
Artificial Intelligence
NetApp Solutions
NetApp
October 27, 2021

This PDF was generated from https://docs.netapp.com/us-en/netapp-
solutionshttps://www.netapp.com/pdf.html?item=/media/19432-nva-1151-design.pdf on October 27, 2021.
Always check docs.netapp.com for the latest.

Table of Contents

Artificial Intelligence . 1

AI Converged Infrastructures . 1

Data Pipelines, Data Lakes and Management. 1

Use Cases . 83

Artificial Intelligence

AI Converged Infrastructures

ONTAP AI with NVIDIA

EF-Series AI with NVIDA

Data Pipelines, Data Lakes and Management

NetApp AI Control Plane

NetApp AI Control Plane

Mike Oglesby, NetApp

Companies and organizations of all sizes and across many industries are turning to artificial intelligence (AI),

machine learning (ML), and deep learning (DL) to solve real-world problems, deliver innovative products and

services, and to get an edge in an increasingly competitive marketplace. As organizations increase their use of

AI, ML, and DL, they face many challenges, including workload scalability and data availability. This document

demonstrates how you can address these challenges by using the NetApp AI Control Plane, a solution that

pairs NetApp data management capabilities with popular open-source tools and frameworks.

This report shows you how to rapidly clone a data namespace. It also shows you how to seamlessly replicate

data across sites and regions to create a cohesive and unified AI/ML/DL data pipeline. Additionally, it walks you

through the defining and implementing of AI, ML, and DL training workflows that incorporate the near-instant

creation of data and model baselines for traceability and versioning. With this solution, you can trace every

model training run back to the exact dataset that was used to train and/or validate the model. Lastly, this

document shows you how to swiftly provision Jupyter Notebook workspaces with access to massive datasets.

Note: For HPC style distributed training at scale involving a large number of GPU servers that require shared

access to the same dataset, or if you require/prefer a parallel file system, check out TR-4890. This technical

report describes how to include NetApp’s fully supported parallel file system solution BeeGFS as part of the

NetApp AI Control Plane. This solution is designed to scale from a handful of NVIDIA DGX A100 systems, up

to a full blown 140 node SuperPOD.

The NetApp AI Control Plane is targeted towards data scientists and data engineers, and, thus, minimal

NetApp or NetApp ONTAP® expertise is required. With this solution, data management functions can be

executed using simple and familiar tools and interfaces. If you already have NetApp storage in your

environment, you can test drive the NetApp AI Control plane today. If you want to test drive the solution but you

do not have already have NetApp storage, visit cloud.netapp.com, and you can be up and running with a

cloud-based NetApp storage solution in minutes. The following figure provides a visualization of the solution.

1

https://www.netapp.com/pdf.html?item=/media/31317-tr-4890.pdf
https://blog.netapp.com/solution-support-for-beegfs-and-e-series/
http://cloud.netapp.com/

Next: Concepts and Components

Concepts and Components

Artificial Intelligence

AI is a computer science discipline in which computers are trained to mimic the cognitive functions of the

human mind. AI developers train computers to learn and to solve problems in a manner that is similar to, or

even superior to, humans. Deep learning and machine learning are subfields of AI. Organizations are

increasingly adopting AI, ML, and DL to support their critical business needs. Some examples are as follows:

• Analyzing large amounts of data to unearth previously unknown business insights

• Interacting directly with customers by using natural language processing

• Automating various business processes and functions

2

Modern AI training and inference workloads require massively parallel computing capabilities. Therefore, GPUs

are increasingly being used to execute AI operations because the parallel processing capabilities of GPUs are

vastly superior to those of general-purpose CPUs.

Containers

Containers are isolated user-space instances that run on top of a shared host operating system kernel. The

adoption of containers is increasing rapidly. Containers offer many of the same application sandboxing benefits

that virtual machines (VMs) offer. However, because the hypervisor and guest operating system layers that

VMs rely on have been eliminated, containers are far more lightweight. The following figure depicts a

visualization of virtual machines versus containers.

Containers also allow the efficient packaging of application dependencies, run times, and so on, directly with

an application. The most commonly used container packaging format is the Docker container. An application

that has been containerized in the Docker container format can be executed on any machine that can run

Docker containers. This is true even if the application’s dependencies are not present on the machine because

all dependencies are packaged in the container itself. For more information, visit the Docker website.

Kubernetes

Kubernetes is an open source, distributed, container orchestration platform that was originally designed by

Google and is now maintained by the Cloud Native Computing Foundation (CNCF). Kubernetes enables the

automation of deployment, management, and scaling functions for containerized applications. In recent years,

Kubernetes has emerged as the dominant container orchestration platform. Although other container

packaging formats and run times are supported, Kubernetes is most often used as an orchestration system for

Docker containers. For more information, visit the Kubernetes website.

NetApp Trident

Trident is an open source storage orchestrator developed and maintained by NetApp that greatly simplifies the

creation, management, and consumption of persistent storage for Kubernetes workloads. Trident, itself a

Kubernetes-native application, runs directly within a Kubernetes cluster. With Trident, Kubernetes users

(developers, data scientists, Kubernetes administrators, and so on) can create, manage, and interact with

persistent storage volumes in the standard Kubernetes format that they are already familiar with. At the same

time, they can take advantage of NetApp advanced data management capabilities and a data fabric that is

powered by NetApp technology. Trident abstracts away the complexities of persistent storage and makes it

3

https://www.docker.com
https://kubernetes.io

simple to consume. For more information, visit the Trident website.

NVIDIA DeepOps

DeepOps is an open source project from NVIDIA that, by using Ansible, automates the deployment of GPU

server clusters according to best practices. DeepOps is modular and can be used for various deployment

tasks. For this document and the validation exercise that it describes, DeepOps is used to deploy a Kubernetes

cluster that consists of GPU server worker nodes. For more information, visit the DeepOps website.

Kubeflow

Kubeflow is an open source AI and ML toolkit for Kubernetes that was originally developed by Google. The

Kubeflow project makes deployments of AI and ML workflows on Kubernetes simple, portable, and scalable.

Kubeflow abstracts away the intricacies of Kubernetes, allowing data scientists to focus on what they know

best―data science. See the following figure for a visualization. Kubeflow has been gaining significant traction

as enterprise IT departments have increasingly standardized on Kubernetes. For more information, visit the

Kubeflow website.

Kubeflow Pipelines

Kubeflow Pipelines are a key component of Kubeflow. Kubeflow Pipelines are a platform and standard for

defining and deploying portable and scalable AI and ML workflows. For more information, see the official

4

https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://github.com/NVIDIA/deepops
http://www.kubeflow.org/
https://www.kubeflow.org/docs/components/pipelines/pipelines/

Kubeflow documentation.

Jupyter Notebook Server

A Jupyter Notebook Server is an open source web application that allows data scientists to create wiki-like

documents called Jupyter Notebooks that contain live code as well as descriptive test. Jupyter Notebooks are

widely used in the AI and ML community as a means of documenting, storing, and sharing AI and ML projects.

Kubeflow simplifies the provisioning and deployment of Jupyter Notebook Servers on Kubernetes. For more

information on Jupyter Notebooks, visit the Jupyter website. For more information about Jupyter Notebooks

within the context of Kubeflow, see the official Kubeflow documentation.

Apache Airflow

Apache Airflow is an open-source workflow management platform that enables programmatic authoring,

scheduling, and monitoring for complex enterprise workflows. It is often used to automate ETL and data

pipeline workflows, but it is not limited to these types of workflows. The Airflow project was started by Airbnb

but has since become very popular in the industry and now falls under the auspices of The Apache Software

Foundation. Airflow is written in Python, Airflow workflows are created via Python scripts, and Airflow is

designed under the principle of "configuration as code.” Many enterprise Airflow users now run Airflow on top

of Kubernetes.

Directed Acyclic Graphs (DAGs)

In Airflow, workflows are called Directed Acyclic Graphs (DAGs). DAGs are made up of tasks that are executed

in sequence, in parallel, or a combination of the two, depending on the DAG definition. The Airflow scheduler

executes individual tasks on an array of workers, adhering to the task-level dependencies that are specified in

the DAG definition. DAGs are defined and created via Python scripts.

NetApp ONTAP 9

NetApp ONTAP 9 is the latest generation of storage management software from NetApp that enables

businesses like yours to modernize infrastructure and to transition to a cloud-ready data center. With industry-

leading data management capabilities, ONTAP enables you to manage and protect your data with a single set

of tools regardless of where that data resides. You can also move data freely to wherever you need it: the

edge, the core, or the cloud. ONTAP 9 includes numerous features that simplify data management, accelerate

and protect your critical data, and future-proof your infrastructure across hybrid cloud architectures.

Simplify Data Management

Data management is crucial for your enterprise IT operations so that you can use appropriate resources for

your applications and datasets. ONTAP includes the following features to streamline and simplify your

operations and reduce your total cost of operation:

• Inline data compaction and expanded deduplication. Data compaction reduces wasted space inside

storage blocks, and deduplication significantly increases effective capacity.

• Minimum, maximum, and adaptive quality of service (QoS). Granular QoS controls help maintain

performance levels for critical applications in highly shared environments.

• ONTAP FabricPool. This feature provides automatic tiering of cold data to public and private cloud storage

options, including Amazon Web Services (AWS), Azure, and NetApp StorageGRID object-based storage.

Accelerate and Protect Data

ONTAP delivers superior levels of performance and data protection and extends these capabilities with the

following features:

5

https://www.kubeflow.org/docs/components/pipelines/pipelines/
http://www.jupyter.org/
https://www.kubeflow.org/docs/components/jupyter/

• High performance and low latency. ONTAP offers the highest possible throughput at the lowest possible

latency.

• NetApp ONTAP FlexGroup technology. A FlexGroup volume is a high-performance data container that

can scale linearly to up to 20PB and 400 billion files, providing a single namespace that simplifies data

management.

• Data protection. ONTAP provides built-in data protection capabilities with common management across

all platforms.

• NetApp Volume Encryption. ONTAP offers native volume-level encryption with both onboard and external

key management support.

Future-Proof Infrastructure

ONTAP 9 helps meet your demanding and constantly changing business needs:

• Seamless scaling and nondisruptive operations. ONTAP supports the nondisruptive addition of

capacity to existing controllers and to scale-out clusters. You can upgrade to the latest technologies, such

as NVMe and 32Gb FC, without costly data migrations or outages.

• Cloud connection. ONTAP is one of the most cloud-connected storage management software, with

options for software-defined storage (ONTAP Select) and cloud-native instances (NetApp Cloud Volumes

Service) in all public clouds.

• Integration with emerging applications. By using the same infrastructure that supports existing

enterprise apps, ONTAP offers enterprise-grade data services for next-generation platforms and

applications such as OpenStack, Hadoop, and MongoDB.

NetApp Snapshot Copies

A NetApp Snapshot copy is a read-only, point-in-time image of a volume. The image consumes minimal

storage space and incurs negligible performance overhead because it only records changes to files create

since the last Snapshot copy was made, as depicted in the following figure.

Snapshot copies owe their efficiency to the core ONTAP storage virtualization technology, the Write Anywhere

File Layout (WAFL). Like a database, WAFL uses metadata to point to actual data blocks on disk. But, unlike a

database, WAFL does not overwrite existing blocks. It writes updated data to a new block and changes the

metadata. It’s because ONTAP references metadata when it creates a Snapshot copy, rather than copying

data blocks, that Snapshot copies are so efficient. Doing so eliminates the seek time that other systems incur

in locating the blocks to copy, as well as the cost of making the copy itself.

You can use a Snapshot copy to recover individual files or LUNs or to restore the entire contents of a volume.

ONTAP compares pointer information in the Snapshot copy with data on disk to reconstruct the missing or

damaged object, without downtime or a significant performance cost.

6

NetApp FlexClone Technology

NetApp FlexClone technology references Snapshot metadata to create writable, point-in-time copies of a

volume. Copies share data blocks with their parents, consuming no storage except what is required for

metadata until changes are written to the copy, as depicted in the following figure. Where traditional copies can

take minutes or even hours to create, FlexClone software lets you copy even the largest datasets almost

instantaneously. That makes it ideal for situations in which you need multiple copies of identical datasets (a

development workspace, for example) or temporary copies of a dataset (testing an application against a

production dataset).

7

NetApp SnapMirror Data Replication Technology

NetApp SnapMirror software is a cost-effective, easy-to-use unified replication solution across the data fabric. It

replicates data at high speeds over LAN or WAN. It gives you high data availability and fast data replication for

applications of all types, including business critical applications in both virtual and traditional environments.

When you replicate data to one or more NetApp storage systems and continually update the secondary data,

your data is kept current and is available whenever you need it. No external replication servers are required.

See the following figure for an example of an architecture that leverages SnapMirror technology.

SnapMirror software leverages NetApp ONTAP storage efficiencies by sending only changed blocks over the

network. SnapMirror software also uses built-in network compression to accelerate data transfers and reduce

network bandwidth utilization by up to 70%. With SnapMirror technology, you can leverage one thin replication

data stream to create a single repository that maintains both the active mirror and prior point-in-time copies,

reducing network traffic by up to 50%.

8

NetApp Cloud Sync

Cloud Sync is a NetApp service for rapid and secure data synchronization. Whether you need to transfer files

between on-premises NFS or SMB file shares, NetApp StorageGRID, NetApp ONTAP S3, NetApp Cloud

Volumes Service, Azure NetApp Files, AWS S3, AWS EFS, Azure Blob, Google Cloud Storage, or IBM Cloud

Object Storage, Cloud Sync moves the files where you need them quickly and securely.

After your data is transferred, it is fully available for use on both source and target. Cloud Sync can sync data

on-demand when an update is triggered or continuously sync data based on a predefined schedule.

Regardless, Cloud Sync only moves the deltas, so time and money spent on data replication is minimized.

Cloud Sync is a software as a service (SaaS) tool that is extremely simple to set up and use. Data transfers

that are triggered by Cloud Sync are carried out by data brokers. Cloud Sync data brokers can be deployed in

AWS, Azure, Google Cloud Platform, or on-premises.

NetApp XCP

NetApp XCP is client-based software for any-to-NetApp and NetApp-to-NetApp data migrations and file system

insights. XCP is designed to scale and achieve maximum performance by utilizing all available system

resources to handle high-volume datasets and high-performance migrations. XCP helps you to gain complete

visibility into the file system with the option to generate reports.

NetApp XCP is available in a single package that supports NFS and SMB protocols. XCP includes a Linux

binary for NFS data sets and a windows executable for SMB data sets.

NetApp XCP File Analytics is host-based software that detects file shares, runs scans on the file system, and

provides a dashboard for file analytics. XCP File Analytics is compatible with both NetApp and non-NetApp

systems and runs on Linux or Windows hosts to provide analytics for NFS and SMB-exported file systems.

NetApp ONTAP FlexGroup Volumes

A training dataset can be a collection of potentially billions of files. Files can include text, audio, video, and

other forms of unstructured data that must be stored and processed to be read in parallel. The storage system

must store large numbers of small files and must read those files in parallel for sequential and random I/O.

9

A FlexGroup volume is a single namespace that comprises multiple constituent member volumes, as shown in

the following figure. From a storage administrator viewpoint, a FlexGroup volume is managed and acts like a

NetApp FlexVol volume. Files in a FlexGroup volume are allocated to individual member volumes and are not

striped across volumes or nodes. They enable the following capabilities:

• FlexGroup volumes provide multiple petabytes of capacity and predictable low latency for high-metadata

workloads.

• They support up to 400 billion files in the same namespace.

• They support parallelized operations in NAS workloads across CPUs, nodes, aggregates, and constituent

FlexVol volumes.

Next: Hardware and Software Requirements

Hardware and Software Requirements

The NetApp AI Control Plane solution is not dependent on this specific hardware. The

solution is compatible with any NetApp physical storage appliance, software-defined

instance, or cloud service, that is supported by Trident. Examples include a NetApp AFF

storage system, Azure NetApp Files, NetApp Cloud Volumes Service, a NetApp ONTAP

Select software-defined storage instance, or a NetApp Cloud Volumes ONTAP instance.

Additionally, the solution can be implemented on any Kubernetes cluster as long as the

Kubernetes version used is supported by Kubeflow and NetApp Trident. For a list of

Kubernetes versions that are supported by Kubeflow, see the see the official Kubeflow

documentation. For a list of Kubernetes versions that are supported by Trident, see the

Trident documentation. See the following tables for details on the environment that was

used to validate the solution.

Infrastructure

Component

Quantity Details Operating System

Deployment jump host 1 VM Ubuntu 20.04.2 LTS

10

https://www.kubeflow.org/docs/started/getting-started/
https://www.kubeflow.org/docs/started/getting-started/
https://netapp-trident.readthedocs.io/

Infrastructure

Component

Quantity Details Operating System

Kubernetes master nodes 1 VM Ubuntu 20.04.2 LTS

Kubernetes worker nodes 2 VM Ubuntu 20.04.2 LTS

Kubernetes GPU worker

nodes

2 NVIDIA DGX-1 (bare-

metal)
NVIDIA DGX OS 4.0.5

(based on Ubuntu 18.04.2

LTS)

Storage 1 HA Pair NetApp AFF A220 NetApp ONTAP 9.7 P6

Software Component Version

Apache Airflow 2.0.1

Apache Airflow Helm Chart 8.0.8

Docker 19.03.12

Kubeflow 1.2

Kubernetes 1.18.9

NetApp Trident 21.01.2

NVIDIA DeepOps Trident deployment functionality from master branch

as of commit 61898cdfda; All other functionality from

version 21.03

Support

NetApp does not offer enterprise support for Apache Airflow, Docker, Kubeflow, Kubernetes, or NVIDIA

DeepOps. If you are interested in a fully supported solution with capabilities similar to the NetApp AI Control

Plane solution, contact NetApp about fully supported AI/ML solutions that NetApp offers jointly with partners.

Next: Kubernetes Deployment.

Kubernetes Deployment

This section describes the tasks that you must complete to deploy a Kubernetes cluster in

which to implement the NetApp AI Control Plane solution. If you already have a

Kubernetes cluster, then you can skip this section as long as you are running a version of

Kubernetes that is supported by Kubeflow and NetApp Trident. For a list of Kubernetes

versions that are supported by Kubeflow, see the see the official Kubeflow

documentation. For a list of Kubernetes versions that are supported by Trident, see the

Trident documentation.

For on-premises Kubernetes deployments that incorporate bare-metal nodes featuring NVIDIA GPU(s),

NetApp recommends using NVIDIA’s DeepOps Kubernetes deployment tool. This section outlines the

deployment of a Kubernetes cluster using DeepOps.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already

11

https://github.com/NVIDIA/deepops/tree/61898cdfdaa0c59c07e9fabf3022945a905b148e/docs/k8s-cluster
https://www.netapp.com/us/contact-us/index.aspx?for_cr=us
https://www.kubeflow.org/docs/started/getting-started/
https://www.kubeflow.org/docs/started/getting-started/
https://netapp-trident.readthedocs.io/

performed the following tasks:

1. You have already configured any bare-metal Kubernetes nodes (for example, an NVIDIA DGX system that

is part of an ONTAP AI pod) according to standard configuration instructions.

2. You have installed a supported operating system on all Kubernetes master and worker nodes and on a

deployment jump host. For a list of operating systems that are supported by DeepOps, see the DeepOps

GitHub site.

Use NVIDIA DeepOps to Install and Configure Kubernetes

To deploy and configure your Kubernetes cluster with NVIDIA DeepOps, perform the following tasks from a

deployment jump host:

1. Download NVIDIA DeepOps by following the instructions on the Getting Started page on the NVIDIA

DeepOps GitHub site.

2. Deploy Kubernetes in your cluster by following the instructions on the Kubernetes Deployment Guide page

on the NVIDIA DeepOps GitHub site.

Next: NetApp Trident Deployment and Configuration Overview

NetApp Trident Deployment and Configuration

This section describes the tasks that you must complete to install and configure NetApp

Trident in your Kubernetes cluster.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already

performed the following tasks:

1. You already have a working Kubernetes cluster, and you are running a version of Kubernetes that is

supported by Trident. For a list of supported versions, see the Trident documentation.

2. You already have a working NetApp storage appliance, software-defined instance, or cloud storage

service, that is supported by Trident.

Install Trident

To install and configure NetApp Trident in your Kubernetes cluster, perform the following tasks from the

deployment jump host:

1. Deploy Trident using one of the following methods:

◦ If you used NVIDIA DeepOps to deploy your Kubernetes cluster, you can also use NVIDIA DeepOps to

deploy Trident in your Kubernetes cluster. To deploy Trident with DeepOps, follow the Trident

deployment instructions on the NVIDIA DeepOps GitHub site.

◦ If you did not use NVIDIA DeepOps to deploy your Kubernetes cluster or if you simply prefer to deploy

Trident manually, you can deploy Trident by following the deployment instructions in the Trident

documentation. Be sure to create at least one Trident Backend and at least one Kubernetes

StorageClass. For more information about Backends and StorageClasses, see the Trident

documentation.

12

https://github.com/NVIDIA/deepops
https://github.com/NVIDIA/deepops
https://github.com/NVIDIA/deepops/tree/master/docs
https://github.com/NVIDIA/deepops/tree/master/docs/k8s-cluster
https://netapp-trident.readthedocs.io/
https://github.com/NVIDIA/deepops/tree/master/docs/k8s-cluster#netapp-trident
https://github.com/NVIDIA/deepops/tree/master/docs/k8s-cluster#netapp-trident
https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/

If you are deploying the NetApp AI Control Plane solution on an ONTAP AI pod, see Example

Trident Backends for ONTAP AI Deployments for some examples of different Trident Backends

that you might want to create and Example Kubernetes Storageclasses for ONTAP AI

Deployments for some examples of different Kubernetes StorageClasses that you might want to

create.

Next: Example Trident Backends for ONTAP AI Deployments

NetApp Trident Deployment and Configuration

This section describes the tasks that you must complete to install and configure NetApp

Trident in your Kubernetes cluster.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already

performed the following tasks:

1. You already have a working Kubernetes cluster, and you are running a version of Kubernetes that is

supported by Trident. For a list of supported versions, see the Trident documentation.

2. You already have a working NetApp storage appliance, software-defined instance, or cloud storage

service, that is supported by Trident.

Install Trident

To install and configure NetApp Trident in your Kubernetes cluster, perform the following tasks from the

deployment jump host:

1. Deploy Trident using one of the following methods:

◦ If you used NVIDIA DeepOps to deploy your Kubernetes cluster, you can also use NVIDIA DeepOps to

deploy Trident in your Kubernetes cluster. To deploy Trident with DeepOps, follow the Trident

deployment instructions on the NVIDIA DeepOps GitHub site.

◦ If you did not use NVIDIA DeepOps to deploy your Kubernetes cluster or if you simply prefer to deploy

Trident manually, you can deploy Trident by following the deployment instructions in the Trident

documentation. Be sure to create at least one Trident Backend and at least one Kubernetes

StorageClass. For more information about Backends and StorageClasses, see the Trident

documentation.

If you are deploying the NetApp AI Control Plane solution on an ONTAP AI pod, see Example

Trident Backends for ONTAP AI Deployments for some examples of different Trident Backends

that you might want to create and Example Kubernetes Storageclasses for ONTAP AI

Deployments for some examples of different Kubernetes StorageClasses that you might want to

create.

Next: Example Trident Backends for ONTAP AI Deployments

Example Trident Backends for ONTAP AI Deployments

Before you can use Trident to dynamically provision storage resources within your

Kubernetes cluster, you must create one or more Trident Backends. The examples that

follow represent different types of Backends that you might want to create if you are

13

https://netapp-trident.readthedocs.io/
https://github.com/NVIDIA/deepops/tree/master/docs/k8s-cluster#netapp-trident
https://github.com/NVIDIA/deepops/tree/master/docs/k8s-cluster#netapp-trident
https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/

deploying the NetApp AI Control Plane solution on an ONTAP AI pod. For more

information about Backends, see the Trident documentation.

1. NetApp recommends creating a FlexGroup-enabled Trident Backend for each data LIF (logical network

interface that provides data access) that you want to use on your NetApp AFF system. This will allow you

to balance volume mounts across LIFs

The example commands that follow show the creation of two FlexGroup-enabled Trident Backends for two

different data LIFs that are associated with the same ONTAP storage virtual machine (SVM). These

Backends use the ontap-nas-flexgroup storage driver. ONTAP supports two main data volume types:

FlexVol and FlexGroup. FlexVol volumes are size-limited (as of this writing, the maximum size depends on

the specific deployment). FlexGroup volumes, on the other hand, can scale linearly to up to 20PB and 400

billion files, providing a single namespace that greatly simplifies data management. Therefore, FlexGroup

volumes are optimal for AI and ML workloads that rely on large amounts of data.

If you are working with a small amount of data and want to use FlexVol volumes instead of FlexGroup

volumes, you can create Trident Backends that use the ontap-nas storage driver instead of the ontap-

nas-flexgroup storage driver.

$ cat << EOF > ./trident-backend-ontap-ai-flexgroups-iface1.json

{

 "version": 1,

 "storageDriverName": "ontap-nas-flexgroup",

 "backendName": "ontap-ai-flexgroups-iface1",

 "managementLIF": "10.61.218.100",

 "dataLIF": "192.168.11.11",

 "svm": "ontapai_nfs",

 "username": "admin",

 "password": "ontapai"

}

EOF

$ tridentctl create backend -f ./trident-backend-ontap-ai-flexgroups-

iface1.json -n trident

+----------------------------+---------------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER |

UUID | STATE | VOLUMES |

+----------------------------+---------------------

+--------------------------------------+--------+---------+

| ontap-ai-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-

b263-b6da6dec0bdd | online | 0 |

+----------------------------+---------------------

+--------------------------------------+--------+---------+

$ cat << EOF > ./trident-backend-ontap-ai-flexgroups-iface2.json

{

 "version": 1,

 "storageDriverName": "ontap-nas-flexgroup",

 "backendName": "ontap-ai-flexgroups-iface2",

14

https://netapp-trident.readthedocs.io/

 "managementLIF": "10.61.218.100",

 "dataLIF": "192.168.12.12",

 "svm": "ontapai_nfs",

 "username": "admin",

 "password": "ontapai"

}

EOF

$ tridentctl create backend -f ./trident-backend-ontap-ai-flexgroups-

iface2.json -n trident

+----------------------------+---------------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER |

UUID | STATE | VOLUMES |

+----------------------------+---------------------

+--------------------------------------+--------+---------+

| ontap-ai-flexgroups-iface2 | ontap-nas-flexgroup | 61814d48-c770-436b-

9cb4-cf7ee661274d | online | 0 |

+----------------------------+---------------------

+--------------------------------------+--------+---------+

$ tridentctl get backend -n trident

+----------------------------+---------------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER |

UUID | STATE | VOLUMES |

+----------------------------+---------------------

+--------------------------------------+--------+---------+

| ontap-ai-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-

b263-b6da6dec0bdd | online | 0 |

| ontap-ai-flexgroups-iface2 | ontap-nas-flexgroup | 61814d48-c770-436b-

9cb4-cf7ee661274d | online | 0 |

+----------------------------+---------------------

+--------------------------------------+--------+---------+

2. NetApp also recommends creating one or more FlexVol- enabled Trident Backends. If you use FlexGroup

volumes for training dataset storage, you might want to use FlexVol volumes for storing results, output,

debug information, and so on. If you want to use FlexVol volumes, you must create one or more FlexVol-

enabled Trident Backends. The example commands that follow show the creation of a single FlexVol-

enabled Trident Backend that uses a single data LIF.

15

$ cat << EOF > ./trident-backend-ontap-ai-flexvols.json

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "backendName": "ontap-ai-flexvols",

 "managementLIF": "10.61.218.100",

 "dataLIF": "192.168.11.11",

 "svm": "ontapai_nfs",

 "username": "admin",

 "password": "ontapai"

}

EOF

$ tridentctl create backend -f ./trident-backend-ontap-ai-flexvols.json -n

trident

+----------------------------+---------------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+----------------------------+---------------------

+--------------------------------------+--------+---------+

| ontap-ai-flexvols | ontap-nas | 52bdb3b1-13a5-4513-

a9c1-52a69657fabe | online | 0 |

+----------------------------+---------------------

+--------------------------------------+--------+---------+

$ tridentctl get backend -n trident

+----------------------------+---------------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+----------------------------+---------------------

+--------------------------------------+--------+---------+

| ontap-ai-flexvols | ontap-nas | 52bdb3b1-13a5-4513-

a9c1-52a69657fabe | online | 0 |

| ontap-ai-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-

b263-b6da6dec0bdd | online | 0 |

| ontap-ai-flexgroups-iface2 | ontap-nas-flexgroup | 61814d48-c770-436b-

9cb4-cf7ee661274d | online | 0 |

+----------------------------+---------------------

+--------------------------------------+--------+---------+

Next: Example Kubernetes Storageclasses for ONTAP AI Deployments

Example Kubernetes StorageClasses for ONTAP AI Deployments

Before you can use Trident to dynamically provision storage resources within your

16

Kubernetes cluster, you must create one or more Kubernetes StorageClasses. The

examples that follow represent different types of StorageClasses that you might want to

create if you are deploying the NetApp AI Control Plane solution on an ONTAP AI pod.

For more information about StorageClasses, see the Trident documentation.

1. NetApp recommends creating a separate StorageClass for each FlexGroup-enabled Trident Backend that

you created in the section Example Trident Backends for ONTAP AI Deployments, step 1. These granular

StorageClasses enable you to add NFS mounts that correspond to specific LIFs (the LIFs that you

specified when you created the Trident Backends) as a particular Backend that is specified in the

StorageClass spec file. The example commands that follow show the creation of two StorageClasses that

correspond to the two example Backends that were created in the section Example Trident Backends for

ONTAP AI Deployments, step 1. For more information about StorageClasses, see the Trident

documentation.

So that a persistent volume isn’t deleted when the corresponding PersistentVolumeClaim (PVC) is deleted,

the following example uses a reclaimPolicy value of Retain. For more information about the

reclaimPolicy field, see the official Kubernetes documentation.

17

https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/
https://kubernetes.io/docs/concepts/storage/storage-classes/

$ cat << EOF > ./storage-class-ontap-ai-flexgroups-retain-iface1.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-ai-flexgroups-retain-iface1

provisioner: netapp.io/trident

parameters:

 backendType: "ontap-nas-flexgroup"

 storagePools: "ontap-ai-flexgroups-iface1:.*"

reclaimPolicy: Retain

EOF

$ kubectl create -f ./storage-class-ontap-ai-flexgroups-retain-

iface1.yaml

storageclass.storage.k8s.io/ontap-ai-flexgroups-retain-iface1 created

$ cat << EOF > ./storage-class-ontap-ai-flexgroups-retain-iface2.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-ai-flexgroups-retain-iface2

provisioner: netapp.io/trident

parameters:

 backendType: "ontap-nas-flexgroup"

 storagePools: "ontap-ai-flexgroups-iface2:.*"

reclaimPolicy: Retain

EOF

$ kubectl create -f ./storage-class-ontap-ai-flexgroups-retain-

iface2.yaml

storageclass.storage.k8s.io/ontap-ai-flexgroups-retain-iface2 created

$ kubectl get storageclass

NAME PROVISIONER AGE

ontap-ai-flexgroups-retain-iface1 netapp.io/trident 0m

ontap-ai-flexgroups-retain-iface2 netapp.io/trident 0m

2. NetApp also recommends creating a StorageClass that corresponds to the FlexVol-enabled Trident

Backend that you created in the section Example Trident Backends for ONTAP AI Deployments, step 2.

The example commands that follow show the creation of a single StorageClass for FlexVol volumes.

In the following example, a particular Backend is not specified in the StorageClass definition file because

only one FlexVol-enabled Trident backend was created. When you use Kubernetes to administer volumes

that use this StorageClass, Trident attempts to use any available backend that uses the ontap-nas driver.

18

$ cat << EOF > ./storage-class-ontap-ai-flexvols-retain.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-ai-flexvols-retain

provisioner: netapp.io/trident

parameters:

 backendType: "ontap-nas"

reclaimPolicy: Retain

EOF

$ kubectl create -f ./storage-class-ontap-ai-flexvols-retain.yaml

storageclass.storage.k8s.io/ontap-ai-flexvols-retain created

$ kubectl get storageclass

NAME PROVISIONER AGE

ontap-ai-flexgroups-retain-iface1 netapp.io/trident 1m

ontap-ai-flexgroups-retain-iface2 netapp.io/trident 1m

ontap-ai-flexvols-retain netapp.io/trident 0m

3. NetApp also recommends creating a generic StorageClass for FlexGroup volumes. The following example

commands show the creation of a single generic StorageClass for FlexGroup volumes.

Note that a particular backend is not specified in the StorageClass definition file. Therefore, when you use

Kubernetes to administer volumes that use this StorageClass, Trident attempts to use any available

backend that uses the ontap-nas-flexgroup driver.

$ cat << EOF > ./storage-class-ontap-ai-flexgroups-retain.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-ai-flexgroups-retain

provisioner: netapp.io/trident

parameters:

 backendType: "ontap-nas-flexgroup"

reclaimPolicy: Retain

EOF

$ kubectl create -f ./storage-class-ontap-ai-flexgroups-retain.yaml

storageclass.storage.k8s.io/ontap-ai-flexgroups-retain created

$ kubectl get storageclass

NAME PROVISIONER AGE

ontap-ai-flexgroups-retain netapp.io/trident 0m

ontap-ai-flexgroups-retain-iface1 netapp.io/trident 2m

ontap-ai-flexgroups-retain-iface2 netapp.io/trident 2m

ontap-ai-flexvols-retain netapp.io/trident 1m

19

Next: Kubeflow Deployment Overview

Kubeflow Deployment

This section describes the tasks that you must complete to deploy Kubeflow in your

Kubernetes cluster.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already

performed the following tasks:

1. You already have a working Kubernetes cluster, and you are running a version of Kubernetes that is

supported by Kubeflow. For a list of supported versions, see the official Kubeflow documentation.

2. You have already installed and configured NetApp Trident in your Kubernetes cluster as outlined in Trident

Deployment and Configuration.

Set Default Kubernetes StorageClass

Before you deploy Kubeflow, you must designate a default StorageClass within your Kubernetes cluster. The

Kubeflow deployment process attempts to provision new persistent volumes using the default StorageClass. If

no StorageClass is designated as the default StorageClass, then the deployment fails. To designate a default

StorageClass within your cluster, perform the following task from the deployment jump host. If you have

already designated a default StorageClass within your cluster, then you can skip this step.

1. Designate one of your existing StorageClasses as the default StorageClass. The example commands that

follow show the designation of a StorageClass named ontap-ai- flexvols-retain as the default

StorageClass.

The ontap-nas-flexgroup Trident Backend type has a minimum PVC size that is fairly

large. By default, Kubeflow attempts to provision PVCs that are only a few GBs in size.

Therefore, you should not designate a StorageClass that utilizes the ontap-nas-flexgroup

Backend type as the default StorageClass for the purposes of Kubeflow deployment.

$ kubectl get sc

NAME PROVISIONER AGE

ontap-ai-flexgroups-retain csi.trident.netapp.io 25h

ontap-ai-flexgroups-retain-iface1 csi.trident.netapp.io 25h

ontap-ai-flexgroups-retain-iface2 csi.trident.netapp.io 25h

ontap-ai-flexvols-retain csi.trident.netapp.io 3s

$ kubectl patch storageclass ontap-ai-flexvols-retain -p '{"metadata":

{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'

storageclass.storage.k8s.io/ontap-ai-flexvols-retain patched

$ kubectl get sc

NAME PROVISIONER AGE

ontap-ai-flexgroups-retain csi.trident.netapp.io 25h

ontap-ai-flexgroups-retain-iface1 csi.trident.netapp.io 25h

ontap-ai-flexgroups-retain-iface2 csi.trident.netapp.io 25h

ontap-ai-flexvols-retain (default) csi.trident.netapp.io 54s

20

https://www.kubeflow.org/docs/started/getting-started/

Use NVIDIA DeepOps to Deploy Kubeflow

NetApp recommends using the Kubeflow deployment tool that is provided by NVIDIA DeepOps. To deploy

Kubeflow in your Kubernetes cluster using the DeepOps deployment tool, perform the following tasks from the

deployment jump host.

Alternatively, you can deploy Kubeflow manually by following the installation instructions in the

official Kubeflow documentation

1. Deploy Kubeflow in your cluster by following the Kubeflow deployment instructions on the NVIDIA

DeepOps GitHub site.

2. Note down the Kubeflow Dashboard URL that the DeepOps Kubeflow deployment tool outputs.

$./scripts/k8s/deploy_kubeflow.sh -x

…

INFO[0007] Applied the configuration Successfully!

filename="cmd/apply.go:72"

Kubeflow app installed to: /home/ai/kubeflow

It may take several minutes for all services to start. Run 'kubectl get

pods -n kubeflow' to verify

To remove (excluding CRDs, istio, auth, and cert-manager), run:

./scripts/k8s_deploy_kubeflow.sh -d

To perform a full uninstall : ./scripts/k8s_deploy_kubeflow.sh -D

Kubeflow Dashboard (HTTP NodePort): http://10.61.188.111:31380

3. Confirm that all pods deployed within the Kubeflow namespace show a STATUS of Running and confirm

that no components deployed within the namespace are in an error state. It may take several minutes for

all pods to start.

$ kubectl get all -n kubeflow

NAME READY

STATUS RESTARTS AGE

pod/admission-webhook-bootstrap-stateful-set-0 1/1

Running 0 95s

pod/admission-webhook-deployment-6b89c84c98-vrtbh 1/1

Running 0 91s

pod/application-controller-stateful-set-0 1/1

Running 0 98s

pod/argo-ui-5dcf5d8b4f-m2wn4 1/1

Running 0 97s

pod/centraldashboard-cf4874ddc-7hcr8 1/1

Running 0 97s

pod/jupyter-web-app-deployment-685b455447-gjhh7 1/1

Running 0 96s

pod/katib-controller-88c97d85c-kgq66 1/1

Running 1 95s

21

https://www.kubeflow.org/docs/started/getting-started/
https://github.com/NVIDIA/deepops/blob/master/docs/k8s-cluster/kubeflow.md

pod/katib-db-8598468fd8-5jw2c 1/1

Running 0 95s

pod/katib-manager-574c8c67f9-wtrf5 1/1

Running 1 95s

pod/katib-manager-rest-778857c989-fjbzn 1/1

Running 0 95s

pod/katib-suggestion-bayesianoptimization-65df4d7455-qthmw 1/1

Running 0 94s

pod/katib-suggestion-grid-56bf69f597-98vwn 1/1

Running 0 94s

pod/katib-suggestion-hyperband-7777b76cb9-9v6dq 1/1

Running 0 93s

pod/katib-suggestion-nasrl-77f6f9458c-2qzxq 1/1

Running 0 93s

pod/katib-suggestion-random-77b88b5c79-l64j9 1/1

Running 0 93s

pod/katib-ui-7587c5b967-nd629 1/1

Running 0 95s

pod/metacontroller-0 1/1

Running 0 96s

pod/metadata-db-5dd459cc-swzkm 1/1

Running 0 94s

pod/metadata-deployment-6cf77db994-69fk7 1/1

Running 3 93s

pod/metadata-deployment-6cf77db994-mpbjt 1/1

Running 3 93s

pod/metadata-deployment-6cf77db994-xg7tz 1/1

Running 3 94s

pod/metadata-ui-78f5b59b56-qb6kr 1/1

Running 0 94s

pod/minio-758b769d67-llvdr 1/1

Running 0 91s

pod/ml-pipeline-5875b9db95-g8t2k 1/1

Running 0 91s

pod/ml-pipeline-persistenceagent-9b69ddd46-bt9r9 1/1

Running 0 90s

pod/ml-pipeline-scheduledworkflow-7b8d756c76-7x56s 1/1

Running 0 90s

pod/ml-pipeline-ui-79ffd9c76-fcwpd 1/1

Running 0 90s

pod/ml-pipeline-viewer-controller-deployment-5fdc87f58-b2t9r 1/1

Running 0 90s

pod/mysql-657f87857d-l5k9z 1/1

Running 0 91s

pod/notebook-controller-deployment-56b4f59bbf-8bvnr 1/1

Running 0 92s

22

pod/profiles-deployment-6bc745947-mrdkh 2/2

Running 0 90s

pod/pytorch-operator-77c97f4879-hmlrv 1/1

Running 0 92s

pod/seldon-operator-controller-manager-0 1/1

Running 1 91s

pod/spartakus-volunteer-5fdfddb779-l7qkm 1/1

Running 0 92s

pod/tensorboard-6544748d94-nh8b2 1/1

Running 0 92s

pod/tf-job-dashboard-56f79c59dd-6w59t 1/1

Running 0 92s

pod/tf-job-operator-79cbfd6dbc-rb58c 1/1

Running 0 91s

pod/workflow-controller-db644d554-cwrnb 1/1

Running 0 97s

NAME TYPE

CLUSTER-IP EXTERNAL-IP PORT(S) AGE

service/admission-webhook-service ClusterIP

10.233.51.169 <none> 443/TCP 97s

service/application-controller-service ClusterIP

10.233.4.54 <none> 443/TCP 98s

service/argo-ui NodePort

10.233.47.191 <none> 80:31799/TCP 97s

service/centraldashboard ClusterIP

10.233.8.36 <none> 80/TCP 97s

service/jupyter-web-app-service ClusterIP

10.233.1.42 <none> 80/TCP 97s

service/katib-controller ClusterIP

10.233.25.226 <none> 443/TCP 96s

service/katib-db ClusterIP

10.233.33.151 <none> 3306/TCP 97s

service/katib-manager ClusterIP

10.233.46.239 <none> 6789/TCP 96s

service/katib-manager-rest ClusterIP

10.233.55.32 <none> 80/TCP 96s

service/katib-suggestion-bayesianoptimization ClusterIP

10.233.49.191 <none> 6789/TCP 95s

service/katib-suggestion-grid ClusterIP

10.233.9.105 <none> 6789/TCP 95s

service/katib-suggestion-hyperband ClusterIP

10.233.22.2 <none> 6789/TCP 95s

service/katib-suggestion-nasrl ClusterIP

10.233.63.73 <none> 6789/TCP 95s

service/katib-suggestion-random ClusterIP

10.233.57.210 <none> 6789/TCP 95s

23

service/katib-ui ClusterIP

10.233.6.116 <none> 80/TCP 96s

service/metadata-db ClusterIP

10.233.31.2 <none> 3306/TCP 96s

service/metadata-service ClusterIP

10.233.27.104 <none> 8080/TCP 96s

service/metadata-ui ClusterIP

10.233.57.177 <none> 80/TCP 96s

service/minio-service ClusterIP

10.233.44.90 <none> 9000/TCP 94s

service/ml-pipeline ClusterIP

10.233.41.201 <none> 8888/TCP,8887/TCP 94s

service/ml-pipeline-tensorboard-ui ClusterIP

10.233.36.207 <none> 80/TCP 93s

service/ml-pipeline-ui ClusterIP

10.233.61.150 <none> 80/TCP 93s

service/mysql ClusterIP

10.233.55.117 <none> 3306/TCP 94s

service/notebook-controller-service ClusterIP

10.233.10.166 <none> 443/TCP 95s

service/profiles-kfam ClusterIP

10.233.33.79 <none> 8081/TCP 92s

service/pytorch-operator ClusterIP

10.233.37.112 <none> 8443/TCP 95s

service/seldon-operator-controller-manager-service ClusterIP

10.233.30.178 <none> 443/TCP 92s

service/tensorboard ClusterIP

10.233.58.151 <none> 9000/TCP 94s

service/tf-job-dashboard ClusterIP

10.233.4.17 <none> 80/TCP 94s

service/tf-job-operator ClusterIP

10.233.60.32 <none> 8443/TCP 94s

service/webhook-server-service ClusterIP

10.233.32.167 <none> 443/TCP 87s

NAME READY UP-

TO-DATE AVAILABLE AGE

deployment.apps/admission-webhook-deployment 1/1 1

1 97s

deployment.apps/argo-ui 1/1 1

1 97s

deployment.apps/centraldashboard 1/1 1

1 97s

deployment.apps/jupyter-web-app-deployment 1/1 1

1 97s

deployment.apps/katib-controller 1/1 1

1 96s

24

deployment.apps/katib-db 1/1 1

1 97s

deployment.apps/katib-manager 1/1 1

1 96s

deployment.apps/katib-manager-rest 1/1 1

1 96s

deployment.apps/katib-suggestion-bayesianoptimization 1/1 1

1 95s

deployment.apps/katib-suggestion-grid 1/1 1

1 95s

deployment.apps/katib-suggestion-hyperband 1/1 1

1 95s

deployment.apps/katib-suggestion-nasrl 1/1 1

1 95s

deployment.apps/katib-suggestion-random 1/1 1

1 95s

deployment.apps/katib-ui 1/1 1

1 96s

deployment.apps/metadata-db 1/1 1

1 96s

deployment.apps/metadata-deployment 3/3 3

3 96s

deployment.apps/metadata-ui 1/1 1

1 96s

deployment.apps/minio 1/1 1

1 94s

deployment.apps/ml-pipeline 1/1 1

1 94s

deployment.apps/ml-pipeline-persistenceagent 1/1 1

1 93s

deployment.apps/ml-pipeline-scheduledworkflow 1/1 1

1 93s

deployment.apps/ml-pipeline-ui 1/1 1

1 93s

deployment.apps/ml-pipeline-viewer-controller-deployment 1/1 1

1 93s

deployment.apps/mysql 1/1 1

1 94s

deployment.apps/notebook-controller-deployment 1/1 1

1 95s

deployment.apps/profiles-deployment 1/1 1

1 92s

deployment.apps/pytorch-operator 1/1 1

1 95s

deployment.apps/spartakus-volunteer 1/1 1

1 94s

25

deployment.apps/tensorboard 1/1 1

1 94s

deployment.apps/tf-job-dashboard 1/1 1

1 94s

deployment.apps/tf-job-operator 1/1 1

1 94s

deployment.apps/workflow-controller 1/1 1

1 97s

NAME

DESIRED CURRENT READY AGE

replicaset.apps/admission-webhook-deployment-6b89c84c98 1

1 1 97s

replicaset.apps/argo-ui-5dcf5d8b4f 1

1 1 97s

replicaset.apps/centraldashboard-cf4874ddc 1

1 1 97s

replicaset.apps/jupyter-web-app-deployment-685b455447 1

1 1 97s

replicaset.apps/katib-controller-88c97d85c 1

1 1 96s

replicaset.apps/katib-db-8598468fd8 1

1 1 97s

replicaset.apps/katib-manager-574c8c67f9 1

1 1 96s

replicaset.apps/katib-manager-rest-778857c989 1

1 1 96s

replicaset.apps/katib-suggestion-bayesianoptimization-65df4d7455 1

1 1 95s

replicaset.apps/katib-suggestion-grid-56bf69f597 1

1 1 95s

replicaset.apps/katib-suggestion-hyperband-7777b76cb9 1

1 1 95s

replicaset.apps/katib-suggestion-nasrl-77f6f9458c 1

1 1 95s

replicaset.apps/katib-suggestion-random-77b88b5c79 1

1 1 95s

replicaset.apps/katib-ui-7587c5b967 1

1 1 96s

replicaset.apps/metadata-db-5dd459cc 1

1 1 96s

replicaset.apps/metadata-deployment-6cf77db994 3

3 3 96s

replicaset.apps/metadata-ui-78f5b59b56 1

1 1 96s

replicaset.apps/minio-758b769d67 1

1 1 93s

26

replicaset.apps/ml-pipeline-5875b9db95 1

1 1 93s

replicaset.apps/ml-pipeline-persistenceagent-9b69ddd46 1

1 1 92s

replicaset.apps/ml-pipeline-scheduledworkflow-7b8d756c76 1

1 1 91s

replicaset.apps/ml-pipeline-ui-79ffd9c76 1

1 1 91s

replicaset.apps/ml-pipeline-viewer-controller-deployment-5fdc87f58 1

1 1 91s

replicaset.apps/mysql-657f87857d 1

1 1 92s

replicaset.apps/notebook-controller-deployment-56b4f59bbf 1

1 1 94s

replicaset.apps/profiles-deployment-6bc745947 1

1 1 91s

replicaset.apps/pytorch-operator-77c97f4879 1

1 1 94s

replicaset.apps/spartakus-volunteer-5fdfddb779 1

1 1 94s

replicaset.apps/tensorboard-6544748d94 1

1 1 93s

replicaset.apps/tf-job-dashboard-56f79c59dd 1

1 1 93s

replicaset.apps/tf-job-operator-79cbfd6dbc 1

1 1 93s

replicaset.apps/workflow-controller-db644d554 1

1 1 97s

NAME READY AGE

statefulset.apps/admission-webhook-bootstrap-stateful-set 1/1 97s

statefulset.apps/application-controller-stateful-set 1/1 98s

statefulset.apps/metacontroller 1/1 98s

statefulset.apps/seldon-operator-controller-manager 1/1 92s

$ kubectl get pvc -n kubeflow

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

katib-mysql Bound pvc-b07f293e-d028-11e9-9b9d-00505681a82d

10Gi RWO ontap-ai-flexvols-retain 27m

metadata-mysql Bound pvc-b0f3f032-d028-11e9-9b9d-00505681a82d

10Gi RWO ontap-ai-flexvols-retain 27m

minio-pv-claim Bound pvc-b22727ee-d028-11e9-9b9d-00505681a82d

20Gi RWO ontap-ai-flexvols-retain 27m

mysql-pv-claim Bound pvc-b2429afd-d028-11e9-9b9d-00505681a82d

20Gi RWO ontap-ai-flexvols-retain 27m

4. In your web browser, access the Kubeflow central dashboard by navigating to the URL that you noted

27

down in step 2.

The default username is admin@kubeflow.org, and the default password is 12341234. To create

additional users, follow the instructions in the official Kubeflow documentation.

Next: Example Kubeflow Operations and Tasks

Example Kubeflow Operations and Tasks

This section includes examples of various operations and tasks that you may want to

perform using Kubeflow.

Next: Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use

Example Kubeflow Operations and Tasks

This section includes examples of various operations and tasks that you may want to

perform using Kubeflow.

Next: Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use

28

https://www.kubeflow.org/docs/components/multi-tenancy/

Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use

Kubeflow is capable of rapidly provisioning new Jupyter Notebook servers to act as data scientist workspaces.

To provision a new Jupyter Notebook server with Kubeflow, perform the following tasks. For more information

about Jupyter Notebooks within the Kubeflow context, see the official Kubeflow documentation.

1. From the Kubeflow central dashboard, click Notebook Servers in the main menu to navigate to the Jupyter

Notebook server administration page.

2. Click New Server to provision a new Jupyter Notebook server.

29

https://www.kubeflow.org/docs/components/notebooks/

3. Give your new server a name, choose the Docker image that you want your server to be based on, and

specify the amount of CPU and RAM to be reserved by your server. If the Namespace field is blank, use

the Select Namespace menu in the page header to choose a namespace. The Namespace field is then

auto-populated with the chosen namespace.

