 is an x16 PCle Gen3 single-slot low-profile GPU based on the Turing architecture. The
T4 GPUs deliver universal inference acceleration that spans applications such as image classification and
tagging, video analytics, natural language processing, automatic speech recognition, and intelligent search.
The breadth of the Tesla T4’s inferencing capabilities enables it to be used in enterprise solutions and edge
devices.

These GPUs are ideal for deployment in edge infrastructures due to their low power consumption and small
PCle form factor. The size of the T4 GPUs enables the installation of two T4 GPUs in the same space as a
double-slot full-sized GPU. Although they are small, with 16GB memory, the T4s can support large ML models
or run inference on multiple smaller models simultaneously.

The Turing- based T4 GPUs include an enhanced version of Tensor Cores and support a full range of
precisions for inferencing FP32, FP16, INT8, and INT4. The GPU includes 2,560 CUDA cores and 320 Tensor
Cores, delivering up to 130 tera operations per second (TOPS) of INT8 and up to 260 TOPS of INT4
inferencing performance. When compared to CPU-based inferencing, the Tesla T4, powered by the new Turing
Tensor Cores, delivers up to 40 times higher inference performance.

The Turing Tensor Cores accelerate the matrix-matrix multiplication at the heart of neural network training and
inferencing functions. They particularly excel at inference computations in which useful and relevant
information can be inferred and delivered by a trained deep neural network based on a given input.

The Turing GPU architecture inherits the enhanced Multi-Process Service (MPS) feature that was introduced in
the Volta architecture. Compared to Pascal-based Tesla GPUs, MPS on Tesla T4 improves inference
performance for small batch sizes, reduces launch latency, improves QoS, and enables the servicing of higher
numbers of concurrent client requests.

The NVIDIA T4 GPU is a part of the NVIDIA Al Inference Platform that supports all Al frameworks and provides

comprehensive tooling and integrations to drastically simplify the development and deployment of advanced
Al.

Storage Design: Element Software

NetApp Element software powers the storage of the NetApp HCI systems. It delivers agile automation through
scale-out flexibility and guaranteed application performance to accelerate new services.

Storage nodes can be added to the system non-disruptively in increments of one, and the storage resources

183

are made available to the applications instantly. Every new node added to the system delivers a precise
amount of additional performance and capacity to a usable pool. The data is automatically load balanced in the
background across all nodes in the cluster, maintaining even utilization as the system grows.

Element software supports the NetApp HCI system to comfortably host multiple workloads by guaranteeing
QoS to each workload. By providing fine-grained performance control with minimum, maximum, and burst
settings for each workload, the software allows well-planned consolidations while protecting application
performance. It decouples performance from capacity and allows each volume to be allocated with a specific
amount of capacity and performance. These specifications can be modified dynamically without any
interruption to data access.

As illustrated in the following figure, Element software integrates with NetApp ONTAP to enable data mobility
between NetApp storage systems that are running different storage operating systems. Data can be moved
from the Element software to ONTAP or vice versa by using NetApp SnapMirror technology. Element uses the
same technology to provide cloud connectivity by integrating with NetApp Cloud Volumes ONTAP, which
enables data mobility from the edge to the core and to multiple public cloud service providers.

In this solution, the Element-backed storage provides the storage services that are required to run the
workloads and applications on the NetApp HCI system.

— q L m\n;[x'
Cloud Volumes ONTAP i

A

SnapMirror®

‘amazon
webservices™

SnapMirror®

ONTAP® All Flash FAS

14 © 2019 NetApp, Inc. All rights reserved. — NETAPP CONFIDENTIAL — “ NetApp

Storage Design: ONTAP Select

NetApp ONTAP Select introduces a software-defined data storage service model on top of NetApp HCI. It
builds on NetApp HCI capabilities, adding a rich set of file and data services to the HCI platform while
extending the data fabric.

Although ONTAP Select is an optional component for implementing this solution, it does provide a host of
benefits, including data gathering, protection, mobility, and so on, that are extremely useful in the context of the
overall Al data lifecycle. It helps to simplify several day-to-day challenges for data handling, including ingestion,
collection, training, deployment, and tiering.

184

CORE

@D2E B

ONTAP® Select

NetApp® Al

ONTAP® Select

end points and mobile data centers

12 10 2013 NetApp, Inc. All rights reserved. — NETAPP CONFIDENTIAL — n NetApp

ONTAP Select can run as a VM on VMware and still bring in most of the ONTAP capabilities that are available
when it is running on a dedicated FAS platform, such as the following:

» Support for NFS and CIFS

* NetApp FlexClone technology

* NetApp FlexCache technology

* NetApp ONTAP FlexGroup volumes

* NetApp SnapMirror software
ONTAP Select can be used to leverage the FlexCache feature, which helps to reduce data-read latencies by
caching frequently read data from a back-end origin volume, as is shown in the following figure. In the case of
high-end inferencing applications with a lot of parallelization, multiple instances of the same model are
deployed across the inferencing platform, leading to multiple reads of the same model. Newer versions of the

trained model can be seamlessly introduced to the inferencing platform by verifying that the desired model is
available in the origin or source volume.

185

CORE EDGE
HCI
| T | |
1

Origin

ONTAP® Select
FlexGroup/FlexVol®

"M FlexCache® volume g

Trained Model, Training Read Tralned Mode|

Dataset, Test Dataset, etc.

Clients

NetApp® Al

13 © 2015 Nevapp, Int. ANl ights reserved. — NETARP CONFIDENTIAL — M NetApp

NetApp Trident

NetApp Trident is an open-source dynamic storage orchestrator that allows you to manage storage resources
across all major NetApp storage platforms. It integrates with Kubernetes natively so that persistent volumes
(PVs) can be provisioned on demand with native Kubernetes interfaces and constructs. Trident enables
microservices and containerized applications to use enterprise-class storage services such as QoS, storage
efficiencies, and cloning to meet the persistent storage demands of applications.

Containers are among the most popular methods of packaging and deploying applications, and Kubernetes is
one of the most popular platforms for hosting containerized applications. In this solution, the inferencing
platform is built on top of a Kubernetes infrastructure.

Trident currently supports storage orchestration across the following platforms:

ONTAP: NetApp AFF, FAS, and Select
Element software: NetApp HCI and NetApp SolidFire all-flash storage

NetApp SANTtricity software: E-Series and EF-series
Cloud Volumes ONTAP

Azure NetApp Files

NetApp Cloud Volumes Service: AWS and Google Cloud

Trident is a simple but powerful tool to enable storage orchestration not just across multiple storage platforms,
but also across the entire spectrum of the Al data lifecycle, ranging from the edge to the core to the cloud.

Trident can be used to provision a PV from a NetApp Snapshot copy that makes up the trained model. The

following figure illustrates the Trident workflow in which a persistent volume claim (PVC) is created by referring
to an existing Snapshot copy. Following this, Trident creates a volume by using the Snapshot copy.

186

POD 1

Container 1

Triton Inference Server
POD 2

Container 2

Triton Inference Server
POD 3

Container 3

Triton Inference Server
POD 4

Container 4
Triton Inference Server

POD 5

TRIDENT
PVC using Snapshot™ name

Volume FlexVol®/ FlexGroup
e Snapshot™
rained Model rained Model rained Model

Volume created using Snapshot™ NetApp® All Flash FAS
B

Container 5
Triton Inference Server

POD 6

Container 6
Triton Inference Server

This method of introducing trained models from a Snapshot copy supports robust model versioning. It
simplifies the process of introducing newer versions of models to applications and switching inferencing
between different versions of the model.

NVIDIA DeepOps

NVIDIA DeepOps is a modular collection of Ansible scripts that can be used to automate the deployment of a
Kubernetes infrastructure. There are multiple deployment tools available that can automate the deployment of
a Kubernetes cluster. In this solution, DeepOps is the preferred choice because it does not just deploy a
Kubernetes infrastructure, it also installs the necessary GPU drivers, NVIDIA Container Runtime for Docker
(nvidia-docker2), and various other dependencies for GPU-accelerated work. It encapsulates the best
practices for NVIDIA GPUs and can be customized or run as individual components as needed.

DeepOps internally uses Kubespray to deploy Kubernetes, and it is included as a submodule in DeepOps.
Therefore, common Kubernetes cluster management operations such as adding nodes, removing nodes, and
cluster upgrades should be performed using Kubespray.

A software based L2 LoadBalancer using MetalLb and an Ingress Controller based on NGINX are also
deployed as part of this solution by using the scripts that are available with DeepOps.

In this solution, three Kubernetes master nodes are deployed as VMs, and the two H615¢c compute nodes with
NVIDIA Tesla T4 GPUs are set up as Kubernetes worker nodes.

NVIDIA GPU Operator

The GPU operator deploys the NVIDIA k8s-device-plugin for GPU support and runs the NVIDIA drivers as
containers. It is based on the Kubernetes operator framework, which helps to automate the management of all
NVIDIA software components that are needed to provision GPUs. The components include NVIDIA drivers,
Kubernetes device plug-in for GPUs, the NVIDIA container runtime, and automatic node labeling, which is
used in tandem with Kubernetes Node Feature Discovery.

187

The GPU operator is an important component of the NVIDIA EGX software-defined platform that is designed to
make large-scale hybrid-cloud and edge operations possible and efficient. It is specifically useful when the
Kubernetes cluster needs to scale quickly—for example, when provisioning additional GPU-based worker
nodes and managing the lifecycle of the underlying software components. Because the GPU operator runs
everything as containers, including NVIDIA drivers, administrators can easily swap various components by
simply starting or stopping containers.

NVIDIA Triton Inference Server

NVIDIA Triton Inference Server (Triton Server) simplifies the deployment of Al inferencing solutions in
production data centers. This microservice is specifically designed for inferencing in production data centers. It
maximizes GPU utilization and integrates seamlessly into DevOps deployments with Docker and Kubernetes.

Triton Server provides a common solution for Al inferencing. Therefore, researchers can focus on creating
high-quality trained models, DevOps engineers can focus on deployment, and developers can focus on
applications without the need to redesign the platform for each Al-powered application.

Here are some of the key features of Triton Server:

» Support for multiple frameworks. Triton Server can handle a mix of models, and the number of models is
limited only by system disk and memory resources. It can support the TensorRT, TensorFlow GraphDef,
TensorFlow SavedModel, ONNX, PyTorch, and Caffe2 NetDef model formats.

» *Concurrent model execution. *Multiple models or multiple instances of the same model can be run
simultaneously on a GPU.

» Multi-GPU support. Triton Server can maximize GPU utilization by enabling inference for multiple models
on one or more GPUs.

« Support for batching. Triton Server can accept requests for a batch of inputs and respond with the
corresponding batch of outputs. The inference server supports multiple scheduling and batching algorithms
that combine individual inference requests together to improve inference throughput. Batching algorithms
are available for both stateless and stateful applications and need to be used appropriately. These
scheduling and batching decisions are transparent to the client that is requesting inference.

* Ensemble support. An ensemble is a pipeline with multiple models with connections of input and output
tensors between those models. An inference request can be made to an ensemble, which results in the
execution of the complete pipeline.

» Metrics. Metrics are details about GPU utilization, server throughput, server latency, and health for auto
scaling and load balancing.

NetApp HCl is a hybrid multi-cloud infrastructure that can host multiple workloads and applications, and the
Triton Inference Server is well equipped to support the inferencing requirements of multiple applications.

In this solution, Triton Server is deployed on the Kubernetes cluster using a deployment file. With this method,
the default configuration of Triton Server can be overridden and customized as required. Triton Server also
provides an inference service using an HTTP or GRPC endpoint, allowing remote clients to request inferencing
for any model that is being managed by the server.

A Persistent Volume is presented via NetApp Trident to the container that runs the Triton Inference Server and
this persistent volume is configured as the model repository for the Inference server.

The Triton Inference Server is deployed with varying sets of resources using Kubernetes deployment files, and
each server instance is presented with a LoadBalancer front end for seamless scalability. This approach also
illustrates the flexibility and simplicity with which resources can be allocated to the inferencing workloads.

Next: Deploying NetApp HCI — Al Inferencing at the Edge

188

https://www.nvidia.com/en-us/data-center/products/egx-edge-computing/

Overview

This section describes the steps required to deploy the Al inferencing platform using
NetApp HCI. The following list provides the high-level tasks involved in the setup:

—_

. Configure network switches

Deploy the VMware virtual infrastructure on NetApp HCI using NDE
Configure the H615¢c compute nodes to be used as K8 worker nodes
Set up the deployment jump VM and K8 master VMs

Deploy a Kubernetes cluster with NVIDIA DeepOps

Deploy ONTAP Select within the virtual infrastructure

Deploy NetApp Trident

Deploy NVIDIA Triton inference Server

© © N o o bk~ WD

Deploy the client for the Triton inference server

-_—
©

Collect inference metrics from the Triton inference server

Configure Network Switches (Automated Deployment)

Prepare Required VLAN IDs

The following table lists the necessary VLANSs for deployment, as outlined in this solution validation. You should
configure these VLANs on the network switches prior to executing NDE.

Network Segment Details VLAN ID

Out-of-band management network Network for HCI terminal user 16
interface (TUI)

In-band management network Network for accessing 3488
management interfaces of nodes,
hosts, and guests

VMware vMotion Network for live migration of VMs 3489

iSCSI SAN storage Network for iSCSI storage traffic 3490

Application Network for Application traffic 3487

NFS Network for NFS storage traffic 3491

IPL* Interpeer link between Mellanox 4000
switches

Native Native VLAN 2

*Only for Mellanox switches

Switch Configuration

This solution uses Mellanox SN2010 switches running Onyx. The Mellanox switches are configured using an
Ansible playbook. Prior to running the Ansible playbook, you should perform the initial configuration of the
switches manually:

189

5.

190

. Install and cable the switches to the uplink switch, compute, and storage nodes.

Power on the switches and configure them with the following details:
a. Host name
b. Management IP and gateway
c. NTP

Log into the Mellanox switches and run the following commands:

configuration write to pre-ansible
configuration write to post-ansible

The pre-ansible configuration file created can be used to restore the switch’s configuration to the state
before the Ansible playbook execution.

The switch configuration for this solution is stored in the post-ansible configuration file.

The configuration playbook for Mellanox switches that follows best practices and requirements for NetApp
HCI can be downloaded from the NetApp HCI Toolkit.

@ The HCI Toolkit also provides a playbook to setup Cisco Nexus switches with similar best
practices and requirements for NetApp HCI.

(D Additional guidance on populating the variables and executing the playbook is available in
the respective switch README.md file.

Fill out the credentials to access the switches and variables needed for the environment. The following text
is a sample of the variable file for this solution.

vars file for nar hci mellanox deploy

#These set of variables will setup the Mellanox switches for NetApp HCI
that uses a 2-cable compute connectivity option.

#Ansible connection variables for mellanox

ansible connection: network cli

ansible network os: onyx

#Necessary VLANs for Standard NetApp HCI Deployment [native, Management,
iSCSI Storage, vMotion, VM Network, IPL]

#Any additional VLANs can be added to this in the prescribed format
below

netapp hci vlans:

- {vlan_id: 2 , vlan name: "Native" }

- {vlan id: 3488 , vlan name: "IB-Management" }

- {vlan id: 3490 , vlan name: "iSCSI Storage" }

- {vlan_id: 3489 , vlan name: "vMotion" }

https://mysupport.netapp.com/site/tools/tool-eula/hci-toolkit

- {vlan id: 3491 , vlan name: "NFS " }

- {vlan_id: 3487 , vlan name: "App Network" }

- {vlan id: 4000 , vlan name: "IPL" }#Modify the VLAN IDs to suit your
environment

#Spanning-tree protocol type for uplink connections.

#The valid options are 'network' and 'normal'; selection depends on the
uplink switch model.

uplink stp type: network

#Inter-Peer Link Portchannel
#ipl portchannel to be defined in the format - Pol00
ipl portchannel: Pol00
#Inter-Peer Link Addresses
#The IPL IP address should not be part of the management network. This
is typically a private network
ipl ipaddr a: 10.0.0.1
ipl ipaddr b: 10.0.0.2
#Define the subnet mask in CIDR number format. Eg: For subnet /22, use
ipl ip subnet: 22
ipl ip subnet: 24
#Inter-Peer Link Interfaces
#members to be defined with Eth in the format. Eg: Ethl/1
peer link interfaces:
members: ['Ethl/20', 'Ethl/22']
description: "peer link interfaces"
#MLAG VIP IP address should be in the same subnet as that of the
switches' mgmtO interface subnet
#mlag vip ip to be defined in the format - <vip ip>/<subnet mask>. Eg:
X.X.X.X/y
mlag vip ip: <<mlag vip ip>>
#MLAG VIP Domain Name
#The mlag domain must be unique name for each mlag domain.
#In case you have more than one pair of MLAG switches on the same
network, each domain (consist of two switches) should be configured with
different name.
mlag domain name: MLAG-VIP-DOM

#Storage Bondl0G Interface details

fmembers to be defined with Eth in the format. Eg: Ethl/1

#0nly numerical digits between 100 to 1000 allowed for mlag id
#Operational link speed [variable 'speed' below] to be defined in terms
of bytes.

191

192

#For 10 Gigabyte operational speed, define 10G. [Possible values - 10G
and 25G]

#Interface descriptions append storage node data port numbers assuming
all Storage Nodes' Port C -> Mellanox Switch A and all Storage Nodes'
Port D -> Mellanox Switch B

#List the storage Bondl0G interfaces, their description, speed and MLAG
IDs in list of dictionaries format

storage interfaces:

- {members: "Ethl/1", description: "HCI Storage Node 01", mlag id: 101,
speed: 25G}

- {members: "Ethl/2", description: "HCI Storage Node 02", mlag id: 102,
speed: 25G}

#In case of additional storage nodes, add them here

#Storage BondlG Interface

#Mention whether or not these Mellanox switches will also be used for
Storage Node Mgmt connections

#Possible inputs for storage mgmt are 'yes' and 'no'

storage mgmt: <<yes or no>>

#Storage BondlG (Mgmt) interface details. Only if 'storage mgmt' is set
to 'yes'

#Members to be defined with Eth in the format. Eg: Ethl/1

#Interface descriptions append storage node management port numbers
assuming all Storage Nodes' Port A -> Mellanox Switch A and all Storage
Nodes' Port B -> Mellanox Switch B

#List the storage BondlG interfaces and their description in list of
dictionaries format

storage mgmt interfaces:

- {members: "Ethx/y", description: "HCI Storage Node 01"}

- {members: "Ethx/y", description: "HCI Storage Node 02"}

#In case of additional storage nodes, add them here

#LACP load balancing algorithm for IP hash method

#Possible options are: 'destination-mac', 'destination-ip',
'destination-port', 'source-mac', 'source-ip', 'source-port', 'source-
destination-mac', 'source-destination-ip', 'source-destination-port'
#This variable takes multiple options in a single go

#For eg: if you want to configure load to be distributed in the port-
channel based on the traffic source and destination IP address and port
number, use 'source-destination-ip source-destination-port'

#By default, Mellanox sets it to source-destination-mac. Enter the
values below only if you intend to configure any other load balancing
algorithm

#Make sure the load balancing algorithm that is set here is also
replicated on the host side

#Recommended algorithm is source-destination-ip source-destination-port
#Fill the lacp load balance variable only if you are using configuring
interfaces on compute nodes in bond or LAG with LACP

lacp load balance: "source-destination-ip source-destination-port"
#Compute Interface details
#Members to be defined with Eth in the format. Eg: Ethl/1
#Fill the mlag id field only if you intend to configure interfaces of
compute nodes into bond or LAG with LACP
#In case you do not intend to configure LACP on interfaces of compute
nodes, either leave the mlag id field unfilled or comment it or enter NA
in the mlag id field
#In case you have a mixed architecture where some compute nodes require
LACP and some don't,
#1. Fill the mlag id field with appropriate MLAG ID for interfaces that
connect to compute nodes requiring LACP
#2. Either fill NA or leave the mlag id field blank or comment it for
interfaces connecting to compute nodes that do not require LACP
#0nly numerical digits between 100 to 1000 allowed for mlag id.
#Operational link speed [variable 'speed' below] to be defined in terms
of bytes.
#For 10 Gigabyte operational speed, define 10G. [Possible values - 10G
and 25G]
#Interface descriptions append compute node port numbers assuming all
Compute Nodes' Port D -> Mellanox Switch A and all Compute Nodes' Port E
-> Mellanox Switch B
#List the compute interfaces, their speed, MLAG IDs and their
description in list of dictionaries format
compute interfaces:
- members: "Ethl/7"#Compute Node for ESXi, setup by NDE

description: "HCI Compute Node 01"

mlag id: #Fill the mlag id only if you wish to use LACP on interfaces
towards compute nodes

speed: 25G
- members: "Ethl/8"#Compute Node for ESXi, setup by NDE

description: "HCI Compute Node 02"

mlag id: #Fill the mlag id only if you wish to use LACP on interfaces
towards compute nodes

speed: 25G
#In case of additional compute nodes, add them here in the same format
as above- members: "Ethl/9"#Compute Node for Kubernetes Worker node

description: "HCI Compute Node 01"

mlag id: 109 #Fill the mlag id only if you wish to use LACP on
interfaces towards compute nodes

speed: 10G
- members: "Ethl/10"#Compute Node for Kubernetes Worker node

description: "HCI Compute Node 02"

mlag id: 110 #Fill the mlag id only if you wish to use LACP on
interfaces towards compute nodes

speed: 10G

193

#Uplink Switch LACP support
#Possible options are 'yes' and 'no' - Set to 'yes' only if your uplink
switch supports LACP
uplink switch lacp: <<yes or no>>
#Uplink Interface details
#Members to be defined with Eth in the format. Eg: Ethl/1
#0nly numerical digits between 100 to 1000 allowed for mlag id.
#Operational link speed [variable 'speed' below] to be defined in terms
of bytes.
#For 10 Gigabyte operational speed, define 10G. [Possible values in
Mellanox are 1G, 10G and 25G]
#List the uplink interfaces, their description, MLAG IDs and their speed
in list of dictionaries format
uplink interfaces:
- members: "Ethl/18"
description switch a: "SwitchA:Ethx/y -> Uplink Switch:Ethx/y"
description switch b: "SwitchB:Ethx/y -> Uplink Switch:Ethx/y"
mlag id: 118 #Fill the mlag id only if 'uplink switch lacp' is set to

'yes'
speed: 10G
mtu: 1500

The fingerprint for the switch’s key must match with that present in the host machine from
where the playbook is being executed. To ensure this, add the key to /root/.
ssh/known host or any other appropriate location.

Rollback the Switch Configuration

1. In case of any timeout failures or partial configuration, run the following command to roll back the switch to
the initial state.

configuration switch-to pre-ansible

@ This operation requires a reboot of the switch.

2. Switch the configuration to the state before running the Ansible playbook.
configuration delete post-ansible
3. Delete the post-ansible file that had the configuration from the Ansible playbook.

configuration write to post-ansible

194

4. Create a new file with the same name post-ansible, write the pre-ansible configuration to it, and switch to
the new configuration to restart configuration.