In the following example, the kubeflow-anonymous namespace is chosen. In addition, the default values

for Docker image, CPU, and RAM are accepted.

30

4. Specify the workspace volume details. If you choose to create a new volume, then that volume or PVC is

provisioned using the default StorageClass. Because a StorageClass utilizing Trident was designated as

the default StorageClass in the section Kubeflow Deployment, the volume or PVC is provisioned with

Trident. This volume is automatically mounted as the default workspace within the Jupyter Notebook

Server container. Any notebooks that a user creates on the server that are not saved to a separate data

volume are automatically saved to this workspace volume. Therefore, the notebooks are persistent across

reboots.

5. Add data volumes. The following example specifies an existing PVC named 'pb-fg-all' and accepts the

default mount point.

31

6. Optional: Request that the desired number of GPUs be allocated to your notebook server. In the following

example, one GPU is requested.

7. Click Launch to provision your new notebook server.

8. Wait for your notebook server to be fully provisioned. This can take several minutes if you have never

provisioned a server using the Docker image that you specified because the image needs to be

downloaded. When your server has been fully provisioned, you see a green check mark in the Status

column on the Jupyter Notebook server administration page.

32

9. Click Connect to connect to your new server web interface.

10. Confirm that the dataset volume that was specified in step 6 is mounted on the server. Note that this

volume is mounted within the default workspace by default. From the perspective of the user, this is just

another folder within the workspace. The user, who is likely a data scientist and not an infrastructure

expert, does not need to possess any storage expertise in order to use this volume.

33

11. Open a Terminal and, assuming that a new volume was requested in step 5, execute df -h to confirm that

a new Trident-provisioned persistent volume is mounted as the default workspace.

The default workspace directory is the base directory that you are presented with when you first access the

server’s web interface. Therefore, any artifacts that you create by using the web interface are stored on this

Trident-provisioned persistent volume.

34

12. Using the terminal, run nvidia-smi to confirm that the correct number of GPUs were allocated to the

notebook server. In the following example, one GPU has been allocated to the notebook server as

requested in step 7.

Next: Example Notebooks and Pipelines

35

Example Notebooks and Pipelines

The NetApp Data Science Toolkit for Kubernetes can be used in conjunction with

Kubeflow. Using the NetApp Data Science Toolkit with Kubeflow provides the following

benefits:

• Data scientists can perform advanced NetApp data management operations directly from within a Jupyter

Notebook.

• Advanced NetApp data management operations can be incorporated into automated workflows using the

Kubeflow Pipelines framework.

Refer to the Kubeflow Examples section within the NetApp Data Science Toolkit GitHub repository for details

on using the toolkit with Kubeflow.

Next: Apache Airflow Deployment

Apache Airflow Deployment

NetApp recommends running Apache Airflow on top of Kubernetes. This section

describes the tasks that you must complete to deploy Airflow in your Kubernetes cluster.

It is possible to deploy Airflow on platforms other than Kubernetes. Deploying Airflow on

platforms other than Kubernetes is outside of the scope of this solution.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already

performed the following tasks:

1. You already have a working Kubernetes cluster.

2. You have already installed and configured NetApp Trident in your Kubernetes cluster as outlined in the

section “NetApp Trident Deployment and Configuration.”

Install Helm

Airflow is deployed using Helm, a popular package manager for Kubernetes. Before you deploy Airflow, you

must install Helm on the deployment jump host. To install Helm on the deployment jump host, follow the

installation instructions in the official Helm documentation.

Set Default Kubernetes StorageClass

Before you deploy Airflow, you must designate a default StorageClass within your Kubernetes cluster. The

Airflow deployment process attempts to provision new persistent volumes using the default StorageClass. If no

StorageClass is designated as the default StorageClass, then the deployment fails. To designate a default

StorageClass within your cluster, follow the instructions outlined in the section Kubeflow Deployment. If you

have already designated a default StorageClass within your cluster, then you can skip this step.

Use Helm to Deploy Airflow

To deploy Airflow in your Kubernetes cluster using Helm, perform the following tasks from the deployment jump

host:

36

https://github.com/NetApp/netapp-data-science-toolkit/tree/main/Kubernetes
https://github.com/NetApp/netapp-data-science-toolkit/tree/main/Kubernetes/Examples/Kubeflow
https://helm.sh/docs/intro/install/

1. Deploy Airflow using Helm by following the deployment instructions for the official Airflow chart on the

Artifact Hub. The example commands that follow show the deployment of Airflow using Helm. Modify, add,

and/or remove values in the custom- values.yaml file as needed depending on your environment and

desired configuration.

$ cat << EOF > custom-values.yaml

###################################

Airflow - Common Configs

###################################

airflow:

 ## the airflow executor type to use

 ##

 executor: "CeleryExecutor"

 ## environment variables for the web/scheduler/worker Pods (for

airflow configs)

 ##

 #

###################################

Airflow - WebUI Configs

###################################

web:

 ## configs for the Service of the web Pods

 ##

 service:

 type: NodePort

###################################

Airflow - Logs Configs

###################################

logs:

 persistence:

 enabled: true

###################################

Airflow - DAGs Configs

###################################

dags:

 ## configs for the DAG git repository & sync container

 ##

 gitSync:

 enabled: true

 ## url of the git repository

 ##

 repo: "git@github.com:mboglesby/airflow-dev.git"

 ## the branch/tag/sha1 which we clone

 ##

 branch: master

 revision: HEAD

37

https://artifacthub.io/packages/helm/airflow-helm/airflow

 ## the name of a pre-created secret containing files for ~/.ssh/

 ##

 ## NOTE:

 ## - this is ONLY RELEVANT for SSH git repos

 ## - the secret commonly includes files: id_rsa, id_rsa.pub,

known_hosts

 ## - known_hosts is NOT NEEDED if `git.sshKeyscan` is true

 ##

 sshSecret: "airflow-ssh-git-secret"

 ## the name of the private key file in your `git.secret`

 ##

 ## NOTE:

 ## - this is ONLY RELEVANT for PRIVATE SSH git repos

 ##

 sshSecretKey: id_rsa

 ## the git sync interval in seconds

 ##

 syncWait: 60

EOF

$ helm install airflow airflow-stable/airflow -n airflow --version 8.0.8

--values ./custom-values.yaml

...

Congratulations. You have just deployed Apache Airflow!

1. Get the Airflow Service URL by running these commands:

 export NODE_PORT=$(kubectl get --namespace airflow -o

jsonpath="{.spec.ports[0].nodePort}" services airflow-web)

 export NODE_IP=$(kubectl get nodes --namespace airflow -o

jsonpath="{.items[0].status.addresses[0].address}")

 echo http://$NODE_IP:$NODE_PORT/

2. Open Airflow in your web browser

2. Confirm that all Airflow pods are up and running. It may take a few minutes for all pods to start.

$ kubectl -n airflow get pod

NAME READY STATUS RESTARTS AGE

airflow-flower-b5656d44f-h8qjk 1/1 Running 0 2h

airflow-postgresql-0 1/1 Running 0 2h

airflow-redis-master-0 1/1 Running 0 2h

airflow-scheduler-9d95fcdf9-clf4b 2/2 Running 2 2h

airflow-web-59c94db9c5-z7rg4 1/1 Running 0 2h

airflow-worker-0 2/2 Running 2 2h

3. Obtain the Airflow web service URL by following the instructions that were printed to the console when you

deployed Airflow using Helm in step 1.

38

$ export NODE_PORT=$(kubectl get --namespace airflow -o

jsonpath="{.spec.ports[0].nodePort}" services airflow-web)

$ export NODE_IP=$(kubectl get nodes --namespace airflow -o

jsonpath="{.items[0].status.addresses[0].address}")

$ echo http://$NODE_IP:$NODE_PORT/

4. Confirm that you can access the Airflow web service.

Next: Example Apache Airflow Workflows

Example Apache Airflow Workflows

The NetApp Data Science Toolkit for Kubernetes can be used in conjunction with Airflow.

Using the NetApp Data Science Toolkit with Airflow enables you to incorporate NetApp

data management operations into automated workflows that are orchestrated by Airflow.

Refer to the Airflow Examples section within the NetApp Data Science Toolkit GitHub repository for details on

using the toolkit with Airflow.

39

https://github.com/NetApp/netapp-data-science-toolkit/tree/main/Kubernetes
https://github.com/NetApp/netapp-data-science-toolkit/tree/main/Kubernetes/Examples/Airflow

Next: Example Trident Operations

Example Trident Operations

This section includes examples of various operations that you may want to perform with

Trident.

Import an Existing Volume

If there are existing volumes on your NetApp storage system/platform that you want to mount on containers

within your Kubernetes cluster, but that are not tied to PVCs in the cluster, then you must import these

volumes. You can use the Trident volume import functionality to import these volumes.

The example commands that follow show the importing of the same volume, named pb_fg_all, twice, once

for each Trident Backend that was created in the example in the section Example Trident Backends for ONTAP

AI Deployments, step 1. Importing the same volume twice in this manner enables you to mount the volume (an

existing FlexGroup volume) multiple times across different LIFs, as described in the section Example Trident

Backends for ONTAP AI Deployments, step 1. For more information about PVCs, see the official Kubernetes

documentation. For more information about the volume import functionality, see the Trident documentation.

An accessModes value of ReadOnlyMany is specified in the example PVC spec files. For more information

about the accessMode field, see the official Kubernetes documentation.

The Backend names that are specified in the following example import commands correspond to

the Backends that were created in the example in the section Example Trident Backends for

ONTAP AI Deployments, step 1. The StorageClass names that are specified in the following

example PVC definition files correspond to the StorageClasses that were created in the example

in the section Example Kubernetes StorageClasses for ONTAP AI Deployments, step 1.

$ cat << EOF > ./pvc-import-pb_fg_all-iface1.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pb-fg-all-iface1

 namespace: default

spec:

 accessModes:

 - ReadOnlyMany

 storageClassName: ontap-ai-flexgroups-retain-iface1

EOF

$ tridentctl import volume ontap-ai-flexgroups-iface1 pb_fg_all -f ./pvc-

import-pb_fg_all-iface1.yaml -n trident

+--------------------------------+--------

+-----------------------------------+----------

+--+--------+---------+

| NAME | SIZE | STORAGE CLASS

| PROTOCOL | BACKEND UUID | STATE |

MANAGED |

+--------------------------------+--------

40

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://netapp-trident.readthedocs.io/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

+-----------------------------------+----------

+--+--------+---------+

| default-pb-fg-all-iface1-7d9f1 | 10 TiB | ontap-ai-flexgroups-retain-

iface1 | file | b74cbddb-e0b8-40b7-b263-b6da6dec0bdd | online | true

|

+--------------------------------+--------

+-----------------------------------+----------

+--+--------+---------+

$ cat << EOF > ./pvc-import-pb_fg_all-iface2.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pb-fg-all-iface2

 namespace: default

spec:

 accessModes:

 - ReadOnlyMany

 storageClassName: ontap-ai-flexgroups-retain-iface2

EOF

$ tridentctl import volume ontap-ai-flexgroups-iface2 pb_fg_all -f ./pvc-

import-pb_fg_all-iface2.yaml -n trident

+--------------------------------+--------

+-----------------------------------+----------

+--+--------+---------+

| NAME | SIZE | STORAGE CLASS

| PROTOCOL | BACKEND UUID | STATE |

MANAGED |

+--------------------------------+--------

+-----------------------------------+----------

+--+--------+---------+

| default-pb-fg-all-iface2-85aee | 10 TiB | ontap-ai-flexgroups-retain-

iface2 | file | 61814d48-c770-436b-9cb4-cf7ee661274d | online | true

|

+--------------------------------+--------

+-----------------------------------+----------

+--+--------+---------+

$ tridentctl get volume -n trident

+----------------------------------+---------

+-----------------------------------+----------

+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS

| PROTOCOL | BACKEND UUID | STATE | MANAGED |

+----------------------------------+---------

+-----------------------------------+----------

+--------------------------------------+--------+---------+

| default-pb-fg-all-iface1-7d9f1 | 10 TiB | ontap-ai-flexgroups-retain-

41

iface1 | file | b74cbddb-e0b8-40b7-b263-b6da6dec0bdd | online | true

|

| default-pb-fg-all-iface2-85aee | 10 TiB | ontap-ai-flexgroups-retain-

iface2 | file | 61814d48-c770-436b-9cb4-cf7ee661274d | online | true

|

+----------------------------------+---------

+-----------------------------------+----------

+--------------------------------------+--------+---------+

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

pb-fg-all-iface1 Bound default-pb-fg-all-iface1-7d9f1

10995116277760 ROX ontap-ai-flexgroups-retain-iface1 25h

pb-fg-all-iface2 Bound default-pb-fg-all-iface2-85aee

10995116277760 ROX ontap-ai-flexgroups-retain-iface2 25h

Provision a New Volume

You can use Trident to provision a new volume on your NetApp storage system or platform. The following

example commands show the provisioning of a new FlexVol volume. In this example, the volume is provisioned

using the StorageClass that was created in the example in the section Example Kubernetes StorageClasses

for ONTAP AI Deployments, step 2.

An accessModes value of ReadWriteMany is specified in the following example PVC definition file. For more

information about the accessMode field, see the official Kubernetes documentation.

42

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

$ cat << EOF > ./pvc-tensorflow-results.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: tensorflow-results

spec:

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 1Gi

 storageClassName: ontap-ai-flexvols-retain

EOF

$ kubectl create -f ./pvc-tensorflow-results.yaml

persistentvolumeclaim/tensorflow-results created

$ kubectl get pvc

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

pb-fg-all-iface1 Bound default-pb-fg-all-iface1-7d9f1

10995116277760 ROX ontap-ai-flexgroups-retain-iface1 26h

pb-fg-all-iface2 Bound default-pb-fg-all-iface2-85aee

10995116277760 ROX ontap-ai-flexgroups-retain-iface2 26h

tensorflow-results Bound default-tensorflow-results-

2fd60 1073741824 RWX ontap-ai-flexvols-retain

25h

Next: Example High-Performance Jobs for ONTAP AI Deployments Overview

Example High-performance Jobs for ONTAP AI Deployments

This section includes examples of various high-performance jobs that can be executed

when Kubernetes is deployed on an ONTAP AI pod.

Next: Execute a Single-Node AI Workload

Example High-performance Jobs for ONTAP AI Deployments

This section includes examples of various high-performance jobs that can be executed

when Kubernetes is deployed on an ONTAP AI pod.

Next: Execute a Single-Node AI Workload

Execute a Single-Node AI Workload

To execute a single-node AI and ML job in your Kubernetes cluster, perform the following

tasks from the deployment jump host. With Trident, you can quickly and easily make a

data volume, potentially containing petabytes of data, accessible to a Kubernetes

43

workload. To make such a data volume accessible from within a Kubernetes pod, simply

specify a PVC in the pod definition. This step is a Kubernetes-native operation; no

NetApp expertise is required.

This section assumes that you have already containerized (in the Docker container format) the

specific AI and ML workload that you are attempting to execute in your Kubernetes cluster.

1. The following example commands show the creation of a Kubernetes job for a TensorFlow benchmark

workload that uses the ImageNet dataset. For more information about the ImageNet dataset, see the

ImageNet website.

This example job requests eight GPUs and therefore can run on a single GPU worker node that features

eight or more GPUs. This example job could be submitted in a cluster for which a worker node featuring

eight or more GPUs is not present or is currently occupied with another workload. If so, then the job

remains in a pending state until such a worker node becomes available.

Additionally, in order to maximize storage bandwidth, the volume that contains the needed training data is

mounted twice within the pod that this job creates. Another volume is also mounted in the pod. This second

volume will be used to store results and metrics. These volumes are referenced in the job definition by

using the names of the PVCs. For more information about Kubernetes jobs, see the official Kubernetes

documentation.

An emptyDir volume with a medium value of Memory is mounted to /dev/shm in the pod that this

example job creates. The default size of the /dev/shm virtual volume that is automatically created by the

Docker container runtime can sometimes be insufficient for TensorFlow’s needs. Mounting an emptyDir

volume as in the following example provides a sufficiently large /dev/shm virtual volume. For more

information about emptyDir volumes, see the official Kubernetes documentation.

The single container that is specified in this example job definition is given a securityContext >

privileged value of true. This value means that the container effectively has root access on the host.

This annotation is used in this case because the specific workload that is being executed requires root

access. Specifically, a clear cache operation that the workload performs requires root access. Whether or

not this privileged: true annotation is necessary depends on the requirements of the specific

workload that you are executing.

$ cat << EOF > ./netapp-tensorflow-single-imagenet.yaml

apiVersion: batch/v1

kind: Job

metadata:

 name: netapp-tensorflow-single-imagenet

spec:

 backoffLimit: 5

 template:

 spec:

 volumes:

 - name: dshm

 emptyDir:

 medium: Memory

 - name: testdata-iface1

 persistentVolumeClaim:

44

http://www.image-net.org
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/storage/volumes/

 claimName: pb-fg-all-iface1

 - name: testdata-iface2

 persistentVolumeClaim:

 claimName: pb-fg-all-iface2

 - name: results

 persistentVolumeClaim:

 claimName: tensorflow-results

 containers:

 - name: netapp-tensorflow-py2

 image: netapp/tensorflow-py2:19.03.0

 command: ["python", "/netapp/scripts/run.py", "--

dataset_dir=/mnt/mount_0/dataset/imagenet", "--dgx_version=dgx1", "--

num_devices=8"]

 resources:

 limits:

 nvidia.com/gpu: 8

 volumeMounts:

 - mountPath: /dev/shm

 name: dshm

 - mountPath: /mnt/mount_0

 name: testdata-iface1

 - mountPath: /mnt/mount_1

 name: testdata-iface2

 - mountPath: /tmp

 name: results

 securityContext:

 privileged: true

 restartPolicy: Never

EOF

$ kubectl create -f ./netapp-tensorflow-single-imagenet.yaml

job.batch/netapp-tensorflow-single-imagenet created

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-single-imagenet 0/1 24s 24s

2. Confirm that the job that you created in step 1 is running correctly. The following example command

confirms that a single pod was created for the job, as specified in the job definition, and that this pod is

currently running on one of the GPU worker nodes.

$ kubectl get pods -o wide

NAME READY STATUS

RESTARTS AGE

IP NODE NOMINATED NODE

netapp-tensorflow-single-imagenet-m7x92 1/1 Running 0

3m 10.233.68.61 10.61.218.154 <none>

45

3. Confirm that the job that you created in step 1 completes successfully. The following example commands

confirm that the job completed successfully.

$ kubectl get jobs

NAME COMPLETIONS DURATION

AGE

netapp-tensorflow-single-imagenet 1/1 5m42s

10m

$ kubectl get pods

NAME READY STATUS

RESTARTS AGE

netapp-tensorflow-single-imagenet-m7x92 0/1 Completed

0 11m

$ kubectl logs netapp-tensorflow-single-imagenet-m7x92

[netapp-tensorflow-single-imagenet-m7x92:00008] PMIX ERROR: NO-

PERMISSIONS in file gds_dstore.c at line 702

[netapp-tensorflow-single-imagenet-m7x92:00008] PMIX ERROR: NO-

PERMISSIONS in file gds_dstore.c at line 711

Total images/sec = 6530.59125

================ Clean Cache !!! ==================

mpirun -allow-run-as-root -np 1 -H localhost:1 bash -c 'sync; echo 1 >

/proc/sys/vm/drop_caches'

===

mpirun -allow-run-as-root -np 8 -H localhost:8 -bind-to none -map-by

slot -x NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x PATH python

/netapp/tensorflow/benchmarks_190205/scripts/tf_cnn_benchmarks/tf_cnn_be

nchmarks.py --model=resnet50 --batch_size=256 --device=gpu

--force_gpu_compatible=True --num_intra_threads=1 --num_inter_threads=48

--variable_update=horovod --batch_group_size=20 --num_batches=500

--nodistortions --num_gpus=1 --data_format=NCHW --use_fp16=True

--use_tf_layers=False --data_name=imagenet --use_datasets=True

--data_dir=/mnt/mount_0/dataset/imagenet

--datasets_parallel_interleave_cycle_length=10

--datasets_sloppy_parallel_interleave=False --num_mounts=2

--mount_prefix=/mnt/mount_%d --datasets_prefetch_buffer_size=2000

--datasets_use_prefetch=True --datasets_num_private_threads=4

--horovod_device=gpu >

/tmp/20190814_105450_tensorflow_horovod_rdma_resnet50_gpu_8_256_b500_ima

genet_nodistort_fp16_r10_m2_nockpt.txt 2>&1

4. Optional: Clean up job artifacts. The following example commands show the deletion of the job object that

was created in step 1.

When you delete the job object, Kubernetes automatically deletes any associated pods.

46

$ kubectl get jobs

NAME COMPLETIONS DURATION

AGE

netapp-tensorflow-single-imagenet 1/1 5m42s

10m

$ kubectl get pods

NAME READY STATUS

RESTARTS AGE

netapp-tensorflow-single-imagenet-m7x92 0/1 Completed

0 11m

$ kubectl delete job netapp-tensorflow-single-imagenet

job.batch "netapp-tensorflow-single-imagenet" deleted

$ kubectl get jobs

No resources found.

$ kubectl get pods

No resources found.

Next: Execute a Synchronous Distributed AI Workload

Execute a Synchronous Distributed AI Workload

To execute a synchronous multinode AI and ML job in your Kubernetes cluster, perform

the following tasks on the deployment jump host. This process enables you to take

advantage of data that is stored on a NetApp volume and to use more GPUs than a

single worker node can provide. See the following figure for a depiction of a synchronous

distributed AI job.

Synchronous distributed jobs can help increase performance and training accuracy compared

with asynchronous distributed jobs. A discussion of the pros and cons of synchronous jobs

versus asynchronous jobs is outside the scope of this document.

1. The following example commands show the creation of one worker that participates in the synchronous

distributed execution of the same TensorFlow benchmark job that was executed on a single node in the

example in the section Execute a Single-Node AI Workload. In this specific example, only a single worker

47

is deployed because the job is executed across two worker nodes.

This example worker deployment requests eight GPUs and thus can run on a single GPU worker node that

features eight or more GPUs. If your GPU worker nodes feature more than eight GPUs, to maximize

performance, you might want to increase this number to be equal to the number of GPUs that your worker

nodes feature. For more information about Kubernetes deployments, see the official Kubernetes

documentation.

A Kubernetes deployment is created in this example because this specific containerized worker would

never complete on its own. Therefore, it doesn’t make sense to deploy it by using the Kubernetes job

construct. If your worker is designed or written to complete on its own, then it might make sense to use the

job construct to deploy your worker.

The pod that is specified in this example deployment specification is given a hostNetwork value of true.

This value means that the pod uses the host worker node’s networking stack instead of the virtual

networking stack that Kubernetes usually creates for each pod. This annotation is used in this case

because the specific workload relies on Open MPI, NCCL, and Horovod to execute the workload in a

synchronous distributed manner. Therefore, it requires access to the host networking stack. A discussion

about Open MPI, NCCL, and Horovod is outside the scope of this document. Whether or not this

hostNetwork: true annotation is necessary depends on the requirements of the specific workload that

you are executing. For more information about the hostNetwork field, see the official Kubernetes

documentation.

$ cat << EOF > ./netapp-tensorflow-multi-imagenet-worker.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: netapp-tensorflow-multi-imagenet-worker

spec:

 replicas: 1

 selector:

 matchLabels:

 app: netapp-tensorflow-multi-imagenet-worker

 template:

 metadata:

 labels:

 app: netapp-tensorflow-multi-imagenet-worker

 spec:

 hostNetwork: true

 volumes:

 - name: dshm

 emptyDir:

 medium: Memory

 - name: testdata-iface1

 persistentVolumeClaim:

 claimName: pb-fg-all-iface1

 - name: testdata-iface2

 persistentVolumeClaim:

 claimName: pb-fg-all-iface2

48

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/

 - name: results

 persistentVolumeClaim:

 claimName: tensorflow-results

 containers:

 - name: netapp-tensorflow-py2

 image: netapp/tensorflow-py2:19.03.0

 command: ["bash", "/netapp/scripts/start-slave-multi.sh",

"22122"]

 resources:

 limits:

 nvidia.com/gpu: 8

 volumeMounts:

 - mountPath: /dev/shm

 name: dshm

 - mountPath: /mnt/mount_0

 name: testdata-iface1

 - mountPath: /mnt/mount_1

 name: testdata-iface2

 - mountPath: /tmp

 name: results

 securityContext:

 privileged: true

EOF

$ kubectl create -f ./netapp-tensorflow-multi-imagenet-worker.yaml

deployment.apps/netapp-tensorflow-multi-imagenet-worker created

$ kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE

AVAILABLE AGE

netapp-tensorflow-multi-imagenet-worker 1 1 1

1 4s

2. Confirm that the worker deployment that you created in step 1 launched successfully. The following

example commands confirm that a single worker pod was created for the deployment, as indicated in the

deployment definition, and that this pod is currently running on one of the GPU worker nodes.

$ kubectl get pods -o wide

NAME READY

STATUS RESTARTS AGE

IP NODE NOMINATED NODE

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 1/1

Running 0 60s 10.61.218.154 10.61.218.154 <none>

$ kubectl logs netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725

22122

3. Create a Kubernetes job for a master that kicks off, participates in, and tracks the execution of the

49

synchronous multinode job. The following example commands create one master that kicks off, participates

in, and tracks the synchronous distributed execution of the same TensorFlow benchmark job that was

executed on a single node in the example in the section Execute a Single-Node AI Workload.

This example master job requests eight GPUs and thus can run on a single GPU worker node that features

eight or more GPUs. If your GPU worker nodes feature more than eight GPUs, to maximize performance,

you might want to increase this number to be equal to the number of GPUs that your worker nodes feature.

The master pod that is specified in this example job definition is given a hostNetwork value of true, just

as the worker pod was given a hostNetwork value of true in step 1. See step 1 for details about why

this value is necessary.

$ cat << EOF > ./netapp-tensorflow-multi-imagenet-master.yaml

apiVersion: batch/v1

kind: Job

metadata:

 name: netapp-tensorflow-multi-imagenet-master

spec:

 backoffLimit: 5

 template:

 spec:

 hostNetwork: true

 volumes:

 - name: dshm

 emptyDir:

 medium: Memory

 - name: testdata-iface1

 persistentVolumeClaim:

 claimName: pb-fg-all-iface1

 - name: testdata-iface2

 persistentVolumeClaim:

 claimName: pb-fg-all-iface2

 - name: results

 persistentVolumeClaim:

 claimName: tensorflow-results

 containers:

 - name: netapp-tensorflow-py2

 image: netapp/tensorflow-py2:19.03.0

 command: ["python", "/netapp/scripts/run.py", "--

dataset_dir=/mnt/mount_0/dataset/imagenet", "--port=22122", "--

num_devices=16", "--dgx_version=dgx1", "--

nodes=10.61.218.152,10.61.218.154"]

 resources:

 limits:

 nvidia.com/gpu: 8

 volumeMounts:

 - mountPath: /dev/shm

50

 name: dshm

 - mountPath: /mnt/mount_0

 name: testdata-iface1

 - mountPath: /mnt/mount_1

 name: testdata-iface2

 - mountPath: /tmp

 name: results

 securityContext:

 privileged: true

 restartPolicy: Never

EOF

$ kubectl create -f ./netapp-tensorflow-multi-imagenet-master.yaml

job.batch/netapp-tensorflow-multi-imagenet-master created

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-multi-imagenet-master 0/1 25s 25s

4. Confirm that the master job that you created in step 3 is running correctly. The following example command

confirms that a single master pod was created for the job, as indicated in the job definition, and that this

pod is currently running on one of the GPU worker nodes. You should also see that the worker pod that you

originally saw in step 1 is still running and that the master and worker pods are running on different nodes.

$ kubectl get pods -o wide

NAME READY

STATUS RESTARTS AGE

IP NODE NOMINATED NODE

netapp-tensorflow-multi-imagenet-master-ppwwj 1/1

Running 0 45s 10.61.218.152 10.61.218.152 <none>

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 1/1

Running 0 26m 10.61.218.154 10.61.218.154 <none>

5. Confirm that the master job that you created in step 3 completes successfully. The following example

commands confirm that the job completed successfully.

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-multi-imagenet-master 1/1 5m50s 9m18s

$ kubectl get pods

NAME READY

STATUS RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1

Completed 0 9m38s

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 1/1

Running 0 35m

$ kubectl logs netapp-tensorflow-multi-imagenet-master-ppwwj

51

[10.61.218.152:00008] WARNING: local probe returned unhandled

shell:unknown assuming bash

rm: cannot remove '/lib': Is a directory

[10.61.218.154:00033] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at

line 702

[10.61.218.154:00033] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at

line 711

[10.61.218.152:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at

line 702

[10.61.218.152:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at

line 711

Total images/sec = 12881.33875

================ Clean Cache !!! ==================

mpirun -allow-run-as-root -np 2 -H 10.61.218.152:1,10.61.218.154:1 -mca

pml ob1 -mca btl ^openib -mca btl_tcp_if_include enp1s0f0 -mca

plm_rsh_agent ssh -mca plm_rsh_args "-p 22122" bash -c 'sync; echo 1 >

/proc/sys/vm/drop_caches'

===

mpirun -allow-run-as-root -np 16 -H 10.61.218.152:8,10.61.218.154:8

-bind-to none -map-by slot -x NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x PATH

-mca pml ob1 -mca btl ^openib -mca btl_tcp_if_include enp1s0f0 -x

NCCL_IB_HCA=mlx5 -x NCCL_NET_GDR_READ=1 -x NCCL_IB_SL=3 -x

NCCL_IB_GID_INDEX=3 -x

NCCL_SOCKET_IFNAME=enp5s0.3091,enp12s0.3092,enp132s0.3093,enp139s0.3094

-x NCCL_IB_CUDA_SUPPORT=1 -mca orte_base_help_aggregate 0 -mca

plm_rsh_agent ssh -mca plm_rsh_args "-p 22122" python

/netapp/tensorflow/benchmarks_190205/scripts/tf_cnn_benchmarks/tf_cnn_be

nchmarks.py --model=resnet50 --batch_size=256 --device=gpu

--force_gpu_compatible=True --num_intra_threads=1 --num_inter_threads=48

--variable_update=horovod --batch_group_size=20 --num_batches=500

--nodistortions --num_gpus=1 --data_format=NCHW --use_fp16=True

--use_tf_layers=False --data_name=imagenet --use_datasets=True

--data_dir=/mnt/mount_0/dataset/imagenet

--datasets_parallel_interleave_cycle_length=10

--datasets_sloppy_parallel_interleave=False --num_mounts=2

--mount_prefix=/mnt/mount_%d --datasets_prefetch_buffer_size=2000 --

datasets_use_prefetch=True --datasets_num_private_threads=4

--horovod_device=gpu >

/tmp/20190814_161609_tensorflow_horovod_rdma_resnet50_gpu_16_256_b500_im

agenet_nodistort_fp16_r10_m2_nockpt.txt 2>&1

6. Delete the worker deployment when you no longer need it. The following example commands show the

deletion of the worker deployment object that was created in step 1.

When you delete the worker deployment object, Kubernetes automatically deletes any associated worker

pods.

52

$ kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE

AVAILABLE AGE

netapp-tensorflow-multi-imagenet-worker 1 1 1

1 43m

$ kubectl get pods

NAME READY

STATUS RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1

Completed 0 17m

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 1/1

Running 0 43m

$ kubectl delete deployment netapp-tensorflow-multi-imagenet-worker

deployment.extensions "netapp-tensorflow-multi-imagenet-worker" deleted

$ kubectl get deployments

No resources found.

$ kubectl get pods

NAME READY STATUS

RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1 Completed 0

18m

7. Optional: Clean up the master job artifacts. The following example commands show the deletion of the

master job object that was created in step 3.

When you delete the master job object, Kubernetes automatically deletes any associated master pods.

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-multi-imagenet-master 1/1 5m50s 19m

$ kubectl get pods

NAME READY STATUS

RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1 Completed 0

19m

$ kubectl delete job netapp-tensorflow-multi-imagenet-master

job.batch "netapp-tensorflow-multi-imagenet-master" deleted

$ kubectl get jobs

No resources found.

$ kubectl get pods

No resources found.

Next: Performance Testing

53

Performance Testing

We performed a simple performance comparison as part of the creation of this solution.

We executed several standard NetApp AI benchmarking jobs by using Kubernetes, and

we compared the benchmark results with executions that were performed by using a

simple Docker run command. We did not see any noticeable differences in performance.

Therefore, we concluded that the use of Kubernetes to orchestrate containerized AI

training jobs does not adversely affect performance. See the following table for the results

of our performance comparison.

Benchmark Dataset Docker Run

(images/sec)

Kubernetes

(images/sec)

Single-node TensorFlow Synthetic data 6,667.2475 6,661.93125

Single-node TensorFlow ImageNet 6,570.2025 6,530.59125

Synchronous distributed

two-node TensorFlow

Synthetic data 13,213.70625 13,218.288125

Synchronous distributed

two-node TensorFlow

ImageNet 12,941.69125 12,881.33875

Next: Conclusion

Conclusion

Companies and organizations of all sizes and across all industries are turning to artificial intelligence (AI),

machine learning (ML), and deep learning (DL) to solve real-world problems, deliver innovative products and

services, and to get an edge in an increasingly competitive marketplace. As organizations increase their use of

AI, ML, and DL, they face many challenges, including workload scalability and data availability. These

challenges can be addressed through the use of the NetApp AI Control Plane solution.

This solution enables you to rapidly clone a data namespace. Additionally, it allows you to define and

implement AI, ML, and DL training workflows that incorporate the near-instant creation of data and model

baselines for traceability and versioning. With this solution, you can trace every single model training run back

to the exact dataset(s) that the model was trained and/or validated with. Lastly, this solution enables you to

swiftly provision Jupyter Notebook workspaces with access to massive datasets.

Because this solution is targeted towards data scientists and data engineers, minimal NetApp or NetApp

ONTAP expertise is required. With this solution, data management functions can be executed using simple and

familiar tools and interfaces. Furthermore, this solution utilizes fully open-source and free components.

Therefore, if you already have NetApp storage in your environment, you can implement this solution today. If

you want to test drive this solution but you do not have already have NetApp storage, visit cloud.netapp.com,

and you can be up and running with a cloud-based NetApp storage solution in no time.

MLRun Pipeline

TR-4834: NetApp and Iguazio for MLRun Pipeline

Rick Huang, David Arnette, NetApp

Marcelo Litovsky, Iguazio

This document covers the details of the MLRun pipeline using NetApp ONTAP AI, NetApp AI Control Plane,

54

http://cloud.netapp.com/

NetApp Cloud Volumes software, and the Iguazio Data Science Platform. We used Nuclio serverless function,

Kubernetes Persistent Volumes, NetApp Cloud Volumes, NetApp Snapshot copies, Grafana dashboard, and

other services on the Iguazio platform to build an end-to-end data pipeline for the simulation of network failure

detection. We integrated Iguazio and NetApp technologies to enable fast model deployment, data replication,

and production monitoring capabilities on premises as well as in the cloud.

The work of a data scientist should be focused on the training and tuning of machine learning (ML) and artificial

intelligence (AI) models. However, according to research by Google, data scientists spend ~80% of their time

figuring out how to make their models work with enterprise applications and run at scale, as shown in the

following image depicting model development in the AI/ML workflow.

To manage end-to-end AI/ML projects, a wider understanding of enterprise components is needed. Although

DevOps have taken over the definition, integration, and deployment these types of components, machine

learning operations target a similar flow that includes AI/ML projects. To get an idea of what an end-to-end

AI/ML pipeline touches in the enterprise, see the following list of required components:

• Storage

• Networking

• Databases

• File systems

• Containers

• Continuous integration and continuous deployment (CI/CD) pipeline

• Development integrated development environment (IDE)

• Security

• Data access policies

• Hardware

55

• Cloud

• Virtualization

• Data science toolsets and libraries

In this paper, we demonstrate how the partnership between NetApp and Iguazio drastically simplifies the

development of an end-to-end AI/ML pipeline. This simplification accelerates the time to market for all of your

AI/ML applications.

Target Audience

The world of data science touches multiple disciplines in information technology and business.

• The data scientist needs the flexibility to use their tools and libraries of choice.

• The data engineer needs to know how the data flows and where it resides.

• A DevOps engineer needs the tools to integrate new AI/ML applications into their CI/CD pipelines.

• Business users want to have access to AI/ML applications. We describe how NetApp and Iguazio help

each of these roles bring value to business with our platforms.

Solution Overview

This solution follows the lifecycle of an AI/ML application. We start with the work of data scientists to define the

different steps needed to prep data and train and deploy models. We follow with the work needed to create a

full pipeline with the ability to track artifacts, experiment with execution, and deploy to Kubeflow. To complete

the full cycle, we integrate the pipeline with NetApp Cloud Volumes to enable data versioning, as seen in the

following image.

Next: Technology Overview

56

Technology Overview

NetApp Overview

NetApp is the data authority for the hybrid cloud. NetApp provides a full range of hybrid cloud data services

that simplify management of applications and data across cloud and on-premises environments to accelerate

digital transformation. Together with our partners, NetApp empowers global organizations to unleash the full

potential of their data to expand customer touch points, foster greater innovation, and optimize their operations.

NetApp ONTAP AI

NetApp ONTAP AI, powered by NVIDIA DGX systems and NetApp cloud-connected all-flash storage,

streamlines the flow of data reliably and speeds up analytics, training, and inference with your data fabric that

spans from edge to core to cloud. It gives IT organizations an architecture that provides the following benefits:

• Eliminates design complexities

• Allows independent scaling of compute and storage

• Enables customers to start small and scale seamlessly

• Offers a range of storage options for various performance and cost pointsNetApp ONTAP AI offers

converged infrastructure stacks incorporating NVIDIA DGX-1, a petaflop-scale AI system, and NVIDIA

Mellanox high-performance Ethernet switches to unify AI workloads, simplify deployment, and accelerate

ROI. We leveraged ONTAP AI with one DGX-1 and NetApp AFF A800 storage system for this technical

report. The following image shows the topology of ONTAP AI with the DGX-1 system used in this

validation.

NetApp AI Control Plane

The NetApp AI Control Plane enables you to unleash AI and ML with a solution that offers extreme scalability,

streamlined deployment, and nonstop data availability. The AI Control Plane solution integrates Kubernetes

and Kubeflow with a data fabric enabled by NetApp. Kubernetes, the industry-standard container orchestration

platform for cloud-native deployments, enables workload scalability and portability. Kubeflow is an open-source

machine-learning platform that simplifies management and deployment, enabling developers to do more data

science in less time. A data fabric enabled by NetApp offers uncompromising data availability and portability to

make sure that your data is accessible across the pipeline, from edge to core to cloud. This technical report

uses the NetApp AI Control Plane in an MLRun pipeline. The following image shows Kubernetes cluster

57

management page where you can have different endpoints for each cluster. We connected NFS Persistent

Volumes to the Kubernetes cluster, and the following images show an Persistent Volume connected to the

cluster, where NetApp Trident offers persistent storage support and data management capabilities.

58

https://www.netapp.com/us/media/ds-netapp-project-trident.pdf

Iguazio Overview

The Iguazio Data Science Platform is a fully integrated and secure data- science platform as a service (PaaS)

that simplifies development, accelerates performance, facilitates collaboration, and addresses operational

challenges. This platform incorporates the following components, and the Iguazio Data Science Platform is

presented in the following image:

• A data-science workbench that includes Jupyter Notebooks, integrated analytics engines, and Python

packages

• Model management with experiments tracking and automated pipeline capabilities

• Managed data and ML services over a scalable Kubernetes cluster

• Nuclio, a real-time serverless functions framework

• An extremely fast and secure data layer that supports SQL, NoSQL, time-series databases, files (simple

objects), and streaming

• Integration with third-party data sources such as NetApp, Amazon S3, HDFS, SQL databases, and

streaming or messaging protocols

• Real-time dashboards based on Grafana

59

Next: Software and Hardware Requirements

Software and Hardware Requirements

Network Configuration

The following is the network configuration requirement for setting up in the cloud:

• The Iguazio cluster and NetApp Cloud Volumes must be in the same virtual private cloud.

• The cloud manager must have access to port 6443 on the Iguazio app nodes.

• We used Amazon Web Services in this technical report. However, users have the option of deploying the

solution in any Cloud provider.For on-premises testing in ONTAP AI with NVIDIA DGX-1, we used the

Iguazio hosted DNS service for convenience.

Clients must be able to access dynamically created DNS domains. Customers can use their own DNS if

desired.

Hardware Requirements

You can install Iguazio on-premises in your own cluster. We have verified the solution in NetApp ONTAP AI

with an NVIDIA DGX-1 system. The following table lists the hardware used to test this solution.

Hardware Quantity

DGX-1 systems 1

NetApp AFF A800 system 1 high-availability (HA) pair, includes 2 controllers and

48 NVMe SSDs (3.8TB or above)

Cisco Nexus 3232C network switches 2

The following table lists the software components required for on-premise testing:

60

Software Version or Other Information

NetApp ONTAP data management software 9.7

Cisco NX-OS switch firmware 7.0(3)I6(1)

NVIDIA DGX OS 4.4 - Ubuntu 18.04 LTS

Docker container platform 19.03.5

Container version 20.01-tf1-py2

Machine learning framework TensorFlow 1.15.0

Iguazio Version 2.8+

ESX Server 6.5

This solution was fully tested with Iguazio version 2.5 and NetApp Cloud Volumes ONTAP for AWS. The

Iguazio cluster and NetApp software are both running on AWS.

Software Version or Type

Iguazio Version 2.8+

App node M5.4xlarge

Data node I3.4xlarge

Next: Network Device Failure Prediction Use Case Summary

Network Device Failure Prediction Use Case Summary

This use case is based on an Iguazio customer in the telecommunications space in Asia. With 100K enterprise

customers and 125k network outage events per year, there was a critical need to predict and take proactive

action to prevent network failures from affecting customers. This solution provided them with the following

benefits:

• Predictive analytics for network failures

• Integration with a ticketing system

• Taking proactive action to prevent network failuresAs a result of this implementation of Iguazio, 60% of

failures were proactively prevented.

Next: Setup Overview

Setup Overview

Iguazio Installation

Iguazio can be installed on-premises or on a cloud provider. Provisioning can be done as a service and

managed by Iguazio or by the customer. In both cases, Iguazio provides a deployment application (Provazio)

to deploy and manage clusters.

For on-premises installation, please refer to NVA-1121 for compute, network, and storage setup. On-premises

deployment of Iguazio is provided by Iguazio without additional cost to the customer. See this page for DNS

and SMTP server configurations. The Provazio installation page is shown as follows.

61

https://www.netapp.com/us/media/nva-1121-design.pdf
https://www.iguazio.com/docs/latest-release/intro/setup/howto/

Next: Configuring Kubernetes Cluster

Configuring Kubernetes Cluster

This section is divided into two parts for cloud and on-premises deployment respectively.

Cloud Deployment Kubernetes Configuration

Through NetApp Cloud Manager, you can define the connection to the Iguazio Kubernetes cluster. Trident

requires access to multiple resources in the cluster to make the volume available.

1. To enable access, obtain the Kubernetes config file from one the Iguazio nodes. The file is located under

/home/Iguazio/.kube/config. Download this file to your desktop.

2. Go to Discover Cluster to configure.

62

3. Upload the Kubernetes config file. See the following image.

4. Deploy Trident and associate a volume with the cluster. See the following image on defining and assigning

a Persistent Volume to the Iguazio cluster.This process creates a Persistent Volume (PV) in Iguazio’s

Kubernetes cluster. Before you can use it, you must define a Persistent Volume Claim (PVC).

63

On-Premises Deployment Kubernetes Configuration

For on-premises installation of NetApp Trident, see TR-4798 for details. After configuring your Kubernetes

cluster and installing NetApp Trident, you can connect Trident to the Iguazio cluster to enable NetApp data

management capabilities, such as taking Snapshot copies of your data and model.

Next: Define Persistent Volume Claim

Define Persistent Volume Claim

1. Save the following YAML to a file to create a PVC of type Basic.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: basic

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 100Gi

 storageClassName: netapp-file

64

https://www.netapp.com/us/media/tr-4798.pdf

2. Apply the YAML file to your Iguazio Kubernetes cluster.

Kubectl -n default-tenant apply -f <your yaml file>

Attach NetApp Volume to the Jupyter Notebook

Iguazio offers several managed services to provide data scientists with a full end-to-end stack for development

and deployment of AI/ML applications. You can read more about these components at the Iguazio Overview of

Application Services and Tools.

One of the managed services is Jupyter Notebook. Each developer gets its own deployment of a notebook

container with the resources they need for development. To give them access to the NetApp Cloud Volume,

you can assign the volume to their container and resource allocation, running user, and environment variable

settings for Persistent Volume Claims is presented in the following image.

For an on-premises configuration, you can refer to TR-4798 on the Trident setup to enable NetApp ONTAP

data management capabilities, such as taking Snapshot copies of your data or model for versioning control.

Add the following line in your Trident back- end config file to make Snapshot directories visible:

{

 …

 "defaults": {

 "snapshotDir": "true"

 }

}

You must create a Trident back- end config file in JSON format, and then run the following Trident command to

reference it:

tridentctl create backend -f <backend-file>

Next: Deploying the Application

65

https://www.iguazio.com/docs/intro/latest-release/ecosystem/app-services/
https://www.iguazio.com/docs/intro/latest-release/ecosystem/app-services/
https://www.netapp.com/us/media/tr-4798.pdf
https://netapp-trident.readthedocs.io/en/stable-v18.07/kubernetes/operations/tasks/backends.html

Deploying the Application

The following sections describe how to install and deploy the application.

Next: Get Code from GitHub.

Get Code from GitHub

Now that the NetApp Cloud Volume or NetApp Trident volume is available to the Iguazio

cluster and the developer environment, you can start reviewing the application.

Users have their own workspace (directory). On every notebook, the path to the user directory is /User. The

Iguazio platform manages the directory. If you follow the instructions above, the NetApp Cloud volume is

available in the /netapp directory.

Get the code from GitHub using a Jupyter terminal.

At the Jupyter terminal prompt, clone the project.

cd /User

git clone .

You should now see the netops- netapp folder on the file tree in Jupyter workspace.

Next: Configure Working Environment

Configure Working Environment

Copy the Notebook set_env-Example.ipynb as set_env.ipynb. Open and edit

set_env.ipynb. This notebook sets variables for credentials, file locations, and

66

execution drivers.

If you follow the instructions above, the following steps are the only changes to make:

1. Obtain this value from the Iguazio services dashboard: docker_registry

Example: docker-registry.default-tenant.app.clusterq.iguaziodev.com:80

2. Change admin to your Iguazio username:

IGZ_CONTAINER_PATH = '/users/admin'

The following are the ONTAP system connection details. Include the volume name that was generated

when Trident was installed. The following setting is for an on-premises ONTAP cluster:

ontapClusterMgmtHostname = '0.0.0.0'

ontapClusterAdminUsername = 'USER'

ontapClusterAdminPassword = 'PASSWORD'

sourceVolumeName = 'SOURCE VOLUME'

The following setting is for Cloud Volumes ONTAP:

MANAGER=ontapClusterMgmtHostname

svm='svm'

email='email'

password=ontapClusterAdminPassword

weid="weid"

volume=sourceVolumeName

Create Base Docker Images

Everything you need to build an ML pipeline is included in the Iguazio platform. The developer can define the

specifications of the Docker images required to run the pipeline and execute the image creation from Jupyter

Notebook. Open the notebook create- images.ipynb and Run All Cells.

This notebook creates two images that we use in the pipeline.

• iguazio/netapp. Used to handle ML tasks.

• netapp/pipeline. Contains utilities to handle NetApp Snapshot copies.

67

Review Individual Jupyter Notebooks

The following table lists the libraries and frameworks we used to build this task. All these components have

been fully integrated with Iguazio’s role- based access and security controls.

Libraries/Framework Description

MLRun An managed by Iguazio to enable the assembly,

execution, and monitoring of an ML/AI pipeline.

Nuclio A serverless functions framework integrated with

Iguazio. Also available as an open-source project

managed by Iguazio.

Kubeflow A Kubernetes-based framework to deploy the pipeline.

This is also an open-source project to which Iguazio

contributes. It is integrated with Iguazio for added

security and integration with the rest of the

infrastructure.

Docker A Docker registry run as a service in the Iguazio

platform. You can also change this to connect to your

registry.

NetApp Cloud Volumes Cloud Volumes running on AWS give us access to

large amounts of data and the ability to take Snapshot

copies to version the datasets used for training.

Trident Trident is an open-source project managed by

NetApp. It facilitates the integration with storage and

compute resources in Kubernetes.

We used several notebooks to construct the ML pipeline. Each notebook can be tested individually before

being brought together in the pipeline. We cover each notebook individually following the deployment flow of

this demonstration application.

The desired result is a pipeline that trains a model based on a Snapshot copy of the data and deploys the

model for inference. A block diagram of a completed MLRun pipeline is shown in the following image.

68

Deploy Data Generation Function

This section describes how we used Nuclio serverless functions to generate network device data. The use

case is adapted from an Iguazio client that deployed the pipeline and used Iguazio services to monitor and

predict network device failures.

We simulated data coming from network devices. Executing the Jupyter notebook data- generator.ipynb

creates a serverless function that runs every 10 minutes and generates a Parquet file with new data. To deploy

the function, run all the cells in this notebook. See the Nuclio website to review any unfamiliar components in

this notebook.

A cell with the following comment is ignored when generating the function. Every cell in the notebook is

assumed to be part of the function. Import the Nuclio module to enable %nuclio magic.

nuclio: ignore

import nuclio

In the spec for the function, we defined the environment in which the function executes, how it is triggered, and

the resources it consumes.

69

https://nuclio.io/

spec = nuclio.ConfigSpec(config={"spec.triggers.inference.kind":"cron",

"spec.triggers.inference.attributes.interval" :"10m",

 "spec.readinessTimeoutSeconds" : 60,

 "spec.minReplicas" : 1},……

The init_context function is invoked by the Nuclio framework upon initialization of the function.

def init_context(context):

 ….

Any code not in a function is invoked when the function initializes. When you invoke it, a handler function is

executed. You can change the name of the handler and specify it in the function spec.

def handler(context, event):

 …

You can test the function from the notebook prior to deployment.

%%time

nuclio: ignore

init_context(context)

event = nuclio.Event(body='')

output = handler(context, event)

output

The function can be deployed from the notebook or it can be deployed from a CI/CD pipeline (adapting this

code).

addr = nuclio.deploy_file(name='generator',project='netops',spec=spec,

tag='v1.1')

Pipeline Notebooks

These notebooks are not meant to be executed individually for this setup. This is just a review of each

notebook. We invoked them as part of the pipeline. To execute them individually, review the MLRun

documentation to execute them as Kubernetes jobs.

snap_cv.ipynb

This notebook handles the Cloud Volume Snapshot copies at the beginning of the pipeline. It passes the name

of the volume to the pipeline context. This notebook invokes a shell script to handle the Snapshot copy. While

running in the pipeline, the execution context contains variables to help locate all files needed for execution.

70

While writing this code, the developer does not have to worry about the file location in the container that

executes it. As described later, this application is deployed with all its dependencies, and it is the definition of

the pipeline parameters that provides the execution context.

command = os.path.join(context.get_param('APP_DIR'),"snap_cv.sh")

The created Snapshot copy location is placed in the MLRun context to be consumed by steps in the pipeline.

context.log_result('snapVolumeDetails',snap_path)

The next three notebooks are run in parallel.

data-prep.ipynb

Raw metrics must be turned into features to enable model training. This notebook reads the raw metrics from

the Snapshot directory and writes the features for model training to the NetApp volume.

When running in the context of the pipeline, the input DATA_DIR contains the Snapshot copy location.

metrics_table = os.path.join(str(mlruncontext.get_input('DATA_DIR',

os.getenv('DATA_DIR','/netpp'))),

 mlruncontext.get_param('metrics_table',

os.getenv('metrics_table','netops_metrics_parquet')))

describe.ipynb

To visualize the incoming metrics, we deploy a pipeline step that provides plots and graphs that are available

through the Kubeflow and MLRun UIs. Each execution has its own version of this visualization tool.

ax.set_title("features correlation")

plt.savefig(os.path.join(base_path, "plots/corr.png"))

context.log_artifact(PlotArtifact("correlation", body=plt.gcf()),

local_path="plots/corr.html")

deploy-feature-function.ipynb

We continuously monitor the metrics looking for anomalies. This notebook creates a serverless function that

generates the features need to run prediction on incoming metrics. This notebook invokes the creation of the

function. The function code is in the notebook data- prep.ipynb. Notice that we use the same notebook as

a step in the pipeline for this purpose.

training.ipynb

After we create the features, we trigger the model training. The output of this step is the model to be used for

inferencing. We also collect statistics to keep track of each execution (experiment).

71

For example, the following command enters the accuracy score into the context for that experiment. This value

is visible in Kubeflow and MLRun.

context.log_result(‘accuracy’,score)

deploy-inference-function.ipynb

The last step in the pipeline is to deploy the model as a serverless function for continuous inferencing. This

notebook invokes the creation of the serverless function defined in nuclio-inference- function.ipynb.

Review and Build Pipeline

The combination of running all the notebooks in a pipeline enables the continuous run of experiments to

reassess the accuracy of the model against new metrics. First, open the pipeline.ipynb notebook. We take

you through details that show how NetApp and Iguazio simplify the deployment of this ML pipeline.

We use MLRun to provide context and handle resource allocation to each step of the pipeline. The MLRun API

service runs in the Iguazio platform and is the point of interaction with Kubernetes resources. Each developer

cannot directly request resources; the API handles the requests and enables access controls.

MLRun API connection definition

mlconf.dbpath = 'http://mlrun-api:8080'

The pipeline can work with NetApp Cloud Volumes and on-premises volumes. We built this demonstration to

use Cloud Volumes, but you can see in the code the option to run on-premises.

72

Initialize the NetApp snap fucntion once for all functions in a notebook

if [NETAPP_CLOUD_VOLUME]:

 snapfn =

code_to_function('snap',project='NetApp',kind='job',filename="snap_cv.ipyn

b").apply(mount_v3io())

 snap_params = {

 "metrics_table" : metrics_table,

 "NETAPP_MOUNT_PATH" : NETAPP_MOUNT_PATH,

 'MANAGER' : MANAGER,

 'svm' : svm,

 'email': email,

 'password': password ,

 'weid': weid,

 'volume': volume,

 "APP_DIR" : APP_DIR

 }

else:

 snapfn =

code_to_function('snap',project='NetApp',kind='job',filename="snapshot.ipy

nb").apply(mount_v3io())

….

snapfn.spec.image = docker_registry + '/netapp/pipeline:latest'

snapfn.spec.volume_mounts =

[snapfn.spec.volume_mounts[0],netapp_volume_mounts]

 snapfn.spec.volumes = [snapfn.spec.volumes[0],netapp_volumes]

The first action needed to turn a Jupyter notebook into a Kubeflow step is to turn the code into a function. A

function has all the specifications required to run that notebook. As you scroll down the notebook, you can see

that we define a function for every step in the pipeline.

Part of the Notebook Description

<code_to_function>

(part of the MLRun module)

Name of the function:

Project name. used to organize all project artifacts.

This is visible in the MLRun UI.

Kind. In this case, a Kubernetes job. This could be

Dask, mpi, sparkk8s, and more. See the MLRun

documentation for more details.

File. The name of the notebook. This can also be a

location in Git (HTTP).

image The name of the Docker image we are using for this

step. We created this earlier with the create-

image.ipynb notebook.

volume_mounts & volumes Details to mount the NetApp Cloud Volume at run

time.

We also define parameters for the steps.

73

params={ "FEATURES_TABLE":FEATURES_TABLE,

 "SAVE_TO" : SAVE_TO,

 "metrics_table" : metrics_table,

 'FROM_TSDB': 0,

 'PREDICTIONS_TABLE': PREDICTIONS_TABLE,

 'TRAIN_ON_LAST': '1d',

 'TRAIN_SIZE':0.7,

 'NUMBER_OF_SHARDS' : 4,

 'MODEL_FILENAME' : 'netops.v3.model.pickle',

 'APP_DIR' : APP_DIR,

 'FUNCTION_NAME' : 'netops-inference',

 'PROJECT_NAME' : 'netops',

 'NETAPP_SIM' : NETAPP_SIM,

 'NETAPP_MOUNT_PATH': NETAPP_MOUNT_PATH,

 'NETAPP_PVC_CLAIM' : NETAPP_PVC_CLAIM,

 'IGZ_CONTAINER_PATH' : IGZ_CONTAINER_PATH,

 'IGZ_MOUNT_PATH' : IGZ_MOUNT_PATH

 }

After you have the function definition for all steps, you can construct the pipeline. We use the kfp module to

make this definition. The difference between using MLRun and building on your own is the simplification and

shortening of the coding.

The functions we defined are turned into step components using the as_step function of MLRun.

Snapshot Step Definition

Initiate a Snapshot function, output, and mount v3io as source:

snap = snapfn.as_step(NewTask(handler='handler',params=snap_params),

name='NetApp_Cloud_Volume_Snapshot',outputs=['snapVolumeDetails','training

_parquet_file']).apply(mount_v3io())

Parameters Details

NewTask NewTask is the definition of the function run.

(MLRun module) Handler. Name of the Python function to invoke. We

used the name handler in the notebook, but it is not

required.

params. The parameters we passed to the execution.

Inside our code, we use context.get_param

(‘PARAMETER’) to get the values.

74

Parameters Details

as_step Name. Name of the Kubeflow pipeline step.

outputs. These are the values that the step adds to

the dictionary on completion. Take a look at the

snap_cv.ipynb notebook.

mount_v3io(). This configures the step to mount /User

for the user executing the pipeline.

prep = data_prep.as_step(name='data-prep',

handler='handler',params=params,

 inputs = {'DATA_DIR':

snap.outputs['snapVolumeDetails']} ,

out_path=artifacts_path).apply(mount_v3io()).after(snap)

Parameters Details

inputs You can pass to a step the outputs of a previous step.

In this case, snap.outputs['snapVolumeDetails'] is the

name of the Snapshot copy we created on the snap

step.

out_path A location to place artifacts generating using the

MLRun module log_artifacts.

You can run pipeline.ipynb from top to bottom. You can then go to the Pipelines tab from the Iguazio

dashboard to monitor progress as seen in the Iguazio dashboard Pipelines tab.

75

Because we logged the accuracy of training step in every run, we have a record of accuracy for each

experiment, as seen in the record of training accuracy.

If you select the Snapshot step, you can see the name of the Snapshot copy that was used to run this

experiment.

76

The described step has visual artifacts to explore the metrics we used. You can expand to view the full plot as

seen in the following image.

The MLRun API database also tracks inputs, outputs, and artifacts for each run organized by project. An

example of inputs, outputs, and artifacts for each run can be seen in the following image.

77

For each job, we store additional details.

There is more information about MLRun than we can cover in this document. Al artifacts, including the

definition of the steps and functions, can be saved to the API database, versioned, and invoked individually or

as a full project. Projects can also be saved and pushed to Git for later use. We encourage you to learn more

at the MLRun GitHub site.

Next: Deploy Grafana Dashboard

Deploy Grafana Dashboard

After everything is deployed, we run inferences on new data. The models predict failure on network device

equipment. The results of the prediction are stored in an Iguazio TimeSeries table. You can visualize the

results with Grafana in the platform integrated with Iguazio’s security and data access policy.

You can deploy the dashboard by importing the provided JSON file into the Grafana interfaces in the cluster.

78

https://github.com/mlrun/mlrun

1. To verify that the Grafana service is running, look under Services.

2. If it is not present, deploy an instance from the Services section:

a. Click New Service.

b. Select Grafana from the list.

c. Accept the defaults.

d. Click Next Step.

e. Enter your user ID.

f. Click Save Service.

g. Click Apply Changes at the top.

3. To deploy the dashboard, download the file NetopsPredictions-Dashboard.json through the Jupyter

interface.

79

4. Open Grafana from the Services section and import the dashboard.

5. Click Upload *.json File and select the file that you downloaded earlier (NetopsPredictions-

Dashboard.json). The dashboard displays after the upload is completed.

80

Deploy Cleanup Function

When you generate a lot of data, it is important to keep things clean and organized. To do so, deploy the

cleanup function with the cleanup.ipynb notebook.

Benefits

NetApp and Iguazio speed up and simplify the deployment of AI and ML applications by building in essential

frameworks, such as Kubeflow, Apache Spark, and TensorFlow, along with orchestration tools like Docker and

Kubernetes. By unifying the end-to-end data pipeline, NetApp and Iguazio reduce the latency and complexity

inherent in many advanced computing workloads, effectively bridging the gap between development and

operations. Data scientists can run queries on large datasets and securely share data and algorithmic models

with authorized users during the training phase. After the containerized models are ready for production, you

can easily move them from development environments to operational environments.

Next: Conclusion

Conclusion

When building your own AI/ML pipelines, configuring the integration, management,

security, and accessibility of the components in an architecture is a challenging task.

Giving developers access and control of their environment presents another set of

challenges.

The combination of NetApp and Iguazio brings these technologies together as managed services to accelerate

technology adoption and improve the time to market for new AI/ML applications.

Next: Where to Find Additional Information

Where to Find Additional Information

To learn more about the information that is described in this document, see the following

81

resources:

• NetApp AI Control Plane:

◦ NetApp AI Control Plane Technical Report

https://www.netapp.com/us/media/tr-4798.pdf

• NetApp persistent storage for containers:

◦ NetApp Trident

https://netapp.io/persistent-storage-provisioner-for-kubernetes/

• ML framework and tools:

◦ TensorFlow: An Open-Source Machine Learning Framework for Everyone https://www.tensorflow.org/

◦ Docker

https://docs.docker.com

◦ Kubernetes

https://kubernetes.io/docs/home/

◦ Kubeflow

http://www.kubeflow.org/

◦ Jupyter Notebook Server

http://www.jupyter.org/

• Iguazio Data Science Platform

◦ Iguazio Data Science Platform Documentation

https://www.iguazio.com/docs/

◦ Nuclio serverless function

https://nuclio.io/

◦ MLRun opensource pipeline orchestration framework

https://www.iguazio.com/open-source/mlrun/

• NVIDIA DGX-1 systems

◦ NVIDIA DGX-1 systems

https://www.nvidia.com/en-us/data-center/dgx-1/

◦ NVIDIA Tesla V100 Tensor core GPU

https://www.nvidia.com/en-us/data-center/tesla-v100/

◦ NVIDIA GPU Cloud

82

https://www.netapp.com/us/media/tr-4798.pdf
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://www.tensorflow.org/
https://docs.docker.com
https://kubernetes.io/docs/home/
http://www.kubeflow.org/
http://www.jupyter.org/
https://www.iguazio.com/docs/
https://nuclio.io/
https://www.iguazio.com/open-source/mlrun/
https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/tesla-v100/

https://www.nvidia.com/en-us/gpu-cloud/

• NetApp AFF systems

◦ AFF datasheet

https://www.netapp.com/us/media/ds-3582.pdf

◦ NetApp Flash Advantage for AFF

https://www.netapp.com/us/media/ds-3733.pdf

◦ ONTAP 9.x documentation

https://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286

◦ NetApp FlexGroup technical report

https://www.netapp.com/us/media/tr-4557.pdf

• NetApp ONTAP AI

◦ ONTAP AI with DGX-1 and Cisco Networking Design Guide

https://www.netapp.com/us/media/nva-1121-design.pdf

◦ ONTAP AI with DGX-1 and Cisco Networking Deployment Guide

https://www.netapp.com/us/media/nva-1121-deploy.pdf

◦ ONTAP AI with DGX-1 and Mellanox Networking Design Guide

https://www.netapp.com/us/media/nva-1138-design.pdf

• ONTAP AI networking

◦ Cisco Nexus 3232C Series Switches

https://www.cisco.com/c/en/us/products/switches/nexus-3232c-switch/index.html

◦ Mellanox Scale-Out SN2000 Ethernet Switch Series

https://www.mellanox.com/page/products_dyn?product_family=251&mtag=sn2000

Use Cases

Sentiment analysis with NetApp AI

TR-4910: Sentiment Analysis from Customer Communications with NetApp AI

Rick Huang, Sathish Thyagarajan, and David Arnette, NetApp

Diego Sosa-Coba, SFL Scientific

This technical report provides design guidance for customers to perform sentiment analysis in an enterprise-

level global support center by using NetApp data management technologies with an NVIDIA software

framework using transfer learning and conversational AI. This solution is applicable to any industry wanting to

83

https://www.nvidia.com/en-us/gpu-cloud/
https://www.netapp.com/us/media/ds-3582.pdf
https://www.netapp.com/us/media/ds-3733.pdf
https://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286
https://www.netapp.com/us/media/tr-4557.pdf
https://www.netapp.com/us/media/nva-1121-design.pdf
https://www.netapp.com/us/media/nva-1121-deploy.pdf
https://www.netapp.com/us/media/nva-1138-design.pdf
https://www.cisco.com/c/en/us/products/switches/nexus-3232c-switch/index.html
https://www.mellanox.com/page/products_dyn?product_family=251&mtag=sn2000

gain customer insights from recorded speech or text files representing chat logs, emails, and other text or

audio communications. We implemented an end-to-end pipeline to demonstrate automatic speech recognition,

real-time sentiment analysis, and deep-learning natural-language- processing model- retraining capabilities on

a GPU-accelerated compute cluster with NetApp cloud-connected all flash storage. Massive, state-of-the-art

language models can be trained and optimized to perform inference rapidly with the global support center to

create an exceptional customer experience and objective, long-term employee performance evaluations.

Sentiment analysis is a field of study within Natural Language Processing (NLP) by which positive, negative, or

neutral sentiments are extracted from text. Conversational AI systems have risen to a near global level of

integration as more and more people come to interact with them. Sentiment analysis has a variety of use

cases, from determining support center employee performance in conversations with callers and providing

appropriate automated chatbot responses to predicting a firm’s stock price based on the interactions between

firm representatives and the audience at quarterly earnings calls. Furthermore, sentiment analysis can be used

to determine the customer’s view on the products, services, or support provided by the brand.

This end-to-end solution uses NLP models to perform high level sentiment analysis that enables support-

center analytical frameworks. Audio recordings are processed into written text, and sentiment is extracted from

each sentence in the conversation. Results, aggregated into a dashboard, can be crafted to analyze

conversation sentiments, both historically and in real-time. This solution can be generalized to other solutions

with similar data modalities and output needs. With the appropriate data, other use cases can be

accomplished. For example, company earnings calls can be analyzed for sentiment using the same end-to-end

pipeline. Other forms of NLP analyses, such as topic modeling and named entity recognition (NER), are also

possible due to the flexible nature of the pipeline.

These AI implementations were made possible by NVIDIA RIVA, the NVIDIA TAO Toolkit, and the NetApp

DataOps Toolkit working together. NVIDIA’s tools are used to rapidly deploy highly performant AI solutions

using prebuilt models and pipelines. The NetApp DataOps Toolkit simplifies various data management tasks to

speed up development.

Customer value

Businesses see value from an employee-assessment and customer-reaction tool for text, audio, and video

conversation for sentiment analysis. Managers benefit from the information presented in the dashboard,

allowing for an assessment of the employees and customer satisfaction based on both sides of the

conversation.

Additionally, the NetApp DataOps Toolkit manages the versioning and allocation of data within the customer’s

infrastructure. This leads to frequent updates of the analytics presented within the dashboard without creating

unwieldy data storage costs.

Next: Use cases.

Use cases

Previous: Support center analytics.

Due to the number of calls that these support centers process, assessment of call performance could take

significant time if performed manually. Traditional methods, like bag-of-words counting and other methods, can

achieve some automation, but these methods do not capture more nuanced aspects and semantic context of

dynamic language. AI modeling techniques can be used to perform some of these more nuanced analyses in

an automated manner. Furthermore, with the current state of the art, pretrained modeling tools published by

NVIDIA, AWS, Google, and others, an end-to-end pipeline with complex models can be now stood up and

customized with relative ease.

An end-to-end pipeline for support center sentiment analysis ingests audio files in real time as employees

84

converse with callers. Then, these audio files are processed for use in the speech-to-text component which

converts them into a text format. Each sentence in the conversation receives a label indicating the sentiment

(positive, negative, or neutral).

Sentiment analysis can provide an essential aspect of the conversations for assessment of call performance.

These sentiments add an additional level of depth to the interactions between employees and callers. The AI-

assisted sentiment dashboard provides managers with a real-time tracking of sentiment within a conversation,

along with a retrospective analysis of the employee’s past calls.

There are prebuilt tools that can be combined in powerful ways to quickly create an end-to-end AI pipeline to

solve this problem. In this case, the NVIDIA RIVA library can be used to perform the two in-series tasks: audio

transcription and sentiment analysis. The first is a supervised learning signal processing algorithm and the

second is a supervised learning NLP classification algorithm. These out-of-the-box algorithms can be fine-

tuned for any relevant use case with business-relevant data using the NVIDIA TAO Toolkit. This leads to more

accurate and powerful solutions being built for only a fraction of the cost and resources. Customers can

incorporate the NVIDIA Maxine framework for GPU-accelerated video conferencing applications in their

support center design.

The following use cases are at the core of this solution. Both use cases use the TAO Toolkit for model fine-

tuning and RIVA for model deployment.

• Speech-to-text

• Sentiment analysis

To analyze support center interactions between employees and customers, each customer conversation in the

form of audio calls can be run through the pipeline to extract sentence-level sentiments. Those sentiments can

then be verified by a human to justify the sentiments or adjust them as needed. The labeled data is then

passed onto the fine-tuning step to improve sentiment predictions. If labeled sentiment data already exists,

then model fine-tuning can be expedited. In either case, the pipeline is generalizable to other solutions that

require the ingestion of audio and the classification of sentences.

85

https://developer.nvidia.com/maxine

AI sentiment outputs are either uploaded to an external cloud database or to a company- managed storage

system. The sentiment outputs are transferred from this larger database into local storage for use within the

dashboard that displays the sentiment analysis for managers. The dashboard’s primary functionality is to

interface with the customer service employee in real time. Managers can assess and provide feedback on

employees during their calls with live updates of the sentiment of each sentence, as well as an historic review

of the employee’s past performance or customer reactions.

The NetApp DataOps Toolkit can continue to manage data storage systems even after the RIVA inference

pipeline generates sentiment labels. Those AI results can be uploaded to a data storage system managed by

the NetApp DataOps Toolkit. The data storage systems must be capable of managing hundreds of inserts and

selects every minute. The local device storage system queries the larger data storage in real-time for

extraction. The larger data storage instance can also be queried for historical data to further enhance the

dashboard experience. The NetApp DataOps Toolkit facilitates both these uses by rapidly cloning data and

distributing it across all the dashboards that use it.

Target Audience

The target audience for the solution includes the following groups:

• Employee managers

• Data engineers/data scientists

• IT administrators (on-premises, cloud, or hybrid)

Tracking sentiments throughout conversations is a valuable tool for assessing employee performance. Using

the AI-dashboard, managers can see how employees and callers change their feelings in real time, allowing for

live assessments and guidance sessions. Moreover, businesses can gain valuable customer insights from

customers engaged in vocal conversations, text chatbots, and video conferencing. Such customer analytics

uses the capabilities of multimodal processing at scale with modern, state-of-the-art AI models and workflows.

On the data side, a large number of audio files are processed daily by the support center. The NetApp

DataOps Toolkit facilitates this data handling task for both the periodic fine-tuning of models and sentiment

analysis dashboards.

IT administrators also benefit from the NetApp DataOps Toolkit as it allows them to move data quickly between

deployment and production environments. The NVIDIA environments and servers must also be managed and

distributed to allow for real time inference.

86

https://github.com/NetApp/netapp-dataops-toolkit/releases/tag/v2.0.0

Next: Architecture.

Architecture

Previous: Use cases.

The architecture of this support center solution revolves around NVIDIA’s prebuilt tools and the NetApp

DataOps Toolkit. NVIDIA’s tools are used to rapidly deploy high-performance AI-solutions using prebuilt models

and pipelines. The NetApp DataOps Toolkit simplifies various data management tasks to speed up

development.

Solution technology

NVIDIA RIVA is a GPU-accelerated SDK for building multimodal conversational AI applications that deliver

real-time performance on GPUs. The NVIDIA Train, Adapt, and Optimize (TAO) Toolkit provides a faster, easier

way to accelerate training and quickly create highly accurate and performant, domain-specific AI models.

The NetApp DataOps Toolkit is a Python library that makes it simple for developers, data scientists, DevOps

engineers, and data engineers to perform various data management tasks. This includes near-instantaneous

provisioning of a new data volume or JupyterLab workspace, near-instantaneous cloning of a data volume or

JupyterLab workspace, and near-instantaneous snapshotting of a data volume or JupyterLab workspace for

traceability and baselining.

Architectural Diagram

The following diagram shows the solution architecture. There are three main environment categories: the

cloud, the core, and the edge. Each of the categories can be geographically dispersed. For example, the cloud

contains object stores with audio files in buckets in different regions, whereas the core might contain

datacenters linked via a high-speed network or NetApp Cloud Sync. The edge nodes denote the individual

human agent’s daily working platforms, where interactive dashboard tools and microphones are available to

visualize sentiment and collect audio data from conversations with customers.

In GPU-accelerated datacenters, businesses can use the NVIDIA RIVA framework to build conversational AI

applications, to which the Tao Toolkit connects for model finetuning and retraining using transfer L-learning

techniques. These compute applications and workflows are powered by the NetApp DataOps Toolkit, enabling

the best data management capabilities ONTAP has to offer. The toolkit allows corporate data teams to rapidly

prototype their models with associated structured and unstructured data via snapshots and clones for

traceability, versioning, A/B testing, thus providing security, governance, and regulatory compliance. See the

section "Storage Design" for more details.

This solution demonstrates the audio file processing, NLP model training, transfer learning, and data

management detail steps. The resulting end-to-end pipeline generates a sentiment summary that displays in

real-time on human support agents’ dashboards.

87

https://developer.nvidia.com/riva
https://docs.nvidia.com/deeplearning/riva/user-guide/docs/index.html
https://developer.nvidia.com/tao
https://github.com/NetApp/netapp-dataops-toolkit

Hardware requirements

The following table lists the hardware components that are required to implement the solution. The hardware

components that are used in any particular implementation of the solution might vary based on customer

requirements.

Response latency tests Time (milliseconds)

Data processing 10

Inferencing 10

These response-time tests were run on 50,000+ audio files across 560 conversations. Each audio file was

~100KB in size as an MP3 and ~1 MB when converted to WAV. The data processing step converts MP3s into

WAV files. The inference steps convert the audio files into text and extract a sentiment from the text. These

steps are all independent of one another and can be parallelized to speed up the process.

Taking into account the latency of transferring data between stores, managers should be able to see updates

to the real time sentiment analysis within a second of the end of the sentence.

NVIDIA RIVA hardware

Hardware Requirements

OS Linux x86_64

GPU memory (ASR) Streaming models: ~5600 MB

Non-streaming models: ~3100 MB

GPU memory (NLP) ~500MB per BERT model

88

NVIDIA TAO Toolkit hardware

Hardware Requirements

System RAM 32GB

GPU RAM 32GB

CPU 8 core

GPU NVIDIA (A100, V100 and RTX 30x0)

SSD 100GB

Flash storage system

NetApp ONTAP 9

ONTAP 9.9, the latest generation of storage management software from NetApp, enables businesses to

modernize infrastructure and transition to a cloud-ready data center. Leveraging industry-leading data

management capabilities, ONTAP enables the management and protection of data with a single set of tools,

regardless of where that data resides. You can also move data freely to wherever it is needed: the edge, the

core, or the cloud. ONTAP 9.9 includes numerous features that simplify data management, accelerate, and

protect critical data, and enable next generation infrastructure capabilities across hybrid cloud architectures.

NetApp Cloud Sync

Cloud Sync is a NetApp service for rapid and secure data synchronization that allows you to transfer files

between on-premises NFS or SMB file shares to any of the following targets:

• NetApp StorageGRID

• NetApp ONTAP S3

• NetApp Cloud Volumes Service

• Azure NetApp Files

• Amazon Simple Storage Service (Amazon S3)

• Amazon Elastic File System (Amazon EFS)

• Azure Blob

• Google Cloud Storage

• IBM Cloud Object Storage

Cloud Sync moves the files where you need them quickly and securely. After your data is transferred, it is fully

available for use on both the source and the target. Cloud Sync continuously synchronizes the data, based on

your predefined schedule, moving only the deltas, so that time and money spent on data replication is

minimized. Cloud Sync is a software as a service (SaaS) tool that is simple to set up and use. Data transfers

that are triggered by Cloud Sync are carried out by data brokers. You can deploy Cloud Sync data brokers in

AWS, Azure, Google Cloud Platform, or on-premises.

NetApp StorageGRID

The StorageGRID software-defined object storage suite supports a wide range of use cases across public,

private, and hybrid multi-cloud environments seamlessly. With industry leading innovations, NetApp

StorageGRID stores, secures, protect, and preserves unstructured data for multi-purpose use including

89

https://docs.netapp.com/us-en/occm/concept_cloud_sync.html

automated lifecycle management for long periods of time. For more information, see the NetApp StorageGRID

site.

Software requirements

The following table lists the software components that are required to implement this solution. The software

components that are used in any particular implementation of the solution might vary based on customer

requirements.

Host machine Requirements

RIVA (formerly JARVIS) 1.4.0

TAO Toolkit (formerly Transfer Learning Toolkit) 3.0

ONTAP 9.9.1

DGX OS 5.1

DOTK 2.0.0

NVIDIA RIVA Software

Software Requirements

Docker >19.02 (with nvidia-docker installed)>=19.03 if not

using DGX

NVIDIA Driver 465.19.01+

418.40+, 440.33+, 450.51+, 460.27+ for Data Center

GPUs

Container OS Ubuntu 20.04

CUDA 11.3.0

cuBLAS 11.5.1.101

cuDNN 8.2.0.41

NCCL 2.9.6

TensorRT 7.2.3.4

Triton Inference Server 2.9.0

NVIDIA TAO Toolkit software

Software Requirements

Ubuntu 18.04 LTS 18.04

python >=3.6.9

docker-ce >19.03.5

docker-API 1.40

nvidia-container-toolkit >1.3.0-1

nvidia-container-runtime 3.4.0-1

90

https://www.netapp.com/data-storage/storagegrid/documentation/

Software Requirements

nvidia-docker2 2.5.0-1

nvidia-driver >455

python-pip >21.06

nvidia-pyindex Latest version

Use case details

This solution applies to the following use cases:

• Speech-to-text

• Sentiment analysis

The speech-to-text use case begins by ingesting audio files for the support centers. This audio is then

processed to fit the structure required by RIVA. If the audio files have not already been split into their units of

analysis, then this must be done before passing the audio to RIVA. After the audio file is processed, it is

passed to the RIVA server as an API call. The server employs one of the many models it is hosting and returns

a response. This speech-to-text (part of Automatic Speech Recognition) returns a text representation of the

audio. From there, the pipeline switches over to the sentiment analysis portion.

For sentiment analysis, the text output from the Automatic Speech Recognition serves as the input to the Text

Classification. Text Classification is the NVIDIA component for classifying text to any number of categories. The

91

sentiment categories range from positive to negative for the support center conversations. The performance of

the models can be assessed using a holdout set to determine the success of the fine-tuning step.

A similar pipeline is used for both the speech-to-text and sentiment analysis within the TAO Toolkit. The major

difference is the use of labels which are required for the fine-tuning of the models. The TAO Toolkit pipeline

begins with the processing of the data files. Then the pretrained models (coming from the NVIDIA NGC

Catalog) are fine-tuned using the support center data. The fine-tuned models are evaluated based on their

corresponding performance metrics and, if they are more performant than the pretrained models, are deployed

to the RIVA server.

Next: Design considerations.

Design considerations

Previous: Architecture.

Network and compute design

Depending on the restrictions on data security, all data must remain within the customer’s infrastructure or a

secure environment.

92

https://ngc.nvidia.com/catalog
https://ngc.nvidia.com/catalog

Storage design

The NetApp DataOps Toolkit serves as the primary service for managing storage systems. The DataOps

Toolkit is a Python library that makes it simple for developers, data scientists, DevOps engineers, and data

engineers to perform various data management tasks, such as near-instantaneous provisioning of a new data

volume or JupyterLab workspace, near-instantaneous cloning of a data volume or JupyterLab workspace, and

near-instantaneous snapshotting of a data volume or JupyterLab workspace for traceability or baselining. This

Python library can function as either a command line utility or a library of functions that can be imported into

any Python program or Jupyter Notebook.

RIVA best practices

NVIDIA provides several general best data practices for using RIVA:

• Use lossless audio formats if possible. The use of lossy codecs such as MP3 can reduce quality.

• Augment training data. Adding background noise to audio training data can initially decrease accuracy

and yet increase robustness.

• Limit vocabulary size if using scraped text. Many online sources contain typos or ancillary pronouns

and uncommon words. Removing these can improve the language model.

• Use a minimum sampling rate of 16kHz if possible. However, try not to resample, because doing so

decreases audio quality.

In addition to these best practices, customers must prioritize gathering a representative sample dataset with

accurate labels for each step of the pipeline. In other words, the sample dataset should proportionally reflect

specified characteristics exemplified in a target dataset. Similarly, the dataset annotators have a responsibility

to balance accuracy and the speed of labeling so that the quality and quantity of the data are both maximized.

For example, this support center solution requires audio files, labeled text, and sentiment labels. The

sequential nature of this solution means that errors from the beginning of the pipeline are propagated all the

way through to the end. If the audio files are of poor quality, the text transcriptions and sentiment labels will be

as well.

This error propagation similarly applies to the models trained on this data. If the sentiment predictions are

100% accurate but the speech-to-text model performs poorly, then the final pipeline is limited by the initial

audio- to- text transcriptions. It is essential that developers consider each model’s performance individually and

as a component of a larger pipeline. In this particular case, the end goal is to develop a pipeline that can

accurately predict the sentiment. Therefore, the overall metric on which to assess the pipeline is the accuracy

of the sentiments, which the speech-to-text transcription directly affects.

93

https://docs.nvidia.com/deeplearning/riva/user-guide/docs/best-practices.html

The NetApp DataOps Toolkit complements the data quality-checking pipeline through the use of its near-

instantaneous data cloning technology. Each labeled file must be assessed and compared to the existing

labeled files. Distributing these quality checks across various data storage systems ensures that these checks

are executed quickly and efficiently.

Next: Deploying support-center sentiment analysis.

Deploying support center sentiment analysis

Previous: Design considerations.

Deploying the solution involves the following components:

1. NetApp DataOps Toolkit

2. NGC Configuration

3. NVIDIA RIVA Server

4. NVIDIA TAO Toolkit

5. Export TAO models to RIVA

To perform deployment, complete the following steps:

NetApp DataOps Toolkit: Support center sentiment analysis

To use the NetApp DataOps Toolkit, complete the following steps:

1. Pip install the toolkit.

python3 -m pip install netapp-dataops-traditional

2. Configure the data management

94

https://github.com/NetApp/netapp-dataops-toolkit

netapp_dataops_cli.py config

NGC configuration: Support center sentiment analysis

To set up NVIDIA NGC, complete the following steps:

1. Download the NGC.

wget -O ngccli_linux.zip

https://ngc.nvidia.com/downloads/ngccli_linux.zip && unzip -o

ngccli_linux.zip && chmod u+x ngc

2. Add your current directory to path.

echo "export PATH=\"\$PATH:$(pwd)\"" >> ~/.bash_profile && source

~/.bash_profile

3. You must configure NGC CLI for your use so that you can run the commands. Enter the following

command, including your API key when prompted.

ngc config set

For operating systems that are not Linux-based, visit here.

NVIDIA RIVA server: Support center sentiment analysis

To set up NVIDIA RIVA, complete the following steps:

1. Download the RIVA files from NGC.

ngc registry resource download-version

nvidia/riva/riva_quickstart:1.4.0-beta

2. Initialize the RIVA setup (riva_init.sh).

3. Start the RIVA server (riva_start.sh).

4. Start the RIVA client (riva_start_client.sh).

5. Within the RIVA client, install the audio processing library (FFMPEG)

apt-get install ffmpeg

95

https://ngc.nvidia.com/setup/installers/cli
https://ngc.nvidia.com/setup/installers/cli
https://docs.nvidia.com/deeplearning/riva/user-guide/docs/quick-start-guide.html
https://ffmpeg.org/download.html

6. Start the Jupyter server.

7. Run the RIVA Inference Pipeline Notebook.

NVIDIA TAO Toolkit: Support center sentiment analysis

To set up NVIDIA TAO Toolkit, complete the following steps:

1. Prepare and activate a virtual environment for TAO Toolkit.

2. Install the required packages.

3. Manually pull the image used during training and fine-tuning.

docker pull nvcr.io/nvidia/tao/tao-toolkit-pyt:v3.21.08-py3

4. Start the Jupyter server.

5. Run the TAO Fine-Tuning Notebook.

Export TAO models to RIVA: Support center sentiment analysis

To use TAO Toolkit models in RIVA, complete the following steps:

1. Save models within the TAO Fine-Tuning Notebook.

2. Copy TAO trained models to the RIVA model directory.

3. Start the RIVA server (riva_start.sh).

Deployment roadblocks

Here are a few things to keep in mind as you develop your own solution:

• The NetApp DataOps Toolkit is installed first to ensure that the data storage system runs optimally.

• NVIDIA NGC must be installed before anything else because it authenticates the downloading of images

and models.

• RIVA must be installed before the TAO Toolkit. The RIVA installation configures the docker daemon to pull

images as needed.

• DGX and docker must have internet access to download the models.

Next: Validation results.

Validation results

Previous: Deploying support-center sentiment analysis.

As mentioned in the previous section, errors are propagated throughout the pipeline whenever there are two or

more machine learning models running in sequence. For this solution, the sentiment of the sentence is the

most important factor in measuring the firm’s stock risk level. The speech-to-text model, although essential to

the pipeline, serves as the preprocessing unit before the sentiments can be predicted. What really matters is

the difference in sentiment between the ground truth sentences and the predicted sentences. This serves as a

proxy for the word error rate (WER). The speech-to-text accuracy is important, but the WER is not directly used

in the final pipeline metric.

96

https://jupyter-server.readthedocs.io/en/latest/
https://docs.python.org/3/library/venv.html
https://docs.nvidia.com/tao/tao-toolkit/text/tao_toolkit_quick_start_guide.html
https://jupyter-server.readthedocs.io/en/latest/
https://docs.nvidia.com/tao/tao-toolkit/text/riva_tao_integration.html

PIPELINE_SENTIMENT_METRIC = MEAN(DIFF(GT_sentiment, ASR_sentiment))

These sentiment metrics can be calculated for the F1 Score, Recall, and Precision of each sentence. The

results can be then aggregated and displayed within a confusion matrix, along with the confidence intervals for

each metric.

The benefit of using transfer learning is an increase in model performance for a fraction of data requirements,

training time, and cost. The fine-tuned models should also be compared to their baseline versions to ensure

the transfer learning enhances the performance instead of impairing it. In other words, the fine-tuned model

should perform better on the support center data than the pretrained model.

Pipeline assessment

Test case Details

Test number Pipeline sentiment metric

Test prerequisites Fine-tuned models for speech-to-text and sentiment

analysis models

Expected outcome The sentiment metric of the fine-tuned model performs

better than the original pretrained model.

Pipeline sentiment metric

1. Calculate the sentiment metric for the baseline model.

2. Calculate the sentiment metric for the fine-tuned model.

3. Calculate the difference between those metrics.

4. Average the differences across all sentences.

Next: Videos and demos.

Videos and demos

Previous: Validation results.

There are two notebooks that contain the sentiment analysis pipeline: “Support-Center-Model-Transfer-

Learning-and-Fine-Tuning.ipynb” and “Support-Center-Sentiment-Analysis-Pipeline.ipynb”. Together, these

notebooks demonstrate how to develop a pipeline to ingest support center data and extract sentiments from

each sentence using state-of-the-art deep learning models fine-tuned on the user’s data.

Support Center - Sentiment Analysis Pipeline.ipynb

This notebook contains the inference RIVA pipeline for ingesting audio, converting it to text, and extracting

sentiments for use in an external dashboard. Dataset are automatically downloaded and processed if this has

not already been done. The first section in the notebook is the Speech-to-Text which handles the conversion of

audio files to text. This is followed by the Sentiment Analysis section which extracts sentiments for each text

sentence and displays those results in a format similar to the proposed dashboard.

This notebook must be run before the model training and fine-tuning because the MP3 dataset

must be downloaded and converted into the correct format.

97

https://nbviewer.jupyter.org/github/NetAppDocs/netapp-solutions/blob/main/media/Support-Center-Model-Transfer-Learning-and-Fine-Tuning.ipynb
https://nbviewer.jupyter.org/github/NetAppDocs/netapp-solutions/blob/main/media/Support-Center-Model-Transfer-Learning-and-Fine-Tuning.ipynb
https://nbviewer.jupyter.org/github/NetAppDocs/netapp-solutions/blob/main/media/Support-Center-Sentiment-Analysis-Pipeline.ipynb

Support Center - Model Training and Fine-Tuning.ipynb

The TAO Toolkit virtual environment must be set up before executing the notebook (see the TAO Toolkit section

in the Commands Overview for installation instructions).

This notebook relies on the TAO Toolkit to fine-tune deep learning models on the customers data. As with the

previous notebook, this one is separated into two sections for the Speech-to-Text and Sentiment Analysis

components. Each section goes through data processing, model training and fine-tuning, evaluation of results,

and model export. Finally, there is an end section for deploying both your fine-tuned models for use in RIVA.

98

Next: Conclusion.

Conclusion

Previous: Videos and demos.

As customer experience has become increasingly regarded as a key competitive battleground, an AI-

augmented global support center becomes a critical component that companies in almost every industry

cannot afford to neglect. The solution proposed in this technical report has been demonstrated to support the

delivery of such exceptional customer experiences, and the challenge now is to ensure businesses are taking

actions to modernize their AI infrastructure and workflows.

The best implementations of AI in customer service are not to replace human agents. Rather, AI can empower

them to create exceptional customer experiences via real-time sentiment analysis, dispute escalation, and

multimodal affective computing to detect verbal, non-verbal, and facial cues with which comprehensive AI

99

models can make recommendations at scale and supplement what an individual human agent might be

lacking. AI can also provide a better match between a particular customer with currently available agents.

Using AI, businesses can extract valuable customer sentiment regarding their thoughts and impressions of the

provider’s products, services, and brand image.

The solution can also be used to construct time-series data for support agents to serve as an objective

performance evaluation metric. Conventional customer satisfaction surveys often lack sufficient responses. By

collecting long-term employee and customer sentiment, employers can make informed decisions regarding

support agents’ performance.

The combination of NetApp, SFL Scientific, opens-source orchestration frameworks, and NVIDIA brings the

latest technologies together as managed services with great flexibility to accelerate technology adoption and

improve the time to market for new AI/ML applications. These advanced services are delivered on-premises

that can be easily ported for cloud-native environment as well as hybrid deployment architectures.

Next: Where to find additional information.

Where to find additional information

Previous: Conclusion.

To learn more about the information that is described in this document, review the following documents and/or

websites:

• 3D interactive demos

www.netapp.com/ai

• Connect directly with a NetApp AI specialist

https://www.netapp.com/artificial-intelligence/

• NVDIA Base Command Platform with NetApp solution brief

https://www.netapp.com/pdf.html?item=/media/32792-DS-4145-NVIDIA-Base-Command-Platform-with-

NetApp.pdf

• NetApp for AI 10 Good Reasons infographic

https://www.netapp.com/us/media/netapp-ai-10-good-reasons.pdf

• AI in Healthcare: Deep learning to identify COVID-19 lesions in lung CT scans white paper

https://www.netapp.com/pdf.html?item=/media/31240-WP-7342.pdf

• AI in Healthcare: Monitoring face mask usage in healthcare settings white paper

https://www.netapp.com/pdf.html?item=/media/37490-NA-611-Monitoring-face-mask-usage-in-healthcare-

settings.pdf

• AI in Healthcare: Diagnostic Imaging Technical Report

https://www.netapp.com/pdf.html?item=/media/7395-tr4811.pdf

• AI for Retail: NetApp Conversational AI using NVIDIA RIVA

100

http://www.netapp.com/ai
https://www.netapp.com/artificial-intelligence/
https://www.netapp.com/pdf.html?item=/media/32792-DS-4145-NVIDIA-Base-Command-Platform-with-NetApp.pdf
https://www.netapp.com/pdf.html?item=/media/32792-DS-4145-NVIDIA-Base-Command-Platform-with-NetApp.pdf
https://www.netapp.com/us/media/netapp-ai-10-good-reasons.pdf
https://www.netapp.com/pdf.html?item=/media/31240-WP-7342.pdf
https://www.netapp.com/pdf.html?item=/media/37490-NA-611-Monitoring-face-mask-usage-in-healthcare-settings.pdf
https://www.netapp.com/pdf.html?item=/media/37490-NA-611-Monitoring-face-mask-usage-in-healthcare-settings.pdf
https://www.netapp.com/pdf.html?item=/media/7395-tr4811.pdf

https://docs.netapp.com/us-en/netapp-solutions/ai/cainvidia_executive_summary.html

• NetApp ONTAP AI solution brief

https://www.netapp.com/pdf.html?item=/media/6736-sb-3939.pdf

• NetApp DataOps Toolkit solution brief

https://www.netapp.com/pdf.html?item=/media/21480-SB-4111-1220-NA-Data-Science-Toolkit.pdf

• NetApp AI Control Plane solution brief

https://www.netapp.com/pdf.html?item=/media/6737-sb-4055.pdf

• Transforming Industry with Data Drive AI eBook

https://www.netapp.com/us/media/na-337.pdf

• NetApp EF-Series AI solution brief

https://www.netapp.com/pdf.html?item=/media/26708-SB-4136-NetApp-AI-E-Series.pdf

• NetApp AI and Lenovo ThinkSystem for AI Inferencing solution brief

https://www.netapp.com/pdf.html?item=/media/25316-SB-4129.pdf

• NetApp AI and Lenovo ThinkSystem for enterprise AI and ML solution brief

https://www.netapp.com/pdf.html?item=/media/25317-SB-4128.pdf

• NetApp and NVIDIA – Redefining What is Possible with AI video

https://www.youtube.com/watch?v=38xw65SteUc

Distributed training in Azure - Click-Through Rate Prediction

TR-4904: Distributed training in Azure - Click-Through Rate Prediction

Rick Huang, Verron Martina, Muneer Ahmad, NetApp

The work of a data scientist should be focused on the training and tuning of machine learning (ML) and artificial

intelligence (AI) models. However, according to research by Google, data scientists spend approximately 80%

of their time figuring out how to make their models work with enterprise applications and run at scale.

To manage end-to-end AI/ML projects, a wider understanding of enterprise components is needed. Although

DevOps have taken over the definition, integration, and deployment, these types of components, ML

operations target a similar flow that includes AI/ML projects. To get an idea of what an end-to-end AI/ML

pipeline touches in the enterprise, see the following list of required components:

• Storage

• Networking

• Databases

• File systems

101

https://docs.netapp.com/us-en/netapp-solutions/ai/cainvidia_executive_summary.html
https://www.netapp.com/pdf.html?item=/media/6736-sb-3939.pdf
https://www.netapp.com/pdf.html?item=/media/21480-SB-4111-1220-NA-Data-Science-Toolkit.pdf
https://www.netapp.com/pdf.html?item=/media/6737-sb-4055.pdf
https://www.netapp.com/us/media/na-337.pdf
https://www.netapp.com/pdf.html?item=/media/26708-SB-4136-NetApp-AI-E-Series.pdf
https://www.netapp.com/pdf.html?item=/media/25316-SB-4129.pdf
https://www.netapp.com/pdf.html?item=/media/25317-SB-4128.pdf
https://www.youtube.com/watch?v=38xw65SteUc

• Containers

• Continuous integration and continuous deployment (CI/CD) pipeline

• Integrated development environment (IDE)

• Security

• Data access policies

• Hardware

• Cloud

• Virtualization

• Data science toolsets and libraries

Target audience

The world of data science touches multiple disciplines in IT and business:

• The data scientist needs the flexibility to use their tools and libraries of choice.

• The data engineer needs to know how the data flows and where it resides.

• A DevOps engineer needs the tools to integrate new AI/ML applications into their CI/CD pipelines.

• Cloud administrators and architects need to be able to set up and manage Azure resources.

• Business users want to have access to AI/ML applications.

In this technical report, we describe how Azure NetApp Files, RAPIDS AI, Dask, and Azure help each of these

roles bring value to business.

Solution overview

This solution follows the lifecycle of an AI/ML application. We start with the work of data scientists to define the

different steps needed to prepare data and train models. By leveraging RAPIDS on Dask, we perform

distributed training across the Azure Kubernetes Service (AKS) cluster to drastically reduce the training time

when compared to the conventional Python scikit-learn approach. To complete the full cycle, we integrate the

pipeline with Azure NetApp Files.

Azure NetApp Files provides various performance tiers. Customers can start with a Standard tier and scale out

and scale up to a high-performance tier nondisruptively without moving any data. This capability enables data

scientists to train models at scale without any performance issues, avoiding any data silos across the cluster,

as shown in figure below.

102

Next: Technology overview.

Technology overview

Previous: Introduction.

Microsoft and NetApp

Since May 2019, Microsoft has delivered an Azure native, first-party portal service for enterprise NFS and SMB

file services based on NetApp ONTAP technology. This development is driven by a strategic partnership

between Microsoft and NetApp and further extends the reach of world-class ONTAP data services to Azure.

Azure NetApp Files

The Azure NetApp Files service is an enterprise-class, high-performance, metered file storage service. Azure

NetApp Files supports any workload type and is highly available by default. You can select service and

performance levels and set up Snapshot copies through the service. Azure NetApp Files is an Azure first-party

service for migrating and running the most demanding enterprise-file workloads in the cloud, including

databases, SAP, and high-performance computing applications with no code changes.

This reference architecture gives IT organizations the following advantages:

• Eliminates design complexities

• Enables independent scaling of compute and storage

• Enables customers to start small and scale seamlessly

• Offers a range of storage tiers for various performance and cost points

Dask and NVIDIA RAPIDS overview

Dask is an open-source, parallel computing tool that scales Python libraries on multiple machines and provides

faster processing of large amounts of data. It provides an API similar to single-threaded conventional Python

libraries, such as Pandas, Numpy, and scikit-learn. As a result, native Python users are not forced to change

much in their existing code to use resources across the cluster.

NVIDIA RAPIDS is a suite of open-source libraries that makes it possible to run end-to-end ML and data

103

analytics workflows entirely on GPUs. Together with Dask, it enables you to easily scale from GPU workstation

(scale up) to multinode, multi-GPU clusters (scale out).

For deploying Dask on a cluster, you could use Kubernetes for resource orchestration. You could also scale up

or scale down the worker nodes as per the process requirement, which in-turn can help to optimize the cluster

resource consumption, as shown in the following figure.

Next: Software requirements.

Software requirements

Previous: Technology overview.

The following table lists the software requirements needed for this solution.

Software Version

Azure Kubernetes Service 1.18.14

RAPIDS and Dask container image Repository: "rapidsai/rapidsai"

Tag: 0.17-cuda11.0-runtime-ubuntu18.04

NetApp Trident 20.01.1

Helm 3.0.0

Next: Cloud resource requirements.

Cloud resource requirements

Previous: Software requirements.

104

Configure Azure NetApp Files

Configure Azure NetApp Files as described in QuickStart: Set up Azure NetApp Files and create an NFS

volume.

You can proceed past the section “Create NFS volume for Azure NetApp Files” because you are going to

create volumes through Trident. Before continuing, complete the following steps:

1. Register for Azure NetApp Files and NetApp Resource Provider (through the Azure Shell) (link).

2. Create an account in Azure NetApp Files (link).

3. Set up a capacity pool (a minimum 4TB Standard or Premium, depending on your need) (link).The

following table lists the network configuration requirements for setting up in the cloud. The Dask cluster and

Azure NetApp Files must be in the same Azure Virtual Network (VNet) or a peered VNet.

Resources Type/version

Azure Kubernetes Service 1.18.14

Agent node 3x Standard_DS2_v2

GPU node 3x Standard_NC6s_v3

Azure NetApp Files Standard capacity pool

Capacity in TB 4

Next: Click-through rate prediction use case summary.

Click-through rate prediction use case summary

Previous: Cloud resource requirements.

This use case is based on the publicly available Terabyte Click Logs dataset from Criteo AI Lab. With the

recent advances in ML platforms and applications, a lot of attention is now on learning at scale. The click-

through rate (CTR) is defined as the average number of click-throughs per hundred online ad impressions

(expressed as a percentage). It is widely adopted as a key metric in various industry verticals and use cases,

including digital marketing, retail, e-commerce, and service providers. Examples of using CTR as an important

metric for potential customer traffic include the following:

• Digital marketing: In Google Analytics, CTR can be used to gauge how well an advertiser or merchant’s

keywords, ads, and free listings are performing. A high CTR is a good indication that users find your ads

and listings helpful and relevant. CTR also contributes to your keyword’s expected CTR, which is a

component of Ad Rank.

• E-commerce: In addition to leveraging Google Analytics, there are at least some visitor statistics in an e-

commerce backend. Although these statistics might not seem useful at first glance, they are typically easy

to read and might be more accurate than other information. First-party datasets composed of such

statistics are proprietary and are therefore the most relevant to e-commerce sellers, buyers, and platforms.

These datasets can be used for setting benchmarks, comparing results to last year and yesterday by

constructing a time-series for further analysis.