IP Address Requirements

The deployment of the NetApp HCI inferencing platform with VMware and Kubernetes requires multiple IP
addresses to be allocated. The following table lists the number of IP addresses required. Unless otherwise

indicated, addresses are assigned automatically by NDE.

IP Address Quantity

One per storage and
compute node*

One per vCenter Server
(VM)

One per management
node (VM)

One per ESXi host

One per storage/witness
node

One per storage cluster

One per ESXi host
Two per ESXi host

Two per storage node

Two per storage cluster

Two for mNode

Details VLAN ID

HCI terminal user 16
interface (TUI) addresses

vCenter Server 3488
management address

Management node IP
address

ESXi compute
management addresses

NetApp HCI storage node
management addresses

Storage cluster
management address

VVMware vMotion address 3489

ESXi host initiator address 3490
for iSCSI storage traffic

Storage node target
address for iISCSI storage
traffic

Storage cluster target
address for iISCSI storage
traffic

mNode iSCSI storage
access

IP Address

The following IPs are assigned manually when the respective components are configured.

IP Address Quantity

One for Deployment Jump

Management network

One per Kubernetes
master node —
management network

Details VLAN ID

Deployment Jump VM to 3488
execute Ansible

playbooks and configure

other parts of the system

— management

connectivity

Kubernetes master node 3488
VMs (three nodes)

IP Address

195

IP Address Quantity Details VLAN ID IP Address

One per Kubernetes Kubernetes worker nodes 3488
worker node — (two nodes)

management network

One per Kubernetes Kubernetes worker nodes 3491
worker node — NFS (two nodes)

network

One per Kubernetes Kubernetes worker nodes 3487
worker node — application (two nodes)

network

Three for ONTAP Select — ONTAP Select VM 3488

management network

One for ONTAP Select— ONTAP Select VM — NFS 3491

NFS network data traffic

At least two for Triton Load balancer IP range 3487
Inference Server Load for Kubernetes load

Balancer — application balancer service

network

*This validation requires the initial setup of the first storage node TUI address. NDE automatically assigns the
TUI address for subsequent nodes.

DNS and Timekeeping Requirement

Depending on your deployment, you might need to prepare DNS records for your NetApp HCI system. NetApp
HCI requires a valid NTP server for timekeeping; you can use a publicly available time server if you do not
have one in your environment.

This validation involves deploying NetApp HCI with a new VMware vCenter Server instance using a fully
qualified domain name (FQDN). Before deployment, you must have one Pointer (PTR) record and one
Address (A) record created on the DNS server.

Next: Virtual Infrastructure with Automated Deployment
Deploy VMware Virtual Infrastructure on NetApp HCI with NDE (Automated Deployment)

NDE Deployment Prerequisites

Consult the NetApp HCI Prerequisites Checklist to see the requirements and recommendations for NetApp
HCI before you begin deployment.

—_

. Network and switch requirements and configuration
Prepare required VLAN IDs

Switch configuration

IP Address Requirements for NetApp HCI and VMware

DNS and time-keeping requirements

© o > w0 Db

Final preparations

196

https://library.netapp.com/ecm/ecm_download_file/ECMLP2798490

NDE Execution

Before you execute the NDE, you must complete the rack and stack of all components, configuration of the
network switches, and verification of all prerequisites. You can execute NDE by connecting to the management
address of a single storage node if you plan to allow NDE to automatically configure all addresses.

NDE performs the following tasks to bring an HCI system online:

1. Installs the storage node (NetApp Element software) on a minimum of two storage nodes.
2. Installs the VMware hypervisor on a minimum of two compute nodes.
3. Installs VMware vCenter to manage the entire NetApp HCI stack.

4. Installs and configures the NetApp storage management node (mNode) and NetApp Monitoring Agent.

This validation uses NDE to automatically configure all addresses. You can also set up
DHCP in your environment or manually assign IP addresses for each storage node and
compute node. These steps are not covered in this guide.

As mentioned previously, this validation uses a two-cable configuration for compute nodes.
Detailed steps for the NDE are not covered in this document.

For step-by-step guidance on completing the deployment of the base NetApp HCI platform, see the
Deployment guide.

5. After NDE has finished, login to the vCenter and create a Distributed Port Group NetApp HCI VDS 01-
NFS_ Network for the NFS network to be used by ONTAP Select and the application.

Next: Configure NetApp H615¢ (Manual Deployment)

Configure NetApp H615c (Manual Deployment)

In this solution, the NetApp H615¢c compute nodes are configured as Kubernetes worker
nodes. The Inferencing workload is hosted on these nodes.

Deploying the compute nodes involves the following tasks:

* Install Ubuntu 18.04.4 LTS.
» Configure networking for data and management access.

* Prepare the Ubuntu instances for Kubernetes deployment.

Install Ubuntu 18.04.4 LTS

The following high-level steps are required to install the operating system on the H615¢ compute nodes:

1. Download Ubuntu 18.04.4 LTS from Ubuntu releases.
2. Using a browser, connect to the IPMI of the H615¢c node and launch Remote Control.
3. Map the Ubuntu ISO using the Virtual Media Wizard and start the installation.

4. Select one of the two physical interfaces as the Primary network interface when prompted.

An IP from a DHCP source is allocated when available, or you can switch to a manual IP configuration

197

http://docs.netapp.com/hci/topic/com.netapp.doc.hci-ude-180/home.html?cp=3_0
http://cdimage.ubuntu.com/ubuntu/releases/18.04/release/

later. The network configuration is modified to a bond-based setup after the OS has been installed.

Provide a hostname followed by a domain name.
Create a user and provide a password.
Partition the disks according to your requirements.

Under Software Selection, select OpenSSH server and click Continue.

© ® N o O

Reboot the node.

Configure Networking for Data and Management Access

The two physical network interfaces of the Kubernetes worker nodes are set up as a bond and VLAN
interfaces for management and application, and NFS data traffic is created on top of it.

@ The inferencing applications and associated containers use the application network for
connectivity.

1. Connect to the console of the Ubuntu instance as a user with root privileges and launch a terminal session.
2. Navigate to /etc/netplan and open the 01-netcfg.yaml file.

3. Update the netplan file based on the network details for the management, application, and NFS traffic in
your environment.

The following template of the netplan file was used in this solution:

This file describes the network interfaces available on your system
For more information, see netplan (5).
network:
version: 2
renderer: networkd
ethernets:
enp59s0f0: #Physical Interface 1
match:
macaddress: <<mac_address Physical Interface 1>>
set-name: enp59s0£f0
mtu: 9000
enpb59s0fl: # Physical Interface 2
match:
macaddress: <<mac_address Physical Interface 2>>
set-name: enpb59s0fl

mtu: 9000
bonds:
bond0:
mtu: 9000

dhcp4: false

dhcp6: false

interfaces: [enp59s0f0, enp59s0fl]
parameters:

198

mode: 802.3ad

mii-monitor-interval: 100

vlans:
vlan.3488: #Management VLAN
id: 3488

xref:{relative path}bond0
dhcp4: false
addresses: [ipv4_address/subnet]
routes:
- to: 0.0.0.0/0
via: 172.21.232.111
metric: 100
table: 3488
- to: x.x.x.x/x # Additional routes if any
via: y.y.y.y
metric: <<metric>>
table: <<table #>>
routing-policy:
- from: 0.0.0.0/0
priority: 32768#Higher Priority than table 3487
table: 3488
nameservers:
addresses: [nameserver ip]
search: [search domain]
mtu: 1500
vlan.3487:
id: 3487
xref:{relative path}bond0
dhcp4: false
addresses: [ipv4_address/subnet]
routes:
- to: 0.0.0.0/0
via: 172.21.231.111
metric: 101
table: 3487
- to: Xx.xX.xX.x/X
via: y.v.y.y
metric: <<metric>>
table: <<table #>>
routing-policy:
- from: 0.0.0.0/0
priority: 32769#Lower Priority
table: 3487

nameservers:
addresses: [nameserver ip]
search: [search domain]

199

mtu: 1500 vlan.3491:

id: 3491

xref:{relative path}bond0l

dhcp4: false

addresses: [ipv4_address/subnet]
mtu: 9000

4. Confirm that the priorities for the routing policies are lower than the priorities for the main and default
tables.

5. Apply the netplan.

sudo netplan --debug apply

6. Make sure that there are no errors.

7. If Network Manager is running, stop and disable it.

systemctl stop NetworkManager
systemctl disable NetworkManager

8. Add a host record for the server in DNS.

9. Open a Vl editor to /etc/iproute2/rt_tables and add the two entries.

#

reserved values
#

255 local

254 main

253 default

0 unspec

#

local

#

#1 inr.ruhep
101 3488

102 3487

10. Match the table number to what you used in the netplan.

11. Open a VI editor to /etc/sysctl.conf and set the value of the following parameters.

net.ipvé4.conf.default.rp filter=0
net.ipvé4.conf.all.rp filter=Onet.ipv4.ip forward=1

200

12. Update the system.

sudo apt-get update && sudo apt-get upgrade

13. Reboot the system
14. Repeat steps 1 through 13 for the other Ubuntu instance.

Next: Set Up the Deployment Jump and the Kubernetes Master Node VMs (Manual Deployment)

Set Up the Deployment Jump VM and the Kubernetes Master Node VMs (Manual Deployment)

A Deployment Jump VM running a Linux distribution is used for the following purposes:

» Deploying ONTAP Select using an Ansible playbook
* Deploying the Kubernetes infrastructure with NVIDIA DeepOps and GPU Operator
* Installing and configuring NetApp Trident

Three more VMs running Linux are set up; these VMs are configured as Kubernetes Master Nodes in this
solution.

Ubuntu 18.04.4 LTS was used in this solution deployment.
1. Deploy the Ubuntu 18.04.4 LTS VM with VMware tools
You can refer to the high-level steps described in section Install Ubuntu 18.04.4 LTS.

2. Configure the in-band management network for the VM. See the following sample netplan template:

201

https://docs.netapp.com/us-en/netapp-solutions/ai/hciaiedge_netapp_h615cmanual_deployment.html#install-ubuntu-18.04.4-lts

This file describes the network interfaces available on your system
For more information, see netplan(5).
network:
version: 2
renderer: networkd
ethernets:
ensl60:
dhcp4: false
addresses: [ipv4_address/subnet]
routes:
- to: 0.0.0.0/0
via: 172.21.232.111
metric: 100
table: 3488
routing-policy:
- from: 0.0.0.0/0
priority: 32768
table: 3488

nameservers:
addresses: [nameserver ip]
search: [search domain]
mtu: 1500

This template is not the only way to setup the network. You can use any other approach that you prefer.

3. Apply the netplan.

sudo netplan —--debug apply

4. Stop and disable Network Manager if it is running.

systemctl stop NetworkManager
systemctl disable NetworkManager

5. Open a Vl editor to /etc/iproute2/rt tables and add a table entry.

202

#

reserved values

#

255 local

254 main

253 default

0 unspec

#

local

#

#1 inr.ruhep
101 3488

6. Add a host record for the VM in DNS.
7. Verify outbound internet access.

8. Update the system.
sudo apt-get update && sudo apt-get upgrade

9. Reboot the system.
10. Repeat steps 1 through 9 to set up the other three VMs.

Next: Deploy a Kubernetes Cluster with NVIDIA DeepOps (Automated Deployment)

Deploy a Kubernetes Cluster with NVIDIA DeepOps Automated Deployment

To deploy and configure the Kubernetes Cluster with NVIDIA DeepOps, complete the
following steps:

1. Make sure that the same user account is present on all the Kubernetes master and worker nodes.

2. Clone the DeepOps repository.

git clone https://github.com/NVIDIA/deepops.git

3. Check out a recent release tag.

cd deepops
git checkout tags/20.08

If this step is skipped, the latest development code is used, not an official release.

4. Prepare the Deployment Jump by installing the necessary prerequisites.

203

./scripts/setup.sh

9. Create and edit the Ansible inventory by opening a VI editor to deepops/config/inventory.
. List all the master and worker nodes under [all].

a
b. List all the master nodes under [kube-master]

9]

List all the master nodes under [etcd]

d. List all the worker nodes under [kube-node]

6. Enable GPUOperator by opening a VI editor to deepops/config/group vars/k8s-cluster.yml.

204

7. Set the value of deepops gpu operator enabled to true.

8. Verify the permissions and network configuration.
ansible all -m raw -a "hostname" -k -K

o If SSH to the remote hosts requires a password, use -k.
o If sudo on the remote hosts requires a password, use -K.

9. If the previous step passed without any issues, proceed with the setup of Kubernetes.

ansible-playbook --limit k8s-cluster playbooks/k8s-cluster.yml -k -K

10. To verify the status of the Kubernetes nodes and the pods, run the following commands:

kubectl get nodes

kubectl get pods -A

It can take a few minutes for all the pods to run.

205

11. Verify that the Kubernetes setup can access and use the GPUs.

./scripts/k8s verify gpu.sh

Expected sample output:

rarvind@deployment-jump:~/deepops$./scripts/k8s verify gpu.sh
job name=cluster-gpu-tests

Node found with 3 GPUs

Node found with 3 GPUs

total gpus=6

Creating/Deleting sandbox Namespace

updating test yml

downloading containers

206

job.batch/cluster—-gpu-tests condition met

executing

Mon Aug 17 16:02:45 2020

o
—————— +

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:
10.2 |

| m e

e it e e R +

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile
Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util
Compute M. |

B e ———————— e ——— . ——————————————
======|

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10w / T0W | OMiB / 15109MiB | 0%

Default |

e et e e e B e it PP
o +

o
—————— +

| Processes: GPU
Memory |

| GPU PID Type Process name Usage
|

| e ——— ——— = — —— — — — — — — — — — — — — — — —— — — —— — —— ——— — —— — —————————————————
======|

| No running processes found

|

o
—————— +

Mon Aug 17 16:02:45 2020

o
—————— +

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:
10.2 |

| = m e e oo
o +

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile
Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util
Compute M. |

e e R

207

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10w / 70W | OMiB / 15109MiB | 0%

Default |

+--— = -

t———_—— +
o
—————— +

| Processes: GPU
Memory |

| GPU PID Type Process name Usage
|

| T T T T T Y T T
======|

| No running processes found

|
o
—————— +

Mon Aug 17 16:02:45 2020
o
—————— +

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:
10.2 |

| ————— e ———— Fom e
+--— 1

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile
Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util
Compute M. |

|mmmmmmm e e e e e
======|

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10w / T0W | OMiB / 15109MiB | 0%

Default |

o et
- +
S
—————— +

| Processes: GPU
Memory |

| GPU PID Type Process name Usage

| No running processes found

—————— +

Mon Aug 17 16:02:45 2020
o
—————— +

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:
10.2 |

| e e o o
—_ +

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile
Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util
Compute M. |

| ==============================={======================{================
—=====|

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10w / 70W | OMiB / 15109MiB | 0%

Default |

- -
—_ +

o
—————— 1

| Processes: GPU
Memory |

| GPU PID Type Process name Usage
|

| m——=—===========—
======|

| No running processes found

|

o
—————— +

Mon Aug 17 16:02:45 2020

o
—————— +

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:
10.2 |

| m Fmm

R ettt P +

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile
Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util
Compute M. |

| S===========c==c=cc=csescecaesas i s==esesssssssssssssessdessssaassossese=

209

| 0 Tesla T4 On | 00000000:18:00.0 Off |

o\°

| N/A 38C P8 10w / T0W | OMiB / 15109MiB | 0
Default |

| Processes: GPU
Memory |
| GPU PID Type Process name Usage

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile
Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util
Compute M. |

| 0 Tesla T4 On | 00000000:18:00.0 Off |

o°

| N/A 38C P8 10w / 70W | OMiB / 15109MiB | 0

| GPU PID Type Process name Usage

| No running processes found

Number of Nodes: 2

Number of GPUs: 6

6 / 6 GPU Jobs COMPLETED

job.batch "cluster-gpu-tests" deleted
namespace "cluster-gpu-verify" deleted

12. Install Helm on the Deployment Jump.

./scripts/install helm.sh

13. Remove the taints on the master nodes.

kubectl taint nodes --all node-role.kubernetes.io/master-

This step is required to run the LoadBalancer pods.

14. Deploy LoadBalancer.

15. Edit the config/helm/metallb.yml file and provide a range of IP ddresses in the Application
Network to be used as LoadBalancer.

Default address range matches private network for the virtual cluster
defined in virtual/.
You should set this address range based on your site's infrastructure.
configInline:
address-pools:
- name: default
protocol: layer?
addresses:
- 172.21.231.130-172.21.231.140#Application Network
controller:
nodeSelector:
node-role.kubernetes.io/master: ""

16. Run a script to deploy LoadBalancer.

./scripts/k8s deploy loadbalancer.sh

211

17. Deploy an Ingress Controller.

./scripts/k8s deploy ingress.sh

Next: Deploy and Configure ONTAP Select in the VMware Virtual Infrastructure (Automated Deployment)

Deploy and Configure ONTAP Select in the VMware Virtual Infrastructure (Automated Deployment)

To deploy and configure an ONTAP Select instance within the VMware Virtual
Infrastructure, complete the following steps:

1. From the Deployment Jump VM, login to the NetApp Support Site and download the ONTAP Select OVA
for ESXi.

2. Create a directory OTS and obtain the Ansible roles for deploying ONTAP Select.

mkdir OTS
cd OTS

git clone https://github.com/NetApp/ansible.git
cd ansible

3. Install the prerequisite libraries.

212

https://mysupport.netapp.com/site/products/all/details/ontap-select/downloads-tab/download/62293/9.7

pip install requests
pip install pyvmomi
Open a VI Editor and create a playbook ‘"ots setup.yaml’’ with the below
content to deploy the ONTAP Select OVA and initialize the ONTAP cluster.
- name: Create ONTAP Select Deploy VM from OVA (ESXi)

hosts: localhost

gather facts: false

connection: 'local'

vars files:

- ots deploy vars.yaml
roles:
- na_ots deploy

- name: Wait for 1 minute before starting cluster setup

hosts: localhost

gather facts: false

tasks:

- pause:

minutes: 1

- name: Create ONTAP Select cluster (ESX1)

hosts: localhost

gather facts: false

vars files:

- ots cluster vars.yaml

roles:

- na ots cluster

4. Open a VI editor, create a variable file ots deploy vars.yaml, and fill in hte following parameters:

213

target vcenter or esxi host: "10.xxx.xx.xx"# vCenter IP

host login: "yourlogin@yourlab.local" # vCenter Username

ovf path: "/run/deploy/ovapath/ONTAPdeploy.ova"# Path to OVA on
Deployment Jump VM

datacenter name: "your-Lab"# Datacenter name in vCenter
esx _cluster name: "your Cluster"# Cluster name in vCenter
datastore name: "your-select-dt"# Datastore name in vCenter

mgt network: "your-mgmt-network"# Management Network to be used by OVA
deploy name: "test-deploy-vm"# Name of the ONTAP Select VM

deploy ipAddress: "10.xxx.xx.xx"# Management IP Address of ONTAP Select
VM

deploy gateway: "10.xxx.xx.l"# Default Gateway

deploy proxy url: ""# Proxy URL (Optional and if used)

deploy netMask: "255.255.255.0"# Netmask

deploy product company: "NetApp"# Name of Organization

deploy primaryDNS: "10.xxx.xx.xx"# Primary DNS IP

deploy secondaryDNS: ""# Secondary DNS (Optional)

deploy searchDomains: "your.search.domain.com"# Search Domain Name

Update the variables to match your environment.

9. Open a VI editor, create a variable file ots_cluster vars.yaml, and fill it out with the following
parameters:

214

node count: 1#Number of nodes in the ONTAP Cluster
monitor job: truemonitor deploy job: true
deploy api url: #Use the IP of the ONTAP Select VM
deploy login: "admin"
vcenter login: "administrator@vsphere.local"
vcenter name: "172.21.232.100"
esxi hosts:
- host name: 172.21.232.102
- host name: 172.21.232.103
cluster name: "hci-ai-ots"# Name of ONTAP Cluster
cluster ip: "172.21.232.118"# Cluster Management IP
cluster netmask: "255.255.255.0"
cluster gateway: "172.21.232.1"
cluster ontap image: "9.7"
cluster ntp:
- "10.61.186.231"
cluster dns ips:
- "10.61.186.231"
cluster dns domains:
- "sddc.netapp.com"
mgt network: "NetApp HCI VDS Ol-Management Network"# Name of VM Port
Group for Mgmt Network
data network: "NetApp HCI VDS 01-NFS Network"# Name of VM Port Group for
NEF'S Network
internal network: ""# Not needed for Single Node Cluster
instance type: "small"
cluster nodes:
- node name: "{{ cluster name }}-01"
ipAddress: 172.21.232.119# Node Management IP
storage pool: NetApp-HCI-Datastore-02 # Name of Datastore in vCenter
to use
capacityTB: 1# Usable capacity will be ~700GB
host name: 172.21.232.102# IP Address of an ESXi host to deploy node

Update the variables to match your environment.

6. Start ONTAP Select setup.

ansible-playbook ots setup.yaml --extra-vars deploy pwd=$'"PQ@sswOrd"'

--extra-vars vcenter password=$'"P@sswOrd"' --extra-vars
ontap pwd=$'"P@sswOrd"' --extra-vars host esx password=$'"P@sswOrd"'
--extra-vars host password=$'"P@sswOrd"' --extra-vars

deploy password=$'"P@sswOrd"'

215

7. Update the command with deploy pwd ° (ONTAP Select VM instance),
‘vcenter password(vCenter), ontap pwd (ONTAP login password), host esx password (VMware
ESXi), host password (vCenter), and deploy password (ONTAP Select VM instance).

Configure the ONTAP Select Cluster — Manual Deployment

To configure the ONTAP Select cluster, complete the following steps:

1. Open a browser and log into the ONTAP cluster’s System Manager using its cluster management IP.
2. On the DASHBOARD page, click Prepare Storage under Capacity.

Capacity >

The system discovered 1 disks. When you prepare the disks for

provisioning, the system will group the disks for optimum performance
and resiliency.

Prepare Storage

3. Select the radio button to continue without onboard key manager, and click Prepare Storage.

4. On the NETWORK page, click the + sign in the Broadcast Domains window.

Broadcast Domains
Cluster 9000 MTU IPspace: Cluster
Default 1500 MTU IPspace: Default

heci-ai-ots-01 e0b e0c

Mgmt 1500 MTU IPspace: Default
hci-ai-ots-01 ela

5. Enter the Name as NFS, set the MTU to 9000, and select the port e0b. Click Save.

216

Add Broadcast Domain

Specify the following details to add a new broadcast domain.

MAME

NFS

assigNPoRTS (3)

Port Name hci-ai-ots-01
e0b

elc

Save Cancel

6. On the DASHBOARD page, click Configure Protocols under Network.

Network

No protocols are enabled. To begin serving data to clients, enable the
required protocols and assign the protocol addresses.

Configure Protocols

217

7. Enter a name for the SVM, select Enable NFS, provide an IP and subnet mask for the NFS LIF, set the
Broadcast Domain to NFS, and click Save.

Configure Protocols x

ONTAP exposes protocol services through storage VMs. More details
STORAGE VM NAME

infra-NFS-hci-ai

Access Protocol

& SMB/CIFS and NFS iSCSI

Enable SMB/CIFS
B Enable NFS
DEFAULT LANGUAGE @

c.utf 8 w

METWORK INTERFACE
One network interface per node is recommended.

hci-ai-ots-01
IP ADDRESS SUBMET MASK GATEWAY BROADCAST DOMAIN
172.21.235.119 255.255.255.0 Add optional gateway NFS v

8. Click STORAGE in the left pane, and from the dropdown select Storage VMs
a. Edit the SVM.

218

Storage VMs

MName State
infra-NFS-hci-ai : running
Edit
Delete
Stop

b. Select the checkbox under Resource Allocation, make sure that the local tier is listed, and click Save.

219

Edit Storage VM X

STORAGE VM NAME

infra-NFS-hei-ai

DEFAULT LANGUAGE

c.utf 8 e

Resource Allocation

Limit volume creation to preferred local tiers

LOCAL TIERS

hci_ai_ots 01 SSD 1 M

9. Click the SVM name, and on the right panel scroll down to Policies.

10. Click the arrow within the Export Policies tile, and click the default policy.

11. If there is a rule already defined, you can edit it; if no rule exists, then create a new one.
a. Select NFS Network Clients as the Client Specification.
b. Select the Read-Only and Read/Write checkboxes.

c. Select the checkbox to Allow Superuser Access.

220

New Rule "

LENT SFECIFICATION

172.21.235.0/24

SMB/CIFS

FlexCache

B s B NFSvs B NFSvs

Y B Rread-Only [Read/Write
UNIX =
Kerberos 5 B =
Karbaros 5i] =
Karbaros 5p = =
NTLM]]

B Allow Superuser Acoess

Next: Deploy NetApp Trident (Automated Deployment)

Deploy NetApp Trident (Automated Deployment)

NetApp Trident is deployed by using an Ansible playbook that is available with NVIDIA DeepOps. Follow these
steps to set up NetApp Trident:

1. From the Deployment Jump VM, navigate to the DeepOps directory and open a VI editor to
config/group vars/netapp-trident.yml. The file from DeepOps lists two backends and two
storage classes. In this solution only one backend and storage class are used.

Use the following template to update the file and its parameters (highlighted in yellow) to match your
environment.

221

222

vars file for netapp-trident playbook
URL of the Trident installer package that you wish to download and use
trident version: "20.07.0"# Version of Trident desired
trident installer url:
"https://github.com/NetApp/trident/releases/download/v{{ trident version
}}/trident-installer-{{ trident version }}.tar.gz"
Kubernetes version
Note: Do not include patch version, e.g. provide value of 1.16, not
1.16.7.
Note: Versions 1.14 and above are supported when deploying Trident
with DeepOps.
If you are using an earlier version, you must deploy Trident
manually.
k8s version: 1.17.9# Version of Kubernetes running
Denotes whether or not to create new backends after deploying trident
For more info, refer to: https://netapp-
trident.readthedocs.io/en/stable-v20.04/kubernetes/operator-
install.html#creating-a-trident-backend
create backends: true
List of backends to create
For more info on parameter values, refer to: https://netapp-
trident.readthedocs.io/en/stable-
v20.04/kubernetes/operations/tasks/backends/ontap.html
Note: Parameters other than those listed below are not avaible when
creating a backend via DeepOps
If you wish to use other parameter values, you must create your
backend manually.
backends to create:
- backendName: ontap-flexvol
storageDriverName: ontap-nas # only 'ontap-nas' and 'ontap-nas-
flexgroup' are supported when creating a backend via DeepOps
managementLIF: 172.21.232.118# Cluster Management IP or SVM Mgmt LIF
IP
datalIF: 172.21.235.119# NFS LIF IP
svm: infra-NFS-hci-ai# Name of SVM
username: admin# Username to connect to the ONTAP cluster
password: P@sswOrd# Password to login
storagePrefix: trident
limitAggregateUsage: ""
limitVolumeSize: ""
nfsMountOptions: ""
defaults:
spaceReserve: none
snapshotPolicy: none
snapshotReserve: 0

splitOnClone: false
encryption: false
unixPermissions: 777
snapshotDir: false
exportPolicy: default
securityStyle: unix
tieringPolicy: none
Add additional backends as needed
Denotes whether or not to create new StorageClasses for your NetApp
storage
For more info, refer to: https://netapp-
trident.readthedocs.io/en/stable-v20.04/kubernetes/operator-
install.html#creating-a-storage-class
create StorageClasses: true
List of StorageClasses to create
Note: Each item in the list should be an actual K8s StorageClass
definition in yaml format
For more info on StorageClass definitions, refer to https://netapp-
trident.readthedocs.io/en/stable-
v20.04/kubernetes/concepts/objects.html#kubernetes-storageclass-objects.
storageClasses to create:
- apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: ontap-flexvol
annotations:
storageclass.kubernetes.io/is-default-class: "true"
provisioner: csi.trident.netapp.io
parameters:
backendType: "ontap-nas"
Add additional StorageClasses as needed
Denotes whether or not to copy tridenctl binary to localhost
copy tridentctl to localhost: true
Directory that tridentctl will be copied to on localhost
tridentctl copy to directory: ../ # will be copied to 'deepops/'
directory

2. Setup NetApp Trident by using the Ansible playbook.

ansible-playbook -1 k8s-cluster playbooks/netapp-trident.yml

3. Verify that Trident is running.

./tridentctl -n trident version

223

The expected output is as follows:

rarvind@deployment-jump:~/deepops$./tridentctl -n trident version

Fom e oo +
| SERVER VERSION | CLIENT VERSION |
Fom e e +
| 20.07.0 | 20.07.0 |
fom e frmm e +

Next: Deploy NVIDIA Triton Inference Server (Automated Deployment)

Deploy NVIDIA Triton Inference Server (Automated Deployment)

To set up automated deployment for the Triton Inference Server, complete the following steps:

1. Open a VI editor and create a PVC yaml file vi pvc-triton-model- repo.yaml.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: triton-pvc namespace: triton
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 10Gi
storageClassName: ontap-flexvol

2. Create the PVC.

kubectl create -f pvc-triton-model-repo.yaml

3. Open a VI editor, create a deployment for the Triton Inference Server, and call the file
triton deployment.yaml.

apiVersion: vl
kind: Service
metadata:
labels:
app: triton-3gpu
name: triton-3gpu
namespace: triton

224

spec:
ports:

- name: grpc-trtis-serving

port: 8001
targetPort:

- name: http-trtis-serving

port: 8000
targetPort:

- name: prometheus-metrics

port: 8002
targetPort:
selector:

8001

8000

8002

app: triton-3gpu

type: LoadBalancer

apiVersion: vl

kind: Service

metadata:
labels:

app: triton-lgpu

name: triton-lgpu

namespace: triton

spec:
ports:

- name: grpc-trtis-serving

port: 8001
targetPort:

- name: http-trtis-serving

port: 8000
targetPbPort:

- name: prometheus-metrics

port: 8002
targetPbPort:

selector:

8001

8000

8002

app: triton-lgpu

type: LoadBalancer

apivVersion: apps/vl

kind: Deployment

metadata:
labels:

app: triton-3gpu

name: triton-3gpu

namespace: triton

spec:
replicas: 1

225

selector:
matchLabels:

app: triton-3gpu version: vl

template:
metadata:

labels:
app: triton-3gpu
version: vl

spec:

containers:

- image: nvcr.io/nvidia/tritonserver:20.07-vl-py3
command: ["/bin/sh", "-c"]
args: ["trtserver --model-store=/mnt/model-repo"]
imagePullPolicy: IfNotPresent
name: triton-3gpu
ports:

- containerPort: 8000
- containerPort: 8001
- containerPort: 8002
resources:
limits:
cpu: "2"
memory: 4Gi
nvidia.com/gpu: 3
requests:
cpu: "2"
memory: 4Gi
nvidia.com/gpu: 3
volumeMounts:
- name: triton-model-repo
mountPath: /mnt/model-repo nodeSelector:
gpu-count: “3”

volumes:

- name: triton-model-repo
persistentVolumeClaim:

claimName: triton-pvc---

apiVersion: apps/vl
kind: Deployment
metadata:

labels:

app: triton-lgpu

name: triton-1lgpu

namespace: triton
spec:

replicas: 3

selector:

226

matchLabels:
app: triton-lgpu
version: vl
template:
metadata:
labels:
app: triton-1lgpu
version: vl
spec:
containers:

- image: nvcr.io/nvidia/tritonserver:20.07-vl-py3
command: ["/bin/sh", "-c", “sleep 1000”]

args: ["trtserver --model-store=/mnt/model-repo"]

imagePullPolicy: IfNotPresent
name: triton-lgpu
ports:
- containerPort: 8000
- containerPort: 8001
- containerPort: 8002
resources:
limits:
cpu: "2"
memory: 4Gi
nvidia.com/gpu: 1
requests:
cpu: "2"
memory: 4Gi
nvidia.com/gpu: 1
volumeMounts:
- name: triton-model-repo
mountPath: /mnt/model-repo
gpu-count: “1”
volumes:
- name: triton-model-repo
persistentVolumeClaim:

claimName: triton-pvc

nodeSelector:

Two deployments are created here as an example. The first deployment spins up a pod that uses three
GPUs and has replicas set to 1. The other deployment spins up three pods each using one GPU while the
replica is set to 3. Depending on your requirements, you can change the GPU allocation and replica
counts.

Both of the deployments use the PVC created earlier and this persistent storage is provided to the Triton
inference servers as the model repository.

For each deployment, a service of type LoadBalancer is created. The Triton Inference Server can be
accessed by using the LoadBalancer IP which is in the application network.

227

A nodeSelector is used to ensure that both deployments get the required number of GPUs without any
issues.

4. Label the K8 worker nodes.

kubectl label nodes hci-ai-k8-worker-01 gpu-count=3
kubectl label nodes hci-ai-k8-worker-02 gpu-count=l

5. Create the deployment.

kubectl apply -f triton deployment.yaml

6. Make a note of the LoadBalancer service external LPS.

kubectl get services -n triton

The expected sample output is as follows:

TYPE CLUSTER-IP EXTERNAL-IP PCRT (S)
riton-1lgpu-v20-07-v1 LoadBalancer 10.233.21.185 172.21.231.133 8001:31238/TCP,8000:30171/TCP, 8002:32348/TCP

arvind@deployment-jump:~/triton-inference-server$ kubectl get services -n triton
riton-3gpu-v20-07-vl LoadBalancer 10.233.13.17 172.21.231.132 §001:31549/TCP,8000:30220/TCP, 8002:31517/TCP

AGE
10h
ioh

7. Connect to any one of the pods that were created from the deployment.

kubectl exec -n triton --stdin --tty triton-lgpu-86c4c8dd64-5451x --
/bin/bash

8. Set up the model repository by using the example model repository.

git clone
cd triton-inference-server
git checkout r20.07

9. Fetch any missing model definition files.

cd docs/examples
./fetch models.sh

10. Copy all the models to the model repository location or just a specific model that you wish to use.

cp -r model repository/resnet50 netdef/ /mnt/model-repo/

228

In this solution, only the resnet50_netdef model is copied over to the model repository as an example.

11. Check the status of the Triton Inference Server.

curl -v <<LoadBalancer IP recorded earlier>>:8000/api/status

The expected sample output is as follows:

curl -v 172.21.231.132:8000/api/status

o Trying 172.21.231.132...

* TCP_NODELAY set

Connected to 172.21.231.132 (172.21.231.132) port 8000 (#0)
GET /api/status HTTP/1.1

Host: 172.21.231.132:8000

User-Agent: curl/7.58.0

Accept: */*

*

HTTP/1.1 200 OK

NV-Status: code: SUCCESS server id: "inference:0" request id: 9
Content-Length: 1124

Content-Type: text/plain

AN N AN ANV V V VYV

id: "inference:0"
version: "1.15.0"
uptime ns: 377890294368
model status {
key: "resnet50 netdef"
value {
config {
name: "resnet50 netdef"
platform: "caffe2 netdef"
version policy {
latest {
num versions: 1

}

max batch size: 128

input {
name: "gpu 0/data"
data type: TYPE FP32
format: FORMAT NCHW

dims: 3
dims: 224
dims: 224

229

output {

name: "gpu 0/softmax"

data type: TYPE FP32

dims: 1000

label filename: "resnet50 labels.txt"

}

instance group {

name: "resnet50 netdef"
count: 1
gpus: 0O
gpus: 1
gpus: 2

kind: KIND GPU
}
default model filename: "model.netdef"
optimization {
input pinned memory {
enable: true
}
output pinned memory {
enable: true

}
version status {
key: 1
value {
ready state: MODEL READY
ready state reason {

}

}
ready state: SERVER READY

* Connection #0 to host 172.21.231.132 left intact

Next: Deploy the Client for Triton Inference Server (Automated Deployment)

Deploy the Client for Triton Inference Server (Automated Deployment)

To deploy the client for the Triton Inference Server, complete the following steps:

1. Open a VI editor, create a deployment for the Triton client, and call the file triton client.yaml.

230

apiVersion: apps/vl
kind: Deployment
metadata:
labels:
app: triton-client
name: triton-client
namespace: triton
spec:
replicas: 1
selector:
matchLabels:

app: triton-client

version: vl

template:
metadata:

labels:
app: triton-client
version: vl

spec:

containers:

- image: nvcr.io/nvidia/tritonserver:20.07- vl- py3-clientsdk
imagePullPolicy: IfNotPresent
name: triton-client
resources:

limits:
cpu: "2"
memory: 4Gi
requests:
cpu: "2"
memory: 4Gi

2. Deploy the client.

kubectl apply -f triton client.yaml

Next: Collect Inference Metrics from Triton Inference Server

Collect Inference Metrics from Triton Inference Server

The Triton Inference Server provides Prometheus metrics indicating GPU and request
statistics.

By default, these metrics are available at "http://<triton_inference_server_IP>:8002/metrics".

231

The Triton Inference Server IP is the LoadBalancer IP that was recorded earlier.

The metrics are only available by accessing the endpoint and are not pushed or published to any remote
server.

@ 172.21.231.132:8002/metrics

< c

HELP nv_inference_request_success Number of successful inference requests, all batch sizes

TYPE nv_inference_request_success counter
nv_inference_request_success{gpu_uuid="GPU-28a3f@dc-400f-2494-809c-f43%aclafc4f",model="resnet5e_netdef",version
nv_inference_request_success{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-ee91a4332958" ,model="resnet5@_netdef",versioi
nv_inference_request_success{gpu_uuid="GPU-b882876d-@b82-1b8b-5b05-9762986e8eel” ,model="resnet58_netdef",version
HELP nv_inference_request_failure Number of failed inference requests, all batch sizes

TYPE nv_inference_request_failure counter

HELP nv_inference_count Number of inferences performed

TYPE nv_inference_count counter
nv_inference_count{gpu_uuid="GPU-28a3f@dc-400f-e494-8089c-f43%9aclafcaf” ,model="resnet5@_netdef”,version=
nv_inference_count{gpu_uuid="GPU-aef8cff6-9325-@ald-0937-2e91a4332958" ,model="resnet50_netdef",version=
nv_inference_count{gpu_uuid="GPU-b882676d-@b82-1b8b-5b@5-9762986e8eel” ,model="resnet5@_netdef",version=
HELP nv_inference_exec_count Number of model executions performed

TYPE nv_inference_exec_count counter

x +

@ Notsecure | 172.21.231.132:8002/metrics

"1"} 260.000000
“} 4.000000
"1"} 5.000000

nv_inference_exec_count{gpu_uuid="GPU-28a3fodc-400f-e494-809c-f439aclafcaf" ,model="resnet50_netdef",version="1"} 6.000000
nv_inference_exec_count{gpu_uuid="GPU-aef8cff6-9325-0ald-0937-ee91a4332958" ,model="resnet5@_netdef",version="1"} 4.000000
nv_inference_exec_count{gpu_uuid="GPU-b882076d-0b82-1b8b-5b05-9762986e8eel" ,model="resnet50_netdef",version="1"} 5.000000

HELP nv_inference_request_duration_us Cummulative inference request duration in microseconds

TYPE nv_inference_request_duration_us counter
nv_inference_request_duration_us{gpu_uuid="GPU-28a3f@dc-400f-e494-809c-f439%aclafcaf" ,model="resnet50_netdef",version="1"}
nv_inference_request_duration_us{gpu_uuid="GPU-aef8cff6-9325-0a1d-8937-2291a4332958" ,model="resnet50_netdef",version="1"}
nv_inference_request_duration_us{gpu_uuid="GPU-b882076d-0b82-1b8b-5b85-2762986e8eel" ,model="resnet50_netdef",version="1"}
HELP nv_inference_compute_duration_us Cummulative inference compute duration in microseconds

TYPE nv_inference_compute_duration_us counter
nv_inference_compute_duration_us{gpu_uuid="GPU-28a3f@dc-400f-e494-809c-f43%clafc4f" ,model="resnet50_netdef",version="1"}
nv_inference_compute_duration_us{gpu_uuid="GPU-aef8cff6-9325-0ald-2937-2291a4332958" ,model="resnet50_netdef",version="1"}
nv_inference_compute_duration_us{gpu_uuid="GPU-b882076d-0b82-1b8b-5b85-9762986e8eel" ,model="resnet50_netdef",version="1"}
HELP nv_inference_queue_duration_us Cummulative inference queuing duration in microseconds

TYPE nv_inference_queue_duration_us counter
nv_inference_queue_duration_us{gpu_uuid="GPU-28a3f0dc-40@f-e494-809c-f439aclafcaf"”,model="resnet5@_netdef",version="1"} 514.000000
nv_inference_queue_duration_us{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-2£91a4332958" ,model="resnet5@_netdef"”,version="1"} 378.000000
nv_inference_queue_duration_us{gpu_uuid="GPU-b882076d-0b82-1b8b-5b05-9762986e8eel" ,model="resnet5@_netdef"”,version="1"} 366.000000

TYPE nv_inference_load_ratio histogram

nv_inference_load_ratio_count{gpu_uuid="GPU-28a3f0dc-400f-e494-809c-f439aclafc4f"” ,model="resnet50_netdef",version="1"} 6
nv_inference_load_ratio_sum{gpu_uuid="GPU-28a3f@dc-400f-e494-809c-f439aclafcaf", ,model="resnet5@_netdef”,version="1"} 6.053677
nv_inference_load_ratio_bucket{gpu_uuid="GPU-28a3f0dc-40@f-e494-809c-f439aclafcaf”,model="resnet56_netdef"”,version="1",le="1.050000"} 6
nv_inference_load_ratio_bucket{gpu_uvuid="GPU-28a3fadc-400f-e494-809¢c-f43%aclafc4f",model="resnet5@_netdef",version="1",1le="1.102020"} 6
nv_inference_load_ratio_bucket{gpu_uuid="GPU-28a3fadc-400f-e494-809¢-f43%aclafcaf" ,model="resnet5e_netdef",version="1",1le="1,252@00"} 6
nv_inference_load_ratio_bucket{gpu_uuid="GPU-28a3fodc-400f-e494-809¢c-f43%aclafc4f",model="resnet5@_netdef",version="1",le="1,502020"} 6
nv_inference_load_ratio_bucket{gpu_uuid="GPU-28a3fedc-400f-e494-809¢c-f43%aclafcaf” ,model="resnet5e_netdef",version="1",1le="2,000000"} 6
nv_inference_load_ratio_bucket{gpu_uuid="GPU-28a3fodc-400f-e494-809¢c-f43%aclafc4f",model="resnet5@_netdef",version="1",le="10.022200"}
nv_inference_load_ratio_bucket{gpu_uuid="GPU-28a3fodc-400f-e494-809¢c-f43%aclafc4f",model="resnet5@_netdef",version="1",le="50.020000"}
nv_inference_load_ratio_bucket{gpu_uuid="GPU-28a3fodc-400f-e494-809¢c-f43%aclafcaf",model="resnet5@_netdef",version="1",le="+Inf"} 6
nv_inference_load_ratio_count{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-229124332958" ,model="resnet50_netdef",version="1"} 4
nv_inference_load_ratio_sum{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-2291a4332958" ,model="resnet5@_netdef",version="1"} 4.032081

2172236.
1042062.
1476198.

020000
boooes
oeooee

ooaoee
ooooee
ooaoee

2159478.
1e41291.
1475336.