• Retail: Brick-and-mortar retailers can correlate the number of visitors and the number of customers to the

CTR. The number of customers can be seen from their point-of-sale history. The CTR from retailers'

websites or ad traffic might result in the aforementioned sales. Loyalty programs are another use case,

because customers redirected from online ads or other websites might join to earn rewards. Retailers can

acquire customers via loyalty programs and record behaviors from sales histories to build a

recommendation system that not only predicts consumer buying behaviors in different categories but also

105

https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes?tabs=azure-portal
https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes?tabs=azure-portal
https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-register
https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-create-netapp-account
https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-set-up-capacity-pool
http://labs.criteo.com/2013/12/download-terabyte-click-logs/
https://ailab.criteo.com/
https://support.google.com/google-ads/answer/2615875?hl=en
https://support.google.com/google-ads/answer/1752122?hl=en
https://analytics.google.com/analytics/web/provision/#/provision

personalizes coupons and decreases churn.

• Service providers: Telecommunication companies and internet service providers have an abundance of

first-party user telemetry data for insightful AI, ML, and analytics use cases. For example, a telecom can

leverage its mobile subscribers' web browsing top level domain history logs daily to fine-tune existing

models to produce up-to-date audience segmentation, predict customer behavior, and collaborate with

advertisers to place real-time ads for better online experience. In such data-driven marketing workflow,

CTR is an important metric to reflect conversions.

In the context of digital marketing, Criteo Terabyte Click Logs are now the dataset of reference in assessing the

scalability of ML platforms and algorithms. By predicting the click-through rate, an advertiser can select the

visitors who are most likely to respond to the ads, analyze their browsing history, and show the most relevant

ads based on the interests of the user.

The solution provided in this technical report highlights the following benefits:

• Azure NetApp Files advantages in distributed or large-scale training

• RAPIDS CUDA-enabled data processing (cuDF, cuPy, and so on) and ML algorithms (cuML)

• The Dask parallel computing framework for distributed training

An end-to-end workflow built on RAPIDS AI and Azure NetApp Files demonstrates the drastic improvement in

random forest model training time by two orders of magnitude. This improvement is significant comparing to

the conventional Pandas approach when dealing with real-world click logs with 45GB of structured tabular data

(on average) each day. This is equivalent to a DataFrame containing roughly twenty billion rows. We will

demonstrate cluster environment setup, framework and library installation, data loading and processing,

conventional versus distributed training, visualization and monitoring, and compare critical end-to-end runtime

results in this technical report.

Next: Install and set up the aks cluster.

Setup

Install and set up the AKS cluster

Previous: Click-through rate prediction use case summary.

To install and set up the AKS cluster, see the webpage Create an AKS Cluster and then complete the following

steps:

1. When selecting the type of node (system [CPU] or worker [GPU] nodes), select the following:

a. Primary system nodes should be Standard DS2v2 (agentpool default three nodes).

b. Then add the worker node Standard_NC6s_v3 pool (three nodes minimum) for the user group (for

GPU nodes) named gpupool.

106

http://labs.criteo.com/2013/12/download-terabyte-click-logs/
https://docs.microsoft.com/azure/aks/kubernetes-walkthrough-portal

2. Deployment takes 5 to 10 minutes. After it is complete, click Connect to Cluster.

3. To connect to the newly created AKS cluster, install the following from your local environment (laptop/pc):

a. The Kubernetes command-line tool using the instructions provided for your specific OS

b. The Azure CLI as described in the document, Install the Azure CLI

4. To access the AKS cluster from the terminal, enter az login and enter the credentials.

5. Run the following two commands:

az account set --subscription xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxxxx

aks get-credentials --resource-group resourcegroup --name aksclustername

6. Enter Azure CLI: kubectl get nodes.

7. If all six nodes are up and running, as shown in the following example, your AKS cluster is ready and

connected to your local environment

Next: Create a delegated subnet for Azure NetApp Files.

Create a delegated subnet for Azure NetApp Files

Previous: Install and set up the AKS cluster.

To create a delegated subnet for Azure NetApp Files, complete the following steps:

1. Navigate to Virtual Networks within the Azure portal. Find your newly created virtual network. It should

have a prefix such as aks-vnet.

2. Click the name of the VNet.

107

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.microsoft.com/cli/azure/install-azure-cli

3. Click Subnets and click +Subnet from the top toolbar.

4. Provide the subnet with a name such as ANF.sn and, under the Subnet Delegation heading, select

Microsoft.Netapp/volumes. Do not change anything else. Click OK.

108

Azure NetApp Files volumes are allocated to the application cluster and are consumed as persistent volume

claims (PVCs) in Kubernetes. In turn, this process provides you the flexibility to map them to different services,

such as Jupyter notebooks, serverless functions, and so on.

Users of services can consume storage from the platform in many ways. As this technical report discusses

NFSs, the main benefits of Azure NetApp Files are:

• Providing users with the ability to use Snapshot copies.

• Enabling users to store large quantities of data on Azure NetApp Files volumes.

• Using the performance benefits of Azure NetApp Files volumes when running their models on large sets of

files.

Next: Peer AKS vnet and Azure NetApp Files vnet.

109

Peer AKS VNet and Azure NetApp Files VNet

Previous: Create a delegated subnet for Azure NetApp Files.

To peer the AKS VNet to the Azure NetApp Files VNet, complete the following steps:

1. Enter Virtual Networks in the search field.

2. Select vnet aks-vnet-name. Click it and enter Peerings in the search field.

3. Click +Add.

4. Enter the following descriptors:

a. The peering link name is aks-vnet-name_to_anf.

b. subscriptionID and Azure NetApp Files VNet as the VNet peering partner.

c. Leave all the nonasterisk sections with the default values.

5. Click Add.

For more information, see Create, change, or delete a virtual network peering.

Next: Install Trident.

Install Trident

Previous: Peer AKS VNet and Azure NetApp Files VNet.

To install Trident using Helm, complete the following steps:

1. Install Helm (for installation instructions, visit the source).

2. Download and extract the Trident 20.01.1 installer.

$wget

$tar -xf trident-installer-21.01.1.tar.gz

3. Change the directory to trident-installer.

$cd trident-installer

4. Copy tridentctl to a directory in your system $PATH.

$sudo cp ./tridentctl /usr/local/bin

5. Install Trident on the Kubernetes (K8s) cluster with Helm (source):

a. Change the directory to the helm directory.

$cd helm

110

https://docs.microsoft.com/azure/virtual-network/virtual-network-manage-peering
https://helm.sh/docs/intro/install/
https://scaleoutsean.github.io/2021/02/02/trident-21.01-install-with-helm-on-netapp-hci.html

b. Install Trident.

$helm install trident trident-operator-21.01.1.tgz --namespace

trident --create-namespace

c. Check the status of Trident pods.

$kubectl -n trident get pods

If all the pods are up and running, then Trident is installed and you can move forward.

6. Set up the Azure NetApp Files backend and storage class for AKS.

a. Create an Azure Service Principle.

The service principal is how Trident communicates with Azure to manipulate your Azure NetApp Files

resources.

$az ad sp create-for-rbac --name ""

The output should look like the following example:

{

"appId": "xxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",

"displayName": "netapptrident",

"name": "",

"password": "xxxxxxxxxxxxxxx.xxxxxxxxxxxxxx",

"tenant": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx"

}

7. Create a Trident backend json file, example name anf-backend.json.

8. Using your preferred text editor, complete the following fields inside the anf-backend.json file:

111

{

 "version": 1,

 "storageDriverName": "azure-netapp-files",

 "subscriptionID": "fakec765-4774-fake-ae98-a721add4fake",

 "tenantID": "fakef836-edc1-fake-bff9-b2d865eefake",

 "clientID": "fake0f63-bf8e-fake-8076-8de91e57fake",

 "clientSecret": "SECRET",

 "location": "westeurope",

 "serviceLevel": "Standard",

 "virtualNetwork": "anf-vnet",

 "subnet": "default",

 "nfsMountOptions": "vers=3,proto=tcp",

 "limitVolumeSize": "500Gi",

 "defaults": {

 "exportRule": "0.0.0.0/0",

 "size": "200Gi"

}

9. Substitute the following fields:

◦ subscriptionID. Your Azure subscription ID.

◦ tenantID. Your Azure Tenant ID from the output of az ad sp in the previous step.

◦ clientID. Your appID from the output of az ad sp in the previous step.

◦ clientSecret. Your password from the output of az ad sp in the previous step.

10. Instruct Trident to create the Azure NetApp Files backend in the trident namespace using anf-

backend.json as the configuration file:

$tridentctl create backend -f anf-backend.json -n trident

11. Create a storage class. Kubernetes users provision volumes by using PVCs that specify a storage class by

name. Instruct K8s to create a storage class azurenetappfiles that references the Trident backend

created in the previous step.

12. Create a YAML (anf-storage-class.yaml) file for storage class and copy.

112

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

name: azurenetappfiles

provisioner: netapp.io/trident

parameters:

backendType: "azure-netapp-files"

$kubectl create -f anf-storage-class.yaml

13. Verify that the storage class was created.

kubectl get sc azurenetappfiles

Next: Set up Dask with RAPIDS deployment on AKS using Helm.

Set up Dask with RAPIDS deployment on AKS using Helm

Previous: Install Trident.

To set up Dask with RAPIDS deployment on AKS using Helm, complete the following steps:

1. Create a namespace for installing Dask with RAPIDS.

kubectl create namespace rapids-dask

2. Create a PVC to store the click-through rate dataset:

a. Save the following YAML content to a file to create a PVC.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pvc-criteo-data

spec:

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 1000Gi

 storageClassName: azurenetappfiles

113

b. Apply the YAML file to your Kubernetes cluster.

kubectl -n rapids-dask apply -f <your yaml file>

3. Clone the rapidsai git repository (https://github.com/rapidsai/helm-chart).

git clone https://github.com/rapidsai/helm-chart helm-chart

4. Modify values.yaml and include the PVC created earlier for workers and Jupyter workspace.

a. Go to the rapidsai directory of the repository.

cd helm-chart/rapidsai

b. Update the values.yaml file and mount the volume using PVC.

dask:

 …

 worker:

 name: worker

 …

 mounts:

 volumes:

 - name: data

 persistentVolumeClaim:

 claimName: pvc-criteo-data

 volumeMounts:

 - name: data

 mountPath: /data

 …

 jupyter:

 name: jupyter

 …

 mounts:

 volumes:

 - name: data

 persistentVolumeClaim:

 claimName: pvc-criteo-data

 volumeMounts:

 - name: data

 mountPath: /data

 …

114

https://github.com/rapidsai/helm-chart

5. Go to the repository’s home directory and deploy Dask with three worker nodes on AKS using Helm.

cd ..

helm dep update rapidsai

helm install rapids-dask --namespace rapids-dask rapidsai

Next: Azure NetApp Files performance tiers.

Azure NetApp Files performance tiers

Previous: Set up Dask with RAPIDS deployment on AKS using Helm.

You can change the service level of an existing volume by moving the volume to another capacity pool that

uses the service level you want for the volume. This solution enables customers to start with a small dataset

and small number of GPUs in Standard Tier and scale out or scale up to Premium Tier as the amount of data

and GPUs increase. The Premium Tier offers four times the throughput per terabyte as the Standard Tier, and

scale up is performed without having to move any data to change the service level of a volume.

Dynamically change the service level of a volume

To dynamically change the service level of a volume, complete the following steps:

1. On the Volumes page, right-click the volume whose service level you want to change. Select Change Pool.

2. In the Change Pool window, select the capacity pool to which you want to move the volume.

115

3. Click OK.

Automate performance tier change

The following options are available to automate performance tier changes:

• Dynamic Service Level change is still in Public Preview at this time and not enabled by default. To enable

this feature on the Azure Subscription, see this documentation about how to Dynamically change the

service level of a volume.

• Azure CLI volume pool change commands are provided in volume pool change documentation and in the

following example:

az netappfiles volume pool-change -g mygroup --account-name myaccname

--pool-name mypoolname --name myvolname --new-pool-resource-id

mynewresourceid

• PowerShell: The Set-AzNetAppFilesVolumePool cmdlet changes the pool of an Azure NetApp Files volume

and is shown in the following example:

116

https://docs.microsoft.com/azure/azure-netapp-files/dynamic-change-volume-service-level
https://docs.microsoft.com/azure/azure-netapp-files/dynamic-change-volume-service-level
https://docs.microsoft.com/en-us/cli/azure/netappfiles/volume?view=azure-cli-latest&viewFallbackFrom=azure-cli-latest%20-%20az_netappfiles_volume_pool_change
https://docs.microsoft.com/powershell/module/az.netappfiles/set-aznetappfilesvolumepool?view=azps-5.8.0

Set-AzNetAppFilesVolumePool

-ResourceGroupName "MyRG"

-AccountName "MyAnfAccount"

-PoolName "MyAnfPool"

-Name "MyAnfVolume"

-NewPoolResourceId 7d6e4069-6c78-6c61-7bf6-c60968e45fbf

Next: Libraries for data processing and model training.

Click through rate prediction data processing and model training

Libraries for data processing and model training

Previous: Azure NetApp Files performance tiers.

The following table lists the libraries and frameworks that were used to build this task. All these components

have been fully integrated with Azure’s role-based access and security controls.

Libraries/framework Description

Dask cuML For ML to work on GPU, the cuML library provides

access to the RAPIDS cuML package with Dask.

RAPIDS cuML implements popular ML algorithms,

including clustering, dimensionality reduction, and

regression approaches, with high-performance GPU-

based implementations, offering speed-ups of up to

100x over CPU-based approaches.

Dask cuDF cuDF includes various other functions supporting

GPU-accelerated extract, transform, load (ETL), such

as data subsetting, transformations, one-hot

encoding, and more. The RAPIDS team maintains a

dask-cudf library that includes helper methods to use

Dask and cuDF.

Scikit Learn Scikit-learn provides dozens of built-in machine

learning algorithms and models, called estimators.

Each estimator can be fitted to some data using its fit

method.

We used two notebooks to construct the ML pipelines for comparison; one is the conventional Pandas scikit-

learn approach, and the other is distributed training with RAPIDS and Dask. Each notebook can be tested

individually to see the performance in terms of time and scale. We cover each notebook individually to

demonstrate the benefits of distributed training using RAPIDS and Dask.

Next: Load Criteo Click Logs day 15 in Pandas and train a scikit-learn random forest model.

Load Criteo Click Logs day 15 in Pandas and train a scikit-learn random forest model

Previous: Libraries for data processing and model training.

This section describes how we used Pandas and Dask DataFrames to load Click Logs data from the Criteo

117

https://github.com/rapidsai/cuml/tree/main/python/cuml/dask
https://github.com/rapidsai/cudf/tree/main/python/dask_cudf
https://scikit-learn.org/stable/glossary.html#term-estimators
https://scikit-learn.org/stable/glossary.html#term-fit

Terabyte dataset. The use case is relevant in digital advertising for ad exchanges to build users’ profiles by

predicting whether ads will be clicked or if the exchange isn’t using an accurate model in an automated

pipeline.

We loaded day 15 data from the Click Logs dataset, totaling 45GB. Running the following cell in Jupyter

notebook CTR-PandasRF-collated.ipynb creates a Pandas DataFrame that contains the first 50 million

rows and generates a scikit-learn random forest model.

%%time

import pandas as pd

import numpy as np

header = ['col'+str(i) for i in range (1,41)] #note that according to

criteo, the first column in the dataset is Click Through (CT). Consist of

40 columns

first_row_taken = 50_000_000 # use this in pd.read_csv() if your compute

resource is limited.

total number of rows in day15 is 20B

take 50M rows

"""

Read data & display the following metrics:

1. Total number of rows per day

2. df loading time in the cluster

3. Train a random forest model

"""

df = pd.read_csv(file, nrows=first_row_taken, delimiter='\t',

names=header)

take numerical columns

df_sliced = df.iloc[:, 0:14]

split data into training and Y

Y = df_sliced.pop('col1') # first column is binary (click or not)

change df_sliced data types & fillna

df_sliced = df_sliced.astype(np.float32).fillna(0)

from sklearn.ensemble import RandomForestClassifier

Random Forest building parameters

n_streams = 8 # optimization

max_depth = 10

n_bins = 16

n_trees = 10

rf_model = RandomForestClassifier(max_depth=max_depth,

n_estimators=n_trees)

rf_model.fit(df_sliced, Y)

To perform prediction by using a trained random forest model, run the following paragraph in this notebook. We

took the last one million rows from day 15 as the test set to avoid any duplication. The cell also calculates

accuracy of prediction, defined as the percentage of occurrences the model accurately predicts whether a user

clicks an ad or not. To review any unfamiliar components in this notebook, see the official scikit-learn

documentation.

118

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

testing data, last 1M rows in day15

test_file = '/data/day_15_test'

with open(test_file) as g:

 print(g.readline())

dataFrame processing for test data

test_df = pd.read_csv(test_file, delimiter='\t', names=header)

test_df_sliced = test_df.iloc[:, 0:14]

test_Y = test_df_sliced.pop('col1')

test_df_sliced = test_df_sliced.astype(np.float32).fillna(0)

prediction & calculating error

pred_df = rf_model.predict(test_df_sliced)

from sklearn import metrics

Model Accuracy

print("Accuracy:",metrics.accuracy_score(test_Y, pred_df))

Next: Load Day 15 in Dask and train a Dask cuML random forest model.

Load Day 15 in Dask and train a Dask cuML random forest model

Previous: Load Criteo Click Logs day 15 in Pandas and train a scikit-learn random forest model.

In a manner similar to the previous section, load Criteo Click Logs day 15 in Pandas and train a scikit-learn

random forest model. In this example, we performed DataFrame loading with Dask cuDF and trained a random

forest model in Dask cuML. We compared the differences in training time and scale in the section “Training

time comparison.”

criteo_dask_RF.ipynb

This notebook imports numpy, cuml, and the necessary dask libraries, as shown in the following example:

import cuml

from dask.distributed import Client, progress, wait

import dask_cudf

import numpy as np

import cudf

from cuml.dask.ensemble import RandomForestClassifier as cumlDaskRF

from cuml.dask.common import utils as dask_utils

Initiate Dask Client().

client = Client()

If your cluster is configured correctly, you can see the status of worker nodes.

119

client

workers = client.has_what().keys()

n_workers = len(workers)

n_streams = 8 # Performance optimization

In our AKS cluster, the following status is displayed:

Note that Dask employs the lazy execution paradigm: rather than executing the processing code instantly,

Dask builds a Directed Acyclic Graph (DAG) of execution instead. DAG contains a set of tasks and their

interactions that each worker needs to run. This layout means the tasks do not run until the user tells Dask to

execute them in one way or another. With Dask you have three main options:

• Call compute() on a DataFrame. This call processes all the partitions and then returns results to the

scheduler for final aggregation and conversion to cuDF DataFrame. This option should be used sparingly

and only on heavily reduced results unless your scheduler node runs out of memory.

• Call persist() on a DataFrame. This call executes the graph, but, instead of returning the results to the

scheduler node, it maintains them across the cluster in memory so the user can reuse these intermediate

results down the pipeline without the need for rerunning the same processing.

• Call head() on a DataFrame. Just like with cuDF, this call returns 10 records back to the scheduler node.

This option can be used to quickly check if your DataFrame contains the desired output format, or if the

records themselves make sense, depending on your processing and calculation.

Therefore, unless the user calls either of these actions, the workers sit idle waiting for the scheduler to initiate

the processing. This lazy execution paradigm is common in modern parallel and distributed computing

frameworks such as Apache Spark.

The following paragraph trains a random forest model by using Dask cuML for distributed GPU-accelerated

computing and calculates model prediction accuracy.

120

Adsf

Random Forest building parameters

n_streams = 8 # optimization

max_depth = 10

n_bins = 16

n_trees = 10

cuml_model = cumlDaskRF(max_depth=max_depth, n_estimators=n_trees,

n_bins=n_bins, n_streams=n_streams, verbose=True, client=client)

cuml_model.fit(gdf_sliced_small, Y)

Model prediction

pred_df = cuml_model.predict(gdf_test)

calculate accuracy

cu_score = cuml.metrics.accuracy_score(test_y, pred_df)

Next: Monitor Dask using native Task Streams dashboard.

Monitor Dask using native Task Streams dashboard

Previous: Load Day 15 in Dask and train a Dask cuML random forest model.

The Dask distributed scheduler provides live feedback in two forms:

• An interactive dashboard containing many plots and tables with live information

• A progress bar suitable for interactive use in consoles or notebooks

In our case, the following figure shows how you can monitor the task progress, including Bytes Stored, the

Task Stream with a detailed breakdown of the number of streams, and Progress by task names with

associated functions executed. In our case, because we have three worker nodes, there are three main chunks

of stream and the color codes denote different tasks within each stream.

You have the option to analyze individual tasks and examine the execution time in milliseconds or identify any

obstacles or hindrances. For example, the following figure shows the Task Streams for the random forest

model fitting stage. There are considerably more functions being executed, including unique chunk for

DataFrame processing, _construct_rf for fitting the random forest, and so on. Most of the time was spent on

121

https://docs.dask.org/en/latest/scheduling.html

DataFrame operations due to the large size (45GB) of one day of data from the Criteo Click Logs.

Next: Training time comparison.

Training time comparison

Previous: Monitor Dask using native Task Streams dashboard.

This section compares the model training time using conventional Pandas compared to Dask. For Pandas, we

loaded a smaller amount of data due to the nature of slower processing time to avoid memory overflow.

Therefore, we interpolated the results to offer a fair comparison.

The following table shows the raw training time comparison when there is significantly less data used for the

Pandas random forest model (50 million rows out of 20 billion per day15 of the dataset). This sample is only

using less than 0.25% of all available data. Whereas for Dask-cuML we trained the random forest model on all

20 billion available rows. The two approaches yielded comparable training time.

Approach Training time

Scikit-learn: Using only 50M rows in day15 as the

training data

47 minutes and 21 seconds

RAPIDS-Dask: Using all 20B rows in day15 as the

training data

1 hour, 12 minutes, and 11 seconds

If we interpolate the training time results linearly, as shown in the following table, there is a significant

advantage to using distributed training with Dask. It would take the conventional Pandas scikit-learn approach

13 days to process and train 45GB of data for a single day of click logs, whereas the RAPIDS-Dask approach

processes the same amount of data 262.39 times faster.

Approach Training time

Scikit-learn: Using all 20B rows in day15 as the

training data

13 days, 3 hours, 40 minutes, and 11 seconds

RAPIDS-Dask: Using all 20B rows in day15 as the

training data

1 hour, 12 minutes, and 11 seconds

122

In the previous table, you can see that by using RAPIDS with Dask to distribute the data processing and model

training across multiple GPU instances, the run time is significantly shorter compared to conventional Pandas

DataFrame processing with scikit-learn model training. This framework enables scaling up and out in the cloud

as well as on-premises in a multinode, multi-GPU cluster.

Next: Monitor Dask and RAPIDS with Prometheus and Grafana.

Monitor Dask and RAPIDS with Prometheus and Grafana

Previous: Training time comparison.

After everything is deployed, run inferences on new data. The models predict whether a user clicks an ad

based on browsing activities. The results of the prediction are stored in a Dask cuDF. You can monitor the

results with Prometheus and visualize in Grafana dashboards.

For more information, see this RAPIDS AI Medium post.

Next: Dataset and Model Versioning using NetApp DataOps Toolkit.

Dataset and model versioning using NetApp DataOps Toolkit

Previous: Monitor Dask and RAPIDS with Prometheus and Grafana.

The NetApp DataOps Toolkit for Kubernetes abstracts storage resources and Kubernetes workloads up to the

data-science workspace level. These capabilities are packaged in a simple, easy-to-use interface that is

designed for data scientists and data engineers. Using the familiar form of a Python program, the Toolkit

enables data scientists and engineers to provision and destroy JupyterLab workspaces in just seconds. These

workspaces can contain terabytes, or even petabytes, of storage capacity, enabling data scientists to store all

their training datasets directly in their project workspaces. Gone are the days of separately managing

workspaces and data volumes.

For more information, visit the Toolkit’s GitHub repository.

Next: Conclusion.

Jupyter notebooks for reference

Previous: Dataset and Model Versioning using NetApp DataOps Toolkit.

There are two Jupyter notebooks associated with this technical report:

• CTR-PandasRF-collated.ipynb. This notebook loads Day 15 from the Criteo Terabyte Click Logs dataset,

processes and formats data into a Pandas DataFrame, trains a Scikit-learn random forest model, performs

prediction, and calculates accuracy.

• criteo_dask_RF.ipynb. This notebook loads Day 15 from the Criteo Terabyte Click Logs dataset,

processes and formats data into a Dask cuDF, trains a Dask cuML random forest model, performs

prediction, and calculates accuracy. By leveraging multiple worker nodes with GPUs, this distributed data

and model processing and training approach is highly efficient. The more data you process, the greater the

time savings versus a conventional ML approach. You can deploy this notebook in the cloud, on-premises,

or in a hybrid environment where your Kubernetes cluster contains compute and storage in different

locations, as long as your networking setup enables the free movement of data and model distribution.

Next: Conclusion.

123

https://medium.com/rapids-ai/monitoring-dask-rapids-with-prometheus-grafana-96eaf6b8f3a0
https://github.com/NetApp/netapp-data-science-toolkit
https://nbviewer.jupyter.org/github/NetAppDocs/netapp-solutions/blob/main/media/CTR-PandasRF-collated.ipynb
https://nbviewer.jupyter.org/github/NetAppDocs/netapp-solutions/blob/main/media/criteo_dask_RF.ipynb

Conclusion

Previous: Dataset and Model Versioning using NetApp DataOps Toolkit.

Azure NetApp Files, RAPIDS, and Dask speed up and simplify the deployment of large-scale ML processing

and training by integrating with orchestration tools such as Docker and Kubernetes. By unifying the end-to-end

data pipeline, this solution reduces the latency and complexity inherent in many advanced computing

workloads, effectively bridging the gap between development and operations. Data scientists can run queries

on large datasets and securely share data and algorithmic models with other users during the training phase.

When building your own AI/ML pipelines, configuring the integration, management, security, and accessibility of

the components in an architecture is a challenging task. Giving developers access and control of their

environment presents another set of challenges.

By building an end-to-end distributed training model and data pipeline in the cloud, we demonstrated two

orders of magnitude improvement in total workflow completion time versus a conventional, open-source

approach that did not leverage GPU-accelerated data processing and compute frameworks.

The combination of NetApp, Microsoft, opens-source orchestration frameworks, and NVIDIA brings the latest

technologies together as managed services with great flexibility to accelerate technology adoption and improve

the time to market for new AI/ML applications. These advanced services are delivered in a cloud-native

environment that can be easily ported for on-premises as well as hybrid deployment architectures.

Next: Where to find additional information.

Where to find additional information

Previous: Conclusion.

To learn more about the information that is described in this document, see the following resources:

• Azure NetApp Files:

◦ Solutions architecture page for Azure NetApp Files

https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-solution-architectures

• Trident persistent storage for containers:

◦ Azure NetApp Files and Trident

https://netapptrident.readthedocs.io/en/stablev20.07/kubernetes/operations/tasks/backends/anf.html

• Dask and RAPIDS:

◦ Dask

https://docs.dask.org/en/latest/

◦ Install Dask

https://docs.dask.org/en/latest/install.html

◦ Dask API

https://docs.dask.org/en/latest/api.html

124

https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-solution-architectures
https://netapptrident.readthedocs.io/en/stablev20.07/kubernetes/operations/tasks/backends/anf.html
https://docs.dask.org/en/latest/
https://docs.dask.org/en/latest/install.html
https://docs.dask.org/en/latest/api.html

◦ Dask Machine Learning

https://examples.dask.org/machine-learning.html

◦ Dask Distributed Diagnostics

https://docs.dask.org/en/latest/diagnostics-distributed.html

• ML framework and tools:

◦ TensorFlow: An Open-Source Machine Learning Framework for Everyone

https://www.tensorflow.org/

◦ Docker

https://docs.docker.com

◦ Kubernetes

https://kubernetes.io/docs/home/

◦ Kubeflow

http://www.kubeflow.org/

◦ Jupyter Notebook Server

http://www.jupyter.org/

Next: Version history.

Version history

Previous: Where to find additional information.

Version Date Document version history

Version 1.0 August 2021 Initial release.

TR-4896: Distributed training in Azure: Lane detection - Solution design

Muneer Ahmad and Verron Martina, NetApp

Ronen Dar, RUN:AI

Since May 2019, Microsoft delivers an Azure native, first-party portal service for enterprise NFS and SMB file

services based on NetApp ONTAP technology. This development is driven by a strategic partnership between

Microsoft and NetApp and further extends the reach of world-class ONTAP data services to Azure.

NetApp, a leading cloud data services provider, has teamed up with RUN: AI, a company virtualizing AI

infrastructure, to allow faster AI experimentation with full GPU utilization. The partnership enables teams to

speed up AI by running many experiments in parallel, with fast access to data, and leveraging limitless

compute resources. RUN: AI enables full GPU utilization by automating resource allocation, and the proven

architecture of Azure NetApp Files enables every experiment to run at maximum speed by eliminating data

pipeline obstructions.

125

https://examples.dask.org/machine-learning.html
https://docs.dask.org/en/latest/diagnostics-distributed.html
https://www.tensorflow.org/
https://docs.docker.com/
https://kubernetes.io/docs/home/
http://www.kubeflow.org/
http://www.jupyter.org/

NetApp and RUN: AI have joined forces to offer customers a future-proof platform for their AI journey in Azure.

From analytics and high-performance computing (HPC) to autonomous decisions (where customers can

optimize their IT investments by only paying for what they need, when they need it), the alliance between

NetApp and RUN: AI offers a single unified experience in the Azure Cloud.

Solution overview

In this architecture, the focus is on the most computationally intensive part of the AI or machine learning (ML)

distributed training process of lane detection. Lane detection is one of the most important tasks in autonomous

driving, which helps to guide vehicles by localization of the lane markings. Static components like lane

markings guide the vehicle to drive on the highway interactively and safely.

Convolutional Neural Network (CNN)-based approaches have pushed scene understanding and segmentation

to a new level. Although it doesn’t perform well for objects with long structures and regions that could be

occluded (for example, poles, shade on the lane, and so on). Spatial Convolutional Neural Network (SCNN)

generalizes the CNN to a rich spatial level. It allows information propagation between neurons in the same

layer, which makes it best suited for structured objects such as lanes, poles, or truck with occlusions. This

compatibility is because the spatial information can be reinforced, and it preserves smoothness and continuity.

Thousands of scene images need to be injected in the system to allow the model learn and distinguish the

various components in the dataset. These images include weather, daytime or nighttime, multilane highway

roads, and other traffic conditions.

For training, there is a need for good quality and quantity of data. Single GPU or multiple GPUs can take days

to weeks to complete the training. Data-distributed training can speed up the process by using multiple and

multinode GPUs. Horovod is one such framework that grants distributed training but reading data across

clusters of GPUs could act as a hindrance. Azure NetApp Files provides ultrafast, high throughput and

sustained low latency to provide scale-out/scale-up capabilities so that GPUs are leveraged to the best of their

computational capacity. Our experiments verified that all the GPUs across the cluster are used more than 96%

on average for training the lane detection using SCNN.

Target audience

Data science incorporates multiple disciplines in IT and business, therefore multiple personas are part of our

targeted audience:

• Data scientists need the flexibility to use the tools and libraries of their choice.

• Data engineers need to know how the data flows and where it resides.

• Autonomous driving use-case experts.

• Cloud administrators and architects to set up and manage cloud (Azure) resources.

• A DevOps engineer needs the tools to integrate new AI/ML applications into their continuous integration

and continuous deployment (CI/CD) pipelines.

• Business users want to have access to AI/ML applications.

In this document, we describe how Azure NetApp Files, RUN: AI, and Microsoft Azure help each of these roles

bring value to business.

Solution technology

This section covers the technology requirements for the lane detection use case by implementing a distributed

training solution at scale that fully runs in the Azure cloud. The figure below provides an overview of the

solution architecture.

126

The elements used in this solution are:

• Azure Kubernetes Service (AKS)

• Azure Compute SKUs with NVIDIA GPUs

• Azure NetApp Files

• RUN: AI

• NetApp Trident

Links to all the elements mentioned here are listed in the Additional information section.

Cloud resources and services requirements

The following table lists the hardware components that are required to implement the solution. The cloud

components that are used in any implementation of the solution might vary based on customer requirements.

Cloud Quantity

AKS Minimum of three system nodes and three GPU

worker nodes

Virtual machine (VM) SKU system nodes Three Standard_DS2_v2

VM SKU GPU worker nodes Three Standard_NC6s_v3

Azure NetApp Files 4TB standard tier

Software requirements

The following table lists the software components that are required to implement the solution. The software

components that are used in any implementation of the solution might vary based on customer requirements.

Software Version or other information

AKS - Kubernetes version 1.18.14

RUN:AI CLI v2.2.25

RUN:AI Orchestration Kubernetes Operator version 1.0.109

127

Software Version or other information

Horovod 0.21.2

NetApp Trident 20.01.1

Helm 3.0.0

Lane detection – Distributed training with RUN:AI

This section provides details on setting up the platform for performing lane detection distributed training at

scale using the RUN: AI orchestrator. We discuss installation of all the solution elements and running the

distributed training job on the said platform. ML versioning is completed by using NetApp SnapshotTM linked

with RUN: AI experiments for achieving data and model reproducibility. ML versioning plays a crucial role in

tracking models, sharing work between team members, reproducibility of results, rolling new model versions to

production, and data provenance. NetApp ML version control (Snapshot) can capture point-in-time versions of

the data, trained models, and logs associated with each experiment. It has rich API support making it easy to

integrate with the RUN: AI platform; you just have to trigger an event based on the training state. You also have

to capture the state of the whole experiment without changing anything in the code or the containers running

on top of Kubernetes (K8s).

Finally, this technical report wraps up with performance evaluation on multiple GPU-enabled nodes across

AKS.

Distributed training for lane detection use case using the TuSimple dataset

In this technical report, distributed training is performed on the TuSimple dataset for lane detection. Horovod is

used in the training code for conducting data distributed training on multiple GPU nodes simultaneously in the

Kubernetes cluster through AKS. Code is packaged as container images for TuSimple data download and

processing. Processed data is stored on persistent volumes allocated by NetApp Trident plug- in. For the

training, one more container image is created, and it uses the data stored on persistent volumes created during

downloading the data.

To submit the data and training job, use RUN: AI for orchestrating the resource allocation and management.

RUN: AI allows you to perform Message Passing Interface (MPI) operations which are needed for Horovod.

This layout allows multiple GPU nodes to communicate with each other for updating the training weights after

every training mini batch. It also enables monitoring of training through the UI and CLI, making it easy to

monitor the progress of experiments.

NetApp Snapshot is integrated within the training code and captures the state of data and the trained model for

every experiment. This capability enables you to track the version of data and code used, and the associated

trained model generated.

AKS setup and installation

For setup and installation of the AKS cluster go to Create an AKS Cluster. Then, follow these series of steps:

1. When selecting the type of nodes (whether it be system (CPU) or worker (GPU) nodes), select the

following:

a. Add primary system node named agentpool at the Standard_DS2_v2 size. Use the default three

nodes.

b. Add worker node gpupool with the Standard_NC6s_v3 pool size. Use three nodes minimum for

GPU nodes.

128

https://docs.microsoft.com/azure/aks/kubernetes-walkthrough-portal

Deployment takes 5–10 minutes.

2. After deployment is complete, click Connect to Cluster. To connect to the newly created AKS cluster, install

the Kubernetes command-line tool from your local environment (laptop/PC). Visit Install Tools to install it as

per your OS.

3. Install Azure CLI on your local environment.

4. To access the AKS cluster from the terminal, first enter az login and put in the credentials.

5. Run the following two commands:

az account set --subscription xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxxxx

aks get-credentials --resource-group resourcegroup --name aksclustername

6. Enter this command in the Azure CLI:

kubectl get nodes

If all six nodes are up and running as seen here, your AKS cluster is ready and connected to

your local environment.

Create a delegated subnet for Azure NetApp Files

To create a delegated subnet for Azure NetApp Files, follow this series of steps:

1. Navigate to Virtual networks within the Azure portal. Find your newly created virtual network. It should have

a prefix such as aks-vnet, as seen here. Click the name of the virtual network.

129

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.microsoft.com/cli/azure/install-azure-cli

2. Click Subnets and select +Subnet from the top toolbar.

3. Provide the subnet with a name such as ANF.sn and under the Subnet Delegation heading, select

Microsoft.NetApp/volumes. Do not change anything else. Click OK.

130

Azure NetApp Files volumes are allocated to the application cluster and are consumed as persistent volume

claims (PVCs) in Kubernetes. In turn, this allocation provides us the flexibility to map volumes to different

services, be it Jupyter notebooks, serverless functions, and so on

Users of services can consume storage from the platform in many ways. The main benefits of Azure NetApp

Files are:

• Provides users with the ability to use snapshots.

• Enables users to store large quantities of data on Azure NetApp Files volumes.

• Procure the performance benefits of Azure NetApp Files volumes when running their models on large sets

of files.

131

Azure NetApp Files setup

To complete the setup of Azure NetApp Files, you must first configure it as described in Quickstart: Set up

Azure NetApp Files and create an NFS volume.

However, you may omit the steps to create an NFS volume for Azure NetApp Files as you will create volumes

through Trident. Before continuing, be sure that you have:

1. Registered for Azure NetApp Files and NetApp Resource Provider (through the Azure Cloud Shell).

2. Created an account in Azure NetApp Files.

3. Set up a capacity pool (minimum 4TiB Standard or Premium depending on your needs).

Peering of AKS virtual network and Azure NetApp Files virtual network

Next, peer the AKS virtual network (VNet) with the Azure NetApp Files VNet by following these steps:

1. In the search box at the top of the Azure portal, type virtual networks.

2. Click VNet aks- vnet-name, then enter Peerings in the search field.

3. Click +Add and enter the information provided in the table below:

Field Value or description

Peering link name aks-vnet-name_to_anf

SubscriptionID Subscription of the Azure NetApp Files VNet to

which you’re peering

VNet peering partner Azure NetApp Files VNet

Leave all the nonasterisk sections on default

4. Click ADD or OK to add the peering to the virtual network.

For more information, visit Create, change, or delete a virtual network peering.

Trident

Trident is an open-source project that NetApp maintains for application container persistent storage. Trident

has been implemented as an external provisioner controller that runs as a pod itself, monitoring volumes and

completely automating the provisioning process.

NetApp Trident enables smooth integration with K8s by creating and attaching persistent volumes for storing

training datasets and trained models. This capability makes it easier for data scientists and data engineers to

use K8s without the hassle of manually storing and managing datasets. Trident also eliminates the need for

data scientists to learn managing new data platforms as it integrates the data management-related tasks

through the logical API integration.

Install Trident

To install Trident software, complete the following steps:

1. First install helm.

2. Download and extract the Trident 21.01.1 installer.

132

https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes
https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes
https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-register
https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-create-netapp-account
https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-set-up-capacity-pool
https://docs.microsoft.com/azure/virtual-network/tutorial-connect-virtual-networks-portal
https://helm.sh/docs/intro/install/

wget

https://github.com/NetApp/trident/releases/download/v21.01.1/trident-

installer-21.01.1.tar.gz

tar -xf trident-installer-21.01.1.tar.gz

3. Change the directory to trident-installer.

cd trident-installer

4. Copy tridentctl to a directory in your system $PATH.

cp ./tridentctl /usr/local/bin

5. Install Trident on K8s cluster with Helm:

a. Change directory to helm directory.

cd helm

b. Install Trident.

helm install trident trident-operator-21.01.1.tgz --namespace trident

--create-namespace

c. Check the status of Trident pods the usual K8s way:

kubectl -n trident get pods

d. If all the pods are up and running, Trident is installed and you are good to move forward.

Set up Azure NetApp Files back-end and storage class

To set up Azure NetApp Files back-end and storage class, complete the following steps:

1. Switch back to the home directory.

cd ~

2. Clone the project repository lane-detection-SCNN-horovod.

3. Go to the trident-config directory.

133

https://github.com/dedmari/lane-detection-SCNN-horovod.git

cd ./lane-detection-SCNN-horovod/trident-config

4. Create an Azure Service Principle (the service principle is how Trident communicates with Azure to access

your Azure NetApp Files resources).

az ad sp create-for-rbac --name

The output should look like the following example:

{

 "appId": "xxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",

 "displayName": "netapptrident",

 "name": "http://netapptrident",

 "password": "xxxxxxxxxxxxxxx.xxxxxxxxxxxxxx",

 "tenant": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx"

 }

5. Create the Trident backend json file.

6. Using your preferred text editor, complete the following fields from the table below inside the anf-

backend.json file.

Field Value

subscriptionID Your Azure Subscription ID

tenantID Your Azure Tenant ID (from the output of az ad sp in

the previous step)

clientID Your appID (from the output of az ad sp in the

previous step)

clientSecret Your password (from the output of az ad sp in the

previous step)

The file should look like the following example:

134

{

 "version": 1,

 "storageDriverName": "azure-netapp-files",

 "subscriptionID": "fakec765-4774-fake-ae98-a721add4fake",

 "tenantID": "fakef836-edc1-fake-bff9-b2d865eefake",

 "clientID": "fake0f63-bf8e-fake-8076-8de91e57fake",

 "clientSecret": "SECRET",

 "location": "westeurope",

 "serviceLevel": "Standard",

 "virtualNetwork": "anf-vnet",

 "subnet": "default",

 "nfsMountOptions": "vers=3,proto=tcp",

 "limitVolumeSize": "500Gi",

 "defaults": {

 "exportRule": "0.0.0.0/0",

 "size": "200Gi"

}

7. Instruct Trident to create the Azure NetApp Files back- end in the trident namespace, using anf-

backend.json as the configuration file as follows:

tridentctl create backend -f anf-backend.json -n trident

8. Create the storage class:

a. K8 users provision volumes by using PVCs that specify a storage class by name. Instruct K8s to create

a storage class azurenetappfiles that will reference the Azure NetApp Files back end created in

the previous step using the following:

kubectl create -f anf-storage-class.yaml

b. Check that storage class is created by using the following command:

kubectl get sc azurenetappfiles

The output should look like the following example:

Deploy and set up volume snapshot components on AKS

If your cluster does not come pre-installed with the correct volume snapshot components, you may manually

install these components by running the following steps:

135

AKS 1.18.14 does not have pre-installed Snapshot Controller.

1. Install Snapshot Beta CRDs by using the following commands:

kubectl create -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

3.0/client/config/crd/snapshot.storage.k8s.io_volumesnapshotclasses.yaml

kubectl create -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

3.0/client/config/crd/snapshot.storage.k8s.io_volumesnapshotcontents.yam

l

kubectl create -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

3.0/client/config/crd/snapshot.storage.k8s.io_volumesnapshots.yaml

2. Install Snapshot Controller by using the following documents from GitHub:

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-3.0/deploy/kubernetes/snapshot-

controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-3.0/deploy/kubernetes/snapshot-

controller/setup-snapshot-controller.yaml

3. Set up K8s volumesnapshotclass: Before creating a volume snapshot, a volume snapshot class must

be set up. Create a volume snapshot class for Azure NetApp Files, and use it to achieve ML versioning by

using NetApp Snapshot technology. Create volumesnapshotclass netapp-csi-snapclass and set

it to default `volumesnapshotclass `as such:

kubectl create -f netapp-volume-snapshot-class.yaml

The output should look like the following example:

4. Check that the volume Snapshot copy class was created by using the following command:

kubectl get volumesnapshotclass

The output should look like the following example:

136

https://netapp-trident.readthedocs.io/en/stable-v20.01/kubernetes/concepts/objects.html

RUN:AI installation

To install RUN:AI, complete the following steps:

1. Install RUN:AI cluster on AKS.

2. Go to app.runai.ai, click create New Project, and name it lane-detection. It will create a namespace on a

K8s cluster starting with runai- followed by the project name. In this case, the namespace created would

be runai-lane-detection.

3. Install RUN:AI CLI.

4. On your terminal, set lane-detection as a default RUN: AI project by using the following command:

`runai config project lane-detection`

The output should look like the following example:

137

https://docs.run.ai/Administrator/Cluster-Setup/cluster-install/
https://docs.run.ai/Administrator/Cluster-Setup/cluster-install/

5. Create ClusterRole and ClusterRoleBinding for the project namespace (for example, lane-detection)

so the default service account belonging to runai-lane-detection namespace has permission to

perform volumesnapshot operations during job execution:

a. List namespaces to check that runai-lane-detection exists by using this command:

kubectl get namespaces

The output should appear like the following example:

6. Create ClusterRole netappsnapshot and ClusterRoleBinding netappsnapshot using the following

commands:

`kubectl create -f runai-project-snap-role.yaml`

`kubectl create -f runai-project-snap-role-binding.yaml`

Download and process the TuSimple dataset as RUN:AI job

The process to download and process the TuSimple dataset as a RUN: AI job is optional. It involves the

following steps:

1. Build and push the docker image, or omit this step if you want to use an existing docker image (for

example, muneer7589/download-tusimple:1.0)

a. Switch to the home directory:

cd ~

b. Go to the data directory of the project lane-detection-SCNN-horovod:

cd ./lane-detection-SCNN-horovod/data

c. Modify build_image.sh shell script and change docker repository to yours. For example, replace

muneer7589 with your docker repository name. You could also change the docker image name and

138

TAG (such as download-tusimple and 1.0):

d. Run the script to build the docker image and push it to the docker repository using these commands:

chmod +x build_image.sh

./build_image.sh

2. Submit the RUN: AI job to download, extract, pre-process, and store the TuSimple lane detection dataset in

a pvc, which is dynamically created by NetApp Trident:

a. Use the following commands to submit the RUN: AI job:

runai submit

--name download-tusimple-data

--pvc azurenetappfiles:100Gi:/mnt

--image muneer7589/download-tusimple:1.0

139

b. Enter the information from the table below to submit the RUN:AI job:

Field Value or description

-name Name of the job

-pvc PVC of the format

[StorageClassName]:Size:ContainerMountPath

In the above job submission, you are creating an

PVC based on-demand using Trident with storage

class azurenetappfiles. Persistent volume capacity

here is 100Gi and it’s mounted at path /mnt.

-image Docker image to use when creating the container

for this job

The output should look like the following example:

c. List the submitted RUN:AI jobs.

runai list jobs

d. Check the submitted job logs.

runai logs download-tusimple-data -t 10

e. List the pvc created. Use this pvc command for training in the next step.

kubectl get pvc | grep download-tusimple-data

The output should look like the following example:

140

f. Check the job in RUN: AI UI (or app.run.ai).

Perform distributed lane detection training using Horovod

Performing distributed lane detection training using Horovod is an optional process. However, here are the

steps involved:

1. Build and push the docker image, or skip this step if you want to use the existing docker image (for

example, muneer7589/dist-lane-detection:3.1):

a. Switch to home directory.

cd ~

b. Go to the project directory lane-detection-SCNN-horovod.

cd ./lane-detection-SCNN-horovod

c. Modify the build_image.sh shell script and change docker repository to yours (for example, replace

muneer7589 with your docker repository name). You could also change the docker image name and

TAG (dist-lane-detection and 3.1, for example).

141

d. Run the script to build the docker image and push to the docker repository.

chmod +x build_image.sh

./build_image.sh

2. Submit the RUN: AI job for carrying out distributed training (MPI):

a. Using submit of RUN: AI for automatically creating PVC in the previous step (for downloading data)

only allows you to have RWO access, which does not allow multiple pods or nodes to access the same

PVC for distributed training. Update the access mode to ReadWriteMany and use the Kubernetes

patch to do so.

b. First, get the volume name of the PVC by running the following command:

kubectl get pvc | grep download-tusimple-data

c. Patch the volume and update access mode to ReadWriteMany (replace volume name with yours in the

following command):

kubectl patch pv pvc-bb03b74d-2c17-40c4-a445-79f3de8d16d5 -p

'{"spec":{"accessModes":["ReadWriteMany"]}}'

142

d. Submit the RUN: AI MPI job for executing the distributed training` job using information from the table

below:

runai submit-mpi

--name dist-lane-detection-training

--large-shm

--processes=3

--gpu 1

--pvc pvc-download-tusimple-data-0:/mnt

--image muneer7589/dist-lane-detection:3.1

-e USE_WORKERS="true"

-e NUM_WORKERS=4

-e BATCH_SIZE=33

-e USE_VAL="false"

-e VAL_BATCH_SIZE=99

-e ENABLE_SNAPSHOT="true"

-e PVC_NAME="pvc-download-tusimple-data-0"

Field Value or description

name Name of the distributed training job

large shm Mount a large /dev/shm device

It is a shared file system mounted on RAM and

provides large enough shared memory for multiple

CPU workers to process and load batches into

CPU RAM.

processes Number of distributed training processes

gpu Number of GPUs/processes to allocate for the job

In this job, there are three GPU worker processes

(--processes=3), each allocated with a single GPU

(--gpu 1)

pvc Use existing persistent volume (pvc-download-

tusimple-data-0) created by previous job

(download-tusimple-data) and it is mounted at

path /mnt

image Docker image to use when creating the container

for this job

Define environment variables to be set in the container

USE_WORKERS Setting the argument to true turns on multi-

process data loading

NUM_WORKERS Number of data loader worker processes

BATCH_SIZE Training batch size

143

Field Value or description

USE_VAL Setting the argument to true allows validation

VAL_BATCH_SIZE Validation batch size

ENABLE_SNAPSHOT Setting the argument to true enables taking data

and trained model snapshots for ML versioning

purposes

PVC_NAME Name of the pvc to take a snapshot of. In the

above job submission, you are taking a snapshot

of pvc-download-tusimple-data-0, consisting of

dataset and trained models

The output should look like the following example:

e. List the submitted job.

runai list jobs

f. Submitted job logs:

runai logs dist-lane-detection-training

g. Check training job in RUN: AI GUI (or app.runai.ai): RUN: AI Dashboard, as seen in the figures below.

The first figure details three GPUs allocated for the distributed training job spread across three nodes

on AKS, and the second RUN:AI jobs:

144

h. After the training is finished, check the NetApp Snapshot copy that was created and linked with RUN:

AI job.

runai logs dist-lane-detection-training --tail 1

kubectl get volumesnapshots | grep download-tusimple-data-0

145

Restore data from the NetApp Snapshot copy

To restore data from the NetApp Snapshot copy, complete the following steps:

1. Switch to home directory.

cd ~

2. Go to the project directory lane-detection-SCNN-horovod.

cd ./lane-detection-SCNN-horovod

3. Modify restore-snaphot-pvc.yaml and update dataSource name field to the Snapshot copy from

which you want to restore data. You could also change PVC name where the data will be restored to, in

this example its restored-tusimple.