6
6

nv_inference_load_ratio_bucket{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-2291a4332958" ,model="resnet5@_netdef",version="1",le="1.050000"} 4
nv_inference_load_ratio_bucket{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-e291a4332958" ,model="resnet5@_netdef",version="1",le="1.100000"} 4
nv_inference_load_ratio_bucket{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-e291a4332958" ,model="resnet5@_netdef",version="1",le="1.250000"} 4
nv_inference_load_ratio_bucket{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-e291a4332958" ,model="resnet5@_netdef",version="1",le="1.500000"} 4
nv_inference_load_ratio_bucket{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-e291a4332958" ,model="resnet5@_netdef",version="1",le="2.000000"} 4

nv_inference_load_ratio_bucket{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-2£91a4332958" ,model="resnet5@_netdef",version="1",1
nv_inference_load_ratio_bucket{gpu_uuid="GPU-aef8cff6-9325-0ald-0937-2£91a4332958" ,model="resnet5@_netdef"”,version="1",1
nv_inference_load_ratio_bucket{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-2291a4332958" ,model="resnet5@_netdef",version="1",le=
nv_inference_load_ratio_count{gpu_uuid="GPU-b882076d-0b82-1b8b-5b05-9762986e8eel" ,model="resnet5@_netdef",version="1"} 5

nv_inference_load_ratio_sum{gpu_uuid="GPU-b8820@76d-0b82-1b8b-5b@5-9762986e8eel" ,model="resnet5@_netdef”,version="1"} 5.033
nv_inference_load_ratio_bucket{gpu_uuid="GPU-b882076d-0b82-1b8b-5b05-9762986e8eel” ,model="resnet5@_netdef",version="1",le=
nv_inference_load_ratio_bucket{gpu_uuid="GPU-b882076d-2b82-1b8b-5b@5-9762986e8eel"” ,model="resnet5@_netdef",version="1",1

nv_inference_load_ratio_bucket{gpu_uuid="GPU-b882076d-0b82-1b8b-5b05-9762986e8eel" ,model="resnet5@_netdef",version="1",le="
nv_inference_load_ratio_bucket{gpu_uuid="GPU-b882076d-0b82-1b8b-5b05-9762986e8eel” ,model="resnet5@_netdef",version="1",le="1.

nv_inference_load_ratio_bucket{gpu_uuid="GPU-b882076d-0b82-1b8b-5b85-9762986e8eel"” ,model="resnet5@_netdef”,version="1",1
nv_inference_load_ratio_bucket{gpu_uuid="GPU-b882076d-8b82-1b8b-5b85-9762986e8eel” ,model="resnet5@_netdef",version="1",le=
nv_inference_load_ratio_bucket{gpu_uuid="GPU-b882076d-8b82-1b8b-5b05-9762986e8eel"” ,model="resnet5@_netdef"”,version="1",1

232

10.000000"} 4
50.000000"} 4
"+Inf"} 4

626
"1.050000"

nv_inference_load_ratio_bucket{gpu_uuid="GPU-b882076d-2b82-1b8b-5b85-9762986e8eel" ,model="resnet50_netdef"”,version="1",le="+Inf"} 5
HELP nv_gpu_utilization GPU utilization rate [©.0 - 1.0)

TYPE nv_gpu_utilization gauge
nv_gpu_utilization{gpu_uuid="GPU-b882076d-0b82-1b8b-5b@S-9762986e3eel"} 0.000000
nv_gpu_utilization{gpu_uuid="GPU-2853f@dc-400f-e494-809c-f439aclafc4f"} @.200000
nv_gpu_utilization{gpu_uuid="GPU-aef8cff6-9325-0a1d-8937-2e9124332953"} 0.000000

HELP nv_gpu_memory_total_ bytes GPU total memory, in bytes

TYPE nv_gpu_memory_total_ bytes gauge
nv_gpu_memory_total_bytes{gpu_uuid="GPU-b882076d-0b82-1b8b-5b25-9762986e8eel"} 15843721216.000000
nv_gpu_memory_total_bytes{gpu_uuid="GPU-28a3f@dc-400f-e494-809c-f439aclafc4f"} 15843721216.000000
nv_gpu_memory_total_bytes{gpu_uuid="GPU-aef8cff6-9325-0a1d-08937-2291a4332958"} 15843721216.000000
HELP nv_gpu_memory_used_bytes GPU used memory, in bytes

TYPE nv_gpu_memory_used_bytes gauge
nv_gpu_memory_used_bytes{gpu_uuid="GPU-b882076d-Bb82-1b8b-5b@5-9762986e8eel"} 1466236928 .000000
nv_gpu_memory_used_bytes{gpu_uuid="GPU-28a3fadc-400f-2494-809c-f43%aclafc4f"} 13004767232.000000
nv_gpu_memory_used_bytes{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-2e9184332958"} 1466236928.000000

HELP nv_gpu_power_usage GPU power usage in watts

TYPE nv_gpu_power_usage gauge
nv_gpu_power_usage{gpu_uuid="GPU-b882076d-0b82-1b8b-5b@5-9762986e8eel"} 27.99%000
nv_gpu_power_usage{gpu_uuid="GPU-28a3fadc-400f-e494-809¢c-f439aclafcaf"} 28.428000
nv_gpu_power_usage{gpu_uuid="GPU-aef8cff6-2325-0a1d-0937-229134332958"} 27.6320002

HELP nv_gpu_power_limit GPU power management limit in watts

TYPE nv_gpu_power_limit gauge
nv_gpu_power_limit{gpu_uuid="GPU-b882076d-0b82-1b8b-5b@5-9762986e8eel"} 70.000000
nv_gpu_power_limit{gpu_uuid="GPU-28a3fodc-400f-e494-829c-f43%aclafcaf"} 70.000000
nv_gpu_power_limit{gpu_uuid="GPU-aef8cff6-9325-0ald-0937-e291a4332958"} 70.000000

HELP nv_energy_consumption GPU energy consumption in joules since the Triton Server started

TYPE nv_energy_consumption counter
nv_energy_consumption{gpu_uuid="GPU-b852076d-@b32-1b8b-5b@5-9762986e8eel"} 9796.449000
nv_energy_consumption{gpu_uuid="GPU-28a3f@dc-480f-e494-809c-f43%aclafcaf"} 9997.533000
nv_energy_consumption{gpu_uuid="GPU-aef8cff6-9325-0a1d-0937-e291a4332958"} 9669.536000

Next: Validation Results

Validation Results
To run a sample inference request, complete the following steps:

1. Get a shell to the client container/pod.
kubectl exec --stdin --tty <<client pod name>> -- /bin/bash
2. Run a sample inference request.

image client -m resnet50 netdef -s INCEPTION -u
<<LoadBalancer IP recorded earlier>>:8000 -c 3 images/mug.jpg

This inferencing request calls the resnet50 netdef model that is used for image recognition. Other
clients can also send inferencing requests concurrently by following a similar approach and calling out the
appropriate model.

Next: Where to Find Additional Information

Additional Information

To learn more about the information that is described in this document, review the
following documents and/or websites:

233

* NetApp HCI Theory of Operations
https://www.netapp.com/us/media/wp-7261.pdf

* NetApp Product Documentation
docs.netapp.com

* NetApp HCI Solution Catalog Documentation
https://docs.netapp.com/us-en/hci/solutions/index.html

» HCI Resources page
https://mysupport.netapp.com/info/web/ECMLP2831412.html

* ONTAP Select
https://www.netapp.com/us/products/data-management-software/ontap-select-sds.aspx

* NetApp Trident
https://netapp-trident.readthedocs.io/en/stable-v20.01/

* NVIDIA DeepOps
https://github.com/NVIDIA/deepops

* NVIDIA Triton Inference Server

https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-master-branch-guide/docs/index.html

Al Inferencing at the Edge - NetApp with Lenovo ThinkSystem - Solution Design

TR-4886: Al Inferencing at the Edge - NetApp with Lenovo ThinkSystem - Solution Design

Sathish Thyagarajan, NetApp
Miroslav Hodak, Lenovo

Summary

Several emerging application scenarios, such as advanced driver-assistance systems (ADAS), Industry 4.0,
smart cities, and Internet of Things (loT), require the processing of continuous data streams under a near-zero
latency. This document describes a compute and storage architecture to deploy GPU-based artificial
intelligence (Al) inferencing on NetApp storage controllers and Lenovo ThinkSystem servers in an edge
environment that meets these requirements. This document also provides performance data for the industry
standard MLPerf Inference benchmark, evaluating various inference tasks on edge servers equipped with
NVIDIA T4 GPUs. We investigate the performance of offline, single stream, and multistream inference
scenarios and show that the architecture with a cost-effective shared networked storage system is highly
performant and provides a central point for data and model management for multiple edge servers.

Introduction

Companies are increasingly generating massive volumes of data at the network edge. To achieve maximum
value from smart sensors and loT data, organizations are looking for a real-time event streaming solution that

234

https://www.netapp.com/us/media/wp-7261.pdf
https://docs.netapp.com/us-en/hci/solutions/index.html
https://mysupport.netapp.com/info/web/ECMLP2831412.html
https://www.netapp.com/us/products/data-management-software/ontap-select-sds.aspx
https://netapp-trident.readthedocs.io/en/stable-v20.01/
https://github.com/NVIDIA/deepops
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-master-branch-guide/docs/index.html

enables edge computing. Computationally demanding jobs are therefore increasingly performed at the edge,
outside of data centers. Al inference is one of the drivers of this trend. Edge servers provide sufficient
computational power for these workloads, especially when using accelerators, but limited storage is often an
issue, especially in multiserver environments. In this document we show how you can deploy a shared storage
system in the edge environment and how it benefits Al inference workloads without imposing a performance
penalty.

This document describes a reference architecture for Al inference at the edge. It combines multiple Lenovo
ThinkSystem edge servers with a NetApp storage system to create a solution that is easy to deploy and
manage. It is intended to be a baseline guide for practical deployments in various situations, such as the
factory floor with multiple cameras and industrial sensors, point- of- sale (POS) systems in retail transactions,
or Full Self-Driving (FSD) systems that identify visual anomalies in autonomous vehicles.

This document covers testing and validation of a compute and storage configuration consisting of Lenovo
ThinkSystem SE350 Edge Server and an entry-level NetApp AFF and EF-Series storage system. The
reference architectures provide an efficient and cost-effective solution for Al deployments while also providing
comprehensive data services, integrated data protection, seamless scalability, and cloud connected data
storage with NetApp ONTAP and NetApp SANtricity data management software.

Target audience

This document is intended for the following audiences:

* Business leaders and enterprise architects who want to productize Al at the edge.

» Data scientists, data engineers, Al/machine learning (ML) researchers, and developers of Al systems.

» Enterprise architects who design solutions for the development of AI/ML models and applications.

+ Data scientists and Al engineers looking for efficient ways to deploy deep learning (DL) and ML models.

» Edge device managers and edge server administrators responsible for deployment and management of
edge inferencing models.

Solution architecture

This Lenovo ThinkSystem server and NetApp ONTAP or NetApp SANTtricity storage solution is designed to
handle Al inferencing on large datasets using the processing power of GPUs alongside traditional CPUs. This
validation demonstrates high performance and optimal data management with an architecture that uses either
single or multiple Lenovo SR350 edge servers interconnected with a single NetApp AFF storage system, as
shown in the following two figures.

235

10Gb
Ethernet switch

AFF C190

236

o g1 4 m®

EF280

The logical architecture overview in the following figure shows the roles of the compute and storage elements
in this architecture. Specifically, it shows the following:

» Edge compute devices performing inference on the data it receives from cameras, sensors, and so on.

* A shared storage element that serves multiple purposes:

o Provides a central location for inference models and other data needed to perform the inference.
Compute servers access the storage directly and use inference models across the network without the
need to copy them locally.

o Updated models are pushed here.

o Archives input data that edge servers receive for later analysis. For example, if the edge devices are
connected to cameras, the storage element keeps the videos captured by the cameras.

237

red blue

Lenovo compute system NetApp AFF storage system
Edge devices performing inference on inputs from Shared storage holding inference models and data
cameras, sensors, and so on. from edge devices for later analysis.

This NetApp and Lenovo solution offers the following key benefits:

* GPU accelerated computing at the edge.
» Deployment of multiple edge servers backed and managed from a shared storage.

* Robust data protection to meet low recovery point objectives (RPOs) and recovery time objectives (RTOs)
with no data loss.

» Optimized data management with NetApp Snapshot copies and clones to streamline development
workflows.

How to use this architecture

This document validates the design and performance of the proposed architecture. However, we have not
tested certain software-level pieces, such us container, workload, or model management and data
synchronization with cloud or data center on-premises, because they are specific to a deployment scenario.
Here, multiple choices exist.

At the container management level, Kubernetes container management is a good choice and is well supported
in either a fully upstream version (Canonical) or in a modified version suitable for enterprise deployments (Red
Hat). The NetApp Al Control Planehttps://www.netapp.com/pdf.html?item=/media/17241-tr4798pdf.pdf[,] which
leverages NetApp Trident and the newly added NetApp DataOps Toolkithttps://github.com/NetApp/netapp-
data-science-toolkit[,] provides built-in traceability, data management functions, interfaces, and tools for data
scientists and data engineers to integrate with NetApp storage. Kubeflow, the ML toolkit for Kubernetes,
provides additional Al capabilities along with a support for model versioning and KFServing on several
platforms such as TensorFlow Serving or NVIDIA Triton Inference Server. Another option is NVIDIA EGX
platform, which provides workload management along with access to a catalog of GPU-enabled Al inference
containers. However, these options might require significant effort and expertise to put them into production
and might require the assistance of a third-party independent software vendor (ISV) or consultant.

Solution areas

The key benefit of Al inferencing and edge computing is the ability of devices to compute, process, and
analyze data with a high level of quality without latency. There are far too many examples of edge computing
use cases to describe in this document, but here are a few prominent ones:

Automobiles: Autonomous vehicles

The classic edge computing illustration is in the advanced driver-assistance systems (ADAS) in autonomous
vehicles (AV). The Al in driverless cars must rapidly process a lot of data from cameras and sensors to be a
successful safe driver. Taking too long to interpret between an object and a human can mean life or death,
therefore being able to process that data as close to the vehicle as possible is crucial. In this case, one or more
edge compute servers handles the input from cameras, RADAR, LiDAR, and other sensors, while shared
storage holds inference models and stores input data from sensors.

Healthcare: Patient monitoring

One of the greatest impacts of Al and edge computing is its ability to enhance continuous monitoring of

238

https://www.netapp.com/pdf.html?item=/media/17241-tr4798pdf.pdf
https://github.com/NetApp/netapp-dataops-toolkit/releases/tag/v2.0.0
https://github.com/NetApp/netapp-dataops-toolkit/releases/tag/v2.0.0

patients for chronic diseases both in at-home care and intensive care units (ICUs). Data from edge devices
that monitor insulin levels, respiration, neurological activity, cardiac rhythm, and gastrointestinal functions
require instantaneous analysis of data that must be acted on immediately because there is limited time to act
to save someone’s life.

Retail: Cashier-less payment

Edge computing can power Al and ML to help retailers reduce checkout time and increase foot traffic. Cashier-
less systems support various components, such as the following:

 Authentication and access. Connecting the physical shopper to a validated account and permitting access
to the retail space.

* Inventory monitoring. Using sensors, RFID tags, and computer vision systems to help confirm the selection
or deselection of items by shoppers.

Here, each of the edge servers handle each checkout counter and the shared storage system serves as a
central synchronization point.

Financial services: Human safety at kiosks and fraud prevention

Banking organizations are using Al and edge computing to innovate and create personalized banking
experiences. Interactive kiosks using real-time data analytics and Al inferencing now enable ATMs to not only
help customers withdraw money, but proactively monitor kiosks through the images captured from cameras to
identify risk to human safety or fraudulent behavior. In this scenario, edge compute servers and shared storage
systems are connected to interactive kiosks and cameras to help banks collect and process data with Al
inference models.

Manufacturing: Industry 4.0

The fourth industrial revolution (Industry 4.0) has begun, along with emerging trends such as Smart Factory
and 3D printing. To prepare for a data-led future, large-scale machine-to-machine (M2M) communication and
loT are integrated for increased automation without the need for human intervention. Manufacturing is already
highly automated and adding Al features is a natural continuation of the long-term trend. Al enables
automating operations that can be automated with the help of computer vision and other Al capabilities. You
can automate quality control or tasks that rely on human vision or decision making to perform faster analyses
of materials on assembly lines in factory floors to help manufacturing plants meet the required ISO standards
of safety and quality management. Here, each compute edge server is connected to an array of sensors
monitoring the manufacturing process and updated inference models are pushed to the shared storage, as
needed.

Telecommunications: Rust detection, tower inspection, and network optimization

The telecommunications industry uses computer vision and Al techniques to process images that automatically
detect rust and identify cell towers that contain corrosion and, therefore, require further inspection. The use of
drone images and Al models to identify distinct regions of a tower to analyze rust, surface cracks, and
corrosion has increased in recent years. The demand continues to grow for Al technologies that enable
telecommunication infrastructure and cell towers to be inspected efficiently, assessed regularly for degradation,
and repaired promptly when required.

Additionally, another emerging use case in telecommunication is the use of Al and ML algorithms to predict
data traffic patterns, detect 5G-capable devices, and automate and augment multiple-input and multiple-output
(MIMO) energy management. MIMO hardware is used at radio towers to increase network capacity; however,
this comes with additional energy costs. ML models for “MIMO sleep mode” deployed at cell sites can predict
the efficient use of radios and help reduce energy consumption costs for mobile network operators (MNOs). Al

239

inferencing and edge computing solutions help MNOs reduce the amount of data transmitted back-and-forth to
data centers, lower their TCO, optimize network operations, and improve overall performance for end users.

Next: Technology overview.

Technology overview

Previous: Introduction.

NetApp AFF systems

State-of-the-art NetApp AFF storage systems enable Al inference deployments at the edge to meet enterprise

storage requirements with industry-leading performance, superior flexibility, cloud integration, and best-in class
data management. Designed specifically for flash, NetApp AFF systems help accelerate, manage, and protect

business-critical data.

* Entry-level NetApp AFF storage systems are based on FAS2750 hardware and SSD flash media

» Two controllers in HA configuration

NetApp entry-level AFF C190 storage systems support the following features:

* A maximum drive count of 24x 960GB SSDs
« Two possible configurations:
o Ethernet (10GbE): 4x 10GBASE-T (RJ-45) ports
> Unified (16Gb FC or 10GbE): 4x unified target adapter 2 (UTA2) ports

« A maximum of 50.5TB effective capacity

@ For NAS workloads, a single entry-level AFF C190 system supports throughput of 4.4GBps
for sequential reads and 230K |IOPS for small random reads at latencies of 1ms or less.

NetApp AFF A220

NetApp also offers other entry-level storage systems that provide higher performance and scalability for larger-

240

scale deployments. For NAS workloads, a single entry-level AFF A220 system supports:

» Throughput of 6.2GBps for sequential reads

» 375K IOPS for small random reads at latencies of 1ms or less
* Maximum drive count of 144x 960GB, 3.8TB, or 7.6TB SSDs
» AFF A220 scales to larger than 1PB of effective capacity

NetApp AFF A250

« Maximum effective capacity is 35PB with maximum scale out 2-24 nodes (12 HA pairs)
* Provides = 45% performance increase over AFF A220

* 440k IOPS random reads @1ms

* Built on the latest NetApp ONTAP release: ONTAP 9.8

» Leverages two 25Gb Ethernet for HA and cluster interconnect

NetApp E-Series EF Systems

The EF-Series is a family of entry-level and mid-range all-flash SAN storage arrays that can accelerate access
to your data and help you derive value from it faster with NetApp SANTtricity software. These systems offer both
SAS and NVMe flash storage and provide you with affordable to extreme IOPS, response times under 100
microseconds, and bandwidth up to 44GBps—making them ideal for mixed workloads and demanding
applications such as Al inferencing and high-performance computing (HPC).

The following figure shows the NetApp EF280 storage system.

NetApp EF280

* 32Gb/16Gb FC, 25Gb/10Gb iSCSI, and 12Gb SAS support

» Maximum effective capacity is 96 drives totaling 1.5PB

» Throughput of 10GBps (sequential reads)

* 300K IOPs (random reads)

* The NetApp EF280 is the lowest cost all-flash array (AFA) in the NetApp portfolio

241

NetApp EF300

» 24x NVMe SSD drives for a total capacity of 367TB

» Expansion options totaling 240x NL-SAS HDDs, 96x SAS SSDs, or a combination
* 100Gb NVMe/IB, NVMe/RoCE, iSER/IB, and SRP/IB

» 32Gb NVME/FC, FCP

25Gb iSCSI

» 20GBps (sequential reads)

* 670K IOPs (random reads)

@ For more information, see the NetApp EF-Series NetApp EF-Series all-flash arrays EF600,
F300, EF570, and EF280 datasheet.

NetApp ONTAP 9

ONTAP 9.8.1, the latest generation of storage management software from NetApp, enables businesses to
modernize infrastructure and transition to a cloud-ready data center. Leveraging industry-leading data
management capabilities, ONTAP enables the management and protection of data with a single set of tools,
regardless of where that data resides. You can also move data freely to wherever it is needed: the edge, the
core, or the cloud. ONTAP 9.8.1 includes numerous features that simplify data management, accelerate and
protect critical data, and enable next generation infrastructure capabilities across hybrid cloud architectures.

Simplify data management

Data management is crucial to enterprise IT operations so that appropriate resources are used for applications
and datasets. ONTAP includes the following features to streamline and simplify operations and reduce the total
cost of operation:

* Inline data compaction and expanded deduplication. Data compaction reduces wasted space inside
storage blocks, and deduplication significantly increases effective capacity. This applies to data stored
locally and data tiered to the cloud.

* Minimum, maximum, and adaptive quality of service (AQoS). Granular quality of service (QoS) controls
help maintain performance levels for critical applications in highly shared environments.

* NetApp FabricPool. This feature provides automatic tiering of cold data to public and private cloud
storage options, including Amazon Web Services (AWS), Azure, and NetApp StorageGRID storage
solution. For more information about FabricPool, see TR-4598.

Accelerate and protect data

ONTAP 9 delivers superior levels of performance and data protection and extends these capabilities in the
following ways:

» Performance and lower latency. ONTAP offers the highest possible throughput at the lowest possible
latency.

» Data protection. ONTAP provides built-in data protection capabilities with common management across
all platforms.

* NetApp Volume Encryption (NVE). ONTAP offers native volume-level encryption with both onboard and
External Key Management support.

* Multitenancy and multifactor authentication. ONTAP enables sharing of infrastructure resources with

242

https://www.netapp.com/pdf.html?item=/media/19339-DS-4082.pdf
https://www.netapp.com/pdf.html?item=/media/19339-DS-4082.pdf
https://www.netapp.com/pdf.html?item=/media/17239-tr4598pdf.pdf

the highest levels of security.

Future-proof infrastructure

ONTAP 9 helps meet demanding and constantly changing business needs with the following features:

» Seamless scaling and nondisruptive operations. ONTAP supports the nondisruptive addition of
capacity to existing controllers and to scale-out clusters. Customers can upgrade to the latest technologies,
such as NVMe and 32Gb FC, without costly data migrations or outages.

* Cloud connection. ONTAP is the most cloud-connected storage management software, with options for
software-defined storage (ONTAP Select) and cloud-native instances (NetApp Cloud Volumes Service) in
all public clouds.

* Integration with emerging applications. ONTAP offers enterprise-grade data services for next generation
platforms and applications, such as autonomous vehicles, smart cities, and Industry 4.0, by using the same
infrastructure that supports existing enterprise apps.

NetApp SANTtricity

NetApp SAN:tricity is designed to deliver industry-leading performance, reliability, and simplicity to E-Series
hybrid-flash and EF-Series all-flash arrays. Achieve maximum performance and utilization of your E-Series
hybrid-flash and EF-Series all-flash arrays for heavy-workload applications, including data analytics, video
surveillance, and backup and recovery. With SANTtricity, configuration tweaking, maintenance, capacity
expansion, and other tasks can be completed while the storage stays online. SANtricity also provides superior
data protection, proactive monitoring, and certified security—all accessible through the easy-to-use, on-box
System Manager interface. To learn more, see the NetApp E-Series SANTtricity Software datasheet.

Performance optimized

Performance-optimized SANTricity software delivers data—with high I0Ps, high throughput, and low
latency—to all your data analytics, video surveillance, and backup apps. Accelerate performance for high-
IOPS, low-latency applications and high-bandwidth, high-throughput applications.

Maximize uptime

Complete all your management tasks while the storage stays online. Tweak configurations, perform
maintenance, or expand capacity without disrupting I/0O. Realize best-in-class reliability with automated
features, online configuration, state-of-the-art Dynamic Disk Pools (DPP) technology, and more.

Rest easy

SANftricity software delivers superior data protection, proactive monitoring, and certified security—all through
the easy-to-use, on-box System Manager interface. Simplify storage-management chores. Gain the flexibility
you need for advanced tuning of all E-Series storage systems. Manage your NetApp E-Series
system—anytime, anywhere. Our on-box, web-based interface streamlines your management workflow.

NetApp Trident

Trident from NetApp is an open-source dynamic storage orchestrator for Docker and Kubernetes that simplifies
the creation, management, and consumption of persistent storage. Trident, a Kubernetes native application,
runs directly within a Kubernetes cluster. Trident enables customers to seamlessly deploy DL container images
onto NetApp storage and provides an enterprise-grade experience for Al container deployments. Kubernetes
users (such as ML developers and data scientists) can create, manage, and automate orchestration and
cloning to take advantage of NetApp advanced data management capabilities powered by NetApp technology.

243

https://www.netapp.com/pdf.html?item=/media/7676-ds-3891.pdf
https://netapp.io/persistent-storage-provisioner-for-kubernetes/

NetApp Cloud Sync

Cloud Sync is a NetApp service for rapid and secure data synchronization. Whether you need to transfer files
between on-premises NFS or SMB file shares, NetApp StorageGRID, NetApp ONTAP S3, NetApp Cloud
Volumes Service, Azure NetApp Files, Amazon Simple Storage Service (Amazon S3), Amazon Elastic File
System (Amazon EFS), Azure Blob, Google Cloud Storage, or IBM Cloud Object Storage, Cloud Sync moves
the files where you need them quickly and securely. After your data is transferred, it is fully available for use on
both source and target. Cloud Sync continuously synchronizes the data, based on your predefined schedule,
moving only the deltas, so time and money spent on data replication is minimized. Cloud Sync is a software as
a service (SaaS) tool that is extremely simple to set up and use. Data transfers that are triggered by Cloud
Sync are carried out by data brokers. You can deploy Cloud Sync data brokers in AWS, Azure, Google Cloud
Platform, or on-premises.

Lenovo ThinkSystem servers

Lenovo ThinkSystem servers feature innovative hardware, software, and services that solve customers’
challenges today and deliver an evolutionary, fit-for-purpose, modular design approach to address tomorrow’s
challenges. These servers capitalize on best-in-class, industry-standard technologies coupled with
differentiated Lenovo innovations to provide the greatest possible flexibility in x86 servers.

Key advantages of deploying Lenovo ThinkSystem servers include:

» Highly scalable, modular designs to grow with your business
* Industry-leading resilience to save hours of costly unscheduled downtime

* Fast flash technologies for lower latencies, quicker response times, and smarter data management in real
time

In the Al area, Lenovo is taking a practical approach to helping enterprises understand and adopt the benefits
of ML and Al for their workloads. Lenovo customers can explore and evaluate Lenovo Al offerings in Lenovo Al
Innovation Centers to fully understand the value for their particular use case. To improve time to value, this
customer-centric approach gives customers proof of concept for solution development platforms that are ready
to use and optimized for Al.

Lenovo ThinkSystem SE350 Edge Server

Edge computing allows data from loT devices to be analyzed at the edge of the network before being sent to
the data center or cloud. The Lenovo ThinkSystem SE350, as shown in the figure below, is designed for the

unique requirements for deployment at the edge, with a focus on flexibility, connectivity, security, and remote
manageability in a compact ruggedized and environmentally hardened form factor.

Featuring the Intel Xeon D processor with the flexibility to support acceleration for edge Al workloads, the

SE350 is purpose-built for addressing the challenge of server deployments in a variety of environments outside
the data center.

244

https://docs.netapp.com/us-en/occm/concept_cloud_sync.html

Sy

L

|

Human Control Generate Data Collect Pre-process Store Data Deep
Visualization Interact with Automate Analyze Analytics Automate
physical world Forward Control
MLPerf

MLPerf is the industry-leading benchmark suite for evaluating Al performance. It covers many areas of applied
Al including image classification, object detection, medical imaging, and natural language processing (NLP). In
this validation, we used Inference v0.7 workloads, which is the latest iteration of the MLPerf Inference at the
completion of this validation. The MLPerf Inference v0.7 suite includes four new benchmarks for data center
and edge systems:

« BERT. Bi-directional Encoder Representation from Transformers (BERT) fine-tuned for question answering
by using the SQUAD dataset.

* DLRM. Deep Learning Recommendation Model (DLRM) is a personalization and recommendation model
that is trained to optimize click-through rates (CTR).

* 3D U-Net. 3D U-Net architecture is trained on the Brain Tumor Segmentation (BraTS) dataset.

* RNN-T. Recurrent Neural Network Transducer (RNN-T) is an automatic speech recognition (ASR) model

245

https://mlcommons.org/en/news/mlperf-inference-v07/

that is trained on a subset of LibriSpeech. MLPerf Inference results and code are publicly available and
released under Apache license. MLPerf Inference has an Edge division, which supports the following
scenarios:

+ Single stream. This scenario mimics systems where responsiveness is a critical factor, such as offline Al
queries performed on smartphones. Individual queries are sent to the system and response times are
recorded. 90th percentile latency of all the responses is reported as the result.

* Multistream. This benchmark is for systems that process input from multiple sensors. During the test,
queries are sent at a fixed time interval. A QoS constraint (maximum allowed latency) is imposed. The test
reports the number of streams that the system can process while meeting the QoS constraint.

« Offline. This is the simplest scenario covering batch processing applications and the metric is throughput
in samples per second. All data is available to the system and the benchmark measures the time it takes to
process all the samples.

Lenovo has published MLPerf Inference scores for SE350 with T4, the server used in this document. See the
results at https://mlperf.org/inference-results-0-7/ in the “Edge, Closed Division” section in entry #0.7-145.

Next: Test plan.

Test plan

Previous: Technology overview.

This document follows MLPerf Inference v0.7 code, MLPerf Inference v1.1 code, and rules. We ran MLPerf
benchmarks designed for inference at the edge as defined in the follow table.

Area Task Model Dataset QSL size Quality Multistream
latency
constraint

Vision Image Resnet50v1.5 ImageNet 1024 99% of 50ms

classification (224x224) FP32

Vision Object SSD- COCO 64 99% of 66ms

detection ResNet34 (1200x1200) FP32
(large)
Vision Object SSD- COCO 256 99% of 50ms
detection MobileNetsv1 (300x300) FP32
(small)
Vision Medical image 3D UNET BraTS 2019 16 99% and n/a
segmentation (224x224x160 99.9% of
) FP32

Speech Speech-to- RNNT Librispeech 2513 99% of n/a

text dev-clean FP32

Language Language BERT SQuAD v1.1 10833 99% of n/a

processing FP32

The following table presents Edge benchmark scenarios.

Area Task Scenarios

Vision Image classification Single stream, offline, multistream

246

https://mlperf.org/inference-results-0-7/
https://github.com/mlperf/inference_results_v0.7/tree/master/closed/Lenovo
https://github.com/mlcommons/inference_results_v1.1/tree/main/closed/Lenovo
https://github.com/mlcommons/inference_policies/blob/master/inference_rules.adoc

Area Task Scenarios

Vision Object detection (large) Single stream, offline, multistream
Vision Object detection (small) Single stream, offline, multistream
Vision Medical image segmentation Single stream, offline
Speech Speech-to-text Single stream, offline
Language Language processing Single stream, offline

We performed these benchmarks using the networked storage architecture developed in this validation and
compared results to those from local runs on the edge servers previously submitted to MLPerf. The
comparison is to determine how much impact the shared storage has on inference performance.

Next: Test configuration.

Test configuration

Previous: Test plan.

The following figure shows the test configuration. We used the NetApp AFF C190 storage system and two
Lenovo ThinkSystem SE350 servers (each with one NVIDIA T4 accelerator). These components are
connected through a 10GbE network switch. The network storage holds validation/test datasets and pretrained
models. The servers provide computational capability, and the storage is accessed over NFS protocol.

This section describes the tested configurations, the network infrastructure, the SE350 server, and the storage
provisioning details. The following table lists the base components for the solution architecture.

Solution components Details
Lenovo ThinkSystem servers » 2x SE350 servers each with one NVIDIA T4 GPU
card

» Each server contains one Intel Xeon D-2123IT
CPU with four physical cores running at 2.20GHz
and 128GB RAM

Entry-level NetApp AFF storage system (HA pair) * NetApp ONTAP 9 software
* 24x 960GB SSDs
* NFS protocol

» One interface group per controller, with four
logical IP addresses for mount points

247

n—'......_.-- ey

: rirwi
Lenovo ThinkSystem SE350 Lenovo ThinkSystem SE350
with NVIDIA T4 accelerator with NVIDIA T4 accelerator

10GhbE
Network Switch

NetApp AFF C190

The following table lists the storage configuration: AFF C190 with 2RU, 24 drive slots.

Controller Aggregate FlexGroup Aggregatesize Volumesize Operating
volume systemmount
point
Controller1 Aggr1 /netapplenovo A 8.42TiB 15TB /netapp_lenovo f
|_fg g
Controller2 Aggr2 8.42TiB

The /netappLenovo_Al_fg folder contains the datasets used for model validation.

The figure below shows the test configuration. We used the NetApp EF280 storage system and two Lenovo
ThinkSystem SE350 servers (each with one NVIDIA T4 accelerator). These components are connected
through a 10GbE network switch. The network storage holds validation/test datasets and pretrained models.
The servers provide computational capability, and the storage is accessed over NFS protocol.

The following table lists the storage configuration for EF280.

248

Controller Volume Group Volume Volumesize DDPsize Connection

method
Controller1 DDP1 Volume 1 8.42TiB 16TB SE350-1 to

iSCSILUN O
Controller2 Volume 2 8.42TiB SE350-2 to

iSCSI LUN 1

FiawrW

Lenovo ThinkSystem SE350 Lenovo ThinkSystem SE350
with NVIDIA T4 accelerator with NVIDIA T4 accelerator

NetApp EF280

Next: Test procedure.

Test procedure

Previous: Test configuration.

We used the following test procedure in this validation.

Operating system and Al inference setup

For AFF C190, we used Ubuntu 18.04 with NVIDIA drivers and docker with support for NVIDIA GPUs and used
MLPerf code available as a part of the Lenovo submission to MLPerf Inference v0.7.

For EF280, we used Ubuntu 20.04 with NVIDIA drivers and docker with support for NVIDIA GPUs and MLPerf
code available as a part of the Lenovo submission to MLPerf Inference v1.1.

To set up the Al inference, follow these steps:

1. Download datasets that require registration, the ImageNet 2012 Validation set, Criteo Terabyte dataset,
and BraTS 2019 Training set, and then unzip the files.

2. Create a working directory with at least 1TB and define environmental variable MLPERF _SCRATCH PATH
referring to the directory.

249

https://github.com/mlperf/inference_results_v0.7/tree/master/closed/Lenovo
https://github.com/mlcommons/inference_results_v1.1/tree/main/closed/Lenovo

You should share this directory on the shared storage for the network storage use case, or the local disk
when testing with local data.

3. Run the make prebuild command, which builds and launches the docker container for the required
inference tasks.

@ The following commands are all executed from within the running docker container:

> Download pretrained Al models for MLPerf Inference tasks: make download model

° Download additional datasets that are freely downloadable: make download data

° Preprocess the data: make preprocess data

° Run: make build.

° Build inference engines optimized for the GPU in compute servers: make generate engines

> To run Inference workloads, run the following (one command):

make run harness RUN ARGS="--benchmarks=<BENCHMARKS>
——-scenarios=<SCENARIOS>"

Al inference runs

Three types of runs were executed:

« Single server Al inference using local storage
 Single server Al inference using network storage

» Multi-server Al inference using network storage

Next: Test results.

Test results

Previous: Test procedure.

Test results for AFF

A multitude of tests were run to evaluate the performance of the proposed architecture. There are six different
workloads (image classification, object detection [small], object detection [large], medical imaging, speech-to-
text, and natural language processing [NLP]), which you can run in three different scenarios: offline, single
stream, and multistream.

@ The last scenario is implemented only for image classification and object detection.

This gives 15 possible workloads, which were all tested under three different setups:

* Single server/local storage
« Single server/network storage

* Multi-server/network storage

250

The results are described in the following sections.

Al inference in offline scenario for AFF

In this scenario, all the data was available to the server and the time it took to process all the samples was
measured. We report bandwidths in samples per second as the results of the tests. When more than one
compute server was used, we report total bandwidth summed over all the servers. The results for all three use
cases are shown in the figure below. For the two-server case, we report combined bandwidth from both
servers.

Offline (samples/second)
12166

15406
6084 6080 268

=g | mage Classification

e Object Detection (SSD- 770 7703 13.9

small) &

e Cbject Detection (SSD- 194 134 2910
large) L

e | edical Imaging I 7 884

1467 1465
=P Speech to text
e || P 444 442

1 sever 1 server 2 severs
(Local storage) (Network storage) (Network storage)

The results show that network storage does not negatively affect the performance—the change is minimal and
for some tasks, none is found. When adding the second server, the total bandwidth either exactly doubles, or
at worst, the change is less than 1%.

Al inference in a single stream scenario for AFF

This benchmark measures latency. For the multiple computational server case, we report the average latency.
The results for the suite of tasks are given in the figure below. For the two-server case, we report the average
latency from both servers.

251

Latency (ms)

0.88 0.89 0.9
—8—|mage Classification ~— - o

052 0.53 0.53
=8=0bject Detection (SSD-small) - & d

831 8.31 8.39
=#=_0bject Detection (55D-large)]

156.18 156.2 156.41

Medical Imaging

62.1 62.35 62.35
=8="Speech to text

6.25 6.3 6.33
—o—NLP — * —

1server 1server 2 servers

(Local storage)

(Network storage)

(Network storage)

The results, again, show that the network storage is sufficient to handle the tasks. The difference between local
and network storage in the one server case is minimal or none. Similarly, when two servers use the same

storage, the latency on both servers stays the same or changes by a very small amount.

Al inference in multistream scenario for AFF

In this case, the result is the number of streams that the system can handle while satisfying the QoS constraint.
Thus, the result is always an integer. For more than one server, we report the total number of streams summed
over all the servers. Not all workloads support this scenario, but we have executed those that do. The results of
our tests are summarized in the figure below. For the two-server case, we report the combined number of

streams from both servers.

252

Multiple Streams (number of streams)

272 272 736
=#=|mage Classification

368 168 16
=g==bject Detection (SSD-small) >
8
2= 0bject Detection (55D-large) & -
1 server 1 server 2 servers
(Local storage) (Network storage) (Network storage)

The results show perfect performance of the setup—local and networking storage give the same results and
adding the second server doubles the number of streams the proposed setup can handle.

Test results for EF

A multitude of tests were run to evaluate the performance of the proposed architecture. There are six different
workloads (image classification, object detection [small], object detection [large], medical imaging, speech-to-
text, and natural language processing [NLP]), which were run in two different scenarios: offline and single
stream. The results are described in the following sections.

Al inference in offline scenario for EF

In this scenario, all the data was available to the server and the time it took to process all the samples was
measured. We report bandwidths in samples per second as the results of the tests. For single node runs we
report average from both servers, while for two server runs we report total bandwidth summed over all the
servers. The results for use cases are shown in the figure below.

253

Offline (samples/second)

12096
14938
6061
—#=—|mage Classification ®
_) 7499
=== (bject Detection (SSD-small) ®
. . 134
=@ (0bject Detection (SSD-large) @
7
=@ Medical Imaging
1390
=@==Speech to text ®
415
) 11 .
1 server 1 server 2 servers

(Local storage) (Network storage) (Network storage)

The results show that network storage does not negatively affect the performance—the change is minimal and
for some tasks, none is found. When adding the second server, the total bandwidth either exactly doubles, or
at worst, the change is less than 1%.

Al inference in a single stream scenario for EF

This benchmark measures latency. For all cases, we report average latency across all servers involved in the
runs. The results for the suite of tasks are given.

254

Latency (ms)

0.83 0.83 0.83
=&==|mage Classification

68.26 68.21 68.17
=#==bject Detection (SSD-small)

8.35 8.34 8.34
=a=(0bject Detection (SSD-large) @ ®

157.20 157.15 157.14

Medical Imaging

68.26 68.21 68.17
=8=="S5peech to text =

6.02 6.02 6.02
=P

1server 1server 2 servers
(Local storage) (Network storage) (Network storage)

The results show again that the network storage is sufficient to handle the tasks. The difference between the
local and network storage in the one server case is minimal or none. Similarly, when two servers use the same
storage, the latency on both servers stays the same or changes by a very small amount.

Next: Architecture sizing options.

Architecture sizing options

Previous: Test results.

You can adjust the setup used for the validation to fit other use cases.

Compute server

We used an Intel Xeon D-2123IT CPU, which is the lowest level of CPU supported in SE350, with four physical
cores and 60W TDP. While the server does not support replacing CPUs, it can be ordered with a more
powerful CPU. The top CPU supported is Intel Xeon D-2183IT with 16 cores, 100W running at 2.20GHz. This
increases the CPU computational capability considerably. While CPU was not a bottleneck for running the
inference workloads themselves, it helps with data processing and other tasks related to inference. At present,
NVIDIA T4 is the only GPU available for edge use cases; therefore, currently, there is no ability to upgrade or
downgrade the GPU.

Shared storage

For testing and validation, the NetApp AFF C190 system, which has maximum storage capacity of 50.5TB, a
throughput of 4.4GBps for sequential reads, and 230K IOPS for small random reads, was used for the purpose
of this document and is proven to be well-suited for edge inference workloads.

255

However, if you require more storage capacity or faster networking speeds, you should use the NetApp AFF
A220 or NetApp AFF A250 storage systems. In addition, the NetApp EF280 system, which has a maximum
capacity of 1.5PB, bandwidth 10GBps was also used for the purpose of this solution validation. If you prefer
more storage capacity with higher bandwidth, NetApp EF300 can be used.

Next: Conclusion.

Conclusion

Previous: Architecture sizing options.

Al-driven automation and edge computing is a leading approach to help business organizations achieve digital
transformation and maximize operational efficiency and safety. With edge computing, data is processed much
faster because it does not have to travel to and from a data center. Therefore, the cost associated with sending
data back and forth to data centers or the cloud is diminished. Lower latency and increased speed can be
beneficial when businesses must make decisions in near-real time using Al inferencing models deployed at the
edge.

NetApp storage systems deliver the same or better performance as local SSD storage and offer the following
benefits to data scientists, data engineers, Al/ML developers, and business or IT decision makers:

« Effortless sharing of data between Al systems, analytics, and other critical business systems. This data
sharing reduces infrastructure overhead, improves performance, and streamlines data management across
the enterprise.

* Independently scalable compute and storage to minimize costs and improve resource usage.

» Streamlined development and deployment workflows using integrated Snapshot copies and clones for
instantaneous and space-efficient user workspaces, integrated version control, and automated deployment.

» Enterprise-grade data protection for disaster recovery and business continuity. The NetApp and Lenovo
solution presented in this document is a flexible, scale-out architecture that is ideal for enterprise-grade Al
inference deployments at the edge.

Acknowledgments

« J.J. Falkanger, Sr. Manager, HPC & Al Solutions, Lenovo
* Dave Arnette, Technical Marketing Engineer, NetApp

» Joey Parnell, Tech Lead E-Series Al Solutions, NetApp

» Cody Harryman, QA Engineer, NetApp

Where to find additional information

To learn more about the information described in this document, refer to the following documents and/or
websites:

* NetApp AFF A-Series arrays product page
https://www.netapp.com/data-storage/aff-a-series/

* NetApp ONTAP data management software—ONTAP 9 information library
http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286

* TR-4727: NetApp EF-Series Introduction

256

https://tv.netapp.com/detail/video/6211798209001/netapp-aff-a250-virtual-tour-and-demo
https://www.netapp.com/pdf.html?item=/media/19339-DS-4082.pdf&v=2021691654
https://www.netapp.com/data-storage/aff-a-series/
http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286

https://www.netapp.com/pdf.html?item=/media/17179-tr4727pdf.pdf
* NetApp E-Series SANTtricity Software Datasheet
https://www.netapp.com/pdf.html?item=/media/19775-ds-3171-66862.pdf
* NetApp Persistent Storage for Containers—NetApp Trident
https://netapp.io/persistent-storage-provisioner-for-kubernetes/

* MLPerf

o https://mlcommons.org/en/

o http://www.image-net.org/

o https://mlcommons.org/en/news/mliperf-inference-v11/
* NetApp Cloud Sync

https://docs.netapp.com/us-en/occm/concept_cloud_sync.html#how-cloud-sync-works
» TensorFlow benchmark

https://github.com/tensorflow/benchmarks
» Lenovo ThinkSystem SE350 Edge Server

https://lenovopress.com/Ip1168
* Lenovo ThinkSystem DM5100F Unified Flash Storage Array

https://lenovopress.com/Ip1365-thinksystem-dm5100f-unified-flash-storage-arrayhtes:/lencvopress.com/ip1363-thinksystem-
dm5100f—unified-flash—storage-array]

Version history

Version Date Document version history
Version 1.0 March 2021 Initial release
Version 2.0 October 2021 Updated with EF and MLPerf

Inference v1.1

WP-7328: NetApp Conversational Al Using NVIDIA Jarvis

Rick Huang, Sung-Han Lin, NetApp
Davide Onofrio, NVIDIA

The NVIDIA DGX family of systems is made up of the world’s first integrated artificial intelligence (Al)-based
systems that are purpose-built for enterprise Al. NetApp AFF storage systems deliver extreme performance
and industry-leading hybrid cloud data-management capabilities. NetApp and NVIDIA have partnered to create
the NetApp ONTAP Al reference architecture, a turnkey solution for Al and machine learning (ML) workloads
that provides enterprise-class performance, reliability, and support.

This white paper gives directional guidance to customers building conversational Al systems in support of
different use cases in various industry verticals. It includes information about the deployment of the system

257

https://www.netapp.com/pdf.html?item=/media/17179-tr4727pdf.pdf
https://www.netapp.com/pdf.html?item=/media/19775-ds-3171-66862.pdf
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://mlcommons.org/en/
http://www.image-net.org/
https://mlcommons.org/en/news/mlperf-inference-v11/
https://docs.netapp.com/us-en/occm/concept_cloud_sync.html#how-cloud-sync-works
https://github.com/tensorflow/benchmarks
https://lenovopress.com/lp1168
https://lenovopress.com/lp1365-thinksystem-dm5100f-unified-flash-storage-array
https://lenovopress.com/lp1365-thinksystem-dm5100f-unified-flash-storage-array
https://lenovopress.com/lp1365-thinksystem-dm5100f-unified-flash-storage-array

using NVIDIA Jarvis. The tests were performed using an NVIDIA DGX Station and a NetApp AFF A220 storage
system.