4. Create a new PVC by using restore-snapshot-pvc.yaml.

kubectl create -f restore-snapshot-pvc.yaml

The output should look like the following example:

5. If you want to use the just restored data for training, job submission remains the same as before; only

replace the PVC_NAME with the restored PVC_NAME when submitting the training job, as seen in the

following commands:

146

runai submit-mpi

--name dist-lane-detection-training

--large-shm

--processes=3

--gpu 1

--pvc restored-tusimple:/mnt

--image muneer7589/dist-lane-detection:3.1

-e USE_WORKERS="true"

-e NUM_WORKERS=4

-e BATCH_SIZE=33

-e USE_VAL="false"

-e VAL_BATCH_SIZE=99

-e ENABLE_SNAPSHOT="true"

-e PVC_NAME="restored-tusimple"

Performance evaluation

To show the linear scalability of the solution, performance tests have been done for two scenarios: one GPU

and three GPUs. GPU allocation, GPU and memory utilization, different single- and three- node metrics have

been captured during the training on the TuSimple lane detection dataset. Data is increased five- fold just for

the sake of analyzing resource utilization during the training processes.

The solution enables customers to start with a small dataset and a few GPUs. When the amount of data and

the demand of GPUs increase, customers can dynamically scale out the terabytes in the Standard Tier and

quickly scale up to the Premium Tier to get four times the throughput per terabyte without moving any data.

This process is further explained in the section, Azure NetApp Files service levels.

Processing time on one GPU was 12 hours and 45 minutes. Processing time on three GPUs across three

nodes was approximately 4 hours and 30 minutes.

The figures shown throughout the remainder of this document illustrate examples of performance and

scalability based on individual business needs.

The figure below illustrates 1 GPU allocation and memory utilization.

147

The figure below illustrates single node GPU utilization.

The figure below illustrates single node memory size (16GB).

148

The figure below illustrates single node GPU count (1).

The figure below illustrates single node GPU allocation (%).

The figure below illustrates three GPUs across three nodes – GPUs allocation and memory.

149

The figure below illustrates three GPUs across three nodes utilization (%).

The figure below illustrates three GPUs across three nodes memory utilization (%).

150

Azure NetApp Files service levels

You can change the service level of an existing volume by moving the volume to another capacity pool that

uses the service level you want for the volume. This existing service-level change for the volume does not

require that you migrate data. It also does not affect access to the volume.

Dynamically change the service level of a volume

To change the service level of a volume, use the following steps:

1. On the Volumes page, right-click the volume whose service level you want to change. Select Change Pool.

2. In the Change Pool window, select the capacity pool you want to move the volume to. Then, click OK.

151

https://docs.microsoft.com/azure/azure-netapp-files/azure-netapp-files-service-levels

Automate service level change

Dynamic Service Level change is currently still in Public Preview, but it is not enabled by default. To enable this

feature on the Azure subscription, follow these steps provided in the document “ Dynamically change the

service level of a volume.”

• You can also use the following commands for Azure: CLI. For more information about changing the pool

size of Azure NetApp Files, visit az netappfiles volume: Manage Azure NetApp Files (ANF) volume

resources.

az netappfiles volume pool-change -g mygroup

--account-name myaccname

-pool-name mypoolname

--name myvolname

--new-pool-resource-id mynewresourceid

• The set- aznetappfilesvolumepool cmdlet shown here can change the pool of an Azure NetApp

Files volume. More information about changing volume pool size and Azure PowerShell can be found by

visiting Change pool for an Azure NetApp Files volume.

152

file:///C:\Users\crich\Downloads\•%09https:\docs.microsoft.com\azure\azure-netapp-files\dynamic-change-volume-service-level
file:///C:\Users\crich\Downloads\•%09https:\docs.microsoft.com\azure\azure-netapp-files\dynamic-change-volume-service-level
https://docs.microsoft.com/cli/azure/netappfiles/volume?view=azure-cli-latest-az_netappfiles_volume_pool_change
https://docs.microsoft.com/cli/azure/netappfiles/volume?view=azure-cli-latest-az_netappfiles_volume_pool_change
https://docs.microsoft.com/powershell/module/az.netappfiles/set-aznetappfilesvolumepool?view=azps-5.8.0

Set-AzNetAppFilesVolumePool

-ResourceGroupName "MyRG"

-AccountName "MyAnfAccount"

-PoolName "MyAnfPool"

-Name "MyAnfVolume"

-NewPoolResourceId 7d6e4069-6c78-6c61-7bf6-c60968e45fbf

Conclusion

NetApp and RUN: AI have partnered in the creation of this technical report to demonstrate the unique

capabilities of the Azure NetApp Files together with the RUN: AI platform for simplifying orchestration of AI

workloads. This technical report provides a reference architecture for streamlining the process of both data

pipelines and workload orchestration for distributed lane detection training.

In conclusion, with regard to distributed training at scale (especially in a public cloud environment), the

resource orchestration and storage component is a critical part of the solution. Making sure that data managing

never hinders multiple GPU processing, therefore results in the optimal utilization of GPU cycles. Thus, making

the system as cost effective as possible for large- scale distributed training purposes.

Data fabric delivered by NetApp overcomes the challenge by enabling data scientists and data engineers to

connect together on-premises and in the cloud to have synchronous data, without performing any manual

intervention. In other words, data fabric smooths the process of managing AI workflow spread across multiple

locations. It also facilitates on demand-based data availability by bringing data close to compute and

performing analysis, training, and validation wherever and whenever needed. This capability not only enables

data integration but also protection and security of the entire data pipeline.

Additional information

To learn more about the information that is described in this document, review the following documents and/or

websites:

• Dataset: TuSimple

https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection

• Deep Learning Network Architecture: Spatial Convolutional Neural Network

https://arxiv.org/abs/1712.06080

• Distributed deep learning training framework: Horovod

https://horovod.ai/

• RUN: AI container orchestration solution: RUN: AI product introduction

https://docs.run.ai/home/components/

• RUN: AI installation documentation

https://docs.run.ai/Administrator/Cluster-Setup/cluster-install/#step-3-install-runai

https://docs.run.ai/Administrator/Researcher-Setup/cli-install/#runai-cli-installation

153

https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection
https://arxiv.org/abs/1712.06080
https://horovod.ai/
https://docs.run.ai/home/components/
https://docs.run.ai/Administrator/Cluster-Setup/cluster-install/#step-3-install-runai
https://docs.run.ai/Administrator/Researcher-Setup/cli-install/

• Submitting jobs in RUN: AI CLI

https://docs.run.ai/Researcher/cli-reference/runai-submit/

https://docs.run.ai/Researcher/cli-reference/runai-submit-mpi/

• Azure Cloud resources: Azure NetApp Files

https://docs.microsoft.com/azure/azure-netapp-files/

• Azure Kubernetes Service

https://azure.microsoft.com/services/kubernetes-service/-features

• Azure VM SKUs

https://azure.microsoft.com/services/virtual-machines/

• Azure VM with GPU SKUs

https://docs.microsoft.com/azure/virtual-machines/sizes-gpu

• NetApp Trident

https://github.com/NetApp/trident/releases

• Data Fabric powered by NetApp

https://www.netapp.com/data-fabric/what-is-data-fabric/

• NetApp Product Documentation

https://www.netapp.com/support-and-training/documentation/

TR-4841: Hybrid Cloud AI Operating System with Data Caching

Rick Huang, David Arnette, NetApp

Yochay Ettun, cnvrg.io

The explosive growth of data and the exponential growth of ML and AI have converged to create a zettabyte

economy with unique development and implementation challenges.

Although it is a widely known that ML models are data-hungry and require high-performance data storage

proximal to compute resources, in practice, it is not so straight forward to implement this model, especially with

hybrid cloud and elastic compute instances. Massive quantities of data are usually stored in low-cost data

lakes, where high-performance AI compute resources such as GPUs cannot efficiently access it. This problem

is aggravated in a hybrid-cloud infrastructure where some workloads operate in the cloud and some are

located on-premises or in a different HPC environment entirely.

In this document, we present a novel solution that allows IT professionals and data engineers to create a truly

hybrid cloud AI platform with a topology-aware data hub that enables data scientists to instantly and

automatically create a cache of their datasets in proximity to their compute resources, wherever they are

located. As a result, not only can high-performance model training be accomplished, but additional benefits are

created, including the collaboration of multiple AI practitioners, who have immediate access to dataset caches,

versions, and lineages within a dataset version hub.

154

https://docs.run.ai/Researcher/cli-reference/runai-submit/
https://docs.run.ai/Researcher/cli-reference/runai-submit-mpi/
https://docs.microsoft.com/azure/azure-netapp-files/
https://azure.microsoft.com/services/kubernetes-service/-features
https://azure.microsoft.com/services/virtual-machines/
https://docs.microsoft.com/azure/virtual-machines/sizes-gpu
https://github.com/NetApp/trident/releases
https://www.netapp.com/data-fabric/what-is-data-fabric/
https://www.netapp.com/support-and-training/documentation/

Next: Use Case Overview and Problem Statement

Use Case Overview and Problem Statement

Datasets and dataset versions are typically located in a data lake, such as NetApp

StorageGrid object-based storage, which offers reduced cost and other operational

advantages. Data scientists pull these datasets and engineer them in multiple steps to

prepare them for training with a specific model, often creating multiple versions along the

way. As the next step, the data scientist must pick optimized compute resources (GPUs,

high-end CPU instances, an on-premises cluster, and so on) to run the model. The

following figure depicts the lack of dataset proximity in an ML compute environment.

However, multiple training experiments must run in parallel in different compute environments, each of which

require a download of the dataset from the data lake, which is an expensive and time-consuming process.

Proximity of the dataset to the compute environment (especially for a hybrid cloud) is not guaranteed. In

addition, other team members that run their own experiments with the same dataset must go through the same

arduous process. Beyond the obvious slow data access, challenges include difficulties tracking dataset

versions, dataset sharing, collaboration, and reproducibility.

Customer Requirements

Customer requirements can vary in order to achieve high- performance ML runs while efficiently using

resources; for example, customers might require the following:

• Fast access to datasets from each compute instance executing the training model without incurring

expensive downloads and data access complexities

• The use any compute instance (GPU or CPU) in the cloud or on-premises without concern for the location

155

of the datasets

• Increased efficiency and productivity by running multiple training experiments in parallel with different

compute resources on the same dataset without unnecessary delays and data latency

• Minimized compute instance costs

• Improved reproducibility with tools to keep records of the datasets, their lineage, versions, and other

metadata details

• Enhanced sharing and collaboration so that any authorized member of the team can access the datasets

and run experiments

To implement dataset caching with NetApp ONTAP data management software, customers must perform the

following tasks:

• Configure and set the NFS storage that is closest to the compute resources.

• Determine which dataset and version to cache.

• Monitor the total memory committed to cached datasets and how much NFS storage is available for

additional cache commits (for example, cache management).

• Age out of datasets in the cache if they have not been used in certain time. The default is one day; other

configuration options are available.

Next: Solution Overview

Solution Overview

This section reviews a conventional data science pipeline and its drawbacks. It also

presents the architecture of the proposed dataset caching solution.

Conventional Data Science Pipeline and Drawbacks

A typical sequence of ML model development and deployment involves iterative steps that include the

following:

• Ingesting data

• Data preprocessing (creating multiple versions of the datasets)

• Running multiple experiments involving hyperparameter optimization, different models, and so on

• Deployment

• Monitoringcnvrg.io has developed a comprehensive platform to automate all tasks from research to

deployment. A small sample of dashboard screenshots pertaining to the pipeline is shown in the following

figure.

156

It is very common to have multiple datasets in play from public repositories and private data. In addition, each

dataset is likely to have multiple versions resulting from dataset cleanup or feature engineering. A dashboard

that provides a dataset hub and a version hub is needed to make sure collaboration and consistency tools are

available to the team, as can be seen in the following figure.

157

The next step in the pipeline is training, which requires multiple parallel instances of training models, each

associated with a dataset and a certain compute instance. The binding of a dataset to a certain experiment

with a certain compute instance is a challenge because it is possible that some experiments are performed by

GPU instances from Amazon Web Services (AWS), while other experiments are performed by DGX-1 or DGX-

2 instances on- premises. Other experiments might be executed in CPU servers in GCP, while the dataset

location is not in reasonable proximity to the compute resources performing the training. A reasonable

proximity would have full 10GbE or more low-latency connectivity from the dataset storage to the compute

instance.

It is a common practice for data scientists to download the dataset to the compute instance performing the

training and execute the experiment. However, there are several potential problems with this approach:

• When the data scientist downloads the dataset to a compute instance, there are no guarantees that the

integrated compute storage is high performance (an example of a high-performance system would be the

ONTAP AFF A800 NVMe solution).

• When the downloaded dataset resides in one compute node, storage can become a bottleneck when

distributed models are executed over multiple nodes (unlike with NetApp ONTAP high-performance

distributed storage).

• The next iteration of the training experiment might be performed in a different compute instance due to

queue conflicts or priorities, again creating significant network distance from the dataset to the compute

location.

• Other team members executing training experiments on the same compute cluster cannot share this

dataset; each performs the (expensive) download of the dataset from an arbitrary location.

• If other datasets or versions of the same dataset are needed for the subsequent training jobs, the data

scientists must again perform the (expensive) download of the dataset to the compute instance performing

the training.NetApp and cnvrg.io have created a new dataset caching solution that eliminates these

158

hurdles. The solution creates accelerated execution of the ML pipeline by caching hot datasets on the

ONTAP high- performance storage system. With ONTAP NFS, the datasets are cached once (and only

once) in a data fabric powered by NetApp (such as AFF A800), which is collocated with the compute. As

the NetApp ONTAP NFS high-speed storage can serve multiple ML compute nodes, the performance of

the training models is optimized, bringing cost savings, productivity, and operational efficiency to the

organization.

Solution Architecture

This solution from NetApp and cnvrg.io provides dataset caching, as shown in the following figure. Dataset

caching allows data scientists to pick a desired dataset or dataset version and move it to the ONTAP NFS

cache, which lies in proximity to the ML compute cluster. The data scientist can now run multiple experiments

without incurring delays or downloads. In addition, all collaborating engineers can use the same dataset with

the attached compute cluster (with the freedom to pick any node) without additional downloads from the data

lake. The data scientists are offered a dashboard that tracks and monitors all datasets and versions and

provides a view of which datasets were cached.

The cnvrg.io platform auto-detects aged datasets that have not been used for a certain time and evicts them

from the cache, which maintains free NFS cache space for more frequently used datasets. It is important to

note that dataset caching with ONTAP works in the cloud and on-premises, thus providing maximum flexibility.

Next: Concepts and Components

Concepts and Components

This section covers concepts and components associated with data caching in an ML

workflow.

159

Machine Learning

ML is rapidly becoming essential to many businesses and organizations around the world. Therefore, IT and

DevOps teams are now facing the challenge of standardizing ML workloads and provisioning cloud, on-

premises, and hybrid compute resources that support the dynamic and intensive workflows that ML jobs and

pipelines require.

Container-Based Machine Learning and Kubernetes

Containers are isolated user-space instances that run on top of a shared host operating system kernel. The

adoption of containers is rapidly increasing. Containers offer many of the same application sandboxing benefits

that virtual machines (VMs) offer. However, because the hypervisor and guest operating system layers that

VMs rely on have been eliminated, containers are far more lightweight.

Containers also allow the efficient packaging of application dependencies, run times, and so on directly with an

application. The most commonly used container packaging format is the Docker container. An application that

has been containerized in the Docker container format can be executed on any machine that can run Docker

containers. This is true even if the application’s dependencies are not present on the machine, because all

dependencies are packaged in the container itself. For more information, visit the Docker website.

Kubernetes, the popular container orchestrator, allows data scientists to launch flexible, container-based jobs

and pipelines. It also enables infrastructure teams to manage and monitor ML workloads in a single managed

and cloud-native environment. For more information, visit the Kubernetes website.

cnvrg.io

cnvrg.io is an AI operating system that transforms the way enterprises manage, scale, and accelerate AI and

data science development from research to production. The code-first platform is built by data scientists for

data scientists and offers flexibility to run on-premises or in the cloud. With model management, MLOps, and

continual ML solutions, cnvrg.io brings top- of- the- line technology to data science teams so they can spend

less time on DevOps and focus on the real magic—algorithms. Since using cnvrg.io, teams across industries

have gotten more models to production resulting in increased business value.

cnvrg.io Meta-Scheduler

cnvrg. io has a unique architecture that allows IT and engineers to attach different compute resources to the

same control plane and have cnvrg.io manage ML jobs across all resources. This means that IT can attach

multiple on-premises Kubernetes clusters, VM servers, and cloud accounts and run ML workloads on all

resources, as shown in the following figure.

160

https://www.docker.com/
https://kubernetes.io/

cnvrg.io Data Caching

cnvrg.io allows data scientists to define hot and cold dataset versions with its data-caching technology. By

default, datasets are stored in a centralized object storage database. Then, data scientists can cache a specific

data version on the selected compute resource to save time on download and therefor increase ML

development and productivity. Datasets that are cached and are not in use for a few days are automatically

cleared from the selected NFS. Caching and clearing the cache can be performed with a single click; no

coding, IT, or DevOps work is required.

cnvrg.io Flows and ML Pipelines

cnvrg.io Flows is a tool for building production ML pipelines. Each component in a flow is a script/code running

on a selected compute with a base docker image. This design enables data scientists and engineers to build a

single pipeline that can run both on-premises and in the cloud. cnvrg.io makes sure data, parameters, and

artifacts are moving between the different components. In addition, each flow is monitored and tracked for

100% reproducible data science.

cnvrg.io CORE

cnvrg.io CORE is a free platform for the data science community to help data scientists focus more on data

science and less on DevOps. CORE’s flexible infrastructure gives data scientists the control to use any

language, AI framework, or compute environment whether on- premises or in the cloud so they can do what

they do best, build algorithms. cnvrg.io CORE can be easily installed with a single command on any

Kubernetes cluster.

NetApp ONTAP AI

ONTAP AI is a data center reference architecture for ML and deep learning (DL) workloads that uses NetApp

AFF storage systems and NVIDIA DGX systems with Tesla V100 GPUs. ONTAP AI is based on the industry-

standard NFS file protocol over 100Gb Ethernet, providing customers with a high-performance ML/DL

infrastructure that uses standard data center technologies to reduce implementation and administration

overhead. Using standardized network and protocols enables ONTAP AI to integrate into hybrid cloud

environments while maintaining operational consistency and simplicity. As a prevalidated infrastructure

solution, ONTAP AI reduces deployment time and risk and reduces administration overhead significantly,

allowing customers to realize faster time to value.

NVIDIA DeepOps

DeepOps is an open source project from NVIDIA that, by using Ansible, automates the deployment of GPU

server clusters according to best practices. DeepOps is modular and can be used for various deployment

tasks. For this document and the validation exercise that it describes, DeepOps is used to deploy a Kubernetes

cluster that consists of GPU server worker nodes. For more information, visit the DeepOps website.

NetApp Trident

Trident is an open source storage orchestrator developed and maintained by NetApp that greatly simplifies the

creation, management, and consumption of persistent storage for Kubernetes workloads. Trident itself a

Kubernetes-native application—it runs directly within a Kubernetes cluster. With Trident, Kubernetes users

(developers, data scientists, Kubernetes administrators, and so on) can create, manage, and interact with

persistent storage volumes in the standard Kubernetes format that they are already familiar with. At the same

time, they can take advantage of NetApp advanced data management capabilities and a data fabric that is

powered by NetApp technology. Trident abstracts away the complexities of persistent storage and makes it

simple to consume. For more information, visit the Trident website.

161

https://github.com/NVIDIA/deepops
https://netapp-trident.readthedocs.io/en/stable-v18.07/kubernetes/

NetApp StorageGRID

NetApp StorageGRID is a software-defined object storage platform designed to meet these needs by providing

simple, cloud-like storage that users can access using the S3 protocol. StorageGRID is a scale-out system

designed to support multiple nodes across internet-connected sites, regardless of distance. With the intelligent

policy engine of StorageGRID, users can choose erasure-coding objects across sites for geo-resiliency or

object replication between remote sites to minimize WAN access latency. StorageGrid provides an excellent

private-cloud primary object storage data lake in this solution.

NetApp Cloud Volumes ONTAP

NetApp Cloud Volumes ONTAP data management software delivers control, protection, and efficiency to user

data with the flexibility of public cloud providers including AWS, Google Cloud Platform, and Microsoft Azure.

Cloud Volumes ONTAP is cloud-native data management software built on the NetApp ONTAP storage

software, providing users with a superior universal storage platform that addresses their cloud data needs.

Having the same storage software in the cloud and on- premises provides users with the value of a data fabric

without having to train IT staff in all-new methods to manage data.

For customers that are interested in hybrid cloud deployment models, Cloud Volumes ONTAP can provide the

same capabilities and class-leading performance in most public clouds to provide a consistent and seamless

user experience in any environment.

Next: Hardware and Software Requirements

Hardware and Software Requirements

This section covers the technology requirements for the ONTAP AI solution.

Hardware Requirements

Although hardware requirements depend on specific customer workloads, ONTAP AI can be deployed at any

scale for data engineering, model training, and production inferencing from a single GPU up to rack-scale

configurations for large-scale ML/DL operations. For more information about ONTAP AI, see the ONTAP AI

website.

This solution was validated using a DGX-1 system for compute, a NetApp AFF A800 storage system, and

Cisco Nexus 3232C for network connectivity. The AFF A800 used in this validation can support as many as 10

DGX-1 systems for most ML/DL workloads. The following figure shows the ONTAP AI topology used for model

training in this validation.

162

https://www.netapp.com/us/products/ontap-ai.aspx
https://www.netapp.com/us/products/ontap-ai.aspx

To extend this solution to a public cloud, Cloud Volumes ONTAP can be deployed alongside cloud GPU

compute resources and integrated into a hybrid cloud data fabric that enables customers to use whatever

resources are appropriate for any given workload.

Software Requirements

The following table shows the specific software versions used in this solution validation.

Component Version

Ubuntu 18.04.4 LTS

NVIDIA DGX OS 4.4.0

NVIDIA DeepOps 20.02.1

Kubernetes 1.15

Helm 3.1.0

cnvrg.io 3.0.0

NetApp ONTAP 9.6P4

For this solution validation, Kubernetes was deployed as a single-node cluster on the DGX-1 system. For

large-scale deployments, independent Kubernetes master nodes should be deployed to provide high

availability of management services as well as reserve valuable DGX resources for ML and DL workloads.

Next: Solution Deployment and Validation Details

Solution Deployment and Validation Details

The following sections discuss the details of solution deployment and validation.

Next: ONTAP AI Deployment

163

ONTAP AI Deployment

Deployment of ONTAP AI requires the installation and configuration of networking,

compute, and storage hardware. Specific instructions for deployment of the ONTAP AI

infrastructure are beyond the scope of this document. For detailed deployment

information, see NVA-1121-DEPLOY: NetApp ONTAP AI, Powered by NVIDIA.

For this solution validation, a single volume was created and mounted to the DGX-1 system. That mount point

was then mounted to the containers to make data accessible for training. For large-scale deployments, NetApp

Trident automates the creation and mounting of volumes to eliminate administrative overhead and enable end-

user management of resources.

Next: Kubernetes Deployment

Kubernetes Deployment

To deploy and configure your Kubernetes cluster with NVIDIA DeepOps, perform the

following tasks from a deployment jump host:

1. Download NVIDIA DeepOps by following the instructions on the Getting Started page on the NVIDIA

DeepOps GitHub site.

2. Deploy Kubernetes in your cluster by following the instructions on the Kubernetes Deployment Guide on

the NVIDIA DeepOps GitHub site.

For the DeepOps Kubernetes deployment to work, the same user must exist on all Kubernetes

master and worker nodes.

If the deployment fails, change the value of kubectl_localhost to false in

deepops/config/group_vars/k8s-cluster.yml and repeat step 2. The Copy kubectl binary to

ansible host task, which executes only when the value of kubectl_localhost is true, relies on the fetch

Ansible module, which has known memory usage issues. These memory usage issues can sometimes cause

the task to fail. If the task fails because of a memory issue, then the remainder of the deployment operation

does not complete successfully.

If the deployment completes successfully after you have changed the value of kubectl_localhost to

false, then you must manually copy the kubectl binary from a Kubernetes master node to the

deployment jump host. You can find the location of the kubectl binary on a specific master node by

running the which kubectl command directly on that node.

Next: Cnvrg.io Deployment

cnvrg.io Deployment

Deploy cnvrg CORE Using Helm

Helm is the easiest way to quickly deploy cnvrg using any cluster, on-premises, Minikube, or on any cloud

cluster (such as AKS, EKS, and GKE). This section describes how cnvrg was installed on an on-premises

(DGX-1) instance with Kubernetes installed.

Prerequisites

Before you can complete the installation, you must install and prepare the following dependencies on your

164

https://www.netapp.com/us/media/nva-1121-deploy.pdf
https://github.com/NVIDIA/deepops/blob/master/docs/getting-started.md
https://github.com/NVIDIA/deepops/blob/master/docs/kubernetes-cluster.md

local machine:

• Kubectl

• Helm 3.x

• Kubernetes cluster 1.15+

Deploy Using Helm

1. To download the most updated cnvrg helm charts, run the following command:

helm repo add cnvrg https://helm.cnvrg.io

helm repo update

2. Before you deploy cnvrg, you need the external IP address of the cluster and the name of the node on

which you will deploy cnvrg. To deploy cnvrg on an on-premises Kubernetes cluster, run the following

command:

helm install cnvrg cnvrg/cnvrg --timeout 1500s --wait \ --set

global.external_ip=<ip_of_cluster> \ --set global.node=<name_of_node>

3. Run the helm install command. All the services and systems automatically install on your cluster. The

process can take up to 15 minutes.

4. The helm install command can take up to 10 minutes. When the deployment completes, go to the

URL of your newly deployed cnvrg or add the new cluster as a resource inside your organization. The

helm command informs you of the correct URL.

Thank you for installing cnvrg.io!

Your installation of cnvrg.io is now available, and can be reached via:

Talk to our team via email at

5. When the status of all the containers is running or complete, cnvrg has been successfully deployed. It

should look similar to the following example output:

165

NAME READY STATUS RESTARTS AGE

cnvrg-app-69fbb9df98-6xrgf 1/1 Running 0 2m

cnvrg-sidekiq-b9d54d889-5x4fc 1/1 Running 0 2m

controller-65895b47d4-s96v6 1/1 Running 0 2m

init-app-vs-config-wv9c4 0/1 Completed 0 9m

init-gateway-vs-config-2zbpp 0/1 Completed 0 9m

init-minio-vs-config-cd2rg 0/1 Completed 0 9m

minio-0 1/1 Running 0 2m

postgres-0 1/1 Running 0 2m

redis-695c49c986-kcbt9 1/1 Running 0 2m

seeder-wh655 0/1 Completed 0 2m

speaker-5sghr 1/1 Running 0 2m

Computer Vision Model Training with ResNet50 and the Chest X-ray Dataset

cnvrg.io AI OS was deployed on a Kubernetes setup on a NetApp ONTAP AI architecture powered by the

NVIDIA DGX system. For validation, we used the NIH Chest X-ray dataset consisting of de-identified images of

chest x-rays. The images were in the PNG format. The data was provided by the NIH Clinical Center and is

available through the NIH download site. We used a 250GB sample of the data with 627, 615 images across

15 classes.

The dataset was uploaded to the cnvrg platform and was cached on an NFS export from the NetApp AFF A800

storage system.

Set up the Compute Resources

The cnvrg architecture and meta-scheduling capability allow engineers and IT professionals to attach different

compute resources to a single platform. In our setup, we used the same cluster cnvrg that was deployed for

running the deep-learning workloads. If you need to attach additional clusters, use the GUI, as shown in the

following screenshot.

166

https://nihcc.app.box.com/v/ChestXray-NIHCC

Load Data

To upload data to the cnvrg platform, you can use the GUI or the cnvrg CLI. For large datasets, NetApp

recommends using the CLI because it is a strong, scalable, and reliable tool that can handle a large number of

files.

To upload data, complete the following steps:

1. Download the cnvrg CLI.

2. navigate to the x-ray directory.

3. Initialize the dataset in the platform with the cnvrg data init command.

4. Upload all contents of the directory to the central data lake with the cnvrg data sync command.After

the data is uploaded to the central object store (StorageGRID, S3, or others), you can browse with the GUI.

The following figure shows a loaded chest X-ray fibrosis image PNG file. In addition, cnvrg versions the

data so that any model you build can be reproduced down to the data version.

167

https://app.cnvrg.io/docs/cli/install.html

Cach Data

To make training faster and avoid downloading 600k+ files for each model training and experiment, we used

the data-caching feature after data was initially uploaded to the central data-lake object store.

168

After users click Cache, cnvrg downloads the data in its specific commit from the remote object store and

caches it on the ONTAP NFS volume. After it completes, the data is available for instant training. In addition, if

the data is not used for a few days (for model training or exploration, for example), cnvrg automatically clears

the cache.

Build an ML Pipeline with Cached Data

cnvrg flows allows you to easily build production ML pipelines. Flows are flexible, can work for any kind of ML

use case, and can be created through the GUI or code. Each component in a flow can run on a different

compute resource with a different Docker image, which makes it possible to build hybrid cloud and optimized

ML pipelines.

169

Building the Chest X-ray Flow: Setting Data

We added our dataset to a newly created flow. When adding the dataset, you can select the specific version

(commit) and indicate whether you want the cached version. In this example, we selected the cached commit.

170

Building the Chest X-ray Flow: Setting Training Model: ResNet50

In the pipeline, you can add any kind of custom code you want. In cnvrg, there is also the AI library, a reusable

ML components collection. In the AI library, there are algorithms, scripts, data sources, and other solutions that

can be used in any ML or deep learning flow. In this example, we selected the prebuilt ResNet50 module. We

used default parameters such as batch_size:128, epochs:10, and more. These parameters can be viewed in

the AI Library docs. The following screenshot shows the new flow with the X-ray dataset connected to

ResNet50.

171

Define the Compute Resource for ResNet50

Each algorithm or component in cnvrg flows can run on a different compute instance, with a different Docker

image. In our setup, we wanted to run the training algorithm on the NVIDIA DGX systems with the NetApp

ONTAP AI architecture. In The following figure, we selected gpu-real, which is a compute template and

specification for our on-premises cluster. We also created a queue of templates and selected multiple

templates. In this way, if the gpu-real resource cannot be allocated (if, for example, other data scientists are

using it), then you can enable automatic cloud-bursting by adding a cloud provider template. The following

screenshot shows the use of gpu-real as a compute node for ResNet50.

172

Tracking and Monitoring Results

After a flow is executed, cnvrg triggers the tracking and monitoring engine. Each run of a flow is automatically

documented and updated in real time. Hyperparameters, metrics, resource usage (GPU utilization, and more),

code version, artifacts, logs, and so on are automatically available in the Experiments section, as shown in the

following two screenshots.

173

Next: Conclusion

174

Conclusion

NetApp and cnvrg.io have partnered to offer customers a complete data management

solution for ML and DL software development. ONTAP AI provides high-performance

compute and storage for any scale of operation, and cnvrg.io software streamlines data

science workflows and improves resource utilization.

Next: Acknowledgments

Acknowledgments

• Mike Oglesby, Technical Marketing Engineer, NetApp

• Santosh Rao, Senior Technical Director, NetApp

Next: Where to Find Additional Information

Where to Find Additional Information

To learn more about the information that is described in this document, see the following resources:

• Cnvrg.io (https://cnvrg.io):

◦ Cnvrg CORE (free ML platform)

https://cnvrg.io/platform/core

◦ Cnvrg docs

https://app.cnvrg.io/docs

• NVIDIA DGX-1 servers:

◦ NVIDIA DGX-1 servers

https://www.nvidia.com/en-us/data-center/dgx-1/

◦ NVIDIA Tesla V100 Tensor Core GPU

https://www.nvidia.com/en-us/data-center/tesla-v100/

◦ NVIDIA GPU Cloud (NGC)

https://www.nvidia.com/en-us/gpu-cloud/

• NetApp AFF systems:

◦ AFF datasheet

https://www.netapp.com/us/media/d-3582.pdf

◦ NetApp FlashAdvantage for AFF

https://www.netapp.com/us/media/ds-3733.pdf

◦ ONTAP 9.x documentation

175

https://cnvrg.io
https://cnvrg.io/platform/core
https://app.cnvrg.io/docs
https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://www.nvidia.com/en-us/gpu-cloud/
https://www.netapp.com/us/media/d-3582.pdf
https://www.netapp.com/us/media/ds-3733.pdf

http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286

◦ NetApp FlexGroup technical report

https://www.netapp.com/us/media/tr-4557.pdf

• NetApp persistent storage for containers:

◦ NetApp Trident

https://netapp.io/persistent-storage-provisioner-for-kubernetes/

• NetApp Interoperability Matrix:

◦ NetApp Interoperability Matrix Tool

http://support.netapp.com/matrix

• ONTAP AI networking:

◦ Cisco Nexus 3232C Switches

https://www.cisco.com/c/en/us/products/switches/nexus-3232c-switch/index.html

◦ Mellanox Spectrum 2000 series switches

http://www.mellanox.com/page/products_dyn?product_family=251&mtag=sn2000

• ML framework and tools:

◦ DALI

https://github.com/NVIDIA/DALI

◦ TensorFlow: An Open-Source Machine Learning Framework for Everyone

https://www.tensorflow.org/

◦ Horovod: Uber’s Open-Source Distributed Deep Learning Framework for TensorFlow

https://eng.uber.com/horovod/

◦ Enabling GPUs in the Container Runtime Ecosystem

https://devblogs.nvidia.com/gpu-containers-runtime/

◦ Docker

https://docs.docker.com

◦ Kubernetes

https://kubernetes.io/docs/home/

◦ NVIDIA DeepOps

https://github.com/NVIDIA/deepops

176

http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286
https://www.netapp.com/us/media/tr-4557.pdf
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
http://support.netapp.com/matrix
https://www.cisco.com/c/en/us/products/switches/nexus-3232c-switch/index.html
http://www.mellanox.com/page/products_dyn?product_family=251&mtag=sn2000
https://github.com/NVIDIA/DALI
https://www.tensorflow.org/
https://eng.uber.com/horovod/
https://devblogs.nvidia.com/gpu-containers-runtime/
https://docs.docker.com
https://kubernetes.io/docs/home/
https://github.com/NVIDIA/deepops

◦ Kubeflow

http://www.kubeflow.org/

◦ Jupyter Notebook Server

http://www.jupyter.org/

• Dataset and benchmarks:

◦ NIH chest X-ray dataset

https://nihcc.app.box.com/v/ChestXray-NIHCC

◦ Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, Ronald Summers, ChestX-

ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and

Localization of Common Thorax Diseases, IEEE CVPR, pp. 3462-3471, 2017TR-4841-0620

NVA-1144: NetApp HCI AI Inferencing at the Edge Data Center with H615c and
NVIDIA T4

Arvind Ramakrishnan, NetApp

This document describes how NetApp HCI can be designed to host artificial intelligence (AI) inferencing

workloads at edge data center locations. The design is based on NVIDIA T4 GPU-powered NetApp HCI

compute nodes, an NVIDIA Triton Inference Server, and a Kubernetes infrastructure built using NVIDIA

DeepOps. The design also establishes the data pipeline between the core and edge data centers and

illustrates implementation to complete the data lifecycle path.

Modern applications that are driven by AI and machine learning (ML) have pushed the limits of the internet.

End users and devices demand access to applications, data, and services at any place and any time, with

minimal latency. To meet these demands, data centers are moving closer to their users to boost performance,

reduce back-and-forth data transfer, and provide cost-effective ways to meet user requirements.

In the context of AI, the core data center is a platform that provides centralized services, such as machine

learning and analytics, and the edge data centers are where the real-time production data is subject to

inferencing. These edge data centers are usually connected to a core data center. They provide end-user

services and serve as a staging layer for data generated by IoT devices that need additional processing and

that is too time sensitive to be transmitted back to a centralized core.

This document describes a reference architecture for AI inferencing that uses NetApp HCI as the base

platform.

Customer Value

NetApp HCI offers differentiation in the hyperconverged market for this inferencing solution, including the

following advantages:

• A disaggregated architecture allows independent scaling of compute and storage and lowers the

virtualization licensing costs and performance tax on independent NetApp HCI storage nodes.

• NetApp Element storage provides quality of service (QoS) for each storage volume, which provides

guaranteed storage performance for workloads on NetApp HCI. Therefore, adjacent workloads do not

negatively affect inferencing performance.

• A data fabric powered by NetApp allows data to be replicated from core to edge to cloud data centers,

which moves data closer to where application needs it.

177

http://www.kubeflow.org/
http://www.jupyter.org/
https://nihcc.app.box.com/v/ChestXray-NIHCC

• With a data fabric powered by NetApp and NetApp FlexCache software, AI deep learning models trained

on NetApp ONTAP AI can be accessed from NetApp HCI without having to export the model.

• NetApp HCI can host inference servers on the same infrastructure concurrently with multiple workloads,

either virtual-machine (VM) or container-based, without performance degradation.

• NetApp HCI is certified as NVIDIA GPU Cloud (NGC) ready for NVIDIA AI containerized applications.

• NGC-ready means that the stack is validated by NVIDIA, is purpose built for AI, and enterprise support is

available through NGC Support Services.

• With its extensive AI portfolio, NetApp can support the entire spectrum of AI use cases from edge to core to

cloud, including ONTAP AI for training and inferencing, Cloud Volumes Service and Azure NetApp Files for

training in the cloud, and inferencing on the edge with NetApp HCI.

Next: Use Cases

Use Cases

Although all applications today are not AI driven, they are evolving capabilities that allow

them to access the immense benefits of AI. To support the adoption of AI, applications

need an infrastructure that provides them with the resources needed to function at an

optimum level and support their continuing evolution.

For AI-driven applications, edge locations act as a major source of data. Available data can be used for training

when collected from multiple edge locations over a period of time to form a training dataset. The trained model

can then be deployed back to the edge locations where the data was collected, enabling faster inferencing

without the need to repeatedly transfer production data to a dedicated inferencing platform.

The NetApp HCI AI inferencing solution, powered by NetApp H615c compute nodes with NVIDIA T4 GPUs and

NetApp cloud-connected storage systems, was developed and verified by NetApp and NVIDIA. NetApp HCI

simplifies the deployment of AI inferencing solutions at edge data centers by addressing areas of ambiguity,

eliminating complexities in the design and ending guesswork.

This solution gives IT organizations a prescriptive architecture that:

• Enables AI inferencing at edge data centers

• Optimizes consumption of GPU resources

• Provides a Kubernetes-based inferencing platform for flexibility and scalability

• Eliminates design complexities

Edge data centers manage and process data at locations that are very near to the generation point. This

proximity increases the efficiency and reduces the latency involved in handling data. Many vertical markets

have realized the benefits of an edge data center and are heavily adopting this distributed approach to data

processing.

The following table lists the edge verticals and applications.

Vertical Applications

Medical Computer-aided diagnostics assist medical staff in

early disease detection

Oil and gas Autonomous inspection of remote production facilities,

video, and image analytics

178

Vertical Applications

Aviation Air traffic control assistance and real-time video feed

analytics

Media and entertainment Audio/video content filtering to deliver family-friendly

content

Business analytics Brand recognition to analyze brand appearance in

live-streamed televised events

E-Commerce Smart bundling of supplier offers to find ideal

merchant and warehouse combinations

Retail Automated checkout to recognize items a customer

placed in cart and facilitate digital payment

Smart city Improve traffic flow, optimize parking, and enhance

pedestrian and cyclist safety

Manufacturing Quality control, assembly-line monitoring, and defect

identification

Customer service Customer service automation to analyze and triage

inquiries (phone, email, and social media)

Agriculture Intelligent farm operation and activity planning, to

optimize fertilizer and herbicide application

Target Audience

The target audience for the solution includes the following groups:

• Data scientists

• IT architects

• Field consultants

• Professional services

• IT managers

• Anyone else who needs an infrastructure that delivers IT innovation and robust data and application

services at edge locations

Next: Architecture

Architecture

Solution Technology

This solution is designed with a NetApp HCI system that contains the following components:

• Two H615c compute nodes with NVIDIA T4 GPUs

• Two H410c compute nodes

• Two H410s storage nodes

• Two Mellanox SN2010 10GbE/25GbE switches

179

Architectural Diagram

The following diagram illustrates the solution architecture for the NetApp HCI AI inferencing solution.

The following diagram illustrates the virtual and physical elements of this solution.

A VMware infrastructure is used to host the management services required by this inferencing solution. These

services do not need to be deployed on a dedicated infrastructure; they can coexist with any existing

workloads. The NetApp Deployment Engine (NDE) uses the H410c and H410s nodes to deploy the VMware

infrastructure.

180

After NDE has completed the configuration, the following components are deployed as VMs in the virtual

infrastructure:

• Deployment Jump VM. Used to automate the deployment of NVIDIA DeepOps. See NVIDIA DeepOps

and storage management using NetApp Trident.

• ONTAP Select. An instance of ONTAP Select is deployed to provide NFS file services and persistent

storage to the AI workload running on Kubernetes.

• Kubernetes Masters. During deployment, three VMs are installed and configured with a supported Linux

distribution and configured as Kubernetes master nodes. After the management services have been set

up, two H615c compute nodes with NVIDIA T4 GPUs are installed with a supported Linux distribution.

These two nodes function as the Kubernetes worker nodes and provide the infrastructure for the

inferencing platform.

Hardware Requirements

The following table lists the hardware components that are required to implement the solution. The hardware

components that are used in any particular implementation of the solution might vary based on customer

requirements.

Layer Product Family Quantity Details

Compute H615c 2 3 NVIDIA Tesla T4 GPUs

per node

H410c 2 Compute nodes for

management

infrastructure

Storage H410s 2 Storage for OS and

workload

Network Mellanox SN2010 2 10G/25G switches

Software Requirements

The following table lists the software components that are required to implement the solution. The software

components that are used in any particular implementation of the solution might vary based on customer

requirements.

Layer Software Version

Storage NetApp Element software 12.0.0.333

ONTAP Select 9.7

NetApp Trident 20.07

NetApp HCI engine NDE 1.8

Hypervisor Hypervisor VMware vSphere ESXi 6.7U1

Hypervisor Management System VMware vCenter Server 6.7U1

Inferencing Platform NVIDIA DeepOps 20.08

NVIDIA GPU Operator 1.1.7

Ansible 2.9.5

181

https://docs.netapp.com/us-en/netapp-solutions/ai/hciaiedge_design_considerations.html#nvidia-deepops

Layer Software Version

Kubernetes 1.17.9

Docker Docker CE 18.09.7

CUDA Version 10.2

GPU Device Plugin 0.6.0

Helm 3.1.2

NVIDIA Tesla Driver 440.64.00

NVIDIA Triton Inference Server 2.1.0 – NGC Container v20.07

K8 Master VMs Linux Any supported distribution across

NetApp IMT, NVIDIA DeepOps, and

GPUOperator

Ubuntu 18.04.4 LTS was used in

this solution

Kernel version: 4.15

Host OS/ K8 Worker Nodes Linux Any supported distribution across

NetApp IMT, NVIDIA DeepOps, and

GPUOperator

Ubuntu 18.04.4 LTS was used in

this solution

Kernel version: 4.15

Next: Design Considerations

Design Considerations

Network Design

The switches used to handle the NetApp HCI traffic require a specific configuration for successful deployment.

Consult the NetApp HCI Network Setup Guide for the physical cabling and switch details. This solution uses a

two-cable design for compute nodes. Optionally, compute nodes can be configured in a six-node cable design

affording options for deployment of compute nodes.

The diagram under Architecture depicts the network topology of this NetApp HCI solution with a two-cable

design for the compute nodes.

Compute Design

The NetApp HCI compute nodes are available in two form factors, half-width and full-width, and in two rack unit

sizes, 1 RU and 2 RU. The 410c nodes used in this solution are half-width and 1 RU and are housed in a

chassis that can hold a maximum of four such nodes. The other compute node that is used in this solution is

the H615c, which is a full-width node, 1 RU in size. The H410c nodes are based on Intel Skylake processors,

and the H615c nodes are based on the second-generation Intel Cascade Lake processors. NVIDIA GPUs can

be added to the H615c nodes, and each node can host a maximum of three NVIDIA Tesla T4 16GB GPUs.

The H615c nodes are the latest series of compute nodes for NetApp HCI and the second series that can

support GPUs. The first model to support GPUs is the H610c node (full width, 2RU), which can support two

182

https://docs.netapp.com/us-en/netapp-solutions/ai/hciaiedge_architecture.html

NVIDIA Tesla M10 GPUs.

In this solution, H615c nodes are preferred over H610c nodes because of the following advantages:

• Reduced data center footprint, critical for edge deployments

• Support for a newer generation of GPUs designed for faster inferencing

• Reduced power consumption

• Reduced heat dissipation

NVIDIA T4 GPUs

The resource requirements of inferencing are nowhere close to those of training workloads. In fact, most

modern hand-held devices are capable of handling small amounts of inferencing without powerful resources

like GPUs. However, for mission-critical applications and data centers that are dealing with a wide variety of

applications that demand very low inferencing latencies while subject to extreme parallelization and massive

input batch sizes, the GPUs play a key role in reducing inference time and help to boost application

performance.

The NVIDIA Tesla T4 is an x16 PCIe Gen3 single-slot low-profile GPU based on the Turing architecture. The

T4 GPUs deliver universal inference acceleration that spans applications such as image classification and

tagging, video analytics, natural language processing, automatic speech recognition, and intelligent search.

The breadth of the Tesla T4’s inferencing capabilities enables it to be used in enterprise solutions and edge

devices.

These GPUs are ideal for deployment in edge infrastructures due to their low power consumption and small

PCIe form factor. The size of the T4 GPUs enables the installation of two T4 GPUs in the same space as a

double-slot full-sized GPU. Although they are small, with 16GB memory, the T4s can support large ML models

or run inference on multiple smaller models simultaneously.

The Turing- based T4 GPUs include an enhanced version of Tensor Cores and support a full range of

precisions for inferencing FP32, FP16, INT8, and INT4. The GPU includes 2,560 CUDA cores and 320 Tensor

Cores, delivering up to 130 tera operations per second (TOPS) of INT8 and up to 260 TOPS of INT4

inferencing performance. When compared to CPU-based inferencing, the Tesla T4, powered by the new Turing

Tensor Cores, delivers up to 40 times higher inference performance.

The Turing Tensor Cores accelerate the matrix-matrix multiplication at the heart of neural network training and

inferencing functions. They particularly excel at inference computations in which useful and relevant

information can be inferred and delivered by a trained deep neural network based on a given input.

The Turing GPU architecture inherits the enhanced Multi-Process Service (MPS) feature that was introduced in

the Volta architecture. Compared to Pascal-based Tesla GPUs, MPS on Tesla T4 improves inference

performance for small batch sizes, reduces launch latency, improves QoS, and enables the servicing of higher

numbers of concurrent client requests.

The NVIDIA T4 GPU is a part of the NVIDIA AI Inference Platform that supports all AI frameworks and provides

comprehensive tooling and integrations to drastically simplify the development and deployment of advanced

AI.

Storage Design: Element Software

NetApp Element software powers the storage of the NetApp HCI systems. It delivers agile automation through

scale-out flexibility and guaranteed application performance to accelerate new services.

Storage nodes can be added to the system non-disruptively in increments of one, and the storage resources

183

are made available to the applications instantly. Every new node added to the system delivers a precise

amount of additional performance and capacity to a usable pool. The data is automatically load balanced in the

background across all nodes in the cluster, maintaining even utilization as the system grows.

Element software supports the NetApp HCI system to comfortably host multiple workloads by guaranteeing

QoS to each workload. By providing fine-grained performance control with minimum, maximum, and burst

settings for each workload, the software allows well-planned consolidations while protecting application

performance. It decouples performance from capacity and allows each volume to be allocated with a specific

amount of capacity and performance. These specifications can be modified dynamically without any

interruption to data access.

As illustrated in the following figure, Element software integrates with NetApp ONTAP to enable data mobility

between NetApp storage systems that are running different storage operating systems. Data can be moved

from the Element software to ONTAP or vice versa by using NetApp SnapMirror technology. Element uses the

same technology to provide cloud connectivity by integrating with NetApp Cloud Volumes ONTAP, which

enables data mobility from the edge to the core and to multiple public cloud service providers.

In this solution, the Element-backed storage provides the storage services that are required to run the

workloads and applications on the NetApp HCI system.

Storage Design: ONTAP Select

NetApp ONTAP Select introduces a software-defined data storage service model on top of NetApp HCI. It

builds on NetApp HCI capabilities, adding a rich set of file and data services to the HCI platform while

extending the data fabric.

Although ONTAP Select is an optional component for implementing this solution, it does provide a host of

benefits, including data gathering, protection, mobility, and so on, that are extremely useful in the context of the

overall AI data lifecycle. It helps to simplify several day-to-day challenges for data handling, including ingestion,

collection, training, deployment, and tiering.

184

ONTAP Select can run as a VM on VMware and still bring in most of the ONTAP capabilities that are available

when it is running on a dedicated FAS platform, such as the following:

• Support for NFS and CIFS

• NetApp FlexClone technology

• NetApp FlexCache technology

• NetApp ONTAP FlexGroup volumes

• NetApp SnapMirror software

ONTAP Select can be used to leverage the FlexCache feature, which helps to reduce data-read latencies by

caching frequently read data from a back-end origin volume, as is shown in the following figure. In the case of

high-end inferencing applications with a lot of parallelization, multiple instances of the same model are

deployed across the inferencing platform, leading to multiple reads of the same model. Newer versions of the

trained model can be seamlessly introduced to the inferencing platform by verifying that the desired model is

available in the origin or source volume.

185

NetApp Trident

NetApp Trident is an open-source dynamic storage orchestrator that allows you to manage storage resources

across all major NetApp storage platforms. It integrates with Kubernetes natively so that persistent volumes

(PVs) can be provisioned on demand with native Kubernetes interfaces and constructs. Trident enables

microservices and containerized applications to use enterprise-class storage services such as QoS, storage

efficiencies, and cloning to meet the persistent storage demands of applications.

Containers are among the most popular methods of packaging and deploying applications, and Kubernetes is

one of the most popular platforms for hosting containerized applications. In this solution, the inferencing

platform is built on top of a Kubernetes infrastructure.

Trident currently supports storage orchestration across the following platforms:

• ONTAP: NetApp AFF, FAS, and Select

• Element software: NetApp HCI and NetApp SolidFire all-flash storage

• NetApp SANtricity software: E-Series and EF-series

• Cloud Volumes ONTAP

• Azure NetApp Files

• NetApp Cloud Volumes Service: AWS and Google Cloud

Trident is a simple but powerful tool to enable storage orchestration not just across multiple storage platforms,

but also across the entire spectrum of the AI data lifecycle, ranging from the edge to the core to the cloud.

Trident can be used to provision a PV from a NetApp Snapshot copy that makes up the trained model. The

following figure illustrates the Trident workflow in which a persistent volume claim (PVC) is created by referring

to an existing Snapshot copy. Following this, Trident creates a volume by using the Snapshot copy.

186

This method of introducing trained models from a Snapshot copy supports robust model versioning. It

simplifies the process of introducing newer versions of models to applications and switching inferencing

between different versions of the model.

NVIDIA DeepOps

NVIDIA DeepOps is a modular collection of Ansible scripts that can be used to automate the deployment of a

Kubernetes infrastructure. There are multiple deployment tools available that can automate the deployment of

a Kubernetes cluster. In this solution, DeepOps is the preferred choice because it does not just deploy a

Kubernetes infrastructure, it also installs the necessary GPU drivers, NVIDIA Container Runtime for Docker

(nvidia-docker2), and various other dependencies for GPU-accelerated work. It encapsulates the best

practices for NVIDIA GPUs and can be customized or run as individual components as needed.

DeepOps internally uses Kubespray to deploy Kubernetes, and it is included as a submodule in DeepOps.

Therefore, common Kubernetes cluster management operations such as adding nodes, removing nodes, and

cluster upgrades should be performed using Kubespray.

A software based L2 LoadBalancer using MetalLb and an Ingress Controller based on NGINX are also

deployed as part of this solution by using the scripts that are available with DeepOps.

In this solution, three Kubernetes master nodes are deployed as VMs, and the two H615c compute nodes with

NVIDIA Tesla T4 GPUs are set up as Kubernetes worker nodes.

NVIDIA GPU Operator

The GPU operator deploys the NVIDIA k8s-device-plugin for GPU support and runs the NVIDIA drivers as

containers. It is based on the Kubernetes operator framework, which helps to automate the management of all

NVIDIA software components that are needed to provision GPUs. The components include NVIDIA drivers,

Kubernetes device plug-in for GPUs, the NVIDIA container runtime, and automatic node labeling, which is

used in tandem with Kubernetes Node Feature Discovery.

187

The GPU operator is an important component of the NVIDIA EGX software-defined platform that is designed to

make large-scale hybrid-cloud and edge operations possible and efficient. It is specifically useful when the

Kubernetes cluster needs to scale quickly—for example, when provisioning additional GPU-based worker

nodes and managing the lifecycle of the underlying software components. Because the GPU operator runs

everything as containers, including NVIDIA drivers, administrators can easily swap various components by

simply starting or stopping containers.

NVIDIA Triton Inference Server

NVIDIA Triton Inference Server (Triton Server) simplifies the deployment of AI inferencing solutions in

production data centers. This microservice is specifically designed for inferencing in production data centers. It

maximizes GPU utilization and integrates seamlessly into DevOps deployments with Docker and Kubernetes.

Triton Server provides a common solution for AI inferencing. Therefore, researchers can focus on creating

high-quality trained models, DevOps engineers can focus on deployment, and developers can focus on

applications without the need to redesign the platform for each AI-powered application.

Here are some of the key features of Triton Server:

• Support for multiple frameworks. Triton Server can handle a mix of models, and the number of models is

limited only by system disk and memory resources. It can support the TensorRT, TensorFlow GraphDef,

TensorFlow SavedModel, ONNX, PyTorch, and Caffe2 NetDef model formats.

• *Concurrent model execution. *Multiple models or multiple instances of the same model can be run

simultaneously on a GPU.

• Multi-GPU support. Triton Server can maximize GPU utilization by enabling inference for multiple models

on one or more GPUs.

• Support for batching. Triton Server can accept requests for a batch of inputs and respond with the

corresponding batch of outputs. The inference server supports multiple scheduling and batching algorithms

that combine individual inference requests together to improve inference throughput. Batching algorithms

are available for both stateless and stateful applications and need to be used appropriately. These

scheduling and batching decisions are transparent to the client that is requesting inference.

• Ensemble support. An ensemble is a pipeline with multiple models with connections of input and output

tensors between those models. An inference request can be made to an ensemble, which results in the

execution of the complete pipeline.

• Metrics. Metrics are details about GPU utilization, server throughput, server latency, and health for auto

scaling and load balancing.

NetApp HCI is a hybrid multi-cloud infrastructure that can host multiple workloads and applications, and the

Triton Inference Server is well equipped to support the inferencing requirements of multiple applications.

In this solution, Triton Server is deployed on the Kubernetes cluster using a deployment file. With this method,

the default configuration of Triton Server can be overridden and customized as required. Triton Server also

provides an inference service using an HTTP or GRPC endpoint, allowing remote clients to request inferencing

for any model that is being managed by the server.

A Persistent Volume is presented via NetApp Trident to the container that runs the Triton Inference Server and

this persistent volume is configured as the model repository for the Inference server.

The Triton Inference Server is deployed with varying sets of resources using Kubernetes deployment files, and

each server instance is presented with a LoadBalancer front end for seamless scalability. This approach also

illustrates the flexibility and simplicity with which resources can be allocated to the inferencing workloads.

Next: Deploying NetApp HCI – AI Inferencing at the Edge

188

https://www.nvidia.com/en-us/data-center/products/egx-edge-computing/

Overview

This section describes the steps required to deploy the AI inferencing platform using

NetApp HCI. The following list provides the high-level tasks involved in the setup:

1. Configure network switches

2. Deploy the VMware virtual infrastructure on NetApp HCI using NDE

3. Configure the H615c compute nodes to be used as K8 worker nodes

4. Set up the deployment jump VM and K8 master VMs

5. Deploy a Kubernetes cluster with NVIDIA DeepOps

6. Deploy ONTAP Select within the virtual infrastructure

7. Deploy NetApp Trident

8. Deploy NVIDIA Triton inference Server

9. Deploy the client for the Triton inference server

10. Collect inference metrics from the Triton inference server

Configure Network Switches (Automated Deployment)

Prepare Required VLAN IDs

The following table lists the necessary VLANs for deployment, as outlined in this solution validation. You should

configure these VLANs on the network switches prior to executing NDE.

Network Segment Details VLAN ID

Out-of-band management network Network for HCI terminal user

interface (TUI)

16

In-band management network Network for accessing

management interfaces of nodes,

hosts, and guests

3488

VMware vMotion Network for live migration of VMs 3489

iSCSI SAN storage Network for iSCSI storage traffic 3490

Application Network for Application traffic 3487

NFS Network for NFS storage traffic 3491

IPL* Interpeer link between Mellanox

switches

4000

Native Native VLAN 2

*Only for Mellanox switches

Switch Configuration

This solution uses Mellanox SN2010 switches running Onyx. The Mellanox switches are configured using an

Ansible playbook. Prior to running the Ansible playbook, you should perform the initial configuration of the

switches manually:

189

1. Install and cable the switches to the uplink switch, compute, and storage nodes.

2. Power on the switches and configure them with the following details:

a. Host name

b. Management IP and gateway

c. NTP

3. Log into the Mellanox switches and run the following commands:

configuration write to pre-ansible

configuration write to post-ansible

The pre-ansible configuration file created can be used to restore the switch’s configuration to the state

before the Ansible playbook execution.

The switch configuration for this solution is stored in the post-ansible configuration file.

4. The configuration playbook for Mellanox switches that follows best practices and requirements for NetApp

HCI can be downloaded from the NetApp HCI Toolkit.

The HCI Toolkit also provides a playbook to setup Cisco Nexus switches with similar best

practices and requirements for NetApp HCI.

Additional guidance on populating the variables and executing the playbook is available in

the respective switch README.md file.

5. Fill out the credentials to access the switches and variables needed for the environment. The following text

is a sample of the variable file for this solution.

vars file for nar_hci_mellanox_deploy

#These set of variables will setup the Mellanox switches for NetApp HCI

that uses a 2-cable compute connectivity option.

#Ansible connection variables for mellanox

ansible_connection: network_cli

ansible_network_os: onyx

#--------------------

Primary Variables

#--------------------

#Necessary VLANs for Standard NetApp HCI Deployment [native, Management,

iSCSI_Storage, vMotion, VM_Network, IPL]

#Any additional VLANs can be added to this in the prescribed format

below

netapp_hci_vlans:

- {vlan_id: 2 , vlan_name: "Native" }

- {vlan_id: 3488 , vlan_name: "IB-Management" }

- {vlan_id: 3490 , vlan_name: "iSCSI_Storage" }

- {vlan_id: 3489 , vlan_name: "vMotion" }

190

https://mysupport.netapp.com/site/tools/tool-eula/hci-toolkit

- {vlan_id: 3491 , vlan_name: "NFS " }

- {vlan_id: 3487 , vlan_name: "App_Network" }

- {vlan_id: 4000 , vlan_name: "IPL" }#Modify the VLAN IDs to suit your

environment

#Spanning-tree protocol type for uplink connections.

#The valid options are 'network' and 'normal'; selection depends on the

uplink switch model.

uplink_stp_type: network

#----------------------

IPL variables

#----------------------

#Inter-Peer Link Portchannel

#ipl_portchannel to be defined in the format - Po100

ipl_portchannel: Po100

#Inter-Peer Link Addresses

#The IPL IP address should not be part of the management network. This

is typically a private network

ipl_ipaddr_a: 10.0.0.1

ipl_ipaddr_b: 10.0.0.2

#Define the subnet mask in CIDR number format. Eg: For subnet /22, use

ipl_ip_subnet: 22

ipl_ip_subnet: 24

#Inter-Peer Link Interfaces

#members to be defined with Eth in the format. Eg: Eth1/1

peer_link_interfaces:

 members: ['Eth1/20', 'Eth1/22']

 description: "peer link interfaces"

#MLAG VIP IP address should be in the same subnet as that of the

switches' mgmt0 interface subnet

#mlag_vip_ip to be defined in the format - <vip_ip>/<subnet_mask>. Eg:

x.x.x.x/y

mlag_vip_ip: <<mlag_vip_ip>>

#MLAG VIP Domain Name

#The mlag domain must be unique name for each mlag domain.

#In case you have more than one pair of MLAG switches on the same

network, each domain (consist of two switches) should be configured with

different name.

mlag_domain_name: MLAG-VIP-DOM

#---------------------

Interface Details

#---------------------

#Storage Bond10G Interface details

#members to be defined with Eth in the format. Eg: Eth1/1

#Only numerical digits between 100 to 1000 allowed for mlag_id

#Operational link speed [variable 'speed' below] to be defined in terms

of bytes.

191

#For 10 Gigabyte operational speed, define 10G. [Possible values - 10G

and 25G]

#Interface descriptions append storage node data port numbers assuming

all Storage Nodes' Port C -> Mellanox Switch A and all Storage Nodes'

Port D -> Mellanox Switch B

#List the storage Bond10G interfaces, their description, speed and MLAG

IDs in list of dictionaries format

storage_interfaces:

- {members: "Eth1/1", description: "HCI_Storage_Node_01", mlag_id: 101,

speed: 25G}

- {members: "Eth1/2", description: "HCI_Storage_Node_02", mlag_id: 102,

speed: 25G}

#In case of additional storage nodes, add them here

#Storage Bond1G Interface

#Mention whether or not these Mellanox switches will also be used for

Storage Node Mgmt connections

#Possible inputs for storage_mgmt are 'yes' and 'no'

storage_mgmt: <<yes or no>>

#Storage Bond1G (Mgmt) interface details. Only if 'storage_mgmt' is set

to 'yes'

#Members to be defined with Eth in the format. Eg: Eth1/1

#Interface descriptions append storage node management port numbers

assuming all Storage Nodes' Port A -> Mellanox Switch A and all Storage

Nodes' Port B -> Mellanox Switch B

#List the storage Bond1G interfaces and their description in list of

dictionaries format

storage_mgmt_interfaces:

- {members: "Ethx/y", description: "HCI_Storage_Node_01"}

- {members: "Ethx/y", description: "HCI_Storage_Node_02"}

#In case of additional storage nodes, add them here

#LACP load balancing algorithm for IP hash method

#Possible options are: 'destination-mac', 'destination-ip',

'destination-port', 'source-mac', 'source-ip', 'source-port', 'source-

destination-mac', 'source-destination-ip', 'source-destination-port'

#This variable takes multiple options in a single go

#For eg: if you want to configure load to be distributed in the port-

channel based on the traffic source and destination IP address and port

number, use 'source-destination-ip source-destination-port'

#By default, Mellanox sets it to source-destination-mac. Enter the

values below only if you intend to configure any other load balancing

algorithm

#Make sure the load balancing algorithm that is set here is also

replicated on the host side

#Recommended algorithm is source-destination-ip source-destination-port

#Fill the lacp_load_balance variable only if you are using configuring

interfaces on compute nodes in bond or LAG with LACP

192

lacp_load_balance: "source-destination-ip source-destination-port"

#Compute Interface details

#Members to be defined with Eth in the format. Eg: Eth1/1

#Fill the mlag_id field only if you intend to configure interfaces of

compute nodes into bond or LAG with LACP

#In case you do not intend to configure LACP on interfaces of compute

nodes, either leave the mlag_id field unfilled or comment it or enter NA

in the mlag_id field

#In case you have a mixed architecture where some compute nodes require

LACP and some don't,

#1. Fill the mlag_id field with appropriate MLAG ID for interfaces that

connect to compute nodes requiring LACP

#2. Either fill NA or leave the mlag_id field blank or comment it for

interfaces connecting to compute nodes that do not require LACP

#Only numerical digits between 100 to 1000 allowed for mlag_id.

#Operational link speed [variable 'speed' below] to be defined in terms

of bytes.

#For 10 Gigabyte operational speed, define 10G. [Possible values - 10G

and 25G]

#Interface descriptions append compute node port numbers assuming all

Compute Nodes' Port D -> Mellanox Switch A and all Compute Nodes' Port E

-> Mellanox Switch B

#List the compute interfaces, their speed, MLAG IDs and their

description in list of dictionaries format

compute_interfaces:

- members: "Eth1/7"#Compute Node for ESXi, setup by NDE

 description: "HCI_Compute_Node_01"

 mlag_id: #Fill the mlag_id only if you wish to use LACP on interfaces

towards compute nodes

 speed: 25G

- members: "Eth1/8"#Compute Node for ESXi, setup by NDE

 description: "HCI_Compute_Node_02"

 mlag_id: #Fill the mlag_id only if you wish to use LACP on interfaces

towards compute nodes

 speed: 25G

#In case of additional compute nodes, add them here in the same format

as above- members: "Eth1/9"#Compute Node for Kubernetes Worker node

 description: "HCI_Compute_Node_01"

 mlag_id: 109 #Fill the mlag_id only if you wish to use LACP on

interfaces towards compute nodes

 speed: 10G

- members: "Eth1/10"#Compute Node for Kubernetes Worker node

 description: "HCI_Compute_Node_02"

 mlag_id: 110 #Fill the mlag_id only if you wish to use LACP on

interfaces towards compute nodes

 speed: 10G

193

#Uplink Switch LACP support

#Possible options are 'yes' and 'no' - Set to 'yes' only if your uplink

switch supports LACP

uplink_switch_lacp: <<yes or no>>

#Uplink Interface details

#Members to be defined with Eth in the format. Eg: Eth1/1

#Only numerical digits between 100 to 1000 allowed for mlag_id.

#Operational link speed [variable 'speed' below] to be defined in terms

of bytes.

#For 10 Gigabyte operational speed, define 10G. [Possible values in

Mellanox are 1G, 10G and 25G]

#List the uplink interfaces, their description, MLAG IDs and their speed

in list of dictionaries format

uplink_interfaces:

- members: "Eth1/18"

 description_switch_a: "SwitchA:Ethx/y -> Uplink_Switch:Ethx/y"

 description_switch_b: "SwitchB:Ethx/y -> Uplink_Switch:Ethx/y"

 mlag_id: 118 #Fill the mlag_id only if 'uplink_switch_lacp' is set to

'yes'

 speed: 10G

 mtu: 1500

The fingerprint for the switch’s key must match with that present in the host machine from

where the playbook is being executed. To ensure this, add the key to /root/.

ssh/known_host or any other appropriate location.

Rollback the Switch Configuration

1. In case of any timeout failures or partial configuration, run the following command to roll back the switch to

the initial state.

configuration switch-to pre-ansible

This operation requires a reboot of the switch.

2. Switch the configuration to the state before running the Ansible playbook.

configuration delete post-ansible

3. Delete the post-ansible file that had the configuration from the Ansible playbook.

configuration write to post-ansible

194

4. Create a new file with the same name post-ansible, write the pre-ansible configuration to it, and switch to

the new configuration to restart configuration.

IP Address Requirements

The deployment of the NetApp HCI inferencing platform with VMware and Kubernetes requires multiple IP

addresses to be allocated. The following table lists the number of IP addresses required. Unless otherwise

indicated, addresses are assigned automatically by NDE.

IP Address Quantity Details VLAN ID IP Address

One per storage and

compute node*

HCI terminal user

interface (TUI) addresses

16

One per vCenter Server

(VM)

vCenter Server

management address

3488

One per management

node (VM)

Management node IP

address

One per ESXi host ESXi compute

management addresses

One per storage/witness

node

NetApp HCI storage node

management addresses

One per storage cluster Storage cluster

management address

One per ESXi host VMware vMotion address 3489

Two per ESXi host ESXi host initiator address

for iSCSI storage traffic

3490

Two per storage node Storage node target

address for iSCSI storage

traffic

Two per storage cluster Storage cluster target

address for iSCSI storage

traffic

Two for mNode mNode iSCSI storage

access

The following IPs are assigned manually when the respective components are configured.

IP Address Quantity Details VLAN ID IP Address

One for Deployment Jump

Management network

Deployment Jump VM to

execute Ansible

playbooks and configure

other parts of the system

– management

connectivity

3488

One per Kubernetes

master node –

management network

Kubernetes master node

VMs (three nodes)

3488

195

IP Address Quantity Details VLAN ID IP Address

One per Kubernetes

worker node –

management network

Kubernetes worker nodes

(two nodes)

3488

One per Kubernetes

worker node – NFS

network

Kubernetes worker nodes

(two nodes)

3491

One per Kubernetes

worker node – application

network

Kubernetes worker nodes

(two nodes)

3487

Three for ONTAP Select –

management network

ONTAP Select VM 3488

One for ONTAP Select –

NFS network

ONTAP Select VM – NFS

data traffic

3491

At least two for Triton

Inference Server Load

Balancer – application

network

Load balancer IP range

for Kubernetes load

balancer service

3487

*This validation requires the initial setup of the first storage node TUI address. NDE automatically assigns the

TUI address for subsequent nodes.

DNS and Timekeeping Requirement

Depending on your deployment, you might need to prepare DNS records for your NetApp HCI system. NetApp

HCI requires a valid NTP server for timekeeping; you can use a publicly available time server if you do not

have one in your environment.

This validation involves deploying NetApp HCI with a new VMware vCenter Server instance using a fully

qualified domain name (FQDN). Before deployment, you must have one Pointer (PTR) record and one

Address (A) record created on the DNS server.

Next: Virtual Infrastructure with Automated Deployment

Deploy VMware Virtual Infrastructure on NetApp HCI with NDE (Automated Deployment)

NDE Deployment Prerequisites

Consult the NetApp HCI Prerequisites Checklist to see the requirements and recommendations for NetApp

HCI before you begin deployment.

1. Network and switch requirements and configuration

2. Prepare required VLAN IDs

3. Switch configuration

4. IP Address Requirements for NetApp HCI and VMware

5. DNS and time-keeping requirements

6. Final preparations

196

https://library.netapp.com/ecm/ecm_download_file/ECMLP2798490

NDE Execution

Before you execute the NDE, you must complete the rack and stack of all components, configuration of the

network switches, and verification of all prerequisites. You can execute NDE by connecting to the management

address of a single storage node if you plan to allow NDE to automatically configure all addresses.

NDE performs the following tasks to bring an HCI system online:

1. Installs the storage node (NetApp Element software) on a minimum of two storage nodes.

2. Installs the VMware hypervisor on a minimum of two compute nodes.

3. Installs VMware vCenter to manage the entire NetApp HCI stack.

4. Installs and configures the NetApp storage management node (mNode) and NetApp Monitoring Agent.

This validation uses NDE to automatically configure all addresses. You can also set up

DHCP in your environment or manually assign IP addresses for each storage node and

compute node. These steps are not covered in this guide.

As mentioned previously, this validation uses a two-cable configuration for compute nodes.

Detailed steps for the NDE are not covered in this document.

For step-by-step guidance on completing the deployment of the base NetApp HCI platform, see the

Deployment guide.

5. After NDE has finished, login to the vCenter and create a Distributed Port Group NetApp HCI VDS 01-

NFS_Network for the NFS network to be used by ONTAP Select and the application.

Next: Configure NetApp H615c (Manual Deployment)

Configure NetApp H615c (Manual Deployment)

In this solution, the NetApp H615c compute nodes are configured as Kubernetes worker

nodes. The Inferencing workload is hosted on these nodes.

Deploying the compute nodes involves the following tasks:

• Install Ubuntu 18.04.4 LTS.

• Configure networking for data and management access.

• Prepare the Ubuntu instances for Kubernetes deployment.

Install Ubuntu 18.04.4 LTS

The following high-level steps are required to install the operating system on the H615c compute nodes:

1. Download Ubuntu 18.04.4 LTS from Ubuntu releases.

2. Using a browser, connect to the IPMI of the H615c node and launch Remote Control.

3. Map the Ubuntu ISO using the Virtual Media Wizard and start the installation.

4. Select one of the two physical interfaces as the Primary network interface when prompted.

An IP from a DHCP source is allocated when available, or you can switch to a manual IP configuration

197

http://docs.netapp.com/hci/topic/com.netapp.doc.hci-ude-180/home.html?cp=3_0
http://cdimage.ubuntu.com/ubuntu/releases/18.04/release/

later. The network configuration is modified to a bond-based setup after the OS has been installed.

5. Provide a hostname followed by a domain name.

6. Create a user and provide a password.

7. Partition the disks according to your requirements.

8. Under Software Selection, select OpenSSH server and click Continue.

9. Reboot the node.

Configure Networking for Data and Management Access

The two physical network interfaces of the Kubernetes worker nodes are set up as a bond and VLAN

interfaces for management and application, and NFS data traffic is created on top of it.

The inferencing applications and associated containers use the application network for

connectivity.

1. Connect to the console of the Ubuntu instance as a user with root privileges and launch a terminal session.

2. Navigate to /etc/netplan and open the 01-netcfg.yaml file.

3. Update the netplan file based on the network details for the management, application, and NFS traffic in

your environment.

The following template of the netplan file was used in this solution:

This file describes the network interfaces available on your system

For more information, see netplan(5).

network:

 version: 2

 renderer: networkd

 ethernets:

 enp59s0f0: #Physical Interface 1

 match:

 macaddress: <<mac_address Physical Interface 1>>

 set-name: enp59s0f0

 mtu: 9000

 enp59s0f1: # Physical Interface 2

 match:

 macaddress: <<mac_address Physical Interface 2>>

 set-name: enp59s0f1

 mtu: 9000

 bonds:

 bond0:

 mtu: 9000

 dhcp4: false

 dhcp6: false

 interfaces: [enp59s0f0, enp59s0f1]

 parameters:

198

 mode: 802.3ad

 mii-monitor-interval: 100

 vlans:

 vlan.3488: #Management VLAN

 id: 3488

 xref:{relative_path}bond0

 dhcp4: false

 addresses: [ipv4_address/subnet]

 routes:

 - to: 0.0.0.0/0

 via: 172.21.232.111

 metric: 100

 table: 3488

 - to: x.x.x.x/x # Additional routes if any

 via: y.y.y.y

 metric: <<metric>>

 table: <<table #>>

 routing-policy:

 - from: 0.0.0.0/0

 priority: 32768#Higher Priority than table 3487

 table: 3488

 nameservers:

 addresses: [nameserver_ip]

 search: [search_domain]

 mtu: 1500

 vlan.3487:

 id: 3487

 xref:{relative_path}bond0

 dhcp4: false

 addresses: [ipv4_address/subnet]

 routes:

 - to: 0.0.0.0/0

 via: 172.21.231.111

 metric: 101

 table: 3487

 - to: x.x.x.x/x

 via: y.y.y.y

 metric: <<metric>>

 table: <<table #>>

 routing-policy:

 - from: 0.0.0.0/0

 priority: 32769#Lower Priority

 table: 3487

 nameservers:

 addresses: [nameserver_ip]

 search: [search_domain]

199

 mtu: 1500 vlan.3491:

 id: 3491

 xref:{relative_path}bond0

 dhcp4: false

 addresses: [ipv4_address/subnet]

 mtu: 9000

4. Confirm that the priorities for the routing policies are lower than the priorities for the main and default

tables.

5. Apply the netplan.

sudo netplan -–debug apply

6. Make sure that there are no errors.

7. If Network Manager is running, stop and disable it.

systemctl stop NetworkManager

systemctl disable NetworkManager

8. Add a host record for the server in DNS.

9. Open a VI editor to /etc/iproute2/rt_tables and add the two entries.

#

reserved values

#

255 local

254 main

253 default

0 unspec

#

local

#

#1 inr.ruhep

101 3488

102 3487

10. Match the table number to what you used in the netplan.

11. Open a VI editor to /etc/sysctl.conf and set the value of the following parameters.

net.ipv4.conf.default.rp_filter=0

net.ipv4.conf.all.rp_filter=0net.ipv4.ip_forward=1

200

12. Update the system.

sudo apt-get update && sudo apt-get upgrade

13. Reboot the system

14. Repeat steps 1 through 13 for the other Ubuntu instance.

Next: Set Up the Deployment Jump and the Kubernetes Master Node VMs (Manual Deployment)

Set Up the Deployment Jump VM and the Kubernetes Master Node VMs (Manual Deployment)

A Deployment Jump VM running a Linux distribution is used for the following purposes:

• Deploying ONTAP Select using an Ansible playbook

• Deploying the Kubernetes infrastructure with NVIDIA DeepOps and GPU Operator

• Installing and configuring NetApp Trident

Three more VMs running Linux are set up; these VMs are configured as Kubernetes Master Nodes in this

solution.

Ubuntu 18.04.4 LTS was used in this solution deployment.

1. Deploy the Ubuntu 18.04.4 LTS VM with VMware tools

You can refer to the high-level steps described in section Install Ubuntu 18.04.4 LTS.

2. Configure the in-band management network for the VM. See the following sample netplan template:

201

https://docs.netapp.com/us-en/netapp-solutions/ai/hciaiedge_netapp_h615cmanual_deployment.html#install-ubuntu-18.04.4-lts

This file describes the network interfaces available on your system

For more information, see netplan(5).

network:

 version: 2

 renderer: networkd

 ethernets:

 ens160:

 dhcp4: false

 addresses: [ipv4_address/subnet]

 routes:

 - to: 0.0.0.0/0

 via: 172.21.232.111

 metric: 100

 table: 3488

 routing-policy:

 - from: 0.0.0.0/0

 priority: 32768

 table: 3488

 nameservers:

 addresses: [nameserver_ip]

 search: [search_domain]

 mtu: 1500

This template is not the only way to setup the network. You can use any other approach that you prefer.

3. Apply the netplan.

sudo netplan –-debug apply

4. Stop and disable Network Manager if it is running.

systemctl stop NetworkManager

systemctl disable NetworkManager

5. Open a VI editor to /etc/iproute2/rt_tables and add a table entry.

202

#

reserved values

#

255 local

254 main

253 default

0 unspec

#

local

#

#1 inr.ruhep

101 3488

6. Add a host record for the VM in DNS.

7. Verify outbound internet access.

8. Update the system.

sudo apt-get update && sudo apt-get upgrade

9. Reboot the system.

10. Repeat steps 1 through 9 to set up the other three VMs.

Next: Deploy a Kubernetes Cluster with NVIDIA DeepOps (Automated Deployment)

Deploy a Kubernetes Cluster with NVIDIA DeepOps Automated Deployment

To deploy and configure the Kubernetes Cluster with NVIDIA DeepOps, complete the

following steps:

1. Make sure that the same user account is present on all the Kubernetes master and worker nodes.

2. Clone the DeepOps repository.

git clone https://github.com/NVIDIA/deepops.git

3. Check out a recent release tag.

cd deepops

git checkout tags/20.08

If this step is skipped, the latest development code is used, not an official release.

4. Prepare the Deployment Jump by installing the necessary prerequisites.

203

./scripts/setup.sh

5. Create and edit the Ansible inventory by opening a VI editor to deepops/config/inventory.

a. List all the master and worker nodes under [all].

b. List all the master nodes under [kube-master]

c. List all the master nodes under [etcd]

d. List all the worker nodes under [kube-node]

6. Enable GPUOperator by opening a VI editor to deepops/config/group_vars/k8s-cluster.yml.

204

7. Set the value of deepops_gpu_operator_enabled to true.

8. Verify the permissions and network configuration.

ansible all -m raw -a "hostname" -k -K

◦ If SSH to the remote hosts requires a password, use -k.

◦ If sudo on the remote hosts requires a password, use -K.

9. If the previous step passed without any issues, proceed with the setup of Kubernetes.

ansible-playbook --limit k8s-cluster playbooks/k8s-cluster.yml -k -K

10. To verify the status of the Kubernetes nodes and the pods, run the following commands:

kubectl get nodes

kubectl get pods -A

It can take a few minutes for all the pods to run.

205

11. Verify that the Kubernetes setup can access and use the GPUs.

./scripts/k8s_verify_gpu.sh

Expected sample output:

rarvind@deployment-jump:~/deepops$./scripts/k8s_verify_gpu.sh

job_name=cluster-gpu-tests

Node found with 3 GPUs

Node found with 3 GPUs

total_gpus=6

Creating/Deleting sandbox Namespace

updating test yml

downloading containers ...

206

job.batch/cluster-gpu-tests condition met

executing ...

Mon Aug 17 16:02:45 2020

+---

------+

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:

10.2 |

|-------------------------------+----------------------

+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile

Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util

Compute M. |

|===============================+======================+================

======|

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10W / 70W | 0MiB / 15109MiB | 0%

Default |

+-------------------------------+----------------------

+----------------------+

+---

------+

| Processes: GPU

Memory |

| GPU PID Type Process name Usage

|

|===

======|

| No running processes found

|

+---

------+

Mon Aug 17 16:02:45 2020

+---

------+

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:

10.2 |

|-------------------------------+----------------------

+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile

Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util

Compute M. |

|===============================+======================+================

======|

207

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10W / 70W | 0MiB / 15109MiB | 0%

Default |

+-------------------------------+----------------------

+----------------------+

+---

------+

| Processes: GPU

Memory |

| GPU PID Type Process name Usage

|

|===

======|

| No running processes found

|

+---

------+

Mon Aug 17 16:02:45 2020

+---

------+

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:

10.2 |

|-------------------------------+----------------------

+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile

Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util

Compute M. |

|===============================+======================+================

======|

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10W / 70W | 0MiB / 15109MiB | 0%

Default |

+-------------------------------+----------------------

+----------------------+

+---

------+

| Processes: GPU

Memory |

| GPU PID Type Process name Usage

|

|===

======|

| No running processes found

208

|

+---

------+

Mon Aug 17 16:02:45 2020

+---

------+

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:

10.2 |

|-------------------------------+----------------------

+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile

Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util

Compute M. |

|===============================+======================+================

======|

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10W / 70W | 0MiB / 15109MiB | 0%

Default |

+-------------------------------+----------------------

+----------------------+

+---

------+

| Processes: GPU

Memory |

| GPU PID Type Process name Usage

|

|===

======|

| No running processes found

|

+---

------+

Mon Aug 17 16:02:45 2020

+---

------+

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:

10.2 |

|-------------------------------+----------------------

+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile

Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util

Compute M. |

|===============================+======================+================

209

======|

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10W / 70W | 0MiB / 15109MiB | 0%

Default |

+-------------------------------+----------------------

+----------------------+

+---

------+

| Processes: GPU

Memory |

| GPU PID Type Process name Usage

|

|===

======|

| No running processes found

|

+---

------+

Mon Aug 17 16:02:45 2020

+---

------+

| NVIDIA-SMI 440.64.00 Driver Version: 440.64.00 CUDA Version:

10.2 |

|-------------------------------+----------------------

+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile

Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util

Compute M. |

|===============================+======================+================

======|

| 0 Tesla T4 On | 00000000:18:00.0 Off |

0 |

| N/A 38C P8 10W / 70W | 0MiB / 15109MiB | 0%

Default |

+-------------------------------+----------------------

+----------------------+

+---

------+

| Processes: GPU

Memory |

| GPU PID Type Process name Usage

|

|===

======|

210

| No running processes found

|

+---

------+

Number of Nodes: 2

Number of GPUs: 6

6 / 6 GPU Jobs COMPLETED

job.batch "cluster-gpu-tests" deleted

namespace "cluster-gpu-verify" deleted

12. Install Helm on the Deployment Jump.

./scripts/install_helm.sh

13. Remove the taints on the master nodes.

kubectl taint nodes --all node-role.kubernetes.io/master-

This step is required to run the LoadBalancer pods.

14. Deploy LoadBalancer.

15. Edit the config/helm/metallb.yml file and provide a range of IP ddresses in the Application

Network to be used as LoadBalancer.

Default address range matches private network for the virtual cluster

defined in virtual/.

You should set this address range based on your site's infrastructure.

configInline:

 address-pools:

 - name: default

 protocol: layer2

 addresses:

 - 172.21.231.130-172.21.231.140#Application Network

controller:

 nodeSelector:

 node-role.kubernetes.io/master: ""

16. Run a script to deploy LoadBalancer.

./scripts/k8s_deploy_loadbalancer.sh

211

17. Deploy an Ingress Controller.

./scripts/k8s_deploy_ingress.sh

Next: Deploy and Configure ONTAP Select in the VMware Virtual Infrastructure (Automated Deployment)

Deploy and Configure ONTAP Select in the VMware Virtual Infrastructure (Automated Deployment)

To deploy and configure an ONTAP Select instance within the VMware Virtual

Infrastructure, complete the following steps:

1. From the Deployment Jump VM, login to the NetApp Support Site and download the ONTAP Select OVA

for ESXi.

2. Create a directory OTS and obtain the Ansible roles for deploying ONTAP Select.

mkdir OTS

cd OTS

git clone https://github.com/NetApp/ansible.git

cd ansible

3. Install the prerequisite libraries.

212

https://mysupport.netapp.com/site/products/all/details/ontap-select/downloads-tab/download/62293/9.7

pip install requests

pip install pyvmomi

Open a VI Editor and create a playbook ‘`ots_setup.yaml`’ with the below

content to deploy the ONTAP Select OVA and initialize the ONTAP cluster.

- name: Create ONTAP Select Deploy VM from OVA (ESXi)

 hosts: localhost

 gather_facts: false

 connection: 'local'

 vars_files:

 - ots_deploy_vars.yaml

 roles:

 - na_ots_deploy

- name: Wait for 1 minute before starting cluster setup

 hosts: localhost

 gather_facts: false

 tasks:

 - pause:

 minutes: 1

- name: Create ONTAP Select cluster (ESXi)

 hosts: localhost

 gather_facts: false

 vars_files:

 - ots_cluster_vars.yaml

 roles:

 - na_ots_cluster

4. Open a VI editor, create a variable file ots_deploy_vars.yaml, and fill in hte following parameters:

213

target_vcenter_or_esxi_host: "10.xxx.xx.xx"# vCenter IP

host_login: "yourlogin@yourlab.local" # vCenter Username

ovf_path: "/run/deploy/ovapath/ONTAPdeploy.ova"# Path to OVA on

Deployment Jump VM

datacenter_name: "your-Lab"# Datacenter name in vCenter

esx_cluster_name: "your Cluster"# Cluster name in vCenter

datastore_name: "your-select-dt"# Datastore name in vCenter

mgt_network: "your-mgmt-network"# Management Network to be used by OVA

deploy_name: "test-deploy-vm"# Name of the ONTAP Select VM

deploy_ipAddress: "10.xxx.xx.xx"# Management IP Address of ONTAP Select

VM

deploy_gateway: "10.xxx.xx.1"# Default Gateway

deploy_proxy_url: ""# Proxy URL (Optional and if used)

deploy_netMask: "255.255.255.0"# Netmask

deploy_product_company: "NetApp"# Name of Organization

deploy_primaryDNS: "10.xxx.xx.xx"# Primary DNS IP

deploy_secondaryDNS: ""# Secondary DNS (Optional)

deploy_searchDomains: "your.search.domain.com"# Search Domain Name

Update the variables to match your environment.

5. Open a VI editor, create a variable file ots_cluster_vars.yaml, and fill it out with the following

parameters:

214

node_count: 1#Number of nodes in the ONTAP Cluster

monitor_job: truemonitor_deploy_job: true

deploy_api_url: #Use the IP of the ONTAP Select VM

deploy_login: "admin"

vcenter_login: "administrator@vsphere.local"

vcenter_name: "172.21.232.100"

esxi_hosts:

 - host_name: 172.21.232.102

 - host_name: 172.21.232.103

cluster_name: "hci-ai-ots"# Name of ONTAP Cluster

cluster_ip: "172.21.232.118"# Cluster Management IP

cluster_netmask: "255.255.255.0"

cluster_gateway: "172.21.232.1"

cluster_ontap_image: "9.7"

cluster_ntp:

 - "10.61.186.231"

cluster_dns_ips:

 - "10.61.186.231"

cluster_dns_domains:

 - "sddc.netapp.com"

mgt_network: "NetApp HCI VDS 01-Management_Network"# Name of VM Port

Group for Mgmt Network

data_network: "NetApp HCI VDS 01-NFS_Network"# Name of VM Port Group for

NFS Network

internal_network: ""# Not needed for Single Node Cluster

instance_type: "small"

cluster_nodes:

 - node_name: "{{ cluster_name }}-01"

 ipAddress: 172.21.232.119# Node Management IP

 storage_pool: NetApp-HCI-Datastore-02 # Name of Datastore in vCenter

to use

 capacityTB: 1# Usable capacity will be ~700GB

 host_name: 172.21.232.102# IP Address of an ESXi host to deploy node

Update the variables to match your environment.

6. Start ONTAP Select setup.

ansible-playbook ots_setup.yaml --extra-vars deploy_pwd=$'"P@ssw0rd"'

--extra-vars vcenter_password=$'"P@ssw0rd"' --extra-vars

ontap_pwd=$'"P@ssw0rd"' --extra-vars host_esx_password=$'"P@ssw0rd"'

--extra-vars host_password=$'"P@ssw0rd"' --extra-vars

deploy_password=$'"P@ssw0rd"'

215

7. Update the command with deploy_pwd `(ONTAP Select VM instance),

`vcenter_password(vCenter), ontap_pwd (ONTAP login password), host_esx_password (VMware

ESXi), host_password (vCenter), and deploy_password (ONTAP Select VM instance).

Configure the ONTAP Select Cluster – Manual Deployment

To configure the ONTAP Select cluster, complete the following steps:

1. Open a browser and log into the ONTAP cluster’s System Manager using its cluster management IP.

2. On the DASHBOARD page, click Prepare Storage under Capacity.

3. Select the radio button to continue without onboard key manager, and click Prepare Storage.

4. On the NETWORK page, click the + sign in the Broadcast Domains window.

5. Enter the Name as NFS, set the MTU to 9000, and select the port e0b. Click Save.

216

6. On the DASHBOARD page, click Configure Protocols under Network.

217

7. Enter a name for the SVM, select Enable NFS, provide an IP and subnet mask for the NFS LIF, set the

Broadcast Domain to NFS, and click Save.

8. Click STORAGE in the left pane, and from the dropdown select Storage VMs

a. Edit the SVM.

218

b. Select the checkbox under Resource Allocation, make sure that the local tier is listed, and click Save.

219

9. Click the SVM name, and on the right panel scroll down to Policies.

10. Click the arrow within the Export Policies tile, and click the default policy.

11. If there is a rule already defined, you can edit it; if no rule exists, then create a new one.

a. Select NFS Network Clients as the Client Specification.

b. Select the Read-Only and Read/Write checkboxes.

c. Select the checkbox to Allow Superuser Access.

220

Next: Deploy NetApp Trident (Automated Deployment)

Deploy NetApp Trident (Automated Deployment)

NetApp Trident is deployed by using an Ansible playbook that is available with NVIDIA DeepOps. Follow these

steps to set up NetApp Trident:

1. From the Deployment Jump VM, navigate to the DeepOps directory and open a VI editor to

config/group_vars/netapp-trident.yml. The file from DeepOps lists two backends and two

storage classes. In this solution only one backend and storage class are used.

Use the following template to update the file and its parameters (highlighted in yellow) to match your

environment.

221

vars file for netapp-trident playbook

URL of the Trident installer package that you wish to download and use

trident_version: "20.07.0"# Version of Trident desired

trident_installer_url:

"https://github.com/NetApp/trident/releases/download/v{{ trident_version

}}/trident-installer-{{ trident_version }}.tar.gz"

Kubernetes version

Note: Do not include patch version, e.g. provide value of 1.16, not

1.16.7.

Note: Versions 1.14 and above are supported when deploying Trident

with DeepOps.

If you are using an earlier version, you must deploy Trident

manually.

k8s_version: 1.17.9# Version of Kubernetes running

Denotes whether or not to create new backends after deploying trident

For more info, refer to: https://netapp-

trident.readthedocs.io/en/stable-v20.04/kubernetes/operator-

install.html#creating-a-trident-backend

create_backends: true

List of backends to create

For more info on parameter values, refer to: https://netapp-

trident.readthedocs.io/en/stable-

v20.04/kubernetes/operations/tasks/backends/ontap.html

Note: Parameters other than those listed below are not avaible when

creating a backend via DeepOps

If you wish to use other parameter values, you must create your

backend manually.

backends_to_create:

 - backendName: ontap-flexvol

 storageDriverName: ontap-nas # only 'ontap-nas' and 'ontap-nas-

flexgroup' are supported when creating a backend via DeepOps

 managementLIF: 172.21.232.118# Cluster Management IP or SVM Mgmt LIF

IP

 dataLIF: 172.21.235.119# NFS LIF IP

 svm: infra-NFS-hci-ai# Name of SVM

 username: admin# Username to connect to the ONTAP cluster

 password: P@ssw0rd# Password to login

 storagePrefix: trident

 limitAggregateUsage: ""

 limitVolumeSize: ""

 nfsMountOptions: ""

 defaults:

 spaceReserve: none

 snapshotPolicy: none

 snapshotReserve: 0

222

 splitOnClone: false

 encryption: false

 unixPermissions: 777

 snapshotDir: false

 exportPolicy: default

 securityStyle: unix

 tieringPolicy: none

Add additional backends as needed

Denotes whether or not to create new StorageClasses for your NetApp

storage

For more info, refer to: https://netapp-

trident.readthedocs.io/en/stable-v20.04/kubernetes/operator-

install.html#creating-a-storage-class

create_StorageClasses: true

List of StorageClasses to create

Note: Each item in the list should be an actual K8s StorageClass

definition in yaml format

For more info on StorageClass definitions, refer to https://netapp-

trident.readthedocs.io/en/stable-

v20.04/kubernetes/concepts/objects.html#kubernetes-storageclass-objects.

storageClasses_to_create:

 - apiVersion: storage.k8s.io/v1

 kind: StorageClass

 metadata:

 name: ontap-flexvol

 annotations:

 storageclass.kubernetes.io/is-default-class: "true"

 provisioner: csi.trident.netapp.io

 parameters:

 backendType: "ontap-nas"

Add additional StorageClasses as needed

Denotes whether or not to copy tridenctl binary to localhost

copy_tridentctl_to_localhost: true

Directory that tridentctl will be copied to on localhost

tridentctl_copy_to_directory: ../ # will be copied to 'deepops/'

directory

2. Setup NetApp Trident by using the Ansible playbook.

ansible-playbook -l k8s-cluster playbooks/netapp-trident.yml

3. Verify that Trident is running.

./tridentctl -n trident version

223

The expected output is as follows:

rarvind@deployment-jump:~/deepops$./tridentctl -n trident version

+----------------+----------------+

| SERVER VERSION | CLIENT VERSION |

+----------------+----------------+

| 20.07.0 | 20.07.0 |

+----------------+----------------+

Next: Deploy NVIDIA Triton Inference Server (Automated Deployment)

Deploy NVIDIA Triton Inference Server (Automated Deployment)

To set up automated deployment for the Triton Inference Server, complete the following steps:

1. Open a VI editor and create a PVC yaml file vi pvc-triton-model- repo.yaml.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: triton-pvc namespace: triton

spec:

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 10Gi

 storageClassName: ontap-flexvol

2. Create the PVC.

kubectl create -f pvc-triton-model-repo.yaml

3. Open a VI editor, create a deployment for the Triton Inference Server, and call the file

triton_deployment.yaml.

apiVersion: v1

kind: Service

metadata:

 labels:

 app: triton-3gpu

 name: triton-3gpu

 namespace: triton

224

spec:

 ports:

 - name: grpc-trtis-serving

 port: 8001

 targetPort: 8001

 - name: http-trtis-serving

 port: 8000

 targetPort: 8000

 - name: prometheus-metrics

 port: 8002

 targetPort: 8002

 selector:

 app: triton-3gpu

 type: LoadBalancer

apiVersion: v1

kind: Service

metadata:

 labels:

 app: triton-1gpu

 name: triton-1gpu

 namespace: triton

spec:

 ports:

 - name: grpc-trtis-serving

 port: 8001

 targetPort: 8001

 - name: http-trtis-serving

 port: 8000

 targetPort: 8000

 - name: prometheus-metrics

 port: 8002

 targetPort: 8002

 selector:

 app: triton-1gpu

 type: LoadBalancer

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 app: triton-3gpu

 name: triton-3gpu

 namespace: triton

spec:

 replicas: 1

225

 selector:

 matchLabels:

 app: triton-3gpu version: v1

 template:

 metadata:

 labels:

 app: triton-3gpu

 version: v1

 spec:

 containers:

 - image: nvcr.io/nvidia/tritonserver:20.07-v1-py3

 command: ["/bin/sh", "-c"]

 args: ["trtserver --model-store=/mnt/model-repo"]

 imagePullPolicy: IfNotPresent

 name: triton-3gpu

 ports:

 - containerPort: 8000

 - containerPort: 8001

 - containerPort: 8002

 resources:

 limits:

 cpu: "2"

 memory: 4Gi

 nvidia.com/gpu: 3

 requests:

 cpu: "2"

 memory: 4Gi

 nvidia.com/gpu: 3

 volumeMounts:

 - name: triton-model-repo

 mountPath: /mnt/model-repo nodeSelector:

 gpu-count: “3”

 volumes:

 - name: triton-model-repo

 persistentVolumeClaim:

 claimName: triton-pvc---

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 app: triton-1gpu

 name: triton-1gpu

 namespace: triton

spec:

 replicas: 3

 selector:

226

 matchLabels:

 app: triton-1gpu

 version: v1

 template:

 metadata:

 labels:

 app: triton-1gpu

 version: v1

 spec:

 containers:

 - image: nvcr.io/nvidia/tritonserver:20.07-v1-py3

 command: ["/bin/sh", "-c", “sleep 1000”]

 args: ["trtserver --model-store=/mnt/model-repo"]

 imagePullPolicy: IfNotPresent

 name: triton-1gpu

 ports:

 - containerPort: 8000

 - containerPort: 8001

 - containerPort: 8002

 resources:

 limits:

 cpu: "2"

 memory: 4Gi

 nvidia.com/gpu: 1

 requests:

 cpu: "2"

 memory: 4Gi

 nvidia.com/gpu: 1

 volumeMounts:

 - name: triton-model-repo

 mountPath: /mnt/model-repo nodeSelector:

 gpu-count: “1”

 volumes:

 - name: triton-model-repo

 persistentVolumeClaim:

 claimName: triton-pvc

Two deployments are created here as an example. The first deployment spins up a pod that uses three

GPUs and has replicas set to 1. The other deployment spins up three pods each using one GPU while the

replica is set to 3. Depending on your requirements, you can change the GPU allocation and replica

counts.

Both of the deployments use the PVC created earlier and this persistent storage is provided to the Triton

inference servers as the model repository.

For each deployment, a service of type LoadBalancer is created. The Triton Inference Server can be

accessed by using the LoadBalancer IP which is in the application network.

227

A nodeSelector is used to ensure that both deployments get the required number of GPUs without any

issues.

4. Label the K8 worker nodes.

kubectl label nodes hci-ai-k8-worker-01 gpu-count=3

kubectl label nodes hci-ai-k8-worker-02 gpu-count=1

5. Create the deployment.

kubectl apply -f triton_deployment.yaml

6. Make a note of the LoadBalancer service external LPS.

kubectl get services -n triton

The expected sample output is as follows:

7. Connect to any one of the pods that were created from the deployment.

kubectl exec -n triton --stdin --tty triton-1gpu-86c4c8dd64-545lx --

/bin/bash

8. Set up the model repository by using the example model repository.

git clone

cd triton-inference-server

git checkout r20.07

9. Fetch any missing model definition files.

cd docs/examples

./fetch_models.sh

10. Copy all the models to the model repository location or just a specific model that you wish to use.

cp -r model_repository/resnet50_netdef/ /mnt/model-repo/

228

In this solution, only the resnet50_netdef model is copied over to the model repository as an example.

11. Check the status of the Triton Inference Server.

curl -v <<LoadBalancer_IP_recorded earlier>>:8000/api/status

The expected sample output is as follows:

curl -v 172.21.231.132:8000/api/status

* Trying 172.21.231.132...

* TCP_NODELAY set

* Connected to 172.21.231.132 (172.21.231.132) port 8000 (#0)

> GET /api/status HTTP/1.1

> Host: 172.21.231.132:8000

> User-Agent: curl/7.58.0

> Accept: */*

>

< HTTP/1.1 200 OK

< NV-Status: code: SUCCESS server_id: "inference:0" request_id: 9

< Content-Length: 1124

< Content-Type: text/plain

<

id: "inference:0"

version: "1.15.0"

uptime_ns: 377890294368

model_status {

 key: "resnet50_netdef"

 value {

 config {

 name: "resnet50_netdef"

 platform: "caffe2_netdef"

 version_policy {

 latest {

 num_versions: 1

 }

 }

 max_batch_size: 128

 input {

 name: "gpu_0/data"

 data_type: TYPE_FP32

 format: FORMAT_NCHW

 dims: 3

 dims: 224

 dims: 224

 }

229

 output {

 name: "gpu_0/softmax"

 data_type: TYPE_FP32

 dims: 1000

 label_filename: "resnet50_labels.txt"

 }

 instance_group {

 name: "resnet50_netdef"

 count: 1

 gpus: 0

 gpus: 1

 gpus: 2

 kind: KIND_GPU

 }

 default_model_filename: "model.netdef"

 optimization {

 input_pinned_memory {

 enable: true

 }

 output_pinned_memory {

 enable: true

 }

 }

 }

 version_status {

 key: 1

 value {

 ready_state: MODEL_READY

 ready_state_reason {

 }

 }

 }

 }

}

ready_state: SERVER_READY

* Connection #0 to host 172.21.231.132 left intact

Next: Deploy the Client for Triton Inference Server (Automated Deployment)

Deploy the Client for Triton Inference Server (Automated Deployment)

To deploy the client for the Triton Inference Server, complete the following steps:

1. Open a VI editor, create a deployment for the Triton client, and call the file triton_client.yaml.

230

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 app: triton-client

 name: triton-client

 namespace: triton

spec:

 replicas: 1

 selector:

 matchLabels:

 app: triton-client

 version: v1

 template:

 metadata:

 labels:

 app: triton-client

 version: v1

 spec:

 containers:

 - image: nvcr.io/nvidia/tritonserver:20.07- v1- py3-clientsdk

 imagePullPolicy: IfNotPresent

 name: triton-client

 resources:

 limits:

 cpu: "2"

 memory: 4Gi

 requests:

 cpu: "2"

 memory: 4Gi

2. Deploy the client.

kubectl apply -f triton_client.yaml

Next: Collect Inference Metrics from Triton Inference Server

Collect Inference Metrics from Triton Inference Server

The Triton Inference Server provides Prometheus metrics indicating GPU and request

statistics.