The target audience for the solution includes the following groups:

 Enterprise architects who design solutions for the development of Al models and software for
conversational Al use cases such as a virtual retail assistant

 Data scientists looking for efficient ways to achieve language modeling development goals

» Data engineers in charge of maintaining and processing text data such as customer questions and
dialogue transcripts

» Executive and IT decision makers and business leaders interested in transforming the conversational Al
experience and achieving the fastest time to market from Al initiatives

Next: Solution Overview

Solution Overview

NetApp ONTAP Al and Cloud Sync

The NetApp ONTAP Al architecture, powered by NVIDIA DGX systems and NetApp cloud-connected storage
systems, was developed and verified by NetApp and NVIDIA. This reference architecture gives IT
organizations the following advantages:

 Eliminates design complexities
» Enables independent scaling of compute and storage
* Enables customers to start small and scale seamlessly

» Offers a range of storage options for various performance and cost pointsNetApp ONTAP Al tightly
integrates DGX systems and NetApp AFF A220 storage systems with state-of-the-art networking. NetApp
ONTAP Al and DGX systems simplify Al deployments by eliminating design complexity and guesswork.
Customers can start small and grow their systems in an uninterrupted manner while intelligently managing
data from the edge to the core to the cloud and back.

NetApp Cloud Sync enables you to move data easily over various protocols, whether it's between two NFS
shares, two CIFS shares, or one file share and Amazon S3, Amazon Elastic File System (EFS), or Azure Blob
storage. Active-active operation means that you can continue to work with both source and target at the same
time, incrementally synchronizing data changes when required. By enabling you to move and incrementally
synchronize data between any source and destination system, whether on-premises or cloud-based, Cloud
Sync opens up a wide variety of new ways in which you can use data. Migrating data between on-premises
systems, cloud on-boarding and cloud migration, or collaboration and data analytics all become easily
achievable. The figure below shows available sources and destinations.

In conversational Al systems, developers can leverage Cloud Sync to archive conversation history from the
cloud to data centers to enable offline training of natural language processing (NLP) models. By training

models to recognize more intents, the conversational Al system will be better equipped to manage more
complex questions from end-users.

NVIDIA Jarvis Multimodal Framework

258

== n O = == n

NES NFS E— EFS SMB SMEB

NFS Server Azure NetApp Cloud Volumes — AWS EFS SMB Server Azure NetApp

Files (NFS) Service (NFS) Files (SMB)
aws i < 5] am
S =~ ONTAP ’) e

AWS 53 StorageGRID IBM Cloud ONTAPS3 Google Cloud Azure Blob
Object Storage Storage Storage Orchestration

{ n)
=
=
NetApp Cloud Sync

NVIDIA Jarvis is an end-to-end framework for building conversational Al services. It includes the following
GPU-optimized services:

» Automatic speech recognition (ASR)

» Natural language understanding (NLU)

* Integration with domain-specific fulfillment services
» Text-to-speech (TTS)

« Computer vision (CV)Jarvis-based services use state-of-the-art deep learning models to address the
complex and challenging task of real-time conversational Al. To enable real-time, natural interaction with an
end user, the models need to complete computation in under 300 milliseconds. Natural interactions are
challenging, requiring multimodal sensory integration. Model pipelines are also complex and require
coordination across the above services.

Jarvis is a fully accelerated, application framework for building multimodal conversational Al services that use
an end-to-end deep learning pipeline. The Jarvis framework includes pretrained conversational Al models,
tools, and optimized end-to-end services for speech, vision, and NLU tasks. In addition to Al services, Jarvis
enables you to fuse vision, audio, and other sensor inputs simultaneously to deliver capabilities such as multi-
user, multi-context conversations in applications such as virtual assistants, multi-user diarization, and call
center assistants.

NVIDIA NeMo

NVIDIA NeMo is an open-source Python toolkit for building, training, and fine-tuning GPU-accelerated state-of-
the-art conversational Al models using easy-to-use application programming interfaces (APIs). NeMo runs
mixed precision compute using Tensor Cores in NVIDIA GPUs and can scale up to multiple GPUs easily to
deliver the highest training performance possible. NeMo is used to build models for real-time ASR, NLP, and
TTS applications such as video call transcriptions, intelligent video assistants, and automated call center
support across different industry verticals, including healthcare, finance, retail, and telecommunications.

We used NeMo to train models that recognize complex intents from user questions in archived conversation
history. This training extends the capabilities of the retail virtual assistant beyond what Jarvis supports as

259

https://devblogs.nvidia.com/introducing-jarvis-framework-for-gpu-accelerated-conversational-ai-apps/
https://developer.nvidia.com/nvidia-nemo

delivered.

Retail Use Case Summary

Using NVIDIA Jarvis, we built a virtual retail assistant that accepts speech or text input and answers questions
regarding weather, points-of-interest, and inventory pricing. The conversational Al system is able to remember
conversation flow, for example, ask a follow-up question if the user does not specify location for weather or
points-of-interest. The system also recognizes complex entities such as “Thai food” or “laptop memory.” It
understands natural language questions like “will it rain next week in Los Angeles?” A demonstration of the
retail virtual assistant can be found in Customize States and Flows for Retail Use Case.

Next: Solution Technology

Solution Technology

The following figure illustrates the proposed conversational Al system architecture. You can interact with the
system with either speech signal or text input. If spoken input is detected, Jarvis Al-as-service (AlaaS)
performs ASR to produce text for Dialog Manager. Dialog Manager remembers states of conversation, routes
text to corresponding services, and passes commands to Fulfilment Engine. Jarvis NLP Service takes in text,
recognizes intents and entities, and outputs those intents and entity slots back to Dialog Manager, which then
sends Action to Fulfillment Engine. Fulfillment Engine consists of third-party APIs or SQL databases that
answer user queries. After receiving Result from Fulfillment Engine, Dialog Manager routes text to Jarvis TTS
AlaaS to produce an audio response for the end-user. We can archive conversation history, annotate
sentences with intents and slots for NeMo training such that NLP Service improves as more users interact with
the system.

Fulfillment Engine (APls, SQL, etc.)

weatherstack Yelp Fusion eBay Python SDK

Al-as-a-service Dialog Manager Action Result

® H Spoken - \) L Text
input Text Execution Jarvis Service

- State of conversation Intent
Aui - Route text to services
udio - Pass commands to Fulfillment Stot _
4) response Al-as-a-service / Engine
Y s
- Text Dialog description) Tsnecmecs)

Legend | weights
Customizabl Authoring (offline) NEMO (offline)
USamzaple Creating set rules for dialog sets,
ONTAP transitions, response templates Sample _
annotated
sentences

ONTAP Al & slots

3 party
(Rasa, Botpress, etc.)

Hardware Requirements

This solution was validated using one DGX Station and one AFF A220 storage system. Jarvis requires either a
T4 or V100 GPU to perform deep neural network computations.

The following table lists the hardware components that are required to implement the solution as tested.

260

https://cainvidia_customize_states_and_flows_for_retail_use_case.html

Hardware Quantity
T4 or V100 GPU 1
NVIDIA DGX Station 1

Software Requirements

The following table lists the software components that are required to implement the solution as tested.

Software Version or Other Information
NetApp ONTAP data management software 9.6

Cisco NX-OS switch firmware 7.0(3)I16(1)

NVIDIA DGX OS 4.0.4 - Ubuntu 18.04 LTS
NVIDIA Jarvis Framework EA V0.2

NVIDIA NeMo nvcr.io/nvidia/nemo:v0.10
Docker container platform 18.06.1-ce [e68fc7a]

Next: Build a Virtual Assistant Using Jarvis, Cloud Sync, and NeMo Overview

Overview
This section provides detail on the implementation of the virtual retail assistant.

Next: Jarvis Deployment

Jarvis Deployment

You can sign up for Jarvis Early Access program to gain access to Jarvis containers on
NVIDIA GPU Cloud (NGC). After receiving credentials from NVIDIA, you can deploy
Jarvis using the following steps:

1. Sign-on to NGC.

2. Set your organization on NGC: ea-2-jarvis.

3. Locate Jarvis EA v0.2 assets: Jarvis containers are in Private Registry > Organization
Containers.

4. Select Jarvis: navigate to Model Scripts and click Jarvis Quick Start
5. Verify that all assets are working properly.

6. Find the documentation to build your own applications: PDFs can be found in Model Scripts > Jarvis
Documentation > File Browser.

Next: Customize States and Flows for Retail Use Case

Customize States and Flows for Retail Use Case

You can customize States and Flows of Dialog Manager for your specific use cases. In
our retail example, we have the following four yaml files to direct the conversation

261

https://developer.nvidia.com/nvidia-jarvis-early-access

according to different intents.
Se the following list of file names and description of each file:

* main flow.yml: Defines the main conversation flows and states and directs the flow to the other three
yaml files when necessary.

* retail flow.yml: Contains states related to retail or points-of-interest questions. The system either
provides the information of the nearest store, or the price of a given item.

* weather flow.yml: Contains states related to weather questions. If the location cannot be determined,
the system asks a follow up question to clarify.

* error_ flow.yml: Handles cases where user intents do not fall into the above three yaml files. After
displaying an error message, the system re-routes back to accepting user questions.The following sections
contain the detailed definitions for these yaml files.

main_flow.yml

name: JarvisRetail
intent transitions:
jarvis error: error
price check: retail price check
inventory check: retail inventory check
store location: retail store location
weather.weather: weather
weather.temperature: temperature
weather.sunny: sunny
weather.cloudy: cloudy
weather.snow: snow
weather.rainfall: rain
weather.snow yes no: snowfall
weather.rainfall yes no: rainfall
weather.temperature yes no: tempyesno
weather.humidity: humidity
weather.humidity yes no: humidity
navigation.startnavigationpoi: retail # Transitions should be context
and slot based. Redirecting for now.
navigation.geteta: retail
navigation.showdirection: retail
navigation.showmappoi: idk what you talkin about
nomatch.none: idk what you talkin about
states:
init:

type: message text

properties:
text: "Hi, welcome to NARA retail and weather service. How can I
help you?"

input intent:

262

type: input context
properties:
nlp type: jarvis
entities:
intent: dontcare
This state is executed if the intent was not understood
dont get the intent:
type: message text random
properties:
responses:
- "Sorry I didn't get that! Please come again."
- "I beg your pardon! Say that again?"
- "Are we talking about weather? What would you like to know?"
- "Sorry I know only about the weather"
- "You can ask me about the weather, the rainfall, the
temperature, I don't know much more"
delay: O
transitions:
next state: input intent
idk what you talkin about:
type: message text random
properties:
responses:
- "Sorry I didn't get that! Please come again."
- "I beg your pardon! Say that again?"
- "Are we talking about retail or weather? What would you like to
know?"
- "Sorry I know only about retail and the weather"
- "You can ask me about retail information or the weather, the
rainfall, the temperature. I don't know much more."
delay: 0
transitions:
next state: input intent
error:
type: change context
properties:
update keys:
intent: 'error'
transitions:
flow: error flow
retail inventory check:
type: change context
properties:
update keys:
intent: 'retail inventory check'

transitions:

263

flow: retail flow
retail price check:
type: change context
properties:
update keys:
intent: 'check item price'
transitions:
flow: retail flow
retail store location:
type: change context
properties:
update keys:
intent: 'find the store'
transitions:
flow: retail flow
weather:
type: change context
properties:
update keys:
intent: 'weather'
transitions:
flow: weather flow
temperature:
type: change context
properties:
update keys:
intent: 'temperature'
transitions:
flow: weather flow
rainfall:
type: change context
properties:
update keys:
intent: 'rainfall'
transitions:
flow: weather flow
sunny:
type: change context
properties:
update keys:
intent: 'sunny'
transitions:
flow: weather flow
cloudy:
type: change context
properties:

264

update keys:
intent: 'cloudy'
transitions:
flow: weather flow
SNow:
type: change context
properties:
update keys:
intent: 'snow'
transitions:
flow: weather flow
rain:
type: change context
properties:
update keys:
intent: 'rain'
transitions:
flow: weather flow
snowfall:
type: change context
properties:
update keys:
intent: 'snowfall'
transitions:
flow: weather flow
tempyesno:
type: change context
properties:
update keys:
intent: 'tempyesno'
transitions:
flow: weather flow
humidity:
type: change context
properties:
update keys:
intent: 'humidity'
transitions:
flow: weather flow
end state:
type: reset
transitions:

next state: init

265

retail_flow.yml

name: retail flow
states:
store location:
type: conditional exists
properties:
key: '"{{location}}'
transitions:
exists: retail state
notexists: ask retail location
retail state:
type: Retail
properties:
transitions:
next state: output retail
output retail:
type: message text
properties:
text: '{{retail status}}'
transitions:
next state: input intent
ask retail location:
type: message text
properties:
text: "For which location? I can find the closest store near you."
transitions:
next state: input retail location
input retail location:
type: input user
properties:
nlp type: jarvis
entities:
slot: location
require match: true
transitions:
match: retail state
notmatch: check retail jarvis error
output retail acknowledge:
type: message text random
properties:
responses:
- 'ok in {{location}}'
- 'the store in {{location}}'
- 'T always wanted to shop in {{location}}'’
delay: O

266

transitions:
next state: retail state
output retail notlocation:
type: message text
properties:

text: "I did not understand the location. Can you please repeat?"

transitions:
next state: input intent
check rerail jarvis error:
type: conditional exists
properties:
key: '{{jarvis error}}'
transitions:
exists: show retail jarvis api error
notexists: output retail notlocation
show retail jarvis api error:
type: message text
properties:

text: "I am having troubled understanding right now.

that?"
transitions:

next state: input intent

weather_flow.yml

name: weather flow
states:
check weather location:
type: conditional exists
properties:
key: '"{{location}}'
transitions:
exists: weather state
notexists: ask weather location
weather state:
type: Weather
properties:
transitions:
next state: output weather
output weather:
type: message text
properties:
text: '{{weather status}}'
transitions:

next state: input intent

Come again on

267

ask weather location:
type: message text
properties:
text: "For which location?"
transitions:
next state: input weather location
input weather location:
type: input user
properties:
nlp type: jarvis
entities:
slot: location
require match: true
transitions:
match: weather state
notmatch: check jarvis error
output weather acknowledge:
type: message text random
properties:
responses:
- 'ok in {{location}}'
- 'the weather in {{location}}'
- 'T always wanted to go in {{location}}"'
delay: O
transitions:
next state: weather state
output weather notlocation:
type: message text
properties:
text: "I did not understand the location, can you please repeat?"
transitions:
next state: input intent
check jarvis error:
type: conditional exists
properties:
key: '{{jarvis error}}'
transitions:
exists: show jarvis api error
notexists: output weather notlocation
show jarvis api error:
type: message text
properties:
text: "I am having troubled understanding right now. Come again on
that, else check jarvis services?"
transitions:

next state: input intent

268

error_flow.yml

name: error flow
states:
error state:
type: message text random
properties:
responses:
- "Sorry I didn't get that!"
- "Are we talking about retail or weather? What would you like to
know?"
- "Sorry I know only about retail information or the weather"
- "You can ask me about retail information or the weather, the
rainfall, the temperature. I don't know much more"
- "Let's talk about retail or the weather!"
delay: O
transitions:
next state: input intent

Next: Connect to Third-Party APIs as Fulfillment Engine
Connect to Third-Party APIs as Fulfillment Engine
We connected the following third-party APIs as a Fulfillment Engine to answer questions:

« WeatherStack API: returns weather, temperature, rainfall, and snow in a given location.
* Yelp Fusion API: returns the nearest store information in a given location.

« eBay Python SDK: returns the price of a given item.

Next: NetApp Retail Assistant Demonstration

NetApp Retail Assistant Demonstration

We recorded a demonstration video of NetApp Retail Assistant (NARA). Click this link to
open the following figure and play the video demonstration.

269

https://weatherstack.com/
https://www.yelp.com/fusion
https://github.com/timotheus/ebaysdk-python
https://netapp.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=b4aae689-31b5-440c-8dde-ac050140ece7

NetApp NARA

Hi, welcome to NARA retail and weather service. How can | help you?

Jwrite your message...

System replied. Waiting for user input.

Next: Use NetApp Cloud Sync to Archive Conversation History

Use NetApp Cloud Sync to Archive Conversation History

By dumping conversation history into a CSV file once a day, we can then leverage Cloud Sync to download the
log files into local storage. The following figure shows the architecture of having Jarvis deployed on-premises
and in public clouds, while using Cloud Sync to send conversation history for NeMo training. Details of NeMo
training can be found in the section Expand Intent Models Using NeMo Training.

270

Fulfillment Engine

weatherstack Yelp Fusion | |eBay Python SDK
@® T Action Result
2 : Text
--..Ten\ Dialog Manager Jarvis Service
Intent
Chatbot Ul ‘,(1‘ Dialog description 4-5|°t—
Model weigh
Authoring (offline) f;'r:'t‘;fct:f t Model weights
ONTAP withintents INEMO (offline)
ONTAP Al
t o t
Text 98
Cloud Sync
@ Object Store:
Coxd Archive aI.I
Vakiig c?nversatlon
Service history
Text f.. () ‘f
. Cloud Sync
Text £ Text . .
---.\ Dialog Manager * Jarvis Service
Intent
oo g
4”'/ 1‘ Dialog description “Slot_
Chatbot Ul Text : -
Authoring (offline)
BBl Microsoft
aWS‘7 e Azure) Google Cloud

Next: Expand Intent Models Using NeMo Training

271

Expand Intent Models Using NeMo Training

NVIDIA NeMo is a toolkit built by NVIDIA for creating conversational Al applications. This toolkit includes
collections of pre-trained modules for ASR, NLP, and TTS, enabling researchers and data scientists to easily
compose complex neural network architectures and put more focus on designing their own applications.

As shown in the previous example, NARA can only handle a limited type of question. This is because the pre-
trained NLP model only trains on these types of questions. If we want to enable NARA to handle a broader
range of questions, we need to retrain it with our own datasets. Thus, here, we demonstrate how we can use
NeMo to extend the NLP model to satisfy the requirements. We start by converting the log collected from
NARA into the format for NeMo, and then train with the dataset to enhance the NLP model.

Model

Our goal is to enable NARA to sort the items based on user preferences. For instance, we might ask NARA to
suggest the highest-rated sushi restaurant or might want NARA to look up the jeans with the lowest price. To
this end, we use the intent detection and slot filling model provided in NeMo as our training model. This model
allows NARA to understand the intent of searching preference.

Data Preparation

To train the model, we collect the dataset for this type of question, and convert it to the NeMo format. Here, we
listed the files we use to train the model.

dict.intents.csv

This file lists all the intents we want the NeMo to understand. Here, we have two primary intents and one intent
only used to categorize the questions that do not fit into any of the primary intents.

price check
find the store

unknown

dict.slots.csv

This file lists all the slots we can label on our training questions.

B-store. type
B-store.name
B-store.status
B-store.hour.start
B-store.hour.end
B-store.hour.day
B-item. type
B-item.name
B-item.color
B-item.size
B-item.quantity
B-location
B-cost.high

272

B-cost.average
B-cost.low
B-time.period of time
B-rating.high
B-rating.average
B-rating.low
B-interrogative.location
B-interrogative.manner
B-interrogative.time
B-interrogative.personal
B-interrogative

B-verb

B-article

I-store.type
I-store.name
I-store.status
I-store.hour.start
I-store.hour.end
I-store.hour.day
I-item.type

I-item.name

I-item.color

I-item.size
I-item.quantity
I-location

I-cost.high
I-cost.average
I-cost.low
I-time.period of time
I-rating.high
I-rating.average
I-rating.low
I-interrogative.location
I-interrogative.manner
I-interrogative.time
I-interrogative.personal
I-interrogative

I-verb

I-article

O

train.tsv

This is the main training dataset. Each line starts with the question following the intent category listing in the file
dict.intent.csv. The label is enumerated starting from zero.

273

train_slots.tsv

20 46 24 25 6 32 6
52 52 24 6
23 52 14 40 52 25 6 32 6

Train the Model

docker pull nvcr.io/nvidia/nemo:v0.10

We then use the following command to launch the container. In this command, we limit the container to use a
single GPU (GPU ID = 1) since this is a lightweight training exercise. We also map our local workspace
/workspace/nemo/ to the folder inside container /nemo.

NV_GPU='1l' docker run --runtime=nvidia -it --shm-size=16g \
--network=host --ulimit memlock=-1 --ulimit
stack=67108864 \
-v /workspace/nemo:/nemo\

——-rm nvcr.io/nvidia/nemo:v0.10

Inside the container, if we want to start from the original pre-trained BERT model, we can use the following
command to start the training procedure. data_dir is the argument to set up the path of the training data.
work_dir allows you to configure where you want to store the checkpoint files.

cd examples/nlp/intent detection slot tagging/
python joint intent slot with bert.py \

--data dir /nemo/training data\

--work dir /nemo/log

If we have new training datasets and want to improve the previous model, we can use the following command
to continue from the point we stopped. checkpoint_dir takes the path to the previous checkpoints folder.

cd examples/nlp/intent detection slot tagging/

python joint intent slot infer.py \
--data dir /nemo/training data \
—--checkpoint dir /nemo/log/2020-05-04 18-34-20/checkpoints/ \
-—eval file prefix test

Inference the Model

We need to validate the performance of the trained model after a certain number of epochs. The following
command allows us to test the query one-by-one. For instance, in this command, we want to check if our

274

model can properly identify the intention of the query where can I get the best pasta.

cd examples/nlp/intent detection slot tagging/

python joint intent slot infer bl.py \

--checkpoint dir /nemo/log/2020-05-29 23-50-58/checkpoints/ \
-—query "where can i get the best pasta" \

--data dir /nemo/training data/ \

—-—num_epochs=50

Then, the following is the output from the inference. In the output, we can see that our trained model can
properly predict the intention find_the_store, and return the keywords we are interested in. With these
keywords, we enable the NARA to search for what users want and do a more precise search.

[NeMo I 2020-05-30 00:06:54 actions:728] Evaluating batch 0 out of 1

[NeMo I 2020-05-30 00:06:55 inference utils:34] Query: where can i get the
best pasta

[NeMo I 2020-05-30 00:06:55 inference utils:36] Predicted intent: 1
find the store

[NeMo I 2020-05-30 00:06:55 inference utils:50] where B-

interrogative.location

[NeMo I 2020-05-30 00:06:55 inference utils:50] can @)

[NeMo I 2020-05-30 00:06:55 inference utils:50] i 0]

[NeMo I 2020-05-30 00:06:55 inference utils:50] get B-verb

[NeMo I 2020-05-30 00:06:55 inference utils:50] the B-article
[NeMo I 2020-05-30 00:06:55 inference utils:50] best B-rating.high
[NeMo I 2020-05-30 00:06:55 inference utils:50] pasta B-item. type

Next: Conclusion

Conclusion

A true conversational Al system engages in human-like dialogue, understands context, and provides intelligent
responses. Such Al models are often huge and highly complex. With NVIDIA GPUs and NetApp storage,
massive, state-of-the-art language models can be trained and optimized to run inference rapidly. This is a
major stride towards ending the trade- off between an Al model that is fast versus one that is large and
complex. GPU-optimized language understanding models can be integrated into Al applications for industries
such as healthcare, retail, and financial services, powering advanced digital voice assistants in smart speakers
and customer service lines. These high-quality conversational Al systems allow businesses across verticals to
provide previously unattainable personalized services when engaging with customers.

Jarvis enables the deployment of use cases such as virtual assistants, digital avatars, multimodal sensor
fusion (CV fused with ASR/NLP/TTS), or any ASR/NLP/TTS/CV stand-alone use case, such as transcription.
We built a virtual retail assistant that can answer questions regarding weather, points-of-interest, and inventory
pricing. We also demonstrated how to improve the natural language understanding capabilities of the
conversational Al system by archiving conversation history using Cloud Sync and training NeMo models on
new data.

Next: Acknowledgments

275

Acknowledgments

The authors gratefully acknowledge the contributions that were made to this white paper
by our esteemed colleagues from NVIDIA: Davide Onofrio, Alex Qi, Sicong Ji, Marty Jain,
and Robert Sohigian. The authors would also like to acknowledge the contributions of key
NetApp team members: Santosh Rao, David Arnette, Michael Oglesby, Brent Davis, Andy
Sayare, Erik Mulder, and Mike McNamara.

Our sincere appreciation and thanks go to all these individuals, who provided insight and expertise that greatly
assisted in the creation of this paper.

Next: Where to Find Additional Information

Where to Find Additional Information

To learn more about the information that is described in this document, see the following
resources:

* NVIDIA DGX Station, V100 GPU, GPU Cloud

° NVIDIA DGX Station
https://www.nvidia.com/en-us/data-center/dgx-station/

° NVIDIA V100 Tensor Core GPU
https://www.nvidia.com/en-us/data-center/tesla-v100/

° NVIDIANGC
https://www.nvidia.com/en-us/gpu-cloud/

* NVIDIA Jarvis Multimodal Framework

° NVIDIA Jarvis
https://developer.nvidia.com/nvidia-jarvis

° NVIDIA Jarvis Early Access
https://developer.nvidia.com/nvidia-jarvis-early-access

* NVIDIA NeMo

° NVIDIA NeMo
https://developer.nvidia.com/nvidia-nemo

° Developer Guide
https://nvidia.github.io/NeMo/

* NetApp AFF systems

° NetApp AFF A-Series Datasheet
https://www.netapp.com/us/media/ds-3582.pdf

° NetApp Flash Advantage for All Flash FAS
https://www.netapp.com/us/media/ds-3733.pdf

° ONTAP 9 Information Library
http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286

° NetApp ONTAP FlexGroup Volumes technical report
https://www.netapp.com/us/media/tr-4557.pdf

- NetApp ONTAP Al

276

https://www.nvidia.com/en-us/data-center/dgx-station/
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://www.nvidia.com/en-us/gpu-cloud/
https://developer.nvidia.com/nvidia-jarvis
https://developer.nvidia.com/nvidia-jarvis-early-access
https://developer.nvidia.com/nvidia-nemo
https://nvidia.github.io/NeMo/
https://www.netapp.com/us/media/ds-3582.pdf
https://www.netapp.com/us/media/ds-3733.pdf
http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286
https://www.netapp.com/us/media/tr-4557.pdf

° ONTAP Al with DGX-1 and Cisco Networking Design Guide
https://www.netapp.com/us/media/nva-1121-design.pdf

° ONTAP Al with DGX-1 and Cisco Networking Deployment Guide
https://www.netapp.com/us/media/nva-1121-deploy.pdf

° ONTAP Al with DGX-1 and Mellanox Networking Design Guide
http://www.netapp.com/us/media/nva-1138-design.pdf

° ONTAP Al with DGX-2 Design Guide
https://www.netapp.com/us/media/nva-1135-design.pdf

TR-4858: NetApp Orchestration Solution with Run:Al

Rick Huang, David Arnette, Sung-Han Lin, NetApp
Yaron Goldberg, Run:Al

NetApp AFF storage systems deliver extreme performance and industry-leading hybrid cloud data-
management capabilities. NetApp and Run:Al have partnered to demonstrate the unique capabilities of the
NetApp ONTAP Al solution for artificial intelligence (Al) and machine learning (ML) workloads that provides
enterprise-class performance, reliability, and support. Run:Al orchestration of Al workloads adds a Kubernetes-
based scheduling and resource utilization platform to help researchers manage and optimize GPU utilization.
Together with the NVIDIA DGX systems, the combined solution from NetApp, NVIDIA, and Run:Al provide an
infrastructure stack that is purpose-built for enterprise Al workloads. This technical report gives directional
guidance to customers building conversational Al systems in support of various use cases and industry
verticals. It includes information about the deployment of Run:Al and a NetApp AFF A800 storage system and
serves as a reference architecture for the simplest way to achieve fast, successful deployment of Al initiatives.

The target audience for the solution includes the following groups:
 Enterprise architects who design solutions for the development of Al models and software for Kubernetes-

based use cases such as containerized microservices

+ Data scientists looking for efficient ways to achieve efficient model development goals in a cluster
environment with multiple teams and projects

« Data engineers in charge of maintaining and running production models
» Executive and IT decision makers and business leaders who would like to create the optimal Kubernetes
cluster resource utilization experience and achieve the fastest time to market from Al initiatives

Next: Solution Overview

Solution Overview

NetApp ONTAP Al and Al Control Plane

The NetApp ONTAP Al architecture, developed and verified by NetApp and NVIDIA, is powered by NVIDIA
DGX systems and NetApp cloud-connected storage systems. This reference architecture gives IT
organizations the following advantages:

 Eliminates design complexities

» Enables independent scaling of compute and storage

* Enables customers to start small and scale seamlessly

« Offers a range of storage options for various performance and cost points

277

https://www.netapp.com/us/media/nva-1121-design.pdf
https://www.netapp.com/us/media/nva-1121-deploy.pdf
http://www.netapp.com/us/media/nva-1138-design.pdf
https://www.netapp.com/us/media/nva-1135-design.pdf

NetApp ONTAP Al tightly integrates DGX systems and NetApp AFF A800 storage systems with state-of-the-art
networking. NetApp ONTAP Al and DGX systems simplify Al deployments by eliminating design complexity
and guesswork. Customers can start small and grow their systems in an uninterrupted manner while
intelligently managing data from the edge to the core to the cloud and back.

NetApp Al Control Plane is a full stack Al, ML, and deep learning (DL) data and experiment management
solution for data scientists and data engineers. As organizations increase their use of Al, they face many
challenges, including workload scalability and data availability. NetApp Al Control Plane addresses these
challenges through functionalities, such as rapidly cloning a data namespace just as you would a Git repo, and
defining and implementing Al training workflows that incorporate the near-instant creation of data and model
baselines for traceability and versioning. With NetApp Al Control Plane, you can seamlessly replicate data
across sites and regions and swiftly provision Jupyter Notebook workspaces with access to massive datasets.

Run:Al Platform for Al Workload Orchestration

Run:Al has built the world’s first orchestration and virtualization platform for Al infrastructure. By abstracting
workloads from the underlying hardware, Run:Al creates a shared pool of GPU resources that can be
dynamically provisioned, enabling efficient orchestration of Al workloads and optimized use of GPUs. Data
scientists can seamlessly consume massive amounts of GPU power to improve and accelerate their research
while IT teams retain centralized, cross-site control and real-time visibility over resource provisioning, queuing,
and utilization. The Run:Al platform is built on top of Kubernetes, enabling simple integration with existing IT
and data science workflows.

The Run:Al platform provides the following benefits:

» Faster time to innovation. By using Run:Al resource pooling, queueing, and prioritization mechanisms
together with a NetApp storage system, researchers are removed from infrastructure management hassles
and can focus exclusively on data science. Run:Al and NetApp customers increase productivity by running
as many workloads as they need without compute or data pipeline bottlenecks.

* Increased team productivity. Run:Al fairness algorithms guarantee that all users and teams get their fair
share of resources. Policies around priority projects can be preset, and the platform enables dynamic
allocation of resources from one user or team to another, helping users to get timely access to coveted
GPU resources.

* Improved GPU utilization. The Run:Al Scheduler enables users to easily make use of fractional GPUs,
integer GPUs, and multiple nodes of GPUs for distributed training on Kubernetes. In this way, Al workloads
run based on your needs, not capacity. Data science teams are able to run more Al experiments on the
same infrastructure.

Next: Solution Technology

Solution Technology

This solution was implemented with one NetApp AFF A800 system, two DGX-1 servers, and two Cisco Nexus
3232C 100GbE-switches. Each DGX-1 server is connected to the Nexus switches with four 100GbE
connections that are used for inter-GPU communications by using remote direct memory access (RDMA) over
Converged Ethernet (RoCE). Traditional IP communications for NFS storage access also occur on these links.
Each storage controller is connected to the network switches by using four 100GbE-links. The following figure
shows the ONTAP Al solution architecture used in this technical report for all testing scenarios.

278

100GbE- RoCE and NFS
100GhE- NFS only

NVIDIA DGX-1 systems

Cisco Nexus §= o
3232C "

0
o
N
AN
"'

\
0
N
"
W

()
g
\)

A;A
)\

"
0

\
W0

\
{
\
\/

NetApp AFF A800
48 X SSD-NVMe

4

D
S
S
=

<
=
-.
(>
=) o)

AN

X
)
;A
't

On

)
D
)
)
§

Hardware Used in This Solution

This solution was validated using the ONTAP Al reference architecture two DGX-1 nodes and one AFF A800
storage system. See NVA-1121 for more details about the infrastructure used in this validation.

The following table lists the hardware components that are required to implement the solution as tested.

Hardware Quantity
DGX-1 systems 2
AFF A800 1
Nexus 3232C switches 2

Software Requirements

This solution was validated using a basic Kubernetes deployment with the Run:Al operator installed.
Kubernetes was deployed using the NVIDIA DeepOps deployment engine, which deploys all required
components for a production-ready environment. DeepOps automatically deployed NetApp Trident for
persistent storage integration with the k8s environment, and default storage classes were created so
containers leverage storage from the AFF A800 storage system. For more information on Trident with
Kubernetes on ONTAP Al, see TR-4798.

The following table lists the software components that are required to implement the solution as tested.

Software Version or Other Information
NetApp ONTAP data management software 9.6p4

Cisco NX-OS switch firmware 7.0(3)I16(1)

NVIDIA DGX OS 4.0.4 - Ubuntu 18.04 LTS

279

https://www.netapp.com/us/media/nva-1121-design.pdf
https://github.com/NVIDIA/deepops
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://www.netapp.com/us/media/tr-4798.pdf

Software Version or Other Information

Kubernetes version 1.17
Trident version 20.04.0
Run:Al CLI v2.1.13

Run:Al Orchestration Kubernetes Operator version 1.0.39

Docker container platform 18.06.1-ce [e68fc7a]

Additional software requirements for Run:Al can be found at Run:Al GPU cluster prerequisites.

Next: Optimal Cluster and GPU Utilization with Run Al

Optimal Cluster and GPU Utilization with Run:Al

The following sections provide details on the Run:Al installation, test scenarios, and results performed in this
validation.

We validated the operation and performance of this system by using industry standard benchmark tools,
including TensorFlow benchmarks. The ImageNet dataset was used to train ResNet-50, which is a famous
Convolutional Neural Network (CNN) DL model for image classification. ResNet-50 delivers an accurate
training result with a faster processing time, which enabled us to drive a sufficient demand on the storage.

Next: Run Al Installation.

Run:Al Installation

To install Run:Al, complete the following steps:

1. Install the Kubernetes cluster using DeepOps and configure the NetApp default storage class.

2. Prepare GPU nodes:

a. Verify that NVIDIA drivers are installed on GPU nodes.

b. Verify that nvidia-docker is installed and configured as the default docker runtime.
3. Install Run:Al:

a. Log into the Run:Al Admin Ul to create the cluster.

b. Download the created runai-operator-<clustername>.yamnl file.

c. Apply the operator configuration to the Kubernetes cluster.

kubectl apply -f runai-operator-<clustername>.yaml

4. Verify the installation:
a. Go to https://app.run.ail.
b. Go to the Overview dashboard.

c. Verify that the number of GPUs on the top right reflects the expected number of GPUs and the GPU
nodes are all in the list of servers.For more information about Run:Al deployment, see installing Run:Al
on an on-premise Kubernetes cluster and installing the Run:Al CLI.

280

https://docs.run.ai/Administrator/Cluster-Setup/Run-AI-GPU-Cluster-Prerequisites/
https://app.run.ai
https://app.run.ai/
https://docs.run.ai/Administrator/Cluster-Setup/Installing-Run-AI-on-an-on-premise-Kubernetes-Cluster/
https://docs.run.ai/Administrator/Cluster-Setup/Installing-Run-AI-on-an-on-premise-Kubernetes-Cluster/
https://docs.run.ai/Administrator/Researcher-Setup/Installing-the-Run-AI-Command-Line-Interface/

Next: Run Al Dashboards and Views

Run:Al Dashboards and Views

After installing Run:Al on your Kubernetes cluster and configuring the containers correctly, you see the
following dashboards and views on https://app.run.ai in your browser, as shown in the following figure.

— Iun:

— a | Qverview Cluster: clusteri rick. huang@netapp.com NetApp

Nodes Total GPUs Allocated GPUs et el

2 I 6 6 :
-]
Idle Allocated GPUs

1 23%

team-a

Running Jobs
Job Project User Type MNode GPUs Run Time Progress Utilization
test-ingress team-a ot Interactive dgx1-2 1.00 00:07:50 - 0%
myfirstjob team-a oot Train dgx1-2 1.00 00:27:13 48%
mysecondiob leam-a ot Train dgx1-2 4.00 00:16:36 N% 10%
Pending Jobs Nodes
Node Total GPUs Allocated GPUs Utilization
No data 1o show @
dgx1-1 8 0 0%
dgx1-2 8 &

There are 16 total GPUs in the cluster provided by two DGX-1 nodes. You can see the number of nodes, the
total available GPUs, the allocated GPUs that are assigned with workloads, the total number of running jobs,
pending jobs, and idle allocated GPUs. On the right side, the bar diagram shows GPUs per Project, which
summarizes how different teams are using the cluster resource. In the middle is the list of currently running
jobs with job details, including job name, project, user, job type, the node each job is running on, the number of
GPU(s) allocated for that job, the current run time of the job, job progress in percentage, and the GPU
utilization for that job. Note that the cluster is under-utilized (GPU utilization at 23%) because there are only
three running jobs submitted by a single team (team-a).

In the following section, we show how to create multiple teams in the Projects tab and allocate GPUs for each
team to maximize cluster usage and manage resources when there are many users per cluster. The test
scenarios mimic enterprise environments in which memory and GPU resources are shared among training,
inferencing, and interactive workloads.

Next: Creating Projects for Data Science Teams and Allocating GPUs

Creating Projects for Data Science Teams and Allocating GPUs

Researchers can submit workloads through the Run:Al CLI, Kubeflow, or similar processes. To streamline
resource allocation and create prioritization, Run:Al introduces the concept of Projects. Projects are quota
entities that associate a project name with GPU allocation and preferences. It is a simple and convenient way
to manage multiple data science teams.

A researcher submitting a workload must associate a project with a workload request. The Run:Al scheduler
compares the request against the current allocations and the project and determines whether the workload can

281

https://app.run.ai/

be allocated resources or whether it should remain in a pending state.
As a system administrator, you can set the following parameters in the Run:Al Projects tab:

* Model projects. Set a project per user, set a project per team of users, and set a project per a real
organizational project.

* Project quotas. Each project is associated with a quota of GPUs that can be allocated for this project at
the same time. This is a guaranteed quota in the sense that researchers using this project are guaranteed
to get this number of GPUs no matter what the status in the cluster is. As a rule, the sum of the project
allocation should be equal to the number of GPUs in the cluster. Beyond that, a user of this project can
receive an over-quota. As long as GPUs are unused, a researcher using this project can get more GPUs.
We demonstrate over-quota testing scenarios and fairness considerations in Achieving High Cluster
Utilization with Over-Quota GPU Allocation, Basic Resource Allocation Fairness, and Over-Quota Fairness.

» Create a new project, update an existing project, and delete an existing project.

Limit jobs to run on specific node groups. You can assign specific projects to run only on specific
nodes. This is useful when the project team needs specialized hardware, for example, with enough
memory. Alternatively, a project team might be the owner of specific hardware that was acquired with a
specialized budget, or when you might need to direct build or interactive workloads to work on weaker
hardware and direct longer training or unattended workloads to faster nodes. For commands to group
nodes and set affinity for a specific project, see the Run:Al Documentation.

Limit the duration of interactive jobs. Researchers frequently forget to close interactive jobs. This might
lead to a waste of resources. Some organizations prefer to limit the duration of interactive jobs and close
them automatically.

The following figure shows the Projects view with four teams created. Each team is assigned a different
number of GPUs to account for different workloads, with the total number of GPUs equal to that of the total
available GPUs in a cluster consisting of two DGX-1s.

= ru 2 | Pr‘oje'cts Cluster; clustert rick.huang@netapp.com NEtADD
Q 1
Project Name Assigned GPUs Created Training Mode AFfinity Interactive Node AFFinity &
I beam-a 2 07/27/20, 9:28AM none none
o 21/
T teamb 4 07/28/20, 7:50AM none none
n team-c 2 07/28/20, 7:504M none none

n team-d 8 07/28/20, T:51AM none none

Next: Submitting Jobs in Run Al CLI

Submitting Jobs in Run:Al CLI

This section provides the detail on basic Run:Al commands that you can use to run any Kubernetes job. It is
divided into three parts according to workload type. AlI/ML/DL workloads can be divided into two generic types:

» Unattended training sessions. With these types of workloads, the data scientist prepares a self-running
workload and sends it for execution. During the execution, the customer can examine the results. This type
of workload is often used in production or when model development is at a stage where no human
intervention is required.

282

https://osrunai_achieving_high_cluster_utilization_with_over-uota_gpu_allocation.adoc
https://osrunai_achieving_high_cluster_utilization_with_over-uota_gpu_allocation.adoc
https://osrunai_basic_resource_allocation_fairness.html
https://osrunai_over-quota_fairness.html
https://docs.run.ai/Administrator/Admin-User-Interface-Setup/Working-with-Projects/

* Interactive build sessions. With these types of workloads, the data scientist opens an interactive session
with Bash, Jupyter Notebook, remote PyCharm, or similar IDEs and accesses GPU resources directly. We
include a third scenario for running interactive workloads with connected ports to reveal an internal port to
the container user..

Unattended Training Workloads

After setting up projects and allocating GPU(s), you can run any Kubernetes workload using the following
command at the command line:

$ runai project set team-a runai submit hyperl -i gcr.io/run-ai-
demo/quickstart -g 1

This command starts an unattended training job for team-a with an allocation of a single GPU. The job is based
on a sample docker image, gcr.io/run-ai-demo/quickstart. We named the job hyperl. You can then
monitor the job’s progress by running the following command:

S runai list

The following figure shows the result of the runai 1ist command. Typical statuses you might see include
the following:

* ContainerCreating. The docker container is being downloaded from the cloud repository.
* Pending. The job is waiting to be scheduled.

* Running. The job is running.

> runai list
Showing jobs for project team-a

NAME STATUS AGE NODE IMAGE TYPE PROJECT USER GPUs
hyperl Running 11s gke-dev-yaronl-gpu-4-pool-154f511d-5nk5 gcr.io/run-ai-demo/quickstart Train team-a wyaron 1

To get an additional status on your job, run the following command:

$ runai get hyperl

To view the logs of the job, run the runai logs <job-name> command:

$ runai logs hyperl

In this example, you should see the log of a running DL session, including the current training epoch, ETA, loss

function value, accuracy, and time elapsed for each step.

You can view the cluster status on the Run:Al Ul at https://app.run.ai/. Under Dashboards > Overview, you can
monitor GPU utilization.

To stop this workload, run the following command:

283

https://app.run.ai/

$ runai delte hyperl

This command stops the training workload. You can verify this action by running runai 1ist again. For more
detail, see launching unattended training workloads.

Interactive Build Workloads

After setting up projects and allocating GPU(s) you can run an interactive build workload using the following
command at the command line:

$ runai submit buildl -i python -g 1 --interactive --command sleep --args
infinity

The job is based on a sample docker image python. We named the job build1.

The -- interactive flag means that the job does not have a start or end. It is the
researcher’s responsibility to close the job. The administrator can define a time limit for
interactive jobs after which they are terminated by the system.

The —--g 1 flag allocates a single GPU to this job. The command and argument provided is --command
sleep—args infinity. You must provide a command, or the container starts and then exits immediately.

The following commands work similarly to the commands described in Unattended Training Workloads:

* runai list: Shows the name, status, age, node, image, project, user, and GPUs for jobs.
* runai get buildl: Displays additional status on the job build1.

* runai delete buildl: Stops the interactive workload build1.To get a bash shell to the container, the
following command:

S runail bash buildl

This provides a direct shell into the computer. Data scientists can then develop or finetune their models within
the container.

You can view the cluster status on the Run:Al Ul at https://app.run.ai. For more detail, see starting and using
interactive build workloads.

Interactive Workloads with Connected Ports

As an extension of interactive build workloads, you can reveal internal ports to the container user when starting
a container with the Run:Al CLI. This is useful for cloud environments, working with Jupyter Notebooks, or
connecting to other microservices. Ingress allows access to Kubernetes services from outside the Kubernetes
cluster. You can configure access by creating a collection of rules that define which inbound connections reach
which services.

For better management of external access to the services in a cluster, we suggest that cluster administrators
install Ingress and configure LoadBalancer.

284

https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Launch-Unattended-Training-Workloads-/
https://app.run.ai
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Start-and-Use-Interactive-Build-Workloads-/
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Start-and-Use-Interactive-Build-Workloads-/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/

To use Ingress as a service type, run the following command to set the method type and the ports when
submitting your workload:

$ runai submit test-ingress -i jupyter/base-notebook -g 1 \
--interactive --service-type=ingress —--port 8888 \
-—args="--NotebookApp.base url=test-ingress" --command=start-notebook.sh

After the container starts successfully, execute runai 1ist to see the SERVICE URL (S) with which to
access the Jupyter Notebook. The URL is composed of the ingress endpoint, the job name, and the port. For
example, see https://10.255.174.13/test-ingress-8888.

For more details, see launching an interactive build workload with connected ports.

Next: Achieving High Cluster Utilization

Achieving High Cluster Utilization

In this section, we emulate a realistic scenario in which four data science teams each submit their own
workloads to demonstrate the Run:Al orchestration solution that achieves high cluster utilization while
maintaining prioritization and balancing GPU resources. We start by using the ResNet-50 benchmark

described in the section ResNet-50 with ImageNet Dataset Benchmark Summary:

$ runai submit netappl -i netapp/tensorflow-tfl-py3:20.01.0 --local-image
--large-shm -v /mnt:/mnt -v /tmp:/tmp --command python --args

"/netapp/scripts/run.py" --args "--
dataset dir=/mnt/mount 0O/dataset/imagenet/imagenet original/" --args "--
num mounts=2" --args "--dgx version=dgxl" --args "--num devices=1" -g 1

We ran the same ResNet-50 benchmark as in NVA-1121. We used the flag --1ocal-image for containers
not residing in the public docker repository. We mounted the directories /mnt and /tmp on the host DGX-1
node to /mnt and /tmp to the container, respectively. The dataset is at NetApp AFFA800 with the

dataset dir argument pointing to the directory. Both —~—-num devices=1 and -g 1 mean that we allocate
one GPU for this job. The former is an argument for the run . py script, while the latter is a flag for the runai
submit command.