By default, these metrics are available at "http://<triton_inference_server_IP>:8002/metrics".

231

The Triton Inference Server IP is the LoadBalancer IP that was recorded earlier.

The metrics are only available by accessing the endpoint and are not pushed or published to any remote

server.

232

Next: Validation Results

Validation Results

To run a sample inference request, complete the following steps:

1. Get a shell to the client container/pod.

kubectl exec --stdin --tty <<client_pod_name>> -- /bin/bash

2. Run a sample inference request.

image_client -m resnet50_netdef -s INCEPTION -u

<<LoadBalancer_IP_recorded earlier>>:8000 -c 3 images/mug.jpg

This inferencing request calls the resnet50_netdef model that is used for image recognition. Other

clients can also send inferencing requests concurrently by following a similar approach and calling out the

appropriate model.

Next: Where to Find Additional Information

Additional Information

To learn more about the information that is described in this document, review the

following documents and/or websites:

233

• NetApp HCI Theory of Operations

https://www.netapp.com/us/media/wp-7261.pdf

• NetApp Product Documentation

docs.netapp.com

• NetApp HCI Solution Catalog Documentation

https://docs.netapp.com/us-en/hci/solutions/index.html

• HCI Resources page

https://mysupport.netapp.com/info/web/ECMLP2831412.html

• ONTAP Select

https://www.netapp.com/us/products/data-management-software/ontap-select-sds.aspx

• NetApp Trident

https://netapp-trident.readthedocs.io/en/stable-v20.01/

• NVIDIA DeepOps

https://github.com/NVIDIA/deepops

• NVIDIA Triton Inference Server

https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-master-branch-guide/docs/index.html

AI Inferencing at the Edge - NetApp with Lenovo ThinkSystem - Solution Design

TR-4886: AI Inferencing at the Edge - NetApp with Lenovo ThinkSystem - Solution Design

Sathish Thyagarajan, NetApp

Miroslav Hodak, Lenovo

Summary

Several emerging application scenarios, such as advanced driver-assistance systems (ADAS), Industry 4.0,

smart cities, and Internet of Things (IoT), require the processing of continuous data streams under a near-zero

latency. This document describes a compute and storage architecture to deploy GPU-based artificial

intelligence (AI) inferencing on NetApp storage controllers and Lenovo ThinkSystem servers in an edge

environment that meets these requirements. This document also provides performance data for the industry

standard MLPerf Inference benchmark, evaluating various inference tasks on edge servers equipped with

NVIDIA T4 GPUs. We investigate the performance of offline, single stream, and multistream inference

scenarios and show that the architecture with a cost-effective shared networked storage system is highly

performant and provides a central point for data and model management for multiple edge servers.

Introduction

Companies are increasingly generating massive volumes of data at the network edge. To achieve maximum

value from smart sensors and IoT data, organizations are looking for a real-time event streaming solution that

234

https://www.netapp.com/us/media/wp-7261.pdf
https://docs.netapp.com/us-en/hci/solutions/index.html
https://mysupport.netapp.com/info/web/ECMLP2831412.html
https://www.netapp.com/us/products/data-management-software/ontap-select-sds.aspx
https://netapp-trident.readthedocs.io/en/stable-v20.01/
https://github.com/NVIDIA/deepops
https://docs.nvidia.com/deeplearning/sdk/triton-inference-server-master-branch-guide/docs/index.html

enables edge computing. Computationally demanding jobs are therefore increasingly performed at the edge,

outside of data centers. AI inference is one of the drivers of this trend. Edge servers provide sufficient

computational power for these workloads, especially when using accelerators, but limited storage is often an

issue, especially in multiserver environments. In this document we show how you can deploy a shared storage

system in the edge environment and how it benefits AI inference workloads without imposing a performance

penalty.

This document describes a reference architecture for AI inference at the edge. It combines multiple Lenovo

ThinkSystem edge servers with a NetApp storage system to create a solution that is easy to deploy and

manage. It is intended to be a baseline guide for practical deployments in various situations, such as the

factory floor with multiple cameras and industrial sensors, point- of- sale (POS) systems in retail transactions,

or Full Self-Driving (FSD) systems that identify visual anomalies in autonomous vehicles.

This document covers testing and validation of a compute and storage configuration consisting of Lenovo

ThinkSystem SE350 Edge Server and an entry-level NetApp AFF and EF-Series storage system. The

reference architectures provide an efficient and cost-effective solution for AI deployments while also providing

comprehensive data services, integrated data protection, seamless scalability, and cloud connected data

storage with NetApp ONTAP and NetApp SANtricity data management software.

Target audience

This document is intended for the following audiences:

• Business leaders and enterprise architects who want to productize AI at the edge.

• Data scientists, data engineers, AI/machine learning (ML) researchers, and developers of AI systems.

• Enterprise architects who design solutions for the development of AI/ML models and applications.

• Data scientists and AI engineers looking for efficient ways to deploy deep learning (DL) and ML models.

• Edge device managers and edge server administrators responsible for deployment and management of

edge inferencing models.

Solution architecture

This Lenovo ThinkSystem server and NetApp ONTAP or NetApp SANtricity storage solution is designed to

handle AI inferencing on large datasets using the processing power of GPUs alongside traditional CPUs. This

validation demonstrates high performance and optimal data management with an architecture that uses either

single or multiple Lenovo SR350 edge servers interconnected with a single NetApp AFF storage system, as

shown in the following two figures.

235

236

The logical architecture overview in the following figure shows the roles of the compute and storage elements

in this architecture. Specifically, it shows the following:

• Edge compute devices performing inference on the data it receives from cameras, sensors, and so on.

• A shared storage element that serves multiple purposes:

◦ Provides a central location for inference models and other data needed to perform the inference.

Compute servers access the storage directly and use inference models across the network without the

need to copy them locally.

◦ Updated models are pushed here.

◦ Archives input data that edge servers receive for later analysis. For example, if the edge devices are

connected to cameras, the storage element keeps the videos captured by the cameras.

237

red blue

Lenovo compute system NetApp AFF storage system

Edge devices performing inference on inputs from

cameras, sensors, and so on.

Shared storage holding inference models and data

from edge devices for later analysis.

This NetApp and Lenovo solution offers the following key benefits:

• GPU accelerated computing at the edge.

• Deployment of multiple edge servers backed and managed from a shared storage.

• Robust data protection to meet low recovery point objectives (RPOs) and recovery time objectives (RTOs)

with no data loss.

• Optimized data management with NetApp Snapshot copies and clones to streamline development

workflows.

How to use this architecture

This document validates the design and performance of the proposed architecture. However, we have not

tested certain software-level pieces, such us container, workload, or model management and data

synchronization with cloud or data center on-premises, because they are specific to a deployment scenario.

Here, multiple choices exist.

At the container management level, Kubernetes container management is a good choice and is well supported

in either a fully upstream version (Canonical) or in a modified version suitable for enterprise deployments (Red

Hat). The NetApp AI Control Planehttps://www.netapp.com/pdf.html?item=/media/17241-tr4798pdf.pdf[,] which

leverages NetApp Trident and the newly added NetApp DataOps Toolkithttps://github.com/NetApp/netapp-

data-science-toolkit[,] provides built-in traceability, data management functions, interfaces, and tools for data

scientists and data engineers to integrate with NetApp storage. Kubeflow, the ML toolkit for Kubernetes,

provides additional AI capabilities along with a support for model versioning and KFServing on several

platforms such as TensorFlow Serving or NVIDIA Triton Inference Server. Another option is NVIDIA EGX

platform, which provides workload management along with access to a catalog of GPU-enabled AI inference

containers. However, these options might require significant effort and expertise to put them into production

and might require the assistance of a third-party independent software vendor (ISV) or consultant.

Solution areas

The key benefit of AI inferencing and edge computing is the ability of devices to compute, process, and

analyze data with a high level of quality without latency. There are far too many examples of edge computing

use cases to describe in this document, but here are a few prominent ones:

Automobiles: Autonomous vehicles

The classic edge computing illustration is in the advanced driver-assistance systems (ADAS) in autonomous

vehicles (AV). The AI in driverless cars must rapidly process a lot of data from cameras and sensors to be a

successful safe driver. Taking too long to interpret between an object and a human can mean life or death,

therefore being able to process that data as close to the vehicle as possible is crucial. In this case, one or more

edge compute servers handles the input from cameras, RADAR, LiDAR, and other sensors, while shared

storage holds inference models and stores input data from sensors.

Healthcare: Patient monitoring

One of the greatest impacts of AI and edge computing is its ability to enhance continuous monitoring of

238

https://www.netapp.com/pdf.html?item=/media/17241-tr4798pdf.pdf
https://github.com/NetApp/netapp-dataops-toolkit/releases/tag/v2.0.0
https://github.com/NetApp/netapp-dataops-toolkit/releases/tag/v2.0.0

patients for chronic diseases both in at-home care and intensive care units (ICUs). Data from edge devices

that monitor insulin levels, respiration, neurological activity, cardiac rhythm, and gastrointestinal functions

require instantaneous analysis of data that must be acted on immediately because there is limited time to act

to save someone’s life.

Retail: Cashier-less payment

Edge computing can power AI and ML to help retailers reduce checkout time and increase foot traffic. Cashier-

less systems support various components, such as the following:

• Authentication and access. Connecting the physical shopper to a validated account and permitting access

to the retail space.

• Inventory monitoring. Using sensors, RFID tags, and computer vision systems to help confirm the selection

or deselection of items by shoppers.

Here, each of the edge servers handle each checkout counter and the shared storage system serves as a

central synchronization point.

Financial services: Human safety at kiosks and fraud prevention

Banking organizations are using AI and edge computing to innovate and create personalized banking

experiences. Interactive kiosks using real-time data analytics and AI inferencing now enable ATMs to not only

help customers withdraw money, but proactively monitor kiosks through the images captured from cameras to

identify risk to human safety or fraudulent behavior. In this scenario, edge compute servers and shared storage

systems are connected to interactive kiosks and cameras to help banks collect and process data with AI

inference models.

Manufacturing: Industry 4.0

The fourth industrial revolution (Industry 4.0) has begun, along with emerging trends such as Smart Factory

and 3D printing. To prepare for a data-led future, large-scale machine-to-machine (M2M) communication and

IoT are integrated for increased automation without the need for human intervention. Manufacturing is already

highly automated and adding AI features is a natural continuation of the long-term trend. AI enables

automating operations that can be automated with the help of computer vision and other AI capabilities. You

can automate quality control or tasks that rely on human vision or decision making to perform faster analyses

of materials on assembly lines in factory floors to help manufacturing plants meet the required ISO standards

of safety and quality management. Here, each compute edge server is connected to an array of sensors

monitoring the manufacturing process and updated inference models are pushed to the shared storage, as

needed.

Telecommunications: Rust detection, tower inspection, and network optimization

The telecommunications industry uses computer vision and AI techniques to process images that automatically

detect rust and identify cell towers that contain corrosion and, therefore, require further inspection. The use of

drone images and AI models to identify distinct regions of a tower to analyze rust, surface cracks, and

corrosion has increased in recent years. The demand continues to grow for AI technologies that enable

telecommunication infrastructure and cell towers to be inspected efficiently, assessed regularly for degradation,

and repaired promptly when required.

Additionally, another emerging use case in telecommunication is the use of AI and ML algorithms to predict

data traffic patterns, detect 5G-capable devices, and automate and augment multiple-input and multiple-output

(MIMO) energy management. MIMO hardware is used at radio towers to increase network capacity; however,

this comes with additional energy costs. ML models for “MIMO sleep mode” deployed at cell sites can predict

the efficient use of radios and help reduce energy consumption costs for mobile network operators (MNOs). AI

239

inferencing and edge computing solutions help MNOs reduce the amount of data transmitted back-and-forth to

data centers, lower their TCO, optimize network operations, and improve overall performance for end users.

Next: Technology overview.

Technology overview

Previous: Introduction.

NetApp AFF systems

State-of-the-art NetApp AFF storage systems enable AI inference deployments at the edge to meet enterprise

storage requirements with industry-leading performance, superior flexibility, cloud integration, and best-in class

data management. Designed specifically for flash, NetApp AFF systems help accelerate, manage, and protect

business-critical data.

• Entry-level NetApp AFF storage systems are based on FAS2750 hardware and SSD flash media

• Two controllers in HA configuration

NetApp entry-level AFF C190 storage systems support the following features:

• A maximum drive count of 24x 960GB SSDs

• Two possible configurations:

◦ Ethernet (10GbE): 4x 10GBASE-T (RJ-45) ports

◦ Unified (16Gb FC or 10GbE): 4x unified target adapter 2 (UTA2) ports

• A maximum of 50.5TB effective capacity

For NAS workloads, a single entry-level AFF C190 system supports throughput of 4.4GBps

for sequential reads and 230K IOPS for small random reads at latencies of 1ms or less.

NetApp AFF A220

NetApp also offers other entry-level storage systems that provide higher performance and scalability for larger-

240

scale deployments. For NAS workloads, a single entry-level AFF A220 system supports:

• Throughput of 6.2GBps for sequential reads

• 375K IOPS for small random reads at latencies of 1ms or less

• Maximum drive count of 144x 960GB, 3.8TB, or 7.6TB SSDs

• AFF A220 scales to larger than 1PB of effective capacity

NetApp AFF A250

• Maximum effective capacity is 35PB with maximum scale out 2-24 nodes (12 HA pairs)

• Provides ≥ 45% performance increase over AFF A220

• 440k IOPS random reads @1ms

• Built on the latest NetApp ONTAP release: ONTAP 9.8

• Leverages two 25Gb Ethernet for HA and cluster interconnect

NetApp E-Series EF Systems

The EF-Series is a family of entry-level and mid-range all-flash SAN storage arrays that can accelerate access

to your data and help you derive value from it faster with NetApp SANtricity software. These systems offer both

SAS and NVMe flash storage and provide you with affordable to extreme IOPS, response times under 100

microseconds, and bandwidth up to 44GBps—making them ideal for mixed workloads and demanding

applications such as AI inferencing and high-performance computing (HPC).

The following figure shows the NetApp EF280 storage system.

NetApp EF280

• 32Gb/16Gb FC, 25Gb/10Gb iSCSI, and 12Gb SAS support

• Maximum effective capacity is 96 drives totaling 1.5PB

• Throughput of 10GBps (sequential reads)

• 300K IOPs (random reads)

• The NetApp EF280 is the lowest cost all-flash array (AFA) in the NetApp portfolio

241

NetApp EF300

• 24x NVMe SSD drives for a total capacity of 367TB

• Expansion options totaling 240x NL-SAS HDDs, 96x SAS SSDs, or a combination

• 100Gb NVMe/IB, NVMe/RoCE, iSER/IB, and SRP/IB

• 32Gb NVME/FC, FCP

• 25Gb iSCSI

• 20GBps (sequential reads)

• 670K IOPs (random reads)

For more information, see the NetApp EF-Series NetApp EF-Series all-flash arrays EF600,

F300, EF570, and EF280 datasheet.

NetApp ONTAP 9

ONTAP 9.8.1, the latest generation of storage management software from NetApp, enables businesses to

modernize infrastructure and transition to a cloud-ready data center. Leveraging industry-leading data

management capabilities, ONTAP enables the management and protection of data with a single set of tools,

regardless of where that data resides. You can also move data freely to wherever it is needed: the edge, the

core, or the cloud. ONTAP 9.8.1 includes numerous features that simplify data management, accelerate and

protect critical data, and enable next generation infrastructure capabilities across hybrid cloud architectures.

Simplify data management

Data management is crucial to enterprise IT operations so that appropriate resources are used for applications

and datasets. ONTAP includes the following features to streamline and simplify operations and reduce the total

cost of operation:

• Inline data compaction and expanded deduplication. Data compaction reduces wasted space inside

storage blocks, and deduplication significantly increases effective capacity. This applies to data stored

locally and data tiered to the cloud.

• Minimum, maximum, and adaptive quality of service (AQoS). Granular quality of service (QoS) controls

help maintain performance levels for critical applications in highly shared environments.

• NetApp FabricPool. This feature provides automatic tiering of cold data to public and private cloud

storage options, including Amazon Web Services (AWS), Azure, and NetApp StorageGRID storage

solution. For more information about FabricPool, see TR-4598.

Accelerate and protect data

ONTAP 9 delivers superior levels of performance and data protection and extends these capabilities in the

following ways:

• Performance and lower latency. ONTAP offers the highest possible throughput at the lowest possible

latency.

• Data protection. ONTAP provides built-in data protection capabilities with common management across

all platforms.

• NetApp Volume Encryption (NVE). ONTAP offers native volume-level encryption with both onboard and

External Key Management support.

• Multitenancy and multifactor authentication. ONTAP enables sharing of infrastructure resources with

242

https://www.netapp.com/pdf.html?item=/media/19339-DS-4082.pdf
https://www.netapp.com/pdf.html?item=/media/19339-DS-4082.pdf
https://www.netapp.com/pdf.html?item=/media/17239-tr4598pdf.pdf

the highest levels of security.

Future-proof infrastructure

ONTAP 9 helps meet demanding and constantly changing business needs with the following features:

• Seamless scaling and nondisruptive operations. ONTAP supports the nondisruptive addition of

capacity to existing controllers and to scale-out clusters. Customers can upgrade to the latest technologies,

such as NVMe and 32Gb FC, without costly data migrations or outages.

• Cloud connection. ONTAP is the most cloud-connected storage management software, with options for

software-defined storage (ONTAP Select) and cloud-native instances (NetApp Cloud Volumes Service) in

all public clouds.

• Integration with emerging applications. ONTAP offers enterprise-grade data services for next generation

platforms and applications, such as autonomous vehicles, smart cities, and Industry 4.0, by using the same

infrastructure that supports existing enterprise apps.

NetApp SANtricity

NetApp SANtricity is designed to deliver industry-leading performance, reliability, and simplicity to E-Series

hybrid-flash and EF-Series all-flash arrays. Achieve maximum performance and utilization of your E-Series

hybrid-flash and EF-Series all-flash arrays for heavy-workload applications, including data analytics, video

surveillance, and backup and recovery. With SANtricity, configuration tweaking, maintenance, capacity

expansion, and other tasks can be completed while the storage stays online. SANtricity also provides superior

data protection, proactive monitoring, and certified security—all accessible through the easy-to-use, on-box

System Manager interface. To learn more, see the NetApp E-Series SANtricity Software datasheet.

Performance optimized

Performance-optimized SANtricity software delivers data—with high IOPs, high throughput, and low

latency—to all your data analytics, video surveillance, and backup apps. Accelerate performance for high-

IOPS, low-latency applications and high-bandwidth, high-throughput applications.

Maximize uptime

Complete all your management tasks while the storage stays online. Tweak configurations, perform

maintenance, or expand capacity without disrupting I/O. Realize best-in-class reliability with automated

features, online configuration, state-of-the-art Dynamic Disk Pools (DPP) technology, and more.

Rest easy

SANtricity software delivers superior data protection, proactive monitoring, and certified security—all through

the easy-to-use, on-box System Manager interface. Simplify storage-management chores. Gain the flexibility

you need for advanced tuning of all E-Series storage systems. Manage your NetApp E-Series

system—anytime, anywhere. Our on-box, web-based interface streamlines your management workflow.

NetApp Trident

Trident from NetApp is an open-source dynamic storage orchestrator for Docker and Kubernetes that simplifies

the creation, management, and consumption of persistent storage. Trident, a Kubernetes native application,

runs directly within a Kubernetes cluster. Trident enables customers to seamlessly deploy DL container images

onto NetApp storage and provides an enterprise-grade experience for AI container deployments. Kubernetes

users (such as ML developers and data scientists) can create, manage, and automate orchestration and

cloning to take advantage of NetApp advanced data management capabilities powered by NetApp technology.

243

https://www.netapp.com/pdf.html?item=/media/7676-ds-3891.pdf
https://netapp.io/persistent-storage-provisioner-for-kubernetes/

NetApp Cloud Sync

Cloud Sync is a NetApp service for rapid and secure data synchronization. Whether you need to transfer files

between on-premises NFS or SMB file shares, NetApp StorageGRID, NetApp ONTAP S3, NetApp Cloud

Volumes Service, Azure NetApp Files, Amazon Simple Storage Service (Amazon S3), Amazon Elastic File

System (Amazon EFS), Azure Blob, Google Cloud Storage, or IBM Cloud Object Storage, Cloud Sync moves

the files where you need them quickly and securely. After your data is transferred, it is fully available for use on

both source and target. Cloud Sync continuously synchronizes the data, based on your predefined schedule,

moving only the deltas, so time and money spent on data replication is minimized. Cloud Sync is a software as

a service (SaaS) tool that is extremely simple to set up and use. Data transfers that are triggered by Cloud

Sync are carried out by data brokers. You can deploy Cloud Sync data brokers in AWS, Azure, Google Cloud

Platform, or on-premises.

Lenovo ThinkSystem servers

Lenovo ThinkSystem servers feature innovative hardware, software, and services that solve customers’

challenges today and deliver an evolutionary, fit-for-purpose, modular design approach to address tomorrow’s

challenges. These servers capitalize on best-in-class, industry-standard technologies coupled with

differentiated Lenovo innovations to provide the greatest possible flexibility in x86 servers.

Key advantages of deploying Lenovo ThinkSystem servers include:

• Highly scalable, modular designs to grow with your business

• Industry-leading resilience to save hours of costly unscheduled downtime

• Fast flash technologies for lower latencies, quicker response times, and smarter data management in real

time

In the AI area, Lenovo is taking a practical approach to helping enterprises understand and adopt the benefits

of ML and AI for their workloads. Lenovo customers can explore and evaluate Lenovo AI offerings in Lenovo AI

Innovation Centers to fully understand the value for their particular use case. To improve time to value, this

customer-centric approach gives customers proof of concept for solution development platforms that are ready

to use and optimized for AI.

Lenovo ThinkSystem SE350 Edge Server

Edge computing allows data from IoT devices to be analyzed at the edge of the network before being sent to

the data center or cloud. The Lenovo ThinkSystem SE350, as shown in the figure below, is designed for the

unique requirements for deployment at the edge, with a focus on flexibility, connectivity, security, and remote

manageability in a compact ruggedized and environmentally hardened form factor.

Featuring the Intel Xeon D processor with the flexibility to support acceleration for edge AI workloads, the

SE350 is purpose-built for addressing the challenge of server deployments in a variety of environments outside

the data center.

244

https://docs.netapp.com/us-en/occm/concept_cloud_sync.html

MLPerf

MLPerf is the industry-leading benchmark suite for evaluating AI performance. It covers many areas of applied

AI including image classification, object detection, medical imaging, and natural language processing (NLP). In

this validation, we used Inference v0.7 workloads, which is the latest iteration of the MLPerf Inference at the

completion of this validation. The MLPerf Inference v0.7 suite includes four new benchmarks for data center

and edge systems:

• BERT. Bi-directional Encoder Representation from Transformers (BERT) fine-tuned for question answering

by using the SQuAD dataset.

• DLRM. Deep Learning Recommendation Model (DLRM) is a personalization and recommendation model

that is trained to optimize click-through rates (CTR).

• 3D U-Net. 3D U-Net architecture is trained on the Brain Tumor Segmentation (BraTS) dataset.

• RNN-T. Recurrent Neural Network Transducer (RNN-T) is an automatic speech recognition (ASR) model

245

https://mlcommons.org/en/news/mlperf-inference-v07/

that is trained on a subset of LibriSpeech. MLPerf Inference results and code are publicly available and

released under Apache license. MLPerf Inference has an Edge division, which supports the following

scenarios:

• Single stream. This scenario mimics systems where responsiveness is a critical factor, such as offline AI

queries performed on smartphones. Individual queries are sent to the system and response times are

recorded. 90th percentile latency of all the responses is reported as the result.

• Multistream. This benchmark is for systems that process input from multiple sensors. During the test,

queries are sent at a fixed time interval. A QoS constraint (maximum allowed latency) is imposed. The test

reports the number of streams that the system can process while meeting the QoS constraint.

• Offline. This is the simplest scenario covering batch processing applications and the metric is throughput

in samples per second. All data is available to the system and the benchmark measures the time it takes to

process all the samples.

Lenovo has published MLPerf Inference scores for SE350 with T4, the server used in this document. See the

results at https://mlperf.org/inference-results-0-7/ in the “Edge, Closed Division” section in entry #0.7-145.

Next: Test plan.

Test plan

Previous: Technology overview.

This document follows MLPerf Inference v0.7 code, MLPerf Inference v1.1 code, and rules. We ran MLPerf

benchmarks designed for inference at the edge as defined in the follow table.

Area Task Model Dataset QSL size Quality Multistream

latency

constraint

Vision Image

classification

Resnet50v1.5 ImageNet

(224x224)

1024 99% of

FP32

50ms

Vision Object

detection

(large)

SSD-

ResNet34

COCO

(1200x1200)

64 99% of

FP32

66ms

Vision Object

detection

(small)

SSD-

MobileNetsv1

COCO

(300x300)

256 99% of

FP32

50ms

Vision Medical image

segmentation

3D UNET BraTS 2019

(224x224x160

)

16 99% and

99.9% of

FP32

n/a

Speech Speech-to-

text

RNNT Librispeech

dev-clean

2513 99% of

FP32

n/a

Language Language

processing

BERT SQuAD v1.1 10833 99% of

FP32

n/a

The following table presents Edge benchmark scenarios.

Area Task Scenarios

Vision Image classification Single stream, offline, multistream

246

https://mlperf.org/inference-results-0-7/
https://github.com/mlperf/inference_results_v0.7/tree/master/closed/Lenovo
https://github.com/mlcommons/inference_results_v1.1/tree/main/closed/Lenovo
https://github.com/mlcommons/inference_policies/blob/master/inference_rules.adoc

Area Task Scenarios

Vision Object detection (large) Single stream, offline, multistream

Vision Object detection (small) Single stream, offline, multistream

Vision Medical image segmentation Single stream, offline

Speech Speech-to-text Single stream, offline

Language Language processing Single stream, offline

We performed these benchmarks using the networked storage architecture developed in this validation and

compared results to those from local runs on the edge servers previously submitted to MLPerf. The

comparison is to determine how much impact the shared storage has on inference performance.

Next: Test configuration.

Test configuration

Previous: Test plan.

The following figure shows the test configuration. We used the NetApp AFF C190 storage system and two

Lenovo ThinkSystem SE350 servers (each with one NVIDIA T4 accelerator). These components are

connected through a 10GbE network switch. The network storage holds validation/test datasets and pretrained

models. The servers provide computational capability, and the storage is accessed over NFS protocol.

This section describes the tested configurations, the network infrastructure, the SE350 server, and the storage

provisioning details. The following table lists the base components for the solution architecture.

Solution components Details

Lenovo ThinkSystem servers • 2x SE350 servers each with one NVIDIA T4 GPU

card

• Each server contains one Intel Xeon D-2123IT

CPU with four physical cores running at 2.20GHz

and 128GB RAM

Entry-level NetApp AFF storage system (HA pair) • NetApp ONTAP 9 software

• 24x 960GB SSDs

• NFS protocol

• One interface group per controller, with four

logical IP addresses for mount points

247

The following table lists the storage configuration: AFF C190 with 2RU, 24 drive slots.

Controller Aggregate FlexGroup

volume

Aggregatesize Volumesize Operating

systemmount

point

Controller1 Aggr1 /netapplenovo_A

I_fg

8.42TiB 15TB /netapp_lenovo_f

g

Controller2 Aggr2 8.42TiB

The /netappLenovo_AI_fg folder contains the datasets used for model validation.

The figure below shows the test configuration. We used the NetApp EF280 storage system and two Lenovo

ThinkSystem SE350 servers (each with one NVIDIA T4 accelerator). These components are connected

through a 10GbE network switch. The network storage holds validation/test datasets and pretrained models.

The servers provide computational capability, and the storage is accessed over NFS protocol.

The following table lists the storage configuration for EF280.

248

Controller Volume Group Volume Volumesize DDPsize Connection

method

Controller1 DDP1 Volume 1 8.42TiB 16TB SE350-1 to

iSCSI LUN 0

Controller2 Volume 2 8.42TiB SE350-2 to

iSCSI LUN 1

Next: Test procedure.

Test procedure

Previous: Test configuration.

We used the following test procedure in this validation.

Operating system and AI inference setup

For AFF C190, we used Ubuntu 18.04 with NVIDIA drivers and docker with support for NVIDIA GPUs and used

MLPerf code available as a part of the Lenovo submission to MLPerf Inference v0.7.

For EF280, we used Ubuntu 20.04 with NVIDIA drivers and docker with support for NVIDIA GPUs and MLPerf

code available as a part of the Lenovo submission to MLPerf Inference v1.1.

To set up the AI inference, follow these steps:

1. Download datasets that require registration, the ImageNet 2012 Validation set, Criteo Terabyte dataset,

and BraTS 2019 Training set, and then unzip the files.

2. Create a working directory with at least 1TB and define environmental variable MLPERF_SCRATCH_PATH

referring to the directory.

249

https://github.com/mlperf/inference_results_v0.7/tree/master/closed/Lenovo
https://github.com/mlcommons/inference_results_v1.1/tree/main/closed/Lenovo

You should share this directory on the shared storage for the network storage use case, or the local disk

when testing with local data.

3. Run the make prebuild command, which builds and launches the docker container for the required

inference tasks.

The following commands are all executed from within the running docker container:

◦ Download pretrained AI models for MLPerf Inference tasks: make download_model

◦ Download additional datasets that are freely downloadable: make download_data

◦ Preprocess the data: make preprocess_data

◦ Run: make build.

◦ Build inference engines optimized for the GPU in compute servers: make generate_engines

◦ To run Inference workloads, run the following (one command):

make run_harness RUN_ARGS="--benchmarks=<BENCHMARKS>

--scenarios=<SCENARIOS>"

AI inference runs

Three types of runs were executed:

• Single server AI inference using local storage

• Single server AI inference using network storage

• Multi-server AI inference using network storage

Next: Test results.

Test results

Previous: Test procedure.

Test results for AFF

A multitude of tests were run to evaluate the performance of the proposed architecture. There are six different

workloads (image classification, object detection [small], object detection [large], medical imaging, speech-to-

text, and natural language processing [NLP]), which you can run in three different scenarios: offline, single

stream, and multistream.

The last scenario is implemented only for image classification and object detection.

This gives 15 possible workloads, which were all tested under three different setups:

• Single server/local storage

• Single server/network storage

• Multi-server/network storage

250

The results are described in the following sections.

AI inference in offline scenario for AFF

In this scenario, all the data was available to the server and the time it took to process all the samples was

measured. We report bandwidths in samples per second as the results of the tests. When more than one

compute server was used, we report total bandwidth summed over all the servers. The results for all three use

cases are shown in the figure below. For the two-server case, we report combined bandwidth from both

servers.

The results show that network storage does not negatively affect the performance—the change is minimal and

for some tasks, none is found. When adding the second server, the total bandwidth either exactly doubles, or

at worst, the change is less than 1%.

AI inference in a single stream scenario for AFF

This benchmark measures latency. For the multiple computational server case, we report the average latency.

The results for the suite of tasks are given in the figure below. For the two-server case, we report the average

latency from both servers.

251

The results, again, show that the network storage is sufficient to handle the tasks. The difference between local

and network storage in the one server case is minimal or none. Similarly, when two servers use the same

storage, the latency on both servers stays the same or changes by a very small amount.

AI inference in multistream scenario for AFF

In this case, the result is the number of streams that the system can handle while satisfying the QoS constraint.

Thus, the result is always an integer. For more than one server, we report the total number of streams summed

over all the servers. Not all workloads support this scenario, but we have executed those that do. The results of

our tests are summarized in the figure below. For the two-server case, we report the combined number of

streams from both servers.

252

The results show perfect performance of the setup—local and networking storage give the same results and

adding the second server doubles the number of streams the proposed setup can handle.

Test results for EF

A multitude of tests were run to evaluate the performance of the proposed architecture. There are six different

workloads (image classification, object detection [small], object detection [large], medical imaging, speech-to-

text, and natural language processing [NLP]), which were run in two different scenarios: offline and single

stream. The results are described in the following sections.

AI inference in offline scenario for EF

In this scenario, all the data was available to the server and the time it took to process all the samples was

measured. We report bandwidths in samples per second as the results of the tests. For single node runs we

report average from both servers, while for two server runs we report total bandwidth summed over all the

servers. The results for use cases are shown in the figure below.

253

The results show that network storage does not negatively affect the performance—the change is minimal and

for some tasks, none is found. When adding the second server, the total bandwidth either exactly doubles, or

at worst, the change is less than 1%.

AI inference in a single stream scenario for EF

This benchmark measures latency. For all cases, we report average latency across all servers involved in the

runs. The results for the suite of tasks are given.

254

The results show again that the network storage is sufficient to handle the tasks. The difference between the

local and network storage in the one server case is minimal or none. Similarly, when two servers use the same

storage, the latency on both servers stays the same or changes by a very small amount.

Next: Architecture sizing options.

Architecture sizing options

Previous: Test results.

You can adjust the setup used for the validation to fit other use cases.

Compute server

We used an Intel Xeon D-2123IT CPU, which is the lowest level of CPU supported in SE350, with four physical

cores and 60W TDP. While the server does not support replacing CPUs, it can be ordered with a more

powerful CPU. The top CPU supported is Intel Xeon D-2183IT with 16 cores, 100W running at 2.20GHz. This

increases the CPU computational capability considerably. While CPU was not a bottleneck for running the

inference workloads themselves, it helps with data processing and other tasks related to inference. At present,

NVIDIA T4 is the only GPU available for edge use cases; therefore, currently, there is no ability to upgrade or

downgrade the GPU.

Shared storage

For testing and validation, the NetApp AFF C190 system, which has maximum storage capacity of 50.5TB, a

throughput of 4.4GBps for sequential reads, and 230K IOPS for small random reads, was used for the purpose

of this document and is proven to be well-suited for edge inference workloads.

255

However, if you require more storage capacity or faster networking speeds, you should use the NetApp AFF

A220 or NetApp AFF A250 storage systems. In addition, the NetApp EF280 system, which has a maximum

capacity of 1.5PB, bandwidth 10GBps was also used for the purpose of this solution validation. If you prefer

more storage capacity with higher bandwidth, NetApp EF300 can be used.

Next: Conclusion.

Conclusion

Previous: Architecture sizing options.

AI-driven automation and edge computing is a leading approach to help business organizations achieve digital

transformation and maximize operational efficiency and safety. With edge computing, data is processed much

faster because it does not have to travel to and from a data center. Therefore, the cost associated with sending

data back and forth to data centers or the cloud is diminished. Lower latency and increased speed can be

beneficial when businesses must make decisions in near-real time using AI inferencing models deployed at the

edge.

NetApp storage systems deliver the same or better performance as local SSD storage and offer the following

benefits to data scientists, data engineers, AI/ML developers, and business or IT decision makers:

• Effortless sharing of data between AI systems, analytics, and other critical business systems. This data

sharing reduces infrastructure overhead, improves performance, and streamlines data management across

the enterprise.

• Independently scalable compute and storage to minimize costs and improve resource usage.

• Streamlined development and deployment workflows using integrated Snapshot copies and clones for

instantaneous and space-efficient user workspaces, integrated version control, and automated deployment.

• Enterprise-grade data protection for disaster recovery and business continuity. The NetApp and Lenovo

solution presented in this document is a flexible, scale-out architecture that is ideal for enterprise-grade AI

inference deployments at the edge.

Acknowledgments

• J.J. Falkanger, Sr. Manager, HPC & AI Solutions, Lenovo

• Dave Arnette, Technical Marketing Engineer, NetApp

• Joey Parnell, Tech Lead E-Series AI Solutions, NetApp

• Cody Harryman, QA Engineer, NetApp

Where to find additional information

To learn more about the information described in this document, refer to the following documents and/or

websites:

• NetApp AFF A-Series arrays product page

https://www.netapp.com/data-storage/aff-a-series/

• NetApp ONTAP data management software—ONTAP 9 information library

http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286

• TR-4727: NetApp EF-Series Introduction

256

https://tv.netapp.com/detail/video/6211798209001/netapp-aff-a250-virtual-tour-and-demo
https://www.netapp.com/pdf.html?item=/media/19339-DS-4082.pdf&v=2021691654
https://www.netapp.com/data-storage/aff-a-series/
http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286

https://www.netapp.com/pdf.html?item=/media/17179-tr4727pdf.pdf

• NetApp E-Series SANtricity Software Datasheet

https://www.netapp.com/pdf.html?item=/media/19775-ds-3171-66862.pdf

• NetApp Persistent Storage for Containers—NetApp Trident

https://netapp.io/persistent-storage-provisioner-for-kubernetes/

• MLPerf

◦ https://mlcommons.org/en/

◦ http://www.image-net.org/

◦ https://mlcommons.org/en/news/mlperf-inference-v11/

• NetApp Cloud Sync

https://docs.netapp.com/us-en/occm/concept_cloud_sync.html#how-cloud-sync-works

• TensorFlow benchmark

https://github.com/tensorflow/benchmarks

• Lenovo ThinkSystem SE350 Edge Server

https://lenovopress.com/lp1168

• Lenovo ThinkSystem DM5100F Unified Flash Storage Array

https://lenovopress.com/lp1365-thinksystem-dm5100f-unified-flash-storage-array[https://lenovopress.com/lp1365-thinksystem-

dm5100f-unified-flash-storage-array]

Version history

Version Date Document version history

Version 1.0 March 2021 Initial release

Version 2.0 October 2021 Updated with EF and MLPerf

Inference v1.1

WP-7328: NetApp Conversational AI Using NVIDIA Jarvis

Rick Huang, Sung-Han Lin, NetApp

Davide Onofrio, NVIDIA

The NVIDIA DGX family of systems is made up of the world’s first integrated artificial intelligence (AI)-based

systems that are purpose-built for enterprise AI. NetApp AFF storage systems deliver extreme performance

and industry-leading hybrid cloud data-management capabilities. NetApp and NVIDIA have partnered to create

the NetApp ONTAP AI reference architecture, a turnkey solution for AI and machine learning (ML) workloads

that provides enterprise-class performance, reliability, and support.

This white paper gives directional guidance to customers building conversational AI systems in support of

different use cases in various industry verticals. It includes information about the deployment of the system

257

https://www.netapp.com/pdf.html?item=/media/17179-tr4727pdf.pdf
https://www.netapp.com/pdf.html?item=/media/19775-ds-3171-66862.pdf
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://mlcommons.org/en/
http://www.image-net.org/
https://mlcommons.org/en/news/mlperf-inference-v11/
https://docs.netapp.com/us-en/occm/concept_cloud_sync.html#how-cloud-sync-works
https://github.com/tensorflow/benchmarks
https://lenovopress.com/lp1168
https://lenovopress.com/lp1365-thinksystem-dm5100f-unified-flash-storage-array
https://lenovopress.com/lp1365-thinksystem-dm5100f-unified-flash-storage-array
https://lenovopress.com/lp1365-thinksystem-dm5100f-unified-flash-storage-array

using NVIDIA Jarvis. The tests were performed using an NVIDIA DGX Station and a NetApp AFF A220 storage

system.

The target audience for the solution includes the following groups:

• Enterprise architects who design solutions for the development of AI models and software for

conversational AI use cases such as a virtual retail assistant

• Data scientists looking for efficient ways to achieve language modeling development goals

• Data engineers in charge of maintaining and processing text data such as customer questions and

dialogue transcripts

• Executive and IT decision makers and business leaders interested in transforming the conversational AI

experience and achieving the fastest time to market from AI initiatives

Next: Solution Overview

Solution Overview

NetApp ONTAP AI and Cloud Sync

The NetApp ONTAP AI architecture, powered by NVIDIA DGX systems and NetApp cloud-connected storage

systems, was developed and verified by NetApp and NVIDIA. This reference architecture gives IT

organizations the following advantages:

• Eliminates design complexities

• Enables independent scaling of compute and storage

• Enables customers to start small and scale seamlessly

• Offers a range of storage options for various performance and cost pointsNetApp ONTAP AI tightly

integrates DGX systems and NetApp AFF A220 storage systems with state-of-the-art networking. NetApp

ONTAP AI and DGX systems simplify AI deployments by eliminating design complexity and guesswork.

Customers can start small and grow their systems in an uninterrupted manner while intelligently managing

data from the edge to the core to the cloud and back.

NetApp Cloud Sync enables you to move data easily over various protocols, whether it’s between two NFS

shares, two CIFS shares, or one file share and Amazon S3, Amazon Elastic File System (EFS), or Azure Blob

storage. Active-active operation means that you can continue to work with both source and target at the same

time, incrementally synchronizing data changes when required. By enabling you to move and incrementally

synchronize data between any source and destination system, whether on-premises or cloud-based, Cloud

Sync opens up a wide variety of new ways in which you can use data. Migrating data between on-premises

systems, cloud on-boarding and cloud migration, or collaboration and data analytics all become easily

achievable. The figure below shows available sources and destinations.

In conversational AI systems, developers can leverage Cloud Sync to archive conversation history from the

cloud to data centers to enable offline training of natural language processing (NLP) models. By training

models to recognize more intents, the conversational AI system will be better equipped to manage more

complex questions from end-users.

NVIDIA Jarvis Multimodal Framework

258

NVIDIA Jarvis is an end-to-end framework for building conversational AI services. It includes the following

GPU-optimized services:

• Automatic speech recognition (ASR)

• Natural language understanding (NLU)

• Integration with domain-specific fulfillment services

• Text-to-speech (TTS)

• Computer vision (CV)Jarvis-based services use state-of-the-art deep learning models to address the

complex and challenging task of real-time conversational AI. To enable real-time, natural interaction with an

end user, the models need to complete computation in under 300 milliseconds. Natural interactions are

challenging, requiring multimodal sensory integration. Model pipelines are also complex and require

coordination across the above services.

Jarvis is a fully accelerated, application framework for building multimodal conversational AI services that use

an end-to-end deep learning pipeline. The Jarvis framework includes pretrained conversational AI models,

tools, and optimized end-to-end services for speech, vision, and NLU tasks. In addition to AI services, Jarvis

enables you to fuse vision, audio, and other sensor inputs simultaneously to deliver capabilities such as multi-

user, multi-context conversations in applications such as virtual assistants, multi-user diarization, and call

center assistants.

NVIDIA NeMo

NVIDIA NeMo is an open-source Python toolkit for building, training, and fine-tuning GPU-accelerated state-of-

the-art conversational AI models using easy-to-use application programming interfaces (APIs). NeMo runs

mixed precision compute using Tensor Cores in NVIDIA GPUs and can scale up to multiple GPUs easily to

deliver the highest training performance possible. NeMo is used to build models for real-time ASR, NLP, and

TTS applications such as video call transcriptions, intelligent video assistants, and automated call center

support across different industry verticals, including healthcare, finance, retail, and telecommunications.

We used NeMo to train models that recognize complex intents from user questions in archived conversation

history. This training extends the capabilities of the retail virtual assistant beyond what Jarvis supports as

259

https://devblogs.nvidia.com/introducing-jarvis-framework-for-gpu-accelerated-conversational-ai-apps/
https://developer.nvidia.com/nvidia-nemo

delivered.

Retail Use Case Summary

Using NVIDIA Jarvis, we built a virtual retail assistant that accepts speech or text input and answers questions

regarding weather, points-of-interest, and inventory pricing. The conversational AI system is able to remember

conversation flow, for example, ask a follow-up question if the user does not specify location for weather or

points-of-interest. The system also recognizes complex entities such as “Thai food” or “laptop memory.” It

understands natural language questions like “will it rain next week in Los Angeles?” A demonstration of the

retail virtual assistant can be found in Customize States and Flows for Retail Use Case.

Next: Solution Technology

Solution Technology

The following figure illustrates the proposed conversational AI system architecture. You can interact with the

system with either speech signal or text input. If spoken input is detected, Jarvis AI-as-service (AIaaS)

performs ASR to produce text for Dialog Manager. Dialog Manager remembers states of conversation, routes

text to corresponding services, and passes commands to Fulfillment Engine. Jarvis NLP Service takes in text,

recognizes intents and entities, and outputs those intents and entity slots back to Dialog Manager, which then

sends Action to Fulfillment Engine. Fulfillment Engine consists of third-party APIs or SQL databases that

answer user queries. After receiving Result from Fulfillment Engine, Dialog Manager routes text to Jarvis TTS

AIaaS to produce an audio response for the end-user. We can archive conversation history, annotate

sentences with intents and slots for NeMo training such that NLP Service improves as more users interact with

the system.

Hardware Requirements

This solution was validated using one DGX Station and one AFF A220 storage system. Jarvis requires either a

T4 or V100 GPU to perform deep neural network computations.

The following table lists the hardware components that are required to implement the solution as tested.

260

https://cainvidia_customize_states_and_flows_for_retail_use_case.html

Hardware Quantity

T4 or V100 GPU 1

NVIDIA DGX Station 1

Software Requirements

The following table lists the software components that are required to implement the solution as tested.

Software Version or Other Information

NetApp ONTAP data management software 9.6

Cisco NX-OS switch firmware 7.0(3)I6(1)

NVIDIA DGX OS 4.0.4 - Ubuntu 18.04 LTS

NVIDIA Jarvis Framework EA v0.2

NVIDIA NeMo nvcr.io/nvidia/nemo:v0.10

Docker container platform 18.06.1-ce [e68fc7a]

Next: Build a Virtual Assistant Using Jarvis, Cloud Sync, and NeMo Overview

Overview

This section provides detail on the implementation of the virtual retail assistant.

Next: Jarvis Deployment

Jarvis Deployment

You can sign up for Jarvis Early Access program to gain access to Jarvis containers on

NVIDIA GPU Cloud (NGC). After receiving credentials from NVIDIA, you can deploy

Jarvis using the following steps:

1. Sign-on to NGC.

2. Set your organization on NGC: ea-2-jarvis.

3. Locate Jarvis EA v0.2 assets: Jarvis containers are in Private Registry > Organization

Containers.

4. Select Jarvis: navigate to Model Scripts and click Jarvis Quick Start

5. Verify that all assets are working properly.

6. Find the documentation to build your own applications: PDFs can be found in Model Scripts > Jarvis

Documentation > File Browser.

Next: Customize States and Flows for Retail Use Case

Customize States and Flows for Retail Use Case

You can customize States and Flows of Dialog Manager for your specific use cases. In

our retail example, we have the following four yaml files to direct the conversation

261

https://developer.nvidia.com/nvidia-jarvis-early-access

according to different intents.

Se the following list of file names and description of each file:

• main_flow.yml: Defines the main conversation flows and states and directs the flow to the other three

yaml files when necessary.

• retail_flow.yml: Contains states related to retail or points-of-interest questions. The system either

provides the information of the nearest store, or the price of a given item.

• weather_flow.yml: Contains states related to weather questions. If the location cannot be determined,

the system asks a follow up question to clarify.

• error_flow.yml: Handles cases where user intents do not fall into the above three yaml files. After

displaying an error message, the system re-routes back to accepting user questions.The following sections

contain the detailed definitions for these yaml files.

main_flow.yml

name: JarvisRetail

intent_transitions:

 jarvis_error: error

 price_check: retail_price_check

 inventory_check: retail_inventory_check

 store_location: retail_store_location

 weather.weather: weather

 weather.temperature: temperature

 weather.sunny: sunny

 weather.cloudy: cloudy

 weather.snow: snow

 weather.rainfall: rain

 weather.snow_yes_no: snowfall

 weather.rainfall_yes_no: rainfall

 weather.temperature_yes_no: tempyesno

 weather.humidity: humidity

 weather.humidity_yes_no: humidity

 navigation.startnavigationpoi: retail # Transitions should be context

and slot based. Redirecting for now.

 navigation.geteta: retail

 navigation.showdirection: retail

 navigation.showmappoi: idk_what_you_talkin_about

 nomatch.none: idk_what_you_talkin_about

states:

 init:

 type: message_text

 properties:

 text: "Hi, welcome to NARA retail and weather service. How can I

help you?"

 input_intent:

262

 type: input_context

 properties:

 nlp_type: jarvis

 entities:

 intent: dontcare

This state is executed if the intent was not understood

 dont_get_the intent:

 type: message_text_random

 properties:

 responses:

 - "Sorry I didn't get that! Please come again."

 - "I beg your pardon! Say that again?"

 - "Are we talking about weather? What would you like to know?"

 - "Sorry I know only about the weather"

 - "You can ask me about the weather, the rainfall, the

temperature, I don't know much more"

 delay: 0

 transitions:

 next_state: input_intent

 idk_what_you_talkin_about:

 type: message_text_random

 properties:

 responses:

 - "Sorry I didn't get that! Please come again."

 - "I beg your pardon! Say that again?"

 - "Are we talking about retail or weather? What would you like to

know?"