The following figure shows a system overview dashboard with 97% GPU utilization and all sixteen available
GPUs allocated. You can easily see how many GPUs are allocated for each team in the GPUs/Project bar
chart. The Running Jobs pane shows the current running job names, project, user, type, node, GPUs
consumed, run time, progress, and utilization details. A list of workloads in queue with their wait time is shown
in Pending Jobs. Finally, the Nodes box offers GPU numbers and utilization for individual DGX-1 nodes in the
cluster.

285

https://10.255.174.13/test-ingress-8888
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Launch-an-Interactive-Build-Workload-with-Connected-Ports/
https://docs.netapp.com/us-en/netapp-solutions/ai/osrunai_resnet-50_with_imagenet_dataset_benchmark_summary.html
https://www.netapp.com/us/media/nva-1121-design.pdf

run:

= a | Overview Cluster: cluster? rick.huang@netapp.com NetApp
Nodes Total GPUs Allocated GPUs GPU tilization Gellol; Projest
[
4
3
Idle Allocated
GPUs 2

9 ; /0 A
0
team-c team-b team-a team-d

Running Jobs
Job Project User Type Node GPUs Run Time Progress Utilization
netapp-heavy-d-1 team-d mot Train dgx1-1 1.00 00:24:23 - 96%
netapp-heavy-d-3 team-d root Train dgx1-1 1.00 00:20:47 - 95%
frac0s team-d root Interactive dgx1-2 0.50 00;10:35 13% 100%
A N e renia At i e AnEan p—
Pending Jobs Modes
Job Project User Type Requestied GPUs Walt Time Node ~ Total GPUs Allocated GPUs Utllization
netapp-heavy-c-2 team-c root Train dgx1-1
RIS : 2,00 00:13:20 4 8 8 97%
dgx1-2
9 8 B a7

Next: Fractional GPU Allocation for Less Demanding or Interactive Workloads

Fractional GPU Allocation for Less Demanding or Interactive Workloads

When researchers and developers are working on their models, whether in the development, hyperparameter
tuning, or debugging stages, such workloads usually require fewer computational resources. It is therefore
more efficient to provision fractional GPU and memory such that the same GPU can simultaneously be
allocated to other workloads. Run:Al’s orchestration solution provides a fractional GPU sharing system for
containerized workloads on Kubernetes. The system supports workloads running CUDA programs and is
especially suited for lightweight Al tasks such as inference and model building. The fractional GPU system
transparently gives data science and Al engineering teams the ability to run multiple workloads simultaneously
on a single GPU. This enables companies to run more workloads, such as computer vision, voice recognition,
and natural language processing on the same hardware, thus lowering costs.

Run:Al’s fractional GPU system effectively creates virtualized logical GPUs with their own memory and
computing space that containers can use and access as if they were self-contained processors. This enables
several workloads to run in containers side-by-side on the same GPU without interfering with each other. The
solution is transparent, simple, and portable and it requires no changes to the containers themselves.

A typical usecase could see two to eight jobs running on the same GPU, meaning that you could do eight times
the work with the same hardware.

For the job frac05 belonging to project team-d in the following figure, we can see that the number of GPUs

allocated was 0.50. This is further verified by the nvidia-smi command, which shows that the GPU memory
available to the container was 16,255MB: half of the 32GB per V100 GPU in the DGX-1 node.

286

Driver Version: 450.51.05 CUDA Version: 11.0

Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC
Perf Pwr:Usage/Capl Memory-Usage | GPU-Util Compute M.
I MIG M.

————m—m—m———mm o B ————r—oomd T om o — s —— o

On | DOaE :@7:00.0 Off | @ I

300W | 15525MiB / 16255MiB | 10@% Default |

Type Process name

N/A N/A 156 "~ python3 15525MiB
et +

Next: Achieving High Cluster Utilization with Over-Quota GPU Allocation

Achieving High Cluster Utilization with Over-Quota GPU Allocation

In this section and in the sections Basic Resource Allocation Fairness, and Over-Quota Fairness, we have
devised advanced testing scenarios to demonstrate the Run:Al orchestration capabilities for complex workload
management, automatic preemptive scheduling, and over-quota GPU provisioning. We did this to achieve high
cluster-resource usage and optimize enterprise-level data science team productivity in an ONTAP Al
environment.

For these three sections, set the following projects and quotas:

Project Quota
team-a 4
team-b 2
team-c 2
team-d 8

In addition, we use the following containers for these three sections:

* Jupyter Notebook: jupyter/base-notebook

* Run:Al quickstart: gcr.io/run-ai-demo/quickstart

We set the following goals for this test scenario:

287

» Show the simplicity of resource provisioning and how resources are abstracted from users
* Show how users can easily provision fractions of a GPU and integer number of GPUs

* Show how the system eliminates compute bottlenecks by allowing teams or users to go over their resource
quota if there are free GPUs in the cluster

« Show how data pipeline bottlenecks are eliminated by using the NetApp solution when running compute-
intensive jobs, such as the NetApp container

« Show how multiple types of containers are running using the system
o Jupyter Notebook
o Run:Al container

* Show high utilization when the cluster is full
For details on the actual command sequence executed during the testing, see Testing Details for Section 4.8.

When all 13 workloads are submitted, you can see a list of container names and GPUs allocated, as shown in
the following figure. We have seven training and six interactive jobs, simulating four data science teams, each
with their own models running or in development. For interactive jobs, individual developers are using Jupyter
Notebooks to write or debug their code. Thus, it is suitable to provision GPU fractions without using too many
cluster resources.

D BY (LI SERVICE LRL(S)

The results of this testing scenario show the following:

* The cluster should be full: 16/16 GPUs are used.
 High cluster utilization.
* More experiments than GPUs due to fractional allocation.

* team-d is not using all their quota; therefore, team-b and team-c can use additional GPUs for their
experiments, leading to faster time to innovation.

Next: Basic Resource Allocation Fairness

Basic Resource Allocation Fairness

In this section, we show that, when team-d asks for more GPUs (they are under their quota), the system
pauses the workloads of team-b and team-c and moves them into a pending state in a fair-share manner.

For details including job submissions, container images used, and command sequences executed, see the
section Testing Details for Section 4.9.

The following figure shows the resulting cluster utilization, GPUs allocated per team, and pending jobs due to
automatic load balancing and preemptive scheduling. We can observe that when the total number of GPUs

288

requested by all team workloads exceeds the total available GPUs in the cluster, Run:Al’s internal fairness
algorithm pauses one job each for team-b and team-c because they have met their project quota. This
provides overall high cluster utilization while data science teams still work under resource constraints set by an
administrator.

GPU Utilization GPUs / Project
Nodes Total GPUs Allocated GPUs " Al
10
L]
Running Jobs Pending Jobs Idle Allocated 4 i
: - GPUs a ‘
o pe; pm_ 2 x = i |
p,l ~ f;;;, 8 6 /0 I
team< leamb team-a team-d
Running Jobs
Job Project User Type Mode GPUs Run Time Progress Utilization
c-3-g02 team-¢ root Interactive dgxi-1 0.20 00:11:40 16% 99%
al-g team-a root Train dgxi-1 1.00 00:11:49 23% 100%
b-2-g04 team-b root Interactive dgx1-2 0.40 00:11:48 13% 100%
¢-5a team-¢ root Train dax1-2 1.00 00:11:38 24% 66%
Pending Jobs Nodes
Job Project User Type Requested GPUs Wait Time Node ~ Total GPUs Allocated GPUs Utilization
br4- team-b t Trai 2.00 00:01:34 dgx1-1
o] eam o0 rain gx 8 g 05%
c-4-qg team-c root Train 2.00 00:04:49
dgel2 8 8 89%

The results of this testing scenario demonstrate the following:

+ Automatic load balancing. The system automatically balances the quota of the GPUs, such that each
team is now using their quota. The workloads that were paused belong to teams that were over their quota.

 Fair share pause. The system chooses to stop the workload of one team that was over their quota and
then stop the workload of the other team. Run:Al has internal fairness algorithms.

Next: Over-Quota Fairness

Over-Quota Fairness

In this section, we expand the scenario in which multiple teams submit workloads and exceed their quota. In
this way, we demonstrate how Run:Al’s fairness algorithm allocates cluster resources according to the ratio of
preset quotas.

Goals for this test scenario:

« Show queuing mechanism when multiple teams are requesting GPUs over their quota.

» Show how the system distributes a fair share of the cluster between multiple teams that are over their
quota according to the ratio between their quotas, so that the team with the larger quota gets a larger share
of the spare capacity.

At the end of Basic Resource Allocation Fairness, there are two workloads queued: one for team-b and one

289

for team-c. In this section, we queue additional workloads.

For details including job submissions, container images used, and command sequences executed, see Testing
Details for section 4.10.

When all jobs are submitted according to the section Testing Details for section 4.10, the system dashboard
shows that team-a, team-b, and team-c all have more GPUs than their preset quota. team-a occupies four
more GPUs than its preset soft quota (four), whereas team-b and team-c each occupy two more GPUs than
their soft quota (two). The ratio of over-quota GPUs allocated is equal to that of their preset quota. This is
because the system used the preset quota as a reference of priority and provisioned accordingly when multiple
teams request more GPUs, exceeding their quota. Such automatic load balancing provides fairness and

prioritization when enterprise data science teams are actively engaged in Al model development and
production.

Nodes Total GPUs Allocated GPUs SRR ation SR Y/ Projest
10
B
Running Jobs Pending Jobs Idle Allocated 4
9 g GPUs

. = (0] .
.s:.j /{’\l 3’:};\‘.} 8 6 /0 2
team< teamb team-a

Running Jobs

Job Project User Type Mode GPUs Run Time Progress Utilization
c-3-g02 team-¢ root Interactive dgx1-1 0.20 00:22:01 29% 100%
a1-g team-a root Train dgxi-1 1.00 00:22:10 42% 99%
b-2-g04 team-b root Interactive dgx1-2 0.40 00:22:09 24% 100%
Pending Jobs Nodes

Job Project User Type Requested GPUs Wait Time Node - Total GPUs Allocated GPUs Utilization
[} team-¢ rootl Train 2.00 00:07:45 dax1-1

£ : B 8 8 68%
b-5-gg team-b root Train 2.00 00:07:46

1-:
dgx1-2 8 8 89%

The results of this testing scenario show the following:

* The system starts to de-queue the workloads of other teams.

* The order of the dequeuing is decided according to fairness algorithms, such that team-b and team-c get
the same amount of over-quota GPUs (since they have a similar quota), and team-a gets a double
amount of GPUs since their quota is two times higher than the quota of team-b and team-c.

« All the allocation is done automatically.

Therefore, the system should stabilize on the following states:

Project GPUs allocated Comment
team-a 8/4 Four GPUs over the quota. Empty
queue.

290

Project GPUs allocated Comment
Two GPUs over the quota. One

team-b 4/2
workload queued.

team-c 4/2 Two GPUs over the quota. One
workload queued.

team-d 0/8 Not using GPUs at all, no queued

workloads.

The following figure shows the GPU allocation per project over time in the Run:Al Analytics dashboard for the
sections Achieving High Cluster Utilization with Over-Quota GPU Allocation, Basic Resource Allocation
Fairness, and Over-Quota Fairness. Each line in the figure indicates the number of GPUs provisioned for a
given data science team at any time. We can see that the system dynamically allocates GPUs according to
workloads submitted. This allows teams to go over quota when there are available GPUs in the cluster, and
then preempt jobs according to fairness, before finally reaching a stable state for all four teams.

GPU Allocation / Project ~

10

08:30 08:35 08:40 08:45 08:50 08:55

— team-a team-b team-c — team-d

Next: Saving Data to a Trident-Provisioned PersistentVolume

Saving Data to a Trident-Provisioned PersistentVolume

NetApp Trident is a fully supported open source project designed to help you meet the sophisticated

persistence demands of your containerized applications. You can read and write data to a Trident-provisioned

Kubernetes PersistentVolume (PV) with the added benefit of data tiering, encryption, NetApp Snapshot
technology, compliance, and high performance offered by NetApp ONTAP data management software.

Reusing PVCs in an Existing Namespace

For larger Al projects, it might be more efficient for different containers to read and write data to the same

Kubernetes PV. To reuse a Kubernetes Persistent Volume Claim (PVC), the user must have already created a
PVC. See the NetApp Trident documentation for details on creating a PVC. Here is an example of reusing an

existing PVC:

291

https://netapp-trident.readthedocs.io/

$ runai submit pvc-test -p team-a --pvc test:/tmp/pvclmount -i gcr.io/run-
ai-demo/quickstart -g 1

Run the following command to see the status of job pvc-test for project team-a:

$ runai get pvc-test -p team-a

You should see the PV /tmp/pvc1mount mounted to team-a job pvc-test. In this way, multiple containers
can read from the same volume, which is useful when there are multiple competing models in development or
in production. Data scientists can build an ensemble of models and then combine prediction results by majority
voting or other techniques.

Use the following to access the container shell:

$ runai bash pvc-test -p team-a

You can then check the mounted volume and access your data within the container.

This capability of reusing PVCs works with NetApp FlexVol volumes and NetApp ONTAP FlexGroup volumes,
enabling data engineers more flexible and robust data management options to leverage your data fabric
powered by NetApp.

Next: Conclusion

Conclusion

NetApp and Run:Al have partnered in this technical report to demonstrate the unique capabilities of the
NetApp ONTAP Al solution together with the Run:Al Platform for simplifying orchestration of Al workloads. The
preceding steps provide a reference architecture to streamline the process of data pipelines and workload
orchestration for deep learning. Customers looking to implement these solutions are encouraged to reach out
to NetApp and Run:Al for more information.

Next: Testing Details for Section 4.8

Testing Details for Section 4.8

This section contains the testing details for the section Achieving High Cluster Utilization with Over-Quota GPU
Allocation.

Submit jobs in the following order:

Project Image # GPUs Total Comment

team-a Jupyter 1 1/4 -

team-a NetApp 1 2/4 -

team-a Run:Al 2 4/4 Using all their quota
team-b Run:Al 0.6 0.6/2 Fractional GPU

292

Project Image
team-b Run:Al
team-b NetApp
team-b NetApp
team-c Run:Al
team-c Run:Al
team-c Run:Al
team-c NetApp
team-c NetApp
team-d NetApp

Command structure:

GPUs
0.4

0.5
0.3
0.2

Total
1/2
2/2
4/2
0.5/2
0.8/2
12
3/2
4/2
4/8

Comment

Fractional GPU
Two over quota
Fractional GPU
Fractional GPU
Fractional GPU
One over quota
Two over quota

Using half of their
quota

$ runai submit <job-name> -p <project-name> -g <#GPUs> -i <image-name>

Actual command sequence used in testing:

$ runai submit a-1-1-jupyter -i jupyter/base-notebook -g 1 \
--interactive --service-type=ingress —--port 8888 \

-—args="--NotebookApp.base url=team-a-test-ingress" --command=start

-notebook.sh -p team-a

$ runai submit a-1-g -i gcr.io/run-ai-demo/quickstart -g 1 -p team-a

$ runai submit a-2-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-a

$ runai submit b-1-g06 -1 gcr.io/run-ai-demo/quickstart -g 0.6

--interactive -p team-b

$ runai submit b-2-g04 -i gcr.io/run-ai-demo/quickstart -g 0.4

--interactive -p team-b

$ runai submit b-3-g -i gcr.io/run-ai-demo/quickstart -g 1 -p team-b

$ runai submit b-4-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-b

$ runai submit c¢-1-g05 -1 gcr.io/run-ai-demo/quickstart -g 0.5

--interactive -p team-c

$ runai submit c¢c-2-g03 -i gcr.io/run-ai-demo/quickstart -g 0.3

-—-interactive -p team-c

$ runai submit c¢c-3-g02 -i gcr.io/run-ai-demo/quickstart -g 0.2

-—-interactive -p team-c

$ runai submit c-4-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-c

$ runai submit c-5-g -1 gcr.io/run-ai-demo/quickstart -g 1 -p team-c

$ runai submit d-l1-gggg -i gcr.io/run-ai-demo/quickstart -g 4 -p team-d

At this point, you should have the following states:

293

Project GPUs Allocated Workloads Queued

team-a 4/4 (soft quota/actual allocation) None
team-b 4/2 None
team-c 4/2 None
team-d 4/8 None

See the section Achieving High Cluster Utilization with Over-uota GPU Allocation for discussions on the
proceeding testing scenario.

Next: Testing Details for Section 4.9
Testing Details for Section 4.9
This section contains testing details for the section Basic Resource Allocation Fairness.

Submit jobs in the following order:

Project # GPUs Total Comment

team-d 2 6/8 Team-b/c workload
pauses and moves to
pending.

team-d 2 8/8 Other team (b/c)

workloads pause and
move to pending.

See the following executed command sequence:

$ runai submit d-2-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-d$
runai submit d-3-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-d

At this point, you should have the following states:

Project GPUs Allocated Workloads Queued
team-a 4/4 None
team-b 2/2 None
team-c 2/2 None
team-d 8/8 None

See the section Basic Resource Allocation Fairness for a discussion on the proceeding testing scenario.

Next: Testing Details for Section 4.10

Testing Details for Section 4.10

This section contains testing details for the section Over-Quota Fairness.

294

Submit jobs in the following order for team-a, team-b, and team-c:

Project # GPUs Total Comment

team-a 2 4/4 1 workload queued
team-a 2 4/4 2 workloads queued
team-b 2 2/2 2 workloads queued
team-c 2 2/2 2 workloads queued

See the following executed command sequence:

$ runai submit a-3-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-as$
runai submit a-4-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-a$ runai
submit b-5-gg -1 gcr.io/run-ai-demo/quickstart -g 2 -p team-b$ runai
submit c-6-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-c

At this point, you should have the following states:

Project GPUs Allocated Workloads Queued

team-a 4/4 Two workloads asking for GPUs
two each

team-b 2/2 Two workloads asking for two
GPUs each

team-c 2/2 Two workloads asking for two
GPUs each

team-d 8/8 None

Next, delete all the workloads for team-d:

$ runai delete -p team-d d-1-gggg d-2-gg d-3-gg

See the section Over-Quota Fairness, for discussions on the proceeding testing scenario.

Next: Where to Find Additional Information

Where to Find Additional Information

To learn more about the information that is described in this document, see the following resources:

* NVIDIA DGX Systems

° NVIDIA DGX-1 System
https://www.nvidia.com/en-us/data-center/dgx-1/

° NVIDIA V100 Tensor Core GPU
https://www.nvidia.com/en-us/data-center/tesla-v100/

295

https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/tesla-v100/

° NVIDIANGC
https://www.nvidia.com/en-us/gpu-cloud/

* Run:Al container orchestration solution

° Run:Al product introduction
https://docs.run.ai/lhome/components/

° Run:Al installation documentation
https://docs.run.ai/Administrator/Cluster-Setup/Installing-Run-Al-on-an-on-premise-Kubernetes-Cluster/
https://docs.run.ai/Administrator/Researcher-Setup/Installing-the-Run-Al-Command-Line-Interface/

° Submitting jobs in Run:Al CLI
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Launch-Unattended-Training-Workloads-/
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Start-and-Use-Interactive-Build-Workloads-/

° Allocating GPU fractions in Run:Al CLI
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Using-GPU-Fractions/

* NetApp Al Control Plane

° Technical report
https://www.netapp.com/us/media/tr-4798.pdf

° Short-form demo
https://youtu.be/gfr_ sO27Rvo

° GitHub repository
https://github.com/NetApp/kubeflow_jupyter_ pipeline

* NetApp AFF systems

° NetApp AFF A-Series Datasheet
https://www.netapp.com/us/media/ds-3582.pdf

° NetApp Flash Advantage for All Flash FAS
https://www.netapp.com/us/media/ds-3733.pdf

° ONTAP 9 Information Library
http://mysupport.netapp.com/documentation/productlibrary/index.html?productiD=62286

° NetApp ONTAP FlexGroup Volumes technical report
https://www.netapp.com/us/media/tr-4557 .pdf

- NetApp ONTAP Al

° ONTAP Al with DGX-1 and Cisco Networking Design Guide
https://www.netapp.com/us/media/nva-1121-design.pdf

° ONTAP Al with DGX-1 and Cisco Networking Deployment Guide
https://www.netapp.com/us/media/nva-1121-deploy.pdf

° ONTAP Al with DGX-1 and Mellanox Networking Design Guide
http://www.netapp.com/us/media/nva-1138-design.pdf

° ONTAP Al with DGX-2 Design Guide
https://www.netapp.com/us/media/nva-1135-design.pdf

296

https://www.nvidia.com/en-us/gpu-cloud/
https://docs.run.ai/home/components/
https://docs.run.ai/Administrator/Cluster-Setup/Installing-Run-AI-on-an-on-premise-Kubernetes-Cluster/
https://docs.run.ai/Administrator/Researcher-Setup/Installing-the-Run-AI-Command-Line-Interface/
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Launch-Unattended-Training-Workloads-/
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Start-and-Use-Interactive-Build-Workloads-/
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Using-GPU-Fractions/
https://www.netapp.com/us/media/tr-4798.pdf
https://youtu.be/gfr_sO27Rvo
https://github.com/NetApp/kubeflow_jupyter_pipeline
https://www.netapp.com/us/media/ds-3582.pdf
https://www.netapp.com/us/media/ds-3733.pdf
http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286
https://www.netapp.com/us/media/tr-4557.pdf
https://www.netapp.com/us/media/nva-1121-design.pdf
https://www.netapp.com/us/media/nva-1121-deploy.pdf
http://www.netapp.com/us/media/nva-1138-design.pdf
https://www.netapp.com/us/media/nva-1135-design.pdf

Copyright Information

Copyright © 2021 NetApp, Inc. All rights reserved. Printed in the U.S. No part of this document
covered by copyright may be reproduced in any form or by any means-graphic, electronic, or
mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system-
without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY
DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice.
NetApp assumes no responsibility or liability arising from the use of products described herein,
except as expressly agreed to in writing by NetApp. The use or purchase of this product does not
convey a license under any patent rights, trademark rights, or any other intellectual property

rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents,
foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of
NetApp, Inc. Other company and product names may be trademarks of their respective owners.

297

http://www.netapp.com/TM

	Artificial Intelligence : NetApp Solutions
	Table of Contents
	Artificial Intelligence
	AI Converged Infrastructures
	Data Pipelines, Data Lakes and Management
	Use Cases