 - "Sorry I know only about retail and the weather"

 - "You can ask me about retail information or the weather, the

rainfall, the temperature. I don't know much more."

 delay: 0

 transitions:

 next_state: input_intent

 error:

 type: change_context

 properties:

 update_keys:

 intent: 'error'

 transitions:

 flow: error_flow

 retail_inventory_check:

 type: change_context

 properties:

 update_keys:

 intent: 'retail_inventory_check'

 transitions:

263

 flow: retail_flow

 retail_price_check:

 type: change_context

 properties:

 update_keys:

 intent: 'check_item_price'

 transitions:

 flow: retail_flow

 retail_store_location:

 type: change_context

 properties:

 update_keys:

 intent: 'find_the_store'

 transitions:

 flow: retail_flow

 weather:

 type: change_context

 properties:

 update_keys:

 intent: 'weather'

 transitions:

 flow: weather_flow

 temperature:

 type: change_context

 properties:

 update_keys:

 intent: 'temperature'

 transitions:

 flow: weather_flow

 rainfall:

 type: change_context

 properties:

 update_keys:

 intent: 'rainfall'

 transitions:

 flow: weather_flow

 sunny:

 type: change_context

 properties:

 update_keys:

 intent: 'sunny'

 transitions:

 flow: weather_flow

 cloudy:

 type: change_context

 properties:

264

 update_keys:

 intent: 'cloudy'

 transitions:

 flow: weather_flow

 snow:

 type: change_context

 properties:

 update_keys:

 intent: 'snow'

 transitions:

 flow: weather_flow

 rain:

 type: change_context

 properties:

 update_keys:

 intent: 'rain'

 transitions:

 flow: weather_flow

 snowfall:

 type: change_context

 properties:

 update_keys:

 intent: 'snowfall'

 transitions:

 flow: weather_flow

 tempyesno:

 type: change_context

 properties:

 update_keys:

 intent: 'tempyesno'

 transitions:

 flow: weather_flow

 humidity:

 type: change_context

 properties:

 update_keys:

 intent: 'humidity'

 transitions:

 flow: weather_flow

 end_state:

 type: reset

 transitions:

 next_state: init

265

retail_flow.yml

name: retail_flow

states:

 store_location:

 type: conditional_exists

 properties:

 key: '{{location}}'

 transitions:

 exists: retail_state

 notexists: ask_retail_location

 retail_state:

 type: Retail

 properties:

 transitions:

 next_state: output_retail

 output_retail:

 type: message_text

 properties:

 text: '{{retail_status}}'

 transitions:

 next_state: input_intent

 ask_retail_location:

 type: message_text

 properties:

 text: "For which location? I can find the closest store near you."

 transitions:

 next_state: input_retail_location

 input_retail_location:

 type: input_user

 properties:

 nlp_type: jarvis

 entities:

 slot: location

 require_match: true

 transitions:

 match: retail_state

 notmatch: check_retail_jarvis_error

 output_retail_acknowledge:

 type: message_text_random

 properties:

 responses:

 - 'ok in {{location}}'

 - 'the store in {{location}}'

 - 'I always wanted to shop in {{location}}'

 delay: 0

266

 transitions:

 next_state: retail_state

 output_retail_notlocation:

 type: message_text

 properties:

 text: "I did not understand the location. Can you please repeat?"

 transitions:

 next_state: input_intent

 check_rerail_jarvis_error:

 type: conditional_exists

 properties:

 key: '{{jarvis_error}}'

 transitions:

 exists: show_retail_jarvis_api_error

 notexists: output_retail_notlocation

 show_retail_jarvis_api_error:

 type: message_text

 properties:

 text: "I am having troubled understanding right now. Come again on

that?"

 transitions:

 next_state: input_intent

weather_flow.yml

name: weather_flow

states:

 check_weather_location:

 type: conditional_exists

 properties:

 key: '{{location}}'

 transitions:

 exists: weather_state

 notexists: ask_weather_location

 weather_state:

 type: Weather

 properties:

 transitions:

 next_state: output_weather

 output_weather:

 type: message_text

 properties:

 text: '{{weather_status}}'

 transitions:

 next_state: input_intent

267

 ask_weather_location:

 type: message_text

 properties:

 text: "For which location?"

 transitions:

 next_state: input_weather_location

 input_weather_location:

 type: input_user

 properties:

 nlp_type: jarvis

 entities:

 slot: location

 require_match: true

 transitions:

 match: weather_state

 notmatch: check_jarvis_error

 output_weather_acknowledge:

 type: message_text_random

 properties:

 responses:

 - 'ok in {{location}}'

 - 'the weather in {{location}}'

 - 'I always wanted to go in {{location}}'

 delay: 0

 transitions:

 next_state: weather_state

 output_weather_notlocation:

 type: message_text

 properties:

 text: "I did not understand the location, can you please repeat?"

 transitions:

 next_state: input_intent

 check_jarvis_error:

 type: conditional_exists

 properties:

 key: '{{jarvis_error}}'

 transitions:

 exists: show_jarvis_api_error

 notexists: output_weather_notlocation

 show_jarvis_api_error:

 type: message_text

 properties:

 text: "I am having troubled understanding right now. Come again on

that, else check jarvis services?"

 transitions:

 next_state: input_intent

268

error_flow.yml

name: error_flow

states:

 error_state:

 type: message_text_random

 properties:

 responses:

 - "Sorry I didn't get that!"

 - "Are we talking about retail or weather? What would you like to

know?"

 - "Sorry I know only about retail information or the weather"

 - "You can ask me about retail information or the weather, the

rainfall, the temperature. I don't know much more"

 - "Let's talk about retail or the weather!"

 delay: 0

 transitions:

 next_state: input_intent

Next: Connect to Third-Party APIs as Fulfillment Engine

Connect to Third-Party APIs as Fulfillment Engine

We connected the following third-party APIs as a Fulfillment Engine to answer questions:

• WeatherStack API: returns weather, temperature, rainfall, and snow in a given location.

• Yelp Fusion API: returns the nearest store information in a given location.

• eBay Python SDK: returns the price of a given item.

Next: NetApp Retail Assistant Demonstration

NetApp Retail Assistant Demonstration

We recorded a demonstration video of NetApp Retail Assistant (NARA). Click this link to

open the following figure and play the video demonstration.

269

https://weatherstack.com/
https://www.yelp.com/fusion
https://github.com/timotheus/ebaysdk-python
https://netapp.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=b4aae689-31b5-440c-8dde-ac050140ece7

Next: Use NetApp Cloud Sync to Archive Conversation History

Use NetApp Cloud Sync to Archive Conversation History

By dumping conversation history into a CSV file once a day, we can then leverage Cloud Sync to download the

log files into local storage. The following figure shows the architecture of having Jarvis deployed on-premises

and in public clouds, while using Cloud Sync to send conversation history for NeMo training. Details of NeMo

training can be found in the section Expand Intent Models Using NeMo Training.

270

Next: Expand Intent Models Using NeMo Training

271

Expand Intent Models Using NeMo Training

NVIDIA NeMo is a toolkit built by NVIDIA for creating conversational AI applications. This toolkit includes

collections of pre-trained modules for ASR, NLP, and TTS, enabling researchers and data scientists to easily

compose complex neural network architectures and put more focus on designing their own applications.

As shown in the previous example, NARA can only handle a limited type of question. This is because the pre-

trained NLP model only trains on these types of questions. If we want to enable NARA to handle a broader

range of questions, we need to retrain it with our own datasets. Thus, here, we demonstrate how we can use

NeMo to extend the NLP model to satisfy the requirements. We start by converting the log collected from

NARA into the format for NeMo, and then train with the dataset to enhance the NLP model.

Model

Our goal is to enable NARA to sort the items based on user preferences. For instance, we might ask NARA to

suggest the highest-rated sushi restaurant or might want NARA to look up the jeans with the lowest price. To

this end, we use the intent detection and slot filling model provided in NeMo as our training model. This model

allows NARA to understand the intent of searching preference.

Data Preparation

To train the model, we collect the dataset for this type of question, and convert it to the NeMo format. Here, we

listed the files we use to train the model.

dict.intents.csv

This file lists all the intents we want the NeMo to understand. Here, we have two primary intents and one intent

only used to categorize the questions that do not fit into any of the primary intents.

price_check

find_the_store

unknown

dict.slots.csv

This file lists all the slots we can label on our training questions.

B-store.type

B-store.name

B-store.status

B-store.hour.start

B-store.hour.end

B-store.hour.day

B-item.type

B-item.name

B-item.color

B-item.size

B-item.quantity

B-location

B-cost.high

272

B-cost.average

B-cost.low

B-time.period_of_time

B-rating.high

B-rating.average

B-rating.low

B-interrogative.location

B-interrogative.manner

B-interrogative.time

B-interrogative.personal

B-interrogative

B-verb

B-article

I-store.type

I-store.name

I-store.status

I-store.hour.start

I-store.hour.end

I-store.hour.day

I-item.type

I-item.name

I-item.color

I-item.size

I-item.quantity

I-location

I-cost.high

I-cost.average

I-cost.low

I-time.period_of_time

I-rating.high

I-rating.average

I-rating.low

I-interrogative.location

I-interrogative.manner

I-interrogative.time

I-interrogative.personal

I-interrogative

I-verb

I-article

O

train.tsv

This is the main training dataset. Each line starts with the question following the intent category listing in the file

dict.intent.csv. The label is enumerated starting from zero.

273

train_slots.tsv

20 46 24 25 6 32 6

52 52 24 6

23 52 14 40 52 25 6 32 6

…

Train the Model

docker pull nvcr.io/nvidia/nemo:v0.10

We then use the following command to launch the container. In this command, we limit the container to use a

single GPU (GPU ID = 1) since this is a lightweight training exercise. We also map our local workspace

/workspace/nemo/ to the folder inside container /nemo.

NV_GPU='1' docker run --runtime=nvidia -it --shm-size=16g \

 --network=host --ulimit memlock=-1 --ulimit

stack=67108864 \

 -v /workspace/nemo:/nemo\

 --rm nvcr.io/nvidia/nemo:v0.10

Inside the container, if we want to start from the original pre-trained BERT model, we can use the following

command to start the training procedure. data_dir is the argument to set up the path of the training data.

work_dir allows you to configure where you want to store the checkpoint files.

cd examples/nlp/intent_detection_slot_tagging/

python joint_intent_slot_with_bert.py \

 --data_dir /nemo/training_data\

 --work_dir /nemo/log

If we have new training datasets and want to improve the previous model, we can use the following command

to continue from the point we stopped. checkpoint_dir takes the path to the previous checkpoints folder.

cd examples/nlp/intent_detection_slot_tagging/

python joint_intent_slot_infer.py \

 --data_dir /nemo/training_data \

 --checkpoint_dir /nemo/log/2020-05-04_18-34-20/checkpoints/ \

 --eval_file_prefix test

Inference the Model

We need to validate the performance of the trained model after a certain number of epochs. The following

command allows us to test the query one-by-one. For instance, in this command, we want to check if our

274

model can properly identify the intention of the query where can I get the best pasta.

cd examples/nlp/intent_detection_slot_tagging/

python joint_intent_slot_infer_b1.py \

--checkpoint_dir /nemo/log/2020-05-29_23-50-58/checkpoints/ \

--query "where can i get the best pasta" \

--data_dir /nemo/training_data/ \

--num_epochs=50

Then, the following is the output from the inference. In the output, we can see that our trained model can

properly predict the intention find_the_store, and return the keywords we are interested in. With these

keywords, we enable the NARA to search for what users want and do a more precise search.

[NeMo I 2020-05-30 00:06:54 actions:728] Evaluating batch 0 out of 1

[NeMo I 2020-05-30 00:06:55 inference_utils:34] Query: where can i get the

best pasta

[NeMo I 2020-05-30 00:06:55 inference_utils:36] Predicted intent: 1

find_the_store

[NeMo I 2020-05-30 00:06:55 inference_utils:50] where B-

interrogative.location

[NeMo I 2020-05-30 00:06:55 inference_utils:50] can O

[NeMo I 2020-05-30 00:06:55 inference_utils:50] i O

[NeMo I 2020-05-30 00:06:55 inference_utils:50] get B-verb

[NeMo I 2020-05-30 00:06:55 inference_utils:50] the B-article

[NeMo I 2020-05-30 00:06:55 inference_utils:50] best B-rating.high

[NeMo I 2020-05-30 00:06:55 inference_utils:50] pasta B-item.type

Next: Conclusion

Conclusion

A true conversational AI system engages in human-like dialogue, understands context, and provides intelligent

responses. Such AI models are often huge and highly complex. With NVIDIA GPUs and NetApp storage,

massive, state-of-the-art language models can be trained and optimized to run inference rapidly. This is a

major stride towards ending the trade- off between an AI model that is fast versus one that is large and

complex. GPU-optimized language understanding models can be integrated into AI applications for industries

such as healthcare, retail, and financial services, powering advanced digital voice assistants in smart speakers

and customer service lines. These high-quality conversational AI systems allow businesses across verticals to

provide previously unattainable personalized services when engaging with customers.

Jarvis enables the deployment of use cases such as virtual assistants, digital avatars, multimodal sensor

fusion (CV fused with ASR/NLP/TTS), or any ASR/NLP/TTS/CV stand-alone use case, such as transcription.

We built a virtual retail assistant that can answer questions regarding weather, points-of-interest, and inventory

pricing. We also demonstrated how to improve the natural language understanding capabilities of the

conversational AI system by archiving conversation history using Cloud Sync and training NeMo models on

new data.

Next: Acknowledgments

275

Acknowledgments

The authors gratefully acknowledge the contributions that were made to this white paper

by our esteemed colleagues from NVIDIA: Davide Onofrio, Alex Qi, Sicong Ji, Marty Jain,

and Robert Sohigian. The authors would also like to acknowledge the contributions of key

NetApp team members: Santosh Rao, David Arnette, Michael Oglesby, Brent Davis, Andy

Sayare, Erik Mulder, and Mike McNamara.

Our sincere appreciation and thanks go to all these individuals, who provided insight and expertise that greatly

assisted in the creation of this paper.

Next: Where to Find Additional Information

Where to Find Additional Information

To learn more about the information that is described in this document, see the following

resources:

• NVIDIA DGX Station, V100 GPU, GPU Cloud

◦ NVIDIA DGX Station

https://www.nvidia.com/en-us/data-center/dgx-station/

◦ NVIDIA V100 Tensor Core GPU

https://www.nvidia.com/en-us/data-center/tesla-v100/

◦ NVIDIA NGC

https://www.nvidia.com/en-us/gpu-cloud/

• NVIDIA Jarvis Multimodal Framework

◦ NVIDIA Jarvis

https://developer.nvidia.com/nvidia-jarvis

◦ NVIDIA Jarvis Early Access

https://developer.nvidia.com/nvidia-jarvis-early-access

• NVIDIA NeMo

◦ NVIDIA NeMo

https://developer.nvidia.com/nvidia-nemo

◦ Developer Guide

https://nvidia.github.io/NeMo/

• NetApp AFF systems

◦ NetApp AFF A-Series Datasheet

https://www.netapp.com/us/media/ds-3582.pdf

◦ NetApp Flash Advantage for All Flash FAS

https://www.netapp.com/us/media/ds-3733.pdf

◦ ONTAP 9 Information Library

http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286

◦ NetApp ONTAP FlexGroup Volumes technical report

https://www.netapp.com/us/media/tr-4557.pdf

• NetApp ONTAP AI

276

https://www.nvidia.com/en-us/data-center/dgx-station/
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://www.nvidia.com/en-us/gpu-cloud/
https://developer.nvidia.com/nvidia-jarvis
https://developer.nvidia.com/nvidia-jarvis-early-access
https://developer.nvidia.com/nvidia-nemo
https://nvidia.github.io/NeMo/
https://www.netapp.com/us/media/ds-3582.pdf
https://www.netapp.com/us/media/ds-3733.pdf
http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286
https://www.netapp.com/us/media/tr-4557.pdf

◦ ONTAP AI with DGX-1 and Cisco Networking Design Guide

https://www.netapp.com/us/media/nva-1121-design.pdf

◦ ONTAP AI with DGX-1 and Cisco Networking Deployment Guide

https://www.netapp.com/us/media/nva-1121-deploy.pdf

◦ ONTAP AI with DGX-1 and Mellanox Networking Design Guide

http://www.netapp.com/us/media/nva-1138-design.pdf

◦ ONTAP AI with DGX-2 Design Guide

https://www.netapp.com/us/media/nva-1135-design.pdf

TR-4858: NetApp Orchestration Solution with Run:AI

Rick Huang, David Arnette, Sung-Han Lin, NetApp

Yaron Goldberg, Run:AI

NetApp AFF storage systems deliver extreme performance and industry-leading hybrid cloud data-

management capabilities. NetApp and Run:AI have partnered to demonstrate the unique capabilities of the

NetApp ONTAP AI solution for artificial intelligence (AI) and machine learning (ML) workloads that provides

enterprise-class performance, reliability, and support. Run:AI orchestration of AI workloads adds a Kubernetes-

based scheduling and resource utilization platform to help researchers manage and optimize GPU utilization.

Together with the NVIDIA DGX systems, the combined solution from NetApp, NVIDIA, and Run:AI provide an

infrastructure stack that is purpose-built for enterprise AI workloads. This technical report gives directional

guidance to customers building conversational AI systems in support of various use cases and industry

verticals. It includes information about the deployment of Run:AI and a NetApp AFF A800 storage system and

serves as a reference architecture for the simplest way to achieve fast, successful deployment of AI initiatives.

The target audience for the solution includes the following groups:

• Enterprise architects who design solutions for the development of AI models and software for Kubernetes-

based use cases such as containerized microservices

• Data scientists looking for efficient ways to achieve efficient model development goals in a cluster

environment with multiple teams and projects

• Data engineers in charge of maintaining and running production models

• Executive and IT decision makers and business leaders who would like to create the optimal Kubernetes

cluster resource utilization experience and achieve the fastest time to market from AI initiatives

Next: Solution Overview

Solution Overview

NetApp ONTAP AI and AI Control Plane

The NetApp ONTAP AI architecture, developed and verified by NetApp and NVIDIA, is powered by NVIDIA

DGX systems and NetApp cloud-connected storage systems. This reference architecture gives IT

organizations the following advantages:

• Eliminates design complexities

• Enables independent scaling of compute and storage

• Enables customers to start small and scale seamlessly

• Offers a range of storage options for various performance and cost points

277

https://www.netapp.com/us/media/nva-1121-design.pdf
https://www.netapp.com/us/media/nva-1121-deploy.pdf
http://www.netapp.com/us/media/nva-1138-design.pdf
https://www.netapp.com/us/media/nva-1135-design.pdf

NetApp ONTAP AI tightly integrates DGX systems and NetApp AFF A800 storage systems with state-of-the-art

networking. NetApp ONTAP AI and DGX systems simplify AI deployments by eliminating design complexity

and guesswork. Customers can start small and grow their systems in an uninterrupted manner while

intelligently managing data from the edge to the core to the cloud and back.

NetApp AI Control Plane is a full stack AI, ML, and deep learning (DL) data and experiment management

solution for data scientists and data engineers. As organizations increase their use of AI, they face many

challenges, including workload scalability and data availability. NetApp AI Control Plane addresses these

challenges through functionalities, such as rapidly cloning a data namespace just as you would a Git repo, and

defining and implementing AI training workflows that incorporate the near-instant creation of data and model

baselines for traceability and versioning. With NetApp AI Control Plane, you can seamlessly replicate data

across sites and regions and swiftly provision Jupyter Notebook workspaces with access to massive datasets.

Run:AI Platform for AI Workload Orchestration

Run:AI has built the world’s first orchestration and virtualization platform for AI infrastructure. By abstracting

workloads from the underlying hardware, Run:AI creates a shared pool of GPU resources that can be

dynamically provisioned, enabling efficient orchestration of AI workloads and optimized use of GPUs. Data

scientists can seamlessly consume massive amounts of GPU power to improve and accelerate their research

while IT teams retain centralized, cross-site control and real-time visibility over resource provisioning, queuing,

and utilization. The Run:AI platform is built on top of Kubernetes, enabling simple integration with existing IT

and data science workflows.

The Run:AI platform provides the following benefits:

• Faster time to innovation. By using Run:AI resource pooling, queueing, and prioritization mechanisms

together with a NetApp storage system, researchers are removed from infrastructure management hassles

and can focus exclusively on data science. Run:AI and NetApp customers increase productivity by running

as many workloads as they need without compute or data pipeline bottlenecks.

• Increased team productivity. Run:AI fairness algorithms guarantee that all users and teams get their fair

share of resources. Policies around priority projects can be preset, and the platform enables dynamic

allocation of resources from one user or team to another, helping users to get timely access to coveted

GPU resources.

• Improved GPU utilization. The Run:AI Scheduler enables users to easily make use of fractional GPUs,

integer GPUs, and multiple nodes of GPUs for distributed training on Kubernetes. In this way, AI workloads

run based on your needs, not capacity. Data science teams are able to run more AI experiments on the

same infrastructure.

Next: Solution Technology

Solution Technology

This solution was implemented with one NetApp AFF A800 system, two DGX-1 servers, and two Cisco Nexus

3232C 100GbE-switches. Each DGX-1 server is connected to the Nexus switches with four 100GbE

connections that are used for inter-GPU communications by using remote direct memory access (RDMA) over

Converged Ethernet (RoCE). Traditional IP communications for NFS storage access also occur on these links.

Each storage controller is connected to the network switches by using four 100GbE-links. The following figure

shows the ONTAP AI solution architecture used in this technical report for all testing scenarios.

278

Hardware Used in This Solution

This solution was validated using the ONTAP AI reference architecture two DGX-1 nodes and one AFF A800

storage system. See NVA-1121 for more details about the infrastructure used in this validation.

The following table lists the hardware components that are required to implement the solution as tested.

Hardware Quantity

DGX-1 systems 2

AFF A800 1

Nexus 3232C switches 2

Software Requirements

This solution was validated using a basic Kubernetes deployment with the Run:AI operator installed.

Kubernetes was deployed using the NVIDIA DeepOps deployment engine, which deploys all required

components for a production-ready environment. DeepOps automatically deployed NetApp Trident for

persistent storage integration with the k8s environment, and default storage classes were created so

containers leverage storage from the AFF A800 storage system. For more information on Trident with

Kubernetes on ONTAP AI, see TR-4798.

The following table lists the software components that are required to implement the solution as tested.

Software Version or Other Information

NetApp ONTAP data management software 9.6p4

Cisco NX-OS switch firmware 7.0(3)I6(1)

NVIDIA DGX OS 4.0.4 - Ubuntu 18.04 LTS

279

https://www.netapp.com/us/media/nva-1121-design.pdf
https://github.com/NVIDIA/deepops
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://www.netapp.com/us/media/tr-4798.pdf

Software Version or Other Information

Kubernetes version 1.17

Trident version 20.04.0

Run:AI CLI v2.1.13

Run:AI Orchestration Kubernetes Operator version 1.0.39

Docker container platform 18.06.1-ce [e68fc7a]

Additional software requirements for Run:AI can be found at Run:AI GPU cluster prerequisites.

Next: Optimal Cluster and GPU Utilization with Run AI

Optimal Cluster and GPU Utilization with Run:AI

The following sections provide details on the Run:AI installation, test scenarios, and results performed in this

validation.

We validated the operation and performance of this system by using industry standard benchmark tools,

including TensorFlow benchmarks. The ImageNet dataset was used to train ResNet-50, which is a famous

Convolutional Neural Network (CNN) DL model for image classification. ResNet-50 delivers an accurate

training result with a faster processing time, which enabled us to drive a sufficient demand on the storage.

Next: Run AI Installation.

Run:AI Installation

To install Run:AI, complete the following steps:

1. Install the Kubernetes cluster using DeepOps and configure the NetApp default storage class.

2. Prepare GPU nodes:

a. Verify that NVIDIA drivers are installed on GPU nodes.

b. Verify that nvidia-docker is installed and configured as the default docker runtime.

3. Install Run:AI:

a. Log into the Run:AI Admin UI to create the cluster.

b. Download the created runai-operator-<clustername>.yaml file.

c. Apply the operator configuration to the Kubernetes cluster.

kubectl apply -f runai-operator-<clustername>.yaml

4. Verify the installation:

a. Go to https://app.run.ai/.

b. Go to the Overview dashboard.

c. Verify that the number of GPUs on the top right reflects the expected number of GPUs and the GPU

nodes are all in the list of servers.For more information about Run:AI deployment, see installing Run:AI

on an on-premise Kubernetes cluster and installing the Run:AI CLI.

280

https://docs.run.ai/Administrator/Cluster-Setup/Run-AI-GPU-Cluster-Prerequisites/
https://app.run.ai
https://app.run.ai/
https://docs.run.ai/Administrator/Cluster-Setup/Installing-Run-AI-on-an-on-premise-Kubernetes-Cluster/
https://docs.run.ai/Administrator/Cluster-Setup/Installing-Run-AI-on-an-on-premise-Kubernetes-Cluster/
https://docs.run.ai/Administrator/Researcher-Setup/Installing-the-Run-AI-Command-Line-Interface/

Next: Run AI Dashboards and Views

Run:AI Dashboards and Views

After installing Run:AI on your Kubernetes cluster and configuring the containers correctly, you see the

following dashboards and views on https://app.run.ai in your browser, as shown in the following figure.

There are 16 total GPUs in the cluster provided by two DGX-1 nodes. You can see the number of nodes, the

total available GPUs, the allocated GPUs that are assigned with workloads, the total number of running jobs,

pending jobs, and idle allocated GPUs. On the right side, the bar diagram shows GPUs per Project, which

summarizes how different teams are using the cluster resource. In the middle is the list of currently running

jobs with job details, including job name, project, user, job type, the node each job is running on, the number of

GPU(s) allocated for that job, the current run time of the job, job progress in percentage, and the GPU

utilization for that job. Note that the cluster is under-utilized (GPU utilization at 23%) because there are only

three running jobs submitted by a single team (team-a).

In the following section, we show how to create multiple teams in the Projects tab and allocate GPUs for each

team to maximize cluster usage and manage resources when there are many users per cluster. The test

scenarios mimic enterprise environments in which memory and GPU resources are shared among training,

inferencing, and interactive workloads.

Next: Creating Projects for Data Science Teams and Allocating GPUs

Creating Projects for Data Science Teams and Allocating GPUs

Researchers can submit workloads through the Run:AI CLI, Kubeflow, or similar processes. To streamline

resource allocation and create prioritization, Run:AI introduces the concept of Projects. Projects are quota

entities that associate a project name with GPU allocation and preferences. It is a simple and convenient way

to manage multiple data science teams.

A researcher submitting a workload must associate a project with a workload request. The Run:AI scheduler

compares the request against the current allocations and the project and determines whether the workload can

281

https://app.run.ai/

be allocated resources or whether it should remain in a pending state.

As a system administrator, you can set the following parameters in the Run:AI Projects tab:

• Model projects. Set a project per user, set a project per team of users, and set a project per a real

organizational project.

• Project quotas. Each project is associated with a quota of GPUs that can be allocated for this project at

the same time. This is a guaranteed quota in the sense that researchers using this project are guaranteed

to get this number of GPUs no matter what the status in the cluster is. As a rule, the sum of the project

allocation should be equal to the number of GPUs in the cluster. Beyond that, a user of this project can

receive an over-quota. As long as GPUs are unused, a researcher using this project can get more GPUs.

We demonstrate over-quota testing scenarios and fairness considerations in Achieving High Cluster

Utilization with Over-Quota GPU Allocation, Basic Resource Allocation Fairness, and Over-Quota Fairness.

• Create a new project, update an existing project, and delete an existing project.

• Limit jobs to run on specific node groups. You can assign specific projects to run only on specific

nodes. This is useful when the project team needs specialized hardware, for example, with enough

memory. Alternatively, a project team might be the owner of specific hardware that was acquired with a

specialized budget, or when you might need to direct build or interactive workloads to work on weaker

hardware and direct longer training or unattended workloads to faster nodes. For commands to group

nodes and set affinity for a specific project, see the Run:AI Documentation.

• Limit the duration of interactive jobs. Researchers frequently forget to close interactive jobs. This might

lead to a waste of resources. Some organizations prefer to limit the duration of interactive jobs and close

them automatically.

The following figure shows the Projects view with four teams created. Each team is assigned a different

number of GPUs to account for different workloads, with the total number of GPUs equal to that of the total

available GPUs in a cluster consisting of two DGX-1s.

Next: Submitting Jobs in Run AI CLI

Submitting Jobs in Run:AI CLI

This section provides the detail on basic Run:AI commands that you can use to run any Kubernetes job. It is

divided into three parts according to workload type. AI/ML/DL workloads can be divided into two generic types:

• Unattended training sessions. With these types of workloads, the data scientist prepares a self-running

workload and sends it for execution. During the execution, the customer can examine the results. This type

of workload is often used in production or when model development is at a stage where no human

intervention is required.

282

https://osrunai_achieving_high_cluster_utilization_with_over-uota_gpu_allocation.adoc
https://osrunai_achieving_high_cluster_utilization_with_over-uota_gpu_allocation.adoc
https://osrunai_basic_resource_allocation_fairness.html
https://osrunai_over-quota_fairness.html
https://docs.run.ai/Administrator/Admin-User-Interface-Setup/Working-with-Projects/

• Interactive build sessions. With these types of workloads, the data scientist opens an interactive session

with Bash, Jupyter Notebook, remote PyCharm, or similar IDEs and accesses GPU resources directly. We

include a third scenario for running interactive workloads with connected ports to reveal an internal port to

the container user..

Unattended Training Workloads

After setting up projects and allocating GPU(s), you can run any Kubernetes workload using the following

command at the command line:

$ runai project set team-a runai submit hyper1 -i gcr.io/run-ai-

demo/quickstart -g 1

This command starts an unattended training job for team-a with an allocation of a single GPU. The job is based

on a sample docker image, gcr.io/run-ai-demo/quickstart. We named the job hyper1. You can then

monitor the job’s progress by running the following command:

$ runai list

The following figure shows the result of the runai list command. Typical statuses you might see include

the following:

• ContainerCreating. The docker container is being downloaded from the cloud repository.

• Pending. The job is waiting to be scheduled.

• Running. The job is running.

To get an additional status on your job, run the following command:

$ runai get hyper1

To view the logs of the job, run the runai logs <job-name> command:

$ runai logs hyper1

In this example, you should see the log of a running DL session, including the current training epoch, ETA, loss

function value, accuracy, and time elapsed for each step.

You can view the cluster status on the Run:AI UI at https://app.run.ai/. Under Dashboards > Overview, you can

monitor GPU utilization.

To stop this workload, run the following command:

283

https://app.run.ai/

$ runai delte hyper1

This command stops the training workload. You can verify this action by running runai list again. For more

detail, see launching unattended training workloads.

Interactive Build Workloads

After setting up projects and allocating GPU(s) you can run an interactive build workload using the following

command at the command line:

$ runai submit build1 -i python -g 1 --interactive --command sleep --args

infinity

The job is based on a sample docker image python. We named the job build1.

The -- interactive flag means that the job does not have a start or end. It is the

researcher’s responsibility to close the job. The administrator can define a time limit for

interactive jobs after which they are terminated by the system.

The --g 1 flag allocates a single GPU to this job. The command and argument provided is --command

sleep — args infinity. You must provide a command, or the container starts and then exits immediately.

The following commands work similarly to the commands described in Unattended Training Workloads:

• runai list: Shows the name, status, age, node, image, project, user, and GPUs for jobs.

• runai get build1: Displays additional status on the job build1.

• runai delete build1: Stops the interactive workload build1.To get a bash shell to the container, the

following command:

$ runai bash build1

This provides a direct shell into the computer. Data scientists can then develop or finetune their models within

the container.

You can view the cluster status on the Run:AI UI at https://app.run.ai. For more detail, see starting and using

interactive build workloads.

Interactive Workloads with Connected Ports

As an extension of interactive build workloads, you can reveal internal ports to the container user when starting

a container with the Run:AI CLI. This is useful for cloud environments, working with Jupyter Notebooks, or

connecting to other microservices. Ingress allows access to Kubernetes services from outside the Kubernetes

cluster. You can configure access by creating a collection of rules that define which inbound connections reach

which services.

For better management of external access to the services in a cluster, we suggest that cluster administrators

install Ingress and configure LoadBalancer.

284

https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Launch-Unattended-Training-Workloads-/
https://app.run.ai
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Start-and-Use-Interactive-Build-Workloads-/
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Start-and-Use-Interactive-Build-Workloads-/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/

To use Ingress as a service type, run the following command to set the method type and the ports when

submitting your workload:

$ runai submit test-ingress -i jupyter/base-notebook -g 1 \

 --interactive --service-type=ingress --port 8888 \

 --args="--NotebookApp.base_url=test-ingress" --command=start-notebook.sh

After the container starts successfully, execute runai list to see the SERVICE URL(S) with which to

access the Jupyter Notebook. The URL is composed of the ingress endpoint, the job name, and the port. For

example, see https://10.255.174.13/test-ingress-8888.

For more details, see launching an interactive build workload with connected ports.

Next: Achieving High Cluster Utilization

Achieving High Cluster Utilization

In this section, we emulate a realistic scenario in which four data science teams each submit their own

workloads to demonstrate the Run:AI orchestration solution that achieves high cluster utilization while

maintaining prioritization and balancing GPU resources. We start by using the ResNet-50 benchmark

described in the section ResNet-50 with ImageNet Dataset Benchmark Summary:

$ runai submit netapp1 -i netapp/tensorflow-tf1-py3:20.01.0 --local-image

--large-shm -v /mnt:/mnt -v /tmp:/tmp --command python --args

"/netapp/scripts/run.py" --args "--

dataset_dir=/mnt/mount_0/dataset/imagenet/imagenet_original/" --args "--

num_mounts=2" --args "--dgx_version=dgx1" --args "--num_devices=1" -g 1

We ran the same ResNet-50 benchmark as in NVA-1121. We used the flag --local-image for containers

not residing in the public docker repository. We mounted the directories /mnt and /tmp on the host DGX-1

node to /mnt and /tmp to the container, respectively. The dataset is at NetApp AFFA800 with the

dataset_dir argument pointing to the directory. Both --num_devices=1 and -g 1 mean that we allocate

one GPU for this job. The former is an argument for the run.py script, while the latter is a flag for the runai

submit command.

The following figure shows a system overview dashboard with 97% GPU utilization and all sixteen available

GPUs allocated. You can easily see how many GPUs are allocated for each team in the GPUs/Project bar

chart. The Running Jobs pane shows the current running job names, project, user, type, node, GPUs

consumed, run time, progress, and utilization details. A list of workloads in queue with their wait time is shown

in Pending Jobs. Finally, the Nodes box offers GPU numbers and utilization for individual DGX-1 nodes in the

cluster.

285

https://10.255.174.13/test-ingress-8888
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Launch-an-Interactive-Build-Workload-with-Connected-Ports/
https://docs.netapp.com/us-en/netapp-solutions/ai/osrunai_resnet-50_with_imagenet_dataset_benchmark_summary.html
https://www.netapp.com/us/media/nva-1121-design.pdf

Next: Fractional GPU Allocation for Less Demanding or Interactive Workloads

Fractional GPU Allocation for Less Demanding or Interactive Workloads

When researchers and developers are working on their models, whether in the development, hyperparameter

tuning, or debugging stages, such workloads usually require fewer computational resources. It is therefore

more efficient to provision fractional GPU and memory such that the same GPU can simultaneously be

allocated to other workloads. Run:AI’s orchestration solution provides a fractional GPU sharing system for

containerized workloads on Kubernetes. The system supports workloads running CUDA programs and is

especially suited for lightweight AI tasks such as inference and model building. The fractional GPU system

transparently gives data science and AI engineering teams the ability to run multiple workloads simultaneously

on a single GPU. This enables companies to run more workloads, such as computer vision, voice recognition,

and natural language processing on the same hardware, thus lowering costs.

Run:AI’s fractional GPU system effectively creates virtualized logical GPUs with their own memory and

computing space that containers can use and access as if they were self-contained processors. This enables

several workloads to run in containers side-by-side on the same GPU without interfering with each other. The

solution is transparent, simple, and portable and it requires no changes to the containers themselves.

A typical usecase could see two to eight jobs running on the same GPU, meaning that you could do eight times

the work with the same hardware.

For the job frac05 belonging to project team-d in the following figure, we can see that the number of GPUs

allocated was 0.50. This is further verified by the nvidia-smi command, which shows that the GPU memory

available to the container was 16,255MB: half of the 32GB per V100 GPU in the DGX-1 node.

286

Next: Achieving High Cluster Utilization with Over-Quota GPU Allocation

Achieving High Cluster Utilization with Over-Quota GPU Allocation

In this section and in the sections Basic Resource Allocation Fairness, and Over-Quota Fairness, we have

devised advanced testing scenarios to demonstrate the Run:AI orchestration capabilities for complex workload

management, automatic preemptive scheduling, and over-quota GPU provisioning. We did this to achieve high

cluster-resource usage and optimize enterprise-level data science team productivity in an ONTAP AI

environment.

For these three sections, set the following projects and quotas:

Project Quota

team-a 4

team-b 2

team-c 2

team-d 8

In addition, we use the following containers for these three sections:

• Jupyter Notebook: jupyter/base-notebook

• Run:AI quickstart: gcr.io/run-ai-demo/quickstart

We set the following goals for this test scenario:

287

• Show the simplicity of resource provisioning and how resources are abstracted from users

• Show how users can easily provision fractions of a GPU and integer number of GPUs

• Show how the system eliminates compute bottlenecks by allowing teams or users to go over their resource

quota if there are free GPUs in the cluster

• Show how data pipeline bottlenecks are eliminated by using the NetApp solution when running compute-

intensive jobs, such as the NetApp container

• Show how multiple types of containers are running using the system

◦ Jupyter Notebook

◦ Run:AI container

• Show high utilization when the cluster is full

For details on the actual command sequence executed during the testing, see Testing Details for Section 4.8.

When all 13 workloads are submitted, you can see a list of container names and GPUs allocated, as shown in

the following figure. We have seven training and six interactive jobs, simulating four data science teams, each

with their own models running or in development. For interactive jobs, individual developers are using Jupyter

Notebooks to write or debug their code. Thus, it is suitable to provision GPU fractions without using too many

cluster resources.

The results of this testing scenario show the following:

• The cluster should be full: 16/16 GPUs are used.

• High cluster utilization.

• More experiments than GPUs due to fractional allocation.

• team-d is not using all their quota; therefore, team-b and team-c can use additional GPUs for their

experiments, leading to faster time to innovation.

Next: Basic Resource Allocation Fairness

Basic Resource Allocation Fairness

In this section, we show that, when team-d asks for more GPUs (they are under their quota), the system

pauses the workloads of team-b and team-c and moves them into a pending state in a fair-share manner.

For details including job submissions, container images used, and command sequences executed, see the

section Testing Details for Section 4.9.

The following figure shows the resulting cluster utilization, GPUs allocated per team, and pending jobs due to

automatic load balancing and preemptive scheduling. We can observe that when the total number of GPUs

288

requested by all team workloads exceeds the total available GPUs in the cluster, Run:AI’s internal fairness

algorithm pauses one job each for team-b and team-c because they have met their project quota. This

provides overall high cluster utilization while data science teams still work under resource constraints set by an

administrator.

The results of this testing scenario demonstrate the following:

• Automatic load balancing. The system automatically balances the quota of the GPUs, such that each

team is now using their quota. The workloads that were paused belong to teams that were over their quota.

• Fair share pause. The system chooses to stop the workload of one team that was over their quota and

then stop the workload of the other team. Run:AI has internal fairness algorithms.

Next: Over-Quota Fairness

Over-Quota Fairness

In this section, we expand the scenario in which multiple teams submit workloads and exceed their quota. In

this way, we demonstrate how Run:AI’s fairness algorithm allocates cluster resources according to the ratio of

preset quotas.

Goals for this test scenario:

• Show queuing mechanism when multiple teams are requesting GPUs over their quota.

• Show how the system distributes a fair share of the cluster between multiple teams that are over their

quota according to the ratio between their quotas, so that the team with the larger quota gets a larger share

of the spare capacity.

At the end of Basic Resource Allocation Fairness, there are two workloads queued: one for team-b and one

289

for team-c. In this section, we queue additional workloads.

For details including job submissions, container images used, and command sequences executed, see Testing

Details for section 4.10.

When all jobs are submitted according to the section Testing Details for section 4.10, the system dashboard

shows that team-a, team-b, and team-c all have more GPUs than their preset quota. team-a occupies four

more GPUs than its preset soft quota (four), whereas team-b and team-c each occupy two more GPUs than

their soft quota (two). The ratio of over-quota GPUs allocated is equal to that of their preset quota. This is

because the system used the preset quota as a reference of priority and provisioned accordingly when multiple

teams request more GPUs, exceeding their quota. Such automatic load balancing provides fairness and

prioritization when enterprise data science teams are actively engaged in AI model development and

production.

The results of this testing scenario show the following:

• The system starts to de-queue the workloads of other teams.

• The order of the dequeuing is decided according to fairness algorithms, such that team-b and team-c get

the same amount of over-quota GPUs (since they have a similar quota), and team-a gets a double

amount of GPUs since their quota is two times higher than the quota of team-b and team-c.

• All the allocation is done automatically.

Therefore, the system should stabilize on the following states:

Project GPUs allocated Comment

team-a 8/4 Four GPUs over the quota. Empty

queue.

290

Project GPUs allocated Comment

team-b 4/2 Two GPUs over the quota. One

workload queued.

team-c 4/2 Two GPUs over the quota. One

workload queued.

team-d 0/8 Not using GPUs at all, no queued

workloads.

The following figure shows the GPU allocation per project over time in the Run:AI Analytics dashboard for the

sections Achieving High Cluster Utilization with Over-Quota GPU Allocation, Basic Resource Allocation

Fairness, and Over-Quota Fairness. Each line in the figure indicates the number of GPUs provisioned for a

given data science team at any time. We can see that the system dynamically allocates GPUs according to

workloads submitted. This allows teams to go over quota when there are available GPUs in the cluster, and

then preempt jobs according to fairness, before finally reaching a stable state for all four teams.

Next: Saving Data to a Trident-Provisioned PersistentVolume

Saving Data to a Trident-Provisioned PersistentVolume

NetApp Trident is a fully supported open source project designed to help you meet the sophisticated

persistence demands of your containerized applications. You can read and write data to a Trident-provisioned

Kubernetes PersistentVolume (PV) with the added benefit of data tiering, encryption, NetApp Snapshot

technology, compliance, and high performance offered by NetApp ONTAP data management software.

Reusing PVCs in an Existing Namespace

For larger AI projects, it might be more efficient for different containers to read and write data to the same

Kubernetes PV. To reuse a Kubernetes Persistent Volume Claim (PVC), the user must have already created a

PVC. See the NetApp Trident documentation for details on creating a PVC. Here is an example of reusing an

existing PVC:

291

https://netapp-trident.readthedocs.io/

$ runai submit pvc-test -p team-a --pvc test:/tmp/pvc1mount -i gcr.io/run-

ai-demo/quickstart -g 1

Run the following command to see the status of job pvc-test for project team-a:

$ runai get pvc-test -p team-a

You should see the PV /tmp/pvc1mount mounted to team-a job pvc-test. In this way, multiple containers

can read from the same volume, which is useful when there are multiple competing models in development or

in production. Data scientists can build an ensemble of models and then combine prediction results by majority

voting or other techniques.

Use the following to access the container shell:

$ runai bash pvc-test -p team-a

You can then check the mounted volume and access your data within the container.

This capability of reusing PVCs works with NetApp FlexVol volumes and NetApp ONTAP FlexGroup volumes,

enabling data engineers more flexible and robust data management options to leverage your data fabric

powered by NetApp.

Next: Conclusion

Conclusion

NetApp and Run:AI have partnered in this technical report to demonstrate the unique capabilities of the

NetApp ONTAP AI solution together with the Run:AI Platform for simplifying orchestration of AI workloads. The

preceding steps provide a reference architecture to streamline the process of data pipelines and workload

orchestration for deep learning. Customers looking to implement these solutions are encouraged to reach out

to NetApp and Run:AI for more information.

Next: Testing Details for Section 4.8

Testing Details for Section 4.8

This section contains the testing details for the section Achieving High Cluster Utilization with Over-Quota GPU

Allocation.

Submit jobs in the following order:

Project Image # GPUs Total Comment

team-a Jupyter 1 1/4 –

team-a NetApp 1 2/4 –

team-a Run:AI 2 4/4 Using all their quota

team-b Run:AI 0.6 0.6/2 Fractional GPU

292

Project Image # GPUs Total Comment

team-b Run:AI 0.4 1/2 Fractional GPU

team-b NetApp 1 2/2 –

team-b NetApp 2 4/2 Two over quota

team-c Run:AI 0.5 0.5/2 Fractional GPU

team-c Run:AI 0.3 0.8/2 Fractional GPU

team-c Run:AI 0.2 1/2 Fractional GPU

team-c NetApp 2 3/2 One over quota

team-c NetApp 1 4/2 Two over quota

team-d NetApp 4 4/8 Using half of their

quota

Command structure:

$ runai submit <job-name> -p <project-name> -g <#GPUs> -i <image-name>

Actual command sequence used in testing:

$ runai submit a-1-1-jupyter -i jupyter/base-notebook -g 1 \

 --interactive --service-type=ingress --port 8888 \

 --args="--NotebookApp.base_url=team-a-test-ingress" --command=start

-notebook.sh -p team-a

$ runai submit a-1-g -i gcr.io/run-ai-demo/quickstart -g 1 -p team-a

$ runai submit a-2-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-a

$ runai submit b-1-g06 -i gcr.io/run-ai-demo/quickstart -g 0.6

--interactive -p team-b

$ runai submit b-2-g04 -i gcr.io/run-ai-demo/quickstart -g 0.4

--interactive -p team-b

$ runai submit b-3-g -i gcr.io/run-ai-demo/quickstart -g 1 -p team-b

$ runai submit b-4-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-b

$ runai submit c-1-g05 -i gcr.io/run-ai-demo/quickstart -g 0.5

--interactive -p team-c

$ runai submit c-2-g03 -i gcr.io/run-ai-demo/quickstart -g 0.3

--interactive -p team-c

$ runai submit c-3-g02 -i gcr.io/run-ai-demo/quickstart -g 0.2

--interactive -p team-c

$ runai submit c-4-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-c

$ runai submit c-5-g -i gcr.io/run-ai-demo/quickstart -g 1 -p team-c

$ runai submit d-1-gggg -i gcr.io/run-ai-demo/quickstart -g 4 -p team-d

At this point, you should have the following states:

293

Project GPUs Allocated Workloads Queued

team-a 4/4 (soft quota/actual allocation) None

team-b 4/2 None

team-c 4/2 None

team-d 4/8 None

See the section Achieving High Cluster Utilization with Over-uota GPU Allocation for discussions on the

proceeding testing scenario.

Next: Testing Details for Section 4.9

Testing Details for Section 4.9

This section contains testing details for the section Basic Resource Allocation Fairness.

Submit jobs in the following order:

Project # GPUs Total Comment

team-d 2 6/8 Team-b/c workload

pauses and moves to

pending.

team-d 2 8/8 Other team (b/c)

workloads pause and

move to pending.

See the following executed command sequence:

$ runai submit d-2-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-d$

runai submit d-3-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-d

At this point, you should have the following states:

Project GPUs Allocated Workloads Queued

team-a 4/4 None

team-b 2/2 None

team-c 2/2 None

team-d 8/8 None

See the section Basic Resource Allocation Fairness for a discussion on the proceeding testing scenario.

Next: Testing Details for Section 4.10

Testing Details for Section 4.10

This section contains testing details for the section Over-Quota Fairness.

294

Submit jobs in the following order for team-a, team-b, and team-c:

Project # GPUs Total Comment

team-a 2 4/4 1 workload queued

team-a 2 4/4 2 workloads queued

team-b 2 2/2 2 workloads queued

team-c 2 2/2 2 workloads queued

See the following executed command sequence:

$ runai submit a-3-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-a$

runai submit a-4-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-a$ runai

submit b-5-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-b$ runai

submit c-6-gg -i gcr.io/run-ai-demo/quickstart -g 2 -p team-c

At this point, you should have the following states:

Project GPUs Allocated Workloads Queued

team-a 4/4 Two workloads asking for GPUs

two each

team-b 2/2 Two workloads asking for two

GPUs each

team-c 2/2 Two workloads asking for two

GPUs each

team-d 8/8 None

Next, delete all the workloads for team-d:

$ runai delete -p team-d d-1-gggg d-2-gg d-3-gg

See the section Over-Quota Fairness, for discussions on the proceeding testing scenario.

Next: Where to Find Additional Information

Where to Find Additional Information

To learn more about the information that is described in this document, see the following resources:

• NVIDIA DGX Systems

◦ NVIDIA DGX-1 System

https://www.nvidia.com/en-us/data-center/dgx-1/

◦ NVIDIA V100 Tensor Core GPU

https://www.nvidia.com/en-us/data-center/tesla-v100/

295

https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/tesla-v100/

◦ NVIDIA NGC

https://www.nvidia.com/en-us/gpu-cloud/

• Run:AI container orchestration solution

◦ Run:AI product introduction

https://docs.run.ai/home/components/

◦ Run:AI installation documentation

https://docs.run.ai/Administrator/Cluster-Setup/Installing-Run-AI-on-an-on-premise-Kubernetes-Cluster/

https://docs.run.ai/Administrator/Researcher-Setup/Installing-the-Run-AI-Command-Line-Interface/

◦ Submitting jobs in Run:AI CLI

https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Launch-Unattended-Training-Workloads-/

https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Start-and-Use-Interactive-Build-Workloads-/

◦ Allocating GPU fractions in Run:AI CLI

https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Using-GPU-Fractions/

• NetApp AI Control Plane

◦ Technical report

https://www.netapp.com/us/media/tr-4798.pdf

◦ Short-form demo

https://youtu.be/gfr_sO27Rvo

◦ GitHub repository

https://github.com/NetApp/kubeflow_jupyter_pipeline

• NetApp AFF systems

◦ NetApp AFF A-Series Datasheet

https://www.netapp.com/us/media/ds-3582.pdf

◦ NetApp Flash Advantage for All Flash FAS

https://www.netapp.com/us/media/ds-3733.pdf

◦ ONTAP 9 Information Library

http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286

◦ NetApp ONTAP FlexGroup Volumes technical report

https://www.netapp.com/us/media/tr-4557.pdf

• NetApp ONTAP AI

◦ ONTAP AI with DGX-1 and Cisco Networking Design Guide

https://www.netapp.com/us/media/nva-1121-design.pdf

◦ ONTAP AI with DGX-1 and Cisco Networking Deployment Guide

https://www.netapp.com/us/media/nva-1121-deploy.pdf

◦ ONTAP AI with DGX-1 and Mellanox Networking Design Guide

http://www.netapp.com/us/media/nva-1138-design.pdf

◦ ONTAP AI with DGX-2 Design Guide

https://www.netapp.com/us/media/nva-1135-design.pdf

296

https://www.nvidia.com/en-us/gpu-cloud/
https://docs.run.ai/home/components/
https://docs.run.ai/Administrator/Cluster-Setup/Installing-Run-AI-on-an-on-premise-Kubernetes-Cluster/
https://docs.run.ai/Administrator/Researcher-Setup/Installing-the-Run-AI-Command-Line-Interface/
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Launch-Unattended-Training-Workloads-/
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Start-and-Use-Interactive-Build-Workloads-/
https://docs.run.ai/Researcher/Walkthroughs/Walkthrough-Using-GPU-Fractions/
https://www.netapp.com/us/media/tr-4798.pdf
https://youtu.be/gfr_sO27Rvo
https://github.com/NetApp/kubeflow_jupyter_pipeline
https://www.netapp.com/us/media/ds-3582.pdf
https://www.netapp.com/us/media/ds-3733.pdf
http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286
https://www.netapp.com/us/media/tr-4557.pdf
https://www.netapp.com/us/media/nva-1121-design.pdf
https://www.netapp.com/us/media/nva-1121-deploy.pdf
http://www.netapp.com/us/media/nva-1138-design.pdf
https://www.netapp.com/us/media/nva-1135-design.pdf

Copyright Information

Copyright © 2021 NetApp, Inc. All rights reserved. Printed in the U.S. No part of this document

covered by copyright may be reproduced in any form or by any means-graphic, electronic, or

mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system-

without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY

DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF

THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice.

NetApp assumes no responsibility or liability arising from the use of products described herein,

except as expressly agreed to in writing by NetApp. The use or purchase of this product does not

convey a license under any patent rights, trademark rights, or any other intellectual property

rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents,

foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to

restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and

Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of

NetApp, Inc. Other company and product names may be trademarks of their respective owners.

297

http://www.netapp.com/TM

	Artificial Intelligence : NetApp Solutions
	Table of Contents
	Artificial Intelligence
	AI Converged Infrastructures
	Data Pipelines, Data Lakes and Management
	Use Cases

